

CLOUD BASED ROS IMPLEMENTATION FOR INDOOR ROBOT

LIM JIA ZHI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “CLOUD BASED ROS

IMPLEMENTATION FOR INDOOR ROBOT” was prepared by LIM JIA ZHI

has met the required standard for submission in partial fulfilment of the requirements

for the award of Bachelor of Engineering (Honours) Electrical and Electronic

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2019, Lim Jia Zhi. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to my research supervisor, Mr Danny Ng Wee

Kiat for his insightful advice, guidance and his enormous patience throughout the

development of the research.

In addition, I would like to express my gratitude to my fellow friends from

UTAR, Khor Jun Bin, Lim Wen Qing and Yong Cherng Liin for their invaluable help

and support throughout the research.

vi

ABSTRACT

Mobile robots nowadays are working in both the industry and non-industry

environment. The advancement of mobile robotics allows for multiple use case of

mobile robots such as warehouse management and personal assistant. All these robots

have one commonality, which is the capability to work autonomously with minimum

or no human intervention. For these robots to work autonomously, environment

sensors such as laser scanning rangefinders and depth cameras, simultaneous

localisation and mapping (SLAM) algorithm, path planners are implemented together

in the robot. Multiple algorithms need to communicate with each other to ensure

smooth operation of an autonomous mobile robot. Robot Operating System (ROS) is

one of the widely used libraries to facilitate communication between processes in

research. Offloading computation intensive tasks into cloud computing infrastructure

will reduce the onboard processing resource required in a mobile robot, leading to an

intelligent robot with lower weight and power consumption. In this study, we designed

a simulation using Robot Operating System (ROS) to offload one resource intense

process – simultaneous localisation and mapping (SLAM). A local client located in

Malaysia fed laser sensor information to the cloud server hosting the SLAM process

located in Singapore. The client and server were placed in the same network using

VPN for ROS to operate normally. The average round trip time measured is 18.6540ms

with a standard deviation of 23.7870ms. It is feasible to offload SLAM to a cloud

server based on the result that we obtained. Extending on the result of our simulation,

we conducted a study using a real robot with a similar implementation. Based on our

result, it is feasible to implement ROS on cloud infrastructure for SLAM.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Statement 1

