

MACHINE LEARNING:

APPLICATION TO THE SCADA SYSTEM

LEE SHENG KAI

UNIVERSITI TUNKU ABDUL RAHMAN

MACHINE LEARNING:

APPLICATION TO THE SCADA SYSTEM

LEE SHENG KAI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : LEE SHENG KAI

ID No. : 1404202

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “MACHINE LEARNING:

APPLICATION TO THE SCADA SYSTEM” was prepared by LEE SHENG

KAI has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Honours) Electrical and

Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : TS. DR. YAP WUN SHE

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2019, Lee Sheng Kai. All right reserved.

v

ABSTRACT

An intrusion detection system is employed to protect supervisory control and data

acquisition system from cyber-physical attacks. The effectiveness of the employed

intrusion detection system relies on the accuracy in predicting different cyber-attacks.

Different machine learning models had been proposed to increase the accuracy of an

intrusion detection system in predicting different cyber-attacks. This is also known as

multiclass classification problem. Most of the existing approaches remove features of

different cyber-attacks and thus limit the number of predicted types of attacks which

leads to a simpler multiclass classification problem. To make matters worse,

inappropriate or artificial network data had been used to evaluate the accuracy of the

proposed machine learning methods. The aforementioned concerns question the

validity of existing machine learning models in predicting different cyber-attacks. In

this project, wrapper-based feature selection technique with best-first search

algorithm is used to consider all features of different cyber-attacks such that the

trained machine learning classifier can be used to predict all types of cyber-attacks.

In addition, ensemble method that combines two different machine learning models

is performed to evaluate its effectiveness in predicting all different types of cyber-

attacks. Experiments are conducted on three publicly recognised datasets, i.e.,

UNSW-NB15, ISCX 2012 and NSL-KDD. The results show that wrapper-based

feature selection technique with best-first search algorithm is always effective to

improve the accuracy of multiclass classification. On the other hand, ensemble

learning is able to enhance the multiclass classification model only if the ensemble

model is constructed with the correct combination of base learners or models. Thus,

this final year project proposes to use feature extraction and ensemble learning on

conventional machine learning algorithms improving the prediction performance.

Conventional machine learning algorithms are the focus as these algorithms work

well with the structured data provided in the aforementioned dataset. Lastly, as

compared to the existing literature which mainly measures the accuracy of multiclass

classification against six types of cyber-attacks, the multiclass classification model

proposed in this project is able to predict up to ten different types of cyber-attacks.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Aim and Objectives 4

1.4 Scope and Limitation of the Study 4

2 LITERATURE REVIEW 5

2.1 Introduction of Supervised Machine Learning 5

2.2 Supervised Machine Learning Algorithms 7

2.2.1 Naïve Bayes 7

2.2.2 K-Nearest Neighbour 8

2.2.3 Decision Tree 9

2.2.4 Random Forest 10

2.2.5 Support Vector Machine 11

2.3 Ensemble Learning 13

2.4 Feature Selection 14

2.5 Datasets Review 17

vii

2.5.1 UNSW-NB15 Dataset 17

2.5.2 ISCX-IDS2012 Dataset 19

2.5.3 NSL-KDD Dataset 21

2.6 Evaluation Metrics 23

2.7 Related Works 25

3 METHODOLOGY AND WORK PLAN 30

3.1 Overview of Project Work Plan 30

3.2 Dataset Preparation 31

3.2.1 UNSW-NB15 Pre-Processing 31

3.2.2 ISCX-IDS2012 Pre-Processing 32

3.3 Algorithm and Settings 32

3.4 Initial 10-fold Cross Validation and Hold-out Test 38

3.5 Integration of Feature Selection 39

3.6 Final 10-fold Cross Validation and Hold-out Test 40

3.7 Integration of Ensemble Learning 41

3.8 Project Planning and Resource Allocation 43

3.9 Anticipated Problems and Solutions 43

4 RESULTS AND DISCUSSIONS 45

4.1 Description of Evaluation Scheme 45

4.2 Results and Discussions for UNSW-NB15 Dataset 45

4.3 Results and Discussions for ISCX-IDS2012 Dataset 49

4.4 Results and Discussions for NSL-KDD Dataset 51

4.5 Summary of Results 54

5 CONCLUSIONS AND RECOMMENDATIONS 56

5.1 Conclusions 56

5.2 Recommendations for Future Work 57

REFERENCES 58

APPENDICES 64

viii

 LIST OF TABLES

Table 2.1: Probabilities of Prediction for Different Classifiers

(Example) 14

Table 2.2: Attributes of the UNSW-NB15 Dataset 18

Table 2.3: Attributes of the ISCX-IDS 2012 Dataset 20

Table 2.4: Attributes of the NSL-KDD Dataset 22

Table 3.1: Machine Learning Classifiers in WEKA and

Respective Paths 32

Table 3.2: Updated Attributes of the ISCX-IDS2012 Dataset 44

Table 4.1: Important Feature Subsets for Different Machine

Learning Algorithms using UNSW-NB15 Dataset 46

Table 4.2: Performance Results of Various IDS Models for Cross

Validation using UNSW-NB15 Dataset 46

Table 4.3: Performance Results of Various IDS Models for Hold-

out Test using UNSW-NB15 Dataset 47

Table 4.4: Confusion Matrix for SVM Model for Initial Cross

Validation 47

Table 4.5: Performance Results of the Best Three Individual

Models and Ensemble Models for UNSW-NB15

Dataset 48

Table 4.6: Important Feature Subsets for Different Machine

Learning Algorithms using ISCX-IDS2012 Dataset 49

Table 4.7: Performance Results of Various IDS Models for Cross

Validation using ISCX-IDS2012 Dataset 50

Table 4.8: Performance Results of Various IDS Models for Hold-

out Test using ISCX-IDS2012 Dataset 50

Table 4.9: Performance Results of the Best Three Individual

Models and Ensemble Models for ISCX-IDS2012

Dataset 51

Table 4.10: Important Feature Subsets for Different Machine

Learning Algorithms using NSL-KDD Dataset 52

ix

Table 4.11: Performance Results of Various IDS Models for

Cross Validation using NSL-KDD Dataset 53

Table 4.12: Performance Results of Various IDS Models for

Hold-out Test using NSL-KDD Dataset 53

Table 4.13: Performance Results of the Best Three Individual

Models and Ensemble Models for NSL-KDD Dataset 54

x

LIST OF FIGURES

Figure 1.1: Network-Based IDS versus Host-Based IDS (Fogie

and Peikari, 2002) 2

Figure 2.1: The Process of Developing and Evaluating a Machine

Learning Model 6

Figure 2.2: The Splitting of Dataset in k-fold Cross Validation.

White Parts Indicate Training Data And Black Parts

Indicate Testing Data (Kelleher, Namee and D’arcy,

2015) 6

Figure 2.3: Illustration of K-Nearest Neighbour 9

Figure 2.4: Illustration of Decision Tree 10

Figure 2.5: Illustration of Random Forest 11

Figure 2.6: Illustration of Support Vector Machine 12

Figure 2.7: Illustration of Ensemble Modelling 13

Figure 2.8: Wrapper Method in Feature Selection (Kohavi and

John, 1997) 16

Figure 2.9: Best-First Search Algorithm (Kohavi and John, 1997) 17

Figure 2.10: Distribution of the Class in UNSW-NB15 Training

Data 19

Figure 2.11: Distribution of the Class in UNSW-NB15 Test Data 19

Figure 2.12: Distribution of the Class in ISCX-IDS 2012 Training

Data 21

Figure 2.13: Distribution of the Class in ISCX-IDS 2012 Test

Data 21

Figure 2.14: Distribution of the Class in NSL-KDD Training Data 23

Figure 2.15: Distribution of the Class in NSL-KDD Test Data 23

Figure 2.16: Confusion Matrix of Classification 24

Figure 3.1: Project Overview and Proposed Architecture 30

Figure 3.2: Parameter Settings for Naïve Bayes Classifier 33

xi

Figure 3.3: Parameter Settings for K-Nearest Neighbour

Classifier 34

Figure 3.4: Parameter Settings for J48 Decision Tree Classifier 35

Figure 3.5: Parameter Settings for Random Forest Classifier

without Tie-Breaking Capability 36

Figure 3.6: Parameter Settings for Random Forest Classifier with

Tie-Breaking Capability 37

Figure 3.7: Parameter Settings for Support Vector Machine

Classifier 38

Figure 3.8: Wrapper-based Feature Selection with Best-First

Search in WEKA 39

Figure 3.9: Parameter Settings for “FilteredClassifier” in WEKA 40

Figure 3.10: Example Settings of Using “Remove” Function 41

Figure 3.11: Parameter Settings of an Ensemble Model 42

Figure 3.12: Selection of Individual Base Learners for Ensemble

Learning 42

Figure 3.13: Tasks List and Project Planning 43

Figure 4.1: Comparisons of Accuracies Before and After Feature

Selection and Ensemble Learning for UNSW-NB15,

ISCX-IDS2012 and NSL-KDD Datasets 55

xii

LIST OF SYMBOLS / ABBREVIATIONS

FN False Negative

FP False Positive

IDS Intrusion Detection System

J48 J48 Decision Tree

KNN K-nearest Neighbour

NB Naïve Bayes

RF Random Forest without Tie-Breaking Capability

RF-BT Random Forest with Tie-Breaking Capability

SCADA Supervisory Control and Data Acquisition

SVM Support Vector Machine

TN True Negative

TP True Positive

WEKA Waikato Environment for Knowledge Analysis Software Suite

xiii

LIST OF APPENDICES

APPENDIX A: Dataset Downloads 64

APPENDIX B: Python Codes (XML-to-CSV converter for

ISCX-IDS2012) 65

APPENDIX C: Python Codes (ISCX-IDS2012: Removal of

Duplicates, Undersampling of Normal Majority

Class and Train-Test Split of 70:30) 66

APPENDIX D: Confusion Matrices for UNSW-NB15 Dataset 69

APPENDIX E: Confusion Matrices for ISCX-IDS2012 Dataset 83

APPENDIX F: Confusion Matrices for NSL-KDD Dataset 96

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

In the mid-20
th
 century, many manufacturing or industrial plants were greatly reliant

on personnel to manually control and monitor different entities on-site. As the

manufacturing processes are getting more complex and the industrial floors are

getting bigger in physical size, supervisory control and data acquisition (SCADA)

which contains software and hardware components was developed. SCADA allows

industrial players to monitor and control different entities locally or at remote

locations (Boyer, 2004). As SCADA is capable to control and monitor different

entities connected with each other, SCADA tends to be the target of attackers.

Shitharth and Winston (2015) listed vulnerabilities reported in various SCADA

systems, including eavesdropping (Mo, Chabukswar and Sinopoli, 2014), SQL

injection attack (Zhang, et al., 2016), denial-of-service attack (Barbosa, 2014),

identity spoofing (Zhang, et al., 2016), man-in-the-middle attack (Maynard,

McLaughlin and Haberler, 2014), related-key attack (Beaulieu, et al., 2017) and

malware attack (Akhtar, Gupta and Yamaguchi, 2018). As SCADA systems are

widely used in power plants and industry, measures are taken by governments and

private companies to secure SCADA against attacks, in both cyber and physical

environments. One of the measures taken is to monitor cyber-physical systems for

malicious activity or policy violations. This system is coined as intrusion detection

system (Rao and Nayak, 2014).

Generally, there exist two sources of audit data for intrusion detection system

(IDS), namely network-based and host-based. Network-based IDS is implemented at

several strategic points within the network to monitor the inflow and outflow of

traffic (Barbosa, 2014) while host-based IDS is implemented on individual devices to

analyse the system logs (Mitchell and Chen, 2014). Figure 1.1 illustrates the two

locations where network-based IDS and host-based IDS collect the network data

(Fogie and Peikari, 2002). Network-based IDS is the focus of this final year project

since one does not need to consider the extension of network from time to time.

2

Figure 1.1: Network-Based IDS versus Host-Based IDS (Fogie and Peikari, 2002)

Network-based IDS analyses the network traffic and then subsequently maps

the network traffic with the collection of identified attacks. Once abnormality is

detected, the warning will be sent to the network administrator for further actions.

There are generally two approaches of detection, namely misuse-based and anomaly-

based detection approaches.

Misuse-based detection identifies the intrusion based on the pre-determined

rules, also known as attack characteristics or signatures (Erez and Wool, 2015).

Some examples of the signatures include the byte sequences in network traffic and

identified malicious commands used by malware. Misuse-based intrusion detection

although proved to be accurate, but it cannot detect the newer types of unseen attack.

In contrast, an anomaly-based detection is dependent on the overall behaviour of the

system where an attacker’s behaviour is observably unusual as compared to that of a

legitimate user by recognising a deviation from normal system behaviour (Erez and

Wool, 2015). Nevertheless, anomaly-based detection system still suffers from high

false positives issue, which treats a legitimate activity as a malicious attack (Barbosa,

2014). In addition, Erez and Wool (2015) claimed that anomaly-based detection is

sensitive to noise.

There are copious of researches in both misuse and anomaly-based detection

methods and it can be found that different approaches are proposed in the literature.

Among the proposed approaches, machine learning approach shows a promising

trend in tackling cybersecurity concerns, especially in the application of IDS (Ahmad,

3

Jian and Anwar, 2018). Specifically, supervised machine learning is well-adopted in

building IDS models for the classification of normal and different attack instances.

1.2 Problem Statement

Although there are abundant researches in the academia, the industry has yet to

employ a well-established machine learning based IDS model. The field of

cybersecurity which utilises advanced information technology is still undergoing

thorough experiments by thousands of researchers. However, machine learning based

IDS is still in immature or experimentation stage.

Datasets play an important role to train the proposed machine learning based

IDS such that the trained IDS can classify different types of attacks with higher

accuracy. However in the literature, obsolete or questionable datasets are always

selected as inputs to the proposed machine learning model. This leads to a lower

success rate of intrusion detection because the attack patterns were outdated, so as

the normal traffic patterns.

Besides, it is observed that some researchers performed biased evaluation.

For instance, the researchers omitted the prediction of minor attack types by

removing certain features of the datasets in the hope of producing machine learning

model that can classify a smaller number of different attacks with higher accuracy.

With the same motive, some researchers targeted to detect certain attack types

instead of taking the weighted average of all normal and attack categories. As a

summary, the biased dataset caused the machine learning model to learn towards

major types of attacks only while ignoring the other classes which only constitute a

small portion of the dataset.

Since all different types of attacks need to be predicted and classified (also

known as multiclass classification), the accuracy of the proposed machine learning

model needs to be further improved. To improve the multiclass classification

accuracy of a machine learning model, feature selection (i.e., how to select good

features) and ensemble learning (i.e., make use of hybrid machine learning models to

exploit advantages of each individual machine learning model) can be the possible

solutions. These two techniques are not commonly found in the literature of machine

learning based IDS. Thus, the effectiveness of these two methods remains unknown.

4

1.3 Aim and Objectives

This paper aims to study the effectiveness of feature selection and ensemble learning

in improving the multiclass classification accuracy based on three up-to-date and

commonly-used datasets without performing biased evaluation. The specific

objectives are listed as follows:

 To study the effectiveness of the proposed machine learning models in

classifying different types of attacks based on publicly recognised datasets

 To improve the multiclass classification accuracy of machine learning models

by using wrapper-based feature selection technique with best-first search

algorithm

 To improve the multiclass classification accuracy of machine learning models

by using both feature selection and ensemble learning methods

This final year project contributes to the literature in three ways. Firstly, this

project thoroughly examines the performance of the IDS models developed using

existing conventional machine learning algorithms. In addition, this project analyses

the effectiveness of wrapper-based feature selection technique in building better IDS

models. Furthermore, this project also investigates the effectiveness of ensemble

learning in improving the performance of IDS models.

1.4 Scope and Limitation of the Study

This project focuses on the multiclass classification problem for machine learning

based intrusion detection systems. The IDS models are able to discriminate attack

instances from normal instances. In addition, the IDS models are able to classify

different types of cyber-attacks.

This project is carried out in Waikato Environment for Knowledge Analysis

(WEKA), an application suite specialised in data mining and machine learning

(Witten, et al., 2016). The base models of the IDS in this project are limited to

conventional machine learning models in Weka. Besides, this project is limited by

hardware resources. The computer used in this project is running Ubuntu 14.04,

equipped with Intel Core i9-7920X CPU at 2.9 GHz and 64 GB RAM.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction of Supervised Machine Learning

Machine learning is employed in building models for predictive data analytics

(Kelleher, Namee and D’arcy, 2015). A typical predictive problem requires gaining

insights from a huge amount of data or instances. The collection of huge data is

commonly known as a dataset, say set X. An instance from a dataset contains several

attributes (also called as features), where each attribute describes the characteristics

of one instance in the dataset. Let the set X be defined as X = [x1, x2, x3, …, xn-1, xn]

where the feature set X’ be defined as X’ = [x1, x2, x3, …, xn-1] which consists of n-1

attributes and the class or label y be defined as y = xn. Ideally, a distinctive feature set

X’ maps to a certain output y, which becomes the prediction of the model.

The dataset will be split into two sets, namely training set and test set. The

train-to-test ratio is usually 80:20 (Poria, et al., 2017) or 70:30 (Caruana, et al., 2015).

If the proposed machine learning model is trained based on X’ instead of X (which

includes the label or outcome y), the model is considered as unsupervised machine

learning; otherwise, the model is considered as supervised machine learning.

Supervised machine learning is the focus of this final year project.

The objective of supervised machine learning is to develop a predictive

function f(X’train) → ytrain from the training data. Then, the model will take in the

feature set of test data X’test and make prediction, or ypredict = f(X’test). Finally, the

predicted outcome will be compared to the actual outcome, or ypredict ≡ ytest to

measure the effectiveness of the underlying machine learning model. Notice that the

test data will never be seen in the training process. In other words, the test set here is

referred to the hold-out test set. The motive behind the hold-out process is to prevent

peeking, which means the training process has already included the test data while

developing the model. The general idea is that the predictive model needs to be

measured on how well it can generalise beyond the training instances (Kelleher,

Namee and D’arcy, 2015). Figure 2.1 shows the overall concept of developing and

evaluating a machine learning model.

6

Figure 2.1: The Process of Developing and Evaluating a Machine Learning Model

In some cases, the dataset is not split into training or testing data directly. In

k-fold cross validation, the dataset is divided into k equal segments. The process will

train the model based on the k-1 parts, leaving one part to be the test data. Then, the

training and testing processes repeat k times. The evaluation results will then be

averaged by the number k (Kohavi, 1995). Figure 2.2 shows the train-test split of the

dataset.

