
 

 

 

ODOMETRY ERROR REDUCTION IN WHEELCHAIR USING MORE 

THAN ONE SENSOR 

 

 

 

 

 

 

 

Daniel Boey Mun Weng 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Engineering 

(Hons.) Mechanical Engineering 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

January 2019 

 



ii 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it has 

not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

Signature :  

Name : DANIEL BOEY MUN WENG 

ID No. : 13015182 

Date : 26 APRIL 2019 

 

  



iii 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “ODOMETRY ERROR REDUCTION IN 

WHEELCHAIR USING MORE THAN ONE SENSOR” was prepared by 

DANIEL BOEY MUN WENG has met the required standard for submission in 

partial fulfilment of the requirements for the award of Bachelor of Engineering (Hons.) 

Mechanical Engineering at Universiti Tunku Abdul Rahman. 

 

 

 

Approved by, 

 

 

Signature :  

Supervisor : Prof. Dr. Goh Sing Yau 

Date : 26 APRIL 2019 

 

 

 

Signature :  

Co-Supervisor : Danny Ng Wee Kiat 

Date : 26 APRIL 2019 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku 

Abdul Rahman. Due acknowledgement shall always be made of the use of any material 

contained in, or derived from, this report. 

 

 

© 2019, Daniel Boey Mun Weng. All right reserved. 

  



v 

ABSTRACT 

 

Autonomous wheelchair promises a safer and convenient mobility for disabled and 

senior citizens. Odometry is to estimate position change over time. It uses data from 

one or more sensors such as encoder attached to wheel and IMU. Odometry is 

important for navigation of wheelchair. Odometry via wheel rotary encoder is prone 

to random error such as wheel slip on slippery or uneven surface, and inaccurate 

measurement of wheelbase and wheel diameter use to calculate position. Meanwhile, 

IMU data are noisy and once integrated to obtain position and orientation, their values 

drift. The IMU comprises of 3 separate sensors: accelerometer which measures 

acceleration and gyroscope which measures angular velocity and magnetometer which 

measures direction of magnetic north. The IMU outputs acceleration, angular velocity 

and magnetic field values based on the orientation of the sensor which is referred to as 

sensor coordinate system. In order to compute meaningful position of the wheelchair, 

the sensor coordinate system has to be aligned with the wheelchair coordinate system. 

Rotation matrix is applied to the IMU data to transform the IMU data. IMU data that 

are transformed is then filtered to reduce noise. When the sensor is stationary, the 

output data after the exponential filter still fluctuates between ±0.01 degree/s. Over 

time, the integrated reading of the gyro sensor will drift due to the fluctuation. Since 

the fluctuation is very small, it can be assumed to be zero to reduce drift. Next, the 

data from encoder, accelerometer and gyroscope are combined together with Kalman 

filter. Test was performed to obtain position from encoder, IMU and sensor fusion 

output and the position results were compared to the truth. The resulting fused position 

reduced error by 76.5%. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Odometry is to estimate position change over time. It is commonly used in robot, 

smartphone, drone and autonomous driving technologies to estimate their position 

relative to the starting location. Odometry uses data from one or more sensors such as 

encoder attached to wheel and IMU. Odometry is important for navigation of robots 

and autonomous driving technologies. Odometry does not provide absolute position 

but position estimate relative to a known point, usually the starting point. Odometry is 

commonly used alongside sensors which provide absolute position such as GPS, 

LIDAR, camera vision. Sensors used for odometry have higher data rate and are lower 

cost compared to absolute position sensors. 

A rotary encoder which measures rotation in degrees may be attached to the 

wheel of the wheelchair through a pulley and belt. By knowing the diameter of the 

wheel, the distance travelled by each wheel can be calculated. Simple trigonometry is 

then used to calculate the 2D position and orientation of the wheelchair relative to the 

starting location. 

A 9-DOF IMU comprises of 3 different sensors in one module: accelerometer, 

gyroscope and magnetometer. However, only the accelerometer and gyroscope were 

used in this project. The accelerometer outputs 3D linear acceleration and can be 

integrated twice to obtain 3D position. Next, the gyroscope outputs angular velocity 

and needs to be integrated once to obtain 3D orientation: pitch, roll, yaw. 

Odometry is prone to error due to the characteristic of the sensor and also the 

environment and application of the sensor. For rotary encoder, a slippery surface or 

objects on the ground may reduce accuracy. Whereas, IMU data are noisy and 

integrating the raw data to obtain position and orientation will amplify the error. It 

results in position and orientation drift even though the wheelchair is stationary. 

Each sensor provides different types of information about the tracked object 

position with differing accuracies especially in different conditions (Wilbur, 2017). 

They can be used together in order to obtain a more accurate odometry. Sensor fusion 

combines two or more sensors where each sensor has different contribution weightage 

to the resulting odometry depending on their accuracy. 
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1.2 Importance of the Study 

Sensor fusion is the combination of measurements from multiple sensors to obtain a 

more accurate measurement. It is applied in many automated processes such as 

airplane autopilot system, drones and autonomous vehicles.  Sensors are prone to 

inaccuracy in varying conditions. When one sensor has high uncertainty in certain 

condition, other sensors may compensate for it and still output an accurate 

measurement. 

 The position of a subject whether a vehicle, drone or wheelchair is important 

for navigation. Position acquisition can be differentiated into two types, relative and 

absolute position. Relative position is synonym to odometry while absolute position is 

the exact position which is acquired from systems such as GPS, LIDAR, vision. 

Sensors to obtain absolute position has a lower measurement rate (< 50 Hz) and are 

costlier compared to odometry. Hence, odometry is often used alongside absolute 

position in acquiring accurate position.   

 

1.3 Problem Statement 

Odometry is based on relative position and the accuracy of the odometry is affected 

by the sensor’s limitation and odometry method in varying conditions. Odometry via 

wheel rotary encoder is prone to random error such as wheel slip on slippery or uneven 

surface, and inaccurate measurement of wheelbase and wheel diameter use to calculate 

position. Meanwhile, IMU data are noisy and once integrated to obtain position and 

orientation, their values drift. Drifting position values will show that the wheelchair is 

moving when in actual, it is stationary. However, IMU sensor is not prone to 

inaccuracy due to varying surface condition unlike motor encoder. 

 Errors in odometry compound on each other since they are based on relative 

position, and not absolute position. A small initial error will cause a large error after a 

duration even with no additional error after the initial error. In conclusion, position 

acquisition through odometry cannot be done accurately with only one sensor. 

 

1.4 Aims and Objectives 

The aim of this project is to reduce odometry error in wheelchair by using more than 

one sensor. The objective of this project is to: 

a) Compute and process raw data from accelerometer and gyroscope to obtain 

accurate position and orientation information of the wheelchair. 
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b) Apply sensor fusion method to combine data from wheel rotary encoder, 

accelerometer and gyroscope. 

 

1.5 Scope and Limitation of the Study 

The scope of this project is to compute position and orientation information from IMU. 

Then, sensor fusion is applied to combine data of the IMU and motor encoder. The 

programming language to be used is C++. ROS will be used to integrate all of the 

program components together and also as a robot visualisation tool. Arduino is also 

use to quickly test sensor fusion methods or various filters. 

 In this project, the data from sensors to be fused together are limited to 

accelerometer, gyroscope and wheel rotary encoder. The project covers data 

processing of IMU to obtain position and orientation. However, position and heading 

derived from wheel rotary encoder was previously done by another student for his final 

year project. Hence, only derivation of position and orientation from IMU and not 

wheel rotary encoder will be covered in this project.
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 IMU Data Transformation 

The IMU comprises of 3 separate sensors: accelerometer which measures acceleration 

and gyroscope which measures angular velocity and magnetometer which measures 

direction of magnetic north. These three components in the IMU allows the 3-

dimensional (x, y, z-axis) position of a subject to be compute. 

The IMU outputs acceleration, angular velocity and magnetic field values 

based on the orientation of the sensor which is referred to as sensor coordinate system. 

In order to compute meaningful position of the wheelchair, the sensor coordinate 

system has to be aligned with the wheelchair coordinate system. 

The orientation of the sensor can be aligned with the wheelchair by two 

methods: physically or by software calibration. The former requires a custom-made 

precision jig/mount to physically secure the sensor to the wheelchair. Designing and 

fabricating mount for the sensor is both time consuming and costly. In addition, it is 

difficult to install the sensor in perfect orientation with the wheelchair. 

Therefore, software calibration may be performed so that the sensor can be 

installed freely in different wheelchairs. An algorithm is used to automatically 

calibrate and normalise the sensor values in order to have accurate readings. The 

algorithm will transform the sensor values in the sensor coordinate frame into the 

wheelchair coordinate system. 

There are two methods to transform the coordinate frames: rotation matrix and 

quaternion. 
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2.1.1 Rotation Matrix (Euler Angle) 

Euler angle is used to represent 3-dimensional orientation of the wheelchair using a 

combination of three rotations about the x, y, z-axes. In the wheelchair coordinate 

frame, the x-axis is pointing out towards the front of the wheelchair, y-axis towards 

the right side and z-axis downwards. Roll (∅) is along the x-axis, pitch (θ) is along the 

y-axis and yaw (ψ) is along z-axis. Figure 2.1 shows the wheelchair coordinate frame. 

 

The acceleration values in wheelchair coordinate frame is computed through the 

product of rotation matrix, R and acceleration values from the sensor, 𝑎𝑠 as shown in 

the Equation 2.1 below. 

 

[

𝑎𝑥, 𝑤

𝑎𝑦, 𝑤

𝑎𝑧, 𝑤

] = 𝑅 ∙ [

𝑎𝑥,𝑠

𝑎𝑦,𝑠

𝑎𝑧,𝑠

]     (2.1) 

 

where 

𝑎𝑤 = acceleration in wheelchair coordinate frame, g 

𝑎𝑠 = acceleration in sensor coordinate frame, g 

 

𝑅 =  𝑅∅
𝑥 ∙ 𝑅𝜃

𝑦
∙ 𝑅𝜓

𝑧      (2.2) 

 

Figure 2.1: Wheelchair coordinate frame 

 



6 

 

𝑅∅
𝑥 = [

1 0 0
0 𝑐𝑜𝑠 (∅) −sin (∅)
0 sin (∅) 𝑐𝑜𝑠 (∅)

]   (2.3) 

 

𝑅𝜃
𝑦

= [
𝑐𝑜𝑠 (𝜃) 0 −sin (𝜃)

0 1 0
sin (𝜃) 0 𝑐𝑜𝑠 (𝜃)

]   (2.4) 

 

𝑅𝜓
𝑧 = [

𝑐𝑜𝑠 (𝜓) sin (𝜓) 0
−sin (𝜓) 𝑐𝑜𝑠 (𝜓) 0

0 0 1

]   (2.5) 

 

𝑅 = [

𝑐(𝜃)𝑐(𝜓) −𝑐(𝜃)s(𝜓) −s(𝜃)

− s(∅) s(𝜃) c(𝜓) + 𝑐(∅)s(𝜓) s(∅) s(𝜃) s(𝜓) + 𝑐(∅)𝑐(𝜓) −s(∅)𝑐(𝜃)

c(∅) 𝑠(𝜃) c(𝜓) + s(∅) s(𝜓) −𝑐(∅) s(𝜃) s(𝜓) + s(∅) c(𝜓) 𝑐(∅)𝑐(𝜃)

] (2.6) 

 

where 

c = cos 

s = sin 

 

For the angular velocity, it can be transformed using the transformation matrix 

as shown in Equation 2.7 below. 

 

[
∅̇

�̇�
�̇�

] = [

𝑝 + 𝑞 𝑠𝑖𝑛(∅) tan(𝜃) + 𝑟 cos(∅)𝑡𝑎𝑛(𝜃)

𝑞 cos(∅) − 𝑟 𝑠𝑖𝑛(∅)

𝑞 sin(∅)/ cos(𝜃) + 𝑟 cos(∅)/ 𝑐𝑜𝑠(𝜃)
]   (2.7) 

 

where 

p = x-axis gyro sensor output 

q = y-axis gyro sensor output 

r = z-axis gyro sensor output 

 

In the rotation matrix, ∅, 𝜃, 𝜓 represent the angles of rotation between the 

sensor coordinate frame and wheelchair coordinate frame. 
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The angle of rotation between the sensor coordinate frame and wheelchair 

coordinate frame are calculated by measuring the gravity vector components on each 

axis of the accelerometer as shown in Figure 2.2 below. 

 

For vertical orientation angles 𝜙 and 𝜃, the gravity vector components on each 

axis of the accelerometer are measured while the wheelchair is stationary and on a flat 

surface. 

𝜙 = 𝑡𝑎𝑛−1 (
𝑔𝑦

𝑔𝑧
)    (2.8) 

 

 

Figure 2.3: Rotations ∅, 𝜃, 𝜓 between coordinate frames 

 

Figure 2.2: Sensor coordinate frame 
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𝜃 = 𝑡𝑎𝑛−1 (
𝑔𝑥

√𝑔𝑦
2+𝑔𝑧

2
)    (2.9) 

 

After the vertical orientation angles 𝜙 and 𝜃 are obtained, the rotation matrixes 

𝑅∅
𝑥 and 𝑅𝜃

𝑦
 are used to calculate the new coordinate system where the z-axis of the 

sensor is aligned with the z-axis of the wheelchair. 

 

𝑎𝑤 = 𝑅∅
𝑥 ∙ 𝑅𝜃

𝑦
∙ 𝑎𝑠    (2.10) 

 

The angle 𝜓 is obtained to align the x-axis of the sensor with the wheelchair’s 

x-axis (forward). The acceleration vector in both the x and y-axis are recorded while 

the wheelchair is moving forward and the angle 𝜓 is compute with the equation below. 

 

𝜓 =  𝑐𝑜𝑠−1 (
𝑎𝑥

√𝑎𝑥
2+𝑎𝑦

2
)   (2.11) 

The calibration process of obtaining the angles between frames ∅, 𝜃, 𝜓 is only 

needed to be performed once. The calibration values can then be stored and recalled. 

The disadvantage of using rotational matrix is that it experiences gimbal lock. 

Gimbal lock occurs when the pitch angle is at ±90°. At this angle, the yaw axis and 

roll axis coincide therefore the sensor is unable to track orientation. 

However, in our application the wheelchair pitch angle will not come close to 

±90° unless the wheelchair flips upwards/downwards. 

Gimbal lock can be avoided by representing angle in quaternions instead of 

Euler angles which will be discussed next. 

 

2.1.2 Quaternion 

Angle can also be represented as quaternion for 3D transformation. Four quaternion 

representation are first calculated. Then a matrix is used to calculate the rotation, R. 

Similar to rotation matrix method, Equation 2.16 will be multiplied by acceleration 

component to compute the transformed acceleration. 

𝑞𝑜 = 𝑐𝑜𝑠(𝛼 2⁄ )    (2.12) 
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𝑞1 = 𝑠𝑖𝑛(𝛼 2⁄ )𝐴𝑛𝑜𝑟𝑚,𝑥   (2.13) 

 

𝑞2 = 𝑠𝑖𝑛(𝛼 2⁄ )𝐴𝑛𝑜𝑟𝑚,𝑦   (2.14) 

 

𝑞3 = 𝑠𝑖𝑛(𝛼 2⁄ )𝐴𝑛𝑜𝑟𝑚,𝑧   (2.15) 

 

𝑅 =  [

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞0𝑞2 + 𝑞1𝑞3)

2(𝑞1𝑞2 + 𝑞0𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞0𝑞1 + 𝑞2𝑞3) 1 − 2(𝑞1
2 + 𝑞2

2)

] (2.16) 

 

 The advantages of using quaternion is that it isn’t affected by gimbal lock and 

it has fewer equations to compute. 

 

2.2 Filter 

The data obtained from IMU is inherently noisy and the values fluctuates close to the 

true value at high frequency. A filter may be used to obtain a cleaner data with less 

fluctuations. 

 

2.2.1 Exponential Filter 

An exponential filter is used to smooth out time series data. The filter’s output, x, is 

the weighted average of the current data and previous data, with the weighting 

decreasing exponentially. A higher weightage would be given to the most recent data. 

As time passes, the weightage of older data decreases exponentially as illustrated in 

the Figure 2.3 below. 
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The exponential filter equation is as below. 

 

𝑥𝑛 = 𝛼 ∙ 𝑦𝑛 + (1 − 𝛼) ∙ 𝑥𝑛−1    (2.17) 

 

where 

𝑥𝑛 = smoothed value 

𝑥𝑛−1 = previous smoothed value 

𝑦𝑛 = new measurement 

𝛼 = weightage 

 

2.2.2 Assume Zero 

When the sensor is stationary, the output data after the exponential filter still fluctuates 

between ±0.01 degree/s. Over time, the integrated reading of the gyro sensor will drift 

due to the fluctuation. Drifting occur when absolute angle is increasing or decreasing 

even though the sensor is stationary. Since the fluctuation is very small, it can be 

assumed to be zero to reduce drift. This assumption may however affect reading during 

actual rotation even though the value we assume to be zero is small. 

 

 

Figure 2.4: Exponential diminishing weightage 
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2.3 Sensor Fusion 

Sensor fusion algorithm is used to combine information from two or more sensors. It 

is used to obtain a more accurate information when accurate information cannot be 

obtained from just one sensor. Hence, information from several sensors are used to 

estimate the current state. 

 

2.3.1 Kalman Filter 

Kalman filter is used to predict state and as a smoothing filter. It also can be used to 

combine information from several sensors to work in unison. The states are 

represented with a normal distribution. Figure 2.4 shows the normal distribution curve 

of the predicted state estimate and measurement. Optimal state estimate is the output 

of the Kalman filter. Besides that, Kalman filter is efficient and requires little memory 

as it stores little information. The filter only requires a few matrix operations. Its 

application ranges from space, robotics, navigation, weather forecast to economics.  

 

The basic Kalman filter can only be used for linear functions. An iteration of 

the Kalman filter, Extended Kalman filter which utilise Jacobian function and Taylor 

series is able to compute non-linear functions. 

The equations of Kalman filter can be categorised as prediction and update.  

Equation 2.18 and Equation 2.19 are to predict the state and error covariance 

respectively in absent of sensor measurement input. Equation 2.20 is to compute the 

 

Figure 2.5: normal distribution curve of estimates and measurement 
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Kalman gain which is used in equation 2.21 to update the estimate. Lastly, Equation 

2.22 update the error covariance.  

 

Prediction 

�̂�𝑘 = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘    (2.18) 

 

𝑃𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄    (2.19) 

 

Update 

𝐺𝑘 = 𝑃𝑘𝐶𝑇(𝐶𝑃𝑘𝐶𝑇 + 𝑅)−1   (2.20) 

 

�̂�𝑘 = �̂�𝑘 + 𝐺𝑘(𝑧𝑘 − 𝐶�̂�𝑘)   (2.21) 

 

𝑃𝑘 = (𝐼 − 𝐺𝑘𝐶)𝑃𝑘    (2.22) 

 

where 

�̂�𝑘 = current state estimate 

𝐴 = state transition function 

�̂�𝑘−1 = previous state estimate 

𝐵 = scale of control signal 

𝑢𝑘 = control signal 

𝑃𝑘 = prediction error or uncertainty 

𝑄 = IMU Sensor noise 

𝐺𝑘 = Kalman gain 

𝐶 = map for prediction to measurement state 

𝑅 = noise 

𝑧𝑘 = current observation (sensor measurement) 

 

The Kalman filter works by repetitively calculating the prediction and update. 

However, it is not compulsory to run both prediction and update one after the other. 

Prediction is used whenever sensor measurement is not available. It will estimate the 

current state position of the wheelchair based on previous state position, �̂�𝑘−1 and state 

transition function, 𝐴 . Whenever sensor measurement is available, the update 
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equations will be calculated using the current sensor measurement, 𝑧𝑘 . Figure 2.5 

shows the cycle of the Kalman filter. 

 

 

The Kalman gain, 𝐺𝑘   affects how much weightage is given to the sensor 

measurement, 𝑧𝑘 or previous state estimate, �̂�𝑘−1. If the gain is 0, the previous state 

estimate   is the current estimate. If the gain is 1, the current estimate would be the 

current sensor measurement. The Kalman gain, 𝐺𝑘 is obtained from the prediction 

error, 𝑃𝑘 . If prediction error is 0, the Kalman gain, 𝐺𝑘   will be 0 resulting in an 

unchanged current state estimate. Which makes sense, because the state estimate 

should not be changed if the prediction is accurate. 

The prediction error, 𝑃𝑘 is calculated recursively from the previous prediction 

error, 𝑃𝑘−1. when 𝐺𝑘= 0, we have 𝑃𝑘 = 𝑃𝑘−1. So, just as with the state estimation, a 

zero gain means no update to the prediction error (Levys, 2016). On the other hand, 

when 𝐺𝑘 = 1, 𝑃𝑘 = 0, maximum gain corresponds to zero prediction errors. Hence, 

the current observation alone is used to update the current state. 

 In the case of this project, the current state estimate, �̂�𝑘outputs a matrix of 

position and rotation information {x, y, yaw, pitch, roll}. However, each sensor used 

 

Figure 2.6: Kalman filter prediction and update cycle 
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may only output a certain information, for example {x, y} only. Hence, the constant C 

is used to map the prediction state to the measurement state.  

 

2.4 Summary 

IMU data transformation is needed to transform from sensor coordinate frame to 

wheelchair coordinate frame. The methods are rotation matrix and Quaternion. Filter 

is used to clean out noisy data and obtain a more accurate position and orientation 

information from the IMU. Sensor fusion fuses data from two or more sensors. Kalman 

fusion involves five prediction and update equation which is used to combine data 

from multiple sensors.
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CHAPTER 3 

 

METHODOLOGY, WORK PLAN & PRELIMINARY TEST 

 

3.1 Hardware 

The wheelchair used in this study is driven by two DC motors. The axles of the motors 

are directly connected to front wheels. At the rear, there are two smaller caster wheels 

which are free to rotate in the z-axis when the wheelchair is steered, similar to a 

shopping mall trolley. The wheelchair steers by differential power output to the front 

wheels. 

The motorised wheelchair is equipped with rotary encoders to measure rotation 

of the front wheels. On both front wheels, belt and pulleys translate the rotations of the 

wheels to the rotary encoder. The rotary encoder brand and model are ESB Electronics 

Industries, type B 106 23850. Its operating voltage is between 5V to 24V and a current 

draw of around 120mA. The resolution of the rotary encoder is 500 pulse per rotation 

at a maximum measurement rate of 100kHz. Figure 3.1 shows the rotary encoder used. 

 

IMU sensor used in the wheelchair is an MPU-9250 9-axis device. It includes 

a gyroscope, accelerometer and magnetometer within a 3×3×1mm package. The MPU-

9250 consumes a current of only 9.3µA. The gyroscope may be set to measure 3-axis 

angular rate at 3 different scale range of ±250, ±500, ±1000 and ±2000°/sec. 

 

Figure 3.1: Rotary Encoder 
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Meanwhile, the accelerometer output can be set to a range of ±2g, ±4g, ±8g and ±16g. 

Figure 3.2 shows the MPU-9250 used. 

 

3.2 Software 

The programming language that is used is C++. Additionally, Robotics Operating 

System (ROS) is used as a wrapper for the programs. ROS offers a message passing 

interface that provides inter-process communication. Program components of a 

programming project can be linked to work together easily with ROS. ROS represents 

each program components as nodes and each node are able to publish and subscribe to 

each other to send and receive data. ROS also features a visual map to view the network 

of nodes as shown in Figure 3.3.  

 

 

 

Figure 3.3: ROS visual map 

 

Figure 3.2: MPU-9250 
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ROS only runs on Linux and MacOS and supports C++ and Python. The IDE 

used to program the wheelchair is g++. However, it is open source and no license fee 

is required for commercial usage. Another advantage of ROS is the ability to run 

simulation of robots through Gazebo. An example of simulation with Gazebo is shown 

in Figure 3.4. 

3.3 Preliminary Test 

In order to validate the methods to transform the IMU data and several filters, a 

prototype was made with an Arduino Uno, MPU6050 6-DOF IMU sensor and OLED 

display. It is programmed in Arduino’s C-based programming language. The rotation 

matrix method, exponential filter and assume zero was tested. 

 Figure 3.5 shows the MPU5060 IMU (right) and OLED (left) attached to the 

prototype shield. The prototype shield was connected to the Arduino Uno below it. 

The OLED displays accelerometer data at the top row and absolute angle of the 

gyroscope below. 

 

Figure 3.4: Simulation with Gazebo 
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3.3.1 Rotation Matrix 

The rotation matrix method to transform accelerometer and gyroscope values 

discussed in chapter 2 was tested. The rotation matrix transformation was tested with 

various sensor orientation. To calibrate the heading, one side of the sensor is tilted 

downwards to simulate positive acceleration. The side that is tilted downwards is the 

new x-axis. 

 The gravitation acceleration is not removed in the accelerometer reading. 

Therefore, the transformation method can be proven to be correct when the z-axis has 

an acceleration of 1.00g while the x-axis and y-axis are 0.00g when orientation is 

unchanged after calibration. 

 The acceleration test results for various orientation are tabulated in Table 3.1 

below.   

Table 3.1: Transformed acceleration for various orientation 

Sensor 

orientation 

x-axis acceleration 

(g) 

y-axis acceleration 

(g) 

z-axis acceleration 

(g) 

 

0.19 -0.27 1.06 

 

 

Figure 3.5: Arduino Prototype 



19 

Table 3.1: (Continued) 

 

-0.05 0.27 1.08 

 

-0.07 -0.30 1.03 

 

-0.01 0.05 1.12 

 

 Table 3.1 shows that the accelerations are transformed but there were errors in 

the x-axis and y-axis acceleration when orientation of sensor is not horizontal. 

 The rotation matrix was also tested to transform the gyroscope data. To validate 

whether the rotation matrix had correctly transformed the gyroscope data, it was 

needed to be integrated into absolute angle. Hence, it will be discussed in the next sub-

topic 3.3.2. 

  

3.3.2 Integrating & Filtering Gyroscope Data 

After transforming the gyroscope data, it has to be integrated to obtain absolute angle. 

When the raw gyro data is integrated, the angle will drift. Drifting occurs when 

absolute angle is increasing or decreasing even though the sensor is stationary. It is 

due to noisy raw gyro data. The gyro data which was noisy was cleaned with an 

exponential filter with weightage, 𝛼 of 0.6 when the angular velocity is greater than 

0.2 degree/s. When the angular velocity is below 0.1 degree/s, a stronger filter is used 

by decreasing the weightage to 0.1. Two different weightages were used to obtain very 

clean values (reduce drift) at low angular velocity but have a good response at higher 

angular velocity. If a low weightage is used even at high angular velocity, the absolute 

angle calculated would not be accurate. 

Even with an exponential filter, the angular velocity data showed a small 

angular velocity even though the sensor was stationary. Although the angular velocity 

when stationary was small, it cannot be ignored as integrating it to obtain the absolute 

value will cause drifting. However, the angular velocity is small enough to assume as 

zero without affecting reading accuracy during actual rotation. Hence, in the program, 

any angular velocity below 0.01°/s is considered to be 0. 
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Table 3.2 shows the transformed and filtered gyroscope data over a duration of 

time while stationary. 

 

Table 3.2: Filtered gyroscope data over a duration of time while stationary 

Rotation axis 
0 minute 1 minute 10 minutes 30 minutes 

Absolute angle (degrees, °) 

x-axis 0.00 0.00 0.00 0.00 

y-axis 0.00 -0.01 -0.03 -0.06 

z-axis 0.00 -0.01 -0.02 0.22 

 

 The results in Table 3.2 shows that the absolute angle after filtering the raw 

data from the gyroscope produces small error which is less than 0.25°. 

 The transformation of gyro data using rotation matrix discussed in 3.3.1 was 

verified after integration and filtering. The sensor with various initial orientation was 

rotated along the x-axis, y-axis, and z-axis by 45° (anti-clockwise) along the z-axis 

with the help of a protractor and turntable. If there isn’t any error during rotation, the 

x-axis and y-axis angle should remain at 0.00° while the z-axis at 45°. The resulting 

angle after rotation is tabulated in Table 3.3. 

 

Table 3.3: Angle after 45° (anti-clockwise) rotation at various initial orientation 

Initial Sensor 

orientation 

x-axis angle (°) y-axis angle (°) z-axis angle (°) 

 

-5.12 -2.07 41.05 

 

-4.12 -3.63 40.05 

 

-5.05 -2.35 42.05 

 

7.05 -1.26 40.31 
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 Table 3.3 shows that both x-axis and y-axis angle are not 0.00°. There were 

also errors in the z-axis angle for all orientation. 

 

3.4 Summary 

The wheelchair in this study are driven by 2 DC motors at the front. It steers though 

differential power between the 2 wheels. The sensors used for odometry are rotary 

encoders and MPU-9250. C++ is used as the programming language and ROS as a 

wrapper to integrate the programs together and add functionality. The quaternion 

method for IMU data transformation and Kalman fusion will be tested next. 

The rotation matrix method is able to transform the acceleration data from 

sensor coordinate frame to sensor coordinate frame. However, the acceleration data 

had an error within ±0.31 g for acceleration.  

The gyroscope was transformed with rotation matrix method. Next, the data 

were filtered with exponential filter and assume zero for angular velocity below 0.01°/s. 

The resulting angle drifted by a maximum of 0.22° after 30 minutes. The rotation test 

for the gyroscope have a maximum error of 7.05° when rotated 45°.



22 

CHAPTER 4 

 

2 RESULTS 

 

4.1 Introduction 

The programming for the wheelchair was done in sequence to test each component and 

validate that they are working before continuing with other components. The 

calibration of the IMU sensor was first tried out. Then the IMU data are filtered before 

fusing with encoder measurements. 

  

4.2 Rotation Matrix 

The rotation matrix discussed in chapter 2 was used to transform accelerometer and 

gyroscope values. To calibrate the heading, the front of the wheelchair was tilted 

downward to simulate positive acceleration.  

To test the performance of the rotation matrix for accelerometer, the wheelchair 

is pushed forward for 2m after calibration. The average distance for the first meter is 

tabulated in Table 4.1 below. 

 

Table 4.1: Transformed acceleration 

Test no. Average x-axis 

acceleration (m/s2) 

Average y-axis 

acceleration (m/s2) 

Average z-axis 

acceleration (m/s2) 

1 0.13840 0.00133 9.80591 

2 0.28451 0.00175 9.81421 

3 0.17944 0.00124 9.80259 

  

 Acceleration components in Table 4.1 shows that acceleration is measured in 

x-axis and not in y-axis while wheelchair is pushed forward. z-axis acceleration is 

close to gravitational acceleration. 

 For gyroscope, the raw angular velocities were also transformed using rotation 

matrix, Equation 2.7. The wheelchair was rotated 90° clockwise and the angular 

displacement in all 3-axis were recorded as shown in Table 4.2. 
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Table 4.2: Transformed angular displacement 

Test no. Average x-axis 

angular 

displacement (°) 

Average y-axis 

angular 

displacement (°) 

Average z-axis 

angular 

displacement (°) 

1 0.0020 0.0038 90.01 

2 0.0052 0.0042 89.98 

3 0.0019 0.0012 90.03 

 

 Table 4.2 shows that angular displacements were close to 0° for x-axis and y-

axis. For z-axis, displacement is close to 90°. The gyroscope angular displacement 

measurements are accurate and correctly transformed. 

 After the rotation matrix component of the program was tested, it was 

programmed to run when the overall wheelchair program was first launched. On 

launching, the program will first calibrate the orientation of IMU in the z-axis with the 

wheelchair stationary. Then, the program will prompt the user to tilt the front of the 

wheelchair downwards before calibrating in the x-axis and y-axis. Once completed, 

the calibration is completed. 

  

4.3 Assume Zero Filter 

The accelerometer and gyroscope measurements were recorded when the wheelchair 

was stationary. The maximum values were used as a threshold. When the IMU 

measurements were smaller than the threshold, the measurements were considered to 

be zero. For accelerometers, measurements between -0.005 m/s2 and 0.005 m/s2 were 

assumed to be zero Table 4.3 and Table 4.4 show the comparison between no filter and 

with filter when the wheelchair is stationary. 

 

Table 4.3: Assume zero filter (Accelerometer) 

Test no. Without filter With Filter 

Average x-axis 

acceleration 

(m/s2) 

Average y-axis 

acceleration 

(m/s2) 

Average x-axis 

acceleration 

(m/s2) 

Average y-axis 

acceleration 

(m/s2) 

1 0.00095 0.00145 0.0000 0.0000 
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Table 4.3: (Continued) 

2 0.00129 0.00190 0.0000 0.0000 

3 0.00104 0.00131 0.0000 0.0000 

 

For gyroscope, measurements in z-axis between -0.0005 °/s and 0.0005 °/s 

were assumed to be zero. Table 4.4 shows unfiltered and filtered measurements for 

gyroscope in the z-axis. 

 

Table 4.4: Assume zero filter (Gyroscope) 

Test no. Without filter With Filter 

Average z-axis angular 

velocity (°/s) 

Average z-axis angular 

velocity (°/s) 

1 0.00025 0.00000 

2 0.00029 0.00000 

3 0.00004 0.00000 

 

4.4 Sensor Fusion 

Once the IMU measurements were calibrated and filtered, they were fused with 

encoder measurements. Kalman filter was used to combine all the measurements 

together. 

 The wheelchair was pushed in a rectangular shaped route around concourse 

area of KB 7-floor of UTAR. The route measured 5.4 m in length and 1.8 m in width. 

Table 4.5 shows the end position of the wheelchair from encoder measurement, IMU 

measurement, fused position, and truth. 

 

Table 4.5: End position of wheelchair 

Truth (m, m) Encoder (m, m) IMU (m, m) Fused (m, m) 

(0, 0) (0.3515, 0.7276) (4.7480, -28.0132) (-0.1381, -0.1306) 

 

Figure 4.1 shows the position of the wheelchair from encoder measurement, 

IMU measurement, fused position, and truth. 
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Figure 4.1: Measurement of Wheelchair Position 

 

The position derived from IMU sensor is inaccurate as shown in Figure 4.2. 

The orientation of the IMU sensor needs to remain the same throughout measurement. 

When the sensor tilts, the accelerometer will include a fraction of gravitational 

acceleration depending on how much it tilts in a given axis. Sensor may tilt due to 

uneven floor or when the sensor mount is insecure. 

 

Figure 4.2: Measurement of Wheelchair Position (IMU) 
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The error in distance between truth and encoder, IMU and fused end position 

are shown in Table 4.6 below. 

 

Table 4.6: Error in end position of wheelchair 

Truth (m) Encoder (m) IMU (m) Fused (m) 

0 0.80802 28 0.19005 

 Figure 4.1 shows that measurement of position from accelerometer has very 

large error. However, the measurement of angular displacement from the gyroscope is 

accurate. The encoder produces accurate displacement measurements but when the 

wheelchair rotates, the encoder angular displacement measurements are inaccurate. 

Sensor fusion combines sensor measurements that are higher in accuracies together to 

output an overall more accurate position. From table 4.5 sensor fusion reduced the 

error of encoder position by 76.5%. 

 

4.5 Summary 

The accelerometer and gyroscope data from the IMU sensor were transformed with 

rotation matrix calculation. The results showed that the measurements from each axis 

of the accelerometer and gyroscope were now aligned to the wheelchair coordinate 

frame. The assume zero filter reduced noise of filter while the wheelchair is stationary. 

The IMU measurements drifts lesser. Sensor fusion combined data from encoder and 

IMU and produced a more accurate final position of the wheelchair. Error was reduced 

by 76.5% through sensor fusion.
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

IMU raw data was transformed with rotation matrix so that the output measurements 

of the accelerometer and gyroscope are aligned to the wheelchair coordinate frame. 

The IMU data was then filtered to reduce drift. 

 Sensor fusion with Kalman filter was used to combine encoder measurement 

and IMU data. Results of position and orientation from the encoder were accurate for 

displacement but not rotation. Meanwhile, IMU measurement produced a more 

accurate rotation measurement. The resulting fused position reduced error by 76.5%. 

 

5.2 Recommendations 

Measurement from IMU may be improved by including compensation for uneven floor. 

The angular displacement on the x-axis and y-axis may be used for calculation to 

remove gravitational acceleration when the sensor is tilted. Additionally, more than 

one IMU sensor may be used and the average measurements may output a more 

accurate position and orientation. The IMU mount may be redesigned to ensure that it 

it is rigidly secured to the wheelchair. 

 Position derived through odometry are prone to build up in error over time. 

Sensors that outputs absolute position such as LIDAR and GPS may be fused with 

encoder and IMU to reduce error. 
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APPENDICES 

 

APPENDIX A: Tables 

 

Table 3.1: Transformed acceleration for various orientation 

Sensor 

orientation 

x-axis acceleration 

(g) 

y-axis acceleration 

(g) 

z-axis acceleration 

(g) 

 

0.19 -0.27 1.06 

 

-0.05 0.27 1.08 

 

-0.07 -0.30 1.03 

 

-0.01 0.05 1.12 

 

Table 3.2: Filtered gyroscope data over a duration of time while stationary 

Rotation axis 
0 minute 1 minute 10 minutes 30 minutes 

Absolute angle (degrees, °) 

x-axis 0.00 0.00 0.00 0.00 

y-axis 0.00 -0.01 -0.03 -0.06 

z-axis 0.00 -0.01 -0.02 0.22 

 

Table 3.3: Angle after 45° (anti-clockwise) rotation at various initial orientation 

Initial Sensor 

orientation 

x-axis angle (°) y-axis angle (°) z-axis angle (°) 

 

-5.12 -2.07 41.05 
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Table 3.3 (Continued) 

 

-4.12 -3.63 40.05 

 

-5.05 -2.35 42.05 

 

7.05 -1.26 40.31 

 

Table 4.1: Transformed acceleration 

Test no. Average x-axis 

acceleration (m/s2) 

Average y-axis 

acceleration (m/s2) 

Average z-axis 

acceleration (m/s2) 

1 0.13840 0.00133 9.80591 

2 0.28451 0.00175 9.81421 

3 0.17944 0.00124 9.80259 

 

Table 4.2: Transformed angular displacement 

Test no. Average x-axis 

angular 

displacement (°) 

Average y-axis 

angular 

displacement (°) 

Average z-axis 

angular 

displacement (°) 

1 0.0020 0.0038 90.01 

2 0.0052 0.0042 89.98 

3 0.0019 0.0012 90.03 

 

Table 4.3: Assume zero filter (Accelerometer) 

Test no. Without filter With Filter 

Average x-axis 

acceleration 

(m/s2) 

Average y-axis 

acceleration 

(m/s2) 

Average x-axis 

acceleration 

(m/s2) 

Average y-axis 

acceleration 

(m/s2) 

1 0.00095 0.00145 0.0000 0.0000 

2 0.00129 0.00190 0.0000 0.0000 

3 0.00104 0.00131 0.0000 0.0000 
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Table 4.4: Assume zero filter (Gyroscope) 

Test no. Without filter With Filter 

Average z-axis angular 

velocity (°/s) 

Average z-axis angular 

velocity (°/s) 

1 0.00025 0.00000 

2 0.00029 0.00000 

3 0.00004 0.00000 

 

Table 4.5: End position of wheelchair 

Truth (m, m) Encoder (m, m) IMU (m, m) Fused (m, m) 

(0, 0) (0.3515, 0.7276) (4.7480, -28.0132) (-0.1381, -0.1306) 

 

Table 4.6: Error in end position of wheelchair 

Truth (m) Encoder (m) IMU (m) Fused (m) 

0 0.80802 28 0.19005 
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APPENDIX A: Program 

typedef enum publisherStatus 

{ 

    S_INIT, 

    S_CALI_XY, 

    S_CALI_Z, 

    S_READY 

} publisherStatus; 

 

int x = 0; 

 

void calibrateXY (library::Driver2Sensor sensor) 

{ 

    ros::Time t = ros::Time::now(); 

    // Publish IMU Data 

    sensor_msgs::Imu imu; 

 

    imu.header.stamp = t; 

    imu.header.frame_id = "base_imu"; 

 

    imu.linear_acceleration.x = sensor.accelerometer.x - accBias.x; 

    imu.linear_acceleration.y = sensor.accelerometer.y - accBias.y; 

    imu.linear_acceleration.z = sensor.accelerometer.z - accBias.z; 

 

    imu.angular_velocity.x = sensor.gyroscope.x - gyroBias.x; 

    imu.angular_velocity.y = sensor.gyroscope.y - gyroBias.y; 

    imu.angular_velocity.z = sensor.gyroscope.z - gyroBias.z; 

 

    //gyro XY calibrate 

    r_x = atan2(imu.linear_acceleration.y, imu.linear_acceleration.z); 

    accMag_yz = 

pow((pow(imu.linear_acceleration.y,2)+pow(imu.linear_acceleration.z,2)),0.5); 

    r_y = atan2(imu.linear_acceleration.z, accMag_yz); 
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    status = S_CALI_Z; 

} 

 

void calibrateZ (library::Driver2Sensor sensor) 

{ 

    static int count = 0; 

    static ros::Time t, prevt; 

 

    prevt = ros::Time::now(); 

    t = ros::Time::now(); 

     

    

    if(x == 0) 

    { 

        ROS_INFO("Push Forward"); 

 

        while((t - prevt).toSec() < 3) //wait ##s before calibration 

        { 

            t = ros::Time::now(); 

        } 

        ROS_INFO("Calibrating: Push Forward"); 

        x = 1; 

    } 

 

    //yaw correction angle 

     

    // Publish IMU Data 

    sensor_msgs::Imu imu; 

 

    imu.header.stamp = t; 

    imu.header.frame_id = "base_imu"; 
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    imu.linear_acceleration.x = sensor.accelerometer.x - accBias.x; 

    imu.linear_acceleration.y = sensor.accelerometer.y - accBias.y; 

    imu.linear_acceleration.z = sensor.accelerometer.z - accBias.z; 

 

    imu.angular_velocity.x = sensor.gyroscope.x - gyroBias.x; 

    imu.angular_velocity.y = sensor.gyroscope.y - gyroBias.y; 

    imu.angular_velocity.z = sensor.gyroscope.z - gyroBias.z; 

 

 

    acc_x = (cos(r_y)*imu.linear_acceleration.x)+(-

sin(r_y)*imu.linear_acceleration.z); 

    acc_y = (-

sin(r_x)*sin(r_y)*imu.linear_acceleration.x)+(cos(r_x)*imu.linear_acceleration.y)+(

-cos(r_y)*sin(r_x)*imu.linear_acceleration.z); 

 

    accC_x += acc_x; 

    accC_y += acc_y;   

     

    count++; 

    

    if(count == 100) 

    { 

        accC_x /= 100; 

        accC_y /= 100; 

 

        accMag_yz = sqrt(pow(accC_x,2)+pow(accC_y,2)); 

        r_z = acos(accC_x/accMag_yz); 

 

        ROS_INFO("Done Calibrating"); 

 

        prevt = ros::Time::now(); 

        t = ros::Time::now(); 
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        while((t - prevt).toSec() < 5) //wait 5s after calibration 

        { 

            t = ros::Time::now(); 

        } 

 

        status = S_READY; 

    } 

} 

 

 

void publish(library::Driver2Sensor sensor) 

{ 

    imu.linear_acceleration.x = sensor.accelerometer.x - accBias.x; 

    imu.linear_acceleration.y = sensor.accelerometer.y - accBias.y; 

    imu.linear_acceleration.z = sensor.accelerometer.z - accBias.z; 

 

    imu.angular_velocity.x = sensor.gyroscope.x - gyroBias.x; 

    imu.angular_velocity.y = sensor.gyroscope.y - gyroBias.y; 

    imu.angular_velocity.z = sensor.gyroscope.z - gyroBias.z; 

 

    imuCorrected.linear_acceleration.x = 

(cos(r_z)*cos(r_y)*imu.linear_acceleration.x)+(-

cos(r_y)*sin(r_z)*imu.linear_acceleration.y)+(-sin(r_y)*imu.linear_acceleration.z); 

    imuCorrected.linear_acceleration.y = (((-

cos(r_z)*sin(r_x)*sin(r_y))+(cos(r_x)*sin(r_z)))*imu.linear_acceleration.x)+(((cos(r

