

CLOUD-TO-CLOUD DATA TRANSFER
PARALLELIZATION FRAMEWORK VIA

SPAWNING INTERMEDIATE INSTANCES
FOR SCALABLE DATA MIGRATION

CALVIN BOEY MUN LEK

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND
COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
FEBRUARY 2019

CLOUD-TO-CLOUD DATA TRANSFER PARALLELIZATION
FRAMEWORK VIA SPAWNING INTERMEDIATE INSTANCES

FOR SCALABLE DATA MIGRATION

By

CALVIN BOEY MUN LEK

A dissertation submitted to the Department of Computer and Communication
Technology,

Faculty of Information and Communication Technology,
Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of
Master of Science (Computer Science) in

February 2019

ii

ABSTRACT

CLOUD-TO-CLOUD DATA TRANSFER PARALLELIZATION
FRAMEWORK VIA SPAWNING INTERMEDIATE INSTANCES

FOR SCALABLE DATA MIGRATION

Calvin Boey Mun Lek

As enterprises are increasingly embracing the practice of multiple clouds

federation, scalable data transfer between cloud datacenters is important from

the standpoint of cloud consumers. Many existing works are done from the

service provider perspective, requiring insights into the datacenter operations

which are not available to the cloud consumer. In this dissertation, a data transfer

framework that allows cloud consumers to circumvent the bandwidth limitation

by spawning intermediate nodes and perform parallel transfer through many-to-

many nodes is proposed. However, the effectiveness of such approach depends

on many factors such as the time required to spawn new nodes, and bandwidth

between the nodes. The objective of this work is to investigate the limitation and

potential of the cloud-to-cloud parallel transfer (CPT).

Firstly, all the components needed in the parallel data transfer is identified and

modelled. Based on the transfer time and cost models, the circumstances where

parallel transfer is worthy is identified. Then, a few optimizations are proposed,

namely pipelining and network data piping to increase the data transfer

throughput. Pipelining enables each stages of the parallel transfer to work

concurrently while network data piping reduces the time spent on dividing files

iii

into chunks. Secondly, selected cloud Virtual Machines (VM) are benchmarked.

Based on the observed behavior, pre-testing and VM-type selection techniques

are proposed. Pre-testing utilized nodes top performing nodes while VM-type

selection utilize suitable VM type and sizing. Thirdly, the CPT is implemented

and tested on Amazon EC2. The adapted CPT for transfer between Hadoop

clusters is also tested. The results showed that the transfer time of CPT is not

only lesser than DistCp, but also has a lower cost – up to 8x in certain scenario.

iv

ACKNOWLEDGEMENTS

I am deeply grateful to my main supervisor, Dr. Ooi Boon Yaik for encouraging

me to embark on the journey of pursuing a Master’s Degree by research. He has

also supported me and provided guidance towards my research work and the

completion of this dissertation. I would also like to express by gratitude to my

co-supervisor, Dr. Liew Soung Yue for providing valuable feedbacks on the

methodology employed and reviewing the various writings.

Being a part-time postgraduate student while being employed full-time has been

challenging yet fulfilling. I would like to thank my employer, Hilti Group and

my managers, Dr. Christoph Baeck and Mr. Ng Eng Siong for being

tremendously supportive and understanding as I occasionally need to take time

off from work.

Finally, I would like to thank my parents and family for encouraging me to

further my studies. My family is my source of strength and inspiration to not

only strive for excellence in whatever I do, but to also enjoy the journey.

v

APPROVAL SHEET

This dissertation entitled “CLOUD-TO-CLOUD DATA TRANSFER

PARALLELIZATION FRAMEWORK VIA SPAWNING

INTERMEDIATE INSTANCES FOR SCALABLE DATA MIGRATION”

was prepared by CALVIN BOEY MUN LEK and submitted as partial

fulfillment of the requirements for the degree of Master of Computer Science at

Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Ooi Boon Yaik) Date: _______________
Main Supervisor
Department of Computer Science
Faculty of Information and Communication Technology
Universiti Tunku Abdul Rahman

(Dr. Liew Soung Yue) Date: _______________
Co-supervisor
Department of Computer and Communication Technology
Faculty of Information and Communication Technology
Universiti Tunku Abdul Rahman

vi

SUBMISSION SHEET

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITY TUNKU ABDUL RAHMAN

Date: _______________

It is hereby certified that ___Calvin Boey Mun Lek__(ID No: __15ACM06528)

has completed dissertation entitled _"CLOUD-TO-CLOUD DATA

TRANSFER PARALLELIZATION FRAMEWORK VIA SPAWNING

INTERMEDIATE INSTANCES FOR SCALABLE DATA MIGRATION"_

under the supervision of __Dr. Ooi Boon Yaik _-(Supervisor) from the

Department of Computer Science, Faculty of Information and Communication

Technology, and __Dr. Liew Soung Yue __(Co-Supervisor) from the

Department of Computer and Communication Technology, Faculty of

Information and Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf

format into UTAR Institutional Repository, which may be made accessible to

UTAR community and public.

Yours truly,

(Calvin Boey Mun Lek)

vii

DECLARATION

I, ___Calvin Boey Mun Lek hereby declare that the dissertation is based on

my original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

(CALVIN BOEY MUN LEK)

Date ______________________

viii

TABLE OF CONTENTS

Page

ABSTRACT ii
ACKNOWLEDGEMENTS iv
APPROVAL SHEET v
SUBMISSION SHEET vi
DECLARATION vii
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF ABBREVATIONS xv

CHAPTER

1.0 INTRODUCTION 1

1.1 Problem Statement 2
1.2 Objectives 3
1.3 Project Scope and Assumptions 4
1.4 Research Contribution 4
1.5 Organization of Dissertation 6

2.0 LITERATURE REVIEW 7

2.1 Introduction and Inter datacenter data transfer 7
2.2 Implemented by DC Operator / Cloud Service Provider 8
2.3 Implemented by Cloud Consumer / Tenant 11

2.3.1 Typical transfer protocol 12
2.3.2 Parallel Transfer 14

2.4 Cloud VM bandwidth and pricing 18
2.5 Discussion 19

3.0 PROPOSED SOLUTION 20

3.1 Cloud Parallel Transfer Concept 20
3.2 The workflow of the proposed CPT transfer technique 22
3.3 Modelling the performance of CPT 23

3.3.1 Foundation 23
3.3.2 Introducing Pipeline into the CPT Technique 26
3.3.3 Reducing I/O time with Network Data Piping 27

3.4 Impact towards financial cost of CPT 28
3.5 Conclusion 29

4.0 UNDERSTANDING THE CLOUD AND MODEL ANALYSIS 30

4.1 Cloud’s Network Performance and Charges 30
4.2 Model Analysis 33

4.2.1 Performance of various CPT and its optimizations 34

ix

4.2.2 Performance and Financial Cost Incurred 36
4.2.3 Impact of the DC throughput ratio on CPT 38
4.2.4 Impact of VM type on the cost of CPT 40
4.2.5 Impact of pricing granularity on the cost of CPT 41

4.3 CPT Framework 42
4.3.1 VM-type selection 43
4.3.2 Pre-testing 44
4.3.3 End-to-end process flow of CPT 45

4.4 Conclusion 46

5.0 SYSTEM IMPLEMENTATION 48

5.1 CPT Implementation 48
5.1.1 DC Throughput & VM-type Selection 50
5.1.2 Speedup and Cost Estimation & User preference 53
5.1.3 Pre-testing & VM spawning 54
5.1.4 CPT 55

5.2 Implementation of CPT on Hadoop’s HDFS 59
5.3 Discussion 62
5.4 Conclusion 62

6.0 EXPERIMENT RESULT 63

6.1 Comparing CPT transfer time to sequential transfer 63
6.1.1 Experimental Setup 63
6.1.2 Performance of CPT 64
6.1.3 CPT with pre-testing 66

6.2 Comparing CPT for HDFS with DistCp 67
6.2.1 Experimental Setup 68
6.2.2 Results of CPT and DistCp on HDFS cluster 69

6.3 Summary 73

7.0 CONCLUSION 74

7.1 Revisiting the Objectives 74
7.2 Limitation and Future Work 76

REFERENCES 77

x

LIST OF TABLES

Table

Page

3.1 Notations in the CPT time taken equation

25

3.2 Notations in the CPT cost equation

28

4.1

Price and Spec of running VM/EC2 on AWS (April
2018, AWS Oregon)

32

4.2

Network throughputs between VMs/EC2s of a
different type

33

4.3 The numerical figure used in the models

34

4.4 Cost of AWS t2.small per second billing

36

4.5 Numerical figure used in the models (h1.2xlarge)

40

4.6 Cost of AWS h1.2xlarge per second billing

40

4.7 Respective variables' impact towards CPT 46

5.1

List of information collected during the network
throughput test

50

5.2

Pseudocode for benchmarking VM network
performance

51

5.3

Starting Input Array prior to network throughput
test

52

5.4

Array updated with VM information necessary for
CPT transfer

52

5.5 Pseudocode for VM selection

52

5.6

Pseudocode for estimating CPT transfer time and
cost

53

5.7

Example of array of performance and cost
estimation

54

5.8 Pseudocode for spawning VMs with pre-testing

54

5.9 Pseudocode for spawning VMs without pre-testing

55

xi

5.10 Pseudocode of the transfer coordinator

56

5.11 pseudocode of the transfer daemon

57

5.12

2D Array storing virtual chunk information and
transfer status

58

5.13 2D Array storing information of intermediate nodes

59

5.14

Notations for time components of adapting CPT
transfer for HDFS

61

xii

LIST OF FIGURES

Figure

Page

2.1

Classification of Inter Datacenter Data Transfer
based on perspective

8

2.2

Classification of data transfer solution based on
parallelism capability and parallelization
technique

14

3.1

Maximum throughput of typical point-to-point
sequential transfer

20

3.2

A high-level overview of the parallel transfer
mechanism

21

3.3

Example timeline of basic CPT using 2 pairs of
intermediate nodes (p=2)

26

3.4

Example timeline of CPT transfer using 2 pairs of
intermediate nodes (p =2) and with pipelining

26

3.5

Example timeline of CPT using 2 pairs of
intermediate nodes (p=2), and with pipelining and
network data piping

28

4.1

Average, Minimum and Maximum Intra-DC
network throughput observed for the various EC2
type

31

4.2

Average, Minimum and Maximum Inter-DC
network throughput observed for the various EC2
type.

31

4.3

Time taken of various number of instance pair for
basic CPT.

35

4.4

Time taken of various number of instance pair for
CPT with pipeline.

35

4.5

Time taken of various number of instance pair for
CPT with pipeline and network data piping.

35

4.6

Comparing the performance of basic CPT and
CPT with optimization.

35

4.7

Cost vs transfer size (small total data transfer)

37

xiii

4.8

Throughput per cost vs transfer size (small total
data transfer)

37

4.9

Throughput vs transfer size (small total data
transfer)

37

4.10

Cost vs transfer size (large total data transfer)

37

4.11

Throughput per cost vs transfer size (large total
data transfer)

37

4.12

Throughput vs transfer size (large total data
transfer)

37

4.13

Speedup vs Ratio of Internal to External network
throughput.

39

4.14

Cost vs Ratio of Internal to External transfer
speed.

39

4.15

Throughput per cost vs transfer size for CPT of
different VM type

41

4.16

Total cost vs transfer size for different pricing
granularity

42

4.17

Process flow leading to the CPT Transfer

45

5.1

Control and data flow of CPT implementation on
AWS

49

5.2

Adapting CPT for HDFS cluster transfer

60

5.3

Example timeline of CPT transfer between HDFS
cluster.

62

6.1

Total time taken of CPT as compared to Sequential
transfer (lower transfer time better)

64

6.2

Speedup for CPT (experiment vs model)

65

6.3

The upper and lower bound of CPT (p=4)
performance without pre-testing.

67

6.4

The upper and lower bound of CPT (p=4)
performance with pre-testing.

67

6.5

Transfer time of DistCp and CPT for various total
size.

69

6.6

Timeline of 2x 512MB CPT transfer (no
spawning) for HDFS.

70

xiv

6.7

Timeline of 12x 512MB CPT transfer (no
spawning) for HDFS.

70

6.8

Transfer time and cost of two additional pairs of
instances for DistCp and CPT

71

6.9

Transfer time of CPT with p<=10 to match
DistCP's transfer time.

72

xv

LIST OF ABBREVATIONS

2D Two-dimensional

AWS Amazon Web Services

CDN Content Distribution Network

CPT Cloud-to-Cloud Parallel Transfer

CSP Cloud Service Provider

DC Datacenter

DN Hadoop Datanode

FTP File Transfer Protocol

HDFS Hadoop Distributed File System

HTTP Hyper Text Transport Protocol

IaaS Infrastructure-as-a-service

ISP Internet Service Provider

MQTT Message Queue Telemetric Transport

NN Hadoop Namenode

OS Operating System

P2P Peer-to-Peer

PFTP Parallel File Transfer Protocol

SCP Secure Copy Protocol

SLA Service Level Agreement

TaaS Transfer-as-a-service

TCP/IP Transmission Control Protocol/Internet Protocol

TD Transfer Daemon

TM Transfer Manager

xvi

VM Virtual Machine

vs Versus

WAN Wide Area Network

1

CHAPTER 1

INTRODUCTION

The rapid growth of cloud services such as Infrastructure-as-a-service (IaaS) enables

cloud consumer to rent Virtual Machines (VM) from the Cloud Service Provider (CSP)

by paying a fixed rate on per unit time basis (e.g. per minute). The rate depends on the

amount of CPU, memory, storage, and network resources allocated (“AWS | Amazon

EC2 | Pricing,” n.d.)(“Pricing - Linux Virtual Machines | Microsoft Azure,”

n.d.)(“Google Compute Engine Pricing | Compute Engine Documentation,” n.d.). One

of the advantages of public cloud computing is the capability to geo-distribute the

application and data across multiple datacenters located around the world. However,

existing IaaS cloud-to-cloud data transfer solutions for cloud consumer suffers from a

major shortcoming when performing data transfer between a source VM to a destination

VM, the maximum throughput of the transfer is constrained by the bandwidth allocation

set by the cloud service provider. Solutions such as breaking down large files into

smaller pieces and transferring them in parallel by opening multiple simultaneous

connections in order to maximize the bandwidth utilization will not be able to

circumvent the bandwidth allocated by the cloud service provider for a VM.

There are specific cases where urgent data transfer has to be completed in the shortest

time possible and the cost of transfer is secondary. For example, in the event of disaster

recovery and the priority is to have data transferred from the backup site within a short

period of time. In addition to that, enterprises today are generating data in large volume

which could potentially be caught in cloud vendors lock-in (“Dealing with cloud

storage service providers: Avoiding vendor lock-in,” n.d.) which is naturally a scenario

2

favored by many cloud service providers. There are also times when enterprises are

federating the workloads and data across multiple cloud datacenters – sometimes

federating the data across different cloud providers. As such it is of great importance

for enterprises to ensure that they can freely and securely move files across datacenter

in a timely manner.

To the best of our knowledge, there is currently no way to scale VM-to-VM data

transfer within the public cloud environment that can be performed solely by cloud

consumer. Many existing large-scale data transfer requires insights and intervention of

datacenter operators. Although cloud service providers increasingly offer data transfer

services (“Azure Import/Export,” n.d.)(“Batch Cloud Data Transfer | AWS Snowball,”

n.d.), however, not all the needs of the cloud consumer are met. Therefore, scalable

data transfer solution that is easily implemented by cloud consumer are getting more

and more important.