Figure 2.2: The Splitting of Dataset in k-fold Cross Validation. White Parts Indicate

Training Data And Black Parts Indicate Testing Data (Kelleher, Namee and D’arcy,

2015)

The number k = 10 is commonly used (McLachlan, Do and Ambroise, 2005)

but k can also be assigned to any positive integer greater than one. The k-fold cross

validation technique allows validation for a small dataset (Mohammed, Khan and

7

Bashier, 2016). In addition, k-fold cross validation is useful for model selection, as it

is capable to estimate the performance unbiasedly (Zhang and Yang, 2015).

2.2 Supervised Machine Learning Algorithms

There are various approaches to map the feature set to the expected outcome. For

example, commonly used algorithms for supervised machine learning include Naïve

Bayes (Rish, 2001), k-nearest neighbour (Liao and Vemuri, 2002), decision tree

(Safavian and Landgrebe, 1991), random forest (Liaw and Wiener, 2001) and

support vector machine (Sung and Mukkamala, 2003).

2.2.1 Naïve Bayes

Naïve Bayes is a simple probabilistic algorithm. It holds an assumption that the

features are independent among each other. Grounded on Bayes’ theorem, it

calculates the probabilities of the events (i.e., classes in machine learning context) to

happen. The class with the highest probability will be chosen as the decision.

Formally, the rule of selecting the final outcome is called as maximum-a-posteriori

rule. Recent studies show that Naïve Bayes classifier can be used in image

recognition (Zhou, et al., 2015), anomaly detection (Swarnkar and Hubballi, 2016)

and text categorisation (Tang, Kay and He, 2016). One advantage of using Naïve

Bayes classifier is that it does not suffer from the curse of dimensionality (Kelleher,

Namee and D’arcy, 2015). The curse of dimensionality refers to the phenomena

when the unnecessary features cause the search space to increase dramatically,

eventually, the generalisation will be slowed down and obstructed (Gheyas and

Smith, 2010). Jadhav and Channe (2016) mentioned that Naive Bayes requires short

training time as compared to other algorithms. It can also handle missing data due to

its fast inference (Lowd and Domingos, 2005). Nevertheless, there are some

disadvantages of using Naïve Bayes. For example, the naive assumption of the

feature independence degrades the classifier performance (Rennie, et al., 2003). In

this literature review, it is proved to have poor performance as compared to the other

classification algorithm (Caruana and Niculescu-Mizil, 2006; Kim, Chung and Lee,

2017; Mocherla, Danehy and Impey, 2017).

8

2.2.2 K-Nearest Neighbour

K-nearest neighbour is one of the classification algorithms introduced in the early

1950s. It is now widely used in pattern recognition of the data. The instances in the

k-nearest neighbour are represented spatially. If an instance consists of n features,

then the data is represented as a point in n-dimensional spatial space (Syarif and Gata,

2017). The full training set spans the n-dimensional space with labelled class. Test

data under prediction will also be described in the n-dimensional space. The

prediction of the class is done by considering the proximate training data in the

neighbourhood and calculating the Euclidean distances between the data points. The

Euclidean distance in n-dimensional space between a training data X = {x1, x2, …,xn}

and a test data Y = {y1, y2, …,yn} is given in Equation (2.1).

 dist(X,Y) = √∑(xi − y
i
)

2

n

i=1

 (2.1)

The number k determines the number of closest training points to consider. If

k is 1, then the test data is classified as the same class as the nearest training sample.

Referring to the example in Figure 2.3, the dataset consists of two features (n = 2)

and two classes. Red colour points indicate training instances for Class 1, whereas

blue colour points indicate training instances for Class 2. Assuming the number k = 4,

when a test data is introduced into the search space in ℝ2, the algorithm finds the

four shortest Euclidean distances (shown as arrows) from the test data to the training

data. With reference to the labels of the four closest training records, the label of the

test data can be deduced as Class 1.

9

Figure 2.3: Illustration of K-Nearest Neighbour

One clear benefit of using k-nearest neighbour is the fast training time. It is

also robust to noisy data (Bhatia, 2010). However, when the feature space is crowded

or irrelevant, the prediction can be adversely affected (Syarif and Gata, 2017). It is

also high in computational complexity, especially when the feature space is

described in a very high dimension (Bhatia, 2010).

2.2.3 Decision Tree

A decision tree is a supervised machine learning technique and it is mainly used for

classification task. Using divide and conquer rule, a decision tree consists of decision

nodes and leaf nodes. The decision node defines a conditional test over an attribute,

whereas the leaf node indicates the class (Ruggieri, 2002). Each path from the root

node to the leaf node must follow a certain rule. Practically, a decision tree is

generated according to the large training data, resulting in more branches and layers

of the tree. For example, Figure 2.4 shows the generation of a decision tree. The

outcome is to determine whether it is suitable to play outside by considering two

features, i.e., weather outlook and humidity. These features contribute to the decision

nodes and the final decisions are represented by the left nodes. According to the

decision tree in Figure 2.4, one is allowed to play outside only if it is sunny outside

and the humidity level is normal.

10

Figure 2.4: Illustration of Decision Tree

However, as the number of class categories increases, the classification

accuracy decreases. This is known as overfitting (Ruggieri, 2002). Thus, pruning

technique can be applied to improve the accuracy of the decision tree model (Patel

and Upadhyay, 2012). Pruning reduces the size of the decision tree, prevents

unnecessary branches and avoid overfitting. Nevertheless, the benefit of using a

decision tree includes its inherent feature ranking technique in developing the tree

model. It also has high interpretability to understand. There are different variants of

decision tree generation, such as the ID3 (Hssina, et al., 2014), logistic model tree

(Kabir and Zhang, 2016) and J48 (Aljawarneh, Yassein and Aljundi, 2017).

2.2.4 Random Forest

Random forest is an ensemble model of multiple decision trees (Kelleher, Namee and

D’arcy, 2015). Each tree in the random forest represents the single decision tree

model developed from subspace sampling. The subspace can be in terms of feature

space or instance space. The combination of the trees is also known as bootstrap

aggregation or bagging. In classification tasks, the final decision is determined by the

majority voting of the trees. For instance, Figure 2.5 shows the working algorithms

of a random forest. Suppose the target is to determine whether it is suitable to play

outside, and there are three features, namely weather outlook, humidity and wind

condition. Instead of generating the full decision tree, the random forest builds three

decision trees, where each tree randomly samples two features. Given that the

weather is sunny, the humidity level is high and the wind is weak, the trees are each

11

responsible to provide respective outputs. After aggregating the outputs, the random

forest finally predicts that it is not suitable to play outside.

Figure 2.5: Illustration of Random Forest

The random forest has an option to choose random tie-breaking capability in

feature space, which means that when two or more randomly selected features for a

specific tree look equally important or ‘tie’, then the tree will select only one of the

features. Otherwise, the tree will take all features in the sample into consideration.

There are a few advantages of using a random forest (Ali, et al., 2012). Firstly, it can

handle the issue of overfitting through bagging and hence getting better predictive

accuracy. In addition, it does not require pruning since the overfitting issue is

overcome. Besides, it is susceptible to outliers. Unfortunately, it is not easily

interpretable to users (Strobl, et al., 2007). Other than that, a random forest can

generate noisy trees, which result in wrong decision (Fawagreh, Gaber and Elyan,

2014).

2.2.5 Support Vector Machine

Support vector machine is a technique for regression and classification tasks. For

classification, it performs binary classification in nature (Caruana, 2006). The idea is

that given the training data, each with labelled class in n-dimensional feature space,

the learning model tries to find a separating hyperplane in (n-1)-dimension with

12

maximum margin to differentiate two groups of labelled data into two zones. Then,

the test data can be classified easily according to the separating hyperplane

formulated. For example, consider Figure 2.6, the training data have two features (n

= 2) and are classified to two labels, i.e. Class 1 (marked as blue points) and Class 2

(marked as red points). In linear classification, the training model finds the weight

vector w and the bias term b as the inputs to the function of the linear hyperplane f(x)

∈ ℝ1. Support vectors are the samples lies on the maximum margin at f(x) = 1 or f(x)

= -1. As such f(x) acts as a decision boundary where for the data lies above f(x) > 0,

the data is classified as Class 1; while for the data lies below f(x) < 0, the data is then

classified as Class 2. Thus, the test data can be classified easily according to the

separating hyperplane created.

Figure 2.6: Illustration of Support Vector Machine

Support vector machine fundamentally performs binary classification. It is

possible to have a nonlinear classifier using kernel tricks, which spans the feature

space in a higher dimension (Caruana, 2006). The popular kernel tricks include

polynomial kernel and Gaussian radial basis function kernel.

13

2.3 Ensemble Learning

An ensemble model is a prediction model which comprises of a set of multiple

individual prediction models, also known as the base learner (Kelleher, Namee and

D’arcy, 2015). Figure 2.7 shows the overall structure of an ensemble model.

Figure 2.7: Illustration of Ensemble Modelling

According to Marsland (2011), the results generated by the ensemble model

will be better than any one of the base learner, provided that the individual learning

models are combined well. The theory behind ensemble learning is that individual

learners see things differently than others. When it comes to decision, each learner

will have individual decision based on its trained model. Then, the decisions from

each learner will be combined. Eventually, the task will output a final decision based

on certain combination mechanism. It takes a more holistic approach in decision

making. Therefore, the generalisation ability of an ensemble model is much stronger

than the base learner, resulting in better performance (Zhou, 2012).

There are a few options for the combination of base learners. For instance,

majority voting is the most popular combination rule in classification (Zhou, 2012).

An interesting fact to note is that in binary classification, the ensemble model can

only be wrong if more than half of the base learners are wrong. The next option is by

averaging the probabilities of each base learner (Zou, et al., 2015). The class with the

highest average probability will be selected as the final decision. Besides, the class

with maximum probability can be taken as the final prediction (Malli, Aygun and

Ekenel, 2016). To illustrate, Table 2.1 shows the examples of different combination

rules and the respective decisions. Assuming this ensemble model contains three

base learners (namely, decision tree, Naïve Bayes and k-nearest neighbour) and the

14

task is to classify three outputs (namely, A, B and C). Table 2.1 shows the

probabilities or confidence levels in predicting the correct class.

Table 2.1: Probabilities of Prediction for Different Classifiers (Example)

When majority voting is chosen, decision tree will predict Class A; Naïve-

Bayes will predict class C; and Neural Network will predict class A, based on the

probability of each base learner. Hence, the final prediction is class A.

When average of probability is chosen, class A will have averaged probability

of P(A) = (0.6 + 0.1 + 0.7)/3 = 0.47; class B will have averaged probability of P(B) =

(0.3 + 0.1 + 0.1)/3 = 0.17; and class C will have averaged probability of P(C) = (0.1

+ 0.8 + 0.2)/3 = 0.37. By comparison, probability of predicting class A is the highest.

Hence, the final prediction is A.

When the maximum probability is chosen, the highest probability found in

Table 2.1 is P(C) = 0.8, where it is predicted from Naïve Bayes classifier. Hence, the

final prediction is class C.

On the other hand, the results by Catal, et al. (2015) showed that the

combination rule depends on the task itself. There is no straightforward hypothesis to

claim that which combination rule is superior to the others. When the correct

combination rule is selected, together with the suitable complementary base learners,

the prediction accuracy will be improved.

2.4 Feature Selection

Another way to improve the prediction performance is by feature selection. A typical

dataset may contain many features. However, not all features are equivalently

significant or relevant. In addition, the high number of features may contribute to the

curse of dimensionality. To get rid of the curse of dimensionality, feature selection

can be used to select the subset of the relevant feature by eliminating redundant or

15

irrelevant features which proved to contain not much predictive information (Kaur,

Sachdeva and Kumar, 2016). By removing noisy features, feature select is also

capable of maximising the classification or predictive accuracy.

In general, there are two methods in feature selection, namely filter and

wrapper methods (Kohavi and John, 1997). Filter method is irrespective of the

machine learning model and fully dependent on the general properties of the training

data (Yu and Liu, 2003). It does not need to undergo any learning algorithm. As such,

it performs statistical tests on the training data and hence outputs the rank of features’

scores. For instance, Wang, Khoshgoftaar and Gao (2010) listed a few techniques

under the umbrella of filter methods such as information gain, gain ratio, chi-square

test, and Relief-F. Nevertheless, recent studies found that the filter method fails to

consider the dependencies between the features (Hira and Gillies, 2015). Zeng, et al.

(2015) illustrated that a feature may be irrelevant to the class if it is presented

individually. However, when it combines with other features, the combination may

have a high correlation to the class.

In contrast, wrapper method is able to consider the relationship between the

features. Wrapper method also depends on the learning algorithm, which is known as

the induction algorithm in this context. Figure 2.8 shows the concept of using the

wrapper method (Kohavi and John, 1997). It uses the performance of the induction

algorithm to deduce the useful features in the training process (Yu and Liu, 2003).

The idea is that it takes different subset of features, learns the induction algorithm,

outputs the results and reiterates the process. The search continues until there is no

improvement from the previous iterations. It requires more iterations to complete the

feature selection process, hence it is claimed to be highly computationally expensive

(Kaur, Sachdeva and Kumar, 2016). Despite the disadvantage, it generally performs

better and more robust than the filter method, so it has higher accuracy in general

(Hira and Gillies, 2015; Hu, et al., 2015; Zeng, et al., 2015).

16

Figure 2.8: Wrapper Method in Feature Selection (Kohavi and John, 1997)

Apart from filter or wrapper-based feature selection, there are also different

search algorithms: greedy search and best-first search. Greedy search, also known as

hill-climbing algorithm, is the simplest search algorithm. The search starts at one

certain node and evaluation will be carried out. Then, the child or possible path will

be added to the node and the same evaluation will be performed. If the performance

improves at the child node, the search will continue in the vicinity at the child node.

The search will terminate when the surrounding child nodes are not improving

(Kohavi and John, 1997).

Best-first search algorithm is more robust and complex. The algorithm of

best-first search is presented in Figure 2.9 (Kohavi and John, 1997). In Figure 2.9,

the number of non-improving iterations is expressed as k, the current working state is

expressed as v, the child of v is expressed as w, and the required minimum

improvement in accuracy during each iteration is expressed as ε. Best-first search

finds the globally best solution in the search space, whereas greedy search can only

find the local optima (Skiena, 1998).

17

Figure 2.9: Best-First Search Algorithm (Kohavi and John, 1997)

2.5 Datasets Review

This final year project examines three datasets. They are UNSW-NB15, ISCX-

IDS2012 and NSL-KDD datasets.

2.5.1 UNSW-NB15 Dataset

Moustafa and Slay (2015) provided UNSW-NB15 dataset. They are publicly

available online (refer Appendix A for direct download link). The UNSW-NB15

dataset is one of the newest datasets available for the study in cybersecurity system.

The dataset was created using IXIA PerfectStorm tool in the Cyber Range Lab of the

Australian Centre for Cyber Security.

The training data consists of 175 341 instances, whereas the test data consists

of 82 332 instances. Both of them comprise of 45 attributes, including the two

labelled classes, namely “attack_cat” and “label”. The full attributes are shown in

Table 2.2.

18

Table 2.2: Attributes of the UNSW-NB15 Dataset

The class named “attack_cat” is meant for multiclass classification. It

enumerates the categories of the attack types. There are nine attack types: backdoor,

analysis, fuzzer, shellcode, reconnaissance, exploits, denial-of-service, worms and

generic. In total, there are ten categorical values for “attack_cat” including the

normal category. The other class named “label” is meant for binary classification. It

only distinguishes normal (0) and attack (1) instances. The focus of this final year

project is to perform multiclass classification, therefore the class named “attack_cat”

is treated as the final class. Figures 2.10 and 2.11 show the number of instances for

each class in the training and test data respectively.

19

Figure 2.10: Distribution of the Class in UNSW-NB15 Training Data

Figure 2.11: Distribution of the Class in UNSW-NB15 Test Data

2.5.2 ISCX-IDS2012 Dataset

Besides UNSW-NB15 dataset, many recent studies also use the ISCX-IDS 2012

dataset (Atli, et al., 2018; Folino, Pisani and Sabatino, 2016; Mirza and Cosan, 2018).

This dataset is created by Shiravi, et al. (2012) at the Information Security Centre of

Excellence in the University of New Brunswick. The network activity was simulated

based on a few principles: realistic traffic and network, labelled dataset, total

interaction capture, complete capture and various attack scenarios. The data was

collected over seven days. It is different from the UNSW-NB15 dataset because it

56000

1746 2000

18184

1133

10491

33393

12264

130

40000

0

10000

20000

30000

40000

50000

60000

37000

583 677

6062

378

3496

11132

4089

44

18871

0

5000

10000

15000

20000

25000

30000

35000

40000

20

contains full packet payloads. This dataset is also publicly available in both

processed XML format and raw PCAP format (refer Appendix A for direct download

link).

In these seven days, a total of 2 450 324 network packets were collected.

There are 20 attributes in this dataset. The full attributes are shown in Table 2.3.

Table 2.3: Attributes of the ISCX-IDS 2012 Dataset

In general, there are five categorical values for the “Tag” class, where one is

of normal class and the remaining four classes are of four different attack types:

distributed denial-of-service, brute force, infiltration and HTTP denial-of-service.

However, from the total 2 450 324 network packets, 2 381 532 of them (97.2 %) are

normal traffic. Aside from the highly biased nature, it is also found that there are

duplicate network packets in this dataset. Besides, the training and test sets are not

explicitly provided. Hence, pre-processing step is required for this dataset and it will

be discussed in Chapter 3. After performing the pre-processing step, training set of

55 094 instances and test set of 23 613 instances are obtained. Figures 2.12 and 2.13

show the number of instances for each class in training and test data respectively.

21

Figure 2.12: Distribution of the Class in ISCX-IDS 2012 Training Data

Figure 2.13: Distribution of the Class in ISCX-IDS 2012 Test Data

2.5.3 NSL-KDD Dataset

The NSL-KDD dataset is a newer derivative from the KDD-CUP’99 dataset. KDD-

CUP’99 dataset is notorious for its highly duplicated records in both training and

testing sets (Tavallaee, et al., 2009). As a solution, the NSL-KDD dataset has

removed redundant records. Although it may not be a perfect representative of

14000

26222

5121

7121

2630

0

5000

10000

15000

20000

25000

30000

Normal DDoS Brute Force Infiltration HTTP DoS

6000

11238

2915 3052

1128

0

2000

4000

6000

8000

10000

12000

Normal DDoS Brute Force Infiltration HTTP DoS

22

existing modern network traffic, it can still be utilised as an effective benchmark

dataset in the research of intrusion detection (Revathi and Malathi, 2013).

