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ABSTRACT 

CLOUD-TO-CLOUD DATA TRANSFER PARALLELIZATION 
FRAMEWORK VIA SPAWNING INTERMEDIATE INSTANCES  

FOR SCALABLE DATA MIGRATION  
 
 

Calvin Boey Mun Lek 

 

 

As enterprises are increasingly embracing the practice of multiple clouds 

federation, scalable data transfer between cloud datacenters is important from 

the standpoint of cloud consumers. Many existing works are done from the 

service provider perspective, requiring insights into the datacenter operations 

which are not available to the cloud consumer. In this dissertation, a data transfer 

framework that allows cloud consumers to circumvent the bandwidth limitation 

by spawning intermediate nodes and perform parallel transfer through many-to-

many nodes is proposed. However, the effectiveness of such approach depends 

on many factors such as the time required to spawn new nodes, and bandwidth 

between the nodes. The objective of this work is to investigate the limitation and 

potential of the cloud-to-cloud parallel transfer (CPT).  

Firstly, all the components needed in the parallel data transfer is identified and 

modelled. Based on the transfer time and cost models, the circumstances where 

parallel transfer is worthy is identified. Then, a few optimizations are proposed, 

namely pipelining and network data piping to increase the data transfer 

throughput. Pipelining enables each stages of the parallel transfer to work 

concurrently while network data piping reduces the time spent on dividing files 
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into chunks. Secondly, selected cloud Virtual Machines (VM) are benchmarked. 

Based on the observed behavior, pre-testing and VM-type selection techniques 

are proposed. Pre-testing utilized nodes top performing nodes while VM-type 

selection utilize suitable VM type and sizing. Thirdly, the CPT is implemented 

and tested on Amazon EC2. The adapted CPT for transfer between Hadoop 

clusters is also tested. The results showed that the transfer time of CPT is not 

only lesser than DistCp, but also has a lower cost – up to 8x in certain scenario. 
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CHAPTER 1  

INTRODUCTION 
 
 
 
 
The rapid growth of cloud services such as Infrastructure-as-a-service (IaaS) enables 

cloud consumer to rent Virtual Machines (VM) from the Cloud Service Provider (CSP) 

by paying a fixed rate on per unit time basis (e.g. per minute). The rate depends on the 

amount of CPU, memory, storage, and network resources allocated (“AWS | Amazon 

EC2 | Pricing,” n.d.)(“Pricing - Linux Virtual Machines | Microsoft Azure,” 

n.d.)(“Google Compute Engine Pricing | Compute Engine Documentation,” n.d.). One 

of the advantages of public cloud computing is the capability to geo-distribute the 

application and data across multiple datacenters located around the world. However, 

existing IaaS cloud-to-cloud data transfer solutions for cloud consumer suffers from a 

major shortcoming when performing data transfer between a source VM to a destination 

VM, the maximum throughput of the transfer is constrained by the bandwidth allocation 

set by the cloud service provider. Solutions such as breaking down large files into 

smaller pieces and transferring them in parallel by opening multiple simultaneous 

connections in order to maximize the bandwidth utilization will not be able to 

circumvent the bandwidth allocated by the cloud service provider for a VM.  

There are specific cases where urgent data transfer has to be completed in the shortest 

time possible and the cost of transfer is secondary. For example, in the event of disaster 

recovery and the priority is to have data transferred from the backup site within a short 

period of time. In addition to that, enterprises today are generating data in large volume 

which could potentially be caught in cloud vendors lock-in (“Dealing with cloud 

storage service providers: Avoiding vendor lock-in,” n.d.) which is naturally a scenario 
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favored by many cloud service providers. There are also times when enterprises are 

federating the workloads and data across multiple cloud datacenters – sometimes 

federating the data across different cloud providers. As such it is of great importance 

for enterprises to ensure that they can freely and securely move files across datacenter 

in a timely manner.  

To the best of our knowledge, there is currently no way to scale VM-to-VM data 

transfer within the public cloud environment that can be performed solely by cloud 

consumer. Many existing large-scale data transfer requires insights and intervention of 

datacenter operators. Although cloud service providers increasingly offer data transfer 

services (“Azure Import/Export,” n.d.)(“Batch Cloud Data Transfer | AWS Snowball,” 

n.d.), however, not all the needs of the cloud consumer are met. Therefore, scalable 

data transfer solution that is easily implemented by cloud consumer are getting more 

and more important.  

Since the number of IaaS resources on many public clouds are virtually unlimited, 

therefore this work proposed a technique to speed up transfer via spawning intermediate 

nodes (i.e. VM) and aggregate their bandwidth by performing a many-to-many nodes 

data transfer.  

1.1 Problem Statement 

As the maximum throughput of the transfer is constrained by the bandwidth allocation 

per VM set by the cloud service provider, there is opportunity to aggregate bandwidth 

via parallel transfer. The concept of parallel transfer is to divide the data and transfer 

the parts simultaneously across multiple channels. Although the concept of scaling 

parallel transfer via spawning intermediate nodes sounds simple on the high-level, its 

effectiveness is affected by many factors. 
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a)  The process of parallel transfer incurs additional overhead and may not 

improve performance in certain cases. Identifying the effectiveness of a parallel 

transfer upfront before the actual transfer often requires meticulous 

performance benchmarking and calculation. 

b) There are factors that are unique to public clouds such as cost and throughput 

variability which affect the efficiency and the effectiveness of parallel transfer. 

This is because different cloud service provider will have different charging 

model and different virtual machines (VM) performance.  

c) Existing parallel transfer approaches such as GridFTP and DistCp have yet 

to take advantage of cloud elasticity. They are not designed to perform on-

demand scaling. These techniques are designed to maximize the utilization of 

bandwidth of existing infrastructure and are not designed to scale the data 

transfer to through cloud elasticity.  

1.2 Objectives 

This aim of this goal is to create a framework to assist cloud consumers to identify the 

potential and limitation of parallel transfer between clouds and to estimate the 

performance and cost effectiveness upfront before performing parallel transfer. The 

framework is hereon addressed as Cloud-to-Cloud Parallel Transfer (CPT). Therefore, 

the research objectives of this work can be summarized to the following: - 

1. To model and identify the limiting factors of scaling cloud-VM to cloud-

VM parallel transfer via spawning intermediate nodes. 

2. To validate and enhance the model by identifying the influencing factors 

of implementing the CPT model in the public cloud environment (i.e. 

AWS) and only using insights within the reach of cloud consumers. 
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3. To devise an actual CPT solution based on the model and compare it 

with state-of-the-art parallel file transfer techniques such as Hadoop 

Distributed File System (HDFS)’s DistCp in terms of performance and 

cost. 

1.3 Project Scope and Assumptions 

In general, the research focuses on identifying the factors and designing a framework 

for cloud-VM to cloud-VM parallel transfer via spawning intermediate nodes. The 

project and research scope are defined as below: 

1. Low-level network and data transfer protocol configuration such as TCP/IP 

tuning is not the focus of this work. However, note that any improvement 

made to these areas will result in better performance as our framework relies 

on these typical transfer protocols.   

2. The research focus on VM-to-VM data transfer across different cloud 

datacenter. Live application migration is not part of the study.  

3. Limited to data manifested as objects residing on the operating system (OS) 

filesystem. For example, database system is not considered under this study. 

Semantic in object and storage such as file permission and metadata will 

also not be taken into consideration. 

4. The work excludes finding the point of diminishing return as the maximum 

network throughput is below the maximum disk throughput achievable.  

In this research work, the following assumptions were made: 

1. The cloud provider limits network throughput per VM, and there is no limit 

on the account or tenant level.  
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2. There is more than sufficient resources in the VM pool managed by the 

cloud provider. It is always possible to acquire VMs on-demand – request 

is never denied.  

1.4 Research Contribution 

The major contributions of this research are as follows: - 

1. The proposed approach introduced the technique of spawning intermediate 

nodes in order to circumvent bandwidth allocation and ultimately reducing 

the time taken for bulk data transfer across cloud DCs for cloud consumers. 

The work introduces a highly scalable and cost effective parallel transfer 

method and model. 

2. Based on the derived model and understanding the various factors involved 

(e.g. cost, throughput) in implementing the proposed approach in a cloud 

environment, a framework named Cloud-to-Cloud Parallel Transfer (CPT) 

is developed to ease the end-to-end process. 

3. The proposed framework is implemented on the AWS public cloud platform 

and compared against sequential transfer as well as DistCp - a parallel 

transfer in the Hadoop cluster environment. CPT demonstrated that: 

• Better scalability than other solution – reduced transfer time and at a lower 

additional cost incurred. 

• The framework is adaptable to various kind of existing cluster or 

application. 
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1.5 Organization of Dissertation 

The remainder of this dissertation is organized as follows. In Chapter 2, a thorough 

literature review is presented in order to justify the research design. In Chapter 3, the 

development of models of the CPT is described. Chapter 4 is dedicated to understand 

the relevant behaviors of public cloud and analyze the CPT model developed in Chapter 

3. Chapter 5 describes the detail implementation of the CPT framework and Chapter 6 

presents the experimental and results of the proposed CPT on a real cloud. Chapter 7 

concludes our work.  
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CHAPTER 2  

LITERATURE REVIEW 
 
 
 
 
The chapter provides both an overview of current state-of-the-art in the area of data 

transfer and in-depth analysis of works that are closely related to ours. The chapter is 

organized as follows. Section 2.1 provides an introduction to general data transfer and 

data transfer across datacenters. Section 2.2 and 2.3 presents cloud data transfer from a 

different perspective. Section 2.4 describes related work in the area of cloud VM 

bandwidth and pricing. At the end of each section, a summary is provided to compare 

the pros and cons of the technique. Section 2.5 summarises the chapter. 

2.1 Introduction and Inter datacenter data transfer 

In the area of cloud computing, there are two main parties in the ecosystem, namely the 

cloud service provider (CSP) and the cloud consumers. The CSP manages the software 

and hardware infrastructure by exposing the consumable services via a unified interface. 

The cloud consumers are charged according to their usage. The two common pricing 

models are pay-as-you-go model and contractual upfront payment for reservation of 

resources. CSP often employ multi-tenancy architecture such that multiple consumers 

(customers) share a common infrastructure.  

Therefore, data transfer across different datacenters can also be categorized into 2 

categories based on the perspective, namely the CSP perspective and the consumer 

perspective. Figure 2.1 depicts the 2 categories and the corresponding related works.  
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Figure 2.1 Classification of Inter Datacenter Data Transfer based on perspective 

There are many works done by the research community for cost-effective bulk data 

transfer. Most of the existing work focused on reducing the 95th percentile of bandwidth 

usage as this is how the Internet Service Provider (ISP) charges the CSP. However, the 

number of research work from the cloud consumer’s perspective is much lesser. This 

work is classified into the cloud consumer’s perspective category.  

As briefed in the chapter’s introduction, the chapter is divided into 3 major sections. 

Firstly, data transfer that is implemented by the DCs Operator. Secondly, works that 

can be implemented by the cloud consumer. Thirdly, cloud VM bandwidth and pricing. 

2.2 Implemented by DC Operator / Cloud Service Provider 

NetStitcher (Laoutaris et al., 2011) uses multi-hop and multi-path for data transfer 

between datacenters. The system contains a volume prediction module as bandwidth is 

assumed to exhibit a periodic behavior. It is able to infer available future bandwidth 

and adapts to estimation errors and failures. In a later work, the same authors propose 

a technique for transferring bulk data that are delay tolerant through ISPs by utilizing 

the already-paid-for off-peak bandwidth resulting from percentile pricing and diurnal 
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traffic patterns (Laoutaris et al., 2013). These techniques are excellent for DC operators 

as it potentially results in significant cost savings when performing data transfer. 

However, both of these techniques require insight into the network conditions which is 

only limited to cloud service providers. Such benefit is mostly enjoyed by the DC 

Operator, and not the cloud consumer. 

Tudoran et al. (2014a) describe Transfer-as-a-Service (TaaS), allowing cloud service 

provider to consolidate customers' data transfer request and route it through a common 

and managed infrastructure. The users of multi-site or federated clouds benefit from 

increased data transfer throughput while service providers potentially enjoy the 

decreased energy consumption due to the consolidation effort. Three scenarios were 

presented; multi-route user transfers where the user controls the degree of parallelism, 

asymmetric TaaS approach where intermediate node is only present on one endpoint 

(DC on one side of the transfer) and symmetric TaaS approach where intermediate 

nodes are present on both source and destination DCs. Similarly, Divakaran and 

Gurusamy (2015) explored algorithms and pricing strategies for bandwidth guarantees 

in the clouds. Both the work above requires the CSP implementation and jurisdiction, 

which does not help cloud consumer to scale its transfer especially when the demand is 

high and other consumers are willing to pay more for guaranteed service level 

agreement (SLA). 

