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ABSTRACT 

 

 

REAL-TIME TIME SERIES ERROR-BASED DATA REDUCTION 

FOR INTERNET-OF-THINGS APPLICATIONS 

 

 WONG SIAW LING  

 

 

 

There are many time series data reduction methods, ranging from 

primitive data aggregation such as Rate of Change to sophisticated compression 

algorithms. Unfortunately, many of these existing algorithms are limited to 

work in offline mode only, data can only be reduced after a certain amount of 

data is collected. Such offline mode is not suitable for IoT applications such as 

monitoring, surveillance and alert system which needs to detect events at real-

time. 

 

On the other hand, existing real-time time series data reduction 

techniques often require manual configuration and adaption to intended 

applications and hardware like IoT gateway. Such requirements prevent 

effective deployments of data reduction techniques.  

 

This work is inspired by Perceptually Important Points (PIP) data 

reduction algorithm due to its superior data reduction ability. This work differs 

from existing PIP in the sense that, we have devised a real-time data reduction 

algorithm namely error-based PIP Data Reduction (PIPE), that operates with a 

single value configuration; error rate, which can be used with various sensor 

data without any priori analysis required. In additional to that, PIPE is simple to 

the extent that it can be deployed at the sensor node as well.  
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Through 7 different time series datasets and by comparing the result 

against the existing data reduction techniques such as GZIP, Real-Time PIP and 

Rate of Acceleration threshold-based data reduction, the experimental results 

are promising, the evaluation shows that it is possible that by only forwarding 

10% of data, the reduced data produced by PIPE can be used to reconstruct the 

time series with an accuracy of 0.98 in real-time.  
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CHAPTER 1 

 

INTRODUCTION 

 

Internet-of-Things (IoT) collects, transmits and analyses data from a 

wide range of connected devices. Among the popular use cases are 

environmental monitoring, biometrics data for healthcare, smart homes and 

cities initiatives. Depending on the sampling rate and type of applications, 

sensors can generate an enormous amount of data over short timespans. For 

instance, an accelerometer sensor that are deployed to monitor machinery 

vibration can generate up to hundreds of reading in a second. As the adoption 

of IoT grows, transmission of such amount of data becoming challenging 

because energy, network bandwidth and storage space of sensor nodes are often 

limited (Papageorgiou et al., 2015a). To overcome the obstacles, multiple works 

have suggested adopting time series data reduction to reduce the amount of data 

that need to be processed and transmitted (Papageorgiou et al., 2015a), (Fathy 

et al., 2018), (Mohamed et al., 2018) & (Feng et al., 2017).   

 

Many time series data reductions are designed for time series data 

mining years before the emergence of IoT. In general, those existing techniques 

can be categorized into lossless and lossy data reduction. However, it is difficult 

to employ those techniques directly with IoT applications which operates with 

real-time sensing.  
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Firstly, some of the existing data reduction algorithms, like GZIP 

compression (P. Deutsch, 1996), time-domain transformation (Agrawal et al., 

1993) & (Chan and Fu, 1999)  and Perceptually Important Points (PIP) (Chung 

et al., 2001) can only act upon the entire datasets but not real-time processing. 

Real-time data collection is critical for IoT use cases like monitoring, 

surveillance and alerting system to ensure a timely response. For instance, 

abrupt fluctuation of reading, sudden change and peaks. Therefore, IoT needs a 

time series data reduction solution which is capable to perform data reduction 

and transmission in a real-time fashion to ensure essential information is 

delivered to users in a timely manner.   

 

 There are data reduction algorithms like sampling, data filtering and 

compressed sensing (Rani et al., 2018) can act upon data points at real-time. 

However, those techniques required threshold setting. Often, the threshold 

setting is not adaptive to IoT data from different type of sensors and offline 

analysis is required to set the optimum threshold. For instance, sparsity needs 

to be known before compressed sensing starts reducing data. Sparsity is varied 

among different time-series. Therefore, offline analysis need to be done as pre-

work. 

 

The needs to reduce real-time IoT data is not new and there are many 

existing works (Papageorgiou et al., 2015a), (Fathy et al., 2018), (Mohamed et 

al., 2018) & (Feng et al., 2017). Unfortunately, these existing works are often 

use-case specific. For example, most of the current works focus on processing 

only biometrics data (Dubey et al., 2015) and designing a solution specific to 
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IoT gateway implementation (Papageorgiou et al., 2015a) & (Feng et al., 2017). 

This indicates it is difficult to design a data reduction solution for real-time IoT 

application without constraint on computation and implementation.  

 

PIP is an algorithm that is used to extract a subset of important points 

from time series to achieve data reduction. PIP is subsequently modified to 

achieve real-time data processing (Papageorgiou et al., 2015a). However, the 

central issues of PIP such as offline processing and difficulty in algorithm 

configuration still yet to be fully optimized.  

 

To bridge the gaps that mentioned above, in this work, a novel data 

reduction approach inspired by PIP, namely Error-Based PIP Data Reduction 

(PIPE) is proposed. PIPE can achieve real-time data reduction with single error-

rate configuration, without requirements such as hardware and data-specific. 

1.1 Problem Statement  

Time series data reduction is essential for real-time IoT applications to 

relieve demand of limited bandwidth, energy and storage space. There are 

existing works focus on design a new data reduction solution, or optimizing 

existing data reduction algorithm to adopt IoT use case, however, there are 

issues remains unresolved: -  

 

a) Existing data algorithms are mainly processed data in offline mode, or 

configuration requires offline data analysis. For instance, PIP can only 

be used to reduce data after collection is completed, and to the best of 
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our knowledge, there is no solution in configuring PIP to work at 

optimum level. 

 

b) Existing real-time data reduction techniques focuses on less-constraint 

implementation. For instance, IoT gateway that generally provides high 

compute power compare to a sensor, as well as use-case specific like 

biometrics time series data reduction, giving little or no insight on 

whether the same technique can be applied with other use-case or 

environment. 

1.2 Objectives  

The goal of this work is to devise a novel data reduction technique that 

can perform real-time time series data reduction for IoT applications without 

constraint such as offline configuration, hardware requirements or addressing 

specific use-cases/applications such as biometric data. Hence, the research 

objectives can be described as below: 

 

a) To devise a new data reduction technique that is: -   

i. Capable to perform data reduction and forwarding at real-time. 

The definition of real-time processing of this work is the each of 

data points of time series will be processed and forwarded when 

necessary, as soon as it is generated by sensing device 

 

ii. Requires no offline analysis for configuration. In another word, 

the configuration of data reduction does not require knowledge 
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or information that only can be derived via offline computation 

or calculation 

  

iii. Can be deployed at heterogeneous IoT environment including 

sensors. The data reduction technique needs to be less compute- 

intensive and complex so that user has the flexibility to deploy 

the data reduction technique at any tier of IoT such as the IoT 

gateway and sensor node. 

 

In short, this research focuses on creating a data reduction technique for 

real-time time series data for IoT applications.  

1.3 Research Contribution 

The major contributions of this research work are: - 

a. An error-based PIP data reduction (PIPE) is devised. PIPE can 

simultaneously achieve real time data reduction and forwarding with 

single error rate configuration. 

 

b. Experiments and evaluations have demonstrated that PIPE can achieves 

consistent and strong performance across every different kind of sample 

datasets, proven its capabilities working with heterogeneous time series 

data.   

 

c. PIPE can be implemented at the sensor node, showing the proposed 

technique does not need high computation power that can only acquire 
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from hardware such as IoT gateway. Besides, PIPE can be employed to 

reduce the power consumption of the sensor node by half.  

1.4 Dissertation Organization 

This dissertation will be organized as follows. Continue with Chapter 2, 

literature review on related works is presented. In chapter 3, the proposed work, 

error-based PIP data reduction (PIPE) will be discussed and explained. System 

implementation will be discussed in Chapter 4. Chapter 5 illustrates the 

evaluation process and the presentation of results. Finally, we conclude this 

work with Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Time Series Data Reduction 

Before the rise of IoT, data reduction has been actively utilized in data 

mining field to reduce the dimension and size of time series data, so that 

subsequent data analysis can be carried out in a more effective and faster 

manner. (Fu, 2011). Similarly, in the context of IoT, data reduction is needed to 

reduce the size of a dataset that will subsequently reduce the consumption of 

network, power and storage resources, with new requirements such as real-time 

processing and hardware constraint for sensor node implementation.  

 

Data reduction, sometimes also known as data compression (the word 

compression and reduction will be used interchangeably under Chapter 2) can 

be categorized mainly in two form, lossless and lossy compression (Salomon, 

2004). Lossy compression achieves data reduction by losing some information 

whereas lossless compression has no information loss. Lossless compressions, 

in general, are operating offline, given the fact the compression can only be 

done effectively after data collection is completed. Therefore, lossless 

compression is difficult to be adapted to real-time IoT application. In contrary, 

as lossy data reduction can tolerate a certain degree of information loss, 

nonessential information can be dropped at real-time to achieve data reduction. 

Because of that, re-constructability of reduced data from lossy data reduction is 

an important metric to ensure original information still preserved.  
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In subsequent sections, details of existing data reduction algorithms and 

techniques of both lossless and lossy data reduction will be discussed.  

 

2.1.1 Lossless Compression  

Lossless compression is a data reduction method whereby the output of 

de-compressed data is identical to original data compressed by the compression 

algorithm. (Salomon, 2004). One of the notable and widely used lossless 

compression is GZIP (P. Deutsch, 1996). GZIP can be used to compress a chunk 

of data into a single file which is usually smaller in size. By forwarding a single 

compressed file, we can effectively reduce the consumption of bandwidth and 

power during the data transit. However, data compression can only be done after 

data collection is completed. At best case, GZIP can be modified to perform 

batch processing, however, the smaller the batch size, the less effective of GZIP 

compression will be in term of reduction rate, a ratio of the size of compressed 

dataset over the size of the original dataset. This still holds true for other lossless 

compression technique like ZLIB (Deutsch and J-L. Gailly, 1996), LZ4 (GitHub, 

2018), Zstandard (Facebook, n.d.) and SprintZ (Blalock et al., 2018). 

 

2.1.2 Lossy Compression 

Lossy Compression achieves data reduction by removing data points 

from the original time-series sequence. Therefore, the main design 

consideration of lossy compression technique is how the lossy compression 

algorithm decides which data to be removed from original data, without losing 

too much meaningful information.  
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Sampling (Aström, 1969) is one of the simplest forms of lossy 

compression. Sampling is performed based on N samples of time series at an 

equal spacing of h. However, sampling at an equal spacing can run into the risk 

of losing important information if events happen in between the spacing.  

 

Simple aggregation-based lossy data reduction like segmented mean (Yi 

and Faloutsos, 2000) and Piecewise Aggregate Approximation (PAA) (Keogh 

and Pazzani, 2000) leverage the mean of each segment as the features 

representation of the original time-series. Segmented Mean and PAA are 

aggregating the mean result at an equal spacing, important information can be 

lost if it happens in between the spacing. Therefore, to solve such issue, 

Adaptive Piecewise Constant Approximation (APCA) (Eamonn Keogh et al., 

2001) is proposed, which allows the mean to be calculated with an arbitrary 

length of a segment. The authors of (E. Keogh et al., 2001) have mentioned, in 

general, there is three type of time series segmentation approaches which is 

Sliding Windows, Top-Down and Bottom-Up. The authors were aiming to 

optimize those algorithms by introducing Sliding Window and Bottom-Up 

(SWAB) algorithm. Similarly, Schoellhammer et al. (2004) have proposed a 

technique to represent data with a set of aggregated lines based on error-bound. 

In general, segmentation-based data reduction techniques leverage aggregated 

representation such as mean, line segment to present the original time series. 

Such aggregated data could impose challenges for the data analytics process. 

Especially when the user is interested to know the actual value of the data points, 

or critical points that contribute to an event. For instance, it is important to know 
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the actual heart rate of a person to determine whether it is exceeding a dangerous 

threshold.  

 

Data filtering is an option to achieve data reduction due to its simplicity 

in term of implementation. Data filtering decides whether to retain points by 

comparing the current value to a pre-defined threshold and it can be 

implemented at real-time.  Papageorgiou et al.(2015a) have proposed a time-

series forwarding handler to only forward value when it falls under a specific 

range, greater and lower than a threshold. The authors have devised a decision-

making framework which can perform switching between handler dynamically. 

Similarly, (Toni et al., 2013) has proposed a time series data filtering based on 

single value, the rate of change of data and the rate of acceleration of data. 

Besides, the work has also devised a data reconstruction scheme and concluded 

that pairing the data reconstruction scheme with data filtering based on the rate 

of acceleration reveals the best results for human movement monitoring. The 

main challenge of adopting data filtering techniques is to define the right 

threshold value to produce optimum results. For instance, work by Toni et al. 

(2012) has concluded different threshold values can create a significant impact 

to reduction rate results, however authors offer no insight on how to set the 

optimum threshold. Work (Sarker et al., 2016) has done substantial pre-analysis 

to compute a threshold value that would fit their proposed data filtering 

technique, proven that data cannot be reduced and transmitted at real time 

without such pre-works to set the threshold.  
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Apart from reducing time series in time domain directly, there are data 

reduction methods which are applied on frequency domain such as Discrete 

Fourier Transform (DFT) (Agrawal et al., 1993), Discrete Wavelet transform 

(Chan and Fu, 1999) and Singular Value Decomposition (SVD) (Cadzow et al., 

1983). Data reduction is achieved by converting time domain to space domain. 

These data reduction techniques can be used to extract features from time series 

data, however, the process can only be done offline, which means after data 

collection is completed. Furthermore, time domain transformation usually is 

compute-intensive.  

 

Compressed Sensing (CS) theory is emerging recently as a domain of 

data reduction and signal compression. CS can be used for the acquisition of 

signal that is either sparse or compressible, or in another word, the signal or 

time series contains small amounts of non-zero or significant data, while the 

rest are zero or non-important data, which can be discarded. (Rani et al., 2018). 

By exploiting the sparsity of data, compressed sensing is used to acquire data 

with a fewer sample and then be reconstructed to recover the original data. A 

lot of works have been introduced under the domain of compressed sensing. In 

relation to the IoT applications, work (Li et al., 2013) has proposed a CS 

framework for IoT deployment. CS requires sparsity of data to be known in 

advance, therefore ,work (Chen et al., 2012) has proposed an optimized CS for 

IoT without the need of pre-knowledge of sparsity. Besides, authors of (Zhang 

et al., 2018) has proposed a method that is stable and robust in recovering from 

the compressed signal using compressed sensing, for ECG application. Not all 

IoT application generates sparse data, for instance, acceleration sensor that 
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attached to a speeding car will generate dense data. (Amarlingam et al., 2016). 

Therefore, Compressed Sensing in limited to certain use-case only. 

 

Perceptually Important Points (PIP) (Chung et al., 2001) achieves data 

reduction by acquiring important points and discard the rest. PIP algorithm is 

less compute intensive compared to other data reduction techniques like GZIP 

compression and signal transformation. Due to its simplicity, PIP has been 

repeatedly modified and optimized for different use-cases. For instance, the 

authors of (Zaib et al., 2004) utilized the PIP framework to devise a pattern 

recognition technique, work of (Tsinaslanidis and Kugiumtzis, 2014) has 

devised a time series prediction scheme based on PIP and Dynamic Time 

Wrapping. Phetking et al. (2009) use PIP to devise a method to index financial 

time series data and Fu et al. (2017) has optimized the PIP algorithm to adapt 

with use-case such as big data and data mining analytics. When speaking about 

IoT context, PIP cames with two central issues that hinder people to adapt it 

with IoT applications and reduce sensor data. Firstly, data can only be processed 

by PIP after collection is completed, PIP can only act upon the entire datasets. 

Second, configuration needs to be done to control the amount of data required 

to be reduced. There is no guidelines or frameworks which helps in setting the 

optimum configuration. Hence, user is required to determine the configuration 

on their own and very often, the configuration will be different based on 

different use-case or requirements. The authors of (Papageorgiou et al., 2015a) 

has proposed a real-time PIP algorithm based on caching for IoT gateway, 

performs data reduction for IoT applications. Feng et al. (2017) enable real-time 

time-series data reduction based on PIP by introducing multi-tiers processing at 
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IoT gateway and edge device. Both works offer real-time processing based on 

PIP, however, maybe due to compute-intensive, the implementation requires 

powerful device like IoT gateway and not for sensor node.  

 

With this research work, we decided to design a new data reduction 

algorithm to fulfil our design objectives which are real-time data reduction and 

forwarding, no offline analysis for configuration and can used for 

heterogeneous hardware deployment and IoT sensors data.  

 

2.1.3 Perceptually Important Points (PIP) 

The fundamental concept of PIP is to identify important points from 

original data and discard the rest. By preserving a subset of important points, 

PIP retains the information presented in the data and the set of important points 

can be used to recover the original data as well. The PIP identification process 

is first proposed by (Chung et al., 2001) for the use of pattern matching for 

financial analysis purpose. 

 

The PIP identification process can be explained as followed: - 

a) Assume time series 𝐶 = {𝐶1 … 𝐶𝑛} has in total 𝑛 number of data points. 

The first two PIPs are 𝐶1 and 𝐶𝑛.  

 

b) To identify the third PIP, 𝐶1 and 𝐶𝑛 will be connected to form a line. 

The point that is furthest from the line will then be the third PIP.  
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c) To continue to identify the fourth PIP, a line will be formed between 

adjacent PIPs, the point that furthest away from the line will then be 

elected the fourth PIP. 

 

d) The previous step will be repeated to identify subsequent PIP until the 

number of required PIPs has reached, otherwise, the process will only 

be ended until no remaining data points to be processed.  

 

Figure 2.1 – 2.4 has summarized the entire PIP identification process of 4 PIPs.  

 

 
Figure 2.1: The Graphical Model of Time Series C 

 

 

Figure 2.2: Identification of First Two PIPs 
 



 

 

15 

 

 

Figure 2.3: Identification Process of Third PIPs 

 

Figure 2.4: Identification Process of Fourth PIPs 

 

 

As shown, all data points have to be collected and known before the PIP 

identification. Therefore, the process is inherently offline. Besides, unless the 

user explicitly configuration the number of iteration, PIP identification will be 

iterated until all points are indexed based on its importance order. Therefore, 

such configuration is crucial and can have a significant impact to data reduction 

performance. This research work will focus on solving these two issues by 

optimizing PIP algorithm, and employ the optimized PIP to devise real-time 

data reduction for IoT applications.  

2.2 Existing Data Reduction Solutions for IoT 

Several works have been proposed to solve data reduction challenges 

for IoT applications. Work by Papageorgiou et al. (2015a) has proposed a data 

reduction framework for Edge and IoT gateway implementation namely NECtar, 
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that automates the switching between different data reduction algorithms 

includes Sampling, Piecewise Approximation, thresholding filtering, change 

detection and real-time PIP. The authors focus on illustrate the optimization 

made on the PIP algorithm and concluded by only forwarding 1/3 of data items, 

real-time PIP can achieve accuracies between 0.76 and 0.94. To enable real-

time PIP, caching is used to store the past processed data points and project the 

future points based on history. PIP identification is executed upon every 

incoming data point. The result shows caching more items like 500 data points 

yields a better result. The processing of each data points is O(𝑛2). It is compute-

intensive and the result has shown with a light resources gateway, the compute 

process can take up to 1 sec for 400 cache size. Hence, the proposed technique 

is designed for more powerful hardware like IoT gateway. 

 

The same authors further optimize their solution with work 

(Papageorgiou et al., 2015b). A feature call reconstruct-ability table is added to 

identify the best data reduction strategy based on its reconstruct-ability. 

