

EDUCATIONAL SIMULATOR

WITH

REALTIME DATABASE

BY

TOK ZHI SUNG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER ENGINEERING (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JANUARY 2019

ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

iii

EDUCATIONAL SIMULATOR

WITH

REALTIME DATABASE

BY

TOK ZHI SUNG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER ENGINEERING (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JANUARY 2019

iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “EDUCATIONAL SIMULATOR WITH

REALTIME DATABASE” is my own work except as cited in the references. The

report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

v

ACKNOWLEDGEMENTS

I would like to express my very great appreciation to Dr. Chang Jing Jing for her

valuable and constructive suggestions during the planning and development of this

project. This is a completely new field in my research. I learned a lot under her

guidance. Her willingness to give her time so generously has been very much

appreciated.

Finally, I wish to thank my parents and my family for their love, support and continuous

encouragement throughout my study.

vi

ABSTRACT

A heat exchanger is a device used to transfer heat from one medium to another. It is

widely used in different fields. Air conditioning is the most common example of

everyday life. Experiments on heat exchangers have been conducted by engineering

students. However, the time or cost of using this equipment is high. Therefore, people

are looking for multimedia software to replace this teaching equipment, especially

SOLTEQ, which is the manufacturer of engineering education teaching equipment. In

response to the company's needs, the purpose of this project is to create a simulator for

the heat exchanger.

The Unity game engine and Google Firebase are the main tools for creating this

simulator. The Unity game engine is a tool for creating own 3D objects. The properties

of objects created in Unity are customizable. Firebase can be imported into the Unity

project to bring more functionality. Therefore, the merger of Unity and Firebase was

done in this project and produced the final product - a heat exchanger simulator with

realtime database.

vii

TABLE OF CONTENTS

FRONT COVER i

REPORT STATUS DECLARATION FORM ii

TITLE PAGE iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii-ix

LIST OF FIGURES x-xii

LIST OF TABLES xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION

1.1 Problem Statement and Motivation

1.1.1 Problem with Existing Heat Exchanger Unit 1

1.1.2 The Use of Database to Record Experimental Data 1

1.1.3 The Motivation for Creating a Simulator 2

1.2 Project Scope 2-3

1.3 Project Objectives 3

1.4 Impact, Significance and Contribution 4

1.5 Background Information 4-5

CHAPTER 2 LITERATURE REVIEW

2.1 Heat Exchanger System 6-7

2.2 An Overview of Heat Exchanger Modelling 7-8

2.3 The Development of Mathematical Model for Heat Exchanger

System

8-10

2.4 An Overview of Firebase 10-11

viii

CHAPTER 3 SYSTEM DESIGN

3.1 Design Specifications

3.1.1 The Specification of the Heat Exchanger 12-13

3.1.2 Methodologies and General Work Procedures 13

3.1.3 Tools to Use 13

3.2 Task Partitioning

3.2.1 Planning of the Task Partitioning 14

3.2.2 The Requirements of This Project 15

3.3 System Design

3.3.1 The Setup of the Firebase Realtime Database 16-18

3.3.2 Unity Editor Setup 19-20

3.3.3 Scene Creation

3.3.3.1 Start Menu Scene 21-25

3.3.3.2 History Scene 25-29

3.3.4 The Explanation of the C# Scripts

3.3.4.1 The “Menu” Script 30-31

3.3.4.2 The “HistoryObject” Script 32-33

3.3.4.3 The “RetrieveHistory” Script 33-34

3.3.4.4 The “DatabaseHandler” Script 35-36

3.3.5 The Structure of Data in the Firebase 37

3.3.6 System Flowchart

3.3.6.1 Start Menu Scene 38

3.3.6.2 History Scene 39

3.3.6.3 Setting Menu 40

ix

CHAPTER 4 VERIFICATION

4.1 Methodology and Tools 41

4.2 Requirements 41

4.3 Verification Plan 42

4.4 Implementation and Testing 43-46

CHAPTER 5 IMPLEMENTATION ISSUES AND CHALLENGES 47

CHAPTER 6 CONCLUSION 48

BIBLIOGRAPHY 49-50

APPENDIX

x

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Basic working principle of a heat exchanger. 6

Figure 2.3.1 (a) Shell-and-tube heat exchanger, (b) breaking into

multiple elements.

9

Figure 3.1.1 The physical unit of the HE104-4 shell-and-tube heat

exchanger.

12

Figure 3.2.1 The relationship of scenes in the simulation program. 14

Figure 3.3.1(a) The project “FinalYearProject” was created in Firebase

Console.

16

Figure 3.3.1(b) The Unity icon was clicked to launch the setup

workflow.

16

Figure 3.3.1(c) The Unity project was registered with Firebase in step 1,

the configuration files and the Firebase SDK were

downloaded in the steps 2 and 3.

17

Figure 3.3.1(d) The “test mode” was selected to setup database. 18

Figure 3.3.1(e) The default database was changed to the Realtime

Database.

18

Figure 3.3.2(a) The player settings were configured in the Unity editor. 19

Figure 3.3.2(b) The Firebase configuration files were moved to the

Unity project.

19

Figure 3.3.2(c) The Firebase Database SDK was unzipped and the

“FirebaseDatabase” was imported to the Unity project.

20

Figure 3.3.3 A folder named “Scenes” was created to store the scene

objects.

20

Figure 3.3.3.1(a) The scene was set to a 2D interface. 21

Figure 3.3.3.1(b) The children of Canvas (left) and the C# script named

“Menu” was added as a component (right).

21

Figure 3.3.3.1(c) The image’s texture type was changed to Sprite. 21

xi

Figure 3.3.3.1(d) The hierarchy of GameObjects in MainMenu. 22

Figure 3.3.3.1(e) The field of “StartButton” that needed to be configured. 22

Figure 3.3.3.1(f) The screenshot of “MainMenu”. 23

Figure 3.3.3.1(g) The hierarchy of children in “SettingMenu”. 23

Figure 3.3.3.1(h) “Vertical Layout Group” component was added to

“SettingMenu”.

23

Figure 3.3.3.1(i) The children of “Resolution”, “Graphics” and

“Fullscreen”.

24

Figure 3.3.3.1(j) The Inspector Window of “GraphicsDropdown”. 24

Figure 3.3.3.1(k) The screenshot of the settings menu. 25

Figure 3.3.3.2(a) The UI elements in Canvas. 25

Figure 3.3.3.2(b) The properties of “ExitButton” to be set. 26

Figure 3.3.3.2(c) The children of “HistoryPanel”. 26

Figure 3.3.3.2(d) The screenshot of “HistoryPanel”. 27

Figure 3.3.3.2(e) The “Header” object and “Prefab_list” asset had similar

children.

27

Figure 3.3.3.2(f) The “Prefab_List” asset was successfully created. 27

Figure 3.3.3.2(g) The components that newly added to “Content”. 28

Figure 3.3.3.2(h) The different parts of “DetailsPanel”. 28

Figure 3.3.3.2(i) The screenshot of the History Scene. 29

Figure 3.3.4.1 The UML notation of “Menu” script. 30

Figure 3.3.4.2 The UML notation of the “HistoryObject” script. 32

Figure 3.3.4.3 The UML notation of the “RetrieveHistory” script. 33

Figure 3.3.4.4 The UML notation of the “DatabaseHandler” script. 35

Figure 3.3.5 The Structure of Data in the Firebase. 37

Figure 3.3.6.1 The flowchart of the Start Menu Scene. 38

xii

Figure 3.3.6.2 The flowchart of the History Scene. 39

Figure 3.3.6.3 The flowchart of setting menu in the Start Menu Scene. 40

Figure 4.4.1 The start menu can work. 43

Figure 4.4.2 The data can be uploaded and well structured. 44

Figure 4.4.3 The History Scene can work. 45

Figure 4.4.4 The simulation can save as text file in local storage. 46

xiii

LIST OF TABLES

Table Number Title Page

Table 3.1.3 The tools used in the development. 13

Table 4.1 The items used for the verification of the final product. 41

Table 4.2 The requirements for the display device. 41

xiv

LIST OF ABBREVIATIONS

SDK Software Development Kit

IT Information Technology

2D Two-Dimensional space

3D Three-Dimensional space

NoSQL Non-Structured Query Language

API Application Programming Interface

UID Unique user Identifier

UI User Interface

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

UML Unified Modelling Language

URL Uniform Resource Locator

JSON JavaScript Object Notation

CHAPTER 1: INTRODUCTION

1
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

1.1 Problem Statement and Motivation

1.1.1 Problem with Existing Heat Exchanger Unit

In engineering education, the heat exchanger unit is a useful teaching equipment

for engineering students to learn and investigate the fundamental principles of heat

transfer. However, this equipment is not only huge in size but also extremely expensive

in cost. Many colleges or universities found it is not affordable to purchase such

equipment just for educational purposes only. They also found that such equipment is

not very efficient to use because it typically takes a lot of time to set up before one can

use it. In addition, there are only a few students can use it to carry out the experiment

in one time. As a result, people are looking forward to the solution such as an alternative

way to substitute this equipment.

