

REAL-TIME TIME SERIES ERROR-BASED DATA

REDUCTION FOR INTERNET-OF-THINGS
APPLICATIONS

WONG SIAW LING

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
DECEMBER 2018

REAL-TIME TIME SERIES ERROR-BASED DATA REDUCTION

FOR INTERNET-OF-THINGS APPLICATIONS

By

WONG SIAW LING

A dissertation submitted to the Department of Computer and Communication

Technology,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science) in

December 2018

ii

ABSTRACT

REAL-TIME TIME SERIES ERROR-BASED DATA REDUCTION

FOR INTERNET-OF-THINGS APPLICATIONS

 WONG SIAW LING

There are many time series data reduction methods, ranging from

primitive data aggregation such as Rate of Change to sophisticated compression

algorithms. Unfortunately, many of these existing algorithms are limited to

work in offline mode only, data can only be reduced after a certain amount of

data is collected. Such offline mode is not suitable for IoT applications such as

monitoring, surveillance and alert system which needs to detect events at real-

time.

On the other hand, existing real-time time series data reduction

techniques often require manual configuration and adaption to intended

applications and hardware like IoT gateway. Such requirements prevent

effective deployments of data reduction techniques.

This work is inspired by Perceptually Important Points (PIP) data

reduction algorithm due to its superior data reduction ability. This work differs

from existing PIP in the sense that, we have devised a real-time data reduction

algorithm namely error-based PIP Data Reduction (PIPE), that operates with a

single value configuration; error rate, which can be used with various sensor

data without any priori analysis required. In additional to that, PIPE is simple to

the extent that it can be deployed at the sensor node as well.

iii

Through 7 different time series datasets and by comparing the result

against the existing data reduction techniques such as GZIP, Real-Time PIP and

Rate of Acceleration threshold-based data reduction, the experimental results

are promising, the evaluation shows that it is possible that by only forwarding

10% of data, the reduced data produced by PIPE can be used to reconstruct the

time series with an accuracy of 0.98 in real-time.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my main supervisor, Dr.

Ooi Boon Yaik for all his guidance and encouragement throughout my journey

of pursuing Master degree. The completion of this research work and

dissertation will not be possible without his consistent motivation and

inspiration to me. Besides, sincerely thank you to my co-supervisor, Dr. Liew

Soung Yue for his constructive feedbacks and advices on the research

methodology as well as this dissertation.

Furthermore, I would like to thank my employer, Hilti Group as well as

both of my managers, Mr. Ng Eng Siong and Dr. Christoph Baeck for providing

tremendous support and considerate to me being a part-time postgraduate

student, allowing me taking time off for my studies and providing feedbacks on

my work from the industry perspective.

Finally, my heartfelt gratitude dedicated to my parents, my love, family

and friends who being so supportive all the time.

v

APPROVAL SHEET

This dissertation/thesis entitled “REAL-TIME TIME SERIES ERROR-

BASED DATA REDUCTION FOR INTERNET-OF-THINGS

APPLICATIONS” was prepared by WONG SIAW LING and submitted as

partial fulfillment of the requirements for the degree of Master of Computer

Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Ooi Boon Yaik) Date: _______________

Main Supervisor

Department of Computer Science

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Dr. Liew Soung Yue) Date: _______________

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

vi

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF DISSERTATION

It is hereby certified that Wong Siaw Ling (ID No: 15ACM06529) has

completed this dissertation entitled “REAL-TIME TIME SERIES ERROR-

BASED DATA REDUCTION FOR INTERNET-OF-THINGS

APPLICATIONS” under the supervision of Dr. Ooi Boon Yaik (Supervisor)

from the Department of Computer Science, Faculty of Information and

Communication Technology, and Dr. Liew Soung Yue (Co-Supervisor)

from the Department of Computer Science, Faculty of Information and

Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf

format into UTAR Institutional Repository, which may be made accessible

to UTAR community and public.

Yours truly,

(Wong Siaw Ling)

vii

DECLARATION

I, Wong Siaw Ling hereby declare that the dissertation is based on my original

work except for quotations and citations which have been duly acknowledged.

I also declare that it has not been previously or concurrently submitted for any

other degree at UTAR or other institutions.

 (WONG SIAW LING)

Date: ______________________

viii

LIST OF TABLES

Table

Page

5.1 Experiment Setups and Purposes

44

5.2 Vibration Sensor Evaluation Result 55

5.3 Luminosity Sensor Evaluation Result 56

5.4 Smart Power Meter Sensor Evaluation Result 57

5.5 Temperature Sensor Evaluation Result 58

5.6 Dodger Loop Sensor Evaluation Result 59

5.7 Wind Sensor Evaluation Result 60

5.8 ECG Evaluation Result 61

5.9 Results of PIPE vs Original PIP 64

5.10 Results of PIPE on Segmented Datasets 68

ix

LIST OF FIGURES

Figure

Page

2.1

The Graphical Model of Time Series C

14

2.2

Identification of First Two PIPs

14

2.3

Identification Process of Third PIPs

15

2.4

Identification Process of Fourth PIPs

15

3.1

High Level PIPE Workflow

23

3.2

Error Estimation Workflow

26

3.3

Chronological Order of Error Estimation

Processing

29

3.4

Optimized PIP Data Reduction Workflow

32

3.5

Chronological Order of Optimized PIP Data

Reduction

35

4.1

Pseudocode of the Main Function of PIPE

38

4.2

Pseudocode of the Main Function of

error_estimation

39

4.3

pip_reduce_and_forward Implementation

40

4.4

Pseudocode for Sample Data Streamification

42

4.5

Changes of PIPE Main Function for

Simulation

42

4.6

Pseudocode for Physical Implementation

44

4.7

Deployment with Vibration Sensor

43

5.1

Vibration Sensor Time Series Plot

47

x

5.2

Luminosity Sensor Time Series Plot

47

5.3

Smart Power Meter Sensor Time Series Plot

47

5.4

Temperature Sensor Time Series Plot

48

5.5

Dodger Loop Sensor Time Series Plot

48

5.6

Wind Sensor Time Series Plot

48

5.7

ECG Time Series Plot

49

5.8

Pseudocode for GZIP Implementation

50

5.9

Pseudocode for RAC Implementation

51

5.10

Pseudocode for Original PIP Implementation

53

5.11

Quadrant Chart of Vibration Sensor Result

55

5.12

Quadrant Chart of Luminosity Sensor Result

56

5.13

Quadrant Chart of Smart Power Meter Sensor

Result

57

5.14

Quadrant Chart of Temperature Sensor

Result

58

5.15

Quadrant Chart of Dodger Loop Sensor

Result

59

5.16

Quadrant Chart of Wind Sensor Result

60

5.17

Quadrant Chart of ECG Result

61

5.18

Quadrant Chart of the Combined Results

63

5.19

Quadrant Chart of PIPE vs PIP Results

65

5.20

Power Consumption Over 60 Sec for based

implementation

71

xi

5.21

Power Consumption Over 60 Sec for PIPE

implementation

72

xii

LIST OF ABBREVATIONS

IoT Internet of Things

PIP Perceptually Important Points

PIPE Error-based PIP Data Reduction

DFT Discrete Fourier Transform

SVD Singular Value Decomposition

CS Compressed Sensing

DTW Dynamic Time Wrapping

CLIP Clinical Speech Processing Chain

AMI Advance Metering Infrastructure

MAE Mean Absolute Error

RMSE Root Mean Square Error

MAPE Mean Absolute Percentage Error

MQTT Message Queuing Telemetry Transport

xiii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS iv

APPROVAL SHEET v

SUBMISSION SHEET vi

DECLARATION vii

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xii

CHAPTER

1.0 INTRODUCTION 1

 1.1 Problem Statement 3

 1.2 Objectives 4

 1.3 Research Contribution 5

 1.4 Dissertation Organization 6

2.0 LITERATURE REVIEW 7

2.1 Time Series Data Reduction 7

 2.1.1 Lossless Compression 8

 2.1.2 Lossy compression 8

 2.1.3 Perceptually Important Points (PIP) 13

2.2 Existing Data Reduction Solutions for IoT 15

2.3 Measurement of Error 18

3.0 PROPOSED SOLUTION 21

 3.1 Time Series Data Reduction Design Goal 21

 3.2 PIPE Workflow Overview 23

 3.3 Error Rate 24

 3.4 Error Estimation for current and Previous Unsent 26

Data Points

 3.5 Optimized PIP Data Reduction and Forwarding 32

 3.6 Design Goal Revisit 36

4.0 SYSTEM IMPLEMENTATION 37

 4.1 Introduction 37

 4.2 PIPE Implementation 38

 4.3 The Error Estimation Function Implementation 39

 4.4 Optimized PIP Data Reduction and Forwarding 40

xiv

 Implementation3

 4.5 Additional Program for Simulation 41

 4.6 Physical Implementation with Vibration Sensor 42

5.0 EVALUATION 44

 5.1 Evaluation Objectives 45

 5.2 Key Measurements 46

 5.3 Sample Datasets 46

 5.4 Experiment on Comparison between PIPE 49

and Existing Data Reduction Techniques

 5.4.1 GZIP Compression 50

 5.4.2 Rate of Acceleration (RAC) 50

 5.4.3 Real-Time PIP 52

 5.4.4 The Original PIP 52

 5.4.5 Experiment Results 54

 5.4.5.1 Vibration Sensor 54

 5.4.5.2 Luminosity Sensor 55

 5.4.5.3 Smart Power Meter Sensor 56

 5.4.5.4 Temperature Sensor 57

 5.4.5.5 Dodger Loop Sensor 58

 5.4.5.6 Wind Sensor 60

 5.4.5.7 ECG 61

 5.4.5.8 Summary 62

 5.4.5.9 Comparison between PIPE and 64

Original PIP

 5.5 Experiment on PIPE Performance Consistency 68

with Segmented Datasets

 5.6 Experiment on Physical Deployment 69

6.0 CONCLUSION AND FUTURE WORK 73

 6.1 Revisiting the Objectives 73

 6.2 Future Works 74

REFERENCES 75

1

CHAPTER 1

INTRODUCTION

Internet-of-Things (IoT) collects, transmits and analyses data from a

wide range of connected devices. Among the popular use cases are

environmental monitoring, biometrics data for healthcare, smart homes and

cities initiatives. Depending on the sampling rate and type of applications,

sensors can generate an enormous amount of data over short timespans. For

instance, an accelerometer sensor that are deployed to monitor machinery

vibration can generate up to hundreds of reading in a second. As the adoption

of IoT grows, transmission of such amount of data becoming challenging

because energy, network bandwidth and storage space of sensor nodes are often

limited (Papageorgiou et al., 2015a). To overcome the obstacles, multiple works

have suggested adopting time series data reduction to reduce the amount of data

that need to be processed and transmitted (Papageorgiou et al., 2015a), (Fathy

et al., 2018), (Mohamed et al., 2018) & (Feng et al., 2017).

Many time series data reductions are designed for time series data

mining years before the emergence of IoT. In general, those existing techniques

can be categorized into lossless and lossy data reduction. However, it is difficult

to employ those techniques directly with IoT applications which operates with

real-time sensing.

2

Firstly, some of the existing data reduction algorithms, like GZIP

compression (P. Deutsch, 1996), time-domain transformation (Agrawal et al.,

1993) & (Chan and Fu, 1999) and Perceptually Important Points (PIP) (Chung

et al., 2001) can only act upon the entire datasets but not real-time processing.

Real-time data collection is critical for IoT use cases like monitoring,

surveillance and alerting system to ensure a timely response. For instance,

abrupt fluctuation of reading, sudden change and peaks. Therefore, IoT needs a

time series data reduction solution which is capable to perform data reduction

and transmission in a real-time fashion to ensure essential information is

delivered to users in a timely manner.

 There are data reduction algorithms like sampling, data filtering and

compressed sensing (Rani et al., 2018) can act upon data points at real-time.

However, those techniques required threshold setting. Often, the threshold

setting is not adaptive to IoT data from different type of sensors and offline

analysis is required to set the optimum threshold. For instance, sparsity needs

to be known before compressed sensing starts reducing data. Sparsity is varied

among different time-series. Therefore, offline analysis need to be done as pre-

work.

The needs to reduce real-time IoT data is not new and there are many

existing works (Papageorgiou et al., 2015a), (Fathy et al., 2018), (Mohamed et

al., 2018) & (Feng et al., 2017). Unfortunately, these existing works are often

use-case specific. For example, most of the current works focus on processing

only biometrics data (Dubey et al., 2015) and designing a solution specific to

3

IoT gateway implementation (Papageorgiou et al., 2015a) & (Feng et al., 2017).

This indicates it is difficult to design a data reduction solution for real-time IoT

application without constraint on computation and implementation.

PIP is an algorithm that is used to extract a subset of important points

from time series to achieve data reduction. PIP is subsequently modified to

achieve real-time data processing (Papageorgiou et al., 2015a). However, the

central issues of PIP such as offline processing and difficulty in algorithm

configuration still yet to be fully optimized.

To bridge the gaps that mentioned above, in this work, a novel data

reduction approach inspired by PIP, namely Error-Based PIP Data Reduction

(PIPE) is proposed. PIPE can achieve real-time data reduction with single error-

rate configuration, without requirements such as hardware and data-specific.

1.1 Problem Statement

Time series data reduction is essential for real-time IoT applications to

relieve demand of limited bandwidth, energy and storage space. There are

existing works focus on design a new data reduction solution, or optimizing

existing data reduction algorithm to adopt IoT use case, however, there are

issues remains unresolved: -

a) Existing data algorithms are mainly processed data in offline mode, or

configuration requires offline data analysis. For instance, PIP can only

be used to reduce data after collection is completed, and to the best of

4

our knowledge, there is no solution in configuring PIP to work at

optimum level.

b) Existing real-time data reduction techniques focuses on less-constraint

implementation. For instance, IoT gateway that generally provides high

compute power compare to a sensor, as well as use-case specific like

biometrics time series data reduction, giving little or no insight on

whether the same technique can be applied with other use-case or

environment.

1.2 Objectives

The goal of this work is to devise a novel data reduction technique that

can perform real-time time series data reduction for IoT applications without

constraint such as offline configuration, hardware requirements or addressing

specific use-cases/applications such as biometric data. Hence, the research

objectives can be described as below:

a) To devise a new data reduction technique that is: -

i. Capable to perform data reduction and forwarding at real-time.

The definition of real-time processing of this work is the each of

data points of time series will be processed and forwarded when

necessary, as soon as it is generated by sensing device

ii. Requires no offline analysis for configuration. In another word,

the configuration of data reduction does not require knowledge

5

or information that only can be derived via offline computation

or calculation

iii. Can be deployed at heterogeneous IoT environment including

sensors. The data reduction technique needs to be less compute-

intensive and complex so that user has the flexibility to deploy

the data reduction technique at any tier of IoT such as the IoT

gateway and sensor node.

In short, this research focuses on creating a data reduction technique for

real-time time series data for IoT applications.

1.3 Research Contribution

The major contributions of this research work are: -

a. An error-based PIP data reduction (PIPE) is devised. PIPE can

simultaneously achieve real time data reduction and forwarding with

single error rate configuration.

b. Experiments and evaluations have demonstrated that PIPE can achieves

consistent and strong performance across every different kind of sample

datasets, proven its capabilities working with heterogeneous time series

data.

c. PIPE can be implemented at the sensor node, showing the proposed

technique does not need high computation power that can only acquire

6

from hardware such as IoT gateway. Besides, PIPE can be employed to

reduce the power consumption of the sensor node by half.

1.4 Dissertation Organization

This dissertation will be organized as follows. Continue with Chapter 2,

literature review on related works is presented. In chapter 3, the proposed work,

error-based PIP data reduction (PIPE) will be discussed and explained. System

implementation will be discussed in Chapter 4. Chapter 5 illustrates the

evaluation process and the presentation of results. Finally, we conclude this

work with Chapter 6.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Time Series Data Reduction

Before the rise of IoT, data reduction has been actively utilized in data

mining field to reduce the dimension and size of time series data, so that

subsequent data analysis can be carried out in a more effective and faster

manner. (Fu, 2011). Similarly, in the context of IoT, data reduction is needed to

reduce the size of a dataset that will subsequently reduce the consumption of

network, power and storage resources, with new requirements such as real-time

processing and hardware constraint for sensor node implementation.

Data reduction, sometimes also known as data compression (the word

compression and reduction will be used interchangeably under Chapter 2) can

be categorized mainly in two form, lossless and lossy compression (Salomon,

2004). Lossy compression achieves data reduction by losing some information

whereas lossless compression has no information loss. Lossless compressions,

in general, are operating offline, given the fact the compression can only be

done effectively after data collection is completed. Therefore, lossless

compression is difficult to be adapted to real-time IoT application. In contrary,

as lossy data reduction can tolerate a certain degree of information loss,

nonessential information can be dropped at real-time to achieve data reduction.

Because of that, re-constructability of reduced data from lossy data reduction is

an important metric to ensure original information still preserved.

8

In subsequent sections, details of existing data reduction algorithms and

techniques of both lossless and lossy data reduction will be discussed.

2.1.1 Lossless Compression

Lossless compression is a data reduction method whereby the output of

de-compressed data is identical to original data compressed by the compression

algorithm. (Salomon, 2004). One of the notable and widely used lossless

compression is GZIP (P. Deutsch, 1996). GZIP can be used to compress a chunk

of data into a single file which is usually smaller in size. By forwarding a single

compressed file, we can effectively reduce the consumption of bandwidth and

power during the data transit. However, data compression can only be done after

data collection is completed. At best case, GZIP can be modified to perform

batch processing, however, the smaller the batch size, the less effective of GZIP

compression will be in term of reduction rate, a ratio of the size of compressed

dataset over the size of the original dataset. This still holds true for other lossless

compression technique like ZLIB (Deutsch and J-L. Gailly, 1996), LZ4 (GitHub,

2018), Zstandard (Facebook, n.d.) and SprintZ (Blalock et al., 2018).

2.1.2 Lossy Compression

Lossy Compression achieves data reduction by removing data points

from the original time-series sequence. Therefore, the main design

consideration of lossy compression technique is how the lossy compression

algorithm decides which data to be removed from original data, without losing

too much meaningful information.

9

Sampling (Aström, 1969) is one of the simplest forms of lossy

compression. Sampling is performed based on N samples of time series at an

equal spacing of h. However, sampling at an equal spacing can run into the risk

of losing important information if events happen in between the spacing.

Simple aggregation-based lossy data reduction like segmented mean (Yi

and Faloutsos, 2000) and Piecewise Aggregate Approximation (PAA) (Keogh

and Pazzani, 2000) leverage the mean of each segment as the features

representation of the original time-series. Segmented Mean and PAA are

aggregating the mean result at an equal spacing, important information can be

lost if it happens in between the spacing. Therefore, to solve such issue,

Adaptive Piecewise Constant Approximation (APCA) (Eamonn Keogh et al.,

2001) is proposed, which allows the mean to be calculated with an arbitrary

length of a segment. The authors of (E. Keogh et al., 2001) have mentioned, in

general, there is three type of time series segmentation approaches which is

Sliding Windows, Top-Down and Bottom-Up. The authors were aiming to

optimize those algorithms by introducing Sliding Window and Bottom-Up

(SWAB) algorithm. Similarly, Schoellhammer et al. (2004) have proposed a

technique to represent data with a set of aggregated lines based on error-bound.

In general, segmentation-based data reduction techniques leverage aggregated

representation such as mean, line segment to present the original time series.

Such aggregated data could impose challenges for the data analytics process.

Especially when the user is interested to know the actual value of the data points,

or critical points that contribute to an event. For instance, it is important to know

10

the actual heart rate of a person to determine whether it is exceeding a dangerous

threshold.

Data filtering is an option to achieve data reduction due to its simplicity

in term of implementation. Data filtering decides whether to retain points by

comparing the current value to a pre-defined threshold and it can be

implemented at real-time. Papageorgiou et al.(2015a) have proposed a time-

series forwarding handler to only forward value when it falls under a specific

range, greater and lower than a threshold. The authors have devised a decision-

making framework which can perform switching between handler dynamically.

Similarly, (Toni et al., 2013) has proposed a time series data filtering based on

single value, the rate of change of data and the rate of acceleration of data.

Besides, the work has also devised a data reconstruction scheme and concluded

that pairing the data reconstruction scheme with data filtering based on the rate

of acceleration reveals the best results for human movement monitoring. The

main challenge of adopting data filtering techniques is to define the right

threshold value to produce optimum results. For instance, work by Toni et al.

(2012) has concluded different threshold values can create a significant impact

to reduction rate results, however authors offer no insight on how to set the

optimum threshold. Work (Sarker et al., 2016) has done substantial pre-analysis

to compute a threshold value that would fit their proposed data filtering

technique, proven that data cannot be reduced and transmitted at real time

without such pre-works to set the threshold.

11

Apart from reducing time series in time domain directly, there are data

reduction methods which are applied on frequency domain such as Discrete

Fourier Transform (DFT) (Agrawal et al., 1993), Discrete Wavelet transform

(Chan and Fu, 1999) and Singular Value Decomposition (SVD) (Cadzow et al.,

1983). Data reduction is achieved by converting time domain to space domain.

These data reduction techniques can be used to extract features from time series

data, however, the process can only be done offline, which means after data

collection is completed. Furthermore, time domain transformation usually is

compute-intensive.

Compressed Sensing (CS) theory is emerging recently as a domain of

data reduction and signal compression. CS can be used for the acquisition of

signal that is either sparse or compressible, or in another word, the signal or

time series contains small amounts of non-zero or significant data, while the

rest are zero or non-important data, which can be discarded. (Rani et al., 2018).

By exploiting the sparsity of data, compressed sensing is used to acquire data

with a fewer sample and then be reconstructed to recover the original data. A

lot of works have been introduced under the domain of compressed sensing. In

relation to the IoT applications, work (Li et al., 2013) has proposed a CS

framework for IoT deployment. CS requires sparsity of data to be known in

advance, therefore ,work (Chen et al., 2012) has proposed an optimized CS for

IoT without the need of pre-knowledge of sparsity. Besides, authors of (Zhang

et al., 2018) has proposed a method that is stable and robust in recovering from

the compressed signal using compressed sensing, for ECG application. Not all

IoT application generates sparse data, for instance, acceleration sensor that

12

attached to a speeding car will generate dense data. (Amarlingam et al., 2016).

Therefore, Compressed Sensing in limited to certain use-case only.

Perceptually Important Points (PIP) (Chung et al., 2001) achieves data

reduction by acquiring important points and discard the rest. PIP algorithm is

less compute intensive compared to other data reduction techniques like GZIP

compression and signal transformation. Due to its simplicity, PIP has been

repeatedly modified and optimized for different use-cases. For instance, the

authors of (Zaib et al., 2004) utilized the PIP framework to devise a pattern

recognition technique, work of (Tsinaslanidis and Kugiumtzis, 2014) has

devised a time series prediction scheme based on PIP and Dynamic Time

Wrapping. Phetking et al. (2009) use PIP to devise a method to index financial

time series data and Fu et al. (2017) has optimized the PIP algorithm to adapt

with use-case such as big data and data mining analytics. When speaking about

IoT context, PIP cames with two central issues that hinder people to adapt it

with IoT applications and reduce sensor data. Firstly, data can only be processed

by PIP after collection is completed, PIP can only act upon the entire datasets.

Second, configuration needs to be done to control the amount of data required

to be reduced. There is no guidelines or frameworks which helps in setting the

optimum configuration. Hence, user is required to determine the configuration

on their own and very often, the configuration will be different based on

different use-case or requirements. The authors of (Papageorgiou et al., 2015a)

has proposed a real-time PIP algorithm based on caching for IoT gateway,

performs data reduction for IoT applications. Feng et al. (2017) enable real-time

time-series data reduction based on PIP by introducing multi-tiers processing at

13

IoT gateway and edge device. Both works offer real-time processing based on

PIP, however, maybe due to compute-intensive, the implementation requires

powerful device like IoT gateway and not for sensor node.

With this research work, we decided to design a new data reduction

algorithm to fulfil our design objectives which are real-time data reduction and

forwarding, no offline analysis for configuration and can used for

heterogeneous hardware deployment and IoT sensors data.

2.1.3 Perceptually Important Points (PIP)

The fundamental concept of PIP is to identify important points from

original data and discard the rest. By preserving a subset of important points,

PIP retains the information presented in the data and the set of important points

can be used to recover the original data as well. The PIP identification process

is first proposed by (Chung et al., 2001) for the use of pattern matching for

financial analysis purpose.

The PIP identification process can be explained as followed: -

a) Assume time series 𝐶 = {𝐶1 … 𝐶𝑛} has in total 𝑛 number of data points.

The first two PIPs are 𝐶1 and 𝐶𝑛.

b) To identify the third PIP, 𝐶1 and 𝐶𝑛 will be connected to form a line.

The point that is furthest from the line will then be the third PIP.

14

c) To continue to identify the fourth PIP, a line will be formed between

adjacent PIPs, the point that furthest away from the line will then be

elected the fourth PIP.

d) The previous step will be repeated to identify subsequent PIP until the

number of required PIPs has reached, otherwise, the process will only

be ended until no remaining data points to be processed.

Figure 2.1 – 2.4 has summarized the entire PIP identification process of 4 PIPs.

Figure 2.1: The Graphical Model of Time Series C

Figure 2.2: Identification of First Two PIPs

15

Figure 2.3: Identification Process of Third PIPs

Figure 2.4: Identification Process of Fourth PIPs

As shown, all data points have to be collected and known before the PIP

identification. Therefore, the process is inherently offline. Besides, unless the

user explicitly configuration the number of iteration, PIP identification will be

iterated until all points are indexed based on its importance order. Therefore,

such configuration is crucial and can have a significant impact to data reduction

performance. This research work will focus on solving these two issues by

optimizing PIP algorithm, and employ the optimized PIP to devise real-time

data reduction for IoT applications.

2.2 Existing Data Reduction Solutions for IoT

Several works have been proposed to solve data reduction challenges

for IoT applications. Work by Papageorgiou et al. (2015a) has proposed a data

reduction framework for Edge and IoT gateway implementation namely NECtar,

16

that automates the switching between different data reduction algorithms

includes Sampling, Piecewise Approximation, thresholding filtering, change

detection and real-time PIP. The authors focus on illustrate the optimization

made on the PIP algorithm and concluded by only forwarding 1/3 of data items,

real-time PIP can achieve accuracies between 0.76 and 0.94. To enable real-

time PIP, caching is used to store the past processed data points and project the

future points based on history. PIP identification is executed upon every

incoming data point. The result shows caching more items like 500 data points

yields a better result. The processing of each data points is O(𝑛2). It is compute-

intensive and the result has shown with a light resources gateway, the compute

process can take up to 1 sec for 400 cache size. Hence, the proposed technique

is designed for more powerful hardware like IoT gateway.

The same authors further optimize their solution with work

(Papageorgiou et al., 2015b). A feature call reconstruct-ability table is added to

identify the best data reduction strategy based on its reconstruct-ability.

However, the computational complexity of the enhanced technique is not

simplified. The solution still not suitable to deploy at sensor nodes.

Work of (Feng et al., 2017) focuses on enhancing the PIP algorithm by

introducing several methods like interval restriction, dynamic caching and

weighted sequence selection. These methods are deployed separately in both

gateway and edge tiers.

17

 Dubey et al. (2015) strive to solve the challenge of collecting healthcare

data with Fog Computing. They have proposed a IoT gateway data reduction

framework that includes Dynamic Time Wrapping (DTW), Clinical Speech

Processing Chain (CLIP), Fundamental Frequency as well as compression. The

framework is deployed with an Intel Edison as the IoT Gateway.

 Alduais et al. (2016) have proposed an IoT-based data collection method

that aims to reduce the number of transmitted messages via a sink node, which

can be defined as IoT Gateway. To reduce the number of transmissions, the

authors proposed to detect and send only rare events based on absolute

differential values, with a threshold value. The authors did not mention the

strategy of defining the threshold value.

The authors of (Fathy et al., 2018) proposed an adaptive method to

minimize the data transmissions between the sink and sensor nodes. When

sensed values deviate significantly with a pre-defined threshold, it will be

transmitted, otherwise, the value will be discarded. The proposed methods

operate with two tiers with sink and sensor nodes.

 Mohamed et al. (2018) have proposed an adaptive framework for real-

time data reduction in Advanced Metering Infrastructure (AMI). The data

reduction is done based on forecasts, when the smart meter reading is close to

the forecasted value, it will be discarded, otherwise, it will be transmitted. To

ensure the framework is adaptive to the pattern of smart meter data, the

framework allows switching between forecasting models to ensure the

18

reduction scheme is most suitable one to the current data pattern. The

framework consists of a total 5 components. Each component consists of

different calculation that has to be deployed in different tiers of AMI.

Last but not least, Maschi et al. (2018) have proposed a real-time data

summarization concept at sensor node level based on parameters. Parameters

are stored and updated in a database that is located at Cloud. Sensors can

perform a local decision whether to transmit data to the server by

communicating and acquiring the parameter from the cloud database.

In summary, based on our definition of real-time, many of the existing

works have yet achieved real-time data reduction and forwarding, requires no

offline analysis for configuration, capable to reduce heterogeneous IoT data and

can be deployed in heterogenous IoT hardware including sensor nodes

simultaneously. Most of the works focus on solving one or the other

requirements. For instance, some works focus only on real-time IoT gateway

data reduction, while the other focus on solving specific use-cases like

biometrics time series data reduction.

2.3 Measurement of Error

This research work aims to devise a real-time error-based data reduction

technique. Therefore, error estimation will be the crucial component of the

proposed technique. The design goal is to utilize error estimation as the gauge

of whether data need to be discarded or forward. There are different variants of

statistical error measurement is available, the discussion is followed.

19

One of the straight-forward error measures is Euclidean distance. The

Euclidean distance of each data points can be calculated via the formula of 2.1.

𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏)) = √(𝑥 − 𝑎)² + (𝑦 − 𝑏)²
(2.1)

Similarly, Dynamic Time Wrapping (DTW) is proposed by Keogh and

Ratanamahatana (2005) to serve as a distance measure, which can be operated

with time series data that comes with different lengths and sizes. Both

techniques offer fine-grain comparisons, between each pair of actual and

forecasted/recovered data points, but has no unified or aggregated result when

compare between two datasets where length is more one.

Apart from that, there are many other error measurements that can be

used to estimate error for time series data. Shcherbakov et al. (2013) have done

a comprehensive review on each of the error measurement. The authors have

mentioned there are multiple variants of error measurement. Among the widely

used techniques are absolute forecasting error and measures based on errors

such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and

Mean Absolute Percentage Error (MAPE). Each of these techniques came with

different limitations. MAE and RMSE produce errors that can only be

associated with the specific time series data that used for calculation, the error

reading cannot be used to associate with other time series data. For instance, the

error of temperature reading cannot be interpreted together or compare with the

error of humidity reading. This issue does not apply to MAPE, which measures

20

error based on percentage. However, MAPE cannot process time series that

contains value zero due to division by zero.

Jaccard Coefficient is introduced by Jaccard (1901). For two set of time

series data 𝑋, 𝑌, Jaccard Distance between the two time-series is 𝐷(𝑋, 𝑌) = 1 −

 𝐽(𝑋, 𝑌). To adapt Jaccard Distance to vectors as well, the Weighted Jaccard

Distance is then introduced (Chierichetti et al., 2010). The Weighted Jaccard

Distance formula is defined as below: -

𝐽(𝑋, 𝑌) = {1 −

∑ min(𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1

∑ max (𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1

0

𝑖𝑓 ∑ max (𝑋𝑖, 𝑌𝑖)

𝑛
𝑖=1 > 0,

𝑖𝑓 ∑ max (𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1 = 0

(2.2)

Weighted Jaccard Distance is a ratio-based calculation. It can be used to

measure the dissimilar between two time series data and the ratio-based result

is easy to interpret and make comparisons between different applications that

collects different time-series data (Peng et al., 2016). This research work will

incorporate Weighted Jaccard Distance with the proposed technique PIPE.

21

CHAPTER 3

Proposed Solution

3.1 Time Series Data Reduction Design Goal

The concept of Internet-of-Things is not only about sensing the physical

environment but includes using the sensed data to react with events at real-time.

For instance, turn on light based on human movement, raise the emergency

alarm if machinery is vibrating at an unusual threshold. Because of that, in the

context of IoT, the data reduction technique need to process and forward data

at real-time.

Reduction rate is one of the keys and most frequently used metrics to

measure the performance of a data reduction technique. However, it is important

to note retaining important message or information from the original time series

is more crucial especially for alerting application that cannot tolerate missing

event. In this work, one of the design goals of the data reduction technique is

then to prioritize correctness of more reduction rate. When the time series

contains a lot of events or patterns, the information should be retained rather

than discarded to achieve high reduction ratio.

In chapter 2, we have done a throughout review on existing data

reduction techniques, including works that focus on solving IoT challenges.

One of the common problems among the existing works is non-adaptive

configuration. For instance, threshold filtering requires users to define threshold

based on the statistical characteristic of the time series; compressed sensing

22

requires the sparsity of data to be known in advance; PIP requires users to define

the number of PIP identification iteration. Such requirements will hinder large-

scale general purpose IoT deployment since human intervention is required.

This work aims to minimize the need for configuring threshold values for data

reduction processing, especially the threshold value can only be computed

offline.

Besides, most of the existing works are designed to reduce data at the

IoT gateway level. While this may due to the needs of computational power,

this imposes a challenge for some use0case that has only two tiers setup: sensor

and endpoint. Therefore, the second aim of this work is to design an algorithm

that is less-compute intensive that can be deployed with sensor nodes, as

compared to existing work that reduces data at the gateway level.

In summary, the design goals of the proposed work Error-Based PIP

Data reduction (PIPE) are: -

a) Real-time data processing and forwarding

b) Prioritize correctness over reduction rate

c) A Single configuration that can be applied with heterogeneous

sensors data, which required no offline analysis configuration setting.

d) Less compute-intensive and can be deployed at sensor nodes.

23

3.2 PIPE Workflow Overview

Figure 3.1 shows an overview of the proposed data reduction technique,

Error-Based PIP Data Reduction (PIPE). PIPE operates with an error rate. Error

rate indicates the degree of missing information that user can tolerate. This is

the only parameter needed and it works across all type of sensor data.

Figure 3.1： High Level PIPE Workflow

Each data points, that is generated by sensors will then be processed with

PIPE. The workflow first starts with estimating the error can be generated by

the data point, if it is not sent to the endpoint. Estimated error is computed with

the formula of Weighted Jaccard Distance, as shown with equation 2.2. If the

estimated error is lesser than the defined threshold, PIPE will continue

collecting and processing the subsequent data points. If the error is more than

24

the defined threshold, PIPE will trigger the data reduction process and extract a

subset of important data points using PIP (Fu et al., 2008). This ensures the

subset of important data points can be reconstructed with error lesser or equals

to the defined threshold.

The extracted important points will then be sent to the user endpoint.

The workflow continues with processing the subsequent points generated by the

sensors. As such, each data point is processed, reduced and forwarded to the

endpoint at real time when the error generated is more than the defined threshold.

3.3 Error Rate

As discussed, accuracy is crucial, especially for lossy method to ensure

information loss is kept minimal. Therefore, one of the design goals of PIPE is

to prioritize accuracy over data reduction rate. To ensure accuracy is

consistently kept at desire level, we need impose a parameter for PIPE to control

the overall information loss or in another word, error that is generated by the

data reduction process. In this work, we call such parameter as the error rate

threshold. Error rate threshold will be used to monitor the error generated as if

the current and previous unsent data points are discarded from the original

dataset. If the error exceeded the threshold, the optimized PIP will be employed

to extract a set of important points, whereby the set of important points can be

used to recover the original datasets. The recovered datasets will have smaller

or equal error to the error rate threshold.

25

There is another design goal: a single configuration that can interoperate

with heterogeneous sensors data. This need to be reflected in the error rate

threshold. To fulfil this requirement, we have done studies on existing error

measurement method in section 2.3.

With the information available, we have concluded that we will employ

Weighted Jaccard distance, a ratio-based error calculation as the error rate

threshold.

The Weighted Jaccard Distance reading falls between 0 and 1. 0

indicates both datasets are identical and 1 indicates both dataset is completely

different. The reading in between can be used to indicates the error of the

approximated datasets vs the original datasets. As it is ratio-based, it can be

adapted for any time series data generates by different sensors, regardless of the

range of number that the sensor operates on.

As mentioned, the error rate threshold can accept values ranging from 0

to 1. One of the reference settings that users can be adopted is the sensor margin

of error. For instance, Schoellhammer et al. (2004), who proposed an

aggregation-based data compression has explained that sensors, in general,

came with a hardware-specified margin of error. As a result, sensors generate

noise within the margin of error and therefore it can be used as an indicator to

remove noises from original datasets, and achieve data reduction. For example,

if a temperature sensor has a margin error of 2%, the error rate threshold can

then be configured at 0.02.

26

3.4 Error Estimation for Current and Previous Unsent Data Points

The process of error estimation can be divided into two main operations:

estimator construction and error computation. The workflow is depicted as

Figure 3.2.

Figure 3.2: Error Estimation Workflow

To estimate the error can be generated by current and previous data

points is unsent or discarded from original datasets, we need to create an

estimator that we can use to make comparisons with. In this proposed work, the

27

estimator will be a linear line that is connecting the first and the last points of

current and previous unsent data points. This estimator - linear line will then be

used to compute the Weighted Jaccard Distance.

If the Weighted Jaccard Distance is more than the configured error rate

threshold, the process will be continued by data reduction and forwarding, else

the current data points will be stored in the memory as unsent data points for

the subsequent processing.

Assuming the time series sequence generated by sensor is 𝐶𝑜 =

{𝐶𝑜1, 𝐶𝑜2, … , 𝐶𝑜𝑛}. 𝐶𝑜1..4 will be collected unconditionally prior any processing.

4 points are required to ensure PIP is producing meaningful results.

In order to construct a linear line as an estimator, which represented as

𝐶′, first we use 𝐶𝑜1 and 𝐶𝑜4 to estimate the 5th point 𝐶′𝑜5 using two-point form

(Weisstein, n.d.). The Two-point form is often used to find a point on a line or

the slope of the line. The formula of two-point form is given as below: -

𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
(𝑥 − 𝑥1) (3.2)

For time series data, the combination of (𝑥, 𝑦) can be defined as 𝑥 is the

position of the data points within the datasets, and 𝑦 is the data point.

Therefore, 𝐶′𝑜5 is estimated with the equation below: -

28

𝐶′𝑜𝑛+1 =
𝐶𝑜𝑛 − 𝐶𝑜1

𝑛 − 1
(𝑛) − 𝐶𝑜1

(3.3)

Once the 𝐶′𝑜5 is known, the estimator linear line 𝐶′ will be interpolated

between given the point of 𝐶𝑜1 and 𝐶′𝑜5, by using the same two-point form

depicted with Equation 3.3. When 𝐶′ is ready, the error will be calculated by

computing the Weighted Jaccard Distance between 𝐶′ and 𝐶. The equation is

shown below.

𝐽(𝐶𝑜𝑛, 𝐶′𝑜𝑛) = 1 −
∑ min(𝐶𝑜𝑛, 𝐶′𝑜𝑛)𝑛

𝑖=1

∑ max (𝐶𝑜𝑛, 𝐶′𝑜𝑛)𝑛
𝑖=1

(3.4)

If the Weighted Jaccard Distance does not exceed the configured error

rate threshold, the data points will be stored in the memory for subsequent

iteration of estimation construction and error computation. Otherwise, if the

error exceeds the threshold, 𝐶𝑜 will be reduced and forwarded to endpoint, and

then purge from memory except the last three data points. Three data points is

kept for the next iteration of error estimation.

Figure 3.3(a)-(f) has shown the chronological order of error estimation

processing. The steps can be explained as: -

a. The process is started with at least 4 points is collected

unconditionally. With 𝐶𝑜1 and 𝐶𝑜4, the subsequent point 𝐶′𝑜5 is

predicted to aid in the upcoming error computation

29

b. The red estimator linear line is interpolated, between 𝐶𝑜1 and

𝐶′𝑜5 and Weighted Jaccard Distance is computed between the

red estimator line and black line that is representing the original

datasets.

c. As the Weighted Jaccard Distance in computed is lower than

configured threshold, the process is continued with the

subsequent incoming points 𝐶𝑜5.

d. Step b is repeated. This time, the Weighted Jaccard Distance has

exceeded the configured error rate threshold, data of 𝐶𝑜1 to 𝐶𝑜5

is reduced and forwarded to endpoint. The data is purged from

memory after the data forwarding is completed, except the last

three points.

e. As the last three points is retained, the processing is continued

with new incoming point 𝐶𝑜6.

f. Step b is repeated.

Figure 3.3 (a)

30

Figure 3.3 (b)

Figure 3.3 (c)

Figure 3.3 (d)

Figure 3.3 (e)

31

Figure 3.3 (f)

32

3.5 Optimized PIP Data Reduction and Forwarding

Figure 3.4 is showing the workflow of Optimized PIP Data Reduction

and Forwarding process.

Figure 3.4 Optimized PIP Data Reduction Workflow

When the error for not sending current and previous unsent data points

is exceeding the configured error rate threshold, the current and previous data

33

points will be reduced with optimized PIP, and the subset of important points

will be forwarded to the endpoints.

The process starts with retrieving the datasets stored in memory 𝐶𝑜. The

result of the optimized PIP data reduction is a set of important points, extracted

from the original time series. The set of important points is depicted as 𝐶𝑟 =

{𝐶𝑟1, 𝐶𝑟2, … , 𝐶𝑟𝑚}, 𝑚 < 𝑛, 𝐶𝑟 ⊂ 𝐶𝑜 .

The PIP data reduction starts with elect the first and the last points as

the two important points, 𝐶𝑟1 and 𝐶𝑟2 . To identify 𝐶𝑟3 , 𝐶𝑟1 and 𝐶𝑟2 will be

connected as a line with interpolation. 𝐶𝑟3 will be the furthest from the

interpolated line. The distance between the original datasets and the interpolated

line is computed with Euclidean Distance.

𝐷((𝑋𝑟 , 𝑌𝑟), (𝑋𝑜, 𝑌𝑜)) = √(𝑋𝑟 − 𝑋𝑜)2 + (𝑌𝑟 − 𝑌𝑜)2 (3.5)

When a new important point is selected, the previous interpolated line

will be refreshed by making the connection to the new important points.

Weighted Jaccard distance is computed again to examine if the set of important

points is sufficient to reconstruct the original datasets with the error rate lower

of equal to the configured threshold.

If the Weighted Jaccard Distance higher than the configured error rate

threshold, optimized PIP iteration will be continued to search the next important

point. If the Weighted Jaccard Distance is lower than the configured error rate,

34

the PIP process will be stopped and the set of extracted important points will be

forwarded to the endpoint, and the rest will be discarded, except the last three

points for subsequent processing.

 Figure 3.5(a)-(d) illustrates the chronological order of optimized PIP

data reduction.

a) The optimized PIP process starts with electing the first and the last

points as the first two important points.

b) The first two important points, 𝐶𝑟1 and 𝐶𝑟2 will be connected. The

connected line in red will be used to search for the third important points.

c) The third important points will be the furthest away from the connected

lines. The distance is expressed in Euclidean Distance. As soon as 𝐶𝑟3

is identified, the connected line will be refreshed to connect with 𝐶𝑟3.

The Weighted Jaccard Distance between the red line connecting

important points and the black line that is connecting the original

datasets will be computed. In this case, the Jaccard Distance is not lesser

or equal to configure error rate threshold. Therefore, the PIP iteration is

continued.

d) The fourth important point, 𝐶𝑟4 is identified by repeating the step c. In

this case, the Weighted Jaccard Distance is lesser than the configure

error rate threshold. Therefore, the PIP iteration is stopped and 𝐶𝑟1..4 is

forwarded to endpoint.

35

Figure 3.5 (a)

Figure 3.4 (b)

Figure 3.4 (c)

Figure 3.4 (d)

36

3.6 Design Goal Revisit

Section 3.2 to section 3.5 has illustrates the design and workflow details of our

proposed work PIPE. By introducing error rate threshold and error estimation,

we have successfully devised a data reduction technique which are: -

a. Data is processed and forwarded at real-time whenever the error

generated by not sending data points is exceeding the configured error

rate threshold.

b. The error rate threshold controls the accuracy of the reduced datasets.

The optimized PIP iteration continues to search more important points

to ensure the set of important points can be used to reconstruct original

datasets with error rate lesser or equal to the error rate.

c. The error rate threshold can be adapted to any time-series sensor. As

discussed in section 3.3. The sensor margin error can be referenced as

the error rate threshold setting.

d. The devised algorithm is not complex and can be implemented at any

tiers of IoT application, including sensors or microcontroller.

Together with research objectives, these design goals, especially point b. and d.

will be verified and validated in Chapter 5.

37

CHAPTER 4

SYSTEM IMPLEMENTATION

4.1 Introduction

We have discussed the concept of error estimation and optimized PIP

data reduction in Chapter 3. To validate and evaluate the concept of PIPE, we

implemented the complete PIPE concept using Arduino Framework (Kravets,

n.d.). Arduino Framework is chosen because it is currently one of the most

widely-used open source electronic platform for IoT applications. Arduino

application can be deployed with any Arduino micro-controllers. Many sensors

and libraries are supporting Arduino deployment due to its simplicity and

inexpensive in term of cost, though it might not fit for some complex

applications since its computing capacity and storage limited. (Barbon et al.,

2016).

The program is written in C++ as it is one the supported language by

Arduino Framework. In term of data collection, there are two different

implementations has been devised: Simulation and physical implementation. A

different implementation is needed for simulation because there will be no

sensor generating actual data. Instead, sample dataset that has all the data points

available in advance will be used. Therefore, a special program that takes in

sample datasets as input and mimics the process of the sensor generating data

is needed.

38

Besides, an actual implementation of sensor node with PIPE based on

vibration sensor will be described and elaborated as well under this chapter.

4.2 PIPE Implementation

As discussed in Section 3.2, there are two main components of PIPE,

error estimation and optimized PIP data reduction with forwarding. Both

components will be implemented as two individuals function before adapting it

to the main application. Figure 4.1 is showing the main function of the PIPE

application. The application is initiated with collecting the first 3 points

unconditionally as one-time initialization. When the fourth point and onwards

is collected, the error_estimation function is triggered to estimate the error

generated if the current and previous data points not forwarded. If the result is

more than the error rate threshold, the pip_reduce_forward() will be triggered,

else the process will then continue receiving the next incoming point.

Variables:error rate threshold, error_threshold

 Original time series array 𝐶𝑜, oriseq

 The newly generated data points, cur_point

Output: NULL

Procedure:

//one-time initialization

FOR (i = 0; i++; i<3)

 cur_point = sensor generates data points

 oriseq.add(cur_point)

ENDFOR

WHILE

 cur_point = sensor generates data points

 oriseq.add(cur_point)

 IF (error_estimation(oriseq) >

39

 error_threshold)

 THEN

 pip_reduce_and_forward(oriseq,

 error_threshold)

 ELSE

 continue

 ENDIF

ENDWHILE

Figure 4.1: Pseudocode of the Main Function of PIPE

4.3 The Error Estimation Function Implementation

For error estimation function, a point ahead will be predicted using two-

points form. After that, the first points in the original sequence will be connected

with the predicted points using interpolation, to form the estimator line. The

estimator line is used to compare with the original sequence to compute the

Weighted Jaccard Distance, which representing the error as if the original

sequence is not forwarded to endpoints. The function ends with returning the

error reading to the main function.

Variables:Predicted points, p’

 The estimator line, 𝐶′, estimated_seq

Output: The Weighted Jaccard Distance that

representating error, error

Procedure:

function error_estimation(oriseq)

 P’ = predict {oriseq.size() +1 } points with

 two points form.

 Estimated_seq = interpolation(oriseq[0], p’)

 error = jaccard_distance (estimated_seq,

 oriseq)

 Return error

end function

Figure 4.2 Pseudocode of The Main Function of error_estimation

40

4.4 Optimized PIP Data Reduction and Forwarding Implementation

Figure 4.3 shows the optimized PIP data reduction and forwarding. The

function starts with electing the first and last points from original sequences as

the 1st and 2nd important points. The process continues with searching the 3rd

important points. The 3rd important points will be the furthest away from the

line that is connecting the previous two important points.

Once the 3rd important point is identified, Weighted Jaccard Distance

will be computed to examine if the set of important point is sufficient to recover

the original datasets with error no more than the configured error rate threshold.

If no, the process will continue to search more important points. If yes, the

important points will be sent to the endpoint by publishing to MQTT topic that

is subscribed by user. All the data points stored in the memory will then be

purged, except the last 3 points from original datasets.

Variables:The set of important points 𝐶𝑟, imp_seq

 The line that is connecting the set of

 important points 𝐶𝑟𝑐,

 connect_seq

 The Euclidean distance, eudist

 The largest Euclidean distance, maxeudist

 The Weighted Jaccard Distance that

reprsentating error, error

 The position of the data point within the

 sequence, selection

Output: NULL

Procedure:

function pip_reduce_and_forward(oriseq, threshold)

 imp_seq.add(oriseq[0])

 imp_seq.add(oriseq(oriseq.size()))

 connect_seq= interpolation(imp_seq())

41

 WHILE (error < threshold && imp_seq.size() <

 oriseq.size())

 eudistance = 0

 maxeudistance = 0

 selection = 0

 FOR (i = 0; i++; i < oriseq.size())

 eudist =

 EuclideanDistCalculate(oriseq[i] –

 connect_seq[i])

 IF eudist > maxeudist THEN

 maxeudist = eudist

 selection = i

 ENDIF

 ENDFOR

 imp_seq.add(oriseq(selection))

 connect_seq= interpolation(imp_seq())

 error = jaccard_distance (connect_seq,

 oriseq)

 IF error < threshold THEN

 break

 ENDIF

 ENDWHILE

 sort imp_seq based on the original data points

 position

 mqtt.publish(imp_seq, data)

 purge imp_seq and connect_seq

 Purge oriseq and retain the last 3 points

Figure 4.3 pip_reduce_and_forward Implementation

4.5 Additional Program for Simulation

For evaluation purpose like testing against the existing datasets, an

additional program is required to simulate the data generation in time series

streaming manner. Figure 4.4 is showing the process of streaming the sample

datasets, that is in csv format by publishing to an MQTT topic. The only change

of the PIPE function is instead of collecting the data from the sensor, the data

points will be collected by subscribing to a MQTT topic, as shown in figure 4.5.

42

Variables : csv, sample_data

Output: NULL

Procedure:

WHILE read(sample_data).hasNextItem

 mqtt.publish(current_item, data)

ENDWHILE

Figure 4.4 Pseudocode for Sample Data Streamification

cur_point = mqtt.subscribe(data)

Figure 4.5 Changes of PIPE Main Function for Simulation

4.6 Physical Implementation with Vibration Sensor

As per the pseudocode shown in figure 4.6, data is collected directly

from the sensor for physical implementation. Figure 4.7 is showing the actual

deployment with Vibration Sensor. The main board is Wemos D1 Mini

(esp8266ex) (“D1 mini [WEMOS Electronics],” n.d.) and vibration sensor is

accelerometer for vibration data is provided by Analog Device ADXL345

(“ADXL345 Datasheet and Product Info | Analog Devices,” n.d.). The code is

baked into the main board. The communication between the board and the

sensor is done via i2c. (“Specification,” n.d.)

Variables :error-rate threshold, error_threshold

 Original time-series array 𝐶𝑜, oriseq

 The newly generated data points, cur_point

Output: NULL

Procedure:

//one-time initialization

FOR (i = 0; i++; i<3)

 cur_point = sensor generates data points

43

 oriseq.add(cur_point)

ENDFOR

WHILE

 cur_point = sensor generates data points

 oriseq.add(cur_point)

 IF (error_estimation(oriseq) >

 error_threshold)

 THEN

 pip_reduce_and_forward(oriseq,

 error_threshold)

 ELSE

 continue

 ENDIF

ENDWHILE

Figure 4.6 Pseudocode for Physical Implementation

Figure 4.7 Deployment with Vibration Sensor

44

CHAPTER 5

Evaluation

5.1 Evaluation Objectives

There are two objectives need to be fulfilled under evaluation: -

a) To verify the performance of the proposed PIPE method, based on the

design goals described in Chapter 3 Section 1

b) To compare PIPE with other different data reduction methods in

relation to reduction rate and accuracy

There are in total three experiments. The overview and the purpose of these

experiments are tabulated in Table 5.1 below.

No. Experiment Setup Purpose

1. Utilizing PIP and other existing

data reduction methods such as

GZIP, Rate of Acceleration

(RAC), Real-Time PIP and

Original PIP to perform data

reduction against 7 selected

sample datasets and records the

result

To examine the accuracy and

reduction rate of PIPE, and

compare the PIPE with other

existing data reduction methods.

45

2. Segmentizes each sample datasets

into multiple chunks. Process

each chunk with PIPE and record

the results.

To examine the consistency of

PIPE in term of the performance.

3. Deploy PIPE into real sensor

environment.

To validate the feasibility of

deploying PIPE with physical

sensor and examine the power

consumption.

Table 5.1: Experiment Setups and Purposes

5.2 Key Measurements

To examine the performance of the proposed method, PIPE, and make

comparisons against other data reduction techniques, two key measurements are

identified and will be used in the evaluation. Firstly, the reduction rate. The

reduction rate is used to quantify the degree of reduction or compression

achieves by data reduction techniques. The equation of reduction rate is given

as below: -

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = (1 −
𝑛 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑛 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
) ∗ 100%

(5.1)

Reduction rate is expressed in percentage. For instance, 80% reduction

rate indicates the data is reduced by 80%, only 20% of data points remain and

forwarded to the endpoint.

46

Secondly, accuracy indicates to which degree the reduced dataset can be

used to reconstruct and restored to the original datasets. To capture the accuracy,

linear interpolation between points will be used to recover or reconstruct the

missing value from the reduced datasets. With the recovered datasets, accuracy

will be computed using Weighted Jaccard Similarity (Chierichetti et al., 2010),

in comparison with the original sequences. Weighted Jaccard similarity is the

invert of Weighted Jaccard Distance (Chierichetti et al., 2010) . The equation

of Weighted Jaccard Similarity is given as follows: -

𝐽(𝐶𝑜𝑟𝑖, 𝐶𝑟𝑐) =
∑ min(𝐶𝑜𝑟𝑖, 𝐶𝑟𝑐)𝑛

𝑖=1

∑ max (𝐶𝑜𝑟𝑖, 𝐶𝑟𝑐)𝑛
𝑖=1

(5.2)

Where 𝐶𝑜𝑟𝑖 is the original datasets, and 𝐶𝑟𝑐 is the restored dataset. Weighted

Jaccard Similarity reading is ranging from 0 to 1. Value 0 represents that the

two datasets are completely different while the value 1 represents both datasets

are the same.

5.3 Sample Datasets

 In total, there are seven datasets used for the first and second evaluation.

All datasets can be obtained from (Lichman, 2013), except datasets 7th. The 7th

dataset is actual readings obtained from a vibration sensor deployed in a

limestone factory. These datasets are selected based on its unique statistical

characteristics and time-series pattern. With this, the consistency of the data

reduction performance can then be tested.

47

Each of the datasets plots is shown in figure 5.1 to 5.7 below.

a. Vibration Sensor time series exhibits a trend that is similar to

white noises.

Figure 5.1: Vibration Sensor Time Series Plot

b. Luminosity Sensor. Binary time-series event, zero when the light

is off and luminosity reading is recorded when the light is on

Figure 5.2: Luminosity Sensor Time Series Plot

c. Smart Power Meter Sensor. The time-series starts off with high-

frequency event and followed by low frequency reading with

spikes occasionally

Figure 5.3: Smart Power Meter Sensor Time Series Plot

48

d. Temperature Sensor shows a slow-moving trend.

Figure 5.4: Temperature Sensor Time Series Plot

e. Dodger Loop Sensor contains a high frequency of events.

Figure 5.5: Dodger Loop Sensor Time Series Plot

f. Wind Sensor time series is showing a cyclical pattern

Figure 5.6: Wind Sensor Time Series Plot

49

g. ECG time series exhibits a recurrent pattern.

Figure 5.7: ECG Time Series Plot

5.4 Experiment on Comparison between PIPE and Existing Data

Reduction Techniques

The objective of this experiment is to examine the performance of the

PIPE in comparison to existing data reduction techniques. The existing data

reduction techniques are GZIP (P. Deutsch, 1996), Rate of Acceleration (Toni

et al., 2013) and Real-Time PIP (Papageorgiou et al., 2015a). Finally, PIPE will

be compared against the original PIP proposed in (Chung et al., 2001). PIPE

will be implemented based on the specification explained in Chapter 4, and the

threshold is set to 0.05, 0.1 and 0.15. To generating streaming time series the

sample data using MQTT, implementation based on section 4.4. Therefore,

regardless which data reduction techniques, the data collection will be done via

subscription to MQTT channel.

For other data reduction techniques, details on implementation will be

explained in the following sections.

50

5.4.1 GZIP Compression

GZIP compression is implemented based on online batch-processing

model. For instance, GZIP will perform compression at the interval of every 30

seconds. Figure 5.8 below illustrates the GZIP processing. After the processing

is completed, the size of compressed datasets will be obtained and the reduction

rate is the ratio of the size of compressed datasets over the size of the original

datasets.

For this evaluation, the compression interval is set to 30, 50 and 100

seconds.

Variables:interval of compression, int

 Array to store data points, ori_seq

 The newly generated data points, cur_point

 The compressed dataset,

 compressed_dataset

Output: NULL

Procedure:

cur_point = mqtt.subscribe(data)

for (i < 0; i < int; i++)

 ori_seq.add(cur_point)

ENDFOR

compressed_dataset = gzip(ori_seq)

Forward compressed_dataset

Figure 5.8: Pseudocode for GZIP Implementation

5.4.2 Rate of Acceleration (RAC)

 Toni et al.(2013) have devised an data filtering algorithm based on rate

of acceleration. The algorithm is depicted as the equation below: -

51

𝐶𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = √𝐶𝑖 − 2𝐶𝑖−1 + 𝐶𝑡𝑗 ≥ 𝑡ℎ𝑎𝑐𝑐𝑒𝑙
(5.3)

Where 𝐶𝑖 is the current data points, 𝐶𝑡𝑗 is the previous forwarded point.

𝑡ℎ𝑎𝑐𝑐𝑒𝑙 is the threshold to determine whether the points need to be forwarded.

The authors have not provided the details on setting the threshold. Therefore, in

this evaluation, the 𝑡ℎ𝑎𝑐𝑐𝑒𝑙 is calculated based on the average of RAC of the

entire datasets. The pseudocode of the RAC data reduction is shown in the table

below.

Variables:Threshold, th

 Previous points, prev_point

 Previous forwarded point, _prev_fw_point

 The newly generated data points, cur_point

 Rate of Accereleration, RAC

Output: NULL

Procedure:

cur_point = mqtt.subscribe(data)

rac = square_root(cur_point – 2*prev_point +

 prev_fw_points)

IF rac > th THEN

 Forward cur_point to endpoint

 prev_fw_point = cur_point

ENIF

prev_point = cur_point

Figure 5.9: Pseudocode for RAC Implementation

For every data points, RAC will be computed and compared against the

configured threshold. IF the RAC reading has exceeded the threshold, the

current point will then be forwarded to the endpoint.

52

5.4.3 Real-Time PIP

Real-time PIP is proposed by Papageorgiou et al. (2015). The proposed

algorithm employs caching to execute PIP at real time on every data points.

Each of the processed points will be ordered based on its level of importance.

If the processed data point falls under top X% of the ordered list of importance,

it will be forwarded to the endpoint. Users are required to configure the X

parameter and authors did not explain about any recommended or specific

method to configure the parameter. In this evaluation, the importance threshold

is set to 0.85, 0.9 and 0.95.

The implementation is done based on the pseudocode provided by

author at best effort basis. The pseudocode provided by author included in

Appendix A.

5.4.4 The Original PIP

PIP is first proposed by Chung et al. (2001). As discussed in Chapter 2,

the two main problems of this PIP version are that the processing is inherently

offline and the authors did not mention how to control the reduction rate.

However, since PIPE aims to optimize the original PIP, therefore, it is important

to understand the performance difference between the optimized version, PIPE,

and PIP.

In this evaluation, the error of reconstructed datasets that is reduced by

PIPE, will be used as the error rate threshold of PIP. Figure 5.10 below

illustrates the pseudocode of the implementation.

53

Variables:The entire sample dataset, data

 The set of important points 𝐶𝑟, imp_seq

 The line that is connecting the set of

 important points 𝐶𝑟𝑐,

 connect_seq

 The Euclidean distance, eudist

 The largest Euclidean distance, maxeudist

 The Jaccard Distance that reprsentating

 error,error

 The position of the data point within the

 sequence, selection

Output: The set of important points 𝐶𝑟, imp_seq

Procedure:

 data = read_all_data(sample_datasets)_

 imp_seq.add(data[0])

 imp_seq.add(data(data.size()))

 connect_seq= interpolation(imp_seq())

 WHILE (error < threshold && imp_seq.size() <

 data.size())

 eudistance = 0

 maxeudistance = 0

 selection = 0

 FOR (i = 0; i++; i < data.size())

 eudist=EuclideanDistCalculate

 (data[i] – connect_seq[i])

 IF eudist > maxeudist THEN

 maxeudist = eudist

 selection = i

 ENDIF

 ENDFOR

 imp_seq.add(data(selection))

 connect_seq= interpolation(imp_seq())

 error = jaccard_distance (connect_seq,

 data)

 IF error < threshold THEN

 break

 ENDIF

 ENDWHILE

 return imp_seq

Figure 5.10: Pseudocode for Original PIP Implementation

54

5.4.5 Experiment Results

The result of each of the datasets discussed individually. The result is

tabulated in a quadrant graph, for ease of comparison, the label of each result

can be read as {data reduction method | threshold configuration}. Finally, all

results will be combined and discussed.

5.4.5.1 Vibration Sensor

Table 5.2 and Figure 5.11 below shows the result of each of the data

reduction techniques in respect to accuracy and reduction rate. As GZIP is a

lossless data compression, the accuracy is always attaining at 1. However, the

reduction rate shows that GZIP yields better performance when the interval is

huge. That means GZIP is not suitable for real-time or online processing since

the GZIP only perform better with larger data size.

 Looking at real-time PIP, although the reduction rate is better than RAC

and PIPE, the accuracy result is not on a satisfactory level, which is lower than

0.7. In this work, we believe accuracy is more important than reduction rate to

ensure information loss is minimized. RAC achieves similar accuracy and

reduction with PIPE, which is around 30%, whereas PIPE result shows PIPE is

capable to retain the accuracy based on the error rate threshold, despite the low

reduction rate. The reduction rate is decreasing when the error rate threshold is

decreasing. This could be due to more points need to be attained to minimize

information loss since vibration sensor contains more events than other sample

datasets.

55

 Vibration Sensor

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 87.68% 1

50 92.39% 1

100 95.73% 1

RAC Threshold-based 35.92% 0.954

Real-

time

PIP

Importance

threshold

0.85 78.42% 0.681

0.9 85.02% 0.630

0.95 91.96% 0.567

PIPE
Error rate

threshold

0.15 41.34% 0.939

0.1 30.63% 0.964

0.05 19.75% 0.984

Table 5.2: Vibration Sensor Evaluation Result

Figure 5.11: Quadrant Chart of Vibration Sensor Result

5.4.5.2 Luminosity Sensor

Similarly, Table 5.3 and Figure 5.12 shows the result for luminosity

Sensors. Real-time PIP achieves good reduction rate but not accuracy. The

result of PIPE and RAC is very close in term of accuracy, except PIPE has a

slightly better reduction rate. Again, PIPE is capable to maintain the accuracy

Label = {method | threshold configuration}

56

based on error rate threshold configuration. The reduction rate is better than the

vibration sensor.

 Luminosity Sensor

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 85.75% 1

50 90.82% 1

100 95.12% 1

RAC Threshold-based 65.89% 1

Real-

time

PIP

Importance

threshold

0.85 75.45% 0.428

0.9 81.79% 0.384

0.95 89.51% 0.296

PIPE
Error rate

threshold

0.15 70.03% 0.965

0.1 68.52% 0.979

0.05 67.45% 0.998

Table 5.3: Luminosity Sensor Evaluation Result

Figure 5.12: Quadrant Chart of Luminosity Sensor Result

5.4.5.3 Smart Power Meter Sensor

Table 5.4 and figure 5.13 are showing the result for smart power meter

sensors, Real-Time PIP accuracy results are better than the previous datasets,

though, in term of reduction rate, PIPE can achieve higher reduction rate with

Label = {method | threshold configuration}

57

better accuracy. RAC maintain its consistency in term producing similar results

with PIPE.

 Smart Power Meter Sensor

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 87.49% 1

50 92.27% 1

100 95.69% 1

RAC Threshold-based 65.89% 0.969

Real-

time

PIP

Importance

threshold

0.85 44.95% 0.880

0.9 56.46% 0.838

0.95 69.08% 0.771

PIPE
Error rate

threshold

0.15 77.26% 0.931

0.1 70.75% 0.962

0.05 60.87% 0.981

Table 5.4: Smart Power Meter Sensor Evaluation Result

Figure 5.13: Quadrant Chart of Smart Power Meter Sensor Result

5.4.5.4 Temperature Sensor

Looking at table 5.5 and figure 4.14, it is obvious that all data reduction

techniques are capable to achieve satisfactory accuracy reading. PIPE can

achieve reduction rate that is better than GZIP at a slight deterioration of

Label = {method | threshold configuration}

58

accuracy. Note that PIPE has only result for 0.05 error rate configuration

because for this temperature datasets, PIPE cannot produce accuracy reading

that is lesser than 0.095.

 Temperature Sensor

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 88.37% 1

50 92.65% 1

100 95.63% 1

RAC Threshold-based 40.29% 0.999

Real-

time

PIP

Importance

threshold

0.85 28.28% 0.997

0.9 45.78% 0.991

0.95 73.02% 0.981

PIPE
Error rate

threshold

0.15 98.04% 0.966

0.1 98.04% 0.966

0.05 98.04% 0.966

Table 5.5: Temperature Sensor Evaluation Result

Figure 5.14: Quadrant Chart of Temperature Sensor Result

5.4.5.5 Dodger Loop Sensor

Referring to table 5.6 and figure 5.15, the result shows similar

behaviours with vibration sensor. PIPE has a poor reduction rate, together with

Label = {method | threshold configuration}

59

RAC. Dodger loop sensor dataset exhibits a high frequency of events.

Therefore, this has further strengthened the hypothesis made in section 5.4.4.1,

low reduction rate is due to more points is required to minimize information

loss for datasets that contains more events. On the other hand, Real-Time PIP

produces a satisfactory result as well and exhibits the same behaviours with

RAC and PIPE, which is a low reduction rate.

 Dodger Loop Sensor

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 86.34% 1

50 91.27% 1

100 95.28% 1

RAC Threshold-based 32.03% 0.970

Real-

time

PIP

Importance

threshold

0.85 47.17% 0.860

0.9 57.09% 0.830

0.95 69.19% 0.795

PIPE
Error rate

threshold

0.15 51.63% 0.919

0.1 34.66% 0.960

0.05 20.12% 0.982

Table 5.6: Dodger Loop Sensor Evaluation Result

Figure 5.15: Quadrant Chart of Dodger Loop Sensor Result

Label = {method | threshold configuration}

60

5.4.5.6 Wind Sensor

The result for wind sensor is shown with Table 5.7 and Figure 5.16

below. Results are similar across all the data reduction technique except GZIP.

When the accuracy reading is lower, the reduction rate is higher. PIPE attains

the accuracy reading based on the error rate threshold.

 Wind Sensor

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 88.70% 1

50 92.98% 1

100 96.00% 1

RAC Threshold-based 38.46% 0.985

Real-

time

PIP

Importance

threshold

0.85 44.86% 0.921

0.9 57.40% 0.88

0.95 77.55% 0.756

PIPE
Error rate

threshold

0.15 70.74% 0.933

0.1 60.93% 0.959

0.05 45.29% 0.986

Table 5.7: Wind Sensor Evaluation Result

Figure 5.16: Quadrant Chart of Wind Sensor Result

Label = {method | threshold configuration}

61

5.4.5.7 ECG

Referring to Table 5.8 and Figure 5.17, all data reduction techniques

achieve near to 1 accuracy. Real-time PIP achieves near 1 accuracy with lower

reduction compare to RAC and PIPE. With marginally lesser accuracy than 1,

PIPE achieves good reduction rate, which is almost close to 100.

 ECG

Method Configuration

Reduction

Rate
Accuracy

GZIP Interval size

30 88.05% 1

50 92.68% 1

100 95.92% 1

RAC Threshold-based 62.58% 0.995

Real-

time

PIP

Importance

threshold

0.85 18.10% 0.999

0.9 32.76% 0.992

0.95 50.50% 0.975

PIPE
Error rate

threshold

0.15 96.32% 0.946

0.1 95.42% 0.958

0.05 90.85% 0.980

Table 5.8: ECG Evaluation Result

Figure 5.17: Quadrant Chart of ECG Result

Label = {method | threshold configuration}

62

5.4.5.8 Summary

Figure 5.18 illustrates the summary of the results of the 7 sample

datasets. As GZIP compression result is consistent and similar across all

datasets, GZIP compression is not shown to reduce the complexity of diagram.

Real-Time PIP results are not consistent across the datasets. Some

datasets have low accuracy reading, which is not favourable as it indicates

information loss.

RAC attains high accuracy reading but its reduction rates vary between

20% to 70%. This can be explained by some datasets contain more events,

therefore more points are preserved to minimize information loss. Although

result is satisfactory for RAC, the threshold setting for RAC is not adaptive and

requires offline analysis to compute the optimum threshold for each dataset.

 The experiment results have proven that PIPE has achieved the design

goal set in chapter 3. With an error rate threshold setting, PIPE attains the

accuracy level for all different sample datasets despite their statistical

differences. In another word, the error rate threshold is adaptive to time-series

data reduction usage, without the need for offline analysis. Besides, the error

rate threshold ensures accuracy is prioritized over the reduction rate. For

instance, sample data like dodger loop sensor and vibration sensor, PIPE attains

the accuracy by preserving more points. For time series that has lesser events

like temperature sensor, PIPE achieves high reduction rate like 98% with an

accuracy of 0.97.

63

Label = {method | datasets}

64

Figure 5.18: Quadrant Chart of the Combined Results

65

5.4.5.9 Comparison between PIPE and Original PIP

PIPE has employed and optimized PIP to devise a novel data reduction

technique that is aligned to the research objectives and design goal. It is essential

to understand the performance of PIPE compared PIP. The evaluation is done

based on implementation method in 5.4.4, with error rate of PIP is set to the

error of reconstructed dataset that is reduced by PIPE. Figure 5.16 (a) – (g)

shows the result of PIPE vs PIP. The same colour code indicates the accuracy

result of both PIP and PIPE is the same.

 PIPE Original PIP

Datasets Error Rate

(only for PIPE)

Reduction

Rate
Accuracy

Reduction

Rate

Accuracy

Vibration

0.05 41.34% 0.939 55.04% 0.939

0.1 30.63% 0.964 44.52% 0.964

0.15 19.75% 0.984 31.58% 0.984

Luminosity

0.05 70.03% 0.965 75.93% 0.965

0.1 68.52% 0.979 74.98% 0.979

0.15 67.45% 0.998 73.64% 0.998

Smart Meter

0.05 77.26% 0.931 84.70% 0.931

0.1 70.75% 0.962 78.42% 0.962

0.15 60.87% 0.981 71.02% 0.981

Temperature 0.05 98.04% 0.966 99.15% 0.966

Dodger Loop

0.05 51.63% 0.919 68.67% 0.919

0.1 34.66% 0.960 50.80% 0.96

0.15 20.12% 0.982 35.07% 0.982

Wind

0.05 70.74% 0.933 81.99% 0.933

0.1 60.93% 0.959 74.98% 0.959

0.15 45.29% 0.986 62.49% 0.986

ECG

0.05 96.32% 0.946 97.17% 0.946

0.1 95.42% 0.958 97.05% 0.958

0.15 90.85% 0.980 94.00% 0.98

Table 5.9: Results of PIPE vs Original PIP

66

Figure 5.19 (a): Quadrant Chart of Vibration Sensor PIPE vs PIP Results

Figure 5.19 (b): Quadrant Chart of Luminosity Sensor PIPE vs PIP

Results

Figure 5.19 (c): Quadrant Chart of Smart Power Sensor PIPE vs PIP

Results

Label = {ori-PIP}, {PIPE | error-rate}

Label = {ori-PIP}, {PIPE | error-rate}

Label = {ori-PIP}, {PIPE | error-rate}

67

Figure 5.19 (d): Quadrant Chart of Temperature Sensor PIPE vs PIP

Results

Figure 5.19 (e): Quadrant Chart of Dodger Loop Sensor PIPE vs PIP

Results

Label = {ori-PIP}, {PIPE | error-rate}

Label = {ori-PIP}, {PIPE | error-rate}

Label = {ori-PIP}, {PIPE | error-rate}

68

Figure 5.19 (f): Quadrant Chart of Wind Sensor PIPE vs PIP Results

Figure 5.19 (g): Quadrant Chart of ECG PIPE vs PIP Results

Figure 5.19 (a) – (g) shows the original PIP has better performance in

term of reduction rate compare to PIPE. For instance, around 20% of difference

is observed for Dodger Loop Sensor and Vibration Sensor datasets. In contrary,

for datasets like ECG and Temperatures, the different in term of reduction rate

is minimal. The could be due to the error estimation prone to high frequency of

events, therefore, more PIP iteration is triggered For Dodger Loop Sensor and

Vibration Sensors.

As compared to PIPE, the original PIP has the full knowledge of every

data points in the sample datasets. Therefore, it is expected that the original PIP

can extract important points more effective then PIPE, which results in better

reduction rate. In contrary, though PIPE has no full knowledge over the entire

datasets, it is still capable to produce satisfactory and consistent data reduction

result at real time processing.

Label = {ori-PIP}, {PIPE | error-rate}

69

5.5 Experiment on PIPE Performance Consistency with Segmented

Datasets

Each of the sample dataset consists of 3000 data points. It is important

to note for the entire datasets, different events or frequency of event occurrences

can be different in random sub-sections of the datasets.

The result of experiment 5.4 has shown that when event frequency is

higher, PIPE produces lower reduction rate. To examine whether such variants

happens within the same datasets and impacting the performance of PIPE in

term of both reduction rate and accuracy, each sample datasets is divided into

sub-section with size of 100. PIPE is executed on each sub-section, with error-

rate threshold 0.05. The result is aggregated with the table below.

 Reduction Rate (%) Accuracy

Data Set Average Standard

Deviation

 Average Standard

Deviation

Vibration 19.8 0.053 0.98 0.0025

Luminosity 63.5 0.181 0.99 0.0025

Smart Meter 60.1 0.196 0.98 0.0059

Temperature 95.5 0.031 0.97 0.0094

Dodger 19.9 0.047 0.98 0.0041

Wind 44.6 0.077 0.99 0.0046

ECG 89.2 0.022 0.98 0.0046

Table 5.10: Results of PIPE on Segmented Datasets

Referring to the table 5.10, the standard deviation of reduction is varying

between different datasets. For example, low standard deviation is observed for

sample datasets like Temperature and ECG, whereas high standard deviation

70

reading for Luminosity and Smart Meter Sensors. Whereas, the accuracy

reading is maintained at 0.95 and above with low standard deviation reading,

reflecting the error rate threshold successfully control the error generated of the

entire datasets despite of different segments, and producing consistent results in

term of accuracy.

The result has further strengthened the claims of PIPE prioritizes

correctness over reduction rate, as well as error-rate threshold can be used to

control the error of the reduced datasets effectively.

5.6 Experiment on Physical Deployment

Chapter 4 has mentioned the PIPE is implemented based on C++

Arduino framework. In this section, physical implementation and evaluation

will be carried out to measure the power consumption, to examine whether it is

feasible to implement PIP at sensor node level. In fact, this work has more

ambitious goal, which is to reduce the power consumption by reducing the

number of communication.

PIPE is deployed with WeMos D1 ESP8266 WiFi Board (“D1 mini

[WEMOS Electronics],” n.d.) with ADXL345 accelerometer (“ADXL345

Datasheet and Product Info | Analog Devices,” n.d.). ESP8266 is one of the most

widely used microcontrollers for IoT application due to the inexpensive cost.

(Abdel-Basset et al., 2018).

71

However, high power consumption is one of the biggest challenges to

implement ESP8266 as compared to other Bluetooh-based microcontrollers

because the WiFi communication module consumes substantial amount of

power. (Skraba et al., 2016). By default, PIPE does not send data regularly, only

when error estimation exceeds error rate threshold. Therefore, incorporate with

ESP8266 implementation, the WiFi module is switched off at all time unless

data forwarding is required. An experiment is conducted to examine the

possibility of power saving with such deployment.

In term of the deployment details, the sensor is recording the vibration

axis at the frequency of every second. With a default implementation, the sensor

is sending data to an MQTT broker at every second as soon as the data is

collected; In contrary, PIPE implementation will send data on-demand basis.

The key measurement of this experiment is power consumption.

To examine the energy efficiency of PIPE, the power consumption over

a period of 60 sec is recorded by oscilloscope for two scenarios: -

a) Default implementation. There is no data reduction processing. Sensing

and data forwarding to MQTT broker is done every second. WiFi

connection is maintained all the time.

b) PIPE implementation, with error rate threshold set to 0.1. WiFi

connection will only initiated to facilitate on-demand PIPE data

forwarding. Otherwise, it will be turned off.

72

The key measurement is power consumption and total energy

consumption. Power consumption refers to electrical energy per unit time, it

displayed as a graph at unit time of 5ms with Figure 5.20. The total energy

consumption will be calculated as the area under the graph. Figure 5.20 has

shown the power consumption for default implementation. The power

consumption is maintained at minimum 200mW per unit over 60 secs. The total

energy consumption is 3.0kJ.

Figure 5.20: Power Consumption Over 60 Sec for based implementation

The power consumption of PIPE implementation over 60 secs is shown

in Figure 5.21. When there is no data forwarding, the power consumption is

negligible compares to Figure 5.20, even though there is PIPE processing for

each data points. There are several on-demand data forwarding is triggered by

PIPE along the 60 secs. During this period, the power consumption is increased

and maintained at more than 20mW. Once forwarding is completed, the power

consumption is again dropped to minimal. The total energy consumption for

PIPE implementation over 60 secs is 1.56kJ.

73

Figure 5.21: Power Consumption Over 60 Sec for PIPE implementation

In summary, the experiments can be concluded with the following points: -

a) PIPE can be implemented at sensor node level.

b) By switching on the WiFi module only for on-demand data forwarding,

PIPE helps to save up to 50% of energy consumption of ESP8266.

74

CHAPTER 6

Conclusion and Future Work

6.1 Revisiting the Objectives

The objective of this research work is to devise a novel data reduction

approach to can perform real-time processing with no offline analysis for

configuration, and can be deployed and used with heterogeneous environment

and time-series data. In chapter 2, state-of-the-art is discussed and concluded

that, although there are existing works have solved problem like real-time

processing, those works come with constraint like use-case specific. For

instance, some works focus on processing biometrics data while others focus on

IoT gateway implementation. Hence, the motivation to devise a novel data

reduction technique that achieves all defined objectives at the same time is

formed in this work.

We opined that accuracy is more crucial then reduction rate for a data

reduction technique. Therefore, the first step taken in designing the data

reduction technique was introducing error rate threshold. Error rate is used to

control the accuracy of the reduced datasets. The same error rate can be used

for any time series data despite the difference in term of statistical or pattern.

Secondly, to enable read-time processing, error estimation is introduced.

Error estimation process every data points at real time. When the estimated error

is exceeding the error rate threshold, the optimized PIP will be triggered,

extracts a subset of important points and send to endpoint at real time.

75

To ensure the objectives and designed goal are realized, PIPE is

evaluated with three experiments. First, PIPE performance is examined in

comparison with other data reduction techniques. The results have indicated the

PIPE exhibits consistent performance among other data reduction in term of

accuracy across all datasets, proven error rate threshold can be used for

heterogeneous datasets. Second experiment aims to test the performance

consistency on segmented datasets. The results reveal PIPE consistently

prioritizes accuracy over performance based on error-rate threshold. For the last

experiment, PIPE is deployed with ESP8266 microcontroller, benefit from the

computation logic, PIPE is capable to achieve up to approximate 50% of energy

saving depending on the amount of reducible data. Therefore, it is feasible to

deploy PIPE at sensor node. As conclusion, the objectives of this work are

achieved.

6.2 Future Work

PIPE requires unsent data points to be stored in the memory before it get

processed. PIPE can be further optimized so that there will be no need of storing

data points at memory.

Besides, error rate threshold can be further improved to be dynamically

configured based on the statistical characteristic of time-series, without any

human intervention. Addition to that, the algorithm can further be improved to

produce reduced data that have the error rate equivalent to error rate threshold.

Currently the reduced data error rate is always higher than error-threshold,

based on the evaluation results.

76

REFERENCES

Abdel-Basset, M., Manogaran, G., Mohamed, M., 2018. Internet of Things (IoT)

and its impact on supply chain: A framework for building smart, secure and

efficient systems. Future Generation Computer Systems.

https://doi.org/10.1016/j.future.2018.04.051

ADXL345 Datasheet and Product Info | Analog Devices [WWW Document],

n.d. URL http://www.analog.com/en/products/adxl345.html (accessed 9.24.18).

Agrawal, R., Faloutsos, C., Swami, A., 1993. Efficient similarity search in

sequence databases. Springer.

Alduais, N.A.M., Abdullah, J., Jamil, A., Audah, L., 2016. An efficient data

collection and dissemination for IOT based WSN, in: Information Technology,

Electronics and Mobile Communication Conference (IEMCON), 2016 IEEE

7th Annual. IEEE, pp. 1–6.

Amarlingam, M., Mishra, P.K., Prasad, K.D. and Rajalakshmi, P., 2016,

December. Compressed sensing for different sensors: A real scenario for WSN

and IoT. In Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on (pp.

289-294). IEEE.

Aström, K.J., 1969. On the choice of sampling rates in parametric identification

of time series. Information Sciences 1, 273–278.

Barbon, G., Margolis, M., Palumbo, F., Raimondi, F., Weldin, N., 2016. Taking

Arduino to the Internet of Things: The ASIP programming model. Computer

Communications 89–90, 128–140.

Blalock, D., Madden, S. and Guttag, J., 2018. Sprintz: Time Series Compression

for the Internet of Things. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 2(3), p.93.

77

 Cadzow, J.A., Baseghi, B., Hsu, T., 1983. Singular-value decomposition

approach to time series modelling, in: IEE Proceedings F (Communications,

Radar and Signal Processing). IET, pp. 202–210.

Chan, K.-P., Fu, A.W.-C., 1999. Efficient time series matching by wavelets, in:

Data Engineering, 1999. Proceedings., 15th International Conference On. IEEE,

pp. 126–133.

Chen, G., Yang, H. and Huang, L., 2012. Optimizing compressive sensing in

the internet of things. In Future Wireless Networks and Information

Systems (pp. 253-262). Springer, Berlin, Heidelberg.

Chierichetti, F., Kumar, R., Pandey, S. and Vassilvitskii, S., 2010, January.

Finding the jaccard median. In Proceedings of the twenty-first annual ACM-

SIAM symposium on Discrete Algorithms (pp. 293-311). Society for Industrial

and Applied Mathematics.

Chung, F.-L., Fu, T.-C., Luk, R., Ng, V., 2001. Flexible time series pattern

matching based on perceptually important points. International joint conference

on artificial intelligence workshop on learning from temporal and spatial data

1–7.

D1 mini [WEMOS Electronics] [WWW Document], n.d. URL

https://wiki.wemos.cc/products:d1:d1_mini (accessed 9.24.18).

Deutsch, P. and Gailly, J.L., 1996. Zlib compressed data format specification

version 3.3 (No. RFC 1950).

Dubey, H., Yang, J., Constant, N., Amiri, A.M., Yang, Q., Makodiya, K., 2015.

Fog Data: Enhancing Telehealth Big Data Through Fog Computing, in:

Proceedings of the ASE BigData & SocialInformatics 2015. ACM, Kaohsiung,

Taiwan, pp. 1–6.

Facebook, n.d. Zstandard - Real-time data compression algorithm [WWW

Document]. URL https://facebook.github.io/zstd/ (accessed 8.31.18).

78

Fathy, Y., Barnaghi, P. and Tafazolli, R., 2018, May. An Adaptive Method for

Data Reduction in the Internet of Things. In Proceedings of IEEE 4th World

Forum on Internet of Things. IEEE.

Feng, L., Kortoçi, P. and Liu, Y., 2017, October. A multi-tier data reduction

mechanism for IoT sensors. In Proceedings of the Seventh International

Conference on the Internet of Things (p. 6). ACM.

Fu, T., 2011. A review on time series data mining. Engineering Applications of

Artificial Intelligence 24, 164–181.

https://doi.org/10.1016/j.engappai.2010.09.007

Fu, T.C., 2011. A review on time series data mining. Engineering Applications

of Artificial Intelligence, 24(1), pp.164-181.

Fu, T.C., Hung, Y.K. and Chung, F.L., 2017, November. Improvement

algorithms of perceptually important point identification for time series data

mining. In Soft Computing & Machine Intelligence (ISCMI), 2017 IEEE 4th

International Conference on (pp. 11-15). IEEE.

GitHub, 2018. LZ4 Extremely Fast Compression algorithm. lz4.

Jaccard, P., 1901. Distribution de la Flore Alpine dans le Bassin des Dranses et

dans quelques régions voisines. Bulletin de la Societe Vaudoise des Sciences

Naturelles 37, 241–72.

Keogh, Eamonn, Chakrabarti, K., Pazzani, M., Mehrotra, S., 2001. Locally

adaptive dimensionality reduction for indexing large time series databases.

ACM SIGMOD Record 30, 151–162.

Keogh, E. and Ratanamahatana, C.A., 2005. Exact indexing of dynamic time

warping. Knowledge and information systems, 7(3), pp.358-386.

Keogh, E., Chu, S., Hart, D. and Pazzani, M., 2001. An online algorithm for

segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE

International Conference on (pp. 289-296). IEEE.

79

Keogh, E.J., Pazzani, M.J., 2000. Scaling up dynamic time warping for

datamining applications, in: Proceedings of the Sixth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, pp.

285–289.

Kravets, I., n.d. PlatformIO: An open source ecosystem for IoT development

[WWW Document]. PlatformIO. URL https://platformio.org (accessed 9.9.18).

Li, S., Xu, L.D., Wang, X., 2013. Compressed Sensing Signal and Data

Acquisition in Wireless Sensor Networks and Internet of Things 9.

Lichman, M., 2013. UCI Machine Learning Repository. University of

California, Irvine, School of Information and Computer Sciences.

Maschi, L.F., Pinto, A.S., Meneguette, R.I. and Baldassin, A., 2018. Data

Summarization in the Node by Parameters (DSNP): Local Data Fusion in an

IoT Environment. Sensors, 18(3), p.799.

Mohamed, M.F., Shabayek, A.E.R., El-Gayyar, M. and Nassar, H., 2018. An

adaptive framework for real-time data reduction in AMI. Journal of King Saud

University-Computer and Information Sciences.

P. Deutsch, 1996. GZIP file format specification version 4.3 [WWW

Document]. URL https://tools.ietf.org/html/rfc1952 (accessed 6.24.18).

Papageorgiou, A., Cheng, B., Kovacs, E., 2015a. Real-time data reduction at the

network edge of Internet-of-Things systems, in: Network and Service

Management (CNSM), 2015 11th International Conference On. IEEE, pp. 284–

291.

Papageorgiou, A., Cheng, B., Kovacs, E., 2015b. Reconstructability-Aware

Filtering and Forwarding of Time Series Data in Internet-of-Things

Architectures. IEEE, pp. 576–583.

80

Peng, J., Wang, H., Li, J. and Gao, H., 2016, June. Set-based similarity search

for time series. In Proceedings of the 2016 International Conference on

Management of Data (pp. 2039-2052). ACM.

Phetking, C., Sap, M.N.M., Selamat, A., 2009. Identifying Zigzag based

Perceptually Important Points for indexing financial time series, in: 2009 8th

IEEE International Conference on Cognitive Informatics. pp. 295–301.

Rani, M., Dhok, S.B., Deshmukh, R.B., 2018. A Systematic Review of

Compressive Sensing: Concepts, Implementations and Applications. IEEE

Access 6, 4875–4894.

Salomon, D., 2004. Data compression. Springer, New York.

Sarker, H., Tyburski, M., Rahman, M.M., Hovsepian, K., Sharmin, M., Epstein,

D.H., Preston, K.L., Furr-Holden, C.D., Milam, A., Nahum-Shani, I. and

Al'Absi, M., 2016, May. Finding significant stress episodes in a discontinuous

time series of rapidly varying mobile sensor data. In Proceedings of the 2016

CHI conference on human factors in computing systems (pp. 4489-4501). ACM.

M.M., Hovsepian, K., Sharmin, M., Epstein, D.H., Preston, K.L., Furr-Holden,

C.D., Milam, A., 2016. Finding Significant Stress Episodes in a Discontinuous

Time Series of Rapidly Varying Mobile Sensor Data. ACM Press, pp. 4489–

4501.

Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M., Estrin, D.,

2004. Lightweight Temporal Compression of Microclimate Datasets 9.

Shcherbakov, M.V., Brebels, A., Shcherbakova, N.L., Tyukov, A.P., Janovsky,

T.A., Kamaev, V.A., 2013. A survey of forecast error measures. World Applied

Sciences Journal 24, 171–176.

Skraba, A., Kolozvari, A., Kofjac, D., Stojanovic, R., Stanovov, V., Semenkin,

E., 2016. Streaming pulse data to the cloud with bluetooth LE or NODEMCU

ESP8266. IEEE, pp. 428–431.

81

Specification [WWW Document], n.d. . I2C Bus. URL https://www.i2c-

bus.org/specification/ (accessed 9.24.18).

Toni, Goh, H.G., Liew, S.-Y., 2013. Energy Saving Data Abstraction and

Reformation Algorithms for Human Movement Monitoring. IEEE, pp. 599–604.

Toni, Goh, H.G., Liew, S.Y., 2012. Performance study of zeroth-, first-and

second-order data abstraction and reformation algorithms for wireless sensor

networks, in: Wireless Communications and Applications (ICWCA 2012), IET

International Conference On. IET, pp. 1–6.

Tsinaslanidis, P.E., Kugiumtzis, D., 2014. A prediction scheme using

perceptually important points and dynamic time warping. Expert Systems with

Applications 41, 6848–6860.

Weisstein, E.W., n.d. Two-Point Form [WWW Document]. URL

http://mathworld.wolfram.com/Two-PointForm.html (accessed 7.2.18).

Yi, B.-K., Faloutsos, C., 2000. Fast time sequence indexing for arbitrary Lp

norms. VLDB.

Zaib, G., Ahmed, U., Ali, A., 2004. Pattern recognition through perceptually

important points in financial time series 12.

 Zhang, J., Yu, Z.L., Gu, Z., Li, Y. and Lin, Z., 2018. Multichannel

Electrocardiogram Reconstruction in Wireless Body Sensor Networks Through

Weighted ℓ1, 2 Minimization. IEEE Transactions on Instrumentation and

Measurement.

82

APPENDIX A

The pseudocode of the Real-Time PIP implemented by Papageorgiou et al.,

(2015a)

83