However, the computational complexity of the enhanced technique is not 

simplified. The solution still not suitable to deploy at sensor nodes.  

 

Work of (Feng et al., 2017) focuses on enhancing the PIP algorithm by 

introducing several methods like interval restriction, dynamic caching and 

weighted sequence selection. These methods are deployed separately in both 

gateway and edge tiers.  
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 Dubey et al. (2015) strive to solve the challenge of collecting healthcare 

data with Fog Computing. They have proposed a IoT gateway data reduction 

framework that includes Dynamic Time Wrapping (DTW), Clinical Speech 

Processing Chain (CLIP), Fundamental Frequency as well as compression. The 

framework is deployed with an Intel Edison as the IoT Gateway.  

 

 Alduais et al. (2016) have proposed an IoT-based data collection method 

that aims to reduce the number of transmitted messages via a sink node, which 

can be defined as IoT Gateway. To reduce the number of transmissions, the 

authors proposed to detect and send only rare events based on absolute 

differential values, with a threshold value. The authors did not mention the 

strategy of defining the threshold value.  

 

The authors of (Fathy et al., 2018) proposed an adaptive method to 

minimize the data transmissions between the sink and sensor nodes. When 

sensed values deviate significantly with a pre-defined threshold, it will be 

transmitted, otherwise, the value will be discarded. The proposed methods 

operate with two tiers with sink and sensor nodes. 

 

  Mohamed et al. (2018) have proposed an adaptive framework for real-

time data reduction in Advanced Metering Infrastructure (AMI). The data 

reduction is done based on forecasts, when the smart meter reading is close to 

the forecasted value, it will be discarded, otherwise, it will be transmitted. To 

ensure the framework is adaptive to the pattern of smart meter data, the 

framework allows switching between forecasting models to ensure the 
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reduction scheme is most suitable one to the current data pattern. The 

framework consists of a total 5 components. Each component consists of 

different calculation that has to be deployed in different tiers of AMI.  

 

Last but not least, Maschi et al. (2018) have proposed a real-time data 

summarization concept at sensor node level based on parameters. Parameters 

are stored and updated in a database that is located at Cloud. Sensors can 

perform a local decision whether to transmit data to the server by 

communicating and acquiring the parameter from the cloud database.  

 

In summary, based on our definition of real-time, many of the existing 

works have yet achieved real-time data reduction and forwarding, requires no 

offline analysis for configuration, capable to reduce heterogeneous IoT data and 

can be deployed in heterogenous IoT hardware including sensor nodes 

simultaneously. Most of the works focus on solving one or the other 

requirements. For instance, some works focus only on real-time IoT gateway 

data reduction, while the other focus on solving specific use-cases like 

biometrics time series data reduction.  

2.3 Measurement of Error  

This research work aims to devise a real-time error-based data reduction 

technique. Therefore, error estimation will be the crucial component of the 

proposed technique. The design goal is to utilize error estimation as the gauge 

of whether data need to be discarded or forward. There are different variants of 

statistical error measurement is available, the discussion is followed.  
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One of the straight-forward error measures is Euclidean distance. The 

Euclidean distance of each data points can be calculated via the formula of 2.1. 

 

𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏))  =  √(𝑥 −  𝑎)² +  (𝑦 −  𝑏)² 
(2.1) 

 

Similarly, Dynamic Time Wrapping (DTW) is proposed by Keogh and 

Ratanamahatana (2005) to serve as a distance measure, which can be operated 

with time series data that comes with different lengths and sizes. Both 

techniques offer fine-grain comparisons, between each pair of actual and 

forecasted/recovered data points, but has no unified or aggregated result when 

compare between two datasets where length is more one.  

 

Apart from that, there are many other error measurements that can be 

used to estimate error for time series data. Shcherbakov et al. (2013) have done 

a comprehensive review on each of the error measurement. The authors have 

mentioned there are multiple variants of error measurement. Among the widely 

used techniques are absolute forecasting error and measures based on errors 

such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and 

Mean Absolute Percentage Error (MAPE). Each of these techniques came with 

different limitations. MAE and RMSE produce errors that can only be 

associated with the specific time series data that used for calculation, the error 

reading cannot be used to associate with other time series data. For instance, the 

error of temperature reading cannot be interpreted together or compare with the 

error of humidity reading. This issue does not apply to MAPE, which measures 
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error based on percentage. However, MAPE cannot process time series that 

contains value zero due to division by zero.  

 

Jaccard Coefficient is introduced by Jaccard (1901). For two set of time 

series data 𝑋, 𝑌, Jaccard Distance between the two time-series is 𝐷(𝑋, 𝑌) = 1 −

 𝐽(𝑋, 𝑌). To adapt Jaccard Distance to vectors as well, the Weighted Jaccard 

Distance is then introduced (Chierichetti et al., 2010). The Weighted Jaccard 

Distance formula is defined as below: -  

  

𝐽(𝑋, 𝑌) =  {1 −  

∑ min(𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1

∑ max (𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1

0

 
𝑖𝑓 ∑ max (𝑋𝑖, 𝑌𝑖)

𝑛
𝑖=1 >  0,

𝑖𝑓 ∑ max (𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1 = 0

 

 

(2.2) 

 

Weighted Jaccard Distance is a ratio-based calculation. It can be used to 

measure the dissimilar between two time series data and the ratio-based result 

is easy to interpret and make comparisons between different applications that 

collects different time-series data (Peng et al., 2016). This research work will 

incorporate Weighted Jaccard Distance with the proposed technique PIPE.  
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CHAPTER 3 

Proposed Solution 

3.1 Time Series Data Reduction Design Goal 

The concept of Internet-of-Things is not only about sensing the physical 

environment but includes using the sensed data to react with events at real-time. 

For instance, turn on light based on human movement, raise the emergency 

alarm if machinery is vibrating at an unusual threshold. Because of that, in the 

context of IoT, the data reduction technique need to process and forward data 

at real-time.  

 

Reduction rate is one of the keys and most frequently used metrics to 

measure the performance of a data reduction technique. However, it is important 

to note retaining important message or information from the original time series 

is more crucial especially for alerting application that cannot tolerate missing 

event. In this work, one of the design goals of the data reduction technique is 

then to prioritize correctness of more reduction rate. When the time series 

contains a lot of events or patterns, the information should be retained rather 

than discarded to achieve high reduction ratio.  

 

In chapter 2, we have done a throughout review on existing data 

reduction techniques, including works that focus on solving IoT challenges. 

One of the common problems among the existing works is non-adaptive 

configuration. For instance, threshold filtering requires users to define threshold 

based on the statistical characteristic of the time series; compressed sensing 
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requires the sparsity of data to be known in advance; PIP requires users to define 

the number of PIP identification iteration. Such requirements will hinder large-

scale general purpose IoT deployment since human intervention is required.  

This work aims to minimize the need for configuring threshold values for data 

reduction processing, especially the threshold value can only be computed 

offline.  

 

Besides, most of the existing works are designed to reduce data at the 

IoT gateway level. While this may due to the needs of computational power, 

this imposes a challenge for some use0case that has only two tiers setup: sensor 

and endpoint. Therefore, the second aim of this work is to design an algorithm 

that is less-compute intensive that can be deployed with sensor nodes, as 

compared to existing work that reduces data at the gateway level.  

 

In summary, the design goals of the proposed work Error-Based PIP 

Data reduction (PIPE) are: -  

a) Real-time data processing and forwarding 

b) Prioritize correctness over reduction rate 

c) A Single configuration that can be applied with heterogeneous 

sensors data, which required no offline analysis configuration setting. 

d) Less compute-intensive and can be deployed at sensor nodes.  
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3.2 PIPE Workflow Overview  

Figure 3.1 shows an overview of the proposed data reduction technique, 

Error-Based PIP Data Reduction (PIPE). PIPE operates with an error rate. Error 

rate indicates the degree of missing information that user can tolerate. This is 

the only parameter needed and it works across all type of sensor data. 

 

 

Figure 3.1： High Level PIPE Workflow  

 

 

Each data points, that is generated by sensors will then be processed with 

PIPE. The workflow first starts with estimating the error can be generated by 

the data point, if it is not sent to the endpoint. Estimated error is computed with 

the formula of Weighted Jaccard Distance, as shown with equation 2.2. If the 

estimated error is lesser than the defined threshold, PIPE will continue 

collecting and processing the subsequent data points. If the error is more than 
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the defined threshold, PIPE will trigger the data reduction process and extract a 

subset of important data points using PIP (Fu et al., 2008). This ensures the 

subset of important data points can be reconstructed with error lesser or equals 

to the defined threshold.  

 

The extracted important points will then be sent to the user endpoint. 

The workflow continues with processing the subsequent points generated by the 

sensors. As such, each data point is processed, reduced and forwarded to the 

endpoint at real time when the error generated is more than the defined threshold. 

3.3 Error Rate 

As discussed, accuracy is crucial, especially for lossy method to ensure 

information loss is kept minimal. Therefore, one of the design goals of PIPE is 

to prioritize accuracy over data reduction rate. To ensure accuracy is 

consistently kept at desire level, we need impose a parameter for PIPE to control 

the overall information loss or in another word, error that is generated by the 

data reduction process. In this work, we call such parameter as the error rate 

threshold. Error rate threshold will be used to monitor the error generated as if 

the current and previous unsent data points are discarded from the original 

dataset. If the error exceeded the threshold, the optimized PIP will be employed 

to extract a set of important points, whereby the set of important points can be 

used to recover the original datasets. The recovered datasets will have smaller 

or equal error to the error rate threshold.  
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There is another design goal: a single configuration that can interoperate 

with heterogeneous sensors data. This need to be reflected in the error rate 

threshold. To fulfil this requirement, we have done studies on existing error 

measurement method in section 2.3.  

 

With the information available, we have concluded that we will employ 

Weighted Jaccard distance, a ratio-based error calculation as the error rate 

threshold.  

