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ABSTRACT

Exception classified into two types, which are the internal exception and external
exception. Normally, we called internal exception as trap and External exception as
interrupt. Exception makes the 5-stage pipeline processor more complicated because
the exception is difficult to handle in pipeline processor due the overlapping instruction
characteristics. The exception will cause abnormal program flow, and when exception
occur, we need to provide some operation to overcome the problem. The IoT SoC
processor will used for this project purpose. Up-to-date, the processor has a few 1/O
modules integrated namely the UART, GPIO and SPI. It also has a co-processor and
programmable interrupt controller to handle the exceptions. The handling of the
exceptions was half-planned, however, not up to a high confidence level. Therefore,
this project is initiated to develop an exception handling scheme to handle the multiple
interrupt (including nested interrupts) occurrence. Interrupt can occur at any time, and
the timing to capture the data is critical. For example, when the UART and SPI received
the data at the same time, both module will raise the interrupt flag concurrently.
Therefore, we need a plan to schedule which one need to be serve first. The situation is
further complicated when the multiple nested interrupts and traps occurs concurrently.
With the availability of the exception-handling scheme, it is straightforward to resolve
the conflicts among the mentioned exceptions. In addition, it will be easier to plan ahead

to integrate new devices without having to worry about buggy exception handling.

Vi
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background Information

1.1.1 RISC
RISC is short for Reduced Instruction Set Computing that developed and introduced by
IBM in 1980 and coined by David Patterson. John Cocke of IBM Research in
Yorktown, New York, originated the RISC concept in 1974 by proving that about 20%
of the instructions in a computer did 80% of the work. Therefore, RISC using simple
and small instruction set hence less hardware needed, so the system can operate at
higher speeds and low-power consumption, and this makes the processor easier to build
and test. RISC has four philosophy (Mok, 2009):

» Fixed instruction lengths.

» Load-store instruction sets.

¢ Limited number of addressing modes.

¢ Limited number of operations.

1.1.2 MIPS

MIPS short for Microprocessor without Interlocked Pipelined Stage is the
Microprocessor based on the Reduced Instruction Set Computer (RISC) architecture.
MIPS initiated in 1981 by a team led by John L. Hennessy and come out conclusion in
the year 1984. Recently, MIPS implement in the digital home, networking, embedded
system, Internet of things and mobile applications. At the pass, MIPS used in video
game consoles such as Sony PlayStation, PlayStation and PlayStation Portable. The
MIPS ISA based on a 32-bit word. MIPS support 32-bit addressing (word-addressed).
MIPS is a load-store architecture that means it can perform load and store operation
between memory and registers and ALU operation between registers. MIPS is a
modular architecture it contains coprocessors O(CP0) which handle the exception and
coprocessors 1(CP1) which handle the floating-point operation (Mok, 2009). The
details of MIPS architecture and relative information can found in a book, which name
Computer Organization and Design: The Hardware/ Software Interface (Patterson and
Hennessy, 2008). MIPS processors operate by breaking instruction execution cycle into
multiple small independent stages and this technic call pipelining. Figure 1.1 shown the

MIPS 5-stage pipelining

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 1 Introduction

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
Instruction i IF ID EX MEM WB

Instruction i + 1 IF D EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF 1D EX MEM WB
Instruction i + 4 IF 1D EX MEM WB

Figure 1.1: MIPS five-stage pipelining (Patterson & Hennessy, 2002, p.A-7)

The instruction execution is divided to 5 stages, IF (“Instruction Fetch”), ID
(“Instruction Decode”), EX (“Instruction Execution”), MEM (“Memory access”) and
WB ("Write Back”).

e [F: Send the program counter (PC) to instruction memory, fetch the instruction
from the instruction memory/instruction cache (I-cache) and update the PC by
adding 4 (instruction is 4 bytes).

e ID: Decodes the instruction and read the corresponding register for CPU use.

e EX: Performs an arithmetic or logical operation.

e MEM: Write or Read a data from the data memory (D-cache) only the
instruction load and store will use this stage.

e WB: store the value obtained from an operation back to the register file.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 1 Introduction

1.1.3 Exception
Exception is an event other than branches or jump that change the normal flow of

instruction execution (Patterson & Hennessy, 2008, p.384). Exception was classify into
two type, which are synchronous exception and asynchronous exception.
Asynchronous exception is the exception that occurs with no relation to the program
executed such as /O requests while synchronous exception is exception that occurs at
the same place every time the program executed with the same data and memory
allocation, example for synchronous exception are arithmetic overflow, undefined

instruction, and page fault. (Patterson & Hennessy, 2002, p.A-40)

1.1.4 Interrupt

An interrupt is an external event that changes the normal flow of instruction execution
(Patterson & Hennessy, 2008, p.384). Interrupts are the asynchronous exception.
Example for the Asynchronous event is I/O device request, power failure and Hardware
malfunction. The asynchronous exception usually handled after the completion of the
current instruction, which makes them easier to handle. Coprocessor 0 (CP0) system

control coprocessor will handle these interrupts.

1.1.5 Tra

The trap is an internal event that changes the normal flow of instruction execution. The
trap is the synchronous exception. Example for the synchronous event is invoked
operating system, tracing instruction execution, breakpoint, arithmetic overflow, page
fault, misaligned memory accesses, memory protection violations and using undefined

instruction.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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1.2 Project Motivation

A 32-bit 5-stage pipeline RISC soft-core can be advantageous in creating a core—based
environment to assist research and development work in the area of developing
Intellectual Properties (IP) cores. However, there are limitations in obtaining such
workable core-based design environment

e Microchip design companies designed microprocessor as Intellectual Property
or IP for commercial purpose. The microprocessor IP includes information on
the entire design process for the front-end (modelling and verification) and
back-end (physical design) integrated circuit (IC) design. These are trade secrets
of a company and certainly not made available in the market at an affordable
price for research purpose.

e Several freely available microprocessor cores can found in internet, most of
them can found at OpenCores (http://www.opencores.org/). Unfortunately,
these processors do not implement the entire MIPS Instruction Set Architecture
(ISA) and lack comprehensive documentation. This makes them unsuitable for
reuse and customization.

e The verification specification for a freely available RISC microprocessor core
that is available on the Internet is not well developed and incomplete. Therefore,
without a good verification specification, the verification process will be slow
and hence, will slow down the overall design process.

e The lack of well-developed verification specifications for these microprocessor
cores will inevitably affect the physical design phase. A design needs
functionally proven before the physical design phase can proceed smoothly.
Otherwise, if the front-end design has to be changed, the physical design process
has to be re-design.

This project will aim to provide solutions to the above problems by creating a 32-bit
RISC core-based development environment to assist research work in the area of soft-
core and application specific hardware modelling. In the RISC32 project, the project

divided into several units based on MIPS architecture.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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1.3 Problem Statement

Currently, a team from FICT has designed an [oT SoC processor based on a subset of
the MIPS ISA. The processor supports three type of communication interface, which
are the UART, SPI and GPIO. The UART, SPI and GPIO have integrated into the loT
processor using I/0 mapped technique. The individual test cases for each I/O have been
conducted but have not gone through thorough multiple and nested exception
verification and there are lack of well-defined exception handler scheme to manipulate
the multiple interrupt occurrence and traps. Exception makes the 5-stage pipelining
processor more complicated because the exception is hard to be handled in pipeline
processor due the overlapping instruction characteristics (Patterson & Hennessy, 2002,
p.A-37). The exception causes the instruction to stop executing in the middle of
execution. To handle Exception, first, we need to detect the exception, what is the cause,
when it occurs, how to handle it and what to do after exception. For 5-stage pipeline
processor, handling exception is more difficult when multiple exceptions occur at the
same time (clock cycle). Fortunately, the cause of exception can be determine based on
the stage where by an instruction cause exception. On the other hand, if the multiple
exceptions occur in same time, we need to come up with a plan to determine which
exception we need to serve first to ensure smooth running of the program. The
exception will also occur out-of-order that means out of the instruction execution order,
this makes exception more difficult to handle. After handling the exception, there is
two alternative, which is terminate the program or return to the program. When
returning to the program, the problem is where the program needs to restart at the user
program, the branch delay slot also makes a return from the exception to the user
program more complicated. When the exception was in execution, there is possibly
another exception occurs, this also known as a nested exception. The main purpose for
this project is to develop an exception scheme to handle various type of exception in

order to ensure future reliable I/Os integration and smooth running of the user program.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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1.4 Project Scope

The project scope includes the development of an exception handler scheme for
interrupt conflict and the nested interrupt resolution. The exception scheme also needs
to be verified its functionality through simulation by write the test code to trigger the
interrupt individually. After that, trigger the multiple I/O interrupt and trap make sure
the exception scheme well function. In addition, physical synthesis the RISC32 IoT
processor on FPGA board will conducted to verify the correctness of the exception

scheme.

1.5 Project Objectives

The Project Objectives are as shown below:

e To develop an exception scheme for RISC32 IOT processor.

e To develop a test bench to verify the exception handle and Interrupt Service Routine
(ISR) code.

e To synthesize the RISC32 IoT Processor and carry out physical tests on the /O

function.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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1.6 Impact and significance
As a summary of the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The
development environment refers to the availability of the following:

e A well-developed design document, which includes the chip specification,
architecture specification and micro-architecture specification.

e A fully functional well-developed 32-bit RISC architecture core in the form of
synthesis-ready RTL written in Verilog HDL.

o A well-developed verification environment for the 32-bit RISC core. The
verification specification should contain suitable verification methodology,
verification techniques, test plans, test bench architectures etc.

e A complete physical design in Field Programmable Gate Array (FPGA) with
documented timing and resource usage information.

With the available of well-defined exception handler scheme, it can build up high
confident level to extend the IoT SoC processor. It can allow us to add-on extra
communication interface on processor. For instance, integration of ADC (analogue to
digital converter) to the processor without having to worry about the data conflicting.

Consequently, the research work could be done easier and speed up significantly.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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Chapter 2 Literature Review

2.1 Exception

Exception is an event other than branch or jump that change the normal flow of
instruction execution. The type of exception are listed below :- (Patterson & Hennessy,
2002, pp.A-38-A39)

e [/O device request

e Invoking an operating system service from a user program

e Tracing instruction execution

e Breakpoint (programmer-requested interrupt)

e Integer arithmetic overflow

e FP arithmetic anomaly

e Page fault (not in main memory)

e Misaligned memory accesses (if alignment is required)

e Memory protection violation

e Using an undefined or unimplemented instruction

e Hardware malfunctions

e Power failure
Different Architecture using different terminology to describe the exception. Figure2.1

show the different name for the common exception event.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 2 Literature Review

Exception event

IBM 360

VAX

Motorala 680x0

Intel 80x86

I/O device request

Input/output
interruption

Device interrupt

Exception (level 0...7
autovector)

Vectored interrupt

Invoking the operating

system service from a
user program

Supervisor call
interruption

Exception (change
mode supervisor trap)

Exception
(unimplemented
instruction }—
on Macintosh

Interrupt
(INT instruction)

Tracing instruction

Not applicable

Exception (trace fault)

Exception (trace)

Interrupt (single-

execution step trap)
Breakpoint Not applicable Exception Exception (illegal Interrupt
(breakpoint fault) instruction or (breakpoint trap)
breakpoint)
Integer arithmetic Program interruption  Exception (integer Exception Interrupt (overflow

overflow or underflow;

(overflow or

overflow trap or

(floating-point

trap or math unit

FP trap underflow exception) floating underflow COPIoCESSOr errors) exception)
fault)

Page fault Not applicable Exception (translation Exception (memory- Interrupt

(not in main memory)  (only in 370) not valid fault) management unit (page fault)

EITOrS)

Misaligned memory
accesses

Program interruption
(specification
exception)

Not applicable

Exception
(address error)

Not applicable

Memory protection Program interruption  Exception (access Exception Interrupt
violations (protection exception) control violation (bus error) (protection

fault) exception)
Using undefined Program interruption  Exception (opcode Exception (illegal Interrupt (invalid
instructions (operation exception) privileged/reserved instruction or break- opcode)

fault) point/unimplemented

instruction)

Hardware Machine-check Exception (machine-  Exception Not applicable
malfunctions interruption check abort) (bus error)

Power failure

Machine-check
interruption

Urgent interrupt

Not applicable

Nonmaskable
interrupt

Figure 2.1 Different architecture use different names to represent common exception
event. IBM and Intel using interrupt for every exception event. Motorola using
exception while Vax using both interrupt and exception. (Patterson & Hennessy,

2002, p.A-40).

In MIPS, it classify type of exception event into external and internal. External
exception event name interrupt while internal exception event name exception. Figure

2.2 show that the exception event for MIPS terminology.

MIPS torminology

I/ 0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Figure 2.2 MIPS terminology to differentiate type of exception event. (Patterson &
Hennessy, 2008, p.385).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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2.2 Characteristic of exception

Exception can be classify based on its characteristic. Figure 2.3 show the exception
event and its characteristics. The five main independent characteristic are (Patterson &

Hennessy, 2002, pp.A-40-A-41):

> Synchronous Vs Asynchronous

Asynchronous exception is the exception that occurs with no relation to the program
executed such as /O requests while synchronous exception is exception that occurs at
the same place every time the program executed with the same data and memory
allocation, example for synchronous exception are arithmetic overflow, undefined
instruction, and page fault. Asynchronous usually handle after the current instruction

complete execute.

» User requested Vs Coerced

User requested event is the user request it to happen, for instance, “syscall”. User
requested actually not really exception because it is predictable but the only method to
create the event is to cause exception. Coerced exception is an unpredictable event that

not under the user control.

> User maskable Vs user nonmaskable

If the exception can disable by user program the event is user maskable event.

Otherwise, it is nonmaskable event.

> Within Vs between instructions

If the exception event occur and stop the current executing instruction in the pipeline
then the event is classify “within”. If the exception event allow the current executing
instruction to complete, then only serve the exception event then the event id classify

“between”.

» Resume Vs Terminate
After handling the exception event, there are two alternative way, which is return to the

user program, or terminate the current program.

10
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 2 Literature Review

User Within vs.
Synchronousvs.  User request maskable vs. between Resume vs.

Exception type asynchronous vs.coerced  nonmaskable  instructions  terminate
/O device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous Userrequest  Nonmaskable Between Resume
Tracing instruction execmion| Synchronous Userrequest  User maskable Between Resume
Breakpoint Synchronous Userrequest  User maskable Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable Within Resume
Floating-point arithmetic Synchronous Coerced User maskable Within Resume
overflow or underflow

Page fault Synchronous Coerced Nonmaskable Within Resume
Misaligned memory accesses  Synchronous Coerced User maskable Within Resume
Memory protection violations Synchronous Coerced Nonmaskable Within Resume
Using undefined instructions ~ Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate
Power failure Asynchronous Coerced Nonmaskable Within Terminate

Figure 2.3 Exception event and its characteristics. (Patterson & Hennessy, 2002, p.A-
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2.3 Precise exception Vs Imprecise exception

> Precise exception

Precise exception means that when the exception occurred, the instruction causes the
exception (instruction victim) will be recorded. There are able to draw a line between
the instruction before the instruction victim and the instruction after the instruction
victim. Beside, all the instruction before the instruction victim will executed while all
the instruction after the instruction victim will flushed out from pipeline. This method
make programmer work more easy because they can ignore the timing effect of the
CPU implementation.

The feature provided with precise exception are (Sweetman, 2007, pp.107-108):

e Unambiguous proof of guilt: After the exception, exception will return to the
user program by load the value from EPC register into PC. EPC will always
point to the instruction that cause the exception. However, EPC also will point
to the preceding branch instruction if the BD in cause register was set.

e Exceptions appear in instruction sequence: For pipeline processor, multiple
exception will occur in the same time in different stage of execution. For
instance, the load instruction (Iw) cause the Memory Translation exception in
the MEM stage (4" stage of the pipeline) and at the same time, a later instruction
hit an exception in the ID stage (2" stage of the pipeline), this will cause the out
of order exception. The later instruction arise the exception earlier than the prior
one. To avoid this problem, an exception detected early but no perform the
operation immediately, the exception event just marked and passed until end of
the MEM stage.

e Subsequent instructions nullified: Because of pipelining, instructions following
the victim instruction have been started and inside pipeline. However, MIPS
guarantee that, the instruction following the victim instruction will not have
effect toward the register file or CPU and return to the user program just like

exception no occur.
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> Imprecise exception

The imprecise exception mean that when the exception occur we cannot precisely tell
where we need to return after exception. For instance: (Patterson & Hennessy, 2002,
p.A-54).

1. DIV.D FO0,F2,F4

2. ADD.D F10,F10,F8

3. SUB.D F12,F12,F14
ADD.D and SUB.D expected to complete before the DIV.D because DIV.D need more
cycle to complete compare to ADD.D and SUB.D. This also known as out-of-order
completion. Suppose SUB.D cause an arithmetic exception at the point where ADD.D
completed but DIV.D has not completed. This result in imprecise exception because it
cannot precisely tell that where should return after the exception.
Another example (Zjueducn, n.d., p.13)

1. Mult r1,r2,r3 ;Multiply take 10 cycles

2. Addrl0,r11,r12 ;Add take 5 cycle
Add will complete before the multiply. If the multiply cause an arithmetic exception,
but add has already update the value in r10. This result imprecise exception.
In general, Imprecise exception always involve when there are instruction take multiple
cycle to complete For instance, instruction involve in floating point , multiply and

divide. Imprecise exception are harder to handle compare to precise exception.
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2.4 Exception handler Scheme for MIPS

2.4.1 Coprocessor 0

In MIPS, there have two Coprocessor, which are Coprocessor 0 and Coprocessor 1. In
this project, we are more interesting in Coprocessor 0. Coprocessor 0 also known as
system control coprocessor, it handle the exception and interrupt by records the
information that correspond exception event. Coprocessor 0 has its own registers files.

Figure 2.4 shown the coprocessor 0’s registers and its usage.

Register | Register
name number Usage

BadVAddr 8 memory address at which an offending memory reference occurred
Count 9 timer
Compare 14 value compared against timer that causes interrupt when they match
Status 12 interrupt mask and enable bits
Cause 13 exception type and pending interrupt bits
EPC 14 address of instruction that caused exception
Config 16 configuration of machine

Figure 2.4 coprocessor 0’s registers and its usage. (Patterson & Hennessy, 2008, p.B-
33).

2.4.2 BadVaddr register

BadVaddr Register will store the referenced memory location’s address if the

instruction that caused exception made a memory access.

2.4.3 Count Register and Compare Register

Count Register act as a timer, increment at a fixed period. When the value in the Count

Register count until the value in the Compare register, it will raise a hardware interrupt.

2.4.4 Status Register
Status Register used to indicate the exception details. Figure 2.5 show the Status

Register and its field.

It made up by 4 field:

e Interrupt Mask (Status Register[15:8])

-There are 6 bit for hardware and 2 bit for software interrupt level
-Mask bit = 1, when the interrupt is enable.

-Mask bit=0, when the interrupt is disable.

14
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- Interrupt occur when both interrupt mask (Status Register) and Interrupt Pending
(Cause Register) was asserted.

- When interrupt raise, correspond Interrupt pending bit will asserted but it will not be
served when the Interrupt Mask disable.

e User Mode /Kernel mode(Status Register[4])

Status Register [4] =0, the processor running in kernel mode.

Status Register [4] =1, the processor running in user mode.

e Exception Level (Status Register[1])

-Normally 0.

-Set to 1 when exception event happen.

- To prevent the multi-level exception by prevent other exception event changing the
EPC value.

- Should reset after finish exception.

e Interrupt Enable (Status Register[0])

Status Register [0] = 1, interrupt enable.

Status Register [0] = 0, interrupt disable.

User

& mode
Exception
level

= Interrupt

S enable

15 8

Interrupt
mask

Figure 2.5: Status Register. (Patterson & Hennessy, 2008, p.B-35)

2.4.5 Cause Register

Cause register is use to determine the causes for the exception. Figure 2.6 show that the
Cause register and its field.

e Branch Delay(Cause Register[31])

- Cause Register [31] = 1, when the exception occur inside in branch/ jump instruction.
- EPC store the branch/jump instruction instead of the instruction cause the exception.
-exception handler must look at EPC+4 for the offending instruction.

e Pending interrupt (Cause Register[15:8])

15
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-Pending bit = 1, when the exception occur but no serve.
-mainly use to handle multiple exception occur at a same time.
o Exception Code (Cause Register[6:2])

-use the indicate the causes of exception

-the exception code shown in Figure 2.7.

31 15 8 6 2
Branch Pending Exception
delay interrupts code

Figure 2.6: Cause Register (Patterson & Hennessy, 2008, p.B-35).

“umber | Mamo | Cusootexcoption

L&) Int interrupt (hardware)

4 AdEL address error exception (load or instruction fetch)
5 AdES address error exception (store)
G IBE bus error on instruction fetch
T DBE bus error on data load or store
a8 Sys syscall exception

9 Bp breakpoint exception

10 RI reserved instruction exception
11 CpU coprocessor unimplemented
12 Ov arithmetic overflow exception
13 Tr trap

15 HE floating point

Figure 2.7: Exception code (Patterson & Hennessy, 2008, p.B-35).

2.4.6 EPC Register

e Store the instruction address that causes the exception occur.
e [f BD (Cause Register [31] was set, when the exception occur, the branch / jump,

instruction was load into EPC Register instead the instruction cause exception.
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2.4.7 Instruction associate with exception handling

Some instruction are dedicated build to access the Register in CP0O, because CPO does
not implement ALU unit to carry out the operation, so, the data need to move to the
CPU for compute and move it back to CP0.The instruction and its function are list
below:- (Sweetman, 2007, p.55).

mtc0 <register in CPU>, < destination in CP0> #move data from CPU to CPO
mfc0 < register in CPU >, < source in CP0> #move data from CP0O to CPU
eret # return from exception

When the bit 4(user mode/ kernel mode) in the status register was set, it means that the
program is in user mode, it can use all the general-purpose register in CPU for data
transfer. However, when enter the exception handler, normally the program execute in
kernel mode, register kO and k1 reserved for kernel usage. For instruction “eret”, it

return form exception by load the EPC value into PC.
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2.4.8 Step-by-step how MIPS handle Exception

1. Determine which instruction that cause the exception. For MIPS, there are multi
instruction in the pipeline processor within a single clock cycle. At different

pipeline stage, it will arise different exception. The detail shown in Figure2.8:

Pipeline stage Problem exceptions occurring

IF Page fault on instruction fetch; misaligned memory access: memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch: misaligned memory access: memory
protection violation

WB None

Figure 2.8: Exceptions that may occur in the MIPS pipeline. (Patterson & Hennessy,
2002, p.A-44).

Stop the offending instruction and let the prior instruction finished
Flush the offending instruction and the all instruction inside the pipeline stage.
Load PC value into EPC, for determine the cause or return from exception.

Load the 0x80000180 into PC. 0x80000180 is the single entry point for all

A I

exceptions in MIPS architecture.
6. Determine the cause by using the information inside Cause Register.
7. Pass the work to Operating system, Operating system will handle the case. In other
word, jump to the interrupt service routine. OS will handle the cases by :
e Terminate the program and display the reason.
-undefined instruction
-hardware failure
-arithmetic overflow
e Perform the desired task and return to program from exception
-I/0 device request
-system service call
8. Return from exception by load EPC+4 into PC.
The flow of the handle the exception shown in the Figure 2.9.
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Exception ooour

Y

comespond pending bitin cauzeregister raize

Y

Comparethe maszkin the status register

Y

Load the address of victim instruction into EPC

Y

EXL bit in the Status R egister raise to prevent muktideve
exception

b J

Stop execute the victim instruction, let prior instruction finish

Y

Fluzh the instruction in the pipeline

Y

Load OwBDO0_D18D into PC

Y

Change to kemel mode

Y

Determine the cause, by reading the Exception code in Cause
register

Y

Perform the require action

Y

Return back to User program/Terminate the User pragram

Figure 2.9 Flow chart for handle an exception.

For above solution, it look completely fine but it only can handle one level exception,
which means that it cannot interrupt when inside the exception handler. Sometime we
need to interrupt when interrupt is serving this also known as multi-level exception or

Nested Exception.
19
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2.5 Nested Exception

Nested Exception is the permit for other exception to occur when the system are serving
an exception. When exception occur, CP0O will write to the cause register, status register
and the EPC. For nested exception, value in the cause register, status register and EPC
was expected to be overwrite (Sweetman, 2007, pp.114-115). To support the nested
exception, we need to store the value in cause register, status register and EPC value
inside the stack. However, interrupt will also occur when copying the value to the stack.
To solve this problem, we need to disable all interrupt when copying the value to the
stack. We can implement the Interrupt Priority Level (IPL) by control the masking
value of Status register to disable the further interrupt. However, the interrupt resource
was limited, interrupt have a chance to occur when changing the value in Status Register
causes the Status Register to be overwrite. This problem also known as the Race
Condition. To solve this problem, we need to make the program mutual exclusion by
using the software way, which is semaphores, to allow atomic changes of Status

register.
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2.6 Exception handler scheme for ARM processor

2.6.1 Processor Mode for ARM

The ARM processor internally has seven different modes of operation, which are, User
mode, FIQ mode, IRQ mode, Supervisor mode, Abort mode, Undefined mode, System

mode. The following figure summarizes the seven modes.

Processor Mode Description

User (usr) Normal program execution mode

FIQ (fiq) Fast data processing mode

IRQ (irg) For general purpose interrupts

Supervisor (sve) A protected mode for the operating system
Abort (abr) When data or instruction fetch is aborted
Undefined (und) For undefined instructions

System (sps) Operating system privileged mode

Figure 2.10 ARM Processor Mode

For user mode, it used for normal program execution. FIQ mode used for interrupts
requiring fast response for instance data transfer with DMA. IRQ mode used for
general-purpose interrupts for example /O interrupt. Supervisor mode used when
operating system support needed. Abort mode used when data or instruction fetch have
aborted. Undefined mode used when undefined instruction fetched. System mode is the

Operating system privilege mode for users.
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2.6.2 ARM Exception
ARM have support few type of exception, which are Fast Interrupt Request, Interrupt

Request, Software interrupt (SWI) and Reset, Prefetch Abort and Data Abort and
Undefined Instruction. Figure 2.11 summaries the type of exception support by ARM.

Figure 2.12 shown the priority level for ARM exception.

]
Cswi]

: v f - ,
Exceptions (Undefined)( RQ J( FIQ )( Abort )( svC )
Modes

Figure 2.11 ARM processor exceptions and associated modes. (Sloss,
Symes&Wright, 2004, p.319).

Exceptions Priority Ibit Fbit
Reset 1 1 1
Data Abort 2 1 —
Fast Interrupt Request 3 1 1
Interrupt Request 4 1 —
Prefetch Abort 5 1 —
Software Interrupt 6 1 —
Undefined Instruction 6 1 —

Figure 2.12 Exception priority levels for ARM. (Sloss, Symes&Wright, 2004, p.319).

2.6.3 Entering and exiting an exception handler.

Sloss, Symes and Wright (2004) list out the step of ARM processor to handle an
exception. First, preserve the address of the next instruction, copy the Current Program
Status Register (CPSR) to Saved Program Status Register (SPSR) and the Program
counter to the Link Register (LR). Next, force the CPSR mode bits to a value depending
on the raised exception, force the Program counter (PC) to fetch the next instruction
from the exception vector table. Now the handler is running in the mode associated with
the raised exception. When handler is done, the CPSR restored from the saved SPSR.
PC restored with the value of (LR — offset) and the offset value depends on the type of

the exception. Last, clear the interrupt disable flags if they were set.
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2.6.4 ARM Interrupt handling schemes
Sloss, Symes and Wright (2004) has introduce some interrupt handling scheme, which

are, non-nested interrupt handling, nested interrupt handling, re-entrant interrupt
handling, prioritized simple interrupt handling, prioritized standard interrupt handling,

prioritized direct interrupt handling and prioritized grouped interrupt handling.

> Non-nested interrupt handling

This non-nested interrupt handling is the simplest scheme, it only allow one interrupt
occur in concurrently. Once the processor received an interrupt, it will disable other
interrupt and save the current context into SPSR. After that, jump to the exception
handler to identify the interrupt source and jump to appropriate Interrupt service routine
(ISR). After service the interrupt, restore the context from SPSR and re-enable the

interrupt. The flow chart for non-nested interrupt handling shown in figure below.

Interrupt

3. | Interrupt

handler

4. | Service

interrupt

Return to routine

task
| Restore

context

Figure 2.13 Non-nested interrupt handling. (Sloss, Symes& Wright, 2004, p.334).
These non-nested interrupt handling scheme are not suitable for complex embedded
system which has multiple interrupt occurrences and it has high interrupt latency but it

is easy to implement and debug.
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> Nested interrupt handling

The scheme can support multiple interrupt in the same time. This achieved by re-
enabling interrupts before the interrupt has fully served. This feature will increases the
complexity of the system but improves the latency. The scheme should be designed
carefully to ensure the context saving and restoration from being interrupted. The goal
of nested handling is to respond to interrupts quickly. The flow chart for nested interrupt

handling shown in figure below.

Interrupt
1. 8 = Enter interrupt handler
(o]

3.
Service

l interrupt

7. | Start constructing

Return to task Complete Not complete

a frame

=

9.[  Finish
frame
construction

Return to task 10- | Complete Interrupt
servicing
the interrupt

11. | Restore context

Figure 2.14 Nested interrupt handling. (Sloss, Symes & Wright, 2004, p.337).

Interrupt

The disadvantage of scheme is that it does not differentiate interrupts by priorities, so
lower priority interrupt can block higher priority interrupts, it will cause deadlock.

The advantage is it can handle multiple interrupt in the same time and improve latency.

24
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 2 Literature Review

> Re-entrant Interrupt Handling

The difference between this scheme and the nested interrupt handling is re-enable
interrupts earlier on the re-entrant interrupt handler compare to the nested interrupt
handling. This can reduce interrupt latency. The external interrupt is clear before re-
enabling interrupts to protect the system from infinite interrupt sequence. This is done
by a using a mask in the interrupt controller. By using this mask, prioritizing interrupts
is possible but this handler is more complex. The flow chart for Re-entrant interrupt

handling shown in figure below.

Interrupt

| = Enter interrupt handler
—

4. | Reserve stack space
and save complete
context

(e

%

Return to task

8. | Restore context

Return to task

12. | Restore context

Figure 2.15 Re-entrant interrupt handling. (Sloss, Symes & Wright, 2004, p.343).

DT Interrupt
servicing

interrupt,

The advantage of this scheme are it can handle multiple interrupt with the differing

priority level and it provide low latency but the scheme will be more difficult to build.

25
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 2 Literature Review

> Prioritized Simple Interrupt handling

In this scheme, the handler will associate a priority level with a particular interrupt
source. A higher priority interrupt will take precedence over a lower priority interrupt.
(Sloss, Symes&Wright, 2004, p.319). Handling prioritization can done by means of
software or hardware. In case of hardware prioritization, the handler is simpler to design
because the interrupt controller will give the interrupt signal of the highest priority
interrupt requiring service. However, on the other side, the system needs more
initialization code at start-up since priority level tables have to construct before the
system switched on. When an interrupt signal raised, a fixed amount of comparisons
will be compare with the available set of priority levels. The flow chart for Prioritized

Simple interrupt handling shown in figure below.

Interrupt

==

L | Disable interrupts

2. | Save minimum context

3.] Getexternal interrupt
status

L

Identify interrupt
.| priority and mask off
lower-priority
interrupts and enable
IRQs

:

Jump to service

=

i

routine

T
]

]

t

+ ]

?- @
Return to task
8.1  Switch on internal
9 47 interrupts followed

by external interrupt

Figure 2.16 Prioritized Simple interrupt handling. (Sloss, Symes & Wright, 2004,
p.348).

The advantage for this scheme is it can handles prioritized interrupts and low interrupt
latency. The low priority interrupt cannot take the precedence over the higher priority
interrupt, with this feature, it solve the deadlock problem. The disadvantage for this
scheme is the time taken to get to a low-priority service routine is same, as high-priority

service routine and it cannot support multiple interrupt occurrence.
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> Prioritized Standard Interrupt Handling

This scheme is the alternative of prioritized simple interrupt handler. It has the

advantage of low interrupt latency for higher priority interrupts than the lower priority

interrupt. The flow chart for Prioritized Simple interrupt handling shown in figure

below.

Return to task

o

Obtain external
interrupt status

Is a priority 1
interrupt?

- et
<715 a priority 2 ™
< Sapnonty 2 o~ o
~.interrupt? .7
-
ST
Mo

—

Disable lower-
priority interrupts

I

Enable external
interrupts

Enable internal
interrupts

9. | Restore context

interrupt

8.
th Interrupt /

Figure 2.17 Prioritized Standard interrupt handling. (Sloss, Symes & Wright, 2004,
p.353).
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> Prioritized Direct Interrupt Handling

There are two different between the prioritized direct interrupt handler and the
prioritized standard interrupt handler. Some of the processing move to the individual
ISR from the handler. Each individual ISR have the responsible to mask out the lower
priority interrupt. This type of handler is relatively simple since the masking done by
the individual ISR, but there are code duplication in each individual ISR since each
interrupt service routine have to mask out the lower-priority interrupt that is same

operation.

> Prioritized Grouped Interrupt Handler

This handler designed to handle large amount of interrupts by grouping interrupts
together and forming a subset that can have a priority level. This way of grouping
reduces the complexity of the handler since it does not scan through every interrupt to
determine the priority. If the prioritized grouped interrupt handler is well design, it will
improve the overall system response times dramatically, on the other hand if it is badly
design such that interrupts are not group well, and then some important interrupts will
dealt as low priority interrupts and vice versa. The most complex and possibly critical
part of such scheme is the decision on which interrupts should be group together. The
advantage for this scheme are can handle a large number of interrupts, and reduces the
response time since the time taken to determine the priority level is shorter but it is

difficult to group the interrupt.
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Chapter 3 Proposed Methods / Technologies Involved

3.1 General Work Flow

The basic approach to develop an exception scheme is to identify type of the exception
need to be support. After that, develop an Exception scheme that can handle multiple
interrupt. Next, set up the test benches by using Verilog HDL to verify the exception
scheme. Simple verification can done by trigger the I/Os interrupt and exception
individually. After the IoT processor has passed through the individual test, a definitive
exception-handling scheme can be derive from the combination of the various type of
exception. If the scheme not functioning well, the exception scheme needs to redesign
and go through the process again. If the scheme works correctly, then the work can be
document. Next, the IoT processor is ready to synthesize onto an FPGA board for
physical tests to conclude the earlier laid down experiments / tests. The Design Flow

shown in Figure 3.1.
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Start of project.

Review of the RISC32 pipeline Processor micro-architecture, I/0
module(SPI,UART,GP10), Bus system and Multiple I/0 interrupt.

!

Review existing Exception scheme.

|

Identify the type of exception need to be support.

-

Develop an Exception Scheme.

|

Setup the Test bench to conduct the experiment.

-

C Develop an individual test program for each internal exception (trap) and verify the behavior.
!
C Develop an individual test program for each external exception (interrupt) and verify the behavior.
}
C Develop a test program that combine the multiple external exception (interrupt) and verify the behavior.
!
C Develop a test program that combine both external and internal exception and verify the behavior.

!

Document the project partially.

-

Logic synthesis and physical design on FPGA. Test run and evaluation
on the physical design for performance and functional correctness.

-

Document the Final report

End of project.

Figure 3.1 Design flow of the project
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3.2 Design Tools

Since this project will be using Verilog HDL to model the test bench to verify the
functionality, we will be discussing commonly used design software that can support

Verilog HDL. Some simulator are shows in Table 3.1:

Simulator ModelSim VCS Quartus II
Company M ,
enior | ¢\ V< =
Graphics |SYIOPSYS™ | /ANATERYA\

Language VHDL-2002 VHDL-2002 VHDL-2002
Supported

V2001 V2001 V2001

SV2005 SV2005 SV2005
Platform -Windows Linux -Windows XP/7/8
Supported XP/Vista/7/8/10 -Linux

-Linux
Availability for | YES (Student | No No
free Edition only)

Table 3.1 Comparison between simulation tools. (Mentor Graphics, n.d.), (Synopsys,
n.d.), (Altera, n.d.).

Based on the comparison above, it is clear that ModelSim from Mentor Graphic is the
best choice as a simulation tool for this project because they offer free license (180
days) for Student Edition. There will some limitation for the student edition but it is
sufficient for this project. However, the other two simulation tools provide better
feature compare to ModelSim but the price is too expensive, it is not affordable for a
student. ModelSim also provided freely in the computer laboratory by Universiti Tunku
Abdul Rahman.
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Mentor Graphics ModelSim PE Student Edition 10.4a (Mentor Graphics, n.d.)

ModelSim PE Student Edition 10.4a is the latest version and it offers a free license for

academic purpose. It supports VHDL and Verilog HDL designs but not mixed and it
has a friendly GUI with TCL interface. Since it is free, so the free version has no
customer support, but there are a lot of learning resources are available on the internet

and a forum for discussion.

PC Spim
PC Spim is a simulator that provides a MIPS environment to simulate MIPS programs.

It supported almost the entire MIPS assembly language and a build-in simple debugger.
In this project, the test code, boot loader, interrupt service routine and exception handler
will write in MIPS assembly language and simulated with PC spim before load into the

RISC32 IoT processor.

Xilinx Vivado Design Suite- HL.x Editions (Xilinx.com, n.d.)

Xilinx Vivado used for synthesis and analysis of HDL designs. It allow the developer
to synthesize their designs on to FPGA board, analysis RTL schematic diagrams, run
the simulation, perform timing analysis, and load the bit stream to the target device.
The FPGA board that used in this project is Arty A7: Artix-7 FPGA Development
Board.

Arty A7: Artix-7 FPGA Development Board (Digilent, n.d.)

Arty is a ready-to-use development board and designed based on the Artix-7™ FPGA
from Xilinx. It contain 256MB DDR3L and 16MB Quad-SPI Flash. For peripheral,
Arty supported by the UARTS, SPIs, IICs, and an Ethernet MAC. It also contain 4 Pmod
connector for expansion the connection. There are also some interaction and sensory

devices such as 4 Switches, 4 Buttons, 1 Reset Button, 4 LEDs and 4 RGB LEDs.
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3.3 System Overview

The Figure 3.2 shown the block diagram of the [oT SoC Processor and Table 3.2 shown

hardware features of the IoT SoC Processor

| Rt e s 1
i cPuU ] SPI ' |RF Module
i | Controller ! (Radio Chip
i / —/ and
, V ! Antenna)
! 1
! 1
1
' System Bus i
! 1
Bus NN —
i Arbuiter (- GPIO i Sensors
1 ( J\ Controller m
! )
1 ,7
Off-Chip | On-Chip / !
Memory i Instruction !
(Flash) 1 and Data _— b
/+—\ Memory ‘jl; |
\——/| (SRAM) || i
' UART ! Desktop
: \\ Controller !
! \| (Optional for 1V_:/\:>
! L ﬁ/ development| '
1
! DUT L purpose) |

Figure 3.2 Block diagram of the [oT SoC Processor

CPU Structure Pipeline
Instruction cycle 5, overlapping
CPU features Control unit

Data-path unit

Branch predictor (64 entries 4 ways associative)
Pipeline registers

Hazard circuitry

Interlock circuitry

Memory features 4kBytes boot ROM, 128kBytes user access flash,
8kBytes RAM (Data & Stack), 1kBytes I-cache,
32Bytes d-cache, 512Bytes Memory Mapped /O
Register

Communication interface | UART, SPI, 32 GPIO pins

features

Table 3.2 Hardware features of the IoT SoC Processor
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The figure above shows the system overview of this project. RISC32 IoT processor
made up of 3 major part, which are, Central processing Unit (CPU), memory system
and I/O System. The IoT processor based on pipeline architecture with build-in
coprocessor 0 and Programmable interrupt controller to handle the exception. The CPU
is compatible to the 5-stage 32-bit MIPS Instruction Set Architecture (ISA).

Memory unit will used to store the system code, user program and data. The I/O register
mapped to the memory unit because I/O mapped technique used.

The I/O System of [oT Processor consist of SPI controller, GPIO controller, and UART
controller. These controllers will responsible for data transmission between IoT
processor and the external device, for example, sensors, wireless modules, personal
computers.

The bus system will connect between CPU and 1/O devices. Any data transmission

between the CPU and the I/O device will pass through the bus system.
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3.4 Timeline

Figure below show the Gantt chart for FYP 1 and FYP2.
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¢ Bus system and Multiple I/O interrupt

¢ Existing exception scheme
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* |dentify the type of exception need 10 be support.

¢ Develop an Exception Scheme
Verification for the Design by simulation
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Chapter 4 System Specification

4.1 System Overview

The IoT SoC processor is made up by 3 major parts, which are, Central Processing Unit
(CPU), memory system and /O system. The CPU is the subset of the 5-stage pipeline
32-bit MIPS Instruction Set Architecture (ISA). It supports up to 50 instructions,
included arithmetic, logical, data transfer, program control and system instruction
classes. The memory system consists of a 2-level memory hierarchy. First level consists
of cache, Boot ROM and Data and Stack RAM and second level consists of Flash
memory. The I/0 system consists of GPIO controller, SPI controller, UART controller
and Priority Interrupt controller. The [/O system integrated with CPU through
Wishbone B4 standard bus interface (OpenCores, 2010). GPIO, SPI and UART
controllers are used to data transfer with the external devices, for example, sensors,
wireless modules, personal computers etc. The Priority Interrupt controller used as an
external interrupt controller to handle multiple interrupt occurrences based on priority
level. It collaborate with coprocessor 0 to handle the exception. Figure4.1 shows the
architecture of the [oT SoC Processor. Table 4.1 shows the hardware feature of the [oT

SoC Processor.

LEDs,
ZigBee EEPROM  Sensors

SPI UART GPIO
CPU Controller] |Controller Controller

I Stack Priority

I-CACHE| [D-CACHE| | RAM RAM || interrupt

t t controller

Memory arbiter| (———— ) .1 Flash

Controller Memory

System Bus

Figure 4.1: Architecture of the IoT SoC Processor.
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Chapter 4 System Specification

CPU Structure

Pipeline

Instruction cycle

5, overlapping

CPU features

Control unit

Data-path unit

Branch predictor (64 entries 4 ways associative)
Pipeline registers

Hazard circuitry

Interlock circuitry

Memory features

4kBytes boot ROM, 128kBytes user access flash,
8kBytes RAM (Data & Stack), 1kBytes i-cache,
32Bytes d-cache, 512Bytes Memory Mapped 1/O
Register

Communication interface

features

UART, SPI, 32 GPIO pins

Table 4.1: Hardware features of the IoT SoC Processor.
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4.2 MIPS ISA

4.2.1 Instruction Format

There are 3 Instruction format which are, R-format, I- format and J-format. Each MIPS
instruction must belong to one of these formats. Figure 4.2 shows the MIPS instruction

format.

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

[ op | rs | rt l rd l shamt l funct J R-format
[ op | s | o | immediate (16-bit) | I-format(immediate Instructions)
[ op ] rs I it 1 data address offset ] |-format(Data Transfer Instructions)
[ op | rs [ o [ branchaddressoffset | I-format(Branch Instructions)
| op | jump address (26-bit) | J-format
Figure 4.2 Instruction Format
4.2.2 Addressing modes

There are six addressing modes, which are register addressing mode, immediate
addressing mode, base addressing mode, pc-relative addressing mode, pseudo-direct

addressing mode and Register direct addressing mode.

A) Register addressing mode(R-format)

Operand are in a system register. Perform operation based on function field. Action on

Source and target register and store the result back to destination register.

| op [rs [t | rd] | funct | Register File
» Destination reg |
» word operand 2 |—[ Operator J
»[ word operand 1 |—+| (ALU)

Figure 4.3 Register Addressing mode
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B) Immediate addressing mode (I-format)

The operand is inside the instruction (data-value). Perform operation on source register

and immediate value and store the result back into target register

Data value — the 16-bit is sign-extended/zero-
extended to 32-bit before adding to source reg

| op | rs | t | datavalue |/
!

Register File

Ao
3 ALU’vl—
_/1_5'[’/ 2

| Destination reg |«

—— | wordoperand 1 |-

Figure 4.4 Immediate Addressing mode

C) Base addressing mode (I-format)

Perform operation on source register and data address offset. The calculated result used

as address to access the data memory to load/store data to/from target register.

Byte address - the 16-bit is sign-extended
to 32-bit before adding to base addr

| op | rs | t | dataaddr offset |/' Data Memory
{#)——|__ word or byte operand |

]
\ base address | ] ,
. : ) |Operand's memory address |
Register File

.
Contain an address or pointer
acting as a base address.

Figure 4.5 Base Addressing mode
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D) PC-relative addressing (I-format)

Perform comparison on source and target register to determine branch taken or untaken,

the immediate value is uses to calculate the branch target.

Word address — the 16-bit is sign-extended,
then left-shifted 2 bits (to convert word addr to
byte addr) before adding to PC+4

7

/

| op | rs | 1t [ branch addr offset |/ Instr Memory
; o +}>[ branch target instruction
| PC + 4 (byte address) »L\‘

The address is pointing to the
next instruction (PC+4)

Figure 4.6 PC-Relative Addressing mode

E) Pseudo-direct addressing (J-format)

Perform operation by concatenating the upper bits of PC with the jump address offset,

to calculate the jump target.

Word address — the 26-bit is left-shifted 2
bits (to convert word addr to byte addr)
hefore concatenating to (PC+4)[31:28]

L op | jump add]ress offset | Instr Memory

EID*{ jump destination instruction |
| 4-bit | PC (byte address) J\

The next instruction
address (PC+4)

Figure 4.7 Pseudo-Direct Addressing mode

F) Register direct addressing mode (J-format)

Take the value from the source register and force it into PC.

op | rs rt rd shamt funct

Register File ——>» | PC

Figure 4.8 Register Direct Addressing mode
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4.2.3 Instruction Supported

opcodepsias) | 1825211 | Tt20:16) | Tdpis:117 | shamtpio:s) | functis.o
No | Instruction | opcodesi2e] | 1S[25:21] | I'tpo:16) | immediateyis.o
opcodep3i26) | addressi2s.o)
1 Jadd 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 100000
2 addu 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 100001
3 sub 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 100010
4 subu 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 100011
5 mult 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 011000
6 multu 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 011001
7 | mfhi 000000 00000 | 00000 | [XxxxX] | 00000 010000
8 | mflo 000000 00000 | 00000 | [XXXxX] | 00000 010010
9 |and 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 100100
10 | or 000000 [xxxxx] | [xxxxx] | [xxxXX] 00000 100101
11 | xor 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 100110
12| nor 000000 [xxxxx] | [xxxxx] | [xxxxx] 00000 100111
13 | sl 000000 00000 | [xxxxx] | [xxxXX] | [xxxxx] | 000000
14 | srl 000000 00000 | [xxxxx] | [xxxxx] | xxxxx] | 000010
15 | sra 000000 00000 | [xxxxx] | [xxxxxX] | [xxxxx] | 000011
16 | slt 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 101010
17 | sltu 000000 [xxxxx] | [xxxxx] | [xxxxx] | 00000 101011
18 | jr 000000 [xxxxx] | 00000 | 00000 | 00000 001000
19| jalr 000000 [xxxxx] | 00000 | [xxxxx] | 00000 | 001001
20 | syscall | 000000 00000 | 00000 | 00000 | 00000 | 001100
21 | mtc0 010000 00100 | [xxxxx] | [xxxxx] | 00000 | 000000
22 | mfc0 010000 00000 | [xxxxx] | [xxxxx] | 00000 000000
23 | eret 010000 00001 | 00000 | 00000 | 00000 011000
24 | addi 001000 [xxxxx] | [XxxXXX] | [XXXXXXXXXXXXXXXX ]
25 | addiu 001001 [xxxxx] | [xxxxX] | [XXXXXXXXXXXXXXXX |
26 | andi 001100 [xxxxX] | [XXXXX] | [xxXxXXXXXXXXXXXXX]
27 | ori 001101 [XXXXX] | [XXXXX] | [xxXXXXXXXXXXXXXX]
28 | xori 001110 [XXXXX] | [XXXXX] | [xXXXXXXXXXXXXXXX]
41
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29 | lui 001111 00000 | [xxxxx] | [XXXXXXXXXXXXXXXX |
30 | Iw 100011 [xxxxx] | [XXXXX] | [xxxXxXXXXXXXXXXXX]
31 | 1wl 100010 [xxxXX] | [XXXXX] | [xXxXXXXXXXXXXXXXX]
32 | lwr 100110 [xxxxx] | [XXXXX] | [xxXxXxXXXXXXXXXXXX]
33 |Ih 100001 [xxxxx] | [XXXXX] | [xxxXxXXXXXXXXXXXX]
34 | lhu 100101 [xxxxX] | [XXXXX] | [xxXxXXXXXXXXXXXXX]
35 | Ib 100000 [xxxxX] | [XXXXX] | [xxxXxXXXXXXXXXXXX]
36 | lbu 100100 [xxxxx] | [XXXXX] | [xxxXxXXXXXXXXXXXX]
37 | sw 101011 [xxxxx] | [xxxxXX] | [XXXXXXXXXXXXXXXX |
38 | swl 101010 [xxxxx] | [xxxXX] | [XXXXXXXXXXXXXXXX |
39 | swr 101110 [xxxxx] | [xxxxX] | [XXXXXXXXXXXXXXXX |
40 | sh 101001 [xxxxx] | [xxxxXX] | [XXXXXXXXXXXXXXXX |
41 | sb 101000 [xxxxx] | [xxxXX] | [XXXXXXXXXXXXXXXX |
42 | slti 001010 [xxxXX] | [XXXXX] | [xXxXXXXXXXXXXXXXX]
43 | sltiu 001011 [xxxxx] | [XXXXX] | [xxxXxXXXXXXXXXXXX]
44 | beq 000100 [xxxXX] | [XXXXX] | [xxXXXXXXXXXXXXXX]
45 | bne 000101 [xxxXX] | [XXXXX] | [xXxXXXXXXXXXXXXXX]
46 | blez 000110 [xxxxx] | 00000 | [XXXXXXXXXXXXXXXX]
47 | bgtz 000111 [xxxxx] | 00000 | [XXXXXXXXXXXXXXXX]
48 1] 000010 [XXXXXXXXXXXXXXXXXXXXXXXXXX]

49 | jal 000011 [XXXXXXXXXXXXXXXXXXXXXXXXXX ]

Table 4.2 Instruction Supported
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4.3 Functional View of the RISC32 Pipeline Processor

MIPS processor break the instruction execution cycle into 5-stage which is IF, ID, EX,
MEM and WB stage and this technic call pipelining. Figure 4.9 shows the hardware

component allocate in each pipeline stage.

| Interlock block |

Branch Branch _ m
predictor| |predictor Data and
Boot S][o ALU [ UART ]| sack
ROM o %D% Reg|ster RAM Reg|ster
22 o File D-CACHE File
S 53
I-CACHE L8 5
S g § CPO Multiplier| |Multiplier
g < § Stage 1 Stage 2
3 L] L L
ol Forwarding block |

IF ID EX MEM WB

Figure 4.9 Functional view of the RISC32 processor

At IF stage, instruction fetched from the Boot ROM or [-CACHE and pass through the
IF/ID pipeline. If the cache miss happed, the I-cache will send a signal to stall whole
processor until respective instruction was fetch into the I-cache.

At ID stage, the control signal will be compute by decoding the instruction. The Main
Control block and the Arithmetic Logic Control block will decode the instruction and
send output signals. Output signals from both hardware components will pass through
to the ID/EX pipeline and the remaining hardware components in the ID stage, which
are, Register File, Forwarding block, Coprocessor 0, Branch Predictor and Interlock
blocks.

At EX stage, ALU block covers all the operation except the multiplication operation.
Multiplier block starts the multiplication operation at EX stage and requires 2 clock
cycles (EX and MEM stages) to perform a multiplication operation on two 32-bit
operands.

At the MEM stage, the load/store instruction will access the memory component, which
are, D-cache, Data and Stack RAM and I/O register.

At WB stage, the computed result will write back to the register file.
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4.4 Memory Map

Figure 4.10 shows the Memory map. Table 4.3 shows the details of the Memory

allocation.

Virtual Memory

0xC000_0000
OXBFFF_FEQO
OxBFCO_1000

0xBFCO_0000

Boot code

0xA002_2000

0xA002_1000 A heap

1/0 peripherals register

. 0x2000_0000

Physical Memory

Ox1FFF_FEOO

0x1FC0_1000
0x1FC0_0000

Boot code

KSEG1

0xA002_0800 -bss

0xA002_0000

1/0 peripherals register

FLASH
RAM

BOOT ROM

IKSEGO/
0xA000_0000 KSEG1
0x0002_2000 S
0x0002_1000 A heap
KSEGO  0x0002-0800 .dbaStSa
0x0002_0000 :
033001 500 data 00001_Fa00 00
0x8001_F400 -rodata 0x0001_F400
- Exception handler Exception handler
0x8001_BA400 0x0001_B400
User program code User program code
0x8000_0000 v 0x0000_0000 v
Figure 4.10 Memory Map
Purpose Description Size
I/O Peripherals register | External I/O device registers (/O | 512Bytes
mapped technique)
Boot code Start-up code which keep the 4kBytes
system configuration(Boot
loader)
Stack Use for argument passing 8kBytes
Heap Dynamic memory allocation
such as malloc()
Exception handler Exception handler code and ISR | 16kBytes
User Program Code Store User Program Code 128kBytes

Table 4.3 Memory map description
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When a processor start-up, the boot loader program stored in the boot ROM should
perform the following actions:

1) Set up the Register File block registers value

2) Copy .data content from Flash memory to the Data RAM

3) Jump to user program code located at 0x8000 0000 (virtual address)
The data in .data, .bss, .stack, .heap and 1/O peripherals registers can be accessed using
load and store instructions.
When Exception occur, the program should jump into the single entry point of the
Exception handler (0x8001 B400). After that, identify the cause of the exception and
jump to the respective Interrupt service routine (ISR). After serving the exception,

should jump back to the user program to continue execution.
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4.5 RISC32 Pipeline Processor Hierarchy.

Table 4.4 shows the RISC32 pipeline processor hierarchy.

(uctrl_path)

(bmain_ctrl)

Chip Unit Level (Micro- Block Level (Micro- Sub-block
Level | Architecture Level) Architecture Level)
crisc Data-path unit Branch Predictor block
(udata_path) (bbp 4way)
Register File block (brf)
Forwarding block
(bfw_ctrl)
Interlock block (bitl ctrl)
CPO block (bcp0)
ALU block (balb)
Multiplier Block adder Ivll_firstrow
(bmult32) adder Ivll
add_1vll lastrow
sub_Ivll lastrow
adder_lvI2
adder lvI2 lastrow
adder 1vI3
adder Ivl4
adder 1vl5
Address Decoder block
(baddr decoder)
Control-path unit Main Control block

Arithmetic Logic Control
block (balb_ctrl)

Cache unit (ucache)

Cache Controller block
(bcache ctrl)

Cache RAM block
(bcache ram)

FIFO Controller
(bfifo_ctrl)

FIFO block(bfifo)
Flash Controller Unit Flash Controller Clock
(ufc) Generator block

(bfc_clk gen)

Flash Controller FSM
block (bfc fsm)

Flash Controller
Transmitter block
(bfc TX)

Flash Controller Receiver
block (bfc_ RX)

FIFO block (bfc_FIFO)
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unit (uram)

Data and Stack RAM

(uuart)

UART Controller unit

UART Baud Clock

Generator block (bclketr)

UART Receiver block sbrx_ctr

(brx) asynfifo rl 3
fifomem bl 1
graycentr rl 3
synchronizer

UART Transmitter block | sbtx_ctr

(btx) asynfifo rl 3

fifomem bl 1

graycntr rl 3

synchronizer

SPI Controller unit
(uspi)

SPI Clock Generator block
(bclk gen)

SPI Receiver block (bRX)

SPI Transmitter block
(bTX)

FIFO block (bFIFO)

SPI Input Output Control
block (bio ctrl)

GPIO Controller unit

(uboot rom)

(ugpio)

Priority Interrupt Priority Resolver block
Controller unit (bpic_resolver)
(upi_ctrl)

Boot ROM unit

(umem _arbiter)

Memory Arbiter unit

Table 4.4 RISC32 processor hierarchy.
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Chapter 5 Analysis of the I/O system

5.1 1/O System
The 1/0 system consists of GPIO controller, UART controller, SPI controller and

Priority interrupt controller (PIC). There are integrate to the CPU through the Wishbone
B4 standard bus interface (OpenCores, 2010). The GPIO controller, UART controller
and SPI controller used to communicate with the external device and data transmission.

The GPIO controller, UART controller, SPI controller and Priority interrupt
controller (PIC) integrated to the CPU by using the Memory-mapped 1/O technique.
The starting address for I/O Map is 0xbffffe00. For convenience, register $SO was
programme to store the starting address of the /O Map. There are allow the user use
load-store instruction to access the I/O register.

The UART controller used for asynchronous serial data communication
between another UART devices. The SPI controller used for high-speed serial data
communication between the SPI interfaces devices. It developed with 4 wires, which
are Master out Serial in (MOSI), Master in Serial out (MISO), Slave Select (SS) and
SPI clock (SCLK), and 4 modes of serial data communication. The General Purpose
Input/output (GPIO) Controller is 32-bits I/O port. Each of the pin can be set as either
input or output by configure the GPIODIR register. The GPIO Controller can be used
for interact with the external devices. For example, blinking LEDs, debugging, digital
input. (Kiat, 2018, pp. 91-108).

The Priority Interrupt Controller (PIC) is an external interrupt controller to
handle the multiple interrupt occurrence based on interrupt priority level. Priority
Interrupt Controller unit work with core processor 0 (CPO) to handle the exception. The
Priority Interrupt Controller can take up the 8 interrupt source. The currently connected
interrupt sources are SPI controller, UART controller and CPO timer. There are four
interrupt priority levels (IPL) can be set for each interrupt source. The highest priority

interrupt will take precedence over a lower priority interrupt. (Kiat, 2018, pp. 109-112).
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5.2 Micro-architecture for I/O system.
Figure 5.1 below shows the micro-architecture for the I/O system.

* Red arrow mean from

UCtrl_path control unit

G: d_cache_stall
_cache_stall

. bcp0 baddr_decoder ;
S —— bicp0_read_addr([4:0] . —»—— biad_ex_Iw boad_byte_sel[3:0] = ugpio
- ——1 bicp0_wr_data([31:0] £ —>»— biad_ex_lh boad_dcache_rdf—— = ] uigpio_mem_stat uiogplo_PORT_pin[31.0] [—— 2
——{ bicp0_wr_addr(4:0] - - biad_ex_Ib boad_dmem_en—— | & ——viio_wn_aprol H
PC ———— bicp0_eret bocpo_timer_intr boad_io i =
— ! bicpo mtco bocp0_intr_en_n - s boad_io_en(7:0] Ui, whwe i
bicp0_if_pc[31:0] bocp0_stat_IPL[1:0] biad_ex_swr igpio_w_stb -
bicp0_id_pc[31:0] bocp0_flush_id biad_ex_sh igpio_wh ek
bicpO_ex_pc[31:0] bocp0_flush_ex{—— biad_ex_sb igpo_wb st
—>——1 bicp0_undef_instr bocp0_flush_mem —— —>——{ biad_ex_cpu_addr
, bicpo_syscal bocp0_eret_addr(31:0] piad_stall uspi = —
bicp0_irq bocp0_exc_flag P uioss mso——
From ALB. ~[———— bicp0_souf bocp0_read_datal31.0]— e s e —
—»——1 bicp0_BD o wosp IR0 r
1 bicpO_req_IPL[1:0] ———] uispi_wb_din(7:0) — berrsslll:Ol borf_rs32[31:0]—
—— bicp0_clk wispi_wb_sel[3:0] — birf_rt5[4:0] borf_rt32[31:0—
—— bicpo_rst uspi_wb_we uospi_wb._c birf_wr_data1[31:0] -
i vepLwh ok [—— —{ birf_wr_addr1{4:0]
—{ upiwbrs —»— birf_wr_en1
— birf_clk
— birf_sreset
uuart
— oo voua 0l —
a URTE vaun 0| ——|
fropeeie
| haws dnirr
uiua_wb_we uoua_wb_dout(7:0] f—————
vt o ek
N —|uivo_wbck
upi_ctrl i
e it vector7a]
wipi_ctr_stat_IPL[1:0] uopi_ctrl_10,_|
Upevinenn | ol cvlrea IAi10)
— st pritpby
—— i et szl
N Wi
eichiviwe  uoplcilvh
dpcvL b stb v bk —
— it ek
— uprerivb s

Figure 5.1 Micro-architecture for I/O system.
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5.3 Co-processor 0
Co-processor 0 (CP0) is responsible to record and process the exception information. The CPO block is able to process sign-overflow exception,

undefined instruction exception, syscall exception and I/Os interrupt. Table 5.1 shows the details of resolving simultaneous exception occurrence.

Exception event at the same clock cycle | Exception event Occurs at | Return Address | Pipeline registers flush?
occurring at which branch (SEPC)
Interrupt Request | Other Exception Stage? delay slot?
(IRQ)
No Overflow EX stage (ALU - ID stage’s PC IF/ID, ID/EX and EX/MEM
block)
No Undefined ID stage - IF stage’s PC IF/ID and ID/EX
Instruction
No Syscall ID stage - IF stage’s PC [F/ID
Yes - - No IF stage’s PC IF/ID
Yes - - Yes ID stage’s PC ID/EX
Yes Overflow Overflow-EX stage - EX stage’s PC IF/ID, ID/EX and EX/MEM
Yes Undefined Undefined - ID stage’s PC IF/ID and ID/EX
Instruction Instruction-ID stage
Yes Syscall Syscall-ID stage - ID stage’s PC IF/ID

Table 5.1 Details for exception event.
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CPO0 Register sets

Table 5.2 shows the CP0 Register Sets. Table 5.3 show the each field for status register.

Table 5.4 shows the each field for cause register.

Register | Code Register Usage
No. Name
0-8 00000 - RESERVED | RESERVED
01000
9 01001 $count count up every CPU cycle
10 01010 RESERVED | RESERVED
11 01011 $compare Used with $count register to form a
timer
12 01100 $stat Store the control and status of
exceptions
13 01101 $cause Store the cause of exceptions
14 01110 $epc Store exception return address
15-31 | 01111 - RESERVED | RESERVED
11111

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
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12 11 10 9 5 4 3 2 1 ©
Sstat E
Register | bit usage
$stat [31:12] RESERVED

IPL[11:10] | store current interrupt priority level
[9:5] RESERVED
UM[4] 1=user mode, 0=kernel mode
[3:2] RESERVED
EXL[1] Exception level
I=exception occurs, disable further exception to occur
0=no exception occurs
IE[0] 1=Interrupt enable
O=Interrupt disable
Table 5.3 Details of the Status register
31 30 29 28 27 26 12 11 10 9 7 6 2 1
Scause [so] n [l
Register | bit usage
$cause | BD[31] Indicate branch delay
TI[30] l=enable timer interrupt
O=disable timer interrupt
[29:28] RESERVED
TEN[27] CPO Timer, $count disable control
[26:12] RESERVED
RIPL[11:10] User Define priority level for the active interrupt
[9:7] RESERVED
Exception code encodes reasons for the exception
[6:2] O=Interrupt
4=AdEL, address error trap (load or instruction
fetch)
5= AdES, address error trap (store)
6=IBE, bus error on instruction fetch trap
7=DBE, bus error on data load or store trap
8=Sys, syscall trap
9=Bp, breakpoint trap
10=R1, undefined instruction trap
12=0yv, arithmetic overflow trap
[1:0] RESERVED
Table 5.4 Details of the cause register.
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5.4 Exception event.

Table 5.5 shows the Characteristic of RISC32 exception event. Refer to Chapter 2.2 for detail explanation of the exception event characteristics.

Synchronous Vs | User requested | User maskable Vs | Within Vs between | Resume Vs
Exception Type Asynchronous Vs Coerced user nonmaskable instructions Terminate
Exception
#AdEL(address error exception
(load or instruction fetch)) * * * * *
#AdES(address error exception
(store)) * *
#IBE(bus error on instruction fetch) | * * * * *
#DBE(bus error on data load or
store) * * * * *
sys(syscall exception) Synchronous user request nonmaskable Within Resume
#Bp(breakpoint exception) * * * * *
Ov(arithmetic overflow exception) | Synchronous Coerced nonmaskable Within Resume
RI(Reserved instruction/Undefined
instruction) Synchronous Coerced nonmaskable Within Resume
Interrupt
UART Asynchronous Coerced User maskable Between Resume
SPI Asynchronous Coerced User maskable Between Resume
Timer % * * k *
*pending
#not implemented
Table 5.5 Exception event and its characteristics for RISC32 IoT Processor.
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5.5 Priority for Exception Event

The characteristic for 5-stage pipeline processor is overlapping the instruction.

Therefore, it is possible multiple exception occur in the same clock cycle. To handle

this problem, there are needed a priority scheme to schedule the exception event when

multiple exception event conflicting. Table 5.6 shows the priority for exception event

Timer (INT _7)

Exception Priority( in ascending order) Remark
event
Internal
Syscall 3(Lowest priority) Syscall and Undefined
— instruction will occur in
Undeﬁnpd 3(Lowest priority) the ID stage, It will not
Instruction conflict with each other.
Sign-Overflow | 2
External(IRQ) | 1(Highest priority)
INT 1 Highest priority | The priority between the
External Exception
UART(INT_2) (interrupt) is determine by
SPI (INT 3) the User by setting the
interrupt priority level in
INT_4 the PICIPLLO[7:0] and
INT 5 PICIPLHI[7:0] 'of
- Programmable interrupt
INT 6 controller. (Kiat, 2018,
pp. 109-112).

Lowest Priority

Table 5.6 Priority for Exception Event
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5.6 Exception Handler Scheme

The exception handler start at address 0x8001b400. When exception occur, CP0 will
send a signal to flush the pipeline register based on the exception event (refer to Table
5.1). After that, exception flag will assert by CP0. Next, save the respective PC to the
$epc for return purpose. After that, jump to the exception handler (0x8001b400). Figure

5.2 shows the flow of the exception handler.

Exception Occur

CPO flush the pipeline
register,

Set Sstatus.EXL bit,
Load the PC to Sepc,
Determine the
Scause.Exc_code.

$Sko
$k1 Jump to Exception
Sepc Handler
520 (PC<=0x8001b400)
Sal
$a2 )
PUSH register to stack
$a3 Copy $cause.RIPL to
Sstatus Sstat.IPL
Scause v (prevent lower priority
Reset $status.EXL bit. Exception Code interrupt occurs)
($Sstatus.EXL=0) INT(0)
AdEL(4) +
i AdES(5) Read the
IBE(6) (Programmable
Decode the DBE(7) interrupt controller)
$cause.Exception bits Sys(8) PIC.Status and Decode.
Bp(9) +
i v RI(10)
Jump to respective Ov(12) lnterrupt Source
Interrupt Service INT_1
Routine INT_2(UART)
+ INT_3(SP1)
INT_4
Set Sstatus.EXL bit. INT_5
($Sstatus.EXL=1) INT_6
Scause i INT_7(Timer)
Sstatus
$a3 POP previous
$a2 information from
Sal stack back to registers
$a0
$Sepc ¢
Skl
k0 v Exception Return
(ERET)
PC<=Sepc
Sstatus.EXL=0

Figure 5.2 Flow of the Exception Handler
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Nested interrupt Handling Scheme

Figure 5.3 shows the flow of exception handling, when there are another interrupt

request during the execution of the ISR.

‘ Exception Occur ‘

CPO set Sstatus.EXL=1
to prevent further
interrupt.

Jump to Exception
Handler
(PC<=0x8001b400)

v

Interrupt?
‘ Save Context ‘

CPO reset $status.EXL | :
($status.EXL=0) to re- | :’ Decode the :
enable the further : Scause.Exception bits | |
interrupt. | : Yes
| v .
CPO set Sstatus.EXL=1 No : Jump to respective :
to prevent further |« : Interrupt Service |
interrupt. : Routine :
,,,,,,,,,,,,,,,, 1
‘ Restore Context ‘
¢ ‘ Exception Occur ‘
Exception Return CPO set Sstatus.EXL=1
(ERET) to prevent further
Enable the interrupt interrupt.
by set Sstatus.EXL=0

Jump to Exception
Handler
(PC<=0x8001b400)

* Interrupt?
‘ Save Context
' S —

Reset Sstatus.EXL bit.
(Sstatus.EXL=0) to
enable the interrupt.

> Decode the
Scause.Exception bits

:

Exception Return
(ERET) ¢ ¢ Disable the interrupt |
Enable the interrupt Restare Context by set $status.EXL=1 |
by set Sstatus.EXL=0

Jump to respective
Interrupt Service
Routine

Figure 5.3 Nested interrupt Handling Scheme
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Chapter 6 Verification Specification

6.1 Test cases
Test Case 1: Individual Trap
In Test Case 1, simulation on Individual Trap had conducted. In this project, the
individual Trap cover the Sign-overflow, undefined instruction and Syscall. The
expected output for this test case are as shown below:

1) Each individual Trap event occur

ii) Jump to the exception handler

iii)  Jump to the respective ISR.

iv) Return to the user program.

Test Case 2: Multiple Trap
In Test Case 2, Multiple Trap event intentionally created by mixed the individual trap
event in the same clock cycle. There are only two possible combination:
e Sign-overflow (EX stage) and Undefined instruction ( ID stage)
e Sign-overflow (EX stage) and Syscall ( ID stage)
The expected output for this test case is the Exception occur in the EX stage will be

serve prior then the Exception occur in ID stage.
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Test Case 3: Individual interrupt

Server Client
SPI SPI
Controller Controller
UART UART
Controller Controller

Figure 6.1 Connection between server and client

In Test Case 3, the connection between server and client had established as figure 6.1.
In this project, the individual interrupt covers the UART interrupt and SPI interrupt.
Client will keep sending the data to the Server through the SPI and UART to generate
the interrupt to the Server side. In this test case, only one of the UART or SPI will turn
on. The expected output for this test case are shows as below:

1) After the processor receive a data, it will raise the interrupt flag.

ii) Jump to the exception handler

iii)  Jump to the respective ISR.

iv) Return to the user program.

Test Case 4: Multiple interrupt and Multiple Trap.

In Test Case 4, the connection was same like test case 3 but the UART and SPI on client
will keep transmit the data at the same time in order to generate the interrupt to the
Server side. In the same time, multiple trap occurrences had intentionally created at the
server side to simulate the exception event clashing behaviour. The expected output is

to ensure each exception event have been served and executed their ISR respectively.
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6.2 MIPS assembly code

Test Case 1: Individual Trap and Test Case 2: Multiple Trap

| LABEL | INSTRUCTION | COMMENTS

text 0x00400000

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

Test Case 1: Individual Trap — Sign-Overflow
sovf: addi $s0, $zero, 1 #$s0 =1

sll $s0, $s0, 30 #$s0 = 1073741824, $s0[30] =1,
others=0

addi $s1, $zero, 1 #Ps1 =1

sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] =1,
others=0

add $s2, $s0, $s1 #sign overflow, $s0[30]=8$s1[0] &&
$s0[30]!=$s2[31]

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

Test Case 1: Individual Trap — undefined instruction

u_inst: sll $zero, $zero, 0 #undefined instruction
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0  #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
li $v0,1 #print integer
li $a0,5 #print 5
Test Case 1: Individual Trap — Syscall
syscall #syscall
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
Test Case 2: Multiple Trap - Sign-overflow (EX stage) and Undefined instruction (
ID stage)
sovf uinst:  addi $s0, $zero, 1 #$s0 =1
sll $s0, $s0, 30 #$s0 = 1073741824, $s0[30] =1,
others=0
addi $s1, $zero, 1 #Ps1 =1
sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] =1,
others=0
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add

sll

$s2, $s0, $s1

$zero, $zero, 0

#sign overflow, $s0[30]=$s1[0] &&
$s0[30]!=$s2[31] at ex stage
#undefined instruction

sll
sll
sll
sll
sll

$zero, $zero, 0
$zero, $zero, 0
$zero, $zero, 0
$zero, $zero, 0
$zero, $zero, 0

#nop
#nop
#nop
#nop
#nop

Test Case 2: Multiple Trap - *Sign-overflow (EX stage) and Syscall ( ID stage)

sovf syscall addi $s0, $zero, 1

sll $s0, $s0, 30 #3$s0 = 1073741824, $s0[30] =1,
others=0

addi $s1, $zero, 1 #$s1=1

sll $s1, $s1, 30 #$s1 =1073741824, $s1[30] =1,
others=0

add $s2, $s0, $s1 #sign overflow, $s0[30]=$s1[0] &&
$s0[30]!=$s2[31] at ex stage

syscall #syscall

sll $zero, $zero, 0  #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

here: j here #forever loop

sll $zero, $zero, 0  #nop

sll $zero, $zero, 0  #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop

sll $zero, $zero, 0 #nop
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Test Case 3: Individual interrupt

» UART interrupt

Server
LABEL INSTRUCTION COMMENTS
text 0x00400000
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00 $s0=bfff fe00
addi | $s3, $zero, 1 $s3=1
add | $sl, $zero, $zero | $s1=0
addi | $t0, $zero, Ox1 Enable GPIO[16]
sll $t0, $t0, 16
sw | $t0, 20($s0)
addi | $t0, $zero, 0x0004
sll $t0, $t0, 16
sw_ | $t0, 32(Ss0) Enable UARTIE at PIC.PICMASK[2]
addi | $t0, $zero, 0xC2 | Configure UART.UARTCR=1100 0010,
sb $t0, 40($s0) UARTEN=1, RXCIE=1,BAUD=010
GPIO: xori | $sl, $sl1, 1 Toggle GPIO[16]

sll $s2, $s1, 16

sw | $s2, 24($s0)
start timer: | ori | $tl, $zero, 0x0500 | Create delay
addi | $t0, $zero, 0x1

sll §$t0, $t0, 27

mtcO | $t0, $13

mtcO | $zero, $9

mtcO | $zero, $13

mfcO | $t0, $9

poll timer: |sub | $t0, $t1, $t0

bgtz | $t0, poll timer

bne | $s3, $zero, GPIO

($s3=1)!=0 branch to GPIO

nop

nop

nop

nop
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Client
LABEL INSTRUCTION COMMENTS
text 0x00400000
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00 $s0=bfff fe00
addi | $s3, $zero, 1 $s3=1
add $s1, $zero, $zero $s1=0

addi | $t0, $zero, 0x1

sll $t0, $t0, 16

swW $t0, 20($s0)

#GPIO setting
#GPIOEN=1000 0000

addi $t0, $zero, 0xA2

sb $t0, 40($0)

#UARTCR=1010 0010,
UARTEN=1,TXEIE=1

UART restar
t:

addi | $tl, $zero, 0x11

sb $t1, 42($s0) Put data into UARTTDR

addi | $tl, $zero, 0x22

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, 0x33

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, 0x44

sb $t1, 42($s0) Put data into UARTTDR
check TXEF | Ibu $t1, 41(8s0) Check the transmit flag
1:

sll $t1, $t1, 25

srl $t1, $t1, 31

beq $t1,8zero, check TXEF1

addi | $t1, $zero, 0x55

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, 0x66

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, 0x77

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, 0x88

sb $t1, 42(8$s0) Put data into UARTTDR
check TXEF | Ibu $t1, 41(8s0) Check the transmit flag
2:

sl | Stl, $tl, 25

srl $t1, $t1, 31

beq $t1,8zero, check TXEF2

addi | $tl, $zero, 0x99

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, OXAA

sb $t1, 42($s0) Put data into UARTTDR

addi | $tl, $zero, 0xBB

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $t1, $zero, 0xCC

sb $t1, 42(8$s0) Put data into UARTTDR
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check TXEF | lbu $t1, 41(8$s0) Check the transmit flag
3:

sl | $tl, $tl, 25

srl $t1, $t1, 31

beq $t1,$zero, check TXEF3

addi | $tl, $zero, 0xDD

sb $t1, 42(8$s0) Put data into UARTTDR

addi | $tl, $zero, OXEE

sb $t1, 42($s0) Put data into UARTTDR

addi | $tl, $zero, OXFF

sb $t1, 42($s0) Put data into UARTTDR
check TXEF | Ibu $t1, 41(8s0) Check the transmit flag
4:

sll $t1, $t1, 25

srl $t1, $t1, 31

beq $t1,8zero, check TXEF4

xori | $sl, $s1, 1 Toggle the GPIO

sll $s2, $s1, 16

SW $s2, 24($s0)
start timer: | addi | $t1,$zero,0x500 Create delay

addi | $t0, $zero, 0x1

sll $t0, $t0, 27

mtcO | $t0, $13

mtcO | $zero, $9

mtcO | $zero, $13
poll timer: mfcO | $t0, $9

sub $t0, $t1, $t0

bgtz | $t0, poll timer

bne $s3, $zero, UART restart | ($s3=1)!=0 branch to GPIO

nop

nop

nop

nop
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» SPI interrupt

Server
LABEL INSTRUCTION COMMENTS
text 0x00400000
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00 $s0=bfff fe00
addi | $s3, $zero, 1 $s3=1
add | $sl, $zero, $zero $s1=0
addi | $t0, $zero, 0x1 Enable GPIO[16]
sll $t0, $t0, 16
sw | $t0, 20($s0)
addi | $t0, $zero, 0x0008
sll $t0, $t0, 16
sw | $t0, 32($s0) Enable SPIIE at PIC.PICMASK[3]
addi | $t0, $zero, 0x87 #SPI setting = 10000111 = 0x87 ->
SPE = 1,MSTR =0, MODE
0,Baud=0111
sb $t0,36($s0) #control reg
addi | $t0, $zero, 0x0a #clear SPISR=00001010, RXFHE=1
RXFIE=1
sb $t0,37($s0) #status reg
GPIO: xori | $sl, $s1, 1 Toggle GPIO[16]

sll $s2, $s1, 16

sw | $s2, 24(8s0)

start timer: | ori $t1, $zero, 0x0500

addi | $t0, $zero, Ox1

sll $t0, $t0, 27

mtcO | $t0, $13

mtcO | $zero, $9

mtcO | $zero, $13

mfcO | $t0, $9

poll timer: | sub | $t0, $tl, $t0

bgtz | $t0, poll timer

Create delay

bne | $s3, $zero, GPIO

($s3=1)!=0 branch to GPIO

nop

nop

nop

nop
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Client
LABEL INSTRUCTION COMMENTS
text 0x00400000
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00 | $s0=bfff fe00
addi | $s3, $zero, 1 $s3=1
addi | $s4, $zero, 0x40 | Lower bound
addi | $s5, $zero, 0x5B | upper bound
add | $sl, $zero, $zero | $s1=0
addi | $t0, $zero, Ox1 Enable GPIO[16]
sll $t0, $t0, 16
sb | $t0, 20($s0)
add | $s6, $zero, $s4 move lower bound to $s6
start SPI: | addi | $s6, $s6, 0x01 $s6=8s6 +1
bne | $s6, $s5, if no reach upper bound, branch to no
no_reset reset
add | $s6, $zero, $s4 move lower bound to $s6
addi | $s6, $s6, 0x01 $s6=8s6 +1
no reset: sb $s6, 38($s0) Store data to SPITDR
addi | $t0, $zero, 0x01 | #clear SPISR=00000001, TXEHE=1
sb $t0, 37($s0) #status reg
addi | $t0, $zero, Oxc7 | #SPI setting = 11000111 = 0xC7 -> SPE =
I,MSTR =1,
MODE 0,Baud=0111
sb $t0, 36($s0) #control reg
start timer: | xori | $sl, $s1, 1 Toggle GPIO[16]
sll $s2, $s1, 16
SW $s2, 24($s0)
ori $t1, $zero, Create delay
0x1000
addi | $t0, $zero, Ox1
sll $t0, $t0, 27
mtc0 | $t0, $13
mtc0 | $zero, $9
mtcO | $zero, $13
poll timer: | mfcO | $t0, $9
sub | $t0, $t1, $t0
bgtz | $t0, poll timer
bne | $s3, $zero, ($s3=1)!=0 branch to GPIO
start SPI
nop
nop
nop
nop
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Test Case 4: Multiple interrupt and Multiple Trap.

Server
LABEL INSTRUCTION COMMENTS
text 0x00400000
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00
addi $s3, $zero, 1
add $s4, $zero, $zero
addi $t0, $zero, 0x1
sll $t0, $t0, 16
SW $t0, 20($s0)
addi $t0, $zero, #PIC MASK =00001100 SPIE=1
0x000c¢ UARTIE=1
sll $t0, $t0, 16
SW $t0, 32($s0)
addi | $t0, $zero, 0x87 #SPI setting = 10000111 = 0xC7 ->
MSTR =0, SPE =1, MODE 0
sb $t0,36($s0) #SPI control reg
addi | $t0, $zero, 0x0a #clear SPISR=00001010, RXFHE=1
RXFIE=1
sb $t0,37($s0) #SPI status reg
addi | $t0, $zero, 0xC2
sb $t0, 40($s0) #UART control reg=1100 0010,
UARTEN=1, RXCIE=1, Baud
mode=010
GPIO: xori | $s4, $s4, 1 #pooling GPIO
sll $s5, $s4, 16
sSW $s5, 24($s0)
Sign-overflow
sovf: addi $s6, $zero, 1 #$s6 =1
sll $s6, $s6, 30 #$s6 = 1073741824, $s6[30] =1,
others=0
addi $s1, $zero, 1 #3s1 =1
sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] =1,
others=0
add $s2, $s6, $s1 #sign overflow, $s6[30]=$s1[0] &&
$s6[30]1=$s2[31]
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
Undefined instruction
u_inst: sll $zero, $zero, 0 #undefined instruction set to
Oxffff ffff
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
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sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
li $v0,1 #print integer
li $a0,5 #print 5
Syscall
syscall #syscall
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
sll $zero, $zero, 0 #nop
Sign-overflow and undefined instruction
sovf uinst: | addi $s6, $zero, 1 #3s6 =1
sll $s6, $s6, 30 #$s6 = 1073741824, $s6[30] =1,
others=0
addi $s1, $zero, 1 #$s1 =1
sll $s1, $s1, 30 #$s1 =1073741824, $s1[30] =1,
others=0
add $s2, $s6, $s1 #sign overflow, $s6[30]=8$s1[0] &&
$s6[30]1=$s2[31]
sll $zero, $zero, 0 #undefined instruction set to
Oxffff ffff
sll $zero, $zero, 0
sll $zero, $zero, 0
sll $zero, $zero, 0
sll $zero, $zero, 0
sll $zero, $zero, 0
Sign-overflow and syscall
sovf syscall | addi | $s6, $zero, 1 #$s6 = 1
sll $s6, $s6, 30 #$s6 = 1073741824, $s6[30] =1,
others=0
addi $s1, $zero, 1 #%s1 =1
sll $s1, $s1, 30 #$s1 = 1073741824, $s1[30] =1,
others=0
add $s2, $s6, $s1 #sign overflow, $s6[30]=$s1[0] &&
$s6[30]!=$s2[31]
syscall
sll $zero, $zero, 0
sll $zero, $zero, 0
sll $zero, $zero, 0
sll $zero, $zero, 0
sll $zero, $zero, 0
start_timer: | ori $t1, $zero,
0x0500

addi $t0, $zero, Ox1

sll $t0, $t0, 27

mtcO | $t0, $13
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mtcO | $zero, $9
mtcO | $zero, $13
poll timer: | mfcO | $t0, $9
sub $t0, $t1, $t0
bgtz $t0, poll timer
bne $s3, $zero, GPIO
nop
nop
nop
nop
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Client
LABEL INSTRUCTION COMMENTS
text 0x00400000
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00
addi | $s3, $zero, 1
add $s1, $zero, $zero
addi | $t0, $zero, 0x1 #GPIO setting
sll $t0, $t0, 16
SW $t0, 20($s0) #GPIOEN=1000 0000
addi | $t0, $zero, 0xA2
sb $t0, 40($s0) #UARTCR=1010_0010,
UARTEN=1,TXEIE=1
addi | $s4, $zero, 0x40 #SPI lower bound
addi | $s5, $zero, 0x5B #SPI upper bound
add $s6, $zero, $s4 #Set the lower bound to s6
addi | $t0, $zero, 0x01
sb $t0, 37($s0) #SPI Status register
addi | $t0, $zero, Oxc7
sb $t0, 36($s0) #SPI Control Register
UART SPI | addi | $t1, $zero, 0x11
_restart:
sb | Stl, 42($s0)
addi | $t1, $zero, 0x22
sb | Stl, 42($s0)
addi | $tl, $zero, 0x33
sb | Stl, 42($s0)
addi | $t1, $zero, 0x44
sb | Stl, 42(5s0)
SPI_transm | sb $s6, 38($s0)
it:
addi | $s6, $s6, 0x01
sb $s6, 38($s0)
addi | $s6, $s6, 0x01
sb $s6, 38($s0)
addi | $s6, $s6, 0x01
sb $s6, 38($s0)
addi | $s6, $s6, 0x01
check TX |Ibu $t1, 41(8$s0)
EF1:
sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1, $zero, check TXEF1
addi | $tl, $zero, 0x55
sb | Stl, 42($s0)
addi | $t1, $zero, 0x66
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sb | Stl, 42(5s0)
addi | $tl, $zero, 0x77
sb | Stl, 42(5s0)
addi | $t1, $zero, 0x88
sb | Stl, 42($s0)
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
check TX |lbu | $tl, 41($s0)
EF2:
sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1, $zero, check TXEF2
addi | $t1, $zero, 0x99
sb | Stl, 42($s0)
addi | $tl, $zero, OXAA
sb | Stl, 42($s0)
addi | $t1, $zero, 0xBB
sb | Stl, 42($s0)
addi | $tl, $zero, 0xCC
sb | Stl, 42($s0)
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
check TX | Ibu $t1, 41(8$s0)
EF3:
sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1, $zero, check TXEF3
addi | $tl, $zero, 0xDD
sb | Stl, 42($s0)
addi | $t1, $zero, OXEE
sb | Stl, 42($s0)
addi | $tl, $zero, OXxFF
sb | Stl, 42($s0)
addi | $tl, $zero, 0xCC
sb | Stl, 42($s0)
sb $s6, 38($s0) #send SPI data
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addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
sb $s6, 38($s0) #send SPI data
addi | $s6, $s6, 0x01
check TX |Ibu $t1, 41($s0)
EF4.
sll $t1, $t1, 25
srl $t1, $t1, 31
beq $t1, $zero, check TXEF4
GPIO toog | xori | $s1, $s1, 1
le:
sll $s2, $s1, 16
SW $s2, 24($s0)
start timer: | addi | $t1,$zero,0x500
addi | $t0, $zero, 0x1
sll $t0, $t0, 27
mtc0 | $t0, $13
mtcO | $zero, $9
mtcO | $zero, $13
poll timer: | mfcO | $t0, $9
sub $t0, $t1, $t0
bgtz | $t0, poll timer
bne $s3, $zero,
UART SPI restart
nop
nop
nop
nop
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6.3 Simulation Result

Test Case 1: Individual Trap

Sign-overflow

-

— CPO register ‘ ——
+ 9 bap0_cause 32h40000000 32h40000000 A__{32h30000030 y
+ @ bep0_cause_exc_code 5'd0 5d0 ¥ 15d12 ]
+) 9 bep0_compare 32h00000000 32h00000000 B §
+) 4 bep0_count 32h00009e4f 32h00009e4d )] 32h00009e4e | 32h00009e4f ] 32h00009e50 ] 32h00009e51
+) 9 bep0_epc 32h00000000 32h00000000 = | 32h80000028 ]
+ 4 bop_stat 32h00000001 32h00000001 = {32h00000013

¥ bon sy : g ——
— CPOinput
49 bicp0_eret 1ho
+ 3 bicp0_ex_pc 32h80000024 {32h8000001c 132'hsooooo§ 32h00000000
+ = bicp0_id_pc 32h80000028 {32h80000020 ) 32h80000024 1) 32h80000028 _}|32h00000000
+) = bicp0_if_pc 32h8000002¢ {32h80000024 ) 32h80000028 ) 32h8000002¢ ) 32h800 16400
49 bicp0_irq 1ho
49 bicp0_mtcd 1ho
+ 39 bicp0_read_addr 5h00 [Shit [5hi2 15hoo
+ 39 bicp0_req_IPL 2h0 2h0
4P bicp0_rst 1ho “
-9 bicp0_sovf thi L (—1
9 bicp0_syscall 1ho r—
49 bicp0_undef_instr 1ho
+ 39 bicp0_wr_addr 5hoo I5hi1 J5hi2 [ 5hoo
+ 2 bicp0_wr_data 32h00000000 32h00000001 ) 32h40000000 ) 32h00000000
— CPO output
+ & bocp0_eret_addr 32h00000000 32h00000000 |
& bocpo_exc_flag thi L ()
& bocp0_flush_ex th1 i 1)
& bocp0_fiush_id thi 2|l 1|
&) bocp0_fiush_mem 1ht =Nl 1/
& bocp0_intr_en_n | 1ho |
-+~ bocp0_intr_mask 6h00 6h00
+ & bocp0_read_data 32hx0oooox
+ & bop0_stat_IPL 2ho 2h0
& bocp0_timer_intr thi

— PC and Instruction
<& boalb_ovfs th1 1 [ —|
& bome_syscal 1ho "
& bomc_undef _inst 1ho
49 uidp_cp0_syscall 1ho
+9 uidp_cp0_undef inst 1ho 4

+ =9 uidp_instr 32h00000000 [32h02119020 ) 32h00000000 - > <
+) < uodp_pseudo_pc 32h8000002¢ 32h80000024 ) 32h80000028 [ 32h8000002c J 32h8001b400
+)  urisc_next_pc 32h8001b400 32h80000028 ) 32h8000002c | ) 32h8001b400 ] 32h8001b400

-

1) When detected the sign-overflow at ALU block (EX stage), hardware will raise the
bocp0_exc flag.

2) Flush the IF/ID, ID/EXE, EXE/MEM pipeline.

3) Put the ID stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the
exception flag in CPO $status [1] to disable further exception occur. For, sign-
overflow the exception code is 12, which will write into the CPO $cause by

hardware.
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— CPO register
+ @ bep0_cause 32h40000030 32h40000030
+ @ bp0_cause_exc_code 5d12 5d12
+ < bep0_compare 32h00000000 32h00000000
+) 9 bep0_count 32h0000a24a 32h0000a247 ) 32h0000a248 ) 32h0000a249 J 32h0000a24a J 32h0000a24b
+ 9 bepo 32h80000028 3280000028
e 2 bch_stat 32h00000011 32h00000013 g=_—— 32000000011
@ bepo_stat(1] 0 \ | [
— CPOinput
49 bicp0_eret 1ho
+ 29 bicp0_ex_pc 32h8001b460 32h8001b458 {32h8001b45c ) 32h8001b460 ) 32h8001b464
+) 39 bicp0_id_pc 32h8001b464 32h8001b45¢ J32h8001b460 ) 32h8001b464 ) 32h3001b468
+ =9 bicpo_if_pc 32h8001b468 32h3001b460 J3Zh8001b464 | 32h8001b468 ) 32h3001b46c
49 bicp0_irq 1ho
=9 bicp0_mtcd 1ho [~ | [ 1 |
+ 39 bicp0_read_addr 5ho4 Shif 15hoc 15ho4 [5hoo
+ 39 bicp0_req_IPL 2h0 7ho
39 bicp0_rst 1ho
9 bicp0_sovf 1ho
=9 bicp0_syscall 1ho
9 bicp0_undef _instr 1ho
+ 39 bicp0_wr_addr 5ho4 Shif {Shoc {5ho4 {5hoo
+) 39 bicp0_wr_data 32h40000030 32h00000000 32h00000011 J 32h40000030 ) 32h1000000c
— CPO output
+) & bocp0_eret_addr 32h00000000 32h00000000
& bocp0_exc_flag 1ho
& bocp0_flush_ex 1ho
<& bocp0_flush_id 1ho
& bocp0_flush_mem 1ho
& bop0_intr_en_n 1ho 5'“'] |
+ < bocp0_intr_mask 6h00 6h00

5) After push the register information into Stack, $status [1] will pull down by user, to

enable further interrupt.
— PC and Instruction
& boab_ovfs 1ho
& bome_syscall 1ho
& bomc_undef_inst 1ho
39 uidp_cp0_syscall 1ho
< idp_cp0_undef inst 1ho b [ 2
+ _’ uidp_instr 32t 32h20a508ff 32h03600008 ] 32hffffffff 32'h40046000
+ ¢ uodp_pseudo_pc ‘ 32h8001b6c4 2h800 1b6c4 32h8001b6c8 ) 32'h800 1bécc 32h8001b4bc |1 32'h8001b4cO |
+) < urisc_next_pc | 32h8001b6c4 32h8001b6c4 ] 32h8001b6cB ) 32hB001b6ec ) 32hB001bdbe | 37hB001b4c0

6) The exception code in $cause will decode and branch to the respective ISR. For,

sign-overflow the ISR start at 0x80016c4. After ISR, it will branch to pop data

section (0x8001b4

c0).
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+ 9 bep0_stat 32h00000013 32h00000011 = {32h00000013
& bep0_stat(1] 1 I ]
— CPOinput
P bicp0_eret 1ho
+) 2 bicp0_ex_pc 32h8001b4cs 32h00000000 32h8001bdbc_ ) 37h8001b4c0 | 32h8001baca ) 32h80
+) 39 bicp0_id_pc 32h8001b4c8 32h8001b4bc 37h8001b4c0 ) 32h8001b4cd ) 32h8001b4c8 ) 32h80
+) 29 bicp0_if_pc 32h8001b4cc 32h8001b4c0 37hB8001b4ck 3 27ne001bace Y 37ne00 bece Y 30he0
4P bicp0_irq 1ho
9 bicp0_mtco 1ho 7 T —
+ 39 bicp0_read_addr 5h00 Shoc 5hoo I Shoc Ishao
+ 39 bicp0_req_IPL 2ho 2h0
49 bicp0_rst 1ho
49 bicp0_sovf 1ho
9 bicp0_syscall 1ho
49 bicp0_ mdef instr 1ho
+) 3 bicp0_wr_addr 5h00 Shoc {Shoo Y Shoc {5hoo
+) 2 bicp0_wr_data 32h00000000 32h00000011 37h0000090b__J 32h00000013 ) 32h00000000
— CPO output
+ & bocp0_eret_addr 32h00000000 32h00000000
& bocp0_exc_flag 1ho
& bocp0_flush_ex 1ho
& bocp0_flush_id 1ho
& bocp0_flush_mem 1ho =y
& bocp0_intr_en_n 1h1 [ S
1M harnn intr macl &hnn Zhnn

7) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

— CPO register
+ < bepo_cause 32h80000000 37h00000000 | | 37h80000000 ] 32h00000000
+ ¢ bop0_cause_exc_code 5'd0 5d0 §
+ 9 bcp0_compare 32h00000000 32h00000000
'+ bepo_count 3 ) 32, 37h0000ag47 ) 32h00005948 ] 37h0000a948 ] 32h000094a ) 32h000004 ] 32h0000ag4c
+) < bep0_epc 32h80000028 | 32h80000028 B4
+ 9 bepo_stat 32h00000011 37h00000013 132h00000011
@ bep0_stat[1] 0 8 | |
— CPOinput
49 bicp0_eret 1ho 8
+) 29 bicp0_ex _pc 32h8001b534 37... | 32h8001b524 ) 32h8001b528 ) 37h8001b52c ) 32h8001b530 ) 32h8001b534
+) 29 bicp0_id_pc 32h00000000 37... | 3280015528 ) 32h8001b52c )| 37h8001b530 ) 32h8001b534 ) 32h00000000
+) 2 bicp0_if_pc 32t 28 37... |32h8001b52c ] 32h8001b530 ) 32h8001b534 ) 32h8001b538 ) 32h80000028
3P bicp0_irq 1ho
39 bicp0_mtcd 1ho
+ 39 bicp0_read_addr 5h00 Sho0
+ 39 bicp0_req_IPL 2ho 2h0
¥ bicp0_rst 1ho
39 bicp0_sovf 1ho
-9 bicp0_syscal 1ho
39 bicp0_undef _instr 1ho
+ 3 bicp0_wr_addr 5hoo 5ho0
+) 3 bicp0_wr_data 32t 00 37... | 3Znfest | 32ha0021ff8 ) 32h00000013 ) 32h00000000
— CPOoutput O [———————
+ <) bocp0_eret_addr 32t )28 37h00000000 ©)_[37h80000028 |
& bocpo_exc_f ho —t
& bocp0_flush_ex 1ho
& bocpo_fiush_id ho |
& bocp0_fiush_mem 1ho o
& bocp0_intr_en_n 1ho [ | | |
+ < bocp0_intr_mask 6h00 6h00
+ & bocp0_read_data 32h
+ <& bocp0_stat_IPL 2ho 2h0
& bocp0_timer_intr 1ho
— PC and Instruction
& boalb_ovfs 1ho
& bome_syscal 1ho
& bomc_undef _inst 1ho
39 uidp_cp0_syscall 1ho
¥ uidp_cp0_undef_inst 1ho (o
+ 39 uidp_instr 32t 37... {37h23d0004_]32h8fa0000 ] 32h42000018 | 37h00000000 =2
4% uodp_pseudo_pc 32h80000028
+) 4 urisc_next_pc 32t 28 37... [37h8001b530 )32h8001b534 )32h8001b538 || 37hB0000028 |

8) After pop the Data, the exception code in $cause will clear by user and eret will
asserted. eret will pull down the $status [1] and put the $epc into pc.

9) Jump back to the User program in the next clock cycle.
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Undefined instruction

— CPO register
+ < bcp0_cause 32'h00000000
+ ¢ bcp0_cause_exc_code 5'do
+ < bep0_compare 32'h00000000
+ < bcp0_count 32h0000aa48
+ < bcp0_epc 32h80000028
+ < bep0_stat 32h00000011

@ bep0_stat[1] 0
— CPOinput
+9 bicpo_eret 1ho
+ 39 bicp0_ex_pc 32h80000038
+ 3% bicp0_id_pc 32h8000003¢
+ 29 bicp0_if_pc 32h80000040
+P bicp0_irq 1ho
+9 bicp0_mtcO 1ho
+ 39 bicp0_read_addr shif
+ 3 bicp0_req_IPL 2ho
+9 bicp0_rst 1ho
+P bicp0_sovf 1ho
+9 bicp0_syscall 1ho
+9 bicp0_undef_instr thi
+) 39 bicp0_wr_addr Shif
+ 3 bicp0_wr_data 32h00000000
— CPO output
+ & bocp0_eret_addr 32h80000028
& bocp0_exc_flag thi
& bocp0_flush_ex thi
& bocp0_flush_id thi
& bocp0_fiush_mem 1ho
& bocp0_intr_en_n 1ho
ETh _intr_mask 6'h00
+ & bocp0_read_data 32h00000xK
+ < bocp0_stat_IPL 2ho
& bocp0_timer_intr 1ho
— PC and Instruction
& boalb_ovfs 1ho
& bomc_syscall 1ho
& bomc_undef _inst thi
+9 uidp_cp0_syscall 1ho
+9 uidp_cp0_undef _inst thi
+ 3 uidp_instr 32hafba0000
+ < uodp_pseudo_pc 32h80000040
+) < urisc_next_pc 32h8001b400

32'h00000000 32'h00000028
5'do ] 5d10 L

32h00000000
32h0000a... | 32’h0000a:
32h80000028
32h00000011

32h0000aa43 | 32h0
-2 1132h80000040
{ 3200000013

47 |

32h80000038 § 32h00000000
32h8000003¢_J 32h00000000 J 32h8
32h80000040 ) 32ha001b300 | 32h8

32'h80000...
32'h80000*
32'h80000...

5hoo Jshif ].5h00
2ho

=
Shoo J5hif ). 5'h00
32h00000000

32'h800000

—
. N —

6'h00

2h0

- 1

A

32hffffffff 1 32hafba0000 32h2
32h80000... |[32h80000040 ) 32h8001b400 §32h8
32h80000... | 32h8001b400 ) 32h8001b404 §32'h8

1) When detected the undefined instruction at Main control unit (ID stage), hardware

will raise the bocp0_exc flag.

2) Flush the IF/ID, ID/EXE pipeline.

3) Put the IF stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CPO $status [1] to disable further exception occur. For, undefined
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instruction the exception code is 10, which will write into the CPO $cause by

hardware.
— CPO register
+ 9 bep0_cause 32h00000028
+ ¢ bep0_cause_exc_code 5d10
+ < bep0_compare 32h00000000
+ 9 bep0_count 32h0000ab5a
+ < bep0_epc 32h80000040
e 2 _stat 32h00000011
9 bap0_stat[1] 0
— CPO input
P bicp0_eret 1ho
+) ;% bicp0_ex_pc 32h8001b460
+ 39 bicp0_id_pc 32h8001b464
+ 39 bicp0_if_pc 32h8001b468
9 bicp0_irq 1ho
49 bicp0_mtc0 1ho
+ 39 bicp0_read_addr sho4
+ 39 bicp0_req_IPL 2ho
4P bicp0_rst 1ho
+9 bicp0_sovf 1ho
P bicp0_syscall 1ho
+9 bicp0_undef _instr 1ho
+) 39 bicp0_wr_addr 5h04
+ ;3 bicp0_wr_data 32h00000028
— CPO output
+ & bocp0_eret_addr 32h80000028
& bop0_exc_flag 1ho
& bopo_flush_ex 1ho
& bopo_flush_id 1ho
& bocp0_flush_mem 1ho
& bocp0_intr_en_n 1ho
+ & bocp0_intr_mask 6'h00
+ & bocp0_read_data 32hxXXxXXX
+ < bocp0_stat_IPL 2ho
& bocp0_timer_intr 1ho

32'h00000028

5'd10

32'h00000000

32h00... J 32h0000ab58 |} 32h0000ab59 ) 32h0000abSa 1:
32'h80000040

32'h00000013 132h00000011

- J i I I

32h80... ] 32h8001b458 ] 32h8001b45c ) 32h8001b460 [
32h80... ] 32h8001b45c J32h8001b460 ) 32h8001b464 [:
32h80... ] 32h8001b460 §32h3001b464 132h3001b468 |

X
Shoc I 5hif W13 T T
7h0
Shoc 1 5hif ] 5'hoc 1 5ho4 1¢

32h00... }32'h00000000 ) 32h00000011 } 32'h00000028 )

32'h80000028

6'h00

32h00... 32'h00000013
2h0

5) After push the register information into Stack, $status [1] will pull down by user, to

enable further interrupt.

— PC and Instruction
& boalb_ovfs
& bome_syscall
& bomc_undef_inst
39 uidp_cp0_syscall
49 uidp_cp0_undef_inst
+) 39 uidp_instr
+) <& uodp_pseudo_pc
[+ < urisc_next_pc

1ho
1ho
1ho
1ho
1ho
32h2405000c
32h8001b4b4
32h8001b6bc

6

32h2... ] 32h10850082 ) 32h2405000a ) 32'h10850082 r-32ha405000¢—)

32h8... | 32h8001b4a8 ) 32h8001b4ac ) 32h8001b4b0 |} 32h8001bdb4 ¥

32h8... 132h8001bdac {32h8001b4b0 ) 32h8001b4b4 |} 32h800 1bébe

6) The exception code in $cause will decode and branch to the respective ISR. For

undefined instruction, the ISR start at 0x8001b6bc. After ISR, it will branch to pop
data section (0x8001b4c0).
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— CPO register
+ 9 bep0_cause 32h00000023 13 {37h00000028
+ 4 bop0_cause_exc_code 5d10
-+« bcpl_compare 32h00000000
& ¢ bep0_count 32h0000acsd 9 137h0000acéa ) 32h0000aceb ] 32h0000ac6c ) 32h0000aced | 32h0000acke
+ 9 bopd_epc 32h80000040
+ 4 bop0_stat 32h00000013 — 1 32h00000013
 bopd_stat[1] 1 / I._ll
— CP0input
¥ bicp0_eret 1'ho
+) 29 bicp0_ex_pc 32h8001b4c4 0 | 37h00000000 J 37h8001bdbc ) 37hB001b4c0 | 39h8001b4cd | 32h8001b4cs
) =9 bicp0_id_pc 37'h300 1b4ca 0 {37h800ibdbe  [37h8001b4:0 [ 32h8001b4c4 | 37ha001b4c8 | 32h800ibdcc
+) 29 bicp0_if_pc 32h800 1b4ec )& | 37hB001b4c0 J 37hB001b4cd ) 37hB001b4c8 | 39h8001bdcc | 32hB001bado
=% bicp0_irg 1ho
<3 bicp0_mtcd 1ho {7 |
+ =9 bicp0_read_addr 5hoo I 5hoc I 5hoa 1.5'h0c I 5hoD
-+ =9 bicp0_req_IPL Zho
= bicp0_rst 1ho
=¥ bip0_sovf 1ho
:_@ bicp0_syscall 1ho
=¥ bicp0_undef_instr 1ho
-+ =9 bip0_wr_addr 5ho0 T 5hoc {5'hoo T 5hoc 1 5hoo
+) 2% bicp0_wr_data 32h00000000 52h00000011 § 37h00000B09 ) 37h00000013 | 37h00000000
— CPO output
-+ ¢ bocp0_eret_addr 32h80000023
wé-; bocp0_exc_flag 1ho
& bocp0_flush_ex 1ho
& bocp0_flush_id 1ho
& bocp0_flush_mem 1ho —
‘N; bocp0_intr_en_n 1hi l ! | I
£ wé bocp0_intr_mask &'hoo
-+ % bocp0_read_data 3Zhonono 32h00000011
-+ ¢ bocpO_stat_IPL Zho
wé-; bocp0_timer_intr 1'ho

7) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.
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-
— CPO register 1
L+ ¢ bep0_cause 32h30000000 | 32'h00000000 ! 1 3Z7h80000000 | 37h00000000
+ 0 bep0_cause_exc_code 5dd 5'd0
+| « bcp0_compare 32h00000000 37h00000000
+ é bep0_count 32h0000ac3a L i 7 32'h0000&ac38 32h0000ac83 32h0000&ac8a 32h0000acEh
+1 < bop0_epc 32h80000040 8 [52hn000040 |
+ -\} bep0_stat 3Zh00000011 32h00000013 = 1 3Zh00000011
9 bop0_stat[1] 0 [= J] ]
— CPOinput 1
=4 bicp0_eret 1ho 8 I 1| I
+ ;} bicp0_ex_pc 32h8001b534 3Z... 1 327h8001b528 | 37h8001b52c ] 32ho001b530 ) 32h8001b534
+) =9 bicpo_id_pc 32h00000000 32... [37h8001b52c  {37h8001b530 {37ha001b534 | STh00000000
% 29 bicp0_if pc 32h30000040 32... {37h8001b530 {32ha001b534 {32ha001bs53s f 32ha0000040
= bicp0_irg 1ho
= bicp0_mtcO 1ho
+| 3 bicp0_read_addr Shon Shoa
£} 2 bicp0_req_TPL Zho Zho
=4 bicp0_rst 1ho
=9 bicp0_sovf 1ho
_-_-} bicp0_syscall 1ho
_-_} bicp0_undef_instr Tho
+) = bicpQ_wr_addr 5hoo 5hoo
4] ;} bicp0_wr_data 3Zh00000000 32... [32ha0021ffs  {32h00000013 {37h00000000
— CPO output 1
) -& bocp0_eret._addr 32ha0000040 32h80000028 32h30000040 |
1?; bocp0_exc_flag 1ho
e; bocp0_flush_ex 1ho
< bocp0_flush_id 1ho !
q@ bocp0_flush_mem Tho o
< bocp0_intr_en_n 1ho O] | |
+) % bocpO_intr_mask &hoo &hoa
+) % bocpl_read_data 3ZhRRHAHAHK
+ 4% bocp0_stat_IPL Zhi Zho
1?; bocp0_timer_intr 1ho
— PC and Instruction 1
1& boalb_ovfs 1ho
& bomc_syscall 1ho
é bomec_undef_inst Tho
_-,} uidp_cp0_syscall 1ho
49 uidp_cp0_undef_inst 1ho Q
-+ =4 Uidp_instr 32hezzzzzzz 37... |57homan000 | 37ha2000018 | 3Zh00000000
+ ‘b; uodp_pseudo_pc 32h30000040 3Z2... 1 32h8001b530 | 37h8001b534 32h3001b538 | 37hE0000040
iE7} Q urisc_next_pc 32ha0000040 32... 1 37h8001b534 | 37'h8001b538 32h80000040

8) After pop the Data, the exception code in $cause will clear by user and eret will

asserted. eret will pull down the $status [1] and put the $epc into pc.

9) Jump back to the User program in the next clock cycle.
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Syscall
—— CPO register
+ < bep0_cause 32h00000000
+ ¢ bp0_cause_exc_code 5'do
+ < bep0_compare 32’h00000000
+ < bep0_count 32h0000ad8a
+ 9 bep0_epc 32h80000040
+ < bep0_stat 32h00000011
@ bap0_stat[1] 0
— CPOinput
9 bicp0_eret 1ho
+) ;9 bicp0_ex_pc 32h80000058
+) ;4 bicp0_id_pc 32h8000005¢
+) = bicp0_if _pc 32'h80000060
9 bicp0_irq 1ho
49 bicp0_mtc0 1ho
+) ;3 bicp0_read_addr 5hoo
+) ;9 bicp0_req_IPL 2ho
9 bicp0_rst 1ho
P bicp0_sovf 1ho
=9 bicp0_syscall thi
9 bicp0_undef_instr 1ho
+ 39 bicp0_wr_addr 5h00
+ ;9 bicp0_wr_data 32h00000000
— CPO output
+ <& bocp0_eret_addr 32h80000040
& bocp0_exc_flag thi
& bocp0_flush_ex 1ho
& bocp0_flush_id thi
& bocp0_flush_mem 1ho
& bocp0_intr_en_n 1ho
+ <& bocp0_intr_mask 6h00
+ <& bocp0_read_data 32haoaoaaaa
+ <& bocp0_stat_IPL 2ho
& bocp0_timer_intr 1ho
— PC and Instruction
& boalb_ovfs 1ho
& bomc_syscall thi
& bomc_undef _inst 1ho
49 uidp_cp0_syscall thi
9 uidp_cp0_undef _inst 1ho
+) - uidp_instr 32h40856000
+ < uodp_pseudo_pc 32h80000060
|+ < urisc_next_pc 32h8001b400

32’h00000000 132’h00000020

5do [ {5ds 1

327h00000000

32h... | 32h0000ad89 | 32h0000a..._] 32h0000adsb

32’h80000040 32’h80000060

32’h00000011 32h00000013
4

32h... ] 32h80000054 } 32h80000058 | 32h8000005¢ J

32h... | 32h80000058

32'h00000000 {

32h... {32h800000&% | 37h80000060 § 32h8001b400 |
5hoo
Zho
1.l L
|
5hoo
32h00000000
32h80000040
2l 1
=
&ho0
Zho
 —
| T
32h... | 32h0000000 ¥32h40856... ] 32hafba0000
32h... ] 32h8000005¢ J| 32h80000... ] 32h8001b400 §

32h... ] 32h80000060

32h8001b... [ 32h8001b404

1) When detected the Syscall at Main control unit (ID stage), hardware will raise the

bocp0 _exc_flag.
2) Flush the IF/ID pipeline.

3) Put the IF stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CPO $status [1] to disable further exception occur. For, Syscall the

exception code is 8, which will write into the CP0O $cause by hardware.

5) Step 5 —Step 9 was similar to the undefined instruction. The only different is the

address of the ISR.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

79



Chapter 6 Verification Specification

Test Case 2: Multiple Trap

Sign-overflow (EX stage) and Undefined instruction (ID stage)

— CPO register

+ 4 bep0_cause 32h00000000 32... | 37h00000030; . 3 (32h00000030 37 32h00000000 )
) bep0_cause_exc_code sd0 B si m oI coae e G
-+ 9 bap0_compare 32h00000000 0000000
+/ 4 bep0_count 32h0000b0b7 i ]
+) 4 bp0_epc 32h80000060
+) ¥ bap0_stat 32h00000011 37... ) 32h00000013 {32h00000011 {32h0... ) 32h00000011 } R
& bap0_stat(1] 0 1 1 |
— CPOinput
Pt = ——1 3.Return from
+) 3 bicpD_ex_pc 32h80000078 S S7RE00 ba5s M(GZhE001b478 B R 3200 55 itith
+ 39 bicp0_id_pc 32h8000007c 337800 hasc Hi(5Zhs001bazc EXCeEpTIoN N
+ 39 bicp0_if_pc 32180000080 3 HiHH(52Rs00 460 (32180015360 i 32R80000088 i piutlel
39 bicp0_irg 1ho
9 bicp0_mtco 1ho 1L L
'+ 39 bicp0_read_addr 5h0o ) }i5hoo 5. iS00 el
+) 39 bicp0_req_IPL 2h0 Zh0.
39 bicp0_rst 1ho
9 bicpo_sovf 1ho 1 -
P bicp0_syscal 1ho 1
3 bicp0_undef instr 1ho ] 41 %
529 bicp0_wr_addr shoo mm W(EH0 (. JHi(5T00
'+ 39 bicp0_wr_data 32h40000000 3O 3200000000 (32100000000 O e 3200000000 ]
— CPO output
'+~ bocp0_eret_addr 32hB0000060 3780000060 J32h80000083
& bocp0_exc_flag 1ho 1L [
& bocpo_fiush_ex 1ho [l Il
& bocp0_fush_id ho 1L 1 I
& bocp0_fiush_mem 1ho 1L £
& bocp0_intr_en_n 1ho 1 1 I
+) <& bocp0_intr_mask 6h00 6h00
) % bocp0_read_data bt + #— 4
+/ < bocp0_stat_IPL 2ho 2h0.
& bocp0_timer_intr 1ho
— PC and Instruction
& boab_ovfs 1ho 1L
& bome_syscal 1ho
& bomc_undef inst 1ho 0L Il
3 uidp_cp0_syscall 1ho
39 uidp_cp0_undef_inst 1ho 1L I
+) 39 uidp_instr 32hzzzzzzz L - S it
4} % uodp_pseudo_pc 32h80000080 (5o Re00 1h60 iH{(32h80015360 S i S ohso000088 bt
4} urisc_next_pc 32h80000080 3 37h800 15360 (3218001580 i 32hs0000088 i
¥ thu_dk 1ho

When sign-overflow (Ex stage) and undefined instruction (ID stage) occur in the same clock cycle (label “17). Sign-overflow will be handler prior

(label “2”). After return from the Sign-Overflow (label “3”), it will handler the undefined instruction in the next clock cycle (label “4”).
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32’h00000000 32'h00000030
5'd0 5d12
32’h00000000 t :
32h000... 1 32h0000b0ca ¥ 32h0000b0cb J 32’h0000b0cc ) 32h0000b0cd
32h80000060 1 32h80000088 |
32h00000011 ITmnnnnnnn .

= I

— CPO register
+ 9 bap0_cause 32h00000000
+ 4 bep0_cause_exc_code 5'd0
+ 9 bcp0_compare 32h00000000
-+~ bep0_count 32h0000b0cb
+ < bep0_epc 32h80000060
o 2 _stat 32h00000011
@ bep0_stat{1] 0
— CPOinput
49 bicp0_eret 1ho
+ 39 bicp0_ex_pc 32h80000084
+ 39 bicp0_id_pc 32h80000088
+ 39 bicp0_if_pc 32h8000008c
4P bicp0_irq 1ho
49 bicp0_mtc0 1h0
+) ;4 bicp0_read_addr shif
+ _" bicp0_req_IPL 2ho
9 bicp0_rst 1ho
9 bicp0_sovf 1hi
49 bicp0_syscall 1ho
39 bicp0_undef _instr 1h1
+) 29 bicp0_wr_addr shif
+ 39 bicp0_wr_data 32h00000000
— CPO output
+ & bocp0_eret_addr 32h80000060
& bocp0_exc_flag 1hi
& bocp0_flush_ex thi
& bocp0_flush_id Th1
& bocp0_fiush_mem 1hi
& bocp0_intr_en_n 1ho
+ & bocp0_intr_mask 6'h00
+ & bop0_read_data 32hx00000x
+ & bocp0_stat_IPL 2ho
& bocp0_timer_intr 1ho
— PC and Instruction
& boalb_ovfs 1h1
& bomc_syscall 1ho
& bomc_undef_inst thi
49 uidp_cp0_syscall 1ho
49 uidp_cp0_undef _inst thi
+ 39 uidp_instr 32h00000000
+) <& uodp_pseudo_pc 32h8000008¢
+) < urisc_next_pc 32h8001b400
P tbudk 1hi

32h800... | 32h80000080 ¥ 32h80000084 ) 32'h00000000 X

32h800... {32h80000084 ) 32h80000088 ) 32h00000000 ] 32h8001b400 |

32h800... ] 32h80000088 } 32’h8000008c J 32h8001b400 J 32h8001b404

Shil 15h12 JShif {5hoo b
2h0

Pl | 1

1
Shil I5h12 {shif {5hoo 1

32h000... J 32h40000000 } 32’h00000000 )|

32h80000060

6'h00

2ho

1

1

_32h021... | 3hFFff |

I e E—
32h00000000 ) 37hafba0000 ] 32h23bdffic ]

32h800... J 3280000088

32h8000008¢_J 32h8001b400

32h8001b404 |

32h800... J 32h8000008¢

32h8001b400 ) 32h8001b404

32h8001b408

[ SN e S

| —

L

We can clearly see that when both exception occur in the same clock cycle (label “17),

sign-overflow will be handle because the exception Code is 12(label “2”), which is

sign-overflow exception.
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— CPO register
+) 4 bcp0_cause 32h00000000 32h00000000 4_pzmmamza_.—_
+ ¢ bap0_cause_exc_code 5'd0 5d0 i(5d10 [
+ < bep0_compare 32h00000000 32h00000000
+ 9 bp0_count 32h0000b409 {32h0000b408 | 32h0000b409 1 32h0000b40a ) 32h0000b40b |,
+) < bp0_epc 32h80000088 32h80000088 132h8000008¢
+) 4 bopo_stat 32h00000011 37h00000011 Y37h00000013
@ bop0_stat[1] 0 [T '|
— CPO input
4P bicp0_eret 1ho
+ 9 bicp0_ex_pc 32h00000000 32h8001b534 ) 32h00000000 I
+ 29 bicp0_id_pc 32h80000088 32h00000000 ) 3280000088 | 3200000000 J 32h8001b400 |,
+ 39 bicp0_if_pc 32h8000008c 32h80000088 ) 32h8000008c J 32h8001b400 ) 32h8001b404 |,
9 bicp0_irq 1ho
9 bicp0_mtc0 1ho
+) 39 bicp0_read_addr shif 5h00 Jshif 1 5hoo 1
+) ;3 bicp0_req_IPL 2ho 2ho
49 bicp0_rst 1ho
=9 bicp0_sovf 1ho
9 bicp0_syscall 1ho ==
49 bicp0_undef_instr 1hi
+) ;3 bicp0_wr_addr Shif 5h00 Shif 5h00 1
+ 39 bicp0_wr_data 32h00000000 32h00000000 1
— CPO output
+) <& bocp0_eret_addr 32h80000088 32h80000088
& bocp0_exc_flag thi T
& bocp0_flush_ex thi 1
& bocpo_flush_id 1h1 1
& bocp0_flush_mem 1ho
& bocp0_intr_en_n 1ho [
+ & bocp0_intr_mask 6h00 6h00
+ & bop0_read_data 3230
+) < bocp0_stat_IPL 2ho 2h0
& bocp0_timer_intr 1ho
— PC and Instruction
& boalb_ovfs 1ho
& bomc_syscall 1ho
& bomc_undef _inst 1h1 I T
9 uidp_cp0_syscall 1ho
9 uidp_cp0_undef _inst 1hi [ |
+ 39 uidp_instr 32h00000000 32hffff || 32h00000000 ) 32hafba0000 | 32h23bdfffc
+ < uodp_pseudo_pc 32h8000008c 32h80000088 |} 32h8000008c ) 32h8001b400 | 32h8001b404
+)  urisc_next_pc 32h8001b400 32h8000008¢ |{ 32h8001b400 )| 32h8001b404 | 32h8001b408 |,
P tbudk thi _ | I | | | | [

After return from the sign-overflow exception, the undefined instruction will be handle

(label “3”). We can clearly see that the Exception Code is 10, which is undefined

instruction (label “4”).
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Sign-overflow (EX stage) and Syscall (ID stage)

— CPO register
& ¥ bep0_cause 32h00000020 PP . LT (7 NED) JHH(37h00000030 M52, Y (57h00000000
+ 9 bep0_cause_exc_code 5d8 5d0_)5d12 Z e*eenvhnn -Ade {50
+) 9 bep0_compare 32h00000000
+) < bcp0_count 32h0000baa8
+ 9 bep0_epc 32h800000bS
+) 4 bep0_stat 32h00000011 Y32h0.... \327h000000 11
& bepo_stat{1] 0 1 Return from
— CPOinput
9 bicp0_eret 1ho
+) 39 bicp0_ex_pc 32h8001b470 S 5oRe00 1ha7s i 37he001b458.
&) 39 bip0_id_pc 32h8001b474 B i 57Rs00 1ba7c (3278001535
'+ 39 bicp0_if pc 32h8001b478 3 37h800 1h 480 (32180016420
4 bicpo_irq 1ho
= bicp0_mtcd 1ho0 1L J_na 1
+) 39 bicp0_read_addr 5hoo S DR Shoo 4. JHi’Shoo Bt
+) 39 bicp0_req_IPL 2h0 ho
39 bicp0_rst 1h0 — —
9 bicp0_sovf 1ho [ 1] 4 A
<9 bicp0_syscal 1ho | il
3 bicp0_undef instr 1ho = —
&) 39 bicp0_wr_addr 5hoo S DR Shoo {45 JH# Shoo i
+) 39 bicp0_wr_data 32h00000011 B i 32700000000 N{3Zh00000007 XM C37R00000000 R
— CPO output
+) < bocp0_eret_addr 32h800000b4 32h8000008C {32h800000b4
& bocp0_exc_flag 1h0 0L T
& bocpo_flush_ex 1ho T
2 bocp_flush_id ho I | ]
& bocp0_fiush_mem 1h0 Il
~& bocp0_intr_en_n 1ho | T 1 !
+) < bocp0_intr_mask 6h00 6h00
+) <& bocp0_read_data i —0H ot
+) & bocp0_stat_IPL 2ho 2h0
& bocp0_timer_intr 1ho
— PC and Instruction —
& boab_ovfs 1ho I
& bomc_syscall 1ho 1 1L
& bomc_undef _inst 1ho
9 uidp_cp0_syscall 1ho I ]
3 uidp_cp0_undef_inst 1ho
+) 39 uidp_instr 32h10850030 — Ly S et
+) < uodp_pseudo_pc 32h8001b478 o 577800 15360 M37h8001b4a0. i 5750000004 ettt
4 urisc_next_pc 32h8001b47c ; {37800 5% Ji{(37he001b420 5 7ha000000% Bt
¥ thu_dk 1ht L /|

When sign-overflow (Ex stage) and Syscall (ID stage) occur in the same clock cycle (label “1”°). Sign-overflow will be handler prior (label “2”).
After return from the Sign-Overflow (label “3”), it will handler the Syscall in the next clock cycle (label “4”).
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— CPO register
+) 4 bcp0_cause 3Zh00000000 32h00000000 132000000030
+ 4 bop0_cause_exc_code 5'do 5do ‘ ID:E'CIIZ !
+ 4 bop0_compare 3Zh00000000 327h00000000
+ 4 bop0_count 3Zh0000b74c 32... {37h000... {37h000... {32h000... {37h000... {3Zh000... |
+ 4 bop0_epc 32hB000008c 37h8000008C [3Zh800000b4
+ @ bcp0_stat 32'h00000011 32h00000011 1 37'h00000013
~ bp0_stat[1] 0 | |
— CPD input
4 bicp0_eret 1ho
+ =9 bicp0_ex_pc 32ha0o000bo 37... {37h&00... {37h&00... {37hB00... | 37h00000000 1
+) =9 bicp0_id_pc 32ha0o0oob4 37... {37h800... {37h800... {37hB00... 37h000... [37hB00... |
=+ 2 bicp0_if_pc 32hB00000b3 32... {37ha00... {37h800... {37h800... {37h800.. [3Zhsod.. |
=9 bicp0_irg 1ho
=9 bicp0_mtc0 Tho
+ = bicp0_read_addr 5h0o 5hoo {5hil [5hiz [ 5hoo 1
+ 2 bicp0_req_IPL Zho Zho
=9 bicp0_rst 1ho
=9 bicp0_sovf Thi L Rl
+9 bicp0_syscall 1h1 i |
;@» bicp0_undef_instr T1ho
+} =9 bicp0_wr_addr shoo Sho0 j 5hil {5hiz j5hoo I
=+ = bicp0_wr_data 3Zh00000000 32... |32h000... | 32h400... | 32h00000000 I
— CPD output
) ¢ bocp0_eret_addr 32hB000008c 32h8000008c
% bocp0_exc_flag 1hi ]
% bocp0_flush_ex Thi I |
~% bocp0_flush_id 1hi |
& bocp0_flush_mem Thi |
é bocp0_intr_en_n 1ho |
+ 4 bocp0_intr_mask &'hoo Eh00
i+ % bocp0_read_data 32 hooooono
+ ¢ bocp0_stat_IPL Zho Zho
% bocp0_timer_intr 1ho
— PC and Instruction
% boalb_ovfs 1hi |
% bome_syscall Thi I |
@ bomec_undef_inst 1ho
- uidp_cp0_syscall Thi I |
;_@ uidp_cp0_undef_inst T1ho
+ = uidp_instr 32h00000000 37... {37h021... {37h000... {37h000... | 3Thafba... {37h33b... |
+} % uodp_pseudo_pc 32haoo00oba 37... {37h800... {37h&00... {37hB00... 37hB00... | 37h800... |
-+ = urisc_next_pc 32hB3001b400 32... {37ha00... {37ha00... {37h800... {37h800.. [3Zhsod.. |
b udk 1hi 1 [ 1 [ | [ | [ | [ | [

We can clearly see that when both exception occur in the same clock cycle (label “17),
sign-overflow will be handle because the exception Code is 12(label “2”), which is

sign-overflow exception.
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— CP0 register
+!  bop0_cause 32h00000000
+! 4 bop0_cause_exc_code 5'do
+! « bcp0_compare 32h00000000
+! «r bop0_count 32’h0000bass
+ 9 bep0_epc 32h300000b4
+ 4 bop0_stat 32h00000011
~ bopo_stat[1] 0
— CPOinput
= bicp0_eret 1ho
+! =4 bicp0_ex_pc 32’h00000000
+! =4 bicp0_id_pc 32h800000b4
+! 29 bicp0_if_pc 32h800000ba
=9 bicp0_irg 1ho
=9 bigp0_mtcd 1ho
+! =4 bicp0_read_addr 5hoo
+! =9 bicp0_req_IPL Zho
=9 bicp0_rst 1ho
;} bicp0_sowvf 1ho
;} bicp0_syscall Thi
;;} bicp0_undef_instr Tho
+! =9 bicp0_wr_addr 5hoo
+! =9 bicp0_wr_data 32h00000000
— CP0 output
+! « bocp0_eret_addr 32h800000b4
g-\, bocpd_exc_flag 1h1
‘é; bocp0_flush_ex Tho
~ bocp0_flush_id 1hi
~* bocp0_flush_mem 1ho
~* bocpO_intr_en_n 1ho
+! & bocp0_intr_mask &'hoo
=+ % bocpd_read_data 32 hooooooo
+! i bocpO_stat_IPL Zho
{'; bocp0_timer_intr Tho
— PC and Instruction
~* boalb_ovfs 1ho
% bomc_syscall 1hi
~* bomc_undef_inst 1ho
;_& uidp_cp0_syscall 1h1
;;} uidp_cp0_undef_inst Tho
+ =+ uidp_instr 32h00000000
+! +* uodp_pseudo_pc 32h800000b3
+! ~F urisc_next_pc 32'ha001b400
~ th_u_dk 1hi

32'h00000000 T uTaTaTaTaTakTa)

5do f!. [5'ds

32'h00000000

3Zh0 3Zh0000k... | 32h0000b 32h0000b 32h0000b

3Zha00000b4

1 37ha00000ba

3Z’h00000011 1 37hi0000013
|
32h3001b534 1 32h00000... ) 3Zh80000... | 3Z2h00000... |

32h00000000

{37ha0000...

{37ha001b... {37h3001b...

32h&00000b4
Shoo i
Zho
3
Shoo i
32h00000000 1
3280000064

[ 1

|

s'hoo
Zho

1

[ 1
32h4... §32h00000... §37h00000... J 3Zhafba0... §32h23bdfffc
32ha00000b4 32hB0000... | 32ha001b... §32ha001b... |
32h8... | 32h80000... 132h8001b... [32ha001b... ¥32h8001b... |
] | | | | | | [

After turn from the sign-overflow exception, the Syscall will be handle (label “3”). We

can clearly see that the Exception Code is 8, which is Syscall instruction (label “4”).
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Test Case 3: Individual interrupt

UART interrupt

& simith_ua_dut_tx Tht
@ sim:tb_ua_dut_rx thi - 1 1 — 11 T L.l

+ v@ Transmit Data to DUT(FIFO) | 8h118h228h338... 8...JJ8h118h228h338had

= @ DUT UART Receive FIFO 8'h11 8'hxx 8'hxx 8... | _8'hxx 8'hxx 8'hxx 8'hxx = 8'h11 8hxx 8h:
@ sim:urisc_IRQ o] m

- CPO register 1 ﬂ

~ sim:bcp0_cause 32h40000000 3240000000 1 37hc0000000 | 32'h40000000 o

’ sim:bcpl_cause_exc_code || 5'd0 5'dl

) sim:bepd_epc 3Zh00000000 32h00000000 =y 1 32h8000005c |

~p sm:bcp0_stat 32h00000001 32h00000001 {32hnonaonis

~p sim:bcpl_stat[1] |0 8 | [

- CPO input

:_-9 sim:bicp0_eret 1ho

=9 sim:bicp0_ex_pc 32ha0000054 [ 32ha0000058 ) 37h8000005c | {37ha0000054 { 37ha0000058

=9 sim:bicp0_id_pc 32h80000058 [ 32ha000005c | 32ha0000054 | | 32ha0000058 ) 2h00000000

=& sim:bicp0_if_pc 32h8000005¢c { 32ha0000054 xsz'hsuounos 132h8000005c | 32ha001b400

= sim:bicp0_irg Ihi | T

=9 sim:bicp0_mtc tho

- CPO output i

¢ sim:bocp0_eret_addr 3Z'h00000000 32h00000000

-é, sim:;bocp0_exc_flag Thi 4 Y

e; sim:bocp0_flush_ex 1'h0o =

& sim:bocp0_flush_id 1h1 - VW [ |

é sim:bocp0_flush_mem 1'ho

< sim:bocpl intr_en_n t'ho |

-ﬁ sim:bocp0_timer_intr thi S —

- PC and Instruction {

:;} sim:uidp_instr 3Zh1dooffd 1 32h40084800 | 32'h01284022 | 32h1d0offfd )—8—

% sim:uodp_pseudo_pc 32h8000005¢ {32h80000054 | 32'ha0000058 ¥ 32ha000005c | 32he001b400

é sim:urisc_next_pc 32h3001b400 I 3Zh&0000058 ) 32'h8000005c  § 327ha001b400 | 37h&001b400

~p sim:tb_clk 1hi _ | | | | | | [

- LUART { i

w4 sim:uoua_IRQ 1'hi 3 | I

_-} sim:uiva_UARTIE 3

;} simzuiva_mem_stall 1'ho [ 1

& simyuoua_wb_dout 3Zhzzzzzzze

=4 sim:uiua_wb_din | 8'haa &has T8'hoo I&'heg

é sim;uoua_wb_adk 1'ho

;j sim;uiua_wb_zel 4ho 4hi

_-,9 simiuiua_wb_we 1'ho

:_} sim;uiua_wb_stb Tho

_-_} sim:uiva_wh_dk 1'hi | | [

=9 sim:uiua_wh_rst rho

~ sim:UARTCR | #hc2 FheZ

4 sm:UARTSR | 8hcd #ha0 J8hcd

~ sim:UARTCR_UARTEN 3 1hl

<« sm:UARTCR_RXCIE I'h1

~ Sim:UARTSR_RXC 1hi 2 | |

-@ simitb_ua_dut_tx thi

¢ sim:tb_ua_dut_rx thi

~ Transmit Data to DUT(FIFQ) | &h118h228h338... | ghil&n22 8h33 8had 4

& DUT UART Receive FIFO | 8'h11 8'hoox B'hocx 8... | _B'huoc 8hood 8o 8'hooe B [18h11 8w Bhuck 8Tk

- PIC ! I

~ Sim:PICMASK | 8ho4 gho4 - —

~ Sm:PICSTAT | 8hoz Fhoo I jshoz |

=& sim:uipi_ctrl_intr_vector | 8'ha4 8hao Tehaq

4 sim:uopi_ctrl_IRQ thi 4 I ——]

% sim:uopi_ctrl_I0_IE | 8'ho4 sho4
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1)
2)
3)

4)
5)
6)
7)

8)

— CPO register

The slave device transmit the data to the DUT.

After the DUT received 1 byte of data, it will rise the UART RXC flag.

The trigger the interrupt request (IRQ), UART interrupt enable (UARTIE) and
UART Received interrupt enable (UARTCR _RXCIE) must be set to high.

When IRQ occur, hardware will rise the bocp0_exc flag

Flush the IF/ID pipeline

Load the IF stage’s PC into $epc for return purpose after handler the exception.
PICSTAT will update the value that correspond to the IRQ source. For UART the
value is 2.

Jump to exception handler (0x8001b400) in the next clock cycle and raise the
exception flag in CPO $status [1] to disable further exception occur. For, Interrupt

request the exception code is 0, which will write into the CPO $cause by hardware.

1~ sim:bcp0_cause 32'h40000000 32'h40000000

A * sim:bcp0_cause_exc_code 5'd0 5'd0

i Q sim:bcp0_epc 32’h8000005¢ 32'h8000005¢

J Q sim:bcp0_stat 32h00000011 32'h(38000013 J 32'h00000011

@ sim:bep0_stat[1] 0 |

9)

PC and Instruction

After store the register information into the stack, $status [1] will pull down by user,

to enable further interrupt.

| <9 sim:vidp_instr 32h24050004 37h... | 32h24050004 1 0

< sim:uodp_pseudo_pc 32h8001b47c 57h... |37he00iba7c | 37hsooibsi |
@ sim;urisc_next_pc 32ha001b53c 32h... | 3Zh8001b53c :
«p sim:tb_dk thi [ I I

HanmnT

10) The exception code in $cause will decode and branch to the respective ISR. For

IRQ, the ISR start at 0x8001b53c.
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—PIC

-+« sim:PICMASK

-+« Sm:PICSTAT

+ % sim:uipi_ctrl_intr_vector
~& simiuopi_ctrl_[RQ

+ g sim:uopi_ctrl_IO_IE

-+ ¢ sim:uopi_ctrl_req_IPL

-+ :} sim:uipi_ctrl_stat_IPL
=& sim:uipi_ctrl_intr_en_n
9 sim:vipi_ctrl_mem_stall

+ ¢ sim:uopi_ctrl_wb_dout

-+ :} sim:uipi_ctrl_wb_din
@ sim:uopi_ctrl_wb_ack

+ 9 sim:uipi_ctrl_wb_sel
4 simuwipi_ctrl_wb_we
:} sim;uipi_ctrl_wb_stb
:} sim:uipi_ctrl_wb_clk

8ho4

8hoz

8ha4

1ho

gho4

Zho

Zho

1ho

1ho
32h02040000
3Zh00000000
Tho

4h0

1ho

1ho

1hi

&ho4

| TP e M |
g'ha4
Fho4
Zho
Zho 11

LI ]

|
| sohian4m000 H.

57h0... | 32h00000000 [37h02040000 ] 37h00000000 | 32h00000002 { 32h00000000 ] 32h00000001
4h0 bET T
1

- 7 - 1

4 simuuipi_ctrl_wb_rst Tho 44 44 /4

13 = 22 2,

2 $a0 32hD0000011 37h00000011 — —H71=
& $al 32h00000000 32h00000000 {32ho2o40000___| J[EZhoooooo02_| 1

11) After Jump to the External interrupt ISR, exception handler will load the PICSTAT

from Programmable interrupt controller (PIC) to $al.

12) Decode the PICSTAT to figure out the IRQ trigger by which interrupt source. For

UART the code is 2.
PC and Instruction
:} sim;uidp_instr 3hzzzzzrez
e sim:uodp_pseudo_pc 3Z'h3001b5a0 32h8001b578 | 3Tha001h5a0
é sim:urisc_next_pc 32ha001bsan 32h&001b5a0
« sim:th_dk Tho | | |
11ART

13) After that, it will branch to the respective interrupt source’s ISR. For UART, the
starting address for ISR is (0x8001b5a0).

- PC and Instruction

;’ sim:uidp_instr

¢ sim:uodp_pseudo_pc

é sim:urisc_next_pc
Q sim:th_dk

b
P 0

32h9204002b
3Zha001b5f8
3Zh3001b5fc
1hi

32'huuuuu0111 4| [3Zh00000011

3... [ 37h92040020 32ha2000029
3... || 37ha001b5fe [ 32h8001h5fc 1 32ha001bs00
3... Il 32800 1b5f [37ha001ba00

| I

14) UART Receive interrupt’s ISR will load the data from UARTRDR to the $a0.

- PC and Instruction

i;;} sim:uidp_instr 32hzzzzzzzz
;w& sim:uodp_pseudo_pc 32h&001b4bc
;‘¢ sim:urisc_next_pc 32'h8001b4bc
~ sim:tb_dk 1hi

- UART

—37h0360000

3Zh92040025

:|—

32h&001b600

32h3001ba04

[ 32h&a001hdbe

3... ) 32h8001b604

32ha001b4bc

1

| | [

15) After ISR, it will branch to pop data section (0x8001b4bc).

CPO register
L sim:bcp0_cause

0 sim:bcp0_epc
Q sim:bcpd_stat
é sim:bcpl_stat[1]

Q sim:bcp0_cause_exc_code

32h40000000
5'do
3Zh3000005c
3Zh00oo0011
]
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16) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

- CPO register

~p sim:bop0_cause 32h00000000 3200000000 1 32h80000000 § 32h00000000
v) sim:bcp0_cause_exc_code 5do 5'dd

~ sim:bop0_epc 32h8000005c 32ha000005c

~p sim:bop0_stat 32h00000013 37h00000013 g s {37h00000011
~p sim:bcp0_stat[1] i 7|

- CPO input

=9 sim:bicp0_eret 1hi I i I | |

+4 sim:bicp0_ex_pc 32hB001b530 32h8001... | ITRBOOIBSI0 | 52hB001hs34
=9 sim:bicp0_id_pc 32h8001b534 32h8001... | 32ha001b534 | 32h00000000
=9 sim:bicp0_if_pc 32h8001b533 32h3001... 1 32h3001b533 § 37h&000005¢
% sim:bicp0_irg 1'ho

=9 sim:bicp_mtc0 1ho e

- CPO output

~* sim:bocp0_eret_addr 32h8000005¢ 32h0000... J32h8000005c |

1} sim:bocp0_exc_flag 1ho —

‘& sim:bocp0_flush_ex 1ha

vé sim:bocp0_flush_id 1ho |

é sim:bocp0_flush_mem 1ho

‘é sim:bocp0_intr_en_n Thi |

q& sim:bocp0_timer_intr 1ho

- PC and Instruction 1 8
=9 sim:idp_instr 32'h00000000 32h4200... ] 32h00000000

~* sim:uodp_pseudo_pc 32h8001hb533 32h8001... |32h8001b538 | 32ha000005c
é sim;urisc_next_pc 32hB8000005¢ 32h8001... § 32ha3000005¢c

& sim:tb_dk 1ho 1 | [ | | | [

17) After pop the Data, the exception code in $cause will clear by user and eret will
asserted. eret will pull down the $status [1] and put the $epc into pc.
18) Jump back to the User program in the next clock cycle.

‘é Tranzmit Data to DUT{FIFC) | 8h118h228h338...| 8hi118h22 8h338h4s

@ DUT UART Receive FIFO 8'h11 8h22 8hux &... iS'hll &'hux 8'hex B 1 8'h11 8'h32 hw 8hux i
~FIC

@ sim:PICMASK g'ho4 g'ho4

« Sim:PICSTAT 8hoz ghoo [8ho2

:_* sim:uipi_ctrl_intr_vector g'haq g'hao 1 8'ha4

<& sim:uopi_ctrl_IRQ 1hi (11 |

The Second byte of Data received by DUT and hardware will trigger the IRQ. The step

will perform same as step 1 until step 18.
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SPI interrupt

& th_ck

~ tb_spi_mosi

e th_spi_miso

~ th_spi_sdk

@ th_spi_ss_n

~ Transmit data to DUT FIFO
~ Received Data DUT FIFO

1hl
1hl
Thz
Thi
1ho
'ha1 ghxx 8...
8h41 8hxx 8...

- PIC
~ uopi_ctrl_IO_IE
e uopi_ctrl_reg_IPL

8hos
Zho

Shioc... [8h4l Ri'hxx oo 8o 8'haoe B'hooe 8o 8o B'haoe 8o 8o 8'hooe 8o 8o 8o 8o

8'hucac Bhiex oo 8'hie 8o 8o 8o 8o B'hiee 8ok 8'hoe 8ok 8o 8o S S'haz | EB'h‘lllp'hxx 8hi

(8'hos

Zho

211
JELEE]

T8hs0

6 is‘h03l

3Zhc0... ) 32h40000000

& uopi_ctr_IRQ

;_} uipi_ctrl_intr_vector 8'has 8hs0 | [&hs0

~ PICMASK 8hos (8hos

w_) PICSTAT gho3 ghoo

- CPO register

« bcp0_cause 32h40000000
« bp0_cause_exc_code 5'do

« bcp0_epc 32h00000000
« bcp0_stat 32h00000001
~ bop0_stat[1] 0

- CPO input

=9 bicp0_eret 1ho

=9 bicp0_ex_pc 32h8000005¢
=9 bicp0_id_pc 32h80000060
=9 bicp0_if pc 32h80000064
=9 bicp0_irg 1h1

=9 bicp0_mtcd 1ho

- CPO output

% bocp0_eret_addr 32'h00000000
w& bocp0_exc_flag Thi

& bocp0_flush_ex 1ho

& bocp0_flush_id Thi

~ bocp0_flush_mem 1hi

- PC and Instruction

«9 uidp_instr 32'h1d00fffd
~* uodp_pseudo_pc 32h80000064
~ urisc_next_pc 32h8001b400

e

1)
2)
3)
4)
5)
6)

value is 3.

7)

5do
32h00000000 5 32ha0000064 |
32h00000001 32h00000013
3Zh80..| 1 37ha000005c 1 47hB0000060
37hae I 32’h80000060 | F'h00000000
37he@’. | 137hs0000064 ) 47hE8001b400
- 1 N —
32h00000000

|| L
2 A
el i [ [

37h01... J37hid00ffd )—7—

32ha80... |1 37h30000064 ) 37h30016400

32ha0... [[37h8001b400  {37h80016400

The slave device transmit the data to the DUT.

After the DUT received 1 byte of data, it will rise the IRQ.
When IRQ occur, hardware will rise the bocp0_exc_flag
Flush the IF/ID pipeline
Load the IF stage’s PC into $epc for return purpose after handler the exception.
PICSTAT will be update the value that correspond to the IRQ source. For SPI the

Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CPO $status [1] to disable further exception occur. For, Interrupt

request the exception code is 0, which will write into the CPO $cause by hardware.
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CP0O register

L bop0_cause 3240000000
* bcp0_rause_exc_code 5'do

b bopO_epc 37h30000054
L bop0_stat 37h00000011
L bcpo_stat[1] 0

CPO input

% bicp0_eret 1hi

L & bicp0_ex_pc 37h3001b460
% bicp0_id_pc 32h8001b454
& bicp0_if_pc 37h3001b468
% bicp0_irg 1ho

% bicp0_mtcO 1ho

32h40000000

5d0

3ZhB0000064

3Zh00000013 1 32h00000011
8 I N

32ha001b458 1 3Zha0... 1 32ha0... | 32ha

32ha001b45¢ 1 3Zh80... 1 32ha0... | 32ha

32ha001b460 [ 32h80... 132h80... | 32ha

- N 1F

8) After store the register information into the stack, $status [1] will pull down by user,

to enable further interrupt.

9 [ 5'do

PR

CPO register
4 bcp0_cause 32'h40000000
Q bepl_cause_exc_code 5'd0
~ bcpl_epc 32h80000064
~ bcpl_stat 32h00000011
 bcp0_stat[1] 0

CPO input

-9 bicp0_eret 1'ho

-9 bicp0_ex_pc 37ha001b47a
-9 bicp0_id_pc 32h00000000
-9 bicp0_if_pc 32ha001b53c
-9 bicpo_irg 1ho

-4 bicp0_mtco 1ho

CPO output

& bocp_eret_addr 3200000000
‘& bocpd_exc_flag 1ho

Q bocp0_flush_ex 1ho

& bocp_flush_id 1ho

13; bocp0_flush_mem Tho

PC and Instruction

:_$ uidp_instr 32hzzzzzzzz
\a uodp_pseudo_pc 32h&8001b53c
~ urisc_next_pc 32'ha001b53c

' 3Zh40000000

3Zh... | 3Zh40000000

32h30000054

32h00000011

[32h... {37h... |37h8001b478

[32h... {37h... 1 3Zh00000000

[32h... {37h... | 32ha001b53c

32'h00000000

9

[32h...

32h... } 32ha001b53c

3Zh... E'hBDD'Ji::E?u:

9) The exception code in $cause will decode and branch to the respective ISR. For

IRQ, the ISR start at 0x8001b53c.
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- PIC

~% uopi_ctrl_I0_IE g'hos ho8

~ uopi_ctrl_req_IPL Zho Zho

~% uopi_ctrl_IRQ 1ho

=49 uipi_ctrl_intr_vector ghaa ghas

~ PICMASK 8'h0g 8hos

« PICSTAT gho3 [Ehos 17

=9 uipi_ctrl_stat IPL Zho Zho

=4 uipi_ctrl_intr_en_n 1ho

=9 uipi_ctrl_mem_stall 1'h 3E|

wé uopi_ctrl_wb_dout 32hzzzzzzzz 3Zh... | 1 g

=% uipi_ctrl_wb_din 32h00000000 | 37h00... ] 3Zh

o uopi_ctrl_wb_ack 1h1 ! 14

=9 uipi_ctrl_wb_sel Fhf 4h0 4Rt 1 4h0

=9 uipi_ctrl_wb_we 1ho

=4 uipi_ctrl_wb_stb 1h1

% uipi_ctrl_wb_clk Thi S A Y| ) I O (I i S (A e -
=9 uipi_ctrl_wb_rst 1ho

- SPT

~& uospi_IRQ 1hi

=49 uispi_SPIE 1h1

;} uispi_mem_stall 1ho ]

‘é uospi_wh_dout 32hzzzrzzrz

=4 uispi_wb_din ghoo ghil __ |&hoo {5h03 {&ho0 j8hoz 1
‘¢ uospi_wh_ack 1ho

4 uispi_wb_sel 4hf 4h0 f4hf I 4ho

;_# uispi_wh_we 1ho

=4 uispi_wb_sth 1ho

-3 uispi_wb_ck 1h1 L LT L L L LT
=4 uispi_wb_rst 1hi

~ SPE 1hi

~ MSTR 1ho

~ RXFIE 1hi

~ RXFF 1h1

4 SPISR Bhaa ghéa

~ SPICR 8ha7 8ha7

& vi 32h00000000 | 32h00000000 10
4 a0 32h00000011 | 3Zh0000001L kel
& sal 32h00000000 | 3ZR00000000 {57h03080000 ] 37h00000003 |

10) After Jump to the External interrupt ISR, exception handler will load the PICSTAT
from Programmable interrupt controller (PIC) to $al.

11) Decode the PICSTAT to figure out the IRQ trigger by which interrupt source. For
SPI the code is 3.

PC and Instruction

=9 uidp_instr 32h20a5ff —1—2—{321-.92040025 {32hooo42082
~ uodp_pseudo_pc 32ha001b580 [ 32he001b604 1 32hB001b608 |
-@ urisc_next_pc 3Zhe001be04 || 32ha ., 137h300iba0s | 32'he001b60c )
Crier

12) After that, it will branch to the respective interrupt source’s ISR. For SPI, the
starting address for ISR is (0x8001b604).
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- PC and Instruction —— ————— 1 4

=4 uidp_instr 32h32030027 _ﬁﬂhgmooz? J.3Zh2004000a 1 37haz040025 {57h03600008 [37ha0a520ff % S
% uodp_pseudo_pc | 32haon1b64c || 37ha001b6E4C 1 32h&001b650 1 37h8001b654 {57ha001b658 1 32ha001b&s5c |I32‘h3001b4bc |
« urisc_next_pc 32h8001b650 | 3. | 37hB001b650 37hE001b654 37h8001b658 37RB001b65C 37ha001bah,

& 1 | 32h00000000 | “37h00000000 3Zh00000041

13) SPI Receive interrupt’s ISR will load the data from SPIRDR to the $v1.
14) After ISR, it will branch to pop data section (0x8001b4bc).

CPO register

9 bcpl_cause 32'h40000000 | 3Zh40000000

Q bcp0_rause_exc_code 5'd0 5'do

~ bcpl_epc 32ha0000064 | 32hE0000064

~ bopl_stat 32h00000013 | ~32h00000011 {32h00000013

@ bop0_stat[1] 1 1 5 | |

CPO input

-4 bicp0_eret 1ho

-9 bicp0_ex_pc 3Zh3001b4c 132h8001b4c0 | [32h8001b4cd |
-9 bicp0_id_pc 32h3001b4ca 132h8001b4c4 | [32h8001b4c8 |
-9 bicp0_if_pc 32h3001b4ce [32h8001b4c8 | 327hB001b4cc I
-9 bicp0_irg 1ho

-3 bicp0_mtco 1ho 1 Y s

15) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

- CPO register

~ bopl_cause 32h80000000 | _37h00000000 1 32h80000000 | 32h00000000

v) bcp0_cause_exc_code 5'd0 5'dd

< bcpl_epc 32h30000064 | 37hs0000064

~ bep0_stat 3zhoooooo11 | 37hodoooois __ {32h D'%D%n
bep0_stat[1] 0 I

-?Pu input =10

=& bicp0_eret tho _|_|—| |1

=9 bicp0_ex_pc 3Zh8001b534 | 3. [37h8001b530 | 37hadaibsid

=9 bicp0_id_pc 32h00000000 | _3... [32h8001b534 §32h00000000

=% bicp0_if_pc 32h80000064 | 3., {37h8001b538 | 37h80000064

=9 bicp0_irg 1hi

=9 bicp0_mtc0 Tho

- CPO output

<% bocp0_eret_addr 32h30000064 | 3., [[327ha0000064 | "N

@ bocpl_exc_flag 1ho S——

¢ bocp0_flush_ex 1ho

~ bocp_flush_id Tho

vé bocp0_flush_mem 1ha

- PC and Instruction

=9 uidp_instr 32hzzzzzzzz | 3. | 32000000000} '! ?

< uodp_pseudo_pc 32h80000064 | 3., | 37h8001b538 | 37h80000084

¢ urisc_next_pc 32ha0000064 | 3... W 37ha30000064

& Sv1 32h00000041 | _37h00000041

16) After pop the Data, the exception code in $cause will clear by user and eret will
asserted. eret will pull down the $status [1] and put the $epc into pc.
17) Jump back to the User program in the next clock cycle.
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I 37’h40000000

5da

32hB0000064
32h00000011 [ 32h00000013
[
1 ¢ 4 o ol f 2 f A
I 2 O G I S
I ¥ 5 & S e oF f
[ ]
37ha0000064
[
[

I O G O G S G O

I O O | 3 O S O

O S

32h00000041

- CPO register

~ bop0_cause 32'h40000000
‘ bopl_cause_exc_code 5'd0

~ bop0_epc 3280000064
~ beop0_stat 32h00000011
~ bep0_stat{1] 0

- CPO input

-9 bicp0_eret 1ho

=9 bicp0_ex_pc 32h8000005¢
-9 bicp0_id_pc 32h80000060
=9 bicp0_if_pc 32hB80000064
=% bicp0_irg 1hi

=9 bicp0_mtc Tho

- CPO output

% bocp0_eret_addr 32h80000064
¢ bocp0_exc_flag Thi

& bocpd_flush_ex 1'hd

é bocp0_flush_id Thi

é bocpd_flush_mem 1hd

- PC and Instruction

=9 uidp_instr 32'h 1d00fffd
« uodp_pseudo_pc 32h80000064
~ urisc_next_pc 32'ha00 1b400
¥ 1 32h00000041
- Crisc

~ Transmit data to DUT FIFO gh418h4z238...
~ Received Data DUT FIFO gh418h428...
& tb_dk thi

2h41 8'h42 Bhxx 8

'hicxe 8'hic &'hoex 8'hooe 8'H

8'h41 8hxx 8h...

LML L L

2'h41 8'h42 ghxx oo 8

The Second byte of Data received by DUT and hardware will trigger the IRQ. The step

will perform same as step 1 until step 17.
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- CPO register

~ bop0_cause 32'h00000000

‘ bopl_cause_exc_code 5'd0

~ bcp0_epc 32ha0000064

« bop0_stat 32h00000013

~ bep0_stat[1] 1

- CPO input

9 bicp0_eret Thi

=9 bicp0_ex_pc 32ha001b530

=9 bicp0_id_pc 32ha001b534

-9 bicp0_if_pc 32h3001b538

=9 bicp0_irg 1'ho

~9 bicp0_mtcd 1'ho

- CPO output

« bocp0_eret_addr 32ha0000064

¢ bocp0_exc_flag 1'h0

“; bocpd_flush_ex 1'hd

& bocp0_flush_id 1'ho

we; bocpd_flush_mem 1'hd

- PC and Instruction

-9 uidp_instr 32h00000000

e; uodp_pseudo_pc 32ha001b533

~ urisc_next_pc 32ha0000064
32h00000042

> o

32'h00000000

' 37h80000000

)

i ]

32'hB0000054

32h00000013

¥ 37h00000011

. i

3Z... 13Zh8001b530

1 37ha001b534

3Z2... [ 327hB8001b534  J 37h00000000

37... | 37hao01b53a

I 37han000064

32h30000054

3Z... | 32h000000o0

L

1

32...

32he001b533

| 37ha0000064

37 .

32ha0000064

[32h00000042 |

After perform the step 1 until 17, the value in $v1 is 42.
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Test Case 4: Multiple interrupt and Multiple Trap.

|—— CPO register

0-“ bop0_cause_exc_code

O )Sdo Ysdi2 Y Y YSdo

0“4 bop0_epc
04 bopo_stat
4 bep0_stat[1]

132 (5. J357h80000098 )32h... | Iznm
L0 h0000... ]

3-“ Received UART Data DUT FIFO |8!

-“ Received SPI Data DUT FIFO
4. uospi_IRQ 1ho

In figure above, the label “1” indicate that the internal exception event (Sign-overflow,

undefined instruction and syscall) occur continuously on the Server. The Label “2”

show that the programmable interrupt controller (PIC) generate the interrupt request
(IRQ) to the core processor O(CP0) based on the UART and SPI Interrupt Request (label
3 and label 4). When the Server received one byte of data from the Client through the

SPI and UART, SPI controller and UART controller will generate an interrupt to the

PIC, PIC will manipulate the multiple interrupt occurrence based on the interrupt

priority level that pre-set by user and generate the interrupt request to CPO. In this test

case, we are more interesting about the Nested Exception and the Exception Conflicting

between the Trap and Interrupt.
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Nested Exception

— CPO register
+ ¢ bep0_cause_exc_code 5'd0 5'd0 2 a | J5ds
+ < bep0_epc 32'h80000078 32h80000078 ¥ "~ \ ) 32h80000098
+ ’ bep0_stat 32’h00000011 32’h00000011 :h00000013
3 v ; B — U
— CPO input {
+9 bicp0_sovf 1ho
+9 bicp0_syscall thi 'I ( | | j
+9 bicp0_undef_instr 1ho
+9 bicp0_irg 1ho
+9 bicp0_eret 1ho
— CPO output |
+ & bocp0_eret_addr 3280000078 32
& bocp0_exc_flag 1hi ﬁ
& bocp0_flush_ex 1ho
& bocp0_flush_id thi _2__]—L
& bocp0_flush_mem | 1ho \ /
— PC and Instruction A
+ ;9 uidp_instr 32'h00000000 32'... } 32h00000000 ) 32hafba0000 )
+ w¢ uodp_pseudo_pc 32’h80000098 32...1 ) 32’h80000098 ) 32h8001b400 |
+) g urisc_next_pc 32h8001b400 32... ]32'h8001b400 } 32h8001b404 )

1) When detected the syscall at Main control unit (ID stage), hardware will raise the
bocp0_exc flag.

2) Flush the IF/ID.

3) Put the IF stage’s PC to the $epc for return purpose after handler the exception.

4) Jump to exception handler (0x8001b400) in the next clock cycle and raise the
exception flag in CPO $status [1] to disable further exception occur. For, syscall the

exception code is 8, which will write into the CPO $cause by hardware.

— CP0 register 1 !
[+ ‘ bepl_cause_exc_code | 5'd3 5'da
% 4 bop0_epc | 32h80000098 3ZhB0000098

[+

| @ bcp_stat | 32h00000011 | 37h00000 B00000011
« bop0_stat[1] |0 [ 5
— CPOinput ' ’

5) After push the register information into Stack, $status [1] will pull down by user, to
enable further interrupt. The exception code in $cause will decode and branch to

the respective ISR.

97
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 6 Verification Specification

— PO register

+ 0 bcp0_cause_exc_code

+ ¢ bcpd_epc
+ 0 bcpl_stat
« bepo_stat[1]

| 5'd8 5d8 1

1 5d0 ’
32hE00 1h458 /

e

32h80000098 32h30000038

| 3Zh00000011 32h00000011 | 32h00000013
|0 I

E

— CPOinput
:’ bicp0_=zowf
:9 bicpd_syscall
;} bicpd_undef_instr
;_§ bicp0_irg
_-_’ bicp0_eret

Tho

r'ho
thi
tha P

thi $ J

— CP0 output

& g bocp_eret_addr
& bocpd_exc_flag
-é bocp0_flush_ex
@ bocpd_ flush id
e bocpd: flush_mem

| 3Zha000007a 32h30000078

thi /]
thi LE— i
Ot
tho

— PC and Instruction
+ _} uidp_instr

+ ¢ uodp_pseudo_pc
+ Q urisc_next pc

32h24050006 3., 1 32h10850082 {32h24050006 | 37hafbadio0 J 37h23b
|3Zhso0ib4sc | W 3LF {327ha001b458 ) 32hB001b48c | 32h8001b400 §32hs00

| 32ha001b400 3... ) 32h5001b45c )| 32h8001b400 | 32ha001b404 {32haod

— ¥k

£
|+ wp PICSTAT | #ho3 8hoo Mo Yl ELVERENR
<& uopi_ctrl_IRQ [ 1h -
— UART 1
+) ~p Received UART Data DUT FIFO | 8'hax 8'hux §'h... | S 8o B he 8 ha
< uoua_IRQ Tho
=L ]
£ * Received SPI Data DUT FIFQ | 8'h40 8'h418h... | &., ._I_B;him 'h41 8'h42 8'hxx 8heor oo 8'haoe 8'hood 8'haoc B'hx
& uospi IRQ rhi
— Renister File :

6) During decode the exception code, a byte of SPI data had received and generate an interrupt

request. This is where Nested Exception event occur.

7) When IRQ occur, hardware will rise the bocp0 exc flag and flush the IF/ID

pipeline

8) Load the IF stage’s PC into $epc for return purpose after handler the exception in

this case the IF stage’s PC is the PC in the exception handler.
9) PICSTAT will be update the value that correspond to the IRQ source. For SPI the

value is 3.

10) Jump to exception handler (0x8001b400) in the next clock cycle and raise the

exception flag in CPO $status [1] to disable further exception occur. For, Interrupt

request the exception code is 0, which will write into the CPO $cause by hardware.

98

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 6 Verification Specification

— CPO register
+ Q bcpl_rause_exc_code 5'd0 g'do
+ ~ bcp0_epc 37hanoib4aa 37han0 b4

+) < bop0_stat 32'h00000011 3Zh00000013 | 32h00000011
 bopd_stat[1] a0
[ = [ T T

11) After store the register information into the stack, $status [1] will pull down by user,

to enable further interrupt. The exception code in $cause and PICSTAT in PIC will
decode and branch to the respective ISR.

— 5PI
+) 4 Received SPI Data DUTFIFO | 8h40 8h41 8h... | §h4Q 8paL e o 8 hocx 8 Focx &
« uospi_IRQ 1hi
— Reaqister File
: G P e —
= vl 32h00000041 37h0080gEAD {32h00000041 ]
b s n Al s s P e L]

12) SPI Receive interrupt’s ISR will load the data from SPIRDR to the $v1. The SPI

interrupt request was de-asserted.

— CPO register

+ ’ bcp0_rause_exc_code 5'd0 5'dd

+ 4 bop0_epc 32ha001b4as 32ha001b4a83

+ ‘ bcp0_stat 32h00000013 32h00000011] ??_‘;hDDDDDD 13
« bcp0_stat[1] 1

— P inmiit

13) After ISR, it will branch to pop data section. Before pop the data from stack, the
$status [1] will raise by user to disable further interrupt when pop the data.

— CPO register
Y ’ bopl_cause_exc_cods S'do 1 4 Sdn
£} bepd_epc 37h8001b488 | 37ha0DbAEE )
I ‘} bep0_stat 3Zh00000011 | 37h00000013 2 ¥ “'h]ouuunun
< bop0_stat[1] o [ |
— CPOinput 1 4
= bicpd_sovf Tho
=& bicp0_syscall 1ho
_-'} bicp0_undef _instr 1ho
x4 bicp0_irg 1ho [
3 bicp0_eret Tho _ _14_@
— CPO.output 1 | ——— .
+ wé; bocp0_eret_sddr 32h8001b488 | 37ha0n 1} 32ha001b458 | ]
é boop0_exc_flag 1Tho
-é bocp0_flush_ex Tho |
e bocp0_flush_id 1Tho |
% bocpd_flush_mem 1ho |
— PC and Instruction
+ =9 uidp_instr 32h10850082 | {37h42000018 | 37h00000000-2hi0eEta8a{50h 24050006 | 37h10850082 |
[+ 4 uodp_pseuda_pc 32h8001b483 | [ 32ha001b534 [ 32hao01bsks [ 32ha001b488 | 32ha001bdec {32h8001b450 |
+} g urisc_next_pc 37h8001b48c | {3Zhan01bs38 | 3ZhE001b4es | SITE00TEaE: | 32 he0n 16450 ) 37he0010434

14) After pop the Data, the exception code in $cause will clear by user and eret will
asserted. eret will pull down the $status [1] and put the $epc into pc.

15) Jump back to the previous exception handler in the clock cycle.

99
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR



Chapter 6 Verification Specification

[+« uidp_instr 32h24050008
+ ¢ uodp_pseudo_pc 32h8001b49c
+ * urisc_next_pc 32h3001b4a0

16) After return, the exception handler will continue to decode exception code and
branch to the respective ISR. For syscall, the ISR start at 0x8001b6ac. After ISR, it
will branch to pop data section (0x8001b4bc).

— CPO register

= Q bep0_cause_exc_code 5'd0 5'd0

+ 4 bap0_epc 32h8001h438 32ha001b453

£ 4 bopl_stat 32h00000013 37h000-——}-37R)0000013
& bop0_stat[1] 1

— CPQinput

17) Before pop the data from stack, the $status [1] will raise by user to disable further

interrupt when pop the data.

— CPO register
+ Q bcpl_cause_exc code 5d0 ! 5'dd
\+} ¢ bopl_epc 32ha000009 f[: 32h30000053 :]
+ < bopi_stat 32h00000013 | 37hD000DDYS ___J 37 nbonooniL
 bopo_stat[1] 1 |
— CPOinput 1 8 L_I
=9 bicp0_sovf 1ho
@ bicp0_syscall 1ho
& bicp0_undef_instr 1ho
«9 bicp0_irg 1ho
< bicp0_eret 1hi 1 5 | 3
— CPO output 1 ] f_\.-‘
+ g bocpO_eret_addr 32hB0000058 ‘Fﬁ I 37heo000098 |
¢ bocpl_exc_flag Tho | i ECERRETI
é bocpd_flush_ex 1ho
~§ bocpd_flush_id 1ho |
vé boicp0_flush_mem 1'hi
— PC and Instruction . 1 9
] 29 uidp_instr 37h00000000 | 3., | 32ho0000000- ~
+ e uodp_pseudo_pc 32h8001b538 | 5., ; 32ha001b538 | 32h80000098 '!
i+] o urisc_next_pc 32h80000058 | _3... X 37hB0000098 W

]

18) After pop the Data, the exception code in $cause will clear by user and eret will
asserted. eret will pull down the $status [1] and put the $epc into pc.
19) Jump back to the User program in the next clock cycle.
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Exception Conflicting between the Trap (Sign-Overflow) and Interrupt (UART).

— CPO register 1 \ < S T
+ 4 bepD_cause_exc_code 5'do ( 5'do )] W5diz ] ¥ 5'do
-+ bop0_spc 32h80000098 32'h800... | 32’h3000005c ¥ 3Z7h80000060
+ ¢ bcp0_stat 32h00000011 32h000... §37h00000013 ]| 32h00000011 !
4 bep_stat[1] il I T l
— CPO input
=% bicp0_sovf ' R
= bicp0_syscall 1 e
=% bicp0_undef_instr -~
_-3 bicp0_irg | /ﬂ\
= bicpd_eret 4 /T 1\\ l | ]
— CPO0 output
+i % bocpl_eret_addr 32h80000098 32ha0000098 \ 1 32h8000005c J 1 32'haa
é bocpd_exc_flag ithi 1 |
1& bocp0_flush_ex 1hl 1 |
& bocp0_flush_id Thi | |
~ bocp0_flush_mem 1hi | |
— PC and Instruction
4} 29 vidp_instr 32h00000000 } 1 1 e ; T ; 1 4 } =
+ % uodp_pseudo_pc 32hB0000064 {52, W37 f37.. @-7.. j37.. @se.. {37, {37.. {32.. {37.. m37...
1;0 urisc_next_pc 37h8001b400 {37.. 937... {37... m37... |37... @37... |37... 4372... 137... {37... =m37...
— PG (—'\
£« PICSTAT 8hoz &, f8hod J EL]
& uopi_ctrl_RQ thi - =1
— UART 1 ‘ —
£ ¢ Received UART Data DUT FIFQ | 8h55 8he6-8'h... | &... 18h558h66 #h33 §h44
«» uoua_IRQ 1hi
=——SPFI J

Figure above show that the exception scheme when exception conflicting between the
sign-overflow and the interrupt request. In label “1”, we can clearly observed that the
Sign-overflow and the interrupt request had asserted in the same clock cycle. The
interrupt request is asserted by the UART controller when receive one byte of data from
the client (label “2”). During this kind of situation, the priority will goes to the interrupt
request. In label “3” we can observed that the value of exception code in the CP0 $cause
is “0”, which is IRQ. After Serving the IRQ, “eret” will asserted and return to the user
program (label “4). The Sign-overflow asserted again, and jump to the exception
handler in next clock cycle. In label “5”, we can observe that the exception code is 12.
In label “6” show that the return to the user program after handle the sign-overflow

event.
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Exception Conflicting between the Trap (Sign-Overflow, Undefined instruction)

and Interrupt (UART).

— CPO register

— | 7 o ¥ PV amm—
4} 9 bp0_cause_exc_code sdo 4 Sd0_J J5aE | 5d0 | K ¥} S 530
£ bep0_epc 32h80000098 ; S2E000005C TETREN0000c0 Y 37RE00000c&
4 bp0_stat 32ho0000011 | (3. )\ (37h00000011 Y (32h0000001T 37h00000011 32h00000011 37h0000001 1 37h0000001 L
& bep0_stat(1] 0 M
— it ————————| —~
2 bicp0_sovf tho nl | |
9 bicp0_syscall ho L) o] | 7=~
< bicp0_undef.instr 1ho | | 911 ]
<) bicp0_irq ho 1 p— ——
4 bicp0_eret 1ho 5 1] 8[ )| i)
— CPooutpt —— ———— - N > N A |
+) < bocp0_eret_addr 32h80000098 | 37HE0000098 13718000006 | 1 37h80000000 | {_)(32h800000c% )
& bocpo_exc_flag 1ho | | |
<& bocp0_fiush_ex 1ho | 1 |
~& bocp0_fiush_id tho 1 1 1 1 L 1
& bocp0_fiush_mem 1ho | L
— PC and Instruction —
) 39 uidp_instr — - - - L - ) =
[+ < uodp_pseudo_pc 32h800000c0 3. 32h800000c4
[+ < urisc_next_pc 32h800000c0 3. 32h800000c4_ |
—PIC N
4} 4 PICSTAT 8hoo DEho2 T J8hoo
< uopi_ctrl_IRQ 1ho e\ _J
— UART
4} 4 Received UART Data DUT FIFO | 8hbb 8hcc 8hdes! 7 YEhbb 8hcc 8hdd Shee A}
& uoua_IRQ 1ho

— sp1
+) < Received SPI Data DUT FIFO | 8h60 8h618h... | 60 8161 862 8163 8164 865 81e6 8167 8168 Bh63 Bhba BHeb Shbc 8hed Shbe STBF
& uospi_IRQ 1ho

Figure above show that the flow when exception conflicting between the sign-overflow,
undefined instruction and the interrupt request. In label “1”, we can clearly observed
that the sign-overflow, undefined instruction and the interrupt request was assert in the
same clock cycle. The interrupt request is asserted by the UART controller when
receive one byte of data from the client (label “2”). In label “3”, show that the register
PICSTAT is “2” which is UART interrupt request. When conflicting occur, the priority
will goes to IRQ, in label “4” we can observed that the value of exception code in the
CPO $cause is “0”, which is IRQ. After Serving the IRQ, “eret” will asserted and return
to the user program (label “5). In label “6” shows that the conflicting between the sign-
overflow and undefined instruction. The sign-overflow will handle prior than the
undefined instruction. In label 77, the value of exception code in the CPO $cause is 12,
which is sign-overflow. After serving the sign-overflow, “eret” will asserted and return
to the user program (label “8”). Lastly, the undefined instruction will be handle after
the sign-overflow. In label “10”, we can observe that the exception code is 10, which
is undefined instruction. In label “11” show that the return to the user program after
handle the undefined instruction event. The sequence for handle the exception event
when multiple exception event happen in same clock cycle is interrupt request (IRQ) >

sign-overflow > undefined instruction.
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6.4 Test Bench

“timescale 1ns / 10ps

" default_nettype none

“define TEST_CODE_PATH "DUT_TESTCODE.txt"

“define EXC_HANDLER "exception_handler.txt"
“define TEST_CODE_PATH_2 "SLAVE_TESTCODE.txt"

module tb_r32_pipeline();
//declaration
// System signal

reg tb_clk;
reg tb_rst;

wire tb_spi_mosi;
wire tb_spi_miso;
wire  tb_spi_sclk;

wire tb_spi_ss_n;

wire tb_fc_sclk;
wire tb_fc_ss;

wire tb_fc_MOSI;
wire tb_fc_MISO1;
wire tb_fc_MISO2;
wire tb_fc_MISO3;

wire tb_fc_sclk_2;
wire tb_fc_ss_2;
wire tb_fc_MOSI_2;
wire tb_fc_MISO1_2;
wire tb_fc_MIS02_2;
wire tb_fc_MIS0O3_2;

wire [31:0] tb_GPIO;
wire [31:0] tb_GPIO_2;

wire tb_ua_dut_tx;
wire tb_ua_dut_rx;

crisc
dut_c_risc

.urisc_GPIO(tb_GPIO),

//SPI controller
.uiorisc_spi_mosi(tb_spi_mosi),
.uiorisc_spi_miso(tb_spi_miso),
.uiorisc_spi_sclk(tb_spi_sclk),
.uiorisc_spi_ss_n(tb_spi_ss_n),

//UART controller
.uorisc_ua_tx_data(tb_ua_dut_tx),
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//.uorisc_ua_rts(),
.uirisc_ua_rx_data(tb_ua_dut_rx),
//.uirisc_ua_cts(1'b0),

//FLASH controller
.uorisc_fc_sclk(tb_fc_sclk),
.uiorisc_fc_MOSI(tb_fc_MOSI),
.uirisc_fc_MISO1(tb_fc_MISO1),
.uirisc_fc_MISO2(tb_fc_MIS02),
.uirisc_fc_MISO3(tb_fc_MISO3),
.uorisc_fc_ss(tb_fc_ss),

// System signal
.uirisc_clk_100mhz(tb_clk),
.uirisc_rst(tb_rst)

);

s25fl128s SPI_flash
(.SI(tb_fc_MOSI), //100
.SO(tb_fc_MISO01), //101
.SCK(tb_fc_sclk),
.CSNeg(tb_fc_ss),
.RSTNeg(tb_rst),
.WPNeg(tb_fc_MISO02), //102
.HOLDNeg(tb_fc_MIS03)); //103

crisc
dut_c_risc_2//Client
(

//GPIO

.urisc_GPIO(tb_GPIO_2),

//SPI controller
.uiorisc_spi_mosi(tb_spi_mosi),
.uiorisc_spi_miso(tb_spi_miso),
.uiorisc_spi_sclk(tb_spi_sclk),
.uiorisc_spi_ss_n(tb_spi_ss_n),

//UART controller
.uorisc_ua_tx_data(tb_ua_dut_rx),
//.uorisc_ua_rts(),
.uirisc_ua_rx_data(tb_ua_dut_tx),
//.uirisc_ua_cts(1'b0),

//FLASH controller
.uorisc_fc_sclk(tb_fc_sclk_2),
.uiorisc_fc_MOSI(tb_fc_MOSI_2),
.uirisc_fc_MISO1(tb_fc_MISO1_2),
.uirisc_fc_MISO2(tb_fc_MIS02_2),
.uirisc_fc_MISO3(tb_fc_MISO3_2),
.uorisc_fc_ss(tb_fc_ss_2),

// System signal
.uirisc_clk_100mhz(tb_clk),
.uirisc_rst(tb_rst)
)i
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s25fl1128s SPI_flash_2
(.SI(tb_fc_MOSI_2), //100
.SO(tb_fc_MISO1_2), //101
.SCK(tb_fc_sclk_2),
.CSNeg(tb_fc_ss_2),
.RSTNeg(tb_rst),
.WPNeg(tb_fc_MIS02_2), //102
.HOLDNeg(tb_fc_MISO3_2)); //103

//************************************

//Clock waveform generation
initial tb_clk <= 1'b1;
always #25 tb_clk =~ tb_clk; //assume 20MHz

//NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

// Signals initialization.

//NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

//read memory to get instruction

initial begin

$readmemh(’ TEST_CODE_PATH,tb_r32_pipeline.SPI_flash.Mem);
$readmemh (" EXC_HANDLER,tb_r32_pipeline.SPI_flash.Mem);
$readmemh (" TEST_CODE_PATH_2,tb_r32_pipeline.SPI_flash_2.Mem);
$readmemh(’ EXC_HANDLER,tb_r32_pipeline.SPI_flash_2.Mem);
tb_rst = 1'b1;

repeat(1l)@(posedge tb_clk);

tb_rst = 1'b0;

repeat(10000)@(posedge tb_clk);

tb_rst = 1'b1;

repeat(12000000)@(posedge tb_r32_pipeline.dut_c_risc.urisc_clk);
$stop;

end

endmodule
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Chapter 7 Synthesis on FPGA

After the Simulation by using ModelSim simulator, the functionality of the Exception
Scheme shown positive result. In this Chapter, we will discuss about synthesis the
RISC32 processor on the ARTY Artix-7 FPGA Development Board by using Xilinx
Vivado 2017.2. Besides, an experiment had conducted on the RISC32 processor by
connecting two ARTY Artix-7 FPGA Development Board. The objective of this
experiment is to test run and evaluation on the physical design for functional

correctness.

7.1 Pin Allocation

The Xilinx Design Constraints (XDC) shown in Table 7.1. It has been set for the
implementation of RISC32 processor on the ARTY Artix-7 FPGA Development Board.

Group Design pin Xilinx ARTY 4 DDR | Remark
FPGA pin
Global uirisc_clk 100mhz E3
uirisc_rst C2
Quad SPI Flash | uiorisc fc MOSI K17
Controller uirisc_fc MISO1 K18
uirisc_fc MISO2 L14
uirisc_fc MISO3 M14
uorisc_fc ss L13
SPI Controller uiorisc_spi_miso Gl ChipKit SPI
uiorisc_spi_mosi H1
uiorisc spi_sclk F1
uiorisc spi ss n Cl
UART Controller uorisc_ua tx data Ul6
uirisc_ua rx_data V15
GPIO Controller urisc GPIO[0] G13 Pmod Header JA
urisc_GPIO[1] Bll
urisc_GPIO[2] All
urisc_GPIO[3] D12
urisc GPIO[4] D13
urisc GPIO[5] B18
urisc GPIO[6] Al18
urisc GPIO[7] K16
urisc GPIO[8] E15 Pmod Header JB
urisc GPIO[9] El6
urisc_ GPIO[10] D15
urisc GPIO[11] Cl15
urisc_ GPIO[12] J17
urisc_ GPIO[13] J18
urisc_ GPIO[14] K15
urisc_ GPIO[15] J15
urisc GPIO[16] Ul12 Pmod Header JC
urisc_ GPIO[17] T10 Connected to LED for
Observation
urisc_ GPIO[ 18] V10 Pmod Header JC
urisc_ GPIO[19] Vil
urisc_ GPIO[20] Ul4
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urisc_ GPIO[21] V14
urisc_ GPIO[22] T13
urisc_ GPIO[23] Ul3
urisc GP10[24] D4 Pmod Header JD
urisc_ GPIO[25] D3
urisc_ GPIO[26] F4
urisc_ GPIO[27] F3
urisc_ GPIO[28] E2
urisc_ GPIO[29] D2
urisc_ GPIO[30] H2
urisc GPIO[31] G2
Testing Pin test urisc_intr spi El Connected to led for
test urisc_intr uart G6 observation
test urisc_mc_syscall J4
test urisc_mc undef inst | J2
test_urisc_ex ovfs H6
test urisc IRQ HS5
test_urisc_mc_eret J5
test urisc cp0 _exc flag | T9

Table 7.1: Pin allocation on ARTY Artix-7 FPGA Development Board
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7.2 Setting up the Test Environment for Functionality Test

The RISC32 IoT processor was synthesis on FPGA board and the experiment
conducted by connect two FPGA board together. The Experiment set up shown as
Figure 7.1. In Figure 7.1, there are one board label as Server and another label as Client.
The UART and SPI for both FPGA board was connect to each other for data
transmission. In order to increase observability, there are some internal pin was pull out

to the top-layer and connected to LED and. The clock was lower down to 1k Hz. The

Connected Pin function shown in Figure 7.2.

Figure 7.1 Test Environment set up.
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Return form
GPIO[17] exception(eret)

Interrupt

Exception Flag Request(IRQ)

=299
N ONDO —~ O
0 \OV’M"T ™

L&
LD11
+
T
——
6
4

=3 LD LDS5)
LB pg4 18 pg3 ¥ W p4g dolpag

R68 R67 R50 R49

R72 R71, RS54,

Sign-

Overflow Syscall
Undefined
Instruction

Figure 7.2 Functionality of the LED Pin Connected.

At the Server, the user program was programme to generate the Internal

Exception Event (Trap) such as Sign-overflow (Detected at EX stage), Undefined
Instruction (Detected at ID stage) and Syscall (Detected at ID stage). The Internal
Exception Event will loop until the power off or reset button was press.
For the Client, the user program was programme to transmit the data to the Server
through UART and SPI continuously. When the UART or SPI on Server board received
a data, UART or SPI will generate an Interrupt Request on Server board and jump to
the Exception handler.

When enter to the exception handler, the GPIO [17] will light up to indicate that
the program execution was in the Exception handler. The GPIO [17] will turn off when
it finished the Interrupt Service Routine and exit the exception handler return to the user
program.

When there is the exception event occur, the LD6 will blinking, this is because
the assertion of the Exception Flag for one clock cycle. In this Project, The exception
event included the sign-overflow, undefined instruction, syscall, and interrupt request.
The LD5 will blink when an "eret" instruction was decoded. "eret" is the only

instruction that make the CPU return from Exception handler to the user program. It
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only appear in the last line of the Exception Handler. When LD5 blinking, we know
that the exception event was served and ready return to user program.

The LD4 will blink when there are an Interrupt Request. In this experiment,
client will transmit the data continuously. The LDO in server board used to indicate that
the data received from client. LDO will turn to blue when SPI on server received a byte
of data from the Client and it will turn to red when UART on server received a byte of
data from the Client. LDO will turn off when the Interrupt Flag de-asserted by the
Exception handler.

The LD3 will blink when there are a sign-overflow exception event. The LD2
will blink when there are an undefined instruction exception event. The LD1 will blink

when there are a syscall instruction.
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Chapter 8 Conclusion & Future Enhancement

8.1 Conclusion

The exception handler scheme for interrupt conflicting and the nested interrupt
resolution have successfully implemented into the RISC32 IoT processor. In this
project, the exception events cover the sign-overflow, undefined instruction, syscall and
external interrupt request. There are two communication I/O supported the interrupt,
which are UART and SPI. The Priority interrupt Controller (PIC) is to handle the
multiple interrupt occurrences based on priority level. It collaborate with coprocessor
0 to handle the exception event. With the availability of the well planning exception
scheme, it is straightforward to resolve the conflicts among the exceptions event. In
addition, it will be easier to integrate new devices without having to worry about
exception handling.

In Chapter 2, the Exception scheme for ARM processor and MIPS have been
review. In Chapter 3, we have discuss about the basic approach for this project. In
Chapter 4, the system specification have discussed. In Chapter 5, we have perform the
analysis on the I/O system. In addition, the exception scheme for RISC32 IoT
processor have developed in chapter 5.

The test bench has been model by using the VerilogHDL and simulated by
using the ModelSim in order to verify the functionality of exception handle and
Interrupt Service Routine (ISR) code. The MIPS assembly code have coded to trigger
each individual exception. The behaviour verification for exception handle scheme has
been carry out by trigger different possible combination exception event to ensure the
robustness of the exception scheme. The simulation result shown in Chapter 6.

Lastly, the RISC32 IoT processor has successfully synthesized onto the
ARTY Artix-7 FPGA Development Board by using Xilinx Vivado 2017.2. An
Experiment conducted to tests on the I/O function physically in order to ensure the

functionality of the exception scheme.
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8.2 Future Enhancement

In this project, the exception event only cover the sign-overflow, undefined instruction,
syscall and interrupt request. For future development, more exception event should
added such as breakpoint exception, address error exception and bus error exception in
order to make the RISC32 IoT Processor more complete. The ISR code need to rewrite
to make the user program more value added.

With the well-developed exception scheme for RISC32 IoT processor, the I/O
system become more stable to use. It provided a high-confident level to integrated new
I/0O. For future, new I/O module can integrated to the RISC32 IoT processor such as
Analog-to-Digital Convertor (ADC) and cryptography engine.
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