Tavallaee, et al. (2009) provided both the training and test data in ARFF,

CSV and TXT formats (refer Appendix A for direct download link). Due to the

WEKA platform, the dataset in ARFF format was downloaded for this final year

project. The training set contains 125 973 instances while the test set contains 22 544

instances. This dataset consists of 42 attributes, as shown in Table 2.4.

Table 2.4: Attributes of the NSL-KDD Dataset

The dataset in ARFF format is merely meant for binary classification. The

class contains “normal” and “anomaly” categories. The distributions of classes in

training and test set are shown in Figure 2.14 and Figure 2.15 respectively.

23

Figure 2.14: Distribution of the Class in NSL-KDD Training Data

Figure 2.15: Distribution of the Class in NSL-KDD Test Data

2.6 Evaluation Metrics

To quantify the performance measures of different techniques, a suitable and

universal evaluation metric should be objectively applied to all related research in the

intrusion detection system. All the outputs of the evaluation can be classified into

four categories, as shown in Figure 2.16. In Figure 2.16, Class A is assumed to be the

targeted class.

67343

58630

54000

56000

58000

60000

62000

64000

66000

68000

Normal Anomaly

9711

12833

0

2000

4000

6000

8000

10000

12000

14000

Normal Anomaly

24

Figure 2.16: Confusion Matrix of Classification

The simplest and the most intuitive performance measures of the intrusion

detection system is the accuracy (Park, Song and Cheong, 2018). It is defined as the

ratio of the total number of correct predictions to the total number of available data.

The accuracy is defined in Equation (2.2).

 Accuracy =
TP + TN

TP + TN + FP + FN
 (2.2)

However, the evaluation using accuracy is biased when the data is

imbalanced. Park, Song and Cheong (2018) gave an example as follows. A dataset

contains 1000 samples where 990 samples are positive and 10 samples are negative.

One can effortlessly predict all samples as positive and ignore all the negative

samples, but the accuracy remains exceptional and up to 99 %. So, another

evaluation metrics called the precision and recall are suggested. They are defined

mathematically in the Equations (2.3) and (2.4).

 Precision =
TP

TP + FP
 (2.3)

 Recall =
TP

TP + FN
 (2.4)

A high accuracy does not necessarily mean high precision and recall. The

precision and recall are interrelated. Park, Song and Cheong (2018) claimed that IDS

25

evaluation by using only either one of them is not sufficient. They can be combined

as a new parameter of evaluation metric, the Fβ –score, given by Equation (2.5).

 Fβ-score =
(1 + β

2
)(precision × recall)

β
2
 × precision + recall

 (2.5)

The β value represents how significant is the recall as compared to the

precision. For example, if β = 1, then the evaluation considers precision and recall as

equally important; if β = 2, then recall is twice as important as the precision. Park,

Song and Cheong (2018) mentioned that the common approach to relating recall and

precision is the F1-score, which represents the harmonic mean between the two,

defined mathematically in Equation (2.6).

𝐹1-score =

2(precision × recall)

precision + recall
 (2.6)

The higher F1-score indicates that the performance of the IDS model is better.

F1-score takes into account the ability to predict minor classes. In this project, F1-

score is also known as F-measure.

2.7 Related Works

Suleiman and Issac (2018) evaluated the performances of their six machine learning

based IDS models in WEKA platform against NSL-KDD, UNSW-NB15 and

Phishing datasets. These six IDS models are random forest, J48 decision tree, k-

nearest neighbour, artificial neural network, support vector machine and Naïve Bayes.

They claimed that k-nearest neighbour and random forest are the best performing

algorithms across the three datasets. For example, random forest and k-nearest

neighbour classifiers have exceptionally high accuracies of 99.76 % and 99.44 %

respective for NSL-KDD dataset. However, when the experiment was reproduced

using UNSW-NB15 dataset, it is found that they recorded the results for “Generic”

class only. In fact, UNSW-NB15 contains ten classes, including the normal category.

A fair result should be captured by taking the weighted average of the classification

for all ten classes. It remains unclear whether the results using other datasets were

also biasedly justified. Secondly, UNSW-NB15 dataset provides two types of classes,

26

i.e., “label” and “attack_cat” classes for binary and multiclass classifications

respectively (Moustafa and Slay, 2015). While performing multiclass classification,

Suleiman and Isaac (2018) failed to remove the “label” class, which is meant for

binary classification scenario. The model would consider “label” class as a feature

when training the model. In fact, the real-time network would not reveal whether the

incoming packets are of attack or normal categories in advance, therefore the “label”

is not a feature for the model to learn from and thus it should be removed from the

feature set.

A recent study by Al-kasassbeh, et al. (2018) used KDD-CUP’99 dataset to

test the IDS models. The IDS models were also developed and tested in WEKA

environment. Six algorithms were employed as the IDS classifiers, including J48

decision tree, random forest, random tree, multilayer perceptron, Naïve Bayes and

Bayesian network. They aimed to classify the four attack types (probing, denial-of-

service, user-to-root and remote-to-user). They found that random forest has the best

accuracy of up to 93.775 %. Unfortunately, McHugh (2000) pointed out that the

KDD-CUP’99 dataset was merely generated from the simulation of military

networking in the old days, which cannot represent the modern low-footprint attack.

It is no longer fit for the development of modern IDS. Besides, Tavallaee, et al.

(2009) stated that KDD-CUP’99 dataset contains a huge portion of duplicated

records, where 78 % in training data and 75 % in test data were redundant. The

duplicate records would result in biased training and testing towards the majority

instances and ignoring the rest. Hence, a newer and balanced dataset should be used

for the development and the evaluation of modern IDS model.

Furthermore, Haider, et al. (2017) claimed that there is a lack of suitable

dataset in the research of IDS. It is because the datasets containing network packets

have some degree of confidentiality, so the data is not available publicly due to

privacy issues. Besides, the available datasets they had examined, including DARPA

and KDD-CUP’99 were claimed to be outdated and unrealistic for modern network

traffic. Therefore, they generated a new dataset called the next-generation IDS

(NGIDS) dataset. However, in the study by Haider, Hu and Moustafa (2017), the

performance of the classifiers using NGIDS dataset was rather poor. For example,

using support vector machine classifier, the true positive rate for NGIDS dataset was

only 5 %, as compared to 70% and 40 % for ADFA and KDD datasets respectively.

27

Despite the low performance, using self-generated dataset would raise the question

of whether the dataset is biased for use. It cannot be guaranteed that the self-

generated dataset is free from artificiality. Consequently, the validity of the

experiment is doubtful when the self-generated dataset was used. Conversely, the

literature shows that there are newer available public datasets such as UNSW-NB15

and ISCX-IDS2012, which contain modern traffic and diverse attacks.

Yassin, et al. (2013) presented a combined machine learning technique from

k-means clustering and Naïve Bayes for anomaly detection in IDS. K-means

clustering is used to cluster the attack traffic and the normal traffic, and then the

Naïve Bayes classifier further verifies the clustered data and classifies them into

normal or attack categories. This is a binary classification problem. They used ISCX-

IDS2012 dataset for the evaluation of their proposed technique. Since the ISCX-

IDS2012 dataset is large, they decided to select only the incoming packets at one

particular host. There are 77 526 training data, where 75 372 (97.2 %) of them are

normal and 2154 (2.8 %) of them belong to attack class. Using their k-means

clustering plus Naïve Bayes model, they obtained an accuracy of 99 % and a true

positive rate of 98.8 %. Despite the exceptional result, the training data is highly

imbalanced, which means the IDS model learned towards biased normal class.

Longadge and Dongre (2013) said that a biased model towards the major class will

have a poor detection rate on the minor class. Also, the classifier may ignore the

minor class and assumes everything as the major class, yet it can produce good

accuracy. It is important to balance the training data through data pre-processing, so

that a wide range of attack categories including the minor categories can be

recognised.

Jabbar and Aluvalu (2017) proposed an ensemble classifier of IDS. The base

learners of the IDS are the random forest algorithm and the average one dependency

estimator. Random forest builds multiple decision trees through randomly selected

bootstrap samples. Average one dependency estimator is used to generalise the

dependency among the features. They used Kyoto dataset with 24 features for

training and testing the IDS model. The result shows that the ensemble classifier

outperforms the individual random forest and average one dependency estimator

models. More specifically, the accuracy obtained using the ensemble IDS model was

90.51 %, as compared to 89.34 % for random forest and 89.68 % for average one

28

dependency estimator. However, in the pre-processing step, they only included 15

features in model training and excluded features related to security analysis. They did

not provide further justification on why those features regarding to security analysis

were negligible. The features in security analysis could be useful in prediction. In

fact, when deciding the features prior to model training, feature selection technique

can be applied. It systematically reduces the insignificant features through either

filter or wrapper methods.

Gharaee and Hosseinvand (2016) developed an IDS model using support

vector machine with genetic algorithm. Inspired by the evolutionary concept of

natural genetics, the genetic algorithm is a type of wrapper-based feature selection

technique. The genetic algorithm comprises of mutation and crossover operations.

These operations are applied to the feature set. The genetic algorithm will then

generate a better feature subset as the ‘offspring’. The generated feature subset will

then be evaluated using fitness function. Eventually, the latest generated feature

subset will be chosen for the model training using support vector machine. They

conducted the experiment on UNSW-NB15 and KDD-CUP’99 datasets. The

performance of this IDS model is excellent, with an accuracy of up to 99.45 % for

“Shellcode” category in UNSW-NB15 dataset. Unfortunately, they excluded the

minor classes of the UNSW-NB15 dataset in the prediction, namely “Analysis”,

“Backdoor” and “Worms” categories. The proposed IDS model was only meant to

classify six categories. In addition, after evaluating the classification performance on

the attack-to-attack basis, they did not calculate the weighted average of the overall

performance. This raises the argument of whether the IDS model is capable to

recognise minor classes. In fact, Gharaee and Hosseinvand (2016) should unbiasedly

evaluate the IDS ability to predict minor classes. They should also calculate the

overall performance of the IDS model with respect to all attack categories so that

their IDS model can be compared fairly with other proposed models. Furthermore,

they are not supposed to use KDD-CUP’99 in their study due to outdated network

data and a large portion of duplicated records (McHugh, 2000; Tavallaee, et al.,

2009).

The review of other related works highlights some concerns. First, the dataset

used in evaluating the performance of the IDS model should be pre-processed for the

purpose of balancing. Besides, an obsolete dataset of network information should be

29

avoided for modern IDS development. The self-generated dataset should not be due

to lacking of common benchmarking. In addition, a highly biased dataset should also

be avoided. The evaluation of the IDS model should be carried out fairly, which

examines the major and minor classes equally. Lastly, any insignificant features can

be removed using feature selection technique. It is known that in the machine

learning context, a few techniques such as feature selection and ensemble learning

can be used to improve the prediction accuracy. However, the effectiveness of these

techniques remains unclear in the application of IDS.

30

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Overview of Project Work Plan

Figure 3.1 shows the overview of the project work plan. Several machine learning

algorithms in WEKA tool are utilised such as Naïve Bayes (NB), k-nearest neighbour

(KNN), J48 decision tree (J48), random forest without tie-breaking capability (RF),

random forest with tie-breaking capability (RF-BT) and support vector machine

(SVM). The details of the work plan are discussed in subsequent sub-chapters.

Figure 3.1: Project Overview and Proposed Architecture

31

3.2 Dataset Preparation

Three different datasets are used, namely UNSW-NB15, ISCX-IDS2012 and NSL-

KDD datasets. As a matter of fact, sufficient data pre-processing steps are required to

produce a fair and logical result. Specifically, UNSW-NB15 and ISCX-IDS2012

datasets require data pre-processing. Meanwhile, the downloaded NSL-KDD dataset

has been adequately processed and thus does not require further data pre-processing.

3.2.1 UNSW-NB15 Pre-Processing

As discussed in sub-chapter 2.5.1, there are two types of classes in UNSW-NB15

dataset. The “label” class is meant for binary classification whereas the “attack_cat”

class is meant for multiclass classification. The focus of this project is to perform

multiclass classification. Hence, “label” class is removed, leaving “attack_cat” as the

final class for prediction. Otherwise, the machine learning model might consider

“label” as one of the features and give a biased result.

Furthermore, there is a feature named “id”, which only serves as an index for

each instance in the training and test sets. It does not provide practical information in

predicting the malicious attack, thus it should be removed. Moreover, if “id”

remained in the dataset, then the learning process would be biased. For example, if

the “id” ranging from 1 to 20 000 are all normal network packets, then the model

would conclude that the indices within this range are all normal during model testing,

which is essentially incorrect. Therefore, the feature “id” is also removed.

Although it can be seen in sub-chapter 2.5.1 that the dataset is imbalance

across different classes, further data pre-processing is not carried out to balance the

number of instances for each class. It is because the difference in quantity between

the major and minor classes is too large. For example, in the training set, 56 000

instances are normal and only 130 instances belong to “worm” attack. If the data is

insisted to be balanced by removing most of the normal instances, then the training

data might end up to be very small, which only consists of about 1000 instances. A

small dataset is not sufficient for comprehensive generalisation. In addition,

overfitting and bias are more likely to occur in a small dataset, which contribute to

even poorer prediction. Considering the trade-off, balancing is not performed for

UNSW-NB15 dataset. Eventually, the training and test sets are converted from CSV

to ARFF format to suit the WEKA tool.

32

3.2.2 ISCX-IDS2012 Pre-Processing

ISCX-IDS2012 dataset requires more pre-processing steps. The dataset is made up of

12 files in XML format. The 12 files were converted to CSV format using a python

script (refer Appendix B). After combining all 12 files into a single CSV file, it is

found that there were duplicate instances. Therefore, the duplicate records are

eliminated using another python script (refer Appendix C).

After the removal of duplicates, the dataset consisted of 2 071 657 unique

instances, where 2 002 747 (96.7 %) of them were normal, 3776 (0.18 %) were

HTTP flooding, 37 460 (1.81 %) were DDoS attacks, 7316 (0.35 %) were brute force

attacks and 20 358 (0.98 %) were infiltration. As mentioned, balancing is performed

on the data so that the trained model would not be biased towards the majority

normal class. In specific, the undersampling technique is applied to proportionate the

classes. From 2 002 747 normal instances, 20 000 of them were randomly selected

using python script (refer Appendix C).

In addition, since the training and testing sets were not explicitly provided,

random train-test split with the ratio of 70:30 is applied using python script (refer

Appendix C). Eventually, training set of 55 094 instances and test set of 23 613

instances are obtained and saved in ARFF format.

3.3 Algorithm and Settings

After data pre-processing stage, the next step is to test the effectiveness of different

conventional machine learning classifiers. The paths of the machine learning models

in WEKA are shown in Table 3.1.

Table 3.1: Machine Learning Classifiers in WEKA and Respective Paths

33

Each algorithm has dedicated parameter settings, in which modifying those

settings would produce different results. In order to study the optimisation effects of

feature selection and ensemble learning, but no other factors, the parameter settings

are fixed throughout the project. Figures 3.2 to 3.7 show the experimental settings for

the six machine learning algorithms in WEKA.

Figure 3.2: Parameter Settings for Naïve Bayes Classifier

34

Figure 3.3: Parameter Settings for K-Nearest Neighbour Classifier

35

Figure 3.4: Parameter Settings for J48 Decision Tree Classifier

36

Figure 3.5: Parameter Settings for Random Forest Classifier without Tie-Breaking

Capability

37

Figure 3.6: Parameter Settings for Random Forest Classifier with Tie-Breaking

Capability

38

Figure 3.7: Parameter Settings for Support Vector Machine Classifier

3.4 Initial 10-fold Cross Validation and Hold-out Test

Initial cross validation and hold-out test consider all features for making prediction.

These steps set a benchmark before any optimisation techniques such as feature

selection and ensemble learning. This benchmark score is useful for comparison

39

purposes after optimisation. The purpose of cross validation is to verify how well

each algorithm in handling the training data. Furthermore, the purpose of hold-out

test is to perform real evaluation based on the unseen data.

3.5 Integration of Feature Selection

Next, the wrapper-based feature selection technique is performed in WEKA using

best-first search algorithm. The feature selection module is placed in

“weka.attributeSelection.WrapperSubsetEval”. It aims to get rid of the redundant

features, to prevent the curse of dimensionality in high feature space and to enhance

the classification accuracy. Figure 3.8 shows the settings of using wrapper-based

feature selection for Naïve Bayes classifier in WEKA.

Figure 3.8: Wrapper-based Feature Selection with Best-First Search in WEKA

(Options: NB, KNN, J48, RF, RF-BT, SVM)

40

After feature selection, subsets of useful features are obtained exclusively for

the six algorithms.

3.6 Final 10-fold Cross Validation and Hold-out Test

Final cross validation and hold-out test only consider the extracted important features

for making prediction. They are expected to obtain better results as compared to

those before feature selection. For the final cross validation and hold-out test,

“FilteredClassifier” in “weka.classifiers.meta.FilteredClassifier” is used instead of

the original machine learning classifier. Specifically, the selected filter function is

called “Remove” in “weka.filters.unsupervised.attribute.Remove”. Figure 3.9 shows

the parameter settings of using “FilteredClassifier”. Figure 3.10 shows the example

settings of using “Remove” filter function.

Figure 3.9: Parameter Settings for “FilteredClassifier” in WEKA

(Options: NB, KNN, J48, RF, RF-BT, SVM)

41

Figure 3.10: Example Settings of Using “Remove” Function

 Figure 3.10 illustrates an example of using “Remove” function. Given that

the dataset consists of 42 attributes, where the attributes indexing from “1” to “41”

are the full features and the attribute with the index of “42” is the labelled class. If

the features with indices “1”, “2”, “4” and “8” form the subset of important features,

then the numbers “1, 2, 4, 8, 42” (including the class) are required to be entered in

the “attributeIndices” section. In fact, these index numbers will be retained instead of

removed, hence the “invertSelection” should be set “True”. Eventually, the “Remove”

filter will retain attributes at indices “1”, “2”, “4”, “8” and “42” while removing all

other attributes.

