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ABSTRACT

AN EMPIRICAL STUDY ON ASYMMETRIC JUMP DIFFUSION FOR
OPTION AND ANNUITY PRICING

Lau Kein Joe

In this research, we are presenting a method for estimation of market
parameters modeled by jump diffusion process. As we are concerned about the
current pricing model with geometric Brownian motion is not sufficient to
capture the events of jump spikes. The method proposed is based on the Gibbs
sampling method, while the market parameters are the drift, the volatility, the

jump intensity and its rate of occurrence.

We have demonstrated that Kou's jump diffusion model is insufficient to
observe and to identify the effect on jump spike event onto the market indexes
as it assumes jumps are symmetrical to each other for both directions.
Asymmetric double normal jump diffusion model is introduced, where the
jump component is modified into two different directions instead of fusing as

one.

The empirical method is used to estimate the parameters of asymmetric double
normal jump diffusion model from real market history data. Demonstration on
how to use these parameters to estimate the fair price of European call option
and annuity will be shown, for the situation where the market is modeled by

jump diffusion process with different intensity and occurrence. The results are

ii



compared to conventional options to observe the impact of jump effects.

In conclusion, the proposed asymmetric double normal jump diffusion model

able to capture the jump distribution of underlying assets in two directions. It

can be applied into the pricing model of both European call option and annuity.
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CHAPTER 1

INTRODUCTION

The financial market is well known to be volatile and can be difficult to pre-
dict. Despite its characteristics, investors are still trying to learn and forecast
the financial market. The most commonly used method in modeling stock price
movement is Brownian motion. An example of the application of Brownian

motion in pricing option is using the Black-Scholes model.

In the early 90s, Black-Scholes model (Black, 1973) is considered to be
one of the most favorable methods in calculating option prices. The model con-
tains an implied volatility and is used to model future prices of the financial
assets, where many investors use it to calculate the fair price of an option. How-
ever, during the 1997 financial crisis, most investors are suffering from major
losses due to the drastic jumps in prices, including experienced market investors.
This had shown that the Black-Sholes model might be useful to a certain extent,
however, it could not handle the extreme events where there are large market

movements.

Here we propose a model aimed to extend the usage of Black-Scholes
model with jumps. Incorporating jumps in the Black-Scholes model is not new.
However, currently available models assume symmetric jump distributions in
both upward and downward directions. In our model, we will treat the jumps in

the two directions separately.



1.1 Problem Statements

Are the jump events in the markets following symmetric jump distributions in
both upward and downward directions like what Kou’s and Merton’s models

assumed?

Initially, Kou proposed that jump event follows a normal distribution (Kou,
2002) and followed by a double exponential later in the year 2007 (Kou, 2007).
While other researchers mostly based on these two models where both models
imply that the occurrence of the jump is symmetric in both directions. This
assumption allocates the jump distribution around zero, where positive indicates
upward spike and negative indicates a downward spike. This will cause the
average jump intensity to occur around zero frequently and can hardly to be

detected.

The next problem statement we concern about is whether the current pric-
ing method with geometric Brownian motion (GBM) sufficiently enough to de-
termine the fair price of market securities? The impact of jump event is never
considered in pricing method. Hence, whenever the market changes drastically,
the pricing of an underlying asset often breach the expectation and caused mas-

sive losses for investors and risk managers.

Last problem that we need to find out is whether our jump diffusion model
able to fit into the pricing of securities, such as European call options and an-
nuity. We like to have a model that can generalize to multiple types of financial
derivatives but not limited to one. Hence, we will use the modified jump model

onto the pricing model of European call options and annuity.



1.2 Research Objectives

The aim of this project is to study the volatility-volume interactions on multiple
financial instruments. Mathematical models, as well as technical models, will
be used to achieve more accuracy in predicting the market reversals. Below are

the objectives of this research.

Firstly, we will modify the existing Kou model to suit both asymmetric
upward and downward jump distribution. As later in our research, we discover

that the distribution of jump spike is asymmetric within each other.

Next, we would like to make a comparison between GBM and modified
jump diffusion model. This is to show whether the modified jump diffusion
model able to reproduce similar results when there is no jump occurs. At the

same time, find out a better projection of the underlying asset in the future.

Lastly, we will perform some simulations and observe the effect of jump
diffusion model on fair prices of pricing on European call option and annuity.
This objective aim to determine how each jump spike parameters able to impact

the price on different financial derivatives.



1.3 Overview

In this project, the aim is to investigate the impact of jump diffusion in pricing
models of volatile markets. By using the Black-Scholes model (BS model) as
the foundation to calculate the theoretical price of European options and annuity,
a comparison of price between the jump diffusion model and the GBM will be

made. The details will be further discussed in Chapter 3.

In Chapter 2 we will briefly explain the important terminologies and con-
cepts needed in this research. Discussion of similar papers, studies and re-
searches will be included in this chapter with brief explanations on the fun-
damental ideas of GBM, Black-Scholes model and jump diffusion model. To
further investigate the occurrence and characteristic of jump event, we would
need the knowledge regarding Bayesian theorem, Markov chain Monte Carlo

and Gibbs sampling method.

Chapter 3 will discuss the method used to carry out the research. Investors
often try to analyze the trends of the market. The intensity, the force of the
trends or the drift is denoted with the parameter, p; while the volatility, o are
the deviation from the expected prices. The research aims to obtain and retrieve
these crucial variables or parameters that are affecting the market prices so that
it is possible to project the market price with better accuracy in the near future.
The higher the accuracy of projection, the better the estimation of the risk that

investors might be facing soon.

In the current research, we choose European options and annuity products.
The crucial parameter will be retrieved with the Gibbs sampling method. Lim-
itation of Gibbs sampling method will be discussed and hence introduce the
application of an empirical method. Results are studied and tested with jump
diffusion model, to see whether the market are closely related to jump diffusion
simulated data. The detail methods are further discussed Section 3.1 to Section
3.6. The jump factor will be tested in various intensity to test the effect on future

4



market price. The relation between both will be studied and shown in results in

Section 4.

Chapter 4 will show the results and data analysis for the applications of
jump diffusion model. Chapter 5 will include the discussion and conclusion of
the research. The importance of modification to jump diffusion model and its

applications will be highlighted in this chapter.



CHAPTER 2

LITERATURE REVIEW

The market is where people buy and purchase their financial products for dif-
ferent purposes, such as hedging, make arbitrages, investing for the future, and
much more. However, the movement of the market is so unpredictable such that
there is no one could consistently beat the market in an efficient market. The
market is usually compared with geometric Brownian motion, as they possess

some similarities in their randomness.

However, reality shows that the market is far more different than the GBM.
For example, the market crashed event that happened in real life such as the
1997 crisis and the 2008 sub-prime crisis are happen with an extremely low
probability under the log-normal hypothesis. Yet, such an event almost happens
once every decade. Hence, this research wishes to seek a way of forecasting a
market instrument by with historical data and prices which are attainable from

the market, that could include the predictions of jump event.

Regarding the market, one of the famous models being widely used is the
Black-Scholes model. Its ability that able to price the option premium. How-
ever, from the research paper by Steven R. Dunbar (Dunbar, 2016), he stated the
limitations of the Black-Scholes model. Steven R.D. stated that a few assump-
tions of the Black-Scholes model are not so practical in real life predictions for

option prices (will be discussed in Section 2.3).

2.1 Financial Products

Financial products are products available on the market which provide conve-

nience to everyday lives. For example, insurance, bank services, investment



products or retirement schemes. Besides those, there are derivatives which act
as a contract between two parties who agree to have a flow of cash now and in
the future. Normally with a strike price, K at the specific day in the future, time
t. There are many kinds of derivatives exist currently, and we will introduce

some of them here.

Options are known as a deal with the right to buy or to sell an asset in the
future, with the price set today for the options buyer, while the writer (seller) is
obliged to deal is it is exercised. This type of derivatives is one of the common

one existing in the market.

Futures is a deal with an obligation to buy or to sell an asset in the future,
with the price set today. It is similar to options, but instead of having the right,
both parties are obliged to exercise the deal during the set period. Besides, there
are swaps, where both parties exchanging one stream of future payments for

another one, possibly in two different country currencies.

Lastly, there are annuity contracts between the buyer and the insurance
company. An annuity can be referred to as a contract or agreement by which
one receives fixed payments on an investment for a lifetime or for a specified
number of years. Usually, an annuity contract is treated as a retirement plan that

rewards the buyer while they are still living.

2.2 Brownian Motion

We will discuss the Brownian motion and geometric Brownian motion (GBM),
while the latter being one of the most popular models in financial theory. Brow-
nian motion, also known as Wiener process. First, we introduce a random walk

model denoted by

Wtepr) = W(te) + dW (1), (2.1)



where,

° dW(t) ~ €4V At ;

tpr1 —ty =At,and k =0, ..., N with ty =0 ;

e ¢, ~ N(0,1) are identical and independent distributed (i.i.d.) random
variables;
e assume that W (ty) =0

The model above is known as a discrete random walk model. When j < £k,

it could be rearranged into

W(ty) —W(t)) =Y e, VAL (2.2)

When the random walk model takes the limit of At — oo, this random walk
model will approach to Brownian motion. Equation 2.2 shows the difference

between two periods. It has the characteristics as below:

W (ty) — W (t;) is normally distributed as the right hand side is a sum of

i.i.d. random variables that follows normal distribution;

The expectation is E(W (t,) — W(t;)) = 0 ; while

the variance is Var(W (t;) —W(t;)) = E[Zf:_jl e, VAL = (k—j)At =

iy —t; ; and

W (ty)—W (t3) is uncorrelated with W (ty)—W (ty) , forty < ty < t3 < t4.

From the previous Equation 2.2, by taking limits as A¢ approaches to zero,

it will form a Wiener process (Brownian motion),



where €(t) is i.i.d. standard normal random variable. The process can be inter-

preted as a continuous-time approximation of the random walk model.

Definition 2.1. Wiener process, W (t) is defined with following properties.
1. Fort < s,W(s) — W (t) is a normally distributed random variable, with
zero mean and s — t variance.

2. For 0 <ty <ty <tz <ty, W(ty) — W(ts) is uncorrelated with W (t5) —

W (t1). This is independent increment property.
3. Wi(ty) = 0 with probability 1.

4. W (t) is continuous with respect to t.

Definition above could further deduce into important properties of Brown-

ian motion.

1. Martingale property of Brownian motion, where E(W (s) | W(t)) =
E(W(s)—W(t)+W(t) | W(t)) = W(t), fort < s.

2. Wiener process, W (t) is nowhere differentiable. The term

E((W(Si:?/(t)f) L

approaches to oo as s — t close approaches to zero.

3. Brownian motion is everywhere continuous even nowhere differentiable.

2.2.1 Ito6 Process and Geometric Brownian Motion

A stochastic process is called 1t6 process when it could solves the following:

t t
Xy = Xo+ / w(Xs, s)ds +/ o(Xs, s)dWs. t>0. (2.3)
0 0

9



The shorthand, stochastic differential equation (SDE) for Itd differential
dXt is
dXt = ,U/(Xh t)dt + O'(Xt, t)th, (24)

where,

e X is a scalar starting point;

o {u(X¢,t):t>0}and {o(X,t):t > 0} are stochastic processes satisfy-

ing regularity condition.

o {u(X 1)} and {o(X;, 1)} are called the drift and volatility respectively.

Before we look into GBM, we briefly discuss about continuous-time ver-

sion of Brownian motion, which is

dlog S(t) = vdt + odW (t).

The right hand side is normally distributed with the drift of vdt and volatility of

odt. Integrating both sides will yield the following model:

log S(t) = log S(0) 4+ vt + W (t). (2.5)

The expected log return is E(log S(t)) = log S(0) + vt. The process S(t)
will be following GBM, when the expected log prices grow linearly with 7, and

define as below.

Definition 2.2. Let X (t) be a Brownian motion with drift v and variance o,

dX (t) = vdt + oW (t).

10



The process S(t) = X" is a GBM with drift j1, where 11 = v + 0. The

process S(t) satisfy the followings

dlog S(t) = (n— %(12)6115 + odW (t).

This is mentioned by Samuelson (Samuelson, 1952) the GBM is shown,
where the stochastic process of the prices of an asset could be in a form of the

following stochastic differential equation (SDE):

dS(t) = pS(t)dt + o S(t)dW (1), (2.6)

where,

1 is the drift rate or the rate of return;

o is the volatility of the asset;

e W (t) is a Brownian motion or Wiener process,and

S(t) is the spot price of the underlying assets.

In brief, we can say that the change of price denoted as dS(t), is controlled
by a drift i where is can say to be the trend for the asset. While the volatility, o

determine its fluctuation or deviation.

The work done by Adeosun and his colleague (Adeosun, M. E., Edeki,
S.0. and Ugbebor, O. O., 2015) explains that as forecasting or anticipating a
market takes much more than a normal GBM, where only when the volatility
and drift of an asset are considered. GBM solely is not sufficient enough to
accommodate the market prices. There are several times that the asset prices

changed significantly greater than its drift in reality.

11
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Figure 2.1: DJI index level from 1, October 2005 to 10, October
2010 (extracted from market)

From Figure 2.1, the period between the year 2008 to June 2009 are parts
and regions that the jump parts are more than normal GBM. This is one of the
financial crises that the world undergoes during 1985, 1997 and 2008 that had
drastically changed the prices of assets and indexes all over the world. The
history shows that jump events actually happened in the market. Even though
in normal GBM simulations without the jump, the chances of these changes are
almost negligible or so close to impossible. Hence, a question is raised, "’Is

geometric Brownian motion sufficient?”

12



2.3 Black-Scholes Model

2.3.1 Introduction

Black-Scholes model plays an important role in calculating options pricing and
was introduced in 1973 (Black, 1973). This model serve as a guideline to cal-
culate a price on an option, for a stock or index. Hence, we will have a brief

introduction and explanation for Black-Scholes model.

Recall from Section 2.1, we had introduced options with a brief definition.
An option is a financial derivative that gives the holder the right (without obli-
gation) to sell or to buy an asset for a strike price (K) before it expires within a
certain date (T). A call option gives the holder the right to purchase while put
options provide the holder the right to sell. Options holder are required to pay

an option premium for their given right.

Next, we will introduce 4 basic types of option position.

e Long position in a call option. Payoff = max(S; — K, 0).

Long position in a put option. Payoff = max(K — S;,0).

Short position in a call option. Payoff = -max(S; — K, 0).

Short position in a put option. Payoff = -max(K — Sy, 0).

An American option can be exercised at any time up to the expiration, while

European option can only be exercised on the expiration date.

