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ABSTRACT 

 

Topology optimization is structural optimization that deals with additional and 

removal of structural elements to determine the best structural configuration or layout. 

Structural optimization is challenging as it includes generating all the different 

topologies to search for the finest topology. The generation of finest topology is 

essential to construction industry as it give the best structural design with minimum 

quantity of materials and construction cost and at the same time maximize its 

performance. Structural optimization is challenging due to large number of steel 

profiles available in the market and discrete in value of the cross-sectional area of the 

steel sections. Besides, an optimization approach that able to obtain optimal results at 

high accuracy but required high computational time will lead the optimization become 

costly. For economic purpose, this high accuracy optimization approach is less likely 

to be used in construction industry. Thus, an efficient optimization approach is 

required to obtain an optimal truss topology that provide a good balance between safety 

and economy. The aim of this study is to develop an approach to optimize the truss 

structure in terms of its weight and strength. In this study, topology optimization for 

eleven, sixteen and twenty-one element ground structure trusses subjected to static 

constraints (i.e. stress and displacement) are optimized by using Harmony Search (HS). 

The results obtained from the proposed optimization approach are compared with the 

SCIA Engineer software. The overall accuracy of the results obtained from HS based 

on eleven, sixteen and twenty-one element ground structure trusses are 96.25% and 

99.82% for displacement of nodes and element stresses respectively. Besides, the 

redundant truss elements and joints can be identified at the end of the structural 

optimization. HS is also able to determine the best optimal connectivity between the 

structural members based on the amount and location of the load applied to generate 

an optimal truss structure with minimum weight. Thus, HS is one of the optimization 

approach to solve structural optimization problems that are mostly discrete and high 

complexity. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Research Background 

Optimization is the process of finding an alternative that can maximize the desired 

factors while minimizing the less desired ones to give the best performance under 

certain constraints (Belegundu and Chandrupatla, 2011). In real world situation, the 

stiff competition in market place and consumer demands often required an optimum 

solution instead of feasible solutions for a given problem (Parkinson, et al., 2013). 

Therefore, many industries often look for the best approach through optimization 

process to meet their objectives and maximize profits (Ezema and Amakom, 2012). 

For example, mass-production corporations adopted optimization process to utilize the 

corporation’s resources in mass-produced parts which result in significant savings for 

the corporations. Besides, the optimization process also widely applied in construction 

industry to determine the best structural design with minimum quantity of materials 

and construction cost and in the same time give the best performance in terms of 

stability, stiffness and strength (Sariyildiz, et al., 2015).  

 There are several examples of construction industry adopting optimization in 

their structural design. First of all, the optimization process was applied in the design 

of the world’s second tallest building located in Hong Kong “Kowloon Mega Tower” 

at 474 m to minimize the construction material cost while maximize the floor space by 

considering the area of vertical walls and columns (Baldock, 2007). In addition, the 

design of the “Akutagwa River Side Building” in Japan as shown in Figure 1.1 was 

optimized to obtain the best shape of concrete structures (Januszkiewicz and 

Banachowicz, 2017). Furthermore, structural engineers in Japan also applied 

optimization process in the structural design of Crematorium as shown in Figure 1.2 

located in Kakamigahara Gifu to determine an efficient structural shape 

(Januszkiewicz, 2013).  
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Figure 1.1: Akutagawa River Side in Takatsuki, Japan, 2004 (Januszkiewicz and 

Banachowicz, 2017) 

 

 

Figure 1.2: Crematorium in Kakamigahara Gifu, Japan (Pugnale and Sassone, 2015) 

 

 Structural optimization is not only applied on optimizing the building 

structures, it is also applied in optimizing truss structure as well (Couceiro, et al., 2016). 

Truss is a structure whereby several members are connected at joint which is referred 

as node and the members are subjected to either tension or compression under loading 

conditions (Tejani, et al., 2018). There are three categories of optimization in truss 

structures which are sizing optimization, shape optimization and topology 

optimization as shown in Figure 1.3. Size optimization is the process of finding the 

best cross-sectional areas of the structural members (Tejani, et al., 2018). Shape 

optimization is the process of determining the design of truss structures by adjusting 

the nodal positions (Kaveh and Talatahari, 2009). Topology optimization is the most 
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general structural optimization that used to find an optimal connectivity between the 

structural member within a specified design domain with no initial assumptions about 

the geometry and shape of the structure itself. Therefore, it provide design freedom 

which make it become a powerful design tool (Verbart, 2015). Through topology 

optimization, the inefficient truss members that constitutes low stressed in materials 

will be removed. This will significantly reduce the material used in the design to 

achieve minimum weight of truss structure (Degertekin, et al., 2017).  

 

 

Figure 1.3: Type of Structural Optimization (Lee, 2012) 

 

 Optimization technique has been applied in construction industry thus, 

structural engineers required both theoretical knowledge and optimization techniques 

so that the optimization process can be applied practically to improve the structural 

design (Belegundu and Chandrupatla, 2011). Previously, civil engineers adopt a 

combination of judgement, past experiences and modelling decide on an optimal truss 

structure while performing the topology optimization for truss structure. However, 

these experience-based optimization process is ineffective if the optimization process 

is carried out with numerous variables to comply with constraints which need to be 

considered in the real-world applications (Parkinson, et al., 2013). Therefore, a 
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computer-based optimization is preferred to perform the complicated design processes 

through optimization algorithm (Parkinson, et al., 2013).  

 Two categories involved in optimization algorithms are mathematical and 

nature-inspired (Lin, et al., 2012). The traditional mathematical approaches are not 

practically used in optimizing structures due to its high non-linearity and large discrete 

design variables (Yang, et al., 2016). Thus, some researchers utilized stochastic based 

nature-inspired algorithms which adopted probabilistic rule to deal with complicated 

design of structures (Lee and Geem, 2005). 

 The nature-inspired algorithms also known as meta-heuristic algorithms are 

commonly applied in complex engineering optimization problems due to its capability 

to obtain the optimized solution within reasonable amount of time (Gandomi et al., 

2013). This is because meta-heuristic algorithms are derivative free and free from 

gradient computations, this allow it to overcome the drawbacks of traditional 

mathematical algorithms that require long computational time (Yang, 2014a).  

 In 2001, Geem, et al. (2001) has come out an optimization algorithm known as 

Harmony Search (HS) that inspired by nature of music to solve optimization problems. 

This music inspired algorithm make the engineering optimization works by using the 

harmony in music link to the optimization solution vector and the musician’s 

improvisations link to the local and global search during performing the optimization 

process (Jaberipour and Khorram, 2010). The strong points of HS as an optimization 

tool are: (i) initial values is not required in performing optimization process; (ii) the 

searching of optimum result in HS is based on the harmony memory considering rate 

and pitch adjustment rate caused this algorithm does not perform any derivative 

mathematical calculation (Lee and Geem, 2005). Compared to other meta-heuristic 

algorithms, less mathematical calculation involve in HS cause this algorithm easier to 

implement in high complexity of engineering optimization problems (Yang, 2009).  

 In this study, HS is used to optimize the sizing and topology of the truss 

structure. The model will optimize the truss structure to find an optimal connectivity 

of the joints and its best cross-sectional area. Besides, the effectiveness of the 

optimization strategy implements in HS allows redundant truss and joints to be 

identified to achieve its minimum weight.  
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1.2 Problem Statement 

In structure construction, the structural optimization is required to determine the best 

structure design that is neither yielded, buckled, nor deflected excessively in achieving 

its minimum weight (Parkinson, et al., 2013). Structural topology optimization was 

carried out by considering the material properties and cross-section of the structural 

members as decision variables to obtain an optimal structure within an acceptable time 

that give the best performance in lifetime with minimum overall life-cycle cost. 

However, structural optimization is difficult to perform due to large number of steel 

profiles available in the market and discrete cross-sectional area of the steel sections. 

Besides, an optimization approach that able to obtain results at high accuracy but 

required high computational time will lead the optimization become costly (MuÈcke, 

1999).  

 The deformation or deflections limit of a structure specified in design 

requirements caused the structure to be designed with sufficient stiffness. The structure 

stiffness can be effectively increased by adding the supports or providing larger size 

of the structural members. If the stiffness of a structure is maximized, this will lead to 

a stiffer structure with better performance in terms of safety. However, this might not 

be applicable in practical design due to aesthetic and economic purpose (Ji, 2003). For 

example, applying stronger structural members will lead to the increase in construction 

cost. Besides, if the structural members are not stiff enough, it can be damaged after 

service in some period of time. Therefore, the structure must be optimized to provide 

a good balance between safety and economy so that the structure is structurally 

efficient as well as aesthetically pleasing.  

 The structural optimization process often involved large number of design 

variables. The steel section lists provided by the manufacturers have large number of 

steel profiles that lead structural optimization difficult to perform (Saka, et al., 2016). 

Although some of the combinations can be eliminated by engineers using their own 

prior experiences in design process, however, this elimination is just a small amount 

compared to all the combinations available provided by the steel section list. Thus, 

high computational time is required to determine the best combination of steel sections 

which make this structural optimization become expensive and not practical in 

optimizing the truss structures.  

 In addition, traditional mathematical optimization algorithms perform 

structural optimization by assuming all the decision variables are in continuous. 



6 

  

However, the sizing of structural members provided by the manufacturers are discrete 

in value (Li, et al., 2009). Therefore, the used of traditional mathematical optimization 

method in structural optimization became impractical in performing the structural 

optimization. The structural optimization process must be performed with discrete 

design variables so that the optimal structure obtained in the optimization process is 

practically available in the manufacturing industry. 

 Non-linear mathematical programming is usually robust and applicable in all 

types of optimization problems. However, this method requires more mathematical 

calculations involve in objective functions, constraints and the derivatives to obtain 

the optimum result with high accuracy (Saka, et al., 2016). The structural optimization 

problems are mostly complex and often characterized by high dimensionality search 

space with multiple objective function. This will lead to an increase in computational 

time when the number of design variables and objective function increase which lead 

this method become very costly and time consuming. 

 In summary, engineering optimization is required to determine the best 

decision variables in order to prevent the wastage of resources in term of cost, time 

and materials. HS is an efficient approach in structural optimization due to its 

derivative free and user friendly to allow the best optimal result can be obtained in 

short computational time with sufficient accuracy. 

 

1.3 Aim and Objectives 

The aim of this study is to optimize the truss structure in terms of its weight and 

strength. There are three objectives to present in this study as listed below: 

i. To develop an approach for optimizing the topology of truss structures 

ii. To obtain an optimal joints connectivity to produce a truss structure with 

minimum weight  

iii. To determine redundant truss elements and joints 

 

1.4 Significance of the Study 

The significance of this research is to determine the best design of truss structure that 

satisfy all the specified design requirements such as the allowable deformation and 

maximum stress taken by the structural members. The optimized design of truss 

structure in terms of mass, stiffness, stress and deformation allow the enhancement of 

structural performance to achieve structural efficiency and high reliability.  
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1.5 Scope and Limitation of the Study 

The scope of work in this study is to optimize the truss structures and determine the 

best truss topology and sizing that give minimum weight. The study is limited to simple 

truss structure up to twenty-one structural members. Besides, the structural analysis 

performed in this study is two dimensional instead of three dimensional to make the 

optimization problems easy to handle. There are some assumptions made in the 

analysis of truss which are (i) Truss members are connected only at their ends; (ii) All 

loadings are applied only at the joints; (iii) The weight of the connection in between 

the truss member may be neglected. From the first two assumptions made in the truss 

analysis, each truss member acts as an axial force member. 