3.7 Integration of Ensemble Learning

When the final cross validation and hold-out test of the six algorithms are completed,

the next step is to perform ensemble learning. The ensemble model consists of two

best performing machine learning algorithms. For comparison purposes, the best and

the third best algorithms would also be taken for ensemble learning. The aim of

having ensemble model is to further enhance classification accuracy by exploiting

the advantages of selected individual machine learning algorithms. Figure 3.11

42

shows the configuration of the ensemble model in WEKA. It is named “Vote” from

“weka.classifiers.meta.Vote”. Figure 3.12 shows the selection of the individual

classifiers under the parameter settings of “Vote”.

Figure 3.11: Parameter Settings of an Ensemble Model

Figure 3.12: Selection of Individual Base Learners for Ensemble Learning

43

3.8 Project Planning and Resource Allocation

Time, computer’s memory resources and processing speed are the main limitations

for this project. A meticulous plan is developed by taking into account these

limitations. Figure 3.13 shows the Gantt chart for this project. All the tasks were

successfully carried out and completed on time.

Figure 3.13: Tasks List and Project Planning

3.9 Anticipated Problems and Solutions

It is expected that wrapper-based feature selection technique would take a long

duration. For UNSW-NB15 dataset, support vector machine algorithm required more

than two weeks to evaluate the important feature subset from the training data. After

15 days, the feature selection method is still unable to conclude the important feature

subset. Therefore, the train set is reduced to 50 % with the same class distribution.

The reduced train set is adopted to evaluate the important feature subset for support

vector machine algorithm. Eventually, feature selection of using the reduced train set

is completed within one week due to smaller data. Most importantly, when the

preliminary confirmation test is carried out, the classification accuracy would still be

improved based on the results from feature selection using the reduced training set.

44

In the preliminary model training for SVM algorithm using ISCX-IDS2012

dataset, it is found that the physical memory of the computer is insufficient. The

payload information in ISCX-IDS2012 has taken up most of the available RAM

space. Specifically, four features named “sourcePayloadAsBase64”,

“sourcePayloadAsUTF”, “destinationPayloadAsBase64” and

“destinationPayloadAsUTF” contain payload information. Thus, the payload

information is removed. For ISCX-IDS2012 dataset, the number of attributes is

reduced to 16 as shown in Table 3.2. In other words, ISCX-IDS2012 dataset with 15

features became the primary input to the initial cross validation and hold-out test.

After the removal of payload information, the performances of all IDS models are

still remarkably well.

Table 3.2: Updated Attributes of the ISCX-IDS2012 Dataset

45

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Description of Evaluation Scheme

UNSW-NB15, ISCX-IDS2012 and NSL-KDD datasets contribute to three different

network usage scenarios. The measures such as accuracy, precision, recall and F-

measure are employed to appraise the classification performance of the machine

learning based IDS models. The results from the three scenarios are discussed

separately in the following sub-chapters. The confusion matrices for all cross

validations and hold-out tests for UNSW-NB15, ISCX-IDS2012 and NSL-KDD

datasets are provided in Appendices D, E and F respectively.

4.2 Results and Discussions for UNSW-NB15 Dataset

Table 4.1 shows the important feature subsets for the six algorithms respectively

after implementing feature selection technique.

Upon having the subsets of important feature, the final 10-fold cross

validation and hold-out test after feature selection could be performed. The

performance results after feature selection are then compared to the results of initial

10-fold cross validation and hold-out test before feature selection. Table 4.2 shows

the performance results for the cross validations before and after feature selection,

whereas Table 4.3 presents the performance results for the hold-out tests before and

after feature selection.

In Table 4.2, it can be observed that the F-measure for SVM is not-a-number

(NaN), because the precision is also NaN. According to Equation (2.3), precision is

the ratio of the number of true positives to the number of conditional positives. To

examine the reason for having a NaN precision, Table 4.4 shows the confusion

matrix for SVM model for initial cross validation.

46

Table 4.1: Important Feature Subsets for Different Machine Learning Algorithms

using UNSW-NB15 Dataset

Table 4.2: Performance Results of Various IDS Models for Cross Validation using

UNSW-NB15 Dataset

 Metrics NB KNN J48 RF RF-BT SVM

Before

Feature

Selection

Accuracy 52.90 76.72 83.28 82.73 82.72 77.13

Precision 73.19 75.31 83.18 82.47 82.46 NaN

Recall 52.90 76.72 83.28 82.73 82.72 77.13

F-measure 58.44 75.54 81.29 81.78 81.76 NaN

After

Feature

Selection

Accuracy 70.19 82.73 83.91 84.10 84.11 77.08

Precision NaN 82.13 84.45 84.03 84.05 NaN

Recall 70.19 82.73 83.91 84.10 84.11 77.08

F-measure NaN 81.36 81.82 82.67 82.70 NaN

47

Table 4.3: Performance Results of Various IDS Models for Hold-out Test using

UNSW-NB15 Dataset

 Metrics NB KNN J48 RF RF-BT SVM

Before

Feature

Selection

Accuracy 48.08 70.19 75.26 75.58 75.65 69.01

Precision 77.14 77.22 81.71 83.77 84.09 NaN

Recall 48.08 70.19 75.26 75.58 75.65 69.01

F-measure 56.22 72.89 76.82 77.82 77.87 NaN

After

Feature

Selection

Accuracy 54.42 75.01 76.31 77.14 77.12 69.09

Precision NaN 80.37 82.28 83.75 83.78 NaN

Recall 54.42 75.01 76.31 77.14 77.12 69.09

F-measure NaN 76.46 77.51 78.36 78.40 NaN

Table 4.4: Confusion Matrix for SVM Model for Initial Cross Validation

 Predicted

 N B A F S R E D W G

A
ct

u
a
l

N 45827 0 39 8871 0 468 790 4 0 1

B 10 3 0 64 0 98 1571 0 0 0

A 202 0 131 2 0 0 1665 0 0 0

F 703 0 0 14167 0 1290 1976 2 0 46

S 6 0 0 428 0 699 0 0 0 0

R 57 0 0 1096 0 5908 3395 0 0 35

E 359 8 0 2405 0 516 30053 29 0 23

D 114 3 0 444 0 215 11388 37 0 63

W 2 0 0 11 0 6 111 0 0 0

G 14 0 0 156 0 39 675 0 0 39116

*N: Normal, B:Backdoor, A:Analysis, F:Fuzzers, S:Shellcode, R:Reconnaissance,

E:Exploits, D: Denial-of-Service, W:Worms, G:Generic

According to Table 4.4, the respective IDS model fails to predict the classes

“Shellcode” and “Worms”. Therefore, there is no conditional positive to those

classes, causing the division-by-zero error when calculating precision. Therefore, it

can be concluded that if F-measure or precision is NaN, then the IDS model is unable

to predict instance of at least one class. In short, the model which obtains NaN for

precision or F-measure should be avoided because the inability to discriminate attack

traffic may possibly lead to catastrophic failure in real-life practices.

The classes of “Worms” and “Shellcode” are overlooked by the respective

machine learning IDS model because they are minor classes. According to the class

distribution of UNSW-NB15 training data in Figure 2.5, “Worms” and “Shellcode”

48

are the two classes with the least instances. This also proves that a balanced dataset

in model training is needed.

From Tables 4.2 and 4.3, it can be observed that implementing feature

selection consistently increases the classification accuracy for all models. This shows

the effectiveness of feature selection in increasing the classification accuracy of the

machine learning IDS model.

According to Table 4.3, the best performing algorithm in term of accuracy is

RF, followed by RF-BT and J48. To study the effect of ensemble learning, the best

two pair of algorithms (RF and RF-BT) are combined, trained and tested. The same

procedure is applied to the best and third best algorithms (RF and J48). Table 4.5

tabulates the results of the individual learning models and ensemble models.

Table 4.5: Performance Results of the Best Three Individual Models and Ensemble

Models for UNSW-NB15 Dataset

Table 4.5 shows that the ensemble model of having the best two individual

models (RF and RF-BT) improves in terms of accuracy and F-measure. On the other

hand, the ensemble model which combines RF and J48 shows a decrease in accuracy

and F-measure. Therefore, this observation ascertains that the ensemble model will

only yield better results than each of the individual base learners, provided that they

are combined correctly. For UNSW-NB15 dataset, the combination of RF and RF-

BT is able to further enhance the prediction performance of the IDS model (e.g., up

to 77.20 % in accuracy and 78.46 % in F-measure).

49

4.3 Results and Discussions for ISCX-IDS2012 Dataset

Table 4.6 shows the important feature subsets for the six algorithms respectively

after implementing feature selection technique.

Table 4.6: Important Feature Subsets for Different Machine Learning Algorithms

using ISCX-IDS2012 Dataset

With the abovementioned important feature subsets, the final cross validation

and hold-out test are performed and compared with the initial cross validation and

hold-out test. Table 4.7 shows the performance results of cross validations, whereas

Table 4.8 shows the performance results of hold-out tests.

50

Table 4.7: Performance Results of Various IDS Models for Cross Validation using

ISCX-IDS2012 Dataset

 Metrics NB KNN J48 RF RF-BT SVM

Before

Feature

Selection

Accuracy 98.44 99.70 99.61 97.94 98.91 99.37

Precision 98.46 99.70 99.61 98.00 98.92 99.38

Recall 98.44 99.70 99.61 97.94 98.91 99.37

F-measure 98.44 99.70 99.61 97.93 98.90 99.37

After

Feature

Selection

Accuracy 99.00 99.77 99.68 99.69 99.73 99.64

Precision 99.02 99.77 99.68 99.69 99.74 99.64

Recall 99.00 99.77 99.68 99.69 99.73 99.64

F-measure 99.00 99.77 99.68 99.69 99.73 99.64

Table 4.8: Performance Results of Various IDS Models for Hold-out Test using

ISCX-IDS2012 Dataset

 Metrics NB KNN J48 RF RF-BT SVM

Before

Feature

Selection

Accuracy 98.28 99.64 99.57 97.87 98.67 98.60

Precision 98.32 99.64 99.58 97.93 98.69 98.62

Recall 98.28 99.64 99.57 97.87 98.67 98.60

F-measure 98.30 99.64 99.57 97.86 98.67 98.60

After

Feature

Selection

Accuracy 99.08 99.73 99.62 99.61 99.60 99.54

Precision 99.09 99.73 99.62 99.61 99.61 99.54

Recall 99.08 99.73 99.62 99.61 99.60 99.54

F-measure 99.08 99.73 99.62 99.61 99.61 99.54

 In general, the performance results using the ISCX-IDS dataset are

surprisingly well for the six abovementioned algorithms. The accuracies are more

than 97 % even before any optimisation. As expected, the implementation of feature

selection consistently increased the models’ accuracies and F-measures as shown in

Tables 4.7 and 4.8.

According to Table 4.8, the algorithm with the best accuracy is KNN,

followed by J48 and RF. Table 4.9 tabulates the results of the individual KNN, J48

and RF models, together with the ensemble models of KNN + J48 and KNN + RF.

51

Table 4.9: Performance Results of the Best Three Individual Models and Ensemble

Models for ISCX-IDS2012 Dataset

The integration of KNN and J48 models yields better performance. The

feature-ranking and pruning properties in J48 enabled high prediction accuracy.

Although pruning helps in mitigating overfitting issue, there are still unavoidable

redundant tree branches which lead to inaccurate prediction, unless the pruning

parameters are defined correctly in exact numerical values. For KNN, shorter

Euclidean distance would claim higher confidence for correct prediction. However,

noisy data would negatively affect the prediction performance. In this case, the

complementary effect of KNN and J48 decision tree take place positively. The

overfitting issue is overcame when KNN directly classifies the test instance by

calculating the shortest Euclidean distance with the highest predictive confidence.

The noisy data in KNN are mitigated through the pruning of J48 decision tree.

Eventually, when these two classifiers were combined, the ensemble model is able to

outperform these two base learners.

On the other hand, the combination of KNN and RF produced weaker

prediction accuracy. It could be due to the fact that the RF generates noisy trees

which adversely affects the performance of the ensemble model.

4.4 Results and Discussions for NSL-KDD Dataset

Table 4.10 shows the important feature subsets for the six algorithms respectively

after implementing feature selection technique.

52

Table 4.10: Important Feature Subsets for Different Machine Learning Algorithms

using NSL-KDD Dataset

After obtaining the important feature subsets, the next step is to perform final

cross validation and hold-out test. The results are then compared to those obtained

from the initial cross validation and hold-out test. Table 4.11 shows the performance

results of cross validations, while Table 4.12 presents the performance results of

hold-out tests.

53

Table 4.11: Performance Results of Various IDS Models for Cross Validation using

NSL-KDD Dataset

 Metrics NB KNN J48 RF RF-BT SVM

Before

Feature

Selection

Accuracy 90.38 99.66 99.78 99.92 99.92 95.95

Precision 90.48 99.66 99.78 99.92 99.92 95.99

Recall 90.38 99.66 99.78 99.92 99.92 95.95

F-measure 90.36 99.66 99.78 99.92 99.92 95.95

After

Feature

Selection

Accuracy 96.22 99.70 99.85 99.92 99.92 97.18

Precision 96.22 99.70 99.85 99.92 99.92 97.19

Recall 96.22 99.70 99.85 99.92 99.92 97.18

F-measure 96.22 99.70 99.85 99.92 99.92 97.18

Table 4.12: Performance Results of Various IDS Models for Hold-out Test using

NSL-KDD Dataset

 Metrics NB KNN J48 RF RF-BT SVM

Before

Feature

Selection

Accuracy 76.12 79.36 81.53 80.45 80.19 75.39

Precision 80.90 84.10 85.79 85.19 85.03 80.20

Recall 76.12 79.36 81.53 80.45 80.19 75.39

F-measure 75.94 79.23 81.47 80.34 80.06 75.20

After

Feature

Selection

Accuracy 78.39 80.74 85.30 81.45 81.43 75.92

Precision 81.16 82.89 87.59 85.48 85.46 80.49

Recall 78.39 80.74 85.30 81.45 81.43 75.92

F-measure 78.41 80.79 85.35 81.40 81.37 75.76

In Table 4.11, the results obtained using cross validation are generally good,

with accuracies of at least 90 %. It means that the six algorithms are able to handle

NSL-KDD training data remarkably well. However, when it comes to the hold-out

test, the results are not as good as those in cross validations. The accuracy of the best

algorithm (J48 decision tree) is only 81.5 %. It means that the unseen NSL-KDD test

data are far more distinct than the training data, and the classifiers are unable to

classify those new data correctly. In spite of the distinctive nature of the NSL-KDD

training and test sets, it can be observed that after feature selection, the performance

results of the six algorithms are all improved in both cross validations and hold-out

tests.

According to Table 4.12, the best three algorithms are J48, RF and RF-BT

consecutively. Table 4.13 tabulates the results of the individual J48, RF and RF-BT

models, together with the ensemble models of J48 + RF and J48 + RF-BT.

54

Table 4.13: Performance Results of the Best Three Individual Models and Ensemble

Models for NSL-KDD Dataset

The application of ensemble learning which combines the best two

algorithms (J48 + RF) shows improvement. It is because the overfitting issue of a J48

decision tree is overcame by the RF by generating more random trees. The higher

number of trees results in less variance, as the decisions of individual trees are

aggregated in the prediction process. In this case, although J48 alone performs better

than RF by about 4 % in accuracy, the combination of both algorithms is capable to

enhance the performance of a single decision tree.

Nevertheless, the combination of J48 and RF-BT with tie-breaking capability

does not outperform the J48 algorithm. It is because when the features in a random

tree are equally good, the tie-breaking capability would only select one feature and

discard the rest. In NSL-KDD dataset, the interactions between features could be an

important factor in predicting correct output. Hence, the classification accuracy

decreases when the interactions of features are disregarded.

4.5 Summary of Results

In this project, the best algorithms for UNSW-NB15, ISCX-IDS2012 and NSL-KDD

datasets are random forest, k-nearest neighbour and J48 decision tree respectively.

Figure 4.1 shows the gradual improvements of these best algorithms in term of

accuracy. Specifically, it compares the original datasets without feature selection (i.e.,

before feature selection), the datasets with feature selection (i.e., after feature

selection) and the ensemble model.

55

Figure 4.1: Comparisons of Accuracies Before and After Feature Selection and

Ensemble Learning for UNSW-NB15, ISCX-IDS2012 and NSL-KDD Datasets

 It can be observed that feature selection technique is able to enhance the

classification accuracy for all IDS models. Besides, ensemble learning is also able to

further improve the classification accuracy only if the best two machine learning

algorithms are provided as the base learners.

UNSW-NB15 ISCX-IDS2012 NSL-KDD

Before FS 75.58 99.64 81.53

After FS 77.14 99.73 85.30

Ensemble 77.20 99.74 85.31

50.00

60.00

70.00

80.00

90.00

100.00

110.00

A
c
c
u

r
a
c
ie

s
(%

)

Comparisons of Accuracies

+1.56
+0.06

+0.09
+0.01

+3.76
+0.01

56

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project has identified several problems in designing an intrusion detection

system. These problems include biased evaluation and the use of questionable

datasets. This project has successfully addressed these issues by achieving the aim

and objectives as follows.

1. This project had investigated the impact of feature selection on the designed

intrusion detection system. To ensure the effectiveness of feature selection,

the prediction performance of five conventional machine learning algorithms,

namely Naïve Bayes, K-nearest neighbour, J48 decision tree, random forest

and support vector machine against three datasets (i.e., UNSW-NB15, ISCX-

IDS2012 and NSL-KDD), before and after performing wrapper-based feature

selection with best-first search algorithm, had been compared. Important

feature subset had been identified, and subsequently the prediction

performance of all machine learning algorithms had been unanimously

improved. This had proved the effectiveness of feature selection to improve

the prediction performance of a machine learning based intrusion detection

system.

2. This project had investigated the impact of feature selection and ensemble

learning on the designed intrusion detection system. Two best well-performed

algorithms were identified during achieving the first objectives. These two

best well-performed algorithms had been combined using ensemble learning

to improve the prediction performance of a machine learning based intrusion

detection system. The experimental results against three aforementioned

datasets have demonstrated that the ensemble model which combines the two

best algorithms is able to improve the prediction performance. However, no

improvement has been observed when the ensemble model combined the best

and the third best machine learning models. Therefore, it can be deduced that

ensemble learning is not always guaranteed to improve the classification

57

performance of the intrusion detection systems. Ensemble learning will only

improve classifier performance if the correct base learners are selected.

In summary, the proposed machine learning models that integrate feature

selection and ensemble learning are able to classify normal and attack data up to ten

different classes.

5.2 Recommendations for Future Work

This final year project also suggests the following areas that are worth to be explored

in the future:

1. It is suggested to use different platforms to build the intrusion detection

system such as Microsoft Azure Machine Learning Studio. The platform

allows the intrusion detection system model to be published as a web service

and be deployed in the virtual network environment.

2. Other improvement techniques in machine learning such as boosting and

stacking methods can be integrated to investigate the corresponding

classification performance. These methods can later be further combined into

a single ensemble model to further improve the prediction accuracy.

3. It is suggested to develop the intrusion detection system using the open

source software so that the graphical processing unit (GPU) can be selected

as the primary processing unit. GPU allows parallel computing and it has

optimised memory bandwidth. Therefore, GPU can provide faster processing

speed in large memory operation than conventional central processing unit.

For example, large memory operation includes matrix multiplication, which

is essential for support vector machine model. Github and Kaggle are the two

available open source platforms which contain various machine learning

source codes in various programming languages.

4. It is suggested to investigate whether deep learning models can be used to

classify structured data (which contains a number of features) effectively.

These deep learning models include convolutional neural networks, recurrent

neural networks and multi-layer perceptron.

58

REFERENCES

Ahmad, B., Jian, W. and Anwar Ali, Z., 2018. Role of Machine Learning and Data

Mining in Internet Security: Standing State with Future Directions. Journal of

Computer Networks and Communications, 2018.

Akhtar, T., Gupta, B.B. and Yamaguchi, S., 2018, January. Malware propagation

effects on SCADA system and smart power grid. In 2018 IEEE International

Conference on Consumer Electronics (ICCE) (pp. 1-6). IEEE.

Ali, J., Khan, R., Ahmad, N. and Maqsood, I., 2012. Random forests and decision

trees. International Journal of Computer Science Issues (IJCSI), 9(5), p.272.

Aljawarneh, S., Yassein, M.B. and Aljundi, M., 2017. An enhanced J48 classification

algorithm for the anomaly intrusion detection systems. Cluster Computing, pp.1-17.

Al-kasassbeh, M., Al-Naymat, G., Hamadneh, N., Obeidat, I. and Almseidin, M.,

2018. Intensive Preprocessing of KDD Cup 99 for Network Intrusion Classification

Using Machine Learning Techniques. arXiv preprint arXiv:1805.10458.

Atli, B.G., Miche, Y., Kalliola, A., Oliver, I., Holtmanns, S. and Lendasse, A., 2018.

Anomaly-based intrusion detection using extreme learning machine and aggregation

of network traffic statistics in probability space. Cognitive Computation, 10(5),

pp.848-863.

Barbosa, R.R.R., 2014. Anomaly detection in SCADA systems: a network based

approach.

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B. and Wingers, L.,

2017. Notes on the design and analysis of SIMON and SPECK. IACR Cryptology

ePrint Archive, 2017, p.560.

Bhatia, N., 2010. Survey of nearest neighbor techniques. arXiv preprint

arXiv:1007.0085.

Boyer, S.A., 2004. SCADA: Supervisory Control And Data Acquisition ISA-The

Instrumentation. Systems and Automation Society, USA,.

Caruana, R. and Niculescu-Mizil, A., 2006, June. An empirical comparison of

supervised learning algorithms. In Proceedings of the 23rd international conference

on Machine learning (pp. 161-168). ACM.

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M. and Elhadad, N., 2015, August.

Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day

readmission. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 1721-1730). ACM.

59

Catal, C., Tufekci, S., Pirmit, E. and Kocabag, G., 2015. On the use of ensemble of

classifiers for accelerometer-based activity recognition. Applied Soft Computing, 37,

pp.1018-1022.

Erez, N. and Wool, A., 2015. Control variable classification, modeling and anomaly

detection in Modbus/TCP SCADA systems. International Journal of Critical

Infrastructure Protection, 10, pp.59-70.

Fawagreh, K., Gaber, M.M. and Elyan, E., 2014. Random forests: from early

developments to recent advancements. Systems Science & Control Engineering: An

Open Access Journal, 2(1), pp.602-609.

Fogie, S. and Peikari, C. (2002). Going on the Defensive: Intrusion-Detection

Systems | Types of IDSs | InformIT. [online] Informit.com. Available at:

http://www.informit.com/articles/article.aspx?p=29601 [Accessed 2 Mar. 2019].

Folino, G., Pisani, F.S. and Sabatino, P., 2016, March. A distributed intrusion

detection framework based on evolved specialized ensembles of classifiers.

In European Conference on the Applications of Evolutionary Computation (pp. 315-

331). Springer, Cham.

Gharaee, H. and Hosseinvand, H., 2016, September. A new feature selection IDS

based on genetic algorithm and SVM. In 2016 8th International Symposium on

Telecommunications (IST) (pp. 139-144). IEEE.

Gheyas, I.A. and Smith, L.S., 2010. Feature subset selection in large dimensionality

domains. Pattern recognition, 43(1), pp.5-13.

Haider, W., Hu, J. and Moustafa, N., 2017, December. Designing Anomaly

Detection System for Cloud Servers by Frequency Domain Features of System Call

Identifiers and Machine Learning. In International Conference on Mobile Networks

and Management (pp. 137-149). Springer, Cham.

Haider, W., Hu, J., Slay, J., Turnbull, B.P. and Xie, Y., 2017. Generating realistic

intrusion detection system dataset based on fuzzy qualitative modeling. Journal of

Network and Computer Applications, 87, pp.185-192.

Hira, Z.M. and Gillies, D.F., 2015. A review of feature selection and feature

extraction methods applied on microarray data. Advances in bioinformatics, 2015.

Hssina, B., Merbouha, A., Ezzikouri, H. and Erritali, M., 2014. A comparative study

of decision tree ID3 and C4. 5. International Journal of Advanced Computer Science

and Applications, 4(2), pp.0-0.

Hu, Z., Bao, Y., Xiong, T. and Chiong, R., 2015. Hybrid filter–wrapper feature

selection for short-term load forecasting. Engineering Applications of Artificial

Intelligence, 40, pp.17-27.

Jabbar, M.A. and Aluvalu, R., 2017. RFAODE: A novel ensemble intrusion

detection system. Procedia computer science, 115, pp.226-234.

60

Jadhav, S.D. and Channe, H.P., 2016. Comparative study of K-NN, naive Bayes and

decision tree classification techniques. International Journal of Science and

Research, 5(1), pp.1842-1845.

Kabir, E. and Zhang, Y., 2016. Epileptic seizure detection from EEG signals using

logistic model trees. Brain informatics, 3(2), pp.93-100.

Kaur, R., Sachdeva, M. and Kumar, G., 2016. Study and comparison of feature

selection approaches for intrusion detection. Int. J. Comput. Appl, 7, p.6.

Kelleher, J.D., Namee, B. M. and D'arcy, A., 2015. Fundamentals of machine

learning for predictive data analytics: algorithms, worked examples, and case

studies. MIT Press.

Kim, T., Chung, B.D. and Lee, J.S., 2017. Incorporating receiver operating

characteristics into naive Bayes for unbalanced data classification. Computing, 99(3),

pp.203-218.

Kohavi, R. and John, G.H., 1997. Wrappers for feature subset selection. Artificial

intelligence, 97(1-2), pp.273-324.

Kohavi, R., 1995, August. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).

Liao, Y. and Vemuri, V.R., 2002. Use of k-nearest neighbor classifier for intrusion

detection. Computers & security, 21(5), pp.439-448.

Liaw, A. and Wiener, M., 2002. Classification and regression by randomForest. R

news, 2(3), pp.18-22.

Longadge, R. and Dongre, S., 2013. Class imbalance problem in data mining

review. arXiv preprint arXiv:1305.1707.

Lowd, D. and Domingos, P., 2005, August. Naive Bayes models for probability

estimation. In Proceedings of the 22nd international conference on Machine

learning (pp. 529-536). ACM.

Malli, R.C., Aygun, M. and Ekenel, H.K., 2016. Apparent age estimation using

ensemble of deep learning models. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops (pp. 9-16).

Marsland, S., 2011. Machine learning: an algorithmic perspective. Chapman and

Hall/CRC.

Maynard, P., McLaughlin, K. and Haberler, B., 2014, September. Towards

Understanding Man-in-the-middle Attacks on IEC 60870-5-104 SCADA Networks.

In ICS-CSR.

61

McHugh, J., 2000. Testing intrusion detection systems: a critique of the 1998 and

1999 darpa intrusion detection system evaluations as performed by lincoln

laboratory. ACM Transactions on Information and System Security (TISSEC), 3(4),

pp.262-294.

McLachlan, G., Do, K.A. and Ambroise, C., 2005. Analyzing microarray gene

expression data (Vol. 422). John Wiley & Sons.

Mirza, A.H. and Cosan, S., 2018, May. Computer network intrusion detection using

sequential LSTM Neural Networks autoencoders. In 2018 26th Signal Processing

and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

Mitchell, R. and Chen, I.R., 2014. A survey of intrusion detection techniques for

cyber-physical systems. ACM Computing Surveys (CSUR), 46(4), p.55.

Mo, Y., Chabukswar, R. and Sinopoli, B., 2014. Detecting integrity attacks on

SCADA systems. IEEE Transactions on Control Systems Technology, 22(4),

pp.1396-1407.

Mocherla, S., Danehy, A. and Impey, C., 2017. Evaluation of Naive Bayes and

Support Vector Machines for Wikipedia. Applied Artificial Intelligence, 31(9-10),

pp.733-744.

Mohammed, M., Khan, M.B. and Bashier, E.B.M., 2016. Machine learning:

algorithms and applications. Crc Press.

Moustafa, N. and Slay, J., 2015, November. UNSW-NB15: a comprehensive data set

for network intrusion detection systems (UNSW-NB15 network data set). In 2015

military communications and information systems conference (MilCIS)(pp. 1-6).

IEEE.

Park, K., Song, Y. and Cheong, Y.G., 2018, March. Classification of Attack Types

for Intrusion Detection Systems Using a Machine Learning Algorithm. In 2018 IEEE

Fourth International Conference on Big Data Computing Service and Applications

(BigDataService) (pp. 282-286). IEEE.

Patel, N. and Upadhyay, S., 2012. Study of various decision tree pruning methods

with their empirical comparison in WEKA. International journal of computer

applications, 60(12).

Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A. and Morency, L.P.,

2017, July. Context-dependent sentiment analysis in user-generated videos.

In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers) (pp. 873-883).

Rao, U.H. and Nayak, U., 2014. Intrusion Detection and Prevention Systems. In The

InfoSec Handbook (pp. 225-243). Apress, Berkeley, CA.

62

Rennie, J.D., Shih, L., Teevan, J. and Karger, D.R., 2003. Tackling the poor

assumptions of naive bayes text classifiers. In Proceedings of the 20th international

conference on machine learning (ICML-03) (pp. 616-623).

Revathi, S. and Malathi, A., 2013. A detailed analysis on NSL-KDD dataset using

various machine learning techniques for intrusion detection. International Journal of

Engineering Research & Technology (IJERT), 2(12), pp.1848-1853.

Rish, I., 2001, August. An empirical study of the naive Bayes classifier. In IJCAI

2001 workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp.

41-46).

Ruggieri, S., 2002. Efficient C4. 5 [classification algorithm]. IEEE transactions on

knowledge and data engineering, 14(2), pp.438-444.

Safavian, S.R. and Landgrebe, D., 1991. A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics, 21(3), pp.660-

674.

Shiravi, A., Shiravi, H., Tavallaee, M. and Ghorbani, A.A., 2012. Toward developing

a systematic approach to generate benchmark datasets for intrusion

detection. computers & security, 31(3), pp.357-374.

Shitharth, S. and Winston, D.P., 2015. A comparative analysis between two

countermeasure techniques to detect DDoS with sniffers in a SCADA

network. Procedia Technology, 21, pp.179-186.

Skiena, S.S., 1998. The algorithm design manual: Text (Vol. 1). Springer Science &

Business Media.

Strobl, C., Boulesteix, A.L., Zeileis, A. and Hothorn, T., 2007. Bias in random forest

variable importance measures: Illustrations, sources and a solution. BMC

bioinformatics, 8(1), p.25.

Suleiman, M. and Issac, B., 2018. Performance Comparison of Intrusion Detection

Machine Learning Classifiers on Benchmark and New Datasets.

Sung, A.H. and Mukkamala, S., 2003, January. Identifying important features for

intrusion detection using support vector machines and neural networks. In 2003

Symposium on Applications and the Internet, 2003. Proceedings. (pp. 209-216).

IEEE.

Swarnkar, M. and Hubballi, N., 2016. OCPAD: One class Naive Bayes classifier for

payload based anomaly detection. Expert Systems with Applications, 64, pp.330-339.

Syarif, A.R. and Gata, W., 2017, October. Intrusion detection system using hybrid

binary PSO and K-nearest neighborhood algorithm. In 2017 11th International

Conference on Information & Communication Technology and System (ICTS)(pp.

181-186). IEEE.

63

Tang, B., Kay, S. and He, H., 2016. Toward optimal feature selection in naive Bayes

for text categorization. IEEE transactions on knowledge and data engineering, 28(9),

pp.2508-2521.

Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A., 2009, July. A detailed

analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications (pp. 1-6). IEEE.

Wang, H., Khoshgoftaar, T.M. and Gao, K., 2010, August. A comparative study of

filter-based feature ranking techniques. In 2010 IEEE International Conference on

Information Reuse & Integration (pp. 43-48). IEEE.

Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J., 2016. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann.

Yassin, W., Udzir, N.I., Muda, Z. and Sulaiman, M.N., 2013, August. Anomaly-

based intrusion detection through k-means clustering and naives bayes classification.

In Proc. 4th Int. Conf. Comput. Informatics, ICOCI (Vol. 49, pp. 298-303).

Yu, L. and Liu, H., 2003. Feature selection for high-dimensional data: A fast

correlation-based filter solution. In Proceedings of the 20th international conference

on machine learning (ICML-03) (pp. 856-863).

Zeng, Z., Zhang, H., Zhang, R. and Yin, C., 2015. A novel feature selection method

considering feature interaction. Pattern Recognition, 48(8), pp.2656-2666.

Zhang, Y. and Yang, Y., 2015. Cross-validation for selecting a model selection

procedure. Journal of Econometrics, 187(1), pp.95-112.

Zhang, Y., Wang, L., Xiang, Y. and Ten, C.W., 2016. Inclusion of SCADA cyber

vulnerability in power system reliability assessment considering optimal resources

allocation. IEEE Transactions on Power Systems, 31(6), pp.4379-4394.

Zhou, X., Wang, S., Xu, W., Ji, G., Phillips, P., Sun, P. and Zhang, Y., 2015, April.

Detection of pathological brain in MRI scanning based on wavelet-entropy and naive

Bayes classifier. In International conference on bioinformatics and biomedical

engineering (pp. 201-209). Springer, Cham.

Zhou, Z.H., 2012. Ensemble methods: foundations and algorithms. Chapman and

Hall/CRC.

Zou, Q., Guo, J., Ju, Y., Wu, M., Zeng, X. and Hong, Z., 2015. Improving

tRNAscan‐SE Annotation Results via Ensemble Classifiers. Molecular

informatics, 34(11‐12), pp.761-770.

64

APPENDICES

APPENDIX A: Dataset Downloads

 UNSW-NB15

https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys

 ISCX-IDS2012

https://iscxdownloads.cs.unb.ca/iscxdownloads/ISCX-IDS-2012/#ISCX-IDS-

2012

 NSL-KDD

https://iscxdownloads.cs.unb.ca/iscxdownloads/NSL-KDD/#NSL-KDD

65

APPENDIX B: Python Codes (XML-to-CSV converter for ISCX-IDS2012)

66

APPENDIX C: Python Codes (ISCX-IDS2012: Removal of Duplicates,

Undersampling of Normal Majority Class and Train-Test Split of 70:30)

67

APPENDIX C (continued)

68

APPENDIX C (continued)

69

APPENDIX D: Confusion Matrices for UNSW-NB15 Dataset

N: Normal B: Backdoor A: Analysis F: Fuzzers S: Shellcode

R: Recon E: Exploits D: DoS W: Worm G: Generic

Appendix D.1: Initial Cross Validation for Naïve Bayes

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 38363 2025 2596 3201 6228 411 2519 89 137 431 56000

B 0 1003 58 11 585 4 10 4 22 49 1746

A 13 964 537 7 401 6 4 3 8 57 2000

F 132 1888 78 4160 9973 1327 135 12 48 431 18184

S 0 0 0 22 1106 0 0 0 0 5 1133

R 1 1238 60 148 8850 26 18 4 17 129 10491

E 562 8509 2208 1171 8607 428 8513 120 2831 444 33393

D 35 6471 564 213 3350 168 560 64 471 368 12264

W 1 0 2 7 91 2 0 0 27 0 130

G 19 295 34 49 312 46 114 13 161 38957 40000

Σ(Predicted) 39126 22393 6137 8989 39503 2418 11873 309 3722 40871 175341

Weighted
Average

Accuracy 52.90

Precision 98.05 4.48 8.75 46.28 2.80 1.08 71.70 20.71 0.73 95.32 73.19

Recall 68.51 57.45 26.85 22.88 97.62 0.25 25.49 0.52 20.77 97.39 52.90

F-measure 80.66 8.31 13.20 30.62 5.44 0.40 37.61 1.02 1.40 96.34 58.44

Example:

Accuracy =
38363 + 1003 + 537 + ⋯ + 38957

175341
× 100 % = 52.90 %

Precision (Normal) =
38363

39126
× 100 % = 98.05 %

Precisionavg. =
(98.05 · 56000 + 4.48 · 1746 + ⋯ + 95.32 · 40000)%

175341
= 73.19 %

Recall(Normal) =
38363

56000
× 100 % = 68.51 %

Recallavg. =
(68.51 · 56000 + 57.45 · 1746 + ⋯ + 97.39 · 40000)%

175341
= 52.90 %

F − measure(Normal) = 2 ×
98.05 × 68.51

98.05 + 68.51
% = 80.66 %

F − measureavg. =
(80.66 · 56000 + 8.31 · 1746 + ⋯ + 96.34 · 40000)%

175341
= 58.44 %

70

Appendix D.2: Initial Cross Validation for K-Nearest Neighbour

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 50861 9 121 3829 56 343 618 142 1 20 56000

B 25 62 79 47 6 86 1122 310 4 5 1746

A 116 89 327 6 0 0 1184 278 0 0 2000

F 4315 46 9 10409 158 786 2028 383 12 38 18184

S 72 8 0 184 357 394 73 38 0 7 1133

R 374 65 1 654 232 6118 2523 493 11 20 10491

E 735 65 91 1002 112 1280 25709 4091 71 237 33393

D 163 17 29 191 56 189 10075 1481 3 60 12264

W 0 0 0 11 1 20 73 4 16 5 130

G 23 5 5 59 10 43 457 209 4 39185 40000

Σ(Predicted) 56684 366 662 16392 988 9259 43862 7429 122 39577 175341

Weighted

Average

Accuracy 76.72

Precision 89.73 16.94 49.40 63.50 36.13 66.08 58.61 19.94 13.11 99.01 75.31

Recall 90.82 3.55 16.35 57.24 31.51 58.32 76.99 12.08 12.31 97.96 76.72

F-measure 90.27 5.87 24.57 60.21 33.66 61.95 66.56 15.04 12.70 98.48 75.54

Appendix D.3: Initial Cross Validation for J48 Decision Tree

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 51783 5 132 3637 32 28 326 51 1 5 56000

B 3 245 22 9 10 9 1419 25 1 3 1746

A 171 58 313 8 0 0 1418 32 0 0 2000

F 2839 4 11 13415 116 21 1695 57 5 21 18184

S 37 12 0 100 812 16 117 33 0 6 1133

R 13 6 2 17 5 7907 2469 67 3 2 10491

E 315 25 56 298 143 674 30994 728 39 121 33393

D 60 15 19 84 72 69 10774 1127 1 43 12264

W 1 2 0 2 0 1 38 2 82 2 130

G 11 6 2 30 9 5 507 79 5 39346 40000

Σ(Predicted) 55233 378 557 17600 1199 8730 49757 2201 137 39549 175341

Weighted
Average

Accuracy 83.28

Precision 93.75 64.81 56.19 76.22 67.72 90.57 62.29 51.20 59.85 99.49 83.18

Recall 92.47 14.03 15.65 73.77 71.67 75.37 92.82 9.19 63.08 98.37 83.28

F-measure 93.11 23.07 24.48 74.98 69.64 82.27 74.55 15.58 61.42 98.92 81.29

71

Appendix D.4: Initial Cross Validation for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 52138 0 26 3413 34 36 340 11 0 2 56000

B 3 208 78 25 12 13 1049 357 0 1 1746

A 184 82 313 9 0 0 1062 350 0 0 2000

F 2584 13 15 13719 98 22 1382 336 1 14 18184

S 31 0 0 149 771 11 152 16 0 3 1133

R 7 6 0 17 3 7905 2025 526 0 2 10491

E 216 4 13 323 135 566 28497 3582 14 43 33393

D 25 5 7 93 96 60 9751 2212 4 11 12264

W 0 0 0 6 0 1 93 3 26 1 130

G 8 5 0 33 10 2 453 217 1 39271 40000

Σ(Predicted) 55196 323 452 17787 1159 8616 44804 7610 46 39348 175341

Weighted
Average

Accuracy 82.73

Precision 94.46 64.40 69.25 77.13 66.52 91.75 63.60 29.07 56.52 99.80 82.47

Recall 93.10 11.91 15.65 75.45 68.05 75.35 85.34 18.04 20.00 98.18 82.73

F-measure 93.78 20.11 25.53 76.28 67.28 82.74 72.89 22.26 29.55 98.98 81.78

Appendix D.5: Initial Cross Validation for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 52131 0 21 3430 33 34 340 9 0 2 56000

B 1 210 78 27 10 11 1050 357 1 1 1746

A 185 83 309 9 0 0 1065 349 0 0 2000

F 2586 13 14 13707 96 21 1392 340 1 14 18184

S 28 0 0 149 774 12 149 18 0 3 1133

R 6 6 0 16 5 7909 2019 527 0 3 10491

E 218 6 16 328 128 559 28492 3580 16 50 33393

D 24 7 5 97 100 62 9748 2206 4 11 12264

W 0 0 0 6 0 0 90 4 29 1 130

G 10 5 0 37 11 2 448 215 1 39271 40000

Σ(Predicted) 55189 330 443 17806 1157 8610 44793 7605 52 39356 175341

Weighted

Average

Accuracy 82.72

Precision 94.46 63.64 69.75 76.98 66.90 91.86 63.61 29.01 55.77 99.78 82.46

Recall 93.09 12.03 15.45 75.38 68.31 75.39 85.32 17.99 22.31 98.18 82.72

F-measure 93.77 20.23 25.30 76.17 67.60 82.81 72.88 22.21 31.87 98.97 81.76

72

Appendix D.6: Initial Cross Validation for Support Vector Machine

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 45827 0 39 8871 0 468 790 4 0 1 56000

B 10 3 0 64 0 98 1571 0 0 0 1746

A 202 0 131 2 0 0 1665 0 0 0 2000

F 703 0 0 14167 0 1290 1976 2 0 46 18184

S 6 0 0 428 0 699 0 0 0 0 1133

R 57 0 0 1096 0 5908 3395 0 0 35 10491

E 359 8 0 2405 0 516 30053 29 0 23 33393

D 114 3 0 444 0 215 11388 37 0 63 12264

W 2 0 0 11 0 6 111 0 0 0 130

G 14 0 0 156 0 39 675 0 0 39116 40000

Σ(Predicted) 47294 14 170 27644 0 9239 51624 72 0 39284 175341

Weighted

Average

Accuracy 77.13

Precision 96.90 21.43 77.06 51.25 NaN 63.95 58.22 51.39 NaN 99.57 NaN

Recall 81.83 0.17 6.55 77.91 0.00 56.31 90.00 0.30 0.00 97.79 77.13

F-measure 88.73 0.34 12.07 61.83 NaN 59.89 70.70 0.60 NaN 98.67 NaN

Appendix D.7: Final Cross Validation for Naïve Bayes

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 43186 45 238 9094 2 1311 1840 64 0 220 56000

B 66 3 8 166 0 0 928 547 0 28 1746

A 15 5 295 0 0 0 1090 559 0 36 2000

F 668 5 128 11372 0 2613 2636 533 0 229 18184

S 0 0 0 591 0 494 38 0 0 10 1133

R 90 7 42 3782 0 3000 2743 701 0 126 10491

E 636 53 215 3577 20 213 23675 4575 0 429 33393

D 415 29 52 566 21 137 7193 3588 0 263 12264

W 2 0 8 4 0 11 104 0 0 1 130

G 1194 0 12 124 8 79 549 77 0 37957 40000

Σ(Predicted) 46272 147 998 29276 51 7858 40796 10644 0 39299 175341

Weighted
Average

Accuracy 70.19

Precision 93.33 2.04 29.56 38.84 0.00 38.18 58.03 33.71 NaN 96.59 NaN

Recall 77.12 0.17 14.75 62.54 0.00 28.60 70.90 29.26 0.00 94.89 70.19

F-measure 84.45 0.32 19.68 47.92 0.00 32.70 63.82 31.33 NaN 95.73 NaN

73

Appendix D.8: Final Cross Validation for K-Nearest Neighbour

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 52270 4 156 3038 38 66 375 42 1 10 56000

B 4 216 19 18 9 16 1316 147 0 1 1746

A 167 31 318 12 0 3 1340 125 0 4 2000

F 3278 9 12 12893 87 56 1624 194 5 26 18184

S 48 13 0 92 856 37 66 19 1 1 1133

R 34 3 3 49 15 7902 2192 284 4 5 10491

E 383 39 68 462 146 774 29174 2154 39 154 33393

D 72 14 12 127 49 82 9847 2029 2 30 12264

W 0 0 0 4 0 5 36 2 82 1 130

G 16 6 3 31 10 7 536 70 8 39313 40000

Σ(Predicted) 56272 335 591 16726 1210 8948 46506 5066 142 39545 175341

Weighted

Average

Accuracy 82.73

Precision 92.89 64.48 53.81 77.08 70.74 88.31 62.73 40.05 57.75 99.41 82.13

Recall 93.34 12.37 15.90 70.90 75.55 75.32 87.37 16.54 63.08 98.28 82.73

F-measure 93.11 20.76 24.55 73.86 73.07 81.30 73.03 23.42 60.29 98.84 81.36

Appendix D.9: Final Cross Validation for J48 Decision Tree

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 52149 2 93 3297 35 34 345 39 0 6 56000

B 3 262 20 8 14 12 1410 13 1 3 1746

A 182 48 300 5 0 1 1438 26 0 0 2000

F 2681 6 8 13575 102 17 1735 44 2 14 18184

S 29 8 0 94 863 24 102 9 0 4 1133

R 14 2 1 15 6 7958 2447 42 3 3 10491

E 254 12 44 292 126 567 31474 488 36 100 33393

D 46 12 9 89 62 76 10826 1099 1 44 12264

W 0 0 0 2 0 1 29 2 96 0 130

G 17 6 3 26 11 4 522 53 4 39354 40000

Σ(Predicted) 55375 358 478 17403 1219 8694 50328 1815 143 39528 175341

Weighted
Average

Accuracy 83.91

Precision 94.17 73.18 62.76 78.00 70.80 91.53 62.54 60.55 67.13 99.56 84.45

Recall 93.12 15.01 15.00 74.65 76.17 75.86 94.25 8.96 73.85 98.39 83.91

F-measure 93.65 24.90 24.21 76.29 73.38 82.96 75.19 15.61 70.33 98.97 81.82

74

Appendix D.10: Final Cross Validation for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 52526 1 42 3015 36 35 323 20 0 2 56000

B 1 218 28 14 15 11 1300 157 1 1 1746

A 196 22 318 6 0 0 1311 147 0 0 2000

F 2351 7 11 13911 105 13 1596 171 2 17 18184

S 24 5 0 98 865 14 111 14 1 1 1133

R 16 6 1 9 4 7920 2213 318 1 3 10491

E 222 7 17 266 131 640 30278 1742 33 57 33393

D 41 4 7 69 69 57 9996 2002 4 15 12264

W 0 0 0 4 0 1 46 2 75 2 130

G 6 5 1 31 9 2 533 57 3 39353 40000

Σ(Predicted) 55383 275 425 17423 1234 8693 47707 4630 120 39451 175341

Weighted
Average

Accuracy 84.10

Precision 94.84 79.27 74.82 79.84 70.10 91.11 63.47 43.24 62.50 99.75 84.03

Recall 93.80 12.49 15.90 76.50 76.35 75.49 90.67 16.32 57.69 98.38 84.10

F-measure 94.32 21.57 26.23 78.14 73.09 82.57 74.67 23.70 60.00 99.06 82.67

Appendix D.11: Final Cross Validation for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 52544 1 39 3001 30 35 327 21 0 2 56000

B 2 219 26 10 15 12 1300 160 1 1 1746

A 196 25 312 6 0 0 1311 150 0 0 2000

F 2344 7 9 13920 102 10 1590 180 3 19 18184

S 26 4 0 101 863 12 106 19 1 1 1133

R 14 6 1 8 4 7934 2195 324 2 3 10491

E 236 7 17 262 135 621 30249 1775 32 59 33393

D 38 4 7 72 69 58 9976 2022 4 14 12264

W 0 0 0 4 1 0 50 1 72 2 130

G 8 4 0 31 9 3 532 56 4 39353 40000

Σ(Predicted) 55408 277 411 17415 1228 8685 47636 4708 119 39454 175341

Weighted

Average

Accuracy 84.11

Precision 94.83 79.06 75.91 79.93 70.28 91.35 63.50 42.95 60.50 99.74 84.05

Recall 93.83 12.54 15.60 76.55 76.17 75.63 90.58 16.49 55.38 98.38 84.11

F-measure 94.33 21.65 25.88 78.20 73.10 82.75 74.66 23.83 57.83 99.06 82.70

75

Appendix D.12: Final Cross Validation for Support Vector Machine

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 45785 0 43 8873 0 470 829 0 0 0 56000

B 9 3 0 64 0 126 1544 0 0 0 1746

A 187 0 130 2 0 0 1681 0 0 0 2000

F 691 0 0 14175 0 1289 1981 1 0 47 18184

S 6 0 0 426 0 701 0 0 0 0 1133

R 51 0 0 1119 0 5889 3397 0 0 35 10491

E 328 8 0 2423 0 520 30062 12 0 40 33393

D 93 1 0 482 0 227 11385 0 0 76 12264

W 2 0 0 12 0 4 112 0 0 0 130

G 14 0 0 157 0 38 675 0 0 39116 40000

Σ(Predicted) 47166 12 173 27733 0 9264 51666 13 0 39314 175341

Weighted

Average

Accuracy 77.08

Precision 97.07 25.00 75.14 51.11 NaN 63.57 58.19 0.00 NaN 99.50 NaN

Recall 81.76 0.17 6.50 77.95 0.00 56.13 90.02 0.00 0.00 97.79 77.08

F-measure 88.76 0.34 11.97 61.74 NaN 59.62 70.69 0.00 NaN 98.64 NaN

Appendix D.13: Initial Hold-out Test for Naïve Bayes

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 16283 1958 4033 3387 9199 549 1227 77 69 218 37000

B 0 363 15 2 52 0 2 0 3 146 583

A 2 410 57 2 60 0 0 0 0 146 677

F 64 1024 3 1298 2765 417 36 1 15 439 6062

S 0 0 0 5 373 0 0 0 0 0 378

R 0 234 7 29 3181 8 7 0 5 25 3496

E 248 2234 787 453 2281 192 3569 31 948 389 11132

D 17 1968 250 97 934 76 249 31 200 267 4089

W 0 1 0 2 32 0 0 0 9 0 44

G 31 415 34 57 403 52 107 7 172 17593 18871

Σ(Predicted) 16645 8607 5186 5332 19280 1294 5197 147 1421 19223 82332

Weighted
Average

Accuracy 48.08

Precision 97.83 4.22 1.10 24.34 1.93 0.62 68.67 21.09 0.63 91.52 77.14

Recall 44.01 62.26 8.42 21.41 98.68 0.23 32.06 0.76 20.45 93.23 48.08

F-measure 60.71 7.90 1.94 22.78 3.79 0.33 43.71 1.46 1.23 92.37 56.22

76

Appendix D.14: Initial Hold-out Test for K-Nearest Neighbour

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 27184 39 585 6779 152 823 1114 278 4 42 37000

B 6 97 0 4 3 18 372 81 1 1 583

A 1 201 0 0 0 0 387 85 0 3 677

F 1609 389 0 2574 45 286 967 181 4 7 6062

S 27 4 0 56 100 136 36 16 1 2 378

R 131 261 4 245 118 2238 416 70 5 8 3496

E 316 1824 81 396 73 478 6962 888 20 94 11132

D 77 1809 27 110 26 95 1518 397 3 27 4089

W 1 0 0 3 1 7 25 1 4 2 44

G 28 8 0 84 15 37 359 101 7 18232 18871

Σ(Predicted) 29380 4632 697 10251 533 4118 12156 2098 49 18418 82332

Weighted

Average

Accuracy 70.19

Precision 92.53 2.09 0.00 25.11 18.76 54.35 57.27 18.92 8.16 98.99 77.22

Recall 73.47 16.64 0.00 42.46 26.46 64.02 62.54 9.71 9.09 96.61 70.19

F-measure 81.90 3.72 0.00 31.56 21.95 58.79 59.79 12.83 8.60 97.79 72.89

Appendix D.15: Initial Hold-out Test for J48 Decision Tree

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 27608 15 749 7644 144 19 716 77 1 27 37000

B 18 88 0 4 4 1 456 6 0 6 583

A 17 89 0 1 0 0 566 4 0 0 677

F 1317 210 0 2866 189 14 1359 86 0 21 6062

S 9 3 0 23 287 4 37 14 0 1 378

R 18 105 1 21 21 2831 478 20 0 1 3496

E 171 875 11 156 76 214 9321 231 4 73 11132

D 40 840 4 50 33 28 2539 510 1 44 4089

W 2 0 0 0 0 0 10 0 31 1 44

G 18 4 0 23 17 1 316 64 5 18423 18871

Σ(Predicted) 29218 2229 765 10788 771 3112 15798 1012 42 18597 82332

Weighted
Average

Accuracy 75.26

Precision 94.49 3.95 0.00 26.57 37.22 90.97 59.00 50.40 73.81 99.06 81.71

Recall 74.62 15.09 0.00 47.28 75.93 80.98 83.73 12.47 70.45 97.63 75.26

F-measure 83.39 6.26 0.00 34.02 49.96 85.68 69.22 20.00 72.09 98.34 76.82

77

Appendix D.16: Initial Hold-out Test for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28191 0 403 7533 134 5 706 20 1 7 37000

B 0 52 40 11 4 0 449 27 0 0 583

A 3 129 40 8 0 0 472 25 0 0 677

F 892 185 130 3328 223 6 1231 66 0 1 6062

S 6 0 0 39 267 1 55 9 1 0 378

R 7 164 58 28 28 2802 396 12 0 1 3496

E 82 1170 506 212 75 168 8773 124 3 19 11132

D 8 1250 477 98 44 29 1738 438 0 7 4089

W 1 0 0 3 0 0 32 0 7 1 44

G 3 7 0 36 18 3 436 38 3 18327 18871

Σ(Predicted) 29193 2957 1654 11296 793 3014 14288 759 15 18363 82332

Weighted
Average

Accuracy 75.58

Precision 96.57 1.76 2.42 29.46 33.67 92.97 61.40 57.71 46.67 99.80 83.77

Recall 76.19 8.92 5.91 54.90 70.63 80.15 78.81 10.71 15.91 97.12 75.58

F-measure 85.18 2.94 3.43 38.35 45.60 86.08 69.02 18.07 23.73 98.44 77.82

Appendix D.17: Initial Hold-out Test for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28144 0 414 7560 139 7 712 17 1 6 37000

B 0 63 34 11 4 0 455 16 0 0 583

A 2 139 34 8 0 0 479 15 0 0 677

F 889 204 120 3402 206 8 1185 46 0 2 6062

S 4 0 0 48 267 2 47 9 1 0 378

R 9 164 60 28 27 2814 382 11 0 1 3496

E 88 1184 508 196 70 165 8797 102 2 20 11132

D 10 1248 487 85 45 34 1742 431 0 7 4089

W 0 0 0 3 0 0 32 0 7 2 44

G 5 6 0 41 18 3 436 36 3 18323 18871

Σ(Predicted) 29151 3008 1657 11382 776 3033 14267 683 14 18361 82332

Weighted

Average

Accuracy 75.65

Precision 96.55 2.09 2.05 29.89 34.41 92.78 61.66 63.10 50.00 99.79 84.09

Recall 76.06 10.81 5.02 56.12 70.63 80.49 79.02 10.54 15.91 97.10 75.65

F-measure 85.09 3.51 2.91 39.00 46.27 86.20 69.27 18.06 24.14 98.43 77.87

78

Appendix D.18: Initial Hold-out Test for Support Vector Machine

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 22970 0 157 11215 0 1348 1306 1 0 3 37000

