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ABSTRACT

AN EMPIRICAL STUDYONASYMMETRIC JUMPDIFFUSION FOR
OPTIONANDANNUITY PRICING

Lau Kein Joe

In this research, we are presenting a method for estimation of market

parameters modeled by jump diffusion process. As we are concerned about the

current pricing model with geometric Brownian motion is not sufficient to

capture the events of jump spikes. The method proposed is based on the Gibbs

sampling method, while the market parameters are the drift, the volatility, the

jump intensity and its rate of occurrence.

We have demonstrated that Kou's jump diffusion model is insufficient to

observe and to identify the effect on jump spike event onto the market indexes

as it assumes jumps are symmetrical to each other for both directions.

Asymmetric double normal jump diffusion model is introduced, where the

jump component is modified into two different directions instead of fusing as

one.

The empirical method is used to estimate the parameters of asymmetric double

normal jump diffusion model from real market history data. Demonstration on

how to use these parameters to estimate the fair price of European call option

and annuity will be shown, for the situation where the market is modeled by

jump diffusion process with different intensity and occurrence. The results are
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compared to conventional options to observe the impact of jump effects.

In conclusion, the proposed asymmetric double normal jump diffusion model

able to capture the jump distribution of underlying assets in two directions. It

can be applied into the pricing model of both European call option and annuity.
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