Exploring a similar idea, the same authors then proposed a data management solution 

directed for applications running across geographically distributed locations which 

offers consistent and predictable transfer time and cost (Tudoran et al., 2014b). It 

utilizes multi-pathing and multi-hop path splitting involving multiple DCs. The system 

builds and adapts models for the cloud infrastructure on-the-fly to efficiently optimize 

and schedule the data transfer process. Each node consists of three modules, the 
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decision manager (DM), transfer agent (TA) and monitoring agent (MA). The decision 

manager coordinates data transfers, either through direct paths or using multiple 

intermediate datacenters. The transfer agent performs the transfer and provides the 

option to exploit network parallelism while the monitoring agent monitors the cloud 

environment and reports to the decision manager. Our system implementation shares a 

similar architecture – the separation between data transfer process and control process. 

In order to attract consumers to deploy their application in the public cloud, cloud 

platforms such as Amazon Web Service (AWS) and Microsoft Azure offer services 

related to data transfer. An example is the AWS Import/Export (“AWS Import/Export 

- Cloud Data Transfer Services,” n.d.) and Azure Import/Export (“Azure 

Import/Export,” n.d.) service which allows consumers to transfer data into or out of 

AWS and Azure respectively using physical storage appliances. This high-throughput 

option may be suitable for massive amount of data (e.g. one-time migration into the 

cloud) but it comes at very poor latency as the transfer overhead falls in the range of 

days or weeks. Another example of CSP provided transfer service is the AWS S3 (i.e. 

object storage) acceleration which allows consumers to download and upload data by 

an optimized network path that is servicing the various content distribution network 

(CDN) endpoints. However, this is not applicable for transfer between VMs. 

Cho and Gupta (2011) propose a technique to perform optimal transfer that minimizes 

transfer latency within a financial cost constraint. Efficient binary search methods are 

developed to solve this problem. Algorithms for planning bulk transfer via internet and 

shipping networks are also explored in their previous work (Cho and Gupta, 2010). The 

study solves the NP-Hard problem of data transfer from different sites to a common 

sink over the network (i.e. internet) or physically shipping the storage device. The 

transfer plans take consideration of transfer cost, shipping cost, transfer time (i.e. over 



 
 

11 

the internet or estimation of time spent unpacking and plugging the disk). The focus in 

these works is on delay tolerant data and requires the ability to export data from 

datacenter to physical storage. Again many of the needed information is not available 

to cloud consumers.  

The works covered in this section are all primarily concerned about balancing data 

transfer cost and subsequently performance. NetStitcher, Tudoran’s TaaS and Cho’s 

proposal’s primary QoS indicator is cost savings without compromising of transfer 

deadlines. As for the transfer services provided by the CSP, the main purpose is to help 

customers migrate large volume of data into the cloud by shipping physical storages. 

The primary QoS is data integrity and secondary QoS is throughput but measured in 

days. Most of the works utilized multi-hop and multi-path technique, which is one of 

the technique utilized by our work with one difference – no DC operator’s involvement. 

2.3 Implemented by Cloud Consumer / Tenant 

There are several other studies that consider the perspective of cloud service consumers. 

For example, SPANStore (Wu et al., 2013) provides an abstraction layer so that cloud 

consumer can distribute the data across various geo-distributed object storage from 

different cloud platforms. The work focus on providing a replication scheme that 

minimizes data duplication and provides a global view of storages. It can be fully 

implemented by a cloud consumer. However, the work is only applicable to object 

storage services and do not focus on data transfer between VMs. 

CloudMPcast (Garcia-Dorado and Rao, 2015) optimizes the cost of bulk data 

distribution between cloud datacenters while ensuring end-to-end transfer time is 

within the specified deadline. Two characteristics of the public cloud is utilised; transfer 

cost depends on the location of source and destination datacenters, and discounts are 
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offered when the customer exceeds certain volume threshold per datacenter. The 

method involves routing data transfer via intermediate hops sited in different datacenter. 

Our work is distinguished by the ability to scale the data transfer (i.e. reducing the time 

taken to complete data transfer) rather than reducing cost as much as possible. 

Similar to our work, Jeong et al. (2017) explored the idea of multi-stream TCP transfer 

across paths constructed from relay points sited across multiple cloud datacenters. The 

intention is to search for less congested paths and utilizing multiple paths. The 

experiment results demonstrated that it is indeed possible to aggregate bandwidth using 

multiple paths which can be fully implemented by cloud consumers. However, the 

authors relied on setting up fixed relay points and have yet to study the effects of 

spawning ad-hoc relay points during the lifetime of the data transfer.  

In addition to the few methods outlined here that takes the view of data transfer from a 

cloud consumer’s perspective, the cloud consumer can utilize many other generic data 

transfer techniques described in the next subsections. 

2.3.1 Typical transfer protocol 

Conventionally, the well-known protocols such as Hyper Text Transport Protocol 

(HTTP), File Transfer Protocol (FTP) and Secure Copy Protocol (SCP) are used for 

point-to-point data transfer. A point-to-point transfer is where a single source exchange 

data with a destination host and is responsible for managing the data transmission 

without the presence of intermediate nodes. There are many research work on 

optimizing these point-to-point transfers (Lu et al., 2005; Yildirim et al., 2016). The 

usability of the aforementioned methods to reduce transfer time of large volume of data 

across cloud datacenters is restricted.  
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As the size of the network increases and the size of application data processed, 

advancement to data transfer techniques is growingly important. Therefore,  data 

transfer between source and destination such as Rsync (“rsync(1) - Linux man page,” 

n.d.) is introduced, which uses rolling checksum comparison to reduce repetitive data 

transfer. Also, adaptive data transfer is introduced such as Dsync (Pucha et al., 2008) 

that avoids resource contention by detecting back-pressure, as well as detecting 

similarity at a different hierarchical level. Unfortunately, in a cloud environment where 

VM-to-VM data transfer throughput is often limited by either the physical connection 

or soft limit set by cloud service providers, therefore usability of the aforementioned 

methods to reduce transfer time of large volume of data in VM-to-VM data transfer is 

limited. 

In Figure 2.2, this literature review classifies data transfer approaches to 2 broad 

categories; typical – point-to-point and parallel transfer. From the figure, only parallel 

transfer techniques can be used to circumvent the data transfer limits set by cloud 

service providers. The subsequent sections will focus on parallel transfer techniques 

that can be used to circumvent the data transfer throughput limits per VM set by cloud 

service providers. 
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Figure 2.2 Classification of data transfer solution based on parallelism capability and 

parallelization technique 

 

2.3.2 Parallel Transfer 

One way to circumvent the limit is to chunk large files and perform data transfer across 

multiple channels simultaneously providing that the overheads for chunking the files 

into smaller chunks and combining them at the destination is minimal. This technique 

is practiced in applications that use a Peer-to-Peer (P2P) file sharing protocol such as  

BitTorrent (“Incentives Build Robustness in BitTorrent,” n.d.), but it is not suitable for 

a one-off VM-to-VM data transfer.  

Multi-part (Hacker et al., 2004) download is a common technique used in off-the-shelf 

download accelerator manager. The mechanism is to break down large files into smaller 

segments and downloading them in parallel by opening several simultaneous 

connections, achieving significantly higher downloading speed. This technique 

circumvents server-side limitations that restrict bandwidth which fairly allocates 
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bandwidth to each connection equally. Unfortunately, this technique is not suitable to 

improve VM performance as cloud service provider has set the network bandwidth limit 

of a VM.  

In distributed computing, parallelism in data movement mechanism is often used, 

especially in the application of high-performance computing. For example, the work 

presented by Bhardwaj and Kumar (2005), a parallel file transfer protocol (PFTP) is 

introduced as a concept for data transfer using multiple parallel data paths between 

clusters. The PFTP protocol makes use of a Parallel File System to stripe data across 

multiple storage nodes in order to reduce disk I/O bottleneck, which enables transfer 

via multiple TCP connections simultaneously. GridFTP (Allcock, n.d.) extends the FTP 

protocol with new features such as partial file access and striping for parallelism. The 

Globus Toolkit (Allcock et al., 2005), which offers GridFTP as a data movement 

mechanism, includes widely adopted software packages for implementing grid-based 

applications. GridFTP is not intended for performing one-time-off point-to-point 

transfer as it only handles file transfers between GridFTP instances. Unfortunately, the 

proposed parallel data transfer solutions above are not designed for one time of data 

transfer in cloud computing environment because these solutions often require complex 

setups and are not suitable for dynamic infrastructure where VMs are added and 

removed very often from time to time.   

Shift (Kolano, 2013) is a framework for Self-Healing Independent File Transfers that 

replaces sequential transfer with highly parallel transfer model. Transfer clients are 

spawned to allow maximum performance when resources are underutilized and put to 

sleep during overutilization to prevent resource contention. Similar to the PFTP, it 

requires a common storage accessible by all the transfer clients. In an aspect, the work 

is quite similar to ours as Shift allows spawning of intermediate nodes to support the 
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transfer. However, the author did not explore the opportunity and the implication of the 

proposed solution in a public cloud environment. 

In the area of data transfer between Hadoop HDFS based clusters, DistCp (“Apache 

Hadoop Distributed Copy – DistCp Guide,” n.d.) is by default included in most Hadoop 

Framework distribution and it is a de facto standard HDFS data transfer tool. It relies 

on the uses MapReduce to perform data transfer – distribution, error handling and 

recovery, and reporting. DistCp is massively parallel using multiple nodes, however, it 

does not have a built-in capability to scale beyond the initially configured infrastructure. 

Another method is to utilize GridFTP to perform Wide Area Network (WAN) transfer 

between HDFS cluster (Liu, 2013; Amin et al., 2011). In order for GridFTP to work 

with HDFS, a suite of tools has to be setup – FUSE for a POSIX-like interface, 

BeStMan (Sim, 2009) server as storage resource manager and the GridFTP server. 

Although the GridFTP is a hugely popular tool among the Grid computing community, 

it’s usage in the HDFS cluster is limited, this is likely due to the equal performance but 

at a much convenience setup offered by DistCp.  

Several research studies tackled the issue of optimizing data transfer across the WAN 

by using overlaying network – a technique similar to parallel transfer. For instance, two 

optimization mechanisms for multi-pathing and multi-hop path splitting were proposed 

by Khanna et al. (2008) to improve the performance of file transfer over WAN. Multi-

pathing is the technique of chunking data at the source and transferring it across several 

overlaying paths. Multi-hop path splitting involves multi-hopping though intermediate 

nodes instead of relying on a trivial direct connection between the source and the 

destination node. The author, however, did not study the potential of using this 

technique to scale the transfer beyond the original infrastructures. 
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The Phoebus propose an infrastructure deployment for improving data transfer across 

WAN by using a session layer protocol and gateways in the data distribution network 

(Kissel et al., 2011; Ramakrishnan et al., 2010). The work by Zhang et al. (2015) 

explores the feasibility of deploying Phoebus for data transfer between cloud 

datacenters. Although the performance improvement can be seen in certain cases, 

however, the biggest setback is the need of setting up quite a number of intermediate 

nodes and complicated overlaying network across WAN. Besides, the work is focused 

on reducing latency for critical application and did not focus on bulk data transfer. 

Sinha et al. (2016) describes routing data transfer between Storage-as-a-Service (SaaS) 

such as Dropbox (“Dropbox,” n.d.) and Google Drive (“Google Drive - Cloud Storage 

& File Backup for Photos, Docs & More,” n.d.) through intermediate nodes in order to 

mitigate bottlenecks. CoCloud (E et al., 2018) describes a cloud-to-cloud file 

collaboration framework for users sharing files across different SaaS. These two works 

are not directly applicable to VM-to-VM data transfer, however, it shares a similar 

concept of utilizing intermediate nodes and proxies to bridge the gap between different 

cloud platform or region.  

In summary, parallel data transfer primarily provides improved data transfer throughput 

and secondly better fault tolerance. Hence, the primary QoS of parallel transfer is 

throughput. Multi-source or shared filesystem technique is excellent for increasing the 

data transfer throughput for shared cluster environment or many-to-one transfer. The 

mechanism makes the assumption that data is already replicated across multiple storage 

nodes which makes it not suitable for typical one-off data transfer. Multi-stream 

technique allows circumvention of server-side bandwidth allocation. This method is 

however not effective for cloud-VM to cloud-VM data transfer which our work is 
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addressing. Multi-hop and multi-path technique, which our work also employs, 

transfers data across multiple newly discovered paths. 