_x)*cos(r_z))+(sin(r_x)*sin(r_z)*sin(r_y)))*imu.linear_acceleration.y)+(-

cos(r_y)*sin(r_x)*imu.linear_acceleration.z); 

    imuCorrected.angular_velocity.x = imu.angular_velocity.x + 

(imu.angular_velocity.y*sin(r_x)*tan(r_y)) + 

(imu.angular_velocity.z*cos(r_x)*tan(r_y)); 

    imuCorrected.angular_velocity.y = (imu.angular_velocity.y*cos(r_x)) - 

(imu.angular_velocity.z*sin(r_x)); 
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    imuCorrected.angular_velocity.z = 

(imu.angular_velocity.y*sin(r_x)/cos(r_y))+(imu.angular_velocity.z*cos(r_x)/cos(r_

y)); 

     

 

    if(imuCorrected.linear_acceleration.x < 0.05 && 

imuCorrected.linear_acceleration.x > -0.05) 

    { 

        imuCorrected.linear_acceleration.x = 0; 

    } 

 

    if(imuCorrected.linear_acceleration.y < 0.05 && 

imuCorrected.linear_acceleration.y > -0.05) 

    { 

        imuCorrected.linear_acceleration.y = 0; 

    } 

 

    if(imuCorrected.angular_velocity.z < 0.000005 && 

imuCorrected.angular_velocity.z > -0.000005) 

    { 

        imuCorrected.angular_velocity.z = 0; 

    } 

 

         

    static double G = 0.0; 

    static double Gw = 0.0; 

 

    imuCorrected.angular_velocity.x = imuCorrected.angular_velocity.x * 61.8425;   

//64.6420  

    imuCorrected.angular_velocity.y = imuCorrected.angular_velocity.y * 72.0550;   

//72.0550 

    imuCorrected.angular_velocity.z = imuCorrected.angular_velocity.z * 61.8425; 
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    double dth = (imuCorrected.angular_velocity.z * dt)+ Gw * ((vth * dt)-

(imuCorrected.angular_velocity.z * dt)); 

 

 

    //initialise variables for Kalman Filter 

    static double x_kx; 

    static double x_ky; 

    static double x_ku; 

    static double x_kv; 

    static double x_kw; 

 

    static double x_kminus1x; 

    static double x_kminus1y; 

    static double x_kminus1u; 

    static double x_kminus1v; 

    static double x_kminus1w; 

 

    static double xdot_kx; 

    static double xdot_ky; 

 

    static double xdot_kminus1x; 

    static double xdot_kminus1y; 

 

    static double z_kx; 

    static double z_ky; 

    static double z_kw; 

 

    static double z_kminus1x; 

    static double z_kminus1y; 

    static double z_kminus1w; 
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    //calculate new x and y based on steering angle 

    //multiply "-" to invert direction of y-axis (left = positive) 

    imuCorrected.linear_acceleration.y = - imuCorrected.linear_acceleration.y; 

    imuCorrected2.linear_acceleration.x = imuCorrected.linear_acceleration.x * 

cos(imuCorrected.angular_velocity.z) - imuCorrected.linear_acceleration.y * 

sin(imuCorrected.angular_velocity.z); 

    imuCorrected2.linear_acceleration.y = imuCorrected.linear_acceleration.y * 

cos(imuCorrected.angular_velocity.z) + imuCorrected.linear_acceleration.x * 

sin(imuCorrected.angular_velocity.z);    

  

 

    //current position and orientation (IMU) 

    x_kx = x_kminus1x + xdot_kminus1x*dt + 

0.5*imuCorrected2.linear_acceleration.x*pow(dt,2); 

    x_ky = x_kminus1y + xdot_kminus1y*dt + 

0.5*imuCorrected2.linear_acceleration.y*pow(dt,2); 

    x_ku = x_kminus1u + imuCorrected.angular_velocity.x*dt; 

    x_kv = x_kminus1v + imuCorrected.angular_velocity.y*dt; 

    x_kw = x_kminus1w + imuCorrected.angular_velocity.z*dt; 

 

    //calculate current velocity (IMU) 

    xdot_kx = xdot_kminus1x + imuCorrected2.linear_acceleration.x*dt; 

    xdot_ky = xdot_kminus1y + imuCorrected2.linear_acceleration.y*dt; 

 

    //calculate position (encoder) 

    z_kx = dx + z_kminus1x; 

    z_ky = dy + z_kminus1y; 

    z_kw = dth + z_kminus1w; 

 

    //fusion 

    x_kx = x_kx + G*(z_kx - x_kx); 

    x_ky = x_ky + G*(z_ky - x_ky); 

    x_kw = x_kw + Gw*(z_kw - x_kw); 
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    //save current measurement as previous 

    xdot_kminus1x = xdot_kx; 

    xdot_kminus1y = xdot_ky; 

     

    x_kminus1x = x_kx; 

    x_kminus1y = x_ky; 

    x_kminus1u = x_ku; 

    x_kminus1v = x_kv; 

    x_kminus1w = x_kw; 

 

    z_kminus1x = z_kx; 

    z_kminus1y = z_ky; 

    z_kminus1w = z_kw; 

 

    static ros::Time t2, prevt2; 

 

    t2 = ros::Time::now(); 

             

    if((t2 - prevt2).toSec() > 0.5) //display every XX seconds 

    { 

        prevt2 = ros::Time::now(); 

        ROS_INFO( "X = %f, Y = %f, W = %f, imuX = %f, imuY = %f, imuZ = %f ",  

x_kx, x_ky, x_kw, imuCorrected.linear_acceleration.x, 

imuCorrected.linear_acceleration.x, imuCorrected.linear_acceleration.z); 

    } 

 

 

void onData(library::Driver2Sensor sensor) 

{ 

 

    // Flip 
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    sensor.encoder.left *= flipEncoderLeft ? -1 : 1; 

    sensor.encoder.right *= flipEncoderRight ? -1 : 1; 

    // Scalling encoder back to ppr of encoder used 

    sensor.encoder.left = sensor.encoder.left * 2000 / ppr; 

    sensor.encoder.right = sensor.encoder.right * 2000 / ppr; 

 

    switch (status) 

    { 

    case S_INIT: 

        initialize(sensor); 

        break; 

    case S_CALI_XY: 

        calibrateZ(sensor); 

        break; 

    case S_READY: 

        publish(sensor); 

        break; 

    } 

} 