 

The Weighted Jaccard Distance reading falls between 0 and 1. 0 

indicates both datasets are identical and 1 indicates both dataset is completely 

different. The reading in between can be used to indicates the error of the 

approximated datasets vs the original datasets. As it is ratio-based, it can be 

adapted for any time series data generates by different sensors, regardless of the 

range of number that the sensor operates on.  

 

As mentioned, the error rate threshold can accept values ranging from 0 

to 1. One of the reference settings that users can be adopted is the sensor margin 

of error. For instance, Schoellhammer et al. (2004), who proposed an 

aggregation-based data compression has explained that sensors, in general, 

came with a hardware-specified margin of error. As a result, sensors generate 

noise within the margin of error and therefore it can be used as an indicator to 

remove noises from original datasets, and achieve data reduction. For example, 

if a temperature sensor has a margin error of 2%, the error rate threshold can 

then be configured at 0.02.  
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3.4 Error Estimation for Current and Previous Unsent Data Points  

The process of error estimation can be divided into two main operations: 

estimator construction and error computation. The workflow is depicted as 

Figure 3.2. 

 

 

 

Figure 3.2: Error Estimation Workflow 

 

 

To estimate the error can be generated by current and previous data 

points is unsent or discarded from original datasets, we need to create an 

estimator that we can use to make comparisons with. In this proposed work, the 
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estimator will be a linear line that is connecting the first and the last points of 

current and previous unsent data points. This estimator - linear line will then be 

used to compute the Weighted Jaccard Distance.  

 

If the Weighted Jaccard Distance is more than the configured error rate 

threshold, the process will be continued by data reduction and forwarding, else 

the current data points will be stored in the memory as unsent data points for 

the subsequent processing.  

 

Assuming the time series sequence generated by sensor is 𝐶𝑜 =

{𝐶𝑜1, 𝐶𝑜2, … , 𝐶𝑜𝑛}.  𝐶𝑜1..4 will be collected unconditionally prior any processing. 

4 points are required to ensure PIP is producing meaningful results.  

 

In order to construct a linear line as an estimator, which represented as 

𝐶′, first we use 𝐶𝑜1 and 𝐶𝑜4 to estimate the 5th point 𝐶′𝑜5 using two-point form 

(Weisstein, n.d.). The Two-point form is often used to find a point on a line or 

the slope of the line. The formula of two-point form is given as below: - 

 

𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
(𝑥 − 𝑥1) (3.2) 

 

For time series data, the combination of (𝑥, 𝑦) can be defined as 𝑥 is the 

position of the data points within the datasets, and 𝑦 is the data point.  

Therefore, 𝐶′𝑜5 is estimated with the equation below: -  
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𝐶′𝑜𝑛+1 =
𝐶𝑜𝑛 − 𝐶𝑜1

𝑛 − 1
(𝑛) − 𝐶𝑜1 

(3.3) 

 

Once the 𝐶′𝑜5 is known, the estimator linear line 𝐶′ will be interpolated 

between given the point of 𝐶𝑜1 and 𝐶′𝑜5, by using the same two-point form 

depicted with Equation 3.3. When 𝐶′ is ready, the error will be calculated by 

computing the Weighted Jaccard Distance between 𝐶′ and 𝐶. The equation is 

shown below. 

 

𝐽(𝐶𝑜𝑛, 𝐶′𝑜𝑛) =  1 −  
∑ min(𝐶𝑜𝑛, 𝐶′𝑜𝑛)𝑛

𝑖=1

∑ max (𝐶𝑜𝑛, 𝐶′𝑜𝑛)𝑛
𝑖=1

 
(3.4) 

 

If the Weighted Jaccard Distance does not exceed the configured error 

rate threshold, the data points will be stored in the memory for subsequent 

iteration of estimation construction and error computation. Otherwise, if the 

error exceeds the threshold, 𝐶𝑜 will be reduced and forwarded to endpoint, and 

then purge from memory except the last three data points. Three data points is 

kept for the next iteration of error estimation.  

 

Figure 3.3(a)-(f) has shown the chronological order of error estimation 

processing. The steps can be explained as: - 

a. The process is started with at least 4 points is collected 

unconditionally. With 𝐶𝑜1 and 𝐶𝑜4, the subsequent point 𝐶′𝑜5 is 

predicted to aid in the upcoming error computation 
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b. The red estimator linear line is interpolated, between 𝐶𝑜1  and 

𝐶′𝑜5 and Weighted Jaccard Distance is computed between the 

red estimator line and black line that is representing the original 

datasets. 

 

c. As the Weighted Jaccard Distance in computed is lower than 

configured threshold, the process is continued with the 

subsequent incoming points 𝐶𝑜5. 

 

d. Step b is repeated. This time, the Weighted Jaccard Distance has 

exceeded the configured error rate threshold, data of 𝐶𝑜1 to 𝐶𝑜5 

is reduced and forwarded to endpoint. The data is purged from 

memory after the data forwarding is completed, except the last 

three points. 

 

e. As the last three points is retained, the processing is continued 

with new incoming point 𝐶𝑜6. 

 

f. Step b is repeated.  

 

Figure 3.3 (a) 
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Figure 3.3 (b) 

 

Figure 3.3 (c) 

 

 

 

Figure 3.3 (d) 

 

 

Figure 3.3 (e) 

 



 

 

31 

 

 

Figure 3.3 (f)  
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3.5 Optimized PIP Data Reduction and Forwarding  

Figure 3.4 is showing the workflow of Optimized PIP Data Reduction 

and Forwarding process. 

 

Figure 3.4 Optimized PIP Data Reduction Workflow 

 

 

When the error for not sending current and previous unsent data points 

is exceeding the configured error rate threshold, the current and previous data 
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points will be reduced with optimized PIP, and the subset of important points 

will be forwarded to the endpoints.  

 

The process starts with retrieving the datasets stored in memory 𝐶𝑜. The 

result of the optimized PIP data reduction is a set of important points, extracted 

from the original time series. The set of important points is depicted as 𝐶𝑟 =

{𝐶𝑟1, 𝐶𝑟2, … , 𝐶𝑟𝑚}, 𝑚 < 𝑛, 𝐶𝑟 ⊂ 𝐶𝑜 .  

 

The PIP data reduction starts with elect the first and the last points as 

the two important points, 𝐶𝑟1  and 𝐶𝑟2 . To identify 𝐶𝑟3 , 𝐶𝑟1  and 𝐶𝑟2  will be 

connected as a line with interpolation. 𝐶𝑟3  will be the furthest from the 

interpolated line. The distance between the original datasets and the interpolated 

line is computed with Euclidean Distance. 

  

𝐷((𝑋𝑟 , 𝑌𝑟), (𝑋𝑜, 𝑌𝑜)) =  √(𝑋𝑟 −  𝑋𝑜)2 + (𝑌𝑟 −  𝑌𝑜)2 (3.5) 

 

When a new important point is selected, the previous interpolated line 

will be refreshed by making the connection to the new important points. 

Weighted Jaccard distance is computed again to examine if the set of important 

points is sufficient to reconstruct the original datasets with the error rate lower 

of equal to the configured threshold.  

 

If the Weighted Jaccard Distance higher than the configured error rate 

threshold, optimized PIP iteration will be continued to search the next important 

point. If the Weighted Jaccard Distance is lower than the configured error rate, 
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the PIP process will be stopped and the set of extracted important points will be 

forwarded to the endpoint, and the rest will be discarded, except the last three 

points for subsequent processing.  

 

 Figure 3.5(a)-(d) illustrates the chronological order of optimized PIP 

data reduction. 

a) The optimized PIP process starts with electing the first and the last 

points as the first two important points. 

 

b) The first two important points, 𝐶𝑟1  and 𝐶𝑟2  will be connected. The 

connected line in red will be used to search for the third important points.  

 

c) The third important points will be the furthest away from the connected 

lines. The distance is expressed in Euclidean Distance. As soon as 𝐶𝑟3 

is identified, the connected line will be refreshed to connect with 𝐶𝑟3. 

The Weighted Jaccard Distance between the red line connecting 

important points and the black line that is connecting the original 

datasets will be computed. In this case, the Jaccard Distance is not lesser 

or equal to configure error rate threshold. Therefore, the PIP iteration is 

continued.  

 

d) The fourth important point, 𝐶𝑟4 is identified by repeating the step c. In 

this case, the Weighted Jaccard Distance is lesser than the configure 

error rate threshold. Therefore, the PIP iteration is stopped and 𝐶𝑟1..4 is 

forwarded to endpoint.  
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Figure 3.5 (a) 

 

Figure 3.4 (b) 

 

 

Figure 3.4 (c) 

 

 

Figure 3.4 (d) 
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3.6 Design Goal Revisit 

Section 3.2 to section 3.5 has illustrates the design and workflow details of our 

proposed work PIPE. By introducing error rate threshold and error estimation, 

we have successfully devised a data reduction technique which are: -  

a. Data is processed and forwarded at real-time whenever the error 

generated by not sending data points is exceeding the configured error 

rate threshold.  

 

b. The error rate threshold controls the accuracy of the reduced datasets. 

The optimized PIP iteration continues to search more important points 

to ensure the set of important points can be used to reconstruct original 

datasets with error rate lesser or equal to the error rate. 

 

c. The error rate threshold can be adapted to any time-series sensor. As 

discussed in section 3.3. The sensor margin error can be referenced as 

the error rate threshold setting. 

 

d. The devised algorithm is not complex and can be implemented at any 

tiers of IoT application, including sensors or microcontroller.  

 

Together with research objectives, these design goals, especially point b. and d. 

will be verified and validated in Chapter 5.  
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CHAPTER 4 

SYSTEM IMPLEMENTATION 

4.1 Introduction 

We have discussed the concept of error estimation and optimized PIP 

data reduction in Chapter 3. To validate and evaluate the concept of PIPE, we 

implemented the complete PIPE concept using Arduino Framework (Kravets, 

n.d.). Arduino Framework is chosen because it is currently one of the most 

widely-used open source electronic platform for IoT applications. Arduino 

application can be deployed with any Arduino micro-controllers. Many sensors 

and libraries are supporting Arduino deployment due to its simplicity and 

inexpensive in term of cost, though it might not fit for some complex 

applications since its computing capacity and storage limited. (Barbon et al., 

2016). 