1.3 Importance of Study 1

1.4 Aims and Objectives 2

1.5 Scope and Limitation of the Study 2

1.6 Contribution of the Study 2

1.7 Outline of the Report 2

2 LITERATURE REVIEW 4

2.1 Robot Operating System (ROS) 4

2.2 Different Implementation of ROS on cloud infrastructure 6

2.2.1 RoboEarth 6

2.2.2 Rapyuta 7

2.2.3 DAvinCi 8

2.2.4 Robot Web Tool (RWT) 9

viii

2.3 Simultaneous Localisation and Mapping (SLAM) algorithm

 10

2.3.1 Google Cartographer 11

2.4 Summary 12

3 METHODOLOGY AND WORK PLAN 14

3.1 Introduction 14

3.2 Initialisation of Amazon Elastic Compute Cloud (EC2) 14

3.3 Configuration of OpenVPN on AWS EC2 15

3.4 Configuration of ROS, EC2 and OpenVPN for Cloud

communication 16

3.5 Design of Mobile robot 16

3.6 Analysis of Messaging Latency 17

3.7 Computation Offloading 19

3.8 Summary 21

4 RESULTS AND DISCUSSION 22

4.1 EC2 Configuration Result 22

4.2 Cloud Implementation of ROS System 24

4.3 Messaging Latency Measurement 25

4.4 Mobile Robot 26

4.4.1 Robot Base 28

4.4.2 Motor Control Board 28

4.4.3 Laser Scanning Rangefinder 29

4.4.4 Performance of mobile robot 29

4.5 SLAM simulation 29

4.6 SLAM on mobile robot 32

4.7 Summary 33

5 CONCLUSIONS AND RECOMMENDATIONS 34

5.1 Conclusions 34

5.2 Recommendations for future work 34

ix

5 REFERENCES 35

x

 LIST OF TABLES

Table 4.1: Round trip time for all packets travelling between local

client and cloud server 30

Table 4.2: Round trip time for packets in mobile robot SLAM on

4G network 32

xi

LIST OF FIGURES

Figure 2.1: ROS development levels (Mösenlechner, 2012) 4

Figure 2.2: ROS messaging mechanism (Wu, 2018) 5

Figure 2.3: RoboEarth three-layered architecture (Waibel, et al.,

2011) 6

Figure 2.4: Example configuration of Rapyuta (Mohanarajah, et al.,

2015) 7

Figure 2.5: DAvinCi Architechture (Arumugam, et al., 2010) 8

Figure 2.6: Execution time of FastSLAM in Hadoop vs. number of

nodes (Arumugam, et al., 2010) 9

Figure 2.7: Average TF Bandwidth for ROS and Web (Toris, et al.,

2015) 10

Figure 2.8: Google Cartographer high level system overview

(Cartographer ROS, 2019) 12

Figure 3.1: Robotis TurtleBot 3 Burger running ROS 16

Figure 3.2: Block Diagram of Proposed Robots 17

Figure 3.3: Wireshark enabled protocols pop up window 18

Figure 3.4: Wireshark coloring rules pop up window 18

Figure 3.5: Wireshark panel after adding tcpros protocol and

coloring rule 19

Figure 3.6: Setup of cloud-based ROS with mobile robot 21

Figure 4.1: AWS management console EC2 instance 22

Figure 4.2: AWS management console volume 23

xii

Figure 4.3: AWS cloud computing infrastructure system overview

 24

Figure 4.4: AWS management console EC2 security group 24

Figure 4.5: Screenshot of SSH of EC2 instance and turtlesim on

local Ubuntu 25

Figure 4.6: Wireshark capturing ROS messages 26

Figure 4.7: Components of mobile robot 27

Figure 4.8: The resulting mobile robot 27

Figure 4.9: CAD drawing of mobile robot base 28

Figure 4.10: ROS computation graph formed in SLAM simulation

 30

Figure 4.11: Round trip time of packets between local client in

Malaysia and EC2 server running Cartographer in

Singapore 31

Figure 4.12: SLAM generated map from simulation with

Cartographer dataset 31

Figure 4.13: ROS computation graph formed in mobile robot

SLAM 32

Figure 4.14: SLAM generated map from mobile robot (UTAR KB

3rd floor hallway) 33

xiii

LIST OF SYMBOLS / ABBREVIATIONS

AMI Amazon Machine Image

API application program interface

AWS Amazon Web Service

CPU central processing unit

EBS Elastic Block Store

EC2 Elastic Compute Cloud

IaaS Infrastructure as a Service

IP Internet Protocol

LiDAR light detection and ranging

LTS long-term support

PaaS Platform as a Service

PID Proportional, integral, derivative

RAM random-access memory

ROM read-only memory

ROS Robot Operating System

RTT round-trip time

SaaS Software as a Service

SLAM simultaneous localisation and mapping

SSH Secure Shell

TCP Transmission Control Protocol

VPN virtual private network

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Robots have been applied in large scale both in fixed or mobile form. However, the

robots are mostly constrained to operate at a fixed or known environment, dealing with

well-defined, highly specialized or repetitive tasks. For tasks in an unknown

environment such as search and rescue robots or household service robots, human

intervention or remote control is usually required.

 Recently, to support Internet of Things (IoT) and mobile applications, wireless

technology and cloud computing infrastructure have gone through rapid development.

Now is a suitable time for cloud robotics as the underlying technologies are getting

matured. The prospects of robots are becoming smarter by having a “brain” in the

cloud to tap into capabilities like big data and collective learning (International

Federation of Robotics, 2017).

1.2 Problem Statement

Mobile robots are limited to low intelligence tasks due to limitation of onboard

computation power, data storage, and battery which addition of any of them would

require increase in robot size, weight and cost. Connecting robots to cloud computing

infrastructure for computation offloading will allow robots to carry out more complex

tasks, but current cloud computing platforms are built for web applications, there is no

platform built purposely for robot applications. Hence, cloud implementation of

robotic application is challenging and not straightforward.

1.3 Importance of Study

This study may offer insight into current status of cloud robotics, a different

implementation of ROS on cloud computing infrastructure and suitable methods to

offload computation of common robot tasks like SLAM, navigation, and recognition.

2

1.4 Aims and Objectives

This study aims to study the feasibility of implementing ROS on cloud computing

infrastructure specifically for indoor robots. With access to cloud processing power,

indoor robots can target higher complexity tasks while keeping the onboard hardware

small and affordable. The detailed objectives of this research are:

• Investigate the latency of cloud-based implementation

• Study the feasibility of robot teleoperation using cloud infrastructure as the

medium

• Study the feasibility of offloading computation onto cloud server or SaaS

• Develop an indoor robot with the capabilities to do SLAM

1.5 Scope and Limitation of the Study

Limited by cost, the cloud computation was run on free tier Amazon EC2 t2.micro

instance, which has very limited computation resources and network capability, and

lower performance compared to the local machine. Hence, only RTT of ROS message

packets was used for performance evaluation, rather than actual performance

improvement of the ROS system.

And due to time constraint, only SLAM algorithm was run on the setup to study

its feasibility. But there are many more algorithms, such as path planner, object

recognition and sound source localization, that needed to be integrated to build a fully

autonomous indoor robot.

1.6 Contribution of the Study

This research study the feasibility of direct implementation of ROS system on cloud

via VPN, by treating cloud computing infrastructure as one of the ROS computers.

The research goal is designed to find an easier way to integrate existing ROS system

with cloud computing infrastructure to improve the performance while lowering

hardware requirement and enable more capable and cost-effective robot system.

1.7 Outline of the Report

Chapter 1 provides an overview of the current robot system requirements and the

problems this research are trying to solve.

3

 Literature review about ROS system concepts, different methods of

implementation of cloud robotic with ROS and SLAM algorithm were highlighted in

Chapter 2. Chapter 3 explain the setup of the computing infrastructure and building

process of a mobile robot for computation offloading experimenting.

Chapter 4 shows the result of cloud implementation setup and mobile robot

fabrication. Then, measurement results from computation offloading are presented and

analysed.

Finally, in Chapter 5, the feasibility of cloud implementation of ROS is

concluded, and suggestions about methodology improvement and future research

directions are provided.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 Robot Operating System (ROS)

ROS is a middleware that provides an interface for data passing and communication

between computing processes and robots. It is not a complete operating system but an

abstraction layer or meta-operating system that run on top of Ubuntu to abstract

hardware and low-level control from software application.

ROS packages are modular to promote code reusability and simplify

application development. Moreover, active community from around the world have

contributed packages on top of the core system, substantially extended the out-of-the-

box capabilities of ROS. More than 3000 packages are contributed and accessible by

the public, the packages range from low-level drivers, development tools to complex

algorithms with industrial-level reliability (Open Source Robotics Foundation, 2018).

ROS is very popular, almost being the de facto standard middleware, in robot

development in both academic and industry sector. ROS have allowed researchers and

developers to create robot systems efficiently using well developed and defined

packages, and focus on core application rather than standard functionalities like drivers

of robots.

Figure 2.1: ROS development levels (Mösenlechner, 2012)

 ROS system consists of a Master node and other multiple nodes. Master is the

main control node that manages communication between nodes by tracking every node

and the data they output or requested. However, Master does not relay messages

between nodes but connect nodes for peer-to-peer data exchange via TCP protocol.

5

Figure 2.2: ROS messaging mechanism (Wu, 2018)

 There are three methods of communication between nodes in ROS, the first

and simplest one is topic which is based on publish-subscribe mechanism, providing

asynchronous many-to-many communication. Then, service, a request-reply

mechanism for synchronous communication normally used in one-time exchange of

data or command. Finally, action allows sustained communication for long-running

goal-based task server that provides feedback on task progress and preemptable by

client (Marguedas, 2018).