2.3.2 One Period Binomial Tree and Risk-Neutral Probability

Considering a single period binomial model, where a price of a share and option
are Sy and f respectively. After a period, share price will either increase to u.Sy

13



or decrease to d.Sy, where v > 1 and d < 1. At the same time, option price, f

will becomes either f, or f; depending on the direction of the stock.

US()? fu
Y

SO? f
doWn

dSo, fa

Suppose that we long A shares of the stock and short a call European op-

tion. Our payoff would be

AuSy — f., if stock moves up,

and

AdSy — fg, if stock moves down.

Assume that we need to construct a hedging portfolio, such that we would
be risk-free when A is chosen, regardless the stock goes up or down. Hence, we

would have the following where

AU,SQ - fu = AdSQ - fd-

Rearranging for A, we can get

fu - fd
A= ——7—.
’USQ—dSQ

No arbitrage assumption is made here, considering we are at an efficient
market, no one could take advantage of an arbitrage opportunity. As the conse-
quences, the portfolio above is risk-free regardless of the outcome of the stock.

14



Hence, the present value of this portfolio must equal to (AuSy — f,,) exp(~"").
By denoting the present value of option as f, and present value of portfolio as

SoA — f, we have

SoA — f = (AuSy — f,) exp™" ")

By rearranging the equation, we have

f = SoA — (AuSy — f,) exp™"D)
fu fd( —wexp'” TT)) + fuexpt™T)

f _
_ explrD [exp("ﬂ ;: - ( —wexp"™) + f, 2.7)
. (rT)
exp(” U — exp
= exp (fu fd )
u—d
+1) _g
:wwrﬂ@mt m} where  p= L=
-

Here value p is defined as the probability of the underlying stock, moving
up in a risk-neutral world, resulting the present value of the option equals to the

expected value of the option in one period discounted by the risk-free rate,

f=exp” [pfu, + (1 p)fd]
(2.8)

— exp =D E(f).

In a risk-neutral world, stock grows as a risk-free rate under the risk-neutral
probability, which is denoted as p previously. This risk-neutral assumption is
important for the following Black-Scholes model. The following section will be

discussing the other assumption that is needed for the model.

15



2.3.3 Assumption

The research by Ermogenous (Ermogenous, 2006) had clearly listed out the ba-
sic assumptions of the Black-Scholes model. Black-Scholes model assumed that
an asset had the interest rates remain constant and known, but it is not practical.
However, some of the assumptions are crucial for the Black-Scholes model to
work. For example, the expected returns are log-normally distributed, is reason-
able else it would be tedious to figure out the outcome and risk. The following

are the basic assumptions that are needed for the Black-Scholes model.

Options used are European options.

No dividend is paid out throughout the life of the option.

Returns on the underlying asset are normally distributed.

Risk-free rate and volatility of the underlying asset are constant and known.

Efficient market.

e No commissions and transaction cost.

Every assumption is important as they could affect the accuracy of the
model in different ways. European options are used compare to American op-
tions as the latter usually will not be exercised until the expiration. No dividend
payout can be a limiting assumption as, in the real world, most of the company
provides dividends. This can be overcome by subtracting the discounted fu-
ture dividend from the underlying price. Efficient market suggesting that people

could not constantly predict the direction of the market.
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2.3.4 Black-Scholes Model

Black-Scholes model was worked out and developed by three economists -

Fisher Black, Myron Scholes and Robert Merton.
C' = SN(d;) — K exp™™ N(dy), (2.9)

where

C' = Call premium at time zero,
e S = Current stock price,

e K = Strike price,

e { =time to expire,

e 1 =risk-free rate,

e N = Cumulative standard normal distribution,

2
di = In £ +(r+2-)t
1 Uﬁ 5

hd d2=d1-0\/E,

e o = standard deviation of the underlying return, and

Dividing the model into two parts, where the first part SN(d;), the current
stock price (.5) is multiplied by the change in the call premium with respect to a
change in underlying stock price (N(d; )). The second part of the Black-Scholes
model, K exp~™ N(d,) provides the present value of paying the exercise price
upon the day it expires. The fair value of the option should be the difference

between these two different parts.
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2.4 Jump Diffusion model

In the past 40 years, various models had been proposed to reflect the disconti-
nuity and jump in an asset’s returns including Merton (Kou, 2002; Bates, 1996;
Merton, 1976).However, Merton came out with a more specific explanation and

idea for jump diffusion using the Black-Scholes model as the foundation.

Merton added a jump component into the Black-Sholes formula by using

the compound Poisson model (Press, 1967),

N(t)
S(t) = S(O)e(ﬂ_%tﬂ)-‘rUW(t) H 6Yi7 (210)
=1

where

e N(t) is Poisson process, where its probability distribution function is

A% exp™?
P(X =1z) = —

Y; is standard normal distribution with mean of zero and standard devia-

tion of 1,

(4 is the drift of GBM,

o is volatility of GBM.

Assuming the market follows a GBM, the Poisson part is the arrival of
jump event. The jump event has its individual drift and variance that differ
from the GBM. Kou modified the above model, with Y; changing to double
exponential distribution (Kou, 2002). He claimed that this enables the user to
get analytic solutions for most path-dependent options, including barrier options

and analytic approximations for American options.

In Kou’s paper, he used a jump diffusion model as below:
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S(t) = S(0)exp | (n— %O‘Q)t + aW(t)} H exp(Y;), (2.11)
=1
with a SDE of
dS(t) = pS(H)dt + oS AW (1), (2.12)

Take note that in the Merton model, Y has a normal distribution (Merton,
1976) while Kou has an asymmetric double exponential distribution for Y. In

2002, Kou explained that the distribution is:

Iy (y) = p-mexp ™Y 101 + - 2 exp™ 1iy<oy, (2.13)

where

771>17 n2>07

p, q > 0,p+q=1, representing the upward and downward jumps;
e 1)1 > 1isrequired so that E(e?) < oc;

o E(S(t)) < .

Kou had pointed out two properties of double exponential distribution which
are important for the model. The first property is the leptokurtic feature of the
jump size where it inherits the return distribution (Balakrishnan, N., Johnson,

N. L. and Kotz, S., 1995).

This property is making sense as the jump of an instrument is not totally
random, but depends on the characteristic of the instrument itself. For example,
a low-price instrument would not have a significant jump that is too high to

attain in real life. For instance, $0.40 asset would not jump to $100.
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The second crucial property of the double exponential distribution has is
martingale property. This unique property allows closed-form solutions (or ap-
proximations) for option pricing problems become feasible under the double

exponential jump-diffusion model.

This jump diffusion model could be useful in the research as it meets a few
important aspects of modeling. The first aspect is that the model needs to be
internally self-consistent. The model needs to be free of arbitrage in an equilib-

rium setting, so that no one could abuse and consistently beating the market.

Next, it needs to be able to capture some important empirical phenomena.
The empirical test always favors models with more parameters, but the more pa-
rameters, the calibration becomes more difficult as it involves high-dimensional
calculations. In year 2007, Zeng and Ramezan showed that the double exponen-

tial distribution jump model is sufficiently better than the Black-Scholes model.

However, modeler always struggles between over-fitting and underfitting

when try to compute a sufficiently good model for most cases.

Lastly, a closed-form solution is needed. The computation of the model
can be carried out, and able to yield a closed-form solution like Black-Scholes

model so that a clearer picture could be seen.

In short, jump diffusion model is closer to the scenario where stocks ex-
perience a sudden change in prices, which cannot be captured by GBM. There
are many other models that satisfy the criteria mentioned above, but it could be

troublesome and difficult while the results might not be certain.

Jump diffusion model attempts to improve the empirical implications of
the Black-Scholes model while still its analytical tractability is remained and

retained. Hence, the model simplicity made it a better option than the others.

Research made by R Chen (Chen et al., 2017) concludes that option pricing

under the double exponential jump diffusion has high time efficiency, while the
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goodness of fit and pricing accuracy is significantly higher than Black Scholes
and the Kou’s model (Kou, 2002). However, his double exponential model is

not able to accommodate two directions jump distribution.

An option pricing model proposed by Zhang and Wang (Zhang, S. M. and
Wang, L. H., 2013) integrate a stochastic interest rate (SIR), stochastic volatility
(SV), and double exponential jumps that are limited to determining the price
of a European option. This limits the model unable to be generalized to other

financial derivatives that are important to the market.

Our research aims to come up with a jump diffusion model that can be used
in various types of derivatives. Therefore, we had formulated an asymmetric
double normal jump diffusion model, that can determine the price of European

option and annuity using an empirical method.

2.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a technique for numerical integration
using random numbers. MCMC draws samples from the required distribution,
and forms sample averages to approximate expectations. MCMC could draw
desired samples by running a well-constructed Markov Chain. There are a lot of
ways in constructing the Markov Chains, including the Gibbs sampling method
(Geman and Geman, 1984), which are the special case of the framework built
by Metropolis (1953) and Hastings (1970). In this chapter, we will briefly in-
troduce MCMC and Metropolis Hastings framework, as we will be using Gibbs

sampling method in this research.

2.5.1 Bayesian Inference

Most applications of MCMC to date are oriented towards Bayesian inference

and has the ability to incorporate uncertainties for the unknown parameters.
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From the Bayesian perspective, there is no fundamental difference between the
observable and the parameters of the statistical model, as all are considered as

random quantities.

We denote observed data as X = {z1, x9, ..., x, } while @ = {0y,65, ...,0,,}
as the model parameters. We are required to set up a joint probability distribu-
tion, P(X, @) over all random quantities. The joint distribution consists of two
parts: the prior distribution P(¢) and the likelihood P(X | 8). Specifying both

distributions provide a full probability model, through

P(X,0) = P(X | 0)P(9)

With observed data X, Bayes theorem will be used to determine the distri-

bution of @ conditional on X :

PO | X) =

The obtained distribution is called posterior distribution of 8, and it is the

object of Bayesian inference.

2.6 Metropolis-Hasting Model

In this research, we wish to find out how the market behaved and its distribution
so that we could prepare for the risk we are undertaking. To do so, we need
underlying asset’s parameters such as the drift 4, variance o2, jump’s intensity
and jump’s variance. However, it is difficult to identify merely from the market
data, and we found out the method introduced by Nicholas Metropolis along

with other authors in 1953 (Metropolis, 1953). Metropolis Hastings algorithm
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allow us to sample out the distribution when direct approach is not available.

Next, we will introduce how it works.

2.6.1 Setup and Goal

We begin with a probability mass function (pmf), 7 on a countable set of states,

X that has discrete distribution, and a function f(X) on X, where X € IR.

The goal and purpose of the Metropolis-Hasting algorithm are to sample
from 7 approximately, or to approximate the expected value, E[f(X)] where

X ~ 7 and distributed according to 7.

Both 7 and f(X) maybe so complicated such that computing the value

exactly is intractable and sampling exactly is impossible.

2.6.2 Approach

The approach of the Metropolis-Hasting algorithm starts off by constructing a
Markov Chain, with 7 that has a stationary distribution. The ergodic theorem is
applied here, where when running the Markov Chain sufficiently long enough,
the last state is approximately distributed according to 7, which would provide
us the samples of expected parameters, 6. As long as the Markov chain is er-
godic, irreducible and has a stationary distribution, 7, it is possible to approx-
imate the expected value by using the sample mean over all the states of the

Markov chain takes.

2.6.3 Algorithm

The steps of Gibbs sampling algorithm are as follows:
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1. We introduce the proposal matrix Q. Q is a stochastic matrix, where
all its element is positive, and sum of each row is equal to 1. (Q. =

Qva  Va,b € X)
2. Initialize Xy € X. Where X is a random sample from X.
3. For iteration where ¢ =0, 1, 2, ..., n-1:

(a) Sample = from Q(z;, x) , such that z; is a fixed, known variable and
x is the sample that range over all possible state, (or can be say as
Pz | x;) = Q(x;,x).)

(b) Sample a u from uniform(0,1), where u represent the constant for

the rate to accept or not accept in the next step.

(©) If u < 2% (the probability of x), then 2,1 = x , else we reject the

7(w4)

newly drawn sample and x;; = ;.

4. The output will be sequence of {x¢, x, o, ..., ¥, } as ¢ changes from 1 to

n— 1.

2.6.4 Correctness of Metropolis-Hasting Algorithm and Proving

In order to check the Markov Chain constructed by the algorithm satisfied the
property that is necessary for the ergodic theorem, the following requirements
must be satisfied.

e Irreducibility,

e stationary distribution for 7, and

e aperiodicity for sampling.
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The transition matrix of the Markov Chain is determined as below. Suppose

that ;1 # x;,

T(r,2) = Py = v | 2, = 2;) = P(x | 2;)P(accept v | x, z;)

= Q(xi,2) min(l’ :((Z))>

T(x;,z;) =1— Z T(x;, )

THL;

(2.14)

(property of stochastic matrix)

Now, we check the stationary distribution for 7 by detailed balance. For
more information on detailed balance, can refer to examples shown by Wong
and Chan (Chan, 2006). We claimed that the Markov Chain (X;) constructed
by the algorithm has the stationary distribution of 7. From detailed balance
theorem, if 7 satisfy the detailed balance with respect to the transition matrix, T

,then any Markov Chain with transition matrix, T has stationary distribution 7.

WaTab = 7TbTba7 Va, be X

If a = b then the equation above is true, since 7, T, = 7, Tyq-

If a # b, then
T = 1(0)Tla.8) = 7(0)Qla, bhmin(1. 7
— Q(a, b)min(r(a), ”(i)(zga))
= @(a,b)min(m(a), (b)) where both are symmetry.

(2.15)
These show that X; has the distribution .

Irreducibility and aperiodicity are needed for the ergodic theorem to hold.

Hence, we need to make another claim:
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Assume that 7(x) > 0 Vr e X.

e If Q) is reducible, then the Markov chain with transition matrix, T is ir-
reducible. For a homogeneous Markov chain, its irreducibility does not
depend on the initial distribution of the Markov chain but depends on tran-
sition matrix, T. In order to check T is irreducibility, check the proposal

matrix, Q.

e If Q is aperiodic, then the transition matrix, T is aperiodic.

2.6.5 Result of Metropolis Hasting Algorithm

If probability of X, 7(x) > 0 Vz € X and proposal matrix Q is irreducible,

then the sample mean converges almost surely to the true mean.

< Z f almost surely E[f(X)], X~

n—r00

If further, Q is aperiodic, then regardless the initial state, the last state will

approximate to 7 (z) after running the algorithm sufficiently long.

