

APPLYING BLOCKCHAIN TO SMART HOME SYSTEM

By

Chai Pei Zhen

A PROPOSAL

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2019

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. iii

DECLARATION OF ORIGINALITY

I declare that this report entitled “APPLYING BLOCKCHAIN TO SMART HOME

SYSTEM” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any

degree or other award.

Signature :

Name : Chai Pei Zhen

Date : 8/4/2019

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr Lee Wai Kong for his support and

advice throughout the project. I really appreciate his guidelines and effort when I am facing

some difficulties in this project. Dr. Lee always gives me some effective suggestions and

ideas so that I can do my project smoothly.

Next, I would like to thank my families and friends for their encouragement given to me.

They make me feel more confident when I am facing some trouble in academic.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. v

 ABSTRACT

With the advancement of Internet of Things technology nowadays, smart home system is

getting more and more popular. Before people starts to install and implement smart home

system into their house, they will worry about the security issue embedded within this

system. This implies that cyber security of smart home system plays a huge role and needs

to be paid attention to. In this project, blockchain technology will be apply on smart home

system to enhance the security of existing smart home system because blockchain

technology can help to secure integrity, authenticity and auditability of personal data and

information. By the nature of blockchain, each block in the chain will be linked with

previous block through the help of hash function and changing of transaction records can be

detected easily. Additionally, if a block was altered, the whole chain needs to be recomputed

through consensus process which was too expensive and almost impossible. Other than that,

blockchain also made use of public key cryptography method such that the public key of the

data sender will be verified by peer nodes so only authorized parties can access. In this

proposed method, it consists of a community of smart homes and only trusted parties can

join into this community. Sensor data can be send to server through the aid of local gateway

device within each smart homes so that these data can be query out in on-demand basis.

Besides, local gateway devices will also help each another to verify a transaction before a

request can be successfully enrol. Based on the data stored in the database, users can

subscribe to additional service such as healthcare provided by cloud service provider

through smart contract established on the consortium blockchain network.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. vi

TABLE OF CONTENTS

APPLYING BLOCKCHAIN TO SMART HOME SYSTEM i

REPORT STATUS DECLARATION FORM ii

DECLARATION OF ORIGINALITY iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

Chapter 1 Introduction 1

1.1 Background Information 1

1.2 Problem Statement and Motivation 3

1.3 Project Scope 3

1.4 Project Objective 4

1.5 Impact, significance and contribution 4

Chapter 2 Literature Review 5

Chapter 3 System Design 12

3.1 Reasons of Introducing BC-SHS 12

3.2 System Architecture 13

3.3 Design Specification 18

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. vii

3.4 Development Lifecycle 19

Chapter 4 Implementation 20

4.1 Setting up private Ethereum BC environment 20

4.2 Smart Contract related APIs 22

4.3 Firebase related APIs 23

4.4 Smart contract development 24

4.5 Mobile Application development 24

Chapter 5 Results and Discussions 29

5.1 Verification of Defined Objectives 29

5.2 Server Information and Limitations 31

5.3 Testing 38

5.3.1 Test on Normal Usage 38

5.3.2 Accessing data with unregistered account 40

Chapter 6 Conclusion 42

References 45

APPENDIX A: API A-1

A.1 Registration API A-1

A.2 Store data API A-2

A.3 Fetch data API A-3

A.4 Firebase Configuration API A-3

A.5 Firebase Set Elements Class API A-4

A.6 Firebase Push Notification API A-5

APPENDIX B: Smart Contracts B-1

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. viii

B.1 contract ‘Registration’ B-1

B.2 contract ‘UserConfig’ B-3

B.3 contract ‘ManageData’ B-5

APPENDIX C: Mobile Application files C-1

C.1 Config.java C-1

C.2 NotificationUtils.java C-2

C.3 FBInstanceIDService.java C-6

C.4 FBMessagingService.java C-7

C.5 AndroidManifest.xml C-10

C.6 activity_main.xml C-11

C.7 MainActivity.java C-12

APPENDIX D: Poster D-1

APPENDIX E: Plagiarism Check Result E-1

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Components in local private BC 8

Figure 2.2 Cloud deployment models 9

Figure 2.3 Layers of Cloud 10

Figure 2.4 Hybrid Cloud 10

Figure 3.1 Network flow of cloud-connected SHS 13

Figure 3.2 Architecture of consortium network in BC-SHS 14

Figure 3.3 Inner architecture between smart contract and server 16

Figure 3.4 Data flow from server to smart phone 16

Figure 3.5 Project development lifecycle 19

Figure 4.1 Events happened during installation 25

Figure 4.2 Events happened when receiving message 27

Figure 5.1 Data sent from the gateway to cloud 29

Figure 5.2 Data received in the cloud database 29

Figure 5.3 Data retrieved from the cloud database from the gateway 29

Figure 5.4 Example transaction details retrieved using transaction hash 30

Figure 5.5 Example transaction details retrieved using block number 30

Figure 5.6 Server Information 31

Figure 5.7 Services provided 33

Figure 5.8 Limitations of the subscribed service 36

Figure 5.9 Sign up 38

Figure 5.10 Subscribe to manage data service 38

Figure 5.11 Store data 38

Figure 5.12 Retrieve data 38

Figure 5.13 Table in the cloud database 38

Figure 5.14 Notification received 39

Figure 5.15 Existing databases in cloud 40

Figure 5.16 Authorized account 40

Figure 5.17 Unauthorized account 40

Figure 5.18 Registered account requesting data 40

Figure 5.19 Unauthorized account requesting data 40

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. x

Figure 5.20 Status of successful transaction 40

Figure 5.21 Status of unsuccessful transaction 40

Figure 6.1 PoW vs PoS 43

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. xi

LIST OF TABLES

Table Number Title Page

Table 3.1 Tools and their functions 17

Table 5.1 Service name and functions 34-35

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. xii

LIST OF ABBREVIATIONS

IoT Internet of Things

BC Blockchain

SHS Smart Home System

DoS Denial of Service

DDoS Distributed Denial of Service

BC-SHS Blockchain based Smart Home System

BLE Bluetooth Low Energy

EVM Ethereum Virtual Machine

EOA Externally Owned Account

API Application Programming Interface

URL Uniform Resource Locator

IPFS InterPlanetary File System

PHP Hypertext Preprocessor

JSON JavaScript Object Notation

FCM Firebase Cloud Messaging

GUI Graphical User Interface

IDE Integrated Development Environment

SMS Short Message Service

cURL Client URL

HTTP HyperText Transfer Protocol

FTP File Transfer Protocol

DNS Domain Name System

SSH Secure Shell

SDK Software Development Kit

iOS Iphone Operating System

PoS Proof-of-Stake

PoW Proof-of-Work

Chapter 1 Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 1

Chapter 1 Introduction

1.1 Background Information

The Internet of Things (IoT) is a term that originate by (Ashton 2009). This term

does not have a unique definition but the general idea among people is the same. The

idea was tons of physical devices in this world connect to the internet to collect and

share data. It also referred to objects that are identifiable and interconnected through

digital networks. This implied that an action can be trigger on these devices through

internet. IoT can be applying in many areas such as security, transportation, e-Health,

manufacturing, utilities, industrial provisioning, facility management and precision

agriculture. However, unique IoT applications may have different requirements in

terms of network and processing (Kusek 2018). For example, surveillance camera needs

to have a good bandwidth to stream video in a stable and consistent way. In a typical

IoT system, all collected data are stored in centralized cloud servers because each piece

of device in the system requires outstanding collaboration, connectivity and

coordination. This means that all IoT devices of a party should make their data

accessible by the other IoT object. From (Jukić, Špeh & Heđi 2018), cloud servers for

IoT purpose need to fulfil some criteria like large volume of storage, support variety of

IoT data and high processing speed.