1.1.2 The Use of Database to Record Experimental Data

During the experiment, students usually need to collect the data for further

analysis. However, it is inefficient to record down all the data on the paper, especially

for the dynamic system since the data is varied from time to time. Data analysis will

become difficult and complicated when there is too much data. Rather than recording

the data on paper, it is better to store all the data into a computer. With this idea, the

database is used as a tool to store the data, which can provide an effective way for

analysis and bring advantages. However, creating a database is cumbersome and

difficult work. It needs a lot of effort to develop it. Fortunately, with the presence of

Firebase (cloud database found in September 2011), it reduces the database

development workload. However, there are limited resources to practice or refer to

since it is a new technology in the market that merges with Unity. The first Unity

Firebase SDK was released on November 7, 2016.

CHAPTER 1: INTRODUCTION

2
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.1.3 The Motivation for Creating a Simulator

In the industrial world, computer simulations are often used to conduct

dangerous or impractical experiments in the real world because it is not only an

alternative way to study the real-world problems in a safe environment but also a

convenient way to reduce the cost and time in practice, thereby improving the efficiency

of experiments. Thus, a heat exchanger simulator will be created in this project. It aims

to help engineering students or industrial operators to equip up the knowledge of heat

transfer without the need to operate with real equipment.

1.2 Project Scope

At the end of this project, an educational simulator with real-time database for

the heat exchanger system will be created. The followings are the scopes of this project:

 SOLTEQ shell-and-tube heat exchanger will be used as the model

In this project, the model of heat exchanger used is model HE104-4, which is a

shell-and-tube heat exchanger unit produced by the SOLTEQ Company. The

company provides specifications and details of the heat exchanger, which will be

used as a reference for developing the simulator.

 The mathematical model is adapted from the existing model

When modelling the heat exchanger system, the scope involved can be expanded

indefinitely to cover as many situations as possible in order to approximate the real

model in the physical environment. However, to consider all the possible situation

is impractical and it is not in the field of information technology (IT). Hence, this

project will directly use the modelling technique proposed by other researchers

from heat transfer engineering (Daniel J. Correa & Jacinto L. Marchetti),

eliminating the need to create own mathematical model for the heat exchanger

system.

 The Firebase real-time database is used

Firebase offers two cloud-based databases: Real-time Database and Cloud

Firestore, both of them are client-accessible database solutions that support real-

CHAPTER 1: INTRODUCTION

3
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

time data syncing. Currently, the latter is still in a beta version. In order to avoid

mistakes, it is better to choose Firebase’s original database (the former – Real-time

Database).

1.3 Project Objectives

The objective of this project is mainly concerned with 2 points:

 To develop a mathematical model for a heat exchanger simulator

It is difficult to form a mathematical model for the heat exchanger system because

of its high degree of complexity. One needs much effort and skill to accomplish,

deal with, or understand it. Usually, the mathematical model of a heat exchanger

system formed by most of the researchers is complex partial differential equations.

It is not easy to encode such equations into a programming language that does not

have multi-paradigm numerical computing capabilities. Therefore, this project will

figure out the simplified equations so as to facilitate the calculations using the C#

programming language and finally introduce them into the Unity simulation.

 To incorporate a real-time database to the simulator for ease of data accessing

As mentioned earlier, the students usually need to record all the data during the

experiment. A real-time database would boost the recording of experiment data,

thus making the accessing of data (such as store, retrieve, move or manipulate

stored data) easier and facilitating the further analysis.

CHAPTER 1: INTRODUCTION

4
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Impact, Significance and Contribution

In order to control the behaviour of "GameObjects" in Unity (where the

GameObject is a heat exchanger), the script must be created and attached to the object.

However, it is worth noting that the behaviour of heat exchangers is often described as

a complex partial differential equation, which is hard to calculate in C#. Therefore, the

first contribution of the project is to convert the mathematical model in partial

differential equations into a more suitable form for scripting that can be implemented

in C#.

Apart from that, the next contribution is to explore the method of using Firebase

in Unity. Dating back to 7th November 2016, the first version of Firebase Unity SDK

was released. Since it is a new form of cloud database for Unity game developer, this

project will explore the potential of firebase and use it to enhance the simulator.

1.5 Background Information

First, what is a heat exchanger? Just like its name tells, it is a process equipment

dedicated for transferring heat from one element to another in order to heat up the

system or cool it down. They have been widely used in various fields such as homes,

workplaces, and especially industrial fields. In most of cases, cooling is its primary

function so as to avoid equipment from overheating which may damage or even destroy

the equipment. In many industrial processes, it is required to keep a certain degree of

temperature to ensure the functionality of a system. Otherwise, the stability of the

system will be affected and turn down the performance of the system directly or

indirectly. For instance, a heat exchanger is utilized to keep synthetic compounds, gas,

hardware and different substances inside a safe working temperature so it won't result

in desperate outcomes. Therefore, it is very important to study and develop a well-

performed and satisfactory heat exchanger in the industrial field. Simulators are always

used as the tools for studying heat exchanger.

Second, what is a computer simulation? Computer simulation is different from

the genuine experimental method, which is generally used to investigate the working

state of the system and has incredible restrictions. It can do the conceivable,

conservative and advantageous constrained test before the establishment of the genuine

system. Computer simulation is used to carry out experiments which are impossible or

CHAPTER 1: INTRODUCTION

5
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

impractical. It has become another way to reduce costs and save time as compared to

traditional laboratory experiments. It helps people to solve the real-world problems in

a safe and efficient environment.

There is a lot of simulation software available in the market, such as MATLAB,

ANSYS, Dymola and so on. This kind of software often require people to purchase

licenses from them, otherwise people can only use limited features with other more

useful features are not accessible. Moreover, their sophisticated interface is not easy for

a beginner to use. Instead, Unity is a cross-platform game engine designed to create 2D

and 3D games and simulations. It can be used to create customized GameObjects and

user interfaces, so it becomes a tool for visualizing real objects in the world. In other

words, it can be used to create a customized simulator.

As a consequence, a heat exchanger simulator will be proposed and created in

this project. Students can utilize it to conduct an experiment and learn the knowledge

of heat transfer. In addition, the Google Firebase – a NoSQL database will also be

included in this project for further exploration and adding to the simulator in order to

facilitate the work.

CHAPTER 2: LITERATURE REVIEW

6
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

2.1 Heat Exchanger System

The heat exchanger is a piece of equipment to transfers thermal energy from a

liquid to go to a second liquid at different temperatures without mixing them up

(Woodford, 2018). The basic working principle of a heat exchanger can be simplified

as shown in Figure 2.1.1

Figure 2.1.1: Basic working principle of a heat exchanger.

Generally, the heat exchanger consists of many thin tubes running through a

large cylindrical shell. Figure 2.1.1 is just a simplified example of a shell-and-tube heat

exchanger. When a hot liquid flows through the tube inside, heat is transfer to the cold

liquid (shown in dotted) at the outer tube. Hence, the hot liquid cools down and the cold

liquid warms up without the liquid direct contact and mixing them up.

In order to fulfil a variety of different situations and requirements, heat

exchangers can come in different forms. The heat exchangers are classified into

different type according to transfer processes, construction features, flow arrangements,

the degree of surface compactness, the number of fluids and heat transfer mechanisms

(Shah & Sekulić, 2007).

Among the various kind of heat exchangers, shell-and-tube heat exchangers and

plate heat exchangers are the most widely recognized heat exchangers in the modern

field, where the shell-and-tube heat exchanger unit is provided for reference and study

in this project. As compared to the plate type heat exchanger, the shell-and-tube heat

exchanger has more advantages. Below is the summary of its advantages and

disadvantages:

CHAPTER 2: LITERATURE REVIEW

7
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Advantages:

 Less expensive.

 Withstand higher working temperatures and pressures condition.

 Due to the relatively easy pressure testing, leaking tubes are easily located.

 Using a sacrificial anode can protect the entire cooling system from corrosion.

Disadvantages:

 Possible results in clogging due to the pathways are very small.

 Hard in terms of the cleaning process.

In addition, a few researchers in the engineering field also agree that shell-and-

tube type exchangers are popular in the process industry and can be easily modified in

most cases (LUNSFORD, 2016). For this reason, the research in this area appears to

have importance.

2.2 An Overview of Heat Exchanger Modelling

Since the start of the computer era, an ever-increasing number of physical

phenomena have been modelled with a specific end goal to simulate as opposed to

conducting trials. Trials are regularly exorbitant because they require the need for

exploratory setups, like physical components and measuring apparatus. On the other

hand, simulation only requires a computer, a simulation tool, and a model. The

computers are available everywhere nowadays. However, the merging of the simulation

tool and model for simulating heat exchanger systems are technically challenged. This

is because the people who are good at developing simulation tools do not necessarily

understand the concept of the subject model, and those who develop models do not

necessarily know how to develop simulation tools.

There were many people had simulated and modelled the heat exchanger with

different approaches. For instance, the previous work used Computational Fluid

Dynamics packages ANSYS 13.0 (an engineering simulation software) to solve the

modelling and meshing of the basic geometry of shell-and-tube heat exchanger (Sunil,

et al., 2014). In spite of the fact that ANSYS provides a variety of powerful features for

CHAPTER 2: LITERATURE REVIEW

8
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

creating a simulation, the interface is very complex and the result is that it is not easy

for novices to use. In addition, ANSYS is also known as a commercialized software,

developers cannot arbitrarily modify the software due to copyright. It also included

another package that no need in the simulation and causing redundancy.

Apart from that, John Hellborg modelled heat exchanger using Dymola

(Hellborg, 2017). Dymola is a commercial tool for modelling and simulation based on

the Modelica modelling language. The Dymola had also been used to visualize the

simulation of control education (Martin-Villalba, et al., 2009). Their motivation was to

encourage the client's intuitive activities on the model. However, Dymola is not an ideal

tool for visualization purpose. It only provides two basic ways for the visualization of

simulation results: plotting and animation (Martikka, 2004). Furthermore, the

researchers said that “the visualization term of this work is poor and it seems that it is

not enough attractive for student”, further stated that Dymola is not useful for

visualization (Amirkhani & Nahvi, 2016).

2.3 The Development of Mathematical Model for Heat Exchanger System

There is a lot of ways to form the mathematical model. A straightforward way

is to use a static model to compute the final variable, which is the final outlet

temperature of the heat exchanger. Another way is to use a dynamic model by

incorporated differential equations. The first method calculates the system in

equilibrium and it fails to capture their state evolved with respect to time. The second

method is more complex to compute as it considers for the time-dependent changes,

but it is more informative (Fritzson, 2004). In the simulation, it is preferred to use a

dynamic model so as to observe transient behaviours.

Many researchers have developed dynamic models for the heat exchanger to

analyse its transient behaviour. Different methods have been studied. The transient

response of a counter-current double-pipe heat exchanger was discussed in (M.R.Ansari

& V.Mortazavi, 2006). The study has been carried out to test the response of counter-

current double-pipe heat exchanger. The method used was to merge the numerical

method with analytical methods. The results took into account the accuracy of the

mathematical calculations and the amount of computation time. In addition, the

CHAPTER 2: LITERATURE REVIEW

9
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

comparison between finite-volume and moving-boundary formulations for shell-and-

tube heat exchanger were also studied in (Bendapudi, et al., 2004). The finite-volume

approach offers more detail yet at critical computational cost, while the moving-

boundary approach takes less time. These studies provide some good methods for

dynamic modelling of heat exchangers, but they do not provide a calculation method

for digital computers.

A modelling technique which could be applied to the dynamic simulation of

digital computer, where it could be used into almost all kind of shell-and-tube heat

exchanger, had been proposed by C&M (CORREA & MARCHETTI, 1987). The

mathematical model is first described as partial differential equations but was later

simplified into ordinary differential equations, and was further simplified into algebraic

equations. They also proposed the approaches for solving the algebraic equations by

applying an iterative procedure. For this reason, their proposed method can be further

implemented in programming language feasible.

The model is extended from the concept of previous researchers (GADDIS &

SCHLüNDER, 1979). Refer to the figure 2.3.1, they suggested modelling the multi-

pass shell-and-tube heat exchanger by dividing it up into several cells. The quantity of

these cells i = 1, 2, ···, NM indicate the arrangement of cells following the tube-side

liquid direction beginning from the entrance. N is the quantity of baffles in the shell,

and M is the number of tube passes.

Figure 2.3.1: (a) Shell-and-tube heat exchanger, (b) breaking into multiple elements.

CHAPTER 2: LITERATURE REVIEW

10
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the case of this project, M was set to 1 and N was set to 10 for convenience

to form the calculation. Hence, a heat exchanger with 10 cells was considered. The

following mathematical model of the shell-and-tube exchanger was proposed by Correa

and Marchetti, which is in the form of algebraic equations.

First equation, the tube-side dimensionless temperature in cell i at time k+1 is:

𝑡

𝑘+1
(𝑖) = 𝑎1[

𝑠

𝑘
(𝑖) +

𝑠

𝑘+1
(𝑖)] + 𝑎2[

𝑡

𝑘
(𝑖 − 1) +

𝑡

𝑘+1
(𝑖 − 1)] + 𝑎3

𝑡

𝑘
(𝑖)

Second equation, the shell-side dimensionless temperature in cell j at time k+1 is:

𝑠

𝑘+1
[𝐿(𝑗)] = 𝑏1{

𝑡

𝑘
[𝐿(𝑗)] +

𝑡

𝑘+1
[𝐿(𝑗)]} + 𝑏2{

𝑠

𝑘
[𝐿(𝑗 − 1)] +

𝑠

𝑘+1
[𝐿(𝑖 − 1)]}

+ 𝑏3
𝑠

𝑘
[𝐿(𝑗)]

Where t denoted tube side, k denoted time, i denoted the cell numbers following

a tube-side fluid trajectory, and L(j) denoted the vector of cell numbers following the

shell-side fluid trajectory. The a1, a2, a3, b1, b2, and b3 are coefficients calculated based

on the geometry and fluid properties of the heat exchanger. For the equations to

calculate the coefficients a1-a3 and b1-b3, the interested reader is referred to reference

(CORREA & MARCHETTI, 1987).

By using these algebraic equations, the dynamic model of shell-and-tube heat

exchanger with finer details can be simulated. However, it needs to do some appropriate

transformations so that these equations can be implemented in C#.

2.4 An Overview of Firebase

Firebase is a platform for mobile and web application developing. It was

founded by Andrew Lee and James Tamplin in 2011. Initially, it was proposed to be an

online chatting service. However, the plans were changed later. Firebase was acquired

by Google in 2014 (Tamplin, 2014). More and more services are being introduced into

Firebase to support many products. Firebase enables the developer to build more

powerful and scalable applications by providing Firebase API for different platforms,

such as iOS, Android, Web and so on. Developers can use the Firebase SDK to write

CHAPTER 2: LITERATURE REVIEW

11
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

their own software. In November 2016, Firebase announced to officially support for

Unity game engine by offering its SDK (Kerpelman, 2016). Therefore, Unity game

developer can take advantages of Firebase features.

One of the features of Firebase is the Firebase Real-time Database, which is a

cloud-hosted NoSQL database (Firebase, n.d.). The developer can build applications

without the need of servers since Firebase will provide it. Moreover, data are stored as

a JSON file, where tabular relations are used rather than traditional relational databases.

Any changes to the data will be stored and synchronized across all clients in real-time

if the clients are online. For the offline client, the data are stored locally as caches so it

makes the Firebase-powered applications responsive even though they go offline. The

data is automatically synchronized once the client is reconnected to the server.

Due to the highly-responsive data synchronization with latency in the range of

milliseconds, Firebase has been applied to the different field, especially time-critical

field. For example, Firebase is confirmed to an appropriate correspondence

arrangement that fulfilled the urgent nature of medical training (Alsalemi, et al., 2017).

Firebase has also been used to develop an Android application for the purpose of

rescuers in emergencies (Berbakov, et al., 2017).

CHAPTER 3: SYSTEM DESIGN

12
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM DESIGN

3.1 Design Specifications

3.1.1 The Specification of the Heat Exchanger

In this project, the heat exchanger model to be created is model HE104-4, which

is a shell-and-tube heat exchanger unit manufactured by SOLTEQ. The company offers

various specifications and details of the heat exchanger, so this information will be used

as a reference for developing the simulator.

Figure 3.1.1: The physical unit of the HE104-4 shell-and-tube heat exchanger.

According to the company, 316 stainless steel is chosen as the material of both

shell and tube, so the density is known as 7990 kg/m3, and the thermal conductivity is

16.3 W/m-k. Other than that, the geometry information of the shell-and-tube heat

exchanger is as follows:

 The inner diameter of tube = 2.56 mm = 0.00256 meter

 The outer diameter of tube = 3.20 mm = 0.0032 meter

 The length of tube = 508 mm = 0.508 meter

 The number of tubes = 55

 The inner diameter of shell = 34.80 mm = 0.0348 meter

In addition, the inside and outside tubes are equipped with 3 temperature sensors

for accurate measurement of fluid temperature. The user of this equipment can adjust

the flow rate and flow direction of the fluid by using a valve. When experimenting with

such a heat exchanger, the equipment requires only cold water supply, and the hot water

system is completely independent. A hot storage tank is equipped with an immersion

CHAPTER 3: SYSTEM DESIGN

13
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

type heater and an adjustable temperature controller which can maintain a temperature

of around ±1℃ . Based on this information, the main controllable parameters are

obtained: the fluid temperature, the fluid flow rate, and the flow direction of the fluid.

The specifications of the above equipment (including geometric information

and controllable parameters) are important in this project as they will be used as a

reference for the mathematical model in this project.

3.1.2 Methodologies and General Work Procedures

The purpose of this project is to develop a heat exchanger simulator with real-

time database. In order to develop this simulator, the Unity editor was selected as the

development software in this project. This editor is used to create the interface of the

simulator, and the Firebase is chosen to work with Unity editor. The Firebase acts as a

back-end service, enabling the real-time database functionality in this project by

providing services for storing and retrieving data in real time.

The development of this simulator is a team-based project, which includes

another student, Kong Yee Kian. Both were responsible for different parts of the

development, which will be described in the later sections.

3.1.3 Tools to Use

This project will be developed on the Windows 10 system platform. The

following software and tools were installed for the development:

Operating System Windows 10

Main software Unity Editor

Integrated development environment (IDE) Microsoft Visual Studio 2017

Database Google Firebase

Software Development Kit (SDK) Firebase Unity SDK

Other Internet connection

Table 3.1.3: The tools used in the development.

CHAPTER 3: SYSTEM DESIGN

14
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Task Partitioning

3.2.1 Planning of the Task Partitioning

After discussion, the simulation program was decided to be primarily comprised

of 3 scenes, namely the Start Menu Scene, the Main Game Scene as well as the History

Scene. They are designed to be interconnected so that users can swap between these

screens when clicking on a particular button. Their relationship is shown in figure 3.2.1.

Figure 3.2.1: The relationship of scenes in the simulation program.

The assignment of tasks will be partitioned according to the figure above. One

of the students, Tok Zhi Sung will be responsible for the Start Menu Scene and History

Scene, while another student, Kong Yee Kian will be responsible for the Main Game

Scene to create the interface of the simulation program. During the development process,

all scenes require corresponding C# scripts to manipulate the data and control system,

so they will work together to write the C# scripts for the systems. The C# scripts contain

the algorithms for manipulating input data and computing output data according to the

mathematical model of the heat exchanger in the main game scene.

CHAPTER 3: SYSTEM DESIGN

15
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2 The Requirements of This Project

The Start Menu Scene has 4 functions. The first function is to link with the main

game scene created by another student, which will bring the user to do the simulation

of a heat exchanger system. The second function is to link with the History Scene, which

is a scene to show the past simulation results in tabular form. Moreover, the third

function is to configure the graphics settings, such as resolution, quality of graphics and

full screen. The last function is to exit the program. These features will be implemented

by a script called “Menu.cs”.

When the user starts the simulation in the Main Game Scene, the simulation

results are stored locally or in the cloud as long as there is data to be recorded. There

are two types of data to be recorded, namely input data and output data. For input data,

they come from the UI of the Main Game Scene, such as cold water inlet temperature,

hot water inlet temperature, cold water flow rate and hot water flow rate. These data

are then manipulated by an algorithm of the heat exchanger and then produce the output

data. During the simulation, the input data and output data are passed immediately to

the script named “DatabaseHandler.cs”. In short, this project is responsible for the

communication between the Main Game Scene and the Firebase Realtime Database.

The simulation data would be stored in the local storage as a text file to make the record

available even without an internet connection. Moreover, this project also makes sure

that the algorithm of the heat exchanger is integrated with the Main Game Scene.

 After the simulation, the user can check their simulation records in the History

Scene, which is presented in a tabular form. Each row of the record is identified by a

key that is a combination of the date and time when the simulation was performed. The

user can click on the buttons on the side to examine the input data and output data in

detail. Therefore, the main function of History Scene is to retrieve the past simulation

data from Firebase Database. This function will be implemented by a script called

“RetrieveHistory.cs”. In addition to this, another script called “HistoryObject.cs” was

created in order to work with this script.

CHAPTER 3: SYSTEM DESIGN

16
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 System Design

According to the task partition and the requirements mentioned above, the tasks in

this project will be described in more detailed in the following section.

3.3.1 The Setup of the Firebase Realtime Database

 Figures 3.3.1 (a) – (e) shows the steps performed to set up the Firebase Realtime

Database. First of all, before adding Firebase to the Unity project, the user/developer

(i.e., the student) would need to create a Firebase project to connect to the Unity project.

The Google Firebase required a Google Account to be signed in. Once this is done, the

new project was added in the Firebase console. For example, in this project, the project

name was set as “FinalYearProject”. After the required field was clicked to accept the

terms and conditions, the project would be created.

Figure 3.3.1(a): The project “FinalYearProject” was created in Firebase Console.

 Firebase will automatically configure resources for user’s Firebase project.

After completing this process, the user was taken to the Firebase project overview page

in the Firebase console. Then, the user is allowed to click on the Unity icon to register

the Unity project with Firebase.

Figure 3.3.1(b): The Unity icon was clicked to launch the setup workflow.

CHAPTER 3: SYSTEM DESIGN

17
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the next screen, Firebase will guide the user step by step to register his/her

Unity project. Follow the instructions written by Firebase, the setup of Firebase was

completed. The steps 1, 2 and 3 are important. The registered package name (format:

com.CompanyName.UnityProductName) in step 1 was used in the Unity configuration.

Besides that, the configuration files and the Firebase Unity SDK downloaded in step 2

and 3 would need to be imported into Unity editor later.

Figure 3.3.1(c): The Unity project was registered with Firebase in step 1, the

configuration files and the Firebase SDK were downloaded in the steps 2 and 3.

CHAPTER 3: SYSTEM DESIGN

18
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After register the project with Firebase, the user is allowed to click on the

database at the left side’s panel, where it will bring the user to set up the database. In

this project, the test mode was selected.

Figure 3.3.1(d): The “test mode” was selected to setup database.

The default database is Cloud Firestore. However, this project switched it to the

Realtime Database as shown in Figure 3.3.1(e).

Figure 3.3.1 (e): The default database was changed to the Realtime Database.

 Until this step, the setup of Firebase’s Realtime Database was completed.

CHAPTER 3: SYSTEM DESIGN

19
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.2 Unity Editor Setup

 Figures 3.3.2 (a) – (c) shows the steps performed to set up the Unity Editor. First

of all, the Unity Editor was started and a new 3D project was created. Once the project

was opened in the Unity Editor, the “Player Settings” was opened by clicking on “File”

then “Build Settings”. The “Player Settings” was prompted in the “Inspector” window.

In this window, the “Company Name” field and the “Product Name” field were changed

to the name registered in Firebase project, including the “Bundle Identifier”. At the

configuration part, the “Scripting Runtime Version” was set to “.Net 3.5 Equivalent”,

the “Scripting Backend” was set to “Mono”, and the “Api Compatibility Level” was set

to “.Net 2.0”.

Figure 3.3.2(a): The player settings were configured in the Unity editor.

 After that, the “Assets” folder was founded in the Project Window. The

configuration files downloaded from Firebase was moved into the “Assets” folder.

Figure 3.3.2(b): The Firebase configuration files were moved to the Unity project.

CHAPTER 3: SYSTEM DESIGN

20
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Next, the Firebase Unity SDK downloaded from Firebase console was unzipped.

The unzipped SDK have will have 2 folders: “dotnet3” and “dotnet4”, each of them

contains different Unity package files. To import this package, the following steps were

performed: go back to Unity editor, right click on the “Assets” folder, then click

“Import Package” > “Custom Package”, locates the Unity package file which called

“FirebaseDatabase” in “dotnet3”.

Figure 3.3.2(c): The Firebase Database SDK was unzipped and the

“FirebaseDatabase” was imported to the Unity project.

3.3.3 Scenes Creation

Once the setup of the Firebase Realtime Database and Unity Project was

completed, the next step was to create the scene. A folder called “Scenes” was created

in the “Assets” folder to store all the scenes created in this project. After that, 2 new

scenes called “Start Menu” and “History” were created in this folder.

Figure 3.3.3: A folder named “Scenes” was created to store the scene objects.

CHAPTER 3: SYSTEM DESIGN

21
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.3.1 Start Menu Scene

Since the Start Menu Scene is a 2D interface, so the first thing to do was to set

this scene to 2D. Under the scene tab, the 2D button was clicked.

Figure 3.3.3.1(a): The scene was set to a 2D interface.

 The succeeding steps are to create UI elements. In Unity, “Canvas” is known as

a GameObject with a Canvas Component on it, and all of the UI elements should be

created inside of the Canvas. Hence, a Canvas object was created in the Hierarchy

Window. Inside of the Canvas object, it contained 3 GameObjects: “Background”,

“MainMenu”, and “SettingMenu”. The reason to create these objects in this logical

hierarchy was to facilitate understanding of developers and development. Besides that,

a custom C# script named “Menu.cs” was added as one of the components of Canvas.

Figure 3.3.3.1(b): The children of Canvas (left) and the C# script named “Menu” was

added as a component (right).

The “Background” object was a “Panel”, which is a GameObject which an

Image Component on it. In order to set the source image for this component, a

JPEG/PNG image was added to the “Assets” folder. This image could not be used

directly since the texture type should be configured to “Sprite (2D and UI)”. Once the

image’s texture type was determined as sprite, it could be used as the source image. So,

it was dragged and dropped to the “source image” field in Inspector Window of

“Background” object.

Figure 3.3.3.1(c): The image’s texture type was changed to Sprite.

CHAPTER 3: SYSTEM DESIGN

22
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Basically, the “MainMenu” object was an empty GameObject, it acted as a

container to store other GameObjects. Inside of the “MainMenu”, it contained 5

GameObjects (children) as shown in Figure 3.3.3.1(d).

Figure 3.3.3.1(d): The hierarchy of GameObjects in MainMenu.

The “Title” object was a “TextMeshPro - Text”, which is a free development

asset downloaded from Unity Asset Store. It is the perfect replacement for Unity's built-

in UI text, providing substantial visual quality improvements while providing users

with incredible flexibility in text styles and textures. In the Inspector Window of this

object, the text was changed to “HE-104 HEAT EXCHANGER SIMULATOR”.

The remaining GameObjects in the “MainMenu” were Unity's built-in UI

GameObjects - “Button(s)”. In the Inspector Window of “StartButton” (Figure

3.3.3.1(e)), the normal colour, highlighted colour, and pressed colour field was set with

different opacity to segregate and indicate the normal status, mouse-hover status, and

mouse-click status of button respectively. The crucial part was to add a listener to this

button. In Unity, when a button is pressed, the registered listeners of onClick will be

performed. For example, the method “Menu.DoStartGame()” was set as the listener of

“StartButton”, which swapped the current scene to the Main Game Scene.

Figure 3.3.3.1(e): The field of “StartButton” that needed to be configured.

CHAPTER 3: SYSTEM DESIGN

23
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Similarly, the normal colour, highlighted colour, and pressed colour field of

“HistoryButton”, “SettingButton”, and “QuitButton” were set with different opacity.

However, the listener of “HistoryButton” was “Menu.DoOpenHistory()”, which

swapped the current scene to History Scene. The listener of “SettingButton” was

“Menu.DoOpenSetting()”, which hides all of the GameObjects in “MainScene” and

showed the “SettingMenu”. In addition, the listener of “QuitButton” was

“Menu.DoQuitGame()” which would terminate the application. Finally, the

“MainMenu” shall look like Figure 3.3.3.1(f).

Figure 3.3.3.1(f): The screenshot of “MainMenu”.

 Proceeding to the next GameObject - “SettingMenu”, which was a container to

store 6 GameObjects (children) as shown in Figure 3.3.3.1(g). In order to align its

children vertically, a component called “Vertical Layout Group” was attached to it.

Figure 3.3.3.1(g): The hierarchy of children in “SettingMenu”.

Figure 3.3.3.1(h): “Vertical Layout Group” component was added to “SettingMenu”.

CHAPTER 3: SYSTEM DESIGN

24
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The first child “Title” of “SettingMenu” was an object of “TextMeshPro - Text”.

Its text field was set as “SETTINGS”. The second, third and fourth children of

“SettingMenu” were similar. Each of them had a “TextMeshPro - Text” object and a

“Dropdown” object as shown in Figure 3.3.3.1(i). The text field of “TextMeshPro Text”

was set as “Resolution”, “Graphics”, and “Fullscreen” respectively.

Figure 3.3.3.1(i): The children of “Resolution”, “Graphics” and “Fullscreen”.

In Unity, “Dropdown” is a GameObject that presents a list of options when

clicked. When an option is chosen, a dropdown event occurs a callback is sent to the

registered listeners of onValueChanged. Refer to Figure 3.3.3.1(j)., “Low”, “Medium”,

and “High” were added manually as the options of “GraphicsDropdown”. Each option

has value “0”, “1”, and “2” respectively. When an option was chosen, the value was

passed to the registered listener “Menu.SetQuality” in order to change the graphics

quality. In addition, the options of “ResolutionDropdown” were added automatically

by the algorithms of “Menu.cs”. It added all of the resolutions supported by the monitor.

The listener of “ResolutionDropdown” was “Menu.SetResolution”. For

“FullscreenDropdown”, “DISABLE” and “ENABLE” were added as the options. Its

listener was “Menu.SetFullscreen”, which exchanges the simulation program between

windowed mode and fullscreen mode.

Figure 3.3.3.1(j): The Inspector Window of “GraphicsDropdown”.

CHAPTER 3: SYSTEM DESIGN

25
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 The last two children of “SettingMenu” were “ApplyButton” and

“BackButton”. “ApplyButton” was used to implement the changes of settings and keep

the user on the settings page, while “BackButton” was used to bring the user back to

the main menu page. Finally, the “SettingMenu” shall look like Figure 3.3.3.1(k).

Figure 3.3.3.1(k): The screenshot of the settings menu.

3.3.3.2 History Scene

 The History Scene was also a 2D interface. It displayed the past simulation

results in the form of table. Although the table is a common UI object, the Unity editor

does not provide such built-in UI objects. Hence, it must be created manually. First of

all, the UI elements (GameObjects) were created as shown in Figure 3.3.3.2(a).

Figure 3.3.3.2(a): The UI elements in Canvas.

 The first child of Canvas was “Title”, which was an object of “TextMeshPro -

Text”. The text field was set to “HISTORY”. The second child of Canvas was

“ExitButton”, which was a button object that brings the user back to the Start Menu

Scene when clicked. Similarly, 3 normal colour, highlighted colour and pressed colour

were set with different opacity. When user clicks it, the registered listener

CHAPTER 3: SYSTEM DESIGN

26
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

“RetrieveHistory.OnMainMenuButtonClick()” will be triggered (as shown in Figure

3.3.3.2(b)).

Figure 3.3.3.2(b): The properties of “ExitButton” to be set.

In the “HistoryPanel”, it contained 2 GameObjects namely “Header” and

“Scroll View” as shown in Figure 3.3.3.2(c). For “Header”, 7 children of type UI “Text”

were added as the children. For “Scroll View”, it was a built-in UI element. In Unity,

“Scroll View” is used when a content that takes up a lot of space needs to be displayed

in a small area. It provides functionality to scroll over this content. In addition, the

content to be displayed was added as the children of “Content” in this hierarchy. Note

that in order to function properly, “Content Size Fitter” was added in a later step.

Figure 3.3.3.2(c): The children of “HistoryPanel”.

CHAPTER 3: SYSTEM DESIGN

27
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Until this step, the “HistoryPanel” shall look like the figure below.

Figure 3.3.3.2(d): The screenshot of “HistoryPanel”.

No history was displayed in the “HistoryPanel” because the children of

“Content” had not been set. At here, Unity’s Prefab system was used. Unity’s Prefab

system allows the developer to create, configure, and store a GameObject complete

with all its components, property values, and child GameObjects as a reusable asset. In

other words, the “Prefab” asset acts as a template from which developer can create new

“Prefab” instances in the Scene. As a summary, Prefab can help the developer create

any number of GameObjects by using scripts.

Since the content to be displayed was similar to the “Header” object, so the

Prefab asset could be created by modifying the “Header” object. The steps were:

1. In Hierarchy Window, duplicate the “Header” object.

2. Change the name of this duplicated object from “Header(1)” to “Prefab_List”.

3. Change the “Details” child to a Button.

4. Drag “Prefab_List” to the Assets folder in Project Window.

*The button object’s listener was added in the C# script.

Figure 3.3.3.2(e): The “Header” object and “Prefab_list” asset had similar children.

Figure 3.3.3.2(f): The “Prefab_List” asset was successfully created.

CHAPTER 3: SYSTEM DESIGN

28
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After creating the “Prefab_List” asset, 3 components were added to the

“Content”. Refer to Figure 3.3.3.2(g), the component “Vertical Layout Group” was

used to align its children vertically within the “Content” area. Next, the C# script

“RetrieveHistory.cs” was added a component that control the behaviours of

GameObjects. Then, all of the related GameObjects created in the Canvas were linked

with this script. Last, a component called “Content Size Fitter” was added. It was

important to make “Scroll View” function properly. The properties of these components

were configured according to Figure 3.3.3.2(g).

Figure 3.3.3.2(g): The components that newly added to “Content”.

The creation of the last child of Canvas “DetailsPanel” was similar to the

“HistoryPanel”. The differences were, the child of “Header” was changed to a UI button

named “BackButton”, and the child of “Content” was changed to a UI Text named

“Details”.

Figure 3.3.3.2(h): The different parts of “DetailsPanel”.

CHAPTER 3: SYSTEM DESIGN

29
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the end, the history scene should look like the figure below.

Figure 3.3.3.2(i): The screenshot of the History Scene.

3.3.4 The Explanation of the C# Scripts

In Unity, the behaviour of GameObjects is controlled by the components that

are attached to them. Unity enables the developer to create own components utilizing

scripts so that it can trigger game events, modify the properties of a component over

time and react to the user input. In this section, the C# scripts created in this project will

be explained.

CHAPTER 3: SYSTEM DESIGN

30
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.4.1 The “Menu” Script

 In the Start Menu Scene, “Menu.cs” was attached to the Canvas as one of the

components. Noted that every Unity script is derived from the base class –

“MonoBehaviour”. So, “Menu.cs” must implement this class (interface) explicitly.

Figure 3.3.4.1: The UML notation of “Menu” script.

Explanation of methods in “Menu”:

1. DoStartGame()

This method is triggered when the user clicks “StartButton”, which changes the

current scene to the main menu scene by Scene Manager.

2. DoOpenHistory()

This method is triggered when the user clicks “HistoryButton”, which changes the

current scene to the history scene by Scene Manager.

CHAPTER 3: SYSTEM DESIGN

31
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. DoOpenSetting()

This method is triggered when the user clicks “SettingButton”, which hides the

GameObject “mainMenu”, shows “settingMenu”, and load the current graphics

settings.

4. DoQuitGame()

This method is triggered when the user clicks “QuitButton”, which terminates the

program.

5. Start()

This method is called automatically when the script is enabled. It is called only once

in the lifetime of the script. Hence, this method is used to initialize the properties in

Menu. It also checks all the resolutions supported by the monitor and then adds

them as the options of object “ResolutionDropdown”.

6. SetResolution(int resolutionIndex)

This method is triggered when the user selects one of the options of

“ResolutionDropdown”, which changes the value of local variable “resolution” to

the selected resolution.

7. SetQuality(int qualityIndex)

This method is triggered when the user selects one of the options of

“GraphicDropdown”, which changes the value of local variable “qualityIndex” to

the selected quality.

8. SetFullscreen(int index)

This method is triggered when the user clicks “ResolutionDropdown”, which

changes the value of local variable “isFullScreen” between fullscreen or windowed

mode.

9. DoApplySetting()

This method is triggered when the user clicks “ApplyButton”, which applies all the

changes of setting.

10. DoCloseSetting()

This method is triggered when the user clicks “BackButton”, which changes the

current scene to the main menu scene by Scene Manager.

CHAPTER 3: SYSTEM DESIGN

32
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.4.2 The “HistoryObject” Script

In History Scene, two scripts were created. “RetrieveHistory.cs” was attached

to the “Content” object (child of “HistoryPanel”), and “HistoryObject.cs” was attached

to “Scripts”. For “HistoryObject.cs”, it is a class with 2 private fields and few methods.

The special thing about this class is that “Dictionary” is used to declare the private field

“history”. In C# programming, the “Dictionary<T Key, T Value>” represents a

collection of key-value pairs of data. Developers can easily get the corresponding value

of data by using a particular key. Therefore, “Dictionary” class provides functionality

that works like a normal dictionary, using words (keys) to find meanings (values). In

the case of this project, the “Dictionary” was cascaded in order to find a value by a

combination of key (identifier and input type).

Figure 3.3.4.2: The UML notation of the “HistoryObject” script.

Explanation of the methods:

1. Reset()

This method clears the recorded keys and value pairs in the collection of

“histories”.

2. GetValue(string identifier, string inputType)

This method finds the keys equal to “identifier” and “inputType” from the

collection of “histories”. It returns the value of if the key is found. If the key does

not exist then return null.

CHAPTER 3: SYSTEM DESIGN

33
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. SetValue(string identifier, string inputType, string value)

This method adds key-value pairs to the collection of “histories”.

4. Remove(string identifier)

This method removes key-value pairs from the collection of histories.

5. GetIdentifiers()

This method returns all recorded keys through a string array.

6. GetIdentifiers(string sortinginputType)

This method returns all recorded keys through a string array sorted by order by

“sortinginputType”.

7. GetChangeCounter()

This method returns the value of “changeCounter”. Once there are changes to the

collection of “histories”, the “changeCounter” is incremented by one.

3.3.4.3 The “RetrieveHistory” Script

The “RetrieveHistory” was another script used in History Scene. The class

“HistoryObject” created in the previous section was used to declare an object named

“historyObject”. This script was attached to the “Content” (child of “HistoryPanel”).

Figure 3.3.4.3: The UML notation of the “RetrieveHistory” script.

CHAPTER 3: SYSTEM DESIGN

34
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The explanations of methods:

1. Start()

This method is called when the script is enabled. It initializes all the GameObjects

and checks if all the necessary Firebase’s dependencies are present and attempt to

fix them if they are no present.

2. InitializeFirebase()

This method connects the program to Firebase with URL.

3. StartListener()

This method listens to the Firebase Realtime Database. Whenever the value is

changed, it updates corresponding key-value pairs to the collection of

“historyObject”, and it deletes key-value pairs from the collection of

“historyObject” if data in the database are removed.

4. Update()

In Unity, this method is called once per frame to update GameObjects. In the

history scene, the content to be showed in “HistoryPanel” are created within the

algorithms of this method.

5. TaskWithParameters(string identifier)

This method is triggered when the user clicks the “DetailButton”. It retrieves the

details of a particular row stated by ‘identifier’ from the database by calling

GetDataFromDB in the coroutine. This method is paused for execution until the

data is finished loading. After that, it hides “OBJ_HistoryPanel” and show

“OBJ_DetailsPanel”,

6. GetDataFromDB(string identifier)

This method is called by above method “TaskWithParameters” by using the

coroutine. It loads data from database and assigned the value to

“Text_DetailsText”. Once it finished loading the data, it restarts the

“TaskWithParameters”.

7. OnMainMenuButtonClick()

This method is triggered when the user clicks the “ExitButton”, which brings the

user back to the main menu scene.

8. OnBackButtonClick()

This method is triggered when the user clicks on the “BackButton” in

“DetailsPanel”. It shows “OBJ_HistoryPanel” and hides “OBJ_DetailsPanel”.

CHAPTER 3: SYSTEM DESIGN

35
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.4.4 The “DatabaseHandler” Script

 This script is attached to the main game scene. As its name states, the main

purpose of scripts is to work with databases. Once there is data to be recorded, it will

upload the data to the Firebase Realtime Database, including the input values and the

output values. In addition to this, this script also stores the input and output values as

text files in the same folder as the program.

Figure 3.3.4.4: The UML notation of the “DatabaseHandler” script.

Explanation of the methods:

1. Start()

This method is called when the script is enabled. It initializes all the GameObjects

and checks if all the necessary Firebase’s dependencies are present and attempt to

fix them if they are no present.

2. InitializeFirebase()

This method connects the program to Firebase with URL.

3. StartListener()

This method sets the “reference” refers to the root of the database.

4. SaveInputDataToFirebase(string dateTime, double coldFlowRate, double

hotFlowRate, double coldWaterTemp, double hotWaterTemp)

This is a static method, it allows another script in the Main Game Screen to save

input data to Firebase without having to create an instance of this class, such as

passing parameters to “DatabaseHandler.SaveInputDataToFirebase()” will do the

job.

CHAPTER 3: SYSTEM DESIGN

36
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5. SaveOutputDataToFirebase(string dateTime, string timerString,string

coldWaterResults, string hotWaterResults)

This is a static method, it allows another script in the Main Game Screen to save

out data to Firebase without having to create an instance of this class, such as

passing parameters to “DatabaseHandler.SaveOutputDataToFirebase ()” will do

the job.

6. SaveInputDataToTextFile(string dateTime, double coldFlowRate, double

hotFlowRate, double coldWaterTemp, double hotWaterTemp)

This is a static method, it allows another script in main game screen to save input

data to local storage as a text file without having to create an instance of this class,

such as passing parameters to “DatabaseHandler.SaveInputDataToTextFile()” will

do the job.

7. SaveOutputDataToTextFile(string timerString, string coldWaterResults, string

hotWaterResults)

This is a static method, it allows another script in main game screen to save input

data to local storage as a text file without having to create an instance of this class,

such as passing parameters to “DatabaseHandler.SaveOutputDataToTextFile()”

will do the job.

CHAPTER 3: SYSTEM DESIGN

37
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.5 The Structure of Data in the Firebase

All data in Firebase Realtime Database is stored as a large JSON object, which

can hold key-value pairs. The value can be a string, number, array, Boolean, null or

another object as long as it is associated with a unique key.

In the case of this project, since the date and time when the simulation starts

change over time, in other words, the combination of data and time is different each

time the simulation starts, so they can be selected as unique keys.

The value associated with each unique key was another object with three child

objects: a username key-value pair, an input object, and an output object. In the input

object, it contained 4 key-value pairs, and the output object contained a list of child

objects.

Figure 3.3.5: The Structure of Data in the Firebase.

CHAPTER 3: SYSTEM DESIGN

38
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.6 System Flowchart

3.3.6.1 Start Menu Scene

Figure 3.3.6.1: The flowchart of the Start Menu Scene.

CHAPTER 3: SYSTEM DESIGN

39
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.6.2 History Scene

Figure 3.3.6.2: The flowchart of the History Scene.

CHAPTER 3: SYSTEM DESIGN

40
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.6.3 Setting Menu

Figure 3.3.6.3: The flowchart of setting menu in the Start Menu Scene.

CHAPTER 4: VERIFICATION

41
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 VERIFICATION

In order to generate an accurate and reliable simulation program, the simulation

program must be verified and validated after the development of the simulation

program. The methods, tools, requirements, and plans for validating simulation

program will be discussed in this chapter.

4.1 Methodology and Tools

Since the project was developed on the Windows 10 system platform, so the final

product of the simulation program will be deployed on the Windows operating system.

It must be built as an executable application in order to run on every device that has a

Windows operating system installed. There is a list of items must be prepared for

verification.

Items Functionality

Windows OS computer To execute the final product of the simulation

program.

File explorer To check the data stored at local storage after the

simulation.

Unity editor To build the final product.

Internet browser To open Google Firebase Console.

Google Firebase Console To check the data uploaded to Firebase after the

simulation.

Table 4.1: The items used for the verification of the final product.

4.2 Requirements

In order to ensure that the simulation program is rendered properly, there are certain

requirements for the display device. First, the width and height of the screen are limited

to the most common ratios 16:9. Second, the resolution of the display is suggested to:

Aspect Ratio Resolutions

16:9 1280×720 (Minimum)

 1600×900

 1366×768

 1920×1080 (Recommended)

Table 4.2: The requirements for the display device.

CHAPTER 4: VERIFICATION

42
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Verification Plan

The verification plan must be determined to test and verify the final product. It must

go through all the steps that the user will go through while using the simulator.

Therefore, the verification plan is divided into the following steps:

1. Check the function of the start menu

This step has to check if the buttons are working. For example, the “Start” button

will bring the user to proceed to start the simulation. Next, the “History” button

can bring the user to the History Scene. Then, the “Setting” button can lead the

user to configure the graphics settings. Last, the “Quit” button can terminate the

simulation program. This step must check that all the buttons in the UI are working

properly. For example, the “Start” button will guide the user to start the simulation.

Next, the “History” button takes the user to the History Scene to view the data. The

“Setting” button then guides the user through the configuration of the graphical

settings. Finally, the “Exit” button can exit the simulation.

2. Check if the data can upload to cloud

This step is done in the main game scene to check if all of the simulation data will

be uploaded to the Firebase Realtime Database. The Google Firebase console will

be opened by using any type of internet browser to see if the uploaded data is

correct and well structured.

3. Check the function of history scene

In order for the simulation results to exist in the database and available, continue

with this step after some simulations have been performed. This step will check

the correctness of the retrieved data and check if the user can navigate through this

scene.

4. Check the function of the local data storage

This step is to check the simulation results stored in local storage after the

simulation is done.

CHAPTER 4: VERIFICATION

43
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Implementation and Testing

1. Check the function of the start menu.

First, the user clicks the "Play" button to start the simulation and they will be taken

to the start menu. When the user clicks “Start” or “History”, the screen changes to the

corresponding view. Noted that when the simulation program is first started, the screen

is set to windowed mode, the quality is set to low, and resolution is set to 1280 x 720.

These settings will be applied as current settings. When the user clicks the "Settings"

button, the current settings are loaded correctly and displayed in the settings menu.

Figure 4.4.1: The start menu can work.

CHAPTER 4: VERIFICATION

44
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Check if the data can upload to the cloud.

“User A” is the username in this test. The cold-water inlet temperature is 25℃ , the

hot water inlet temperature is 65℃ , and the cold water flow rate as well as the hot water

flow rate is 1 L/min. After the user starts the simulation, these data are uploaded to the

Firebase Database.

Figure 4.4.2: The data can be uploaded and well structured.

CHAPTER 4: VERIFICATION

45
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Check the function of the History Scene.

Figure 4.4.3: The History Scene can work.

CHAPTER 4: VERIFICATION

46
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. Check the function of the local data storage.

Figure 4.4.4: The simulation can save as text file in local storage.

CHAPTER 5: IMPLEMENTATION ISSUES AND CHALLENGES

47
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 IMPLEMENTATION ISSUES AND CHALLENGES

There are several implementation issues and challenges faced during the

development of this simulation program. The first challenges are the exploration and

exploitation of a new field. Before creating a simulator, it takes a lot of effort to traverse

through unfamiliar areas. A certain understanding of heat exchangers has to be acquired

first. Besides, it takes time to learn how to use Unity. The concept in Unity like

‘GameObject’, ‘Component’, script and, so on is totally new to learn.

Next, the challenge is to use Unity with Firebase. The first Firebase SDK

merged with Unity was released on November 7, 2016. There are limited resources for

the newbie to practice or refer to since it is a new technology in the market of Unity.

Moreover, Firebase update rate is very high and therefore the developers need to catch

up with the new things frequently.

Finally, the design of the user interface is another issue that matters to

developers. While Unity does provide a lot of assets in the Unity Asset Store to help

developers create their GameObjects, many of them require developers to pay for it,

and as for free assets, they all look simple and even useless for this project. Therefore,

simple built-in UI objects are used to create the user interface for this simulator program.

CHAPTER 6: CONCLUSION

48
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 CONCLUSION

The heat exchanger unit is a useful teaching device for engineering students to

learn and study the basic principles of heat transfer. The problem of conducting heat

exchanger experiments was discussed in chapter 1. Meanwhile, chapter 2 discussed the

heat exchanger system in term of the type, the past modelling, and the mathematical

model. In addition, an overview of Firebase was also introduced. Therefore, a heat

exchanger simulator with a real-time database was developed to solve experiment

problems in this project.

Among the many real-time engine development platform, Unity was selected as

the development tool. The development work was started after task partitioning. A top-

to-down level explanation of the system design was discussed in chapter 3. The merger

of Firebase and Unity was an area to be studied and done in this project.

Through the simulator created in this project, the user (e.g. engineering

students) can learn the basic principles of heat transfer without physical heat

exchangers. It not only eliminates the cost and danger of physical experiments but also

improves the efficiency of recording experiment data. In addition, the user of this

simulator can take advantage of obtaining the past simulation data anytime and

anywhere as long as they have this simulator.

BIBLIOGRAPHY

49
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY

Alsalemi, A. et al., 2017. Real-Time Communication Network Using Firebase Cloud

IoT Platform for ECMO Simulation. 2017 IEEE International Conference on

Internet of Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and

IEEE Smart Data (SmartData), pp. 178-182.

Amirkhani, S. & Nahvi, A., 2016. Design and implementation of an interactive virtual

control laboratory using haptic interface for undergraduate engineering students.

Bendapudi, S., Braun, J. E. & Groll, E. A., 2004. Dynamic Modeling of Shell-and-Tube

Heat Exchangers: Moving Boundary vs. Finite Volume.

Berbakov, L. et al., 2017. Android application for collaborative mapping in emergency

situations. 2017 25th Telecommunication Forum (TELFOR), pp. 1-4.

CORREA, D. J. & MARCHETTI, J. L., 1987. Dynamic Simulation of Shell-and-Tube

Heat Exchangers. Heat Transfer Engineering, pp. 50-59.

Firebase, n.d. Firebase Realtime Database | Store and sync data in real time. [Online]

Available at: https://firebase.google.com/products/realtime-database/

[Accessed August 2018].

Fritzson, P., 2004. Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1. s.l.:John Wiley & Sons.

GADDIS, E. S. & SCHLüNDER, E. U., 1979. Temperature Distribution and Heat

Exchange in Multipass Shell and Tube Exchanger with Baffles. Heat Transfer

Engineering, Volume 1, pp. 42-52.

Hellborg, J., 2017. Modelling of shell and tube heat exchangers.

Kerpelman, T., 2016. Announcing Firebase for Unity. [Online]

Available at: https://firebase.googleblog.com/2016/11/announcing-firebase-for-

unity.html

LUNSFORD, K. M., 2016. Increasing Heat Exchanger Performance. p. 13.

BIBLIOGRAPHY

50
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

M.R.Ansari & V.Mortazavi, 2006. Simulation of dynamical response of a

countercurrent heat exchanger to inlet temperature or mass flow rate change.

Applied Thermal Engineering, 26(17-18), pp. 2401-2408.

Martikka, H., 2004. COMPARISON STUDY OF TWO COMPETING MODELS OF

AN ALL MECHANICAL POWER TRANSMISSION SYSTEM.

Martin-Villalba, C., Urquia, A. & Dormido, S., 2009. Visualization and interactive

simulation of Modelica models for control.

Shah, R. K. & Sekulić, D. P., 2007. Classification of Heat Exchangers. s.l.:s.n.

Sunil, A., S., P. & K.B, G., 2014. DESIGN OF SHELL AND TUBE HEAT

EXCHANGER USING COMPUTATIONAL FLUID DYNAMICS TOOLS.

Tamplin, J., 2014. Firebase is Joining Google!. [Online]

Available at: https://firebase.googleblog.com/2014/10/firebase-is-joining-

google.html

Woodford, C., 2018. Heat exchangers. [Online]

Available at: https://www.explainthatstuff.com/how-heat-exchangers-work.html

[Accessed 2018].

APPENDIX

Turnitin Checked Result

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

ID Number(s)

Programme / Course

Title of Final Year Project

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources:
 _______________%
Publications: _________
%
Student Papers: _________
%

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

FINAL YEAR PROJECT WEEKLY REPORT

(Project I / Project II)

Trimester, Year: Year 3 trimester 3 Study week no.: 2

Student Name & ID: Tok Zhi Sung - 1605148

Supervisor: Dr. Chang Jing Jing

Project Title: Educational Simulator with Realtime Database

1. WORK DONE

- Planned the refinements that need to be done from the prototype in FYP 1.

2. WORK TO BE DONE

- Discuss with Kong Yee Kian how to cope with each other.

3. PROBLEMS ENCOUNTERED

- So far so good

4. SELF EVALUATION OF THE PROGRESS

- Nothing

_________________________ _________________________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

(Project I / Project II)

Trimester, Year: Year 3 trimester 3 Study week no.: 4

Student Name & ID: Tok Zhi Sung - 1605148

Supervisor: Dr. Chang Jing Jing

Project Title: Educational Simulator with Realtime Database

1. WORK DONE

- Task partitioning was done after discussed with Kong Yee Kian.

2. WORK TO BE DONE

- Create the user interface and write the basic script.

3. PROBLEMS ENCOUNTERED

- So far so good.

4. SELF EVALUATION OF THE PROGRESS

- Nothing.

_________________________ _________________________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

(Project I / Project II)

Trimester, Year: Year 3 trimester 3 Study week no.: 6

Student Name & ID: Tok Zhi Sung - 1605148

Supervisor: Dr. Chang Jing Jing

Project Title: Educational Simulator with Realtime Database

1. WORK DONE

- Start menu and setting menu were done.

2. WORK TO BE DONE

- Try to link my scene with Kong Yee Kian’s scene.

- Refine the task partitioning.

3. PROBLEMS ENCOUNTERED

- Full-screen mode cannot work because the library has been updated.

4. SELF EVALUATION OF THE PROGRESS

- Need to speed up the progress.

_________________________ _________________________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

(Project I / Project II)

Trimester, Year: Year 3 trimester 3 Study week no.: 8

Student Name & ID: Tok Zhi Sung - 1605148

Supervisor: Dr. Chang Jing Jing

Project Title: Educational Simulator with Realtime Database

1. WORK DONE

- The merger of scenes was done.

- The data generated in the main game scene can be uploaded to Firebase.

2. WORK TO BE DONE

- Retrieve the data from Firebase and display in history scene.

3. PROBLEMS ENCOUNTERED

- The firewall of the router blocks the outgoing data from Unity.

- The version of Unity installed in my PC and Kong Yee Kian’s pc is different,

causing some compatible problems.

4. SELF EVALUATION OF THE PROGRESS

- Again, need to speed up the progress.

_________________________ _________________________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

(Project I / Project II)

Trimester, Year: Year 3 trimester 3 Study week no.: 10

Student Name & ID: Tok Zhi Sung - 1605148

Supervisor: Dr. Chang Jing Jing

Project Title: Educational Simulator with Realtime Database

1. WORK DONE

- The history scene was done.

2. WORK TO BE DONE

- Merge my project with Kong Yee Kian’s project.

- Try to build the final product.

3. PROBLEMS ENCOUNTERED

- The resolution of the monitor affects the rendering of GameObjects, causing

GameObjects malformation and misplacement.

- The “TextMess Pro” asset caused a lot of errors when combined with each other’s

projects.

4. SELF EVALUATION OF THE PROGRESS

- The project is behind schedule. Need to speed up.

_________________________ _________________________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

(Project I / Project II)

Trimester, Year: Year 3 trimester 3 Study week no.: 11

Student Name & ID: Tok Zhi Sung - 1605148

Supervisor: Dr. Chang Jing Jing

Project Title: Educational Simulator with Realtime Database

1. WORK DONE

- The overall of the project was done.

2. WORK TO BE DONE

- Finalize the simulation program and write a report.

3. PROBLEMS ENCOUNTERED

- So far so good.

4. SELF EVALUATION OF THE PROGRESS

- Nothing.

_________________________ _________________________

Supervisor’s signature Student’s signature

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id

Student Name

Supervisor Name

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

 Front Cover

 Signed Report Status Declaration Form

 Title Page

 Signed form of the Declaration of Originality

 Acknowledgement

 Abstract

 Table of Contents

 List of Figures (if applicable)

 List of Tables (if applicable)

 List of Symbols (if applicable)

 List of Abbreviations (if applicable)

 Chapters / Content

 Bibliography (or References)

 All references in bibliography are cited in the thesis, especially in the chapter
of literature review

 Appendices (if applicable)

 Poster

 Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and
confirmed all the items listed in the
table are included in my report.

(Signature of Student)
Date:

Supervisor verification. Report with

incorrect format can get 5 mark (1

grade) reduction.

(Signature of Supervisor)
Date:

