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ABSTRACT 

 

 

AN ACCURATE AND EFFICIENT  

SHOOTING-AND-BOUNCING-POLYGON RAY TRACER  

FOR RADIO PROPAGATION MODELLING 
 

 

Teh Chin Hui 

 

 

 

 

 

 

Radio propagation modelling is important for the design and deployment 

of wireless communication systems. Ray tracing is the state-of-the-art site-

specific technique to modelling terrestrial and indoor propagation. In this 

project, we have proposed and implemented three important improvements to a 

3D shooting-and-bouncing-polygon (SBP) ray tracer.  

Firstly, we have derived delay correction factors to be used with a one-

patch model of real building wall with thickness. The correction factors have 

been derived for reflection, transmission, and diffraction, based on a multilayer 

lossy wall model. The one-patch model and correction factors allow efficient 

and accurate treatment of real building walls with thickness in ray tracing. 

Secondly, we have extended SBP to trace diffracted and diffracted-

reflected ray beams using edge-fixed diffraction ray-polygons. Crucial to the 

solution is the ability to transform or project Cartesian polygons to edge-fixed 

polygons. We have described the associated problems and proposed an 

algorithm to perform the transformation or projection. 
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Thirdly, we have proposed a new spatial partitioning scheme to be used 

with the SBP ray tracer. The new scheme is named convex cell partitioning 

(CCP). It divides the simulated scene into a set of interconnected convex cells 

of any shapes. The interconnectivity between the convex cells is represented by 

a graph. Like binary-space-partitioning, CCP is able to sort objects by their 

visibility distance relative to any point, efficiently, incrementally, and adaptively. 

Better than binary-space-partitioning, in the context of SBP, CCP removes the 

need to perform polygon subtraction, a relatively expensive procedure. 

Traversal of the CCP graph is also simpler than the binary tree. To improve CCP 

usability, we have developed and implemented a tool to automatically construct 

the CCP graph from a given set of 3D walls. 

The improved ray tracer is named SBP-CCP. We have evaluated its 

performance by making comparisons with commercial ray tracers, full-wave 

solutions, and published measurements. Results show that SBP-CCP is more 

accurate than the earlier version and it is about an order of magnitude faster than 

the binary-space-partitioning version in an urban canyon application. It is also 

shown that SBP-CCP outperforms commercial REMCOM Wireless InSite 3D 

ray tracers in terms of accuracy and time and memory efficiency in long tunnel, 

urban canyon, and indoor applications. In particular, SBP-CCP has very small 

memory footprint, 2 to 3 orders of magnitude smaller than REMCOM ray 

tracers.  

SBP-CCP simulation results also show very good match (2 dB root-

mean-square error) to full-wave solutions computed using CST Microwave 
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Studio time domain solver, in an indoor application with reflection, transmission, 

diffraction, and lossy walls with thickness. SBP-CCP is full 3D, fast, accurate, 

and memory efficient. It is a good candidate for simulating long tunnel, urban 

canyon, and indoor propagation environments. The current implementation 

does not include double diffraction and it is not suitable for urban environments 

with multiple over-roof-top diffractions. The current implementation is also not 

suitable for applications where diffuse scattering is an important propagation 

mechanism. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Overview 

The last 30 years have seen tremendous growth in wireless 

communication systems, from world-wide-area-network to body-area-network. 

The mobile phone access technology has developed from the first generation to 

the present fifth generation. Smart phone, Wi-Fi, Bluetooth, and soon IoT 

(Internet of Things) have become indispensable parts of our modern daily life. 

They have been made possible by the successful deployment of various radio 

frequency wireless communication systems.  

The wireless systems operate by transmitting radio frequency signals 

into space. It is hoped that some of the signals, after interacting with the 

surrounding environment, will eventually arrive and be picked up by the 

intended receiver. The space over which the signals propagate, from the 

transmitter to the receiver, is commonly known as the communication channel 

or propagation channel. The propagation channel is not at all friendly to the 

signals. It will cause attenuation, delay, and distortion to the signals. Successful 

deployment of the wireless systems requires a good knowledge about the 

channel parameters, i.e. the nature and the amount of attenuation, delay, and 

distortion caused by the propagation channel. For example, if the attenuation is 
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known, various counter measures can be put in place, e.g. increase transmit 

power, increase transmitter height, increase coding gain, use directional antenna, 

or use lower order modulation scheme, to ensure that the signals can be picked 

up and decoded by the receiver. Other examples include determining availability, 

coverage, optimum base station locations, and achievable data rates. 

Direct measurement of the channel parameters is costly and time 

consuming. More often, the channel parameters are estimated using a 

mathematical model of the propagation channel, known as propagation model. 

We shall limit our discussions to terrestrial and indoor propagation models. In 

general, there are 2 types of propagation models, namely empirical and 

theoretical. Empirical models are derived from extensive measurements. A very 

popular one is Okumura-Hata model (Okumura et al., 1968; Hata, 1980). A vast 

variety of empirical outdoor models are extensions or variants of Okumura-Hata 

model. The estimation is done based on general description of the propagation 

environment e.g. rural, sub-urban or urban. The formula is simple and fast to 

compute, but it is not able to deal with variation in the environment not 

accounted in the measurement studies. 

Theoretical models are typically based on geometrical optics and 

geometrical theory of diffraction, where radio waves are treated as rays. 

Propagation of radio waves is modelled by direct ray, reflected ray, transmitted 

ray, and diffracted ray. Theoretical models are more computationally intensive 

but they are less dependent on measurements. They have evolved from earlier a 

few rays models (Longley and Rice, 1968; Edwards and Durkin, 1969; Walfisch 
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and Bertoni, 1988) to the state-of-the-art ray tracing models (Fuschini et al, 

2015; Yun and Iskander, 2015; Leonor et al, 2019). Ray tracing models are also 

known as site-specific models for their ability to cope with details specific to 

the modelled environment. They are universal in the sense that they are able to 

estimate most of the channel parameters, narrowband or wideband. Central to 

the ray tracing models is the ray tracing engine or ray tracer. There are two-

dimensional (2D) and three-dimensional (3D) ray tracers. 2D ray tracers are 

usually more efficient but they are also more restrictive, e.g. they are not suitable 

for indoor simulations. 3D ray tracers are computationally intensive. They are 

known for their flexibility and they have a wider range of applications (Egea-

Lopes et al., 2019; Guan et al., 2019; Chen, Lai and Yu, 2019). The main 

objective of this project is to develop, implement, and validate an improved 3D 

ray tracer which is accurate and efficient, for radio propagation modelling. 

1.2 Ray Tracing for Radio Propagation Modelling 

The use of ray tracing for mobile radio propagation modelling has been 

studied extensively since early 1990s (Tam and Tran, 1995; Iskander and Yun, 

2002; Sarkar et al., 2003; Bertoni, Torrico and Liang, 2005; Hrovat, Kandus and 

Javornik, 2014; Fuschini et al., 2015; Yun and Iskander, 2015). Ray tracing 

propagation models can be divided briefly into two types: image-based 

(Mckown and Hamilton, 1991) and shooting-and-bouncing-ray (SBR) (Seidel 

and Rappaport, 1994). In image-based ray tracing, an image is a point residing 

on the opposite side of a reflecting plane and having the same perpendicular 
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distance to the plane, relative to a source point which can be a transmitter or 

another image. Diffraction related images have the form of a line instead of a 

point. With the aid of the images, exact ray paths can be computed by tracing 

backward from the receivers towards the transmitters. Not all the ray paths are 

valid though. Various forms of illumination zones have been used to reduce 

invalid ray paths and improve computation efficiency (Tan and Tan, 1996; 

Fortune, 1996; Catedra et al., 1998; Son and Myung, 1999; Athanasiadou, Nix 

and McGeehan, 2000; Suzuki and Mohan, 2003; Teh and Chuah, 2003; Degli-

Esposti et al., 2004; Tan, Su and Long, 2015).  

In SBR ray tracing, many rays are shot from a transmitter in all 

directions. For each ray, the nearest ray-object intersection is computed. At each 

intersection, two new rays are spawned: a reflected ray and a transmitted ray. In 

the case of diffraction, a set of rays on the Keller’s cone are spawned. Each ray 

is also checked for whether it arrives at the receivers, a process known as 

reception test. In the following discussions, a ray is denoted as standard-ray 

when only one ray is used to represent a ray cone. Three-dimensional (3D) 

reception test for a standard-ray is usually done by using a reception sphere, a 

sphere centred at the receiver and with diameter approximately equals to the ray 

separation. A standard-ray is said to have arrived at a receiver if it intersects the 

reception sphere. 

The resultant ray path is not exact because it does not pass through the 

receiver. The error is a crucial one if ray contributions are summed coherently. 

The reception sphere method also assumes constant angular separation between 
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adjacent rays. The assumption is not met in practice and a reception sphere can 

be too big or too small (Novak, 2019). This leads to the well-known double 

counting and under counting errors. A popular solution to the double and under 

counting problem is to use ray-tubes instead of standard-rays (Chen and Jeng, 

1997; Yang, Wu and Ko, 1998). A ray-tube is a pyramidal structure formed by 

3 or more rays. A ray-tube is said to have arrived at a receiver if the receiver is 

inside the ray-tube. This greatly reduces double and under counting errors. 

However, it comes at a cost. Three or more rays are traced per ray-tube 

compared to one in the case of standard-ray. Usually, for computation efficiency, 

a non-exact ray path representative of the ray-tube, e.g. an average or median, 

is used to compute the ray contribution.  

In both cases, namely the standard-ray and ray-tube, the ray separation 

has to be kept small enough so as not to miss an object and to reduce ray path 

error. Many rays will need to be traced. For example, at 0.25° ray separation (a 

default value used by a commercial suite like REMCOM Wireless InSite), there 

are about 600,000 rays to cover all directions in 3D space. Various methods of 

dynamic ray splitting have been used to improve computation efficiency and 

accuracy (Rajkumar et al., 1996; Suzuki and Mohan, 1997; Bernardi, Cicchetti 

and Testa, 2004). An alternative is to use ray-beams (Fortune, 1996; Catedra et 

al., 1998; Son and Myung, 1999; Athanasiadou, Nix and McGeehan, 2000; 

Suzuki and Mohan, 2003; Teh and Chuah, 2003; Degli-Esposti et al., 2004; Tan, 

Su and Long, 2015). A ray-beam is similar to a ray-tube except that it can be 

made bigger than the objects. Usually, a polygon-clipping algorithm is used to 

determine beam-object intersection. Most if not all ray-beam tracing 
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propagation models use the image method to compute exact ray path. Hence, 

they are generally regarded as image-based ray tracing models. Ideally, only one 

ray-beam needs to be shot from a transmitter, compared to hundreds of 

thousands of standard-rays or ray-tubes. The one ray-beam is adaptively split 

into smaller ray-beams as it intersects with objects. Tracing a ray-beam is 

equivalent to tracing an infinite number of rays with infinitesimally small 

separations. No doubt a beam-object intersection is much more computationally 

expensive than a ray-object intersection. In the case that a small but finite ray 

separation is adequate, ray-beams are more efficient when the beam sizes are 

big, such that the beam-object intersections are cheaper than the large amount 

of ray-object intersections, but gradually lose the advantage as the beam sizes 

become smaller. 

On the other hand, ray-beam tracing is more complicated and less 

flexible. It has a hard time dealing with 3D diffraction and curved surface. 

Although 3D diffraction has been taken into account in various ways, 3D 

diffracted ray-beams have not been fully traced. The angular z-buffer method 

(Catedra et al., 1998) uses an edge-fixed coordinate system to track diffracted 

ray-beams, but only the bounding rectangle is tracked. Another method is 

described by Di Giampaolo and Bardati (2009), but they do not describe how 

diffracted-reflected (diffraction followed by reflection) ray-beams are handled. 

Tan, Su and Long (2015) have adopted Di Giampaolo and Bardati (2009) 

method and they do not trace diffracted-reflected ray-beam. Bernardi, Cicchetti 

and Testa (2004) use ray-tubes. Degli-Esposti et al. (2004) and Suzuki and 

Mohan (2003) do not trace diffracted ray-beam. 
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In an earlier work (Teh and Chuah, 2003), we have presented an image-

based ray-beam tracer. It shoots and bounces polygons using perspective 

projection. Beam-object intersection is handled by polygon clipping.  In the 

following discussions, it will be referred to as shooting-and-bouncing-polygon 

(SBP) ray tracer. Methods similar to SBP are described by Maurer (2000), 

Giampaolo and Bardati (2009) and Tao, Lin and Bao (2011). Unlike Catedra et 

al. (1998) and Degli-Esposti et al. (2004), SBP does not use spherical 

coordinates. The problem with spherical coordinates is that straight lines in 

Cartesian coordinates are not straight but they appear as curves in the  θ - φ 

plane. Catedra et al. (1998) deal with the problem by tracking the bounding 

rectangle only. Saeidi and Hodjatkashani (2010) shows that the bounding 

rectangle defined by spherical coordinates of wall vertices is not accurate. 

Degli-Esposti et al. (2004) deal with the problem by adding more vertices to 

piecewise approximate the curves. Unlike Catedra et al. (1998), SBP does not 

use expensive image dependent data structures and it is capable of efficiently 

handling a high-order of multiple reflections and transmissions. SBP traces 

exact reflection and transmission ray-beams or illumination zones. There is no 

invalid ray path in this case as all ray paths computed are valid. The SBP ray 

tracer works very well with reflection and transmission but it too does not trace 

diffracted ray-beam and it is not capable of tracing diffracted-reflected rays. 

Various spatial partitioning schemes have been used, mainly to 

accelerate ray-object intersection computation. Most of them are adopted from 

computer graphics literature. The key idea is to limit the intersection 

computation to objects that reside in the neighbourhood of the ray. Yun, Iskander 
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and Zhang (2000) have used a uniform rectangular grid. Yun, Zhang and 

Iskander (2002) have used a triangular grid. Catedra et al. (1998) have used 

angular sectoring. Kenny and Nuallain (2017) have used convex space 

partitioning. Many others have used binary space partitioning or kd-tree (Chen 

and Jeng, 1997; Teh and Chuah, 2003; Mohtashami and Shishegar, 2012; Tan, 

Su and Long, 2015). kd-tree is a special type of binary space partitioning where 

the dividing planes are axis-aligned. The selection of suitable partitioning 

scheme depends on the particular implementation of the ray tracer. For example, 

angular sectoring is a natural choice for angular z-buffer (Catedra et al., 1998); 

binary space partitioning is a natural choice for shooting-and-bouncing-polygon 

for its ability to sort objects relative to any point (Teh and Chuah, 2003). 

A real wall has thickness. For accurate simulation of indoor 

environments, the two surfaces of a real wall are to be treated differently (Yang, 

Wu and Ko, 1998; Kenny and Nuallain, 2017). This effectively doubles the total 

number of walls which in turn increases the computation complexity. In an 

earlier work (Teh, Kung and Chuah, 2006), we have proposed a one-patch 

solution to the problem. A real wall with thickness is modelled as an 

infinitesimally thin patch in ray tracing. Delay correction factors are used to 

compensate the position errors of the wall surfaces. They are based on Burnside 

and Burgener (1983) formulation for one-layer lossless dielectric slab. 

Correction factor for diffraction has not been reported.  
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1.3 Project Scope 

In this project, we will describe three important improvements to the 

shooting-and-bouncing-polygon (SBP) ray tracer. Firstly, we have extended the 

delay correction factors for walls with thickness to a more general multilayer 

lossy wall model. We have also derived the delay correction factor for 

diffraction. This improves the ray tracer’s accuracy and flexibility when dealing 

with lossy walls with thickness. Secondly, we have extended SBP to trace 

diffracted and diffracted-reflected ray-beams. This improves the SBP ray 

tracer’s accuracy when diffracted-reflected rays play an important role. Thirdly, 

we have proposed a better alternative to binary space partitioning for use with 

SBP, which greatly improves SBP computation efficiency. The resultant SBP 

ray tracer is full-3D, fast, accurate, and memory efficient. We will show its 

applications to long tunnel, urban canyon, and indoor environments. We will 

show its accuracy by comparing its simulation results against full-wave 

solutions and published measurements. We will compare its run time, accuracy, 

and memory consumption against commercial ray tracers from REMCOM 

Wireless InSite. 