Recently, there exist of a technology which is known as blockchain (BC)

technology. BC technologies are popular today largely because of the success of Bitcoin

(Nakamoto 2008). However, this does not restraint usage of BC within the area of

cryptocurrency only. There are also many BC platform enterprises nowadays such as

Ethereum, Hyperledger, Ripple and Quorum exploring and developing how BC can

contribute to the society in the future. In (Christidis & Devetsikiotis 2016) it states that

BC is a distributed ledger that enables two parties who do not fully trust each other to

communicate or transact in an immutable and transparent manner. The reason it is call

BC because each block (except the first block) is link with previous block by using

cryptographic hash function or algorithm (a mathematical algorithm that converts data

of arbitrary size to a bit string of fixed size), when more and more blocks are added it

forms a long chain. Each block in the BC is identifiable by a hash and it can be stored

as a flat file or in a database. Hash function is used on the header of each block in order

to avoid collision of header. Besides, it facilitates in protecting data in a block because

Chapter 1 Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 2

a hash will be different if the key used to generate a hash is different. According to

(Dinh et al. 2018), two parties interact with the BC through pair of public and private

keys. When a new block needs to be created, it will broadcast by a node to its nearby

one-hop peers. The neighbouring peers will ensure this new block is valid before relay

it further. If the new block is valid after verification, known as mining, the mining node

will broadcast this block back to the network, add this block to the chain and update the

ledger. If this new block is invalid, it will be discard. BC can be divides into two

categories which are public and private BC. Public BC is open to everyone who wants

to participate into the network. One of the most known examples of public BC is Bitcoin.

However, in private BC, a node needs to have permission in order to join the network.

Due the advancement of IoT today, Smart Home System (SHS) concept is going

to be more and more popular. A home can be considering as a smart home if it can

achieve several aspects such as home automation and entertainment system, security,

convenience, comfort and efficient energy management. A smart home can be

categories into local and cloud control types. Local SHS only allows local connections

of devices within the home but cloud SHS allows devices to communicate remotely.

There are several pros and cons for these two SHS in terms of response time, reliability,

security, control distance and functionalities. For local SHS, it has a faster response

because information does not need to pass through cloud server but directly to the

device. It also has a better reliability compare to cloud SHS since devices will work

even when there is no internet connection. Furthermore, local SHS provides a better

security environment as it will not expose personal information to the internet. However,

the idea of SHS could be more powerful if digital devices could be control and manage

from a distance. Therefore, SHS should be able to link with the cloud server through

the internet in order to monitor and control all smart devices remotely through smart

phones, laptop or tablet. For example, owner can turn on their air conditioner before

reaching home or see the real time video from the surveillance camera. Cloud SHS

brings great convenience but in the same time it also points out several problems.

Chapter 1 Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 3

1.2 Problem Statement and Motivation

 Since cloud SHS is accessible to the internet and closely related to daily life, it

raised lots of security issues which can be exploited for illegal activities. As mentioned

in (Abdur et al. 2017), there are four major security threads embedded within an IoT

based system which includes trespass, monitoring and personal information leakage,

denial of service (DoS) or Distributed denial of service (DDoS) and falsification. Hence,

the security matter needs to be solve so that cloud SHS can be deploy in a safe and

widespread manner. These security issues mentioned is going to be tackled throughout

this project.

1.3 Project Scope

In terms of security goals that can be achieve by using BC-SHS are integrity,

authenticity and auditability. In BC network, few data transactions are packaged into a

block and linked with previous adjacent block through cryptographic hash function. By

utilizing this ability integrity of BC can be ensured such that any attempt to manipulate

transaction records will be detected easily by neighbouring nodes. If one of the blocks

is tampered in BC, the following blocks had to be recomputed through expensive

mining process. However, this is almost impossible to achieve. Thus, integrity for data

transactions in BC-SHS is guaranteed. Next, the use of asymmetric cryptography in

BC-SHS can help with authenticity goals. Private and public keys are part of each

trusted node, which is the gateway device, in BC-SHS and they are meant for signature

generation and verification. The data sender signs a transaction with its own private key

and the transaction is verified by its peer nodes through its public key. Data transaction

within BC deploys digital signatures to authenticate identity of nodes so it is difficult

for malicious party to generate group of imitate nodes to initiate DDoS attack.

Subsequently, consortium members of the SHS can audit their transaction data at any

time given that every transaction data record is logged in the BC. In order to review

data stored in BC, one has to achieve agreement by majority nodes and go through

mining process. However, it is tough due to overwhelming cost and time needed.

Chapter 1 Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 4

1.4 Project Objective

In this project, a blockchain based Smart Home System (BC-SHS) that offers

an enhancement for SHS regarding its security issues and matters is proposed. In

practical, there should be a community of smart home connected to the cloud server

through the gateway device (node) but in this project it might not be. A computer can

be used in order to stimulate the scenario to a certain extend. This BC-SHS is expected

to provide a more invulnerable and safe environment when SHS and cloud servers are

communicating and transmitting data to each another. Only authenticated members are

allowed to access their data in the server. Moreover, the world expects SHS in the future

will be link to the internet so the cyber security aspect must be highlight and tackle as

soon as possible. There are three main objectives in this proposal wish to achieve:

1) To develop a consortium BC network that secure data transactions between

multiple smart homes and cloud server.

2) To develop a cloud service that is able to receive, return and store data to and

from the smart home community.

3) To develop a smart home gateway that is able to perform multiple functions

such as mining, divert data and record data transactions.

1.5 Impact, significance and contribution

This project is one of the pioneering efforts in utilizing BC to practical use in

Malaysia. Experience gained in developing this product can be a reference for other

industries which may consider adopting BC solution. Based on research, there is no

such product in the market yet. Hence, this project can be a role model for the players

in this industry to follow.

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 5

Chapter 2 Literature Review

In (Santoso & Vun 2015) a deployment of gateway on Wi-Fi based IoT SHS

was used to secure end to end communication of IoT devices. It is a project that exploits

and utilizes benefits of Elliptic Curve Cryptography protocol (Amara & Siad 2011) to

facilitate two rounds authentication processes. In the first round, the gateway device

will send identity and pre-secret key to IoT devices and automatically connects both of

them using Wi-Fi in order to validate mutually. In second round, IoT devices need to

return identity and pre-shared key back to gateway. Before any data exchange between

them, messages were encrypted through symmetric cryptography. In the end, shared

key will be generated and used in subsequent communication between two parties. It

was claimed that the project brings better security and convenience for SHS users.

Other than what (Santoso & Vun 2015) mentioned, (Wang, Xu & Yang 2018)

considered linking between gateways to cloud server. There is a similarity which is

encryption needs to be done before sending of data but this time it uses random distinct

keys to encode for each messages it relays. (Sridhar & Smys 2017) tells some problems

from asymmetric key encryption. They say asymmetric key encryption have high

overhead and could not provide all time security. It only provides protection for a

session of time of communication. (Sridhar & Smys 2017) then proposed a solution

named intelligent security framework which consist of dual mutual authentication.

Instead of using one type cryptography method, it used two which were asymmetric

key and lattice-based cryptography. There are several steps in their proposed algorithm.

 Step 1: Encryption using Master key repository’s public key

 Step 2: Creation of IoT nodes key pair

 Step 3: Generation of secret device session key

 Step 4: Generation of secret service session key

(After acquire secret device session key)

Step 5: Data transfer from gateway and IoT nodes

(After acquire secret service session key)

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 6

 Step 6: Data transfer from gateway and IoT nodes

 Step 7: End-To-End secure transaction

By using the double and mutual authentication schemes, it decreases traffic by

removing fake and fault packets. From a higher perspective, encryption itself is

insufficient to protect these data. Although nowadays decryption without knowing the

key can be considered as a tough job but it can be further enhance into a more

invulnerable environment where it is able to defend from various kinds of attack or

sabotage. Rather than only using symmetric cryptography, BC can be applied for

improvement because a hash value of the information it sends will be generate based

on the previous block’s hash and validation will be done by mining. Besides, any new

transactions who wanted to add on to the chain need to get at least 51 per cent of

agreement among all nodes and also two parties interact by using public and private

keys. BC itself can also adapt to any cryptographic method if necessarily.

 In the project developed by (Huh, Cho & Kim 2017), they used a BC platform

called Ethereum to manage IoT devices. Etheruem itself provides flexibility such that

different set of codes can be implemented to achieve certain functions. In the suggested

model, every device will be connected to the Ethereum network and they will consist

parts of the BC. The researchers also used three Raspberry Pis and a smart phone to

simulate a BC IoT environment. Each Raspberry Pi contains Ethereum account and act

as an IoT device. The smartphone acts as a tool that can configure desired policy in the

environment. A centralized server will not exist in this case as devices will only update

or make transactions through the Ethereum network. Due to the embedded consensus

algorithm, attacker cannot simply forge or modify any data in this network.

Furthermore, RSA algorithm including public key and digital signature are used to

validate sender and receiver of a transaction to strengthen the protection of network.

There are a few weaknesses can be seen in this architecture. As mentioned earlier, there

was no server and each device need to store partial transactions of Ethereum. This

causes a problem such that each device needs to have immense amount of storage space

due to huge amount of transactions from all connected IoT devices in future. The next

limitation is that all IoT devices need to build by specialized components in order to

generate sufficient computational power to calculate and solve consensus algorithm. It

is infeasible and too expensive for small IoT devices to have a large storage space and

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 7

fast computational ability at the same time. To overcome these limitations, adding a

cloud server and local gateway into the architecture would be a way. The cloud server

should not be part of the BC network as it plays a role to store IoT data transactions and

provide services only. A smart contract can be added into the BC to redirect request to

the server. The local gateway suggested here is to limit amount of devices that connects

to the BC network. Rather than including all devices into the BC, only the gateway will

be involved in it to compute the consensus algorithm so that only the gateway has to be

a specialized gadget and other smart devices could just connect to it to get service.

As (Chapade, Pandey & Bhade 2013) mentioned, a DoS or DDoS attack on

cloud server could be detected and mitigated by using distance estimation based DDoS

detection technique which is simple but effective. Previous studies and methods mostly

focused on reducing timeout period and expand length of queues. However, it is not an

ideal way because there are many queues in a TCP server system such as HTTP, SMTP,

and FTP. Enormous amount of memory in an operating system is required when queues

were lengthened. When timeouts were shortened, remote users with slow connection

speed would never get to link with the server and it also affects new outgoing

connections. Due to these limitations of former techniques, distance estimation based

DDoS detection technique is introduced to resolve these problems. It is a way such that

it uses exponential smoothing estimation to forecast the distance mean value in the

subsequent session. The detection of anomaly depends on setting of normality and

deviation. A simulation was done to generate the rate of detecting an attack and rate of

false positive happened and it shown a high detecting rate and low false positive rate.

After detection of strange request or packet, actions like blocking and time out can be

taken on the suspicious network. However, the cloud still stands a chance by getting

overwhelmed by malicious users if description of normality and deviation is incorrect.

This problem can be solved by only permitting certain network to be connected to the

cloud server. By using this method, any unknown networks must not be able to link

with the server. There exists a type of BC network which is called consortium BC

network. Consortium BC is partly private in the sense that it only allows predetermined

participants to send and retrieve data to or from the cloud server. It prevents

unauthorized users to append new blocks by setting policies in the miner machine itself.

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 8

Figure 2.1: Components in local private BC

Then, in (Dorri et al. 2017) it uses a local private BC within each smart home

itself. Three types of devices are included in a local private BC which is smart home

miner, local storage and IoT smart devices as shown in Figure 2.1. The smart home

miner will process input and output transactions. It has similar abilities as other normal

miners like granting authorization, authentication, and inspecting transactions. The

miner also manages a local storage. The local storage can also be known as backup

drive that stores data locally. It can be a stand-alone device or integrate with the smart

home miner. In this research, smart devices in the house can communicate and request

data directly with each other. A device can store data either in the local or cloud storage.

To store local data, miner needs to assign a shared key between device and storage as a

starting point of transmission. To store data remotely, miner will first authorize the

device, extract the last block’s hash and send them together with the data to the cloud

storage. After that, the cloud storage will return a new block-number to miner for future

use. In this paper, it refers to (Dorri, Kanhere, & Jurdak 2016) which declare that it is

an anonymous process when storing data into the cloud. Research paper (Aung &

Tantidham 2017) is another study which is quite similar to (Dorri et al. 2017). It also

uses private local BC, smart home miner and local storage in the SHS. The only

different is that it deploys Ethereum in its smart home miner. With this Ethereum

private BC, owner can log into their account to check all transactions history made

within the SHS before. Other than that, rules and policies can be set easily to manipulate

and restrict certain transactions. From (Dorri et al. 2017) it brings confidentiality

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 9

because only authorized user can interpret his or her data. By the nature of BC, integrity

is achieved in the sense that data or information has never been altered by anyone else

other than the user from start to end. Moreover, these smart home devices are safe from

malicious request since only devices with the shared key published by the miner can

take part in a transaction. Nevertheless, there are also some flaws too. One of the

weaknesses here is the overloading work for the home miner. A miner needs to process

tons of transactions from each device in the smart home and in the same time it may

needs to communicate with the cloud server. A device needs to wait for a longer time

until its turn. Meanwhile, there is a relationship between number of jobs and energy

consumption. The more jobs need to be done, the greater the energy consumption will

be. There is a suggestion which is removing the local storage and keep all SHS data

into the cloud server since cloud server can perform all functions like local storage and

at the same time it can conduct more operations and services. Home miner do not has

to decide which storage to store and this can reduce jobs greatly when there are lots of

transactions. Meanwhile, data increases massively in the long run of SHS and this

means more storage space is needed to store them. Without the local storage, cost used

to build SHS will reduces since local storage no longer exists.

Figure 2.2: (Cloud deployment models 2017)

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 10

Figure 2.3: Layers of Cloud

Figure 2.4: (Hybrid Cloud 2016)

According to (Sharma et al. 2017), there are several cloud deployment models

such as public, private, community and hybrid as shown in Figure 2.2. It explained

numerous and different kinds of embedded threats that a cloud possesses. Figure 2.3

shows the architecture of cloud network. There are several methods in this paper to

secure cloud. One of them will be securing cloud layers by layers instead of protecting

it as whole. It says that layered security is of supreme level and ensures all hypervisors

to work perfectly. It also tells different types of clouds need to have different way to

secure it. For public cloud, strong firewall should be set up. For private cloud, a virtual

network invasion detection system must build in each virtual machine. Then, a response

mechanism should be prepared so that it can report to user when there are intruders. For

hybrid cloud (Figure 2.4), multi-tenant technologies must be applied after separating

users at network level. Cloud encryption and Split-key encryption (splitting key into

half and keep by different person) can be deploy as a defend mechanism for hybrid

cloud too. All of these solutions are changes made from existing technologies so that

Chapter 2 Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 11

they can be more trustworthy and effective but this paper did not state any

authentication method as one of the solution. There should be only permitted individual

be able to access the cloud no matter it is which type of cloud. This issue can be solve

by setting up and apply policies header in the BC into gateway device of the user so

that certain regulation and management can be enforce

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 12

Chapter 3 System Design

3.1 Reasons of Introducing BC-SHS

Before introducing BC into the SHS, SHS had the ability to manipulate data or

activities in the smart home directly and with little security checking and monitoring

only. This statement was declared because usually all of these IoT devices will be

connected to the internet leaving a huge security hole on every single smart home

device. Even if a smart home hub was installed which it can collect all sensor’s data

and be the only device connects to the internet, someone else can still spoof and pretend

to be it. However, with BC implemented into the system, the smart home hub needed

to go through many levels of security before it could reach the cloud server. For instance,

the hub needed to be one of the node of the consortium BC network in order to utilize

the cloud service and it also needed to went through the consensus process which was

it needed to be verified by most of its peers. On the other hand, smart contract was also

one of the reason of implementing BC into the system. As smart contract automated the

validation of users and data, it had provided another layer of security which was

blocking any unauthorized users or invalid of data from approaching the cloud server.