P(X,=2|Xq=129) — 7w(z) forVxe X.
n—oo

The goal is met by using the Metropolis-Hasting algorithm method. Next,

we investigate Gibbs sampling method, which is similar to Metropolis Hasting

method while we change the acceptance rate from u < :((z)) to 1, where we

accept every single time and update in each run of the algorithm.
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2.7 Gibbs Sampling Method

There are many ways to retrieve the parameters needed (1, 0, A, fjump and Tjump)
to model GBM process and jump diffusion process. In this research, we chose
to use the Gibbs sampling method. As we mentioned in the previous section,
the Gibbs sampling method is a special case of the Metropolis-Hasting method,
where it accepts every time when the sample changes. The main reason we
choose the Gibbs Sampling method but not Metropolis Hasting is because the
usefulness of Gibbs sampling method increases greatly as the dimension of a
problem increases. As Metropolis-Hasting does not accept every sample, it will
need a longer algorithm to converge, especially if the dimension is high. Be-
sides, the accept-reject criteria are objective and hard to define the correctness.
Hence, we will introduce and use the Gibbs sampling method and show some

basic examples.

Similar to the Metropolis-Hasting algorithm, Gibbs sampling method is an
iterative process too, where we could sample out the marginal density given the
joint distribution of the needed variable or parameter. So, for a simple example,
let us begin with a multivariate model, where we want to sample out the mean
of the variable, x while variable y; is the other variables that exists in the model

we yet to discover.

Given a joint density:

f(m7y17y27y37 7yk)

We are interested in obtaining the marginal density of z,

f(m):/"'/f(mvylw-wyk)d’yl---dyk
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and the mean of variable X, F/(X) , where

It would be tedious and difficult to determine the marginal density of X
by using integration directly from the huge joint distribution. Therefore, the
usefulness of the Gibbs sampling method comes in here, where we can simplify

the work down to a few steps of iterations.

Assuming that is possible to sample k + 1 number of univariate conditional

densities:

F(X 1,92, k)
f(Yl | T, Y2,Y3,Ya, yk)
f(YQ | T, Y1,Y3,Ya, Z/k)

f(}/z’) | T, Y1,Y2,Ya, Z/k)

f(Yk | T, Y1,Y2,Y3, Y4, "'yk—l)-

Firstly, we need to initialize & values for Y1 = 30 Y2 = 0 V3 =42 . Y =
yY. Let Y," be the n'™ element of Y in m' iteration. Then the first iteration cycle

will be created as follows:

o' by adraw from f(X | 47, 43,45, ., vp)
yi by adraw from f(Y; | 2,99, 95, ..., )

y; by adraw from f(Y1 | 2", y{, 45, ... y})
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y;, by a draw from f(Y1 | 2%, 41,95, o Y1)

x! here will be the updated value of parameter 3 and will be used through-
out the first iteration cycle. On the second step of the first iteration, we will
use Y'! and 2! to sample and update the third parameter. The first cycle will
repeatedly sample and update a parameter until all the parameters are updated.
These updates values will be used for the second iteration cycle, and similarly,
the second set’s values update the third iteration and so on until the iteration
is completed. George and George (George C. and Edward, 1., 1992) illustrated
that the Gibbs sampling method could converge to the true value given that the
conditional is fulfilled, and the iteration is large enough with sufficiently large
amount of data. To be more specific, without computing f(z) directly, we can

generate samples X1, ..., X,,, ~ f(z) by using the Gibbs sampling method.

Gibbs sampling method can be thought of as a practical implementation of
the fact that knowledge of the conditional distributions is sufficient to determine

a joint distribution.

Hence the Gibbs sampling method is used as a foundation for this research.
A list of codes which could be used in Python was done, where it can converge
the market data into the crucial parameters we are seeking, in this case, they
are the drift, u volatility, o the jump intensity, ftj,m, and jump arrival, A\. The
method and usage would be further discussed in Chapter 3, while a clear expla-
nation is shown by George and George in their paper (George C. and Edward,

L., 1992).

Take note that Gibbs sampling method requires a formation of posterior

that consist of the likelihood function and prior distribution, however, there are

29



many ways to specify a prior distribution in the Bayesian setting. Some re-
searchers prefer noninformative priors, and others prefer priors that are analyt-
ically tractable. We choose conjugate priors as they are adopted to address the

latter preference.

According to Chan and Wong (Chan and Wong, 2006) the conjugate priors

of some likelihood functions are as shown as the Table 2.1.

Table 2.1: Conjugate Prior for each likelihood function.

Likelihood L () Conjugate Prior p(6)
Poisson § = \ Gamma(a, )
Binomial 0 = p Beta(a, /3)

Normal § = p, 02 known Normal(m, 72)

Normal § = ¢,y known Inverse Gamma(a, 3)

The likelihood function is the density function for the required parameter
as shown in Table 2.1. For instance, the likelihood function of the jump ar-
rival event follows a Poisson distribution with the conjugate prior distribution of

Gamma(a, ).

Gibbs sampling method, however, has its own limitations, where it could
not converge fast enough when the dimensionality problems occurred. In this
research, we would not be encounter problems with high dimension, we could
use the Gibbs sampling method’s ability to reduce a multidimensional problem

to an iteration of low-dimensional problems.

In short, the main reason to learn Gibbs sampling method is to estimate
these unknown parameters, which are p, o, Y; and N(¢) from a joint model
(jump model) which is the price. From the samples, we can estimate the param-
eters by taking its mean. When it is possible to attain the crucial parameters and
indicators from the asset’s prices, investors could estimate the risk and hence

formulate a strategy for the risk they are undertaking. However, we need try out

30



more simulations and model modification in order to have a better and broad

calculation accuracy.

2.8 Heston Stochastic Volatility Model for Annuity Products

In order to incorporate the application of jump diffusion model and Gibbs sam-
pling, we need to check the possible effects of jump event on annuity products,
and hence how it affects the pricing method. Here we introduce a compari-
son model, Heston model for annuity pricing and compare with jump diffusion

model.

2.8.1 Heston Model

A stochastic volatility model is introduced by Heston in 1993. Heston model
is chosen because it incorporates the relationship between asset returns and its
volatility and it is easily tractable compared to other stochastic volatility models

available (Heston, 1993).

The variance assigned in the Heston stochastic volatility model follows a
stochastic differential equation (SDE) instead of a constant variance. At a dif-
ferent point in time, the Heston model will have a different variance, to accom-
modate the volatile option or financial instrument that do not possess a constant
variance. First, we specify the Heston stochastic volatility model and provide

some details of the model.

dS, = pS,dt + \/V, S, dWy, (2.16)
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where V; is the instantaneous variance, which follows a CIR process given by

the following SDE:

AV, = k(0 — V,)dt + oy /V,dWY | (2.17)

e S, is the asset spot price,

e 1/ is variance of asset price,

e 4 is the rate of return from an asset,
e £ 1s the mean reversion rate,

e ¢ is long run variance,

e W7 and W) are the standard Brownian movement for price and volatility

respectively, and correlated with p, where dW? - dW)Y = pdt.

e oy is the volatility of variance.

The process V; is strictly positive if the parameters obey Feller condition
such that

260 > oy

Here, the «, 0 and o are predefined variables for variance’s SDE. There-
fore, it indicates that the Heston model is a GBM with a variance that follows

its own SDE.

Heston Model is tested to be a good model when calculating or formu-
lating high volatile options, such as bonds and currency options. In a highly
volatile market, the assumption of constant variance is not applicable. There-
fore, a model with a non-constant variance is needed to accommodate such as-

sets. Besides, volatility changes over the long run, hence a volatility updating
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Heston model is more preferred than the Black-Scholes model. Hence, simu-
lation and comparison of the results of the Heston Model together along with

jump diffusion is included in the research area.

2.8.2 Annuity

An annuity is a long-term agreement between two parties: the provider and an-
nuitant. Annuity provider agrees and obliges to make periodical fixed payment
to the annuitant for a set period or for a lifetime. There are few types of annuity:
variable annuity, fixed annuity equity-indexed annuity, immediate annuity, and
longevity annuity. This research focuses on the pricing of variable annuity only,
as the other types of annuity do not include the performance of investment are

not chosen.

The agreement between the life insurance company and the annuitant for
the writer to pay periodical income in exchange for premium payment from
the holder is called as a variable annuity (VA). They are called variable because
their value will fluctuate based on the performance of the underlying stock, bond
and money market investments that are chosen. Two types of VA existing in
the market is known as the single premium variable annuity (SPVA), which is
purchased with one payment and the flexible premium variable annuity (FPVA),

purchased with multiple payments, which may be regular or occasional.

Section 2.8.3 will discuss the concept of VA pricing and some terminolo-

gies needed to understand.

2.8.3 Terminology and Concept of Variable Annuity

Regardless of what type of VA, the holder needs to pay down a premium, whether

is SPVA or FPVA, according to the asset he desired. The premium paying phase
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also is known as accumulation phase, while payout phase is let the holder re-
ceives payments in either a lump sum, periodic withdrawals or through the pro-
cess of annuitization, which converts the assets into an ongoing income stream.
Therefore, if the holder wishes for a larger the income stream in the future, the

premium needed will increase accordingly as well.

The payout amount mostly depends on two variable which is the death ben-
efits and living benefits. A death benefit is a sum where the beneficiaries will
receive when the holder passes away. Depending on the contract, the beneficia-
ries will be provided a guaranteed minimum death benefit (GMDB) upon the
death of the holder, or some contracts allow their spouse to become the new

owner of the contract while still receiving a death benefit.

A guaranteed minimum living benefit (GMLB) will be provided to the
holder of the annuity. There exist various types of benefits including Guaranteed
Minimum Income Benefit (GMIB), Guaranteed Minimum Accumulation Ben-
efit (GMAB), Guaranteed Minimum Withdrawal Benefit (GMWB) and Guar-
anteed Lifetime Withdrawal Benefit (GLWB). To find out more details on each
benefit, can refer to studies done by Stone, R. (Stone, 2003). In short, these are

the benefits that could be claimed by holder when they are alive.

In order to cover the cost of administration, distribution, insurance benefits
(living and death benefits) and the investment management, fees and charges
will be imposed upon the annuity holder. These include mortality and expense

risk charge (M&E) too.

The fees and charges should be fair else, the insurance company may suffer
a loss when it is undercharged while holder might surrender the annuity if they
are overcharged. Hence, we need to identify the fair price of M&E and study

the impact of jump event on the expected fair price.

In Chapter 3, the research methodology will demonstrate how we retrieve

the data, carry out simulations and come out with a modified jump diffusion
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model.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Data Collection

In this research, we had chosen Dow Jones industrial (DJI), NASDAQ Com-
posite 100 (NASDAQ 100), Financial Times Stock Exchange 100 Index (FTSE
100), Standard & Poor’s 500 (S&P 500) and NYSE ARCA oil & gas Index
(OilGas). We retrieve those market data from Yahoo Finance. The python script

below provides an example of attaining the S&P 500 prices.

from pandas.io.data import DataReader as DR
from datetime import datetime as dt

import pandas as pd

start = dt (1995, 8, 8)
end = dt (20015, 8, 7)
data = DR("SPY", ’vyahoo’, start, end)

Listing 3.1: Data Retrieving

The selection on indexes is based on a few factors. Firstly, we choose those
that are highly volatile. As the purpose of research is to observe the market
pattern of unpredictable market assets, non-volatile assets are needless to inves-

tigate.

Next factor that we considered is the chosen assets need to be diversified.
This is to eliminate the market spikes that are caused by the unsystematic risk
of the specific company. Choosing a diversified basket of assets would tell us

more about the economic failure.
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Lastly, we would like to build a model that is not limited to a single sector
of the market or a single type of market instrument. Hence, we had chosen
composite indexes and some highly volatile indexes such as NYSE ARCA Oil
& Gas index, that cover the market as an index. This would allow our pricing

model less biased towards a single instrument.

The data collected covering period throughout the 1, January 2005 to 1,
January 2015. We separate the extracted data into two different periods: (a)
between 2005 to 2010 and (b) between 2011 to 2015. The first period covers
the year 2007 and 2008, which is known as the economic crisis period. The
second period is used as the control period. By doing this we could compare the

parameters for both sets of data.

3.2 Jump Diffusion Simulation

From Equation 2.10, a simulation is conducted using Python. The jump dif-
fusion model proposed by Kou is defined as Equation 3.1 and parameters are

preset to a fix value.

2

Si =S [[eXp((u— )t +aWi)] + | exD{ptump + SiumpNe1) = 1] Vit |
3.71)

where
e W, is a Wiener process, it is substituted with &; x v/dt in simulation, where
& is ai.i.d. random variables with mean O and variance 1.

e Y, is a Poisson process, while the arrival of jump, A of the process will be
further investigate in Section 3.4. In Listing 3.3, \ is preset as zero to test

the result with Black-Scholes model.
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e NV, is normal distributed with zero mean and unit variance.

A jump diffusion model is a combined model of geometric Brownian mo-
tion (GBM) and jumps. Thus, a jump process without a jump event should

produce GBM.

In order to let both simulations carried out to be identical, all the required
parameters are initialized to a constant. For example, the initial price, Sy is set
to be $100 in both cases. While the drift, y of the Brownian motion is 0.09 and

has a volatility, o of 0.4.

n=n_partitions=2265
mu=0.09

sigma=0.4

50=100

n_path=500

#create path
t=p.linspace(0,1,n+1)

dB=p.randn (n_path,n+1) /p.sqrt (n)
dB[:,0]=0

B=dB.cumsum (axis=1)

#calculate stock price
nu=mu—-sigmax*2/2.0

#create zero matrix with same size as B
S=p.zeros_like (B)

S[:,0]=80 #assign 1st input as SO

# generate the equation
S[:,1:]=S0*p.exp(nuxt[l:]+sigmaxB[:,1:])

S_line=S[:] #simulate the first run and show on plot

Listing 3.2: GBM model
38



Listing 3.2 shows the simulation for GBM. By setting the arrival of the
jump to zero, the expected price for the Kou jump model’s simulation should be
close to GBM. Listing 3.3 shows the example of code to compare both GBM

and jump, while the results are demonstrated in Table 3.1.

mul = np.linspace(0.04,0.2,20)

sl = np.linspace(0.01,0.1,20)

for i in range (20):
mu2 = mull[i] ; s2 = sl[i];
gbm = mf.GBMmodel (mu=mu2, sigma=s2)
Jump = mf.jump (SIGMAY=s2, LAMBDA=0,MUY=mu2)
#lambda is set to zero

print (i, np.mean (gbm[-1]),np.mean (jump[-11))

Listing 3.3: Comparison of parameters between jump model and

GBM

The comparison in Table 3.1 used 20 sets of different drift, ; ranging from
0.04 to 0.2 and volatility, o ranging from 0.01 to 0.1 respectively. Both models

share the same value for drift and volatility in each simulation.

Table 3.1 shows that by setting the arrival of the jump to zero, it could
produce similar results with the data produced by GBM. Hence, we conclude
that the jump diffusion model can reproduce identical result as GBM given the

jump parameters (frequency arrival) is set to zero.

3.3 Forming Posterior Distribution for the 5 Parameters in Gibbs Sam-

pling Method

As we mentioned previously from Section 2.5.1 until Section 2.6.3, in order
to sample out the parameters of Kou’s jump diffusion model, the distributions
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Table 3.1: Comparison of GBM model and jump diffusion model

Number of Set GBM Jump Diffusion
1 104.07664 104.08376
2 104.95692 104.94972
3 105.81053 105.79469
4 106.69594 106.72289
5 107.58215 107.64197
6 108.50163 108.46564
7 109.41966 109.38033
8 110.29786 110.35610
9 111.33659 111.14443
10 112.11270 112.17157
11 112.98148 113.02250
12 113.92696 113.88695
13 114.85349 114.94359
14 115.89334 115.85538
15 116.68048 116.80766
16 117.62269 117.79220
17 118.75309 118.76939
18 119.53128 119.56619
19 120.57232 120.56695
20 121.67333 121.31453

of these parameters are needed. By multiplying their conjugate prior distribu-
tions and likelihood functions respectively, we attain a posterior distribution for
each parameter. The distribution of parameters is proportional to that posterior

distribution that is formed.

From Equation 3.1, we observed five important parameters, which are the
distribution of the asset’s drift, asset’s volatility, the number of jump arrival in
a period, and jump intensity and jump volatility. (¢, o, A, ftjumps Tjump). The

likelihood function of each parameter is determined as follows:

e Asset’s drift and jump intensity follow a normal distribution with known

mean, o.

e Frequency of jump arrival in a period follows a Poisson distribution.
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e Asset’s volatility and jump volatility follow a normal distribution with

known mean .

Section 3.3.1 shows the working on how to get the posterior distribution of
each parameter. The relationship of conjugate prior distribution and likelihood

function can refer to Table 3.2.

Table 3.2: Conjugate Prior for each likelihood function.

Likelihood L(6) Conjugate Prior p(6)
Poisson ) = A G(a, B)
Binomial § = p Be(a, B)
Normal 6 = p, o2 known N(m, 7%)
Normal 6 = o2, ;s known IG(a, B)

3.3.1 Asset Drift, ;» (normal distribution)

Both underlying asset drift, 1 and the intensity of jump, pump have likelihood

functions that follow the normal distributions with known mean p.

Likelihood function of a normal distribution is proportional to:
n _ 2
exp [ ~ 352 (N - ;(Tz - YZANi)> } : (3.2)
Prior distribution P(y;) follows:

1
P(u1) ~ N(m,7?) = Nor exp [— %(u - m)ﬂ . (3.3)
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Posterior distribution, P(p; | m,7?) is proportional to Prior multiplying

the Likelihood function:

Posterior = Likelihood x Prior

= Py | m,7?)

n 2
n
= exp [— ﬁ(ﬂ - ) (& — YZANi)> ]
=1
L e |- (-m)’
V2772 P 272\ .

Let Y " (z; — Y;AN;) be o, then

2
n 1 1 2
P(,u1|m,7'2)=exp _ﬁ<ﬂ_05> ]\/%TQQXP[—ﬁ(M—m)l

n 2 1 2
OCGXP_—@(M—OO —ﬁ(/ﬁ—m)}
[ 1/ n 5 1 5
OCGXP_—§<;(M—@) +§(M—m))]
X exp _—l ﬁ(,uQ —2ua + o) + i(,u2 — 2um +m?)
| 2\ 0?2 T2
1/ ,n 1 an m a?nom?
S R T N, WY (il Y (LI )
cewp | = g (w5 + ) -2+ B+ (S + 1)
Let (% + %) be A, (2% + %) be B, and ( m—z) be a constant, C, we got

P(uy | m, %) o exp {— %(,uQA— 2,LLB+C’)]
1 (, . B
X exp {—514(# —ZMZ—FC')].

By completing the square, we have

Py | m, 72) o exp {— —A( §>2+C]

conl k(o 2]
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Finally. putting back A,B and «

Py | m 2)<><ep[ : (u %+$ﬂ
1 , T X — —
2+ %+ 1)
1 Z?:l(xi_zyiANi)n + mz 2
xX exp | — w— g T ) }
[ 2<§+%2>-1( (Z+3)

3.3.2 Asset Volatility, o
The volatility of the underlying asset, o follows an inverse gamma distribution.

Likelihood function of asset’s volatility, o is proportional to:

n

2

=1

Prior distribution P(y) follows:

P(ug) ~ IG(e, B) = Fﬁ(;)aﬁ_a_l exp (%ﬁ) (3.5)

Posterior distribution, P(us | «, ) is proportional to Prior distribution

multiplying the Likelihood function:

Posterior = Likelihood x Prior

n

N _ 2
= 1l 5 exp[—ﬁ—203At2<xi—uAt—YiANi)}.

(02)z I'() x —
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By letting x = 0%, we can get

1 Ba _ﬁ 1 n 2
Pl | o, B) = Wmexp [? - MZ (xl —uAt—YiANZ) ]

=1
_ P e

I(a)
" (x; — pAt — Y;AN;)?
exp{_%(ﬂz,l(x it ))]
n . o J— . . 2
P(o?) =IG(a+n/2 - Ttz S TON )

3.3.3 Frequency of Jump Arrival in a Period, \

Lastly, the arrival of jump distribution follows a Poisson distribution. Likelihood

function of the arrival of jump, A is proportional to:
(AAHN (1 — AA)" Y, (3.6)

Prior distribution P(u3) follows:

a—1 _ B—1 o
(3.7

Posterior distribution, P(/i3 | A) is proportional to Prior multiplying the Likeli-

hood function:

Posterior = Likelihood x Prior
n—N )\a_l(l - A)B_l

= (AADN (1 — MAY)

B(a, p)
B ()\)(a+N)—1(1 _ )\)(,B+n—N)—1 B F(a)F(ﬁ)
= _ Ba.d) , where B(a, f) = m
P(\) :Beta<a+N , B—f—n—N).
(3.8)
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The posterior distributions formed will be used in Section 3.4 where Gibbs

sampling method used to retrieve all five parameters (i, 0, fjump, Cjump aNd Ajump

)

3.4 Gibbs Sampling Method and Jump Diffusion Model Parameters

As mentioned in previous section, we start off using the Gibbs sampling method
to estimate the values of the parameters (14, 0, ftjump, Tjump and Ajump ) in the jump

diffusion model (Chan, 2006 and Gibbs, 1992).

Recall from Section 2.7, the fundamental idea of the Gibbs sampling method
is using the Bayesian inference from Markov Chain Monte Carlo (MCMC)
with Metropolis-Hasting model. Metropolis-Hasting model is an iterating pro-
cess that updates initialize values towards the distribution with an accept-reject
method. While the Gibbs sampling technique is a special case where we accept

every update for the iterations.

The Metropolis-Hasting model (MH model) begins with a probability mass
function (pmf), m on a countable set of states, X and a real-valued function,
f(X). Here, both 7 and f(X) are assumed to be complicated and computing
their values exactly is intractable and sampling exactly is impossible. Hence,
we use the MH model to draw samples from 7 approximately or to approximate

the expected value E[f(X)] where X follows the distribution of 7.

The Gibbs sampling algorithm is as shown in Section 2.6.3. The iteration
process will be used to sample out the five parameters. Each different parameter
has its own prior distribution and likelihood function that forms the posterior dis-
tribution. By iterating the Gibbs sampling method algorithm with their posterior

distribution, we can sample out and calculate the expected value of parameters.

The parameters that we interested are the drift, p, volatility of the underly-

ing asset, o, the arrival of jump event, A the intensity of jump, /tjump and jumps
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volatility, ojump for each jump. These parameters will show the behavior and

movement of the underlying asset, and hence knowing these characteristics will

provide an insight for investors when managing risks.

In the context of parameter sampling with the Gibbs sampling method, the

proposal matrix () would be the posterior distributions of parameters. We will

initialize the initial parameter as X, and repeat the sampling process until it is

converged. The sampling results of the parameter are recorded for 500 iterations.

Figure 3.1 shows the results produced by the algorithm with a simulated

price. Results show that the values from the Gibbs sampling method from first

to the last iteration. Each graph from left to right, top to bottom are in order of

i, o of asset, Ajumps fjump> aNd Ojump-
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Figure 3.1: The converging path of the S parameters, over 500 iter-
ations.

We can observe that ojymp, Ajump are deviated largely from initial iteration

and converged to a more stable range of values, while the other 3 parameters

are

swinging around initial point. Hence, we take the average values for each

parameter after Sth iteration, to avoid outliers and get a better estimation.
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Next, we simulate a jump diffusion model with preset values as shown
in Table 3.3 for each parameter. Using the simulated data formed from preset
values, we recheck the parameters with the Gibbs sampling method and recorded
in Table 3.3. It shows that the values of the parameters from the Gibbs sampling

method are different from the initial value of the simulated data.

Table 3.3: Testing Gibbs Sampling Method Algorithm.

Parameters Preset Mean  Standard Deviation
Drift of Asset 0.1 -0.02066 0.43901
Volatility of Asset 0.5 0.04132 0.02244
Arrival of Jump 10.0 10.51186 3.77489
Intensity of Jump 0.5 0.48472 0.08975
Volatility of Jump  0.025  0.07128 0.03999

The results show a few limitations of the Gibbs sampling method in con-
verging for the jump diffusion model’s parameters. Firstly, the mean of drift of
asset, p deviate from the preset 0.1 and had a large standard deviation of 0.43.
Secondly, the volatility of the asset is lower than our expectation as well. On the
other hand, the frequency of jump arrival, A the jump’s drift, ftjymp and standard

deviation of jump shows a good result with the value we set.

However, the last limitation is that the jump diffusion model proposed by
Kou assumes the intensity of jump event is symmetric around zero. Therefore,
we realized that by using Kou’s jump model, the results of Gibbs sampling will
provide a mean jump intensity close to zero, whilst the asset’s volatility deviates

largely from our initial value.

As this situation contradicts our definition where a jump spike should be an
event that causes a vigorous change in an asset, and it should not close to zero.

Hence, we proposed a modified jump diffusion model in the next section.
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3.5 Modified Double Normal Jump Diffusion Models

In year 2007, Kou had suggested a jump diffusion model using a double expo-
nential model in Equation 2.13. The usage of double exponential requires more
parameters for Kou’s model. Besides the drift and volatility of the assets, ;. and
o, Kou model requires 7, and 7, that replace the drift of jump, ftjump With normal
distribution. 7; and 7, are the mean intensity of upward and downward jumps
that are needed for the double exponential model. The arrival of jump events,

Ajump includes both upward and downward jump event in Kou model.

Throughout the research, a quick check on the correlation between the ar-
rival of an upward jump and arrival of downward jump shows that they are not
dependent on each other. Hence, we propose a modified method that splits the
parameter of jump arrival into two different parameters. This will ensure the

retractability of upward and downward jump arrivals.

Ni(t) Na(t)
1 ,
S(t) = S(Q)e(ﬂ—iaz)"‘ffw(t) H eYi H eYZ,i’ (3.9)
=1 =1

where N;(t) is a Poisson process for ¢ = 1 and 2; Y} ,, Y5, are the standard
normal distributed random variables; p is the drift of underlying GBM; and o is

the volatility of the underlying GBM.

Ivi(y) = p-me ™Y,
(3.10)

sz (y) =q 7726"2y-

m>1, 1 >0;

p, q > 0,p+q=1, representing the upward and downward jumps;

n > 1 is required so that E(e?) < oo;

o E(S(t)) < oc.
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As Gibbs sampling method had limitations against noise and drift of assets,
and the process of forming both likelihood function and posterior function is
tedious, we propose a different method to attain the values of parameters, which

is through empirical method.

3.5.1 Empirical Method for Parameter Extraction

First of all, we take the difference in price for consecutive days and normalize
them to the initial price. This step is to normalize the data into changes in per-
centage rather than the exact amount, that might differ largely between different

types of assets.

As a market spike does not occur through a single night, and most of the
time, it acts as a trend. Where these consecutive days changes the price more
vigorously than normal days. Hence, the following step is to combine the similar
direction price changes on consecutive days into a small period. The sequence
formed will be in alternating sign after fusion, acting as periods of bear and

boom.

On the next step, we arrange according to ascending order and separate
them into positive and negative period sequence. By doing so, we can obtain
a median value for each sequence. We choose arbitrarily 4 times median as a
threshold. A value with four times larger than the positive median (and four

times smaller than negative median), this would act as a threshold line.

The scale of 4 is chosen after we tried out other scales of the median. Table
3.4 shows how our scale factor affects the detected jump arrival in two different
directions. Table 3.4 shows that too many arrivals of jump events when the scale
is below 4. An averaging amount of 200 jumps are too much over a period of
20 years. The scale of 4 and 5 are much more realistic compared to previous
two scales. Considering the scale of 5 medians, an average of 3 jumps per year
can hardly provide sufficient data and point for analysis. Hence, we choose 4
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medians in this research for a better analysis of the impact of jumps on financial

instruments.

Table 3.4: Relation between scale median and arrival of jump spike
from year 1995 to 2014.

Scale Index Up' Upjump/year Down? Down jump/ year

2 SnP  276.0 13.8 306.0 15.3
2 DJI 271.0 13.55 314.0 15.7
2 NASDAQ 242.0 12.1 282.0 14.1
2 FTSE 254.0 12.7 296.0 14.8
2 OilGas 253.0 12.65 268.0 13.4
3 SnP  99.0 4.95 158.0 7.9
3 DJI 103.0 5.15 166.0 8.3
3 NASDAQ 103.0 5.15 137.0 6.85
3 FTSE  88.0 4.4 153.0 7.65
3 OilGas 91.0 4.55 144.0 7.2
4 SnP 320 1.6 86.0 4.3
4 DJI  42.0 2.1 88.0 4.4
4 NASDAQ  36.0 1.8 73.0 3.65
4 FTSE  38.0 1.9 79.0 3.95
4 OilGas  29.0 1.45 78.0 3.9
5 SnP  16.0 0.8 41.0 2.05
5 DJI 14.0 0.7 52.0 2.6
5 NASDAQ 9.0 0.45 37.0 1.85
5 FISE 19.0 0.95 42.0 2.1
5 OilGas 15.0 0.75 39.0 1.95

After we choose the scale of the median, we proceed into searching the

arrival of jump events occurs in Dow Jones industrial during the year 2007. We

'Up represents the number of upward spikes over 20 years.
2Down represents the number of downward spikes over 20 years.
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use this set of data as an initial observation. The occurrence of jump events that

exceeded the threshold line in Dow Jones 2007 is shown in Figure 3.2.
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Figure 3.2: An illustration jump event identification where the
spikes exceeded the lines are considered as jump events.

Figure 3.2, the blue line is the positive price changes of trends, whilst the
yellow line represents negative price changes. Dotted lines are the median for
both positive and negative trends. The highest and lowest horizontal dotted lines
are the threshold lines we made to identify jump spikes. Figure 3.2 shows that
there is one jump in positive changed trend, and five jumps in negatively changed

trends.

Median is a better choice as standard deviation or mean will include ex-
treme values, thus magnifying the value, and reduced the observations of spike

occurrence.

51



Table 3.5: Relation between 4x median and standard deviation.
NYSE ARCA Oil and Gas index from year 1995 to 2014.

Year 4% Median in terms of Std Dev Scaled Median Std Deviation

1995 3.26811 0.03155 0.00965
1996 4.36665 0.05231 0.01198
1997 5.35989 0.06985 0.01303
1998 4.25975 0.07773 0.01824
1999 2.34041 0.05946 0.02540
2000 4.20935 0.09014 0.02141
2001 3.84901 0.08182 0.02125
2002 3.35986 0.06371 0.01896
2003 3.86838 0.05510 0.01424
2004 4.82452 0.06562 0.01360
2005 4.03862 0.07856 0.01945
2006 3.18046 0.06807 0.02140
2007 4.83167 0.08069 0.01670
2008 2.64681 0.12467 0.04710
2009 3.75362 0.09883 0.02633
2010 4.01966 0.07688 0.01912
2011 3.92576 0.08806 0.02243
2012 3.33338 0.05179 0.01553
2013 3.79365 0.04523 0.01192
2014 2.70471 0.04504 0.01665

Table 3.5 shows that how much is quadruple median is in terms of standard
deviation. Taking an average, a quadruple median is roughly having a standard
deviation of 3.79670. Table 3.6 shows the expected probability and approxi-

mated frequency for an event with a different range of standard deviation.
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Table 3.6: Relation between standard deviation and chance of oc-

currence
Range Expected probability inside range ~Approximated frequency outside range ~Approximated frequency for an event
£ 20 0.95449973 1in 21 Every three weeks
£ 2.50 0.98758066 1in 80 Quarterly
i+ 30 0.99730020 1in 371 Yearly
i £3.50 0.99953474 1in 2148 Every six
1+ do 0.99993665 1in 15788 Every 43 years
i E£4.50 0.99999320 11in 147161 Every 403 years
£ 50 0.99999942 1in 1744279 Every 4776 years

From Table 3.6, we can observe that an event with a standard deviation of
3.80 has a rate of occurrence less than 0.0004%, marking it a rare event (spike
event), which is supposed to occur one every six years. This is to show that,
using the scaling of four of the median is sufficiently enough to determine a

jump event.

Any value that is larger or equal to this value in positive period sequence
would be classified as an upward jump arrival. Vice versa for the negative period
sequence, values that equal or smaller than the quadruple scale negative median

would be considered as a negative jump spike.

Values that exceeded the support line will be input as the jump intensity,
Hijump 10 the double exponential part of the modified jump model. The number of
times of such spike occurred is treated as the arrival of jump events, A and will

be used in the Poisson distribution of jump event.

For example, referring to Table 3.7 we use the data from Dow Jones in the
year 2007. We will get an expected upward spike and five downward spikes,
with an intensity of 0.012 and 0.0107 respectively. This can be understood as,
there is an upward spike with 0.012 intensity, and five downward spikes with an

average -0.0107.

For Table 3.7 until Table 3.10 are retrieved using the empirical methods on

S&P 500, DJI, NASDAQ, and NYSE ARCA Oil and Gas indexes from the year
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1995 until 2014.

From the results in both Table 3.7 and Table 3.8, we can see that the arrival
of an upward jump and downward jump is not equivalent. Not only the arrival
of the downward jump is more frequent, but the intensities of upward and down-
ward jumps are also different from each other too. This observation shows that
the jump model proposed by Kou need to be modified. Upward and downward
jumps are not symmetrical and their intensity of jump, ftjump should not be zero

unless there is no jumps occurrence in that direction.

Table 3.10 and Table 3.9 show that NASDAQ and NYSE ARCA Oil & Gas
index behave slightly different to S&P 500 and Dow Jones industry. They had
more years that consist of either no upward jumps or downwards jump events.
However, they still show the same observations where the year 2008 had the

largest downward jump intensity.
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Table 3.7: Jump parameters for DJI from year 1995 to 2014.

Year Up Up Intensity Down Down Intensity

1995 0.0 0.000000 4.0 0.006452
1996 5.0 0.006385 9.0 0.010148
1997 0.0 0.000000 1.0 0.029571
1998 3.0 0.010684 3.0 0.025415
1999 1.0 0.009298 5.0 0.012175
2000 1.0 0.040104 3.0 0.016139
2001 4.0 0.016356 5.0 0.020903
2002 5.0 0.028068 2.0 0.018651
2003 1.0 0.015568 2.0 0.015361
2004 2.0 0.007285 5.0 0.008304
2005 1.0 0.008557 2.0 0.007423
2006 0.0 0.000000 5.0 0.009115
2007 1.0 0.012031 5.0 0.010785
2008 3.0 0.052077 4.0 0.039357
2009 2.0 0.017149 3.0 0.017408
2010 1.0 0.009696 7.0 0.012784
2011 2.0 0.023121 3.0 0.017075
2012 3.0 0.007883 6.0 0.007448
2013 3.0 0.005309 5.0 0.008180
2014 4.0 0.008574 9.0 0.008321
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Table 3.8: Jump parameters for S&P 500 from year 1995 to 2014.

Year Up Up Intensity Down Down Intensity

1995 1.0 0.003583 5.0 0.007322
1996 2.0 0.009151 11.0 0.008307
1997 1.0 0.006960 1.0 0.025787
1998 2.0 0.013205 8.0 0.017721
1999 0.0 0.000000 1.0 0.013725
2000 5.0 0.015921 2.0 0.018840
2001 1.0 0.020283 3.0 0.021277
2002 3.0 0.024552 2.0 0.030803
2003 1.0 0.014023 2.0 0.014982
2004 1.0 0.007017 3.0 0.010429
2005 0.0 0.000000 2.0 0.009941
2006 0.0 0.000000 5.0 0.008411
2007 2.0 0.013596 3.0 0.012453
2008 4.0 0.052090 7.0 0.048799
2009 1.0 0.027948 5.0 0.022862
2010 1.0 0.011456 10.0 0.013855
2011 2.0 0.024247 4.0 0.016401
2012 0.0 0.000000 4.0 0.010550
2013 1.0 0.005189 3.0 0.011769
2014 4.0 0.008849 5.0 0.013490
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Table 3.9: Jump parameters for NASDAQ from year 1995 to 2014.

Year Up Up Intensity Down Down Intensity

1995 2.0 0.008506 4.0 0.013369
1996 2.0 0.007055 3.0 0.014014
1997 2.0 0.012279 5.0 0.014220
1998 0.0 0.0 5.0 0.027389
1999 3.0 0.016421 1.0 0.019825
2000 0.0 0.0 3.0 0.041728
2001 3.0 0.049639 4.0 0.030443
2002 5.0 0.023689 0.0 0.0
2003 0.0 0.0 1.0 0.014402
2004 1.0 0.008292 3.0 0.012336
2005 1.0 0.006071 4.0 0.011428
2006 1.0 0.010068 3.0 0.009760
2007 1.0 0.009435 2.0 0.015314
2008 3.0 0.039349 4.0 0.040370
2009 3.0 0.016006 3.0 0.018405
2010 1.0 0.01040 6.0 0.017369
2011 1.0 0.009948 4.0 0.022343
2012 0.0 0.0 7.0 0.010448
2013 3.0 0.006620 6.0 0.011208
2014 4.0 0.010051 5.0 0.015984
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Table 3.10: Jump parameters for NYSE ARCA Oil & Gas Index
from year 1995 to 2014.

Year Up Up Intensity Down Down Intensity

1995 3.0 0.005473 4.0 0.008726
1996 1.0 0.007275 5.0 0.009440
1997 0.0 0.0 4.0 0.016136
1998 0.0 0.0 2.0 0.016658
1999 7.0 0.018213 0.0 0.0
2000 0.0 0.0 0.0 0.0
2001 0.0 0.0 2.0 0.025206
2002 3.0 0.026054 5.0 0.023634
2003 0.0 0.0 3.0 0.015523
2004 0.0 0.0 3.0 0.015207
2005 1.0 0.024491 5.0 0.016034
2006 1.0 0.012630 7.0 0.017549
2007 0.0 0.0 0.0 0.0
2008 4.0 0.061320 6.0 0.057834
2009 2.0 0.012249 1.0 0.017197
2010 1.0 0.015945 7.0 0.0153836
2011 1.0 0.033673 7.0 0.020615
2012 1.0 0.014218 6.0 0.011326
2013 1.0 0.007706 2.0 0.023314
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Figure 3.3: Distribution of S&P 500 daily log return from 1995 to
2014.

From Figure 3.3, the blue part is the upward changes while the orange part
represents downward changes. Results show that their peak is not allocated at
the center, but slightly away from the origin. This resembles a capital "M’ shape,
and it does not support the models of Kou and Merton where they formulate their
model using double exponential and normal that centered its peak, which similar

to a normal distribution with mean around the zero.

Hence, we can conclude that it is important to modify the jump diffusion
models proposed by Kou and Merton, in order to accommodate two different
way of jumps. Therefore, Equation 3.10 consists of two different jump arrivals
(upward and downward) and intensity of spikes (upward and downward). This
is different from most of the others research that had been done. Most of the
researchers used Equation 2.11 that assume the mean of the jump is equal to
zero and captures both asymmetry jump event of upwards and downwards as
a single event (Kou, 2002). This two assumptions caused the model fails to
capture that the peaks of jumps are not at the center. The mean of the jump

should not be zero.
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This modification changed the equation from a double exponential to dou-
ble normal distribution. A double normal distribution should similar to the Fig-
ure 3.4. Figure 3.4 is an illustration with a combination of two normal distribu-
tion where their volatility (wideness) is 1 while the mean of normal distributions

is +0.05 and -0.02 respectively.
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Figure 3.4: An illustration of double normal distribution for S&P
500 with mean of -0.02 and +0.05.

In our modified double normal jump diffusion equation, only a single direc-
tion (either upwards or downwards) at most will be triggered in order to avoid
the spike effect cancel off each other. There are four different parameters needed
for both normal distributions, the mean intensity of jump fiup jump » Hdown jump and

number of occurrences for each distribution, Ayp jump and Agown jump-

After we obtain four parameters of jump distribution, by taking the aver-
age log of the rate of return of the underlying asset, we would get the drift and

volatility of the underlying asset. The volatility of jump spikes is treated as one
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(similar to a standard deviation of a normal distribution). These six parameters
allow us to simulate out the modified jump diffusion model with the historical
price of underlying assets or indexes. The modified double normal jump diffu-

sion model will be used in the Section 3.6.

3.6 Market Instrument with Modified Jump Diffusion Model

The aim of this section is to observe how will jump event affects the normal
GBM in market prices. The jump event has two important factors which are the
intensity of jump and number of jumps. The intensity of jump is said to be the
impact of changes in prices each time a jump spike occurred. As different asset
yields a different response when the market had an impact, hence the intensity

acts differently for each instrument.

While the number of jump events is different for each market instrument
too. Generally, there is a belief where a market crisis will occur once every ten
years. However, jump does not mean only a drop in prices, an upward jump is
also possible. The human behavior might cause heavy fluctuations in prices as

well.

Our research aims to express the impact jump spikes into numeric parame-
ters. The modified jump diffusion model is able to extract and present the yearly
jump spikes into upwards and downwards direction along with their respective
intensities. This modification extends the ability of jump diffusion model to
acknowledge the degree of intensity of jump, rather than assuming the jump

intensity is symmetrical around zero.

How should the investors group and identify the jump aside from daily
normal fluctuation, will be a critical element to consider, we believe this research

will provide better insight on handling market risk.
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3.6.1 European Call with Jump Diffusion Model

Here we will explain how we calculate and compare the price of a European call
simulated from the jump diffusion model and GBM. We calculate the expected
price of GBM using the Black-Scholes model as a benchmark. For modified
jump diffusion model, we use the same strike price, K and the initial price of the
underlying assets and project the expected price. We can compare the expected

price from jump model with the price from GBM.

Since the values of the jump parameters are different for different instru-
ments. We will setting the range of 0 < A < 4, 0 < pjump < 0.08, while the
initial price, Sy and strike price, K equal to $100. The drift and volatility of the
asset, ;v and o were fixed at 0.08 and 0.4. We will use this to simulate the jump
diffusion process and we calculate the expectation of the price for the European

call option.

Preset parameters will be used to generate multiple simulations with differ-
ent intensity of jump and number of jump event. For each level of parameters,
the projected final price will be recorded and will then be included in a table.
This will be used to compile and to be plotted. Next, we will input different

level of parameters and re-simulate a different path again.

In fact, the initial payoff projection by Kou’s jump model is almost similar
to GBM. This result has shown that Kou’s jump model is underestimating the
payoff. As the jump intensity is normalized with mean zero, the expected option
price from jump spike would be zero. This would contradict our initial idea
where the expected jump event occurrence is calculated from the real market

price.

Hence, we propose that a modification is needed for the jump diffusion
model. Instead of a single jump parameter, A we expand to two different jump

components accommodating an upward spike and a downward spike.
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Therefore, we had prepared simulation script for both modified jump dif-
fusion model and GBM. After the simulations, we can proceed to calculate the

price of European call option in the next Section 3.6.2.

3.6.2 Pricing European Call Option with Different Jump Intensity and

Occurrence

This section is aiming to determine how will jump event affects the normal GBM
for financial instrument prices. We start from the simplest instrument on a toy
model. For instance, we will investigate the influence of jumps on the European

call option.

The jump event has two important factors which are the intensity of jump
and number of jumps. The intensity of jump is said to be the height of jump in
prices each time a jump occurred. As different asset yields a different response
when the market had an impact, hence the intensity is tuned differently for each

instrument.

While the number of jump events is different for each market instrument
too. Generally, there is a belief where a market crisis will occur once every 10
years. However, jump does not mean a drop in prices, an upward jump is also
possible. How should the investors group and identify the jump aside from daily

normal fluctuation, will be a critical element to consider.

Here in this research, the preset parameters in Table 3.3 from Section 3.4
will be used to generate multiple simulations with different intensity of jump and
number of jump event. The final prices will be recorded in a table and will be

plotted for each different level of jump intensity and frequency of jump arrival.

We have written a python script for the above simulations and the results are
shown in Section 4.3.2. The effect of different intensity of jump and number of

jumps will be compared and analyzed so that it is possible to investigate which
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parameters have the most impact on the prices. In the latter part of this research,
we wish to determine the possible jump factor for S&P 500, for its intensity and

occurrence of each jump event.

The code fragment below shows the modified jump model we used to com-
pare the price of European call.We use the modified jump model with the dif-
ferent arrival of jump (1ambdas) and jump intensities (intensities). The

variable s would be the projected price, with variable v is the price after a year.

lambdas = np.arange(l, 3,0.025)
intensities = np.arange(0,0.04,0.0005)
for lambd in lambdas
for intensity in intensities
s = mf.jumpmodel (lamb=lambd, mujump=intensity)
v =((s[-1]-K > 0 )*(s[-1]1-K)) .mean ()

outputlist.append (v)

Listing 3.4: Expected price of European call with modified jump

model

Results of the simulation will be shown in the next chapter in Section 4.3.
Next, we proceed to the methodology of jump diffusion model application on

an annuity.

Take note thatthe ’jumpmodel’ represents the modified jump diffusion model.
The ’lambdas’ represents the arrival of jump in a period range from 1 to 3, while

intensities are the range of jump intensities from O to 0.1 respectively.

3.6.3 Annuity with Jump Diffusion Model

An annuity is a contract where a fixed sum of money paid to a party each year

(could be in other periods), for a long time frame. Usually, it is in a form of
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insurance or investments. The insured or investor is entitled to a series of pay-

ments.

The values of annuity vary on the different requested requirement by the
annuitant. A larger stream of income and insured guarantee in the future would
cost higher premium (or a constant annuity payment) and vice versa. Under the
Black-Scholes model assumptions, the dynamics of annuity account value are

as follows:

where A; and ¢ are denoted as the sub-account value at time ¢ and the mortality
and expense (M&E) fee payable continuously respectively. While & is the sub-
sequent contributions to the sub-account. Principle account is the account where
the investor or insured pay their premium, while part of the amount is reinvested
in this sub-account. Hence, the investing sub-account would be affected by mar-

ket changes.

Under the Black-Scholes model, the combined GBM (GBM) with jump
event (jJump model in Equation (2.10)) is given by the following SDE:

(lSt = ,LLStdt + O'StdBt + JSt(th (312)

With consideration of extreme event, the sub-account value will be modified

with jump-diffusion model assumption and becomes:

dAt = At(dSt)/St - CAtdt + kdt

An additional jump term, J A;d N, is added into consideration. The J here repre-

sents the arrival (occurrence) of jump spike that follows a Poisson distribution,
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multiply by the intensity of jump that is normalized dV;.

As we mentioned in Section3.5.1, although jump can occur in both direc-
tions, at one time only one direction of jump occurs. Hence, we drew the jump
occurrence and spikes before adding jump term into the Heston model equation,

assuming that the jump element and GBM are independent to each other.

We consider annuitant has guaranteed benefits with roll-up premium, con-
sisting both guarantee minimum death benefits and guarantee minimum accu-
mulation benefits (GMDB & GMAB). The guarantee benefits had a pre-agreed
guaranteed interest rate g > 0, which is chosen such that g < r (the feature of

GMAB). Hence the guarantee benefits are given as follows:

At(dSt)/St — CAtdt + kdt
G, = (3.14)

A,L(,udt + O-dBf + e]de) — CAtdt + kdt,

where the J includes either a positive upward jump, .J* or a negative downward
jump, J~. A quick recall from Equation 3.5, we are using two sets of parameters
for each direction of the jump. The frequency of jump arrival and its jump

intensity are different for both directions

From the Equation 3.14 above, there is only a single jump parameter that
is included. As we mentioned that the jump and GBM are independent, hence
we draw a random sample from a direction of jump before we include in the

guarantee benefits (Equation 3.14).

This guarantee benefits resembling an Asian put option where the sub ac-
count value, A; becomes the underlying asset. The payoff function, P(t) will be

given as following:

P(t) = [G(t) - At]+ = maX(Gt - At7 0), fort S T (315)
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Annuity price is determined by Heston model most of the time. Hence in
the next section, we will be calculating and simulating the price of the annuity

with jump model with Heston model for both S&P 500 and Dow Jones index.

3.6.4 Pricing Annuity with Jump in Heston Model

This section aims to calculate an annuity with jump events in a Heston model.
Using the Black Scholes model on annuity products requires a constant volatil-
ity when calculating the “fair” price. This would cause a mispricing for the
“fair” price in the long run as volatility would change accordingly to the market.
Therefore, the Black Scholes model could not accommodate when the annuity

is volatile and requires a non-constant variance.

Heston model could attain such requirement by assigning a stochastic dif-
ferential equation (SDE) to its variance, at the same time, it is retractable. Hence
the Heston model would perform better compared to the Black Scholes model

when pricing a long run annuity.

Given that the value of a unit asset, S; at time ¢ is assumed to follow the
Heston model process given by the following stochastic differential equation
(SDE):

dS, = uS,dt + VV, S, dW?,  5(0) = Sp, (3.16)

where y is the rate of return from an asset and S(0) = S is the initial boundary
condition. In this research, we assume the risk-free interest rate, r as the rate of

return, hence we rewrite Equation 3.16 as:

dS, = rS,dt + V.S dW?,  S(0) = S, (3.17)
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where V; is the instantaneous variance, which follows a CIR (Cox Ingersoll

Ross) process given by the following SDE:
AV, = k(0 — V))dt + ov/VidW,  V(0) =14, (3.18)

where the parameter « is the speed of adjustment, with 6 equal to the mean,
and oy be the volatility. The (6 — V;) is the drift factor that ensures the mean

reversion of interest rate is towards 6 in the long run.

We will further modify the Heston model to incorporate the jump criteria,

the model would become as below:
AV, = k(0 — V,)dt + oy /VidWY + JdW,,  V(0)=V,.  (3.19)

Here, J; is a compound Poisson process such that the i-th jump is equal to e¥7 —1.
Y; is the distribution of the jump. For instance, if Y; have the Gaussian distribu-

tion, S; will have log-normally distributed jump.

def A (r=r,c=0,sigma=sigma, k=k,A0=A0, t0=0,tN=T,
N=N, M=M, lamb=lamb, UI_mean=0.008,UI_sigma = 0.0363687):
t = np.linspace(t0, tN, N+1); dt = t[1]-t[0]

At = np.zeros([M, N+1]); At[:,0]=A0

Bt = np.zeros([M, N+1]); Bt[:,0]=A0
for i in range(N):

aw

np.random.randn (M) * np.sqrt (dt)

J

sigmaJxnp.random.randn (M, N+1)+mud

dN = np.random.poisson (lamb * dt, (M,N+1))

J_up= np.random.normal (UI_mean,UI_sigma, (M,N))

At[:,1+1] = At[:,1] + (r-c)*At[:,i]xdt + sigmaxAt[:,1]xdwW
+ kxdt +J_up[:,1]*dN[:,1]

Bt[:,i+1] = Bt[:,1i] + (r-c)*Bt[:,i]+xdt - sigmaxBt[:,i]xdW

+ kxdt +J_upl[:,i]*dN[:,1i]

68



return t, np.concatenate([At,Bt])

Listing 3.5: Heston model calculation
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CHAPTER 4

RESULTS AND DATA ANALYSIS

4.1 Gibbs Sampling Method for Market Indexes

In this section, we try to verify the parameters obtained from the Gibbs sampling
method. Here we supposed the parameters are the drift, 4 and volatility, o of the
underlying asset, the frequency of jump arrival, A the jump intensities, ftjump and
jump’s volatility, ojump. To verify those parameters, we re-simulate Kou’s jump

model by using some preset values for parameters.

In methodology, Section 3.4 we had mentioned that by using the Gibbs
sampling method we could retrieve the drift, ; and volatility, o of GBM along

with jump parameters for a jump model from raw price data.

Hence, we tested with simulated data with preset values. The methodology
can be referred from Section 3.4 and results are as shown in Table 4.1. The
“Mean” in Table 4.1 is the results from Gibbs sampling method based on the

simulated data produced with “Preset” parameters for each different set.

Table 4.1: Gibbs sampling method algorithm on different sets of
simulated jump diffusion model.

Set Setl Setl Set2 Set2 Set3 Set3
Parameters Preset Mean Preset Mean Preset Mean
Drift 0.1 -0.02066  0.01 0.02107 0.5 0.16016

Volatility 0.5 0.04132  0.07  0.02449 1 0.08843
Jump Arrival 10.0 10.51186 10 11.99715 5 4.92009
Jump Intensity 0.5 0.48472 0.5 0.48244 1 2.62712
SDofjump 0.025 0.07128 0.05  0.07209 2 0.30517

In Table 4.1, results from “Set1” and “Set2” show that, when the ’Drift” and
"Volatility’ of an asset is relatively small, the Gibbs sampling method could pro-

vide a closer result to the input preset value. Else, the converging of “Preset”s’
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parameters, “Drift” and “Volatility” of assets will fail as shown in “Set3”.

In “Set3”, jump intensity, jtjump Shows a value of 2.6 instead of 1. The stan-
dard deviation of the jump, ojymp S€€ms to maintain it’s converging around the
value of 0.07 when the input is small, could not get back the “Preset” value of
2 in “Set3”. Gibbs sampling method can converge *Jump intensity’ when it is
smaller than 1 as shown in “Set1” and “Set2”, while it fails when the intensity
raises beyond one as in “Set3”. Only the ’Frequency of jump’ are able to con-

verge back closer to the initial input value throughout the three different cases.

Next, we tried to apply these on market indexes. We picked Dow Jones
industrial (DJI), NASDAQ Composite 100 (NASDAQ 100), FTSE 100, S&P
500 and NYSE ARCA OIL & GAS INDEX (OilGas) with two different periods.
In Table 4.2 we show the results from Gibbs sampling method using data from
the year 2005 October to the year 2010 December, while Table 4.3 shows the

results for the period between October 2010 and December 2015.

Table 4.2: Comparison between extracted parameters of different
indexes between year 2005 and 2010.

S&P NASDAQ FTSE

Parameters DJI 500 100 100 OilGas

Drift 0.10245 0.11345  0.10625  0.11171  0.22821
Volatility 0.12574  0.14119  0.17082  0.14919  0.22557
Jump Arrival  19.33768 19.24939  14.06721 16.59051 15.91333
Jump Intensity -0.00407 -0.00519 -0.00388 -0.00475 -0.01131
SDofjump  0.04524 0.04711  0.05277  0.04554  0.06655

Table 4.3: Comparison between extracted parameters of different
indexes between year 2010 and 2015.

S&P NASDAQ FTSE .
Parameters DJI 500 100 100 OilGas

Drift 0.13043 0.14949  0.17544  0.06069  0.11527
Volatility 0.12365 0.12797  0.14913  0.14301 0.18886
Jump Arrival  5.23150 6.83121  6.07712  6.08239 12.74748
Jump Intensity -0.00592 -0.00478 -0.00568 -0.00446 -0.00615
SDofjump 0.05644 0.05294  0.05739  0.05095  0.04405
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Table 4.2 and Table 4.3 are calculated by the Gibbs sampling method on
market prices, hence the results depend on the market performance. Table 4.1
shows that convergence of 'Drift’, *Volatility’, Jump Intensity’, and ’S.D of
jump’ are not very reliable in converging. However, we can make use of the
"Jump Arrival’ values to get some insights on the frequency of jump that happen

across both periods over 10 years for each index.

By looking at the *Jump Arrival’ in Table 4.2 and Table 4.3, we show that
the period between 2005 and 2010 contains more arrival of jump relative to the
period between 2010 and 2015. In the first period, Table 4.2 shows that a min-
imum arrival of 14 jumps across the indexes. The intensity of jump, however,
had a smaller scale than what we expected. Hence, we believe that the param-
eters possess clustering effect between jump arrival,\ jump intensity, ftjump and

its volatility, ojymp.

As we compare the values in Table 4.2 to Table 4.3, the values for “jump
intensity” and “S.D of jump” does not differ much. We suspect that using Kou’s
jump model with Gibbs sampling method could not provide good insights in
observations of other variables besides “jump arrival”. Whilst the arrival of
jump shows an obvious difference in Table 4.3 where most of the indexes had
an average arrival of jump of 6, besides NYSE ARCA OIL & GAS INDEX that

remains high at 12.7.
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Figure 4.1: Jump arrival of different market index for 2 different
period (2005 to 2010 and 2010 to 2015)

Figure 4.1 shows the jump arrival of each index for two different periods.
In Figure 4.1, we can see that the market had a high jump event between Oct
2005 to Dec 2010 compared to the next 5 years period. Recall that, we had a
world economic recession during the year 2007 and 2008. The huge drop in
prices caused the frequency of jump arrivals to shoot up to nearly 20. Whilst,
the market is more stable after 2010, and hence the jump occurrence is dropped

to 5 and 6.

The jumps arrival for NYSE ARCA oil & gas Index during the period of
2010 to 2015 are higher compared to the other four indexes. As their average
arrival of jump had lower to 6, the NYSE ARCA Oil & Gas index remain high
at 13 arrivals. Hence, we check on the historical index prices throughout Oct 1,

2005, till Sept 30, 2015, in Figure 4.2.
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Figure 4.2: Comparison of price behavior for 4 indexes. (Data re-
trieved from Yahoo Finance)

Figure 4.2 shows that there are some high spike changes between 2008 to
2009, those regions are in the circles. We can see that the NYSE ARCA OIL &
GAS INDEX remains high amount of jump arrivals due to the sudden drop in
prices on the second period (around 2012), while the other indexes had started
to be more stable. Until the year 2015, the oil and petrol prices remain highly
volatile from time to time, hence the arrival of the jump event remains at a higher

level.

This shows that the Gibbs sampling method could provide good expectation
on the number of jump arrival occurred over the period, however it might suffer
from clustering effects between the parameters. We need to aware that the num-
ber of jump arrival contains both upward and downward jump. Understanding
this frequency of jump arrival solely is not enough for research purpose as the
direction of jump directly affects the pricing of financial products. Therefore,
we introduced the modified jump diffusion model and the empirical method in

Section 3.5.
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4.2 Modification of Upward and Downward Jump Parameters in Jump

Diffusion Model

In Section 3.5.1, the empirical method shows that S&P 500 does not fit the dis-
tribution used by Kou’s model see Figure 3.3. Kou’s jump model proposed that
the jump model is distributed with a double exponential distribution centered
around zero. However, S&P 500 shows that the distribution is asymmetric for

positive and negative changes.

We further investigate the distribution of DJI indexes and NASDAQ to

check whether their distribution for different directions of changes is symme-

try.
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Figure 4.3: Distribution of DJI daily log return from 1995 to 2014.

Figure 4.3 shows that the distribution of positive and negative directions are
asymmetry to each other. The positive distribution (blue right region) is slightly
lower than the negative (orange left region), and they show a further distance

from zero (heavy-tailed). Whilst the negative changes seem to have a higher
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frequency and larger range of spike as the largest negative change is up to -0.25

while the largest positive change around +0.13.
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Figure 4.4: Distribution of NASDAQ daily log return from 1995 to
2014.

Figure 4.4 shows a similar characteristic with DJI, where the distribution
of positive and negative directions are asymmetry to each other. However, com-
pared to DJI, NASDAQ has a much heavier distribution on the left side (negative
side) of the figure. On it’s right, the positive distribution resembles a normal dis-
tribution rather an exponential distribution. The empirical method was applied

to other indexes, which are FTSE and NYSE ARCA Oil & Gas index.

The results from Figure 4.5 and Figure 4.6 show that they resembled dou-
ble exponential distribution where both the negative and positive parts spread
broader and higher. However, Figure 4.5 shows that the positive part has a rela-
tively lower distribution compared to the negative part. While Figure 4.6 had a

steep drop in distribution for positive distribution when it approaches zero.

76



Ln (=] = |
o =] o
I i I

Frequency
=y
[=]
i

L
o
L

FJ
=]
1

=
o
I

|
ol IR T

II I|I!III L1l L L
—0.2 —0.1 0.0 0.1 0.2
normalized price changes

Figure 4.5: Distribution of NYSE ARCA oil and gas index index
normalized price changes from 1995 to 2014.
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The results suggest us to modify the Kou’s model such that it could capture
a better distribution for the jump in two different directions. As we observe from
the four different figures, the distribution for the positive tail could be different
for different underlying assets. The usage of double exponential distribution
will limit the distribution of FTSE and NYSE ARCA oil and gas index. We had
introduced an empirical method in Section 3.5.1, where we propose a “piece-

wise” double normal distribution.

The results in Table 3.7 and Table 3.8 show that the frequency of jump
arrival is different for indexes. By referring to Table 3.9 and Table 3.10, we
can observe that the total downwards jump is much more frequent than upwards

jump too.

Table 4.4: Comparison total number of jumps captured between
different indexes over 20 years.

Index Total upward jump Total downward jump

S&P 500 32 86

DIJI 42 88
NASDAQ 36 73
Oil & Gas 36 92

For a clearer comparison, we compare the total number of jumps in both
directions for each index we had in Table 4.4. We can observe that the *Total
downward jump’ almost occur twice likely compare to *Total upward jump’.
The number of jumps here is determined using the empirical method, with a

support line of the quadruple median refer to Section 3.5.1.

From Table 3.7, Table 3.8, Table 3.9 and Table 3.10, we observe that the
year with highest jump intensity was at year 2008. The average value of these
indexes mostly between -0.02 to 0.02. While in year 2008, the value of intensity

is as shown in Table 4.5.

Obtaining the frequency of jump arrival and intensity of jump for both up-

ward and downward directions allow us to modify the model to fill the gap where
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Table 4.5: Comparison of jumps intensity between different indexes
in year 2008.

Index Up intensity Down intensity

S&P 500 0.05209 -0.048799

DII 0.052077 -0.039357
NASDAQ  0.039349 -0.040370
Oil & Gas  0.061320 -0.057834

previous researchers fail to capture.

The modified model uses the value of parameters we attain from the em-
pirical method to simulate out an expected price in the next year, by using the
previous year price data. Using the modified jump diffusion model allow us to
calculate the fair price of financial products more precisely as we included the

expected jump arrival.

In Section 4.3 and Section 4.4, we observe how modified jump diffusion
model changes European call options and the annuity from geometric Brownian
motion (GBM), and check its impact on the pricing model of both instruments.
This is to show that whether the modified jump model can remain its character-

istic among two different types of instruments.

4.3 Jump Diffusion Models and Geometric Brownian Motion Model on

European Call Option Pricing

4.3.1 Convert Risk-neutral Measures to Market Measures

By Black-Scholes model, the options pricing could be calculated, to determine
the potential risk and return of the option. As jump event included in the jump
model, hence the risk and payoff shall be different from ordinary Black-Scholes

model.
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The purpose here is to determine how much and how big the impact of jump
spike would affect the payoff of the call option. Here, we had built in a modified
jump diffusion model and the GBM model function, where we can simulate
their samples. We fix the value for the initial price, Sy to $100, with a strike
price, K = $100 too. The drift 1 is set to a constant following the underlying
asset, where it is -0.005 for DJI index. While the volatility o is constructed
with Dupire’s formula under a risk-neutral measure in order to reduce arbitrage
opportunities. Dupires formula is the local volatility, expressed entirely in terms

of the volatility surface C(1, K):

. 1 [26C)8T(T, K)

where, C'(T, K) is the price of the call option, C' with exercise time, 1" and
strike price, $ /. Variable dx would be a small step change in strike price. By
assembling a matrix of quoted option price and yield curve, we formed a smooth

volatility curve. The constructed volatility with Dupire’s formula in Equation

(4.1) for DJI index and S&P 500 over 20 years is similarly close to 0.00555.

4.3.2 The Price Comparison of European Call Option with Jump Diffu-

sion Models and Geometric Brownian Motion Model

The payoff of the European call option using GBM is calculated using the Black-
Scholes model. We will exercise the option when the expected price at time ¢,
S, 1s higher than the strike price, K. We will not exercise when it is less than

that. Hence the payoff at time, ¢ is equivalent to max (S; — K, 0).

Whilst, the payoff of the European call option using jump diffusion model
will be calculated using Black-Scholes model too. However, the jump diffusion
model has different ranges for its parameters. For its arrival of extreme events, A

or jump arrival in Figure 4.7, it is set from zero (no jump event, or normal GBM)
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until four, which indicating four spikes per year. While another parameter is the
intensity for each jump is ranging from O to 0.08. The results are shown in

Figure 4.7.
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Figure 4.7: The expected payoff for jump intensity.

The origin point in Figure 4.7 is the payoff of the European call option with
GBM. Along the vertical axis when jump had zero arrival, we can observe that

the call option’s payoff fluctuates around zero.

When the jump event occurs, the payoff surpasses the expected payoff of
the Brownian motion at the white dot and escalates proportionally to the incre-
ment of intensity. From the result, as the intensity of jump increase, the payoff
increases more. The highest peak occurs when the jump intensity and arrival
are at their highest level. This results only consider if there is a positive jump
spike, there would be a negative jump spike where will induce larger negative
payoff for an asset. The negative payoff is neglected as this is a call option,
where we would not exercise if the underlying asset is out of the market. This
shows that with the Black-Scholes model, GBM could not expect the larger risk
behind each jump event that will occur. This will cause mispricing for the call

option in the market.
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We take S&P 500 index and Dow Jones index and compare with the Euro-
pean call option. Figure 4.8 shows the pricing for S&P 500 index for 20 years

and while the Figure 4.9 shows the expected pricing of the Dow Jones index.
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Figure 4.8: The expected pricing for 20 years of S&P 500 index.

From Figure 4.8, the red dots show the expected positive jump arrivals and
intensities for S&P 500 over the past 20 years from 1995 to 2014. We could
observe that the expected payoff in pricing differs from the European call that
did not accommodate jump event. To visualize the price for simulated European

call with S&P 500, we take a look on Table 4.6.

We can observe that the highest price occurs during the year 2008 with four
jumps with intensities at least 0.05. The highest attainable payoff exceeded 1.0
for a log return on that year. The fair price of GBM (when no jump is included)

is 0.00049 in this simulated European call.

For some other years such as 2000, 2002 and 2014, there exist high number

jump arrival of three to five. Even though their intensities of the jump are not
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Table 4.6: Pricing of S&P 500 in European call with modified jump
diffusion model.

Year Frequency of jump Jump intensity Price, S, — K

1995 1 0.00358 0.01744
1996 2 0.00915 0.06892
1997 1 0.00696 0.03098
1998 2 0.01320 0.10249
1999 0 0.00000 0.00049
2000 5 0.01592 0.34634
2001 1 0.02028 0.08377
2002 3 0.02455 0.30534
2003 1 0.01402 0.06104
2004 1 0.00702 0.03122
2005 0 0.00000 0.00049
2006 0 0.00000 0.00049
2007 2 0.01360 0.10505
2008 4 0.05209 1.07665
2010 1 0.01146 0.05134
2011 2 0.02425 0.19231
2012 0 0.00000 0.00049
2013 1 0.00519 0.02381
2014 4 0.00885 0.13973

as high as 2008, their high price should be an alarm for fluctuation in S&P 500
index. Next part, we will take a look on simulation of European call option

using the Dow Jones Index as underlying assets.

From Figure 4.9, the asterisks show the expected positive jump arrivals and
intensities for Dow Jones(DJI) over the past 20 years from 1995 to 2014. We
could observe that the expected payoff in pricing not only differ from the Eu-
ropean call but different as S&P 500 indexes in Figure 4.8. Using the pricing
calculation with GBM where we did not consider jump at all, the expected pay-
off if 0.0005. However, almost every pricing of each year is different from each

other when jump events are considered.

In Table 4.7, the highest attainable payoff could even reach approximately
0.73 for a log return during the year 2008. This year yield the highest price

compared to other years, which is exactly the same as S& P 500 index. However,
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Figure 4.9: The expected pricing for 20 years of Dow Jones index.

the price is much lower than S& P 500. Considering the price of European call
without an upward jump event is 0.00051, jump events are heavily affecting the

price of European call.

Besides, it is rather interesting that Down Jones indexes had more years
that possessed a higher frequency of jump arrival. There are about forty percent
over 20 years had a jump frequency that is higher than three. This shows that
the Dow Jones industry is slightly volatile compared to S&P 500 index, but the
fluctuation is not as big as S&P 500. These two simulations are based on positive

upwards jump event only.

As we are considering a simulated European call, a sharp drop in price
that is due to negative downwards jump event would not trigger the call option
to be exercised. This observation is shown in Figure 4.10. In Figure 4.10, we
considered both positive and negative jump events, by multiplying the intensity

and arrival of jumps, we attain the impact of jump and thus able to form the
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Table 4.7: Pricing of DJI in European call with modified jump dif-
fusion model.

Year Frequency of jump Jump intensity Price, S, — K

1995 0.0 0.0 0.000512
1996 5.0 0.006384 0.130372
1997 0.0 0.0 0.000512
1998 3.0 0.010684 0.127682
1999 1.0 0.009297 0.040946
2000 1.0 0.040103 0.159591
2001 4.0 0.016355 0.272328
2002 5.0 0.028068 0.667495
2003 1.0 0.015567 0.064986
2004 2.0 0.007284 0.056885
2005 1.0 0.008556 0.037806
2006 0.0 0.0 0.000512
2007 1.0 0.012031 0.054281
2008 3.0 0.052076 0.736973
2009 2.0 0.017149 0.129034
2010 1.0 0.009695 0.042700
2011 2.0 0.023120 0.180512
2012 3.0 0.007883 0.094637
2013 3.0 0.005308 0.062119
2014 4.0 0.008573 0.135558

contour of fair price by using interpolation method.

Figure 4.10 shows that the price of European call option increases in price
as the arrival of positive jump events increases. The events of negative jumps
would increase the fluctuation of price as well, and hence it also increases the

price of options when it occurs a positive fluctuation.

Vice versa, if we are considering a European put option, the negative down-
wards jump events would impact the price of the European put option more
compared to positive upwards jump events. Next, in Section 4.4, we would try
out the application of a modified jump diffusion model in annuity pricing. The

simulation would base on S&P 500 and DJI index too.
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Figure 4.10: Price of European call option base on Dow Jones index

with two directions of jumps.

Annuity Pricing with Jump Diffusion Model

As we mentioned in the Section 3.6.3, the pricing of annuity is indicated by

Equation (3.15). Even though pricing company is aware that the expected fair

price of annuity is affected by the extreme events, but they did not include the

chances of risk in pricing.

Figure 4.11 shows that the price of an annuity with jump diffusion model

during negative downwards jump event. The figure shows the pricing payoff that

is based on the Dow Jones index. The red dots are historical yearly pricing from

1995 to 2015. The contour shows different layers of payoff based on different

numbers of jump arrival and intensity. The jump intensity ranged from O to 0.08

and the frequency of jump arrival ranged from O to 8.

Here we observed that the contour is different from European call which

86



0.07 -

0.06 A

u

0.05 A

0.04 A

jump intensity

0.03 A

0.02 A

0.01 A

0.00

lambda A

Figure 4.11: The expected rewards function from the annuity with
jump model based on DJI.

increases exponentially as the activity of jump events increased. For an annuity,
the price seems to be increased slowly and linear when the jump event occurs.
This shows that jump events provide relatively less impact on annuity compared

to European call option. However, the effects are not negligible.

By using Heston model with normal GBM, the price of annuity is located
at the origin, where the price of annuity is around 2.403. This can be seen from

Table 4.8, when the frequency of jump is zero.

Table 4.8 shows that the Dow Jones index had its two highest prices during
the year 2002 and 2008 with the price of 2.96 and 3.08 respectively. Considering
the year 1995 and 1997 that did not have a jump event, the price of annuity
should be around 2.403. Annuity of the year 2002 and 2008 are priced 20%

higher compared to the year 1995 and 1997 which did not have any jump events.
Nonetheless, the intensity of jump event plays a crucial part here in the
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Table 4.8: Pricing of DJI in Annuity with modified jump diffusion
model.

Year Frequency of jump Jump intensity Price of Annuity

1995 0.0 0.0 2.4036566
1996 5.0 0.0063849 2.5340034
1997 0.0 0.0 2.4036566
1998 3.0 0.0106843 2.5190019
1999 1.0 0.0092978 2.4342046
2000 1.0 0.0401039 2.5828067
2001 4.0 0.0163555 2.6409887
2002 5.0 0.0280681 2.9621931
2003 1.0 0.0155677 24612259
2004 2.0 0.0072845 2.4568861
2005 1.0 0.0085566 2.4350260
2006 0.0 0.0 2.4036566
2007 1.0 0.0120313 2.4503885
2008 3.0 0.0520768 3.0836130
2009 2.0 0.0171492 2.5361915
2010 1.0 0.0096956 2.4345195
2011 2.0 0.0231206 2.5922390
2012 3.0 0.0078834 2.4864413
2013 3.0 0.0053087 2.4600295
2014 4.0 0.0085735 2.5253195

pricing model as well. As in the year 1996, with a whopping five jump arrivals,
the price merely increased by 5% to 2.53 from 2.403 due to the low intensity of
jump of 0.006. While in the year 2003, a single jump with high intensity of 0.04

is enough to make the annuity being priced at 2.58.

Figure 4.12 is based on S&P 500 index and same year period with DJI
which is 1995 to 2014. They are represented by blue asterisks point. The figure
shows that most of the frequency of jump is around one, while only a few years

had a frequency of jump arrival more than 3.

In Table 4.9, the pricing of the annuity without considering jump events are
allocated at the origin with a payoff less than 2.403. This can be observed in the
year 1996, 2005, 2006 and 2012.

From Table 4.9, during the year 2008, the annuity is priced at 3.307. The
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Figure 4.12: The expected rewards function from the annuity with
jump model based on S&P 500.

arrival of jump events caused the price of annuity to increase 37% higher than
the normal. The year 2000 also had an increase in the price of 8%. In these sim-
ulations, only the year 2008 made a change in price higher than 10%. Therefore,
we can say that S&P 500 index is slightly more stable than Dow Jones Indexes.

Yet, precaution and consideration of the jump events should not neglect.

Without considering the chances of negative extreme events, the annuity is
undervalued. In Figure 4.13, we combined the intensity of jump with the arrival
of jump in each direction. We observe that as the investment risk is higher (more
negative jump), the price of the annuity will be higher. On the other hand, the
price may be lowered than expected price (from $2.4 to $1.6) if the market is

expected to be good.

The observation from Figure 4.13 supports the characteristic of annuity

where the annuitant receives the same flow of return regardless of the market
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Table 4.9: Pricing of S&P 500 in Annuity with modified jump dif-
fusion model.

Year Frequency of jump Jump intensity Price of Annuity

1995 1.0 0.003582 2.421296
1996 2.0 0.009150 2.469661
1997 1.0 0.006960 2436795
1998 2.0 0.013204 2.507621
1999 0.0 0.0 2.403656
2000 5.0 0.015920 2.690801
2001 1.0 0.020282 2.499405
2002 3.0 0.024551 2.688754
2003 1.0 0.014022 2.458091
2004 1.0 0.007017 2436732
2005 0.0 0.0 2.403656
2006 0.0 0.0 2.403656
2007 2.0 0.013596 2.509773
2008 4.0 0.052090 3.307822
2009 1.0 0.027947 2.527172
2010 1.0 0.011455 2.446479
2011 2.0 0.024247 2.596834
2012 0.0 0.0 2.403656
2013 1.0 0.005189 2.430489
2014 4.0 0.008849 2.529361

performance. When the market is expected to be bullish, the writer of the an-
nuity will gain from the market performance, hence the price of annuity can be
lowered to attract more annuitant. When the market is expected to be bearish,

the price of the annuity will be increased to cover the risk exposure.

Considering the chances of extreme events, the annuity could be either
overvalued or undervalued. The expected price of the annuity would be ex-
pecting a surged in price during a negatively drifted jump event, causing the

annuity policy to be overvalued.

We had shown that the European call option can be priced higher when
we expect a positive drifting jump event, but annuity should be priced lowered
instead. This concludes that without knowing the directions of jump and the

characteristic of underlying assets, mispricing would occur.
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Figure 4.13: The expected price from the annuity with jump model
based on DJI and S&P 500 when considering 2 different direction
of jumps.

Either drift will be resulting in a fail in fair pricing. The need of consid-
eration on jump event in the pricing model is important as the pricing company
would lose its competitiveness to the other company when they failed to provide

a fair price.
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CHAPTER 5

CONCLUSION AND DISCUSSION

Both economic downturn in 1998 and the sub-prime crisis in the year 2007 are
the most noticeable extreme events happens in the recent years. The occurrence
of such extreme events had surpassed the limits of pricing model that used ge-
ometric Brownian motion (GBM) as fundamental. The impact of the extreme
event can be tremendous if it is left neglected by investors. The inability of the
Black Scholes model to capture the extreme jump event would lead the investor
into a riskier situation. Hence, the ability to quantify its signal before it hap-
pens is significant and important as it would reduce the risk of being bearded by

investors.

The jump diffusion model suggested by Kou is more realistic in capturing
such signal compare to GBM. GBM propose that the underlying asset changes
according to its drift and volatility. While the jump diffusion model added a
component of jump into GBM. This allows the underlying asset to model ex-
treme event. Jump diffusion model is capable to infuse distribution of jump
event into the pricing model, which allow investors to aware of the occurrence

of jump event.

Kou model proposed that the jump event should be distributed as normal
distribution or double exponential distribution. Both distributions are distributed
heavily around the zero. In Kou research studies (Kou, 2008), he used data
of S&P 500 from 1980 until 2005 and plotted a histogram based on daily log

returns (see Figure 5.1).
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Figure 5.1: Distribution of S&P 500 daily log return from 1980 to
2005 by Kou.(source from Kou, 2008)

Kou claimed that the Figure 5.1 is normally distributed. However, in our
research where we used more bins in the histogram and more updated data from
1995 to 2014, our findings in Figure 3.3 shows differently compared to Kou’s
findings.

The result seems to be less symmetry when more bins in the histogram in
Figure 3.3. On the other hand, Kou’s observations show that the distribution
of the negative part had a longer tail than the positive part. This minor differ-
ence will impact pricing in simulations in the long run. The difference occurred
between our result and Kou’s result may due to the changes in the time period.
However, our goal is to find and determine a jump model that can be generalized

over various time periods and even across different types of financial instrument.
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So, the jump model should be able to accommodate the difference between time

and instruments.

If the jump event distribution is centered at zero as proposed by Kou, we
tend to underprice the financial product due to the jump event is always close
to zero, causing the “expected” spike in price is negligible. In order to get
higher spike intensity, the arrival of a jump needs to be higher such that the
jump components get a larger value that is not around zero. By doing this, the
frequency of jump will be high and cause contradiction to our initial definition
for jump event. A jump event is a rare, large fluctuation in price, but not a

frequently minor changes event like volatility.

Initially, Gibbs sampling technique is used to calibrate out the values of
parameters from the market data, which is the drift and volatility of the model
itself, the jump arrival and the intensity and volatility of the jump. The variables

used to represent each parameter are (i, 0, A, fjump, and Tjump-

The paper from Juliet G. D’Cunha, (D’Cunha, J. G., and Rao, K. A., 2014)
shows the approach to determine the volatility of stock price can be done with
Bayesian inference. While his results show it is best to use inverse gamma for
volatility. The distribution of jump is determined as normal distribution here and
the arrival of a jump is Poisson distribution. Table 2.1 from Section 2.7 shows

the conjugate prior used for different parameters.

Chan and Wong (Chan and Wong, 2006) show the possibility to simulate
and retrieve Dow Jones indexes parameters needed for jump diffusion model
simulations. However, the Gibbs sampling method shows its limitation in con-
verging of parameters. According to Table 4.1 from Section 4.1, we show that
Gibbs sampling method could handle the “jump arrival” well but fails to differ-
entiate the clustering effects between “volatility” of underlying assets and the

“jump intensity” from jump event.
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We observed that the same path and pattern of a stock price could be sim-
ulated using different sets of parameters. For example, a configuration of high
jump’s intensity and low asset’s volatility can simulate a stocks path. This path
might be able to attain by a slightly lower jump’s intensity but higher asset’s

volatility.

The results attained by Gibbs sampling method is not constant with every
calculation and it causes Gibbs sampling method fails to choose the best solution
from the possible solutions. Therefore, we improvised into an empirical method

that enables us to distinguish noise and jump intensity.

Isolation of stochastic terms is difficult by means of Gibbs sampling method,
and hence we choose a simpler way to separate the clustering effects by using
the empirical method. A brief explanation will be shown, while the details can

be retrieved in Section 3.5.1.

For further research in the future, we suggest that this method of isola-
tion can be further improved by using stochastic ordering method. Klenke and
Mattner (Klenke, A. and Mattner, L., 2010) shows five different methods on
stochastic ordering, including the application in the Markov Chain. This might

be an alternative way for isolation of stochastic terms.

The empirical method we introduced focus on separation of the intensity
of jump, jump arrival with the asset’s volatility. In order to capture each jump
spikes precisely with our empirical method, we had separated jump spike in-
tensity and volatility with two threshold lines. Daily log return that is between
the threshold lines would be classified under asset’s volatility. If it exceeded the

threshold lines, it is identified as a jump spike.

The threshold line is based on the median of daily log return of the year.
Therefore, it is different for each asset and each year. Mean of daily log return
is not used here to avoid jump spike being included within the threshold lines

calculation. We had shown the results from empirical method in Table 3.7 and
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3.8. They show that the occurrence and intensity of jump are distinct for both
different directions. Hence, we had solved our first question in problem state-
ment where the jump distribution is not symmetry. We proceed to first objective
and modify the model that incorporates piece-wise “double” normal jump into

the jump diffusion model.

We modified the distribution of jump event into piece-wise “double” nor-
mal distribution for the jump diffusion model as shown in Equation 3.5. This
model retains its leptokurtic feature of the underlying assets and we are able to
recover and reproduce the parameter value, similar to both Kou’s jump model
and GBM. The reason we choose piece-wise “double” normal distribution over
double exponential distribution is based on the results we get from Figure 3.3.
Both positive and negative directions fit with double normal distribution as shown
in Figure 3.4 rather than double exponential which with the peak allocated in the
middle.

With piece-wise “double” normal distribution, the height, width and local
of each positive and negative normal distribution can be modified easily compare
to the exponential distribution. The flexibility of piece-wise “double” normal
distribution allow us to fit the model into different types of assets with different

types of jump events.

For example, Figure 4.3 and Figure 4.4 show that DJI index and NASDAQ
had their positive daily log return’s distribution denser when further from zero.
While Figure 4.5 and Figure 4.6 show that Oil & Gas index and the FT'SE index

had their positive daily log return higher and closer to zero.

In Section 3.6, this research had demonstrated the effect of jump on Euro-
pean call option, on different jump intensity and occurrence. In Section 4.3.2,
the results from Figure 4.7 shows that the drift of jump, f4jymp, arrival of jump,
A and its direction will affect the option payoff. Higher drift resulting in an el-

evated payoff. An increase in the arrival of an upward jump will increase the
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option payoff as well.

During the economic recession, the arrival of a downward jump event largely
increases relative to upwards, causing the prices of underlying assets or indexes
greatly reduced. This means that, whenever we are expecting an increase of
downwards jump from the stock or market, a larger risk and fluctuation of price

should be expected.

In this research, we investigate the impact of an upward positive jump to the
European call options based on indexes. The findings show a similar behavior
to the previous simulation, where an increase in the arrival of an upward jump
or jump intensity will increase the option price significantly. In Table 4.6 and
Table 4.7, we have shown that the arrival of jump events will affect the pricing
model of the European call option. For the European call option, both simulated
data created with Dow Jones index and S&P 500 changes drastically when there
are jump events. The changes could be from fifty percent and exceed even a

hundred percent compared with the price without jump event.

The modified jump diffusion model does not solely fit in European call
options only. It can be used in the pricing model of other financial securities
as well. The next financial security we use is the annuity. The price of annuity
is calculated with the Heston model. The reward function of the Heston model
is depending on market performance as well. This shows that the price of the

annuity will be affected by extreme events.

Under the application of piece-wise “double” normal jump diffusion model,
the price of annuity is shown in results in Section 4.4. The reward function is
shown to be higher when the underlying assets are undergoing a negative jump
event. The price of an annuity would be undervalued if we did not account for
downward jump events. For example, we refer back to Figure 4.11 and Table 4.8
from the previous section. During the year 2008, the maximum price of annuity

should be around 3.08 rather than 2.403 which without considering the risk of
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the jump. The price was undervalued with 20%.

On the other hand, the price of annuity should be expecting a drop when it
is undergoing a positive jump event. The price of an annuity would be higher if
we calculate using GBM. In this case, we can say that the annuity is overvalued,

as the risk of lost being undertaking is far larger than what they are expecting.

The price of a financial security should be measured and considered thor-
oughly, whether that the underlying assets it used are under the risk of jump
events. Hence, it is important to consider piece-wise “double” normal jump

model rather than GBM when dealing with market derivatives.

Besides European call option and annuity, there are other derivatives that
the modified jump diffusion model able to fit in. However, the type of instru-
ment used needed to be determined carefully for better risk managing and lost
preventing. A research was done by Dante and Steven (Lomibao, D., and Zhu,
S., 2005) shows that path-dependent instrument is sensitive to extreme jump
events. Hence whether it is a path-dependent instrument or not will affect the

outcome of “fair” price heavily.

Examples of the path-dependent instrument are American options and bar-
rier options. American options can be exercised during any time within the
expiration period, unlike European that can only be exercised upon expiration.
Barrier options can be either knock-in or knock-out. A knock-in barrier option
contains no value until the underlying reaches a certain price. Knock-out barrier
option will expire worthless if the underlying asset exceeds a certain price. This

will limit both the profits for the holder and limit losses for the writer.

Now we had compared modified jump diffusion model and GBM for Eu-
ropean call option and annuity. If we apply the modified jump diffusion model
to the path-dependent instrument, what would be the expected impact? Taking
barrier options as an example, what should we expect when we are using GBM

to simulate the price. Will the price touch the barriers as frequent as the price
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that is simulated by the jump diffusion model?

Barrier options with jump diffusion model would have larger fluctuation in
price with the arrival of extreme jump event. If the underlying asset is highly
volatile, the price will jump up and down rapidly and the frequency of extreme
jump event increase as well. As the intensity of jump goes larger, the chance of

surpassing the barrier will be higher.

If we are using the same set of data for GBM simulation, the fluctuation
will not be as big as the jump diffusion model. The chance that the price will hit
the barrier will be relatively lower. In the future, we will investigate the effects

of jump diffusion model on path dependent instrument.
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