B 2 0 0 17 0 25 539 0 0 0 583

A 58 0 0 0 0 0 619 0 0 0 677

F 212 0 0 4270 0 165 1407 0 0 8 6062

S 1 0 0 142 0 234 1 0 0 0 378

R 18 0 0 421 0 2249 796 0 0 12 3496

E 615 2 16 1036 0 304 9152 3 0 4 11132

D 72 2 0 238 0 113 3627 13 0 24 4089

W 0 0 0 9 0 1 34 0 0 0 44

G 16 0 0 224 0 46 418 0 0 18167 18871

Σ(Predicted) 23964 4 173 17572 0 4485 17899 17 0 18218 82332

Weighted

Average

Accuracy 69.01

Precision 95.85 0.00 0.00 24.30 NaN 50.14 51.13 76.47 NaN 99.72 NaN

Recall 62.08 0.00 0.00 70.44 0.00 64.33 82.21 0.32 0.00 96.27 69.01

F-measure 75.36 0.00 0.00 36.13 NaN 56.36 63.05 0.63 NaN 97.96 NaN

Appendix D.19: Final Hold-out Test for Naïve Bayes

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 19478 75 560 11758 2 2410 2617 38 0 62 37000

B 5 0 0 45 0 0 182 311 0 40 583

A 0 0 0 58 0 0 259 320 0 40 677

F 131 0 6 3346 0 736 1091 682 0 70 6062

S 1 0 0 209 0 165 3 0 0 0 378

R 26 0 8 1458 0 1204 697 93 0 10 3496

E 157 0 54 2545 3 112 6861 1269 0 131 11132

D 117 0 6 373 5 95 2351 1030 0 112 4089

W 0 0 0 4 0 6 34 0 0 0 44

G 5285 0 1 249 7 109 320 18 0 12882 18871

Σ(Predicted) 25200 75 635 20045 17 4837 14415 3761 0 13347 82332

Weighted
Average

Accuracy 54.42

Precision 77.29 0.00 0.00 16.69 0.00 24.89 47.60 27.39 NaN 96.52 NaN

Recall 52.64 0.00 0.00 55.20 0.00 34.44 61.63 25.19 0.00 68.26 54.42

F-measure 62.63 0.00 0.00 25.63 0.00 28.90 53.71 26.24 NaN 79.97 NaN

79

Appendix D.20: Final Hold-out Test for K-Nearest Neighbour

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28171 13 644 6864 117 95 921 127 6 42 37000

B 78 30 0 327 6 8 122 12 0 0 583

A 66 1 0 321 1 5 265 16 0 2 677

F 1575 58 0 3030 241 152 868 115 3 20 6062

S 12 4 0 27 289 12 28 4 0 2 378

R 35 58 5 39 32 2786 521 18 0 2 3496

E 321 304 62 880 86 258 8727 412 6 76 11132

D 139 285 14 436 26 43 2514 616 1 15 4089

W 1 0 0 1 0 0 12 0 30 0 44

G 31 4 0 402 16 20 263 53 5 18077 18871

Σ(Predicted) 30429 757 725 12327 814 3379 14241 1373 51 18236 82332

Weighted

Average

Accuracy 75.01

Precision 92.58 3.96 0.00 24.58 35.50 82.45 61.28 44.87 58.82 99.13 80.37

Recall 76.14 5.15 0.00 49.98 76.46 79.69 78.40 15.06 68.18 95.79 75.01

F-measure 83.56 4.48 0.00 32.95 48.49 81.05 68.79 22.56 63.16 97.43 76.46

Appendix D.21: Final Hold-out Test for J48 Decision Tree

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28043 6 583 7375 123 12 750 96 1 11 37000

B 15 96 0 4 4 2 455 1 0 6 583

A 18 88 0 0 0 0 569 2 0 0 677

F 1319 199 0 2973 155 22 1328 50 0 16 6062

S 3 4 0 28 307 9 25 1 0 1 378

R 10 86 1 7 22 2847 512 10 0 1 3496

E 157 732 9 144 71 198 9581 176 3 61 11132

D 43 702 4 58 28 29 2672 506 1 46 4089

W 0 1 0 0 0 0 11 0 31 1 44

G 19 4 0 25 15 3 302 56 5 18442 18871

Σ(Predicted) 29627 1918 597 10614 725 3122 16205 898 41 18585 82332

Weighted
Average

Accuracy 76.31

Precision 94.65 5.01 0.00 28.01 42.34 91.19 59.12 56.35 75.61 99.23 82.28

Recall 75.79 16.47 0.00 49.04 81.22 81.44 86.07 12.37 70.45 97.73 76.31

F-measure 84.18 7.68 0.00 35.66 55.67 86.04 70.10 20.29 72.94 98.47 77.51

80

Appendix D.22: Final Hold-out Test for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28131 0 464 7578 108 9 667 36 1 6 37000

B 0 80 41 96 7 0 353 6 0 0 583

A 3 45 41 87 3 0 494 4 0 0 677

F 1052 103 98 3350 252 5 1160 32 2 8 6062

S 4 0 0 21 307 2 33 10 0 1 378

R 11 21 23 26 48 2804 542 17 0 4 3496

E 77 220 246 359 90 182 9780 157 3 18 11132

D 15 175 198 184 36 24 2874 572 2 9 4089

W 0 0 0 0 0 0 12 0 31 1 44

G 10 3 0 30 20 3 352 36 3 18414 18871

Σ(Predicted) 29303 647 1111 11731 871 3029 16267 870 42 18461 82332

Weighted
Average

Accuracy 77.14

Precision 96.00 12.36 3.69 28.56 35.25 92.57 60.12 65.75 73.81 99.75 83.75

Recall 76.03 13.72 6.06 55.26 81.22 80.21 87.85 13.99 70.45 97.58 77.14

F-measure 84.86 13.01 4.59 37.66 49.16 85.95 71.39 23.07 72.09 98.65 78.36

Appendix D.23: Final Hold-out Test for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28187 0 447 7550 112 9 652 36 1 6 37000

B 1 37 116 106 7 0 310 6 0 0 583

A 0 3 116 96 3 0 455 4 0 0 677

F 1052 27 241 3359 258 6 1071 34 2 12 6062

S 5 0 0 19 308 1 35 9 0 1 378

R 13 30 13 28 43 2813 533 19 0 4 3496

E 81 201 345 378 87 184 9679 155 4 18 11132

D 31 203 207 190 33 23 2833 562 1 6 4089

W 0 0 0 0 0 0 13 0 30 1 44

G 12 2 0 32 20 3 358 35 3 18406 18871

Σ(Predicted) 29382 503 1485 11758 871 3039 15939 860 41 18454 82332

Weighted

Average

Accuracy 77.12

Precision 95.93 7.36 7.81 28.57 35.36 92.56 60.73 65.35 73.17 99.74 83.78

Recall 76.18 6.35 17.13 55.41 81.48 80.46 86.95 13.74 68.18 97.54 77.12

F-measure 84.92 6.81 10.73 37.70 49.32 86.09 71.51 22.71 70.59 98.63 78.40

81

Appendix D.24: Final Hold-out Test for Support Vector Machine

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 22883 0 154 11240 0 1333 1389 0 0 1 37000

B 2 0 0 17 0 26 538 0 0 0 583

A 58 0 0 0 0 0 619 0 0 0 677

F 214 0 0 4277 0 161 1402 0 0 8 6062

S 1 0 0 146 0 231 0 0 0 0 378

R 17 0 0 426 0 2246 795 0 0 12 3496

E 432 2 16 1046 0 312 9314 1 0 9 11132

D 64 0 0 259 0 119 3623 0 0 24 4089

W 0 0 0 9 0 1 34 0 0 0 44

G 17 0 0 226 0 45 421 0 0 18162 18871

Σ(Predicted) 23688 2 170 17646 0 4474 18135 1 0 18216 82332

Weighted

Average

Accuracy 69.09

Precision 96.60 0.00 0.00 24.24 NaN 50.20 51.36 0.00 NaN 99.70 NaN

Recall 61.85 0.00 0.00 70.55 0.00 64.24 83.67 0.00 0.00 96.24 69.09

F-measure 75.41 0.00 0.00 36.08 NaN 56.36 63.65 0.00 NaN 97.94 NaN

Appendix D.25: Ensemble Learning of RF + RF-BT

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28166 0 438 7572 111 9 667 30 1 6 37000

B 1 38 108 115 7 0 308 6 0 0 583

A 0 3 108 106 3 0 453 4 0 0 677

F 1008 27 225 3440 255 5 1058 32 2 10 6062

S 4 0 0 20 307 1 36 9 0 1 378

R 13 30 13 27 44 2812 536 18 0 3 3496

E 77 201 328 391 80 181 9697 154 4 19 11132

D 31 203 199 199 32 25 2834 558 1 7 4089

W 0 0 0 0 0 0 13 0 30 1 44

G 11 2 0 30 19 3 365 36 3 18402 18871

Σ(Predicted) 29311 504 1419 11900 858 3036 15967 847 41 18449 82332

Weighted
Average

Accuracy 77.20

Precision 96.09 7.54 7.61 28.91 35.78 92.62 60.73 65.88 73.17 99.75 83.91

Recall 76.12 6.52 15.95 56.75 81.22 80.43 87.11 13.65 68.18 97.51 77.20

F-measure 84.95 6.99 10.31 38.30 49.68 86.10 71.57 22.61 70.59 98.62 78.46

82

Appendix D.26: Ensemble Learning of RF + J48

 Prediction

Σ(Actual) N B A F S R E D W G

Actual

N 28005 4 504 7527 135 12 728 74 1 10 37000

B 15 95 0 4 6 2 453 2 0 6 583

A 18 87 0 1 1 0 568 2 0 0 677

F 1270 194 12 2998 164 22 1338 48 0 16 6062

S 3 2 0 21 317 9 24 1 0 1 378

R 9 75 15 13 31 2847 496 7 0 3 3496

E 136 682 114 162 84 201 9553 144 2 54 11132

D 35 655 112 79 31 26 2614 498 1 38 4089

W 0 0 0 0 0 0 11 0 32 1 44

G 11 4 0 37 15 3 312 58 5 18426 18871

Σ(Predicted) 29502 1798 757 10842 784 3122 16097 834 41 18555 82332

Weighted

Average

Accuracy 76.24

Precision 94.93 5.28 0.00 27.65 40.43 91.19 59.35 59.71 78.05 99.30 82.58

Recall 75.69 16.30 0.00 49.46 83.86 81.44 85.82 12.18 72.73 97.64 76.24

F-measure 84.22 7.98 0.00 35.47 54.56 86.04 70.17 20.23 75.29 98.47 77.52

83

APPENDIX E: Confusion Matrices for ISCX-IDS2012 Dataset

N: Normal D: DDoS B: Brute Force I: Infiltration H: HTTP DoS

Appendix E.1: Initial Cross Validation for Naïve Bayes

 Prediction

Σ(Actual) N D B I H

Actual

N 13782 66 30 63 59 14000

D 193 25958 56 13 2 26222

B 3 0 5117 1 0 5121

I 225 0 100 6775 21 7121

H 10 0 2 16 2602 2630

Σ(Predicted) 14213 26024 5305 6868 2684 55094

Weighted

Average

Accuracy 98.44

Precision 96.97 99.75 96.46 98.65 96.94 98.46

Recall 98.44 98.99 99.92 95.14 98.94 98.44

F-measure 97.70 99.37 98.16 96.86 97.93 98.44

Appendix E.2: Initial Cross Validation for K-Nearest Neighbour

 Prediction

Σ(Actual) N D B I H

Actual

N 13897 59 0 42 2 14000

D 18 26201 0 1 2 26222

B 0 2 5119 0 0 5121

I 29 0 2 7089 1 7121

H 4 2 0 1 2623 2630

Σ(Predicted) 13948 26264 5121 7133 2628 55094

Weighted

Average

Accuracy 99.70

Precision 99.63 99.76 99.96 99.38 99.81 99.70

Recall 99.26 99.92 99.96 99.55 99.73 99.70

F-measure 99.45 99.84 99.96 99.47 99.77 99.70

84

Appendix E.3: Initial Cross Validation for J48 Decision Tree

 Prediction

Σ(Actual) N D B I H

Actual

N 13970 13 3 10 4 14000

D 20 26199 3 0 0 26222

B 0 0 5120 1 0 5121

I 84 3 2 7001 31 7121

H 28 0 2 13 2587 2630

Σ(Predicted) 14102 26215 5130 7025 2622 55094

Weighted

Average

Accuracy 99.61

Precision 99.06 99.94 99.81 99.66 98.67 99.61

Recall 99.79 99.91 99.98 98.31 98.37 99.61

F-measure 99.42 99.93 99.89 98.98 98.51 99.61

Appendix E.4: Initial Cross Validation for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 13076 886 19 16 3 14000

D 12 26196 11 2 1 26222

B 2 0 5119 0 0 5121

I 38 40 0 7043 0 7121

H 28 49 2 24 2527 2630

Σ(Predicted) 13156 27171 5151 7085 2531 55094

Weighted

Average

Accuracy 97.94

Precision 99.39 96.41 99.38 99.41 99.84 98.00

Recall 93.40 99.90 99.96 98.90 96.08 97.94

F-measure 96.30 98.13 99.67 99.16 97.93 97.93

85

Appendix E.5: Initial Cross Validation for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 13525 463 10 2 0 14000

D 2 26218 0 1 1 26222

B 0 6 5115 0 0 5121

I 41 16 1 7062 1 7121

H 12 35 0 11 2572 2630

Σ(Predicted) 13580 26738 5126 7076 2574 55094

Weighted
Average

Accuracy 98.91

Precision 99.59 98.06 99.79 99.80 99.92 98.92

Recall 96.61 99.98 99.88 99.17 97.79 98.91

F-measure 98.08 99.01 99.83 99.49 98.85 98.90

Appendix E.6: Initial Cross Validation for Support Vector Machine

 Prediction

Σ(Actual) N D B I H

Actual

N 13739 199 12 30 20 14000

D 7 26203 2 0 7 26219

B 2 0 5119 0 0 5121

I 47 0 0 7070 5 7122

H 7 0 7 0 2618 2632

Σ(Predicted) 13802 26402 5140 7100 2650 55094

Weighted

Average

Accuracy 99.37

Precision 99.54 99.25 99.59 99.58 98.79 99.38

Recall 98.14 99.94 99.96 99.27 99.47 99.37

F-measure 98.83 99.59 99.78 99.42 99.13 99.37

86

Appendix E.7: Final Cross Validation for Naïve Bayes

 Prediction

Σ(Actual) N D B I H

Actual

N 13718 137 18 38 89 14000

D 0 26146 56 10 10 26222

B 0 1 5119 1 0 5121

I 110 3 2 6951 55 7121

H 7 0 2 10 2611 2630

Σ(Predicted) 13835 26287 5197 7010 2765 55094

Weighted

Average

Accuracy 99.00

Precision 99.15 99.46 98.50 99.16 94.43 99.02

Recall 97.99 99.71 99.96 97.61 99.28 99.00

F-measure 98.57 99.59 99.22 98.38 96.79 99.00

Appendix E.8: Final Cross Validation for K-Nearest Neighbour

 Prediction

Σ(Actual) N D B I H

Actual

N 13941 15 0 39 5 14000

D 10 26209 1 0 2 26222

B 0 1 5120 0 0 5121

I 41 0 2 7077 1 7121

H 5 2 0 0 2623 2630

Σ(Predicted) 13997 26227 5123 7116 2631 55094

Weighted
Average

Accuracy 99.77

Precision 99.60 99.93 99.94 99.45 99.70 99.77

Recall 99.58 99.95 99.98 99.38 99.73 99.77

F-measure 99.59 99.94 99.96 99.42 99.71 99.77

87

Appendix E.9: Final Cross Validation for J48 Decision Tree

 Prediction

Σ(Actual) N D B I H

Actual

N 13975 8 3 9 5 14000

D 18 26196 3 3 2 26222

B 0 0 5120 1 0 5121

I 70 0 2 7016 33 7121

H 6 0 2 14 2608 2630

Σ(Predicted) 14069 26204 5130 7043 2648 55094

Weighted

Average

Accuracy 99.68

Precision 99.33 99.97 99.81 99.62 98.49 99.68

Recall 99.82 99.90 99.98 98.53 99.16 99.68

F-measure 99.58 99.94 99.89 99.07 98.83 99.67

Appendix E.10: Final Cross Validation for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 13948 5 24 19 4 14000

D 15 26202 3 1 1 26222

B 0 0 5121 0 0 5121

I 42 0 2 7039 38 7121

H 7 1 2 5 2615 2630

Σ(Predicted) 14012 26208 5152 7064 2658 55094

Weighted

Average

Accuracy 99.69

Precision 99.54 99.98 99.40 99.65 98.38 99.69

Recall 99.63 99.92 100.00 98.85 99.43 99.69

F-measure 99.59 99.95 99.70 99.25 98.90 99.69

88

Appendix E.11: Final Cross Validation for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 13961 3 12 21 3 14000