 

1.6 Timeline of Work 

The activities conducted in this study is shown in Gantt chart as indicated in Figure 

1.4. 
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Figure 1.4: Timeline of the Study
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1.7 Outline of the Report 

This research report consists of five chapters which include introduction, literature 

review, methodology, results and discussions and conclusions and recommendations. 

In Chapter 1, a brief general introduction of the engineering optimization which 

provide the necessary information about the background of the study, problem 

statements, research’s aim and objectives, significance of the study and scope and 

limitation of the study will be included in this chapter. Review of five most popular 

meta-heuristic algorithms in solving engineering optimization problems which include 

Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO) and Harmony Search (HS) are discussed in 

Chapter 2. Explanation of the optimization procedure using HS to determine the best 

truss topology will be included in Chapter 3. Chapter 4 presents results on application 

of HS in solving eleven, sixteen and twenty-one element ground structure trusses and 

simulates validation of the proposed methodology using SCIA Engineer software. 

Discussion on the performance of the proposed methodology in solving structural 

optimization problems in terms of its validity, accuracy and simulation time are 

included in Chapter 4. Chapter 5 presents general conclusions of this study and 

recommendations for future work to improve the proposed methodology to solve high 

complexity of engineering applications.



10 

  

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Engineering optimization has grown rapidly over the last few decades to solve various 

problems in engineering field e.g. truss structures (Lin, et al., 2012). The optimization 

methods can be divided into deterministic and stochastic approaches (Lin, et al., 2012). 

The behaviour of an algorithm can be predicted completely from the input is known 

as deterministic algorithm. Deterministic algorithms is an algorithm that repeatedly 

follow a pre-set of rules and procedures and their outcome do not vary if the algorithm 

is repeated with the same inputs (Sun and Yang, 2006). Hill climbing is an example of  

deterministic algorithm where it operate the same path for the same starting point 

(Yang, 2010).  

Most of the classical mathematical programming are mostly deterministic such 

as linear programming (LP) e.g. the simplex method, non-linear programming (NLP) 

e.g. geometric programming, quadratic programming (QP), and dynamic 

programming (DP) have been developed for finding a global or an approximately 

global optimum in optimization process (Lee and Geem, 2004). The mathematical 

programming methods in engineering optimization problems are mostly gradient 

based and derivative based (Lee and Geem, 2004). 

The gradient based mathematical programming methods optimize a given 

continuous problem through the process of searching for a local optimum based on 

local gradient by assuming all the design variables varied continuously in the 

optimization process. The derivative based mathematical programming applied first 

and second order method to solve a set of non-linear equations for finding a local 

optimum in optimization problems.  

Structural optimization is one of the discrete optimization problems. Initially, 

round-off techniques have been applied on discrete optimization problems to make it 

become continuous problems and solve it using mathematical programming. However, 

the solutions obtained is far from the optimum solutions (Li, et al., 2009). Besides, 

initial values and gradient computations are required to search for the optimum 

solutions. Therefore, the result obtained is affected by the selection of initial points. In 

addition, gradient search is difficult to perform when the optimization problems have 
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multiple peaks on objective function and constraints. Thus, mathematical 

programming inefficient to use in this complex real-world structural optimization 

problems (Hasançebi, et al., 2009). 

Unfortunately, complex engineering optimization problems are often 

characterized by high dimensionality search space, non-linear objective function and 

stringent constraints that causes deterministic methods difficult to derive an optimal 

solution within an reasonable time due to high complexity of the problems (Lin, et al., 

2012). Besides, the engineering optimization problems are considered as deterministic 

if there is no uncertainty in the values of both design variables and objective functions. 

However, the parameters such as Young’s Modulus can only measure up to a certain 

accuracy and most of the material properties of real materials are not uniform (Yang, 

2010). This causes the design variables, objective functions and constraints are in the 

state of uncertainty. Therefore, structural optimization becomes a stochastic 

optimization problem that requires stochastic approaches to solve the problems. 

Stochastic algorithms follow probabilistic rule in its search for the best 

approach such that  the outcome of the algorithm would depend on specific realizations 

of the random components of the algorithms (Sun and Yang, 2006). In other words, 

the algorithms with same inputs in the same set of parameter values will give different 

outcome at each time the algorithm performed. Generally, there are two types of 

stochastic algorithms, heuristic and meta-heuristic. The difference between heuristic 

and meta-heuristic is small such that meta-heuristic is the higher level of heuristic 

methods that generally perform better than simple heuristics (Yang, 2014a). Heuristic 

is a method that discover an optimum solution by trial and error (Yang, 2014a).  

Further development of heuristic algorithms is the meta-heuristic algorithms 

(Yang, 2014a). This algorithm is a stochastic algorithm with randomization and global 

exploration that utilize the ideas inspired from the nature. Meta-heuristic algorithms 

are applied in high complexity optimization problems with the aim of finding the 

quality solutions in short period of time, but the obtained solutions is not guarantee as 

the best solutions (Yang, 2014a). Meta-heuristic algorithms are derivative free and 

does not require any gradient computation (Yang, 2014a). Randomization is a good 

way to find a global optimum by avoiding the search process being trapped in local 

search correspond to local optimum.  

Two major components that helps the system to obtain the optimum solutions 

are intensification and diversification. Intensification is known as exploitation where 
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it helps the algorithm to utilizes the information obtained from current good solution 

found in a space to focus on the search of solutions in that local space. Diversification 

also known as exploration where it is a process in which the algorithm produces 

multiple solutions so that the searching space is explore on global scale. Exploitation 

will lead the current good solutions converge to optimality whereas the randomization 

in exploration will avoid the solutions being trapped in local optima. Therefore, a 

proper balance between this two components are required for a well design 

optimization algorithms to give the quality results (Kaveh and Zolghadr, 2014).  

This nature-inspired algorithms can be used in various type of optimization 

problems including structural optimization using Harmony Search (HS) (Lee and 

Geem, 2004), mass minimisation of truss using meta-heuristic algorithms with 

dynamic constraints (Pholdee and Bureerat, 2014), steel truss optimization using 

Genetic Algorithm (GA) (Cazacu and Grama, 2014), optimization of truss structures 

with discrete variables using Particle Swarm Optimization (PSO) (Li, et al., 2009), 

design optimization of truss structures using Simulated Annealing (SA) algorithm 

(Lamberti, 2008) and optimization design of truss based on ant colony optimization 

(ACO) algorithm (Chen, et al., 2010). 

 

2.2 Meta-Heuristic Algorithm 

Most of the meta-heuristics are inspired by nature. The meta-heuristic can be grouped 

in different categories based on the source of inspiration in optimization. They are 

inspired by biology, evolution theory, music and physics. The most popular meta-

heuristics are GA, SA, PSO, ACO and HS. The popular meta-heuristic algorithm will 

be described below: 

 

2.2.1 Genetic Algorithm (GA) 

GA is introduced by John Holland in 1960s (Holland, 1975). GA is an optimization 

technique that inspired by biological evolution. In GA, the encoding of an optimization 

function as character strings to represent them in chromosome, manipulation 

operations of strings by genetic operators which include crossover and mutation, and 

the selection process follows Darwinian survival of the fittest theory. The crossover 

and mutation in GA are stochastic in nature that causes the GA perform effectively in 

exploration of the search space to obtain global optimum solutions. Therefore, it is a 

popular global search algorithm that solve the optimization problems with high 
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efficiency as it does not require any gradient computation, highly explorative and 

parallelism which are the advantages over the conventional mathematical method 

(Yang, 2014b). 

Crossover, mutation and selection are the three keys operators of optimization 

process in GA. Crossover is the recombination of two parent chromosome by 

exchanging part of one chromosome with a corresponding part of another chromosome 

to produce off springs or new solutions. In mathematical way, crossover act as a local 

search operator which operate a mixing process with local search in a subspace to help 

the system converge. Mutation is a step taken to change part of a chromosome usually 

single or several parts of the chromosome to produce new genetic characteristics. 

Mutation act as a global search operator that allow the system to explore the search 

space globally. Hence, it generates diversity of new solutions and escape from local 

optimum. Crossover provides good mixing, but its diversity is limited to subspace 

while mutation provide better diversity, but it will cause the system to converge slower. 

Therefore, a balance must be provided between crossover and mutation to obtain the 

best quality solutions. In selection process, the highest quality chromosomes will be 

selected and remained in the population to ensure that the best gene is pass on to the 

next generations in the population and make the system converge (Yang, 2014b). 

The first step needs to be taken to perform GA is to initialize the population by 

randomly generating the individuals which represent potential solutions of the 

optimization problems. The size of the populations is determined by the nature of the 

problem itself. For example, there are a lot of design variables present in complex 

optimization problems which lead the size of the population become larger. Next, a 

fitness function is used to evaluate the fitness of every single member within the 

population. Each member will be given a fitness value by employing the fitness 

function. Then, the fitness value will be used to sort the entire population in descending 

order. If the termination criterion is not met, crossover and mutation in selection stage 

will be carried out based on the best fitness value obtained from each individual to 

generate new solutions. The whole process is repeated until the stopping criteria is 

fulfilled. The stages performed by GA in optimization process are illustrated in Figure 

2.1. 
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Figure 2.1: GA Stages 

 

GA is applicable on solving tough structural optimization problems. For 

instance, GA was used for weight minimization of truss structures including space 

truss structure with twenty five and seventy two members and it also used to optimize 

plane truss structure with seventy two, two hundreds and nine hundreds and forty 

members (Dede, et al., 2011). Moreover, GA was used to optimize a truss structure 

that able to sustain under normal loading conditions and accidental loading condition 

to prevent the structure fail based on elastic-plastic analysis (Wang and Ohmori, 2013). 

Besides, GA and finite element analysis has been used to optimize steel truss structure 

by encoding all the trusses in chromosomes to simultaneously optimize the topology, 

shape and size of the truss structure that subjected stress and displacement constraints 

(Cazacu and Grama, 2014).  

The implementation of GA is easier compared to alternative intelligent 

optimization algorithms (Zang, et al., 2010). Although GA is good in engineering 

optimization, it also has some disadvantages especially when the population size is 

small which will lead to local optimum or premature convergence. When the use of 

population size is small, a significantly fit individual appear earlier during the 
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optimization process will reproduce the offspring that is fit enough to prevent the 

algorithm from seeing the whole population due to its small population. This will cause 

the system lack of exploration that eventually lead to a local optimum or premature 

convergence. However, when large population size is used, more objective functions 

are needed to determine the fitness of the individuals and thus increase the computing 

time (Yang, 2014c). Besides, GA only select two of the existing vectors to generate a 

new vector without considering each component in a vector. This will allow the system 

converge faster but a local optimum is likely to be obtain (Lee and Geem, 2005).  

 

2.2.2 Simulated Annealing (SA)  

SA is a trajectory-based search algorithm that keeps track of only one candidate 

solution. SA is inspired by the annealing process of metals (Kirkpatrick, et al., 1983). 