 In addition to providing an interface for different communication requirements,

ROS also comes with built-in development tools such as command-line tool like

roslaunch to launch multiple ROS nodes and set parameters value at the same time.

Rqt to analyze nodes, topics and services as well as rviz for 3D visualization of sensors

data and robot conditions (Mösenlechner, 2012).

 Moreover, ROS has good integration with other open source libraries related

to robot applications. Example of libraries available is Gazebo, a 3D robot simulator

in virtual world to simulate written ROS nodes functionality directly or with some

minor changes on the code. ROS also provides integration with OpenCV, a widely

used computer vision library, and MoveIt!, a library for motion planning on robots

with different driving mechanisms (Open Source Robotics Foundation, 2018).

6

2.2 Different Implementation of ROS on cloud infrastructure

Commercial cloud service provider like Amazon Web Services, Google Compute

Engine and Microsoft Azure have been widely used to carry out highly intensive

computation on demand. However, most cloud platforms are accessible via API only

which is well suited for web applications but not for robot applications. ROS requires

bi-directional connectivity between all machines and ports (Bhadani, 2018), most

cloud services do not support such configuration. Hence, cloud implementation of

ROS has to be on IaaS that provide flexible control on configuration of the computing

machine.

2.2.1 RoboEarth

RoboEarth is intended to create “World Wide Web for robots” that allows sharing of

knowledge critical to robot systems such as models of object and environments, and

tasks like grasping. To simplify the creation and sharing of the knowledge to be as

easy as sharing content on the internet, RoboEarth created a standardised language for

knowledge encoding, and method to determine feasibility of specific knowledge on

the robot. With RoboEarth, robots can access the database consisting of well-defined

knowledge about objects, environments and actions, and then make decision

automatically about whether the robot has the requiring capabilities to utilize the

knowledge.

Figure 2.3: RoboEarth three-layered architecture (Waibel, et al., 2011)

7

2.2.2 Rapyuta

Cloud robotics platform that allows robots to offload intensive processing onto the

cloud by cloning robots onto cloud and also provide access to RoboEarth repository.

It is an open source project and also known as RoboEarth Cloud Engine. Rapyuta aims

to provide an end-to-end cloud robotics platform that runs on elastic cloud computing

infrastructure. Every robot in the system will be cloned to the cloud to outsource the

processing (Mohanarajah, 2015), and communication between robots can be carried

out via their clone in the cloud, providing high speed and reliable inter-robot

communication.

Communication between Rapyuta and robots is based on WebSocket, allowing

bidirectional and full duplex data exchange. Core component for processing of

Rapyuta is computing environment running on cloud which is based on Linux

Containers. Linux containers provide security, isolation of process and system

resources, easy configuration for scalability and portability, and processing at native

speed. It can be used in large scale applications such as visual processing or at a scale

as small as just relaying control signals. The computing environment is a complete

ROS environment running roscore and ROS parameter server. It can be used to run

any number of ROS nodes and support ROS inter-node communication just as running

ROS on a local computer, hence, it is compatible with most existing ROS packages.

Figure 2.4: Example configuration of Rapyuta (Mohanarajah, et al., 2015)

Each light grey box represents a computing machine and there are three

machines in the example in Figure 2.4. The Master Task Set is the main core that

8

controls every task sets and manages communications between Rapyuta and robots,

only one Master Task is required for every Rapyuta platform. The EP represents

endpoint process which is controlled by Master for communication between and within

internal and external processes. EP also provide conversion of data format for

communication between internal and external processes to ensure data format

compatibility. LXC represent Linux containers which are where ROS nodes are run

on. The example showed Rapyuta access to RoboEarth repository.

 Rapyuta is available on Github as an open source project written in Python and

C++, however, it was deprecated since 2015 due to change of robot requirements and

dependent technologies. The core developers, Rapyuta-Robotics company is

rebuilding a better version of the platform (rapyuta-robotics, 2015).

2.2.3 DAvinCi

DAvinCi stands for Distributed Agents with Collective Intelligence. The agents are

the robots and collective intelligence is on the cloud. The framework aims augment

robotics system in large environment by connecting ROS and Hadoop cluster.

Figure 2.5: DAvinCi Architechture (Arumugam, et al., 2010)

 In the architecture, a team of robots, shown at the bottom of Figure 2.5, all

carrying essential sensors such as gyroscope and encoders for individual odometry

9

tracking and WiFi chip, can carry different sensors such as camera and laser

rangefinder. The robot team communicate internally and with the DAvinCi server via

ROS communication protocol. Sensors data will be sent to the server and further

relayed into Hadoop for storage and processing. DAvinCi server connects robot team

and users on ROS platform to Hadoop cluster for computation offloading. DAvinCi is

implemented on FastSLAM algorithm to observe the improvement of performance,

Figure 2.6 showed the reduction of time taken on execution with different amount of

particles as the number of computing nodes increased. Execution time of the same

algorithm on local computer can be assumed to be same as the time taken on running

on single node, hence, the research showed that great speedup can be achieved by

offloading computation onto the cloud.

Figure 2.6: Execution time of FastSLAM in Hadoop vs. number of nodes

(Arumugam, et al., 2010)

2.2.4 Robot Web Tool (RWT)

An open-source project that aims to provide interoperability and portability of robot

applications to different systems. Based on ROS and its package, Rosbridge which

allows interfacing of ROS functionality with programs outside of ROS using JSON

based commands. It helps to overcome ROS disadvantages in platform dependencies

as ROS only support Ubuntu and Debian officially which is not widely used compared

to Windows and MacOS. RWT combine ROS with web technologies to make it more

accessible to more developers who are expert in web application development.

RWT communicate over WebSockets and carry client-server architecture.

WebSockets protocol provides operability on web browsers which run on

10

heterogeneous platforms, from different operating systems on computer to

smartphones. RWT provides web client library named roslibjs for access of ROS

features such as transform and URDF, and allow secured and efficient communications

between robots and users.

 Due to the limitation of WebSocket, sending of raw or binary data in high

bandwidth is impractical. RWT has its own method to stream high-bandwidth

messages such as transform, image and point cloud. Bandwidth requirement for

transform is reduced by having a layer of ROS package that precompute transforms on

demand and publish only when a change of transform over a specific limit occurred.

Figure 2.7: Average TF Bandwidth for ROS and Web (Toris, et al., 2015)

 As shown in Figure 2.7, for transform of a simple robotic arm with 6-DOF, the

extra layer reduced the bandwidth required from an average of 208.5 KB/s to 96 KB/s.

Bandwidth for streaming of image, point cloud and generic message is reduced by

utilizing embedded compression codecs in HTML such as MJPEG and VP8 codec.

The web functions required by RWT are supported on modern browsers like Firefox

and Chrome.

2.3 Simultaneous Localisation and Mapping (SLAM) algorithm

SLAM is a crucial feature of autonomous mobile robot. The process SLAM is designed

to build a map, 2D or 3D, of an unknown environment while navigating through the

environment (Nguyen Hoang Thuy & Shydlouski, 2018). The navigation process is

run at the same time based on the map generated, hence the algorithm is named

simultaneous localisation and mapping. There are multiple SLAM algorithms

11

available to be integrated into ROS system, namely gmapping, cargtographer,

hector_slam and slam_karto (ROBOTIS, 2019).

2.3.1 Google Cartographer

The algorithm used in this project is Cartographer, an open-sourced project developed

by Google which provides real-time SLAM capability. Cartographer is able to

compute loop closure constraints with lower computational power while mapping

large environment in real-time (Hess, et al., 2016).

 Google Cartographer support four input, laser scan, odometry pose, IMU data

and fixed frame pose. Laser scan data will first be downsampled by voxel filter which

put raw points in constant-sized cubes and output only the centroid of each cube. Size

of voxel filter can be set through ROS parameter, lower cube size leads to lesser data

point and hence lower computation. In 2D SLAM, IMU input is optional while in 3D

SLAM, IMU input is a must for initial orientation prediction to reduce complexity of

scan matching.

 The system is separated into local SLAM and global SLAM. Pose extrapolator

uses odometry pose and IMU data for initial pose guessing. With the initial pose guess,

local SLAM inserts new scan into submap. The scan matching process is based on

Ceres Solver, an open-sourced C++ library for non-linear least squares minimization,

resulting in scan pose relative to current submap (Agarwal & Mierle, 2019). A motion

filter drops matched scan that do not have sufficient motion to reduce number of scans

in a submap. Result of local SLAM, the submap will drift over time, so submaps cannot

be too big to contain the drift below resolution. Submaps are normally stored as

probability grids but can be configured to store as truncated signed distance fields

(TSDF).

 Global SLAM runs in the background to compensate the drift. It is a pose graph

optimization process that create constraints between submaps that are close to each

other and are good match. With global SLAM, the submaps are aligned and linked to

form a global map (Cartographer ROS, 2019).

12

Figure 2.8: Google Cartographer high level system overview (Cartographer ROS,

2019)

In addition, cartographer stands out by supporting IMU compensation for

tilting if the robot runs on uneven ground as well as 3D SLAM using 3D laser scanner.

As compared to other algorithms available, Cartographer has lower CPU usage while

producing accurate map with higher rate of successful loop closing (Coroiu & Hinton,

2017).

2.4 Summary

Cloud robotics has been a popular topic in research and multiple implementations of

ROS were studied. From the literature review, Rapyuta platform is the most suitable

architecture for this project as it provides efficient utilization of computing power of

cloud computing infrastructure while keeping real-time response needed for robot

system. However, all implementations studied require some extra configuration or

overhead to connect robots to cloud infrastructure, increasing the complexity to

develop a ROS system.

13

Google Cartographer was chosen to be the process for computation offloading

because SLAM is one of the key capabilities for an autonomous mobile robot. Among

SLAM algorithms, Cartographer has better performance while supporting IMU

compensation and 3D SLAM, providing the option to scale up for more complex

applications.

14

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

To study the implementation of ROS on cloud, the infrastructures had to be set up

before any test can be carried out. This methodology included methods to launch cloud

computing instance on Amazon Elastic Compute Cloud (EC2), then to configure ROS

and OpenVPN on both cloud server and local machine client. A mobile robot equipped

with ROS installed computer was created to study feasibility of the implementation in

real world scenario by running SLAM in university hallway.

3.2 Initialisation of Amazon Elastic Compute Cloud (EC2)

To implement ROS on cloud infrastructure, Amazon EC2 was chosen as the

infrastructure provider. AWS Free Tier for new user is available for one year after

registration, instance named t2.micro is free for 750 hours a month. The free tier

instance was chosen to test the ROS implementation. The early testing was on

messages passing latency which do not require high computation resources, hence, the

free tier instance was sufficient.

 To create an EC2 instance or cloud computer, AWS provided a 10-Minute

Tutorial for beginner, the tutorial “Launch a Linux Virtual Machine” provided a step-

by-step tutorial on setting up a Linux machine on Amazon EC2 (AWS, 2018). Amazon

Machine Image (AMI) is a template that comes with OS configured for EC2 to start

the computing instance easily, Ubuntu 18.04 LTS AMI was provided in AWS

Marketplace for free and the AMI was used in this project. Amazon cloud computing

resources are available globally in regions such as United States, China, Europe and

Asia Pacific. Singapore server was selected to host the EC2 instance due to its

geographical proximity to Malaysia.

 After choosing the AMI, instance type which consists of different CPU, RAM,

ROM and network speed, was to be chosen to suit different applications and

requirements. In this project, free t2.micro with 1 vCPU, 1 GiB RAM, Amazon Elastic

Block Store (EBS) storage and low to moderate network performance was chosen. The

EC2 instance was ready to be launched after AMI and instance type were chosen.

15

 Public and private key pair for remote SSH access was required, new key pair

was created by AWS and downloaded to local computer that will be used to SSH

access the EC2 instance. When the instance was successfully launched, on instances

viewing console of AWS, status and description of the instance could be monitored.

In order to connect to the instance via SSH, IPv4 Public IP of the instance was copied

down as the access point. With IPv4 Public IP, key pair, and SSH client software on

local computer, access into the instance can be initiated.

After the EC2 was up and running Ubuntu 18.04 LTS, ROS melodic was

installed into the Ubuntu with the same procedures like installing on local computer,

just a barebone version of ROS was installed rather than a desktop full version of ROS

because GUI tools were unnecessary on the server (ROS Wiki, 2018).

3.3 Configuration of OpenVPN on AWS EC2

While EC2 public IPv4 allows SSH access, the IP could not be used on ROS

communication. Hence, to connect ROS running on local computer, robots and

Amazon EC2 in a same network with addressable IP, a VPN was required to be set up

on the EC2. The VPN server running on the cloud facilitated connection of ROS

system by placing local clients and cloud server into same network. OpenVPN is an

open source VPN software available for different operating system including Ubuntu

used in this project.

 Different methods were available to setup OpenVPN, but to simplify the setup,

a script by Angristan was used to automate the setup and configuration of OpenVPN

on EC2 (Angristan, 2018). The script prompted for user input on configuration of the

OpenVPN and had a recommended choice on every configuration throughout the

installation. After the script completed the configuration, it started OpenVPN server

on the computer and generated a client configuration file to be used on client side for

authentication.

The file was sent to local computer via SCP which securely transfer file using

SSH between remote computers. Then, OpenVPN client package was installed in local

computer via package manager APT. Finally, OpenVPN client was started using the

configuration file generated from the script. A new network tunnel interface that

connects the server on cloud and client on local machine in a VPN was created.

16

3.4 Configuration of ROS, EC2 and OpenVPN for Cloud communication

After both local and cloud machine were installed with ROS and OpenVPN, further

configuration was required to allow ROS Master to run on EC2 while allowing ROS

on local machine to connect to the ROS Master. Cloud machine and local machine had

to have same ROS_MASTER_URI which was VPN IP of cloud machine.

Then, on AWS EC2 console security group inbound setting, port 1194 and

11311 were opened for UDP and TCP protocol for usage of OpenVPN and ROS. After

this, the configuration was completed, the setup was tested by running roscore on cloud

machine and listing ROS topic on local machine to test the connectivity, the setup was

successful as topic list is shown on the command prompt.

3.5 Design of Mobile robot

To try the implementation of ROS on real-life scenario, a physical robot was required.

TurtleBot 3 Burger from Robotis is a affordable mobile robot designed to explore ROS

and design robot applications. Robotis opensourced software and hardware of the robot,

allowing easy modification or customization of the robot.

Figure 3.1: Robotis TurtleBot 3 Burger running ROS

17

The robot contains a LiDAR sensor, a main controller board OpenCR, a

Raspberry Pi 3, 9-DOF inertial measuring units and two 360 degrees servo motor. With

the components, TurtleBot 3 Burger is suitable to be used for studying ROS. Moreover,

with the open-sourced software and hardware, a similar robot could be self-constructed

with extra features such as adding depth sensor, microphone array and larger size.

Figure 3.2: Block Diagram of Proposed Robots

 The robot required a computer with resources enough to run Ubuntu, USB

ports to connect to peripherals, and WiFi or cellular hardware for internet connection.

The computer was connected to a main control board that handles the low-level

hardware control like motor for wheels or arms and IMU sensor data reading. LiDAR

was required for 2D SLAM as well as navigation.

3.6 Analysis of Messaging Latency

To study the feasibility of cloud implementation of ROS, latency is the deciding factor

as robot applications require real-time performance and minor delay in message

passing will have severe effect on the application. Two messaging routes were tested.

• Local computer and cloud computer

• Two local computers via cloud computer

The message latency was evaluated based on RTT. The RTT contain

propagation and overhead time taken to send and acknowledge reception of the

message. RTT was captured using Wireshark. Since ROS data was exchanged within

the VPN with TCP, Wireshark filters were applied to filter out the TCP originate and

end at cloud and local machine exposed IP address. After filtering, RTT was obtained

from the packet list pane.

Wireshark is an open-source packet analyser released under GNU General

Public License. It is the most widely-used packet analyser, the de facto standard for

18

many commercial and educational institutions. Wireshark support live capture of

packets of hundreds of protocols and offline inspection of the captured packets.

Moreover, community developed plugins are available if the protocol to be inspected

is not supported out of the box. Fortunately, ROS topic packet dissector was available

as built-in plugin under the name tcpros. New protocol dissector was applied from

Analyze>Enabled Protocols and ticking the box beside the protocol as shown in Figure

3.3. Moreover, coloring rules was added from View>Coloring Rules as shown in

Figure 3.4 to visualize the packets better.

Figure 3.3: Wireshark enabled protocols pop up window

Figure 3.4: Wireshark coloring rules pop up window

After enabling the tcpros protocol and applied colouring rules onto the protocol,

ROS topic packets captured were highlighted in bright green colour as shown in Figure

19

3.5. In addition, the tcpros protocol dissector also parsed contents of the packet and

displayed it in packet details pane in the middle of the interface. The dissector

simplified the packets inspection by categorizing packets and displaying their contents

in human readable form.

Figure 3.5: Wireshark panel after adding tcpros protocol and coloring rule

3.7 Computation Offloading

Cartographer SLAM was run on the cloud server while sensor data are streamed to the

cloud running from a local client. Revo LDS laser data from the cartographer dataset

(Cartographer, 2019) was used in this test. The construction of the map was view in

real-time in the local client using rviz, a visualization software that come together with

ROS. Cartographer demo roslaunch file which launch all ROS nodes in a single

machine was separated into two file as shown below, where the first file launch

cartographer_node and cartographer_occupancy_grid node on Amazon EC2 instance

for SLAM computation while the second file launching rosbag and rviz were launched

on local machine to playback laser data and visualize the SLAM process.

20

SLAM simulation launch file on Amazon EC2

SLAM simulation launch file on local computer

In the cloud-based implementation, Amazon EC2 instance, local computer and

robot computer were connected within a VPN as shown in Figure 3.6. Both Amazon

EC2 and robot computer were controlled by remote computer through SSH. The robot

state node and laser node were running on robot computer. Local computer only acted

as robot motion controller, cartographer node was running on Amazon EC2 to test

computation offloading onto cloud, data were passed between computers and Amazon

EC2 through VPN tunnel.

<launch>

 <param name="/use_sim_time" value="true" />

 <node name="cartographer_node" pkg="cartographer_ros"

 type="cartographer_node" args="

 -configuration_directory $(find

cartographer_ros)/configuration_files

 -configuration_basename revo_lds.lua"

 output="screen">

 <remap from="scan" to="horizontal_laser_2d" />

 </node>

 <node name="cartographer_occupancy_grid_node"

pkg="cartographer_ros"

 type="cartographer_occupancy_grid_node" args="-resolution

0.05" />

</launch>

<launch>

 <param name="/use_sim_time" value="true" />

 <node name="rviz" pkg="rviz" type="rviz" required="true"

 args="-d $(find

cartographer_ros)/configuration_files/demo_2d.rviz" />

 <node name="playbag" pkg="rosbag" type="play"

 args="--clock $(arg bag_filename)" />

</launch>

21

Figure 3.6: Setup of cloud-based ROS with mobile robot

3.8 Summary

The objective is to study the feasibility of cloud implementation of ROS, so most parts

of the project were on experimenting and trying get ROS system running with cloud

infrastructure. Then, ROS equipped mobile robot was built to experiment the

implementation in real application. Finally, method to improve robot system

performance utilizing cloud infrastructure was tested by moving SLAM computation

directly onto EC2 in simulation and real robot.

22

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 EC2 Configuration Result

Amazon EC2 instance was configured as stated in methodology. The instance details

can be visualized from Amazon EC2 management console as shown in Figure 4.1. An

Amazon EC2 t2.micro instance was launched with Ubuntu 18.04 LTS AMI. It was

hosted from Singapore server with accessible public IPv4 address of 54.254.210.201,

the IP address will be changed for every restart of the instance. Amazon EC2 instance

contained only the computing resources, the CPU, RAM and networking capability.

The configuration came with a non-volatile memory, Amazon EBS volume that stored

system files and data for the EC2 instance. The volume had 8 GiB storage size and 100

input/output operations per second (IOPS). The storage had limited size and speed, but

it was enough for our testing.

Figure 4.1: AWS management console EC2 instance

23

Figure 4.2: AWS management console volume

 The setup of the cloud computing infrastructure system was as shown in Figure

4.3. Amazon EC2 and EBS were independent, hence, the Ubuntu 18.04 LTS image

configured and stored in EBS could be launched with different instance type for

different computation resources needed. Instance type was changed to t2.small with 1

vCPU and 2 GiB RAM when compiling Google Cartographer from source code

because t2.micro instance would crash due to insufficient RAM. Besides, the EC2

instance was associated with security group launch-wizard-2 which the details were

shown in Figure 4.4. AWS security group was like a firewall, having rules for inbound

and outbound network traffic. Default setting of security group was outbound

connection opened for all traffic and inbound connection only allowed TCP through

port 22 for SSH. Extra rules were added for inbound connection, which port 11311

was opened to all IP for TCP and UDP connection for ROS master while port 1194

was opened to all IP for UDP connection for OpenVPN.

24

Figure 4.3: AWS cloud computing infrastructure system overview

Figure 4.4: AWS management console EC2 security group

4.2 Cloud Implementation of ROS System

In the implementation shown in Figure 4.5, the local machine and Amazon EC2

instance were both running Ubuntu 18.04 LTS. Windows on the right are the SSH of

Amazon EC2 instance that acted as ROS Master running roscore and also

turtle_teleop_key ROS node which published control signal to turtlesim. The turtlesim

node was running on local machine, receiving control signal from cloud and moved

the turtle in TurtleSim simulation at the bottom right window. Figure 4.5 shows that

25

the system configuration is feasible and ROS system can run directly on VPN as

expected.

Figure 4.5: Screenshot of SSH of EC2 instance and turtlesim on local Ubuntu

4.3 Messaging Latency Measurement

Wireshark filter was applied to filter down to only data exchange between cloud server

and local machine ROS tcp port. Packet from 10.8.0.1 to 10.8.0.2 was the control

signal from server to local machine and from 10.8.0.2 to 10.8.0.1 was the

acknowledgement from local machine. Figure 4.2 shows that RTT for

turtle_teleop_key ROS node command signal was around in the range of 20.18 ms to

51.75 ms. The RTT was short enough to provide responsive remote control of robot.

However, further experiments are required for different types and sizes of data.

Terminal of local machine

Turtlesim_node

SSH of Amazon EC2 instance

turtle_teleop_key node

TurtleSim node

SSH of Amazon EC2 instance

roscore

26

Figure 4.6: Wireshark capturing ROS messages

4.4 Mobile Robot

A mobile robot was built to test the feasibility on real world scenario. The components

of the robot were as shown in Figure 4.7. The computer ran on Ubuntu 18.04 LTS with

ROS Melodic, and were connected to laser rangefinder and robot control board via

USB. Robot control board controlled DC motor velocity based on computer command

and provided encoder feedback for odometry. Laser rangefinder provided 240-degree

laser range scanning data for SLAM. The computer acted as the bridge between the

robot with other ROS processing nodes, it collected and published sensors data and

reacted to control command.

27

Figure 4.7: Components of mobile robot

Figure 4.8: The resulting mobile robot

28

4.4.1 Robot Base

The robot base was built with aluminium profiles and plates as shown in Figure 4.9.

Designing with aluminium profiles ease the binding process between bars and plates

with the use of L-brackets and T-slot nuts, without the needs of drilling holes on the

bars.

The robot driving method is differential drive, a two-wheeled drive system

requiring independent motor for each wheel. In this driving method, the movement of

robot is the result of difference in wheels motion. The design used two omnidirectional

wheels as the free turning wheels to allow the back of mobile robot to move in all

direction freely as driven by the front wheels.

Figure 4.9: CAD drawing of mobile robot base

4.4.2 Motor Control Board

The motor control board has Microchip dsPIC33FJ128MC804 16-bit digital signal

controller as its main controller for precision motor control. The controller consists of

two quadrature encoder interface for incremental encoders to decode wheel position

or rotation speed and 6-channel 16-bit motor control PWM for DC motor speed control

(Microchip, 2012). There is an inertial measuring unit (IMU) at the centre of the

control board providing angular velocity and acceleration measurement in different

29

direction for robot position. The control board acts as agent between robot hardware

and computer running ROS, collecting and sending sensors and wheel encoder data to

the computer via USB for further processing. In addition, the board converts velocity

command from the computer into motor control signal.

4.4.3 Laser Scanning Rangefinder

Laser Scanning Rangefinder used in the mobile robot is Hokuyo URG-04LX-UG01

which has measuring range of 60 mm to 4095 mm with a tolerance of 1% when

measuring between 1000 mm and 4095 mm and ±10mm tolerance when measuring

between 60 mm and 1000 mm. The measuring angle is 240° with 0.36° angular

resolution and it has 100 ms scanning time. It provides high accuracy and resolution

laser scanning suited for autonomous robots. The compact form factor and light weight

of the laser allowed easy integration into the robot base. Moreover, the laser uses near

infrared light source at 785 nm rated at safety class 1 which is safe to be used in all

conditions. The laser rangefinder requires input power of 5 V and 500 mA from USB,

and it uses USB as its data interface as well (HOKUYO AUTOMATIC CO., LTD.,

2014). In the mobile robot, Hokuyo URG-04LX-UG01 was integrated into the system

by connecting to the robot computer via USB port.

4.4.4 Performance of mobile robot

Initially, the robot movement was not smooth due to overshooting of PID control

signal and skidding of driving wheels. It was improved after PID tuning with Ziegler-

Nicholas method and adding weight, the green metal plates as shown in Figure 4.8,

onto the robot. The improved robot motion enabled accurate odometry which was able

to drive the robot in a 1 meter square with drift contained under 5 cm. Accurate

odometry is important to SLAM algorithm as it provide approximate robot position

for localization.

4.5 SLAM simulation

For the SLAM simulation, internet service used by the local client was fiber optic

Residential High-Speed Internet (UniFi) provided by Telekom Malaysia Berhad. The

internet service had a maximum download rate of 23.42Mbps and maximum upload

rate of 16.31Mbps. Laser data was published by rosbag, a tool to record and play back

30

pre-recorded data in ROS, after a connection was formed between Cartographer node

and rosbag node through the laser scan data topic. Rviz was used to visualize the slam

process in real time in the local machine. Figure 4.10 shows the resulting graph of the

ROS setup used in the simulation.

Figure 4.10: ROS computation graph formed in SLAM simulation

Table 4.1 shows the RTT obtained using the simulation setup described in the

methodology. An Average RTT of 18.6540ms with standard deviation of 23.7870ms

was obtained from the simulation. Figure 4.11 shows the RTT measured over a period

of simulation. There are certain instances within the simulation where increase in RTT

of packets can be observed. The highest delay recorded in the simulation is

666.5872ms. However, the sporadic increase in RTT throughout the simulation did not

affect the capability of Cartographer in generating the map from recorded sensor data.

Figure 4.12 shows the map generated by Cartographer at the end of the simulation.

Table 4.1: Round trip time for all packets travelling between local client and cloud

server

 Round Trip Time (ms)

Average 18.6540

Median 14.8116

Standard Deviation 23.7870

Maximum 666.5872

31

Figure 4.11: Round trip time of packets between local client in Malaysia and EC2

server running Cartographer in Singapore

Figure 4.12: SLAM generated map from simulation with Cartographer dataset

32

4.6 SLAM on mobile robot

The mobile robot SLAM operation offloading was run on 4G network. The network

provider was Umobile 4G LTE service with a maximum download rate of 4.23 Mbps

and maximum upload rate of 15.9 Mbps with 25 ms latency during the period of testing.

Table 4.2 shows the RTT of different data topic for testing on 4G network and Figure

4.13 shows the resulting computation graph.

Table 4.2: Round trip time for packets in mobile robot SLAM on 4G network

Round trip time (ms)

Odometry Laser scan Velocity control

Average 63.0136 63.0371 107.6125

Median 54.2609 57.2985 101.8911

Standard Deviation 31.7453 29.2055 31.4774

Maximum 749.5426 671.9794 720.1007

Figure 4.13: ROS computation graph formed in mobile robot SLAM

Mobile robot testing on 4G network had higher latencies, with average of

63.0136 ms, 63.0371 ms and 107.6125 ms for odometry, laser scan and velocity

control data respectively. Velocity control packets had the highest latency, 71 % higher

compared to odometry and laser scan because the packets travelled from remote

computer to robot computer through cloud computer as VPN server while odometry

and laser scan were just transmitted from robot computer to cloud computer.

Latency on velocity control data was slightly noticeable when controlling the

robot motion, especially the spike of latency which could go up to 720.1007 ms due to

unstable bandwidth of 4G network. However, the occurrence of high latency was not

frequent, the overall response time was sufficient for SLAM operation. The average

latencies were unnoticeable when controlling robot motion and had no impact on

SLAM output quality, the resulting map is shown in Figure 4.14.

33

Figure 4.14: SLAM generated map from mobile robot (UTAR KB 3rd floor hallway)

4.7 Summary

Cloud implementation of ROS by putting all machines in a ROS system into a VPN

is feasible, and RTT of ROS message packets between cloud computer and local

computer can be captured using Wireshark for latency analysis. The ROS equipped

mobile robot with wheels encoder odometry and laser range scanning performed as

expected in methodology. Message latency results from SLAM algorithm offloading

to Amazon EC2 instance ran in simulation and real world scenario through fiber

optic internet and 4G network respectively shows that 2D SLAM offloading is

feasible, with occasional minor delay in robot motion control signal when running in

4G network.

34

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Cloud implementation of ROS was configured by placing cloud computing

infrastructure and local machines within a VPN. A differential-drive mobile robot with

ROS equipped was built to be integrated into the setup. Then, ROS messaging

latencies were captured and analysed using Wireshark to study the response time of

the aforementioned setup.

In conclusion, it is feasible for a mobile robot to offload its computationally

heavy process to a cloud server from the result obtained. A mobile robot that is capable

of offloading part of its process to the cloud has numerous advantages. The robot

would require less processing power, which can lead to a mobile robot with lower cost

and higher battery efficiency. Algorithm with higher complexity can be implemented

on the cloud easily when the need arises as cloud server can be scaled up accordingly.

5.2 Recommendations for future work

In this study, RTT was the only metric defined to investigate the feasibility of cloud

implementation of ROS. To study the impact of cloud implementation of ROS in depth,

more metrics should be considered, for example, data bandwidth, difference in

computation time, and energy consumption of mobile robot.

 Future study should look into the implementation of this setup for other

important robot features such as 3D SLAM, object recognition, sound source

localisation and voice recognition in mobile robot. In addition to direct offloading of

ROS algorithms, the implementation can utilise optimised and well-developed

algorithms in improving the robot capabilities, by using web services for speech and

object recognition like Amazon Rekognition, Google Object Detection API and

Amazon Transcribe.

35

5 REFERENCES

Agarwal, S. & Mierle, K., 2019. Ceres Solver — A Large Scale Non-linear

Optimization Library. [Online]

Available at: http://ceres-solver.org/

[Accessed 11 Jan 2019].

Angristan, S., 2018. OpenVPN-install - GitHub. [Online]

Available at: https://github.com/Angristan/OpenVPN-install

[Accessed 15 July 2018].

Arumugam, R. et al., 2010. DAvinCi: A cloud computing framework for service robots.

2010 IEEE International Conference on Robotics and Automation.

AWS, 2018. How to Launch a Linux Virtual Machine on the Cloud – AWS. [Online]

Available at: https://aws.amazon.com/getting-started/tutorials/launch-a-virtual-

machine/?trk=gs_card

[Accessed 22 June 2018].

Bhadani, R., 2018. ROS/NetworkSetup - ROS Wiki. [Online]

Available at: http://wiki.ros.org/ROS/NetworkSetup

[Accessed 15 July 2018].

Cartographer ROS, 2019. Algorithm walkthrough for tuning — Cartographer ROS

documentation. [Online]

Available at: https://google-cartographer-

ros.readthedocs.io/en/latest/algo_walkthrough.html

[Accessed 22 Jan 2019].

Cartographer, 2019. Running Cartographer ROS on a demo bag. [Online]

Available at: https://google-cartographer-ros.readthedocs.io/en/latest/demos.html

[Accessed 15 Jan 2019].

Coroiu, A. T. & Hinton, O., 2017. A Platform for Indoor Localisation,Mapping, and

Data Collection using anAutonomous Vehicle, s.l.: Combain Mobile AB.

Foote, T., 2013. tf: The transform library. 2013 IEEE Conference on Technologies for

Practical Robot Applications (TePRA), pp. 1-6.

Hess, W., Kohler, D., Rapp, H. & Andor, D., 2016. Real-time loop closure in 2D

LIDAR SLAM. 2016 IEEE International Conference on Robotics and Automation

(ICRA).

HOKUYO AUTOMATIC CO., LTD., 2014. Scanning Rangefinder Distance Data

Output/URG-04LX Product Details. [Online]

Available at: https://www.hokuyo-aut.jp/search/single.php?serial=165

[Accessed 23 January 2019].

International Federation of Robotics, 2017. World Robotics 2017 edition, s.l.: s.n.

36

Marguedas, 2018. actionlib - ROS Wiki. [Online]

Available at: http://wiki.ros.org/actionlib

[Accessed 30 August 2018].

Microchip, 2012. 16-bit Digital Signal Controllers (up to 128 KB Flash and 16K

SRAM) with Motor Control PWM and Advanced Analog. [Online]

Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/70291G.pdf

[Accessed 12 Jan 2019].

Mohanarajah, G., 2015. Rapyuta: A Cloud Robotics Framework. [Online]

Available at: http://rapyuta.org/welcome

[Accessed 25 July 2018].

Mohanarajah, G., Hunziker, D., D’Andrea, R. & Waibel, M., 2015. Rapyuta: A Cloud

Robotics Platform. IEEE Transactions on Automation Science and Engineering, 12(2),

pp. 481-493.

Mösenlechner, L., 2012. Introduction to ROS, s.l.: Technische Universit¨at M¨unchen.

Nguyen Hoang Thuy, T. & Shydlouski, S., 2018. Situations in Construction of 3D

Mapping for Slam. MATEC Web of Conferences, Volume 155.

Open Source Robotics Foundation, 2018. Is ROS For Me?. [Online]

Available at: http://www.ros.org/is-ros-for-me/

[Accessed 30 August 2018].

Open Source Robotics Foundation, 2018. ROS.org | Integration. [Online]

Available at: http://www.ros.org/integration/

[Accessed 30 August 2018].

rapyuta-robotics, 2015. RCE. [Online]

Available at: https://github.com/rapyuta-robotics/rce

[Accessed 15 July 2018].

ROBOTIS, 2019. ROBOTIS e-Manual. [Online]

Available at: http://emanual.robotis.com/docs/en/platform/turtlebot3/slam/#run-slam-

nodes

[Accessed 15 Jan 2019].

ROS Wiki, 2018. Ubuntu install of ROS Melodic. [Online]

Available at: http://wiki.ros.org/melodic/Installation/Ubuntu

[Accessed 23 March 2018].

Toris, R. et al., 2015. Robot Web Tools: Efficient messaging for cloud robotics. 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Waibel, M. et al., 2011. RoboEarth. IEEE Robotics & Automation Magazine, 18(2),

pp. 69-82.

37

Wu, Y., 2018. Master - ROS Wiki. [Online]

Available at: http://wiki.ros.org/Master

[Accessed 30 August 2018].