D 11 26208 1 1 1 26222

B 0 0 5121 0 0 5121

I 40 0 2 7042 37 7121

H 7 1 1 5 2616 2630

Σ(Predicted) 14019 26212 5137 7069 2657 55094

Weighted
Average

Accuracy 99.73

Precision 99.59 99.98 99.69 99.62 98.46 99.74

Recall 99.72 99.95 100.00 98.89 99.47 99.73

F-measure 99.65 99.97 99.84 99.25 98.96 99.73

Appendix E.12: Final Cross Validation for Support Vector Machine

 Prediction

Σ(Actual) N D B I H

Actual

N 13885 78 0 6 31 14000

D 16 26204 0 0 2 26222

B 1 0 5120 0 0 5121

I 51 0 0 7069 1 7121

H 10 0 1 0 2619 2630

Σ(Predicted) 13963 26282 5121 7075 2653 55094

Weighted

Average

Accuracy 99.64

Precision 99.44 99.70 99.98 99.92 98.72 99.64

Recall 99.18 99.93 99.98 99.27 99.58 99.64

F-measure 99.31 99.82 99.98 99.59 99.15 99.64

89

Appendix E.13: Initial Hold-out Test for Naïve Bayes

 Prediction

Σ(Actual) N D B I H

Actual

N 5920 27 8 19 26 6000

D 99 11110 26 0 3 11238

B 3 0 2188 0 4 2195

I 108 0 62 2868 14 3052

H 3 0 3 1 1121 1128

Σ(Predicted) 6133 11137 2287 2888 1168 23613

Weighted

Average

Accuracy 98.28

Precision 96.53 99.76 95.67 99.31 95.98 98.32

Recall 98.67 98.86 99.68 93.97 99.38 98.28

F-measure 97.59 99.31 97.63 96.57 97.65 98.28

Appendix E.14: Initial Hold-out Test for K-Nearest Neighbour

 Prediction

Σ(Actual) N D B I H

Actual

N 5959 27 0 14 0 6000

D 12 11223 0 2 1 11238

B 0 1 2192 0 2 2195

I 18 0 0 3033 1 3052

H 3 2 1 0 1122 1128

Σ(Predicted) 5992 11253 2193 3049 1126 23613

Weighted
Average

Accuracy 99.64

Precision 99.45 99.73 99.95 99.48 99.64 99.64

Recall 99.32 99.87 99.86 99.38 99.47 99.64

F-measure 99.38 99.80 99.91 99.43 99.56 99.64

90

Appendix E.15: Initial Hold-out Test for J48 Decision Tree

 Prediction

Σ(Actual) N D B I H

Actual

N 5995 3 0 1 1 6000

D 14 11223 0 1 0 11238

B 0 0 2193 2 0 2195

I 42 1 1 2987 21 3052

H 10 2 2 0 1114 1128

Σ(Predicted) 6061 11229 2196 2991 1136 23613

Weighted

Average

Accuracy 99.57

Precision 98.91 99.95 99.86 99.87 98.06 99.58

Recall 99.92 99.87 99.91 97.87 98.76 99.57

F-measure 99.41 99.91 99.89 98.86 98.41 99.57

Appendix E.16: Initial Hold-out Test for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 5598 385 14 3 0 6000

D 9 11226 2 1 0 11238

B 8 13 2173 1 0 2195

I 20 18 0 3014 0 3052

H 2 26 0 0 1100 1128

Σ(Predicted) 5637 11668 2189 3019 1100 23613

Weighted

Average

Accuracy 97.87

Precision 99.31 96.21 99.27 99.83 100.00 97.93

Recall 93.30 99.89 99.00 98.75 97.52 97.87

F-measure 96.21 98.02 99.13 99.29 98.74 97.86

91

Appendix E.17: Initial Hold-out Test for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 5781 207 12 0 0 6000

D 3 11235 0 0 0 11238

B 1 6 2188 0 0 2195

I 13 7 0 3032 0 3052

H 34 30 0 0 1064 1128

Σ(Predicted) 5832 11485 2200 3032 1064 23613

Weighted
Average

Accuracy 98.67

Precision 99.13 97.82 99.45 100.00 100.00 98.69

Recall 96.35 99.97 99.68 99.34 94.33 98.67

F-measure 97.72 98.89 99.57 99.67 97.08 98.67

Appendix E.18: Initial Hold-out Test for Support Vector Machine

 Prediction

Σ(Actual) N D B I H

Actual

N 5905 65 1 18 11 6000

D 10 11197 27 0 4 11238

B 0 0 2195 0 0 2195

I 97 7 0 2882 66 3052

H 17 5 3 0 1103 1128

Σ(Predicted) 6029 11274 2226 2900 1184 23613

Weighted

Average

Accuracy 98.60

Precision 97.94 99.32 98.61 99.38 93.16 98.62

Recall 98.42 99.64 100.00 94.43 97.78 98.60

F-measure 98.18 99.48 99.30 96.84 95.42 98.60

92

Appendix E.19: Final Hold-out Test for Naïve Bayes

 Prediction

Σ(Actual) N D B I H

Actual

N 5906 53 3 11 27 6000

D 2 11206 27 0 3 11238

B 0 1 2191 1 2 2195

I 52 0 0 2971 29 3052

H 3 0 3 1 1121 1128

Σ(Predicted) 5963 11260 2224 2984 1182 23613

Weighted

Average

Accuracy 99.08

Precision 99.04 99.52 98.52 99.56 94.84 99.09

Recall 98.43 99.72 99.82 97.35 99.38 99.08

F-measure 98.74 99.62 99.16 98.44 97.06 99.08

Appendix E.20: Final Hold-out Test for K-Nearest Neighbour

 Prediction

Σ(Actual) N D B I H

Actual

N 5979 7 0 14 0 6000

D 6 11228 0 1 3 11238

B 0 2 2193 0 0 2195

I 23 0 0 3027 2 3052

H 2 3 1 0 1122 1128

Σ(Predicted) 6010 11240 2194 3042 1127 23613

Weighted
Average

Accuracy 99.73

Precision 99.48 99.89 99.95 99.51 99.56 99.73

Recall 99.65 99.91 99.91 99.18 99.47 99.73

F-measure 99.57 99.90 99.93 99.34 99.51 99.73

93

Appendix E.21: Final Hold-out Test for J48 Decision Tree

 Prediction

Σ(Actual) N D B I H

Actual

N 5994 4 0 1 1 6000

D 8 11224 0 3 3 11238

B 0 0 2193 2 0 2195

I 41 0 0 2988 23 3052

H 3 0 2 0 1123 1128

Σ(Predicted) 6046 11228 2195 2994 1150 23613

Weighted

Average

Accuracy 99.62

Precision 99.14 99.96 99.91 99.80 97.65 99.62

Recall 99.90 99.88 99.91 97.90 99.56 99.62

F-measure 99.52 99.92 99.91 98.84 98.60 99.62

Appendix E.22: Final Hold-out Test for Random Forest without Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 5979 1 16 4 0 6000

D 12 11223 0 2 1 11238

B 0 0 2195 0 0 2195

I 27 0 0 3003 22 3052

H 3 1 2 1 1121 1128

Σ(Predicted) 6021 11225 2213 3010 1144 23613

Weighted

Average

Accuracy 99.61

Precision 99.30 99.98 99.19 99.77 97.99 99.61

Recall 99.65 99.87 100.00 98.39 99.38 99.61

F-measure 99.48 99.92 99.59 99.08 98.68 99.61

94

Appendix E.23: Final Hold-out Test for Random Forest with Tie-Breaking

Capability

 Prediction

Σ(Actual) N D B I H

Actual

N 5979 3 16 2 0 6000

D 12 11223 0 2 1 11238

B 0 0 2195 0 0 2195

I 28 0 0 3002 22 3052

H 3 1 2 1 1121 1128

Σ(Predicted) 6022 11227 2213 3007 1144 23613

Weighted
Average

Accuracy 99.60

Precision 99.29 99.96 99.19 99.83 97.99 99.61

Recall 99.65 99.87 100.00 98.36 99.38 99.60

F-measure 99.47 99.92 99.59 99.09 98.68 99.61

Appendix E.24: Final Hold-out Test for Support Vector Machine

 Prediction

Σ(Actual) N D B I H

Actual

N 5957 31 4 3 5 6000

D 11 11223 0 1 3 11238

B 0 0 2195 0 0 2195

I 37 0 0 3013 2 3052

H 5 0 3 3 1117 1128

Σ(Predicted) 6010 11254 2202 3020 1127 23613

Weighted

Average

Accuracy 99.54

Precision 99.12 99.72 99.68 99.77 99.11 99.54

Recall 99.28 99.87 100.00 98.72 99.02 99.54

F-measure 99.20 99.80 99.84 99.24 99.07 99.54

95

Appendix E.25: Ensemble Learning of KNN + J48

 Prediction

Σ(Actual) N D B I H

Actual

N 5979 7 0 14 0 6000

D 5 11229 0 1 3 11238

B 0 0 2194 1 0 2195

I 23 0 0 3027 2 3052

H 3 0 2 0 1123 1128

Σ(Predicted) 6010 11236 2196 3043 1128 23613

Weighted

Average

Accuracy 99.74

Precision 99.48 99.94 99.91 99.47 99.56 99.74

Recall 99.65 99.92 99.95 99.18 99.56 99.74

F-measure 99.57 99.93 99.93 99.33 99.56 99.74

Appendix E.26: Ensemble Learning of KNN + RF

 Prediction

Σ(Actual) N D B I H

Actual

N 5973 6 0 20 1 6000

D 3 11231 0 1 3 11238

B 0 1 2194 0 0 2195

I 26 0 0 3024 2 3052

H 3 2 1 0 1122 1128

Σ(Predicted) 6005 11240 2195 3045 1128 23613

Weighted
Average

Accuracy 99.71

Precision 99.47 99.92 99.95 99.31 99.47 99.71

Recall 99.55 99.94 99.95 99.08 99.47 99.71

F-measure 99.51 99.93 99.95 99.20 99.47 99.71

96

APPENDIX F: Confusion Matrices for NSL-KDD Dataset

N: Normal A: Anomaly

Appendix F.1: Initial Cross Validation for Naïve Bayes

 Prediction
Σ(Actual)

 N A

Actual
N 63060 4283 67343

A 7832 50798 58630

Σ(Predicted) 70892 55081 125973

Weighted

Average

Accuracy 90.38

Precision 88.95 92.22 90.48

Recall 93.64 86.64 90.38

F-measure 91.24 89.35 90.36

Appendix F.2: Initial Cross Validation for K-Nearest Neighbour

 Prediction
Σ(Actual)

 N A

Actual
N 67127 216 67343

A 218 58412 58630

Σ(Predicted) 67345 58628 125973

Weighted
Average

Accuracy 99.66

Precision 99.68 99.63 99.66

Recall 99.68 99.63 99.66

F-measure 99.68 99.63 99.66

Appendix F.3: Initial Cross Validation for J48 Decision Tree

 Prediction
Σ(Actual)

 N A

Actual
N 67200 143 67343

A 132 58498 58630

Σ(Predicted) 67332 58641 125973

Weighted

Average

Accuracy 99.78

Precision 99.80 99.76 99.78

Recall 99.79 99.77 99.78

F-measure 99.80 99.77 99.78

97

Appendix F.4: Initial Cross Validation for Random Forest without Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 67319 24 67343

A 80 58550 58630

Σ(Predicted) 67399 58574 125973

Weighted

Average

Accuracy 99.92

Precision 99.88 99.96 99.92

Recall 99.96 99.86 99.92

F-measure 99.92 99.91 99.92

Appendix F.5: Initial Cross Validation for Random Forest with Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 67319 24 67343

A 81 58549 58630

Σ(Predicted) 67400 58573 125973

Weighted
Average

Accuracy 99.92

Precision 99.88 99.96 99.92

Recall 99.96 99.86 99.92

F-measure 99.92 99.91 99.92

Appendix F.6: Initial Cross Validation for Support Vector Machine

 Prediction
Σ(Actual)

 N A

Actual
N 65790 1553 67343

A 3545 55085 58630

Σ(Predicted) 69335 56638 125973

Weighted

Average

Accuracy 95.95

Precision 94.89 97.26 95.99

Recall 97.69 93.95 95.95

F-measure 96.27 95.58 95.95

98

Appendix F.7: Final Cross Validation for Naïve Bayes

 Prediction
Σ(Actual)

 N A

Actual
N 65032 2311 67343

A 2446 56184 58630

Σ(Predicted) 67478 58495 125973

Weighted
Average

Accuracy 96.22

Precision 96.38 96.05 96.22

Recall 96.57 95.83 96.22

F-measure 96.47 95.94 96.22

Appendix F.8: Final Cross Validation for K-Nearest Neighbour

 Prediction
Σ(Actual)

 N A

Actual
N 67189 154 67343

A 218 58412 58630

Σ(Predicted) 67407 58566 125973

Weighted

Average

Accuracy 99.70

Precision 99.68 99.74 99.70

Recall 99.77 99.63 99.70

F-measure 99.72 99.68 99.70

Appendix F.9: Final Cross Validation for J48 Decision Tree

 Prediction
Σ(Actual)

 N A

Actual
N 67253 90 67343

A 93 58537 58630

Σ(Predicted) 67346 58627 125973

Weighted

Average

Accuracy 99.85

Precision 99.86 99.85 99.85

Recall 99.87 99.84 99.85

F-measure 99.86 99.84 99.85

99

Appendix F.10: Final Cross Validation for Random Forest without Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 67314 29 67343

A 67 58563 58630

Σ(Predicted) 67381 58592 125973

Weighted

Average

Accuracy 99.92

Precision 99.90 99.95 99.92

Recall 99.96 99.89 99.92

F-measure 99.93 99.92 99.92

Appendix F.11: Final Cross Validation for Random Forest with Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 67315 28 67343

A 67 58563 58630

Σ(Predicted) 67382 58591 125973

Weighted
Average

Accuracy 99.92

Precision 99.90 99.95 99.92

Recall 99.96 99.89 99.92

F-measure 99.93 99.92 99.92

Appendix F.12: Final Cross Validation for Support Vector Machine

 Prediction
Σ(Actual)

 N A

Actual
N 66042 1301 67343

A 2254 56376 58630

Σ(Predicted) 68296 57677 125973

Weighted

Average

Accuracy 97.18

Precision 96.70 97.74 97.19

Recall 98.07 96.16 97.18

F-measure 97.38 96.94 97.18

100

Appendix F.13: Initial Hold-out Test for Naïve Bayes

 Prediction
Σ(Actual)

 N A

Actual
N 9041 670 9711

A 4714 8119 12833

Σ(Predicted) 13755 8789 22544

Weighted
Average

Accuracy 76.12

Precision 65.73 92.38 80.90

Recall 93.10 63.27 76.12

F-measure 77.06 75.10 75.94

Appendix F.14: Initial Hold-out Test for K-Nearest Neighbour

 Prediction
Σ(Actual)

 N A

Actual
N 9342 369 9711

A 4285 8548 12833

Σ(Predicted) 13627 8917 22544

Weighted

Average

Accuracy 79.36

Precision 68.56 95.86 84.10

Recall 96.20 66.61 79.36

F-measure 80.06 78.60 79.23

Appendix F.15: Initial Hold-out Test for J48 Decision Tree

 Prediction
Σ(Actual)

 N A

Actual
N 9448 263 9711

A 3900 8933 12833

Σ(Predicted) 13348 9196 22544

Weighted

Average

Accuracy 81.53

Precision 70.78 97.14 85.79

Recall 97.29 69.61 81.53

F-measure 81.95 81.10 81.47

101

Appendix F.16: Initial Hold-out Test for Random Forest without Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 9447 264 9711

A 4143 8690 12833

Σ(Predicted) 13590 8954 22544

Weighted

Average

Accuracy 80.45

Precision 69.51 97.05 85.19

Recall 97.28 67.72 80.45

F-measure 81.09 79.77 80.34

Appendix F.17: Initial Hold-out Test for Random Forest with Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 9443 268 9711

A 4199 8634 12833

Σ(Predicted) 13642 8902 22544

Weighted
Average

Accuracy 80.19

Precision 69.22 96.99 85.03

Recall 97.24 67.28 80.19

F-measure 80.87 79.45 80.06

Appendix F.18: Initial Hold-out Test for Support Vector Machine

 Prediction
Σ(Actual)

 N A

Actual
N 8979 732 9711

A 4815 8018 12833

Σ(Predicted) 13794 8750 22544

Weighted

Average

Accuracy 75.39

Precision 65.09 91.63 80.20

Recall 92.46 62.48 75.39

F-measure 76.40 74.30 75.20

102

Appendix F.19: Final Hold-out Test for Naïve Bayes

 Prediction
Σ(Actual)

 N A

Actual
N 8751 960 9711

A 3911 8922 12833

Σ(Predicted) 12662 9882 22544

Weighted
Average

Accuracy 78.39

Precision 69.11 90.29 81.16

Recall 90.11 69.52 78.39

F-measure 78.23 78.56 78.41

Appendix F.20: Final Hold-out Test for K-Nearest Neighbour

 Prediction
Σ(Actual)

 N A

Actual
N 8803 908 9711

A 3435 9398 12833

Σ(Predicted) 12238 10306 22544

Weighted

Average

Accuracy 80.74

Precision 71.93 91.19 82.89

Recall 90.65 73.23 80.74

F-measure 80.21 81.23 80.79

Appendix F.21: Final Hold-out Test for J48 Decision Tree

 Prediction
Σ(Actual)

 N A

Actual
N 9329 382 9711

A 2930 9903 12833

Σ(Predicted) 12259 10285 22544

Weighted

Average

Accuracy 85.30

Precision 76.10 96.29 87.59

Recall 96.07 77.17 85.31

F-measure 84.92 85.67 85.35

103

Appendix F.22: Final Hold-out Test for Random Forest without Tie-Breaking

Capability

 Prediction
Σ(Actual)

 N A

Actual
N 9389 322 9711

A 3860 8973 12833

Σ(Predicted) 13249 9295 22544

Weighted

Average

Accuracy 81.45

Precision 70.87 96.54 85.48

Recall 96.68 69.92 81.45

F-measure 81.79 81.10 81.40

Appendix F.23: Final Hold-out Test for Random Forest with Tie-Breaking Capability

 Prediction
Σ(Actual)

 N A

Actual
N 9387 324 9711

A 3863 8970 12833

Σ(Predicted) 13250 9294 22544

Weighted

Average

Accuracy 81.43

Precision 70.85 96.51 85.46

Recall 96.66 69.90 81.43

F-measure 81.76 81.08 81.37

Appendix F.24: Final Hold-out Test for Support Vector Machine

 Prediction
Σ(Actual)

 N A

Actual
N 8976 735 9711

A 4694 8139 12833

Σ(Predicted) 13670 8874 22544

Weighted

Average

Accuracy 75.92

Precision 65.66 91.72 80.49

Recall 92.43 63.42 75.92

F-measure 76.78 74.99 75.76

104

Appendix F.25: Ensemble Learning of J48 + RF

 Prediction
Σ(Actual)

 N A

Actual
N 9333 378 9711

A 2933 9900 12833

Σ(Predicted) 12266 10278 22544

Weighted
Average

Accuracy 85.31

Precision 76.09 96.32 87.61

Recall 96.11 77.14 85.31

F-measure 84.93 85.67 85.36

Appendix F.26: Ensemble Learning of J48 + RF-BT

 Prediction
Σ(Actual)

 N A

Actual
N 8777 934 9711

A 3148 9685 12833

Σ(Predicted) 11925 10619 22544

Weighted

Average

Accuracy 81.89

Precision 73.60 91.20 83.62

Recall 90.38 75.47 81.89

F-measure 81.13 82.59 81.96