Since the number of IaaS resources on many public clouds are virtually unlimited,

therefore this work proposed a technique to speed up transfer via spawning intermediate

nodes (i.e. VM) and aggregate their bandwidth by performing a many-to-many nodes

data transfer.

1.1 Problem Statement

As the maximum throughput of the transfer is constrained by the bandwidth allocation

per VM set by the cloud service provider, there is opportunity to aggregate bandwidth

via parallel transfer. The concept of parallel transfer is to divide the data and transfer

the parts simultaneously across multiple channels. Although the concept of scaling

parallel transfer via spawning intermediate nodes sounds simple on the high-level, its

effectiveness is affected by many factors.

3

a) The process of parallel transfer incurs additional overhead and may not

improve performance in certain cases. Identifying the effectiveness of a parallel

transfer upfront before the actual transfer often requires meticulous

performance benchmarking and calculation.

b) There are factors that are unique to public clouds such as cost and throughput

variability which affect the efficiency and the effectiveness of parallel transfer.

This is because different cloud service provider will have different charging

model and different virtual machines (VM) performance.

c) Existing parallel transfer approaches such as GridFTP and DistCp have yet

to take advantage of cloud elasticity. They are not designed to perform on-

demand scaling. These techniques are designed to maximize the utilization of

bandwidth of existing infrastructure and are not designed to scale the data

transfer to through cloud elasticity.

1.2 Objectives

This aim of this goal is to create a framework to assist cloud consumers to identify the

potential and limitation of parallel transfer between clouds and to estimate the

performance and cost effectiveness upfront before performing parallel transfer. The

framework is hereon addressed as Cloud-to-Cloud Parallel Transfer (CPT). Therefore,

the research objectives of this work can be summarized to the following: -

1. To model and identify the limiting factors of scaling cloud-VM to cloud-

VM parallel transfer via spawning intermediate nodes.

2. To validate and enhance the model by identifying the influencing factors

of implementing the CPT model in the public cloud environment (i.e.

AWS) and only using insights within the reach of cloud consumers.

4

3. To devise an actual CPT solution based on the model and compare it

with state-of-the-art parallel file transfer techniques such as Hadoop

Distributed File System (HDFS)’s DistCp in terms of performance and

cost.

1.3 Project Scope and Assumptions

In general, the research focuses on identifying the factors and designing a framework

for cloud-VM to cloud-VM parallel transfer via spawning intermediate nodes. The

project and research scope are defined as below:

1. Low-level network and data transfer protocol configuration such as TCP/IP

tuning is not the focus of this work. However, note that any improvement

made to these areas will result in better performance as our framework relies

on these typical transfer protocols.

2. The research focus on VM-to-VM data transfer across different cloud

datacenter. Live application migration is not part of the study.

3. Limited to data manifested as objects residing on the operating system (OS)

filesystem. For example, database system is not considered under this study.

Semantic in object and storage such as file permission and metadata will

also not be taken into consideration.

4. The work excludes finding the point of diminishing return as the maximum

network throughput is below the maximum disk throughput achievable.

In this research work, the following assumptions were made:

1. The cloud provider limits network throughput per VM, and there is no limit

on the account or tenant level.

5

2. There is more than sufficient resources in the VM pool managed by the

cloud provider. It is always possible to acquire VMs on-demand – request

is never denied.

1.4 Research Contribution

The major contributions of this research are as follows: -

1. The proposed approach introduced the technique of spawning intermediate

nodes in order to circumvent bandwidth allocation and ultimately reducing

the time taken for bulk data transfer across cloud DCs for cloud consumers.

The work introduces a highly scalable and cost effective parallel transfer

method and model.

2. Based on the derived model and understanding the various factors involved

(e.g. cost, throughput) in implementing the proposed approach in a cloud

environment, a framework named Cloud-to-Cloud Parallel Transfer (CPT)

is developed to ease the end-to-end process.

3. The proposed framework is implemented on the AWS public cloud platform

and compared against sequential transfer as well as DistCp - a parallel

transfer in the Hadoop cluster environment. CPT demonstrated that:

• Better scalability than other solution – reduced transfer time and at a lower

additional cost incurred.

• The framework is adaptable to various kind of existing cluster or

application.

6

1.5 Organization of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, a thorough

literature review is presented in order to justify the research design. In Chapter 3, the

development of models of the CPT is described. Chapter 4 is dedicated to understand

the relevant behaviors of public cloud and analyze the CPT model developed in Chapter

3. Chapter 5 describes the detail implementation of the CPT framework and Chapter 6

presents the experimental and results of the proposed CPT on a real cloud. Chapter 7

concludes our work.

7

CHAPTER 2

LITERATURE REVIEW

The chapter provides both an overview of current state-of-the-art in the area of data

transfer and in-depth analysis of works that are closely related to ours. The chapter is

organized as follows. Section 2.1 provides an introduction to general data transfer and

data transfer across datacenters. Section 2.2 and 2.3 presents cloud data transfer from a

different perspective. Section 2.4 describes related work in the area of cloud VM

bandwidth and pricing. At the end of each section, a summary is provided to compare

the pros and cons of the technique. Section 2.5 summarises the chapter.

2.1 Introduction and Inter datacenter data transfer

In the area of cloud computing, there are two main parties in the ecosystem, namely the

cloud service provider (CSP) and the cloud consumers. The CSP manages the software

and hardware infrastructure by exposing the consumable services via a unified interface.

The cloud consumers are charged according to their usage. The two common pricing

models are pay-as-you-go model and contractual upfront payment for reservation of

resources. CSP often employ multi-tenancy architecture such that multiple consumers

(customers) share a common infrastructure.

Therefore, data transfer across different datacenters can also be categorized into 2

categories based on the perspective, namely the CSP perspective and the consumer

perspective. Figure 2.1 depicts the 2 categories and the corresponding related works.

8

Figure 2.1 Classification of Inter Datacenter Data Transfer based on perspective

There are many works done by the research community for cost-effective bulk data

transfer. Most of the existing work focused on reducing the 95th percentile of bandwidth

usage as this is how the Internet Service Provider (ISP) charges the CSP. However, the

number of research work from the cloud consumer’s perspective is much lesser. This

work is classified into the cloud consumer’s perspective category.

As briefed in the chapter’s introduction, the chapter is divided into 3 major sections.

Firstly, data transfer that is implemented by the DCs Operator. Secondly, works that

can be implemented by the cloud consumer. Thirdly, cloud VM bandwidth and pricing.

2.2 Implemented by DC Operator / Cloud Service Provider

NetStitcher (Laoutaris et al., 2011) uses multi-hop and multi-path for data transfer

between datacenters. The system contains a volume prediction module as bandwidth is

assumed to exhibit a periodic behavior. It is able to infer available future bandwidth

and adapts to estimation errors and failures. In a later work, the same authors propose

a technique for transferring bulk data that are delay tolerant through ISPs by utilizing

the already-paid-for off-peak bandwidth resulting from percentile pricing and diurnal

9

traffic patterns (Laoutaris et al., 2013). These techniques are excellent for DC operators

as it potentially results in significant cost savings when performing data transfer.

However, both of these techniques require insight into the network conditions which is

only limited to cloud service providers. Such benefit is mostly enjoyed by the DC

Operator, and not the cloud consumer.

Tudoran et al. (2014a) describe Transfer-as-a-Service (TaaS), allowing cloud service

provider to consolidate customers' data transfer request and route it through a common

and managed infrastructure. The users of multi-site or federated clouds benefit from

increased data transfer throughput while service providers potentially enjoy the

decreased energy consumption due to the consolidation effort. Three scenarios were

presented; multi-route user transfers where the user controls the degree of parallelism,

asymmetric TaaS approach where intermediate node is only present on one endpoint

(DC on one side of the transfer) and symmetric TaaS approach where intermediate

nodes are present on both source and destination DCs. Similarly, Divakaran and

Gurusamy (2015) explored algorithms and pricing strategies for bandwidth guarantees

in the clouds. Both the work above requires the CSP implementation and jurisdiction,

which does not help cloud consumer to scale its transfer especially when the demand is

high and other consumers are willing to pay more for guaranteed service level

agreement (SLA).

Exploring a similar idea, the same authors then proposed a data management solution

directed for applications running across geographically distributed locations which

offers consistent and predictable transfer time and cost (Tudoran et al., 2014b). It

utilizes multi-pathing and multi-hop path splitting involving multiple DCs. The system

builds and adapts models for the cloud infrastructure on-the-fly to efficiently optimize

and schedule the data transfer process. Each node consists of three modules, the

10

decision manager (DM), transfer agent (TA) and monitoring agent (MA). The decision

manager coordinates data transfers, either through direct paths or using multiple

intermediate datacenters. The transfer agent performs the transfer and provides the

option to exploit network parallelism while the monitoring agent monitors the cloud

environment and reports to the decision manager. Our system implementation shares a

similar architecture – the separation between data transfer process and control process.

In order to attract consumers to deploy their application in the public cloud, cloud

platforms such as Amazon Web Service (AWS) and Microsoft Azure offer services

related to data transfer. An example is the AWS Import/Export (“AWS Import/Export

- Cloud Data Transfer Services,” n.d.) and Azure Import/Export (“Azure

Import/Export,” n.d.) service which allows consumers to transfer data into or out of

AWS and Azure respectively using physical storage appliances. This high-throughput

option may be suitable for massive amount of data (e.g. one-time migration into the

cloud) but it comes at very poor latency as the transfer overhead falls in the range of

days or weeks. Another example of CSP provided transfer service is the AWS S3 (i.e.

object storage) acceleration which allows consumers to download and upload data by

an optimized network path that is servicing the various content distribution network

(CDN) endpoints. However, this is not applicable for transfer between VMs.

Cho and Gupta (2011) propose a technique to perform optimal transfer that minimizes

transfer latency within a financial cost constraint. Efficient binary search methods are

developed to solve this problem. Algorithms for planning bulk transfer via internet and

shipping networks are also explored in their previous work (Cho and Gupta, 2010). The

study solves the NP-Hard problem of data transfer from different sites to a common

sink over the network (i.e. internet) or physically shipping the storage device. The

transfer plans take consideration of transfer cost, shipping cost, transfer time (i.e. over

11

the internet or estimation of time spent unpacking and plugging the disk). The focus in

these works is on delay tolerant data and requires the ability to export data from

datacenter to physical storage. Again many of the needed information is not available

to cloud consumers.

The works covered in this section are all primarily concerned about balancing data

transfer cost and subsequently performance. NetStitcher, Tudoran’s TaaS and Cho’s

proposal’s primary QoS indicator is cost savings without compromising of transfer

deadlines. As for the transfer services provided by the CSP, the main purpose is to help

customers migrate large volume of data into the cloud by shipping physical storages.

The primary QoS is data integrity and secondary QoS is throughput but measured in

days. Most of the works utilized multi-hop and multi-path technique, which is one of

the technique utilized by our work with one difference – no DC operator’s involvement.

2.3 Implemented by Cloud Consumer / Tenant

There are several other studies that consider the perspective of cloud service consumers.

For example, SPANStore (Wu et al., 2013) provides an abstraction layer so that cloud

consumer can distribute the data across various geo-distributed object storage from

different cloud platforms. The work focus on providing a replication scheme that

minimizes data duplication and provides a global view of storages. It can be fully

implemented by a cloud consumer. However, the work is only applicable to object

storage services and do not focus on data transfer between VMs.

CloudMPcast (Garcia-Dorado and Rao, 2015) optimizes the cost of bulk data

distribution between cloud datacenters while ensuring end-to-end transfer time is

within the specified deadline. Two characteristics of the public cloud is utilised; transfer

cost depends on the location of source and destination datacenters, and discounts are

12

offered when the customer exceeds certain volume threshold per datacenter. The

method involves routing data transfer via intermediate hops sited in different datacenter.

Our work is distinguished by the ability to scale the data transfer (i.e. reducing the time

taken to complete data transfer) rather than reducing cost as much as possible.

Similar to our work, Jeong et al. (2017) explored the idea of multi-stream TCP transfer

across paths constructed from relay points sited across multiple cloud datacenters. The

intention is to search for less congested paths and utilizing multiple paths. The

experiment results demonstrated that it is indeed possible to aggregate bandwidth using

multiple paths which can be fully implemented by cloud consumers. However, the

authors relied on setting up fixed relay points and have yet to study the effects of

spawning ad-hoc relay points during the lifetime of the data transfer.

In addition to the few methods outlined here that takes the view of data transfer from a

cloud consumer’s perspective, the cloud consumer can utilize many other generic data

transfer techniques described in the next subsections.

2.3.1 Typical transfer protocol

Conventionally, the well-known protocols such as Hyper Text Transport Protocol

(HTTP), File Transfer Protocol (FTP) and Secure Copy Protocol (SCP) are used for

point-to-point data transfer. A point-to-point transfer is where a single source exchange

data with a destination host and is responsible for managing the data transmission

without the presence of intermediate nodes. There are many research work on

optimizing these point-to-point transfers (Lu et al., 2005; Yildirim et al., 2016). The

usability of the aforementioned methods to reduce transfer time of large volume of data

across cloud datacenters is restricted.

13

As the size of the network increases and the size of application data processed,

advancement to data transfer techniques is growingly important. Therefore, data

transfer between source and destination such as Rsync (“rsync(1) - Linux man page,”

n.d.) is introduced, which uses rolling checksum comparison to reduce repetitive data

transfer. Also, adaptive data transfer is introduced such as Dsync (Pucha et al., 2008)

that avoids resource contention by detecting back-pressure, as well as detecting

similarity at a different hierarchical level. Unfortunately, in a cloud environment where

VM-to-VM data transfer throughput is often limited by either the physical connection

or soft limit set by cloud service providers, therefore usability of the aforementioned

methods to reduce transfer time of large volume of data in VM-to-VM data transfer is

limited.

In Figure 2.2, this literature review classifies data transfer approaches to 2 broad

categories; typical – point-to-point and parallel transfer. From the figure, only parallel

transfer techniques can be used to circumvent the data transfer limits set by cloud

service providers. The subsequent sections will focus on parallel transfer techniques

that can be used to circumvent the data transfer throughput limits per VM set by cloud

service providers.

14

Figure 2.2 Classification of data transfer solution based on parallelism capability and

parallelization technique

2.3.2 Parallel Transfer

One way to circumvent the limit is to chunk large files and perform data transfer across

multiple channels simultaneously providing that the overheads for chunking the files

into smaller chunks and combining them at the destination is minimal. This technique

is practiced in applications that use a Peer-to-Peer (P2P) file sharing protocol such as

BitTorrent (“Incentives Build Robustness in BitTorrent,” n.d.), but it is not suitable for

a one-off VM-to-VM data transfer.

Multi-part (Hacker et al., 2004) download is a common technique used in off-the-shelf

download accelerator manager. The mechanism is to break down large files into smaller

segments and downloading them in parallel by opening several simultaneous

connections, achieving significantly higher downloading speed. This technique

circumvents server-side limitations that restrict bandwidth which fairly allocates

15

bandwidth to each connection equally. Unfortunately, this technique is not suitable to

improve VM performance as cloud service provider has set the network bandwidth limit

of a VM.

In distributed computing, parallelism in data movement mechanism is often used,

especially in the application of high-performance computing. For example, the work

presented by Bhardwaj and Kumar (2005), a parallel file transfer protocol (PFTP) is

introduced as a concept for data transfer using multiple parallel data paths between

clusters. The PFTP protocol makes use of a Parallel File System to stripe data across

multiple storage nodes in order to reduce disk I/O bottleneck, which enables transfer

via multiple TCP connections simultaneously. GridFTP (Allcock, n.d.) extends the FTP

protocol with new features such as partial file access and striping for parallelism. The

Globus Toolkit (Allcock et al., 2005), which offers GridFTP as a data movement

mechanism, includes widely adopted software packages for implementing grid-based

applications. GridFTP is not intended for performing one-time-off point-to-point

transfer as it only handles file transfers between GridFTP instances. Unfortunately, the

proposed parallel data transfer solutions above are not designed for one time of data

transfer in cloud computing environment because these solutions often require complex

setups and are not suitable for dynamic infrastructure where VMs are added and

removed very often from time to time.

Shift (Kolano, 2013) is a framework for Self-Healing Independent File Transfers that

replaces sequential transfer with highly parallel transfer model. Transfer clients are

spawned to allow maximum performance when resources are underutilized and put to

sleep during overutilization to prevent resource contention. Similar to the PFTP, it

requires a common storage accessible by all the transfer clients. In an aspect, the work

is quite similar to ours as Shift allows spawning of intermediate nodes to support the

16

transfer. However, the author did not explore the opportunity and the implication of the

proposed solution in a public cloud environment.

In the area of data transfer between Hadoop HDFS based clusters, DistCp (“Apache

Hadoop Distributed Copy – DistCp Guide,” n.d.) is by default included in most Hadoop

Framework distribution and it is a de facto standard HDFS data transfer tool. It relies

on the uses MapReduce to perform data transfer – distribution, error handling and

recovery, and reporting. DistCp is massively parallel using multiple nodes, however, it

does not have a built-in capability to scale beyond the initially configured infrastructure.

Another method is to utilize GridFTP to perform Wide Area Network (WAN) transfer

between HDFS cluster (Liu, 2013; Amin et al., 2011). In order for GridFTP to work

with HDFS, a suite of tools has to be setup – FUSE for a POSIX-like interface,

BeStMan (Sim, 2009) server as storage resource manager and the GridFTP server.

Although the GridFTP is a hugely popular tool among the Grid computing community,

it’s usage in the HDFS cluster is limited, this is likely due to the equal performance but

at a much convenience setup offered by DistCp.

Several research studies tackled the issue of optimizing data transfer across the WAN

by using overlaying network – a technique similar to parallel transfer. For instance, two

optimization mechanisms for multi-pathing and multi-hop path splitting were proposed

by Khanna et al. (2008) to improve the performance of file transfer over WAN. Multi-

pathing is the technique of chunking data at the source and transferring it across several

overlaying paths. Multi-hop path splitting involves multi-hopping though intermediate

nodes instead of relying on a trivial direct connection between the source and the

destination node. The author, however, did not study the potential of using this

technique to scale the transfer beyond the original infrastructures.

17

The Phoebus propose an infrastructure deployment for improving data transfer across

WAN by using a session layer protocol and gateways in the data distribution network

(Kissel et al., 2011; Ramakrishnan et al., 2010). The work by Zhang et al. (2015)

explores the feasibility of deploying Phoebus for data transfer between cloud

datacenters. Although the performance improvement can be seen in certain cases,

however, the biggest setback is the need of setting up quite a number of intermediate

nodes and complicated overlaying network across WAN. Besides, the work is focused

on reducing latency for critical application and did not focus on bulk data transfer.

Sinha et al. (2016) describes routing data transfer between Storage-as-a-Service (SaaS)

such as Dropbox (“Dropbox,” n.d.) and Google Drive (“Google Drive - Cloud Storage

& File Backup for Photos, Docs & More,” n.d.) through intermediate nodes in order to

mitigate bottlenecks. CoCloud (E et al., 2018) describes a cloud-to-cloud file

collaboration framework for users sharing files across different SaaS. These two works

are not directly applicable to VM-to-VM data transfer, however, it shares a similar

concept of utilizing intermediate nodes and proxies to bridge the gap between different

cloud platform or region.

In summary, parallel data transfer primarily provides improved data transfer throughput

and secondly better fault tolerance. Hence, the primary QoS of parallel transfer is

throughput. Multi-source or shared filesystem technique is excellent for increasing the

data transfer throughput for shared cluster environment or many-to-one transfer. The

mechanism makes the assumption that data is already replicated across multiple storage

nodes which makes it not suitable for typical one-off data transfer. Multi-stream

technique allows circumvention of server-side bandwidth allocation. This method is

however not effective for cloud-VM to cloud-VM data transfer which our work is

18

addressing. Multi-hop and multi-path technique, which our work also employs,

transfers data across multiple newly discovered paths.

2.4 Cloud VM bandwidth and pricing

As part of the work on proposing bandwidth guarantee in the public cloud environment,

the authors in explored state-of-the-art on VM pricing and bandwidth. It is found that

for VMs in the same cloud, it’s possible that the average bandwidth of a cheaper VM

surpasses the bandwidth of a more expensive VM. From the work, it also shows that

price does not scale linearly to the network performance. This is likely due to the fact

that cloud pricing is derived and set by the cloud provider based on a mixture of various

metrics such as CPU, memory, storage, and network. This makes it challenging for

cloud consumer to pick the VM type/size that best fit the specific use case in terms of

meeting the performance requirement yet at the minimum cost without benchmarking

and performance testing.

Detailed information about cloud performance is often kept secret by the cloud provider

for security and commercial reasons (Raghavan et al., 2007; Mogul and Popa, 2012).

Service Level Agreements (SLA) typically only describe the performance guaranteed

(e.g. network bandwidth) vaguely – without precise figures, which customers have no

choice but to rely on this qualitative information. Partly it could be due to the best-

effort basis of quality of service (QoS) provided by the cloud service provider. Such

limited performance information weakens the ability of the consumer to understand the

impact on their application such as on data transfers (Wang and Ng, 2010). As part of

benchmarking the network throughput in AWS and Azure respectively, it is found that

network performance is stable across the lifetime of the VM (Persico et al., 2015;

Persico et al., 2017; Scheuner and Leitner, 2018). However, the average network

19

bandwidth allocated for each VM varies even with the same VM type/size (Ou et al.,

2013; Gilani et al., 2015). This behavior makes it especially challenging for cloud

consumers as the network performance is dependent on when the VM is spawned.

These authors recommend testing VM’s network performance and discarding the VM

if the performance is below the known average.

2.5 Discussion

In the area of data transfer in cloud computing, techniques that have to be implemented

by DC Operator / Cloud Service Provider may benefit both CSP and Cloud Consumers.

Similar to our work, techniques that can be implemented by Cloud Consumers do not

have any significant impact on the CSP. In the area of data transfer solution, various

parallel transfer techniques are prevalent and widely used. The methods multi-hop and

multi-path are particularly interesting for us as it allows transferring using newly

discovered paths, providing the opportunity to bypass limitation set by the CSP.

In summary, based on the presented discussion in this section, there is yet a complete

parallel cloud-to-cloud data transfer approach for cloud consumers. Most of the

presented studies focus on optimizing data transfer from the cloud service provider

perspective and little work is done from the cloud consumers' perspective. Achieving

an optimized data transfer rate is indeed a challenging prospect in diverse cloud

environments because of the diversity of the deployed hardware, software and quality-

of-service agreements. This work addresses this challenge by leveraging cloud

elasticity. We first investigate the potentials and limitations of parallel data transfer and

then propose a mechanism that utilizes instance-to-instance pipelines. To the best of

our knowledge, no other work has proposed similar mechanism that allocates and de-

allocates cloud instances to control the performance and cost of data transfer.

20

CHAPTER 3

PROPOSED SOLUTION

3.1 Cloud Parallel Transfer Concept

In IaaS cloud offering, it is usual that every spawned instance in the cloud are given a

specific amount of processing power, memory, storage and network bandwidth. Despite

charges are often by the pay-as-you-use model, the maximum amount of allocated

processing power, memory, storage and network bandwidth are capped. This work

proposes a way to circumvent the network bandwidth limitation by spawning additional

instances and share the aggregate bandwidth known as cloud-to-cloud parallel transfer

(CPT). In a public cloud platform, the network bandwidth is limited either by the cloud

service provider or physical limits of the particular instance.

In this work, the terms virtual machine, instance and node are used interchangeably and

are all referring to the same thing – machine that the cloud consumer can rent.

Figure 3.1Maximum throughput of typical point-to-point sequential transfer

Figure 3.1 demonstrates that the total transfer speed between two datacenters is

bounded by both the sender’s (i.e. source node) maximum throughput and receiver (i.e.

destination node) maximum throughput. The maximum throughputs are often different

21

not only between different cloud vendors but also between datacenters of the same

vendor.

Figure 3.2 shows that the network bandwidth from different instances can be potentially

aggregated through spawning additional intermediate instances. For example, the

maximum bandwidth for a pair of instances, from the source instance to the destination

instance, is 50mbps, by having 3 pairs of such instances, the bandwidth can be

multiplied by 3. Thus, in theory, it is possible to increase the bandwidth by n times

using n pairs of instances.

Figure 3.2 A high-level overview of the parallel transfer mechanism

As shown in Figure 3.2, the source node is the node where the data to be transferred is

originally residing on. Destination node refers to the target node that the data should be

transferred to. Intermediate nodes refer to nodes that are logically between the source

and the destination node which allows the data transfer to be parallelized.

However, to perform data transfer over the aggregated bandwidth of multiple pairs of

instances is not without limitations. For instance, it is important to note that the speed

of the source instance splitting the file into chunks for the intermediate instances could

22

be a limiting factors, as well as the speed of combining the files back at the destination

instance can be another limiting factor that render the bandwidth aggregation technique

worthless. Therefore in this chapter, a parallel transfer model will be created to identify

all the factors influencing the performance of CPT. Then, the costing model is derived

to understand the factors impacting the financial cost that is incurred when performing

CPT transfer.

3.2 The workflow of the proposed CPT transfer technique

The Cloud-to-Cloud Parallel Transfer (CPT) leverages aggregate bandwidth between

the source and destination nodes located in different cloud datacenters by making use

of intermediate nodes. These intermediate nodes can either be newly spawned instances

or existing underutilized instances.

Based on Figure 3.2, these are the sequence of events in brief, for a CPT transfer from

the source node to destination node.

1. In the source node, the consumer initiates transfer of a file(s) from source to

destination node. Then, limited network throughput testing and forecast based

on the models will be conducted automatically so that a decision on the number

of pairs of intermediate nodes to be spawned, p can be made.

On the source node, the manager spawns p new (or use available) VM instances

(hereafter addressed simply as parallel instances or intermediate nodes) in

source 𝑉"# and destination 𝑉$# , j = [1..p] for each cloud datacenter. That is, a

total of 2p instances are spawned and used as intermediate nodes.

The file to be transferred is split into n equal sized chunks	𝐶#, j = [1..n], where

n is arbitrarily and n >= p.

23

2. Once step 1 is completed, each chunk is transferred from the source node to its

corresponding intermediate nodes, i.e. chunk 𝐶# transferred from 𝑉" to 𝑉"# .

3. Once the intermediate node in the source DC received the chunk from the source

node, the chunk will then be transferred to its corresponding intermediate node

in the destination DC, i.e. chunk 𝐶# transferred from 𝑉"# to 𝑉$# . Note that there

is bandwidth limitation imposed by CSP on each connection of an instance.

4. Once the intermediate node in the destination DC received the chunk, the chunk

will be transferred to the destination node, i.e. chunk 𝐶# transferred from 𝑉$# to

𝑉$.

5. As the chunks are received on the destination node, the utility will merge the

pieces to reconstruct the original file(s).

6. Step 1 to 5 repeats until all the chunks have been transferred and the files have

been reconstructed. The destination node notifies the manager (i.e. in the source

node) that the transfer has completed. The transferred files are verified by

matching the checksum. .

3.3 Modelling the performance of CPT

3.3.1 Foundation

In order to keep the work from being overly complicated and to keep it within the

scopes of our studies, the number of intermediate nodes in the destination DC will be

equal and match in a 1-to-1 manner to the source DC. This simplification does not affect

the generality of the model which can, in future work accommodate the case where the

number of intermediate nodes in source and destination DCs is not the same i.e. m-to-

n mapping. The components of parallel data transfer time are depicted in Eq. 3.1.

CPT transfer time,

24

 𝑇()* = 𝑇, + 𝑇$ +	𝑇. +	𝑇/	 (3.1)

The following explains all the components.

a. VM Setup time (𝑇,)

The VM setup time consists of time for VMs allocation, provisioning, and starting up

of all the intermediate nodes. In today’s public cloud IaaS platform, VMs can typically

be provisioned within few minutes after the request is received, sometimes even within

a few ten seconds. However, it must be noted that VM setup time is a significant factor

in the functionality of the CPT. Unfortunately, from a cloud consumer‘s perspective,

there is almost nothing that can be done.

b. Data Distribution Time (𝑇$)

In the proposed model, there are two actions that happen in the same DC, files are

chunked and then transferred from the source node to the intermediate nodes. The

transferring process has to begin immediately after the split of a particular chunk is

completed in order to reduce the overall data distribution time. This means there is no

time waiting for the overall file splitting process to complete. However, care must be

taken as the process of both splitting and transferring may utilize (i.e. reading and

writing into) the same disk which affects throughput due to I/O contention.

c. Data Transfer Time (𝑇.)

This time component refers to the transfer time from the intermediate nodes of the

source DC to intermediate nodes in the destination DC. There are multiple

straightforward ways to shorter the duration of this stage, such as using more powerful

VMs (i.e. VM with higher network throughput) or increasing the number of pairs of

intermediate nodes.

25

d. Data Consolidation Time (𝑇/)

Data consolidation time is the amount of time taken for the file reconstruction process

to complete. It includes the time of file chunks transfer from intermediate nodes to the

destination node within the same DC. This stage is heavy on disk operation as data is

first read and then rewritten back into the filesystem. Normally, data consolidation time

correlates with the data distribution time. An example, decompression have to be

performed during the consolidation stage if compression was performed during the

distribution stage. However, this work assumed that the data is already and cannot be

further compressed such as high definition multimedia data.

Based on the aforementioned illustration, the CPT total transfer time is represented by

the following equation. The transfer speed is the average of all intermediate nodes in

both source and destination datacenters. In the remaining of our work, we assumed that

the individual transfer speed of each intermediate nodes is identical. The effective

transfer speed is the lesser of network throughput and disk throughput.

The equation for the total time taken of CPT is given below. The notations are given in

Table 3.1.

Table 3.1. Notations in the CPT time taken equation

Notation Description
𝑇()* CPT transfer time (s)
𝑇()*1 CPT w/ pre-testing transfer time (s)
𝑇"2 Sequential transfer time (s)
𝑇, Stage “VM setup” time (s)
𝑇34 Stage “Pre-testing” time (s)
s Total Transfer size (MB)
𝑣" Split throughput (MB/s)
𝑣6 Internal transfer throughput (MB/s)
𝑣. External transfer throughput (MB/s)
p No. of intermediate node pairs

26

𝑇()* = 𝑇, +
"
,7
+	 "

,8
+ 	 "/3

,:
+ "

,8
	+ "

,7
	 (3.2)

As an example, Figure 3.3 depicts an example timeline of each component for a CPT

transfer with 2 pairs of intermediate nodes, p=2.

Figure 3.3 Example timeline of basic CPT using 2 pairs of intermediate nodes (p=2)

3.3.2 Introducing Pipeline into the CPT Technique

The Eq. 2 showed that the model can be further improved by using a pipelining

technique. In order to make the transfer more worthwhile, the stages such as distribute,

transfer and consolidate of file chunks can take place concurrently. As an example,

Figure 3.4 depicts the example timeline of CPT transfer with pipelining (p=2).

Figure 3.4 Example timeline of CPT transfer using 2 pairs of intermediate nodes (p =2)

and with pipelining

For instance, submitting a request for VM spawning and splitting of files can be started

simultaneously. Then, once the first data chunk is ready, it will be transferred to the

first intermediate node in source DC without waiting for the second chunk (which will

be transferred to the second intermediate node). Similarly, once the first chunk is

27

completed, it will be transferred to its respective intermediate node in destination DC.

By doing so, we ensure that there is no waiting for transfer since another pair of instance

is available. However, the exception is during the file merging process, which can only

begin when the transfer of all file chunks is completed. In this model, the total parallel

transfer time is influenced by the larger of VM setup or file splitting time. This further

refines Eq. 3.2 to Eq. 3.3.

𝑇()* = max(𝑇,	,
"
,7
) +	 "/3

,8
+ 	 "/3

,:
+ "/3

,8
	+ "

,7
	 (3.3)

3.3.3 Reducing I/O time with Network Data Piping

From the Equation 3.3, I/O time should be further reduced to improve the parallel

transfer efficiency. Therefore, the data splitting and merging stages should be

performed virtually. For example, in the “splitting” stage, the physical splitting of the

file is not necessary as the file to be transferred can be read from disk at arbitrary

location and sent over the network. Similarly, instead of having to wait for all the data

to be available before starting the merging process, the merge operation can be

eliminated as the data is put in place as part of the network transfer. This can be

achieved using tools such as Netcat (“nc - arbitrary TCP and UDP connections and

listens - Linux man page,” n.d.). As an example, Figure 3.5 depicts the possible timing

sequence of parallel transfer (p=2) with pipelining and network data piping.

Such an approach not only allows better concurrency, but can also off-load the disk IO

operation to the network. This should significantly reduce the total parallel data transfer

time.

28

Figure 3.5 Example timeline of CPT using 2 pairs of intermediate nodes (p=2), and with

pipelining and network data piping

Therefore, with network file merging, eq. 3.3 can be reduced to the following:

𝑇()* = 	𝑇, +		
@"
,8
	+ 	"/3

,:
								 (3.4)

3.4 Impact towards financial cost of CPT

Utilizing cloud resource comes at a financial cost. Therefore, by spawning additional

resources for data transfer, additional operation cost is incurred. Typically, cloud

providers do not only charge for compute resources in the event of spawning VMs, but

there are also implicit costs such as storage, provisioned disk I/O performance, and

network interface. After the transfer is completed, the resources (i.e. intermediate nodes)

are deallocated, hence no continuous charges.

Sequential transfer cost, 𝐶"2 =	s . 𝐶.A (3.5)

Table 3.2 Notations in the CPT cost equation

Notation Description
𝐶"2 Cost of sequential transfer
𝐶()* Cost of CPT transfer
𝐶()*1 Cost of CPT w/ pre-testing transfer
𝐶.A Egress traffic cost (cent / MB)
𝐶6A Ingress traffic cost (cent / MB)
𝐶, Cost of VM per unit time (cent / s)
n No. of intermediate node

Assuming internal transfer, 𝐶6A is free of charge which is true for most cloud services,

CPT Transfer Cost,

29

𝐶()* = (𝑇()*	. 2𝑝	. 𝐶,) + (s . 𝐶.A) (3.6)

Since n = 2p, and 𝐶"2 = s . 𝐶.A ,

𝐶()* = (𝑇()*	. 𝑛	. 𝐶,) + 𝐶"2 (3.7)

From the Equation 3.7, since the CPT transfer cost is a summation of the extra processes

and sequential transfer cost, it is not possible to reduce the cost of parallel transfer to

be lower than the sequential transfer. However, the parallel transfer potentially provides

better throughput but comes at an increased in financial cost. This will be studied in

greater details in the next few chapters.

3.5 Conclusion

The proposed CPT transfer involves 3 main stages: distributing the data to intermediate

nodes, transferring them in parallel across WAN and then subsequently reconstructing

the data at the destination node. The model of CPT transfer time shows that VM start-

up time and the various network throughput is an important factor of CPT. Finally, the

cost model showed that CPT transfer comes at an increased in financial cost. In short,

network throughput of the VMs and cost of running the VMs are the main factor in

determining the effectiveness of the proposed parallel transfer technique.

In a nutshell, corresponding to the first research objective, this chapter modelled and

identified the limiting factors of scaling cloud-to-cloud data transfer via spawning

intermediate nodes.

30

CHAPTER 4

UNDERSTANDING THE CLOUD AND MODEL ANALYSIS

The purpose of this chapter is to understand the characteristics of the public cloud in

terms of performance and cost, and then uses the collected performance and cost values

to analyze the two CPT models described in Chapter 3, one pertaining to CPT data

transfer time and the other on the CPT data transfer cost.

This work uses AWS cloud services. This is because according to Gartner’s reports in

the year 2018 (“Magic Quadrant for Cloud Infrastructure as a Service, Worldwide,”

n.d.), AWS is the world market leader in Cloud Infrastructure as a Service.

The tests conducted and results explained in the first half of the chapter sets the stage

for understanding the network throughput behavior of a typical public cloud platform.

Then, the models are furthered explored, and the CPT framework and process flow are

described. The CPT framework proposed 2 techniques – VM-type selection and pre-

testing to optimize the performance and cost.

4.1 Cloud’s Network Performance and Charges

 In order to benchmark the inter-network capacity, this work selected the two further

apart AWS datacenters; transfer between the Oregon and Ireland region. The intra-

network are tested within Oregon. The network throughput of various type of general

purpose EC2 instances within and between these 2 datacenters are measured. They are

depicted as internal and external transfer respectively.

The test is performed with iPerf (“iperf - Linux man page,” n.d.) with 3 streams and for

a duration of 2 minutes each. For each test, EC2 of identical type is spawned in the

31

respective AWS region to carry out the test. The experiment was performed 3 times a

day for continuously 2 days (23rd-24th April 2018), then the average is taken (total of 6

readings). The results are presented in Figure 4.1 and 4.2.

Figure 4.1Average, Minimum and Maximum Intra-DC network throughput observed

for the various EC2 type

Figure 4.2 Average, Minimum and Maximum Inter-DC network throughput observed

for the various EC2 type.

Each bar depicts the average, maximum and minimum of the averages. Consistent to

observations made by other authors such as in (Hu et al., 2018), the intra-DC bandwidth

exceeds the inter-DC by several factor. On the other hand, it can be seen that the

0

500

1000

1500

2000

2500

3000

t2.m
icr

o

t2.sm
all

t2.m
ediu

m

m3.m
ediu

m

t2.lar
ge

m3.lar
ge

m4.lar
ge

t2.xla
rge

h1.2
xla

rge

d2.x
lar

ge

th
ro

ug
hp

ut
 (M

bp
s)

VM/EC2 Type
low high

cost

0

50

100

150

200

250

300

t2.m
icr

o

t2.sm
all

t2.m
ediu

m

m3.m
ediu

m

t2.lar
ge

m3.lar
ge

m4.lar
ge

t2.xla
rge

h1.2
xla

rge

d2.x
lar

ge

th
ro

ug
hp

ut
 (M

bp
s)

VM/EC2 Type
low high

cost

32

network throughput variability for t2 instance class is relatively large while the

throughput of the remaining types is quite consistent. The result is consistent to the

official network performance classification provided by AWS (Table 4.1). However

because AWS does not provide service level agreement (SLA) for network throughput,

the network rating is given very vaguely.

Table 4.1 also presents the cost of running the respective VMs, sorted by the cost

ascendingly. As seen, the price of VMs does not directly correlate to the network

throughput. It is possible to spend a fraction of the cost and still get a better network

throughput. This proposed technique is further explored in section 4.3.

Table 4.1 Price and Spec of running VM/EC2 on AWS (April 2018, AWS Oregon)

Type vCPU Memory (GiB) Network Price per Hour ($)
t2.micro 1 1 Low-Moderate 0.0116
t2.small 1 2 Low-Moderate 0.0230
t2.medium 2 4 Low-Moderate 0.0464
m3.medium 1 3.75 Moderate 0.0670
t2.large 2 8 Low-Moderate 0.0928
m4.large 2 8 Moderate 0.1000
m3.large 2 7.5 Moderate 0.1330
t2.xlarge 4 16 Moderate 0.1856
h1.2xlarge 8 32 Up to 10 Gbps 0.4680
d2.xlarge 4 30.5 Moderate 0.6900

AWS does not offer network optimized VM per se. That is to say, VM with better

network throughput also comes with more CPU and memory resources, and has a much

higher cost. We observed that this VM offering model is generally true for many other

cloud providers such as Azure (“Azure Linux VM sizes - General purpose,” n.d.) and

Google Cloud (“Egress Throughput Caps | Compute Engine,” n.d.). For this work, we

included h1.2xlarge as it is the most affordable VM with AWS network rating of “up

to 10Gpbs”.

33

Table 4.2 depicts the result (from the extended test conducted above) of intra-DC

network throughput between VMs of a different type. It is observed that when

transferring between VMs of different type, the network throughput is the smaller of

both. The download and upload bandwidth seem to be capped equally without any favor.

Table 4.2 Network throughputs between VMs/EC2s of a different type

From | To (Mbps) t2.micro m3.medium m4.large h1.2xlarge
t2.micro 718 331 601 721
m3.medium 323 320 323 326
m4.large 595 326 593 597
h1.2xlarge 735 327 597 2540

Similar characteristics are also observed by the same authors in two separate work

(Persico et al., 2015; Persico et al., 2017) – throughout this preliminary tests, the

network throughput during the lifetime of the VM is stable. There is no significant

fluctuation which means that the resource allocated to the VM is not changed

throughout the lifetime of the VM.

The impact of network throughput on the overall performance and cost of the CPT is

discussed in the next chapter.

4.2 Model Analysis

Before jumping into the model validation, it must be understood that speedup is defined

as S(s, p) = 𝑇"2	/	𝑇()*

Where time taken for sequential transfer, 𝑇"2 = "
,:

In order for CPT to have better performance than sequential transfer, the CPT time must

be smaller than the sequential data transfer time, i.e. S > 1.

34

4.2.1 Performance of various CPT and its optimizations

In this section, CPT transfer against sequential transfer is carried out based on the

models. In this sub-section, a hypothetical case where the all the intermediate, source

and destination nodes are of the same VM type. This means that the network bandwidth

is similar across all the VMs.

Based on the preliminary tests carried out on Amazon EC2 cloud type t2.small, the VM

startup time varies between 81 and 95 seconds with an average of 87.8 seconds. This

demonstrates the performance volatility when requesting a cloud service. In this section,

an arbitrary value for VM set-up time, i.e. 90 seconds is used. Also based on a separate

test, the split and the merge speed, which are input/output intensive activity, are

normally equal. Table 4.3 includes the parameters as follows: 65 MB/s for split

throughput, 90 MB/s for internal transfer throughput and 15MB/s for external transfer

throughput.

Table 4.3 The numerical figure used in the models

Variable Numerical figure used in the models
𝑇, 90 s
𝑣" 65 MB/s
𝑣6 90 MB/s
𝑣. 15 MB/s

Feeding the values in table 4.3 into the equations 3.2, 3.3 and 3.4 results in Figure 4.3

to 4.6. Figure 4.3 shows the transfer time against total data transfer size of basic CPT

for different number of intermediate node pairs. Basic CPT with p=2 and p=4 has larger

transfer time than sequential transfer, which means performance is worse off. For p=8,

the performance is still worse than sequential transfer when total data transfer size is

below 10GB. This also demonstrates that CPT is more effective when the data transfer

size increases.

35

Figure 4.4 and 4.5 shows the transfer time of CPT with pipelining and CPT with

pipelining and network data piping respectively. Unlike the basic CPT (Figure 4.3),

both the optimizations have resulted in better performance even when the number of

pairs of intermediate node is low, p=2 in this case. Other than the lower transfer time

compared to basic CPT, the general trend and observation remain the same.

Figure 4.3 Time taken of various

number of instance pair for basic CPT.

Figure 4.4 Time taken of various

number of instance pair for CPT with

pipeline.

Figure 4.5 Time taken of various

number of instance pair for CPT with

pipeline and network data piping.

Figure 4.6 Comparing the performance

of basic CPT and CPT with

optimization.

Figure 4.6 is a combination of Figure 4.3 and 4.5. It compares the basic CPT (i.e.

foundation) against CPT with pipelining and network data piping (i.e. optimized CPT).

In the figure, it can be seen that the transfer time of basic CPT with p=4 is larger than

sequential. This means worse off performance. Optimized CPT with p=4 has a slight

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19

seq
p=2
p=4
p=8

tr
an

sf
er

 ti
m

e
(s

)

total data transfer size (GB)

0

500

1000

1500

1 3 5 7 9 11 13 15 17 19

seq
p=2
p=4
p=8

tr
an

sf
er

 ti
m

e
(s

)

total data transfer size (GB)

0

500

1000

1500

1 3 5 7 9 11 13 15 17 19

seq
p=2
p=4
p=8

tr
an

sf
er

 ti
m

e
(s

)

total data transfer size (GB)

0

2000

1 3 5 7 9 11 13 15 17 19

seq
p=4 (w/ optimisation)
p=8 (w/ optimisation)
p=4 (foundation)
p=8 (foundation)

tr
an

sf
er

 ti
m

e
(s

)

total data transfer size (GB)

36

improvement. As expected, increasing the number of intermediate nodes pair to 8 give

a far smaller transfer time than sequential transfer.

As can be seen from the figures, each improvement proposed increases the overall

performance of CPT. Hence, optimized CPT is used for the remaining of the work –

implementation of CPT. The work on basic CPT and CPT with pipeline ends at this

sub-section.

4.2.2 Performance and Financial Cost Incurred

This section is a continuation of the previous sub-section, where the cost of the CPT

transfer is explored here. The equation of transfer time for optimised CPT and cost of

CPT (equation 3.4 and 3.7 respectively) is fed with the values mentioned in Table 4.4

to compute the CPT cost. The price is based on the actual average pricing of AWS

Oregon and Ireland (as of April 2018).

Table 4.4 Cost of AWS t2.small per second billing

Variable Numerical figure used in the models

𝐶.A $0.02 / GB

𝐶6A $ 0

𝐶, $ 0.241 / hour (per second granularity)

For sequential transfer and the different number of intermediate nodes, three key

metrics are closely explored:

• Cost against total data transfer size

• Throughput against total data transfer size

• Throughput per cost against total data transfer size

And for each of the metric, the impact on small and large total amount of data transfer

is studied. The results are shown in Figure 4.7 to 4.9 and Figure 4.10 – 4.12 respectively

37

and the observations are outlined below. Do take note that the x-axis in the figures is

not linear hence the apparent curve.

Figure 4.7 Cost vs transfer size (small

total data transfer)

Figure 4.8 Throughput per cost vs

transfer size (small total data transfer)

Figure 4.9 Throughput vs transfer size

(small total data transfer)

Figure 4.10 Cost vs transfer size (large

total data transfer)

Figure 4.11 Throughput per cost vs

transfer size (large total data transfer)

Figure 4.12 Throughput vs transfer size

(large total data transfer)

0

10

20

30

40

50

1 2 4 8 16

seq
p=2
p=16

ce
nt

total data transfer size (GB)

0.0

2.0

4.0

6.0

8.0

1 2 4 8 16

seq
p=2
p=16

M
B/

s/
ce

nt

total data transfer size (GB)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 4 8 16

seq
p=2
p=16

M
B/

s

total data transfer size (GB)

0

500

1000

1500

2000

2500

3000

64 128 256 512 1024

seq
p=2
p=16

ce
nt

total data transfer size (GB)

0.000

0.050

0.100

0.150

0.200

0.250

64 128 256 512 1024

seq
p=2
p=16

M
B/

s/
ce

nt

total data transfer size (GB)

0.0

10.0

20.0

30.0

40.0

64 128 256 512 1024

seq p=2 p=16

M
B/

s

total data transfer size (GB)

38

As the total size of data transfer increases, both sequential and CPT cost increases

linearly (Figure 4.7 and 4.10) and the throughput per cost decreases linearly (Figure 4.8

and 4.11). The reason for the decrease in throughput per cost is previously described in

section 4.2. The increase in the cost of running the VM is much higher than the increase

in network throughput of the VM. As seen in Figure 4.11, as the total amount of data

transfer increase, CPT results in better throughput per cost as compared to sequential

transfer, and the performance differences are even larger when the number of

intermediate nodes is high.

As depicted in Figure 4.9 and 4.12, the throughput of sequential transfer remains the

same as the only factor is the external network throughput. As for CPT, throughput

increases until it reaches the maximum throughput depending on the number of

intermediate nodes employed. Hence, it is observed that for large total amount of data

transfer, the throughput for CPT seems constant.

4.2.3 Impact of the DC throughput ratio on CPT

As the CPT’s core technique is to parallelize file transfer across multiple paths, the ratio

of internal to external network throughput certainly affects the feasibility of the transfer.

It is crucial that the internal network throughput (Vi) exceeds the external throughput

(Ve) by a certain factor. Figure 4.13 depicts the graph of speedup versus the ratio of

internal to external transfer speed.

In order to understand the impact of the ratio of Vi to Ve on the speedup, using the

model, we set the Ve=10 mbps and increment the Vi. Figure 4.13 depicts the graph of

speedup versus the ratio of internal to external transfer speed for transfer of 5GB. It can

be observed that the speedup increases as the number of instance pairs is increased.

39

Figure 4.13 Speedup vs Ratio of Internal to External network throughput.

From the figure, it can be observed that the higher the ratio of internal to external

network throughput, the higher the speedup. CPT transfer results in poorer performance

when the ratio is below a certain threshold. The exact ratio depends on the transfer size

and number of pairs of instances.

Figure 4.14 Cost vs Ratio of Internal to External transfer speed.

Figure 4.14 depicts the cost against the ratio of internal to external network throughput.

As the ratio increases, the additional cost incurred for performing CPT decreases. This

is because as the ratio increases, the time taken for the transfer is reduced and hence the

cost incurred for CPT transfer reduces more than proportionately.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p=2 p=4 p=8

ratio of 𝑡6	𝑣𝑠	𝑡.

sp
ee

du
p

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

co
st

 (c
en

t)

Ratio of Vi to Ve

p=2 p=4 p=8

40

Hence, the higher the ratio of internal to external network throughput, the better it is for

CPT both in terms of better performance and lower cost.

4.2.4 Impact of VM type on the cost of CPT

In the previous sections, the performance and cost are explored based on the AWS

t2.medium machine type. As already described in section 4.1, the cost of running the

VM is not proportional to the network throughput of the VM. In this section, the impact

of using “network optimized VM” is studied.

The AWS EC2 type h1.2xlarge which has AWS official network rating of “up to 10

Gbps” is selected as a comparison. Here, the case is where the source and the destination

node (h1.2xlarge) are of different VM type as the intermediate nodes (comparing

h1.2xlarge vs t2.small). Table 4.5 and 4.6 are the values that are used.

Table 4.5 Numerical figure used in the models (h1.2xlarge)

Variable Numerical figure used in the models

𝑇, 90 s

𝑣6 315 MB/s

𝑣. 30 MB/s

Table 4.6 Cost of AWS h1.2xlarge per second billing

Variable Numerical figure used in the models

𝐶.A $0.02 / GB

𝐶6A $ 0

𝐶, $ 0.468 / hour (per second granularity)

Figure 4.15 depicts the throughput per cost ratio of CPT with different VM type as

intermediate nodes. As seen, using h1.2xlarge as intermediate nodes results in smaller

41

throughput per cost ratio than t2.small. Hence, VM selection is important, to pick VM

type favorable for improving the transfer but at the lowest cost.

Figure 4.15 Throughput per cost vs transfer size for CPT of different VM type

4.2.5 Impact of pricing granularity on the cost of CPT

Depending on the pricing mechanism used by the service provider, charging granularity

affects the overall price incurred. Pricing granularity varies across different cloud and

time-to-time cloud service providers revise the scheme. Running n VMs for the

duration of m minute (where m < 60) will incur n instance hour. Example, in hourly

block charging, using the VM for 5 minutes will be charged the same price as using it

for an hour.

In the following, we investigate the impact of pricing granularity on the overall cost of

CPT transfer. Figure 4.16 depicts the total cost without egress charges vs data transfer

size based on different pricing granularity. As seen, pricing granularity has a noticeable

impact on the total cost of CPT.

0.000

0.500

1.000

1.500

2.000

8 16 32 64 128 256

p=2 (t2)
p=16 (t2)
p=2 (h1)
p=16 (h1)

M
B/

s/
ce

nt

total data transfer size (GB)

42

Figure 4.16 Total cost vs transfer size for different pricing granularity

As seen in the figure, the total cost difference between per hour and per second billing

is not very significant when the number of intermediate nodes is lower. When the

number of nodes deployed is higher in the case of per hour pricing granularity, more

“wastage” is incurred as the cloud consumer is charged the full hour although CPT only

utilized a fraction of the hour. For example, the cost addition of utilizing 1.5 hours but

paying for 2 hours is more significant than utilizing 5.5 hours but paying 6 hours

although it’s just 30 minutes short in both cases.

This also explains the ladder-like cost incurred when p=8(/h). This is because the total

time of transfer has increased, and the additional price difference to ceiling price (e.g.

rounded to the next hour) is spread. Hence, the smaller the pricing granularity, the lower

the overall cost of CPT transfer.

4.3 CPT Framework

Section 4.2 has enabled a good understanding of the impact of various factors towards

the performance and cost of CPT transfer. In this section, an end-to-end process flow

for CPT transfer is proposed, hereafter addressed as CPT framework. The proposed

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

64 128 192 256 320 384 448

p=2 (/h) p=8 (/h)

p=2 (/s) p=8 (/s)

to
ta

l c
os

t m
in

us
 e

gr
es

s c
ha

rg
es

 (
ce

nt
)

total data transfer size (GB)

43

framework is cloud-agnostic and so, is generally applicable to typical public cloud

platforms like AWS, Azure and Google Cloud.

Two techniques; VM-type selection and pre-testing are proposed to address the network

throughput characteristic discussed in section 4.1.

4.3.1 VM-type selection

As described in the section 4.1, cost of running the machine does not linearly correlate

to the network performance. Price of renting a VM type is based on a combination of

several resources capacity such as CPU, memory and network throughput. Choosing a

more powerful machine of double the price with double the CPU and memory capacity

does not mean double the network capacity. This is an important area to explore as

based on the models, the two factors that significantly affect the CPT is network

throughput and price.

Here is an example of the impact of the deployment of two different VM type of similar

network throughout but at a cost difference. VM1 – Small has much lesser resources

(CPU, memory and storage) but equal network throughput as VM2 – Large. Deploying

VM1 – Small as the intermediate nodes result in comparable performance but at a much

lower cost. Hence, VM selection is important to ensure an effective CPT transfer.

The CPT is extended with the proposed feature to pick the most favorable machine type

for the transfer. Based on actual data on network performance (a table with a list of VM

type and its corresponding cost, inter-DC and intra-DC network bandwidth) is available,

CPT will select the VM type with higher external network performance to cost ratio.

This allows the overall transfer to be at a comparable performance but at a lower cost.

The network performance data should be provided up-front (e.g. taken from test result

of previous transfer) before the transfer begins, otherwise, additional time is required

44

for testing. As this information can be reused again across multiple transfers, in the

remaining of this work we exclude the time taken for testing in the overall time taken

for CPT transfer.

4.3.2 Pre-testing

Network performance varies even when picking machines of same class/type. This

pattern is also observed in another researcher’s work at (Persico et al., 2017). The work

further describes killing machines that are performing below par. Inspired by this

technique, we propose the following enhancement to CPT. Utilizing machines when its

performance is on the upper side while killing machines that are not performing at an

optimum level.

The CPT is designed to perform limited testing at the start of the transfer, we call this

the pre-testing stage. If the transfer requires x number of intermediate nodes, the CPT

will spawn 2x number of machines. Each of the machines will be tested for both its

inter-DC and intra-DC network bandwidth, then, the machines at the bottom half the

performance will be killed as it is not optimal.

Some may argue that more machines should be spawned for pre-testing. There is, of

course, the possibility that more than half of the initial machines were not performing

optimally. However, when conducting the test in section 4.1, we observed that less than

half of the machines spawned are performing below average.

Besides, as the network throughput is relatively unchanged throughout the lifetime of

the VM (see section 4.1), the models remain simple as network performance fluctuation

do not need to be taken account of. Deciding the VM based on the early network

throughput is sufficient.

45

The equation for CPT with pre-testing is as below:

𝑇()*1 = 	𝑇34 +	𝑇()*				 (4.1)

If pre-testing is involved, the cost of the pre-testing stage is given as

𝐶34 = 𝑇34	. 2𝑛	. 𝐶, Hence,

𝐶()*1 = 𝑛	. 𝐶,	(𝑇()* + 2	. 𝑇34)	 + 𝐶"2 (4.2)

4.3.3 End-to-end process flow of CPT

The Figure 4.17 shows the CPT framework – flow chart for the events leading up to the

CPT transfer.

Figure 4.17 Process flow leading to the CPT Transfer

At the very beginning, VMs cost and its respective internal and external DC throughput

are to be provided. If not readily available, a separate test is performed. Then, based on

the performance and cost estimation for different numbers of intermediate nodes, p, the

user select the desired performance. Based on the decision, the transfer is done

sequentially (i.e. a normal transfer without CPT) if p=0 or using CPT if p>0. Next,

based on the performance estimation a recommendation is provided to the user if pre-

46

testing is likely to yield benefit. If the transfer time is estimated to be short, pre-testing

is not recommended as overhead is high. It is the users decision to go with the

recommendation or overrule – taking the risk. Once pre-testing is performed (if needed),

the CPT transfer begins. In the event any chunk failed the checksum, the chunk will be

resent. If any intermediate node fails during the transfer, the failed node will be replaced

with new intermediate node. CPT will resume transferring but there is a performance

impact. Once the data transfer completed successfully, the intermediate nodes are

decommissioned.

4.4 Conclusion

Based on the model analysis that have been covered in this chapter, the table 4.7

provides a summary of the variables’ impact towards CPT.

Table 4.7 Respective variables' impact towards CPT

No. Variable Impact towards CPT Control

1 Internal transfer
throughput, 𝑣6

The larger the better.
Besides, the higher the
ratio of 𝑣6 to 𝑣. the better.

Dynamic, varies
according to VM type
and CSP

2 External transfer
throughput, 𝑣.

3 VM setup time, 𝑇, The smaller the better.

4 Ingress traffic cost,
𝐶6A

Same as sequential
transfer. The smaller the
better for consumer.

Usually zero, set by
CSP

5 Egress traffic cost, 𝐶.A

Usually fixed, set by
CSP

6 Cost of VM per unit
time, 𝐶,

The smaller the better.

7 Pricing Granularity The smaller the charging
block, the lower the total
cost.

47

This first part of the chapter showed that the cost of renting the VM does not linearly

correlate to the network performance. Two important lessons are learned from the

network throughput test. Firstly, the average network throughput of a VM varies across

different occasion. Secondly, no significant fluctuation to network throughput

throughout the lifetime of the VM.

Then, from the model analysis, we see that CPT with pipelining and network data

piping outperforms CPT without both the optimizations. Hence the optimized CPT will

be implemented and experimented in the subsequent chapters. It is important to note

that the ratio of Vi to Ve is important as it has a large impact on the speedup of the CPT.

If the internal network throughput is not sufficiently more than the external i.e. ratio is

low, performing CPT transfer will result in worse performance than sequential transfer.

Assuming that cost is not a constraint, the maximum speedup is achieved when the ratio

of internal to external network throughput approaches infinity and the number of

intermediate nodes deployed approaches infinity.

However, with the cost model, it shows that the efficiency (throughput per unit cost)

will diminish over time. The cost models also showed that the smaller the pricing

granularity, the cheaper the overall cost of CPT with performance being equal.

Finally, the CPT framework is proposed. The end-to-end process involving preparation

work, execution of CPT and post-CPT steps are described. Two techniques; VM-type

selection and pre-testing were proposed to optimize the performance and cost.

In a nutshell, corresponding to the second research objectives, this chapter has not only

identified the influencing factors of implementing CPT model in the public cloud

environment, but also provided enhancements which are critical to improving the

effectiveness of CPT.

48

CHAPTER 5

SYSTEM IMPLEMENTATION

In this chapter, the implementation of each component and process which makes up the

complete proposed CPT framework using the AWS cloud. In addition to that, the

implementation of CPT for data transfer between Hadoop’s HDFS cluster is also

described. The implementation of CPT for data transfer between Hadoop’s HDFS

cluster is described here because the proposed CPT will be compared against Hadoop’s

DistCp in the subsequent chapter.

5.1 CPT Implementation

As the model in section 4.2 has shown that optimized CPT the best performance, we

implement this version of CPT for the remaining of our work. The implementation is

done on AWS EC2 to prove the concept of the proposed CPT.

All the scripts are written in Perl due to the out-of-the-box support on most Linux

distros and compatibility on Windows-based machine – allowing portability across

different platforms. For our implementation on AWS, all the EC2 (i.e. VMs) are

running Ubuntu Linux 16.10. Password-less SSH connections are set up so that the

VMs can authenticate and communicate with each other and perform the data transfer.

49

Figure 5.1 Control and data flow of CPT implementation on AWS

Figure 5.1 depicts the implementation involving two different AWS region. The solid

lines represent the data flow (i.e. data transfer) while dotted lines denote

control/command channel (two ways). All the forecast and decisions are made by the

Transfer Manager (TM). All control communication is made by the daemons via the

centralized Message Queue Telemetric Transport (MQTT) broker running as part of

the TM. The Transfer Daemons (TD) are responsible for initiating the transfer based

on received instructions and periodically reporting to the TM. This allows for real-time

monitoring of the transfer and reactions to failure as soon as possible (e.g. one of the

intermediate nodes failed or chunk corrupted). The TM is also responsible for

communicating with the cloud APIs for commissioning and decommissioning the VMs.

In summary, the CPT consists of the TM and TD. TM coordinates the entire transfer

while TD merely execute the instructions and reports the progress of transferring the

respective chunks. The TM consist of the following components:

50

• Initial VM-type throughput tester – perform intra-DC and inter-DC network

bandwidth test for the different VM types, so that the most suitable VM type

can be decided.

• VM-type selector – selecting the most suitable VM type for use as intermediate

nodes.

• Speedup and Cost Estimator – estimation of the speedup and financial cost of

CPT based on the models.

• Pre-tester – perform network bandwidth test (all VM of the same type) and only

use top-performing VMs as intermediate nodes.

• CPT coordinator – initiating and keeping track of the chunk transfers between

all the involved nodes

The roles and implementation of the components are discussed in the subsequent

sections.

5.1.1 DC Throughput & VM-type Selection

As described in the section 4.3 CPT framework, before the CPT transfer even begin,

specific information on the VM startup time, internal and external DC throughput has

to be provided. Table 5.1 shown below, is the information needed for an optimized

transfer.

Table 5.1 List of information collected during the network throughput test

No. Item Example

1 VM Type m5.large

2 Internal Throughput (Mbps), 𝑣6 250

3 External Throughput (Mbps), 𝑣. 80

4 Price ($/hour) 0.78

5 Startup time (s), 𝑇, 55

51

Item 1 and 4 are an example of information related to a cloud instance provided by the

cloud provider (https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/index.json),

which is query-able via API. As there may be a price difference of running the same

VM type in source and destination, the average of the two is calculated since our CPT

implementation is performing 1-to-1 mapping.

As for item 2 and 3, the cloud consumer has to perform the necessary test. If this

information is readily available, testing can be performed before the transfer begin. The

data can be collected and used for future transfer. As time goes by, as more and more

transfers are performed, the average will be closer to reality.

The pseudocode in Table 5.2 describes the algorithm used to populate the data for a

transfer for the first time. The input is a 2-dimensional array with VM type and price

obtained from the cloud provider. The procedure then spawns the VMs and perform the

iPerf test accordingly. The output is the VM type with its price and corresponding

internal throughput, external throughput and VM startup time collected from the test.

Table 5.2 Pseudocode for benchmarking VM network performance

Input: 2D Array (VM Type and its corresponding Price)
 Duration of test to perform, x
Output: 2D Array (VM Type and its corresponding Price, Ve, Vi, Tv)

Procedure:
FOR each VM type in Array
 Spawn 2 VM (VMs1, VMs2) of VM type in source DC
 Spawn 1 VM (VMd1) of VM type in destination DC
WHILE VMs are NOT ready (WAIT)
Record VM startup time and update Array
FOR each VM type in Array
 Connect to VMs1 and initiate network throughput test to VMs2 for x
 duration
WHILE x duration NOT elapsed (WAIT)
FOR each VM type in Array
 Connect to VMs1, retrieve result (internal throughput) and update Array
 Connect to VMs1 and initiate network throughput test to VMd1 for x
 duration

52

 Decommission VMs2
WHILE x duration NOT elapsed (WAIT)
FOR each VM type in Array
 Connect to VMs1, retrieve result (external throughput) and update Array
 Decommission VMs1 and VMd1
RETURN Array

Table 5.3 shows the example starting array where only the VM type and Price is listed.

Table 5.4 shows the updated example array after all the necessary information needed

for forecasting the CPT transfer is furnished.

Table 5.3 Starting Input Array prior to network throughput test

VM Type Price
t2.micro 0.0116
t2.small 0.0230
t2.medium 0.0464
… …

Table 5.4 Array updated with VM information necessary for CPT transfer

VM Type Price Ve Vi Tv
t2.micro 0.0116 107 718 83
t2.small 0.0230 124 724 82
t2.medium 0.0464 146 721 85
… … … … …

As discussed in section 4.2.3, VM type with the best external throughput to cost ratio

is used, provided that the internal network throughput exceeds the external throughput

of the source and destination VM. The pseudocode for VM selection is as below,

continuing from above:

Table 5.5 Pseudocode for VM selection

Input: 2D Array (VM Type and its corresponding Price, Ve, Vi, Tv)
 VM type of source and destination machine
Output: The most suitable VM Type (for intermediate nodes)

Procedure:
FOR each VM type in Array
 COMPUTE cost per unit internal throughput and update table

53

SORT table ascending cost per unit internal throughput
FOR each VM type in list of VM type
 IF VM type internal throughput > 7 x source machine’s internal throughput
 RETURN VM type
RETURN “no suitable VM”

5.1.2 Speedup and Cost Estimation & User preference

In order for the user to decide if CPT should be performed and how many intermediate

nodes should be deployed, an estimated time and cost has to be calculated. The

calculation is performed based on the 2 models derived in chapter 3, with all the

necessary information obtained from the previous stages (from section 5.1.1). Below is

the pseudocode of getting the estimated time and cost for different values of p, the

number of pairs of intermediate nodes.

Table 5.6 Pseudocode for estimating CPT transfer time and cost

Input: 2D Array (VM Type and its corresponding Cv, Ve, Vi, Tv)
 Egress Cost, Ceg
 Total data transfer size, s
 Number of intermediate nodes for CPT transfer, p
 VM type of source and destination machine
Output: Estimated time and cost

Procedure:
WHILE
 IF p=0
 Estimated Time, T <= s / Ve of source/destination machine
 Estimated Cost, C <= s * Ceg
 ELSE IF p>0
 Estimated Time, T <= Tv + 2 * s / Vi + s * p / Ve
 Estimated Cost, C <= (s * Ceg) + (T * 2 * p * Cv)
 End if
end loop
RETURN Array of T, C

54

Below is the example outputs showing all the estimated time and cost depending on the

number of intermediate nodes. Speedup refers to the sequential transfer time divided

by the respective CPT transfer time.

Table 5.7 Example of array of performance and cost estimation

p Estimated Time (s) Estimated Cost ($) Speedup
0 (no CPT) 545 0.160 -
1 713 0.219 0.764
2 521 0.203 1.046
3 493 0.201 1.105
… … … …

Based on the table the user selects the number of pairs of intermediate nodes for the

CPT transfer. The exact number of intermediate nodes that will be spawned is described

in the next section.

5.1.3 Pre-testing & VM spawning

The number of VM to be spawned depends on 2 decision made by the end user. Firstly,

the desired number of pairs of intermediate nodes as described in the previous section.

Secondly, whether pre-testing is required. When the pre-testing is employed, the TM is

responsible for spawning twice the number of intermediate nodes necessary, otherwise,

the exact number is spawned. In the former, the bottom half performing VM will be

destroyed after the pre-testing phase.

Pseudocode for spawning VMs with pre-testing stage is as shown in table below.

Table 5.8 Pseudocode for spawning VMs with pre-testing

Input: VM Type
 Source DC
 Destination DC
 Number of intermediate nodes for CPT transfer, p
 Duration of pre-testing, x
Output: List of intermediate nodes (p VMs spawned)

55

Procedure:
Initialize 2D Array (VM ID, Ve, Vi)
Spawn 2p VM (VMsx) of VM type in source DC
Spawn 2p VM (VMdx) of VM type in destination DC
FOR each i in 2p iterations
 Connect to VMsi and initiate network throughput test to VMdi for x
 duration
WHILE x duration NOT elapsed
FOR each i in 2p iterations
 Connect to VMs1, retrieve result (external throughput) and update table
SORT table ascending throughput
FOR each i in p iterations
 Decommission VMsi and VMdi

If no pre-testing, the exact number of VMs is spawned without need any test. The

pseudocode as shown below:

Table 5.9 Pseudocode for spawning VMs without pre-testing

Input: VM Type
 Source DC
 Destination DC
 Number of intermediate nodes for CPT transfer, p
Output: List of intermediate nodes (p VMs spawned)

Procedure:
Spawn p VM (VMsx) of VM type in source DC
Spawn p VM (VMdx) of VM type in destination DC

5.1.4 CPT

The transfer coordinator virtually splits the file(s) into arbitrary number of equal sized

chunks, and the total number of chunks must be more than the number of pairs of

intermediate nodes. In our implementation, we set the number of chunk to 3 times the

number of pairs of intermediate nodes. The study of the impact of varying the number

of chunks is beyond the scope of this work. Once the virtual splitting is done, the

transfer from the source node to source intermediate nodes is initiated. The transfer

daemon in the source node executes the transfer.

56

The transfer daemon in each of the nodes executes the transfer; monitor and restarts the

transfer if there is any failure and initiates the next transfer based on instructions from

the transfer coordinator.

The daemon in the source intermediate nodes monitors the transfer between source

intermediate nodes and destination intermediate nodes. Once a particular chunk is

received in the destination intermediate node, the daemon in the destination node will

immediately relay the transfer to the destination node.

The daemon in the destination node will stitch all the chunks together to re-form the

original file(s). Then, the daemon gets the checksum of the file(s) and informs the

transfer coordinator that the transfer is completed. If the final checksum matches the

CPT transfer is considered done. The baton is handed back to the Transfer Manager to

decommission the intermediate nodes.

Both the transfer coordinator and transfer daemons are implemented with an

asynchronous methodology. The event-driven architecture allows the immediate

reaction of events which may happen in a span of short time. The pseudocode of the

transfer coordinator is as below.

Table 5.10 Pseudocode of the transfer coordinator

Input: Source DC
Destination DC
 List of intermediate nodes
 List of file(s)
 N=3p
Output: NULL

Procedure:
PUT all source int. Node ID to srcint queue
PUT all destination int. Node ID to dstint queue
Virtually split file(s) into N size chunk
PUT chunk ID into src_send queue
Set count <= 0

57

WHILE
 IF src_send queue not empty
 free srcint node <= SHIFT srcint queue
 chunk <= SHIFT src_send queue
 Init transfer of chunk from src to free srcint node
 ELSE IF count eq. N AND get checksum match
 Transfer completed
 Return
 ELSE Restart entire transfer
 end if
end loop

EVENT: src node sent to src int. node completed
 free dstint node <= SHIFT dstint node
 inform src int. node to send to free dstint node
 IF src_send queue NOT empty AND srcint NOT empty
 free srcint node <= SHIFT srcint queue
 chunk <= SHIFT src_send queue
 Init transfer of chunk from src to free srcint node
end if

EVENT: src int. sent to dst int. node completed
 lookup hash table and inform dst int. node to send to dst node
 put src int. node into vacant queue

EVENT: dst int. node sent to dst node completed
 PUT dst int. node into dstint queue
 count <= count + 1

The pseudocode of the transfer daemon is as below:

Table 5.11 pseudocode of the transfer daemon

Input: Node ID (for identification and reporting)
Output: NULL

Procedure:
WAIT for instruction

IF receive instruction to Prepare
 LISTEN on network port and prepare for incoming chunk
end if

IF receive instruction to Start
 START chunk transfer to next node
end if

58

WHILE (every 10 seconds)
 REPORT progress to transfer coordinator
 IF chunk transfer completed
 Restart daemon and WAIT for instruction
 end if
end loop

The table below shows an example 2-dimensional hash (lookup table) keeping track of

the virtual chunks and its transfer status. The “start KB” and “end KB” marks the

beginning and end of each chunk. The “stage” indicates the stage at which the chunk is

currently at; 1 à in-flight between source to intermediate node, 2 à in-flight between

source int. node to destination int. node, 3 à in-flight destination int. node to

destination node. Status indicates the percentage transferred for the particular chunk in

the stage. “Start time” marks the starting time of the stage – for accountability purpose.

Table 5.12 2D Array storing virtual chunk information and transfer status

ID File Name Start KB End KB Stage Status (%) Start Time (Epoch)
0 /file01 0 920000 2 5 1527508391
1 /file01 920001 1840000 1 70 1527508512
2 /file01 1840001 2600000 - - -
3 /file02 0 800000 - - -

The Table 5.13 below shows an example 2-dimensional hash keeping track of all the

intermediate nodes, source node and destination node. The ID is unique for each VM

and the naming convention indicates its role. Internal IPs are used for intra-DC transfer

while external IPs are for inter-DC (WAN) transfer. The chunk column keeps tracks of

the respective chunk ID that has been sent and are in progress of sending by the

respective VM.

59

Table 5.13 2D Array storing information of intermediate nodes

Node ID Int. IP Address Ext. IP Address Chunk (out)
src 172.168.1.2 52.12.12.20 0, 1, 2, 3
srcint01 172.168.1.20 53.230.2.11 0, 2
srcint02 172.168.1.15 33.32.23.230 1, 3
dstint01 192.168.2.120 52.0.2.110 0
dstint02 192.168.2.10 55.12.120.234 1
dst 192.168.2.99 32.45.23.120 NA

5.2 Implementation of CPT on Hadoop’s HDFS

In this section, the adaption and implementation of CPT for data transfer between

Hadoop Clusters are described here. Instead of an invasive approach where a redesign

or tempering of the cluster-ware solution is needed, the technique describes the

adaptation needed by CPT transfer with minimal changes needed. This is not the only

way to utilize the techniques outlined in this work, but it’s the simplest implementation.

This is as a continuation of our work and a proof that the proposed solution is flexible

enough for application in many domains within the scope of cloud-to-cloud data

transfer.

The HDFS is the default file system in Hadoop. It typically consists of a Namenode

(NN) which provides the namespace and multiple Datanodes (DN) which provides the

distributed storage element. All access to the file has to be first queried via the NN

which stores the metadata. It is not unusual that the NN is also designated as the Hadoop

Master Node while the DN is the Hadoop Worker Nodes.

60

Figure 5.2 Adapting CPT for HDFS cluster transfer

Figure 5.2 depicts the brief component diagram of two typical HDFS cluster

implemented with CPT. The solid lines with arrow depict the data flow of transferring

from source cluster to the destination cluster using the adapted CPT framework. The

original worker nodes of the cluster also serve as intermediate nodes. As the CPT is

designed to work with transferring of file on native OS filesystem, usage in the context

of other cluster-ware requires additional steps as described below in sequence and in

reference to the diagram:

A. If needed, spawning of intermediate nodes (additional nodes not already part of the

original cluster) on both source and destination DCs.

1. Data is exported from source HDFS cluster into the local OS filesystem of the

source cluster’s NN.

2. Depending on the size distribution of the files, it may have to be bundled (tar) into

a single file residing on the source cluster, so that it can be broken into equally sized

chunk for CPT transfer.

3. The file is transferred to the destination cluster’s NN using CPT. On top of the

additional nodes spawned in step A, all the DNs of each of the cluster respectively

are utilized as intermediate nodes to aid the transfer.

61

4. On the destination cluster’s NN local OS filesystem, the transferred files are then

reconstructed to give the original files.

5. The files are imported into the destination HDFS cluster.

B. Decommissioning the intermediate nodes after the transfer is completed.

Realistically speaking, from performance point-of-view, it is not the best idea to have

the data transferred twice internally, first in step 1 and 5 and then second time as part

of step 3. However, such approach is proposed in order to keep the complexity (of

integrating our parallel transfer for cluster-ware) low otherwise additional effort is

required to keep track of the files individually which is not the focus of this study.

Transfer time, 𝑇H()* = 𝑇I +	𝑇()* +	𝑇J (5.1)

Table 5.14 Notations for time components of adapting CPT transfer for HDFS

Notation Description

𝑇H()* Adapted CPT for cluster-ware

𝑇I Time taken for data export to source master node
OS filesystem

𝑇()* CPT transfer time from src. to dst clusters

𝑇J
Time taken for data import to destination cluster
specialized filesystem

In short, the high-level concept and implementation of performing CPT transfer

between the Hadoop Cluster are the same. There are only 3 differences, that are:

1. In addition to spawning new VMs to serve as intermediate nodes, existing

worker nodes in the HDFS cluster may also serve as intermediate nodes for the

CPT transfer.

62

2. Additional step before the CPT transfer to export and import the files from the

HDFS filesystem to the local OS filesystem and vice versa respectively. Figure

5.3 shows the example timeline of CPT transfer for HDFS cluster.

3. Equation 5.1 (section 5.2, above) instead of Equation 3.4 (section 3.3.3) is used

for the estimation of transfer time.

Figure 5.3 Example timeline of CPT transfer between HDFS cluster.

5.3 Discussion

As the framework is cloud-agnostic, the implementation described in this chapter can

also be implemented on other major IaaS cloud platforms such as Azure and Google

Cloud. For example, AWS provides a feature called “placement group” that allow

several resources to be placed on the same physical host (proximity) or somewhere

nearby. The implementation did not make use of such feature as it’s cloud-specific, and

hence avoided. Should we have used this feature, the result would have been [positively]

different.

5.4 Conclusion

In summary, this chapter showed the detailed implementation of CPT on the AWS

public cloud platform. The chapter has also demonstrated a quick and potentially

effective adoption of the CPT transfer for transfer across Hadoop HDFS cluster.

63

CHAPTER 6

EXPERIMENT RESULT

This chapter discusses the experimental result of implementing and testing CPT on the

AWS platform. This chapter is divided into 2 parts, first, compares CPT with sequential

transfer, and second, evaluates CPT for HDFS cluster.

6.1 Comparing CPT transfer time to sequential transfer

This section describes the experimental setup and results for CPT comparing to

sequential transfer. The experiment results for CPT with (all except in section 6.1.3)

and without (only in section 6.1.3) pre-testing is also described.

6.1.1 Experimental Setup

All the experiment is conducted on AWS infrastructure located in two locations: US

Oregon and EU Ireland. The US region is the data source while the EU is the destination

in which we want to transfer the data to. In this section, all the intermediate, source and

destination nodes use are type t2.medium (2vCPU, 4GiB memory, 50GB network disk).

The Ubuntu Linux VM image included the pre-configured SSH authentication so that

each nodes can communicate between each other without needing additional

configuration, also known as “password-less authentication”.

The test data to be transferred are Linux ISO images downloaded from repositories

(public domain) and truncated to the precise size needed. The reason for doing this

instead of generating arbitrary files is to save time preparing files that cannot be further

compressed. In the next few sub-sections, the result of CPT transfer is shown and

analysed.

64

6.1.2 Performance of CPT

As the model in the previous chapter has shown the promising result for CPT, an

understanding of whether the result can also be achieved in real-world conditions is

needed. Hence, we first tested out the CPT transfer of a single file of varying sizes and

with 2, 3 and 4 intermediate nodes. Figure 6.1 depicts the result in a graph of total time

taken to complete the transfer against the total size transferred.

Figure 6.1 Total time taken of CPT as compared to Sequential transfer (lower transfer

time better)

CPT using 3 or less pairs of intermediate nodes resulted in poorer performance

compared to sequential transfer. CPT using up to 4 pairs of intermediate nodes begins

to perform better than sequential transfer when the data transfer size exceeds 3GB. CPT

with 2 pairs of intermediate nodes result in longer transfer time for transfer of between

8 and 16GB. As transfer of 16GB is reached, even CPT with 3 pairs of intermediate

nodes. CPT with 4 pairs of intermediate node results in shorter transfer time compared

to sequential transfer once the total transfer size exceeds 2GB.

It is observed that increasing the number of pairs of intermediate nodes results in a

decreased in the total time taken to complete the transfer. This is expected as increasing

the number of intermediate nodes increases the aggregate bandwidth.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16

seq p=2
p=3 p=4

total data transfer size (GB)

to
ta

l t
im

e
ta

ke
n

(s
)

65

In order to better quantify the performance of CPT compared to sequential transfer,

Figure 6.2 depicts the result in a graph of speedup against transfer size. The figure also

shows both the result from actual experiments compared to forecasted result.

Forecasted result is calculated from the model as part of the CPT framework.

Figure 6.2 Speedup for CPT (experiment vs model)

Firstly, it can be seen that the achieved speedup did not differ much compared to our

model. This is good as the model is critical in forecasting the time taken for the transfer

based on the known factors (i.e. VM startup time, internal and external throughput).

Secondly, the general observation from the experiment is consistent to the models –

speedup is low for small total data size transfer, but increases as the total data size

transfer is increased. For an 8GB transfer using 4 pairs of intermediate nodes, we are

able to achieve a speedup of roughly 1.4x. This also translates to 25% less time

compared to sequential transfer. As expected, for any transfer below 8GB using 2 or 4

pairs of intermediate nodes, speedup cannot be achieved.

It is clear from the figure that out of the 2 cases, speedup > 1 is only archived when the

number of pairs of intermediate nodes is 4 and with the two optimization - pipelining

and network data piping.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8

p=2

p=4

p=2(model)

p=4(model)

sp
ee

du
p

total data transfer size (GB)

66

Summary of the general observations are as follow:

1. Speedup is low for transfer of small total size transfer (i.e. 1GB in our experiments).

Benefits of the CPT is more significant for larger total size transfer. From our

experiment, the data size has to be larger than 4GB.

2. Increasing the number of pairs of intermediate nodes results in increased

performance (i.e. higher speedup). However, the performance improvement has a

diminishing return, where increasing the number of intermediate node results in

lesser improvement gain than the previous addition.

6.1.3 CPT with pre-testing

In this section, CPT with 60 seconds of pre-testing is tested. A 1:1 ratio - 30 seconds of

testing intra-DC and 30 seconds inter-DC bandwidth is used. At the end of the minute,

the intermediate nodes are ranked (first based on the inter-DC, then the ratio of intra-

DC to inter-DC), and the bottom half performing VMs are discarded. The remaining

half is used for the CPT transfer. The experiment is repeated 3 times a day at different

time of the day for over the course of 4 continuous days (Feb 2018) – collecting a total

of 12 set of results.

Figure 6.3 and 6.4 depicts the result – average, minimum and maximum. Most

importantly, it can be seen that the performance variability when pre-testing is lower,

resulting in more consistent transfer time. For an 8GB transfer, no pre-testing results

may differ up to 15% between different attempts while pre-testing differs by less than

5%.

67

Figure 6.3 The upper and lower bound of CPT (p=4) performance without pre-testing.

Figure 6.4 The upper and lower bound of CPT (p=4) performance with pre-testing.

Despite the advantage of pre-testing, pre-testing comes with a 60 seconds overhead –

making it not suitable for smaller transfer as the overhead is a huge proportion of the

total transfer time. As the transfer grows larger (i.e. more than 8GB in our experiment),

the overhead of pre-testing becomes insignificant and pre-testing becomes more

worthwhile as results in performance improvement.

6.2 Comparing CPT for HDFS with DistCp

This section describes the experiment setup and result for CPT on HDFS cluster

comparing to DistCp transfer. DistCp is the state-of-the-art for parallel transferring data

between HDFS clusters and CPT is adapted to benchmark against DistCp.

0

100

200

300

400

500

600

700

800

0 2 4 6 8

average
min
max

tim
e

(s
)

total data transfer size (GB)

0

100

200

300

400

500

600

700

800

0 2 4 6 8

average
min
max

tim
e

(s
)

total data transfer size (GB)

68

6.2.1 Experimental Setup

The setup on the AWS public cloud platform for CPT + HDFS experiment is slightly

different from the previous subsection due to the specific requirements of HDFS. Two

separate but identical clusters are set up with the support of Hortonworks Data Cloud

for AWS (“Hortonworks Data Cloud for AWS,” n.d.), one in US Oregon region, and

one in the EU Ireland region.

Each cluster consists of 3 nodes, 1 Namenode (NN, also acts as the Hadoop Masternode)

and 2 Datanodes (DN, also acts as the Hadoop Workernode). All nodes are type

m4.large (2vCPU, 8GiB Memory) and 2 disks of 50GB each. Replication factor is set

at 2 so each DN has a full copy of the data. Except for the replication factor, the Hadoop

cluster has default parameters from Hortonworks. All the nodes are configured with

public IPs which is necessary for both DistCp and CPT. Besides, reverse DNS lookup

is enabled for DistCp to work using the native HDFS protocol. Let’s consider this as

the base setup.

Each of the experiment is performed by transferring an increasing number of 256MB

and 512MB files separately with DistCp and CPT. Example, 12x 512MB means 12

files of 512MB each, giving a total transfer of 6GB. The files are generated using the

Linux dd tool (“dd(1): convert/copy file - Linux man page,” n.d.) and are imported into

the HDFS cluster for the experiments.

In order to avoid conflict and resources contention which impacts the accuracy of the

experiments, all the virtual machines are exclusively allocated to our experiment. The

Hadoop cluster is not running any jobs not pertaining to our experiment.

The first experiment is conducted on the base setup – no spawning of intermediate

nodes besides the original 2 Datanodes. The second experiment is with spawning 2

69

additional intermediate nodes (m4.large) per cluster. The third experiment is similar to

the second except using t2.micro (i.e. a cheaper VM) with CPT only because DistCp

comes together with HDFS does not have enough resources to be deployed in t2.micro

instances that only has 1 vCPU and 1 GB Memory which is far below the requirement

to run Hadoop.

6.2.2 Results of CPT and DistCp on HDFS cluster

The first experiment, Figure 6.5 shows the transfer time between 2 HDFS cluster using

DistCp and CPT when no additional intermediate nodes are spawned. As shown, the

time taken for CPT is slightly better than DistCp even with additional time is spent on

additional stages introduced to make CPT work with HDFS. It can be observed that

time taken for DistCp to complete the transfer is in “steps”. This is because the Hadoop

cluster can only execute a pre-defined number (e.g. 7 for the default configuration on

m4.large EC2 type) of map task at a time. Unlike the DistCp, time taken for CPT

increases almost linearly as the total transferred file size increases.

Figure 6.5 Transfer time of DistCp and CPT for various total size.

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14 16

Tr
an

sf
er

 T
im

e
(s

)

Number of Files

DistCp (512MB)
CPT (512MB)
DistCp (256MB)
CPT (256MB)

70

As a consequence of adapting CPT for HDFS, additional time is required for the stages

HDFS import and export (Figure 6.6). However, for the case of 2x 512MB transfer, the

time spent on this stages are not overwhelming significant, hence the CPT is able to

provide equal performance as DistCp.

Figure 6.6 Timeline of 2x 512MB CPT transfer (no spawning) for HDFS.

Figure 6.7 Timeline of 12x 512MB CPT transfer (no spawning) for HDFS.

Figure 6.7 depicts the time spent of each stage when transferring 12x 512MB files with

CPT. As the total size to transfer has increased, it can be noticed that the overheads

which cannot be parallelized (i.e. HDFS import and export) is a higher proportion of

the total time.

Next, Figure 6.8 shows the result of transfer with spawning 2 additional intermediate

nodes without pre-testing. As expected, both DistCp and CPT demonstrated better

performance when additional intermediate nodes are spawned. However, just

comparing the results of scaling with m4.large VM type does not show that CPT or

DistCp scales better than one another. In this regards, they are of equal.

71

Figure 6.8 Transfer time and cost of two additional pairs of instances for DistCp and

CPT

As no additional nodes were spawned when the number of files is 2 and 4, the transfer

time for both CPT and DistCp is similar to the result in the previous experiment (Figure

6.5). The reason, as described earlier in the CPT framework, Transfer Manager

forecasted that the transfer time will not decrease and hence decided not to spawn any

intermediate nodes. No additional cost is incurred as no intermediate node is used.

For transfer of lesser than 8 files (i.e. 8 pieces of 512MB each), the utilization of

t2.micro for CPT gave similar performance as m4.large but with more than 75% cost

savings over both CPT with t2.large and DistCp. At transfer of 12 files, CPT resulted

in longer transfer time compared to DistCp. At transfer of 16 files, CPT with t2.micro

resulted in similar transfer time as DistCp while t2.large took a longer time to complete

the transfer. As expected, CPT with t2.micro is able to match the performance CPT

with t2.large while incurring much lower cost.

For DistCp, introducing additional nodes increases the number of map task running in

parallel – and hence, reduces the total time taken to complete the transfer. However,

DistCp requires running certain Hadoop components which comes with higher resource

0

2

4

6

8

10

12

14

16

18

0

200

400

600

800

1000

1200

1400

2 4 8 12 16

Co
st

 ($
0.

01
),

ba
r

Tr
an

sf
er

 T
im

e
(s

),
lin

e

Number of Files

DistCp 2x Large (cost)
CPT 2x Large (cost)
CPT 2x Micro (cost)
DistCp 2x Large (time)
CPT 2x Large (time)

72

requirement and is not able to run on lower end machines. It is not possible to run

DistCp with t2.micro.

Figure 6.9 Transfer time of CPT with p<=10 to match DistCP's transfer time.

Figure 6.9 shows the result when running CPT with a variable number of t2.micro

intermediates nodes in order to at least match the performance of DistCp i.e. CPT

transfer time is kept as similar to DistCp as possible, the number of intermediate nodes

for CPT is varied. As shown in the figure, 2 pairs of intermediate nodes (denoted as 2x)

were used during the transfer of 8 pcs of 512mb files. As the number of files increases,

the number of intermediate nodes required for CPT to match DistCp increases. It is

observed that this is particularly true when the number of files is right before the next

“step” of DistCp – the number of files to transfer is divisible by the number of files that

can be handled by DistCp at a time in parallel.

Besides, it is also observed that adding many nodes to CPT only brings diminishing

marginal improvement to the performance as it approaches the saturation point (where

all the part that can be parallel its time spent is closer to 0).

0

1

2

3

4

5

6

7

8

9

10

0

200

400

600

800

1000

1200

1400

2 4 8 12 16

Co
st

 ($
0.

01
),

ba
r

Tr
an

sf
er

 T
im

e
(s

),
lin

e

Number of Files

DistCp 2x Large (cost)
CPT Micro (cost)
DistCp 2x Large (time)

2x

10x 8x

73

Overall, the experiments show that CPT outperforms DistCp and comes with the

flexibility of using running with lower end machines which often has much higher

network performance to cost ratio.

6.3 Summary

The work described in this chapter has validated the CPT models and demonstrated that

CPT is able to reduce the transfer time compared to sequential transfers. It is also learnt

that speedup is low for transfer of small total data size, however, benefits of CPT get

significant for larger file transfer. The exact number depends on the other factors such

as internal and external network throughput.

The result also showed that as the number of pairs of intermediate nodes increases the

transfer time reduces. Besides, pre-testing results in more predictable performance but

incur additional time overhead. The result of CPT on HDFS cluster demonstrated that

CPT outperforms DistCp. The transfer time of CPT is not only lesser than DistCp, but

also has a lower cost – up to 8x in certain scenario.

In a nutshell, corresponding to the third research objectives of our work, the results

validated that it is possible to scale cloud-to-cloud data transfer that is fully

implemented by cloud consumer by spawning intermediate nodes. The implemented

solution outperforms existing state-of-the-art data transfer techniques.

74

CHAPTER 7

CONCLUSION

This chapter summarizes the research work, provides a conclusion to the dissertation

and describes the future work.

7.1 Revisiting the Objectives

This research studied data transfer between cloud VMs sitting across different

datacenters. The existing de-facto approach is point-to-point transfer performed by

cloud consumer where the bandwidth of the VM is capped by cloud provider. The

dissertation proposed Cloud Parallel Transfer (CPT), the technique of parallelizing data

transfer across intermediate nodes that are spawned specifically for the purpose of

scaling data transfer. The first objective of the dissertation is to model and identify the

limiting factors of scaling data transfer via aggregating bandwidth of intermediate

nodes. The transfer time and financial cost models are introduced as a basis for

estimating the performance and cost of the parallel transfer. The process flow is derived

and two optimizations network data piping and pipelining were introduced to reduce

the total transfer time.

The second objective is to validate and enhance the model for implementation on a

public cloud. A short study on the VMs offering, pricing model and network throughput

behavior is made. Here, two techniques are proposed; VM-type selection and pre-

testing. Based on the test conducted on AWS cloud, the derived models are studied in

order to understand the various factors involved in implementing the proposed

approach in a cloud environment. From this research, a framework for end-to-end

75

parallel transfer is proposed. The framework covers transfer time and cost estimation

based on the models, and high-level fault tolerance when intermediate node fails.

The third and final objective is to implement CPT and compare it with existing data

transfer solution. The dissertation describes the implementation of the proposed

framework, then, by experiments, the performance and financial cost of the proposed

framework is compared to existing sequential transfer. The result demonstrated that

unlike typical methods such as sequential transfers, CPT is able to circumvent the

network bandwidth allocation of the VM.

The proposed transfer is adapted and compared to state-of-the-art parallel file transfer

for Hadoop environment – DistCp. The result showed that CPT is able to reduce the

transfer time for cases when the number of files is low. DistCp starts to perform better

when the number of files increases. CPT is also compared to the modified DistCp which

can scale by adding nodes to the cluster, CPT not only performs better but also with

cost reduction by multiple factors.

In a nutshell, this research aims to explore the feasibility and challenges of scaling

cloud-to-cloud VM data transfer by circumventing the network allocation of VMs. The

study is made by modelling the proposed solution, implementing the proposed

framework and performing experimental analysis. Meeting the research objectives has

led to major contributions in the area of utilizing intermediate nodes to improve data

transfer throughput. The work produces a working cloud-to-cloud data transfer based

on the designed parallel transfer framework. The solution does not require any cloud

provider’s insight.

76

7.2 Limitation and Future Work

An issue that comes with this framework is the increased in operational complexity as

file chunks and intermediate nodes have to be managed during the lifetime of the

transfer. Besides, the framework is only applicable when the cloud provider limits the

network bandwidth on VM level. If the bandwidth is limited based on other metrics

such as per tenant or per account, the technique to aggregate bandwidth as described in

this work will not work.

In future work, m-to-n mapping of intermediate nodes should be explored in order to

increase the efficiency in cases where similar VMs in source and destination DCs is not

possible i.e. different cloud platform. Another potential area for further exploration will

be to use other forms of elastic cloud storage services or microservices as intermediate

nodes. This removes the need for managing the life of VMs as intermediate nodes and

potentially further reduces the transfer cost.

77

REFERENCES

Allcock, W., n.d. GridFTP: Protocol Extensions to FTP for the Grid [Online]. Available

at: http://toolkit.globus.org/alliance/publications/papers/GFD-R.0201.pdf [Accessed: 1

May 2016].

Allcock, W. et al., 2005. The Globus Striped GridFTP Framework and Server, in:

Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, SC ’05. IEEE

Computer Society, Washington, DC, USA, pp. 54–60.

Amin, A. et al., 2011. High Throughput WAN Data Transfer with Hadoop-based

Storage. J. Phys. Conf. Ser. 331, 052016. pp 1–1.

Apache Hadoop Distributed Copy – DistCp Guide [Online], n.d. Available at:

https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html [Accessed: 30

April 2018].

AWS | Amazon EC2 | Pricing [Online], n.d. Available at:

https://aws.amazon.com/ec2/pricing/ [Accessed: 28 September 2016].

AWS Import/Export - Cloud Data Transfer Services [Online], n.d. Available at:

https://aws.amazon.com/importexport/ [Accessed: 10 October 2017].

Azure Import/Export [Online], n.d. Available at: https://azure.microsoft.com/en-

us/services/storage/import-export/ [Accessed: 15 October 2017].

Azure Linux VM sizes - General purpose [Online], n.d. Available at:

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-general

[Accessed: 7 February 2018].

Batch Cloud Data Transfer | AWS Snowball [Online], n.d. . Amaz. Web Serv. Inc.

Available at: https://aws.amazon.com/snowball/ [Accessed: 20 May 2018].

78

Bhardwaj, D., Kumar, R., 2005. A parallel file transfer protocol for clusters and grid

systems, in: E-Science and Grid Computing, 2005. First International Conference On

e-Science and Grid Computing. pp. 254.

Cho, B., Gupta, I., 2011. Budget-constrained Bulk Data Transfer via Internet and

Shipping Networks, in: Proceedings of the 8th ACM International Conference on

Autonomic Computing, ICAC ’11. ACM, New York, NY, USA, pp. 71–80.

Cho, B., Gupta, I., 2010. New Algorithms for Planning Bulk Transfer via Internet and

Shipping Networks, in: Distributed Computing Systems (ICDCS), 2010 IEEE 30th

International Conference On. pp. 305–314.

dd(1): convert/copy file - Linux man page [Online], n.d. Available at:

http://linux.die.net/man/1/dd [Accessed: 26 September 2016].

Dealing with cloud storage service providers: Avoiding vendor lock-in [Online], n.d.

Available at: http://searchcloudstorage.techtarget.com/tip/Dealing-with-cloud-storage-

service-providers-Avoiding-vendor-lock-in [Accessed: 3 October 2015].

Divakaran, D.M., Gurusamy, M., 2015. Towards Flexible Guarantees in Clouds:

Adaptive Bandwidth Allocation and Pricing. IEEE Trans. Parallel Distrib. Syst. 26, pp.

1754–1764.

Dropbox [Online], n.d. . Dropbox. Available at: https://www.dropbox.com/ [Accessed:

30 August 2017].

E, J., Cui, Y., Wang, P., Li, Z., Zhang, C., 2018. CoCloud: Enabling Efficient Cross-

Cloud File Collaboration Based on Inefficient Web APIs. IEEE Trans. Parallel Distrib.

Syst. 29, pp. 56–69.

Egress Throughput Caps | Compute Engine [Online], n.d. . Google Cloud. Available at:

https://cloud.google.com/compute/docs/networks-and-

firewalls#egress_throughput_caps [Accessed: 3 June 2018].

Garcia-Dorado, J.L., Rao, S.G., 2015. Cost-aware Multi Data-Center Bulk Transfers in

the Cloud from a Customer-Side Perspective. Cloud Comput. IEEE Trans. On PP, pp.

1–1.

79

Gilani, M., Inibhunu, C., Mahmoud, Q.H., 2015. Application and network performance

of Amazon elastic compute cloud instances, in: 2015 IEEE 4th International

Conference on Cloud Networking (CloudNet). pp. 315–318.

Google Compute Engine Pricing | Compute Engine Documentation [Online], n.d. .

Google Cloud. Available at: https://cloud.google.com/compute/pricing [Accessed: 29

April 2018].

Google Drive - Cloud Storage & File Backup for Photos, Docs & More [Online], n.d.

Available at: https://www.google.com/drive/ [Accessed: 30 July 2018].

Hacker, T.J., Noble, B.D., Athey, B.D., 2004. Improving throughput and maintaining

fairness using parallel TCP, in: IEEE INFOCOM 2004. pp. 2480–2489 vol.4.

Hortonworks Data Cloud for AWS [Online], n.d. Available at:

https://hortonworks.com/products/data-platforms/cloud/aws/ [Accessed: 2 January

2018].

Hu, Z., Li, B., Luo, J., 2018. Time- and Cost- Efficient Task Scheduling across Geo-

Distributed Data Centers. IEEE Trans. Parallel Distrib. Syst. 29, pp. 705–718.

Incentives Build Robustness in BitTorrent [Online], n.d. Available at:

http://www.bittorrent.org/bittorrentecon.pdf [Accessed: 27 February 2015].

iperf - Linux man page [Online], n.d. Available at: https://linux.die.net/man/1/iperf

[Accessed: 8 October 2017].

Jeong, K., Figueiredo, R., Ichikawa, K., 2017. On the Performance and Cost of Cloud-

Assisted Multi-path Bulk Data Transfer, in: 2017 IEEE International Conference on

Cloud Computing Technology and Science (CloudCom). pp. 186–193.

Khanna, G. et al., 2008. Multi-hop Path Splitting and Multi-pathing Optimizations for

Data Transfers over Shared Wide-area Networks Using gridFTP, in: Proceedings of the

17th International Symposium on High Performance Distributed Computing,

HPDC ’08. ACM, New York, NY, USA, pp. 225–226.

Kissel, E., Swany, M., Brown, A., 2011. Phoebus: A System for High Throughput Data

Movement. J Parallel Distrib Comput 71, pp. 266–279.

80

Kolano, P.Z., 2013. High Performance Reliable File Transfers Using Automatic Many-

to-many Parallelization, in: Proceedings of the 18th International Conference on

Parallel Processing Workshops, Euro-Par’12. Springer-Verlag, Berlin, Heidelberg, pp.

463–473.

Laoutaris, N., Sirivianos, M., Yang, X., Rodriguez, P., 2011. Inter-datacenter Bulk

Transfers with Netstitcher, in: Proceedings of the ACM SIGCOMM 2011 Conference,

SIGCOMM ’11. ACM, New York, NY, USA, pp. 74–85.

Laoutaris, N., Smaragdakis, G., Stanojevic, R., Rodriguez, P., Sundaram, R., 2013.

Delay-tolerant Bulk Data Transfers on the Internet. IEEEACM Trans Netw 21, pp.

1852–1865.

Liu, W.-L., 2013. Cloud Storage Performance and Security Analysis with Hadoop and

GridFTP. Master's Project, San Jose State University, USA.

Lu, D., Qiao, Y., Dinda, P.A., Bustamante, F.E., 2005. Modeling and Taming Parallel

TCP on the Wide Area Network, in: Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International. pp. 68b-68b.

Magic Quadrant for Cloud Infrastructure as a Service, Worldwide [Online], n.d.

Available at: https://www.gartner.com/doc/reprints?id=1-

2G2O5FC&ct=150519&st=sb [Accessed: 2 July 2018].

Mogul, J.C., Popa, L., 2012. What We Talk About when We Talk About Cloud

Network Performance. SIGCOMM Comput Commun Rev 42, pp. 44–48.

nc - arbitrary TCP and UDP connections and listens - Linux man page [Online], n.d.

Available at: https://linux.die.net/man/1/nc [Accessed: 22 Febrary 2017].

Ou, Z., Zhuang, H., Lukyanenko, A., Nurminen, J.K., Hui, P., Mazalov, V., Ylä-Jääski,

A., 2013. Is the Same Instance Type Created Equal? Exploiting Heterogeneity of Public

Clouds. IEEE Trans. Cloud Comput. 1, pp. 201–214.

Persico, V., Botta, A., Marchetta, P., Montieri, A., Pescapé, A., 2017. On the

performance of the wide-area networks interconnecting public-cloud datacenters

around the globe. Comput. Netw. 112, pp. 67–83.

81

Persico, V., Marchetta, P., Botta, A., Pescape, A., 2015. On Network Throughput

Variability in Microsoft Azure Cloud, in: 2015 IEEE Global Communications

Conference (GLOBECOM). pp. 1–6.

Pricing - Linux Virtual Machines | Microsoft Azure [Online], n.d. Available at:

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/ [Accessed:

29 March 2018].

Pucha, H., Kaminsky, M., Andersen, D.G., Kozuch, M.A., 2008. Adaptive File

Transfers for Diverse Environments, in: USENIX 2008 Annual Technical Conference

on Annual Technical Conference, ATC’08. USENIX Association, Berkeley, CA, USA,

pp. 157–170.

Raghavan, B., Vishwanath, K., Ramabhadran, S., Yocum, K., Snoeren, A.C., 2007.

Cloud Control with Distributed Rate Limiting. SIGCOMM Comput Commun Rev 37,

pp. 337–348.

Ramakrishnan, L., Guok, C., Jackson, K., Kissel, E., Swany, D.M., Agarwal, D., 2010.

On-demand Overlay Networks for Large Scientific Data Transfers, in: Cluster, Cloud

and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference On.

pp. 359–367.

rsync(1) - Linux man page [Online], n.d. Available at: http://linux.die.net/man/1/rsync

[Accessed: 27 February 2016].

Scheuner, J., Leitner, P., 2018. A Cloud Benchmark Suite Combining Micro and

Applications Benchmarks, in: Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering, ICPE ’18. ACM, New York, NY, USA, pp.

161–166.

Sim, A., 2009. Berkeley Storage Manager (BeStMan). Available at:

https://sdm.lbl.gov/bestman/docs/bestman-overview-091006.pdf [Accessed: 27 April

2017]

Sinha, S., Niu, D., Wang, Z., Lu, P., 2016. Mitigating Routing Inefficiencies to Cloud-

Storage Providers: A Case Study, in: 2016 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). pp. 1298–1306.

82

Tudoran, R., Costan, A., Antoniu, G., 2014a. Transfer as a Service: Towards a Cost-

Effective Model for Multi-site Cloud Data Management, in: Reliable Distributed

Systems (SRDS), 2014 IEEE 33rd International Symposium On. pp. 51–56.

Tudoran, R., Costan, A., Wang, R., Bouge, L., Antoniu, G., 2014b. Bridging Data in

the Clouds: An Environment-Aware System for Geographically Distributed Data

Transfers, in: Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM

International Symposium On. pp. 92–101.

Wang, G., Ng, T.S.E., 2010. The Impact of Virtualization on Network Performance of

Amazon EC2 Data Center, in: 2010 Proceedings IEEE INFOCOM. pp. 1–9.

Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., Madhyastha, H.V., 2013.

SPANStore: Cost-effective Geo-replicated Storage Spanning Multiple Cloud Services,

in: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13. ACM, New York, NY, USA, pp. 292–308.

Yildirim, E., Arslan, E., Kim, J., Kosar, T., 2016. Application-Level Optimization of

Big Data Transfers through Pipelining, Parallelism and Concurrency. IEEE Trans.

Cloud Comput. 4, pp. 63–75.

Zhang, M., Kissel, E., Swany, M., 2015. Using phoebus data transfer accelerator in

cloud environments, in: Communications (ICC), 2015 IEEE International Conference

On. pp. 351–357.