In the stages of metal annealing, the metal is initially heated up at high temperature to 

exert high energy on the atomic arrangement of metal until it melts. Breaking of 

bonding between the atoms due to high energy cause the molecules to move freely 

within the space. Then, the metal is left to cool slowly under a careful control of the 

temperature and cooling rate. Figure 2.2 shows an example on how the atomic 

arrangements in a material behave under cooling conditions.  
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Figure 2.2: Illustration of Annealing Process in Material Science 

 

 In SA algorithm, the trial point is randomly created followed by evaluating it 

using objective function. The trial point will be rejected, and new trial point will be 

selected for evaluation when the trial point is found to be infeasible. On the other hand, 

when the trial point is feasible with better value of objective function, then the point is 

updated with the best objective value. However, when the trial point is found to be 

feasible but with poorer objective value, then the acceptation for this point is based on 

probabilistic criterion that determine whether the trial point may bring the system to 

achieve global minimum (Lamberti, 2008). From the analogy of the annealing process 

of a metal, the target value for the objective function is temperature. Firstly, a higher 

temperature is chosen as the trial point. Then the temperature is decrease according to 

the cooling rate as the trials continues. The probability to accept a new trial point will 

eventually decrease to zero as the target value diminished. Thus, the system is 

converged, and the global minimum is achieved. The flowchart of SA is shown in 

Figure 2.3. 
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Figure 2.3: Flowchart of SA Algorithm 

 

 Simulated Annealing has been widely applied in complex engineering 

optimization problems due to its simplicity and ability to find the global optimum 

(Lamberti, 2008). For example, SA algorithm has been used for shape optimization of 

two dimensional structures to determine the best structure that fulfilled the design 

requirements (Sonmez, 2007). The optimization results obtained from SA are said to 

be comparable to those obtained from classical mathematical approaches (Bureerat 

and Limtragool, 2008). The structural optimization of lattice steel transmission towers 

based on SA algorithm was proposed to obtain a structure that use the minimum 

amount of materials to satisfied the design requirements (Couceiro, et al., 2016), 

 The main operator of SA is to generate a new solution through random search 

and this random search act as an explorative search mechanism to prevent the system 

being trapped in local optimal. However, a very high initial solution that has been 
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chosen to perform the optimization process will cause the system to converge very 

slowly in practice due to large number of function evaluations was carried out to find 

the global optimum. This is because there is no crossover operator like GA in SA 

algorithm which can make the system converge faster (Yang, 2014b). Furthermore, 

SA is relatively weak in utilizing the information obtained from current good solution 

found in a space to concentrate on the search of solutions in that local space because 

the acceptance of solutions is carried out by probability criterion (Yang, 2014b). 

Therefore, the slow convergence behaviour of SA causes the computational time 

longer which is not practical in solving real-world optimization problems.  

 

2.2.3 Swarm Intelligence  

Swarm intelligence is a computational intelligence optimization system that inspired 

by the combination of natural and artificial systems. This system consists of many 

individuals in one population to coordinate their activities through exchanging 

information and sharing experiences among the individuals. The combination of 

movements and interactions among the individuals leads to an optimization of the 

activities in the population. Specifically, swarm intelligence simulate the social 

behaviour of animals like fishing schooling, birds flocking and colonies of ants (Cui 

and Gao, 2012). The most popular optimization algorithm that use the principles of 

swarm intelligence are PSO and ACO (Cui and Gao, 2012). 

 

2.2.3.1 Particle Swarm Optimization (PSO)   

PSO is a population based optimization method that introduced by Kennedy and 

Eberhart (1995). PSO algorithm simulates from the behaviour of animal societies that 

have no leader in their group. Usually, a flock of birds which have no leader in their 

group will seek for food source by random or follow one of the members of the group 

that has a nearest position with a food source. Assuming there is only one food source 

and considering at the other birds that are closer to the food source will move towards 

it with the aim of getting closer to the food source early compare to others. Each bird 

in a particular position trying to search for a bird which is in the best position and speed 

towards the best bird using a velocity. Therefore, it involves communication among 

the birds to find a global best position. This process would happen repeatedly until the 

bird found no other better position. Thus, the optimization problems based on PSO 
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algorithm follows the behaviour of animal societies to find the optimal solutions (Rini, 

et al., 2011).  

 A swarm represent the population while a particle represents each member in 

the population (Luh and Lin, 2011). In PSO algorithm, every single particle of a swarm 

represent a possible solutions to the optimization problems (Rini, et al., 2011). Initially, 

each of the particles is randomly generated to form a swarm to travel around the search 

space with an initial position and velocity. The position and velocity are the two basic 

components of PSO algorithm which guide the system to converge towards the optimal 

solution (Agarwal and Vasan, 2016). Each of the particles would find their new 

position and velocity at the end of each iterations. The velocity of each particle at each 

iteration would influence the position of the particles. The new positions discovered 

by the particles are evaluated by the defined objective function to determine its fitness 

value while the velocities direct the particles follow the particle which is closer to 

optimum solution. In the search processes, PSO converges towards the optimum by 

improving the local position of each particle in iteration. This is done by updating the 

positions of the particles based on the best position taken by each of the particle and 

the global best position taken by the entire swarm (Mortazavi and Toğan, 2017). Thus, 

a global optimum solution will be achieved when the particles discovered no newer 

best position in the search space. The flowchart of PSO is illustrated in Figure 2.4. 

Recently, PSO method is applied to optimize the truss structures with minimum 

weight under stress, deflection, and kinematic stability constraints. The results 

obtained using PSO algorithm require less computational time to produce a structure 

with minimum weight (Luh and Lin, 2011). Although PSO is good in engineering 

optimization, it also has some disadvantages. PSO has difficulties in providing a good 

balance between diversification and intensification due to the absent of crossover 

operator (Luh and Lin, 2011). A strongly selective process of global best solution in 

PSO algorithm may lead to premature convergence which is not the interest of 

optimization problems (Luh and Lin, 2011). 
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Figure 2.4: Flowchart of PSO Algorithm 

 

2.2.3.2 Ant Colony Optimization (ACO) 

ACO is an algorithm that simulates the foraging behaviour of real ants to solve 

optimization problems (Mavrovouniotis, et al., 2017).  In real life situation, a colony 

of ants seeks for the shortest or closest food source from their nest by exploiting the 

chemical substance known as pheromone that previously deposited by other ants while 
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walking to and from the food sources. As time goes by, a higher pheromone 

concentration path will consider as the shortest path to the food source and this path is 

more likely to be chosen by the ants to reach the food source. 

 ACO algorithm is an optimization method that adopted the probabilistic search 

by implementing a set of artificial ants where each of the ants represents a possible 

solution to a problem and exchange information to each other via the deposited 

pheromone to find the optimum path. There are two important parameters in ACO 

which is the probability function and evaporation rate. Probability function is a 

function that influenced the ants to choose the path with higher pheromone 

concentration. The probability of choosing the path by ants is proportional to the 

pheromone concentration (Yang, 2014d). Evaporation rate is a rate that evaporate the 

pheromone concentration with time. The advantages of using evaporation rate in ACO 

algorithm is able to prevent being trapped in local optimal (Yang, 2014d). This is 

because if there is no evaporation rate, the pheromone deposited by the first ant will 

be the preferred path due to the attraction of other ants by their pheromone (Yang, 

2014d).  

The optimization process of ACO is begin by initialize the ACO parameters. 

Then, the artificial ants are constructed to search for food sources randomly. By 

applying the probability function and evaporation rate, other ants will follow the path 

based on the pheromone intensity. The amount of pheromone concentration released 

is based on the objective values achieve in the objective function. Therefore, the 

concentration of pheromone is only update on the paths that lead to optimum solution 

which offer more pheromone concentration while diminishing the likelihood of the 

ants of choosing other paths. The updated pheromone matrix is used to generate the 

new path until the termination criteria is met. The flowchart of ACO algorithm is 

shown in Figure 2.5. 

ACO is relatively good in diversification due to the design variables are 

randomly assign to each of the ants instead of searching a neighbourhood around the 

design variables. This allow the algorithm to have more opportunities to explore search 

space in globally manner (Alberdi and Khandelwal, 2015). ACO algorithm is 

successfully used in structural optimization as it is able to generate an optimal seismic 

design of frame structures (Kaveh, et al., 2010). It is also used is optimizing the 

structural topology problem where the problem are describe by mixed continuous 

discrete variables and discontinuous non-convex design space (Kaveh, et al., 2008). 
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Figure 2.5: Flowchart of ACO Algorithm 

 

 Although ACO has proven that it is widely used in optimizing structural 

optimization problems, there are some weakness using ACO. The probability operator 

in ACO is the only operator that perform exploration and exploitation such that ACO 

is more focus on exploration at the early stage and exploitation at the later stage cause 

this algorithm is unable to balance between two in optimization process (Alberdi and 

Khandelwal, 2015). Besides, computational time of ACO in optimizing frame 

structure is very high which is not favourable in real life optimization process (Kaveh 

and Talatahari, 2010). 

 

2.2.4 Harmony Search algorithm (HS) 

HS optimization algorithm is introduced by Geem (2001). This algorithm is neither 

simulating the biological or physical process such as GA and SA. HS is a music-

inspired algorithm with the aim to seek for the best harmony in music. The global 
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optimal searching process in optimization are analogous to the improvisation of music 

from a musician to produce best state of music which is the global optimum solutions 

(Jaberipour and Khorram, 2010). 

 As illustrated in Figure 2.6, several musicians will play any possible range of 

pitch using their own musical instruments to form a harmony vector in the process of 

improvisation of music. The experience of making a good harmony from the possible 

range of pitches will be stored in each of the musician’s memory at each play. The 

harmony state of the music will be enhanced in the next play based on the previous 

experiences of making a good harmony. This is similar to engineering optimization 

problems such that each of the decision variables is chosen initially within possible 

range to form a solution vector. The experience of making a good solution vector from 

the decision variables will be recorded in each of the variable’s memory at one iteration 

and find the best solution vector from the possible range of design variables through 

several iterations (Lee and Geem, 2005).  

 

 

Figure 2.6: Analogy Between Engineering Optimization and Music Improvisation 

 

 There are three rules to link the creation of music to HS optimization method. 

All of the rules are presented in Table 2.1. 
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Table 2.1: Analogous of Improvisation of Music with HS Optimization Method 

HS Components Creation of Music’s 

Rules 

HS Optimization 

Method 

Harmony Memory 

Consideration 

Playing every sound from 

listener memory 

Selecting every value 

from harmony search 

memory 

Pitch Adjustment Playing familiar sound to 

listener memory 

Selecting value near to 

harmony search memory 

Randomization Playing random sound 

from possible sound range 

Selecting random value 

from possible range of 

value 

 

To use HS in optimization process, harmony search parameters such as the size 

of harmony memory (HMS), harmony memory considering rate (HMCR), pitch 

adjusting rate (PAR) and the maximum number of iterations must be defined initially. 

The harmony memory matrix is initialized by randomly select the design variables 

from the design pool. Next, the harmony memory is improved by three parameters in 

HS algorithm which is the HMCR, PAR and randomization to produce an improvised 

harmony memory. In the improvisation process, the new harmony vector that 

generated by improving the values for each decision variables will be evaluated by the 

objective function. The better harmony vector will be stored in the harmony matrix 

while the worst harmony vector will be withdrawn from the harmony matrix. Thus, 

the harmony matrix is updated by including the new harmony vector. The harmony 

matrix will keep updating until the termination criteria is satisfied. The flow chart of 

HS algorithm to illustrate the steps is shown in Figure 2.7. 
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Figure 2.7: Flowchart of HS Algorithm 

 

2.2.4.1 Parametric Study of HS 

Harmony memory consideration in HS ensure the best harmonies will be brought 

forward to the new harmony memory. The exploitation function of harmony memory 

consideration is to choose the fit individual which is similar to GA. Therefore, a 

HMCR is assigned to effectively use this memory (Yang, 2009).  

The second parameter of HS is pitch adjustment. The role of pitch adjustment 

in HS to produce a new memory characteristic is similar to mutation operator in GA 

to prevent the searching process being trapped in local space. Thus, PAR is assigned 

to monitor the degree of diversity of the solutions (Yang, 2014d). 
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PAR and randomization are likely to have similar role where it is functioning 

to diversify the solutions. However, PAR is limited to certain local pitch adjustment 

corresponds to a local search while the use of randomization will bring the system to 

explore globally (Yang, 2014d). The HMCR control the intensification factor in HS 

(Manjarres, et al., 2013). Higher value of HMCR will cause the system to converge 

faster, but the results obtained may not be the global optimum due to the harmonies 

are not explored well. On the other hand, lower value of HMCR will cause the system 

to converge slower due to lack of exploitation process. In summary, it is important that 

the value of parameter has to properly adjusted in order to increase the performance of 

HS in optimization. 

  

2.2.4.2 Application of HS 

The behaviour of HS in balancing between the intensification and diversification is 

depend on the parameters of HS (Manjarres, et al., 2013). Thus, the selection of 

parameter’s value is relatively important for the system to obtain optimum solution. 

Lee, Han and Geem (2011) has demonstrate the effectiveness of the HS in optimizing 

twenty five bar space trusses. Variation of parameter’s value as shown in Figure 2.8 

has been applied in this optimization process to show which parameter’s value can 

give the best optimum result. The optimal results obtained is shown in Figure 2.9. 

 

 

Figure 2.8: The Value of HS Algorithm Parameters Used for Structural Optimization 

(Lee, et al., 2011)



27 

  

 

Figure 2.9: The Optimal Results of Twenty Five Bar Space Truss with Other Optimization Methods (Lee, et al., 2011)
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Based on the optimal result obtained shown in Figure 2.9, the selection of 

parameter’s value in Case 3 give the least structural weight with 484.85 lb. Although 

the selection of HS parameter’s value is not the optimum, however, it is still giving a 

lighter structural weight compare to other optimization methods. Thus, HS is a strong 

optimization method for finding the optimum structure with discrete sizing variables 

(Lee, et al., 2011).  

 In this context, HS algorithm will be used as the optimization method to 

perform topology optimization of truss. HS algorithm is chosen to be used as the 

optimization method due to its simple implementation of HS algorithm (Yang, 2009). 

Comparing to conventional mathematical approach in optimization, HS algorithm 

require lesser mathematical calculation and the quality of solutions will not influenced 

by initial decision of design variables (Lee and Geem, 2005). Besides, HS algorithm 

generate a new harmony vector by considering all the existing vector in harmony 

memory based on HMS, HMCR and PAR. Therefore, this three parameters of HS 

provide flexibility in handling the exploitation and exploration process of the 

algorithm to give a better solution (Lee and Geem, 2005). Harmony memory and pitch 

adjustment make sure that best local solutions are retained while randomization allow 

the system to explore the search space globally. Thus, the combination of harmony 

memory, pitch adjustment and randomization controlled the diversification and 

intensification around the good solutions causes high efficiency of HS algorithm in 

obtaining approximately optimal solutions (Yang, 2009). 

 

2.3 Summary 

The traditional mathematical optimization methods are mostly gradient-based and 

derivative-based. The gradient-based methods allow the system to converge faster, but 

it is inefficient in discontinuous problems. Furthermore, multiple peaks of objective 

function and constraints cause the gradient search method to be difficult and 

ineffective. In addition, the traditional mathematical optimization methods are affected 

by the selection of initial points when there is more than one local optimum for a given 

optimization problem. This causes the optimal result obtained using traditional 

mathematical optimization methods may not be the global optimum. In real world 

situation, the structural optimization problems are mostly discrete and high complexity. 

Therefore, meta-heuristics algorithms is the best optimization tools to solve 
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engineering optimization problems to overcome the computational drawbacks of 

mathematical algorithms (Jaberipour and Khorram, 2010).  

 GA is inspired by biological evolution. Each of the individual in GA is 

represented by a random discrete design variable. The individual in GA is encoded in 

the form of chromosome. Selection, crossover and mutation are the key elements in 

GA to produce new offspring among the population. The generation of new offspring 

follows Darwinian survival of the fittest theory in which the individual with higher 

fitness value will be retained while lower fitness value will be eliminated. The 

selection of two of the existing fitter individuals to generate a new offspring without 

considering every each of the individual in a population will lead GA to converge 

prematurely. 

 SA mimic the annealing process of a metal. In the annealing process, a high 

energy state of a metal is left to cool down slowly at careful control of the temperature 

until the minimum energy is achieved. This annealing process of the metal can be 

simulated to solve optimization problems. There are some disadvantages using SA 

algorithm in optimizing engineering problems. The system is slow in converging 

toward optimum solution due to high initial solution that required large number of 

function evaluations. In addition, SA algorithm is relatively weak in exploitation 

process which cause the computational time longer. 

 Swarm intelligence mimics the social behaviour of animals such as bird 

flocking. The optimization process of using PSO is analogous to a flock of birds seek 

for food sources randomly and find the best food source through communication 

among the flock while ACO is analogous to the foraging behaviour of real ants. The 

drawbacks of using PSO algorithm in optimization problems is that PSO and ACO 

having difficulties in providing a balance between exploration and exploitation process 

which will affect the optimal solution obtained. Besides, the use of strongly selective 

global best solution that speed up the convergence toward the optimum solution will 

cause premature convergence to occur. 

 HS is an optimization method that simulate the musical process. The 

optimization procedures are similar to a musician that search for a perfect state of 

harmony for achieving aesthetic standard of music. The implementation of HS 

algorithm is easier such that the decision of choosing initial values of design variables 

will not influence the quality of the solutions obtained (Yang, 2009). The summary of 

the main features for GA, SA, PSO, ACO and HS are tabulated in Table 2.2. 
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Table 2.2: Main Features of the Optimization Algorithms 

 GA SA PSO ACO HS 

Initial Design Random population Random 

designs 

Random swarm Assigned by probability 

function 

Random harmony 

memory matrix 

Intensification Individual with 

higher fitness have 

mating opportunity  

Better solution 

always accepted 

Best particle’s position 

guides all other 

particles to follow the 

best particle 

Pheromone deposited 

based on the value of 

objective function 

Based on HMCR 

that new HM matrix 

is generated from 

existing HM 

Diversification Crossover and 

mutation operators 

Allow 

acceptance of 

worse design 

Velocity of the 

particles  

Probability function 

that allow worse design 

to be assigned 

HMCR allow 

random design and 

PAR allow 

mutation 

Acceptance  Stronger than current 

individuals  

Better than 

current design 

New best position 

accepted 

Higher pheromone 

concentration than 

current path 

Better than worst 

member is HM 

Termination Max iterations Max iterations Max iterations Max iterations Max iterations 
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All the popular meta-heuristic algorithm mentioned above are widely used in 

solving optimization problems. HS algorithm is a powerful optimization tool due to its 

robustness and effectiveness in generating global optimum result within a reasonable 

time (Geem, et al., 2001). Compared to GA, HS produce a new solution vector after 

considering all the values in the harmony memory matrix which allows HS to achieve 

a better global optimum solution. HS parameters such as randomization is similar to 

exploration process while HMCR and PAR exploit the information toward a good local 

optimum allows the system to perform structural optimization effectively. In view of 

this, HS is selected as the optimization method of truss topology in this study.  
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CHAPTER 3 

 

3 METHODOLOGY  

 

3.1 Introduction 

In this study, the initial layout of a truss structure is initialized using ground structure 

method where the possible connectivity of truss elements among the nodes are initially 

generated. The finite element method is used to perform truss analysis to determine 

element stresses and nodal displacements. Next, Harmony Search (HS) act as 

optimization algorithm that optimize the truss structure in terms of their connectivity 

and element cross-sectional areas with an objective to minimized the weight of truss 

that satisfied the constraints defined by user such as allowable displacement and yield 

stress. 

 

3.2 Ground Structure Method 

In ground structure method, the design domain is divided into a grid of nodal points 

with the union of all potential bars that are interconnected between the nodes (Zhao, 

2014). A suitable ground structure that use for truss topology optimization can be 

determined by referring a graph theory which was introduced by Kaveh and Kalatjari 

(2003) as shown in Figure 3.1. 
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Figure 3.1: Graph Theory (Kaveh and Kalatjari, 2003) 

 

A truss with minimum members as shown in Figure 3.1(a) is known as simple 

graph based ground structure. A truss with all pairs of nodes are connected by single 

member as shown in Figure 3.1(c) is known as complete graph based ground structure.  

A star graph based ground structure as shown in Figure 3.1(b) is a ground structure 

where all the nodes are connected to the neighbouring nodes only. The selection of 

ground structure to perform truss topology optimization is important because this will 

affect the time needed to obtain the optimal structure and constructability of the 

optimal structure. For instance, if there are too many members in ground structure, this 

will increase the complexity of the structural optimization problem and require high 

computational effort which will eventually result in high computational time. Thus, an 

appropriate ground structure must be chosen to perform structural topology 
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optimization so that a practical design of truss structure can be obtained and the amount 

of the computational time can be reduced.  

In this study, a star graph based ground structure is selected to perform truss 

topology optimization. This is because star graph based ground structure provide more 

flexibility in the design of truss topology and the number of members in ground 

structure is not complex as complete graph based ground structure. 

 

3.3 Finite Element Method 

Finite element method was developed initially as matrix method to perform structural 

analysis for truss (Tejani, 2018). It calculates the strength and behaviour of the truss 

structure. A truss element as shown in Figure 3.2 can be considered as a line element 

with simply supported end. The truss bar is connected between two nodes and each 

node has two degree of freedom corresponding to two directions displacement which 

are divided into x and y-direction. Assume an element of a truss length of L, cross-

sectional area, A and modulus of elasticity or known as Young’s modulus, E. The truss 

element is subjected to applied loads and boundary conditions. The equation of finite 

element analysis is represented in Eq. (3.1), where K represents the stiffness matrix; 𝛿 

represents the displacement vector and F represents the force vector. This equation can 

conveniently assemble in matrix form as shown in Eq. (3.2).  

 

 

Figure 3.2: Two Dimensional Truss Element 
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[𝐹] =  [𝐾][𝛿]                                                           (3.1) 
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                           (3.2) 

 

The stress of the truss element is represented as shown in Eq. (3.3). 

 

𝜎 =  
ா

௅
 [−𝑙 − 𝑚  𝑙  𝑚] 
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                                            (3.3) 

 

 By using this finite element method, the primary unknowns are nodal 

displacements. These unknowns can be obtained by multiplication of the inverse of 

the stiffness matrix with the force vector. With the obtained nodal displacement, the 

stress of the truss element can be calculated. In this research, ground structure method 

and restructuring of finite element model are used together to perform a single-stage 

optimization design strategy. 

 

3.4 Optimization Procedure of Truss Topology 

The objective of truss topology optimization is to find the best connectivity between 

the structural members to form a truss structure with minimum weight. Figure 3.3 

shows a flowchart to illustrate the procedure in obtaining an optimal truss structure. A 

brief optimization steps using ground structure method, finite element method and 

Harmony Search (HS) to find the best truss topology and sizing are indicated as below. 
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Figure 3.3: Truss Topology Optimization Flowchart Using HS
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3.4.1 Step One: Define the Ground Structure of the Truss 

Firstly, the design domain is divided into a grid of nodal points by inputting the number 

of truss elements for both x and y axes and the length of each element for respective 

axis. After the nodes are generated, all the nodes are connected with tentative truss 

element to the neighbouring nodes to form star graph based ground structure. The 

material property such as Young’s modulus and the grade of steel are defined in this 

step. Besides, the location of loadings applied and boundary conditions are also 

assigned at this step. 

 

3.4.2 Step Two: Define Structural Optimization Problem and Harmony 

Search’s (HS) Parameters 

The structural optimization problem is defined as in Eq. (3.4), (3.5), (3.6) and (3.7). 