 

The program is written in C++ as it is one the supported language by 

Arduino Framework. In term of data collection, there are two different 

implementations has been devised: Simulation and physical implementation. A 

different implementation is needed for simulation because there will be no 

sensor generating actual data. Instead, sample dataset that has all the data points 

available in advance will be used. Therefore, a special program that takes in 

sample datasets as input and mimics the process of the sensor generating data 

is needed.  
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Besides, an actual implementation of sensor node with PIPE based on 

vibration sensor will be described and elaborated as well under this chapter.  

 

4.2 PIPE Implementation 

 

As discussed in Section 3.2, there are two main components of PIPE, 

error estimation and optimized PIP data reduction with forwarding. Both 

components will be implemented as two individuals function before adapting it 

to the main application. Figure 4.1 is showing the main function of the PIPE 

application. The application is initiated with collecting the first 3 points 

unconditionally as one-time initialization. When the fourth point and onwards 

is collected, the error_estimation function is triggered to estimate the error 

generated if the current and previous data points not forwarded.  If the result is 

more than the error rate threshold, the pip_reduce_forward() will be triggered, 

else the process will then continue receiving the next incoming point.  

 

 

Variables:error rate threshold, error_threshold 

  Original time series array  𝐶𝑜, oriseq 

  The newly generated data points, cur_point 

 

Output: NULL 

 

Procedure: 

 

//one-time initialization 

FOR (i = 0; i++; i<3) 

 cur_point = sensor generates data points 

 oriseq.add(cur_point) 

ENDFOR 

 

WHILE 

 cur_point = sensor generates data points 

 oriseq.add(cur_point) 

 IF (error_estimation(oriseq) > 
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 error_threshold) 

 THEN 

  pip_reduce_and_forward(oriseq,   

  error_threshold) 

 ELSE  

  continue 

 ENDIF 

ENDWHILE 

 

 

Figure 4.1: Pseudocode of the Main Function of PIPE 

 

4.3 The Error Estimation Function Implementation 

For error estimation function, a point ahead will be predicted using two-

points form. After that, the first points in the original sequence will be connected 

with the predicted points using interpolation, to form the estimator line. The 

estimator line is used to compare with the original sequence to compute the 

Weighted Jaccard Distance, which representing the error as if the original 

sequence is not forwarded to endpoints. The function ends with returning the 

error reading to the main function.  

 

Variables:Predicted points, p’ 

  The estimator line, 𝐶′, estimated_seq 
 

Output:  The Weighted Jaccard Distance that 

representating error, error 

 

Procedure: 

function error_estimation(oriseq) 

 P’ = predict {oriseq.size() +1 } points with 

 two points form.  

 Estimated_seq = interpolation(oriseq[0], p’) 

 error = jaccard_distance (estimated_seq, 

 oriseq) 

 Return error 

end function 

 

 

Figure 4.2 Pseudocode of The Main Function of error_estimation 
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4.4 Optimized PIP Data Reduction and Forwarding Implementation 

Figure 4.3 shows the optimized PIP data reduction and forwarding. The 

function starts with electing the first and last points from original sequences as 

the 1st and 2nd important points. The process continues with searching the 3rd 

important points. The 3rd important points will be the furthest away from the 

line that is connecting the previous two important points.  

 

Once the 3rd important point is identified, Weighted Jaccard Distance 

will be computed to examine if the set of important point is sufficient to recover 

the original datasets with error no more than the configured error rate threshold. 

If no, the process will continue to search more important points. If yes, the 

important points will be sent to the endpoint by publishing to MQTT topic that 

is subscribed by user. All the data points stored in the memory will then be 

purged, except the last 3 points from original datasets.  

 

 

Variables:The set of important points 𝐶𝑟, imp_seq 

  The line that is connecting the set of  

  important points 𝐶𝑟𝑐, 

  connect_seq 

  The Euclidean distance, eudist 

  The largest Euclidean distance, maxeudist 

 The Weighted Jaccard Distance that 

reprsentating  error, error 

  The position of the data point within the 

  sequence, selection 

Output:  NULL 

 

Procedure: 

function pip_reduce_and_forward(oriseq, threshold) 

 imp_seq.add(oriseq[0]) 

 imp_seq.add(oriseq(oriseq.size())) 

 connect_seq= interpolation(imp_seq()) 
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 WHILE (error < threshold && imp_seq.size() < 

  oriseq.size()) 

  eudistance = 0 

  maxeudistance = 0 

  selection = 0 

   

  FOR (i = 0; i++; i < oriseq.size()) 

   eudist =       

   EuclideanDistCalculate(oriseq[i] – 

   connect_seq[i]) 

   IF eudist > maxeudist THEN 

    maxeudist = eudist  

    selection = i 

   ENDIF 

  ENDFOR 

  imp_seq.add(oriseq(selection)) 

  connect_seq= interpolation(imp_seq()) 

  error = jaccard_distance (connect_seq, 

   oriseq) 

  IF error < threshold THEN 

   break 

  ENDIF 

 ENDWHILE 

 

 sort imp_seq based on the original data points 

  position 

 mqtt.publish(imp_seq, data) 

 purge imp_seq and connect_seq 

 Purge oriseq and retain the last 3 points  

 
 

Figure 4.3 pip_reduce_and_forward Implementation 

 

4.5 Additional Program for Simulation 

For evaluation purpose like testing against the existing datasets, an 

additional program is required to simulate the data generation in time series 

streaming manner. Figure 4.4 is showing the process of streaming the sample 

datasets, that is in csv format by publishing to an MQTT topic. The only change 

of the PIPE function is instead of collecting the data from the sensor, the data 

points will be collected by subscribing to a MQTT topic, as shown in figure 4.5. 
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Variables : csv, sample_data 

Output:  NULL 

 

Procedure: 

WHILE read(sample_data).hasNextItem  

 mqtt.publish(current_item, data) 

ENDWHILE 

 

 

Figure 4.4 Pseudocode for Sample Data Streamification 

 
cur_point = mqtt.subscribe(data) 

 

Figure 4.5 Changes of PIPE Main Function for Simulation  

 

4.6 Physical Implementation with Vibration Sensor  

As per the pseudocode shown in figure 4.6, data is collected directly 

from the sensor for physical implementation. Figure 4.7 is showing the actual 

deployment with Vibration Sensor. The main board is Wemos D1 Mini 

(esp8266ex) (“D1 mini [WEMOS Electronics],” n.d.) and vibration sensor is  

accelerometer for vibration data is provided by Analog Device ADXL345 

(“ADXL345 Datasheet and Product Info | Analog Devices,” n.d.). The code is 

baked into the main board. The communication between the board and the 

sensor is done via i2c. (“Specification,” n.d.) 

 

Variables :error-rate threshold, error_threshold 

  Original time-series array  𝐶𝑜, oriseq 

  The newly generated data points, cur_point 

 

Output:  NULL 

 

Procedure: 

 

//one-time initialization 

FOR (i = 0; i++; i<3) 

 cur_point = sensor generates data points 
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 oriseq.add(cur_point) 

ENDFOR 

 

WHILE 

 cur_point = sensor generates data points 

 oriseq.add(cur_point) 

 IF (error_estimation(oriseq) > 

 error_threshold) 

 THEN 

  pip_reduce_and_forward(oriseq,   

  error_threshold) 

 ELSE  

  continue 

 ENDIF 

ENDWHILE 

 

 

Figure 4.6 Pseudocode for Physical Implementation 

 

 
 

Figure 4.7 Deployment with Vibration Sensor  
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CHAPTER 5 

Evaluation 

5.1 Evaluation Objectives  

There are two objectives need to be fulfilled under evaluation: - 

a) To verify the performance of the proposed PIPE method, based on the 

design goals described in Chapter 3 Section 1 

 

b) To compare PIPE with other different data reduction methods in 

relation to reduction rate and accuracy  

 

There are in total three experiments. The overview and the purpose of these 

experiments are tabulated in Table 5.1 below.  

 

No.  Experiment Setup Purpose 

1. Utilizing PIP and other existing 

data reduction methods such as 

GZIP, Rate of Acceleration 

(RAC), Real-Time PIP and 

Original PIP to perform data 

reduction against 7 selected 

sample datasets and records the 

result 

To examine the accuracy and 

reduction rate of PIPE, and 

compare the PIPE with other 

existing data reduction methods. 
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2. Segmentizes each sample datasets 

into multiple chunks. Process 

each chunk with PIPE and record 

the results.  

To examine the consistency of 

PIPE in term of the performance. 

3.  Deploy PIPE into real sensor 

environment.  

To validate the feasibility of 

deploying PIPE with physical 

sensor and examine the power 

consumption.  

 

Table 5.1: Experiment Setups and Purposes 

 

5.2 Key Measurements  

To examine the performance of the proposed method, PIPE, and make 

comparisons against other data reduction techniques, two key measurements are 

identified and will be used in the evaluation. Firstly, the reduction rate. The 

reduction rate is used to quantify the degree of reduction or compression 

achieves by data reduction techniques. The equation of reduction rate is given 

as below: -  

 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = (1 −  
𝑛 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑛 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
) ∗ 100% 

(5.1) 

 

Reduction rate is expressed in percentage. For instance, 80% reduction 

rate indicates the data is reduced by 80%, only 20% of data points remain and 

forwarded to the endpoint.  
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Secondly, accuracy indicates to which degree the reduced dataset can be 

used to reconstruct and restored to the original datasets. To capture the accuracy, 

linear interpolation between points will be used to recover or reconstruct the 

missing value from the reduced datasets. With the recovered datasets, accuracy 

will be computed using Weighted Jaccard Similarity (Chierichetti et al., 2010), 

in comparison with the original sequences. Weighted Jaccard similarity is the 

invert of  Weighted Jaccard Distance (Chierichetti et al., 2010) . The equation 

of Weighted Jaccard Similarity is given as follows: - 

 

𝐽(𝐶𝑜𝑟𝑖, 𝐶𝑟𝑐) =   
∑ min(𝐶𝑜𝑟𝑖, 𝐶𝑟𝑐)𝑛

𝑖=1

∑ max (𝐶𝑜𝑟𝑖, 𝐶𝑟𝑐)𝑛
𝑖=1

 
(5.2) 

 

Where 𝐶𝑜𝑟𝑖 is the original datasets, and 𝐶𝑟𝑐 is the restored dataset. Weighted 

Jaccard Similarity reading is ranging from 0 to 1. Value 0 represents that the 

two datasets are completely different while the value 1 represents both datasets 

are the same.  

5.3 Sample Datasets 

 In total, there are seven datasets used for the first and second evaluation. 

All datasets can be obtained from (Lichman, 2013), except datasets 7th. The 7th 

dataset is actual readings obtained from a vibration sensor deployed in a 

limestone factory. These datasets are selected based on its unique statistical 

characteristics and time-series pattern. With this, the consistency of the data 

reduction performance can then be tested.  
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Each of the datasets plots is shown in figure 5.1 to 5.7 below.  

a. Vibration Sensor time series exhibits a trend that is similar to 

white noises.  

 

Figure 5.1: Vibration Sensor Time Series Plot 

 

 

b. Luminosity Sensor. Binary time-series event, zero when the light 

is off and luminosity reading is recorded when the light is on 

 

Figure 5.2: Luminosity Sensor Time Series Plot 

 

c. Smart Power Meter Sensor. The time-series starts off with high-

frequency event and followed by low frequency reading with 

spikes occasionally 

 

Figure 5.3: Smart Power Meter Sensor Time Series Plot 
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d. Temperature Sensor shows a slow-moving trend.  

 

Figure 5.4: Temperature Sensor Time Series Plot 

 

e. Dodger Loop Sensor contains a high frequency of events.  

 

Figure 5.5: Dodger Loop Sensor Time Series Plot 

 

f. Wind Sensor time series is showing a cyclical pattern 

 

Figure 5.6: Wind Sensor Time Series Plot 
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g. ECG time series exhibits a recurrent pattern.  

 

Figure 5.7: ECG Time Series Plot 

 

5.4 Experiment on Comparison between PIPE and Existing Data 

Reduction Techniques  

The objective of this experiment is to examine the performance of the 

PIPE in comparison to existing data reduction techniques. The existing data 

reduction techniques are GZIP (P. Deutsch, 1996), Rate of Acceleration (Toni 

et al., 2013) and Real-Time PIP (Papageorgiou et al., 2015a). Finally, PIPE will 

be compared against the original PIP proposed in (Chung et al., 2001). PIPE 

will be implemented based on the specification explained in Chapter 4, and the 

threshold is set to 0.05, 0.1 and 0.15. To generating streaming time series the 

sample data using MQTT, implementation based on section 4.4. Therefore, 

regardless which data reduction techniques, the data collection will be done via 

subscription to MQTT channel.   

 

For other data reduction techniques, details on implementation will be 

explained in the following sections.    
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5.4.1 GZIP Compression  

GZIP compression is implemented based on online batch-processing 

model. For instance, GZIP will perform compression at the interval of every 30 

seconds. Figure 5.8 below illustrates the GZIP processing. After the processing 

is completed, the size of compressed datasets will be obtained and the reduction 

rate is the ratio of the size of compressed datasets over the size of the original 

datasets.  

For this evaluation, the compression interval is set to 30, 50 and 100 

seconds.  

 

Variables:interval of compression, int 

  Array to store data points, ori_seq 

  The newly generated data points, cur_point 

  The compressed dataset,     

  compressed_dataset 

Output: NULL  

 

Procedure: 

cur_point = mqtt.subscribe(data) 

for (i < 0; i < int; i++) 

 ori_seq.add(cur_point) 

ENDFOR 

compressed_dataset = gzip(ori_seq) 

Forward compressed_dataset  

 

 

Figure 5.8: Pseudocode for GZIP Implementation 

 

5.4.2 Rate of Acceleration (RAC) 

 Toni et al.(2013) have devised an data filtering algorithm based on rate 

of acceleration. The algorithm is depicted as the equation below: -  
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𝐶𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = √𝐶𝑖 − 2𝐶𝑖−1 + 𝐶𝑡𝑗 ≥  𝑡ℎ𝑎𝑐𝑐𝑒𝑙 
(5.3) 

 

Where 𝐶𝑖 is the current data points, 𝐶𝑡𝑗 is the previous forwarded point. 

𝑡ℎ𝑎𝑐𝑐𝑒𝑙 is the threshold to determine whether the points need to be forwarded. 

The authors have not provided the details on setting the threshold. Therefore, in 

this evaluation, the 𝑡ℎ𝑎𝑐𝑐𝑒𝑙 is calculated based on the average of RAC of the 

entire datasets. The pseudocode of the RAC data reduction is shown in the table 

below.  

 

Variables:Threshold, th 

  Previous points, prev_point 

  Previous forwarded point, _prev_fw_point 

  The newly generated data points, cur_point 

  Rate of Accereleration, RAC 

Output: NULL  

 

Procedure: 

cur_point = mqtt.subscribe(data) 

rac = square_root(cur_point – 2*prev_point +    

  prev_fw_points) 

IF rac > th THEN 

 

 Forward cur_point to endpoint 

 prev_fw_point = cur_point 

ENIF 

prev_point = cur_point 

 

 

Figure 5.9: Pseudocode for RAC Implementation 
 

For every data points, RAC will be computed and compared against the 

configured threshold. IF the RAC reading has exceeded the threshold, the 

current point will then be forwarded to the endpoint.   
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5.4.3 Real-Time PIP 

Real-time PIP is proposed by Papageorgiou et al. (2015). The proposed 

algorithm employs caching to execute PIP at real time on every data points. 

Each of the processed points will be ordered based on its level of importance. 

If the processed data point falls under top X% of the ordered list of importance, 

it will be forwarded to the endpoint. Users are required to configure the X 

parameter and authors did not explain about any recommended or specific 

method to configure the parameter. In this evaluation, the importance threshold 

is set to 0.85, 0.9 and 0.95. 

 

The implementation is done based on the pseudocode provided by 

author at best effort basis. The pseudocode provided by author included in 

Appendix A.  

5.4.4 The Original PIP  

PIP is first proposed by Chung et al. (2001). As discussed in Chapter 2, 

the two main problems of this PIP version are that the processing is inherently 

offline and the authors did not mention how to control the reduction rate. 

However, since PIPE aims to optimize the original PIP, therefore, it is important 

to understand the performance difference between the optimized version, PIPE, 

and PIP.  

 

In this evaluation, the error of reconstructed datasets that is reduced by 

PIPE, will be used as the error rate threshold of PIP. Figure 5.10 below 

illustrates the pseudocode of the implementation. 
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Variables:The entire sample dataset, data 

  The set of important points 𝐶𝑟, imp_seq 

  The line that is connecting the set of  

  important points 𝐶𝑟𝑐, 

  connect_seq 

  The Euclidean distance, eudist 

  The largest Euclidean distance, maxeudist 

  The Jaccard Distance that reprsentating 

  error,error 

  The position of the data point within the 

  sequence, selection 

Output:  The set of important points 𝐶𝑟, imp_seq 

 

Procedure: 

 data = read_all_data(sample_datasets)_ 

 imp_seq.add(data[0]) 

 imp_seq.add(data(data.size())) 

 connect_seq= interpolation(imp_seq()) 

 

 WHILE (error < threshold && imp_seq.size() < 

 data.size()) 

  eudistance = 0 

  maxeudistance = 0 

  selection = 0 

   

  FOR (i = 0; i++; i < data.size()) 

          

   eudist=EuclideanDistCalculate 

   (data[i] – connect_seq[i]) 

   IF eudist > maxeudist THEN 

    maxeudist = eudist  

    selection = i 

   ENDIF 

  ENDFOR 

  imp_seq.add(data(selection)) 

  connect_seq= interpolation(imp_seq()) 

  error = jaccard_distance (connect_seq,  

  data) 

  IF error < threshold THEN 

   break 

  ENDIF 

 ENDWHILE 

 

 return imp_seq 

 

Figure 5.10: Pseudocode for Original PIP Implementation 
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5.4.5 Experiment Results  

The result of each of the datasets discussed individually. The result is 

tabulated in a quadrant graph, for ease of comparison, the label of each result 

can be read as {data reduction method | threshold configuration}. Finally, all 

results will be combined and discussed.  

5.4.5.1 Vibration Sensor 

Table 5.2 and Figure 5.11 below shows the result of each of the data 

reduction techniques in respect to accuracy and reduction rate. As GZIP is a 

lossless data compression, the accuracy is always attaining at 1. However, the 

reduction rate shows that GZIP yields better performance when the interval is 

huge. That means GZIP is not suitable for real-time or online processing since 

the GZIP only perform better with larger data size.  

 

 Looking at real-time PIP, although the reduction rate is better than RAC 

and PIPE, the accuracy result is not on a satisfactory level, which is lower than 

0.7. In this work, we believe accuracy is more important than reduction rate to 

ensure information loss is minimized. RAC achieves similar accuracy and 

reduction with PIPE, which is around 30%, whereas PIPE result shows PIPE is 

capable to retain the accuracy based on the error rate threshold, despite the low 

reduction rate. The reduction rate is decreasing when the error rate threshold is 

decreasing. This could be due to more points need to be attained to minimize 

information loss since vibration sensor contains more events than other sample 

datasets.  
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      Vibration Sensor 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 87.68% 1 

50 92.39% 1 

100 95.73% 1 

RAC  Threshold-based  35.92% 0.954 

Real-

time 

PIP 

Importance 

threshold  

0.85 78.42% 0.681 

0.9 85.02% 0.630 

0.95 91.96% 0.567 

PIPE  
Error rate 

threshold  

0.15 41.34% 0.939 

0.1 30.63% 0.964 

0.05 19.75% 0.984 

 

Table 5.2: Vibration Sensor Evaluation Result  

 

 

 

Figure 5.11: Quadrant Chart of Vibration Sensor Result 

5.4.5.2 Luminosity Sensor  

Similarly, Table 5.3 and Figure 5.12 shows the result for luminosity 

Sensors. Real-time PIP achieves good reduction rate but not accuracy. The 

result of PIPE and RAC is very close in term of accuracy, except PIPE has a 

slightly better reduction rate. Again, PIPE is capable to maintain the accuracy 

Label = {method | threshold configuration} 
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based on error rate threshold configuration. The reduction rate is better than the 

vibration sensor.  

 Luminosity Sensor 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 85.75% 1 

50 90.82% 1 

100 95.12% 1 

RAC  Threshold-based  65.89% 1 

Real-

time 

PIP 

Importance 

threshold  

0.85 75.45% 0.428 

0.9 81.79% 0.384 

0.95 89.51% 0.296 

PIPE  
Error rate 

threshold  

0.15 70.03% 0.965 

0.1 68.52% 0.979 

0.05 67.45% 0.998 

 

Table 5.3: Luminosity Sensor Evaluation Result  

 

 

 

Figure 5.12: Quadrant Chart of Luminosity Sensor Result 

5.4.5.3 Smart Power Meter Sensor  

Table 5.4 and figure 5.13 are showing the result for smart power meter 

sensors, Real-Time PIP accuracy results are better than the previous datasets, 

though, in term of reduction rate, PIPE can achieve higher reduction rate with 

Label = {method | threshold configuration} 
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better accuracy. RAC maintain its consistency in term producing similar results 

with PIPE.  

 Smart Power Meter Sensor 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 87.49% 1 

50 92.27% 1 

100 95.69% 1 

RAC  Threshold-based  65.89% 0.969 

Real-

time 

PIP 

Importance 

threshold  

0.85 44.95% 0.880 

0.9 56.46% 0.838 

0.95 69.08% 0.771 

PIPE  
Error rate 

threshold  

0.15 77.26% 0.931 

0.1 70.75% 0.962 

0.05 60.87% 0.981 

 

Table 5.4: Smart Power Meter Sensor Evaluation Result  

 

 

Figure 5.13: Quadrant Chart of Smart Power Meter Sensor Result 

5.4.5.4 Temperature Sensor  

Looking at table 5.5 and figure 4.14, it is obvious that all data reduction 

techniques are capable to achieve satisfactory accuracy reading.   PIPE can 

achieve reduction rate that is better than GZIP at a slight deterioration of 

Label = {method | threshold configuration} 
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accuracy. Note that PIPE has only result for 0.05 error rate configuration 

because for this temperature datasets, PIPE cannot produce accuracy reading 

that is lesser than 0.095. 

 Temperature Sensor 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 88.37% 1 

50 92.65% 1 

100 95.63% 1 

RAC  Threshold-based  40.29% 0.999 

Real-

time 

PIP 

Importance 

threshold  

0.85 28.28% 0.997 

0.9 45.78% 0.991 

0.95 73.02% 0.981 

PIPE  
Error rate 

threshold  

0.15 98.04% 0.966 

0.1 98.04% 0.966 

0.05 98.04% 0.966 

 

Table 5.5: Temperature Sensor Evaluation Result 

 

Figure 5.14: Quadrant Chart of Temperature Sensor Result 

5.4.5.5 Dodger Loop Sensor 

Referring to table 5.6 and figure 5.15, the result shows similar 

behaviours with vibration sensor. PIPE has a poor reduction rate, together with 

Label = {method | threshold configuration} 
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RAC. Dodger loop sensor dataset exhibits a high frequency of events. 

Therefore, this has further strengthened the hypothesis made in section 5.4.4.1, 

low reduction rate is due to more points is required to minimize information 

loss for datasets that contains more events. On the other hand, Real-Time PIP 

produces a satisfactory result as well and exhibits the same behaviours with 

RAC and PIPE, which is a low reduction rate.  

 Dodger Loop Sensor 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 86.34% 1 

50 91.27% 1 

100 95.28% 1 

RAC  Threshold-based  32.03% 0.970 

Real-

time 

PIP 

Importance 

threshold  

0.85 47.17% 0.860 

0.9 57.09% 0.830 

0.95 69.19% 0.795 

PIPE  
Error rate 

threshold  

0.15 51.63% 0.919 

0.1 34.66% 0.960 

0.05 20.12% 0.982 

 

Table 5.6: Dodger Loop Sensor Evaluation Result 

 

 

Figure 5.15: Quadrant Chart of Dodger Loop Sensor Result 

Label = {method | threshold configuration} 
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5.4.5.6 Wind Sensor  

The result for wind sensor is shown with Table 5.7 and Figure 5.16 

below. Results are similar across all the data reduction technique except GZIP. 

When the accuracy reading is lower, the reduction rate is higher. PIPE attains 

the accuracy reading based on the error rate threshold.  

 Wind Sensor 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 88.70% 1 

50 92.98% 1 

100 96.00% 1 

RAC  Threshold-based  38.46% 0.985 

Real-

time 

PIP 

Importance 

threshold  

0.85 44.86% 0.921 

0.9 57.40% 0.88 

0.95 77.55% 0.756 

PIPE  
Error rate 

threshold  

0.15 70.74% 0.933 

0.1 60.93% 0.959 

0.05 45.29% 0.986 

 

Table 5.7: Wind Sensor Evaluation Result 

 

 

Figure 5.16: Quadrant Chart of Wind Sensor Result 

Label = {method | threshold configuration} 
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5.4.5.7 ECG  

Referring to Table 5.8 and Figure 5.17, all data reduction techniques 

achieve near to 1 accuracy. Real-time PIP achieves near 1 accuracy with lower 

reduction compare to RAC and PIPE. With marginally lesser accuracy than 1, 

PIPE achieves good reduction rate, which is almost close to 100. 

 ECG 

Method Configuration  

Reduction 

Rate 
Accuracy 

GZIP  Interval size 

30 88.05% 1 

50 92.68% 1 

100 95.92% 1 

RAC  Threshold-based  62.58% 0.995 

Real-

time 

PIP 

Importance 

threshold  

0.85 18.10% 0.999 

0.9 32.76% 0.992 

0.95 50.50% 0.975 

PIPE  
Error rate 

threshold  

0.15 96.32% 0.946 

0.1 95.42% 0.958 

0.05 90.85% 0.980 

 

Table 5.8: ECG Evaluation Result 

 

 

Figure 5.17: Quadrant Chart of ECG Result 

 

Label = {method | threshold configuration} 
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5.4.5.8 Summary 

Figure 5.18 illustrates the summary of the results of the 7 sample 

datasets. As GZIP compression result is consistent and similar across all 

datasets, GZIP compression is not shown to reduce the complexity of diagram. 

 

Real-Time PIP results are not consistent across the datasets. Some 

datasets have low accuracy reading, which is not favourable as it indicates 

information loss.  

 

RAC attains high accuracy reading but its reduction rates vary between 

20% to 70%. This can be explained by some datasets contain more events, 

therefore more points are preserved to minimize information loss. Although 

result is satisfactory for RAC, the threshold setting for RAC is not adaptive and 

requires offline analysis to compute the optimum threshold for each dataset.  

 

 The experiment results have proven that PIPE has achieved the design 

goal set in chapter 3. With an error rate threshold setting, PIPE attains the 

accuracy level for all different sample datasets despite their statistical 

differences. In another word, the error rate threshold is adaptive to time-series 

data reduction usage, without the need for offline analysis. Besides, the error 

rate threshold ensures accuracy is prioritized over the reduction rate. For 

instance, sample data like dodger loop sensor and vibration sensor, PIPE attains 

the accuracy by preserving more points. For time series that has lesser events 

like temperature sensor, PIPE achieves high reduction rate like 98% with an 

accuracy of 0.97.  
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Label = {method | datasets} 
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Figure 5.18: Quadrant Chart of the Combined Results 
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5.4.5.9 Comparison between PIPE and Original PIP 

PIPE has employed and optimized PIP to devise a novel data reduction 

technique that is aligned to the research objectives and design goal. It is essential 

to understand the performance of PIPE compared PIP. The evaluation is done 

based on implementation method in 5.4.4, with error rate of PIP is set to the 

error of reconstructed dataset that is reduced by PIPE. Figure 5.16 (a) – (g) 

shows the result of PIPE vs PIP. The same colour code indicates the accuracy 

result of both PIP and PIPE is the same. 

 

  PIPE  Original PIP 

Datasets Error Rate 

(only for PIPE) 

Reduction 

Rate 
Accuracy 

Reduction 

Rate 

Accuracy 

Vibration 

0.05 41.34% 0.939 55.04% 0.939 

0.1 30.63% 0.964 44.52% 0.964 

0.15 19.75% 0.984 31.58% 0.984 

Luminosity 

0.05 70.03% 0.965 75.93% 0.965 

0.1 68.52% 0.979 74.98% 0.979 

0.15 67.45% 0.998 73.64% 0.998 

Smart Meter 

0.05 77.26% 0.931 84.70% 0.931 

0.1 70.75% 0.962 78.42% 0.962 

0.15 60.87% 0.981 71.02% 0.981 

Temperature 0.05 98.04% 0.966 99.15% 0.966 

Dodger Loop 

0.05 51.63% 0.919 68.67% 0.919 

0.1 34.66% 0.960 50.80% 0.96 

0.15 20.12% 0.982 35.07% 0.982 

Wind 

0.05 70.74% 0.933 81.99% 0.933 

0.1 60.93% 0.959 74.98% 0.959 

0.15 45.29% 0.986 62.49% 0.986 

ECG 

0.05 96.32% 0.946 97.17% 0.946 

0.1 95.42% 0.958 97.05% 0.958 

0.15 90.85% 0.980 94.00% 0.98 

 

Table 5.9: Results of PIPE vs Original PIP 
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Figure 5.19 (a): Quadrant Chart of Vibration Sensor PIPE vs PIP Results 

 

 

Figure 5.19 (b): Quadrant Chart of Luminosity Sensor PIPE vs PIP 

Results 

 

 

Figure 5.19 (c): Quadrant Chart of Smart Power Sensor PIPE vs PIP 

Results 

Label = {ori-PIP}, {PIPE | error-rate} 

 

Label = {ori-PIP}, {PIPE | error-rate} 

 

Label = {ori-PIP}, {PIPE | error-rate} 
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Figure 5.19 (d): Quadrant Chart of Temperature Sensor PIPE vs PIP 

Results 

 

 

Figure 5.19 (e): Quadrant Chart of Dodger Loop Sensor PIPE vs PIP 

Results 

 

      

Label = {ori-PIP}, {PIPE | error-rate} 

 

Label = {ori-PIP}, {PIPE | error-rate} 

 

Label = {ori-PIP}, {PIPE | error-rate} 
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Figure 5.19 (f): Quadrant Chart of Wind Sensor PIPE vs PIP Results 

 

 

Figure 5.19 (g): Quadrant Chart of ECG PIPE vs PIP Results 

 

Figure 5.19 (a) – (g) shows the original PIP has better performance in 

term of reduction rate compare to PIPE. For instance, around 20% of difference 

is observed for Dodger Loop Sensor and Vibration Sensor datasets. In contrary, 

for datasets like ECG and Temperatures, the different in term of reduction rate 

is minimal. The could be due to the error estimation prone to high frequency of 

events, therefore, more PIP iteration is triggered For Dodger Loop Sensor and 

Vibration Sensors. 

  

As compared to PIPE, the original PIP has the full knowledge of every 

data points in the sample datasets. Therefore, it is expected that the original PIP 

can extract important points more effective then PIPE, which results in better 

reduction rate. In contrary, though PIPE has no full knowledge over the entire 

datasets, it is still capable to produce satisfactory and consistent data reduction 

result at real time processing.  

 

Label = {ori-PIP}, {PIPE | error-rate} 
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5.5 Experiment on PIPE Performance Consistency with Segmented 

Datasets 

Each of the sample dataset consists of 3000 data points. It is important 

to note for the entire datasets, different events or frequency of event occurrences 

can be different in random sub-sections of the datasets.  

 

The result of experiment 5.4 has shown that when event frequency is 

higher, PIPE produces lower reduction rate. To examine whether such variants 

happens within the same datasets and impacting the performance of PIPE in 

term of both reduction rate and accuracy, each sample datasets is divided into 

sub-section with size of 100. PIPE is executed on each sub-section, with error-

rate threshold 0.05. The result is aggregated with the table below.  

 

 Reduction Rate (%) Accuracy 

Data Set Average Standard 

Deviation 

 Average Standard 

Deviation  

Vibration 19.8  0.053 0.98 0.0025 

Luminosity 63.5 0.181 0.99 0.0025 

Smart Meter 60.1 0.196 0.98 0.0059 

Temperature 95.5 0.031 0.97 0.0094 

Dodger 19.9 0.047 0.98 0.0041 

Wind 44.6 0.077 0.99 0.0046 

ECG 89.2 0.022 0.98 0.0046 

 

Table 5.10: Results of PIPE on Segmented Datasets 

 

Referring to the table 5.10, the standard deviation of reduction is varying 

between different datasets. For example, low standard deviation is observed for 

sample datasets like Temperature and ECG, whereas high standard deviation 
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reading for Luminosity and Smart Meter Sensors. Whereas, the accuracy 

reading is maintained at 0.95 and above with low standard deviation reading, 

reflecting the error rate threshold successfully control the error generated of the 

entire datasets despite of different segments, and producing consistent results in 

term of accuracy.  

 

The result has further strengthened the claims of PIPE prioritizes 

correctness over reduction rate, as well as error-rate threshold can be used to 

control the error of the reduced datasets effectively. 

  

5.6 Experiment on Physical Deployment  

Chapter 4 has mentioned the PIPE is implemented based on C++ 

Arduino framework. In this section, physical implementation and evaluation 

will be carried out to measure the power consumption, to examine whether it is 

feasible to implement PIP at sensor node level. In fact, this work has more 

ambitious goal, which is to reduce the power consumption by reducing the 

number of communication.  

 

PIPE is deployed with WeMos D1 ESP8266 WiFi Board (“D1 mini 

[WEMOS Electronics],” n.d.) with ADXL345 accelerometer (“ADXL345 

Datasheet and Product Info | Analog Devices,” n.d.). ESP8266 is one of the most 

widely used microcontrollers for IoT application due to the inexpensive cost. 

(Abdel-Basset et al., 2018). 
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However, high power consumption is one of the biggest challenges to 

implement ESP8266 as compared to other Bluetooh-based microcontrollers 

because the WiFi communication module consumes substantial amount of 

power. (Skraba et al., 2016). By default, PIPE does not send data regularly, only 

when error estimation exceeds error rate threshold. Therefore, incorporate with 

ESP8266 implementation, the WiFi module is switched off at all time unless 

data forwarding is required. An experiment is conducted to examine the 

possibility of power saving with such deployment.  

 

In term of the deployment details, the sensor is recording the vibration 

axis at the frequency of every second. With a default implementation, the sensor 

is sending data to an MQTT broker at every second as soon as the data is 

collected; In contrary, PIPE implementation will send data on-demand basis. 

The key measurement of this experiment is power consumption.  

 

To examine the energy efficiency of PIPE, the power consumption over 

a period of 60 sec is recorded by oscilloscope for two scenarios: - 

a) Default implementation. There is no data reduction processing. Sensing 

and data forwarding to MQTT broker is done every second. WiFi 

connection is maintained all the time. 

 

b) PIPE implementation, with error rate threshold set to 0.1. WiFi 

connection will only initiated to facilitate on-demand PIPE data 

forwarding. Otherwise, it will be turned off.  
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The key measurement is power consumption and total energy 

consumption. Power consumption refers to electrical energy per unit time, it 

displayed as a graph at unit time of 5ms with Figure 5.20. The total energy 

consumption will be calculated as the area under the graph. Figure 5.20 has 

shown the power consumption for default implementation. The power 

consumption is maintained at minimum 200mW per unit over 60 secs. The total 

energy consumption is 3.0kJ. 

 

 

Figure 5.20: Power Consumption Over 60 Sec for based implementation 

 

The power consumption of PIPE implementation over 60 secs is shown 

in Figure 5.21. When there is no data forwarding, the power consumption is 

negligible compares to Figure 5.20, even though there is PIPE processing for 

each data points. There are several on-demand data forwarding is triggered by 

PIPE along the 60 secs. During this period, the power consumption is increased 

and maintained at more than 20mW. Once forwarding is completed, the power 

consumption is again dropped to minimal. The total energy consumption for 

PIPE implementation over 60 secs is 1.56kJ.  
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Figure 5.21: Power Consumption Over 60 Sec for PIPE implementation 

 

In summary, the experiments can be concluded with the following points: -  

a) PIPE can be implemented at sensor node level. 

 

b) By switching on the WiFi module only for on-demand data forwarding, 

PIPE helps to save up to 50% of energy consumption of ESP8266.  
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CHAPTER 6 

Conclusion and Future Work  

6.1 Revisiting the Objectives  

The objective of this research work is to devise a novel data reduction 

approach to can perform real-time processing with no offline analysis for 

configuration, and can be deployed and used with heterogeneous environment 

and time-series data. In chapter 2, state-of-the-art is discussed and concluded 

that, although there are existing works have solved problem like real-time 

processing, those works come with constraint like use-case specific. For 

instance, some works focus on processing biometrics data while others focus on 

IoT gateway implementation. Hence, the motivation to devise a novel data 

reduction technique that achieves all defined objectives at the same time is 

formed in this work. 

 

We opined that accuracy is more crucial then reduction rate for a data 

reduction technique. Therefore, the first step taken in designing the data 

reduction technique was introducing error rate threshold. Error rate is used to 

control the accuracy of the reduced datasets. The same error rate can be used 

for any time series data despite the difference in term of statistical or pattern.  

 

Secondly, to enable read-time processing, error estimation is introduced. 

Error estimation process every data points at real time. When the estimated error 

is exceeding the error rate threshold, the optimized PIP will be triggered, 

extracts a subset of important points and send to endpoint at real time. 
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To ensure the objectives and designed goal are realized, PIPE is 

evaluated with three experiments. First, PIPE performance is examined in 

comparison with other data reduction techniques. The results have indicated the 

PIPE exhibits consistent performance among other data reduction in term of 

accuracy across all datasets, proven error rate threshold can be used for 

heterogeneous datasets. Second experiment aims to test the performance 

consistency on segmented datasets. The results reveal PIPE consistently 

prioritizes accuracy over performance based on error-rate threshold. For the last 

experiment, PIPE is deployed with ESP8266 microcontroller, benefit from the 

computation logic, PIPE is capable to achieve up to approximate 50% of energy 

saving depending on the amount of reducible data. Therefore, it is feasible to 

deploy PIPE at sensor node. As conclusion, the objectives of this work are 

achieved.  

6.2 Future Work 

PIPE requires unsent data points to be stored in the memory before it get 

processed. PIPE can be further optimized so that there will be no need of storing 

data points at memory.  

 

Besides, error rate threshold can be further improved to be dynamically 

configured based on the statistical characteristic of time-series, without any 

human intervention. Addition to that, the algorithm can further be improved to 

produce reduced data that have the error rate equivalent to error rate threshold. 

Currently the reduced data error rate is always higher than error-threshold, 

based on the evaluation results.  
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APPENDIX A 

The pseudocode of the Real-Time PIP implemented by Papageorgiou et al., 

(2015a) 
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