The current implementation of the SBP ray tracer does not handle double 

diffraction. Although double and higher order diffractions are important in some 

applications, e.g. over-roof-top diffraction, they are not required in many 

applications (Chen and Jeng, 1997; Catedra et al., 1998;  Bernardi, Cicchetti 

and Testa, 2004; Remcom, 2018b). The project also does not address the 

problems of curved surface (Didascalou et al., 2000; Wang and Yang, 2006), 
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rough surface (Degli-Esposti et al., 2004; Cocheril and Vauzelle, 2007), and 

GPU (graphic processing unit) acceleration (Schmitz et al., 2011; Tan, Su and 

Long, 2015). 

Based on some of the works in this project, we have published a paper 

entitled “An accurate and efficient 3D shooting-and-bouncing-polygon ray 

tracer for radio propagation modeling” in IEEE Transactions on Antennas and 

Propagation (in press). We appreciate valuable comments from the reviewers 

and we have incorporated many of their suggestions into this project.  

1.4 Report Outline 

CHAPTER 1 explains the project objective and scope. It also gives a 

general review of previous works. More specific reviews of previous works are 

given throughout the report as and when the needs arise. CHAPTER 2 reviews 

background information essential to the project execution and discussions. 

CHAPTER 3 to CHAPTER 5 detail the proposed improvements to the shooting-

and-bouncing-polygon (SBP) ray tracer. CHAPTER 3 explains the derivation 

of the delay correction factors based on a multilayer lossy wall model, for 

reflection, transmission, and diffraction. CHAPTER 4 explains a solution to the 

3D diffracted ray-beam problem. CHAPTER 5 explains a new spatial 

partitioning scheme, which we term convex space partitioning, for the SBP ray 

tracer. CHAPTER 6 discusses the performance of the improved SBP ray tracer 

through comparisons with commercial ray tracers, full-wave solutions, and 
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published measurements. CHAPTER 7 gives a summary of the project 

achievements and areas of future work. 
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

A general review of previous works has been given in CHAPTER 1. 

More specific reviews of previous works are given throughout the report as and 

when the needs arise. This Chapter reviews important background information 

required for the project execution, e.g. the implementation of the shooting-and-

bouncing-polygon (SBP) ray tracer. This Chapter will serve as a reference for 

many of the subsequent discussions. Although the essence of the contents in this 

Chapter are not new, we have customized them for the project, made corrections, 

provided details to fill the gaps, and prepared original graphical illustrations.  

2.2 Shooting-and-Bouncing-Polygon (SBP) 

This Section describes the shooting-and-bouncing-polygon method 

presented by Teh and Chuah (2003). Flat polygonal objects will be denoted as 

walls. A simulated scene is described by a set of walls. Teh and Chuah (2003) 

have introduced ray-polygon that can be shot and traced. Ray-polygon is the 

cross sectional footprint of a polyhedral ray-beam on a view plane, as shown in 

Figure 2.1. Its shape on a view plane can be determined by perspective 
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projection. The center of projection (COP) is the source of the ray-beam. Only 

4 ray-polygons need to be shot from a transmitter to cover all directions in the 

3D space. They form a tetrahedron enclosing the transmitter. They can be shot 

and traced independently on different threads or machines. 

Figure 2.2 and Figure 2.3 show a 2D illustration of the shooting-and-

bouncing-polygon process. Without loss of generality, the ray-polygons and 

walls are perpendicular to the paper, and hence they appear as straight lines. 

After a ray-polygon is shot from the transmitter, reception tests are performed 

on receivers residing between the transmitter and the nearest wall, by projecting 

the receivers onto the ray-polygon. Receivers whose projections lie in the ray-

polygon are said to have received the ray (see Figure 2.2(a)). Then, the nearest 

wall is projected onto the ray-polygon (see Figure 2.2(b)). The portion 

obstructed by the wall is removed from the ray-polygon using a generic polygon  

Figure 2.1 Ray-polygon 

Ray-beam 

Source 

View plane 

Ray-polygon 
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Figure 2.2 Shooting and clipping ray-polygon 
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Figure 2.3 Transmitted and reflected ray-polygons 
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(b) Reflected ray-polygon  
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Figure 2.4 Clipped ray-polygon and diffracting edge 
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clipping algorithm (Vatti, 1992; Murta, 2017). The clipped ray-polygon is then 

used for reception tests on receivers residing between the current wall and the 

next nearest wall and so on (see Figure 2.2(c)). The process repeats until the 

ray-polygon is empty (totally obstructed) or it exits the simulated scene. 

The obstructed portion of the ray-polygon defines both the reflected ray-

polygon and transmitted ray-polygon (see Figure 2.3). For reflection, the COP 

is the reflection image of the transmitter. For transmission, the COP is the 

transmitter or it can be shifted to simulate refraction. These ray-polygons are 

traced in the same way as described above. A diffracting edge is said to have 

given rise to diffraction if it coincides with one of the edges of the clipped ray-

polygon (projected), as shown in Figure 2.4. Teh and Chuah (2003) have not 

extended the ray-polygon concept to diffraction due to the difficulty in 

projecting diffracted ray-polygon. A non-ray-polygon method is used to handle 

diffraction but it is not able to trace diffracted-reflected rays. A summary of the 

SBP processes is given in Figure 2.5. 

Upon reception, backward tracing is performed to reveal the exact ray 

paths. The backward tracing only requires N line-plane intersections for N 

interactions (reflection / transmission) because the specific walls giving rise to 

the interactions are known and it is also known that the ray path is not shadowed 

by other walls. Ray contributions are computed using geometrical optics (GO) 

and uniform geometrical theory of diffraction (McNamara, Pictorius and 

Malherbe, 1990; Bernadi, Cicchetti and Testa (2002); see Sections 2.5 and 2.6).  
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Figure 2.5 Shooting-and-bouncing-polygon flowchart 
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For narrowband simulations, multiple rays arriving at a receiver are summed 

coherently. 

Obviously, the above requires that the walls and receivers are sorted by 

their distances relative to the COP. This is achieved efficiently using binary-

space-partitioning (Foley et al., 1996). The sort can be done incrementally, 

adaptively, and with little effort by traversing a binary tree in a specific way (see 

Section 2.3). The construction of the binary tree is a one-time job for a simulated 

scene. The binary tree is independent of the COP.  

The SBP algorithm allows ray contributions to be computed alongside 

generation of images (COP of ray-polygons). Images may be discarded as their 

contributions have been accounted for. Use of image or visibility tree 

(Athanasiadou, Nix and McGeehan, 2000; Degli-Esposti et al., 2004) is optional. 

An image tree can be stored and reused for future simulations, and it saves the 

cost of generating images. However, an image tree can grow huge for complex 

environments, greatly increasing the memory requirement and often leading to 

slow execution due to high memory usage. For simpler environments, with SBP, 

the cost of generating images is often negligible compared to ray path and field 

computations. Hence, in most cases, an image tree offers little advantage to SBP. 
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2.3 Binary Space Partitioning (BSP) 

Figure 2.6 shows a 2D example that will be used in the following 

discussions. The scene is shown on the left, the binary tree on the right. Without 

loss of generality, the walls are perpendicular to the paper and so they appear as 

straight lines.  The orientations of the walls are indicated by the small solid 

circles attached to one end of the lines. The left and right sides of the lines 

(walls) are defined with the solid circles pointing upward. In Teh and Chuah 

(2003), BSP begins by partitioning the simulated scene with a plane which 

coincides with one of the walls. It then classifies the walls according to their 

positions relative to the dividing plane, i.e. on the left or on the right. Those 

coincide with the dividing plane form a BSP node while those crossing the plane 

are split into two, one on the left and one on the right (see Figure 2.6(a)). The 

partitioning process is repeated recursively on the left and the right set of walls, 

generating a binary tree (see Figure 2.6(b)).  

Sources and receivers are pushed onto the binary tree in a similar way, 

based on their positions relative to the BSP nodes. They always settle in an 

empty branch not having a BSP node. Take Figure 2.6(c) for example. Relative 

to source S, the nearest wall is the wall forming the parent node of S, i.e. node 

or wall 1. Receivers, if any, closer to S than the nearest wall are those settled at 

the same branch as S. To determine the next wall, S is pushed through the 

opposite branch of node 1. S is on the right of wall 2a and it will settle at the 

right branch of node 2a together with receiver R1. Hence, R1 is closer to S than 

the second wall, i.e. R1 lies in between the first and second wall relative to S.  
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Figure 2.6 Binary-space-partitioning 
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After both branches of node 1 is considered, the next (third) wall is at the parent 

node of node 1, i.e. node or wall 5. The same algorithm is used to determine the 

sort order at the right branch of node 5. S is pushed through the branch and 

settle on the left of node 4. So, the fourth wall is wall 4 followed by R3 on the 

right of node 4. Returning to node 3 (the parent node of node 4), the fifth wall 

is wall 3. Then, S is pushed through the left branch of node 3 and settle on the 

right of node 2b together with R2. So, R2 comes before the sixth wall, wall 2b. 

The sort result is wall 1 – R1 – wall 2a – wall 5 – wall 4 – R3 – wall 3 – R2 – 

wall 2b. Similar discussions can be found on Wikipedia (2018) except that they 

are in computer graphics terms. 

In Teh and Chuah (2003), other than sorting, BSP is also exploited to 

simplify the search for possible ray-wall interactions. Take Figure 2.6(c) for 

example. For first order reflection off wall 1, reflected rays only exist on the 

same side as the source S, no reflected ray on the other side of wall 1. So, the 

left branch of node 1, i.e. wall 2b and R1, need not be considered for second 

order interaction or reception test. Arriving at node 5, the shooting-and-

bouncing-polygon process requires the projection of the reflected ray-polygon 

onto node 5 (its dividing plane). From the scene configuration shown in Figure 

2.6, it is obvious that the reflected ray-polygon has no valid projection on node 5. 

This implies that the reflected ray-polygon originated from the left of node 5 

will not reach node 5. This further implies that the reflected ray-polygon will 

not reach the right side of node 5. Hence, the right branch of node 5, i.e. wall 

2b, wall 3, wall 4, R2 and R3, also need not be considered for second order 
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interaction or reception test. In this example, only one ray-polygon projection 

is required to arrive at the conclusion that all the walls will not give rise to 

second order reflection after the first reflection from wall 1, and the first 

reflection from wall 1 will not reach the receivers. It is important to note that 

the sorting done by traversing the binary tree is not only incremental but it is 

also adaptive.  

2.4 Channel Parameters 

In this Section, we describe the definition and computation of some 

common channel parameters. The electric field intensity of a ray originated 

from a transmitter and ended at an observation point after going through 

multiple reflections, multiple transmissions, and single diffraction from planar 

objects is given by (McNamara, Pictorius and Malherbe, 1990) 

 E� = eeee����� , 	�
��
��������������� , 	�
�����s + ��
 ⋅�C�
�
� !  (2.1) 

 

where  

 eeee�����, 	�
 is the unit vector of the transmitted electric field in the 

transmit direction, 

 �� is the electric field intensity at 1 m from the transmit antenna in the 

direction of maximum radiation, 

 ����� , 	�
  is the normalized transmit antenna gain in the transmit 

direction, 

 

C� is the dyadic reflection, transmission or diffraction coefficient of i th 

interaction, 

 

N is the total number of interactions, 
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�	and	�′ are the path lengths before and after diffraction, respectively, 

 �� and 	� are the spherical vertical and horizontal angles of the transmit 

direction, respectively. 

The coherently summed narrowband power received at a receiver is 

given by 

 '� = '�(�(� ) *4,-. /0EEEE���� ⋅ eeee������� , 	���2������ , 	���
3
� ! /. (2.2) 

 

where 

 '� is the transmit power, 

 (� and (� are the peak gains of the transmitting and receiving antennas, 

respectively, 

 

λ is the signal wavelength, 

 EEEE�� is the electric field intensity, as given in Equation (2.1), due to j th 

ray, 

 

n is the total number of rays received by the receiver, 

 eeee����� , 	�
 is the unit vector of the transmitted electric field in the 

receive direction when the receiving antenna is in the transmit mode, 

 �����, 	�
  is the normalized receive antenna gain in the receive 

direction, 

 �� and 	� are the spherical vertical and horizontal angles of the receive 

direction, respectively. 

Often, path loss is used in place of received power, which is defined by 

 '4 = 10 log!� )'�'�- (2.3) 
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The power delay profile received at a receiver is given by 

 

':'�;
 = '�(�(� ) *4,-. ⋅ 
/0<=���� ⋅ eeee������� , 	���2������ , 	���> ℎ@AB�; − ;D��
3
� ! /. 

(2.4) 

 

where 

 ℎ@AB�;
 is the impulse response of the receive bandpass filter, 

 ;D� is the propagation delay of j th ray. 

Root-mean-square (rms) delay spread is generally regarded to have 

correlation with inter-symbol interference (Chuang, 1987). It is the variance of 

power delay profile, i.e. 

 E�F� = ∫ �; − EF
.':'�;
	H; (2.5) 

 

where EF is the mean delay given by 

 EF = ∫ ; ⋅ ':'�;
	H; (2.6) 

 

2.5 Reflection and Transmission Coefficients 

Reflection or transmission coefficient is the ratio of the reflected or 

transmitted field to the incident field, respectively. The expressions of the 

coefficients depend on the definitions of the vectors used in the dyadic tensor. 

In this Section, to be consistent with Balanis (1989) and other textbooks, the 

dyadic reflection and transmission coefficients are defined as follows: 

 RRRR = eeee������eeee������J� + eeee����K�eeee����K�JK (2.7) 

  

 TTTT = eeee������eeee������M� + eeee����K�eeee����K�MK (2.8) 
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 eeee��� = eeee��� = eeee��� = ssss�′ × nnnn� (2.9) 

 

 eeee�K� = eeee��� × ssss�′ (2.10) 

 

 eeee�K� = ssss�� × eeee��� (2.11) 

 

 eeee�K� = eeee��� × ssss�� (2.12) 

 

where  

 J�  and JK  are soft (perpendicular) and hard (parallel) reflection 

coefficients, respectively, 

 M�  and MK  are soft (perpendicular) and hard (parallel) transmission 

coefficients, respectively, 

 ssss�′,	ssss��	and	ssss��  are the unit vectors of the incident, reflected, and 

transmitted directions, respectively, 

 nnnn� is the unit normal of the reflecting surface. 

 

 

 

Figure 2.7 shows a graphical illustration of the vectors. For a plane 

interface, the reflection and transmission coefficients are given by Fresnel 

reflection and transmission coefficients (Balanis, 1989). For non-magnetic 

materials, the Fresnel coefficients are 

  J�� = cos �� −2
P.P! − sin. ��cos �� +2P.P! − sin. ��

 (2.13) 

 

 JK� = −
P.P! cos �� + 2P.P! − sin. ��P.P! cos �� +2P.P! − sin. ��

 (2.14) 

 

 
M�� = 2cos ��cos �� +2P.P! − sin. ��

 
(2.15) 

 



26 

 MK� = 22P.P! cos ��P.P! cos �� +2P.P! − sin. ��
 (2.16) 

 

where 

 P!	and	P. are the electric permittivity of the first and second medium, 

respectively, 

 �� is the incident angle measured from the interface normal, as shown in 

Figure 2.7. 

Equations (2.13) to (2.16) are valid for lossy materials with complex 

valued permittivity and angle (Orfanidis, 2016). A method to compute reflection 

and transmission coefficients of a thin lossless dielectric slab (wall) is described 

by Burnside and Burgener (1983). The coefficients have been conditioned to 

work with ray tracing, i.e. they can be used directly with Equation (2.1). They 

are 

 J�,K = J�,K� �1 − 'D.'S
1 − J�,K� 'D.'S  (2.17) 

Figure 2.7 Vectors in dyadic reflection and transmission coefficients 
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 M�,K = �1 − J�,K� .�'D'�1 − J�,K� .'D.'S  (2.18) 

 

where  

 

 'S = 
�.�TD UVWXY Z[WX\  (2.19) 

 

 'D = 
���	D U]^X\  (2.20) 

 

 '� = 
��TD ^_U�XY�X\
 U]^X\  (2.21) 

 

 J�,K�  are Fresnel reflection coefficients, 

 `�,	` are the wave numbers in air and the slab, respectively, 

 H is the slab thickness. 

A more general approach to deal with a lossy slab or multilayer wall is 

to use a multilayer wall model. We have used the multilayer wall reflection and 

transmission coefficients given in Balanis (1989). Other equivalent coefficients 

can be found in other textbooks e.g. Kong (1985), Ishimaru (1991), and 

Orfanidis (2016). The transmission coefficients, however, have not been 

conditioned to be used directly with Equation (2.1). The required correction is 

explained in Section 3.2. The coefficients as given in Balanis (1989) are: (there 

were typo errors which we have corrected below) 

 J� = a�b� (2.22) 

 

 JK = :�c�  (2.23) 

 

 M� = 1b� (2.24) 

 

 MK = 1c� (2.25) 
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b�,	a�,	c�	and	:� are computed using the recursive formulas: 

 

 bd�! = cd�! = 1 (2.26) 

 

 ad�! = :d�! = 0 (2.27) 

 

 be = 
fg2 hbe�!�1 + ie�!� + ae�!�1 − ie�!�j (2.28) 

 

 ae = 
�fg2 hbe�!�1 − ie�!� + ae�!�1 + ie�!�j (2.29) 

 

 ce = 
fg2 hce�!�1 + ke�!� + :e�!�1 − ke�!�j (2.30) 

 

 :e = 
�fg2 hce�!�1 − ke�!� + :e�!�1 + ke�!�j (2.31) 

 

where 

 

 ie�! = cos �e�!cos �e l mPe − noemPe�! − noe�! (2.32) 

 

 ke�! = cos �ecos �e�!l mPe − noemPe�! − noe�! (2.33) 

 

 pe = Heqe cos �e (2.34) 

 

 qe = 2−mre�mPe − noe� (2.35) 

 

 cos �e = l1 − <q�qe>
. sin. �� 	 (2.36) 

 �� is the incident angle. 

 m is the angular frequency. 

 s is the total number of layers. 

 He ,	re,	Pe,	and	oe  are the thickness, permeability, permittivity, and 

conductivity of the t th layer, respectively. 
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2.6 Diffraction Coefficient 

Diffraction coefficient is the ratio of the diffracted field to the incident 

field. A common way to compute diffraction coefficient is given by 

Kouyoumjian and Pathak (1974) who have introduced uniform geometrical 

theory of diffraction (UTD). Figure 2.8 shows the edge-fixed coordinate system 

and vectors used in the diffraction calculations. They require a priori knowledge 

about the diffraction point. The diffraction point (DP) can be computed from 

known locations of the source (uvwwwwwx), the receiver (uJwwwwwx), and the diffracting edge 

(u�wwwwwx	and	eeee�), using the law of edge diffraction or generalized Fermat’s principle 

(Keller, 1962), i.e. y = y′, as shown in Figure 2.9. More specifically: 

 ℎ� = �vwwwwwx ⋅ eeee� (2.37) 

 

 ℎ� = �Jwwwwwx ⋅ eeee� (2.38) 

 

 ssss�� = −�vwwwwwx + ℎ�eeee� (2.39) 

 

 ssss� = �Jwwwwwx − ℎ�eeee� (2.40) 

 

 ℎD = ℎ� − �ℎ� − ℎ�
H�H� + H� = ℎ�H� + ℎ�H�H� + H� 	 (2.41) 

 

 u:wwwwwwx = u�wwwwwx + ℎDeeee� (2.42) 
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Figure 2.8 Angles and vectors for diffraction calculations 
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The dyadic diffraction coefficient is (McNamara, Pictorius and 

Malherbe, 1990): 

 DDDD = −ββββ~~~~�ββββ~~~~	:� − ϕϕϕϕ||||′ϕϕϕϕ	:K (2.43) 

 

where 

 

 eeee� = tttt̂� × nnnn�� (2.44) 

 

 ϕϕϕϕ|′ = ssss�� × eeee�|ssss�� × eeee�| (2.45) 

 

 ϕϕϕϕ| = − ssss� × eeee�|ssss� × eeee�| (2.46) 

 

 ββββ~′ = ϕϕϕϕ|� × ssss�′ (2.47) 

 

 ββββ~ = ϕϕϕϕ| × ssss� (2.48) 

 

 	� = � arccos�−ssss��� ⋅ tttt̂�
 , −ssss��� ⋅ nnnn�� ≥ 02π − arccos�−ssss��� ⋅ tttt̂�
 , −ssss��� ⋅ nnnn�� < 0 (2.49) 

 

 	 = � arccos�ssss�� ⋅ tttt̂�
 , ssss�� ⋅ nnnn�� ≥ 02π − arccos�ssss�� ⋅ tttt̂�
 , ssss�� ⋅ nnnn�� < 0 (2.50) 

 

 y = y′ = arccos�ssss�′ ⋅ eeee�
 (2.51) 

 

 :�,K = :! + :. ∓ �:� +:�
 (2.52) 

 

 :� = −
���/�2z√2,` siny (2.53) 

 

 :! = :� cot �, + �	 − 	�
2z ��h`4���	 − 	�
j (2.54) 

 

 :. = :� cot �, − �	 − 	�
2z ��h`4���	 − 	�
j (2.55) 

 

 :� = :� cot �, + �	 + 	�
2z � ��`4�3���	 + 	�
� (2.56) 

 

 :� = :� cot �, − �	 + 	�
2z � ��`4����	 + 	�
� (2.57) 

 

 ��	 ± 	�
 = 2 cos. <	 ± 	�2 > (2.58) 
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 ���	 + 	�
 = 2 cos. <2z, − �	 + 	�
2 > (2.59) 

 

 4� = 4�� = 4�3 = 4 =
���
�
���
���� + �� sin. y, point	source
���� + �� , line	source
� sin. y, plane	wave

 (2.60) 

 

 ���
 = 2n√�
��  
��¡¢H£¤
√� 	 (2.61) 

 

���
 ≈
���
�
���
�∗�|�|
, � < 0
<√,� − 2�	
��/� − 2�.
���/�3 > 
�����/�
, 0 ≤ � < 0.3
1 + n 12� − 34�. − n 158�� + 7516�� 	 , � > 5.5	
Lookup	table, 0.3 ≤ � ≤ 5.5

 (2.62) 

 

 

 

The UTD diffraction coefficient is said to be valid only when the 

largeness parameter ² = `4 sin. y > 1 (² > 3 if z ≈ 1). ` is the wave number 

for the medium outside the wedge. Equation (2.60) is valid only for straight 

wedges with flat faces. More general treatment of curved edge and curved 

surface can be found in Kouyoumjian and Pathak (1974) and McNamara, 

Pictorius and Malherbe (1990). The lookup table in Equation (2.62) can be 

constructed from the transition function plot given in Kouyoumjian and Pathak 

(1974). Equation (2.52) is valid only for perfect electric conductors (PEC). Its 

rigorous extension to non PEC edge is yet to be found. There are rigorous 

solutions for non PEC edge based on Sommerfeld-Maliuzhinets integrals and 

surface impedance boundary condition approximation (Volakis, 2013), but they 

are complicated and difficult to use. 
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A heuristic solution for 3D diffraction from a thin lossless dielectric slab 

is given by Burnside and Burgener (1983). The idea is to modify Equation (2.52) 

to ensure that the total field is continuous at the shadow boundaries using 

reflection and transmission coefficients computed for the dielectric slab, e.g. 

 :�,K = �1 − M�,K��:! + :.
 + J�,K�:� + :�
 (2.63) 

 

which is valid for 2D or normal incidence (y = �.). A shadow boundary is a 

boundary at which there is a discontinuity in the incident, reflected or 

transmitted field due to the loss of the incident, reflected or transmitted ray 

across the boundary. The problem becomes more complicated with 3D oblique 

incidence because the soft and hard polarizations for reflection and transmission 

differ from those for diffraction, as shown in Figure 2.10. Uniform plane wave 

is assumed and hence the polarization vectors are on the transverse plane 

perpendicular to the ray directions. To be consistent with Burnside and Burgener 

(1983) formulation, the hard polarization of reflected wave has been redefined 

as 

 eeee�K� = eeee��� × ssss�� (2.64) 

 

The effect is reflection coefficients for hard polarization is the negative of those 

given in Section 2.5.  

Figure 2.11 redraws the polarization vectors in 2D such that the 

transverse planes coincide with the paper and the ray directions are pointing 

outward. The vectors have been rotated such that the hard polarizations for ray-

fixed planes of incident and reflection are pointing upward. Figure 2.11 is 

similar to “Fig. 6” in Burnside and Burgener (1983). We believe there are errors 

in the definitions of ray-fixed polarizations given in Burnside and  
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Figure 2.10 Ray-fixed and edge-fixed basis vectors (3D) 
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Figure 2.11 Ray-fixed and edge-fixed  basis vectors (2D) 
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Burgener (1983) because they are not consistent with “Fig. 6”, from which the 

formulas are derived. At different incident angles, the angle ´ changes but eeee�� 
and ϕϕϕϕ|  are always leading eeee�K  and ββββ~  by 90°  (in counterclockwise direction), 

respectively. It can be written that: 

 ·�¸��¹�º = TTTT�−´
 ·�K����º (2.65) 

 

 ·�¸��¹�º = TTTT�´
 ·�K����º (2.66) 

 

 ·�̧ ��¹�º = −TTTT�−´
 ·�K����º (2.67) 

 

where  

 

 	TTTT�´
 = » cos ´ sin ´−sin ´ cos ´¼ (2.68) 

 

 	TTTT�!�´
 = TTTT�−´
 (2.69) 

 

 sin´ = −eeee�K� ⋅ ϕϕϕϕ|′ (2.70) 

 

 cos ´ = eeee��� ⋅ ϕϕϕϕ|′ (2.71) 

 �¸�, �¹�, �K� and ��� are the incident electric field components in ββββ~′, ϕϕϕϕ|′, eeee�K� and eeee��� directions, respectively. 

 �¸�, �¹�, �K� and ��� are the reflected electric field components in ββββ~�, ϕϕϕϕ|�, eeee�K� and eeee��� directions, respectively. 

 �¸�, �¹�, �K� and ��� are the transmitted electric field components in ββββ~�, ϕϕϕϕ|�, eeee�K� and eeee��� directions, respectively. 

�¸�, �¹�, �¸� and �¹� are related to �¸� and �¹� by: 

 ·�¸��¹�º = BBBB ·�¸��¹�º (2.72) 

 

 ·�¸��¹�º = AAAA ·�¸��¹�º (2.73) 

 

where 
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 	BBBB = TTTT�´
 ·JK 00 J�º TTTT�¿�−´
 (2.74) 

 

 	AAAA = −TTTT�−´
 ·MK 00 M�º TTTT�¿�−´
 (2.75) 

 

The resultant dyadic diffraction coefficient is 

 	DDDD = �−:Sββββ~ � − :Àϕϕϕϕ|��ββββ~ + �−:Áββββ~� − :Dϕϕϕϕ|′�ϕϕϕϕ| (2.76) 

 

where  

 

 ·:S :À:Á :Dº = �IIII. + AAAA
�:! + :.
 − BBBB�:� +:�
 (2.77) 

 IIII.  is 2 × 2  identity matrix, AAAA  and BBBB  are the ray transfer matrices defined in 

Equations (2.74) and (2.75). Equations (2.76) and (2.77) reduce to Equations 

(2.43) and (2.63) at normal incidence, i.e. ´ = ± �. . 

A popular heuristic solution for diffraction from a lossy wedge at normal 

incidence is proposed by Luebbers (1984). The idea is very similar to that of 

Burnside and Burgener (1983) except that there is no transmission through the 

wedge and two different reflection coefficients are used instead of one. The 

second reflection coefficient is introduced to make the diffraction coefficient 

reciprocal. The resultant diffraction coefficients are: 

 :�,K = �:! + :.
 + J3�,K�z, − 	
:� + J��,K�	�
:� (2.78) 

 

where J3�,K�z, − 	
  and J��,K�	�
  are the reflection coefficients for n-face 

and o-face at incident angles (measured from the wedge faces) z, − 	 and 	′, 
respectively. It is assumed that o-face is the wedge face closer to the source 

(smaller incident angle). Luebbers’ diffraction coefficients work well when the 

receiver sees n-face, i.e. 	 > �z − 1
, , this includes the shadow region. 
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Conversely, the error is large (Aïdi and Lavergnat, 2001) but the effect is usually 

small because at those locations the fields are dominated by the direct ray and 

reflected ray.  Demetrescu, Constantinou and Mehler (1997) have shown that 

the error is big in the shadow region but we agree with Aïdi and Lavergnat 

(2001) that Demetrescu et al. may have made a mistake with Luebbers’ 

coefficients. Refinements to Leubbers’ heuristic solution can be found in 

Booysen and Pistorius (1992), Rouviere, Douchin and Combes (1999), Holm 

(2000), Aïdi and Lavergnat (2001), El-Sallabi, Rekanos and Vainikainen (2002), 

Schettino et al. (2007). Extension to 3D oblique incidence should be possible 

using Burnside and Bergener (1983) method described above (Vandamme,  

Baranowski and Mariage, 1995; Soni and Bhattacharya, 2010). 

Another heuristic approach is presented by Bernadi, Cicchetti and Testa 

(2002). It differs from Burnside and Bergener (1983) and Luebbers (1984) 

variants in that it does not treat the diffraction terms :!,	:.,	:�,	and	:�  as 

distinct terms, one for each real or virtual shadow boundary. Instead, it treats 

:!	and	:�  as a pair for one real shadow boundary and :.	and	:�  as another 

pair for another real shadow boundary. Additional pairs are added if there are 

more real shadow boundaries, one pair per real shadow boundary. The pairs are 

multiplied by the respective reflection or transmission coefficients for the real 

shadow boundaries. The real shadow boundaries are those fall outside the 

wedge. They are termed characteristic optic rays in Bernadi, Cicchetti and Testa 

(2002). Co-located incident and transmission shadow boundaries, if both exists, 

are considered two real shadow boundaries. Bernadi et al. formulation does not 

include virtual shadow boundaries which fall inside the wedge. To compute 
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diffraction inside the wedge, the definition of the wedge is reversed, i.e. o-face 

becomes n-face and vice versa and the new wedge angle parameter is z� = 2 −
z. Burnside and Burgener (1983) method is used for 3D oblique incidence. The 

resultant dyadic diffraction coefficient is: 

 	DDDD =0vedddde ⋅ TTTTeA
e ! 	 (2.79) 

 

where 

 ' is the total number of real shadow boundaries, 

 ve  is the jump indicator which assumes a value of +1 if the shadow 

boundary exhibits null to non-null discontinuity in the positive 	 

direction; Otherwise, it assumes a value of −1; 

 

 	dddde =	He�ββββ~ββββ~e + HeKϕϕϕϕ|ϕϕϕϕ|e (2.80) 

 

He�,K = 	:� Ãcot )	 − 	e2z -� ·2`4e sin. )	 − 	e2 -º
± cot )	 + 	e2z -� �2`4e sin. <	 + 	e − ��	 + 	e�2 >�Ä 

  (2.81) 

 	e is the 	 coordinate of the shadow boundary, 

 	,	e ∈ �0, z,�, i.e. no virtual shadow boundaries, 

 4e takes the form of Equation (2.60) for straight wedge with flat faces, 

 

 	g��
 = Æ 0, � < z,2z,, � ≥ z, (2.82) 

 

 	TTTTe = 	M!!ββββ~eββββ~� + M!.ββββ~eϕϕϕϕ| � + M.!ϕϕϕϕ|eββββ~�+M..ϕϕϕϕ|eϕϕϕϕ|� (2.83) 

 ·M!! M!.M.! M..º is the matrix similar to Equations (2.74) and (2.75). 
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Equation (2.79) reduces to Equations (2.43) and (2.52) for PEC wedges. 

Figure 2.12 shows the shadow boundaries for a transmissive hollow wedge 

(Bernadi, Cicchetti and Testa, 2004). The ray transfer matrices for the reflection 

and transmission shadow boundaries are as given in Equations (2.74) and (2.75). 

The ray transfer matrices for the transmit-transmit and transmit-reflect shadow 

boundaries, respectively, are 

 	UUUU = −TTTT�−È
 ·MK. 00 M�.º TTTT�−É
 ·MK! 00 M�!º TTTT�¿�−χ
 (2.84) 

Figure 2.12 Shadow boundaries for diffraction from 

a transmissive hollow wedge 
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 	VVVV = TTTT�È
 ·JK. 00 J�.º TTTT�−É
 ·MK! 00 M�!º TTTT�¿�−Ì
 (2.85) 

 

where 

 

 sinÌ = −eeee�K�! ⋅ ϕϕϕϕ|′ (2.86) 

 

 cos Ì = eeee���! ⋅ ϕϕϕϕ|′ (2.87) 

 

 sin É = −eeee�K�! ⋅ eeee�K�. (2.88) 

 

 cos É = eeee���! ⋅ eeee�K�. (2.89) 

 

 sin È = −eeee�K�. ⋅ ϕϕϕϕ|′ (2.90) 

 

 cos È = eeee���. ⋅ ϕϕϕϕ|′ (2.91) 

 

2.7 REMCOM Wireless InSite 

REMCOM Wireless InSite® is a commercial suite of propagation 

simulators (Remcom, 2018a), recommended by an anonymous reviewer. A 

basic suite costs about RM 180,000 per license (as of 2018), not including yearly 

maintenance fees. It has four ray tracing simulators, three of them are shooting-

and-bouncing-ray (SBR) ray tracers. The fourth one is named Eigen ray method 

which we believe is a simple image-based ray tracer. We do not use it for our 

comparisons because it is limited to 3 reflections whereas we need at least 6 

reflections in our simulations. The three SBR ray tracers are, as REMCOM has 

named them, Urban Canyon (UC), Full 3D (F3D), and X3D ray tracers. The UC 

ray tracer is a 2D ray tracer. It uses the image technique to compute 3D ground 

reflected ray paths (Remcom, 2018b). As its name suggests, it is meant for urban 

canyon simulations, i.e. outdoor simulations without over-roof-top diffraction. 
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The F3D ray tracer is a traditional 3D SBR ray tracer which can be used for 

outdoor and indoor simulations. The X3D ray tracer is an enhanced version of 

F3D. The two major enhancements are GPU acceleration and exact path 

calculation. X3D is supposed to be faster and more accurate than F3D. All three 

SBR ray tracers limit the maximum number of interactions 

(reflection+transmission+diffraction) to 30. They have used a technique to 

overcome the well-known double counting and under counting problem 

(Remcom, 2018b). An oversized reception sphere is used for reception test. The 

received rays are stored, sorted, and then used to identify and remove duplicate 

rays. As we see it, this greatly increases the memory requirement and the per-

receiver computation complexity. 
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CHAPTER 3  

 

CORRECTION FACTORS FOR MULTILAYER WALL 

3.1 Introduction 

A real wall has thickness. For accurate simulation of indoor 

environments, the two surfaces of the wall are to be treated differently because 

they have different positions (Yang, Wu and Ko, 1998; Kenny and Nuallain, 

2017). Our approach is to model the wall as one infinitesimally thin patch when 

computing ray paths. Errors in the ray paths are corrected using correction 

factors. The advantage of the one-patch approach is it is more efficient than the 

other methods that treat a wall as two patches instead of one. In a previous work 

(Teh, Kung and Chuah, 2006), we have derived the correction factors for 

reflected and transmitted ray paths, based on Burnside and Burgener (1983) 

formulation. In this Chapter, we will derive the correction factors for reflected, 

transmitted, and diffracted ray paths, based on a more general multilayer wall 

model (Balanis, 1989). Uniform plane wave is assumed, as it is done in Sections 

2.5 and 2.6 (pp. 24-29). It is reasonable to assume that errors in the field 

amplitude and polarization are negligible (Burnside and Burgener, 1983). Hence, 

we only make corrections to the path delay which in turn corrects the field phase 

angle. 
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3.2 Reflection and Transmission 

Figure 3.1 shows the relationship between the infinitesimally thin patch 

used for ray path computation and the multilayer wall it represents. The red lines 

are the correct ray paths to be used in conjunction with reflection and 

transmission coefficients given by the multilayer wall model (see Section 2.5, 

p. 24). The blue lines are ray paths computed using the infinitesimally thin patch. 

Based on the shown geometry, the delay correction factor for both the reflected 

and transmitted ray paths is 

 :c�� = −H cos��Í  (3.1) 

 

where Í is the speed of light in air. 

Figure 3.1 An infinitesimally thin patch model of a 

multilayer wall for ray path computation 
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The transmission coefficients given in Equations (2.24) and (2.25) 

(p. 27) include the phase change due to propagation delay from point A to 

point B (see Figure 3.1). To accurately simulate the propagation delay, the delay 

information should be removed from the transmission coefficients and added to 

the delay correction factor for the transmitted ray path. The negative phase 

change due to propagation delay from one interface to the next interface of a 

multilayer wall is given by the imaginary part of pe in Equation (2.34) (p. 28). 

The total negative phase change is: 

 Δ	 =0Im�pe�d
e !  (3.2) 

 

 

 

Hence, the modified transmission coefficients and delay correction 

factor for the transmitted ray path are: 

 M�� = 1b� 
�Ð¹ (3.3) 

 

 MK� = 1c� 
�Ð¹ (3.4) 

 

 :c�� = Δ	m − H cos ��Í  (3.5) 

 

where 

 m is the angular frequency, 

 b�	and	c� are as defined in Equations (2.24) and (2.25) (p. 27) 

The transmitted ray path correction is not specific to the one-patch 

approach nor the multilayer formulas given in Section 2.5 (p. 24). The same 

correction is required for a two-patch approach or other multilayer formulas. 



46 

We have not seen such correction being described in the literature. The 

implementation of the multilayer formulas has been verified by comparing its 

results to those of Orfanidis (2016) implementation which uses a different set 

of multilayer formulas. The implementation of the correction factors has been 

verified by comparing its results to those of Teh, Kung and Chuah (2006). The 

comparison has also shown that Burnside and Burgener (1983) formulas 

implemented by Teh, Kung and Chuah (2006) is not accurate for lossy walls but 

the error is small. 

3.3 Diffraction 

Figure 3.2 shows the problem geometry involving diffraction. u:!wwwwwwwwx and 

u:.wwwwwwwwx are the position vectors of diffraction points on the actual edges. The actual 

ray paths are in red. The ray paths computed using the one-patch approach are 

in blue. In general, the plane containing the incident ray and ::!wwwwwwwwx is not the same 

as the plane containing the diffracted ray and ::!wwwwwwwwx. Hence, we have plotted them 

separately. Also, the planes are not perpendicular to the wall, in general, i.e. the 

distance between the interior and exterior wall surfaces shown in Figure 3.2 is 

not the same as the wall thickness. From Figure 3.2, the delay correction factor 

for diffraction from the actual exterior edge is 

 :c�D! = ::!wwwwwwwwx ⋅ �ssss�� − ssss�
 (3.6) 

 

Similarly, the delay correction factor for diffraction from the actual interior edge 

is 

 :c�D. = ::.wwwwwwwwx ⋅ �ssss�� − ssss�
 (3.7) 
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Figure 3.2 Ray path correction for diffraction 
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u:!wwwwwwwwx	and	u:.wwwwwwwwx can be computed from Equations (2.37) to (2.42) (pp. 29) 

using shifted u�wwwwwx. From Figure 3.3, the shifted u�wwwwwx are 

 u�!wwwwwwwx = u�wwwwwx − tttt̂�H3 + tttt̂3H�2 sin Ñ  (3.8) 

 

 u�.wwwwwwwx = u�wwwwwx + tttt̂�H3 + tttt̂3H�2 sin Ñ  (3.9) 

 

 

 

The reflection and transmission coefficients used in diffraction 

calculation also need to be corrected, in accordance to the corrections made to 

the reflected, transmitted, and diffracted ray paths, to ensure field continuity 

across the shadow boundaries. Without any path correction, the reflected and 

diffracted fields along a reflection shadow boundary, respectively, are  

 �� = J
��������� (3.10) 

 

 �D = −��2 = −J2 
��������� (3.11) 

  

Figure 3.3 Actual exterior and interior edges of a wedge 
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After the path corrections, they become 

 

 ��� = J
�����������Ò⋅ÓÔBÕ  (3.12) 

 

 �D� = −J2 
�����������Ò⋅ÓÔBÖ (3.13) 

 

To maintain field continuity across the shadow boundary, the diffracted field 

needs to be corrected to 

 

�D�� = −���2	  = −J2 
�����������Ò⋅ÓÔBÕ  = −J
�Ò�ÓÔBÖ�ÓÔBÕ
2 
�����������Ò⋅ÓÔBÖ 

(3.14) 

 

Hence, the phase correction factor to be applied to the reflection coefficient used 

in diffraction calculation is: 

 ×� = m�:c�D − :c��
 (3.15) 

 

Similarly, the phase correction factor to be applied to the transmission 

coefficient used in diffraction calculation is: 

 ×� = m�:c�D − :c��
 (3.16) 
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CHAPTER 4  

 

DIFFRACTION RAY-POLYGON 

4.1 Introduction 

In an earlier work (Teh and Chuah, 2003), we have proposed a shooting-

and-bouncing-polygon (SBP) ray tracer for radio propagation modelling (see 

Section 2.2, p. 12). The SBP ray tracer works very well with reflection and 

transmission. However, it is handicapped when dealing with diffraction. Due to 

the difficulty in projecting diffraction ray-polygon, a non-ray-polygon method 

has been used to handle diffraction. The non-ray-polygon method is not capable 

of tracing diffracted-reflected rays (diffraction followed by reflection). In this 

Chapter, we will describe a way to project and trace diffraction ray-polygon. 

With the full implementation of diffraction ray-polygon, the improved SBP ray 

tracer will be able to trace diffracted-reflected rays. It will produce more 

accurate results when diffracted-reflected rays play an important role.  

4.2 Edge-Fixed Diffraction Ray-Polygon 

Diffraction ray-polygon is to be projected following the law of edge 

diffraction. Performing the projection in a Cartesian coordinate system is 

cumbersome and has no obvious advantage. We have adopted an edge-fixed 
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coordinate system for diffraction ray-polygon. Details about the edge-fixed 

coordinate system and the computation of edge-fixed β and φ coordinates can 

be found in Section 2.6 (p. 29). The face of the wedge from which φ is measured 

is known as o-face; the other face is known as n-face. The edge vector eeee� and the 

direction of φ are related by a right hand rule. The β coordinate is measured 

from eeee�. Diffracted ray-polygons, including diffracted-reflected and diffracted-

transmitted ray-polygons, are defined in the β - φ plane. Upon diffraction, a 

diffracted ray-polygon is spawned. Its φ coordinate extends from 0 to z, where 

z, is the exterior angle of the diffracting wedge. The span of the φ coordinate 

can be increased, e.g. extending from 0 to 2,  to include diffraction into the 

wedge, or reduced to cover the shadowed regions only. The span of the β 

coordinate is defined by the illuminated edge segments. An example is shown 

in Figure 4.1. Shaded area in Figure 4.1(a) is the illumination zone. The example 

has 2 illuminated edge segments. The ray-polygon consists of 2 contours 

(shaded in Figure 4.1(b)), each is defined by 4 vertices marked by × markers. 

The diffracted ray-polygon is traced in a way similar to Figure 2.5 (p. 17). 

Reception test is done by computing the (β, φ) coordinates of the receivers. A 

receiver is said to have received the ray if its position in the β - φ plane is inside 

the diffracted ray-polygon. To compute the beam-wall intersection, the wall is 

projected onto the β - φ plane. A wall’s projection in the β - φ plane is curved in 

general and is approximated by a polygon. The intersection between the 

diffracted ray-polygon and the wall’s projection defines new diffracted-

reflected and diffracted-transmitted ray-polygons. The diffracted ray-polygon is 
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clipped by subtracting from it the wall’s projection. Double and higher order 

diffraction by parallel edges can be handled in the same way because the 

computation of (β, φ) coordinates is the same. However, we have not 

implemented double and higher order diffraction in this work. Although double 

diffraction is important in some applications, e.g. over-roof-top diffraction, it is 

not required in many applications (Chen and Jeng, 1997; Catedra et al., 1998;  

Bernardi, Cicchetti and Testa, 2004; Remcom, 2018b). 

Figure 4.1 Initial diffracted ray-polygon 
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4.3 Projection Problems 

The above relies on the ability to compute the β - φ projection of 

Cartesian walls. Catedra et al. (1998) have also used an edge-fixed coordinate 

system in their angular z-buffer algorithm to keep track of diffracted rays. They 

have assumed that a wall’s projection in the β - φ plane is approximated by its 

vertices. The assumption is not always valid, however. Figure 4.2 and Figure 

4.3 illustrate two scenarios where the assumption is not valid. Wall vertices are 

marked by × markers and are numbered. The actual wall’s projection is shaded 

in (c). Its polygon approximation is given by the red dashed contours. The red 

square markers mark the additional vertices required to define the red dashed 

contours.  

In Figure 4.2, the wall spans the o-face (φ = 0) of the diffracting wedge. 

It is obvious that the wall contains φ = 0 and its β - φ projection is as defined in 

Figure 4.2(c) instead of Figure 4.2(b). The actual wall’s projection is curved and 

it is approximated by the red dashed polygon in Figure 4.2(c). In Figure 4.3, a 

square wall perpendicular to the diffracting edge intersects the edge (or its 

extension) at the wall’s center. The four vertices of the wall have the same β 

coordinate and fail to approximate the wall’s projection. The wall’s projection 

can be visualized by drawing radial lines on the wall, from the edge-wall 

intersection point to the wall sides, as shown in Figure 4.3(d). Points lying on 

one radial line have the same φ coordinate. Their β coordinates extend from a 

maximum at the wall side to a minimum at the edge-wall intersection point. 

Each radial line corresponds to a vertical line in the β - φ plane. Thus, the wall’s  
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Figure 4.2 Wall’s projection in the ββββ - φφφφ plane: wall spans o-face 
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Figure 4.3 Wall’s projection in the ββββ - φφφφ plane: wall intersects edge 
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(b) Polygon formed by wall vertices
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projection is as shown in Figure 4.3(c). The same arguments apply to any wall 

intersecting the diffracting edge (or its extension). 

4.4 Projection Algorithm 

We describe below an algorithm to compute the correct β - φ projections 

of walls. It consists of 2 basic steps: 1) to identify the wall configuration and 2) 

to add vertices or split the output contour based on the wall configuration. A 

flowchart of the algorithm is given in Figure 4.4. Let a wall be defined by an 

array of vertices where adjacent vertices define the wall sides. Let line(k, i) be 

the line extending from vertex k to vertex i.  

1) If the wall and the edge are on the same plane, the β - φ projection is 

merely a straight line with no area and is ignored. 

2) Compute the β coordinate of wall-edge intersection point, βe . 

Figure 4.3 Wall’s projection in the ββββ - φφφφ plane: wall intersects 

(continued) 
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Figure 4.4 Edge-fixed β - φφφφ projection of Cartesian polygons 
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3) Compute the (β, φ) coordinates of wall vertices. 

4) Create an empty stack of incomplete contours. 

5) Create an empty output list of complete contours. 

6) Create an empty contour with direction flag contour.dir = 0.  

7) Do once for each wall vertex, in sequence: 

a) If both the previous vertex (βk, φk) and the current vertex (βi, φi) 

are not on the edge: 

i) If |φi - φk| < π, the wall side i.e. line(k,i) does not span the 

o-face. The current wall vertex (βi, φi) is appended to the 

active contour. 

ii) If φi - φk > π, from vertex k to vertex i, the wall side spans 

the o-face in the −φ direction. Contours crossing φ = 0 are to 

be split into two (see Figure 4.2). There are two possible 

scenarios. If contour.dir = 1, the contour starts from φ = 0 

and grows in the +φ direction. If it crosses the o-face in the 

−φ direction, it has made a complete loop and returns to the 

previous contour stored on the stack. On the other hand, if 

contour.dir ≠ 1 and the contour crosses the o-face in the −φ 

direction, the contour is incomplete. It is stored on the stack 

and a new contour is created. The new contour starts from 

φ = 2π and grows in the −φ direction. In either scenario, new 

vertices on the o-face are to be appended to the contours 

accordingly. A summary is given here: 
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• Compute the intersection point (βoi, 0) between 

line(k, i) and the o-face. Append (βoi, 0) to the active 

contour.  

• If contour.dir = 1, add the active contour to the output 

list and pop an incomplete contour off the stack. 

Otherwise, push the active contour onto the stack and 

create a new empty contour with flag contour.dir = -1. 

• Append (βoi, 2π) and (βi, φi) to the active contour. 

iii) If φi - φk < -π, from vertex k to vertex i, the wall side spans 

the o-face in the +φ direction. The discussion is similar to 

(ii) above except for the change in contour direction. A 

summary is given here: 

• Compute the intersection point (βoi, 0) between 

line(k, i) and the o-face. 

• Append (βoi, 2π) to the active contour. 

• If contour.dir = -1, add the active contour to the output 

list and pop an incomplete contour off the stack. 

Otherwise, push the active contour onto the stack and 

create a new empty contour with flag contour.dir = 1. 

• Append (βoi, 0) and (βi, φi) to the active contour. 

iv) If |φi - φk| = π, the wall side intersects the diffracting edge. 

The edge divides the wall side into two radial lines. The 

projection of the first radial line extends from (βk, φk) to 

(βe, φk). The projection of the second radial line extends 
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from (βe, φi) to (βi, φi). In summary, it is to append (βe, φk), 

(βe, φi) and (βi, φi) to the active contour. 

b) If the previous vertex (βk, φk) is not on the edge but the current 

vertex (βi, φi) is on the edge, line(k, i) is a radial line. Its projection 

extends from (βk, φk) to (βe, φk). In summary, it is to append (βe, φk) 

to the active contour. 

c) If the previous vertex (βk, φk) is on the edge but the current vertex 

(βi, φi) is not on the edge, line(k, i) is a radial line. Its projection 

extends from (βe, φi) to (βi, φi). In summary, it is to append (βe, φi) 

and (βi, φi) to the active contour. 

d) If both the previous vertex (βk, φk) and the current vertex (βi, φi) 

are on the edge, do nothing because the current vertex is a 

duplicate. 

8) If the stack has no residual contour, the wall does not intersect the 

diffracting edge (or its extension). The active contour is a complete 

contour and it is added to the output list. 

9) If the stack has one residual contour, the wall intersects the diffracting 

edge (or its extension). The active contour and residual contour are 

joined to form one complete contour extending from φ = 0 to 2π. Let the 

first vertex of the active contour and the last (back) vertex of the residual 

contour be (βf, φf) and (βbr, φbr), respectively. Note that φf = 0 or 2π, φbr 

= 2π or 0 and βf = βbr = βo, where βo is the β coordinate of the intersection 

between one of the wall sides and the o-face. From the discussions on 

Figure 4.3, it is known that, at φ = 0 or 2π, the β coordinates of the 
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projection should extend from βo to βe. Hence, the two contours are 

joined by appending (βe, φbr), (βe, φf) and the active contour to the 

residual contour. The resultant contour is added to the output list. 

We describe below applications of the algorithm to Figure 4.2 and Figure 

4.3. Let the first previous-current vertices pair be vertex 4 and vertex 1 (k = 4, 

i = 1). For Figure 4.2, the first pair has φi - φk < -π. The first contour is appended 

and it contains {(βo1, 2π)}. It is pushed onto the stack. The second contour is 

appended and it contains {(βo1, 0), (β1, φ1)}. For the second pair, |φi - φk| = 0 < π. 

The second contour is appended and it contains {(βo1, 0), (β1, φ1), (β2, φ2)}. For 

the third pair, φi - φk > π, the second contour is appended and it contains {(βo1, 0), 

(β1, φ1), (β2, φ2), (βo3, 0)}. It is added to the output list. It defines the left red 

dashed contour in Figure 4.2(c). The first contour is popped off the stack. It is 

appended and it contains {(βo1, 2π), (βo3, 2π), (β3, φ3)}. For the fourth pair, 

|φI - φk| = 0 < π. The first contour is appended and it contains {(βo1, 2π), (βo3, 2π), 

(β3, φ3), (β4, φ4)}. The stack has no residual contour. The first contour is added 

to the output list. It defines the right red dashed contour in Figure 4.2(c). The 

resultant β - φ projection is given by the output list which contains the two red 

dashed contours in Figure 4.2(c). The same can be achieved with any order of 

wall vertices as long as the adjacent vertices have defined the wall sides. 

For Figure 4.3, the first pair has φi - φk < -π. The first contour is appended 

and it contains {(βo1, 2π)}. It is pushed onto the stack. The second contour is 

appended and it contains {(βo1, 0), (β1, φ1)}. For the second, third and fourth 
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pairs, |φi - φk| < π. The second contour is appended and it contains {(βo1, 0), 

(β1, φ1), (β2, φ2), (β3, φ3), (β4, φ4)}. The stack has one residual contour, i.e. the 

first contour. The residual contour is appended and it contains {(βo1, 2π), 

(βe, 2π), (βe, 0), (βo1, 0), (β1, φ1), (β2, φ2), (β3, φ3), (β4, φ4)}. It is added to the 

output list. It correctly defines the red dashed contour in Figure 4.3(c). Note that 

the additional computations involved are: 

1) One line-plane intersection and one coordinate conversion to compute βe . 

2) One line-plane intersection and one coordinate conversion to compute βo1 . 

3) Some flow controls. 

The algorithm is applicable to all simple (non-self-intersecting) concave 

walls. For the concave walls, the output list may contain holes. To determine 

which contours are holes, the farthest intersections (from the edge) between the 

contours and the o-face are tracked. The intersections are sorted and numbered 

by their distance from the edge in descending order, e.g. intersection #1 is the 

farthest followed by #2. Contours having even numbered intersections are holes. 

The sort does not require explicit distance computation. It can be done using the 

β coordinates of the intersections. Depending on the wall orientation relative to 

the diffracting edge, βe is always bigger or smaller than the β coordinates. If βe 

is smaller, the β coordinates are proportional to the distance from the edge. If βe 

is bigger, the β coordinates are inversely proportional to the distance. 

If desired, the polygon approximation of the β - φ projection can be made 

more accurate by interpolation. Performing interpolation in the β - φ domain is 
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difficult. A simple but inefficient way is to interpolate the wall sides prior to 

projection. A close look at the projections will reveal that curves occur only 

when there are changes in the φ coordinates. We describe below a better 

interpolation algorithm. Before appending a new point to a contour, the change 

in the φ coordinate is computed. If the change is greater than a preset threshold, 

the (β, φ) coordinates of the midpoint are computed and appended to the contour. 

The same procedure applies recursively when appending the midpoint. 
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CHAPTER 5  

 

CONVEX CELL PARTITIONING 

5.1 Introduction 

The main reason Teh and Chuah (2003) have used binary-space-

partitioning is that it allows efficient sorting of objects by their distances from 

any point. We describe in this Chapter a better alternative to binary-space-

partitioning for shooting-and-bouncing-polygon (SBP). The new scheme will 

be denoted as convex cell partitioning (CCP). CCP divides the simulated scene 

into a set of interconnected convex cells bordered by walls. Similar convex 

space methods have been used by Zhang, Yun, Iskander (2001) and Kenny and 

Nuallain (2017). Zhang, Yun and Iskander (2001) have used triangular pyramids 

(tetrahedrons) bordered by walls. Kenny and Nuallain (2017) have used 

rectangular cuboids; walls are also modelled as rectangular cuboids. Both 

Zhang and Kenny have used the convex space methods to accelerate ray-object 

intersection. Our CCP uses general convex shapes. Walls are treated as 

infinitesimally thin patch bordering the convex cells. The effect of wall 

thickness is taken care of when computing ray contribution (see CHAPTER 3, 

p. 43).  In this work, the function of CCP is more than to accelerate ray-object 

intersection. It is used to efficiently sort objects by their distances from any point, 

which is essential for SBP. And, for the first time, a convex space method is 

used to facilitate the image generation process. Our results show that the CCP 
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version is about an order of magnitude faster than the binary-space-partitioning 

version in some applications (see Section 6.3, p. 92).  

5.2 Basic Ideas 

Take the indoor scene in Figure 5.1 for example. The indoor scene can 

be divided into 3 convex cells, e.g. EFGH (Cell #1), ABCHG (Cell #2) and 

CDEH (Cell #3). Wall GH is an empty or virtual wall connecting Cells #1 and 

#2. Wall EH connects Cell #1 and Cell #3. Wall CH connects Cell #2 and Cell #3. 

The interconnectivity between the cells can be represented by a graph, as shown 

in Figure 5.2. There is one diffracting wedge, i.e. CHE. The transmitter (4.4, 1.4, 

2.4) is located in Cell #1, marked by a solid circle. Rays originated from the 

transmitter must hit the borders of Cell #1 before reaching the other cells. In 

other words, the 6 walls (including ceiling and floor) bordering Cell #1 are walls 

closest to the transmitter. If rays entering the other cells are treated as 

transmitted rays, direct rays from the transmitter only interact with the 6 walls 

bordering Cell #1, irrespective of the total number of walls the simulated scene 

might have. Because the cell is convex, the 6 walls will not shade each other. 

For the same reason, it can be concluded that receivers residing inside Cell #1 

will receive the direct ray from the transmitter without any intersection test. For 

shooting-and-bouncing-ray (SBR), this means the direct rays need only be 

tested against the 6 walls (intersection test) and the receivers (reception test 

only) inside the cell. For image-based ray tracing, only the 6 walls will give rise 

to first order reflection or transmission. The same applies to rays transmitted  



66 

 

Figure 5.1 Convex cell partitioning of an indoor scene 
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Figure 5.2 CCP graph 
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into a cell, the rays only interact with the borders of the cell and the receivers 

inside the cell. In other words, CCP has effectively reduced and localized the 

scattering problem to the cell containing the rays. 

To be more specific, the rays only interact with the inner surface (relative 

to the cell) of the walls. This means an image can only give rise to higher order 

reflection from a wall if it is on the inner side of the wall. For example, the 

image of first order reflection from wall FG is at (4.4, -0.6, 2.4). The target cell 

for rays reflected from wall FG is Cell #1. The image is on the left of wall EF, 

i.e. the inner side of wall EF. Hence, the image will give rise to second order 

reflection from wall EF. The second order image is at (6.4, -0.6, 2.4). The new 

target cell is still Cell #1. The inner side of wall FG is above wall FG. Because 

the second order image is below wall FG, it will not give rise to third order 

reflection from wall FG.  

The connectivity between the cells gives a sense of order to the walls 

and cells. For example, walls CD, CH and DE are borders of Cell #3. For a ray 

to interact with them, it must be in Cell #3. A ray originated from the transmitter 

must hit wall EH before entering Cell #3. Hence, wall EH is closer to the 

transmitter than walls CD, CH and DE. The relative order of walls CD, CH and 

DE is not important because they will not shade each other from the transmitter. 

In summary, the basic ideas of CCP include: 
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1) Rays interact only with the cell they are in. This greatly simplifies the 

search for ray-object interaction. 

2) The convexity of cell ensures that its walls will not shade each other. This 

removes the need for intra-cell shadowing test. 

3) A wall is visible to an image only if the image resides in the same half-

space as the cell relative to the wall, i.e. the inner surface of the wall is 

facing the image. This further simplifies the search for ray-object 

interaction. 

4) Rays leave the cell only through one of its borders (walls) to the adjacent 

cell. This gives a sense of order to walls. 

5.3 SBP-CCP 

In this Section, we explain the use of CCP for shooting-and-bouncing-

polygon (SBP). Following the basic ideas above, a ray-polygon only interacts 

with its target cell (the cell it is in) and the walls will not shade each other. There 

is no need to keep track the unobstructed part of the ray-polygon. Hence, a 

notable advantage of CCP over binary-space-partitioning is that CCP removes 

the need to clip the ray-polygon, a relatively expensive process. Figure 5.3 

shows the updated flowchart for SBP-CCP. Traversing from one cell to another 

is also simpler and more intuitive than traversing a binary tree which requires 

the computation of the location of the source relative to a wall (left or right) (see 

Section 2.3, p. 19). 
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With reference to Figure 5.3, receivers subject to reception test are those 

residing in the target cell of the ray-polygon. Walls and edges subject to 

interaction are those bordering the target cell. Take the indoor scene in Figure 

5.1 for example. Only one ray-polygon needs to be shot from the transmitter to 

cover all directions in the 3D space. This first ray-polygon is the universal set 

and it does not have a physical shape. Its target cell is Cell #1. Reception test 

Figure 5.3 SBP-CCP flowchart 

Start 

Reception test 

Project the ray-polygon onto the next nearest wall 

Compute the intersection between the projection and the wall 

Shoot and bounce reflected ray-polygon (recursion) 

Shoot and bounce transmitted ray-polygon (recursion) 

Project diffracting edges onto the ray polygon 

End 

Compute diffracting segments 

Shoot and bounce diffracted ray-polygon (recursion) 
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for the universal set is a trivial task, the result is always positive. All receivers 

in cell EFGH will receive the direct rays. Walls and edges subject to interaction 

are walls EF, FG, GH, HE, the floor and ceiling, and wedge CHE. For the 

universal set, the ray-polygon projections and intersections are trivial tasks, all 

walls and edges of the target cell will be illuminated in whole.  

Take first order reflection off wall EF for example (see Figure 5.4). The 

reflection image is at (6.4, 1.4, 2.4). The reflection ray-polygon (grey line) is 

the entire wall EF. The target cell is Cell #1. Reception tests are performed on 

all receivers residing in Cell #1. Receivers whose projections on wall EF lie 

inside the reflection ray-polygon are said to have received the reflected rays. 

Upon reception, the exact ray path is computed by tracing backward from the 

receiver towards the transmitter. The point of reflection on wall EF is the 

intersection between wall EF and the line joining the receiver and the reflection 

image. The resultant ray path is transmitter → reflection point on wall EF → 

receiver. Note that the backward tracing only involves N line-plane intersections 

for N reflections. There isn’t any other intersection or shadowing test. Walls and 

edges subject to second order interaction are again those bordering Cell #1.  

Take first order transmission through wall EH for example (see Figure 

5.5). The transmission image is the transmitter itself. The transmission ray-

polygon (grey line) is the entire wall EH. The target cell is the adjacent cell on 

the other side of wall EH, i.e. Cell #3. The subsequent processing is similar to 

that of reflection. Transmission through empty walls is treated in the same way 

except that empty walls are omitted in backward tracing. In other words, empty  
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Figure 5.4 CCP: reflection 
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Figure 5.5 CCP: transmission 
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walls do not slow down backward tracing. Diffraction images are also treated 

in the same way except that edge-fixed diffracted ray-polygons are used and 

each is associated to multiple target cells. For example, diffraction off wedge 

CHE has 2 target cells, i.e. Cells #1 and #2. Cell #3 can be included as a target 

cell if diffraction into the wedge is desired. Recursive extension to higher order 

reflection and transmission is straight forward.  

Note how CCP has helped to systematically generate the images. If walls 

ABCDEFGA are marked as non-transmissive, additional walls and cells 

appended to the model will have no effect on image generation. In the search of 

potential ray-wall or ray-receiver interactions, CCP does the first level of 

filtering by limiting the search scope to the target cells only. The location of the 

image relative to the wall (inside or outside) does the second level of filtering. 

Lastly, SBP does the third level of filtering, which is also the most expensive 

and restrictive but worthwhile. CCP can be used without SBP. CCP alone can 

achieve substantial acceleration in the image generation and backward tracing 

processes. However, our experience reveals that, without the additional filtering 

done by SBP, CCP-only will run considerably slower than SBP-CCP. 

5.4 Implementation 

Data of the walls, cells, diffracting wedges, transmitters, receivers, 

antennas and wall materials are stored in arrays. Individual item is referenced 

by its array index. The wall data structure consists of an ordered set of coplanar 
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patches. Each patch is associated with a material. The first patch always defines 

the full extent of the wall. It is the only patch used for SBP. The other smaller 

patches are used when computing ray contribution. For example, a concrete wall 

with glass windows and wooden doors will have the concrete wall as the first 

patch and smaller patches of windows and doors. Walls can be individually 

flagged as transmissive, reflective or empty. An empty wall is used to connect 

two adjacent cells not separated by a physical wall. The surface normal of a wall 

is related to the order of wall vertices by a right hand rule. It distinguishes the 

two half-spaces separated by the wall, one in the direction of the surface normal, 

one in the opposite direction. Data structure of a diffracting wedge holds indices 

to walls forming the wedge and cells containing the wedge, in addition to other 

wedge information like the edge vector and wedge angle. Data structure of an 

image holds a ray-polygon, the center of projection and a pointer to the parent 

image from which the current image is spawned. A transmitter is treated as a 

special image without ray-polygon and parent image. The core of CCP is the 

cell data structure. A cell holds indices to the bordering walls and diffracting 

wedges, the adjacent cells and the receivers residing in the cell. A cell also holds 

flags about the half-spaces it occupies, relative to the bordering walls.  

CCP is recursive in nature. However, a recursive implementation is not 

suitable for an imperative programming language like C/C++. We describe 

below an iterative implementation of CCP-SBP: 

1) Create an empty stack of trace-nodes. A trace-node holds an image, the 

index of the target cell, the trace-mode, and the current wall or edge 
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sequence number in the target cell. There are 3 trace-modes: reception test, 

reflection and diffraction. 

2) Create a trace-node for each transmitter and push it onto the stack. The 

image is the transmitter. The target cell is the cell containing the transmitter. 

The initial trace-mode is reception test for all new trace-nodes. The wall 

sequence number is irrelevant in reception test mode. 

3) Execute a trace-node from the top of the stack (without removing it from 

the stack, unless stated otherwise below) depending on the trace-mode 

until the stack is empty (see Figure 5.6): 

(a) Reception test mode: Perform reception test on all receivers in the cell. 

Upon reception, compute the ray path and ray contribution. Then, 

proceed to reflection mode with wall sequence number 0 (the first wall). 

In the case of a transmitter, all receivers in the cell will receive the direct 

ray. Other than that, the computation is similar to those described in 

Sections 2.2 (p. 12), 4.2 (p. 50) and 5.3 (p. 68). 

(b) Reflection mode: If the current wall sequence number ≥ the total 

number of walls bordering the cell, all walls bordering the cell have 

been considered, proceed to diffraction mode with edge sequence 

number 0 (the first edge). Otherwise, if the image and the cell are not 

in the same half-space of the current wall, the image will not illuminate 

the wall, proceed to the next wall, i.e. increment the wall sequence 

number and repeat (b). Otherwise, project the active ray-polygon held 

by the image onto the wall. The intersection between the projection and 

the wall defines new reflected ray-polygon and transmitted ray-polygon. 

If the active ray-polygon is a diffracted ray-polygon, use the β - φ 
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projection instead (see CHAPTER 4, p. 50). In the case of a transmitter, 

the entire wall defines new reflected and transmitted ray-polygons. If 

the wall is reflective, create a new trace-node for the reflection image 

and push it onto the stack. The target cell for the reflection image is the 

current cell. Do the same for the transmission image if the wall is 

transmissive. The target cell for the transmission image is the adjacent 

cell on the other side of the wall. Increment the wall sequence number 

of the active trace-node and repeat step 3 to execute the new trace-nodes.  

(c) Diffraction mode: If the current edge sequence number ≥ the total 

number of diffracting edges in the cell, all edges in the cell have been 

considered, remove the current trace-node from the top of the stack and 

repeat step 3 to execute the next trace-node. Otherwise, compute the 

illuminated edge segments. All cells containing the edge will get the 

direct diffracted rays. They will be the target cells for the diffraction 

image. Create new trace-nodes, one per target cell, for the diffraction 

image and push them onto the stack. Increment the edge sequence 

number of the active trace-node and repeat step 3 to execute the new 

trace-nodes. 
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Figure 5.6 CCP trace-node execution 
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5.5 Generation of Convex Cell Data Structures 

Unlike the binary tree, which must be computer generated, the formation 

of convex cells is much more intuitive and it can be defined manually as part of 

the scene description process. It is a one-time job per simulated scene. For large 

complex scenes, it is desirable that the convex cell data structures be computer 

generated, especially if the set of walls defining the scene is already available 

in digital form. In this section, we describe a way to automatically generate the 

convex cell data structures from a set of walls, which we have developed. Other 

possible methods can be found in computer graphics literature on cell-and-

portal generation (Haumont, Debeir and Sillion, 2003; Walsh, 2008). A major 

difference being their cells are linked by portals (virtual walls) only, whereas 

our cells are linked by both portals and real walls. 

Our method consists of 3 stages. The first stage creates axis-aligned 

rectangular grids based on the given set of walls. It consists of 2 steps. The first 

step creates the grids at all vertices of the walls. A 2D illustrative example is 

given in Figure 5.7(a). Solid lines are real walls (perpendicular to the paper). 

Grey dashed lines are grids at wall vertices. The second step adds additional 

grid lines to ensure that the separation between two adjacent grid lines is smaller 

than a threshold. The objective is to ensure that rectangular cells formed by the 

grids is cut by at most one non-axis-aligned wall. This is to simplify the splitting 

of cell due to the cut. Take Figure 5.7(a) for example. With the original grids at 

wall vertices, the grid separation is too big that the rightmost middle cell is cut 

by two non-axis-aligned walls. In Figure 5.7(b), new grid lines (black dashed  
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Figure 5.7 Cell-and-portal generation: creating grids (stage 1) 

(a) Grids at wall vertices

(b) Finer grids 
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lines) are added to reduce the grid separation when it is too big (step 2). With 

the finer grids, each of the cells are cut by at most one non-axis-aligned wall. 

The two new horizontal grid lines are indeed not necessary. They are an 

undesired side-effect of the threshold. A good choice of the threshold is the 

smallest distance between two disjoint non-axis-aligned walls. In the case that 

all walls are axis-aligned, the threshold can be set big to avoid creating finer 

grids. Our implementation allows the threshold for each of the 3 axes to be set 

independently. 

The second stage builds the convex cell data structures from the grids. 

A cell will be rectangular as defined by the grids if it is not cut by a non-axis-

aligned wall, else it will be split into two convex cells. The split is done using a 

lookup table based on the type of split. The intersections between the cell 

borders and real walls are determine using a polygon clipping algorithm (Vatti, 

1992; Murta, 2017). Only non-axis-aligned walls coinciding with the splitting 

plane need to be considered for intersection with the non-axis-aligned border. 

The intersections for axis-aligned borders are accelerated by the grouping of 

axis-aligned walls based on the grids. The intersections define real walls 

bordering the cell. Unfilled areas of the borders define the portals (virtual walls). 

Interconnectivity between the cells can be determined easily from the grids. An 

illustrative example for the second stage is given in Figure 5.8. The dashed lines 

are virtual walls. At this point, there are already working convex cell data 

structures. However, there are more convex cells than necessary. 
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The third stage is to merge small convex cells into bigger convex cells. 

A cell can only merge with an adjacent cell if it has an axis-aligned border 

covered by virtual walls only and it is connected to the same adjacent cell 

through the border. The merge cannot happen across a non-axis-aligned border 

because it is at least covered in part by a real wall which is the reason for its 

existence. Once the merge criteria are met, all axis-aligned walls of both cells 

will not deter the merge. Only non-axis-aligned walls need to be checked for 

convexity. This is done by checking if the non-axis-aligned walls are on the 

inner side of all other borders of the merged cell. Take Cell #1 for example (see 

Figure 5.8). Let the right border (implementation dependent) be the first to be 

considered. The right border meets the merge criteria because it is fully virtual, 

it connects to Cell #6 only, and both Cells #1 and #6 have no non-axis-aligned 

Figure 5.8 Cell-and-portal generation: forming convex cells (stage 2) 
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wall. After the merge, the right border (implementation dependent) of the 

merged cell is considered. It meets the merge criteria and the merge continues 

to merge Cells #1, #6, #11, and #16. Only the first cell number is retained. After 

that, the top border of the merged cell is considered (the left and bottom borders 

have no adjacent cell). It does not meet the merge criteria because it connects to 

multiple adjacent cells (#2, #7, #12, and #19). The merged cell cannot grow 

further for the moment. The merge process is repeated with the other cells that 

have not been merged. Figure 5.9 shows the merge results after the first round 

of merging. Multiple rounds of merging are required to merge into larger cells. 

The merging process stops when the round achieves no merging. Figure 5.10 

shows the merge results after the final round of merging. The cell and wall 

numbers are renumbered when writing the output files (input files for the ray 

tracing engine). 
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Figure 5.9 Cell-and-portal generation: first round of merging 
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Figure 5.10 Cell-and-portal generation: merging convex cells (stage 3) 
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CHAPTER 6  

 

RESULTS AND DISCUSSIONS 

6.1 Introduction 

Two shooting-and-bouncing-polygon (SBP) ray tracers are 

implemented: one with binary space partitioning (SBP-BSP) and the other with 

convex cell partitioning (SBP-CCP). They are implemented in C/C++ 

programming language. In the following, their performance in terms of 

accuracy and efficiency is evaluated by comparing their simulation results 

against published measurements and simulation results from commercial 

REMCOM Wireless InSite®’s ray tracers and CST MICROWAVE STUDIO®’s 

full-wave solvers. An evaluation of the Big-O time and memory complexity of 

the SBP-CCP ray tracer is also presented at the end of this Chapter. All 

simulations are run on a laptop computer (Intel® CoreTM i7-5500U, 12 GB 

RAM, GeForce 840M) powered by the mains without GPU parallel computing 

unless specified otherwise. It is shown that the proposed SBP-CCP ray tracer is 

applicable to long tunnel, urban canyon, and indoor propagation environments. 

Also, it is superior to REMCOM Wireless InSite’s 3D ray tracers in terms of 

accuracy, time efficiency, and memory efficiency, in those applications. 
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6.2 Massif Central Tunnel 

We present here the application of the SBP ray tracers to a long straight 

tunnel, i.e. the Massif Central Tunnel in France. For a long tunnel, there are two 

challenges. Firstly, rays have large incident angles and hence reflection 

coefficients close to 1 at the tunnel’s walls. A large number of reflections are 

required to achieve convergence in the ray tracing results. Secondly, at a 

distance, a tunnel wall subtends a small angle at the transmitter, which requires 

a very small ray separation to achieve convergence in the ray tracing results. 

General purpose ray tracers are generally not efficient at handling a large 

number of reflections and very small ray separation. 

Figure 6.1(a) shows a photo of the simulated Massif Central Tunnel 

(Molina-Garcia-Pardo et al., 2012). The dimension details are illustrated in 

Figure 6.1(b). Also shown in Figure 6.1(b) is the equivalent rectangular tunnel 

model proposed by Dudley et al. (2007), which is valid only at sufficiently large 

distances from the transmitter. The equivalent rectangular tunnel model is used 

in the ray tracing simulation. The dielectric constant and conductivity of the 

tunnel walls and floor are 5 and 0.01 S/m, respectively, as proposed by Dudley 

et al. (2007). There are one transmitter and 1250 receivers (observation points). 

They are 2 m above ground and 1.95 m from one of the vertical walls of the 

equivalent rectangle. The first receiver is 2 m from the transmitter in the 

longitudinal direction. Subsequent receivers are placed at 2 m intervals up to 

2500 m from the transmitter. The transmit power is +34 dBm. For 900 MHz, 

the transmitting and receiving antennas are +7 dBi horn antennas. 
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(a) Photo 

(b) Dimension details 

Figure 6.1 Massif  Central Tunnel
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For 450 MHz, the transmitting and receiving antennas are +2.15 dBi half-wave 

dipole antennas. 

The ideal number of rays arriving at a receiver in a rectangular tunnel 

can be determined analytically and is given by 1+2N+2N2 where N is the 

maximum number of reflections. Our SBP ray tracers are able to capture all of 

them, i.e. they produce ideal reflection-only GO solutions for the rectangular 

tunnel. Figure 6.2 shows that, at large distances, the SBP simulation results 

(CCP and BSP versions) at 900 MHz are nearly identical to those presented by 

Fuschini and Falciasecca (2012) using a mixed rays-modes method. The 

simulation results are able to predict the pseudo-periodic fading pattern at large 

Figure 6.2 Received power at 900 MHz in Massif Central Tunnel
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distances due to the lack of higher order propagation modes. They match fairly 

well with the measurements (Dudley et al., 2007) except that they predict much 

deeper fades at 720 m and 2200 m, excluding which the root-mean-square (rms) 

error is 4.4 dB for distances greater than 500 m. Similar observations are seen 

in Figure 6.3 at 450 MHz, except that a much larger number of reflections is 

required to achieve convergence in the ray tracing results due to the much higher 

attenuation. It is important to note that, in this application, the discrepancy of 

the ray tracing results from measurements is not due to the ray tracers’ 

limitations as they produce ideal GO solutions. The discrepancy is due to the 

limitations of GO and the equivalent rectangle in modelling the real world semi-

circular tunnel.  

Figure 6.3 Received power at 450 MHz in Massif Central Tunnel
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For the same simulation at 25 reflections, Zhang et al. (2016) reported 

13.8 hours of computation time on a workstation using a 3D image-based ray 

tracer. Figure 6.4 shows the comparison between their simulation results and 

ours at 900 MHz. We have added an offset of +7 dB to bring their results to the 

correct level. Using our results (which have been shown above to be ideal GO 

solutions) as a benchmark, the discrepancy (after the offset), though small, 

shows that their ray tracer did not manage to capture all the rays.  

At 25 reflections, Wireless InSite’s (a commercial suite) X3D and Full 

3D (F3D) ray tracers take 342 s (with GPU) and 273 s, respectively, but they 

Figure 6.4 Zhang et al. (2016) ray tracing results 

for Massif Central Tunnel at 900 MHz 
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fail to predict the pseudo-periodic fading pattern and the results vary with the 

choice of ray separation. Figure 6.5 shows the comparison of their simulation 

results and ours. F3D results differ substantially from the ideal GO solutions, 

likely due to inexact ray paths. They also show no sign of convergence at 0.25 

degrees ray separation (the default setting). X3D makes the extra effort to 

compute exact ray paths and hence its results better match the ideal GO 

solutions over the range where its results converge, i.e. up to about 800 m from 

the transmitter. The convergence range should increase with smaller ray 

separation but we did not try further due to the long simulation time.  

How long does it take for the SBP ray tracers to compute the ideal GO 

solutions? At 25 reflections, the CCP version takes 14 s and the BSP version 

takes 15 s. That is about 3500 times faster than that reported by Zhang et al. 

(2016) and 20 times faster than Wireless InSite’s ray tracers. The 14 s are mainly 

for computing ray paths and fields. The SBP process (image generation) takes 

less than a second. The SBP ray tracers are not only more accurate and more 

time efficient, they are also more memory efficient. They have a small memory 

footprint because they do not require images or ray paths to be stored for field 

computation. Field contributions are computed on the fly as individual image 

and ray path are generated and discarded. A summary of the comparisons is 

given in Table 6.1.  

So far, the comparisons are between general purpose ray tracers. A better, 

and probably the best, ray tracer for the rectangular tunnel is a special purpose 

image-based ray tracer whereby images are determined analytically, exploiting  



90 

 

Figure 6.5 Wireless Insite’s ray tracing results for Massif Central 

Tunnel at 900 MHz 

(a) F3D 

(b) X3D 
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the fact that the tunnel is rectangular. Compared to the special purpose analytical 

ray tracer, the main overhead of the SBP ray tracers is the reception test because 

the SBP process is found to be negligible for rectangular tunnel. On the other 

hand, the analytical ray tracer has ambiguity about whether the vertical or 

horizontal wall is intersected depending on the receiver location, i.e. every 

segment of a ray path requires computation of 2 line-plane intersections instead 

of one. We have implemented the analytical ray tracer. The fact that the tunnel 

is rectangular is exploited. The analytical ray tracer takes 11 s for 25 reflections, 

just a few seconds faster than the SBP ray tracers. The simulation results are 

identical to those of the SBP ray tracers. Hence, unlike other general purpose 

ray tracers, the SBP ray tracers are as good as the special purpose analytical ray 

tracer both in terms accuracy and efficiency. 

Table 6.1 Ray tracers’ accuracy, computation time, and memory 

consumption for a rectangular tunnel environment with 25 

reflections 

 

Ray tracer Accuracy 1 Time (s) Memory (MB) 

Zhang et al. (2016) Good 49700 2 Not reported 

F3D Poor 273 143 

X3D Poor 342 3 2600 

SBP-CCP Ideal 14 1.2 

SBP-BSP Ideal 15 1.2 

Analytical Ideal 11 1.0 

 
1 relative to ideal GO solution 
2 run on a different workstation 
3 run with GPU parallel computing 
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In this Section, both versions of the SBP ray tracers are equally good. 

The improvements due to CCP and improved diffraction calculation are yet to 

be seen. The comparisons, however, have highlighted the strengths of SBP and 

justified the significance of our work to improve an SBP ray tracer.  

6.3 Ottawa City Streets 

We present here the application of the ray tracers to Ottawa city streets. 

The measurements are reported by Whitteker (1988). Figure 6.6(a) shows an 

aerial view of the simulated Ottawa city streets obtained from Google Earth. 

The buildings may have changed but the street layout and the fact that the city 

streets mainly consist of high rise buildings remain the same. Figure 6.6(b) 

shows the model layout (Tan and Tan, 1995) used in the ray tracing simulations. 

Four receiver routes exhibiting urban canyon characteristics, where over-roof-

top diffraction is not significant, are simulated. They are routes along Bank 

Street, Laurier Street, Albert Street, and Queen Street, shown as dashed lines in 

Figure 6.6(b). The transmitter for the Bank Street route is located at (538, 171, 

8.5), marked as red circle in Figure 6.6(b). The transmitter for the other routes 

is located at (240, 263, 8.5), marked as blue circle in Figure 6.6(b). The 

transmitting and receiving antennas are modelled as vertical half-wave dipoles. 

The net measurement system gain, i.e. antenna gains plus system losses, is 

assumed to be 0 dB. The operating frequency is 910 MHz. As suggested by Tan 

and Tan (1995), the dielectric constant and conductivity of the walls are 7 and  
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Figure 6.6 Ottawa city streets

(a) Aerial view 

(b) Model layout 
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0.2 S/m, respectively. The simulations include up to 10 reflections and 1 

diffraction. Over-roof-top diffraction is not included. 

Figure 6.7 shows the comparisons of SBP simulation results, with and 

without diffracted-reflected (D-R) rays, and Whitteker’s measurements. The 

significance of diffracted-reflected rays is seen in receiver routes along Bank 

Street, Albert Street, and Queen Street where diffracted-reflected rays have 

improved the accuracy of the ray tracing results in deeply shadowed regions by 

about 10 dB. Unlike the rectangular tunnel, the SBP simulation time for the 

urban canyon is dominated by the SBP process (about 90%). SBP-CCP takes 

about 108 s for one receiver route whereas SBP-BSP takes about 940 s. In other 

words, the CCP version is more than 8 times faster than the BSP version when 

applied to an urban canyon with up to 10 reflections. The computation gain 

factor is higher with a smaller number of reflections, e.g. at 4 reflections, the 

computation gain factor is 20 (2 s versus 40 s).  

The ray tracing results do not do well in some areas, e.g. y < 60 m in 

Laurier Street and Queen Street. Also, the measurements have shown strong 

signals injected into the parallel streets, i.e. Albert Street and Queen Street, from 

Metcalfe Street (y ≈ 750 m) but this is not seen in the ray tracing results. 

Although such rays from Metcalfe Street exists in the ray tracing results, they 

are not significantly stronger than rays propagated along the parallel streets. 

These errors are also seen in Wireless InSite’s ray tracing results (UC, F3D and 

X3D) shown in Figure 6.8. They are likely due to inadequacy of the building 

models. 
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Figure 6.7 SBP simulation results for Ottawa city streets

(a) Bank Street 

(b) Laurier Street 
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Figure 6.7 SBP simulation results for Ottawa city streets

(c) Albert Street 

(d) Queen Street 
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Figure 6.8 Wireless InSite simulation results for Ottawa city streets

(a) Bank Street 

(b) Laurier Street 
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Figure 6.8 Wireless InSite simulation results for Ottawa city streets

(c) Albert Street 

(d) Queen Street 
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Figure 6.8 shows that Wireless InSite’s Urban Canyon (UC) and F3D 

results are similar to SBP results. The X3D results tend to underestimate the 

signal levels in shadowed regions. Table 6.2 shows the comparisons in terms of 

rms error, computation time, and memory consumption. Accuracy wise, X3D 

does not do well. It may have omitted too many ray paths in compensating the 

extra effort on computing exact ray paths. SBP-CCP, UC, and F3D are 

comparable considering the large degree of uncertainties in propagation 

modelling, e.g. position and dimension errors, idealized building model, and 

omission of small details. Speed wise, SBP-CCP is not as efficient as the 2D ray 

tracer (UC) but it is better than the 3D ray tracers (F3D and X3D). Memory 

wise, again, SBP-CCP has shown very small memory footprint, orders of 

magnitude smaller than Wireless InSite’s ray tracers’. 

In the above comparisons, the convex cells for CCP have been defined 

manually as part of the model description. The convex cells can be generated 

automatically from a set of predefined walls using the convex cell generator 

described in Section 5.5 (p. 77). The convex cell generation process takes about 

1 s. The SBP-CCP simulation time is about 175 s for one receiver route using 

the auto-generated convex cells, compared to 108 s using the manually defined 

convex cells. Although slower, the run time is still significantly faster than SBP-

BSP, F3D, and X3D (if run without GPU). Figure 6.9 shows the manually 

defined and auto-generated convex cells in 2D. The slower run time is due to 

these reasons (areas for future improvements): 
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Figure 6.9 Convex cell partitioning for Ottawa city streets

(a) Manual mode 

(b) Auto mode 
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1) In the auto mode, the buildings are split into convex cells which is not 

necessary for urban canyon simulations. The splits create more walls. 

2) There are more portals (virtual walls) in the auto mode partly because 

the portal connecting two cells is always aligned to the coordinate axes.  

3) In the auto mode, there are big convex cells consisting of many walls. 

Numerical experiments show that efficiency improves if the big convex 

cells are split into smaller cells with fewer number of walls, as it is done 

in the manual mode. In the current implementation, this can be achieved 

in the auto mode by adding proper portals to the set of predefined walls. 

The merging process will not merge across the predefined portals 

avoiding the formation of big cells. We are able to attain a run time of 

135 s with this technique. 

In this Section, we have shown the significance of diffracted-reflected 

rays in deeply shadowed regions.  Diffracted-reflected rays are important 

additions to an SBP ray tracer, made by diffraction ray-polygon proposed in this 

thesis (CHAPTER 4).  We have shown the considerable improvement made by 

CCP proposed in this thesis (CHAPTER 5). We have also shown that the 

resultant SBP-CCP ray tracer is a good candidate for simulating urban canyons 

when a 3D ray tracer is preferred, e.g. some building walls are sloped, or when 

a very small memory footprint is desired. 
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6.4 The Printing House at Trinity College Dublin 

In this Section, we show the application of SBP-CCP to an indoor 

environment. Figure 6.10 shows the simulated indoor scene, provided by Kenny 

and Nuallain (2017). Blue dots are the receiver points. Narrow rectangles 

shaded in blue are wooden doors. The other rectangles shaded in blue are glass 

windows. The transmitter is at (5.468, 6.51, 1.45). The ceiling height is about 

3 m. The measurements are reported by Kenny and Nuallain (2017). At each of 

the receiver points, 5 power measurements, from 5 random points within one-

wavelength radius from the receiver point, are taken and averaged. The 

operating frequency is 900 MHz. 

In the ray tracing simulation, we have used dielectric constants and 

conductivities suggested by Kenny and Nuallain (2017). The exterior walls with 

windows, the floor, and the ceiling are modelled as half-spaces with dielectric 

Figure 6.10 Top floor of the printing house at Trinity College Dublin 

2 4 6 8 10 12 14 16 18 
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constant 4.44 and conductivity 0.08 S/m. Thin interior walls are modelled as 

lossy slabs with dielectric constant 4, conductivity 0.04 S/m, and thickness 15 

cm. Thick interior walls are modelled as lossy slabs with dielectric constant 4, 

conductivity 0.04 S/m, and thickness 30 cm. Wooden doors are modelled as 

lossless slab with dielectric constant 2.3 and thickness 4 cm. We have included 

up to 6 reflections / transmissions and 1 diffraction. No significant change in 

the simulation results is observed with a higher number of interactions.  

At each of the receiver points, one receiver is placed on the receiver 

point and four additional receivers are placed at the corners of a square centered 

at the receiver point. The sides of the square are parallel to the axes. The four 

receivers are one-wavelength from the center. The simulated power at the five 

receivers are averaged. Kenny and Nuallain (2017) have not stated the receiver 

height, the transmit power, and the measurement system gain or loss. The 

receiver height is assumed to be about the same as the transmitter height, i.e. 

1.45 m above the floor. We found a transmit power of 0 dBm and a system gain 

of 0 dB produce simulation results that match reasonably well with the 

measurements, as shown in Figure 6.11. Our simulation results seem to be better 

than Kenny and Nuallain (2017) simulation results near the line-of-sight region. 

However, the overall rms error is about the same, 5.6 dB and 5.8 dB, 

respectively. Our simulation takes about 17 s for 180 receivers (36 × 5). Kenny 

and Nuallin (2017) have not reported the run time. 
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6.5 Comparison with Full-Wave Solutions 

It is difficult to assess or compare the accuracy of ray tracers using 

propagation measurements as the benchmark due to the large degree of 

uncertainties in propagation modelling to the extent that the model parameters 

need to be calibrated with measurements to achieve reasonable match. A good 

alternative is to compare against full-wave solutions. It greatly reduces the 

uncertainties and avoids the need for parameter calibration. Without the 

uncertainties and curve fitting, the comparison is more demanding. It does a 

better job in revealing formulation and implementation flaws. Its limitation is 

Figure 6.11 Received power at the top floor of the printing house at 

Trinity College Dublin 
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the simulated scenes cannot be too big (due to the limitation of full-wave 

simulation software) and thus the simulated scenes must be relatively simple. 

However, this is not an issue because few ray tracers are able to match full-wave 

solutions even for simple scenes.  

We simulate the indoor scene in Figure 6.12. Its complexity is limited 

by the contradicting requirements of full-wave and GO/UTD solvers. Full-wave 

solvers require that the overall dimensions should not be too big electrically. On 

the other hand, GO/UTD solvers require that objects should be electrically large. 

Although simple, the indoor scene does involve complex 3D interactions of 

reflection, transmission, and diffraction. It requires accurate treatment of walls 

with thickness and transmissive hollow wedge. Ray tracers based on rectangular 

geometry (Kenny and Nuallain, 2017) may have problem with the non-axis-

aligned wall. We believe the indoor scene is the most complex of its kind to date. 

Simpler scenes for comparisons between ray tracing and full-wave solutions are 

found in Chen and Jeng (1997); Yang, Wu and Ko (1998); Teh, Kung and Chuah 

(2006). 

The 3D full-wave simulation is done using CST Time Domain solver. 

The indoor scene has an interior height of 3 m. The exterior wall, floor, and 

ceiling have a thickness of 40 cm. Their exterior surfaces are bordered by open 

boundaries (perfectly matched layers) of the full-wave solver. The interior walls 

have a thickness of 10 cm. All walls have dielectric constant εr = 5 and 

conductivity σ = 0.01 S/m, typical of concrete walls. The transmitting antenna 

is a z-polarized half-wave dipole antenna at (4.4, 1.4, 2.4), marked as a red circle 
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in Figure 6.12. A field monitor is placed at z = 1.4 m (1 m above the floor). The 

operating frequency is 1.5 GHz. Maximum mesh cell size is 1/20 wavelength. 

The ray tracing simulation includes up to 6 reflections / transmissions, 

one diffraction, and any combination of them. The exterior walls, floor, and 

ceiling are modelled as half spaces. The interior walls are modelled as lossy 

dielectric slabs. The plane at z = 1.4 m is covered by 99 × 99 = 9801 receivers 

at a resolution of 5 cm, e.g. the first receiver is at (0.45, 0.45, 1.4). For ideal 

comparison with full-wave solutions, the receivers should be merely field 

monitors that are not associated with antennas. In cases where a receiver must 

Figure 6.12 An indoor scene with tapered corridor and   

transmissive hollow wedge 



108 

be associated with an antenna, a dipole antenna may be used; the difference in 

relative electric field intensity is very small.  

Figure 6.13 and Figure 6.14 shows the full-wave and SBP-CCP results 

for z-polarized relative electric field intensity at z = 1.4 m, respectively. There 

is a very good match between the results. The rms error is 2.1 dB. The full-wave 

solver takes more than 5 hours on a high-end workstation. The SBP-CCP ray 

tracer takes 62 seconds on the laptop computer, mainly to compute ray paths 

and fields for the large number of receivers, about 6 ms per receiver. The SBP 

process (image generation) takes less than a second. The inclusion of diffraction 

into the hollow wedge increases the run time to 90 s, but the rms error only 

improves slightly to 2.0 dB.  

Figure 6.15 and Figure 6.16 shows the F3D and X3D results, 

respectively. Visually, the X3D results are more accurate than the F3D results 

due to the extra effort to compute exact ray paths. X3D is able to show fine 

variations in the field pattern. However, it does not do well in point-to-point 

comparison. X3D rms error is greater than F3D rms error. Table 6.3 shows the 

comparisons in terms of rms error, computation time, and memory consumption. 

It is evident that our SBP-CCP ray tracer is faster, more accurate, and more 

memory efficient than Wireless InSite’s ray tracers in this indoor application. It 

is also shown that the delay corrections proposed in CHAPTER 3 have 

significantly improved the accuracy (from 4.1 dB to 2.1 dB in rms error) without 

compromising computation complexity (only a few seconds increase in run 

time). 
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Figure 6.13 CST full-wave results for Figure 6.12

Figure 6.14 SBP-CCP simulation results for Figure 6.12



110 

 

Figure 6.15 F3D simulation results for Figure 6.12

Figure 6.16 X3D simulation results for Figure 6.12
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Next, we simulate a concrete rectangular room having a 1 m × 1 m 

perfectly conducting column in the middle of the room, as shown in Figure 6.17. 

The transmitter is at (4.4, 1.4, 1.9). Other simulation settings are similar to those 

of Figure 6.12. This time we show the field distribution on a vertical plane at 

� = 1.4	m, see Figure 6.18 and Figure 6.19. Again, there is a very good match 

between the SBP results and full-wave solutions. The rms error is 2.0 dB. 

One characteristic of the ray tracing simulations presented in this Section 

is there is a large number of receivers. Shooting-and-bouncing-ray (SBR) ray 

tracers are generally regarded as more time efficient than image-based ray 

tracers when the number of receivers is large. This is because the expensive 

SBR process is independent of receiver. The same set of rays are shared by all 

receivers. On the other hand, the image method computes unique rays for each 

receiver. Furthermore, in many image-based ray tracers, many of the computed 

rays may turn out to be invalid. Our SBP-CCP ray tracer also uses the image 

Table 6.3 Ray tracers’ rms error, computation time, and memory 

consumption for the indoor scene in Figure 6.12 

 

Ray tracer Rms error (dB) 1 Time (s) Memory (MB) 

F3D 4.6 8773 614 

X3D 5.5 1244 2 6686 

SBP-CCP 2.1 62 5.0 

SBP-CCP (with 

diffraction into 

hollow wedge) 

2.0 90 5.0 

SBP-CCP (without 

delay correction) 

4.1 58 5.0 

 
1 relative to full-wave solutions 
2 run with GPU parallel computing 
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method to backward trace unique exact rays for each receiver, which is 

necessary for accurate ray tracing simulation. However, the backward tracing 

process is very efficient. Firstly, there is no ambiguity in the sequence of ray-

object interactions. This greatly reduces the number of ray-object intersection 

computation. Secondly, the number of invalid ray paths is greatly reduced by 

SBP. Despite the large number of receivers, Table 6.3 shows that our SBP-CCP 

ray tracer is still significantly faster than commercial SBR ray tracers. 

 

 

Figure 6.17 A rectangular room with perfectly conducting column 
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Figure 6.18 CST full-wave results for Figure 6.17 

Figure 6.19 SBP-CCP simulation results for Figure 6.17 



114 

6.6 Big-O Time and Memory Complexity 

Big-O complexity of an algorithm is the asymptotic complexity of the 

algorithm when the size of one of its inputs grows large. It is of interest to know 

the Big-O complexity of a ray tracer when the number of walls and edges (E), 

the number of interactions (N), and the number of receivers (R) grow large. 

Big-O complexity analysis is typically done analytically. However, a decent ray 

tracer is made of many algorithms interacting with each other. Assessing its 

overall complexity analytically is difficult and prone to errors. Hence, in this 

Section, we conduct numerical experiments to estimate the Big-O time and 

memory complexity of our SBP-CCP ray tracer.  

Apparently, the ray tracer complexity is highly dependent on the 

simulated scene. A standard average scene will need to be defined to enable 

systematic evaluation of the ray tracer complexity. Noting the difference 

between urban canyon and indoor propagation, e.g. urban canyon has no 

reflection from ceiling nor transmission through wall, we have defined two 

standard scenes, one for urban canyon and one for indoor. Figure 6.20 shows 

the two standard scenes used in the complexity study.  They have similar layouts 

which are scalable. The number of walls can be increased by adding more 

building blocks (for urban canyon) or rooms (for indoor). The number of 

diffracting edges is about the same as the number of walls. The indoor scene has 

ceiling and exterior walls and its walls are transmissive. A transmitter is placed 

in the middle of the scenes, marked by circles in Figure 6.20. Receivers are 

placed along the streets or corridors, marked by dashed lines in Figure 6.20. 
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Figure 6.20 2D layouts of standard scenes used in the complexity study 

(a) Urban canyon 

(b) Indoor 
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The SBP process and the ray-paths-and-fields computation are different 

in nature, e.g. the SBP process is independent of receiver whereas the ray-paths-

and-fields computation is receiver dependent. Hence, we have divided the run 

time into two parts, one part due to the SBP process and the other due to the ray-

paths-and-fields computation. The part due to the SBP process can be measured 

directly by running the simulation without receiver. The part due to the ray-

paths-and-fields computation is the difference between the run time with and 

without receivers. For example, if the measured run time with and without 

10000 receivers are 1000 s and 100 s, respectively, the SBP process run time is 

100 s and the ray-paths-and-fields computation run time is 

(1000 – 100)/10000 = 0.09 s per receiver.  

The Ottawa city scene in Figure 6.6 has about 600 walls and edges. We 

have conducted the numerical experiments up to about 40,000 walls and edges. 

The quoted numbers are raw numbers before the walls are split or the insertion 

of virtual walls to form convex cells. Figure 6.21(a) shows the relationship 

between the SBP process run time and the number of walls and edges. Due to 

the long simulation time, simulations with 10 interactions or the indoor scene 

are run up to about 12,000 walls and edges only. Long simulation time is less 

accurate and less reproducible because it is more likely to be affected by other 

background computer activities. The curves in Figure 6.21(a) can be 

approximated by polynomials. For large number of walls and edges (E), the run 

time (T) is dominated by the highest order term ��. In other words, M ∝ �� for 

large E where k can be estimated from the slope of log(T) versus log(E) curve, 

i.e. ` = 	 D�Ú�Û�Ü
�D�Ú�Û�Ý
�  . Figure 6.21(b) shows the values of k for different E. The  
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Figure 6.21 SBP process complexity and the number of walls and edges

(a) Run time 

(b) k 
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values of k are about the same for all the three scenarios presented in Figure 

6.21. It is reasonable to conclude that k is not sensitive to the number of 

interactions nor the inclusion of reflection from ceiling and transmission 

through wall. For large E, a good estimate of k is 1.8. This suggest that the SBP 

process has O(E1.8) time complexity for urban canyon and indoor environments. 

Figure 6.22(a) shows the relationship between the ray-paths-and-fields 

computation run time and the number of walls and edges. The per-receiver run 

time is computed as explained above (p. 116). The number of receivers used in 

the urban canyon and indoor experiments are about 100,000 and 10,000, 

respectively. The actual numbers are integral multiples of the number of streets 

or corridors. Figure 6.22 shows the urban canyon (5 interactions) data up to 

about 20,000 walls and edges only because beyond that the ray-paths-and-fields 

computation constitutes less than 10% of the total run time. A 5% error in the 

total run time, which is not uncommon, can cause huge error in the per-receiver 

run time. For the same reason, the indoor data is shown up to about 3000 walls 

and edges only. The values of k are about the same for all the three scenarios 

presented in Figure 6.22, i.e. k is not sensitive to the number of interactions or 

the inclusion of reflection from ceiling and transmission through wall. For large 

E, a good estimate of k is 0.55. This suggests that the ray-paths-and-fields 

computation has O(E0.55) time complexity for urban canyon and indoor 

environments. As a comparison, Wireless InSite’s SBR ray tracers are said to 

have O(E2) complexity (REMCOM, 2018b) which is about the same as the SBP 

process complexity. It is likely that the SBP ray tracer will maintain its time 

efficiency advantage shown in the above Sections, for much larger scenes with  
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Figure 6.22 Ray-paths-and-fields computation complexity 

and the number of walls and edges 

(a) Run time 

(b) k 
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more walls and edges, especially if the ray separation of the SBR ray tracers is 

reduced to cope with the increasing distance. 

Figure 6.23 shows the relationship between the run time (T) and the 

number of interactions (N), for urban canyon simulations. Because N is 

relatively small (compared to E), using the same method above will result in 

relatively large k. Considering that a ray beam may be split to multiple ray 

beams after each interaction, the time complexity is better described by O(cN) 

where c is a constant which can be estimated from Í = Ü���!
Ü��
  . Figure 6.24 

shows the values of c for different N. It is clear that, for big N, c is not sensitive 

to the computation types nor the number of walls and edges. For big N, a good 

estimate of c is 1.16. This suggests a time complexity of O(1.16N) for urban 

canyon simulations. 

Similar plots for indoor simulations are given in Figure 6.25 and Figure 

6.26. For big N, a good estimate of c is 2.4. This suggests a time complexity of 

O(2.4N) for indoor simulations. The increase in complexity (compared to urban 

canyon simulations) is because transmission through walls cause more ray 

beams to be spawned after each interaction. Our complexity study includes 

reflected-diffracted-reflected ray paths. Without diffraction, the time 

complexities with respect to N can be deduced analytically. For sufficiently big 

N, a ray beam will be small enough to spawn only one reflected ray beam and 

one transmitted ray beam (for indoor) after each interaction. Hence, the time 

complexities with respect to N will be the same as those of SBR ray tracers, i.e. 
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Figure 6.23 SBP-CCP run time and the number of 

interactions, for urban canyon simulations 

(a) SBP process 

(b) Ray-paths-and-fields computation 
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 O(N) and O(2N) for urban canyon and indoor simulations without diffraction, 

respectively. 

The time complexity dependence on the number of receivers (R) is 

obvious and it can be deduced analytically. The SBP process is independent of 

receiver. Hence, it has O(1) time complexity. The ray-paths-and-fields 

computation is similar for every receiver. Hence, it has O(R) time complexity. 

This has been verified numerically, e.g. the ray-paths-and-fields run time per-

receiver is about the same when 10,000 or 100,000 receivers are used. 

 

Figure 6.24 The values of c for urban canyon simulations
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Figure 6.25 SBP-CCP run time and the number of 

interactions, for indoor simulations 

(a) SBP process 

(b) Ray-paths-and-fields computation 
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The memory complexity of the SBP-CCP ray tracer is also obvious and 

it can be deduced analytically. The number of convex cells is a linear function 

of the number of walls. The memory required to hold cell, wall and edge 

information grows linearly with the number of walls and edges. The SBP-CCP 

ray tracer has no other data structure that will grow with the number of walls 

and edges (E). Hence, it has O(E) memory complexity. This has been verified 

numerically, as shown in Figure 6.27. The slope is about 1.3 kBytes per wall-

edge pair. 

 

Figure 6.26 The values of c for indoor simulations
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For N interactions, N images (2N with transmission through wall) need 

to be stored on the trace stack. The size of ray path information is also 

proportional to N. Hence, the memory complexity should be O(N). However, 

the increment of memory consumption due to increasing N is very small relative 

to the total memory consumption. Take Figure 6.3 (p. 87) for example, from N 

= 0 to 60, memory consumption increases from 1.1 MB to 1.3 MB. Because N 

is typically much smaller than 60, the increment of memory consumption due 

to increasing N is negligibly small. For all numerical experiments presented in 

Figure 6.23 to Figure 6.26, the change in memory consumption due to 

increasing N is not noticeable. Hence, the memory complexity with respect to 

N is better described by O(1). 

Figure 6.27 SBP-CCP memory consumption and 

the number of walls and edges 
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The memory complexity dependence on the number of receivers (R) is 

obviously linear, i.e. O(R). This has been verified numerically. The amount of 

memory required per receiver is dependent on the desired output e.g. power, 

power delay profile, or ray path. If only power is desired, the amount of memory 

required per receiver is about 445 bytes as obtained from the numerical 

experiments. Table 6.4 shows a summary of the time and memory complexity 

of our SBP-CCP ray tracer as obtained from the numerical experiments. 

  

Table 6.4 SBP-CCP time and memory complexity 

 

Parameters 

Time complexity 

Memory 

complexity 

SBP process Ray paths and fields 

Urban 

Canyon 
Indoor 

Urban 

Canyon 
Indoor 

Number of walls 

and edges, E 
O(E1.8) O(E1.8) O(E0.55) O(E0.55) O(E) 

Number of 

receivers, R 
O(1) O(1) O(R) O(R) O(R) 

Number of 

interactions, N 
O(1.16N) O(2.4N) O(1.16N) O(2.4N) O(1) 
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CHAPTER 7  

 

CONCLUSIONS 

7.1 Achievements 

We have described three important improvements to a shooting-and-

bouncing-polygon (SBP) ray tracer. Firstly, we have derived delay correction 

factors for reflection, transmission, and diffraction, based on a multilayer lossy 

wall model. They allow walls with thickness to be handled accurately and 

efficiently using one-patch walls. We have pointed out that the correction for 

transmission is required even if a less efficient two-patch method is used. 

Secondly, we have introduced edge-fixed diffraction ray-polygon to 

trace diffracted and diffracted-reflected ray beams. We have described the edge-

fixed projection problems and presented an algorithm to perform the projection 

correctly. The addition enables the SBP ray tracer to trace and account for 

diffracted-reflected rays. This improves the SBP ray tracer’s accuracy when 

diffracted-reflected rays play an important role. By comparing ray tracing 

results with published measurements, we have explicitly shown that diffracted-

reflected rays play an important role in shadow regions in urban canyon 

simulations. 
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Thirdly, we have proposed a new spatial partitioning scheme, i.e. convex 

cell partitioning (CCP), for the SBP ray tracer. Compared to binary-space-

partitioning, CCP removes the need to perform polygon subtraction, a relatively 

expensive procedure. Traversal of the CCP graph is also simpler than the binary 

tree. Numerical results show that the CCP version (SBP-CCP) is about an order 

of magnitude faster than the binary-space-partitioning version (SBP-BSP) in an 

urban canyon application. To improve the usability of the SBP-CCP ray tracer 

for large complex scenes, we have also presented a working algorithm to 

automatically generate the convex cell data structures from a given set of walls. 

During the course of this project, we have implemented three ray tracers 

in C/C++ programming language, including testing and debugging. Two general 

purpose 3D ray tracers, i.e. SBP-BSP and SBP-CCP, and one special purpose 

image-based ray tracer for rectangular tunnels. Both SBP-BSP and SBP-CCP 

support diffraction ray-polygon. However, only SBP-CCP is enhanced with the 

new delay correction factors and CCP.  We have written a number of 

preprocessing tools in C/C++, e.g. automatic generation of various input files 

for SBP-CCP. We have also written many post-processing tools in Scilab, 

mainly for visualization of simulation (ray tracing and full-wave) and 

measurement results. Many of the plots presented in this report can be generated 

with a mouse click. 

The presented indoor scene and results can serve as a good 

benchmarking case to validate ray tracers or to compare their accuracy. It is 

suitable for indoor ray tracers that are able to handle non-axis-aligned walls. 
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Because the parameters are well defined, the case does not allow manipulation 

of simulation results in the name of parameter optimization. It will do a better 

job than propagation measurements at revealing formulation and 

implementation flaws in the ray tracing algorithm or electromagnetic 

computation. We have shown that it is possible to achieve an rms error of 2 dB 

in point-to-point comparison using a ray tracer. We believe such benchmark, in 

addition to propagation measurements, is important to the development of ray 

tracers for radio propagation modelling. There are not many of such benchmarks 

available in the literature. 

We have compared SBP-CCP performance against commercial 

REMCOM Wireless InSite ray tracers, in terms of run time, accuracy, and 

memory consumption. The comparisons show that our 3D SBP-CCP ray tracer 

outperform REMCOM 3D ray tracers in the 3 aspects (run time, accuracy, and 

memory consumption) in long tunnel, urban canyon, and indoor applications. 

Our 3D SBP-CCP ray tracer is 1 to 2 orders of magnitude more memory 

efficient than REMCOM 2D ray tracer in an urban canyon application, despite 

the common notion that 2D ray tracers are more efficient than 3D ray tracers. 

Various results have shown that the SBP-CCP ray tracer developed in this 

project is an accurate, time efficient, and memory efficient 3D ray tracer. It is a 

good candidate for simulating long tunnel, urban canyon, and indoor 

propagation environments. The current implementation does not include double 

diffraction and it is not suitable for general urban environments which require 

multiple over-roof-top diffractions. Table 7.1 shows a summary of the SBP-CCP 

simulation parameters and performance data. 
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Based on some of the works in this project, we have published a paper 

entitled “An accurate and efficient 3D shooting-and-bouncing-polygon ray 

tracer for radio propagation modeling” in IEEE Transactions on Antennas and 

Propagation, vol. 66, pp. 7244-7254. Another paper entitled “Multilayer wall 

correction factors for indoor ray tracing radio propagation modeling” has been 

submitted to IEEE Transactions on Antennas and Propagation. At the time of 

writing, it is subject to minor revisions. 

7.2 Recommendations of Future Work 

Although the SBP-CCP ray tracer has shown good performance, it has 

plenty of room for improvements. We will discuss some of them here. One of 

them is to extend SBP-CCP to handle double and higher order diffractions 

which are required for simulations of general urban environments with over-

roof-top diffractions. The extension to multiple diffractions from parallel edges 

should be straight forward because the same diffraction ray-polygon can be used. 

The extension to multiple diffractions from non-parallel edges would require a 

lot more work. Using the SBP framework, a new ray-polygon projection scheme 

is required. 

The ability to handle curved-surface is also important, in particular for 

simulating curved tunnels. For slightly curved surface (large radius of 

curvature), piecewise linear approximation may be sufficient. Otherwise, a new 

ray-polygon projection scheme is required. The change in spreading factor also 
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needs to be taken into account (Didascalou et al., 2000; Wang and Yang, 2006) 

when computing the reflected or transmitted field. 

At millimeter wave frequencies, diffraction becomes less important but 

rough surface scattering becomes more important. Rough surface scattering is 

also important for simulation of mine tunnels. A simple and common way to 

account for rough surface scattering is to apply a multiplicative roughness factor 

to tone down the specular reflection coefficient (Chamberlin and Luebbers, 

1982). The roughness factor, however, only helps at locations determined to 

have received the specular reflected field. A different technique is described by 

Degli-Esposti et al. (2004) and Fügen et al. (2006). However, they too do not 

seem to have traced diffuse rays. The above methods should be applicable to 

SBP because they are based on specular rays. Another method based on Monte 

Carlo ray tracing, also known as path tracing, is described by Barowski, Meiners 

and Rolfes, (2015). However, it is computationally intensive. Barowski et al. 

have used more than 109 rays, about 3 orders of magnitude more than 

conventional SBR. 

SBP, like many other ray tracing algorithms, is suitable for parallel 

processing. Parallel processing requires the division and scheduling of tasks and 

the combining of results. Although we are yet to work out the details, multicore 

processing should be relatively simple, e.g. trace each ray-polygon on a 

different thread and processor core. GPU implementation should require more 

work due to GPU constraints. SBP’s low memory consumption is a plus to GPU 

implementation.  
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Another important aspect that needs improvements is the ability to 

convert or translate building data from various sources in various formats into 

the ray tracer’s native format (Yun and Iskander, 2015). If acceptable, an easy 

way out is to rely on such features provided by a commercial suite like 

REMCOM. In this case, the problem is reduced to translating from the 

commercial suite’s format into the native format. 

The current implementation of the SBP-CCP ray tracer is also far from 

optimized. The ray tracer consists of a bunch of subroutines doing different 

tasks. Many of the tasks can be done in many ways. The choices have been made 

by subjective comparisons, by intuition, or for simplicity. Each of the 

subroutines can be tweaked and have its effects measured and optimized. 

Because of the relatively low memory consumption, trading memory for speed 

may be possible in some cases, e.g. use of look-up tables. 

With that we end the report. Thank you for reading. 
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