 

𝐹𝑖𝑛𝑑 𝑋 =  {𝑥௜}, 𝑖 = 1, 2, 3 … , 𝑁                                                  (3.4) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡𝑟𝑢𝑠𝑠, 𝑓(𝑋) = ∑ 7850.2 ே
௜ୀଵ 𝑥௜  𝐿௜                          (3.5) 

 

Subjected to: 

 

𝑔ଵ(𝑋) ∶ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠,    𝛿௫ೕ/௬ೕ
 ≤  𝛿௫ೕ/௬ೕ

௠௔௫                     (3.6) 

 

𝑔ଶ(𝑋) ∶ 𝑆𝑡𝑟𝑒𝑠𝑠 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠,    𝜎௜  ≤  𝜎௜
௠௔௫                              (3.7) 

 

where 𝑖 = 1, 2, 3 … , 𝑁; 𝑗 = 1, 2, 3 … , 𝑀 

 

Where, 𝑥௜ , 𝐿௜ , 𝜎௜ stand for cross-sectional area, element length, stress on the element 

‘𝑖’ respectively. 𝛿௫ೕ/௬ೕ
 is the value of nodal displacement of node ‘𝑗’ respectively, 

where x, y indicate x and y axis respectively. Superscripts ‘𝑚𝑎𝑥’ indicate maximum 

allowable limit.  

 

Based on the constant value of 7850.2 from Eq. (3.5), it is obtained from the 

relationship between the weight per unit length, kg/m of truss element and its cross-

sectional area provided by MELEWAR STEEL TUBE SDN. BHD’s product 
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catalogue as shown in APPENDIX A. Figure 3.4 shows a density of 7850.2 kg/m3 that 

used to determine the mass of truss structure. 

 

 

Figure 3.4: Graph of Weight per Unit Length against Cross-Sectional Area 

 

In addition, the HS parameters defined at this step are: Harmony Memory Size 

(HMS), Harmony Memory Considering Rate (HMCR), Pitch Adjusting Rate (PAR), 

and the maximum number of iterations as termination criteria for the system. In this 

study, the value of HMS, HMCR, PAR and maximum number of iterations used to 

perform structural optimization are 20, 0.68, 0.3 and 1000 respectively. 

 

3.4.3 Step Three: Randomly Generate Set of Truss Elements and Check the 

Validity of the Truss Structure 

Once a set of truss elements are generated, the truss is subjected to check on its 

kinematic stability by calculating the degree of freedom (DOF) of the truss as shown 

in Eq. (3.8). 

 

𝐷𝑂𝐹 =  𝑏 + 𝑟 − 2𝑗                                                      (3.8) 
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where 𝑏 = numbers of elements; 

           𝑟 = restricted number of degrees of freedom at support nodes; 

           𝑗 = number of nodes 

 

If the 𝐷𝑂𝐹  is a non-positive value, the truss structure is found to be statically 

indeterminate, the truss structure is consider invalid and will not be used for the truss 

analysis. Besides, the truss structure is also invalid when there is no element connected 

to supports or nodes subjected to applied load. Once a valid truss structure is generated, 

this set of truss elements will proceed to truss analysis. 

 

3.4.4 Step Four: Truss Analysis 

A valid truss structure will be analysed using finite element method. At this step, a 

force vector and global stiffness matrix of the truss are computed. Since truss topology 

optimization involved removing or maintaining the truss element until the best 

connection of structural members is found, this process will cause a global stiffness 

matrix to become singular, meaning that an optimization may fail before reaching the 

optimal solution. Therefore, a significantly small value of 0.000000001 m2 is assigned 

for the cross-sectional value of those removed elements to avoid singularity problem.  

 After the global stiffness matrix and force vector are computed, the unknown 

displacement vector can be determined using Eq. (3.1) to calculate the stresses.  

 

3.4.5 Step Five: Constraints Checking  

In this study, the constraints are set to a value of 10 mm and 235 MPa for nodal 

displacements and yielding stress respectively. If the constraints are satisfied, this set 

of truss elements will be stored in harmony memory as shown in Eq. (3.9) and the 

mass of the truss structure is computed. If any one of the constraint is not satisfied, the 

truss is invalid and step three need to be repeated. Step three to step five is the 

initialization of harmony memory and it is repeated until the harmony memory size is 

achieved.  

 

𝐻𝑎𝑟𝑚𝑜𝑛𝑦 𝑀𝑒𝑚𝑜𝑟𝑦, 𝐻𝑀 =  

⎣
⎢
⎢
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𝑥ଵ  
ଵ      𝑥ଶ

ଵ       ⋯      𝑥ே
ଵ

𝑥ଵ
ଶ      𝑥ଶ

ଶ       ⋯     𝑥ே
ଶ

⋮         ⋮         ⋯        ⋮
𝑥ଵ
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ுெௌ  …  𝑥ே

ுெௌ⎦
⎥
⎥
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                      (3.9) 
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3.4.6 Step Six: Improvisation of Harmony Memory 

A new harmony vector, 𝑥ᇱ =  [𝑥ଵ
ᇱ , 𝑥ଶ

ᇱ , ⋯ 𝑥ே
ᇱ ] is generated to produce a new harmony 

memory based on the Harmony Memory Considering Rate (HMCR), Pitch Adjustment 

Rate (PAR) and randomization. HMCR is the probability that the system will select 

the value store in the harmony memory while (1 - HMCR) is the probability that the 

system will randomly choose the possible range of design variable not limited to the 

value that stored in harmony memory. For instance, the first decision variable that used 

to form a new harmony vector, 𝑥ଵ
ᇱ  is selected from any discrete value in the HM such 

that 𝑥ଵ
ᇱ =  [𝑥ଵ

ଵ, 𝑥ଵ
ଶ, ⋯ , 𝑥ଵ

ுெௌ] based on the defined value of HMCR which is 0.68 or 

randomly select the entire cross-sectional area of the steel section such that 𝑥ଵ
ᇱ ∈  𝑋 

based on the value of (1-HMCR). Other design variables used to form a new harmony 

vector are in the same manner.  

 

𝑥௜
ᇱ  ← ቊ

𝑥௜
ᇱ ∈  ൛𝑥௜

ଵ, 𝑥௜
ଶ, ⋯ , 𝑥௜  

ுெௌൟ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅

𝑥௜
ᇱ ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐻𝑀𝐶𝑅)

ቋ                (3.10) 

 

Any value that chosen from HM for improvisation of HM is then determined by the 

PAR for pitch adjustment as shown in Eq. (3.11). 

 

𝑃𝑖𝑡𝑐ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑥௜
ᇱ  ←  ൜

"𝑌𝑒𝑠" 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝐴𝑅
"𝑁𝑜" 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑃𝐴𝑅)

ൠ   (3.11) 

 

Pitch adjustment is carried out when a value is chosen from HM for improvisation. 

PAR is the probability that the system will take the neighbouring value of the value 

that extract from HM while (1 – PAR) is the probability that the system will not do 

any pitch adjusting on the value that chosen from HM to form a new vector. In this 

study, a defined value of 0.3 for PAR means that the system will select a neighbouring 

value of 30% × HMCR probability while the system will do nothing on the value of 

(100% − 30%) × HMCR probability. If the system decides to do pitch adjustment on 

a value, then the 𝑥௜
ᇱ will be replaced with  𝑥௜(𝐾௧௛) and becomes 

 

𝑥௜
ᇱ  ←  𝑥௜(𝐾௧௛ ± 1)                                                           (3.12) 
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The probability for the system to pick a neighbour value to improvise a new harmony 

𝑥௜
ᇱ  ←  𝑥௜(𝐾௧௛ + 1) or 𝑥௜

ᇱ  ←  𝑥௜(𝐾௧௛ − 1) is the same.  

 If a newly generated harmony vector, 𝑥ᇱ satisfied the constraints specified, it 

will proceed to the following step. Else, the improvisation process is repeated until a 

new harmony vector that satisfied the constraints is found. 

 

3.4.7 Step Seven: Revision of Harmony Memory 

The mass of a newly generated set of truss elements is computed. If the new mass is 

lower than the largest weight that determine from existing harmony memory, this set 

of truss elements that contribute to the largest weight will be eliminated and replace 

with the newly generated set of truss elements. 

 

3.4.8 Step Eight: Check the Termination Criteria 

At this step, the algorithm will check whether the optimization process reach the 

maximum number of iterations. If the termination criteria not satisfied, the 

optimization process will be repeated from step six until the termination criteria is 

satisfied. 

 

3.4.9 Step Nine: Output of Optimal Result 

When the maximum number of iterations is achieved, the best topology and cross-

sectional areas of the truss elements that give minimum weight of the truss structure 

obtained from the harmony memory are generated. 

 

3.5 Model Development 

A star graph based ground structure of six structural members as shown in Figure 3.6 

was generated with the user’s input as shown in Figure 3.5. This truss structure is then 

optimized to obtain the best topology and sizing with the operating steps mentioned 

above. 
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Figure 3.5: User’s Input to Generate a Six Members Truss Structure 

 

 

Figure 3.6: Six Members Ground Structure Truss Before Optimization 

 

 

 

 

20 kN 
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An optimal truss topology of six members ground structure truss as shown in 

Figure 3.7 shows that the optimization procedures mentioned above works well in 

obtaining the best connectivity between the truss elements to produce a truss structure 

with minimum weight. 

 

 

Figure 3.7: Optimal Truss Structure of Six Members Ground Structure After 

Optimization 

 

3.6 Summary 

In summary, a finite element model is first established with all the information given 

such as material properties, location of the load applied and boundary conditions. Next, 

the objective function of the structural optimization problem and all the HS’s 

parameters such as HMS, HMCR, PAR and the numbers of maximum iterations are 

defined to perform the optimization using MATLAB software. In the optimization 

process, it starts with initialization of harmony memory matrix followed by 

improvisation of harmony memory until the termination criteria is satisfied. Finite 

element method is involved in the optimization process to ensure that the improvised 

truss structure satisfy all the constraints. With the proposed methodology in 

performing truss topology optimization, a best truss topology satisfying all the 

constraints i.e., nodal displacements and yielding stress is able to be determined. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION  

 

4.1 Introduction 

The proposed methodology developed by Harmony Search (HS) algorithm is used to 

perform truss topology optimization to generate the best layout of truss structure and 

its cross-sectional area. In addition, the proposed methodology also generate the result 

of nodal displacements and element stresses based on the location and the amount of 

load applied on the ground structure truss.  

The optimal layout of the truss structure and cross-sectional area of the 

structural members generated from HS are then applied in a structural analysis and 

design software which is SCIA Engineer to do the comparison of the results in nodal 

displacements and element stresses.  

In this chapter, the results for eleven elements, sixteen elements and twenty-

one elements ground structure truss that generated from HS are compared with the 

SCIA Engineer to validate the optimal truss structure obtained from the proposed 

methodology. Next, the discussion on accuracy of the results obtained from HS is 

discussed. Lastly, the simulation time for the topology optimization of truss structure 

using the proposed methodology is discussed. 

 

4.2 Validation 

The purpose of validation is to ensure the optimal solution obtained from the proposed 

methodology is feasible and reliable. In this study, the truss topology optimization of 

eleven, sixteen and twenty-one elements ground structure trusses are performed with 

several loading conditions. The validation of the optimal solutions obtained from HS 

will be discussed as below: 

 

4.2.1 Validation of the Eleven Elements Ground Structure Truss 

For the validation of eleven elements ground structure truss, the load is applied at the 

middle top node as highlighted in Figure 4.1 to determine an optimal truss topology. 

The eleven elements ground structure truss subjected to load applied at the middle top 

node is optimized to generate an optimal truss structure containing six elements as 
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shown in Figure 4.2. Figure 4.3 shows the model generated from SCIA Engineer with 

the naming of elements and nodes to provide a clearer presentation of results. The best 

element cross-sectional areas for the optimal truss structure are tabulated in Table 4.1. 

The nodal displacements and element stresses of the optimal structure obtained from 

the proposed methodology and SCIA Engineer are tabulated in Table 4.2 and Table 

4.3 respectively. 

 

 

Figure 4.1: Ground Structure of Eleven Elements Truss 

 

 

Figure 4.2: Optimal Truss Structure of Eleven Elements Truss 
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Figure 4.3: Optimal Truss Structure of Eleven Elements Truss with Naming of Nodes 

and Elements 

 

Table 4.1: The Best Cross-Sectional Area of Optimal Truss Structure for Eleven 

Elements Truss 

Element Area (mm2) Length (mm) Volume (mm3) 

B1 121.00 3000.00 363000.00 

B2 121.00 3000.00 363000.00 

B3 121.00 3000.00 363000.00 

B4 156.00 4242.64 661851.95 

B5 156.00 4242.64 661851.95 

  Total Volume (mm3) 2412703.89 

 

Table 4.2: Nodal Displacements of Optimal Truss Structure for Eleven Elements 

Truss 

Displacement of Nodes 

Node 
HS SCIA Accuracy 

x (mm) y (mm) x (mm) y (mm) x (%) y (%) 

N1 0.0 0.0 0.0 0.0 100.0 100.0 

N2 3.1 -9.9 2.9 -9.4 93.1 94.7 

N3 6.2 0.0 5.9 0.0 95.0 100.0 

N4 3.1 -9.9 2.9 -9.4 93.1 94.7 
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Table 4.3: Element Stresses of Optimal Truss Structure for Eleven Elements Truss 

Elemental Stress 

Element 
HS SCIA 

Accuracy (%) 
Stress (MPa) Stress (MPa) 

B1 206.6 206.2 99.8 

B2 206.6 206.2 99.8 

B3 0.0 0.0 100.0 

B4 -226.6 -226.0 99.7 

B5 -226.6 -226.0 99.7 

 

The best result for optimal truss structure of eleven elements truss with load 

applied at middle top node reported for the respective nodal coordinates are node N1 

(0, 0), node N2 (3, 0), node N3 (6, 0) and node N4 (3, 3) in metre. Based on Table 4.1, 

the total volume of the optimal truss structure is 2412703.89 mm3 which is equivalent 

to 2.41E-3 m3. The weight of the optimal truss structure for eleven elements truss is 

obtained from the product of density which is 7850.2 kg/m3 with the total volume of 

the truss structure which give 18.94 kg. 

Based on Table 4.2 and Table 4.3, the lowest percentage of accuracy for the 

displacement of node and elemental stress are 93.1% and 99.7% respectively. The 

maximum displacement of nodes obtained using the proposed methodology are 9.9 

mm downward for both nodes which are N3 and N4, while for SCIA Engineer is 9.4 

mm. The maximum element stresses obtained using the proposed methodology are 

226.6 MPa in compression for both elements which are B4 and B5 while for SCIA 

Engineer is 226 MPa which is just 0.3% different in value.  

Since SCIA Engineer able to give output by applying the optimal layout of 

truss structure generated from the proposed methodology, this shows that the topology 

obtained from the proposed methodology is feasible. Besides, the accuracy of the 

results obtained using the proposed methodology are above 90% which can be 

considered sufficient enough. Thus, the optimal solution obtained from the proposed 

methodology for eleven elements ground structure truss is validated. 
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4.2.2 Validation of the Sixteen Elements Ground Structure Truss 

For the validation of sixteen elements ground structure truss, there are two load cases 

applied to determine the respective optimal truss topology. The load is applied at the 

second top node as highlighted in Figure 4.4 for the first load case. For the second load 

case, the load is applied at the third top node as highlighted in Figure 4.7. The optimal 

results obtained from the proposed methodology for the sixteen elements ground 

structure truss are presented with first load case followed by second load case. 

 

First load case: 

 

The sixteen elements ground structure truss subjected to first load case is 

optimized to generate an optimal truss structure containing nine elements as shown in 

Figure 4.5. Figure 4.6 shows the model generated from SCIA Engineer with the 

naming of elements and nodes to provide a clearer presentation of results. The best 

element cross-sectional areas for the optimal truss of sixteen elements truss subjected 

to first load case are tabulated in Table 4.4. The nodal displacements and element 

stresses of the optimal structure obtained from the proposed methodology and SCIA 

Engineer are tabulated in Table 4.5 and Table 4.6 respectively. 

 

 

Figure 4.4: Ground Structure of Sixteen Elements Truss Subjected to First Load Case 
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Figure 4.5: Optimal Truss Structure of Sixteen Elements Truss Subjected to First 

Load Case 

 

 

Figure 4.6: Optimal Truss Structure of Sixteen Elements Truss Subjected to First 

Load Case with Naming of Nodes and Elements  
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Table 4.4: The Best Cross-Sectional Areas of Optimal Truss Structure for Sixteen 

Elements Truss Subjected to First Load Case 

Element Area (mm2) Length (mm) Volume (mm3) 

B1 121.00 2000.00 242000.00 

B2 121.00 2000.00 242000.00 

B3 121.00 2000.00 242000.00 

B4 148.00 2000.00 296000.00 

B5 121.00 3000.00 363000.00 

B6 121.00 3000.00 363000.00 

B7 172.00 3605.55 620154.82 

B8 172.00 3605.55 620154.82 

B9 121.00 3605.55 436271.70 

  Total Volume (mm3) 3424581.34 

 

Table 4.5: Nodal Displacements of Optimal Truss Structure for Sixteen Elements 

Truss Subjected to First Load Case 

Displacement of Nodes  

Node 
HS SCIA Accuracy 

x (mm) y (mm) x (mm) y (mm) x (%) y (%) 

N1 0.0 0.0 0.0 0.0 100.0 100.0 

N2 1.8 -5.9 1.7 -5.6 92.0 94.4 

N3 2.8 -4.1 2.6 -3.9 94.1 94.8 

N4 3.7 0.0 3.5 0.0 95.1 100.0 

N5 4.4 -8.0 4.2 -7.6 95.2 95.0 

N6 2.9 -4.1 2.8 -3.9 96.4 94.8 
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Table 4.6: Element Stresses of Optimal Truss Structure for Sixteen Elements Truss 

Subjected to First Load Case 

Elemental Stress  

Element 
HS SCIA 

Accuracy (%) 
Stress (MPa) Stress (MPa) 

B1 183.7 183.3 99.8 

B2 91.8 91.6 99.8 

B3 91.8 91.6 99.8 

B4 -150.1 -150.5 99.8 

B5 -137.7 -137.4 99.8 

B6 0.0 0.0 100.0 

B7 -232.9 -232.2 99.7 

B8 116.5 116.1 99.7 

B9 -165.5 -165.2 99.8 

 

The best result for optimal truss structure of sixteen elements truss subjected 

to first load case reported for the respective nodal coordinates are node N1 (0, 0), node 

N2 (2, 0), node N3 (4, 0), node N4 (6, 0), node N5 (2, 3) and node N6 (4, 3) in metre. 

Based on Table 4.4, the total volume of the optimal truss structure is 3424581.34 mm3 

which is equivalent to 3.42E-3 m3. The weight of the optimal truss structure for sixteen 

elements truss subjected to first load case is obtained from the product of density which 

is 7850.2 kg/m3 with the total volume of the truss structure which give 26.88 kg. 

Based on Table 4.5 and Table 4.6, the lowest percentage of accuracy for the 

displacement of node and elemental stress are 92.0% and 99.7% respectively. The 

maximum displacement of nodes obtained from the proposed methodology is 8.0 mm 

downward at node N5, while for SCIA Engineer is 7.6 mm. The maximum elemental 

stress obtained from the proposed methodology is 232.9 MPa in compression at 

element B7 while for SCIA Engineer is 232.2 MPa which is just 0.3% different in 

value.  

Since SCIA Engineer able to give output by applying the optimal layout of 

truss structure generated from the proposed methodology, this shows that the topology 

obtained from the proposed methodology is feasible. Besides, the accuracy of the 

results obtained from the proposed methodology are above 90% which can be 
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considered sufficient enough. Thus, the optimal solution obtained from the proposed 

methodology for sixteen elements ground structure truss subjected to first load case is 

validated. 

 

Second load case: 

 

The sixteen elements ground structure truss subjected to second load case is 

optimized to generate an optimal truss structure containing nine elements as shown in 

Figure 4.8. Figure 4.9 shows the model generated from SCIA Engineer with the 

naming of elements and nodes to provide a clearer presentation of results. The best 

element cross-sectional areas for optimal truss structure of sixteen elements truss 

subjected to second load case are tabulated in Table 4.7. The nodal displacements and 

element stresses of the optimal structure obtained from the proposed methodology and 

SCIA Engineer are tabulated in Table 4.8 and Table 4.9 respectively. 

 

 

Figure 4.7: Ground Structure of Sixteen Elements Truss Subjected to Second Load 

Case 
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Figure 4.8: Optimal Truss Structure of Sixteen Elements Truss Subjected to Second 

Load Case 

 

 

Figure 4.9: Optimal Truss Structure of Sixteen Elements Truss Subjected to Second 

Load Case with Naming of Nodes and Elements  
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Table 4.7: The Best Cross-Sectional Areas of Optimal Truss Structure for Sixteen 

Elements Truss Subjected to Second Load Case 

Element Area (mm2) Length (mm) Volume (mm3) 

B1 121.00 2000.00 242000.00 

B2 121.00 2000.00 242000.00 

B3 121.00 2000.00 242000.00 

B4 121.00 2000.00 242000.00 

B5 121.00 3000.00 363000.00 

B6 148.00 3000.00 444000.00 

B7 121.00 3605.55 436271.70 

B8 156.00 3605.55 562466.00 

B9 172.00 3605.55 620154.82 

  Total Volume (mm3) 3393892.52 

 

Table 4.8: Nodal Displacements of Optimal Truss Structure for Sixteen Elements 

Truss Subjected to Second Load Case 

Displacement of Nodes  

Node 
HS SCIA Accuracy 

x (mm) y (mm) x (mm) y (mm) x (%) y (%) 

N1 0.0 0.0 0.0 0.0 100.0 100.0 

N2 0.9 -4.2 0.9 -4.0 98.0 94.6 

N3 1.8 -6.4 1.7 -6.1 92.0 95.1 

N4 3.7 0.0 3.5 0.0 95.1 100.0 

N5 0.9 -4.2 0.9 -4.0 95.2 94.6 

N6 -0.9 -8.1 -0.9 -7.7 99.3 94.9 

 

 

 

 

 

 

 



55 

 

  

Table 4.9: Element Stresses of Optimal Truss Structure for Sixteen Elements Truss 

Subjected to Second Load Case 

Elemental Stress  

Element 
HS SCIA 

Accuracy (%) 
Stress (MPa) Stress (MPa) 

B1 91.8 91.6 99.8 

B2 91.8 91.6 99.8 

B3 183.7 183.3 99.8 

B4 -183.7 -183.3 99.8 

B5 0.0 0.0 100.0 

B6 -112.6 -112.9 99.7 

B7 -165.5 -165.2 99.8 

B8 128.4 128.0 99.7 

B9 -232.9 -232.3 99.7 

 

The best result for optimal truss structure of sixteen elements truss subjected 

to second load case reported for the respective nodal coordinates are node N1 (0, 0), 

node N2 (2, 0), node N3 (4, 0), node N4 (6, 0), node N5 (2, 3) and node N6 (4, 3) in 

metre. Based on Table 4.7, the total volume of the optimal truss structure is 

3393892.52 mm3 which is equivalent to 3.39E-3 m3. The weight of the optimal truss 

structure for sixteen elements truss subjected to second load case is obtained from the 

product of density which is 7850.2 kg/m3 with the total volume of the truss structure 

which give 26.64 kg. 