2.4 Cloud VM bandwidth and pricing 

As part of the work on proposing bandwidth guarantee in the public cloud environment, 

the authors in explored state-of-the-art on VM pricing and bandwidth. It is found that 

for VMs in the same cloud, it’s possible that the average bandwidth of a cheaper VM 

surpasses the bandwidth of a more expensive VM. From the work, it also shows that 

price does not scale linearly to the network performance. This is likely due to the fact 

that cloud pricing is derived and set by the cloud provider based on a mixture of various 

metrics such as CPU, memory, storage, and network. This makes it challenging for 

cloud consumer to pick the VM type/size that best fit the specific use case in terms of 

meeting the performance requirement yet at the minimum cost without benchmarking 

and performance testing.  

Detailed information about cloud performance is often kept secret by the cloud provider 

for security and commercial reasons (Raghavan et al., 2007; Mogul and Popa, 2012). 

Service Level Agreements (SLA) typically only describe the performance guaranteed 

(e.g. network bandwidth) vaguely – without precise figures, which customers have no 

choice but to rely on this qualitative information. Partly it could be due to the best-

effort basis of quality of service (QoS) provided by the cloud service provider. Such 

limited performance information weakens the ability of the consumer to understand the 

impact on their application such as on data transfers (Wang and Ng, 2010). As part of 

benchmarking the network throughput in AWS and Azure respectively, it is found that 

network performance is stable across the lifetime of the VM (Persico et al., 2015; 

Persico et al., 2017; Scheuner and Leitner, 2018). However, the average network 
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bandwidth allocated for each VM varies even with the same VM type/size (Ou et al., 

2013; Gilani et al., 2015). This behavior makes it especially challenging for cloud 

consumers as the network performance is dependent on when the VM is spawned. 

These authors recommend testing VM’s network performance and discarding the VM 

if the performance is below the known average. 

2.5 Discussion 

In the area of data transfer in cloud computing, techniques that have to be implemented 

by DC Operator / Cloud Service Provider may benefit both CSP and Cloud Consumers. 

Similar to our work, techniques that can be implemented by Cloud Consumers do not 

have any significant impact on the CSP. In the area of data transfer solution, various 

parallel transfer techniques are prevalent and widely used. The methods multi-hop and 

multi-path are particularly interesting for us as it allows transferring using newly 

discovered paths, providing the opportunity to bypass limitation set by the CSP.  

In summary, based on the presented discussion in this section, there is yet a complete 

parallel cloud-to-cloud data transfer approach for cloud consumers. Most of the 

presented studies focus on optimizing data transfer from the cloud service provider 

perspective and little work is done from the cloud consumers' perspective. Achieving 

an optimized data transfer rate is indeed a challenging prospect in diverse cloud 

environments because of the diversity of the deployed hardware, software and quality-

of-service agreements. This work addresses this challenge by leveraging cloud 

elasticity. We first investigate the potentials and limitations of parallel data transfer and 

then propose a mechanism that utilizes instance-to-instance pipelines. To the best of 

our knowledge, no other work has proposed similar mechanism that allocates and de-

allocates cloud instances to control the performance and cost of data transfer. 
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CHAPTER 3  

PROPOSED SOLUTION 
 
 
 
 

3.1 Cloud Parallel Transfer Concept  

In IaaS cloud offering, it is usual that every spawned instance in the cloud are given a 

specific amount of processing power, memory, storage and network bandwidth. Despite 

charges are often by the pay-as-you-use model, the maximum amount of allocated 

processing power, memory, storage and network bandwidth are capped. This work 

proposes a way to circumvent the network bandwidth limitation by spawning additional 

instances and share the aggregate bandwidth known as cloud-to-cloud parallel transfer 

(CPT). In a public cloud platform, the network bandwidth is limited either by the cloud 

service provider or physical limits of the particular instance.  

In this work, the terms virtual machine, instance and node are used interchangeably and 

are all referring to the same thing – machine that the cloud consumer can rent. 

 
Figure 3.1Maximum throughput of typical point-to-point sequential transfer 

Figure 3.1 demonstrates that the total transfer speed between two datacenters is 

bounded by both the sender’s (i.e. source node) maximum throughput and receiver (i.e. 

destination node) maximum throughput. The maximum throughputs are often different 
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not only between different cloud vendors but also between datacenters of the same 

vendor.  

Figure 3.2 shows that the network bandwidth from different instances can be potentially 

aggregated through spawning additional intermediate instances. For example, the 

maximum bandwidth for a pair of instances, from the source instance to the destination 

instance, is 50mbps, by having 3 pairs of such instances, the bandwidth can be 

multiplied by 3. Thus, in theory, it is possible to increase the bandwidth by n times 

using n pairs of instances.  

 
Figure 3.2 A high-level overview of the parallel transfer mechanism 

As shown in Figure 3.2, the source node is the node where the data to be transferred is 

originally residing on. Destination node refers to the target node that the data should be 

transferred to. Intermediate nodes refer to nodes that are logically between the source 

and the destination node which allows the data transfer to be parallelized. 

However, to perform data transfer over the aggregated bandwidth of multiple pairs of 

instances is not without limitations. For instance, it is important to note that the speed 

of the source instance splitting the file into chunks for the intermediate instances could 
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be a limiting factors, as well as the speed of combining the files back at the destination 

instance can be another limiting factor that render the bandwidth aggregation technique 

worthless. Therefore in this chapter, a parallel transfer model will be created to identify 

all the factors influencing the performance of CPT. Then, the costing model is derived 

to understand the factors impacting the financial cost that is incurred when performing 

CPT transfer.  

3.2 The workflow of the proposed CPT transfer technique 

The Cloud-to-Cloud Parallel Transfer (CPT) leverages aggregate bandwidth between 

the source and destination nodes located in different cloud datacenters by making use 

of intermediate nodes. These intermediate nodes can either be newly spawned instances 

or existing underutilized instances.  

Based on Figure 3.2, these are the sequence of events in brief, for a CPT transfer from 

the source node to destination node.  

1. In the source node, the consumer initiates transfer of a file(s) from source to 

destination node. Then, limited network throughput testing and forecast based 

on the models will be conducted automatically so that a decision on the number 

of pairs of intermediate nodes to be spawned, p can be made. 

On the source node, the manager spawns p new (or use available) VM instances 

(hereafter addressed simply as parallel instances or intermediate nodes) in 

source 𝑉"#  and destination 𝑉$#  , j = [1..p] for each cloud datacenter. That is, a 

total of 2p instances are spawned and used as intermediate nodes. 

The file to be transferred is split into n equal sized chunks	𝐶#, j = [1..n], where 

n is arbitrarily and n >= p.  



 
 

23 

2. Once step 1 is completed, each chunk is transferred from the source node to its 

corresponding intermediate nodes, i.e. chunk 𝐶# transferred from 𝑉" to 𝑉"# . 

3. Once the intermediate node in the source DC received the chunk from the source 

node, the chunk will then be transferred to its corresponding intermediate node 

in the destination DC, i.e. chunk 𝐶# transferred from 𝑉"#  to 𝑉$# . Note that there 

is bandwidth limitation imposed by CSP on each connection of an instance.  

4. Once the intermediate node in the destination DC received the chunk, the chunk 

will be transferred to the destination node, i.e. chunk 𝐶# transferred from 𝑉$#  to 

𝑉$. 

5. As the chunks are received on the destination node, the utility will merge the 

pieces to reconstruct the original file(s).  

6. Step 1 to 5 repeats until all the chunks have been transferred and the files have 

been reconstructed. The destination node notifies the manager (i.e. in the source 

node) that the transfer has completed. The transferred files are verified by 

matching the checksum. . 

3.3 Modelling the performance of CPT 

3.3.1 Foundation 

In order to keep the work from being overly complicated and to keep it within the 

scopes of our studies, the number of intermediate nodes in the destination DC will be 

equal and match in a 1-to-1 manner to the source DC. This simplification does not affect 

the generality of the model which can, in future work accommodate the case where the 

number of intermediate nodes in source and destination DCs is not the same i.e. m-to-

n mapping. The components of parallel data transfer time are depicted in Eq. 3.1.  

CPT transfer time,  



 
 

24 

 𝑇()* = 𝑇, + 𝑇$ +	𝑇. +	𝑇/	   (3.1) 

The following explains all the components.  

a. VM Setup time (𝑇,) 

The VM setup time consists of time for VMs allocation, provisioning, and starting up 

of all the intermediate nodes. In today’s public cloud IaaS platform, VMs can typically 

be provisioned within few minutes after the request is received, sometimes even within 

a few ten seconds. However, it must be noted that VM setup time is a significant factor 

in the functionality of the CPT. Unfortunately, from a cloud consumer‘s perspective, 

there is almost nothing that can be done. 

b. Data Distribution Time (𝑇$) 

In the proposed model, there are two actions that happen in the same DC, files are 

chunked and then transferred from the source node to the intermediate nodes. The 

transferring process has to begin immediately after the split of a particular chunk is 

completed in order to reduce the overall data distribution time. This means there is no 

time waiting for the overall file splitting process to complete. However, care must be 

taken as the process of both splitting and transferring may utilize (i.e. reading and 

writing into) the same disk which affects throughput due to I/O contention.  

c. Data Transfer Time (𝑇.) 

This time component refers to the transfer time from the intermediate nodes of the 

source DC to intermediate nodes in the destination DC. There are multiple 

straightforward ways to shorter the duration of this stage, such as using more powerful 

VMs (i.e. VM with higher network throughput) or increasing the number of pairs of 

intermediate nodes.  
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d. Data Consolidation Time (𝑇/) 

Data consolidation time is the amount of time taken for the file reconstruction process 

to complete. It includes the time of file chunks transfer from intermediate nodes to the 

destination node within the same DC. This stage is heavy on disk operation as data is 

first read and then rewritten back into the filesystem. Normally, data consolidation time 

correlates with the data distribution time. An example, decompression have to be 

performed during the consolidation stage if compression was performed during the 

distribution stage. However, this work assumed that the data is already and cannot be 

further compressed such as high definition multimedia data.  

Based on the aforementioned illustration, the CPT total transfer time is represented by 

the following equation. The transfer speed is the average of all intermediate nodes in 

both source and destination datacenters. In the remaining of our work, we assumed that 

the individual transfer speed of each intermediate nodes is identical. The effective 

transfer speed is the lesser of network throughput and disk throughput.  

The equation for the total time taken of CPT is given below. The notations are given in 

Table 3.1. 

Table 3.1. Notations in the CPT time taken equation 

Notation Description 
𝑇()* CPT transfer time (s) 
𝑇()*1 CPT w/ pre-testing transfer time (s) 
𝑇"2 Sequential transfer time (s) 
𝑇, Stage “VM setup” time (s) 
𝑇34 Stage “Pre-testing” time (s) 
s Total Transfer size (MB) 
𝑣" Split throughput (MB/s) 
𝑣6 Internal transfer throughput (MB/s) 
𝑣.  External transfer throughput (MB/s) 
p No. of intermediate node pairs 
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As an example, Figure 3.3 depicts an example timeline of each component for a CPT 

transfer with 2 pairs of intermediate nodes, p=2. 

 
Figure 3.3 Example timeline of basic CPT using 2 pairs of intermediate nodes (p=2) 

3.3.2 Introducing Pipeline into the CPT Technique 

The Eq. 2 showed that the model can be further improved by using a pipelining 

technique. In order to make the transfer more worthwhile, the stages such as distribute, 

transfer and consolidate of file chunks can take place concurrently. As an example, 

Figure 3.4 depicts the example timeline of CPT transfer with pipelining (p=2). 

 
Figure 3.4 Example timeline of CPT transfer using 2 pairs of intermediate nodes (p =2) 

and with pipelining 

For instance, submitting a request for VM spawning and splitting of files can be started 

simultaneously. Then, once the first data chunk is ready, it will be transferred to the 

first intermediate node in source DC without waiting for the second chunk (which will 

be transferred to the second intermediate node). Similarly, once the first chunk is 
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completed, it will be transferred to its respective intermediate node in destination DC. 

By doing so, we ensure that there is no waiting for transfer since another pair of instance 

is available. However, the exception is during the file merging process, which can only 

begin when the transfer of all file chunks is completed. In this model, the total parallel 

transfer time is influenced by the larger of VM setup or file splitting time. This further 

refines Eq. 3.2 to Eq. 3.3.   

𝑇()* = max( 𝑇,	,
"
,7
) +	 "/3

,8
+ 	 "/3

,:
+ "/3

,8
	+ "

,7
	  (3.3) 

3.3.3 Reducing I/O time with Network Data Piping 

From the Equation 3.3, I/O time should be further reduced to improve the parallel 

transfer efficiency. Therefore, the data splitting and merging stages should be 

performed virtually. For example, in the “splitting” stage, the physical splitting of the 

file is not necessary as the file to be transferred can be read from disk at arbitrary 

location and sent over the network. Similarly, instead of having to wait for all the data 

to be available before starting the merging process, the merge operation can be 

eliminated as the data is put in place as part of the network transfer. This can be 

achieved using tools such as Netcat (“nc - arbitrary TCP and UDP connections and 

listens - Linux man page,” n.d.). As an example, Figure 3.5 depicts the possible timing 

sequence of parallel transfer (p=2) with pipelining and network data piping. 

Such an approach not only allows better concurrency, but can also off-load the disk IO 

operation to the network. This should significantly reduce the total parallel data transfer 

time. 
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Figure 3.5 Example timeline of CPT using 2 pairs of intermediate nodes (p=2), and with 

pipelining and network data piping 

Therefore, with network file merging, eq. 3.3 can be reduced to the following:  

𝑇()* = 	𝑇, +		
@"
,8
	+ 	"/3

,:
								 (3.4) 

3.4 Impact towards financial cost of CPT 

Utilizing cloud resource comes at a financial cost. Therefore, by spawning additional 

resources for data transfer, additional operation cost is incurred. Typically, cloud 

providers do not only charge for compute resources in the event of spawning VMs, but 

there are also implicit costs such as storage, provisioned disk I/O performance, and 

network interface. After the transfer is completed, the resources (i.e. intermediate nodes) 

are deallocated, hence no continuous charges. 

Sequential transfer cost, 𝐶"2 =	s . 𝐶.A (3.5) 

Table 3.2 Notations in the CPT cost equation 

Notation Description 
𝐶"2 Cost of sequential transfer 
𝐶()* Cost of CPT transfer 
𝐶()*1 Cost of CPT w/ pre-testing transfer 
𝐶.A Egress traffic cost (cent / MB) 
𝐶6A Ingress traffic cost (cent / MB) 
𝐶, Cost of VM per unit time (cent / s) 
n No. of intermediate node 

 

Assuming internal transfer, 𝐶6A is free of charge which is true for most cloud services, 

CPT Transfer Cost,   
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𝐶()* = (	𝑇()*	. 2𝑝	. 𝐶,	) + ( s . 𝐶.A	)  (3.6) 

Since n = 2p, and 𝐶"2 = s . 𝐶.A , 

𝐶()* = (	𝑇()*	. 𝑛	. 𝐶,	) + 𝐶"2   (3.7) 

From the Equation 3.7, since the CPT transfer cost is a summation of the extra processes 

and sequential transfer cost, it is not possible to reduce the cost of parallel transfer to 

be lower than the sequential transfer. However, the parallel transfer potentially provides 

better throughput but comes at an increased in financial cost. This will be studied in 

greater details in the next few chapters. 

3.5 Conclusion 

The proposed CPT transfer involves 3 main stages: distributing the data to intermediate 

nodes, transferring them in parallel across WAN and then subsequently reconstructing 

the data at the destination node. The model of CPT transfer time shows that VM start-

up time and the various network throughput is an important factor of CPT. Finally, the 

cost model showed that CPT transfer comes at an increased in financial cost. In short, 

network throughput of the VMs and cost of running the VMs are the main factor in 

determining the effectiveness of the proposed parallel transfer technique. 

In a nutshell, corresponding to the first research objective, this chapter modelled and 

identified the limiting factors of scaling cloud-to-cloud data transfer via spawning 

intermediate nodes. 
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CHAPTER 4  

UNDERSTANDING THE CLOUD AND MODEL ANALYSIS 
 
 
 
 

The purpose of this chapter is to understand the characteristics of the public cloud in 

terms of performance and cost, and then uses the collected performance and cost values 

to analyze the two CPT models described in Chapter 3, one pertaining to CPT data 

transfer time and the other on the CPT data transfer cost.  

This work uses AWS cloud services. This is because according to Gartner’s reports in 

the year 2018 (“Magic Quadrant for Cloud Infrastructure as a Service, Worldwide,” 

n.d.), AWS is the world market leader in Cloud Infrastructure as a Service. 

The tests conducted and results explained in the first half of the chapter sets the stage 

for understanding the network throughput behavior of a typical public cloud platform. 

Then, the models are furthered explored, and the CPT framework and process flow are 

described. The CPT framework proposed 2 techniques – VM-type selection and pre-

testing to optimize the performance and cost. 

4.1 Cloud’s Network Performance and Charges  

 In order to benchmark the inter-network capacity, this work selected the two further 

apart AWS datacenters; transfer between the Oregon and Ireland region. The intra-

network are tested within Oregon. The network throughput of various type of general 

purpose EC2 instances within and between these 2 datacenters are measured. They are 

depicted as internal and external transfer respectively. 

The test is performed with iPerf (“iperf - Linux man page,” n.d.) with 3 streams and for 

a duration of 2 minutes each. For each test, EC2 of identical type is spawned in the 
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respective AWS region to carry out the test. The experiment was performed 3 times a 

day for continuously 2 days (23rd-24th April 2018), then the average is taken (total of 6 

readings). The results are presented in Figure 4.1 and 4.2. 

 
Figure 4.1Average, Minimum and Maximum Intra-DC network throughput observed 

for the various EC2 type 

 

 
Figure 4.2 Average, Minimum and Maximum Inter-DC network throughput observed 

for the various EC2 type. 

Each bar depicts the average, maximum and minimum of the averages. Consistent to 

observations made by other authors such as in (Hu et al., 2018), the intra-DC bandwidth 

exceeds the inter-DC by several factor. On the other hand, it can be seen that the 
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network throughput variability for t2 instance class is relatively large while the 

throughput of the remaining types is quite consistent. The result is consistent to the 

official network performance classification provided by AWS (Table 4.1). However 

because AWS does not provide service level agreement (SLA) for network throughput, 

the network rating is given very vaguely.  

Table 4.1 also presents the cost of running the respective VMs, sorted by the cost 

ascendingly. As seen, the price of VMs does not directly correlate to the network 

throughput. It is possible to spend a fraction of the cost and still get a better network 

throughput. This proposed technique is further explored in section 4.3. 

Table 4.1 Price and Spec of running VM/EC2 on AWS (April 2018, AWS Oregon) 

Type vCPU Memory (GiB) Network Price per Hour ($) 
t2.micro 1 1 Low-Moderate 0.0116 
t2.small 1 2 Low-Moderate 0.0230 
t2.medium 2 4 Low-Moderate 0.0464 
m3.medium 1 3.75 Moderate 0.0670 
t2.large 2 8 Low-Moderate 0.0928 
m4.large 2 8 Moderate 0.1000 
m3.large 2 7.5 Moderate 0.1330 
t2.xlarge 4 16 Moderate 0.1856 
h1.2xlarge 8 32 Up to 10 Gbps 0.4680 
d2.xlarge 4 30.5 Moderate 0.6900 

 

AWS does not offer network optimized VM per se. That is to say, VM with better 

network throughput also comes with more CPU and memory resources, and has a much 

higher cost. We observed that this VM offering model is generally true for many other 

cloud providers such as Azure (“Azure Linux VM sizes - General purpose,” n.d.) and 

Google Cloud (“Egress Throughput Caps | Compute Engine,” n.d.). For this work, we 

included h1.2xlarge as it is the most affordable VM with AWS network rating of “up 

to 10Gpbs”.  



 
 

33 

Table 4.2 depicts the result (from the extended test conducted above) of intra-DC 

network throughput between VMs of a different type. It is observed that when 

transferring between VMs of different type, the network throughput is the smaller of 

both. The download and upload bandwidth seem to be capped equally without any favor. 

Table 4.2 Network throughputs between VMs/EC2s of a different type 

From | To (Mbps) t2.micro m3.medium m4.large h1.2xlarge 
t2.micro 718 331 601 721 
m3.medium 323 320 323 326 
m4.large 595 326 593 597 
h1.2xlarge 735 327 597 2540 

 

Similar characteristics are also observed by the same authors in two separate work 

(Persico et al., 2015; Persico et al., 2017) – throughout this preliminary tests, the 

network throughput during the lifetime of the VM is stable. There is no significant 

fluctuation which means that the resource allocated to the VM is not changed 

throughout the lifetime of the VM.  

The impact of network throughput on the overall performance and cost of the CPT is 

discussed in the next chapter. 

4.2 Model Analysis 

Before jumping into the model validation, it must be understood that speedup is defined 

as S(s, p) = 𝑇"2	/	𝑇()*  

Where time taken for sequential transfer,  𝑇"2 = "
,:

  

In order for CPT to have better performance than sequential transfer, the CPT time must 

be smaller than the sequential data transfer time, i.e. S > 1. 
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4.2.1 Performance of various CPT and its optimizations 

In this section, CPT transfer against sequential transfer is carried out based on the 

models. In this sub-section, a hypothetical case where the all the intermediate, source 

and destination nodes are of the same VM type. This means that the network bandwidth 

is similar across all the VMs.  

Based on the preliminary tests carried out on Amazon EC2 cloud type t2.small, the VM 

startup time varies between 81 and 95 seconds with an average of 87.8 seconds. This 

demonstrates the performance volatility when requesting a cloud service. In this section, 

an arbitrary value for VM set-up time, i.e. 90 seconds is used. Also based on a separate 

test, the split and the merge speed, which are input/output intensive activity, are 

normally equal. Table 4.3 includes the parameters as follows: 65 MB/s for split 

throughput, 90 MB/s for internal transfer throughput and 15MB/s for external transfer 

throughput.  

Table 4.3 The numerical figure used in the models 

Variable Numerical figure used in the models 
𝑇, 90 s 
𝑣" 65 MB/s 
𝑣6 90 MB/s 
𝑣.  15 MB/s 

 
Feeding the values in table 4.3 into the equations 3.2, 3.3 and 3.4 results in Figure 4.3 

to 4.6. Figure 4.3 shows the transfer time against total data transfer size of basic CPT 

for different number of intermediate node pairs. Basic CPT with p=2 and p=4 has larger 

transfer time than sequential transfer, which means performance is worse off. For p=8, 

the performance is still worse than sequential transfer when total data transfer size is 

below 10GB. This also demonstrates that CPT is more effective when the data transfer 

size increases. 
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Figure 4.4 and 4.5 shows the transfer time of CPT with pipelining and CPT with 

pipelining and network data piping respectively. Unlike the basic CPT (Figure 4.3), 

both the optimizations have resulted in better performance even when the number of 

pairs of intermediate node is low, p=2 in this case. Other than the lower transfer time 

compared to basic CPT, the general trend and observation remain the same.  

 

 
Figure 4.3 Time taken of various 

number of instance pair for basic CPT. 

 
Figure 4.4 Time taken of various 

number of instance pair for CPT with 

pipeline. 

 
Figure 4.5 Time taken of various 

number of instance pair for CPT with 

pipeline and network data piping. 

 
Figure 4.6 Comparing the performance 

of basic CPT and CPT with 

optimization. 

Figure 4.6 is a combination of Figure 4.3 and 4.5. It compares the basic CPT (i.e. 

foundation) against CPT with pipelining and network data piping (i.e. optimized CPT). 

In the figure, it can be seen that the transfer time of basic CPT with p=4 is larger than 

sequential. This means worse off performance. Optimized CPT with p=4 has a slight 
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improvement. As expected, increasing the number of intermediate nodes pair to 8 give 

a far smaller transfer time than sequential transfer. 

As can be seen from the figures, each improvement proposed increases the overall 

performance of CPT. Hence, optimized CPT is used for the remaining of the work – 

implementation of CPT. The work on basic CPT and CPT with pipeline ends at this 

sub-section. 

4.2.2 Performance and Financial Cost Incurred 

This section is a continuation of the previous sub-section, where the cost of the CPT 

transfer is explored here. The equation of transfer time for optimised CPT and cost of 

CPT (equation 3.4 and 3.7 respectively) is fed with the values mentioned in Table 4.4 

to compute the CPT cost. The price is based on the actual average pricing of AWS 

Oregon and Ireland (as of April 2018). 

Table 4.4 Cost of AWS t2.small per second billing 

Variable Numerical figure used in the models 

𝐶.A $0.02 / GB 

𝐶6A $ 0  

𝐶, $ 0.241 / hour  (per second granularity) 

 
For sequential transfer and the different number of intermediate nodes, three key 

metrics are closely explored: 

• Cost against total data transfer size 

• Throughput against total data transfer size 

• Throughput per cost against total data transfer size 

And for each of the metric, the impact on small and large total amount of data transfer 

is studied. The results are shown in Figure 4.7 to 4.9 and Figure 4.10 – 4.12 respectively 
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and the observations are outlined below. Do take note that the x-axis in the figures is 

not linear hence the apparent curve.  

 

 
Figure 4.7 Cost vs transfer size (small 

total data transfer) 

 
Figure 4.8 Throughput per cost vs 

transfer size (small total data transfer) 

 
Figure 4.9 Throughput vs transfer size 

(small total data transfer) 

 
Figure 4.10 Cost vs transfer size (large 

total data transfer) 

 
Figure 4.11 Throughput per cost vs 

transfer size (large total data transfer) 

 
Figure 4.12 Throughput vs transfer size 

(large total data transfer) 
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As the total size of data transfer increases, both sequential and CPT cost increases 

linearly (Figure 4.7 and 4.10) and the throughput per cost decreases linearly (Figure 4.8 

and 4.11). The reason for the decrease in throughput per cost is previously described in 

section 4.2. The increase in the cost of running the VM is much higher than the increase 

in network throughput of the VM. As seen in Figure 4.11, as the total amount of data 

transfer increase, CPT results in better throughput per cost as compared to sequential 

transfer, and the performance differences are even larger when the number of 

intermediate nodes is high. 

As depicted in Figure 4.9 and 4.12, the throughput of sequential transfer remains the 

same as the only factor is the external network throughput. As for CPT, throughput 

increases until it reaches the maximum throughput depending on the number of 

intermediate nodes employed. Hence, it is observed that for large total amount of data 

transfer, the throughput for CPT seems constant. 

4.2.3 Impact of the DC throughput ratio on CPT 

As the CPT’s core technique is to parallelize file transfer across multiple paths, the ratio 

of internal to external network throughput certainly affects the feasibility of the transfer. 

It is crucial that the internal network throughput (Vi) exceeds the external throughput 

(Ve) by a certain factor. Figure 4.13 depicts the graph of speedup versus the ratio of 

internal to external transfer speed.  

In order to understand the impact of the ratio of Vi to Ve on the speedup, using the 

model, we set the Ve=10 mbps and increment the Vi. Figure 4.13 depicts the graph of 

speedup versus the ratio of internal to external transfer speed for transfer of 5GB. It can 

be observed that the speedup increases as the number of instance pairs is increased.  
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Figure 4.13 Speedup vs Ratio of Internal to External network throughput. 

From the figure, it can be observed that the higher the ratio of internal to external 

network throughput, the higher the speedup. CPT transfer results in poorer performance 

when the ratio is below a certain threshold. The exact ratio depends on the transfer size 

and number of pairs of instances.  

 

Figure 4.14 Cost vs Ratio of Internal to External transfer speed. 

Figure 4.14 depicts the cost against the ratio of internal to external network throughput. 

As the ratio increases, the additional cost incurred for performing CPT decreases. This 

is because as the ratio increases, the time taken for the transfer is reduced and hence the 

cost incurred for CPT transfer reduces more than proportionately.  
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Hence, the higher the ratio of internal to external network throughput, the better it is for 

CPT both in terms of better performance and lower cost.  

4.2.4 Impact of VM type on the cost of CPT 

In the previous sections, the performance and cost are explored based on the AWS 

t2.medium machine type. As already described in section 4.1, the cost of running the 

VM is not proportional to the network throughput of the VM. In this section, the impact 

of using “network optimized VM” is studied.  

The AWS EC2 type h1.2xlarge which has AWS official network rating of “up to 10 

Gbps” is selected as a comparison. Here, the case is where the source and the destination 

node (h1.2xlarge) are of different VM type as the intermediate nodes (comparing 

h1.2xlarge vs t2.small). Table 4.5 and 4.6 are the values that are used.  

Table 4.5 Numerical figure used in the models (h1.2xlarge) 

Variable Numerical figure used in the models 

𝑇, 90 s 

𝑣6 315 MB/s 

𝑣.  30 MB/s 
 

Table 4.6 Cost of AWS h1.2xlarge  per second billing 

Variable Numerical figure used in the models 

𝐶.A $0.02 / GB 

𝐶6A $ 0  

𝐶, $ 0.468 / hour (per second granularity) 

 

Figure 4.15 depicts the throughput per cost ratio of CPT with different VM type as 

intermediate nodes. As seen, using h1.2xlarge as intermediate nodes results in smaller 
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throughput per cost ratio than t2.small. Hence, VM selection is important, to pick VM 

type favorable for improving the transfer but at the lowest cost.  

 
Figure 4.15 Throughput per cost vs transfer size for CPT of different VM type 

4.2.5 Impact of pricing granularity on the cost of CPT 

Depending on the pricing mechanism used by the service provider, charging granularity 

affects the overall price incurred. Pricing granularity varies across different cloud and 

time-to-time cloud service providers revise the scheme. Running n VMs for the 

duration of m minute (where m < 60) will incur n instance hour. Example, in hourly 

block charging, using the VM for 5 minutes will be charged the same price as using it 

for an hour.  

In the following, we investigate the impact of pricing granularity on the overall cost of 

CPT transfer. Figure 4.16 depicts the total cost without egress charges vs data transfer 

size based on different pricing granularity. As seen, pricing granularity has a noticeable 

impact on the total cost of CPT. 

0.000

0.500

1.000

1.500

2.000

8 16 32 64 128 256

p=2 (t2)
p=16 (t2)
p=2 (h1)
p=16 (h1)

M
B/

s/
ce

nt

total data transfer size (GB)



 
 

42 

 
Figure 4.16 Total cost vs transfer size for different pricing granularity 

As seen in the figure, the total cost difference between per hour and per second billing 

is not very significant when the number of intermediate nodes is lower. When the 

number of nodes deployed is higher in the case of per hour pricing granularity, more 

“wastage” is incurred as the cloud consumer is charged the full hour although CPT only 

utilized a fraction of the hour. For example, the cost addition of utilizing 1.5 hours but 

paying for 2 hours is more significant than utilizing 5.5 hours but paying 6 hours 

although it’s just 30 minutes short in both cases. 

This also explains the ladder-like cost incurred when p=8(/h). This is because the total 

time of transfer has increased, and the additional price difference to ceiling price (e.g. 

rounded to the next hour) is spread. Hence, the smaller the pricing granularity, the lower 

the overall cost of CPT transfer. 

4.3 CPT Framework 

Section 4.2 has enabled a good understanding of the impact of various factors towards 
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framework is cloud-agnostic and so, is generally applicable to typical public cloud 

platforms like AWS, Azure and Google Cloud. 

Two techniques; VM-type selection and pre-testing are proposed to address the network 

throughput characteristic discussed in section 4.1. 

4.3.1 VM-type selection 

As described in the section 4.1, cost of running the machine does not linearly correlate 

to the network performance. Price of renting a VM type is based on a combination of 

several resources capacity such as CPU, memory and network throughput. Choosing a 

more powerful machine of double the price with double the CPU and memory capacity 

does not mean double the network capacity. This is an important area to explore as 

based on the models, the two factors that significantly affect the CPT is network 

throughput and price. 

Here is an example of the impact of the deployment of two different VM type of similar 

network throughout but at a cost difference. VM1 – Small has much lesser resources 

(CPU, memory and storage) but equal network throughput as VM2 – Large. Deploying 

VM1 – Small as the intermediate nodes result in comparable performance but at a much 

lower cost. Hence, VM selection is important to ensure an effective CPT transfer. 

The CPT is extended with the proposed feature to pick the most favorable machine type 

for the transfer. Based on actual data on network performance (a table with a list of VM 

type and its corresponding cost, inter-DC and intra-DC network bandwidth) is available, 

CPT will select the VM type with higher external network performance to cost ratio. 

This allows the overall transfer to be at a comparable performance but at a lower cost.  

The network performance data should be provided up-front (e.g. taken from test result 

of previous transfer) before the transfer begins, otherwise, additional time is required 
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for testing. As this information can be reused again across multiple transfers, in the 

remaining of this work we exclude the time taken for testing in the overall time taken 

for CPT transfer. 

4.3.2 Pre-testing 

Network performance varies even when picking machines of same class/type. This 

pattern is also observed in another researcher’s work at (Persico et al., 2017). The work 

further describes killing machines that are performing below par. Inspired by this 

technique, we propose the following enhancement to CPT. Utilizing machines when its 

performance is on the upper side while killing machines that are not performing at an 

optimum level. 

The CPT is designed to perform limited testing at the start of the transfer, we call this 

the pre-testing stage. If the transfer requires x number of intermediate nodes, the CPT 

will spawn 2x number of machines. Each of the machines will be tested for both its 

inter-DC and intra-DC network bandwidth, then, the machines at the bottom half the 

performance will be killed as it is not optimal. 

Some may argue that more machines should be spawned for pre-testing. There is, of 

course, the possibility that more than half of the initial machines were not performing 

optimally. However, when conducting the test in section 4.1, we observed that less than 

half of the machines spawned are performing below average.  

Besides, as the network throughput is relatively unchanged throughout the lifetime of 

the VM (see section 4.1), the models remain simple as network performance fluctuation 

do not need to be taken account of. Deciding the VM based on the early network 

throughput is sufficient.  
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The equation for CPT with pre-testing is as below: 

𝑇()*1 = 	𝑇34 +	𝑇()*				   (4.1) 

If pre-testing is involved, the cost of the pre-testing stage is given as 

𝐶34 = 𝑇34	. 2𝑛	. 𝐶, Hence,  

𝐶()*1 = 𝑛	. 𝐶,	(𝑇()* + 2	. 𝑇34)	 + 𝐶"2 (4.2) 

4.3.3 End-to-end process flow of CPT 

The Figure 4.17 shows the CPT framework – flow chart for the events leading up to the 

CPT transfer.  

 
Figure 4.17 Process flow leading to the CPT Transfer 

At the very beginning, VMs cost and its respective internal and external DC throughput 

are to be provided. If not readily available, a separate test is performed. Then, based on 

the performance and cost estimation for different numbers of intermediate nodes, p, the 

user select the desired performance. Based on the decision, the transfer is done 

sequentially (i.e. a normal transfer without CPT) if p=0 or using CPT if p>0. Next, 

based on the performance estimation a recommendation is provided to the user if pre-
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testing is likely to yield benefit. If the transfer time is estimated to be short, pre-testing 

is not recommended as overhead is high. It is the users decision to go with the 

recommendation or overrule – taking the risk. Once pre-testing is performed (if needed), 

the CPT transfer begins. In the event any chunk failed the checksum, the chunk will be 

resent. If any intermediate node fails during the transfer, the failed node will be replaced 

with new intermediate node. CPT will resume transferring but there is a performance 

impact. Once the data transfer completed successfully, the intermediate nodes are 

decommissioned.  

4.4 Conclusion 

Based on the model analysis that have been covered in this chapter, the table 4.7 

provides a summary of the variables’ impact towards CPT.  

Table 4.7 Respective variables' impact towards CPT 

No. Variable Impact towards CPT Control 

1 Internal transfer 
throughput, 𝑣6 

The larger the better. 
Besides, the higher the 
ratio of 𝑣6 to 𝑣.  the better. 

 

Dynamic, varies 
according to VM type 
and CSP 

2 External transfer 
throughput, 𝑣.  

3 VM setup time, 𝑇, The smaller the better. 

4 Ingress traffic cost, 
𝐶6A 

Same as sequential 
transfer. The smaller the 
better for consumer. 

Usually zero, set by 
CSP 

5 Egress traffic cost, 𝐶.A  

Usually fixed, set by 
CSP 

6 Cost of VM per unit 
time, 𝐶, 

The smaller the better. 

7 Pricing Granularity The smaller the charging 
block, the lower the total 
cost. 
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This first part of the chapter showed that the cost of renting the VM does not linearly 

correlate to the network performance. Two important lessons are learned from the 

network throughput test. Firstly, the average network throughput of a VM varies across 

different occasion. Secondly, no significant fluctuation to network throughput 

throughout the lifetime of the VM.  

Then, from the model analysis, we see that CPT with pipelining and network data 

piping outperforms CPT without both the optimizations. Hence the optimized CPT will 

be implemented and experimented in the subsequent chapters. It is important to note 

that the ratio of Vi to Ve is important as it has a large impact on the speedup of the CPT. 

If the internal network throughput is not sufficiently more than the external i.e. ratio is 

low, performing CPT transfer will result in worse performance than sequential transfer. 

Assuming that cost is not a constraint, the maximum speedup is achieved when the ratio 

of internal to external network throughput approaches infinity and the number of 

intermediate nodes deployed approaches infinity.  

However, with the cost model, it shows that the efficiency (throughput per unit cost) 

will diminish over time. The cost models also showed that the smaller the pricing 

granularity, the cheaper the overall cost of CPT with performance being equal.  

Finally, the CPT framework is proposed. The end-to-end process involving preparation 

work, execution of CPT and post-CPT steps are described. Two techniques; VM-type 

selection and pre-testing were proposed to optimize the performance and cost.  

In a nutshell, corresponding to the second research objectives, this chapter has not only  

identified the influencing factors of implementing CPT model in the public cloud 

environment, but also provided enhancements which are critical to improving the 

effectiveness of CPT.
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CHAPTER 5  

SYSTEM IMPLEMENTATION 
 
 
 
 
In this chapter, the implementation of each component and process which makes up the 

complete proposed CPT framework using the AWS cloud. In addition to that, the 

implementation of CPT for data transfer between Hadoop’s HDFS cluster is also 

described. The implementation of CPT for data transfer between Hadoop’s HDFS 

cluster is described here because the proposed CPT will be compared against Hadoop’s 

DistCp in the subsequent chapter.  

5.1 CPT Implementation 

As the model in section 4.2 has shown that optimized CPT the best performance, we 

implement this version of CPT for the remaining of our work. The implementation is 

done on AWS EC2 to prove the concept of the proposed CPT. 

All the scripts are written in Perl due to the out-of-the-box support on most Linux 

distros and compatibility on Windows-based machine – allowing portability across 

different platforms. For our implementation on AWS, all the EC2 (i.e. VMs) are 

running Ubuntu Linux 16.10. Password-less SSH connections are set up so that the 

VMs can authenticate and communicate with each other and perform the data transfer.  
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Figure 5.1 Control and data flow of CPT implementation on AWS 

Figure 5.1 depicts the implementation involving two different AWS region. The solid 

lines represent the data flow (i.e. data transfer) while dotted lines denote 

control/command channel (two ways). All the forecast and decisions are made by the 

Transfer Manager (TM). All control communication is made by the daemons via the 

centralized Message Queue Telemetric Transport (MQTT) broker running as part of 

the TM. The Transfer Daemons (TD) are responsible for initiating the transfer based 

on received instructions and periodically reporting to the TM. This allows for real-time 

monitoring of the transfer and reactions to failure as soon as possible (e.g. one of the 

intermediate nodes failed or chunk corrupted). The TM is also responsible for 

communicating with the cloud APIs for commissioning and decommissioning the VMs. 

In summary, the CPT consists of the TM and TD. TM coordinates the entire transfer 

while TD merely execute the instructions and reports the progress of transferring the 

respective chunks. The TM consist of the following components: 
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• Initial VM-type throughput tester – perform intra-DC and inter-DC network 

bandwidth test for the different VM types, so that the most suitable VM type 

can be decided. 

• VM-type selector – selecting the most suitable VM type for use as intermediate 

nodes. 

• Speedup and Cost Estimator – estimation of the speedup and financial cost of 

CPT based on the models. 

• Pre-tester – perform network bandwidth test (all VM of the same type) and only 

use top-performing VMs as intermediate nodes. 

• CPT coordinator – initiating and keeping track of the chunk transfers between 

all the involved nodes  

The roles and implementation of the components are discussed in the subsequent 

sections. 

5.1.1 DC Throughput & VM-type Selection 

As described in the section 4.3 CPT framework, before the CPT transfer even begin, 

specific information on the VM startup time, internal and external DC throughput has 

to be provided. Table 5.1 shown below, is the information needed for an optimized 

transfer.  

Table 5.1 List of information collected during the network throughput test 

No. Item Example 

1 VM Type  m5.large 

2 Internal Throughput (Mbps), 𝑣6 250 

3 External Throughput (Mbps), 𝑣.  80 

4 Price ($/hour) 0.78 

5 Startup time (s), 𝑇, 55 
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Item 1 and 4 are an example of information related to a cloud instance provided by the 

cloud provider (https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/index.json), 

which is query-able via API. As there may be a price difference of running the same 

VM type in source and destination, the average of the two is calculated since our CPT 

implementation is performing 1-to-1 mapping.  

As for item 2 and 3, the cloud consumer has to perform the necessary test. If this 

information is readily available, testing can be performed before the transfer begin. The 

data can be collected and used for future transfer. As time goes by, as more and more 

transfers are performed, the average will be closer to reality.  

The pseudocode in Table 5.2 describes the algorithm used to populate the data for a 

transfer for the first time. The input is a 2-dimensional array with VM type and price 

obtained from the cloud provider. The procedure then spawns the VMs and perform the 

iPerf test accordingly. The output is the VM type with its price and corresponding 

internal throughput, external throughput and VM startup time collected from the test. 

Table 5.2 Pseudocode for benchmarking VM network performance 

 
Input:  2D Array (VM Type and its corresponding Price) 
 Duration of test to perform, x 
Output: 2D Array (VM Type and its corresponding Price, Ve, Vi, Tv) 
 
Procedure:  
FOR each VM type in Array 
 Spawn 2 VM (VMs1, VMs2) of VM type in source DC 
 Spawn 1 VM (VMd1) of VM type in destination DC 
WHILE VMs are NOT ready (WAIT) 
Record VM startup time and update Array 
FOR each VM type in Array 
 Connect to VMs1 and initiate network throughput test to VMs2 for x  
  duration 
WHILE x duration NOT elapsed (WAIT) 
FOR each VM type in Array 
 Connect to VMs1, retrieve result (internal throughput) and update Array 
 Connect to VMs1 and initiate network throughput test to VMd1 for x  
  duration 
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 Decommission VMs2 
WHILE x duration NOT elapsed (WAIT) 
FOR each VM type in Array 
 Connect to VMs1, retrieve result (external throughput) and update Array 
 Decommission VMs1 and VMd1 
RETURN Array 
 

 
Table 5.3 shows the example starting array where only the VM type and Price is listed. 

Table 5.4 shows the updated example array after all the necessary information needed 

for forecasting the CPT transfer is furnished.  

Table 5.3 Starting Input Array prior to network throughput test 

VM Type Price 
t2.micro 0.0116 
t2.small 0.0230 
t2.medium 0.0464 
… … 

 
Table 5.4 Array updated with VM information necessary for CPT transfer 

VM Type Price Ve Vi Tv 
t2.micro 0.0116 107 718 83 
t2.small 0.0230 124 724 82 
t2.medium 0.0464 146 721 85 
… … … … … 

 
As discussed in section 4.2.3, VM type with the best external throughput to cost ratio 

is used, provided that the internal network throughput exceeds the external throughput 

of the source and destination VM. The pseudocode for VM selection is as below, 

continuing from above: 

 
Table 5.5 Pseudocode for VM selection 

 
Input: 2D Array (VM Type and its corresponding Price, Ve, Vi, Tv) 
 VM type of source and destination machine 
Output: The most suitable VM Type (for intermediate nodes) 
 
Procedure: 
FOR each VM type in Array 
 COMPUTE cost per unit internal throughput and update table 
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SORT table ascending cost per unit internal throughput 
FOR each VM type in list of VM type 
 IF VM type internal throughput > 7 x source machine’s internal throughput 
  RETURN VM type 
RETURN “no suitable VM” 
 

 

5.1.2 Speedup and Cost Estimation & User preference 

In order for the user to decide if CPT should be performed and how many intermediate 

nodes should be deployed, an estimated time and cost has to be calculated. The 

calculation is performed based on the 2 models derived in chapter 3, with all the 

necessary information obtained from the previous stages (from section 5.1.1). Below is 

the pseudocode of getting the estimated time and cost for different values of p, the 

number of pairs of intermediate nodes. 

 
Table 5.6 Pseudocode for estimating CPT transfer time and cost 

 
Input: 2D Array (VM Type and its corresponding Cv, Ve, Vi, Tv) 
 Egress Cost, Ceg 
 Total data transfer size, s 
 Number of intermediate nodes for CPT transfer, p 
 VM type of source and destination machine 
Output: Estimated time and cost 
 
Procedure:  
WHILE 
 IF p=0 
  Estimated Time, T <= s / Ve of source/destination machine 
  Estimated Cost, C <= s * Ceg 
 ELSE IF p>0 
  Estimated Time, T <= Tv + 2 * s / Vi  + s * p / Ve 
  Estimated Cost, C <= (s * Ceg) + (T * 2 * p * Cv) 
 End if 
end loop 
RETURN Array of T, C  
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Below is the example outputs showing all the estimated time and cost depending on the 

number of intermediate nodes. Speedup refers to the sequential transfer time divided 

by the respective CPT transfer time.  

Table 5.7 Example of array of  performance and cost estimation 

p Estimated Time (s) Estimated Cost ($) Speedup 
0 (no CPT) 545 0.160 - 
1 713 0.219 0.764 
2 521 0.203 1.046 
3 493 0.201 1.105 
… … … … 

 

Based on the table the user selects the number of pairs of intermediate nodes for the 

CPT transfer. The exact number of intermediate nodes that will be spawned is described 

in the next section.  

5.1.3 Pre-testing & VM spawning  

The number of VM to be spawned depends on 2 decision made by the end user. Firstly, 

the desired number of pairs of intermediate nodes as described in the previous section. 

Secondly, whether pre-testing is required. When the pre-testing is employed, the TM is 

responsible for spawning twice the number of intermediate nodes necessary, otherwise, 

the exact number is spawned. In the former, the bottom half performing VM will be 

destroyed after the pre-testing phase. 

Pseudocode for spawning VMs with pre-testing stage is as shown in table below. 

Table 5.8 Pseudocode for spawning VMs with pre-testing 

 
Input: VM Type 
 Source DC 
 Destination DC 
 Number of intermediate nodes for CPT transfer, p 
 Duration of pre-testing, x 
Output: List of intermediate nodes (p VMs spawned) 
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Procedure: 
Initialize 2D Array (VM ID, Ve, Vi) 
Spawn 2p VM (VMsx) of VM type in source DC 
Spawn 2p VM (VMdx) of VM type in destination DC 
FOR each i in 2p iterations 
 Connect to VMsi and initiate network throughput test to VMdi for x  
  duration 
WHILE x duration NOT elapsed 
FOR each i in 2p iterations 
 Connect to VMs1, retrieve result (external throughput) and update table 
SORT table ascending throughput 
FOR each i in p iterations 
 Decommission VMsi and VMdi 
 

 
If no pre-testing, the exact number of VMs is spawned without need any test. The 

pseudocode as shown below: 

Table 5.9 Pseudocode for spawning VMs without pre-testing 

 
Input: VM Type 
 Source DC 
 Destination DC 
 Number of intermediate nodes for CPT transfer, p 
Output: List of intermediate nodes (p VMs spawned) 
 
Procedure:  
Spawn p VM (VMsx) of VM type in source DC 
Spawn p VM (VMdx) of VM type in destination DC 
 

 

5.1.4 CPT  

The transfer coordinator virtually splits the file(s) into arbitrary number of equal sized 

chunks, and the total number of chunks must be more than the number of pairs of 

intermediate nodes. In our implementation, we set the number of chunk to 3 times the 

number of pairs of intermediate nodes. The study of the impact of varying the number 

of chunks is beyond the scope of this work. Once the virtual splitting is done, the 

transfer from the source node to source intermediate nodes is initiated. The transfer 

daemon in the source node executes the transfer. 
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The transfer daemon in each of the nodes executes the transfer; monitor and restarts the 

transfer if there is any failure and initiates the next transfer based on instructions from 

the transfer coordinator.  

The daemon in the source intermediate nodes monitors the transfer between source 

intermediate nodes and destination intermediate nodes. Once a particular chunk is 

received in the destination intermediate node, the daemon in the destination node will 

immediately relay the transfer to the destination node.  

The daemon in the destination node will stitch all the chunks together to re-form the 

original file(s). Then, the daemon gets the checksum of the file(s) and informs the 

transfer coordinator that the transfer is completed. If the final checksum matches the 

CPT transfer is considered done. The baton is handed back to the Transfer Manager to 

decommission the intermediate nodes. 

Both the transfer coordinator and transfer daemons are implemented with an 

asynchronous methodology. The event-driven architecture allows the immediate 

reaction of events which may happen in a span of short time. The pseudocode of the 

transfer coordinator is as below. 

Table 5.10 Pseudocode of the transfer coordinator 

 
Input:  Source DC 
Destination DC 
 List of intermediate nodes 
 List of file(s) 
 N=3p 
Output: NULL 
 
Procedure: 
PUT all source int. Node ID to srcint queue 
PUT all destination int. Node ID to dstint queue 
Virtually split file(s) into N size chunk 
PUT chunk ID into src_send queue 
Set count <= 0 
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WHILE 
 IF src_send queue not empty 
  free srcint node <= SHIFT srcint queue 
  chunk <= SHIFT src_send queue 
  Init transfer of chunk from src to free srcint node 
 ELSE IF count eq. N AND get checksum match 
  Transfer completed 
  Return 
 ELSE Restart entire transfer 
 end if 
end loop 
 
EVENT: src node sent to src int. node completed 
 free dstint node <= SHIFT dstint node 
 inform src int. node to send to free dstint node 
 IF src_send queue NOT empty AND srcint NOT empty 
  free srcint node <= SHIFT srcint queue 
  chunk <= SHIFT src_send queue 
  Init transfer of chunk from src to free srcint node 
end if 
 
EVENT: src int. sent to dst int. node completed 
 lookup hash table and inform dst int. node to send to dst node 
 put src int. node into vacant queue   
 
EVENT: dst int. node sent to dst node completed 
 PUT dst int. node into dstint queue 
 count <= count + 1 
 

  
The pseudocode of the transfer daemon is as below: 

Table 5.11 pseudocode of the transfer daemon 

 
Input: Node ID (for identification and reporting) 
Output: NULL 
 
Procedure:  
WAIT for instruction 
 
IF receive instruction to Prepare 
 LISTEN on network port and prepare for incoming chunk 
end if 
 
IF receive instruction to Start 
 START chunk transfer to next node 
end if 
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WHILE (every 10 seconds) 
 REPORT progress to transfer coordinator 
 IF chunk transfer completed 
  Restart daemon and WAIT for instruction 
 end if 
end loop 
 

 
The table below shows an example 2-dimensional hash (lookup table) keeping track of 

the virtual chunks and its transfer status. The “start KB” and “end KB” marks the 

beginning and end of each chunk. The “stage” indicates the stage at which the chunk is 

currently at; 1 à in-flight between source to intermediate node, 2 à in-flight between 

source int. node to destination int. node, 3 à in-flight destination int. node to 

destination node. Status indicates the percentage transferred for the particular chunk in 

the stage. “Start time” marks the starting time of the stage – for accountability purpose. 

Table 5.12 2D Array storing virtual chunk information and transfer status 

ID File Name Start KB End KB Stage Status (%) Start Time (Epoch) 
0 /file01 0 920000 2 5 1527508391 
1 /file01 920001 1840000 1 70 1527508512 
2 /file01 1840001 2600000 - - - 
3 /file02 0 800000 - - - 

 

The Table 5.13 below shows an example 2-dimensional hash keeping track of all the 

intermediate nodes, source node and destination node. The ID is unique for each VM 

and the naming convention indicates its role. Internal IPs are used for intra-DC transfer 

while external IPs are for inter-DC (WAN) transfer. The chunk column keeps tracks of 

the respective chunk ID that has been sent and are in progress of sending by the 

respective VM. 
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Table 5.13 2D Array storing information of intermediate nodes 

Node ID Int. IP Address Ext. IP Address Chunk (out) 
src 172.168.1.2 52.12.12.20 0, 1, 2, 3 
srcint01 172.168.1.20 53.230.2.11 0, 2 
srcint02 172.168.1.15 33.32.23.230 1, 3 
dstint01 192.168.2.120 52.0.2.110 0 
dstint02 192.168.2.10 55.12.120.234 1 
dst 192.168.2.99 32.45.23.120 NA 

 

5.2 Implementation of CPT on Hadoop’s HDFS 

In this section, the adaption and implementation of CPT for data transfer between 

Hadoop Clusters are described here. Instead of an invasive approach where a redesign 

or tempering of the cluster-ware solution is needed, the technique describes the 

adaptation needed by CPT transfer with minimal changes needed. This is not the only 

way to utilize the techniques outlined in this work, but it’s the simplest implementation. 

This is as a continuation of our work and a proof that the proposed solution is flexible 

enough for application in many domains within the scope of cloud-to-cloud data 

transfer.   

The HDFS is the default file system in Hadoop. It typically consists of a Namenode 

(NN) which provides the namespace and multiple Datanodes (DN) which provides the 

distributed storage element. All access to the file has to be first queried via the NN 

which stores the metadata. It is not unusual that the NN is also designated as the Hadoop 

Master Node while the DN is the Hadoop Worker Nodes.  
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Figure 5.2 Adapting CPT for HDFS cluster transfer 

Figure 5.2 depicts the brief component diagram of two typical HDFS cluster 

implemented with CPT. The solid lines with arrow depict the data flow of transferring 

from source cluster to the destination cluster using the adapted CPT framework. The 

original worker nodes of the cluster also serve as intermediate nodes. As the CPT is 

designed to work with transferring of file on native OS filesystem, usage in the context 

of other cluster-ware requires additional steps as described below in sequence and in 

reference to the diagram: 

A. If needed, spawning of intermediate nodes (additional nodes not already part of the 

original cluster) on both source and destination DCs. 

1. Data is exported from source HDFS cluster into the local OS filesystem of the 

source cluster’s NN. 

2. Depending on the size distribution of the files, it may have to be bundled (tar) into 

a single file residing on the source cluster, so that it can be broken into equally sized 

chunk for CPT transfer. 

3. The file is transferred to the destination cluster’s NN using CPT. On top of the 

additional nodes spawned in step A, all the DNs of each of the cluster respectively 

are utilized as intermediate nodes to aid the transfer. 
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4. On the destination cluster’s NN local OS filesystem, the transferred files are then 

reconstructed to give the original files. 

5. The files are imported into the destination HDFS cluster.  

B. Decommissioning the intermediate nodes after the transfer is completed.  

Realistically speaking, from performance point-of-view, it is not the best idea to have 

the data transferred twice internally, first in step 1 and 5 and then second time as part 

of step 3. However, such approach is proposed in order to keep the complexity (of 

integrating our parallel transfer for cluster-ware) low otherwise additional effort is 

required to keep track of the files individually which is not the focus of this study. 

Transfer time, 𝑇H()* = 𝑇I +	𝑇()* +	𝑇J (5.1) 
 

Table 5.14 Notations for time components of adapting CPT transfer for HDFS 

Notation Description 

𝑇H()*  Adapted CPT for cluster-ware 

𝑇I  Time taken for data export to source master node 
OS filesystem 

𝑇()*  CPT transfer time from src. to dst clusters 

𝑇J 
Time taken for data import to destination cluster 
specialized filesystem 

 

In short, the high-level concept and implementation of performing CPT transfer 

between the Hadoop Cluster are the same. There are only 3 differences, that are: 

1. In addition to spawning new VMs to serve as intermediate nodes, existing 

worker nodes in the HDFS cluster may also serve as intermediate nodes for the 

CPT transfer.  
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2. Additional step before the CPT transfer to export and import the files from the 

HDFS filesystem to the local OS filesystem and vice versa respectively. Figure 

5.3 shows the example timeline of CPT transfer for HDFS cluster. 

3. Equation 5.1 (section 5.2, above) instead of Equation 3.4 (section 3.3.3) is used 

for the estimation of transfer time. 

 
Figure 5.3 Example timeline of CPT transfer between HDFS cluster. 

5.3 Discussion 

As the framework is cloud-agnostic, the implementation described in this chapter can 

also be implemented on other major IaaS cloud platforms such as Azure and Google 

Cloud. For example, AWS provides a feature called “placement group” that allow 

several resources to be placed on the same physical host (proximity) or somewhere 

nearby. The implementation did not make use of such feature as it’s cloud-specific, and 

hence avoided. Should we have used this feature, the result would have been [positively] 

different. 

5.4 Conclusion 

In summary, this chapter showed the detailed implementation of CPT on the AWS 

public cloud platform. The chapter has also demonstrated a quick and potentially 

effective adoption of the CPT transfer for transfer across Hadoop HDFS cluster. 
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CHAPTER 6  

EXPERIMENT RESULT 
 
 
 
 

This chapter discusses the experimental result of implementing and testing CPT on the 

AWS platform. This chapter is divided into 2 parts, first, compares CPT with sequential 

transfer, and second, evaluates CPT for HDFS cluster. 

6.1 Comparing CPT transfer time to sequential transfer  

This section describes the experimental setup and results for CPT comparing to 

sequential transfer. The experiment results for CPT with (all except in section 6.1.3) 

and without (only in section 6.1.3) pre-testing is also described. 

6.1.1 Experimental Setup 

All the experiment is conducted on AWS infrastructure located in two locations: US 

Oregon and EU Ireland. The US region is the data source while the EU is the destination 

in which we want to transfer the data to. In this section, all the intermediate, source and 

destination nodes use are type t2.medium (2vCPU, 4GiB memory, 50GB network disk). 

The Ubuntu Linux VM image included the pre-configured SSH authentication so that 

each nodes can communicate between each other without needing additional 

configuration, also known as “password-less authentication”.  

The test data to be transferred are Linux ISO images downloaded from repositories 

(public domain) and truncated to the precise size needed. The reason for doing this 

instead of generating arbitrary files is to save time preparing files that cannot be further 

compressed. In the next few sub-sections, the result of CPT transfer is shown and 

analysed.  
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6.1.2 Performance of CPT 

As the model in the previous chapter has shown the promising result for CPT, an 

understanding of whether the result can also be achieved in real-world conditions is 

needed. Hence, we first tested out the CPT transfer of a single file of varying sizes and 

with 2, 3 and 4 intermediate nodes. Figure 6.1 depicts the result in a graph of total time 

taken to complete the transfer against the total size transferred.  

 

Figure 6.1 Total time taken of CPT as compared to Sequential transfer (lower transfer 

time better) 

CPT using 3 or less pairs of intermediate nodes resulted in poorer performance 

compared to sequential transfer. CPT using up to 4 pairs of intermediate nodes begins 

to perform better than sequential transfer when the data transfer size exceeds 3GB. CPT 

with 2 pairs of intermediate nodes result in longer transfer time for transfer of between 

8 and 16GB. As transfer of 16GB is reached, even CPT with 3 pairs of intermediate 

nodes. CPT with 4 pairs of intermediate node results in shorter transfer time compared 

to sequential transfer once the total transfer size exceeds 2GB. 

It is observed that increasing the number of pairs of intermediate nodes results in a 

decreased in the total time taken to complete the transfer. This is expected as increasing 

the number of intermediate nodes increases the aggregate bandwidth.  
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In order to better quantify the performance of CPT compared to sequential transfer, 

Figure 6.2 depicts the result in a graph of speedup against transfer size. The figure also 

shows both the result from actual experiments compared to forecasted result. 

Forecasted result is calculated from the model as part of the CPT framework. 

 
 

Figure 6.2 Speedup for CPT (experiment vs model) 

Firstly, it can be seen that the achieved speedup did not differ much compared to our 

model. This is good as the model is critical in forecasting the time taken for the transfer 

based on the known factors (i.e. VM startup time, internal and external throughput). 

Secondly, the general observation from the experiment is consistent to the models – 

speedup is low for small total data size transfer, but increases as the total data size 

transfer is increased. For an 8GB transfer using 4 pairs of intermediate nodes, we are 

able to achieve a speedup of roughly 1.4x. This also translates to 25% less time 

compared to sequential transfer. As expected, for any transfer below 8GB using 2 or 4 

pairs of intermediate nodes, speedup cannot be achieved. 

It is clear from the figure that out of the 2 cases, speedup > 1 is only archived when the 

number of pairs of intermediate nodes is 4 and with the two optimization - pipelining 

and network data piping. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8

p=2

p=4

p=2(model)

p=4(model)

sp
ee

du
p

total data transfer size (GB)



 
 

66 

Summary of the general observations are as follow: 

1. Speedup is low for transfer of small total size transfer (i.e. 1GB in our experiments). 

Benefits of the CPT is more significant for larger total size transfer. From our 

experiment, the data size has to be larger than 4GB. 

2. Increasing the number of pairs of intermediate nodes results in increased 

performance (i.e. higher speedup). However, the performance improvement has a 

diminishing return, where increasing the number of intermediate node results in 

lesser improvement gain than the previous addition. 

6.1.3 CPT with pre-testing 

In this section, CPT with 60 seconds of pre-testing is tested. A 1:1 ratio - 30 seconds of 

testing intra-DC and 30 seconds inter-DC bandwidth is used. At the end of the minute, 

the intermediate nodes are ranked (first based on the inter-DC, then the ratio of intra-

DC to inter-DC), and the bottom half performing VMs are discarded. The remaining 

half is used for the CPT transfer. The experiment is repeated 3 times a day at different 

time of the day for over the course of 4 continuous days (Feb 2018) – collecting a total 

of 12 set of results. 

Figure 6.3 and 6.4 depicts the result – average, minimum and maximum. Most 

importantly, it can be seen that the performance variability when pre-testing is lower, 

resulting in more consistent transfer time. For an 8GB transfer, no pre-testing results 

may differ up to 15% between different attempts while pre-testing differs by less than 

5%.  
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Figure 6.3 The upper and lower bound of CPT (p=4) performance without pre-testing. 

 
Figure 6.4 The upper and lower bound of CPT (p=4) performance with pre-testing. 

Despite the advantage of pre-testing, pre-testing comes with a 60 seconds overhead – 

making it not suitable for smaller transfer as the overhead is a huge proportion of the 

total transfer time. As the transfer grows larger (i.e. more than 8GB in our experiment), 

the overhead of pre-testing becomes insignificant and pre-testing becomes more 

worthwhile as results in performance improvement. 

6.2 Comparing CPT for HDFS with DistCp 

This section describes the experiment setup and result for CPT on HDFS cluster 

comparing to DistCp transfer. DistCp is the state-of-the-art for parallel transferring data 

between HDFS clusters and CPT is adapted to benchmark against DistCp.  
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6.2.1 Experimental Setup 

The setup on the AWS public cloud platform for CPT + HDFS experiment is slightly 

different from the previous subsection due to the specific requirements of HDFS. Two 

separate but identical clusters are set up with the support of Hortonworks Data Cloud 

for AWS (“Hortonworks Data Cloud for AWS,” n.d.), one in US Oregon region, and 

one in the EU Ireland region.  

Each cluster consists of 3 nodes, 1 Namenode (NN, also acts as the Hadoop Masternode) 

and 2 Datanodes (DN, also acts as the Hadoop Workernode). All nodes are type 

m4.large (2vCPU, 8GiB Memory) and 2 disks of 50GB each. Replication factor is set 

at 2 so each DN has a full copy of the data. Except for the replication factor, the Hadoop 

cluster has default parameters from Hortonworks. All the nodes are configured with 

public IPs which is necessary for both DistCp and CPT. Besides, reverse DNS lookup 

is enabled for DistCp to work using the native HDFS protocol. Let’s consider this as 

the base setup.  

Each of the experiment is performed by transferring an increasing number of 256MB 

and 512MB files separately with DistCp and CPT. Example, 12x 512MB means 12 

files of 512MB each, giving a total transfer of 6GB. The files are generated using the 

Linux dd tool (“dd(1): convert/copy file - Linux man page,” n.d.) and are imported into 

the HDFS cluster for the experiments. 

In order to avoid conflict and resources contention which impacts the accuracy of the 

experiments, all the virtual machines are exclusively allocated to our experiment. The 

Hadoop cluster is not running any jobs not pertaining to our experiment. 

The first experiment is conducted on the base setup – no spawning of intermediate 

nodes besides the original 2 Datanodes. The second experiment is with spawning 2 
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additional intermediate nodes (m4.large) per cluster. The third experiment is similar to 

the second except using t2.micro (i.e. a cheaper VM) with CPT only because DistCp 

comes together with HDFS does not have enough resources to be deployed in t2.micro 

instances that only has 1 vCPU and 1 GB Memory which is far below the requirement 

to run Hadoop.  

6.2.2 Results of CPT and DistCp on HDFS cluster 

The first experiment, Figure 6.5 shows the transfer time between 2 HDFS cluster using 

DistCp and CPT when no additional intermediate nodes are spawned. As shown, the 

time taken for CPT is slightly better than DistCp even with additional time is spent on 

additional stages introduced to make CPT work with HDFS. It can be observed that 

time taken for DistCp to complete the transfer is in “steps”. This is because the Hadoop 

cluster can only execute a pre-defined number (e.g. 7 for the default configuration on 

m4.large EC2 type) of map task at a time. Unlike the DistCp, time taken for CPT 

increases almost linearly as the total transferred file size increases. 

 
Figure 6.5 Transfer time of DistCp and CPT for various total size. 
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As a consequence of adapting CPT for HDFS, additional time is required for the stages 

HDFS import and export (Figure 6.6). However, for the case of 2x 512MB transfer, the 

time spent on this stages are not overwhelming significant, hence the CPT is able to 

provide equal performance as DistCp. 

  
Figure 6.6 Timeline of 2x 512MB CPT transfer (no spawning) for HDFS. 

  
Figure 6.7 Timeline of 12x 512MB CPT transfer (no spawning) for HDFS. 

Figure 6.7 depicts the time spent of each stage when transferring 12x 512MB files with 

CPT. As the total size to transfer has increased, it can be noticed that the overheads 

which cannot be parallelized (i.e. HDFS import and export) is a higher proportion of 

the total time.  

Next, Figure 6.8 shows the result of transfer with spawning 2 additional intermediate 

nodes without pre-testing. As expected, both DistCp and CPT demonstrated better 

performance when additional intermediate nodes are spawned. However, just 

comparing the results of scaling with m4.large VM type does not show that CPT or 

DistCp scales better than one another. In this regards, they are of equal. 



 
 

71 

 
Figure 6.8 Transfer time and cost of two additional pairs of instances for DistCp and 

CPT  

As no additional nodes were spawned when the number of files is 2 and 4, the transfer 

time for both CPT and DistCp is similar to the result in the previous experiment (Figure 

6.5). The reason, as described earlier in the CPT framework, Transfer Manager 

forecasted that the transfer time will not decrease and hence decided not to spawn any 

intermediate nodes. No additional cost is incurred as no intermediate node is used. 

For transfer of lesser than 8 files (i.e. 8 pieces of 512MB each), the utilization of 

t2.micro for CPT gave similar performance as m4.large but with more than 75% cost 

savings over both CPT with t2.large and DistCp. At transfer of 12 files, CPT resulted 

in longer transfer time compared to DistCp. At transfer of 16 files, CPT with t2.micro 

resulted in similar transfer time as DistCp while t2.large took a longer time to complete 

the transfer. As expected, CPT with t2.micro is able to match the performance CPT 

with t2.large while incurring much lower cost. 

For DistCp, introducing additional nodes increases the number of map task running in 

parallel – and hence, reduces the total time taken to complete the transfer. However, 

DistCp requires running certain Hadoop components which comes with higher resource 
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requirement and is not able to run on lower end machines. It is not possible to run 

DistCp with t2.micro. 

 

 
Figure 6.9 Transfer time of CPT with p<=10 to match DistCP's transfer time. 

Figure 6.9 shows the result when running CPT with a variable number of t2.micro 

intermediates nodes in order to at least match the performance of DistCp i.e. CPT 

transfer time is kept as similar to DistCp as possible, the number of intermediate nodes 

for CPT is varied. As shown in the figure, 2 pairs of intermediate nodes (denoted as 2x) 

were used during the transfer of 8 pcs of 512mb files. As the number of files increases, 

the number of intermediate nodes required for CPT to match DistCp increases. It is 

observed that this is particularly true when the number of files is right before the next 

“step” of DistCp – the number of files to transfer is divisible by the number of files that 

can be handled by DistCp at a time in parallel.  

Besides, it is also observed that adding many nodes to CPT only brings diminishing 

marginal improvement to the performance as it approaches the saturation point (where 

all the part that can be parallel its time spent is closer to 0). 
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Overall, the experiments show that CPT outperforms DistCp and comes with the 

flexibility of using running with lower end machines which often has much higher 

network performance to cost ratio. 

6.3 Summary 

The work described in this chapter has validated the CPT models and demonstrated that 

CPT is able to reduce the transfer time compared to sequential transfers. It is also learnt 

that speedup is low for transfer of small total data size, however, benefits of CPT get 

significant for larger file transfer. The exact number depends on the other factors such 

as internal and external network throughput.  

The result also showed that as the number of pairs of intermediate nodes increases the 

transfer time reduces. Besides, pre-testing results in more predictable performance but 

incur additional time overhead. The result of CPT on HDFS cluster demonstrated that 

CPT outperforms DistCp. The transfer time of CPT is not only lesser than DistCp, but 

also has a lower cost – up to 8x in certain scenario.  

In a nutshell, corresponding to the third research objectives of our work, the results 

validated that it is possible to scale cloud-to-cloud data transfer that is fully 

implemented by cloud consumer by spawning intermediate nodes. The implemented 

solution outperforms existing state-of-the-art data transfer techniques.
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CHAPTER 7  

CONCLUSION 
 
 
 
 

This chapter summarizes the research work, provides a conclusion to the dissertation 

and describes the future work. 

7.1 Revisiting the Objectives 

This research studied data transfer between cloud VMs sitting across different 

datacenters. The existing de-facto approach is point-to-point transfer performed by 

cloud consumer where the bandwidth of the VM is capped by cloud provider. The 

dissertation proposed Cloud Parallel Transfer (CPT), the technique of parallelizing data 

transfer across intermediate nodes that are spawned specifically for the purpose of 

scaling data transfer. The first objective of the dissertation is to model and identify the 

limiting factors of scaling data transfer via aggregating bandwidth of intermediate 

nodes. The transfer time and financial cost models are introduced as a basis for 

estimating the performance and cost of the parallel transfer. The process flow is derived 

and two optimizations network data piping and pipelining were introduced to reduce 

the total transfer time.  

The second objective is to validate and enhance the model for implementation on a 

public cloud. A short study on the VMs offering, pricing model and network throughput 

behavior is made. Here, two techniques are proposed; VM-type selection and pre-

testing. Based on the test conducted on AWS cloud, the derived models are studied in 

order to understand the various factors involved in implementing the proposed 

approach in a cloud environment. From this research, a framework for end-to-end 
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parallel transfer is proposed. The framework covers transfer time and cost estimation 

based on the models, and high-level fault tolerance when intermediate node fails.  

The third and final objective is to implement CPT and compare it with existing data 

transfer solution. The dissertation describes the implementation of the proposed 

framework, then, by experiments, the performance and financial cost of the proposed 

framework is compared to existing sequential transfer. The result demonstrated that 

unlike typical methods such as sequential transfers, CPT is able to circumvent the 

network bandwidth allocation of the VM.  

The proposed transfer is adapted and compared to state-of-the-art parallel file transfer 

for Hadoop environment – DistCp. The result showed that CPT is able to reduce the 

transfer time for cases when the number of files is low. DistCp starts to perform better 

when the number of files increases. CPT is also compared to the modified DistCp which 

can scale by adding nodes to the cluster, CPT not only performs better but also with 

cost reduction by multiple factors. 

In a nutshell, this research aims to explore the feasibility and challenges of scaling 

cloud-to-cloud VM data transfer by circumventing the network allocation of VMs. The 

study is made by modelling the proposed solution, implementing the proposed 

framework and performing experimental analysis. Meeting the research objectives has 

led to major contributions in the area of utilizing intermediate nodes to improve data 

transfer throughput. The work produces a working cloud-to-cloud data transfer based 

on the designed parallel transfer framework. The solution does not require any cloud 

provider’s insight. 
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7.2 Limitation and Future Work 

An issue that comes with this framework is the increased in operational complexity as 

file chunks and intermediate nodes have to be managed during the lifetime of the 

transfer. Besides, the framework is only applicable when the cloud provider limits the 

network bandwidth on VM level. If the bandwidth is limited based on other metrics 

such as per tenant or per account, the technique to aggregate bandwidth as described in 

this work will not work. 

In future work, m-to-n mapping of intermediate nodes should be explored in order to 

increase the efficiency in cases where similar VMs in source and destination DCs is not 

possible i.e. different cloud platform. Another potential area for further exploration will 

be to use other forms of elastic cloud storage services or microservices as intermediate 

nodes. This removes the need for managing the life of VMs as intermediate nodes and 

potentially further reduces the transfer cost. 
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