

ODOMETRY ERROR REDUCTION IN WHEELCHAIR USING MORE

THAN ONE SENSOR

Daniel Boey Mun Weng

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Mechanical Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

January 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : DANIEL BOEY MUN WENG

ID No. : 13015182

Date : 26 APRIL 2019

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “ODOMETRY ERROR REDUCTION IN

WHEELCHAIR USING MORE THAN ONE SENSOR” was prepared by

DANIEL BOEY MUN WENG has met the required standard for submission in

partial fulfilment of the requirements for the award of Bachelor of Engineering (Hons.)

Mechanical Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Prof. Dr. Goh Sing Yau

Date : 26 APRIL 2019

Signature :

Co-Supervisor : Danny Ng Wee Kiat

Date : 26 APRIL 2019

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2019, Daniel Boey Mun Weng. All right reserved.

v

ABSTRACT

Autonomous wheelchair promises a safer and convenient mobility for disabled and

senior citizens. Odometry is to estimate position change over time. It uses data from

one or more sensors such as encoder attached to wheel and IMU. Odometry is

important for navigation of wheelchair. Odometry via wheel rotary encoder is prone

to random error such as wheel slip on slippery or uneven surface, and inaccurate

measurement of wheelbase and wheel diameter use to calculate position. Meanwhile,

IMU data are noisy and once integrated to obtain position and orientation, their values

drift. The IMU comprises of 3 separate sensors: accelerometer which measures

acceleration and gyroscope which measures angular velocity and magnetometer which

measures direction of magnetic north. The IMU outputs acceleration, angular velocity

and magnetic field values based on the orientation of the sensor which is referred to as

sensor coordinate system. In order to compute meaningful position of the wheelchair,

the sensor coordinate system has to be aligned with the wheelchair coordinate system.

Rotation matrix is applied to the IMU data to transform the IMU data. IMU data that

are transformed is then filtered to reduce noise. When the sensor is stationary, the

output data after the exponential filter still fluctuates between ±0.01 degree/s. Over

time, the integrated reading of the gyro sensor will drift due to the fluctuation. Since

the fluctuation is very small, it can be assumed to be zero to reduce drift. Next, the

data from encoder, accelerometer and gyroscope are combined together with Kalman

filter. Test was performed to obtain position from encoder, IMU and sensor fusion

output and the position results were compared to the truth. The resulting fused position

reduced error by 76.5%.

vi

TABLE OF CONTENTS

TABLE OF CONTENTS vi

LIST OF TABLES viiii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS x

LIST OF APPENDICES xii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aims and Objectives 2

1.5 Scope and Limitation of the Study 3

2 LITERATURE REVIEW 4

2.1 IMU Data Transformation 4

2.1.1 Rotation Matrix 5

2.1.2 Quaternion 8

2.2 Filter 9

2.2.1 Exponential Filter 9

2.2.2 Assume Zero 10

2.3 Sensor Fusion 11

2.3.1 Kalman Filter 11

2.4 Summary 14

3 METHODOLOGY, WORK PLAN & PRELIMINARY TEST 15

3.1 Hardware 15

3.2 Software 16

3.3 Preliminary Test 17

vii

3.4 Summary 17

4 RESULTS 19

4.1 Introduction 22

4.1 Rotation Matrix 22

4.1 Assume Zero Filter 23

4.1 Sensor Fusion 24

4.4 Summary 26

5 PROBLEMS AND RECOMMENDED SOLUTIONS 27

5.1 Problems encountered 27

5.2 Recommended Solutions 27

REFERENCES 28

APPENDICES 29

viii

LIST OF TABLES

Table 3.1: Transformed acceleration for various orientation 18

Table 3.2: Filtered gyroscope data over a duration of time while

stationary 20

Table 3.3: Angle after 45° (anti-clockwise) rotation at various

initial orientation 20

Table 4.1: Transformed acceleration 22

Table 4.2: Transformed angular displacement 23

Table 4.3: Assume zero filter (Accelerometer) 23

Table 4.4: Assume zero filter (Gyroscope) 24

Table 4.5: End position of wheelchair 24

Table 4.6: Error in end position of wheelchair 26

ix

LIST OF FIGURES

Figure 2.1: Wheelchair coordinate frame 5

Figure 2.2: Sensor coordinate frame 7

Figure 2.3: Rotations ∅, 𝜃, 𝜓 between coordinate frames 7

Figure 2.4: Exponential diminishing weightage 10

Figure 2.5: Normal distribution curve of estimates and

measurement 11

Figure 2.6: Kalman filter prediction and update cycle 12

Figure 3.1: Rotary Encoder 15

Figure 3.2: MPU-9250 15

Figure 3.3: ROS visual map 16

Figure 3.4: Simulation with Gazebo 17

Figure 3.5: Arduino Prototype 18

Figure 4.1: Measurement of Wheelchair Position 25

Figure 4.2: Measurement of Wheelchair Position (IMU) 25

x

LIST OF SYMBOLS / ABBREVIATIONS

IMU inertial measurement unit

GPS global positioning system

ROS robotics operating system

DOF degree of freedom

LIDAR laser imaging detection and ranging

3D three dimensions

xi

LIST OF APPENDICES

APPENDIX A: Tables 29

APPENDIX B: Program 32

APPENDIX C: Log book

APPENDIX D: Supervisor’s Comments on Originality Report

APPENDIX E: Poster

APPENDIX F: Presentation Slide

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Odometry is to estimate position change over time. It is commonly used in robot,

smartphone, drone and autonomous driving technologies to estimate their position

relative to the starting location. Odometry uses data from one or more sensors such as

encoder attached to wheel and IMU. Odometry is important for navigation of robots

and autonomous driving technologies. Odometry does not provide absolute position

but position estimate relative to a known point, usually the starting point. Odometry is

commonly used alongside sensors which provide absolute position such as GPS,

LIDAR, camera vision. Sensors used for odometry have higher data rate and are lower

cost compared to absolute position sensors.

A rotary encoder which measures rotation in degrees may be attached to the

wheel of the wheelchair through a pulley and belt. By knowing the diameter of the

wheel, the distance travelled by each wheel can be calculated. Simple trigonometry is

then used to calculate the 2D position and orientation of the wheelchair relative to the

starting location.

A 9-DOF IMU comprises of 3 different sensors in one module: accelerometer,

gyroscope and magnetometer. However, only the accelerometer and gyroscope were

used in this project. The accelerometer outputs 3D linear acceleration and can be

integrated twice to obtain 3D position. Next, the gyroscope outputs angular velocity

and needs to be integrated once to obtain 3D orientation: pitch, roll, yaw.

Odometry is prone to error due to the characteristic of the sensor and also the

environment and application of the sensor. For rotary encoder, a slippery surface or

objects on the ground may reduce accuracy. Whereas, IMU data are noisy and

integrating the raw data to obtain position and orientation will amplify the error. It

results in position and orientation drift even though the wheelchair is stationary.