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 13

3.2 System Architecture

Figure 3.1: Network flow of cloud-connected SHS

First of all, there will be a community of SHS connected through cloud server

and lots of IoT devices will connect to local SHS gateway device as shown in Figure

3.1. Within each smart home, there is a local gateway device act as main controller in

SHS that could connect to the cloud server. There are three categories of devices

attached with sensor nodes which are home appliances, user interface and monitoring

and control devices. Smart devices and sensor nodes can communicate with the local

gateway device through wired protocol like RS-485 or wireless technology such as

ZigBee and Bluetooth Low Energy (BLE). The SHS gateway device is responsible to

collect data from sensor nodes, perform limited data processing such as compression

and analysis, and then forward the data to cloud server. It is the only node that can

access to the internet in the proposed BC-SHS as well.

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 14

Figure 3.2: Architecture of consortium network in BC-SHS

In the BC-SHS, there are five main components which are consortium BC

network, IoT sensor nodes, SHS gateway device, cloud server and smart contract. Each

component has its own function to perform. For consortium BC network, it permits the

trusted nodes to initiate transaction, participate in block verification and conduct

consensus or mining. The role of IoT sensor nodes is to collect relevant sensor data and

send it to the local SHS gateway device. They communicate through wireless or wired

protocol but IoT sensor nodes will not be connect to the internet. Note that IoT sensor

nodes are not part of BC network due to their limited memory space and low

computational capability. Without these two abilities, they could not keep the public

ledger, perform verification and mining. Next, SHS gateway device will be representing

trusted node to carry out actions such as request and store data, perform block validation

and consensus in the consortium BC network. This device has to perform great amount

of computational and communication work all the time so it must be a specialized

embedded device with vast computational power. In this project, Raspberry Pi is a

better choice to simulate a SHS gateway device. Then, cloud server is here to deal with

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 15

requests from SHSs and to store SHS data for further query and processing intention.

In BC-SHS, several cloud servers may exist when each SHS subscribes to different

services contained in multiple cloud servers. All cloud servers also own and publish a

specific smart contract which has its own specific address in order for SHS gateway to

interact with it. A smart contract is a set of policies or conditions that a SHS gateway

needs to achieve before it can proceed with desired actions within the cloud server. In

order to interact with smart contract, SHS gateway has to target the smart contract’s

address, then start a transaction and provoke certain function in smart contract. After

the transaction has been accepted, it will undergo the normal mining process. The BC

will then keep valid transactions that triggered under this process.

During this project, Ethereum BC network will be chosen as the BC

environment to be deploy due to its mature development and community support. It is

an open software platform and programmable BC which allows users to construct their

own operations they wish rather than choosing from pre-defined operations. Inside the

core of it there is a runtime environment for smart contracts named Ethereum Virtual

Machine (EVM) that is able to execute code of arbitrary algorithmic complexity. EVM

is totally isolated and sandboxed in the sense that codes within it do not access to any

network, file system or other processes. By utilizing the peer-to-peer network protocol

in Ethereum, every node connected to the network will maintain and update the BC

database. Note that in BC-SHS, nodes only record data transaction and it does not store

IoT data collected from sensor nodes. Other than that, accounts also act as an important

role in Ethereum. In general, there are two kinds of accounts, known as contract

accounts and also externally owned accounts (EOAs). EOAs require human users

control the Ethereum BC throughout the transactions and are controlled by private keys.

On the other hand, contract accounts’ embedded codes are similar to smart contract and

it can run with or without users. Contract accounts will be a better choice because it is

an automated helper in IoT environment. The mining algorithm that were to use in this

project was PoW (Proof-of-Work). It was an algorithm that block will get mined and

miners will get the reward depending on who solved the mathematical problem in the

first place.

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 16

Figure 3.3: Inner architecture between smart contract and server

 Figure 3.3 shows the inner architecture between smart contract and the server.

In order for the BC environment, which was isolated from the outside world, to send

and receive data to and from the server, smart contracts need to make use of a service

named Oraclize. Oraclize provides oracle service for smart contracts and BC

applications. It accepts a few data sources such as Uniform Resource Locator (URL),

InterPlanetary File System (IPFS) and WolframAlpha. In this project, URL will be

deployed instead of the others. This was because it enables access to any API or web

page on the Internet. Moreover, the application programming interface (API) which

fetches data to and from the server will be written in Hypertext Preprocessor (PHP)

which is a server-side scripting language.

Figure 3.4: Data flow from server to smart phone

 On the other hand, Firebase Cloud Messaging (FCM) service was used to

facilitate the flow of data as shown in Figure 3.4. FCM was invented by Google that

allows trusted parties to send notifications from their servers to end users’ mobile

device. FCM possessed a strong feature which allows servers to inform their users in a

real time manner. Based on different settings, messages from the server can be send to

an individual or through a particular topic that users possessed or subscribed. On top of

that, a mobile application must be installed into the particular device in order for the

FCM server to locate it. Other than sending notification from the cloud server, FCM

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 17

also provides a notification console graphic user interface (GUI) that can perform

multiple functions such as check status of a notification, check number of daily active

users, check users’ location and many other analytic functions. FCM supports both

Android, iOS and chrome web apps but in this project, only Android application was

installed and used.

Tool Functions

go-ethereum/ geth command line interface implemented in

Go programming language and is used

for running full Ethereum node

Puppeth a tool to create private Ethereum

network

Truffle Ethereum based development

environment and testing framework

Oraclize an oracle service for smart contracts

Ethereum-bridge a tool enables any non-public BC

instance to interact with the Oraclize

service

MySQL a relational database management

system

Android Studio integrated development environment

(IDE) for android development

VirtualBox A virtual environment to simulates

another operating system

Table 3.1: Tools and their functions

Table 3.1 shows a list of essential tools that will be used throughout the development

of this project and their functions respectively.

Most of the time, this project was conducted under Linux environment. One of

the Linux based operating system called Ubuntu was the first choice in terms of

friendliness and complexity. Linux based operating system was preferred because there

are more tools available and more developer friendly. By using this operating system,

packages and modules can be handled and customized easier.

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 18

3.3 Design Specification

 A BC system that can support 100 users

 Database that stores data such as timestamp, service type and sensor data

 Database that can hold maximum 50GB of data in total

 Smart contracts that can check whether an account meets certain condition,

enable or blocks an account to perform smart contract’s function, change the

state of BC and send request to server through Oraclize service

 APIs that can perform actions such as create database, store data, retrieve data,

calculate heart rate condition, communicate with firebase server and send push

notification

 Mobile application that is able to receive push notification sent from FCM

Chapter 3 System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 19

3.4 Development Lifecycle

Figure 3.5: Project development lifecycle

According to the plan as shown in Figure 3.5, throwaway prototyping lifecycle

model will be the guide throughout development of this project. Throwaway

prototyping is also known as rapid prototyping which refers to development of a model

that finally will be disposed rather than becoming the final software. According to this

model, the whole system will be building up piece by piece and every time a smart part

from it will get evaluated. After improvement is made then the prototype will be

discarded or thrown away. Throwaway prototyping can deliver a better quality system

as it is evaluated and enhanced once in a while throughout the whole system

development process. Other than that, any problems could identify easier in the early

stage when the system is incomplete.

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 20

Chapter 4 Implementation

4.1 Setting up private Ethereum BC environment

 The Ethereum BC was created by using Puppeth to generate the genesis file and

define the network name. A few commands with all the required parameters were

defined to create a private node. In order to speed up the process of mining in this

private BC environment, the difficulty of the consensus algorithm was set relatively

easy compared to the original complexity. Other than that, the gas limit of the BC had

set relatively high due to the high complexity of smart contracts. To avoid error such

as insufficient funds when calling Oraclize service, some ethers were funded into the

smart contract. To achieve the scenario such that multiple nodes running on a single

machine, Ethereum provided a way which was create different nodes in different

directories. It meant that each various directory represented each Ethereum node.

Command to start genesis file in node:

Command to create a node:

Command to connect two peer nodes (in Geth console):

Command to fund ether into the smart contract (in Geth console):

In the meantime, ethereum-bridge needed to be initiated in another console before using

the smart contract’s function. Noted that the same account that used to initialize the

ethereum-bridge cannot be used to deploy other contracts as it will result in unexpected

geth --datadir data1 init genesis.json

geth --datadir data1 --port 30301 --networkid 123 --rpc --rpcport 8101 --ipcdisable

--nodiscover console 2>>data1/01.log

eth.sendTransaction ({from:eth.coinbase, to: [Smart Contract Address], value:

web3.toWei(10, “ether”)})

admin.addPeer([executing “admin.nodeInfo.enode” from another peers])

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 21

behaviour. This was because the callback address will be used to deploy those contracts

which was against the rules set in the connector side from the Oraclize service.

Command to start the ethereum-bridge:

Before interacting with the smart contract through Truffle, the port in the truffle.js

needed to be changed into the desired port. For example, if the node was started with

port 8101, then the port attributes in the file must be turned into 8101 as well.

Command to interact with smart contract (in Truffle console):

To sign up:

To subscribe manage data service:

To store data:

To get data from server:

manageData.deployed().then(inst=>inst.signUp.sendTransaction({from:eth.coinba

se}))

manageData.deployed().then(inst=>inst.subMngData.sendTransaction({from:eth.c

oinbase}))

manageData.deployed().then(inst=>inst.storeData.sendTransaction(“ServiceName

”, “100”, {from:eth.coinbase}))

manageData.deployed().then(inst=>inst.getFromDatabase.sendTransaction({from:

eth.coinbase}))

node bridge –a 0 -H 127.0.0.1:8101

module.exports ={

 networks:{

 development{

 host: “127.0.01”,

 port: 8101,

 network_id: “*”

 }

 }

};

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 22

4.2 Smart Contract related APIs

 MySQL database was used and three APIs was created. The first API was made

for registration purpose which will accept a parameter which was the account number

of the sender. It was used to create a database named by the account number passed in.

After that, it will create a table called storage with three attributes in it. Those attributes

are id, service and data as shown in appendix A.1. Additionally, this API had some

extra steps apart from the other two APIs because creating databases from a PHP script

was not supported directly in this web hosting service.

The second API was made for the purpose of storing data. This API will accept

a few parameters such as account number, timestamp, service type and data. The

account number is used to connect to the respective existing database for each smart

home. Timestamp will be the ID, which was the primary key for the storage, so that it

will be always differ for each row. When there were more than ten rows of data stored,

a title of heart condition will be set according to the average of the latest ten heartbeat

stored. In the meantime, the title will be sent to the particular device through the aid of

FCM. This API was shown in appendix A.2.

 The third API was made to fetch data and it accepts only parameter, which is

the account number. Upon request, it will return its data to the requester with a

JavaScript Object Notation (JSON) encoded format. This API was shown in appendix

A.3.

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 23

4.3 Firebase related APIs

 Appendix A.4 was a configuration file that defines the firebase server key that

retrieved from the firebase console. By declaring the key inside the server, it authorizes

the application to access into Google services such as send messages from FCM legacy

protocols. Without this key, firebase backend will not be able to find the respective

account and server. The key can be get from the cloud messaging settings. This API

was used in later stage by Appendix A.6 as an input of HTTP (HyperText Transfer

Protocol) header to pass to firebase server.

 Before sending any notification, all required elements need to be constructed.

Appendix A.5 was a class that played a role in declaring push notification elements

such as title, message, image and data. These elements were declared in private so that

only functions within can alter its value and to enhance their security. In order to access

and change their value, setters of these elements were built. Later on in Appendix A.6,

all these elements will be encoded into JSON format and sent by HTTP POST operation.

Appendix A.6 was created to communicate with firebase servers and make use

of FCM services. In this API, Client URL (cURL) was used to achieve the aim. cURL

is a command-line tool that aids in transmitting data by utilizing various type of

protocols such as HTTP, File Transfer Protocol (FTP), Telnet and more. In this case,

HTTP was used to send POST messages which consist of push notification elements to

firebase servers through the help of cURL. Other than that, this API also had another

function which was to decide who will be the receiver of a particular notification. There

were three types of grouping method in total. The first type will be single user only

which means only one of the registered device will be receiving the notification. The

second type will be based on the topic subscribed which means only users that

subscribed to a particular topic will be receiving that notification. These topics can be

created and customized by developer based on their requirements. The third type will

be multiple user which means a group of registered users will be receiving the

notification. In this project, there were only a single user type grouping method used.

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 24

4.4 Smart contract development

 There were total of three smart contracts developed as shown in appendix B and

were linked together through import function. Moreover, the OraclizeAPI contract was

also deployed and imported in these contract so that Oraclize knows where should it

return the values or data after it had successfully retrieved from a source. The contract

‘register’ in appendix B.1 was used to interact with the API for registration in appendix

A.1. When calling the contract’s function, it will send a HTTP POST request in JSON

format to the targeting URL through the help of Oraclize service. In appendix B.2, it is

a contract named ‘UserConfig’. It keeps track whether a user had registered or

subscribed to a service. It also stores the latest result data returned from the server. Then,

in appendix B.3, it is a contract named ‘manageData’. It provides services for users to

store and retrieve their data from their respective database but only users that had been

subscribed to this service will be able to utilize it.

4.5 Mobile Application development

Android Studio was used for the development of the mobile application. In

appendix C.1, all constant values were defined and these values were used across the

entire application. In appendix C.2, it served for showing the message which includes

title, image, message and also timestamp in the notification tray. In appendix C.3, the

class was used to receive a unique firebase registration id for each different device. The

registration id or token received was used in the server to send notification to a

particular device. In appendix C.4, the class was used to receive messages from firebase.

In firebase, there are two types of messages or payload which is notification and data.

For notification message type, predefined data elements needed to be used. For data

message type, those data elements can be customized based on various requirements.

In appendix C.5, FCM information was added so that the application can utilize the

service. Appendix C.6 and C.7 shows the main interface’s code together with the

registration id string received.

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 25

Figure 4.1: Events happened during installation

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 26

In Figure 4.1, events happened during the installation of mobile application was

shown. After the installation of the mobile application, the mobile application will

initialize and check if the mobile device was the first time installing the mobile

application or the application cache data had been cleared before. If that was the case,

the application will generate a new and unique registration token or id for the device.

In the same time, the registration token will be stored in shared preferences. Shared

preferences was a way of storing and retrieving data in a key-value pair manner which

meant every value had a unique identifier known as key. After the token was generated,

it will be sent to the targeted server application that was set in the build gradle file of

the project. Then, the main interface as well as the registration id will be shown.

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 27

Figure 4.2: Events happened when receiving message

Chapter 4 Implementation

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 28

Figure 4.2 shown events happened when receiving a message from the firebase

server. After a device had received the message, the type of the message or payload will

be checked to decide whether it was a data or notification payload. Basically

notification messages were taken care by firebase SDK (Software Development Kit)

itself. Notification messages can be sent through firebase console user interface. This

meant that this type of messages had less control and customization permission

provided. For data payload, it must be handled by the application and firebase console

user interface cannot send this kind of messages. Server side logic was needed to

convey notification through firebase API in this message type. One of the activity on

the figure above was broadcast the push message and it meant that notifying the

message received to other listening parts of the application such as user interface objects.

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 29

Chapter 5 Results and Discussions

5.1 Verification of Defined Objectives

Figure 5.1: Data sent from the gateway to cloud

Figure 5.2: Data received in the cloud database

Figure 5.3: Data retrieved from the cloud database from the gateway

Figure 5.1 above shows an account sent a few dummy data to the cloud service

from the smart home gateway and these dummy data will be 99, 99 and 52. Figure 5.2

was the table from the cloud database and it shows it had received and stored those

dummy data sent from the smart home gateway. In Figure 5.3, the smart home gateway

had sent a request to retrieve data from the cloud and it also shows successful retrieval

of the last row or the most recent data stored into cloud previously. Hence, this had

proven that the objective of developing a cloud service that is able to receive, return

and store data to and from the smart home community had achieved. In the meantime,

it also verified that the smart home gateway has the ability to request, send and retrieve

data which met one of the objective stated. For the mining function, entering the

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 30

command miner.start() in the Geth console will initiate the mining process in the smart

home gateway and miner.stop() command to stop mining.

Figure 5.4: Example transaction details retrieved using transaction hash

Figure 5.5: Example transaction details retrieved using block number

In BC-SHS, all transactions were recorded into the BC. By utilizing a specific

transaction hash, which was generated when a transaction was initiated, its details such

as block number, initiator, target and others can be retrieved. By executing the Geth

command eth.getTransaction([Transaction Hash]), transaction details will be shown as

in Figure 5.4. Moreover, some other transaction details such as timestamp, gas used and

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 31

more can also be retrieved by utilizing the command eth.getBlock([Block Number]) as

shown in Figure 5.5, provided that block number was recognized.

5.2 Server Information and Limitations

Figure 5.6: Server information

In this session, the subscribed server information, services provided and its

limitations will be displayed. This web hosting package was bought from Exabytes

Network Sdn. Bhd. and it was named EBiz Plus v7 which was shown in Figure 5.6.

There were several reasons of why this package was chosen. First of all, Oraclize

needed to have to a URL that can be remotely accessible. Although it can be done by

using tools like localTunnel to expose local server but it was unstable and lack of

maintenance by the author. In order to expose this system more towards the industry,

web hosting was one of the way to do so. Then, in this package it consisted half of the

number of database that were needed to achieve and that was a good start for

experimental purpose. It was also understood that the upgrade of package in the future

can be done easily and without any hassle as only few clicking and payments needed.

Last but not least, the customer service and support by this company was outstanding

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 32

and helpful. 24-hours online technical support was also provided to solve any migration

or implementation issues in the server. An online web hosting control panel named

cPanel was included in this package. It was Linux-based and provided GUI and

automation tools to facilitate users to host a web. Moreover, tempoyak will be the name

of the server that cPanel used. Other than that, the version of apache, PHP and MySQL

were shown too. The architecture of x86_64 means that it was 64-bit version of x86

instruction set. The shared IP address was the address that used for several sites on the

server. Perl was a type text processing programming language which was also

supported by this server.

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 33

Figure 5.7: Services provided

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 34

Service Provided Function

ClamAV Daemon (clamd) Detect malicious software and viruses in

the server

cPanel DAV Daemon (cpdavd) Provides framework to create, alter,

move documents remotely on the server

cPanel Server Daemon (cpsrvd) Act as application server for cpanel

Cron Daemon (crond) Aids in scheduling system task

cPanel DNS Admin Cache (dnsadmin) Increase the speed andperformance on

DNS update

Exim Mail Server (exim) Enables the server to send and receive

email

Exim Mail Server-port number

 (exim-587)

Mail server that listens to another port

FTP Server (ftpd) Enables FTP service on the server

Web Server (httpd) Processes HTTP client’s request

Internet Mail Access Protocol Server

(imap)

Processes mail download operations

Internet Protocol Aliases (ipaliases) Allows adding of more than one IP

address to the network adapter

Login Failure Daemon (lfd) Scans the log file to prevent any brute-

force attacks from outsiders

Local Mail Transport Protocol Server

(lmtp)

Enables Exim to link with another mail

server

DNS Server (named) Runs customized name server

Name Service Cache Daemon (nscd) Manages cache for name service requests

Post Office Protocol 3 Server (pop) Manages how users download their email

System Logger Daemon (rsyslogd) Log system activities and monitors web

server

Apache SpamAssassin (spamd) Filter spam messages

Secure Shell Daemon (sshd) Allows SSH connection to the server

Server Load Defines how many processes waiting to

be process in the queue

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 35

Swap Extra memory that can be used when

physical memory was used up

Table 5.1: Service name and functions

In Figure 5.7, a series of services that was provided in this package was shown

and Table 5.1 showed their names and functions. There were several terms needed to

be explained on the table above. Daemon meant computer programs that execute

continuously as background processes. Cron was a job scheduler in Linux-based

operating system. Exim was a mail transfer agent that used simple mail transfer protocol

to send mails from one to another device.

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 36

Figure 5.8: Limitations of the subscribed service

Although there were lots of services provided under this package but there were

also limitations on this subscribed service as shown in Figure 5.8. The total number of

databases that can be created under this package was 50 only. The maximum file usage

was 250,000 which meant only this amount of files can be stored on this server. On the

other hand, disk usage was the total space occupied by all files and databases on the

server. The MySQL disk usage however was total space occupied by databases only.

Both of them had an upper limit of 50 gigabytes of free spaces. Then, the bandwidth

usage had its maximum amount too which was 100 gigabytes. It was the amount of data

transferred to and from the server. It was calculated and refreshed in every month.

Aliases were additional domains that can be used to point to the same website and in

this package only 50 of it was allowed. Number of processes were all processes created

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 37

by the site but entry processes were the amount of processes accessing the site. The

limits will be 100 and 20 respectively. Other than that, the maximum physical memory

usage was 1.5 gigabyte. IOPS was stand for input/output operations per second which

can measure the performance of the server to retrieve and store data into the database.

The others services such as subdomains, email accounts, auto responders, forwarders,

email filters and FTP accounts had no limitations.

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 38

5.3 Testing

5.3.1 Test on Normal Usage

Figure 5.9: Sign up

Figure 5.10: Subscribe to manage data service

Figure 5.11: Store data

Figure 5.12: Retrieve data

Figure 5.13: Table in the cloud database

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 39

Figure 5.14: Notification received

For the normal usage on this system, the first step will be signing up as a part

of the SHS through the smart contract’s function as in Figure 5.9. Then, users had to

subscribe to the manage data service in order to divert data to and from the smart home

to cloud server as shown in Figure 5.10. After that, the registered account can begin to

store data into the cloud database as in Figure 5.11. The particular account can also

retrieve the latest data from the cloud server as in Figure 5.12. For the push notification

part, if the database table had exceeded ten rows of data, then it will evaluate whether

the heart rate was too high or low. In Figure 5.13, the average of latest ten data was

higher than the normal range of heart beat rate and the server sent notification to user’s

device as shown in Figure 5.14.

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 40

5.3.2 Accessing data with unregistered account

Figure 5.15: Existing databases in cloud

Figure 5.16: Authorized account

Figure 5.17: Unauthorized account

Figure 5.18: Registered account requesting data

Figure 5.19: Unauthorized account requesting data

Figure 5.20: Status of successful transaction

Figure 5.21: Status of unsuccessful transaction

In this subsection, a test on accessing data from cloud server using an

unregistered or unauthorized account was performed. From Figure 5.15, there was a list

of existing database to show all of those registered account, including the one displayed

on Figure 5.16. Moreover, Figure 5.17 was the unauthorized account created to perform

this test. Then, both accounts tried to request data from the cloud server as shown in

Chapter 5 Results and Discussions

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 41

Figure 5.18 and Figure 5.19. A command was entered to retrieve the transaction details

by using the respective transaction hash generated.

Command to retrieve transaction details (in Geth console):

 After the command was executed based on the transaction hash generated

previously, the status of the transaction can be seen as in Figure 5.20 and Figure 5.21.

If a transaction was executed successfully, the status of the transaction will be 0x1.

Otherwise, the status will be 0x0 as an indication of failed transaction. However, if a

transaction was still yet to be confirmed or mined, the command above will return null.

Note that the transaction hash in Figure 5.20 was the one created in Figure 5.18 which

was requested by the registered account and the transaction hash in Figure 5.21 was the

one generated in Figure 5.19 which was requested by the unauthorized account.

eth.getTransactionReceipt([Transaction Hash])

Chapter 6 Conclusion

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 42

Chapter 6 Conclusion

 SHS which is closely related to one’s daily life can bring lots of conveniences

to an individual but in the same time it could also potentially leak personal information

and private data too. The leaking of personal information may lead to serious,

unrecoverable consequences and damage to an individual or even to a family. Although

local SHS had been introduced as a sub-optimum solution however local SHS does not

allows remote access of IoT and which greatly reduces the advantage of SHS. Cloud

SHS with security issues needs to be solve or mitigate to an extend such that it can be

deployed in a safe and secure environment.

In this project, BC was used as it is one of the decent solution in resolving the

problem faced by cloud SHS because it can achieve several security aspects such as

integrity, authenticity and auditability. Hence, BC-SHS was proposed. In BC-SHS there

exist of a community of smart homes joined a consortium BC network. Each smart

homes consisted a local gateway which could collect sensor data from IoT sensors

nodes, communicate with cloud server through smart contract and perform consensus.

The security became tighter as local SHS gateway was the only device that get to

connect to the internet. Other than that, smart contract was also introduced to provide

automation of checking and validating on users and data which further improves the

overall security.

In the future, IoT devices or sensors can be implement into the existing system

to complete the entire flow of the system as for now only self-generated or dummy data

was used. The number of nodes in the BC environment can also be expand and increase

which was not limited to the number of database provided by the service subscribed.

The gateway device can also be replaced by the real intended device like raspberry pi

as mentioned before to greatly enhance the computational power and overall

performance. Other than that, multiple nodes can be set up, connect and link across

several and different machines instead of all nodes in the same machine. In order to

develop this system more towards the real world situation, the cost of deploying smart

contracts should be calculated wisely so that it will not be too expensive to use a

function. As for now users needed to install the application and open mobile data or

connect to Wi-Fi in order to receive the notification. Subsequently, SMS can be

implement instead so that users still can get the notification even without connection of

Chapter 6 Conclusion

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 43

internet. This is because most of the healthcare service users will be elderly people

which has less knowledge to use a mobile phone. Moreover, the mobile application can

be implemented with more functions such as send emergency messages or calls to the

service provider other than just receiving notifications. Besides, a version of web

application and also iOS version of mobile application can be implemented as well.

Figure 6.1: (PoW vs PoS 2017)

Additionally, a more suitable and satisfying mining algorithm such as Proof-of-

Stake (PoS) can be applied afterwards. There were many differences between PoW and

PoS. Unlike PoW, which a new block will be added by the miner who solves the

mathematical puzzle, in PoS, blocks were added into the chain by determining its

wealth or known as stake. The way of proving a valid block does not depend on the

computational power or how much work had been done anymore instead it depends on

how much stake was placed. There will be no block rewards and miners (known as

validator) will get the transaction fees in PoS system.

Chapter 6 Conclusion

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 44

One of the challenges faced when developing this project was learning the

contract-oriented language, Solidity. Although this language was influenced by C++,

Python and JavaScript but the nature of this language was not like other programming

languages and it was confusing in the beginning. Besides that, EVM is isolated from

the outside world and some work need to be done so that it can communicate with

sources and data from outside. Oraclize service was used to aid in this situation however

it needed to be studied carefully in order to implement it successfully. The other

challenge will be deploying all those APIs up to the purchased web hosting server. All

those configurations needed to be set again and it was very different from the local

apache server. In order to communicate from the server to the mobile application,

firebase needed to be learnt and set up. The journey of learning FCM and how it worked

consumes lots of time as there were many documents regarding this function.

Furthermore, Android Studio was not an easy platform for newbies to create a mobile

application.

In conclusion, SHS became more reliable and trustworthy after applied with BC.

This project can be used as reference for industry that may want to adopt BC as their

solution. Nowadays, many existing SHS does not consider cyber security as one of the

important aspect and this project could be a light in dim for them.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 45

References

A. Dorri, S. S. Kanhere, and R. Jurdak 2016, ‘Blockchain in internet of things:

Challenges and solutions’, Cornell University Library. Available from: <

https://arxiv.org/ftp/arxiv/papers/1608/1608.05187.pdf>. [1 August 2018].

A. Dorri, S. S. Kanhere, R. Jurdak and P. Gauravaram 2017, ‘Blockchain for IoT

security and privacy: The case study of a smart home’, IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom

Workshops), pp. 618-623. Available from: IEEE Xplore Digital Library. [1 August

2018].

Abdur, M., Habib, S., Ali, M. and Ullah, S. 2017, ‘Security Issues in the Internet of

Things (IoT): A Comprehensive Study’, International Journal of Advanced

Computer Science and Applications, vol. 8, no. 6, pp.385-386.

Ashton, K. 2009. ‘That 'Internet of Things' Thing’, RFID Journal. Available from:

<http://www.rfidjournal.com/articles/pdf?4986>. [5 Jul. 2018].

Christidis, K. and Devetsikiotis, M. 2016, ‘Blockchains and Smart Contracts for the

Internet of Things’, IEEE Access, vol. 4, pp.2292-2303. Available from: IEEE

Xplore Digital Library. [19 July 2018].

Cloud deployment model, 2017. Available from: <https://qph.ec.quoracdn.net/main-

qimg-34fbe07d9311be4084f7b7b8a502a307>. [8 August 2018].

Dinh, T., Liu, R., Zhang, M., Chen, G., Ooi, B. and Wang, J. 2018, ‘Untangling

Blockchain: A Data Processing View of Blockchain Systems’, IEEE Transactions

on Knowledge and Data Engineering, vol. 30, no. 7, pp.1366-1385.

F. K. Santoso and N. C. H. Vun 2015, ‘Securing IoT for smart home system’,

International Symposium on Consumer Electronics (ISCE), pp. 1-2. Available from:

IEEE Xplore Digital Library. [27 July 2018].

Hybrid cloud, 2016. Available from: <https://itviconsultants.com/wp-

content/uploads/2016/10/hybrid_cloud_graphic1.png>. [8 August 2018].

Kusek, M 2018, ‘Internet of Things: Today and tomorrow’, International Convention

on Information and Communication Technology, Electronics and Microelectronics

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 46

(MIPRO), pp. 0335-0338. Available from: IEEE Xplore Digital Library. [15 July

2018].

M. Amara and A. Siad 2011, ‘Elliptic Curve Cryptography and its applications’,

International Workshop on Systems, Signal Processing and their Applications,

WOSSPA, pp. 247-250. Available from: IEEE Xplore Digital Library. [27 July

2018].

O. Jukić, I. Špeh and I. Heđi 2018, ‘Cloud-based services for the Internet of Things’,

International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), pp. 0372-0377. Available from: IEEE

Xplore Digital Library. [15 July 2018].

PoW vs PoS, 2017. Available from: <https://blockgeeks.com/guides/proof-of-work-vs-

proof-of-stake/>. [8 April 2019].

R. Tamada 2017, Android Push Notifications using Firebase Cloud Messaging FCM &

PHP. Available from: < https://www.androidhive.info/2012/10/android-push-

notifications-using-google-cloud-messaging-gcm-php-and-mysql/>. [7 April 2019].

S, Nakamoto 2008, ‘Bitcoin: A peer-to-peer electronic cash system’, Bitcoin Project.

Available from: <https://bitcoin.org/bitcoin.pdf>. [5 Jul. 2018].

S. Huh, S. Cho and S. Kim 2017, ‘Managing IoT devices using blockchain platform’,

International Conference on Advanced Communication Technology (ICACT), pp.

464-467. Available from: IEEE Xplore Digital Library. [8 August 2018].

S. S. Chapade, K. U. Pandey and D. S. Bhade 2013, ‘Securing Cloud Servers Against

Flooding Based DDOS Attacks’, International Conference on Communication

Systems and Network Technologies, pp. 524-528. Available from: IEEE Xplore

Digital Library. [27 July 2018].

S. Sridhar and S. Smys 2017, ‘Intelligent security framework for iot devices

cryptography based end-to-end security architecture’ International Conference on

Inventive Systems and Control (ICISC), pp. 1-5. Available from: IEEE Xplore

Digital Library. [8 August 2018].

V. D. Sharma, S. Agarwai, S. S. Moin and M. A. Qadeer 2017, ‘Security in cloud

computing’, International Conference on Communication Systems and Network

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. 47

Technologies (CSNT), pp. 234-239. Available from: IEEE Xplore Digital Library.

[8 August 2018].

Wang, W., Xu, P. and Yang, L. 2018, ‘Secure Data Collection, Storage and Access in

Cloud-Assisted IoT’, IEEE Cloud Computing, pp.1-1. Available from: IEEE Xplore

Digital Library. [1 August 2018].

Y. N. Aung and T. Tantidham 2017, ‘Review of Ethereum: Smart home case study’,

International Conference on Information Technology (INCIT), pp. 1-4. Available

from: IEEE Xplore Digital Library. [1 August 2018].

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. A-1

APPENDIX A: API

A.1 Registration API

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. A-2

A.2 Store data API

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. A-3

A.3 Fetch data API

A.4 Firebase Configuration API

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. A-4

A.5 Firebase Set Elements Class API

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. A-5

A.6 Firebase Push Notification API

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-1

APPENDIX B: Smart Contracts

B.1 contract ‘Registration’

pragma solidity ^0.4.24;

import "installed_contracts/oraclize-api/contracts/usingOraclize.sol";

contract register is usingOraclize {

 constructor ()

 public {

 OAR =

OraclizeAddrResolverI(0xd6dDfA20dAB0F82ff94e16ed866a8Dd72a67cAe9);

 }

 function __callback(bytes32 id, string _result)

 public {

 require(msg.sender == oraclize_cbAddress());

}

function toAsciiString(address x) returns (string) {

 bytes memory s = new bytes(40);

 for (uint i = 0; i < 20; i++) {

 byte b = byte(uint8(uint(x) / (2**(8*(19 - i)))));

 byte hi = byte(uint8(b) / 16);

 byte lo = byte(uint8(b) - 16 * uint8(hi));

 s[2*i] = char(hi);

 s[2*i+1] = char(lo);

 }

 return string(s);

 }

 function char(byte b) returns (byte c) {

 if (b < 10) return byte(uint8(b) + 0x30);

 else return byte(uint8(b) + 0x57);

 }

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-2

function registration(address _userAddr) public payable{

 string memory str = toAsciiString(_userAddr);

 string memory str1 = strConcat('{', '"accNo":' , '"' ,'a',str);

 string memory str2 = strConcat('"','}');

 string memory str3 = strConcat(str1,str2);

 oraclize_query("URL","https://bcshs.tech/registration.php",str3);

 }

}

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-3

B.2 contract ‘UserConfig’

pragma solidity ^0.4.24;

import "installed_contracts/oraclize-api/contracts/usingOraclize.sol";

import "./register.sol";

contract UserConfig{

 struct User {

 bool manageDataSub;

 bool registered;

 //bool HRservice;

 string resultData;

 //string HRmsg;

 }

 address public owner;

 mapping(address=>User) users;

constructor () payable public {}

function createUser(address _userAddr) public{

 User storage user = users[_userAddr];

 // Check that the user did not already exist:

 require(!user.registered);

 //Store the user

 users[msg.sender] = User({

 manageDataSub: false,

 registered: true,

 //HRservice:false,

 resultData: ""

 //HRmsg:""

 });

 register reg= new register();

 reg.registration(_userAddr);

 }

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-4

function subManageData(address _userAddress) public {

 users[_userAddress].manageDataSub = true;

 }

 function unSubManageData(address _userAddress) public{

 users[_userAddress].manageDataSub = false;

 }

 function getManageSub(address _userAddress) public returns(bool){

 return users[_userAddress].manageDataSub;

 }

 function setResultData(address _userAddress, string data) public{

 users[_userAddress].resultData = data;

 }

 function getResultData(address _userAddress) public returns(string){

 return users[_userAddress].resultData;

 }

}

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-5

B.3 contract ‘ManageData’

pragma solidity ^0.4.24;

import "installed_contracts/oraclize-api/contracts/usingOraclize.sol";

import "./register.sol";

import "./UserConfig.sol";

contract manageData is usingOraclize,UserConfig,register {

 enum oraclizeState { ToGet, AltMsg}

 struct oraclizeCallback{ oraclizeState oState;}

 mapping (bytes32=> oraclizeCallback) public oraclizeCallbacks;

 mapping (bytes32=> address) public callbackSenders;

 constructor ()

 public payable {

 OAR =

OraclizeAddrResolverI(0xd6dDfA20dAB0F82ff94e16ed866a8Dd72a67cAe9);

 }

function signUp()public{

 UserConfig.createUser(msg.sender);

 }

 function subMngData()public{

 UserConfig.subManageData(msg.sender);

 }

function __callback(bytes32 id, string _result) public {

 require(msg.sender == oraclize_cbAddress());

 oraclizeCallback memory o= oraclizeCallbacks[id];

 if(o.oState == oraclizeState.ToGet){

 UserConfig.setResultData(callbackSenders[id],_result);

 }

}

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-6

function storeData(string serviceType, string data) public payable{

 if(UserConfig.getManageSub(msg.sender)){

 string memory str = register.toAsciiString(msg.sender);

 string memory str1 = strConcat('{','"timestamp":','"',uint2str(now),'"');

 string memory str2 = strConcat(',','"SType":');

 string memory str3 = strConcat('"',serviceType,'"',',','"Data":');

 string memory str4 = strConcat('"',data,'"',',','"accNo":');

 string memory str5 = strConcat('"' ,'a',str,'"','}');

 string memory str6 = strConcat(str1,str2,str3,str4,str5);

 oraclize_query("URL","https://bcshs.tech/storeData.php" ,str6);

 }

 }

function getFromDatabase() public payable{

 if(UserConfig.getManageSub(msg.sender)){

 string memory str = register.toAsciiString(msg.sender);

 string memory str1 = strConcat('{','"ids":','"a',str,'"}');

 bytes32 queryId = oraclize_query("URL",

"json(https://bcshs.tech/fetchData.php).0.data",str1);

 oraclizeCallbacks[queryId] = oraclizeCallback(oraclizeState.ToGet);

 callbackSenders[queryId] = msg.sender;

 }

 }

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. B-7

function getResult() public returns (string){

 return UserConfig.getResultData(msg.sender);

 }

 function ()external payable{

 }

 function getContBalance() public returns(uint){

 return address(this).balance;

 }

}

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-1

APPENDIX C: Mobile Application files

C.1 Config.java

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-2

C.2 NotificationUtils.java

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-3

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-4

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-5

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-6

C.3 FBInstanceIDService.java

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-7

C.4 FBMessagingService.java

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-8

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-9

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-10

C.5 AndroidManifest.xml

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-11

C.6 activity_main.xml

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-12

C.7 MainActivity.java

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. C-13

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR. D-1

APPENDIX D: Poster

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR E-1

APPENDIX E: Plagiarism Check Result

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

FACULTY OF INFORMATION AND

COMMUNICATION TECHNOLOGY

Full Name(s) of
Candidate(s)

Chai Pei Zhen

ID Number(s) 1502713

Programme / Course Computer Science

Title of Final Year Project Applying Blockchain To Smart Home System

Similarity Supervisor’s Comments

(Compulsory if parameters of originality

exceeds the limits approved by UTAR)

Overall similarity index: ______ %

Similarity by source

Internet Sources: %

Publications: %

Student Papers: %

Number of individual sources listed of more

than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

(i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and

(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than

8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

Signature of Supervisor

 Signature of Co-Supervisor

Name:

 Name: __________________________

Date:

 Date: ___________________________

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 1502713

Student Name Chai Pei Zhen

Supervisor Name Dr. Lee Wai Kong

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you

have checked your report with respect to the corresponding item.

 Front Cover

 Signed Report Status Declaration Form

 Title Page

 Signed form of the Declaration of Originality

 Acknowledgement

 Abstract

 Table of Contents

 List of Figures (if applicable)

 List of Tables (if applicable)

 List of Symbols (if applicable)

 List of Abbreviations (if applicable)

 Chapters / Content

 Bibliography (or References)

 All references in bibliography are cited in the thesis, especially in the

chapter of literature review

 Appendices (if applicable)

 Poster

 Signed Turnitin Report (Plagiarism Check Result - Form Number:

FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and

confirmed all the items listed in the table

are included in my report.

(Signature of Student)

Date:

Supervisor verification. Report with

incorrect format can get 5 mark (1

grade) reduction.

(Signature of Supervisor)

Date:

