

COVER PAGE

THE DEVELOPMENT OF AN EXCEPTION SCHEME FOR

5-STAGE PIPELINE RISC PROCESSOR

BY

Goh Jia Sheng

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

 COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Perak Campus)

JAN 2019

ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

iii

TITLE PAGE

THE DEVELOPMENT OF AN EXCEPTION SCHEME FOR

5-STAGE PIPELINE RISC PROCESSOR

BY

Goh Jia Sheng

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

 COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Perak Campus)

JAN 2019

iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “THE DEVELOPMENT OF AN EXCEPTION

SCHEME FOR 5-STAGE PIPELINE RISC PROCESSOR” is my own work except

as cited in the references. The report has not been accepted for any degree and is not

being submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

v

ACKNOWLEDGEMENTS

I would like give my deepest appreciation to my project supervisor, Mr. Mok Kai Ming

for providing me an opportunity to involve in the Computer Architecture development.

Thank you for your patience and invaluable guidance and suggestion throughout this

project.

Next, I would like to thanks my family members for giving me endless support

and encouragement throughout my undergraduate study. Furthermore, I would like to

thanks my course mates and friends who has supported me throughout the entire

project.

Finally, I appreciate all the guidance and support that provided by people that I

mentioned above. All the supports and helps have contributed to the accomplishment

of this project.

vi

ABSTRACT

Exception classified into two types, which are the internal exception and external

exception. Normally, we called internal exception as trap and External exception as

interrupt. Exception makes the 5-stage pipeline processor more complicated because

the exception is difficult to handle in pipeline processor due the overlapping instruction

characteristics. The exception will cause abnormal program flow, and when exception

occur, we need to provide some operation to overcome the problem. The IoT SoC

processor will used for this project purpose. Up-to-date, the processor has a few I/O

modules integrated namely the UART, GPIO and SPI. It also has a co-processor and

programmable interrupt controller to handle the exceptions. The handling of the

exceptions was half-planned, however, not up to a high confidence level. Therefore,

this project is initiated to develop an exception handling scheme to handle the multiple

interrupt (including nested interrupts) occurrence. Interrupt can occur at any time, and

the timing to capture the data is critical. For example, when the UART and SPI received

the data at the same time, both module will raise the interrupt flag concurrently.

Therefore, we need a plan to schedule which one need to be serve first. The situation is

further complicated when the multiple nested interrupts and traps occurs concurrently.

With the availability of the exception-handling scheme, it is straightforward to resolve

the conflicts among the mentioned exceptions. In addition, it will be easier to plan ahead

to integrate new devices without having to worry about buggy exception handling.

vii

TABLE OF CONTENTS

COVER PAGE ... i

REPORT STATUS DECLARATION FORM ... ii

TITLE PAGE ... iii

DECLARATION OF ORIGINALITY .. iv

ACKNOWLEDGEMENTS ... v

ABSTRACT ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... x

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS ... xiii

Chapter 1 Introduction ... 1

1.1 Background Information .. 1

1.1.1 RISC ... 1

1.1.2 MIPS ... 1

1.1.3 Exception .. 3

1.1.4 Interrupt .. 3

1.1.5 Trap .. 3

1.2 Project Motivation ... 4

1.3 Problem Statement ... 5

1.4 Project Scope ... 6

1.5 Project Objectives .. 6

1.6 Impact and significance .. 7

Chapter 2 Literature Review .. 8

2.1 Exception ... 8

2.2 Characteristic of exception ... 10

2.3 Precise exception Vs Imprecise exception .. 12

2.4 Exception handler Scheme for MIPS .. 14

2.4.1 Coprocessor 0 ... 14

2.4.2 BadVaddr register ... 14

2.4.3 Count Register and Compare Register ... 14

2.4.4 Status Register .. 14

2.4.5 Cause Register .. 15

2.4.6 EPC Register ... 16

2.4.7 Instruction associate with exception handling .. 17

2.4.8 Step-by-step how MIPS handle Exception ... 18

viii

2.5 Nested Exception ... 20

2.6 Exception handler scheme for ARM processor ... 21

2.6.1 Processor Mode for ARM ... 21

2.6.2 ARM Exception .. 22

2.6.3 Entering and exiting an exception handler. .. 22

2.6.4 ARM Interrupt handling schemes .. 23

Chapter 3 Proposed Methods / Technologies Involved ... 29

3.1 General Work Flow.. 29

3.2 Design Tools .. 31

3.3 System Overview ... 33

3.4 Timeline .. 35

Chapter 4 System Specification ... 36

4.1 System Overview ... 36

4.2 MIPS ISA .. 38

4.2.1 Instruction Format ... 38

4.2.2 Addressing modes ... 38

4.2.3 Instruction Supported .. 41

4.3 Functional View of the RISC32 Pipeline Processor .. 43

4.4 Memory Map ... 44

4.5 RISC32 Pipeline Processor Hierarchy. ... 46

Chapter 5 Analysis of the I/O system ... 48

5.1 I/O System ... 48

5.2 Micro-architecture for I/O system. ... 49

5.3 Co-processor 0 ... 50

5.4 Exception event. .. 53

5.5 Priority for Exception Event ... 54

5.6 Exception Handler Scheme .. 55

Chapter 6 Verification Specification .. 57

6.1 Test cases ... 57

6.2 MIPS assembly code .. 59

6.3 Simulation Result ... 72

6.4 Test Bench ... 103

Chapter 7 Synthesis on FPGA.. 106

7.1 Pin Allocation .. 106

7.2 Setting up the Test Environment for Functionality Test 108

Chapter 8 Conclusion & Future Enhancement.. 111

8.1 Conclusion ... 111

ix

8.2 Future Enhancement .. 112

References ... 113

x

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 MIPS five-stage pipelining 2

Figure 2.1 Different architecture use different names to represent

common exception event.

9

Figure 2.2 MIPS terminology to differentiate type of exception

event.

9

Figure 2.3 Exception event and its characteristics. 11

Figure 2.4 Coprocessor 0’s registers and its usage. 14

Figure 2.5 Status Register. 15

Figure 2.6 Cause Register. 16

Figure 2.7 Exception code 16

Figure 2.8 Exceptions that may occur in the MIPS pipeline. 18

Figure 2.9 Flow chart for handle an exception. 19

Figure 2.10 ARM Processor Mode 21

Figure 2.11 ARM processor exceptions and associated modes 22

Figure 2.12 Exception priority levels for ARM. 22

Figure 2.13 Non-nested interrupt handling 23

Figure 2.14 Nested interrupt handling 24

Figure 2.15 Re-entrant interrupt handling 25

Figure 2.16 Prioritized Simple interrupt handling 26

Figure 2.17 Prioritized Standard interrupt handling 27

Figure 3.1 Design flow of the project 30

Figure 3.2 Block diagram of the IoT SoC Processor 33

Figure 3.3 Gantt Chart For FYP1 and FYP2 35

Figure 4.1 Architecture of the IoT SoC Processor. 36

Figure 4.2 Instruction Format 38

Figure 4.3 Register Addressing mode 38

Figure 4.4 Immediate Addressing mode 39

Figure 4.5 Base Addressing mode 39

Figure 4.6 PC-Relative Addressing mode 40

Figure 4.7 Pseudo-Direct Addressing mode 40

xi

Figure 4.8 Register Direct Addressing mode 40

Figure 4.9 Functional view of the RISC32 processor 43

Figure 4.10 Memory Map 44

Figure 5.1 Micro-architecture for I/O system 49

Figure 5.2 Flow of the Exception Handler 55

Figure 5.3 Nested interrupt Handling Scheme 56

Figure 6.1 Connection between server and client 58

Figure 7.1 Test Environment set up 108

Figure 7.2 Functionality of the LED Pin Connected 109

xii

LIST OF TABLES

Table Number Title Page

Table 3.1 Comparison between simulation tools. 31

Table 3.2 Hardware features of the IoT SoC Processor 33

Table 4.1 Hardware features of the IoT SoC Processor. 37

Table 4.2 Instruction Supported 42

Table 4.3 Memory map description 44

Table 4.4 RISC32 processor hierarchy. 46

Table 5.1 Details for exception event 50

Table 5.2 Conventional usage of CP0 registers 51

Table 5.3 Details of the Status register 52

Table 5.4 Details of the Cause register 52

Table 5.5 Exception event and its characteristics for RISC32 IoT

Processor

53

Table 5.6 Priority for Exception Event 54

Table 7.1 Pin allocation on ARTY Artix-7 FPGA Development

Board

106

xiii

LIST OF ABBREVIATIONS

ALU Arithmetic and Logic Unit

CP0 Core Processor 0

FIQ Fast Interrupt Request

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IOT Internet of Things

IRQ Interrupt Request

ISR Interrupt Service Routine

MIPS Microprocessor without Interlocked Pipelined Stage

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SOC System-On-Chip

Chapter 1 Introduction

1
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 1 Introduction

1.1 Background Information

1.1.1 RISC

RISC is short for Reduced Instruction Set Computing that developed and introduced by

IBM in 1980 and coined by David Patterson. John Cocke of IBM Research in

Yorktown, New York, originated the RISC concept in 1974 by proving that about 20%

of the instructions in a computer did 80% of the work. Therefore, RISC using simple

and small instruction set hence less hardware needed, so the system can operate at

higher speeds and low-power consumption, and this makes the processor easier to build

and test. RISC has four philosophy (Mok, 2009):

• Fixed instruction lengths.

• Load-store instruction sets.

• Limited number of addressing modes.

• Limited number of operations.

1.1.2 MIPS

MIPS short for Microprocessor without Interlocked Pipelined Stage is the

Microprocessor based on the Reduced Instruction Set Computer (RISC) architecture.

MIPS initiated in 1981 by a team led by John L. Hennessy and come out conclusion in

the year 1984. Recently, MIPS implement in the digital home, networking, embedded

system, Internet of things and mobile applications. At the pass, MIPS used in video

game consoles such as Sony PlayStation, PlayStation and PlayStation Portable. The

MIPS ISA based on a 32-bit word. MIPS support 32-bit addressing (word-addressed).

MIPS is a load-store architecture that means it can perform load and store operation

between memory and registers and ALU operation between registers. MIPS is a

modular architecture it contains coprocessors 0(CP0) which handle the exception and

coprocessors 1(CP1) which handle the floating-point operation (Mok, 2009). The

details of MIPS architecture and relative information can found in a book, which name

Computer Organization and Design: The Hardware/ Software Interface (Patterson and

Hennessy, 2008). MIPS processors operate by breaking instruction execution cycle into

multiple small independent stages and this technic call pipelining. Figure 1.1 shown the

MIPS 5-stage pipelining

Chapter 1 Introduction

2
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 1.1: MIPS five-stage pipelining (Patterson & Hennessy, 2002, p.A-7)

The instruction execution is divided to 5 stages, IF (“Instruction Fetch”), ID

(“Instruction Decode”), EX (“Instruction Execution”), MEM (“Memory access”) and

WB (”Write Back”).

 IF: Send the program counter (PC) to instruction memory, fetch the instruction

from the instruction memory/instruction cache (I-cache) and update the PC by

adding 4 (instruction is 4 bytes).

 ID: Decodes the instruction and read the corresponding register for CPU use.

 EX: Performs an arithmetic or logical operation.

 MEM: Write or Read a data from the data memory (D-cache) only the

instruction load and store will use this stage.

 WB: store the value obtained from an operation back to the register file.

Chapter 1 Introduction

3
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.1.3 Exception

Exception is an event other than branches or jump that change the normal flow of

instruction execution (Patterson & Hennessy, 2008, p.384). Exception was classify into

two type, which are synchronous exception and asynchronous exception.

Asynchronous exception is the exception that occurs with no relation to the program

executed such as I/O requests while synchronous exception is exception that occurs at

the same place every time the program executed with the same data and memory

allocation, example for synchronous exception are arithmetic overflow, undefined

instruction, and page fault. (Patterson & Hennessy, 2002, p.A-40)

1.1.4 Interrupt

An interrupt is an external event that changes the normal flow of instruction execution

(Patterson & Hennessy, 2008, p.384). Interrupts are the asynchronous exception.

Example for the Asynchronous event is I/O device request, power failure and Hardware

malfunction. The asynchronous exception usually handled after the completion of the

current instruction, which makes them easier to handle. Coprocessor 0 (CP0) system

control coprocessor will handle these interrupts.

1.1.5 Trap

The trap is an internal event that changes the normal flow of instruction execution. The

trap is the synchronous exception. Example for the synchronous event is invoked

operating system, tracing instruction execution, breakpoint, arithmetic overflow, page

fault, misaligned memory accesses, memory protection violations and using undefined

instruction.

Chapter 1 Introduction

4
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.2 Project Motivation

A 32-bit 5-stage pipeline RISC soft-core can be advantageous in creating a core–based

environment to assist research and development work in the area of developing

Intellectual Properties (IP) cores. However, there are limitations in obtaining such

workable core-based design environment

 Microchip design companies designed microprocessor as Intellectual Property

or IP for commercial purpose. The microprocessor IP includes information on

the entire design process for the front-end (modelling and verification) and

back-end (physical design) integrated circuit (IC) design. These are trade secrets

of a company and certainly not made available in the market at an affordable

price for research purpose.

 Several freely available microprocessor cores can found in internet, most of

them can found at OpenCores (http://www.opencores.org/). Unfortunately,

these processors do not implement the entire MIPS Instruction Set Architecture

(ISA) and lack comprehensive documentation. This makes them unsuitable for

reuse and customization.

 The verification specification for a freely available RISC microprocessor core

that is available on the Internet is not well developed and incomplete. Therefore,

without a good verification specification, the verification process will be slow

and hence, will slow down the overall design process.

 The lack of well-developed verification specifications for these microprocessor

cores will inevitably affect the physical design phase. A design needs

functionally proven before the physical design phase can proceed smoothly.

Otherwise, if the front-end design has to be changed, the physical design process

has to be re-design.

This project will aim to provide solutions to the above problems by creating a 32-bit

RISC core-based development environment to assist research work in the area of soft-

core and application specific hardware modelling. In the RISC32 project, the project

divided into several units based on MIPS architecture.

Chapter 1 Introduction

5
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.3 Problem Statement

Currently, a team from FICT has designed an IoT SoC processor based on a subset of

the MIPS ISA. The processor supports three type of communication interface, which

are the UART, SPI and GPIO. The UART, SPI and GPIO have integrated into the IoT

processor using I/O mapped technique. The individual test cases for each I/O have been

conducted but have not gone through thorough multiple and nested exception

verification and there are lack of well-defined exception handler scheme to manipulate

the multiple interrupt occurrence and traps. Exception makes the 5-stage pipelining

processor more complicated because the exception is hard to be handled in pipeline

processor due the overlapping instruction characteristics (Patterson & Hennessy, 2002,

p.A-37). The exception causes the instruction to stop executing in the middle of

execution. To handle Exception, first, we need to detect the exception, what is the cause,

when it occurs, how to handle it and what to do after exception. For 5-stage pipeline

processor, handling exception is more difficult when multiple exceptions occur at the

same time (clock cycle). Fortunately, the cause of exception can be determine based on

the stage where by an instruction cause exception. On the other hand, if the multiple

exceptions occur in same time, we need to come up with a plan to determine which

exception we need to serve first to ensure smooth running of the program. The

exception will also occur out-of-order that means out of the instruction execution order,

this makes exception more difficult to handle. After handling the exception, there is

two alternative, which is terminate the program or return to the program. When

returning to the program, the problem is where the program needs to restart at the user

program, the branch delay slot also makes a return from the exception to the user

program more complicated. When the exception was in execution, there is possibly

another exception occurs, this also known as a nested exception. The main purpose for

this project is to develop an exception scheme to handle various type of exception in

order to ensure future reliable I/Os integration and smooth running of the user program.

Chapter 1 Introduction

6
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.4 Project Scope

The project scope includes the development of an exception handler scheme for

interrupt conflict and the nested interrupt resolution. The exception scheme also needs

to be verified its functionality through simulation by write the test code to trigger the

interrupt individually. After that, trigger the multiple I/O interrupt and trap make sure

the exception scheme well function. In addition, physical synthesis the RISC32 IoT

processor on FPGA board will conducted to verify the correctness of the exception

scheme.

1.5 Project Objectives

The Project Objectives are as shown below:

 To develop an exception scheme for RISC32 IOT processor.

 To develop a test bench to verify the exception handle and Interrupt Service Routine

(ISR) code.

 To synthesize the RISC32 IoT Processor and carry out physical tests on the I/O

function.

Chapter 1 Introduction

7
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.6 Impact and significance

As a summary of the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The

development environment refers to the availability of the following:

 A well-developed design document, which includes the chip specification,

architecture specification and micro-architecture specification.

 A fully functional well-developed 32-bit RISC architecture core in the form of

synthesis-ready RTL written in Verilog HDL.

 A well-developed verification environment for the 32-bit RISC core. The

verification specification should contain suitable verification methodology,

verification techniques, test plans, test bench architectures etc.

 A complete physical design in Field Programmable Gate Array (FPGA) with

documented timing and resource usage information.

With the available of well-defined exception handler scheme, it can build up high

confident level to extend the IoT SoC processor. It can allow us to add-on extra

communication interface on processor. For instance, integration of ADC (analogue to

digital converter) to the processor without having to worry about the data conflicting.

Consequently, the research work could be done easier and speed up significantly.

Chapter 2 Literature Review

8
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 2 Literature Review

2.1 Exception

Exception is an event other than branch or jump that change the normal flow of

instruction execution. The type of exception are listed below :- (Patterson & Hennessy,

2002, pp.A-38-A39)

 I/O device request

 Invoking an operating system service from a user program

 Tracing instruction execution

 Breakpoint (programmer-requested interrupt)

 Integer arithmetic overflow

 FP arithmetic anomaly

 Page fault (not in main memory)

 Misaligned memory accesses (if alignment is required)

 Memory protection violation

 Using an undefined or unimplemented instruction

 Hardware malfunctions

 Power failure

Different Architecture using different terminology to describe the exception. Figure2.1

show the different name for the common exception event.

Chapter 2 Literature Review

9
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 2.1 Different architecture use different names to represent common exception
event. IBM and Intel using interrupt for every exception event. Motorola using

exception while Vax using both interrupt and exception. (Patterson & Hennessy,
2002, p.A-40).

In MIPS, it classify type of exception event into external and internal. External

exception event name interrupt while internal exception event name exception. Figure

2.2 show that the exception event for MIPS terminology.

Figure 2.2 MIPS terminology to differentiate type of exception event. (Patterson &
Hennessy, 2008, p.385).

Chapter 2 Literature Review

10
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.2 Characteristic of exception

Exception can be classify based on its characteristic. Figure 2.3 show the exception

event and its characteristics. The five main independent characteristic are (Patterson &

Hennessy, 2002, pp.A-40-A-41):

 Synchronous Vs Asynchronous

Asynchronous exception is the exception that occurs with no relation to the program

executed such as I/O requests while synchronous exception is exception that occurs at

the same place every time the program executed with the same data and memory

allocation, example for synchronous exception are arithmetic overflow, undefined

instruction, and page fault. Asynchronous usually handle after the current instruction

complete execute.

 User requested Vs Coerced

User requested event is the user request it to happen, for instance, “syscall”. User

requested actually not really exception because it is predictable but the only method to

create the event is to cause exception. Coerced exception is an unpredictable event that

not under the user control.

 User maskable Vs user nonmaskable

If the exception can disable by user program the event is user maskable event.

Otherwise, it is nonmaskable event.

 Within Vs between instructions

If the exception event occur and stop the current executing instruction in the pipeline

then the event is classify “within”. If the exception event allow the current executing

instruction to complete, then only serve the exception event then the event id classify

“between”.

 Resume Vs Terminate

After handling the exception event, there are two alternative way, which is return to the

user program, or terminate the current program.

Chapter 2 Literature Review

11
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 2.3 Exception event and its characteristics. (Patterson & Hennessy, 2002, p.A-
42).

Chapter 2 Literature Review

12
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.3 Precise exception Vs Imprecise exception

 Precise exception

Precise exception means that when the exception occurred, the instruction causes the

exception (instruction victim) will be recorded. There are able to draw a line between

the instruction before the instruction victim and the instruction after the instruction

victim. Beside, all the instruction before the instruction victim will executed while all

the instruction after the instruction victim will flushed out from pipeline. This method

make programmer work more easy because they can ignore the timing effect of the

CPU implementation.

The feature provided with precise exception are (Sweetman, 2007, pp.107-108):

 Unambiguous proof of guilt: After the exception, exception will return to the

user program by load the value from EPC register into PC. EPC will always

point to the instruction that cause the exception. However, EPC also will point

to the preceding branch instruction if the BD in cause register was set.

 Exceptions appear in instruction sequence: For pipeline processor, multiple

exception will occur in the same time in different stage of execution. For

instance, the load instruction (lw) cause the Memory Translation exception in

the MEM stage (4th stage of the pipeline) and at the same time, a later instruction

hit an exception in the ID stage (2nd stage of the pipeline), this will cause the out

of order exception. The later instruction arise the exception earlier than the prior

one. To avoid this problem, an exception detected early but no perform the

operation immediately, the exception event just marked and passed until end of

the MEM stage.

 Subsequent instructions nullified: Because of pipelining, instructions following

the victim instruction have been started and inside pipeline. However, MIPS

guarantee that, the instruction following the victim instruction will not have

effect toward the register file or CPU and return to the user program just like

exception no occur.

Chapter 2 Literature Review

13
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Imprecise exception

The imprecise exception mean that when the exception occur we cannot precisely tell

where we need to return after exception. For instance: (Patterson & Hennessy, 2002,

p.A-54).

1. DIV.D F0,F2,F4

2. ADD.D F10,F10,F8

3. SUB.D F12,F12,F14

ADD.D and SUB.D expected to complete before the DIV.D because DIV.D need more

cycle to complete compare to ADD.D and SUB.D. This also known as out-of-order

completion. Suppose SUB.D cause an arithmetic exception at the point where ADD.D

completed but DIV.D has not completed. This result in imprecise exception because it

cannot precisely tell that where should return after the exception.

Another example (Zjueducn, n.d., p.13)

1. Mult r1,r2,r3 ;Multiply take 10 cycles

2. Add r10,r11,r12 ;Add take 5 cycle

Add will complete before the multiply. If the multiply cause an arithmetic exception,

but add has already update the value in r10. This result imprecise exception.

In general, Imprecise exception always involve when there are instruction take multiple

cycle to complete For instance, instruction involve in floating point , multiply and

divide. Imprecise exception are harder to handle compare to precise exception.

Chapter 2 Literature Review

14
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.4 Exception handler Scheme for MIPS

2.4.1 Coprocessor 0

In MIPS, there have two Coprocessor, which are Coprocessor 0 and Coprocessor 1. In

this project, we are more interesting in Coprocessor 0. Coprocessor 0 also known as

system control coprocessor, it handle the exception and interrupt by records the

information that correspond exception event. Coprocessor 0 has its own registers files.

Figure 2.4 shown the coprocessor 0’s registers and its usage.

Figure 2.4 coprocessor 0’s registers and its usage. (Patterson & Hennessy, 2008, p.B-
33).

2.4.2 BadVaddr register

BadVaddr Register will store the referenced memory location’s address if the

instruction that caused exception made a memory access.

2.4.3 Count Register and Compare Register

Count Register act as a timer, increment at a fixed period. When the value in the Count

Register count until the value in the Compare register, it will raise a hardware interrupt.

2.4.4 Status Register
Status Register used to indicate the exception details. Figure 2.5 show the Status

Register and its field.

It made up by 4 field:

 Interrupt Mask (Status Register[15:8])

-There are 6 bit for hardware and 2 bit for software interrupt level

-Mask bit = 1, when the interrupt is enable.

-Mask bit=0, when the interrupt is disable.

Chapter 2 Literature Review

15
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

- Interrupt occur when both interrupt mask (Status Register) and Interrupt Pending

(Cause Register) was asserted.

- When interrupt raise, correspond Interrupt pending bit will asserted but it will not be

served when the Interrupt Mask disable.

 User Mode /Kernel mode(Status Register[4])

Status Register [4] =0, the processor running in kernel mode.

Status Register [4] =1, the processor running in user mode.

 Exception Level (Status Register[1])

-Normally 0.

-Set to 1 when exception event happen.

- To prevent the multi-level exception by prevent other exception event changing the

EPC value.

- Should reset after finish exception.

 Interrupt Enable (Status Register[0])

Status Register [0] = 1, interrupt enable.

Status Register [0] = 0, interrupt disable.

Figure 2.5: Status Register. (Patterson & Hennessy, 2008, p.B-35)

2.4.5 Cause Register

Cause register is use to determine the causes for the exception. Figure 2.6 show that the

Cause register and its field.

 Branch Delay(Cause Register[31])

- Cause Register [31] = 1, when the exception occur inside in branch/ jump instruction.

- EPC store the branch/jump instruction instead of the instruction cause the exception.

-exception handler must look at EPC+4 for the offending instruction.

 Pending interrupt (Cause Register[15:8])

Chapter 2 Literature Review

16
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

-Pending bit = 1, when the exception occur but no serve.

-mainly use to handle multiple exception occur at a same time.

 Exception Code (Cause Register[6:2])

-use the indicate the causes of exception

-the exception code shown in Figure 2.7.

Figure 2.6: Cause Register (Patterson & Hennessy, 2008, p.B-35).

Figure 2.7: Exception code (Patterson & Hennessy, 2008, p.B-35).

2.4.6 EPC Register

 Store the instruction address that causes the exception occur.

 If BD (Cause Register [31] was set, when the exception occur, the branch / jump,

instruction was load into EPC Register instead the instruction cause exception.

Chapter 2 Literature Review

17
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.4.7 Instruction associate with exception handling

Some instruction are dedicated build to access the Register in CP0, because CP0 does

not implement ALU unit to carry out the operation, so, the data need to move to the

CPU for compute and move it back to CP0.The instruction and its function are list

below:- (Sweetman, 2007, p.55).

mtc0 <register in CPU>, < destination in CP0> #move data from CPU to CP0

mfc0 < register in CPU >, < source in CP0> #move data from CP0 to CPU

eret # return from exception

When the bit 4(user mode/ kernel mode) in the status register was set, it means that the

program is in user mode, it can use all the general-purpose register in CPU for data

transfer. However, when enter the exception handler, normally the program execute in

kernel mode, register k0 and k1 reserved for kernel usage. For instruction “eret”, it

return form exception by load the EPC value into PC.

Chapter 2 Literature Review

18
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.4.8 Step-by-step how MIPS handle Exception

1. Determine which instruction that cause the exception. For MIPS, there are multi

instruction in the pipeline processor within a single clock cycle. At different

pipeline stage, it will arise different exception. The detail shown in Figure2.8:

Figure 2.8: Exceptions that may occur in the MIPS pipeline. (Patterson & Hennessy,
2002, p.A-44).

2. Stop the offending instruction and let the prior instruction finished

3. Flush the offending instruction and the all instruction inside the pipeline stage.

4. Load PC value into EPC, for determine the cause or return from exception.

5. Load the 0x80000180 into PC. 0x80000180 is the single entry point for all

exceptions in MIPS architecture.

6. Determine the cause by using the information inside Cause Register.

7. Pass the work to Operating system, Operating system will handle the case. In other

word, jump to the interrupt service routine. OS will handle the cases by :

 Terminate the program and display the reason.

 -undefined instruction

 -hardware failure

 -arithmetic overflow

 Perform the desired task and return to program from exception

 -I/O device request

 -system service call

8. Return from exception by load EPC+4 into PC.

The flow of the handle the exception shown in the Figure 2.9.

Chapter 2 Literature Review

19
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 2.9 Flow chart for handle an exception.

For above solution, it look completely fine but it only can handle one level exception,

which means that it cannot interrupt when inside the exception handler. Sometime we

need to interrupt when interrupt is serving this also known as multi-level exception or

Nested Exception.

Chapter 2 Literature Review

20
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.5 Nested Exception

Nested Exception is the permit for other exception to occur when the system are serving

an exception. When exception occur, CP0 will write to the cause register, status register

and the EPC. For nested exception, value in the cause register, status register and EPC

was expected to be overwrite (Sweetman, 2007, pp.114-115). To support the nested

exception, we need to store the value in cause register, status register and EPC value

inside the stack. However, interrupt will also occur when copying the value to the stack.

To solve this problem, we need to disable all interrupt when copying the value to the

stack. We can implement the Interrupt Priority Level (IPL) by control the masking

value of Status register to disable the further interrupt. However, the interrupt resource

was limited, interrupt have a chance to occur when changing the value in Status Register

causes the Status Register to be overwrite. This problem also known as the Race

Condition. To solve this problem, we need to make the program mutual exclusion by

using the software way, which is semaphores, to allow atomic changes of Status

register.

Chapter 2 Literature Review

21
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.6 Exception handler scheme for ARM processor

2.6.1 Processor Mode for ARM

The ARM processor internally has seven different modes of operation, which are, User

mode, FIQ mode, IRQ mode, Supervisor mode, Abort mode, Undefined mode, System

mode. The following figure summarizes the seven modes.

Figure 2.10 ARM Processor Mode

For user mode, it used for normal program execution. FIQ mode used for interrupts

requiring fast response for instance data transfer with DMA. IRQ mode used for

general-purpose interrupts for example I/O interrupt. Supervisor mode used when

operating system support needed. Abort mode used when data or instruction fetch have

aborted. Undefined mode used when undefined instruction fetched. System mode is the

Operating system privilege mode for users.

Chapter 2 Literature Review

22
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.6.2 ARM Exception

ARM have support few type of exception, which are Fast Interrupt Request, Interrupt

Request, Software interrupt (SWI) and Reset, Prefetch Abort and Data Abort and

Undefined Instruction. Figure 2.11 summaries the type of exception support by ARM.

Figure 2.12 shown the priority level for ARM exception.

Figure 2.11 ARM processor exceptions and associated modes. (Sloss,
Symes&Wright, 2004, p.319).

Figure 2.12 Exception priority levels for ARM. (Sloss, Symes&Wright, 2004, p.319).

2.6.3 Entering and exiting an exception handler.

Sloss, Symes and Wright (2004) list out the step of ARM processor to handle an

exception. First, preserve the address of the next instruction, copy the Current Program

Status Register (CPSR) to Saved Program Status Register (SPSR) and the Program

counter to the Link Register (LR). Next, force the CPSR mode bits to a value depending

on the raised exception, force the Program counter (PC) to fetch the next instruction

from the exception vector table. Now the handler is running in the mode associated with

the raised exception. When handler is done, the CPSR restored from the saved SPSR.

PC restored with the value of (LR – offset) and the offset value depends on the type of

the exception. Last, clear the interrupt disable flags if they were set.

Chapter 2 Literature Review

23
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.6.4 ARM Interrupt handling schemes

Sloss, Symes and Wright (2004) has introduce some interrupt handling scheme, which

are, non-nested interrupt handling, nested interrupt handling, re-entrant interrupt

handling, prioritized simple interrupt handling, prioritized standard interrupt handling,

prioritized direct interrupt handling and prioritized grouped interrupt handling.

 Non-nested interrupt handling

This non-nested interrupt handling is the simplest scheme, it only allow one interrupt

occur in concurrently. Once the processor received an interrupt, it will disable other

interrupt and save the current context into SPSR. After that, jump to the exception

handler to identify the interrupt source and jump to appropriate Interrupt service routine

(ISR). After service the interrupt, restore the context from SPSR and re-enable the

interrupt. The flow chart for non-nested interrupt handling shown in figure below.

Figure 2.13 Non-nested interrupt handling. (Sloss, Symes&Wright, 2004, p.334).

These non-nested interrupt handling scheme are not suitable for complex embedded

system which has multiple interrupt occurrences and it has high interrupt latency but it

is easy to implement and debug.

Chapter 2 Literature Review

24
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Nested interrupt handling

The scheme can support multiple interrupt in the same time. This achieved by re-

enabling interrupts before the interrupt has fully served. This feature will increases the

complexity of the system but improves the latency. The scheme should be designed

carefully to ensure the context saving and restoration from being interrupted. The goal

of nested handling is to respond to interrupts quickly. The flow chart for nested interrupt

handling shown in figure below.

Figure 2.14 Nested interrupt handling. (Sloss, Symes & Wright, 2004, p.337).

The disadvantage of scheme is that it does not differentiate interrupts by priorities, so

lower priority interrupt can block higher priority interrupts, it will cause deadlock.

The advantage is it can handle multiple interrupt in the same time and improve latency.

Chapter 2 Literature Review

25
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Re-entrant Interrupt Handling

The difference between this scheme and the nested interrupt handling is re-enable

interrupts earlier on the re-entrant interrupt handler compare to the nested interrupt

handling. This can reduce interrupt latency. The external interrupt is clear before re-

enabling interrupts to protect the system from infinite interrupt sequence. This is done

by a using a mask in the interrupt controller. By using this mask, prioritizing interrupts

is possible but this handler is more complex. The flow chart for Re-entrant interrupt

handling shown in figure below.

Figure 2.15 Re-entrant interrupt handling. (Sloss, Symes & Wright, 2004, p.343).

The advantage of this scheme are it can handle multiple interrupt with the differing

priority level and it provide low latency but the scheme will be more difficult to build.

Chapter 2 Literature Review

26
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Prioritized Simple Interrupt handling

In this scheme, the handler will associate a priority level with a particular interrupt

source. A higher priority interrupt will take precedence over a lower priority interrupt.

(Sloss, Symes&Wright, 2004, p.319). Handling prioritization can done by means of

software or hardware. In case of hardware prioritization, the handler is simpler to design

because the interrupt controller will give the interrupt signal of the highest priority

interrupt requiring service. However, on the other side, the system needs more

initialization code at start-up since priority level tables have to construct before the

system switched on. When an interrupt signal raised, a fixed amount of comparisons

will be compare with the available set of priority levels. The flow chart for Prioritized

Simple interrupt handling shown in figure below.

Figure 2.16 Prioritized Simple interrupt handling. (Sloss, Symes & Wright, 2004,
p.348).

The advantage for this scheme is it can handles prioritized interrupts and low interrupt

latency. The low priority interrupt cannot take the precedence over the higher priority

interrupt, with this feature, it solve the deadlock problem. The disadvantage for this

scheme is the time taken to get to a low-priority service routine is same, as high-priority

service routine and it cannot support multiple interrupt occurrence.

Chapter 2 Literature Review

27
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Prioritized Standard Interrupt Handling

This scheme is the alternative of prioritized simple interrupt handler. It has the

advantage of low interrupt latency for higher priority interrupts than the lower priority

interrupt. The flow chart for Prioritized Simple interrupt handling shown in figure

below.

Figure 2.17 Prioritized Standard interrupt handling. (Sloss, Symes & Wright, 2004,
p.353).

Chapter 2 Literature Review

28
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Prioritized Direct Interrupt Handling

There are two different between the prioritized direct interrupt handler and the

prioritized standard interrupt handler. Some of the processing move to the individual

ISR from the handler. Each individual ISR have the responsible to mask out the lower

priority interrupt. This type of handler is relatively simple since the masking done by

the individual ISR, but there are code duplication in each individual ISR since each

interrupt service routine have to mask out the lower-priority interrupt that is same

operation.

 Prioritized Grouped Interrupt Handler

This handler designed to handle large amount of interrupts by grouping interrupts

together and forming a subset that can have a priority level. This way of grouping

reduces the complexity of the handler since it does not scan through every interrupt to

determine the priority. If the prioritized grouped interrupt handler is well design, it will

improve the overall system response times dramatically, on the other hand if it is badly

design such that interrupts are not group well, and then some important interrupts will

dealt as low priority interrupts and vice versa. The most complex and possibly critical

part of such scheme is the decision on which interrupts should be group together. The

advantage for this scheme are can handle a large number of interrupts, and reduces the

response time since the time taken to determine the priority level is shorter but it is

difficult to group the interrupt.

Chapter 3 Proposed Methods / Technologies Involved

29
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 3 Proposed Methods / Technologies Involved

3.1 General Work Flow

The basic approach to develop an exception scheme is to identify type of the exception

need to be support. After that, develop an Exception scheme that can handle multiple

interrupt. Next, set up the test benches by using Verilog HDL to verify the exception

scheme. Simple verification can done by trigger the I/Os interrupt and exception

individually. After the IoT processor has passed through the individual test, a definitive

exception-handling scheme can be derive from the combination of the various type of

exception. If the scheme not functioning well, the exception scheme needs to redesign

and go through the process again. If the scheme works correctly, then the work can be

document. Next, the IoT processor is ready to synthesize onto an FPGA board for

physical tests to conclude the earlier laid down experiments / tests. The Design Flow

shown in Figure 3.1.

Chapter 3 Proposed Methods / Technologies Involved

30
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Start of project.

End of project.

Document the Final report

Logic synthesis and physical design on FPGA. Test run and evaluation
 on the physical design for performance and functional correctness.

Document the project partially.

Develop a test program that combine both external and internal exception and verify the behavior.

Develop a test program that combine the multiple external exception (interrupt) and verify the behavior.

Develop an individual test program for each external exception (interrupt) and verify the behavior.

Develop an individual test program for each internal exception (trap) and verify the behavior.

Setup the Test bench to conduct the experiment.

Identify the type of exception need to be support.

Review existing Exception scheme.

Review of the RISC32 pipeline Processor micro-architecture, I/O
module(SPI,UART,GPIO), Bus system and Multiple I/O interrupt.

Develop an Exception Scheme.

Figure 3.1 Design flow of the project

Chapter 3 Proposed Methods / Technologies Involved

31
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

3.2 Design Tools

Since this project will be using Verilog HDL to model the test bench to verify the

functionality, we will be discussing commonly used design software that can support

Verilog HDL. Some simulator are shows in Table 3.1:

Simulator ModelSim VCS Quartus II

Company

Language

Supported

VHDL-2002

V2001

SV2005

VHDL-2002

V2001

SV2005

VHDL-2002

V2001

SV2005

Platform

Supported

-Windows

XP/Vista/7/8/10

-Linux

Linux -Windows XP/7/8

-Linux

Availability for

free

YES (Student

Edition only)

No No

Table 3.1 Comparison between simulation tools. (Mentor Graphics, n.d.), (Synopsys,
n.d.), (Altera, n.d.).

Based on the comparison above, it is clear that ModelSim from Mentor Graphic is the

best choice as a simulation tool for this project because they offer free license (180

days) for Student Edition. There will some limitation for the student edition but it is

sufficient for this project. However, the other two simulation tools provide better

feature compare to ModelSim but the price is too expensive, it is not affordable for a

student. ModelSim also provided freely in the computer laboratory by Universiti Tunku

Abdul Rahman.

Chapter 3 Proposed Methods / Technologies Involved

32
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Mentor Graphics ModelSim PE Student Edition 10.4a (Mentor Graphics, n.d.)

ModelSim PE Student Edition 10.4a is the latest version and it offers a free license for

academic purpose. It supports VHDL and Verilog HDL designs but not mixed and it

has a friendly GUI with TCL interface. Since it is free, so the free version has no

customer support, but there are a lot of learning resources are available on the internet

and a forum for discussion.

PC Spim

PC Spim is a simulator that provides a MIPS environment to simulate MIPS programs.

It supported almost the entire MIPS assembly language and a build-in simple debugger.

In this project, the test code, boot loader, interrupt service routine and exception handler

will write in MIPS assembly language and simulated with PC spim before load into the

RISC32 IoT processor.

Xilinx Vivado Design Suite- HLx Editions (Xilinx.com, n.d.)

Xilinx Vivado used for synthesis and analysis of HDL designs. It allow the developer

to synthesize their designs on to FPGA board, analysis RTL schematic diagrams, run

the simulation, perform timing analysis, and load the bit stream to the target device.

The FPGA board that used in this project is Arty A7: Artix-7 FPGA Development

Board.

Arty A7: Artix-7 FPGA Development Board (Digilent, n.d.)

Arty is a ready-to-use development board and designed based on the Artix-7™ FPGA

from Xilinx. It contain 256MB DDR3L and 16MB Quad-SPI Flash. For peripheral,

Arty supported by the UARTs, SPIs, IICs, and an Ethernet MAC. It also contain 4 Pmod

connector for expansion the connection. There are also some interaction and sensory

devices such as 4 Switches, 4 Buttons, 1 Reset Button, 4 LEDs and 4 RGB LEDs.

Chapter 3 Proposed Methods / Technologies Involved

33
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

3.3 System Overview

The Figure 3.2 shown the block diagram of the IoT SoC Processor and Table 3.2 shown

hardware features of the IoT SoC Processor

Figure 3.2 Block diagram of the IoT SoC Processor

CPU Structure Pipeline

Instruction cycle 5, overlapping

CPU features Control unit

Data-path unit

Branch predictor (64 entries 4 ways associative)

Pipeline registers

Hazard circuitry

Interlock circuitry

Memory features 4kBytes boot ROM, 128kBytes user access flash,

8kBytes RAM (Data & Stack), 1kBytes I-cache,

32Bytes d-cache, 512Bytes Memory Mapped I/O

Register

Communication interface

features

UART, SPI, 32 GPIO pins

Table 3.2 Hardware features of the IoT SoC Processor

CPU

On-Chip
Instruction
and Data
Memory
(SRAM)

Bus
Arbiter

System Bus

SPI
Controller

GPIO
Controller

UART
Controller

(Optional for
development

purpose)

RF Module
(Radio Chip

and
Antenna)

Sensors

Desktop

DUT

Off-Chip
Memory
(Flash)

Chapter 3 Proposed Methods / Technologies Involved

34
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

The figure above shows the system overview of this project. RISC32 IoT processor

made up of 3 major part, which are, Central processing Unit (CPU), memory system

and I/O System. The IoT processor based on pipeline architecture with build-in

coprocessor 0 and Programmable interrupt controller to handle the exception. The CPU

is compatible to the 5-stage 32-bit MIPS Instruction Set Architecture (ISA).

Memory unit will used to store the system code, user program and data. The I/O register

mapped to the memory unit because I/O mapped technique used.

The I/O System of IoT Processor consist of SPI controller, GPIO controller, and UART

controller. These controllers will responsible for data transmission between IoT

processor and the external device, for example, sensors, wireless modules, personal

computers.

The bus system will connect between CPU and I/O devices. Any data transmission

between the CPU and the I/O device will pass through the bus system.

Chapter 3 Proposed Methods / Technologies Involved

35
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

3.4 Timeline
Figure below show the Gantt chart for FYP 1 and FYP2.

Figure 3.3 Gantt chart For FYP1 and FYP2.

Chapter 4 System Specification

36
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 4 System Specification

4.1 System Overview

The IoT SoC processor is made up by 3 major parts, which are, Central Processing Unit

(CPU), memory system and I/O system. The CPU is the subset of the 5-stage pipeline

32-bit MIPS Instruction Set Architecture (ISA). It supports up to 50 instructions,

included arithmetic, logical, data transfer, program control and system instruction

classes. The memory system consists of a 2-level memory hierarchy. First level consists

of cache, Boot ROM and Data and Stack RAM and second level consists of Flash

memory. The I/O system consists of GPIO controller, SPI controller, UART controller

and Priority Interrupt controller. The I/O system integrated with CPU through

Wishbone B4 standard bus interface (OpenCores, 2010). GPIO, SPI and UART

controllers are used to data transfer with the external devices, for example, sensors,

wireless modules, personal computers etc. The Priority Interrupt controller used as an

external interrupt controller to handle multiple interrupt occurrences based on priority

level. It collaborate with coprocessor 0 to handle the exception. Figure4.1 shows the

architecture of the IoT SoC Processor. Table 4.1 shows the hardware feature of the IoT

SoC Processor.

D-CACHE

Memory arbiter Flash
Controller

SPI
Controller

UART
Controller

GPIO
Controller

Sy
st

em
 B

us

Stack
RAM

Data
RAM

Priority
interrupt
controller

Flash
Memory

I-CACHE

ZigBee EEPROM
LEDs,

Sensors

CPU

Figure 4.1: Architecture of the IoT SoC Processor.

Chapter 4 System Specification

37
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

CPU Structure Pipeline

Instruction cycle 5, overlapping

CPU features Control unit

Data-path unit

Branch predictor (64 entries 4 ways associative)

Pipeline registers

Hazard circuitry

Interlock circuitry

Memory features 4kBytes boot ROM, 128kBytes user access flash,

8kBytes RAM (Data & Stack), 1kBytes i-cache,

32Bytes d-cache, 512Bytes Memory Mapped I/O

Register

Communication interface

features

UART, SPI, 32 GPIO pins

Table 4.1: Hardware features of the IoT SoC Processor.

Chapter 4 System Specification

38
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.2 MIPS ISA

4.2.1 Instruction Format

There are 3 Instruction format which are, R-format, I- format and J-format. Each MIPS

instruction must belong to one of these formats. Figure 4.2 shows the MIPS instruction

format.

Figure 4.2 Instruction Format

4.2.2 Addressing modes

There are six addressing modes, which are register addressing mode, immediate

addressing mode, base addressing mode, pc-relative addressing mode, pseudo-direct

addressing mode and Register direct addressing mode.

A) Register addressing mode(R-format)

Operand are in a system register. Perform operation based on function field. Action on

Source and target register and store the result back to destination register.

Figure 4.3 Register Addressing mode

Chapter 4 System Specification

39
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

B) Immediate addressing mode (I-format)

The operand is inside the instruction (data-value). Perform operation on source register

and immediate value and store the result back into target register

Figure 4.4 Immediate Addressing mode

C) Base addressing mode (I-format)

Perform operation on source register and data address offset. The calculated result used

as address to access the data memory to load/store data to/from target register.

Figure 4.5 Base Addressing mode

Chapter 4 System Specification

40
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

D) PC-relative addressing (I-format)

Perform comparison on source and target register to determine branch taken or untaken,

the immediate value is uses to calculate the branch target.

Figure 4.6 PC-Relative Addressing mode

E) Pseudo-direct addressing (J-format)

Perform operation by concatenating the upper bits of PC with the jump address offset,

to calculate the jump target.

Figure 4.7 Pseudo-Direct Addressing mode

F) Register direct addressing mode (J-format)

Take the value from the source register and force it into PC.

PC

Figure 4.8 Register Direct Addressing mode

Chapter 4 System Specification

41
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.2.3 Instruction Supported

No Instruction

opcode[31:26] rs[25:21] rt[20:16] rd[15:11] shamt[10:6] funct[5:0]

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

opcode[31:26] address[25:0]

1 add 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100000

2 addu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100001

3 sub 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100010

4 subu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100011

5 mult 000000 [xxxxx] [xxxxx] [xxxxx] 00000 011000

6 multu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 011001

7 mfhi 000000 00000 00000 [xxxxx] 00000 010000

8 mflo 000000 00000 00000 [xxxxx] 00000 010010

9 and 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100100

10 or 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100101

11 xor 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100110

12 nor 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100111

13 sll 000000 00000 [xxxxx] [xxxxx] [xxxxx] 000000

14 srl 000000 00000 [xxxxx] [xxxxx] [xxxxx] 000010

15 sra 000000 00000 [xxxxx] [xxxxx] [xxxxx] 000011

16 slt 000000 [xxxxx] [xxxxx] [xxxxx] 00000 101010

17 sltu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 101011

18 jr 000000 [xxxxx] 00000 00000 00000 001000

19 jalr 000000 [xxxxx] 00000 [xxxxx] 00000 001001

20 syscall 000000 00000 00000 00000 00000 001100

21 mtc0 010000 00100 [xxxxx] [xxxxx] 00000 000000

22 mfc0 010000 00000 [xxxxx] [xxxxx] 00000 000000

23 eret 010000 00001 00000 00000 00000 011000

24 addi 001000 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

25 addiu 001001 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

26 andi 001100 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

27 ori 001101 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

28 xori 001110 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

Chapter 4 System Specification

42
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

29 lui 001111 00000 [xxxxx] [xxxxxxxxxxxxxxxx]

30 lw 100011 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

31 lwl 100010 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

32 lwr 100110 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

33 lh 100001 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

34 lhu 100101 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

35 lb 100000 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

36 lbu 100100 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

37 sw 101011 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

38 swl 101010 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

39 swr 101110 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

40 sh 101001 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

41 sb 101000 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

42 slti 001010 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

43 sltiu 001011 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

44 beq 000100 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

45 bne 000101 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

46 blez 000110 [xxxxx] 00000 [xxxxxxxxxxxxxxxx]

47 bgtz 000111 [xxxxx] 00000 [xxxxxxxxxxxxxxxx]

48 j 000010 [xxxxxxxxxxxxxxxxxxxxxxxxxx]

49 jal 000011 [xxxxxxxxxxxxxxxxxxxxxxxxxx]

Table 4.2 Instruction Supported

Chapter 4 System Specification

43
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.3 Functional View of the RISC32 Pipeline Processor

MIPS processor break the instruction execution cycle into 5-stage which is IF, ID, EX,

MEM and WB stage and this technic call pipelining. Figure 4.9 shows the hardware

component allocate in each pipeline stage.

Multiplier
Stage 2

I-CACHE

ALU

CP0 Multiplier
Stage 1

Ad
dr

es
s

D
ec

od
er

D-CACHE

Data and
Stack
RAM

SPI
UART
GPIO Register

File
Register

File

Branch
predictor

IF ID EX MEM WB

M
ai

n
Co

nt
ro

l B
lo

ck
Ar

ith
m

et
ic

 L
og

ic

Co
nt

ro
l B

lo
ck

Forwarding block

Interlock block

Boot
ROM

Branch
predictor

Figure 4.9 Functional view of the RISC32 processor

At IF stage, instruction fetched from the Boot ROM or I-CACHE and pass through the

IF/ID pipeline. If the cache miss happed, the I-cache will send a signal to stall whole

processor until respective instruction was fetch into the I-cache.

At ID stage, the control signal will be compute by decoding the instruction. The Main

Control block and the Arithmetic Logic Control block will decode the instruction and

send output signals. Output signals from both hardware components will pass through

to the ID/EX pipeline and the remaining hardware components in the ID stage, which

are, Register File, Forwarding block, Coprocessor 0, Branch Predictor and Interlock

blocks.

At EX stage, ALU block covers all the operation except the multiplication operation.

Multiplier block starts the multiplication operation at EX stage and requires 2 clock

cycles (EX and MEM stages) to perform a multiplication operation on two 32-bit

operands.

At the MEM stage, the load/store instruction will access the memory component, which

are, D-cache, Data and Stack RAM and I/O register.

At WB stage, the computed result will write back to the register file.

Chapter 4 System Specification

44
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.4 Memory Map

Figure 4.10 shows the Memory map. Table 4.3 shows the details of the Memory

allocation.

Figure 4.10 Memory Map

Purpose Description Size

I/O Peripherals register External I/O device registers (I/O

mapped technique)

512Bytes

Boot code Start-up code which keep the

system configuration(Boot

loader)

4kBytes

Stack Use for argument passing 8kBytes

Heap Dynamic memory allocation

such as malloc()

Exception handler Exception handler code and ISR 16kBytes

User Program Code Store User Program Code 128kBytes

Table 4.3 Memory map description

Chapter 4 System Specification

45
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

When a processor start-up, the boot loader program stored in the boot ROM should

perform the following actions:

1) Set up the Register File block registers value

2) Copy .data content from Flash memory to the Data RAM

3) Jump to user program code located at 0x8000_0000 (virtual address)

The data in .data, .bss, .stack, .heap and I/O peripherals registers can be accessed using

load and store instructions.

When Exception occur, the program should jump into the single entry point of the

Exception handler (0x8001_B400). After that, identify the cause of the exception and

jump to the respective Interrupt service routine (ISR). After serving the exception,

should jump back to the user program to continue execution.

Chapter 4 System Specification

46
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.5 RISC32 Pipeline Processor Hierarchy.

Table 4.4 shows the RISC32 pipeline processor hierarchy.

Chip
Level

Unit Level (Micro-
Architecture Level)

Block Level (Micro-
Architecture Level)

Sub-block

crisc Data-path unit
(udata_path)

Branch Predictor block
(bbp_4way)

Register File block (brf)
Forwarding block
(bfw_ctrl)

Interlock block (bitl_ctrl)
CP0 block (bcp0)
ALU block (balb)
Multiplier Block
(bmult32)

adder_lvl1_firstrow
adder_lvl1
add_lvl1_lastrow
sub_lvl1_lastrow
adder_lvl2
adder_lvl2_lastrow
adder_lvl3
adder_lvl4
adder_lvl5

Address Decoder block
(baddr_decoder)

Control-path unit
(uctrl_path)

Main Control block
(bmain_ctrl)

Arithmetic Logic Control
block (balb_ctrl)

Cache unit (ucache) Cache Controller block
(bcache_ctrl)

Cache RAM block
(bcache_ram)

FIFO Controller
(bfifo_ctrl)

FIFO block(bfifo)
Flash Controller Unit
(ufc)

Flash Controller Clock
Generator block
(bfc_clk_gen)

Flash Controller FSM
block (bfc_fsm)

Flash Controller
Transmitter block
(bfc_TX)

Flash Controller Receiver
block (bfc_RX)

FIFO block (bfc_FIFO)

Chapter 4 System Specification

47
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Data and Stack RAM
unit (uram)

UART Controller unit
(uuart)

UART Baud Clock
Generator block (bclkctr)

UART Receiver block
(brx)

sbrx_ctr
asynfifo_r1_3
fifomem_b1_1
graycntr_r1_3
synchronizer

UART Transmitter block
(btx)

sbtx_ctr
asynfifo_r1_3
fifomem_b1_1
graycntr_r1_3
synchronizer

SPI Controller unit
(uspi)

SPI Clock Generator block
(bclk_gen)

SPI Receiver block (bRX)
SPI Transmitter block
(bTX)

FIFO block (bFIFO)
SPI Input Output Control
block (bio_ctrl)

GPIO Controller unit
(ugpio)

Priority Interrupt
Controller unit
(upi_ctrl)

Priority Resolver block
(bpic_resolver)

Boot ROM unit
(uboot_rom)

Memory Arbiter unit
(umem_arbiter)

Table 4.4 RISC32 processor hierarchy.

Chapter 5 Analysis of the I/O system

48
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 5 Analysis of the I/O system

5.1 I/O System

The I/O system consists of GPIO controller, UART controller, SPI controller and

Priority interrupt controller (PIC). There are integrate to the CPU through the Wishbone

B4 standard bus interface (OpenCores, 2010). The GPIO controller, UART controller

and SPI controller used to communicate with the external device and data transmission.

The GPIO controller, UART controller, SPI controller and Priority interrupt

controller (PIC) integrated to the CPU by using the Memory-mapped I/O technique.

The starting address for I/O Map is 0xbffffe00. For convenience, register $S0 was

programme to store the starting address of the I/O Map. There are allow the user use

load-store instruction to access the I/O register.

The UART controller used for asynchronous serial data communication

between another UART devices. The SPI controller used for high-speed serial data

communication between the SPI interfaces devices. It developed with 4 wires, which

are Master out Serial in (MOSI), Master in Serial out (MISO), Slave Select (SS) and

SPI clock (SCLK), and 4 modes of serial data communication. The General Purpose

Input/output (GPIO) Controller is 32-bits I/O port. Each of the pin can be set as either

input or output by configure the GPIODIR register. The GPIO Controller can be used

for interact with the external devices. For example, blinking LEDs, debugging, digital

input. (Kiat, 2018, pp. 91-108).

The Priority Interrupt Controller (PIC) is an external interrupt controller to

handle the multiple interrupt occurrence based on interrupt priority level. Priority

Interrupt Controller unit work with core processor 0 (CP0) to handle the exception. The

Priority Interrupt Controller can take up the 8 interrupt source. The currently connected

interrupt sources are SPI controller, UART controller and CP0 timer. There are four

interrupt priority levels (IPL) can be set for each interrupt source. The highest priority

interrupt will take precedence over a lower priority interrupt. (Kiat, 2018, pp. 109-112).

Chapter 5 Analysis of the I/O system

49
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.2 Micro-architecture for I/O system.
Figure 5.1 below shows the micro-architecture for the I/O system.

EX
E/

M
EM

bcp0
bicp0_read_addr[4:0]
bicp0_wr_data[31:0]
bicp0_wr_addr[4:0]
bicp0_eret
bicp0_mtc0
bicp0_if_pc[31:0]
bicp0_id_pc[31:0]
bicp0_ex_pc[31:0]
bicp0_undef_instr
bicp0_syscall
bicp0_irq
bicp0_sovf
bicp0_BD
bicp0_req_IPL[1:0]
bicp0_clk
bicp0_rst

bocp0_timer_intr
bocp0_intr_en_n

bocp0_stat_IPL[1:0]
bocp0_flush_id
bocp0_flush_ex

bocp0_flush_mem
bocp0_eret_addr[31:0]

bocp0_exc_flag
bocp0_read_data[31:0]

baddr_decoder
biad_ex_lw
biad_ex_lh
biad_ex_lb
biad_ex_sw
biad_ex_swl
biad_ex_swr
biad_ex_sh
biad_ex_sb
biad_ex_cpu_addr
biad_stall

boad_byte_sel[3:0]
boad_dcache_rd
boad_dmem_en

boad_io_we
boad_io_en[7:0]

upi_ctrl

uopi_ctrl_wb_ack

uipi_ctrl_wb_din[31:0]
uipi_ctrl_wb_sel[3:0]

uipi_ctrl_wb_stb
uipi_ctrl_wb_clk

uipi_ctrl_wb_rst

uipi_ctrl_intr_en_n

uipi_ctrl_wb_we uopi_ctrl_wb_dout[31:0]

uopi_ctrl_req_IPL[1:0]
uopi_ctrl_IRQuipi_ctrl_mem_stall

uipi_ctrl_intr_vector[7:0]
uipi_ctrl_stat_IPL[1:0] uopi_ctrl_IO_IE[7:0]

IF
 /

 ID

ID
/E

XE

M
EM

/W
B

PC
ugpio

uogpio_wb_ack

uigpio_wb_din[31:0]

uigpio_wb_sel[3:0]

uigpio_wb_stb
uigpio_wb_clk

uigpio_wb_rst

uigpio_wb_we
uogpio_wb_dout[31:0]

uiogpio_PORT_pin[31:0]

uigpio_wb_addr[1:0]

uigpio_mem_stall

uspi

uospi_wb_ack

uispi_wb_din[7:0]
uispi_wb_sel[3:0]

uispi_wb_stb
uispi_wb_clk

uispi_wb_rst

uispi_SPIE

uispi_wb_we uospi_wb_dout[7:0]

uiospi_MOSI

uiospi_MISO

uiospi_SCLK

uiospi_SS_n

uospi_IRQ

uispi_mem_stall

uuart

uiua_wb_din[7:0]
uiua_wb_sel[3:0]

uiua_wb_stb
uiua_wb_clk

uiua_wb_rst

uiua_RxD

uiua_wb_we

uiua_UARTIE

uoua_wb_ack

uoua_wb_dout[7:0]

uoua_TxD
uoua_IRQ

uiua_mem_stall

i_cache_stall

d_cache_stall

From ALB

brf
birf_rs5[4:0]
birf_rt5[4:0]
birf_wr_data1[31:0]
birf_wr_addr1[4:0]
birf_wr_en1
birf_clk
birf_sreset

borf_rs32[31:0]
borf_rt32[31:0]

uctrl_path * Red arrow mean from
control unit

Figure 5.1 Micro-architecture for I/O system.

Chapter 5 Analysis of the I/O system

50
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.3 Co-processor 0
Co-processor 0 (CP0) is responsible to record and process the exception information. The CP0 block is able to process sign-overflow exception,

undefined instruction exception, syscall exception and I/Os interrupt. Table 5.1 shows the details of resolving simultaneous exception occurrence.

Exception event at the same clock cycle Exception event
occurring at which
Stage?

Occurs at
branch
delay slot?

Return Address
($EPC)

Pipeline registers flush?

Interrupt Request
(IRQ)

Other Exception

No Overflow EX stage (ALU
block)

- ID stage’s PC IF/ID, ID/EX and EX/MEM

No Undefined
Instruction

ID stage - IF stage’s PC IF/ID and ID/EX

No Syscall ID stage - IF stage’s PC IF/ID

Yes - - No IF stage’s PC IF/ID

Yes - - Yes ID stage’s PC ID/EX

Yes Overflow Overflow-EX stage - EX stage’s PC IF/ID, ID/EX and EX/MEM

Yes Undefined
Instruction

Undefined
Instruction-ID stage

- ID stage’s PC IF/ID and ID/EX

Yes Syscall Syscall-ID stage - ID stage’s PC IF/ID

Table 5.1 Details for exception event.

Chapter 5 Analysis of the I/O system

51
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

CP0 Register sets

Table 5.2 shows the CP0 Register Sets. Table 5.3 show the each field for status register.

Table 5.4 shows the each field for cause register.

Register
No.

Code Register
Name

Usage

0 - 8 00000 -
01000

RESERVED RESERVED

9 01001 $count count up every CPU cycle
10 01010 RESERVED RESERVED
11 01011 $compare Used with $count register to form a

timer
12 01100 $stat Store the control and status of

exceptions
13 01101 $cause Store the cause of exceptions
14 01110 $epc Store exception return address
15 - 31 01111 -

11111
RESERVED RESERVED

Table 5.2 Conventional usage of CP0 registers

Chapter 5 Analysis of the I/O system

52
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Register bit usage
$stat [31:12] RESERVED
 IPL[11:10] store current interrupt priority level
 [9:5] RESERVED
 UM[4] 1=user mode, 0=kernel mode
 [3:2] RESERVED
 EXL[1] Exception level

1=exception occurs, disable further exception to occur
0=no exception occurs

 IE[0] 1=Interrupt enable
0=Interrupt disable

Table 5.3 Details of the Status register

Register bit usage
$cause BD[31] Indicate branch delay
 TI[30] 1=enable timer interrupt

0=disable timer interrupt
 [29:28] RESERVED
 TEN[27] CP0 Timer, $count disable control
 [26:12] RESERVED
 RIPL[11:10] User Define priority level for the active interrupt
 [9:7] RESERVED
 Exception code

[6:2]
encodes reasons for the exception
0=Interrupt
4=AdEL, address error trap (load or instruction
fetch)
5= AdES, address error trap (store)
6=lBE, bus error on instruction fetch trap
7=DBE, bus error on data load or store trap
8=Sys, syscall trap
9=Bp, breakpoint trap
10=Rl, undefined instruction trap
12=Ov, arithmetic overflow trap

 [1:0] RESERVED
Table 5.4 Details of the cause register.

Chapter 5 Analysis of the I/O system

53
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.4 Exception event.
Table 5.5 shows the Characteristic of RISC32 exception event. Refer to Chapter 2.2 for detail explanation of the exception event characteristics.

Exception Type
Synchronous Vs
Asynchronous

User requested
Vs Coerced

User maskable Vs
user nonmaskable

Within Vs between
instructions

Resume Vs
Terminate

Exception
#AdEL(address error exception
(load or instruction fetch)) * * * * *
#AdES(address error exception
(store)) * * * * *
#IBE(bus error on instruction fetch) * * * * *
#DBE(bus error on data load or
store) * * * * *
sys(syscall exception) Synchronous user request nonmaskable Within Resume
#Bp(breakpoint exception) * * * * *
Ov(arithmetic overflow exception) Synchronous Coerced nonmaskable Within Resume
RI(Reserved instruction/Undefined
instruction) Synchronous Coerced nonmaskable Within Resume

 Interrupt
UART Asynchronous Coerced User maskable Between Resume
SPI Asynchronous Coerced User maskable Between Resume
GPIO * * * * *
Timer * * * * *

*pending
#not implemented

Table 5.5 Exception event and its characteristics for RISC32 IoT Processor.

Chapter 5 Analysis of the I/O system

54
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.5 Priority for Exception Event

The characteristic for 5-stage pipeline processor is overlapping the instruction.

Therefore, it is possible multiple exception occur in the same clock cycle. To handle

this problem, there are needed a priority scheme to schedule the exception event when

multiple exception event conflicting. Table 5.6 shows the priority for exception event

Exception
event

Priority(in ascending order) Remark

Internal

Syscall 3(Lowest priority) Syscall and Undefined
instruction will occur in
the ID stage, It will not
conflict with each other.

Undefined
Instruction

3(Lowest priority)

Sign-Overflow 2

External(IRQ) 1(Highest priority)

INT_1 Highest priority

Lowest Priority

The priority between the
External Exception
(interrupt) is determine by
the User by setting the
interrupt priority level in
the PICIPLLO[7:0] and
PICIPLHI[7:0] of
Programmable interrupt
controller. (Kiat, 2018,
pp. 109-112).

UART(INT_2)

SPI (INT_3)

INT_4

INT_5

INT_6

Timer (INT_7)

Table 5.6 Priority for Exception Event

Chapter 5 Analysis of the I/O system

55
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.6 Exception Handler Scheme

The exception handler start at address 0x8001b400. When exception occur, CP0 will

send a signal to flush the pipeline register based on the exception event (refer to Table

5.1). After that, exception flag will assert by CP0. Next, save the respective PC to the

$epc for return purpose. After that, jump to the exception handler (0x8001b400). Figure

5.2 shows the flow of the exception handler.

PUSH register to stack

Reset $status.EXL bit.
($status.EXL=0)

Exception Occur

Jump to Exception
Handler

(PC<=0x8001b400)

POP previous
information from

stack back to registers

CP0 flush the pipeline
register,

Set $status.EXL bit,
Load the PC to $epc,

Determine the
$cause.Exc_code.

Decode the
$cause.Exception bits

Exception Return
(ERET)

PC<=$epc
$status.EXL=0

Jump to respective
Interrupt Service

Routine

Set $status.EXL bit.
($status.EXL=1)

$k0

$epc

$a2

$k1

$a1
$a0

$status
$a3

$cause

Read the
(Programmable

interrupt controller)
PIC.Status and Decode.

Copy $cause.RIPL to
$stat.IPL

(prevent lower priority
interrupt occurs)

Interrupt Source
INT_1

INT_3(SPI)

INT_6

INT_2(UART)

INT_5
INT_4

INT_7(Timer)

$k0

$epc

$a2

$k1

$a1
$a0

$status
$a3

$cause

Exception Code
INT(0)

AdES(5)

Sys(8)

AdEL(4)

DBE(7)
IBE(6)

RI(10)
Bp(9)

Ov(12)

Figure 5.2 Flow of the Exception Handler

Chapter 5 Analysis of the I/O system

56
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Nested interrupt Handling Scheme

Figure 5.3 shows the flow of exception handling, when there are another interrupt

request during the execution of the ISR.

Exception Occur

Jump to Exception
Handler

(PC<=0x8001b400)

Save Context

CP0 set $status.EXL=1
to prevent further

interrupt.

Decode the
$cause.Exception bits

Jump to respective
Interrupt Service

Routine

Restore Context

Exception Return
(ERET)

Enable the interrupt
by set $status.EXL=0

CP0 reset $status.EXL
($status.EXL=0) to re-

enable the further
interrupt.

CP0 set $status.EXL=1
to prevent further

interrupt.

Interrupt?

Exception Occur

Jump to Exception
Handler

(PC<=0x8001b400)

Save Context

CP0 set $status.EXL=1
to prevent further

interrupt.

Decode the
$cause.Exception bits

Jump to respective
Interrupt Service

Routine
Restore Context

Exception Return
(ERET)

Enable the interrupt
by set $status.EXL=0

Reset $status.EXL bit.
($status.EXL=0) to

enable the interrupt.

Disable the interrupt
by set $status.EXL=1

Interrupt?

Yes

No

No

Yes

Exception Occur…..

Figure 5.3 Nested interrupt Handling Scheme

Chapter 6 Verification Specification

57
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 6 Verification Specification

6.1 Test cases

Test Case 1: Individual Trap

In Test Case 1, simulation on Individual Trap had conducted. In this project, the

individual Trap cover the Sign-overflow, undefined instruction and Syscall. The

expected output for this test case are as shown below:

i) Each individual Trap event occur

ii) Jump to the exception handler

iii) Jump to the respective ISR.

iv) Return to the user program.

Test Case 2: Multiple Trap

In Test Case 2, Multiple Trap event intentionally created by mixed the individual trap

event in the same clock cycle. There are only two possible combination:

 Sign-overflow (EX stage) and Undefined instruction (ID stage)

 Sign-overflow (EX stage) and Syscall (ID stage)

The expected output for this test case is the Exception occur in the EX stage will be

serve prior then the Exception occur in ID stage.

Chapter 6 Verification Specification

58
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Case 3: Individual interrupt

Client

UART
Controller

SPI
Controller

Server

UART
Controller

SPI
Controller

Figure 6.1 Connection between server and client

In Test Case 3, the connection between server and client had established as figure 6.1.

In this project, the individual interrupt covers the UART interrupt and SPI interrupt.

Client will keep sending the data to the Server through the SPI and UART to generate

the interrupt to the Server side. In this test case, only one of the UART or SPI will turn

on. The expected output for this test case are shows as below:

i) After the processor receive a data, it will raise the interrupt flag.

ii) Jump to the exception handler

iii) Jump to the respective ISR.

iv) Return to the user program.

Test Case 4: Multiple interrupt and Multiple Trap.

In Test Case 4, the connection was same like test case 3 but the UART and SPI on client

will keep transmit the data at the same time in order to generate the interrupt to the

Server side. In the same time, multiple trap occurrences had intentionally created at the

server side to simulate the exception event clashing behaviour. The expected output is

to ensure each exception event have been served and executed their ISR respectively.

Chapter 6 Verification Specification

59
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6.2 MIPS assembly code

Test Case 1: Individual Trap and Test Case 2: Multiple Trap

LABEL INSTRUCTION COMMENTS
.text 0x00400000

sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop

Test Case 1: Individual Trap – Sign-Overflow
sovf: addi $s0, $zero, 1 #$s0 = 1

sll $s0, $s0, 30 #$s0 = 1073741824, $s0[30] = 1,
others=0

addi $s1, $zero, 1 #$s1 = 1
sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] = 1,

others=0
add $s2, $s0, $s1 #sign overflow, $s0[30]=$s1[0] &&

$s0[30]!=$s2[31]
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop

Test Case 1: Individual Trap – undefined instruction
u_inst: sll $zero, $zero, 0 #undefined instruction

sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
li $v0,1 #print integer
li $a0,5 #print 5

Test Case 1: Individual Trap – Syscall
syscall

#syscall

sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop

Test Case 2: Multiple Trap - Sign-overflow (EX stage) and Undefined instruction (
ID stage)
sovf_uinst: addi $s0, $zero, 1 #$s0 = 1

sll $s0, $s0, 30 #$s0 = 1073741824, $s0[30] = 1,
others=0

addi $s1, $zero, 1 #$s1 = 1
sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] = 1,

others=0

Chapter 6 Verification Specification

60
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

add $s2, $s0, $s1 #sign overflow, $s0[30]=$s1[0] &&

$s0[30]!=$s2[31] at ex stage
sll $zero, $zero, 0 #undefined instruction
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop

Test Case 2: Multiple Trap - • Sign-overflow (EX stage) and Syscall (ID stage)
sovf_syscall
:

addi $s0, $zero, 1

sll $s0, $s0, 30 #$s0 = 1073741824, $s0[30] = 1,

others=0
addi $s1, $zero, 1 #$s1 = 1
sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] = 1,

others=0
add $s2, $s0, $s1 #sign overflow, $s0[30]=$s1[0] &&

$s0[30]!=$s2[31] at ex stage
syscall

#syscall

sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop

here: j here

#forever loop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop

Chapter 6 Verification Specification

61
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Case 3: Individual interrupt

 UART interrupt

Server

LABEL INSTRUCTION COMMENTS

 .text 0x00400000
setting: lui $s0, 0xbfff
 ori $s0, $s0, 0xfe00 $s0=bfff_fe00

 addi $s3, $zero, 1 $s3=1

 add $s1, $zero, $zero $s1=0

 addi $t0, $zero, 0x1 Enable GPIO[16]

 sll $t0, $t0, 16

 sw $t0, 20($s0)

 addi $t0, $zero, 0x0004
 sll $t0, $t0, 16
 sw $t0, 32($s0) Enable UARTIE at PIC.PICMASK[2]

 addi $t0, $zero, 0xC2 Configure UART.UARTCR=1100_0010,

 sb $t0, 40($s0) UARTEN=1, RXCIE=1,BAUD=010
GPIO: xori $s1, $s1, 1 Toggle GPIO[16]

 sll $s2, $s1, 16

 sw $s2, 24($s0)
start_timer: ori $t1, $zero, 0x0500 Create delay

 addi $t0, $zero, 0x1

 sll $t0, $t0, 27

 mtc0 $t0, $13

 mtc0 $zero, $9

 mtc0 $zero, $13

 mfc0 $t0, $9
poll_timer: sub $t0, $t1, $t0

 bgtz $t0, poll_timer

 bne $s3, $zero, GPIO ($s3=1)!=0 branch to GPIO

 nop
 nop
 nop
 nop

Chapter 6 Verification Specification

62
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Client

LABEL INSTRUCTION COMMENTS
.text 0x00400000

setting: lui $s0, 0xbfff

ori $s0, $s0, 0xfe00 $s0=bfff_fe00
addi $s3, $zero, 1 $s3=1
add $s1, $zero, $zero $s1=0
addi $t0, $zero, 0x1 #GPIO setting

#GPIOEN=1000_0000

sll $t0, $t0, 16
sw $t0, 20($s0)
addi $t0, $zero, 0xA2 #UARTCR=1010_0010,

UARTEN=1,TXEIE=1

sb $t0, 40($s0)
UART_restar
t:

addi $t1, $zero, 0x11

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0x22

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0x33

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0x44

sb $t1, 42($s0) Put data into UARTTDR
check_TXEF
1:

lbu $t1, 41($s0) Check the transmit flag

sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1,$zero, check_TXEF1
addi $t1, $zero, 0x55

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0x66

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0x77

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0x88

sb $t1, 42($s0) Put data into UARTTDR
check_TXEF
2:

lbu $t1, 41($s0) Check the transmit flag

sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1,$zero, check_TXEF2
addi $t1, $zero, 0x99

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0xAA

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0xBB

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0xCC

sb $t1, 42($s0) Put data into UARTTDR

Chapter 6 Verification Specification

63
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

check_TXEF
3:

lbu $t1, 41($s0) Check the transmit flag

sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1,$zero, check_TXEF3
addi $t1, $zero, 0xDD

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0xEE

sb $t1, 42($s0) Put data into UARTTDR
addi $t1, $zero, 0xFF

sb $t1, 42($s0) Put data into UARTTDR
check_TXEF
4:

lbu $t1, 41($s0) Check the transmit flag

sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1,$zero, check_TXEF4
xori $s1, $s1, 1 Toggle the GPIO
sll $s2, $s1, 16
sw $s2, 24($s0)

start_timer: addi $t1,$zero,0x500 Create delay
addi $t0, $zero, 0x1
sll $t0, $t0, 27
mtc0 $t0, $13
mtc0 $zero, $9
mtc0 $zero, $13

poll_timer: mfc0 $t0, $9
sub $t0, $t1, $t0
bgtz $t0, poll_timer
bne $s3, $zero, UART_restart ($s3=1)!=0 branch to GPIO
nop

nop

nop

nop

Chapter 6 Verification Specification

64
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 SPI interrupt

Server

LABEL INSTRUCTION COMMENTS
.text 0x00400000

setting: lui $s0, 0xbfff

ori $s0, $s0, 0xfe00 $s0=bfff_fe00
addi $s3, $zero, 1 $s3=1
add $s1, $zero, $zero $s1=0
addi $t0, $zero, 0x1 Enable GPIO[16]
sll $t0, $t0, 16
sw $t0, 20($s0)
addi $t0, $zero, 0x0008

sll $t0, $t0, 16

sw $t0, 32($s0) Enable SPIIE at PIC.PICMASK[3]
addi $t0, $zero, 0x87 #SPI setting = 10000111 = 0x87 ->

SPE = 1,MSTR = 0, MODE
0,Baud=0111

sb $t0,36($s0) #control reg
addi $t0, $zero, 0x0a #clear SPISR=00001010, RXFHE=1

RXFIE=1
sb $t0,37($s0) #status reg

GPIO: xori $s1, $s1, 1 Toggle GPIO[16]
sll $s2, $s1, 16
sw $s2, 24($s0)

start_timer: ori $t1, $zero, 0x0500 Create delay
addi $t0, $zero, 0x1
sll $t0, $t0, 27
mtc0 $t0, $13
mtc0 $zero, $9
mtc0 $zero, $13
mfc0 $t0, $9

poll_timer: sub $t0, $t1, $t0
bgtz $t0, poll_timer
bne $s3, $zero, GPIO ($s3=1)!=0 branch to GPIO
nop

nop

nop

nop

Chapter 6 Verification Specification

65
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Client

LABEL INSTRUCTION COMMENTS
.text 0x00400000

setting: lui $s0, 0xbfff

ori $s0, $s0, 0xfe00 $s0=bfff_fe00
addi $s3, $zero, 1 $s3=1
addi $s4, $zero, 0x40 Lower bound
addi $s5, $zero, 0x5B upper bound
add $s1, $zero, $zero $s1=0
addi $t0, $zero, 0x1 Enable GPIO[16]
sll $t0, $t0, 16
sb $t0, 20($s0)
add $s6, $zero, $s4 move lower bound to $s6

start_SPI: addi $s6, $s6, 0x01 $s6=$s6 +1
bne $s6, $s5,

no_reset
if no reach upper bound, branch to no
reset

add $s6, $zero, $s4 move lower bound to $s6
addi $s6, $s6, 0x01 $s6=$s6 +1

no_reset: sb $s6, 38($s0) Store data to SPITDR
addi $t0, $zero, 0x01 #clear SPISR=00000001, TXEHE=1
sb $t0, 37($s0) #status reg
addi $t0, $zero, 0xc7 #SPI setting = 11000111 = 0xC7 -> SPE =

1,MSTR = 1,
MODE 0,Baud=0111

sb $t0, 36($s0) #control reg
start_timer: xori $s1, $s1, 1 Toggle GPIO[16]

sll $s2, $s1, 16
sw $s2, 24($s0)
ori $t1, $zero,

0x1000
Create delay

addi $t0, $zero, 0x1
sll $t0, $t0, 27
mtc0 $t0, $13
mtc0 $zero, $9
mtc0 $zero, $13

poll_timer: mfc0 $t0, $9
sub $t0, $t1, $t0
bgtz $t0, poll_timer
bne $s3, $zero,

start_SPI
($s3=1)!=0 branch to GPIO

nop

nop

nop

nop

Chapter 6 Verification Specification

66
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Case 4: Multiple interrupt and Multiple Trap.

Server

LABEL INSTRUCTION COMMENTS
 .text 0x00400000
setting: lui $s0, 0xbfff
 ori $s0, $s0, 0xfe00
 addi $s3, $zero, 1
 add $s4, $zero, $zero
 addi $t0, $zero, 0x1
 sll $t0, $t0, 16
 sw $t0, 20($s0)
 addi $t0, $zero,

0x000c
#PIC MASK =00001100 SPIE=1
UARTIE=1

 sll $t0, $t0, 16
 sw $t0, 32($s0)
 addi $t0, $zero, 0x87 #SPI setting = 10000111 = 0xC7 ->

MSTR = 0, SPE = 1, MODE 0
 sb $t0,36($s0) #SPI control reg
 addi $t0, $zero, 0x0a #clear SPISR=00001010, RXFHE=1

RXFIE=1
 sb $t0,37($s0) #SPI status reg
 addi $t0, $zero, 0xC2
 sb $t0, 40($s0) #UART control reg=1100 0010,

UARTEN=1, RXCIE=1, Baud
mode=010

GPIO: xori $s4, $s4, 1 #pooling GPIO
 sll $s5, $s4, 16
 sw $s5, 24($s0)

Sign-overflow
sovf: addi $s6, $zero, 1 #$s6 = 1
 sll $s6, $s6, 30 #$s6 = 1073741824, $s6[30] = 1,

others=0
 addi $s1, $zero, 1 #$s1 = 1
 sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] = 1,

others=0
 add $s2, $s6, $s1 #sign overflow, $s6[30]=$s1[0] &&

$s6[30]!=$s2[31]
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop

Undefined instruction
u_inst: sll $zero, $zero, 0 #undefined instruction set to

0xffff_ffff
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop

Chapter 6 Verification Specification

67
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 li $v0,1 #print integer
 li $a0,5 #print 5

Syscall
 syscall #syscall
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop
 sll $zero, $zero, 0 #nop

Sign-overflow and undefined instruction
sovf_uinst: addi $s6, $zero, 1 #$s6 = 1
 sll $s6, $s6, 30 #$s6 = 1073741824, $s6[30] = 1,

others=0
 addi $s1, $zero, 1 #$s1 = 1
 sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] = 1,

others=0
 add $s2, $s6, $s1 #sign overflow, $s6[30]=$s1[0] &&

$s6[30]!=$s2[31]
 sll $zero, $zero, 0 #undefined instruction set to

0xffff_ffff
 sll $zero, $zero, 0
 sll $zero, $zero, 0
 sll $zero, $zero, 0
 sll $zero, $zero, 0
 sll $zero, $zero, 0

Sign-overflow and syscall
sovf_syscall addi $s6, $zero, 1 #$s6 = 1
 sll $s6, $s6, 30 #$s6 = 1073741824, $s6[30] = 1,

others=0
 addi $s1, $zero, 1 #$s1 = 1
 sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] = 1,

others=0
 add $s2, $s6, $s1 #sign overflow, $s6[30]=$s1[0] &&

$s6[30]!=$s2[31]
 syscall
 sll $zero, $zero, 0
 sll $zero, $zero, 0
 sll $zero, $zero, 0
 sll $zero, $zero, 0
 sll $zero, $zero, 0
start_timer: ori $t1, $zero,

0x0500

 addi $t0, $zero, 0x1
 sll $t0, $t0, 27
 mtc0 $t0, $13

Chapter 6 Verification Specification

68
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 mtc0 $zero, $9
 mtc0 $zero, $13
poll_timer: mfc0 $t0, $9
 sub $t0, $t1, $t0
 bgtz $t0, poll_timer
 bne $s3, $zero, GPIO
 nop
 nop
 nop
 nop

Chapter 6 Verification Specification

69
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Client

LABEL INSTRUCTION COMMENTS
 .text 0x00400000
setting: lui $s0, 0xbfff
 ori $s0, $s0, 0xfe00
 addi $s3, $zero, 1
 add $s1, $zero, $zero
 addi $t0, $zero, 0x1 #GPIO setting
 sll $t0, $t0, 16
 sw $t0, 20($s0) #GPIOEN=1000_0000
 addi $t0, $zero, 0xA2
 sb $t0, 40($s0) #UARTCR=1010_0010,

UARTEN=1,TXEIE=1

 addi $s4, $zero, 0x40 #SPI lower bound
 addi $s5, $zero, 0x5B #SPI upper bound
 add $s6, $zero, $s4 #Set the lower bound to s6

 addi $t0, $zero, 0x01
 sb $t0, 37($s0) #SPI Status register
 addi $t0, $zero, 0xc7
 sb $t0, 36($s0) #SPI Control Register
UART_SPI
_restart:

addi $t1, $zero, 0x11

 sb $t1, 42($s0)
 addi $t1, $zero, 0x22
 sb $t1, 42($s0)
 addi $t1, $zero, 0x33
 sb $t1, 42($s0)
 addi $t1, $zero, 0x44
 sb $t1, 42($s0)
SPI_transm
it:

sb $s6, 38($s0)

 addi $s6, $s6, 0x01
 sb $s6, 38($s0)
 addi $s6, $s6, 0x01
 sb $s6, 38($s0)
 addi $s6, $s6, 0x01
 sb $s6, 38($s0)
 addi $s6, $s6, 0x01
check_TX
EF1:

lbu $t1, 41($s0)

 sll $t1, $t1, 25
 srl $t1, $t1, 31
 beq $t1, $zero, check_TXEF1
 addi $t1, $zero, 0x55
 sb $t1, 42($s0)
 addi $t1, $zero, 0x66

Chapter 6 Verification Specification

70
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 sb $t1, 42($s0)
 addi $t1, $zero, 0x77
 sb $t1, 42($s0)
 addi $t1, $zero, 0x88
 sb $t1, 42($s0)
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
check_TX
EF2:

lbu $t1, 41($s0)

 sll $t1, $t1, 25
 srl $t1, $t1, 31
 beq $t1, $zero, check_TXEF2
 addi $t1, $zero, 0x99
 sb $t1, 42($s0)
 addi $t1, $zero, 0xAA
 sb $t1, 42($s0)
 addi $t1, $zero, 0xBB
 sb $t1, 42($s0)
 addi $t1, $zero, 0xCC
 sb $t1, 42($s0)
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
check_TX
EF3:

lbu $t1, 41($s0)

 sll $t1, $t1, 25
 srl $t1, $t1, 31
 beq $t1, $zero, check_TXEF3
 addi $t1, $zero, 0xDD
 sb $t1, 42($s0)
 addi $t1, $zero, 0xEE
 sb $t1, 42($s0)
 addi $t1, $zero, 0xFF
 sb $t1, 42($s0)
 addi $t1, $zero, 0xCC
 sb $t1, 42($s0)
 sb $s6, 38($s0) #send SPI data

Chapter 6 Verification Specification

71
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
 sb $s6, 38($s0) #send SPI data
 addi $s6, $s6, 0x01
check_TX
EF4:

lbu $t1, 41($s0)

 sll $t1, $t1, 25
 srl $t1, $t1, 31
 beq $t1, $zero, check_TXEF4
GPIO_toog
le:

xori $s1, $s1, 1

 sll $s2, $s1, 16
 sw $s2, 24($s0)
start_timer: addi $t1,$zero,0x500
 addi $t0, $zero, 0x1
 sll $t0, $t0, 27
 mtc0 $t0, $13
 mtc0 $zero, $9
 mtc0 $zero, $13
poll_timer: mfc0 $t0, $9
 sub $t0, $t1, $t0
 bgtz $t0, poll_timer
 bne $s3, $zero,

UART_SPI_restart

 nop
 nop
 nop
 nop

Chapter 6 Verification Specification

72
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6.3 Simulation Result

Test Case 1: Individual Trap

Sign-overflow

1) When detected the sign-overflow at ALU block (EX stage), hardware will raise the

bocp0_exc_flag.

2) Flush the IF/ID, ID/EXE, EXE/MEM pipeline.

3) Put the ID stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, sign-

overflow the exception code is 12, which will write into the CP0 $cause by

hardware.

Chapter 6 Verification Specification

73
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5) After push the register information into Stack, $status [1] will pull down by user, to

enable further interrupt.

6) The exception code in $cause will decode and branch to the respective ISR. For,

sign-overflow the ISR start at 0x80016c4. After ISR, it will branch to pop data

section (0x8001b4c0).

Chapter 6 Verification Specification

74
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

7) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

8) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

9) Jump back to the User program in the next clock cycle.

Chapter 6 Verification Specification

75
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Undefined instruction

1) When detected the undefined instruction at Main control unit (ID stage), hardware

will raise the bocp0_exc_flag.

2) Flush the IF/ID, ID/EXE pipeline.

3) Put the IF stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, undefined

Chapter 6 Verification Specification

76
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

instruction the exception code is 10, which will write into the CP0 $cause by

hardware.

5) After push the register information into Stack, $status [1] will pull down by user, to

enable further interrupt.

6) The exception code in $cause will decode and branch to the respective ISR. For

undefined instruction, the ISR start at 0x8001b6bc. After ISR, it will branch to pop

data section (0x8001b4c0).

Chapter 6 Verification Specification

77
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

7) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

Chapter 6 Verification Specification

78
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

8) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

9) Jump back to the User program in the next clock cycle.

Chapter 6 Verification Specification

79
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Syscall

1) When detected the Syscall at Main control unit (ID stage), hardware will raise the

bocp0_exc_flag.

2) Flush the IF/ID pipeline.

3) Put the IF stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, Syscall the

exception code is 8, which will write into the CP0 $cause by hardware.

5) Step 5 –Step 9 was similar to the undefined instruction. The only different is the

address of the ISR.

Chapter 6 Verification Specification

80
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Case 2: Multiple Trap

Sign-overflow (EX stage) and Undefined instruction (ID stage)

When sign-overflow (Ex stage) and undefined instruction (ID stage) occur in the same clock cycle (label “1”). Sign-overflow will be handler prior

(label “2”). After return from the Sign-Overflow (label “3”), it will handler the undefined instruction in the next clock cycle (label “4”).

Chapter 6 Verification Specification

81
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

We can clearly see that when both exception occur in the same clock cycle (label “1”),

sign-overflow will be handle because the exception Code is 12(label “2”), which is

sign-overflow exception.

Chapter 6 Verification Specification

82
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

After return from the sign-overflow exception, the undefined instruction will be handle

(label “3”). We can clearly see that the Exception Code is 10, which is undefined

instruction (label “4”).

Chapter 6 Verification Specification

83
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Sign-overflow (EX stage) and Syscall (ID stage)

When sign-overflow (Ex stage) and Syscall (ID stage) occur in the same clock cycle (label “1”). Sign-overflow will be handler prior (label “2”).

After return from the Sign-Overflow (label “3”), it will handler the Syscall in the next clock cycle (label “4”).

Chapter 6 Verification Specification

84
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

We can clearly see that when both exception occur in the same clock cycle (label “1”),

sign-overflow will be handle because the exception Code is 12(label “2”), which is

sign-overflow exception.

Chapter 6 Verification Specification

85
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

After turn from the sign-overflow exception, the Syscall will be handle (label “3”). We

can clearly see that the Exception Code is 8, which is Syscall instruction (label “4”).

Chapter 6 Verification Specification

86
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Case 3: Individual interrupt

UART interrupt

Chapter 6 Verification Specification

87
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1) The slave device transmit the data to the DUT.

2) After the DUT received 1 byte of data, it will rise the UART_RXC flag.

3) The trigger the interrupt request (IRQ), UART interrupt enable (UARTIE) and

UART Received interrupt enable (UARTCR_RXCIE) must be set to high.

4) When IRQ occur, hardware will rise the bocp0_exc_flag

5) Flush the IF/ID pipeline

6) Load the IF stage’s PC into $epc for return purpose after handler the exception.

7) PICSTAT will update the value that correspond to the IRQ source. For UART the

value is 2.

8) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, Interrupt

request the exception code is 0, which will write into the CP0 $cause by hardware.

9) After store the register information into the stack, $status [1] will pull down by user,

to enable further interrupt.

10) The exception code in $cause will decode and branch to the respective ISR. For

IRQ, the ISR start at 0x8001b53c.

Chapter 6 Verification Specification

88
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

11) After Jump to the External interrupt ISR, exception handler will load the PICSTAT

from Programmable interrupt controller (PIC) to $a1.

12) Decode the PICSTAT to figure out the IRQ trigger by which interrupt source. For

UART the code is 2.

13) After that, it will branch to the respective interrupt source’s ISR. For UART, the

starting address for ISR is (0x8001b5a0).

14) UART Receive interrupt’s ISR will load the data from UARTRDR to the $a0.

15) After ISR, it will branch to pop data section (0x8001b4bc).

Chapter 6 Verification Specification

89
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

16) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

17) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

18) Jump back to the User program in the next clock cycle.

The Second byte of Data received by DUT and hardware will trigger the IRQ. The step

will perform same as step 1 until step 18.

Chapter 6 Verification Specification

90
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

SPI interrupt

1) The slave device transmit the data to the DUT.

2) After the DUT received 1 byte of data, it will rise the IRQ.

3) When IRQ occur, hardware will rise the bocp0_exc_flag

4) Flush the IF/ID pipeline

5) Load the IF stage’s PC into $epc for return purpose after handler the exception.

6) PICSTAT will be update the value that correspond to the IRQ source. For SPI the

value is 3.

7) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, Interrupt

request the exception code is 0, which will write into the CP0 $cause by hardware.

Chapter 6 Verification Specification

91
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

8) After store the register information into the stack, $status [1] will pull down by user,

to enable further interrupt.

9) The exception code in $cause will decode and branch to the respective ISR. For

IRQ, the ISR start at 0x8001b53c.

Chapter 6 Verification Specification

92
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

10) After Jump to the External interrupt ISR, exception handler will load the PICSTAT

from Programmable interrupt controller (PIC) to $a1.

11) Decode the PICSTAT to figure out the IRQ trigger by which interrupt source. For

SPI the code is 3.

12) After that, it will branch to the respective interrupt source’s ISR. For SPI, the

starting address for ISR is (0x8001b604).

Chapter 6 Verification Specification

93
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

13) SPI Receive interrupt’s ISR will load the data from SPIRDR to the $v1.

14) After ISR, it will branch to pop data section (0x8001b4bc).

15) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

16) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

17) Jump back to the User program in the next clock cycle.

Chapter 6 Verification Specification

94
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

The Second byte of Data received by DUT and hardware will trigger the IRQ. The step

will perform same as step 1 until step 17.

Chapter 6 Verification Specification

95
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

After perform the step 1 until 17, the value in $v1 is 42.

Chapter 6 Verification Specification

96
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Case 4: Multiple interrupt and Multiple Trap.

In figure above, the label “1” indicate that the internal exception event (Sign-overflow,

undefined instruction and syscall) occur continuously on the Server. The Label “2”

show that the programmable interrupt controller (PIC) generate the interrupt request

(IRQ) to the core processor 0(CP0) based on the UART and SPI Interrupt Request (label

3 and label 4). When the Server received one byte of data from the Client through the

SPI and UART, SPI controller and UART controller will generate an interrupt to the

PIC, PIC will manipulate the multiple interrupt occurrence based on the interrupt

priority level that pre-set by user and generate the interrupt request to CP0. In this test

case, we are more interesting about the Nested Exception and the Exception Conflicting

between the Trap and Interrupt.

Chapter 6 Verification Specification

97
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Nested Exception

1) When detected the syscall at Main control unit (ID stage), hardware will raise the

bocp0_exc_flag.

2) Flush the IF/ID.

3) Put the IF stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, syscall the

exception code is 8, which will write into the CP0 $cause by hardware.

5) After push the register information into Stack, $status [1] will pull down by user, to

enable further interrupt. The exception code in $cause will decode and branch to

the respective ISR.

Chapter 6 Verification Specification

98
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6) During decode the exception code, a byte of SPI data had received and generate an interrupt

request. This is where Nested Exception event occur.

7) When IRQ occur, hardware will rise the bocp0_exc_flag and flush the IF/ID

pipeline

8) Load the IF stage’s PC into $epc for return purpose after handler the exception in

this case the IF stage’s PC is the PC in the exception handler.

9) PICSTAT will be update the value that correspond to the IRQ source. For SPI the

value is 3.

10) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CP0 $status [1] to disable further exception occur. For, Interrupt

request the exception code is 0, which will write into the CP0 $cause by hardware.

Chapter 6 Verification Specification

99
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

11) After store the register information into the stack, $status [1] will pull down by user,

to enable further interrupt. The exception code in $cause and PICSTAT in PIC will

decode and branch to the respective ISR.

12) SPI Receive interrupt’s ISR will load the data from SPIRDR to the $v1. The SPI

interrupt request was de-asserted.

13) After ISR, it will branch to pop data section. Before pop the data from stack, the

$status [1] will raise by user to disable further interrupt when pop the data.

14) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

15) Jump back to the previous exception handler in the clock cycle.

Chapter 6 Verification Specification

100
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

16) After return, the exception handler will continue to decode exception code and

branch to the respective ISR. For syscall, the ISR start at 0x8001b6ac. After ISR, it

will branch to pop data section (0x8001b4bc).

17) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

18) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

19) Jump back to the User program in the next clock cycle.

Chapter 6 Verification Specification

101
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception Conflicting between the Trap (Sign-Overflow) and Interrupt (UART).

Figure above show that the exception scheme when exception conflicting between the

sign-overflow and the interrupt request. In label “1”, we can clearly observed that the

Sign-overflow and the interrupt request had asserted in the same clock cycle. The

interrupt request is asserted by the UART controller when receive one byte of data from

the client (label “2”). During this kind of situation, the priority will goes to the interrupt

request. In label “3” we can observed that the value of exception code in the CP0 $cause

is “0”, which is IRQ. After Serving the IRQ, “eret” will asserted and return to the user

program (label “4”). The Sign-overflow asserted again, and jump to the exception

handler in next clock cycle. In label “5”, we can observe that the exception code is 12.

In label “6” show that the return to the user program after handle the sign-overflow

event.

Chapter 6 Verification Specification

102
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception Conflicting between the Trap (Sign-Overflow, Undefined instruction)

and Interrupt (UART).

Figure above show that the flow when exception conflicting between the sign-overflow,

undefined instruction and the interrupt request. In label “1”, we can clearly observed

that the sign-overflow, undefined instruction and the interrupt request was assert in the

same clock cycle. The interrupt request is asserted by the UART controller when

receive one byte of data from the client (label “2”). In label “3”, show that the register

PICSTAT is “2” which is UART interrupt request. When conflicting occur, the priority

will goes to IRQ, in label “4” we can observed that the value of exception code in the

CP0 $cause is “0”, which is IRQ. After Serving the IRQ, “eret” will asserted and return

to the user program (label “5”). In label “6” shows that the conflicting between the sign-

overflow and undefined instruction. The sign-overflow will handle prior than the

undefined instruction. In label “7”, the value of exception code in the CP0 $cause is 12,

which is sign-overflow. After serving the sign-overflow, “eret” will asserted and return

to the user program (label “8”). Lastly, the undefined instruction will be handle after

the sign-overflow. In label “10”, we can observe that the exception code is 10, which

is undefined instruction. In label “11” show that the return to the user program after

handle the undefined instruction event. The sequence for handle the exception event

when multiple exception event happen in same clock cycle is interrupt request (IRQ) >

sign-overflow > undefined instruction.

Chapter 6 Verification Specification

103
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6.4 Test Bench

`timescale 1ns / 10ps
`default_nettype none
`define TEST_CODE_PATH "DUT_TESTCODE.txt"
`define EXC_HANDLER "exception_handler.txt"
`define TEST_CODE_PATH_2 "SLAVE_TESTCODE.txt"

module tb_r32_pipeline();
//declaration
//======= INPUT =======
// System signal

reg tb_clk;
reg tb_rst;

wire tb_spi_mosi;
wire tb_spi_miso;
wire tb_spi_sclk;
wire tb_spi_ss_n;

wire tb_fc_sclk;
wire tb_fc_ss;
wire tb_fc_MOSI;
wire tb_fc_MISO1;
wire tb_fc_MISO2;
wire tb_fc_MISO3;

wire tb_fc_sclk_2;
wire tb_fc_ss_2;
wire tb_fc_MOSI_2;
wire tb_fc_MISO1_2;
wire tb_fc_MISO2_2;
wire tb_fc_MISO3_2;

wire [31:0] tb_GPIO;
wire [31:0] tb_GPIO_2;

wire tb_ua_dut_tx;
wire tb_ua_dut_rx;

//*********** INSTANTIATION ************
crisc
dut_c_risc
(
//======= INPUT =======
//GPIO
.urisc_GPIO(tb_GPIO),

//SPI controller
.uiorisc_spi_mosi(tb_spi_mosi),
.uiorisc_spi_miso(tb_spi_miso),
.uiorisc_spi_sclk(tb_spi_sclk),
.uiorisc_spi_ss_n(tb_spi_ss_n),

//UART controller
.uorisc_ua_tx_data(tb_ua_dut_tx),

Chapter 6 Verification Specification

104
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

//.uorisc_ua_rts(),
.uirisc_ua_rx_data(tb_ua_dut_rx),
//.uirisc_ua_cts(1'b0),

//FLASH controller
.uorisc_fc_sclk(tb_fc_sclk),
.uiorisc_fc_MOSI(tb_fc_MOSI),
.uirisc_fc_MISO1(tb_fc_MISO1),
.uirisc_fc_MISO2(tb_fc_MISO2),
.uirisc_fc_MISO3(tb_fc_MISO3),
.uorisc_fc_ss(tb_fc_ss),

// System signal
.uirisc_clk_100mhz(tb_clk),
.uirisc_rst(tb_rst)
);

s25fl128s SPI_flash
(.SI(tb_fc_MOSI), //IO0
.SO(tb_fc_MISO1), //IO1
.SCK(tb_fc_sclk),
.CSNeg(tb_fc_ss),
.RSTNeg(tb_rst),
.WPNeg(tb_fc_MISO2), //IO2
.HOLDNeg(tb_fc_MISO3)); //IO3

crisc
dut_c_risc_2//Client
(
//======= INPUT =======
//GPIO
.urisc_GPIO(tb_GPIO_2),

//SPI controller
.uiorisc_spi_mosi(tb_spi_mosi),
.uiorisc_spi_miso(tb_spi_miso),
.uiorisc_spi_sclk(tb_spi_sclk),
.uiorisc_spi_ss_n(tb_spi_ss_n),

//UART controller
.uorisc_ua_tx_data(tb_ua_dut_rx),
//.uorisc_ua_rts(),
.uirisc_ua_rx_data(tb_ua_dut_tx),
//.uirisc_ua_cts(1'b0),

//FLASH controller
.uorisc_fc_sclk(tb_fc_sclk_2),
.uiorisc_fc_MOSI(tb_fc_MOSI_2),
.uirisc_fc_MISO1(tb_fc_MISO1_2),
.uirisc_fc_MISO2(tb_fc_MISO2_2),
.uirisc_fc_MISO3(tb_fc_MISO3_2),
.uorisc_fc_ss(tb_fc_ss_2),

// System signal
.uirisc_clk_100mhz(tb_clk),
.uirisc_rst(tb_rst)
);

Chapter 6 Verification Specification

105
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

s25fl128s SPI_flash_2
(.SI(tb_fc_MOSI_2), //IO0
.SO(tb_fc_MISO1_2), //IO1
.SCK(tb_fc_sclk_2),
.CSNeg(tb_fc_ss_2),
.RSTNeg(tb_rst),
.WPNeg(tb_fc_MISO2_2), //IO2
.HOLDNeg(tb_fc_MISO3_2)); //IO3

//************************************
//Clock waveform generation
initial tb_clk <= 1'b1;
always #25 tb_clk =~ tb_clk; //assume 20MHz

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Signals initialization.
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//========================
//read memory to get instruction
initial begin
$readmemh(`TEST_CODE_PATH,tb_r32_pipeline.SPI_flash.Mem);
$readmemh(`EXC_HANDLER,tb_r32_pipeline.SPI_flash.Mem);
$readmemh(`TEST_CODE_PATH_2,tb_r32_pipeline.SPI_flash_2.Mem);
$readmemh(`EXC_HANDLER,tb_r32_pipeline.SPI_flash_2.Mem);
tb_rst = 1'b1;
repeat(1)@(posedge tb_clk);
tb_rst = 1'b0;
repeat(10000)@(posedge tb_clk);
tb_rst = 1'b1;
repeat(12000000)@(posedge tb_r32_pipeline.dut_c_risc.urisc_clk);

$stop;
end
endmodule

Chapter 7 Synthesis on FPGA

106
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 7 Synthesis on FPGA

After the Simulation by using ModelSim simulator, the functionality of the Exception

Scheme shown positive result. In this Chapter, we will discuss about synthesis the

RISC32 processor on the ARTY Artix-7 FPGA Development Board by using Xilinx

Vivado 2017.2. Besides, an experiment had conducted on the RISC32 processor by

connecting two ARTY Artix-7 FPGA Development Board. The objective of this

experiment is to test run and evaluation on the physical design for functional

correctness.

7.1 Pin Allocation

The Xilinx Design Constraints (XDC) shown in Table 7.1. It has been set for the

implementation of RISC32 processor on the ARTY Artix-7 FPGA Development Board.

Group Design pin Xilinx ARTY 4 DDR
FPGA pin

Remark

Global uirisc_clk_100mhz E3
 uirisc_rst C2
Quad SPI Flash
Controller

uiorisc_fc_MOSI K17
uirisc_fc_MISO1 K18
uirisc_fc_MISO2 L14
uirisc_fc_MISO3 M14
uorisc_fc_ss L13

SPI Controller uiorisc_spi_miso G1 ChipKit SPI
uiorisc_spi_mosi H1
uiorisc_spi_sclk F1
uiorisc_spi_ss_n C1

UART Controller uorisc_ua_tx_data U16
uirisc_ua_rx_data V15

GPIO Controller urisc_GPIO[0] G13 Pmod Header JA
urisc_GPIO[1] B11
urisc_GPIO[2] A11
urisc_GPIO[3] D12
urisc_GPIO[4] D13
urisc_GPIO[5] B18
urisc_GPIO[6] A18
urisc_GPIO[7] K16
urisc_GPIO[8] E15 Pmod Header JB
urisc_GPIO[9] E16
urisc_GPIO[10] D15
urisc_GPIO[11] C15
urisc_GPIO[12] J17
urisc_GPIO[13] J18
urisc_GPIO[14] K15
urisc_GPIO[15] J15
urisc_GPIO[16] U12 Pmod Header JC
urisc_GPIO[17] T10 Connected to LED for

Observation
urisc_GPIO[18] V10 Pmod Header JC
urisc_GPIO[19] V11
urisc_GPIO[20] U14

Chapter 7 Synthesis on FPGA

107
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

urisc_GPIO[21] V14
urisc_GPIO[22] T13
urisc_GPIO[23] U13
urisc_GPIO[24] D4 Pmod Header JD
urisc_GPIO[25] D3
urisc_GPIO[26] F4
urisc_GPIO[27] F3
urisc_GPIO[28] E2
urisc_GPIO[29] D2
urisc_GPIO[30] H2
urisc_GPIO[31] G2

Testing Pin test_urisc_intr_spi E1 Connected to led for
observation test_urisc_intr_uart G6

test_urisc_mc_syscall J4
test_urisc_mc_undef_inst J2
test_urisc_ex_ovfs H6
test_urisc_IRQ H5
test_urisc_mc_eret J5
test_urisc_cp0_exc_flag T9

Table 7.1: Pin allocation on ARTY Artix-7 FPGA Development Board

Chapter 7 Synthesis on FPGA

108
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

7.2 Setting up the Test Environment for Functionality Test

The RISC32 IoT processor was synthesis on FPGA board and the experiment

conducted by connect two FPGA board together. The Experiment set up shown as

Figure 7.1. In Figure 7.1, there are one board label as Server and another label as Client.

The UART and SPI for both FPGA board was connect to each other for data

transmission. In order to increase observability, there are some internal pin was pull out

to the top-layer and connected to LED and. The clock was lower down to 1k Hz. The

Connected Pin function shown in Figure 7.2.

Figure 7.1 Test Environment set up.

Chapter 7 Synthesis on FPGA

109
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 7.2 Functionality of the LED Pin Connected.

At the Server, the user program was programme to generate the Internal

Exception Event (Trap) such as Sign-overflow (Detected at EX stage), Undefined

Instruction (Detected at ID stage) and Syscall (Detected at ID stage). The Internal

Exception Event will loop until the power off or reset button was press.

For the Client, the user program was programme to transmit the data to the Server

through UART and SPI continuously. When the UART or SPI on Server board received

a data, UART or SPI will generate an Interrupt Request on Server board and jump to

the Exception handler.

When enter to the exception handler, the GPIO [17] will light up to indicate that

the program execution was in the Exception handler. The GPIO [17] will turn off when

it finished the Interrupt Service Routine and exit the exception handler return to the user

program.

When there is the exception event occur, the LD6 will blinking, this is because

the assertion of the Exception Flag for one clock cycle. In this Project, The exception

event included the sign-overflow, undefined instruction, syscall, and interrupt request.

The LD5 will blink when an "eret" instruction was decoded. "eret" is the only

instruction that make the CPU return from Exception handler to the user program. It

Chapter 7 Synthesis on FPGA

110
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

only appear in the last line of the Exception Handler. When LD5 blinking, we know

that the exception event was served and ready return to user program.

The LD4 will blink when there are an Interrupt Request. In this experiment,

client will transmit the data continuously. The LD0 in server board used to indicate that

the data received from client. LD0 will turn to blue when SPI on server received a byte

of data from the Client and it will turn to red when UART on server received a byte of

data from the Client. LD0 will turn off when the Interrupt Flag de-asserted by the

Exception handler.

The LD3 will blink when there are a sign-overflow exception event. The LD2

will blink when there are an undefined instruction exception event. The LD1 will blink

when there are a syscall instruction.

Chapter 8 Conclusion & Future Enhancement

111
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 8 Conclusion & Future Enhancement

8.1 Conclusion

The exception handler scheme for interrupt conflicting and the nested interrupt

resolution have successfully implemented into the RISC32 IoT processor. In this

project, the exception events cover the sign-overflow, undefined instruction, syscall and

external interrupt request. There are two communication I/O supported the interrupt,

which are UART and SPI. The Priority interrupt Controller (PIC) is to handle the

multiple interrupt occurrences based on priority level. It collaborate with coprocessor

0 to handle the exception event. With the availability of the well planning exception

scheme, it is straightforward to resolve the conflicts among the exceptions event. In

addition, it will be easier to integrate new devices without having to worry about

exception handling.

In Chapter 2, the Exception scheme for ARM processor and MIPS have been

review. In Chapter 3, we have discuss about the basic approach for this project. In

Chapter 4, the system specification have discussed. In Chapter 5, we have perform the

analysis on the I/O system. In addition, the exception scheme for RISC32 IoT

processor have developed in chapter 5.

The test bench has been model by using the VerilogHDL and simulated by

using the ModelSim in order to verify the functionality of exception handle and

Interrupt Service Routine (ISR) code. The MIPS assembly code have coded to trigger

each individual exception. The behaviour verification for exception handle scheme has

been carry out by trigger different possible combination exception event to ensure the

robustness of the exception scheme. The simulation result shown in Chapter 6.

Lastly, the RISC32 IoT processor has successfully synthesized onto the

ARTY Artix-7 FPGA Development Board by using Xilinx Vivado 2017.2. An

Experiment conducted to tests on the I/O function physically in order to ensure the

functionality of the exception scheme.

Chapter 8 Conclusion & Future Enhancement

112
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

8.2 Future Enhancement

In this project, the exception event only cover the sign-overflow, undefined instruction,

syscall and interrupt request. For future development, more exception event should

added such as breakpoint exception, address error exception and bus error exception in

order to make the RISC32 IoT Processor more complete. The ISR code need to rewrite

to make the user program more value added.

With the well-developed exception scheme for RISC32 IoT processor, the I/O

system become more stable to use. It provided a high-confident level to integrated new

I/O. For future, new I/O module can integrated to the RISC32 IoT processor such as

Analog-to-Digital Convertor (ADC) and cryptography engine.

References

113
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

References

Altera. no date. Three Intel® Quartus® Prime Software Editions to Meet Your System
Design Requirements. [Online]. [2 April 2018]. Available from:
https://www.altera.com/downloads/download-center.html

Digilent. (n.d.). Arty A7: Artix-7 FPGA Development Board for Makers and Hobbyists.
[online] Available at: https://store.digilentinc.com/arty-a7-artix-7-fpga-
development-board-for-makers-and-hobbyists/.

Hennessy, J.L.H & Patterson, D.A.P (2002). Computer Architecture: A Quantitative
Approach. (3rd ed.). San Francisco: Morgan Kaufmann.

Kiat, W.P. (2018). The design of an FPGA-based processor with reconfigurable
processor execution structure for internet of things (IoT) applications. Available
at: http://eprints.utar.edu.my/3146/1/CEA-2019-1601206-1.pdf [Accessed 6
Apr. 2019].

Mentor Graphic. no date. ModelSim PE Student Edition. [Online]. [2 April 2018].
Available from: https://www.mentor.com/company/higher_ed/modelsim-
student-edition

Mok, K.M (2009). Computer Organisation and Architecture Lecture Notes. Universiti
Tunku Abdul Rahman, Faculty of Information and Communication
Technology.

Opencores (2010). Wishbone B4. [Online]. [4 August 2018]. Available from:
https://cdn.opencores.org/downloads/wbspec_b4.pdf

Patterson, D.A.P & Hennessy, J.L.H (2008). Computer Architecture and Design
Computer Organization and Design: The Hardware/software Interface. (4th
ed.). Canada: Morgan Kaufmann.

Sloss, A.N, Symes, D & Wright, C (2004). ARM System Developer's Guide :
Designing and Optimizing System Software. : Morgan Kaufmann.

Sweetman, D.S (2007). See MIPS Run . (2nd ed.). United States: Morgan Kaufmann.

Synopsys. no date. VCS. [Online]. [2 April 2018]. Available from:
https://www.synopsys.com/verification/simulation/vcs.html

Xilinx.com. (n.d.). Vivado Design Suite. [online] Available at:
https://www.xilinx.com/products/design-tools/vivado.html#overview.

Zjueducn. no date. Lecture 4 for pipelining. [Online]. [2 April 2018]. Available from:
http://arc.zju.edu.cn/static/download/arch/v4_arch_9.pdf

