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ABSTRACT 

 

Mobile robots nowadays are working in both the industry and non-industry 

environment. The advancement of mobile robotics allows for multiple use case of 

mobile robots such as warehouse management and personal assistant. All these robots 

have one commonality, which is the capability to work autonomously with minimum 

or no human intervention. For these robots to work autonomously, environment 

sensors such as laser scanning rangefinders and depth cameras, simultaneous 

localisation and mapping (SLAM) algorithm, path planners are implemented together 

in the robot. Multiple algorithms need to communicate with each other to ensure 

smooth operation of an autonomous mobile robot. Robot Operating System (ROS) is 

one of the widely used libraries to facilitate communication between processes in 

research. Offloading computation intensive tasks into cloud computing infrastructure 

will reduce the onboard processing resource required in a mobile robot, leading to an 

intelligent robot with lower weight and power consumption. In this study, we designed 

a simulation using Robot Operating System (ROS) to offload one resource intense 

process – simultaneous localisation and mapping (SLAM). A local client located in 

Malaysia fed laser sensor information to the cloud server hosting the SLAM process 

located in Singapore. The client and server were placed in the same network using 

VPN for ROS to operate normally. The average round trip time measured is 18.6540ms 

with a standard deviation of 23.7870ms. It is feasible to offload SLAM to a cloud 

server based on the result that we obtained. Extending on the result of our simulation, 

we conducted a study using a real robot with a similar implementation. Based on our 

result, it is feasible to implement ROS on cloud infrastructure for SLAM. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Robots have been applied in large scale both in fixed or mobile form. However, the 

robots are mostly constrained to operate at a fixed or known environment, dealing with 

well-defined, highly specialized or repetitive tasks. For tasks in an unknown 

environment such as search and rescue robots or household service robots, human 

intervention or remote control is usually required.  

 Recently, to support Internet of Things (IoT) and mobile applications, wireless 

technology and cloud computing infrastructure have gone through rapid development. 

Now is a suitable time for cloud robotics as the underlying technologies are getting 

matured. The prospects of robots are becoming smarter by having a “brain” in the 

cloud to tap into capabilities like big data and collective learning (International 

Federation of Robotics, 2017). 

 

1.2 Problem Statement 

Mobile robots are limited to low intelligence tasks due to limitation of onboard 

computation power, data storage, and battery which addition of any of them would 

require increase in robot size, weight and cost. Connecting robots to cloud computing 

infrastructure for computation offloading will allow robots to carry out more complex 

tasks, but current cloud computing platforms are built for web applications, there is no 

platform built purposely for robot applications. Hence, cloud implementation of 

robotic application is challenging and not straightforward. 

 

1.3 Importance of Study 

This study may offer insight into current status of cloud robotics, a different 

implementation of ROS on cloud computing infrastructure and suitable methods to 

offload computation of common robot tasks like SLAM, navigation, and recognition. 
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1.4 Aims and Objectives 

This study aims to study the feasibility of implementing ROS on cloud computing 

infrastructure specifically for indoor robots. With access to cloud processing power, 

indoor robots can target higher complexity tasks while keeping the onboard hardware 

small and affordable. The detailed objectives of this research are: 

• Investigate the latency of cloud-based implementation 

• Study the feasibility of robot teleoperation using cloud infrastructure as the 

medium 

• Study the feasibility of offloading computation onto cloud server or SaaS 

• Develop an indoor robot with the capabilities to do SLAM 

 

1.5 Scope and Limitation of the Study 

Limited by cost, the cloud computation was run on free tier Amazon EC2 t2.micro 

instance, which has very limited computation resources and network capability, and 

lower performance compared to the local machine. Hence, only RTT of ROS message 

packets was used for performance evaluation, rather than actual performance 

improvement of the ROS system. 

And due to time constraint, only SLAM algorithm was run on the setup to study 

its feasibility. But there are many more algorithms, such as path planner, object 

recognition and sound source localization, that needed to be integrated to build a fully 

autonomous indoor robot. 

 

1.6 Contribution of the Study 

This research study the feasibility of direct implementation of ROS system on cloud 

via VPN, by treating cloud computing infrastructure as one of the ROS computers. 

The research goal is designed to find an easier way to integrate existing ROS system 

with cloud computing infrastructure to improve the performance while lowering 

hardware requirement and enable more capable and cost-effective robot system. 

 

1.7 Outline of the Report 

Chapter 1 provides an overview of the current robot system requirements and the 

problems this research are trying to solve. 
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 Literature review about ROS system concepts, different methods of 

implementation of cloud robotic with ROS and SLAM algorithm were highlighted in 

Chapter 2. Chapter 3 explain the setup of the computing infrastructure and building 

process of a mobile robot for computation offloading experimenting. 

Chapter 4 shows the result of cloud implementation setup and mobile robot 

fabrication. Then, measurement results from computation offloading are presented and 

analysed. 

Finally, in Chapter 5, the feasibility of cloud implementation of ROS is 

concluded, and suggestions about methodology improvement and future research 

directions are provided. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Robot Operating System (ROS) 

ROS is a middleware that provides an interface for data passing and communication 

between computing processes and robots. It is not a complete operating system but an 

abstraction layer or meta-operating system that run on top of Ubuntu to abstract 

hardware and low-level control from software application. 

ROS packages are modular to promote code reusability and simplify 

application development. Moreover, active community from around the world have 

contributed packages on top of the core system, substantially extended the out-of-the-

box capabilities of ROS. More than 3000 packages are contributed and accessible by 

the public, the packages range from low-level drivers, development tools to complex 

algorithms with industrial-level reliability (Open Source Robotics Foundation, 2018). 

ROS is very popular, almost being the de facto standard middleware, in robot 

development in both academic and industry sector. ROS have allowed researchers and 

developers to create robot systems efficiently using well developed and defined 

packages, and focus on core application rather than standard functionalities like drivers 

of robots. 

 

 

Figure 2.1: ROS development levels (Mösenlechner, 2012) 

 

 ROS system consists of a Master node and other multiple nodes. Master is the 

main control node that manages communication between nodes by tracking every node 

and the data they output or requested. However, Master does not relay messages 

between nodes but connect nodes for peer-to-peer data exchange via TCP protocol. 
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Figure 2.2: ROS messaging mechanism (Wu, 2018) 

 

 There are three methods of communication between nodes in ROS, the first 

and simplest one is topic which is based on publish-subscribe mechanism, providing 

asynchronous many-to-many communication. Then, service, a request-reply 

mechanism for synchronous communication normally used in one-time exchange of 

data or command. Finally, action allows sustained communication for long-running 

goal-based task server that provides feedback on task progress and preemptable by 

client (Marguedas, 2018). 

 In addition to providing an interface for different communication requirements, 

ROS also comes with built-in development tools such as command-line tool like 

roslaunch to launch multiple ROS nodes and set parameters value at the same time. 

Rqt to analyze nodes, topics and services as well as rviz for 3D visualization of sensors 

data and robot conditions (Mösenlechner, 2012). 

 Moreover, ROS has good integration with other open source libraries related 

to robot applications. Example of libraries available is Gazebo, a 3D robot simulator 

in virtual world to simulate written ROS nodes functionality directly or with some 

minor changes on the code. ROS also provides integration with OpenCV, a widely 

used computer vision library, and MoveIt!, a library for motion planning on robots 

with different driving mechanisms (Open Source Robotics Foundation, 2018). 
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2.2 Different Implementation of ROS on cloud infrastructure 

Commercial cloud service provider like Amazon Web Services, Google Compute 

Engine and Microsoft Azure have been widely used to carry out highly intensive 

computation on demand. However, most cloud platforms are accessible via API only 

which is well suited for web applications but not for robot applications. ROS requires 

bi-directional connectivity between all machines and ports (Bhadani, 2018), most 

cloud services do not support such configuration. Hence, cloud implementation of 

ROS has to be on IaaS that provide flexible control on configuration of the computing 

machine. 

 

2.2.1 RoboEarth 

RoboEarth is intended to create “World Wide Web for robots” that allows sharing of 

knowledge critical to robot systems such as models of object and environments, and 

tasks like grasping. To simplify the creation and sharing of the knowledge to be as 

easy as sharing content on the internet, RoboEarth created a standardised language for 

knowledge encoding, and method to determine feasibility of specific knowledge on 

the robot. With RoboEarth, robots can access the database consisting of well-defined 

knowledge about objects, environments and actions, and then make decision 

automatically about whether the robot has the requiring capabilities to utilize the 

knowledge. 

 

 

Figure 2.3: RoboEarth three-layered architecture (Waibel, et al., 2011) 
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2.2.2 Rapyuta 

Cloud robotics platform that allows robots to offload intensive processing onto the 

cloud by cloning robots onto cloud and also provide access to RoboEarth repository. 

It is an open source project and also known as RoboEarth Cloud Engine. Rapyuta aims 

to provide an end-to-end cloud robotics platform that runs on elastic cloud computing 

infrastructure. Every robot in the system will be cloned to the cloud to outsource the 

processing (Mohanarajah, 2015), and communication between robots can be carried 

out via their clone in the cloud, providing high speed and reliable inter-robot 

communication. 

Communication between Rapyuta and robots is based on WebSocket, allowing 

bidirectional and full duplex data exchange. Core component for processing of 

Rapyuta is computing environment running on cloud which is based on Linux 

Containers. Linux containers provide security, isolation of process and system 

resources, easy configuration for scalability and portability, and processing at native 

speed. It can be used in large scale applications such as visual processing or at a scale 

as small as just relaying control signals. The computing environment is a complete 

ROS environment running roscore and ROS parameter server. It can be used to run 

any number of ROS nodes and support ROS inter-node communication just as running 

ROS on a local computer, hence, it is compatible with most existing ROS packages.  

 

 

Figure 2.4: Example configuration of Rapyuta (Mohanarajah, et al., 2015) 

 

Each light grey box represents a computing machine and there are three 

machines in the example in Figure 2.4. The Master Task Set is the main core that 
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controls every task sets and manages communications between Rapyuta and robots, 

only one Master Task is required for every Rapyuta platform. The EP represents 

endpoint process which is controlled by Master for communication between and within 

internal and external processes. EP also provide conversion of data format for 

communication between internal and external processes to ensure data format 

compatibility. LXC represent Linux containers which are where ROS nodes are run 

on. The example showed Rapyuta access to RoboEarth repository. 

 Rapyuta is available on Github as an open source project written in Python and 

C++, however, it was deprecated since 2015 due to change of robot requirements and 

dependent technologies. The core developers, Rapyuta-Robotics company is 

rebuilding a better version of the platform (rapyuta-robotics, 2015). 

 

2.2.3 DAvinCi 

DAvinCi stands for Distributed Agents with Collective Intelligence. The agents are 

the robots and collective intelligence is on the cloud. The framework aims augment 

robotics system in large environment by connecting ROS and Hadoop cluster.  

 

 

Figure 2.5: DAvinCi Architechture (Arumugam, et al., 2010) 

 

 In the architecture, a team of robots, shown at the bottom of Figure 2.5, all 

carrying essential sensors such as gyroscope and encoders for individual odometry 
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tracking and WiFi chip, can carry different sensors such as camera and laser 

rangefinder. The robot team communicate internally and with the DAvinCi server via 

ROS communication protocol. Sensors data will be sent to the server and further 

relayed into Hadoop for storage and processing. DAvinCi server connects robot team 

and users on ROS platform to Hadoop cluster for computation offloading. DAvinCi is 

implemented on FastSLAM algorithm to observe the improvement of performance, 

Figure 2.6 showed the reduction of time taken on execution with different amount of 

particles as the number of computing nodes increased. Execution time of the same 

algorithm on local computer can be assumed to be same as the time taken on running 

on single node, hence, the research showed that great speedup can be achieved by 

offloading computation onto the cloud. 

 

 

Figure 2.6: Execution time of FastSLAM in Hadoop vs. number of nodes 

(Arumugam, et al., 2010) 

 

2.2.4 Robot Web Tool (RWT) 

An open-source project that aims to provide interoperability and portability of robot 

applications to different systems. Based on ROS and its package, Rosbridge which 

allows interfacing of ROS functionality with programs outside of ROS using JSON 

based commands. It helps to overcome ROS disadvantages in platform dependencies 

as ROS only support Ubuntu and Debian officially which is not widely used compared 

to Windows and MacOS. RWT combine ROS with web technologies to make it more 

accessible to more developers who are expert in web application development. 

RWT communicate over WebSockets and carry client-server architecture. 

WebSockets protocol provides operability on web browsers which run on 
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heterogeneous platforms, from different operating systems on computer to 

smartphones. RWT provides web client library named roslibjs for access of ROS 

features such as transform and URDF, and allow secured and efficient communications 

between robots and users. 

 Due to the limitation of WebSocket, sending of raw or binary data in high 

bandwidth is impractical. RWT has its own method to stream high-bandwidth 

messages such as transform, image and point cloud. Bandwidth requirement for 

transform is reduced by having a layer of ROS package that precompute transforms on 

demand and publish only when a change of transform over a specific limit occurred. 

 

 

Figure 2.7: Average TF Bandwidth for ROS and Web (Toris, et al., 2015) 

 

 As shown in Figure 2.7, for transform of a simple robotic arm with 6-DOF, the 

extra layer reduced the bandwidth required from an average of 208.5 KB/s to 96 KB/s. 

Bandwidth for streaming of image, point cloud and generic message is reduced by 

utilizing embedded compression codecs in HTML such as MJPEG and VP8 codec. 

The web functions required by RWT are supported on modern browsers like Firefox 

and Chrome. 

 

2.3 Simultaneous Localisation and Mapping (SLAM) algorithm 

SLAM is a crucial feature of autonomous mobile robot. The process SLAM is designed 

to build a map, 2D or 3D, of an unknown environment while navigating through the 

environment (Nguyen Hoang Thuy & Shydlouski, 2018). The navigation process is 

run at the same time based on the map generated, hence the algorithm is named 

simultaneous localisation and mapping. There are multiple SLAM algorithms 
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available to be integrated into ROS system, namely gmapping, cargtographer, 

hector_slam and slam_karto (ROBOTIS, 2019). 

 

2.3.1 Google Cartographer 

The algorithm used in this project is Cartographer, an open-sourced project developed 

by Google which provides real-time SLAM capability.  Cartographer is able to 

compute loop closure constraints with lower computational power while mapping 

large environment in real-time (Hess, et al., 2016). 

 Google Cartographer support four input, laser scan, odometry pose, IMU data 

and fixed frame pose. Laser scan data will first be downsampled by voxel filter which 

put raw points in constant-sized cubes and output only the centroid of each cube. Size 

of voxel filter can be set through ROS parameter, lower cube size leads to lesser data 

point and hence lower computation. In 2D SLAM, IMU input is optional while in 3D 

SLAM, IMU input is a must for initial orientation prediction to reduce complexity of 

scan matching. 

 The system is separated into local SLAM and global SLAM. Pose extrapolator 

uses odometry pose and IMU data for initial pose guessing. With the initial pose guess, 

local SLAM inserts new scan into submap. The scan matching process is based on 

Ceres Solver, an open-sourced C++ library for non-linear least squares minimization, 

resulting in scan pose relative to current submap (Agarwal & Mierle, 2019). A motion 

filter drops matched scan that do not have sufficient motion to reduce number of scans 

in a submap. Result of local SLAM, the submap will drift over time, so submaps cannot 

be too big to contain the drift below resolution. Submaps are normally stored as 

probability grids but can be configured to store as truncated signed distance fields 

(TSDF). 

 Global SLAM runs in the background to compensate the drift. It is a pose graph 

optimization process that create constraints between submaps that are close to each 

other and are good match. With global SLAM, the submaps are aligned and linked to 

form a global map (Cartographer ROS, 2019). 
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Figure 2.8: Google Cartographer high level system overview (Cartographer ROS, 

2019) 

 

In addition, cartographer stands out by supporting IMU compensation for 

tilting if the robot runs on uneven ground as well as 3D SLAM using 3D laser scanner. 

As compared to other algorithms available, Cartographer has lower CPU usage while 

producing accurate map with higher rate of successful loop closing (Coroiu & Hinton, 

2017). 

 

2.4 Summary 

Cloud robotics has been a popular topic in research and multiple implementations of 

ROS were studied. From the literature review, Rapyuta platform is the most suitable 

architecture for this project as it provides efficient utilization of computing power of 

cloud computing infrastructure while keeping real-time response needed for robot 

system. However, all implementations studied require some extra configuration or 

overhead to connect robots to cloud infrastructure, increasing the complexity to 

develop a ROS system. 
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Google Cartographer was chosen to be the process for computation offloading 

because SLAM is one of the key capabilities for an autonomous mobile robot. Among 

SLAM algorithms, Cartographer has better performance while supporting IMU 

compensation and 3D SLAM, providing the option to scale up for more complex 

applications.
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

To study the implementation of ROS on cloud, the infrastructures had to be set up 

before any test can be carried out. This methodology included methods to launch cloud 

computing instance on Amazon Elastic Compute Cloud (EC2), then to configure ROS 

and OpenVPN on both cloud server and local machine client. A mobile robot equipped 

with ROS installed computer was created to study feasibility of the implementation in 

real world scenario by running SLAM in university hallway. 

  

3.2 Initialisation of Amazon Elastic Compute Cloud (EC2)  

To implement ROS on cloud infrastructure, Amazon EC2 was chosen as the 

infrastructure provider. AWS Free Tier for new user is available for one year after 

registration, instance named t2.micro is free for 750 hours a month. The free tier 

instance was chosen to test the ROS implementation. The early testing was on 

messages passing latency which do not require high computation resources, hence, the 

free tier instance was sufficient.  

 To create an EC2 instance or cloud computer, AWS provided a 10-Minute 

Tutorial for beginner, the tutorial “Launch a Linux Virtual Machine” provided a step-

by-step tutorial on setting up a Linux machine on Amazon EC2 (AWS, 2018). Amazon 

Machine Image (AMI) is a template that comes with OS configured for EC2 to start 

the computing instance easily, Ubuntu 18.04 LTS AMI was provided in AWS 

Marketplace for free and the AMI was used in this project. Amazon cloud computing 

resources are available globally in regions such as United States, China, Europe and 

Asia Pacific. Singapore server was selected to host the EC2 instance due to its 

geographical proximity to Malaysia. 

 After choosing the AMI, instance type which consists of different CPU, RAM, 

ROM and network speed, was to be chosen to suit different applications and 

requirements. In this project, free t2.micro with 1 vCPU, 1 GiB RAM, Amazon Elastic 

Block Store (EBS) storage and low to moderate network performance was chosen. The 

EC2 instance was ready to be launched after AMI and instance type were chosen. 
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 Public and private key pair for remote SSH access was required, new key pair 

was created by AWS and downloaded to local computer that will be used to SSH 

access the EC2 instance. When the instance was successfully launched, on instances 

viewing console of AWS, status and description of the instance could be monitored. 

In order to connect to the instance via SSH, IPv4 Public IP of the instance was copied 

down as the access point. With IPv4 Public IP, key pair, and SSH client software on 

local computer, access into the instance can be initiated. 

After the EC2 was up and running Ubuntu 18.04 LTS, ROS melodic was 

installed into the Ubuntu with the same procedures like installing on local computer, 

just a barebone version of ROS was installed rather than a desktop full version of ROS 

because GUI tools were unnecessary on the server (ROS Wiki, 2018). 

 

3.3 Configuration of OpenVPN on AWS EC2 

While EC2 public IPv4 allows SSH access, the IP could not be used on ROS 

communication. Hence, to connect ROS running on local computer, robots and 

Amazon EC2 in a same network with addressable IP, a VPN was required to be set up 

on the EC2. The VPN server running on the cloud facilitated connection of ROS 

system by placing local clients and cloud server into same network. OpenVPN is an 

open source VPN software available for different operating system including Ubuntu 

used in this project. 

 Different methods were available to setup OpenVPN, but to simplify the setup, 

a script by Angristan was used to automate the setup and configuration of OpenVPN 

on EC2 (Angristan, 2018). The script prompted for user input on configuration of the 

OpenVPN and had a recommended choice on every configuration throughout the 

installation. After the script completed the configuration, it started OpenVPN server 

on the computer and generated a client configuration file to be used on client side for 

authentication. 

The file was sent to local computer via SCP which securely transfer file using 

SSH between remote computers. Then, OpenVPN client package was installed in local 

computer via package manager APT. Finally, OpenVPN client was started using the 

configuration file generated from the script. A new network tunnel interface that 

connects the server on cloud and client on local machine in a VPN was created. 
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3.4 Configuration of ROS, EC2 and OpenVPN for Cloud communication 

After both local and cloud machine were installed with ROS and OpenVPN, further 

configuration was required to allow ROS Master to run on EC2 while allowing ROS 

on local machine to connect to the ROS Master. Cloud machine and local machine had 

to have same ROS_MASTER_URI which was VPN IP of cloud machine.  

Then, on AWS EC2 console security group inbound setting, port 1194 and 

11311 were opened for UDP and TCP protocol for usage of OpenVPN and ROS. After 

this, the configuration was completed, the setup was tested by running roscore on cloud 

machine and listing ROS topic on local machine to test the connectivity, the setup was 

successful as topic list is shown on the command prompt. 

 

3.5 Design of Mobile robot  

To try the implementation of ROS on real-life scenario, a physical robot was required. 

TurtleBot 3 Burger from Robotis is a affordable mobile robot designed to explore ROS 

and design robot applications. Robotis opensourced software and hardware of the robot, 

allowing easy modification or customization of the robot.  

 

 

Figure 3.1: Robotis TurtleBot 3 Burger running ROS 
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The robot contains a LiDAR sensor, a main controller board OpenCR, a 

Raspberry Pi 3, 9-DOF inertial measuring units and two 360 degrees servo motor. With 

the components, TurtleBot 3 Burger is suitable to be used for studying ROS. Moreover, 

with the open-sourced software and hardware, a similar robot could be self-constructed 

with extra features such as adding depth sensor, microphone array and larger size. 

 

 
Figure 3.2: Block Diagram of Proposed Robots 

 

 The robot required a computer with resources enough to run Ubuntu, USB 

ports to connect to peripherals, and WiFi or cellular hardware for internet connection. 

The computer was connected to a main control board that handles the low-level 

hardware control like motor for wheels or arms and IMU sensor data reading. LiDAR 

was required for 2D SLAM as well as navigation. 

 

3.6 Analysis of Messaging Latency  

To study the feasibility of cloud implementation of ROS, latency is the deciding factor 

as robot applications require real-time performance and minor delay in message 

passing will have severe effect on the application. Two messaging routes were tested. 

 

• Local computer and cloud computer 

• Two local computers via cloud computer 

 

The message latency was evaluated based on RTT. The RTT contain 

propagation and overhead time taken to send and acknowledge reception of the 

message. RTT was captured using Wireshark. Since ROS data was exchanged within 

the VPN with TCP, Wireshark filters were applied to filter out the TCP originate and 

end at cloud and local machine exposed IP address. After filtering, RTT was obtained 

from the packet list pane. 

Wireshark is an open-source packet analyser released under GNU General 

Public License. It is the most widely-used packet analyser, the de facto standard for 
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many commercial and educational institutions. Wireshark support live capture of 

packets of hundreds of protocols and offline inspection of the captured packets. 

Moreover, community developed plugins are available if the protocol to be inspected 

is not supported out of the box. Fortunately, ROS topic packet dissector was available 

as built-in plugin under the name tcpros. New protocol dissector was applied from 

Analyze>Enabled Protocols and ticking the box beside the protocol as shown in Figure 

3.3. Moreover, coloring rules was added from View>Coloring Rules  as shown in 

Figure 3.4 to visualize the packets better. 

 

 

Figure 3.3: Wireshark enabled protocols pop up window 

 

 

Figure 3.4: Wireshark coloring rules pop up window 

 

After enabling the tcpros protocol and applied colouring rules onto the protocol, 

ROS topic packets captured were highlighted in bright green colour as shown in Figure 
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3.5. In addition, the tcpros protocol dissector also parsed contents of the packet and 

displayed it in packet details pane in the middle of the interface. The dissector 

simplified the packets inspection by categorizing packets and displaying their contents 

in human readable form. 

 

 

Figure 3.5: Wireshark panel after adding tcpros protocol and coloring rule 

 

3.7 Computation Offloading 

Cartographer SLAM was run on the cloud server while sensor data are streamed to the 

cloud running from a local client. Revo LDS laser data from the cartographer dataset 

(Cartographer, 2019) was used in this test. The construction of the map was view in 

real-time in the local client using rviz, a visualization software that come together with 

ROS. Cartographer demo roslaunch file which launch all ROS nodes in a single 

machine was separated into two file as shown below, where the first file launch 

cartographer_node and cartographer_occupancy_grid node on Amazon EC2 instance 

for SLAM computation while the second file launching rosbag and rviz were launched 

on local machine to playback laser data and visualize the SLAM process. 
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SLAM simulation launch file on Amazon EC2 

 

 

SLAM simulation launch file on local computer 

 

In the cloud-based implementation, Amazon EC2 instance, local computer and 

robot computer were connected within a VPN as shown in Figure 3.6. Both Amazon 

EC2 and robot computer were controlled by remote computer through SSH. The robot 

state node and laser node were running on robot computer. Local computer only acted 

as robot motion controller, cartographer node was running on Amazon EC2 to test 

computation offloading onto cloud, data were passed between computers and Amazon 

EC2 through VPN tunnel. 

 

<launch> 

  <param name="/use_sim_time" value="true" /> 

 

  <node name="cartographer_node" pkg="cartographer_ros" 

      type="cartographer_node" args=" 

          -configuration_directory $(find 

cartographer_ros)/configuration_files 

          -configuration_basename revo_lds.lua" 

      output="screen"> 

    <remap from="scan" to="horizontal_laser_2d" /> 

  </node> 

 

  <node name="cartographer_occupancy_grid_node" 

pkg="cartographer_ros" 

      type="cartographer_occupancy_grid_node" args="-resolution 

0.05" /> 

</launch> 

 

<launch> 

  <param name="/use_sim_time" value="true" /> 

 

  <node name="rviz" pkg="rviz" type="rviz" required="true" 

      args="-d $(find 

cartographer_ros)/configuration_files/demo_2d.rviz" /> 

  <node name="playbag" pkg="rosbag" type="play" 

      args="--clock $(arg bag_filename)" /> 

</launch> 
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Figure 3.6: Setup of cloud-based ROS with mobile robot 

 

3.8 Summary 

The objective is to study the feasibility of cloud implementation of ROS, so most parts 

of the project were on experimenting and trying get ROS system running with cloud 

infrastructure. Then, ROS equipped mobile robot was built to experiment the 

implementation in real application. Finally, method to improve robot system 

performance utilizing cloud infrastructure was tested by moving SLAM computation 

directly onto EC2 in simulation and real robot. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 EC2 Configuration Result 

Amazon EC2 instance was configured as stated in methodology. The instance details 

can be visualized from Amazon EC2 management console as shown in Figure 4.1. An 

Amazon EC2 t2.micro instance was launched with Ubuntu 18.04 LTS AMI. It was 

hosted from Singapore server with accessible public IPv4 address of 54.254.210.201, 

the IP address will be changed for every restart of the instance. Amazon EC2 instance 

contained only the computing resources, the CPU, RAM and networking capability. 

The configuration came with a non-volatile memory, Amazon EBS volume that stored 

system files and data for the EC2 instance. The volume had 8 GiB storage size and 100 

input/output operations per second (IOPS). The storage had limited size and speed, but 

it was enough for our testing.  

 

 

Figure 4.1: AWS management console EC2 instance 
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Figure 4.2: AWS management console volume 

 

 The setup of the cloud computing infrastructure system was as shown in Figure 

4.3. Amazon EC2 and EBS were independent, hence, the Ubuntu 18.04 LTS image 

configured and stored in EBS could be launched with different instance type for 

different computation resources needed. Instance type was changed to t2.small with 1 

vCPU and 2 GiB RAM when compiling Google Cartographer from source code 

because t2.micro instance would crash due to insufficient RAM. Besides, the EC2 

instance was associated with security group launch-wizard-2 which the details were 

shown in Figure 4.4. AWS security group was like a firewall, having rules for inbound 

and outbound network traffic. Default setting of security group was outbound 

connection opened for all traffic and inbound connection only allowed TCP through 

port 22 for SSH. Extra rules were added for inbound connection, which port 11311 

was opened to all IP for TCP and UDP connection for ROS master while port 1194 

was opened to all IP for UDP connection for OpenVPN. 
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Figure 4.3: AWS cloud computing infrastructure system overview 

 

 

Figure 4.4: AWS management console EC2 security group 

 

4.2 Cloud Implementation of ROS System 

In the implementation shown in Figure 4.5, the local machine and Amazon EC2 

instance were both running Ubuntu 18.04 LTS. Windows on the right are the SSH of 

Amazon EC2 instance that acted as ROS Master running roscore and also 

turtle_teleop_key ROS node which published control signal to turtlesim. The turtlesim 

node was running on local machine, receiving control signal from cloud and moved 

the turtle in TurtleSim simulation at the bottom right window. Figure 4.5 shows that 
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the system configuration is feasible and ROS system can run directly on VPN as 

expected. 

 

 

Figure 4.5: Screenshot of SSH of EC2 instance and turtlesim on local Ubuntu 

 

4.3 Messaging Latency Measurement 

Wireshark filter was applied to filter down to only data exchange between cloud server 

and local machine ROS tcp port. Packet from 10.8.0.1 to 10.8.0.2 was the control 

signal from server to local machine and from 10.8.0.2 to 10.8.0.1 was the 

acknowledgement from local machine. Figure 4.2 shows that RTT for 

turtle_teleop_key ROS node command signal was around in the range of 20.18 ms to 

51.75 ms. The RTT was short enough to provide responsive remote control of robot. 

However, further experiments are required for different types and sizes of data. 

 

Terminal of local machine 

Turtlesim_node 

SSH of Amazon EC2 instance 

turtle_teleop_key node 

TurtleSim node 

SSH of Amazon EC2 instance 

roscore 
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Figure 4.6: Wireshark capturing ROS messages 

 

4.4 Mobile Robot 

A mobile robot was built to test the feasibility on real world scenario. The components 

of the robot were as shown in Figure 4.7. The computer ran on Ubuntu 18.04 LTS with 

ROS Melodic, and were connected to laser rangefinder and robot control board via 

USB. Robot control board controlled DC motor velocity based on computer command 

and provided encoder feedback for odometry. Laser rangefinder provided 240-degree 

laser range scanning data for SLAM. The computer acted as the bridge between the 

robot with other ROS processing nodes, it collected and published sensors data and 

reacted to control command. 
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Figure 4.7: Components of mobile robot 

 

 

Figure 4.8: The resulting mobile robot 
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4.4.1 Robot Base 

The robot base was built with aluminium profiles and plates as shown in Figure 4.9. 

Designing with aluminium profiles ease the binding process between bars and plates 

with the use of L-brackets and T-slot nuts, without the needs of drilling holes on the 

bars.  

The robot driving method is differential drive, a two-wheeled drive system 

requiring independent motor for each wheel. In this driving method, the movement of 

robot is the result of difference in wheels motion. The design used two omnidirectional 

wheels as the free turning wheels to allow the back of mobile robot to move in all 

direction freely as driven by the front wheels. 

 

 

Figure 4.9: CAD drawing of mobile robot base 

 

4.4.2 Motor Control Board 

The motor control board has Microchip dsPIC33FJ128MC804 16-bit digital signal 

controller as its main controller for precision motor control. The controller consists of 

two quadrature encoder interface for incremental encoders to decode wheel position 

or rotation speed and 6-channel 16-bit motor control PWM for DC motor speed control 

(Microchip, 2012). There is an inertial measuring unit (IMU) at the centre of the 

control board providing angular velocity and acceleration measurement in different 
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direction for robot position. The control board acts as agent between robot hardware 

and computer running ROS, collecting and sending sensors and wheel encoder data to 

the computer via USB for further processing. In addition, the board converts velocity 

command from the computer into motor control signal. 

 

4.4.3 Laser Scanning Rangefinder 

Laser Scanning Rangefinder used in the mobile robot is Hokuyo URG-04LX-UG01 

which has measuring range of 60 mm to 4095 mm with a tolerance of 1% when 

measuring between 1000 mm and 4095 mm and ±10mm tolerance when measuring 

between 60 mm and 1000 mm. The measuring angle is 240° with 0.36° angular 

resolution and it has 100 ms scanning time. It provides high accuracy and resolution 

laser scanning suited for autonomous robots. The compact form factor and light weight 

of the laser allowed easy integration into the robot base. Moreover, the laser uses near 

infrared light source at 785 nm rated at safety class 1 which is safe to be used in all 

conditions. The laser rangefinder requires input power of 5 V and 500 mA from USB, 

and it uses USB as its data interface as well (HOKUYO AUTOMATIC CO., LTD., 

2014). In the mobile robot, Hokuyo URG-04LX-UG01 was integrated into the system 

by connecting to the robot computer via USB port. 

 

4.4.4 Performance of mobile robot 

Initially, the robot movement was not smooth due to overshooting of PID control 

signal and skidding of driving wheels. It was improved after PID tuning with Ziegler-

Nicholas method and adding weight, the green metal plates as shown in Figure 4.8, 

onto the robot. The improved robot motion enabled accurate odometry which was able 

to drive the robot in a 1 meter square with drift contained under 5 cm. Accurate 

odometry is important to SLAM algorithm as it provide approximate robot position 

for localization. 

 

4.5 SLAM simulation 

For the SLAM simulation, internet service used by the local client was fiber optic 

Residential High-Speed Internet (UniFi) provided by Telekom Malaysia Berhad. The 

internet service had a maximum download rate of 23.42Mbps and maximum upload 

rate of 16.31Mbps. Laser data was published by rosbag, a tool to record and play back 
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pre-recorded data in ROS, after a connection was formed between Cartographer node 

and rosbag node through the laser scan data topic. Rviz was used to visualize the slam 

process in real time in the local machine. Figure 4.10 shows the resulting graph of the 

ROS setup used in the simulation. 

 

 

Figure 4.10: ROS computation graph formed in SLAM simulation 

 

Table 4.1 shows the RTT obtained using the simulation setup described in the 

methodology. An Average RTT of 18.6540ms with standard deviation of 23.7870ms 

was obtained from the simulation. Figure 4.11 shows the RTT measured over a period 

of simulation. There are certain instances within the simulation where increase in RTT 

of packets can be observed. The highest delay recorded in the simulation is 

666.5872ms. However, the sporadic increase in RTT throughout the simulation did not 

affect the capability of Cartographer in generating the map from recorded sensor data. 

Figure 4.12 shows the map generated by Cartographer at the end of the simulation. 

 

Table 4.1: Round trip time for all packets travelling between local client and cloud 

server 

 Round Trip Time (ms) 

Average 18.6540 

Median 14.8116 

Standard Deviation 23.7870 

Maximum 666.5872 
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Figure 4.11: Round trip time of packets between local client in Malaysia and EC2 

server running Cartographer in Singapore 

 

 

Figure 4.12: SLAM generated map from simulation with Cartographer dataset 
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4.6 SLAM on mobile robot 

The mobile robot SLAM operation offloading was run on 4G network. The network 

provider was Umobile 4G LTE service with a maximum download rate of 4.23 Mbps 

and maximum upload rate of 15.9 Mbps with 25 ms latency during the period of testing. 

Table 4.2 shows the RTT of different data topic for testing on 4G network and Figure 

4.13 shows the resulting computation graph. 

 

Table 4.2: Round trip time for packets in mobile robot SLAM on 4G network 

 
Round trip time (ms) 

Odometry Laser scan Velocity control 

Average 63.0136 63.0371 107.6125 

Median 54.2609 57.2985 101.8911 

Standard Deviation 31.7453 29.2055 31.4774 

Maximum 749.5426 671.9794 720.1007 

 

 

Figure 4.13: ROS computation graph formed in mobile robot SLAM 

 

Mobile robot testing on 4G network had higher latencies, with average of 

63.0136 ms, 63.0371 ms and 107.6125 ms for odometry, laser scan and velocity 

control data respectively. Velocity control packets had the highest latency, 71 % higher 

compared to odometry and laser scan because the packets travelled from remote 

computer to robot computer through cloud computer as VPN server while odometry 

and laser scan were just transmitted from robot computer to cloud computer. 

Latency on velocity control data was slightly noticeable when controlling the 

robot motion, especially the spike of latency which could go up to 720.1007 ms due to 

unstable bandwidth of 4G network. However, the occurrence of high latency was not 

frequent, the overall response time was sufficient for SLAM operation. The average 

latencies were unnoticeable when controlling robot motion and had no impact on 

SLAM output quality, the resulting map is shown in Figure 4.14. 
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Figure 4.14: SLAM generated map from mobile robot (UTAR KB 3rd floor hallway) 

 

4.7 Summary 

Cloud implementation of ROS by putting all machines in a ROS system into a VPN 

is feasible, and RTT of ROS message packets between cloud computer and local 

computer can be captured using Wireshark for latency analysis. The ROS equipped 

mobile robot with wheels encoder odometry and laser range scanning performed as 

expected in methodology. Message latency results from SLAM algorithm offloading 

to Amazon EC2 instance ran in simulation and real world scenario through fiber 

optic internet and 4G network respectively shows that 2D SLAM offloading is 

feasible, with occasional minor delay in robot motion control signal when running in 

4G network. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Cloud implementation of ROS was configured by placing cloud computing 

infrastructure and local machines within a VPN. A differential-drive mobile robot with 

ROS equipped was built to be integrated into the setup. Then, ROS messaging 

latencies were captured and analysed using Wireshark to study the response time of 

the aforementioned setup. 

In conclusion, it is feasible for a mobile robot to offload its computationally 

heavy process to a cloud server from the result obtained. A mobile robot that is capable 

of offloading part of its process to the cloud has numerous advantages. The robot 

would require less processing power, which can lead to a mobile robot with lower cost 

and higher battery efficiency. Algorithm with higher complexity can be implemented 

on the cloud easily when the need arises as cloud server can be scaled up accordingly.  

 

5.2 Recommendations for future work 

In this study, RTT was the only metric defined to investigate the feasibility of cloud 

implementation of ROS. To study the impact of cloud implementation of ROS in depth, 

more metrics should be considered, for example, data bandwidth, difference in 

computation time, and energy consumption of mobile robot. 

 Future study should look into the implementation of this setup for other 

important robot features such as 3D SLAM, object recognition, sound source 

localisation and voice recognition in mobile robot. In addition to direct offloading of 

ROS algorithms, the implementation can utilise optimised and well-developed 

algorithms in improving the robot capabilities, by using web services for speech and 

object recognition like Amazon Rekognition, Google Object Detection API and 

Amazon Transcribe. 
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