Each sensor provides different types of information about the tracked object

position with differing accuracies especially in different conditions (Wilbur, 2017).

They can be used together in order to obtain a more accurate odometry. Sensor fusion

combines two or more sensors where each sensor has different contribution weightage

to the resulting odometry depending on their accuracy.

2

1.2 Importance of the Study

Sensor fusion is the combination of measurements from multiple sensors to obtain a

more accurate measurement. It is applied in many automated processes such as

airplane autopilot system, drones and autonomous vehicles. Sensors are prone to

inaccuracy in varying conditions. When one sensor has high uncertainty in certain

condition, other sensors may compensate for it and still output an accurate

measurement.

 The position of a subject whether a vehicle, drone or wheelchair is important

for navigation. Position acquisition can be differentiated into two types, relative and

absolute position. Relative position is synonym to odometry while absolute position is

the exact position which is acquired from systems such as GPS, LIDAR, vision.

Sensors to obtain absolute position has a lower measurement rate (< 50 Hz) and are

costlier compared to odometry. Hence, odometry is often used alongside absolute

position in acquiring accurate position.

1.3 Problem Statement

Odometry is based on relative position and the accuracy of the odometry is affected

by the sensor’s limitation and odometry method in varying conditions. Odometry via

wheel rotary encoder is prone to random error such as wheel slip on slippery or uneven

surface, and inaccurate measurement of wheelbase and wheel diameter use to calculate

position. Meanwhile, IMU data are noisy and once integrated to obtain position and

orientation, their values drift. Drifting position values will show that the wheelchair is

moving when in actual, it is stationary. However, IMU sensor is not prone to

inaccuracy due to varying surface condition unlike motor encoder.

 Errors in odometry compound on each other since they are based on relative

position, and not absolute position. A small initial error will cause a large error after a

duration even with no additional error after the initial error. In conclusion, position

acquisition through odometry cannot be done accurately with only one sensor.

1.4 Aims and Objectives

The aim of this project is to reduce odometry error in wheelchair by using more than

one sensor. The objective of this project is to:

a) Compute and process raw data from accelerometer and gyroscope to obtain

accurate position and orientation information of the wheelchair.

3

b) Apply sensor fusion method to combine data from wheel rotary encoder,

accelerometer and gyroscope.

1.5 Scope and Limitation of the Study

The scope of this project is to compute position and orientation information from IMU.

Then, sensor fusion is applied to combine data of the IMU and motor encoder. The

programming language to be used is C++. ROS will be used to integrate all of the

program components together and also as a robot visualisation tool. Arduino is also

use to quickly test sensor fusion methods or various filters.

 In this project, the data from sensors to be fused together are limited to

accelerometer, gyroscope and wheel rotary encoder. The project covers data

processing of IMU to obtain position and orientation. However, position and heading

derived from wheel rotary encoder was previously done by another student for his final

year project. Hence, only derivation of position and orientation from IMU and not

wheel rotary encoder will be covered in this project.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 IMU Data Transformation

The IMU comprises of 3 separate sensors: accelerometer which measures acceleration

and gyroscope which measures angular velocity and magnetometer which measures

direction of magnetic north. These three components in the IMU allows the 3-

dimensional (x, y, z-axis) position of a subject to be compute.

The IMU outputs acceleration, angular velocity and magnetic field values

based on the orientation of the sensor which is referred to as sensor coordinate system.

In order to compute meaningful position of the wheelchair, the sensor coordinate

system has to be aligned with the wheelchair coordinate system.

The orientation of the sensor can be aligned with the wheelchair by two

methods: physically or by software calibration. The former requires a custom-made

precision jig/mount to physically secure the sensor to the wheelchair. Designing and

fabricating mount for the sensor is both time consuming and costly. In addition, it is

difficult to install the sensor in perfect orientation with the wheelchair.

Therefore, software calibration may be performed so that the sensor can be

installed freely in different wheelchairs. An algorithm is used to automatically

calibrate and normalise the sensor values in order to have accurate readings. The

algorithm will transform the sensor values in the sensor coordinate frame into the

wheelchair coordinate system.

There are two methods to transform the coordinate frames: rotation matrix and

quaternion.

5

2.1.1 Rotation Matrix (Euler Angle)

Euler angle is used to represent 3-dimensional orientation of the wheelchair using a

combination of three rotations about the x, y, z-axes. In the wheelchair coordinate

frame, the x-axis is pointing out towards the front of the wheelchair, y-axis towards

the right side and z-axis downwards. Roll (∅) is along the x-axis, pitch (θ) is along the

y-axis and yaw (ψ) is along z-axis. Figure 2.1 shows the wheelchair coordinate frame.

The acceleration values in wheelchair coordinate frame is computed through the

product of rotation matrix, R and acceleration values from the sensor, 𝑎𝑠 as shown in

the Equation 2.1 below.

[

𝑎𝑥, 𝑤

𝑎𝑦, 𝑤

𝑎𝑧, 𝑤

] = 𝑅 ∙ [

𝑎𝑥,𝑠

𝑎𝑦,𝑠

𝑎𝑧,𝑠

] (2.1)

where

𝑎𝑤 = acceleration in wheelchair coordinate frame, g

𝑎𝑠 = acceleration in sensor coordinate frame, g

𝑅 = 𝑅∅
𝑥 ∙ 𝑅𝜃

𝑦
∙ 𝑅𝜓

𝑧 (2.2)

Figure 2.1: Wheelchair coordinate frame

6

𝑅∅
𝑥 = [

1 0 0
0 𝑐𝑜𝑠 (∅) −sin (∅)
0 sin (∅) 𝑐𝑜𝑠 (∅)

] (2.3)

𝑅𝜃
𝑦

= [
𝑐𝑜𝑠 (𝜃) 0 −sin (𝜃)

0 1 0
sin (𝜃) 0 𝑐𝑜𝑠 (𝜃)

] (2.4)

𝑅𝜓
𝑧 = [

𝑐𝑜𝑠 (𝜓) sin (𝜓) 0
−sin (𝜓) 𝑐𝑜𝑠 (𝜓) 0

0 0 1

] (2.5)

𝑅 = [

𝑐(𝜃)𝑐(𝜓) −𝑐(𝜃)s(𝜓) −s(𝜃)

− s(∅) s(𝜃) c(𝜓) + 𝑐(∅)s(𝜓) s(∅) s(𝜃) s(𝜓) + 𝑐(∅)𝑐(𝜓) −s(∅)𝑐(𝜃)

c(∅) 𝑠(𝜃) c(𝜓) + s(∅) s(𝜓) −𝑐(∅) s(𝜃) s(𝜓) + s(∅) c(𝜓) 𝑐(∅)𝑐(𝜃)

] (2.6)

where

c = cos

s = sin

For the angular velocity, it can be transformed using the transformation matrix

as shown in Equation 2.7 below.

[
∅̇

�̇�
�̇�

] = [

𝑝 + 𝑞 𝑠𝑖𝑛(∅) tan(𝜃) + 𝑟 cos(∅)𝑡𝑎𝑛(𝜃)

𝑞 cos(∅) − 𝑟 𝑠𝑖𝑛(∅)

𝑞 sin(∅)/ cos(𝜃) + 𝑟 cos(∅)/ 𝑐𝑜𝑠(𝜃)
] (2.7)

where

p = x-axis gyro sensor output

q = y-axis gyro sensor output

r = z-axis gyro sensor output

In the rotation matrix, ∅, 𝜃, 𝜓 represent the angles of rotation between the

sensor coordinate frame and wheelchair coordinate frame.

7

The angle of rotation between the sensor coordinate frame and wheelchair

coordinate frame are calculated by measuring the gravity vector components on each

axis of the accelerometer as shown in Figure 2.2 below.

For vertical orientation angles 𝜙 and 𝜃, the gravity vector components on each

axis of the accelerometer are measured while the wheelchair is stationary and on a flat

surface.

𝜙 = 𝑡𝑎𝑛−1 (
𝑔𝑦

𝑔𝑧
) (2.8)

Figure 2.3: Rotations ∅, 𝜃, 𝜓 between coordinate frames

Figure 2.2: Sensor coordinate frame

8

𝜃 = 𝑡𝑎𝑛−1 (
𝑔𝑥

√𝑔𝑦
2+𝑔𝑧

2
) (2.9)

After the vertical orientation angles 𝜙 and 𝜃 are obtained, the rotation matrixes

𝑅∅
𝑥 and 𝑅𝜃

𝑦
 are used to calculate the new coordinate system where the z-axis of the

sensor is aligned with the z-axis of the wheelchair.

𝑎𝑤 = 𝑅∅
𝑥 ∙ 𝑅𝜃

𝑦
∙ 𝑎𝑠 (2.10)

The angle 𝜓 is obtained to align the x-axis of the sensor with the wheelchair’s

x-axis (forward). The acceleration vector in both the x and y-axis are recorded while

the wheelchair is moving forward and the angle 𝜓 is compute with the equation below.

𝜓 = 𝑐𝑜𝑠−1 (
𝑎𝑥

√𝑎𝑥
2+𝑎𝑦

2
) (2.11)

The calibration process of obtaining the angles between frames ∅, 𝜃, 𝜓 is only

needed to be performed once. The calibration values can then be stored and recalled.

The disadvantage of using rotational matrix is that it experiences gimbal lock.

Gimbal lock occurs when the pitch angle is at ±90°. At this angle, the yaw axis and

roll axis coincide therefore the sensor is unable to track orientation.

However, in our application the wheelchair pitch angle will not come close to

±90° unless the wheelchair flips upwards/downwards.

Gimbal lock can be avoided by representing angle in quaternions instead of

Euler angles which will be discussed next.

2.1.2 Quaternion

Angle can also be represented as quaternion for 3D transformation. Four quaternion

representation are first calculated. Then a matrix is used to calculate the rotation, R.

Similar to rotation matrix method, Equation 2.16 will be multiplied by acceleration

component to compute the transformed acceleration.

𝑞𝑜 = 𝑐𝑜𝑠(𝛼 2⁄) (2.12)

9

𝑞1 = 𝑠𝑖𝑛(𝛼 2⁄)𝐴𝑛𝑜𝑟𝑚,𝑥 (2.13)

𝑞2 = 𝑠𝑖𝑛(𝛼 2⁄)𝐴𝑛𝑜𝑟𝑚,𝑦 (2.14)

𝑞3 = 𝑠𝑖𝑛(𝛼 2⁄)𝐴𝑛𝑜𝑟𝑚,𝑧 (2.15)

𝑅 = [

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞0𝑞2 + 𝑞1𝑞3)

2(𝑞1𝑞2 + 𝑞0𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞0𝑞1 + 𝑞2𝑞3) 1 − 2(𝑞1
2 + 𝑞2

2)

] (2.16)

 The advantages of using quaternion is that it isn’t affected by gimbal lock and

it has fewer equations to compute.

2.2 Filter

The data obtained from IMU is inherently noisy and the values fluctuates close to the

true value at high frequency. A filter may be used to obtain a cleaner data with less

fluctuations.

2.2.1 Exponential Filter

An exponential filter is used to smooth out time series data. The filter’s output, x, is

the weighted average of the current data and previous data, with the weighting

decreasing exponentially. A higher weightage would be given to the most recent data.

As time passes, the weightage of older data decreases exponentially as illustrated in

the Figure 2.3 below.

10

The exponential filter equation is as below.

𝑥𝑛 = 𝛼 ∙ 𝑦𝑛 + (1 − 𝛼) ∙ 𝑥𝑛−1 (2.17)

where

𝑥𝑛 = smoothed value

𝑥𝑛−1 = previous smoothed value

𝑦𝑛 = new measurement

𝛼 = weightage

2.2.2 Assume Zero

When the sensor is stationary, the output data after the exponential filter still fluctuates

between ±0.01 degree/s. Over time, the integrated reading of the gyro sensor will drift

due to the fluctuation. Drifting occur when absolute angle is increasing or decreasing

even though the sensor is stationary. Since the fluctuation is very small, it can be

assumed to be zero to reduce drift. This assumption may however affect reading during

actual rotation even though the value we assume to be zero is small.

Figure 2.4: Exponential diminishing weightage

11

2.3 Sensor Fusion

Sensor fusion algorithm is used to combine information from two or more sensors. It

is used to obtain a more accurate information when accurate information cannot be

obtained from just one sensor. Hence, information from several sensors are used to

estimate the current state.

2.3.1 Kalman Filter

Kalman filter is used to predict state and as a smoothing filter. It also can be used to

combine information from several sensors to work in unison. The states are

represented with a normal distribution. Figure 2.4 shows the normal distribution curve

of the predicted state estimate and measurement. Optimal state estimate is the output

of the Kalman filter. Besides that, Kalman filter is efficient and requires little memory

as it stores little information. The filter only requires a few matrix operations. Its

application ranges from space, robotics, navigation, weather forecast to economics.

The basic Kalman filter can only be used for linear functions. An iteration of

the Kalman filter, Extended Kalman filter which utilise Jacobian function and Taylor

series is able to compute non-linear functions.

The equations of Kalman filter can be categorised as prediction and update.

Equation 2.18 and Equation 2.19 are to predict the state and error covariance

respectively in absent of sensor measurement input. Equation 2.20 is to compute the

Figure 2.5: normal distribution curve of estimates and measurement

12

Kalman gain which is used in equation 2.21 to update the estimate. Lastly, Equation

2.22 update the error covariance.

Prediction

�̂�𝑘 = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘 (2.18)

𝑃𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 (2.19)

Update

𝐺𝑘 = 𝑃𝑘𝐶𝑇(𝐶𝑃𝑘𝐶𝑇 + 𝑅)−1 (2.20)

�̂�𝑘 = �̂�𝑘 + 𝐺𝑘(𝑧𝑘 − 𝐶�̂�𝑘) (2.21)

𝑃𝑘 = (𝐼 − 𝐺𝑘𝐶)𝑃𝑘 (2.22)

where

�̂�𝑘 = current state estimate

𝐴 = state transition function

�̂�𝑘−1 = previous state estimate

𝐵 = scale of control signal

𝑢𝑘 = control signal

𝑃𝑘 = prediction error or uncertainty

𝑄 = IMU Sensor noise

𝐺𝑘 = Kalman gain

𝐶 = map for prediction to measurement state

𝑅 = noise

𝑧𝑘 = current observation (sensor measurement)

The Kalman filter works by repetitively calculating the prediction and update.

However, it is not compulsory to run both prediction and update one after the other.

Prediction is used whenever sensor measurement is not available. It will estimate the

current state position of the wheelchair based on previous state position, �̂�𝑘−1 and state

transition function, 𝐴 . Whenever sensor measurement is available, the update

13

equations will be calculated using the current sensor measurement, 𝑧𝑘 . Figure 2.5

shows the cycle of the Kalman filter.

The Kalman gain, 𝐺𝑘 affects how much weightage is given to the sensor

measurement, 𝑧𝑘 or previous state estimate, �̂�𝑘−1. If the gain is 0, the previous state

estimate is the current estimate. If the gain is 1, the current estimate would be the

current sensor measurement. The Kalman gain, 𝐺𝑘 is obtained from the prediction

error, 𝑃𝑘 . If prediction error is 0, the Kalman gain, 𝐺𝑘 will be 0 resulting in an

unchanged current state estimate. Which makes sense, because the state estimate

should not be changed if the prediction is accurate.

The prediction error, 𝑃𝑘 is calculated recursively from the previous prediction

error, 𝑃𝑘−1. when 𝐺𝑘= 0, we have 𝑃𝑘 = 𝑃𝑘−1. So, just as with the state estimation, a

zero gain means no update to the prediction error (Levys, 2016). On the other hand,

when 𝐺𝑘 = 1, 𝑃𝑘 = 0, maximum gain corresponds to zero prediction errors. Hence,

the current observation alone is used to update the current state.

 In the case of this project, the current state estimate, �̂�𝑘outputs a matrix of

position and rotation information {x, y, yaw, pitch, roll}. However, each sensor used

Figure 2.6: Kalman filter prediction and update cycle

14

may only output a certain information, for example {x, y} only. Hence, the constant C

is used to map the prediction state to the measurement state.

2.4 Summary

IMU data transformation is needed to transform from sensor coordinate frame to

wheelchair coordinate frame. The methods are rotation matrix and Quaternion. Filter

is used to clean out noisy data and obtain a more accurate position and orientation

information from the IMU. Sensor fusion fuses data from two or more sensors. Kalman

fusion involves five prediction and update equation which is used to combine data

from multiple sensors.

15

CHAPTER 3

METHODOLOGY, WORK PLAN & PRELIMINARY TEST

3.1 Hardware

The wheelchair used in this study is driven by two DC motors. The axles of the motors

are directly connected to front wheels. At the rear, there are two smaller caster wheels

which are free to rotate in the z-axis when the wheelchair is steered, similar to a

shopping mall trolley. The wheelchair steers by differential power output to the front

wheels.

The motorised wheelchair is equipped with rotary encoders to measure rotation

of the front wheels. On both front wheels, belt and pulleys translate the rotations of the

wheels to the rotary encoder. The rotary encoder brand and model are ESB Electronics

Industries, type B 106 23850. Its operating voltage is between 5V to 24V and a current

draw of around 120mA. The resolution of the rotary encoder is 500 pulse per rotation

at a maximum measurement rate of 100kHz. Figure 3.1 shows the rotary encoder used.

IMU sensor used in the wheelchair is an MPU-9250 9-axis device. It includes

a gyroscope, accelerometer and magnetometer within a 3×3×1mm package. The MPU-

9250 consumes a current of only 9.3µA. The gyroscope may be set to measure 3-axis

angular rate at 3 different scale range of ±250, ±500, ±1000 and ±2000°/sec.

Figure 3.1: Rotary Encoder

16

Meanwhile, the accelerometer output can be set to a range of ±2g, ±4g, ±8g and ±16g.

Figure 3.2 shows the MPU-9250 used.

3.2 Software

The programming language that is used is C++. Additionally, Robotics Operating

System (ROS) is used as a wrapper for the programs. ROS offers a message passing

interface that provides inter-process communication. Program components of a

programming project can be linked to work together easily with ROS. ROS represents

each program components as nodes and each node are able to publish and subscribe to

each other to send and receive data. ROS also features a visual map to view the network

of nodes as shown in Figure 3.3.

Figure 3.3: ROS visual map

Figure 3.2: MPU-9250

17

ROS only runs on Linux and MacOS and supports C++ and Python. The IDE

used to program the wheelchair is g++. However, it is open source and no license fee

is required for commercial usage. Another advantage of ROS is the ability to run

simulation of robots through Gazebo. An example of simulation with Gazebo is shown

in Figure 3.4.

3.3 Preliminary Test

In order to validate the methods to transform the IMU data and several filters, a

prototype was made with an Arduino Uno, MPU6050 6-DOF IMU sensor and OLED

display. It is programmed in Arduino’s C-based programming language. The rotation

matrix method, exponential filter and assume zero was tested.

 Figure 3.5 shows the MPU5060 IMU (right) and OLED (left) attached to the

prototype shield. The prototype shield was connected to the Arduino Uno below it.

The OLED displays accelerometer data at the top row and absolute angle of the

gyroscope below.

Figure 3.4: Simulation with Gazebo

18

3.3.1 Rotation Matrix

The rotation matrix method to transform accelerometer and gyroscope values

discussed in chapter 2 was tested. The rotation matrix transformation was tested with

various sensor orientation. To calibrate the heading, one side of the sensor is tilted

downwards to simulate positive acceleration. The side that is tilted downwards is the

new x-axis.

 The gravitation acceleration is not removed in the accelerometer reading.

Therefore, the transformation method can be proven to be correct when the z-axis has

an acceleration of 1.00g while the x-axis and y-axis are 0.00g when orientation is

unchanged after calibration.

 The acceleration test results for various orientation are tabulated in Table 3.1

below.

Table 3.1: Transformed acceleration for various orientation

Sensor

orientation

x-axis acceleration

(g)

y-axis acceleration

(g)

z-axis acceleration

(g)

0.19 -0.27 1.06

Figure 3.5: Arduino Prototype

19

Table 3.1: (Continued)

-0.05 0.27 1.08

-0.07 -0.30 1.03

-0.01 0.05 1.12

 Table 3.1 shows that the accelerations are transformed but there were errors in

the x-axis and y-axis acceleration when orientation of sensor is not horizontal.

 The rotation matrix was also tested to transform the gyroscope data. To validate

whether the rotation matrix had correctly transformed the gyroscope data, it was

needed to be integrated into absolute angle. Hence, it will be discussed in the next sub-

topic 3.3.2.

3.3.2 Integrating & Filtering Gyroscope Data

After transforming the gyroscope data, it has to be integrated to obtain absolute angle.

When the raw gyro data is integrated, the angle will drift. Drifting occurs when

absolute angle is increasing or decreasing even though the sensor is stationary. It is

due to noisy raw gyro data. The gyro data which was noisy was cleaned with an

exponential filter with weightage, 𝛼 of 0.6 when the angular velocity is greater than

0.2 degree/s. When the angular velocity is below 0.1 degree/s, a stronger filter is used

by decreasing the weightage to 0.1. Two different weightages were used to obtain very

clean values (reduce drift) at low angular velocity but have a good response at higher

angular velocity. If a low weightage is used even at high angular velocity, the absolute

angle calculated would not be accurate.

Even with an exponential filter, the angular velocity data showed a small

angular velocity even though the sensor was stationary. Although the angular velocity

when stationary was small, it cannot be ignored as integrating it to obtain the absolute

value will cause drifting. However, the angular velocity is small enough to assume as

zero without affecting reading accuracy during actual rotation. Hence, in the program,

any angular velocity below 0.01°/s is considered to be 0.

20

Table 3.2 shows the transformed and filtered gyroscope data over a duration of

time while stationary.

Table 3.2: Filtered gyroscope data over a duration of time while stationary

Rotation axis
0 minute 1 minute 10 minutes 30 minutes

Absolute angle (degrees, °)

x-axis 0.00 0.00 0.00 0.00

y-axis 0.00 -0.01 -0.03 -0.06

z-axis 0.00 -0.01 -0.02 0.22

 The results in Table 3.2 shows that the absolute angle after filtering the raw

data from the gyroscope produces small error which is less than 0.25°.

 The transformation of gyro data using rotation matrix discussed in 3.3.1 was

verified after integration and filtering. The sensor with various initial orientation was

rotated along the x-axis, y-axis, and z-axis by 45° (anti-clockwise) along the z-axis

with the help of a protractor and turntable. If there isn’t any error during rotation, the

x-axis and y-axis angle should remain at 0.00° while the z-axis at 45°. The resulting

angle after rotation is tabulated in Table 3.3.

Table 3.3: Angle after 45° (anti-clockwise) rotation at various initial orientation

Initial Sensor

orientation

x-axis angle (°) y-axis angle (°) z-axis angle (°)

-5.12 -2.07 41.05

-4.12 -3.63 40.05

-5.05 -2.35 42.05

7.05 -1.26 40.31

21

 Table 3.3 shows that both x-axis and y-axis angle are not 0.00°. There were

also errors in the z-axis angle for all orientation.

3.4 Summary

The wheelchair in this study are driven by 2 DC motors at the front. It steers though

differential power between the 2 wheels. The sensors used for odometry are rotary

encoders and MPU-9250. C++ is used as the programming language and ROS as a

wrapper to integrate the programs together and add functionality. The quaternion

method for IMU data transformation and Kalman fusion will be tested next.

The rotation matrix method is able to transform the acceleration data from

sensor coordinate frame to sensor coordinate frame. However, the acceleration data

had an error within ±0.31 g for acceleration.

The gyroscope was transformed with rotation matrix method. Next, the data

were filtered with exponential filter and assume zero for angular velocity below 0.01°/s.

The resulting angle drifted by a maximum of 0.22° after 30 minutes. The rotation test

for the gyroscope have a maximum error of 7.05° when rotated 45°.

22

CHAPTER 4

2 RESULTS

4.1 Introduction

The programming for the wheelchair was done in sequence to test each component and

validate that they are working before continuing with other components. The

calibration of the IMU sensor was first tried out. Then the IMU data are filtered before

fusing with encoder measurements.

4.2 Rotation Matrix

The rotation matrix discussed in chapter 2 was used to transform accelerometer and

gyroscope values. To calibrate the heading, the front of the wheelchair was tilted

downward to simulate positive acceleration.

To test the performance of the rotation matrix for accelerometer, the wheelchair

is pushed forward for 2m after calibration. The average distance for the first meter is

tabulated in Table 4.1 below.

Table 4.1: Transformed acceleration

Test no. Average x-axis

acceleration (m/s2)

Average y-axis

acceleration (m/s2)

Average z-axis

acceleration (m/s2)

1 0.13840 0.00133 9.80591

2 0.28451 0.00175 9.81421

3 0.17944 0.00124 9.80259

 Acceleration components in Table 4.1 shows that acceleration is measured in

x-axis and not in y-axis while wheelchair is pushed forward. z-axis acceleration is

close to gravitational acceleration.

 For gyroscope, the raw angular velocities were also transformed using rotation

matrix, Equation 2.7. The wheelchair was rotated 90° clockwise and the angular

displacement in all 3-axis were recorded as shown in Table 4.2.

23

Table 4.2: Transformed angular displacement

Test no. Average x-axis

angular

displacement (°)

Average y-axis

angular

displacement (°)

Average z-axis

angular

displacement (°)

1 0.0020 0.0038 90.01

2 0.0052 0.0042 89.98

3 0.0019 0.0012 90.03

 Table 4.2 shows that angular displacements were close to 0° for x-axis and y-

axis. For z-axis, displacement is close to 90°. The gyroscope angular displacement

measurements are accurate and correctly transformed.

 After the rotation matrix component of the program was tested, it was

programmed to run when the overall wheelchair program was first launched. On

launching, the program will first calibrate the orientation of IMU in the z-axis with the

wheelchair stationary. Then, the program will prompt the user to tilt the front of the

wheelchair downwards before calibrating in the x-axis and y-axis. Once completed,

the calibration is completed.

4.3 Assume Zero Filter

The accelerometer and gyroscope measurements were recorded when the wheelchair

was stationary. The maximum values were used as a threshold. When the IMU

measurements were smaller than the threshold, the measurements were considered to

be zero. For accelerometers, measurements between -0.005 m/s2 and 0.005 m/s2 were

assumed to be zero Table 4.3 and Table 4.4 show the comparison between no filter and

with filter when the wheelchair is stationary.

Table 4.3: Assume zero filter (Accelerometer)

Test no. Without filter With Filter

Average x-axis

acceleration

(m/s2)

Average y-axis

acceleration

(m/s2)

Average x-axis

acceleration

(m/s2)

Average y-axis

acceleration

(m/s2)

1 0.00095 0.00145 0.0000 0.0000

24

Table 4.3: (Continued)

2 0.00129 0.00190 0.0000 0.0000

3 0.00104 0.00131 0.0000 0.0000

For gyroscope, measurements in z-axis between -0.0005 °/s and 0.0005 °/s

were assumed to be zero. Table 4.4 shows unfiltered and filtered measurements for

gyroscope in the z-axis.

Table 4.4: Assume zero filter (Gyroscope)

Test no. Without filter With Filter

Average z-axis angular

velocity (°/s)

Average z-axis angular

velocity (°/s)

1 0.00025 0.00000

2 0.00029 0.00000

3 0.00004 0.00000

4.4 Sensor Fusion

Once the IMU measurements were calibrated and filtered, they were fused with

encoder measurements. Kalman filter was used to combine all the measurements

together.

 The wheelchair was pushed in a rectangular shaped route around concourse

area of KB 7-floor of UTAR. The route measured 5.4 m in length and 1.8 m in width.

Table 4.5 shows the end position of the wheelchair from encoder measurement, IMU

measurement, fused position, and truth.

Table 4.5: End position of wheelchair

Truth (m, m) Encoder (m, m) IMU (m, m) Fused (m, m)

(0, 0) (0.3515, 0.7276) (4.7480, -28.0132) (-0.1381, -0.1306)

Figure 4.1 shows the position of the wheelchair from encoder measurement,

IMU measurement, fused position, and truth.

25

Figure 4.1: Measurement of Wheelchair Position

The position derived from IMU sensor is inaccurate as shown in Figure 4.2.

The orientation of the IMU sensor needs to remain the same throughout measurement.

When the sensor tilts, the accelerometer will include a fraction of gravitational

acceleration depending on how much it tilts in a given axis. Sensor may tilt due to

uneven floor or when the sensor mount is insecure.

Figure 4.2: Measurement of Wheelchair Position (IMU)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-2 0 2 4 6 8

y
(m

)

x (m)

Measurement of Wheelchair Position

Fused

IMU

Encoder

Truth

-35

-30

-25

-20

-15

-10

-5

0

5

-5 0 5 10 15 20

y
(m

)

x (m)

Measurement of Wheelchair Position (IMU)

26

The error in distance between truth and encoder, IMU and fused end position

are shown in Table 4.6 below.

Table 4.6: Error in end position of wheelchair

Truth (m) Encoder (m) IMU (m) Fused (m)

0 0.80802 28 0.19005

 Figure 4.1 shows that measurement of position from accelerometer has very

large error. However, the measurement of angular displacement from the gyroscope is

accurate. The encoder produces accurate displacement measurements but when the

wheelchair rotates, the encoder angular displacement measurements are inaccurate.

Sensor fusion combines sensor measurements that are higher in accuracies together to

output an overall more accurate position. From table 4.5 sensor fusion reduced the

error of encoder position by 76.5%.

4.5 Summary

The accelerometer and gyroscope data from the IMU sensor were transformed with

rotation matrix calculation. The results showed that the measurements from each axis

of the accelerometer and gyroscope were now aligned to the wheelchair coordinate

frame. The assume zero filter reduced noise of filter while the wheelchair is stationary.

The IMU measurements drifts lesser. Sensor fusion combined data from encoder and

IMU and produced a more accurate final position of the wheelchair. Error was reduced

by 76.5% through sensor fusion.

27

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

IMU raw data was transformed with rotation matrix so that the output measurements

of the accelerometer and gyroscope are aligned to the wheelchair coordinate frame.

The IMU data was then filtered to reduce drift.

 Sensor fusion with Kalman filter was used to combine encoder measurement

and IMU data. Results of position and orientation from the encoder were accurate for

displacement but not rotation. Meanwhile, IMU measurement produced a more

accurate rotation measurement. The resulting fused position reduced error by 76.5%.

5.2 Recommendations

Measurement from IMU may be improved by including compensation for uneven floor.

The angular displacement on the x-axis and y-axis may be used for calculation to

remove gravitational acceleration when the sensor is tilted. Additionally, more than

one IMU sensor may be used and the average measurements may output a more

accurate position and orientation. The IMU mount may be redesigned to ensure that it

it is rigidly secured to the wheelchair.

 Position derived through odometry are prone to build up in error over time.

Sensors that outputs absolute position such as LIDAR and GPS may be fused with

encoder and IMU to reduce error.

28

REFERENCES

Chih-Hung Wu, Wei-Zhou Hong, and Shing-Tai Pan (2015) 'Performance Evaluation

of Extended Kalman Filtering for Obstacle Avoidance of Mobile Robots', Proceedings

of the International MultiConference of Engineers and Computer Scientists, 1, pp. 263-

267 [Online]. Available at: [Accessed: 25 June 2018].

Bin Lee, H. (2018). Sensor Fusion and Object Tracking using an Extended Kalman

Filter Algorithm — Part 1. [online] Medium. Available at:

https://medium.com/@mithi/object-tracking-and-fusing-sensor-measurements-using-

the-extended-kalman-filter-algorithm-part-1-f2158ef1e4f0 [Accessed 15 Jul. 2018].

De Souza, W. (2018). Sensor Fusion Algorithms For Autonomous Driving: Part 1 —

The Kalman filter and Extended Kalman…. [online] Medium. Available at:

https://medium.com/@wilburdes/sensor-fusion-algorithms-for-autonomous-driving-

part-1-the-kalman-filter-and-extended-kalman-a4eab8a833dd [Accessed 4 Jul. 2018].

Van de Maele, P. (2018). Reading a IMU Without Kalman: The Complementary Filter

| Pieter-Jan.com. [online] Pieter-jan.com. Available at: http://www.pieter-

jan.com/node/11 [Accessed 27 Jul. 2018].

Home.wlu.edu. (2018). The Extended Kalman Filter: An Interactive Tutorial. [online]

Available at: http://home.wlu.edu/~levys/kalman_tutorial/ [Accessed 19 Jun. 2018].

Caron, F., Duflos, E., Pomorski, D. and Vanheeghe, P. (2006). GPS/IMU data fusion

using multisensor Kalman filtering: introduction of contextual aspects. Information

Fusion, 7(2), pp.221-230.

Alatise, M. and Hancke, G. (2017). Pose Estimation of a Mobile Robot Based on

Fusion of IMU Data and Vision Data Using an Extended Kalman Filter. Sensors,

17(10), p.2164.

Chrobotics.com. (2018). AN-1006 - Understanding Quaternions. [online] Available at:

http://www.chrobotics.com/docs/AN-1006-UnderstandingQuaternions.pdf [Accessed

15 Jul. 2018].

MegunoLink. (2018). Three Methods to Filter Noisy Arduino Measurements |

MegunoLink. [online] Available at: https://www.megunolink.com/articles/3-methods-

filter-noisy-arduino-measurements/?utm_referrer=https://www.google.com/

[Accessed 1 Aug. 2018].

A. Basir, O., Jamali, H., Ben Miners, W. and Toonastra, J. (2018). Method of

Correcting the Orientation of a Freely Installed Accelerometer in a Vehicle. [online]

Freepatentsonline.com. Available at:

http://www.freepatentsonline.com/20130081442.pdf [Accessed 1 Aug. 2018].

Lee, J. (2016). A Two-step Kalman/Complementary Filter for Estimation of Vertical

Position Using an IMU-Barometer System. Journal of Sensor Science and Technology,

25(3), pp.202-207.

29

APPENDICES

APPENDIX A: Tables

Table 3.1: Transformed acceleration for various orientation

Sensor

orientation

x-axis acceleration

(g)

y-axis acceleration

(g)

z-axis acceleration

(g)

0.19 -0.27 1.06

-0.05 0.27 1.08

-0.07 -0.30 1.03

-0.01 0.05 1.12

Table 3.2: Filtered gyroscope data over a duration of time while stationary

Rotation axis
0 minute 1 minute 10 minutes 30 minutes

Absolute angle (degrees, °)

x-axis 0.00 0.00 0.00 0.00

y-axis 0.00 -0.01 -0.03 -0.06

z-axis 0.00 -0.01 -0.02 0.22

Table 3.3: Angle after 45° (anti-clockwise) rotation at various initial orientation

Initial Sensor

orientation

x-axis angle (°) y-axis angle (°) z-axis angle (°)

-5.12 -2.07 41.05

30

Table 3.3 (Continued)

-4.12 -3.63 40.05

-5.05 -2.35 42.05

7.05 -1.26 40.31

Table 4.1: Transformed acceleration

Test no. Average x-axis

acceleration (m/s2)

Average y-axis

acceleration (m/s2)

Average z-axis

acceleration (m/s2)

1 0.13840 0.00133 9.80591

2 0.28451 0.00175 9.81421

3 0.17944 0.00124 9.80259

Table 4.2: Transformed angular displacement

Test no. Average x-axis

angular

displacement (°)

Average y-axis

angular

displacement (°)

Average z-axis

angular

displacement (°)

1 0.0020 0.0038 90.01

2 0.0052 0.0042 89.98

3 0.0019 0.0012 90.03

Table 4.3: Assume zero filter (Accelerometer)

Test no. Without filter With Filter

Average x-axis

acceleration

(m/s2)

Average y-axis

acceleration

(m/s2)

Average x-axis

acceleration

(m/s2)

Average y-axis

acceleration

(m/s2)

1 0.00095 0.00145 0.0000 0.0000

2 0.00129 0.00190 0.0000 0.0000

3 0.00104 0.00131 0.0000 0.0000

31

Table 4.4: Assume zero filter (Gyroscope)

Test no. Without filter With Filter

Average z-axis angular

velocity (°/s)

Average z-axis angular

velocity (°/s)

1 0.00025 0.00000

2 0.00029 0.00000

3 0.00004 0.00000

Table 4.5: End position of wheelchair

Truth (m, m) Encoder (m, m) IMU (m, m) Fused (m, m)

(0, 0) (0.3515, 0.7276) (4.7480, -28.0132) (-0.1381, -0.1306)

Table 4.6: Error in end position of wheelchair

Truth (m) Encoder (m) IMU (m) Fused (m)

0 0.80802 28 0.19005

32

APPENDIX A: Program

typedef enum publisherStatus

{

 S_INIT,

 S_CALI_XY,

 S_CALI_Z,

 S_READY

} publisherStatus;

int x = 0;

void calibrateXY (library::Driver2Sensor sensor)

{

 ros::Time t = ros::Time::now();

 // Publish IMU Data

 sensor_msgs::Imu imu;

 imu.header.stamp = t;

 imu.header.frame_id = "base_imu";

 imu.linear_acceleration.x = sensor.accelerometer.x - accBias.x;

 imu.linear_acceleration.y = sensor.accelerometer.y - accBias.y;

 imu.linear_acceleration.z = sensor.accelerometer.z - accBias.z;

 imu.angular_velocity.x = sensor.gyroscope.x - gyroBias.x;

 imu.angular_velocity.y = sensor.gyroscope.y - gyroBias.y;

 imu.angular_velocity.z = sensor.gyroscope.z - gyroBias.z;

 //gyro XY calibrate

 r_x = atan2(imu.linear_acceleration.y, imu.linear_acceleration.z);

 accMag_yz =

pow((pow(imu.linear_acceleration.y,2)+pow(imu.linear_acceleration.z,2)),0.5);

 r_y = atan2(imu.linear_acceleration.z, accMag_yz);

33

 status = S_CALI_Z;

}

void calibrateZ (library::Driver2Sensor sensor)

{

 static int count = 0;

 static ros::Time t, prevt;

 prevt = ros::Time::now();

 t = ros::Time::now();

 if(x == 0)

 {

 ROS_INFO("Push Forward");

 while((t - prevt).toSec() < 3) //wait ##s before calibration

 {

 t = ros::Time::now();

 }

 ROS_INFO("Calibrating: Push Forward");

 x = 1;

 }

 //yaw correction angle

 // Publish IMU Data

 sensor_msgs::Imu imu;

 imu.header.stamp = t;

 imu.header.frame_id = "base_imu";

34

 imu.linear_acceleration.x = sensor.accelerometer.x - accBias.x;

 imu.linear_acceleration.y = sensor.accelerometer.y - accBias.y;

 imu.linear_acceleration.z = sensor.accelerometer.z - accBias.z;

 imu.angular_velocity.x = sensor.gyroscope.x - gyroBias.x;

 imu.angular_velocity.y = sensor.gyroscope.y - gyroBias.y;

 imu.angular_velocity.z = sensor.gyroscope.z - gyroBias.z;

 acc_x = (cos(r_y)*imu.linear_acceleration.x)+(-

sin(r_y)*imu.linear_acceleration.z);

 acc_y = (-

sin(r_x)*sin(r_y)*imu.linear_acceleration.x)+(cos(r_x)*imu.linear_acceleration.y)+(

-cos(r_y)*sin(r_x)*imu.linear_acceleration.z);

 accC_x += acc_x;

 accC_y += acc_y;

 count++;

 if(count == 100)

 {

 accC_x /= 100;

 accC_y /= 100;

 accMag_yz = sqrt(pow(accC_x,2)+pow(accC_y,2));

 r_z = acos(accC_x/accMag_yz);

 ROS_INFO("Done Calibrating");

 prevt = ros::Time::now();

 t = ros::Time::now();

35

 while((t - prevt).toSec() < 5) //wait 5s after calibration

 {

 t = ros::Time::now();

 }

 status = S_READY;

 }

}

void publish(library::Driver2Sensor sensor)

{

 imu.linear_acceleration.x = sensor.accelerometer.x - accBias.x;

 imu.linear_acceleration.y = sensor.accelerometer.y - accBias.y;

 imu.linear_acceleration.z = sensor.accelerometer.z - accBias.z;

 imu.angular_velocity.x = sensor.gyroscope.x - gyroBias.x;

 imu.angular_velocity.y = sensor.gyroscope.y - gyroBias.y;

 imu.angular_velocity.z = sensor.gyroscope.z - gyroBias.z;

 imuCorrected.linear_acceleration.x =

(cos(r_z)*cos(r_y)*imu.linear_acceleration.x)+(-

cos(r_y)*sin(r_z)*imu.linear_acceleration.y)+(-sin(r_y)*imu.linear_acceleration.z);

 imuCorrected.linear_acceleration.y = (((-

cos(r_z)*sin(r_x)*sin(r_y))+(cos(r_x)*sin(r_z)))*imu.linear_acceleration.x)+(((cos(r

_x)*cos(r_z))+(sin(r_x)*sin(r_z)*sin(r_y)))*imu.linear_acceleration.y)+(-

cos(r_y)*sin(r_x)*imu.linear_acceleration.z);

 imuCorrected.angular_velocity.x = imu.angular_velocity.x +

(imu.angular_velocity.y*sin(r_x)*tan(r_y)) +

(imu.angular_velocity.z*cos(r_x)*tan(r_y));

 imuCorrected.angular_velocity.y = (imu.angular_velocity.y*cos(r_x)) -

(imu.angular_velocity.z*sin(r_x));

36

 imuCorrected.angular_velocity.z =

(imu.angular_velocity.y*sin(r_x)/cos(r_y))+(imu.angular_velocity.z*cos(r_x)/cos(r_

y));

 if(imuCorrected.linear_acceleration.x < 0.05 &&

imuCorrected.linear_acceleration.x > -0.05)

 {

 imuCorrected.linear_acceleration.x = 0;

 }

 if(imuCorrected.linear_acceleration.y < 0.05 &&

imuCorrected.linear_acceleration.y > -0.05)

 {

 imuCorrected.linear_acceleration.y = 0;

 }

 if(imuCorrected.angular_velocity.z < 0.000005 &&

imuCorrected.angular_velocity.z > -0.000005)

 {

 imuCorrected.angular_velocity.z = 0;

 }

 static double G = 0.0;

 static double Gw = 0.0;

 imuCorrected.angular_velocity.x = imuCorrected.angular_velocity.x * 61.8425;

//64.6420

 imuCorrected.angular_velocity.y = imuCorrected.angular_velocity.y * 72.0550;

//72.0550

 imuCorrected.angular_velocity.z = imuCorrected.angular_velocity.z * 61.8425;

37

 double dth = (imuCorrected.angular_velocity.z * dt)+ Gw * ((vth * dt)-

(imuCorrected.angular_velocity.z * dt));

 //initialise variables for Kalman Filter

 static double x_kx;

 static double x_ky;

 static double x_ku;

 static double x_kv;

 static double x_kw;

 static double x_kminus1x;

 static double x_kminus1y;

 static double x_kminus1u;

 static double x_kminus1v;

 static double x_kminus1w;

 static double xdot_kx;

 static double xdot_ky;

 static double xdot_kminus1x;

 static double xdot_kminus1y;

 static double z_kx;

 static double z_ky;

 static double z_kw;

 static double z_kminus1x;

 static double z_kminus1y;

 static double z_kminus1w;

38

 //calculate new x and y based on steering angle

 //multiply "-" to invert direction of y-axis (left = positive)

 imuCorrected.linear_acceleration.y = - imuCorrected.linear_acceleration.y;

 imuCorrected2.linear_acceleration.x = imuCorrected.linear_acceleration.x *

cos(imuCorrected.angular_velocity.z) - imuCorrected.linear_acceleration.y *

sin(imuCorrected.angular_velocity.z);

 imuCorrected2.linear_acceleration.y = imuCorrected.linear_acceleration.y *

cos(imuCorrected.angular_velocity.z) + imuCorrected.linear_acceleration.x *

sin(imuCorrected.angular_velocity.z);

 //current position and orientation (IMU)

 x_kx = x_kminus1x + xdot_kminus1x*dt +

0.5*imuCorrected2.linear_acceleration.x*pow(dt,2);

 x_ky = x_kminus1y + xdot_kminus1y*dt +

0.5*imuCorrected2.linear_acceleration.y*pow(dt,2);

 x_ku = x_kminus1u + imuCorrected.angular_velocity.x*dt;

 x_kv = x_kminus1v + imuCorrected.angular_velocity.y*dt;

 x_kw = x_kminus1w + imuCorrected.angular_velocity.z*dt;

 //calculate current velocity (IMU)

 xdot_kx = xdot_kminus1x + imuCorrected2.linear_acceleration.x*dt;

 xdot_ky = xdot_kminus1y + imuCorrected2.linear_acceleration.y*dt;

 //calculate position (encoder)

 z_kx = dx + z_kminus1x;

 z_ky = dy + z_kminus1y;

 z_kw = dth + z_kminus1w;

 //fusion

 x_kx = x_kx + G*(z_kx - x_kx);

 x_ky = x_ky + G*(z_ky - x_ky);

 x_kw = x_kw + Gw*(z_kw - x_kw);

39

 //save current measurement as previous

 xdot_kminus1x = xdot_kx;

 xdot_kminus1y = xdot_ky;

 x_kminus1x = x_kx;

 x_kminus1y = x_ky;

 x_kminus1u = x_ku;

 x_kminus1v = x_kv;

 x_kminus1w = x_kw;

 z_kminus1x = z_kx;

 z_kminus1y = z_ky;

 z_kminus1w = z_kw;

 static ros::Time t2, prevt2;

 t2 = ros::Time::now();

 if((t2 - prevt2).toSec() > 0.5) //display every XX seconds

 {

 prevt2 = ros::Time::now();

 ROS_INFO("X = %f, Y = %f, W = %f, imuX = %f, imuY = %f, imuZ = %f ",

x_kx, x_ky, x_kw, imuCorrected.linear_acceleration.x,

imuCorrected.linear_acceleration.x, imuCorrected.linear_acceleration.z);

 }

void onData(library::Driver2Sensor sensor)

{

 // Flip

40

 sensor.encoder.left *= flipEncoderLeft ? -1 : 1;

 sensor.encoder.right *= flipEncoderRight ? -1 : 1;

 // Scalling encoder back to ppr of encoder used

 sensor.encoder.left = sensor.encoder.left * 2000 / ppr;

 sensor.encoder.right = sensor.encoder.right * 2000 / ppr;

 switch (status)

 {

 case S_INIT:

 initialize(sensor);

 break;

 case S_CALI_XY:

 calibrateZ(sensor);

 break;

 case S_READY:

 publish(sensor);

 break;

 }

}