Based on Table 4.8 and Table 4.9, the lowest percentage of accuracy for the 

displacement of node and elemental stress 92.0% and 99.7% respectively. The 

maximum displacement of nodes obtained using the proposed methodology is 8.1 mm 

downward at node N6, while for SCIA Engineer is 7.7 mm. The maximum elemental 

stress obtained from the proposed methodology is 232.9 MPa in compression at 

element B9 while for SCIA Engineer is 232.3 MPa which is just 0.3% different in 

value.  

Since SCIA Engineer able to give output by applying the optimal layout of 

truss structure generated from the proposed methodology, this shows that the topology 

obtained from the proposed methodology is feasible. Besides, the accuracy of the 
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results obtained using the proposed methodology are above 90% which can be 

considered sufficient enough. Thus, the optimal solution obtained from the proposed 

methodology for sixteen elements ground structure truss subjected to second load case 

is validated. 

 

4.2.3 Validation of the Twenty-One Elements Ground Structure Truss 

For the validation of twenty-one elements ground structure truss, there are three load 

cases applied to determine the respective optimal truss topology. In the first load case, 

the load is applied at the middle top node as highlighted in Figure 4.10. For the second 

load case, the load is applied at the second top node as highlighted in Figure 4.13 while 

for the third load case, the load is applied at the fourth top node as highlighted in Figure 

4.16. The optimal results obtained for the twenty-one elements ground structure truss 

are presented with first load case, second load case and third load case. 

 

First load case: 

 

The twenty-one elements ground structure truss subjected to first load case is 

optimized to generate an optimal truss structure containing ten elements as shown in 

Figure 4.11. Figure 4.12 shows the model generated from SCIA Engineer with the 

naming of elements and nodes to provide a clearer presentation of results. The best 

element cross-sectional areas for optimal truss structure of twenty-one elements truss 

subjected to first load case are tabulated in Table 4.10. The nodal displacements and 

element stresses of the optimal structure obtained from the proposed methodology and 

SCIA Engineer are tabulated in Table 4.11 and Table 4.12 respectively. 
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Figure 4.10: Ground Structure of Twenty-One Elements Truss Subjected to First 

Load Case 

 

Figure 4.11: Optimal Truss Structure of Twenty-One Elements Truss Subjected to 

First Load Case 
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Figure 4.12: Optimal Truss Structure of Twenty-One Elements Truss Subjected to 

First Load Case with Naming of Nodes and Elements 

 

Table 4.10: The Best Cross-Sectional Areas of Optimal Truss Structure for Twenty-

One Elements Truss Subjected to First Load Case 

Element Area (mm2) Length (mm) Volume (mm3) 

B1 121.00 2000.00 242000.00 

B2 121.00 2000.00 242000.00 

B3 121.00 2000.00 242000.00 

B4 192.00 2000.00 384000.00 

B5 172.00 3000.00 516000.00 

B6 172.00 3000.00 516000.00 

B7 254.00 3605.55 915810.02 

B8 254.00 3605.55 915810.02 

B9 225.00 3605.55 811249.04 

B10 199.00 3605.55 717504.70 

  Total Volume (mm3) 5502373.79 
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Table 4.11: Nodal Displacements of Optimal Truss Structure for Twenty-One 

Elements Truss Subjected to First Load Case 

Displacement of Nodes  

Node 
HS SCIA Accuracy 

x (mm) y (mm) x (mm) y (mm) x (%) y (%) 

N1 0.0 0.0 0.0 0.0 100.0 100.0 

N2 0.0 -6.5 0.0 -6.2 100.0 95.2 

N3 1.4 -7.7 1.3 -7.4 94.1 95.7 

N4 0.0 0.0 0.0 0.0 100.0 100.0 

N5 2.6 -4.3 2.5 -4.1 94.6 94.6 

N6 1.3 -9.9 1.2 -9.4 95.2 94.7 

N7 -0.5 -3.6 -0.5 -3.4 95.7 94.4 

 

Table 4.12: Element Stresses of Optimal Truss Structure for Twenty-One Elements 

Truss Subjected to First Load Case 

Elemental Stress  

Element 
HS SCIA 

Accuracy (%) 
Stress (MPa) Stress (MPa) 

B1 0.0 0.0 100.0 

B2 137.7 137.4 99.8 

B3 -137.7 -137.4 99.8 

B4 -173.6 -173.9 99.8 

B5 145.3 144.9 99.7 

B6 -145.3 -144.9 99.7 

B7 -118.3 -118.4 99.9 

B8 -118.3 -118.4 99.9 

B9 133.5 133.4 99.9 

B10 -151.0 -150.9 99.9 

 

The best result for optimal truss structure of twenty-one elements truss 

subjected to first load case reported for the respective nodal coordinates are node N1 

(0, 0), node N2 (2, 0), node N3 (4, 0), node N4 (8, 0), node N5 (2, 3), node N6 (4, 3) 

and node N7 (6, 3) in metre. Based on Table 4.10, the total volume of the optimal truss 
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structure is 5502373.79 mm3 which is equivalent to 5.50E-3 m3. The weight of the 

optimal truss structure for twenty-one elements truss subjected to first load case is 

obtained from the product of density which is 7850.2 kg/m3 with the total volume of 

the truss structure which give 43.19 kg. 

Based on Table 4.11 and Table 4.12, the lowest percentage of accuracy for the 

displacement of node and elemental stress are 94.1% and 99.7% respectively. The 

maximum displacement of nodes obtained from the proposed methodology is 9.9 mm 

downward at node N6, while for SCIA Engineer is 9.4 mm. The maximum elemental 

stress obtained from the proposed methodology is 173.6 MPa in compression at 

element B4 while for SCIA Engineer is 173.9 MPa which is just 0.2% different in 

value.  

Since SCIA Engineer able to give output by applying the optimal layout of 

truss structure generated from the proposed methodology, this shows that the topology 

obtained from the proposed methodology is feasible. Besides, the accuracy of the 

results obtained from the proposed methodology are above 90% which can be 

considered sufficient enough. Thus, the optimal solution obtained from the proposed 

methodology for twenty-one elements ground structure truss subjected to first load 

case is validated. 

 

Second load case: 

 

The twenty-one elements ground structure truss subjected to second load case 

is optimized to generate an optimal truss structure containing ten elements as shown 

in Figure 4.14. Figure 4.15 shows the model generated from SCIA Engineer with the 

naming of elements and nodes to provide a clearer presentation of results. The best 

element cross-sectional areas for twenty-one elements truss subjected to second load 

case are tabulated in Table 4.13. The nodal displacements and element stresses of the 

optimal structure obtained from the proposed methodologies and SCIA Engineer are 

tabulated in Table 4.14 and Table 4.15 respectively. 
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Figure 4.13: Ground Structure of Twenty-One Elements Truss Subjected to Second 

Load Case  

 

 

Figure 4.14: Optimal Truss Structure of Twenty-One Elements Truss Subjected to 

Second Load Case 
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Figure 4.15: Optimal Truss Structure of Twenty-One Elements Truss Subjected to 

Second Load Case with Naming of Nodes and Elements 

 

Table 4.13: The Best Cross-Sectional Areas of Optimal Truss Structure for Twenty-

One Elements Truss Subjected to Second Load Case 

Element Area (mm2) Length (mm) Volume (mm3) 

B1 121.00 2000.00 242000.00 

B2 121.00 2000.00 242000.00 

B3 121.00 2000.00 242000.00 

B4 121.00 2000.00 242000.00 

B5 121.00 3000.00 363000.00 

B6 121.00 3000.00 363000.00 

B7 199.00 3605.55 717504.70 

B8 121.00 3605.55 436271.70 

B9 121.00 3605.55 436271.70 

B10 121.00 3605.55 436271.70 

  Total Volume (mm3) 3720319.82 
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Table 4.14: Nodal Displacements of Optimal Truss Structure for Twenty-One 

Elements Truss Subjected to Second Load Case 

Displacement of Nodes  

Node 
HS SCIA Accuracy 

x (mm) y (mm) x (mm) y (mm) x (%) y (%) 

N1 0.0 0.0 0.0 0.0 100.0 100.0 

N2 1.4 -7.5 1.3 -7.2 94.1 95.4 

N3 2.8 -5.6 2.6 -5.4 94.1 95.7 

N4 0.0 0.0 0.0 0.0 100.0 100.0 

N5 3.9 -7.5 3.7 -7.2 93.5 95.4 

N6 2.6 -5.6 2.4 -5.4 93.2 95.7 

N7 1.2 -1.9 1.1 -1.8 92.2 94.5 

 

Table 4.15: Element Stresses of Optimal Truss Structure for Twenty-One Elements 

Truss Subjected to Second Load Case 

Elemental Stress  

Element 
HS SCIA 

Accuracy (%) 
Stress (MPa) Stress (MPa) 

B1 137.7 137.4 99.8 

B2 137.7 137.4 99.8 

B3 -137.7 -137.4 99.8 

B4 -137.7 -137.4 99.8 

B5 0.0 0.0 100.0 

B6 0.0 0.0 100.0 

B7 -226.5 -226.3 99.9 

B8 -124.2 -123.9 99.8 

B9 124.2 123.9 99.8 

B10 -124.2 -123.9 99.8 

 

The best result for optimal truss structure of twenty-one elements truss 

subjected to second load case reported for the respective nodal coordinates are node 

N1 (0, 0), node N2 (2, 0), node N3 (4, 0), node N4 (8, 0), node N5 (2, 3), node N6 (4, 

3) and node N7 (6, 3) in metre. Based on Table 4.13, the total volume of the optimal 
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truss structure is 3720319.82 mm3 which is equivalent to 3.72E-3 m3. The weight of 

the optimal truss structure for twenty-one elements truss subjected to second load case 

is obtained from the product of density which is 7850.2 kg/m3 with the total volume 

of the truss structure which give 29.21 kg. 

Based on Table 4.14 and Table 4.15, the lowest percentage of accuracy for the 

displacement of node and elemental stress are 92.2% and 99.8% respectively. The 

maximum displacement of nodes obtained from the proposed methodology are 7.5 mm 

downward at both nodes which are N2 and N5, while for SCIA Engineer is 7.2 mm. 

The maximum elemental stress obtained from the proposed methodology is 226.5 MPa 

in compression at element B7 while for SCIA Engineer is 226.3 MPa which is just 0.1% 

different in value.  

Since SCIA Engineer able to give output by applying the optimal layout of 

truss structure generated from the proposed methodology, this shows that the topology 

obtained from the proposed methodology is feasible. Besides, the accuracy of the 

results obtained using the proposed methodology are above 90% which can be 

considered sufficient enough. Thus, the optimal solution obtained from the proposed 

methodology for twenty-one elements ground structure truss subjected to second load 

case is validated. 

 

Third load case: 

 

The twenty-one elements ground structure truss subjected to third load case is 

optimized to generate an optimal truss structure containing ten elements as shown in 

Figure 4.17. Figure 4.18 shows the model generated from SCIA Engineer with the 

naming of elements and nodes to provide a clearer presentation of results. The best 

element cross-sectional areas for twenty-one elements truss subjected to third load case 

are tabulated in Table 4.16. The nodal displacements and element stresses of the 

optimal structure obtained from the proposed methodology and SCIA Engineer are 

tabulated in Table 4.17 and Table 4.18 respectively. 
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Figure 4.16: Ground Structure of Twenty-One Elements Truss Subjected to Third 

Load Case 

 

 

Figure 4.17: Optimal Truss Structure of Twenty-One Elements Truss Subjected to 

Third Load Case 
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Figure 4.18: Optimal Truss Structure of Twenty-One Elements Truss Subjected to 

Third Load Case with Naming of Nodes and Elements  

 

Table 4.16: The Best Cross-Sectional Areas of Optimal Truss Structure for Twenty-

One Elements Truss Subjected to Third Load Case 

Element Area (mm2) Length (mm) Volume (mm3) 

B1 121.00 2000.00 242000.00 

B2 121.00 2000.00 242000.00 

B3 121.00 2000.00 242000.00 

B4 121.00 2000.00 242000.00 

B5 121.00 3000.00 363000.00 

B6 121.00 3000.00 363000.00 

B7 121.00 3605.55 436271.70 

B8 121.00 3605.55 436271.70 

B9 121.00 3605.55 436271.70 

B10 199.00 3605.55 717504.70 

  Total Volume (mm3) 3720319.82 
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Table 4.17: Nodal Displacements of Optimal Truss Structure for Twenty-One 

Elements Truss Subjected to Third Load Case 

Displacement of Nodes  

Node 
HS SCIA Accuracy 

x (mm) y (mm) x (mm) y (mm) x (%) y (%) 

N1 0.0 0.0 0.0 0.0 100.0 100.0 

N2 -2.8 -5.6 -2.6 -5.4 94.1 95.7 

N3 -1.4 -7.5 -1.3 -7.2 94.1 95.4 

N4 0.0 0.0 0.0 0.0 100.0 100.0 

N5 -1.2 -1.9 -1.1 -1.8 92.2 94.5 

N6 -2.6 -5.6 -2.4 -5.4 93.2 95.7 

N7 -3.9 -7.5 -3.7 -7.2 93.5 95.4 

 

Table 4.18: Element Stresses of Optimal Truss Structure for Twenty-One Elements 

Truss Subjected to Third Load Case 

Elemental Stress  

Element 
HS SCIA 

Accuracy (%) 
Stress (MPa) Stress (MPa) 

B1 137.7 137.4 99.8 

B2 137.7 137.4 99.8 

B3 -137.7 -137.4 99.8 

B4 -137.7 -137.4 99.8 

B5 0.0 0.0 100.0 

B6 0.0 0.0 100.0 

B7 -124.2 -123.9 99.8 

B8 124.2 123.9 99.8 

B9 -124.2 -123.9 99.8 

B10 -226.5 -226.3 99.9 

 

The best result for optimal truss structure of twenty-one elements truss 

subjected to third load case reported for the respective nodal coordinates are node N1 

(0, 0), node N2 (4, 0), node N3 (6, 0), node N4 (8, 0), node N5 (2, 3), node N6 (4, 3) 

and node N7 (6, 3) in metre. Based on Table 4.16, the total volume of the optimal truss 
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structure is 3720319.82 mm3 which is equivalent to 3.72E-3 m3. The weight of the 

optimal truss structure for twenty-one elements truss subjected to third load case is 

obtained from the product of density which is 7850.2 kg/m3 with the total volume of 

the truss structure which give 29.21 kg. 

Based on Table 4.17 and Table 4.18, the lowest percentage of accuracy for the 

displacement of node and elemental stress are 92.2% and 99.8% respectively. The 

maximum displacement of nodes obtained from the proposed methodology are 7.5 mm 

downward at both nodes which are N3 and N7, while for SCIA Engineer is 7.2 mm. 

The maximum elemental stress obtained from the proposed methodology is 226.5 MPa 

in compression at element B10 while for SCIA Engineer is 226.3 MPa which is just 

0.1% different in value.  

Since SCIA Engineer able to give output by applying the optimal layout of 

truss structure generated from the proposed methodology, this shows that the topology 

obtained from the proposed methodology is feasible. Besides, the accuracy of the 

results obtained using the proposed methodology are above 90% which can be 

considered sufficient enough. Thus, the optimal solution obtained from the proposed 

methodology for twenty-one elements ground structure truss subjected to third load 

case is validated. 

 

4.3 Discrepancy of the Results 

The nodal displacements and element stresses obtained using the proposed 

methodology has minor discrepancies as compared to the output generated by SCIA 

Engineer. This is because a very small value of 0.001 mm2 is assigned for the cross-

sectional area of those removed elements to avoid any singularity problem in the 

optimization process.  

According to the equation of finite element analysis as shown in Eq. (3.2), the 

value of the stiffness matrix is affected by the cross-sectional area of the elements by 

assuming the Young’s modulus of steel and length of the elements are constant. When 

an element is removed in the process of topology optimization, the cross-sectional area 

of the removed element supposed to has an area of 0.00 mm2. However, the formation 

of the stiffness matrix in this study is formed by assigning the removed element with 

an area of 0.001 mm2 instead of 0.00 mm2.  
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A small changes made in the value of the cross-sectional area will give different 

value of the stiffness matrix. Thus, it affects the result obtained from the truss analysis. 

Although a relatively small value of area is assigned to those removed element, the 

accuracy of the results obtained are more than 90% which indicate that the results 

obtained using the proposed methodology are still acceptable.   

 

4.4 Simulation Time  

The time taken to obtain the optimal solution for eleven, sixteen and twenty-one 

ground structure trusses using the proposed methodology are recorded and tabulated 

in Table 4.19, Table 4.20, and Table 4.21 respectively. Figure 4.19 shows the average 

time taken for the proposed methodology to obtain the optimal solution. 

 

Table 4.19: Simulation Time for Optimization of Eleven Elements Ground Structure 

Truss 

Ground Structure Truss Time (s) 

Eleven Elements  37.55 

Average Time Taken 37.55 

 

Table 4.20: Simulation Time for Optimization of Sixteen Elements Ground Structure 

Truss 

Ground Structure Truss Time (s) 

Sixteen Elements (First Load Case) 473.30 

Sixteen Elements (Second Load Case) 450.14 

Average Time Taken 461.72 

 

Table 4.21: Simulation Time for Optimization of Twenty-One Elements Ground 

Structure Truss 

Ground Structure Truss Time (s) 

Twenty-One Elements (First Load Case) 1653.80 

Twenty-One Elements (Second Load Case) 2455.50 

Twenty-One Elements (Third Load Case) 2287.40 

Average Time Taken 2132.23 
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Figure 4.19: Bar Chart of Average Time Taken for Respective Ground Structure to 

Find a Best Optimum Solution 

 

 Based on Figure 4.19, the average time taken for the eleven elements, sixteen 

elements and twenty-one elements ground structure truss are 37.55 s, 461.72 s and 

2132.23 s respectively. The time taken needed to find an optimal sizing and 

connectivity between the structural member increases when the number of design 

variable increases. This is because the increase in the number of design variables 

resulting more calculations needed to perform in the truss analysis which eventually 

lead into longer time taken to obtain an optimal solution.  

Besides, when the number of design variables increase, the chances to generate 

failed topologies in the process of optimization is higher. The generation of failed 

topology will cause the optimization process keep looping until a valid topology is 

obtained. This looping process results in addition of time to seek an optimal solution 

which lead the time taken become longer. 

 Thus, increase in the number of design variables will lead the optimization 

process required more time to obtain an optimal solution due to more calculations is 

performed and higher chances of failed topology generation. 

 

4.5 Summary 

The results obtained using the proposed methodology developed by HS algorithm for 

eleven elements, sixteen elements and twenty-one elements ground structure truss are 
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validated by comparing the results generated from HS with SCIA Engineer. The 

percentage accuracy of the results obtained are above 90%. 

 The difference between the results obtained from the proposed methodology 

with SCIA Engineer is due to the assignation of a relatively small value of area to those 

removed element to avoid any singularity problem occur in matrix calculations. 

 The average simulation time for the optimization of eleven elements, sixteen 

elements and twenty-one elements ground structure truss are 37.55 s, 461.72 s and 

2132.23 s respectively. Increase in the number of design variables will cause the 

simulation time become longer due to more calculations are needed to perform in truss 

analysis and the chances to generate failed topologies in the process of optimization is 

high. As a summary, the optimal results obtained in this study are summarised and 

tabulated in Table 4.22. 
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Table 4.22: The Optimal Results Obtained for Eleven Elements, Sixteen Elements and Twenty-One Elements Ground Structure Truss 

Ground Structure Truss Weight (kg) Time (s) 
No. of Optimal 

Connectivity 

No. of Redundant 

Elements 

No. of Redundant 

Joints 

Eleven Elements 18.94 37.55 5 6 2 

Sixteen Elements (First Load Case) 26.88 473.30 9 7 2 

Sixteen Elements (Second Load Case) 26.64 450.14 9 7 2 

Twenty-One Elements (First Load Case) 43.19 1653.80 10 11 3 

Twenty-One Elements (Second Load Case) 29.21 2455.50 10 11 3 

Twenty-One Elements (Third Load Case) 29.21 2287.40 10 11 3 
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATION 

 

5.1 General Conclusion of Research Work 

Harmony Search (HS) is a music-inspired algorithm that perform optimization 

procedures similar to a musician seeking for a best state of harmony for achieving best 

state of harmony. Easier implementation, strong exploration and exploitation abilities 

of HS allow this algorithm to perform structural optimization effectively. Thus, HS is 

proposed as an optimization method to perform truss topology optimization in this 

study. 

A single-stage simultaneous topology and sizing optimization approach is used 

in this study. Topology optimization problems of trusses with eleven elements, sixteen 

elements and twenty-one elements with several load conditions subjected to 

constraints for nodal displacements and element stresses are demonstrated using the 

proposed methodology. The best results generated from the proposed methodology 

developed by HS algorithm are compared with the SCIA Engineer software for 

validation purpose. 

Based on the results obtained from the proposed methodology, the best weight 

for the eleven elements ground structure truss is 18.94 kg. The best weight for the 

sixteen elements ground structure truss subjected to first load case is 26.88 kg while 

for second load case is 26.64 kg. For the twenty-one elements ground structure truss, 

the best weight obtained are 43.19 kg, 29.21 kg and 29.21 kg for the truss structure 

subjected to first load case, second load case and third load case respectively. The 

overall accuracy of the results obtained from the proposed methodology for the truss 

topology optimization problems are 96.25% and 99.82% for displacement of nodes 

and element stresses respectively.  

All the optimal solutions obtained from the proposed methodology are 

validated to ensure the solutions obtained are feasible and fulfilled all the design 

requirements with sufficient accuracy. The proposed methodology able to solve truss 

topology optimization problems by obtaining the optimal joints connectivity between 

the structural members to produce a truss structure with minimum weight. By using 
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this approach, it is also able to identify redundant truss elements and joints. Thus, the 

aim and objectives of this study are achieved.  

 

5.2 Recommendations for Future Work 

The proposed approach in this study can be extended to investigate on the sizing, shape 

and topology optimization of truss structures for multiple objectives constrained 

optimization problems and explore the effectiveness of this approach in various 

engineering optimization problems.  

 Besides that, the performance evaluation of proposed approach involves in 

wider range of problems such as complicated truss frames, perform analysis in three 

dimensional and real-world complex engineering problems with large number of 

objectives and constraints would be a possible direction for future work. This future 

work able to determine its robustness and effectiveness in engineering applications.  

 The development of solutions to control the number of failed topologies 

generation is also a possible future study direction. This is because the generation of 

failed topology does not provide any design solutions and it will constitute complexity 

in the process of optimization leading the topology optimization process become 

inefficient. By developing solutions to control failed topologies generation, this 

provide opportunity for the proposed approach to solve large scale of real-world 

topology optimization problems efficiently and effectively. 
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