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ABSTRACT

A STUDY OF PROPERTIES ON
GENERALIZED BETA AND

MIXTURE OF TWO MODIFIED LOG-NORMAL
DISTRIBUTIONS

Dennis Ng Wen Wei

The objective of this research is to study the statistical properties of

two newly proposed distributions which are the generalized Beta

distribution from the Beta family and the mixture of 2 modified

Log-Normal distributions from the Skew Normal family (Chuah, 2016).

Properties such as the moment generating function are derived for the two

mentioned distributions. The advantages of the proposed distributions are

their versatility and flexibility where they could provide a good description

to various data with properties such as unimodal/uniantimodal increasing,

decreasing, bath-tub shape distributions and etc. Other distributions such

as Beta, Gauss Hypergeometric, Exponential and Gamma distributions are

selected to compare their fitting ability with the proposed distributions.

An empirical study is performed using simulated data and real rainfall

volume data collected from Sungai Lui (river) with Maximum Likelihood

Estimation (MLE) as the parameter estimation method. Model selection

criteria such as Kolmogorov-Smirnov K-S test, Akaike’s Information

Criteria (AIC) and Root Mean Square Error (RMSE) are used to identify

the better fitted model in this study. The empirical results show that the

proposed mixture is the better fit in its Skew Normal family while the

proposed generalized Beta is the worst performed in its Beta family.
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CHAPTER 1

INTRODUCTION

Continuous models enable researches to visualise, analyse and make

predictions on the sample easily; see Johnson et al. (1994, 1995).

Hundreds of continuous distributions are discovered and more new models

with various applications are still being studied. Families of the continuous

univariate and multivariate distributions have been examined by many

researchers where they could be applied to many different field of studies.

For example, application of new Beta-type models towards various fields

could be seen from McDonald and Xu (1995), Chotikapanich et al. (2007)

and Lima et al. (2016). For the Skew Normal family distributions, see

Woolhiser and Roldan (1982), Cho et al. (2004) and Suhaila et al. (2011).

Three new continuous distributions were proposed by Chuah (2016) to

study the frequency of rainfall volume data. The proposed distributions

include two Beta-type distributions and a mixture distribution where they

are generalized versions of various statistical distributions known. The

first Beta-type distribution introduced is the generalized Beta distribution

consisting of 6 parameters. It could be reduced to the Kumaraswamy

(1980), McDonald (1984)’s generalized Beta of the 1st kind, Armero and

Bayarri (1994)’s Gauss Hypergeometric and also arcsine distributions. The

second Beta-type distribution is the modified Beta distribution consisting

of 5 parameters. It can also be related to the Beta distribution and other

Beta-type distributions mentioned above. Meanwhile, the third proposed

distribution is the mixture of 2 modified Log-Normal distributions with 7
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parameters from the Skew Normal family distributions. The proposed

mixture distribution could be reduced to the mixture of 2 Log-Normal,

modified Log-Normal and Log-Normal distributions.

The main difference between the two Beta-type distributions and the

mixture distribution is the constraint present within the x-variable. The

Beta-type distributions have a variable constraint between 0 and 1 while

Skew Normal family distributions require it to be greater than zero. These

distributions were proposed due to the large number of parameters present

which provides a lot of flexibility in fitting various shapes of data. The

flexibility of the distributions will be discussed later.

The proposed distributions are applied to rainfall data from the

Langat River, Selangor and Chuah (2016) has compared the fittings with

some well known existing distributions. It is concluded that the mixture of

2 Log-Normal distribution has the best fit among the distributions in his

study. Unfortunately, the fitting of the proposed mixture of 2 modified

Log-Normal distributions was unable to be examined as Chuah (2016)

failed to compute the maximum likelihood estimator for this distribution

due to the large number of parameters present. It was then presumed that

the proposed mixture distribution will be a good fit to the data as well

because it is a general form to the mixture of 2 Log-Normal distribution.

This presumption was supported through the fitting results of the

proposed generalized Beta distribution where it tends to fit better than its

sub-distributions.
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Among the three distributions proposed, the general properties of the

first Beta-type (generalized Beta) distribution and the mixture of 2

modified Log-Normal distributions are yet to be derived. Only the

modified Beta distribution’s properties was successfully derived by Chuah

(2016). In addition, the failure of computing the maximum likelihood

estimator for the mixture of 2 modified Log-Normal distributions is of

concerned because it has the potential to be a suitable model to

characterize rainfall data from the Langat River. Clearly, further work is

needed in order to have a better understanding on the distributions in

fitting the data.

The objective of our study is to explore the properties and the

application of the two underived proposed (generalized Beta and mixture

of 2 modified Log-Normal) distributions. The distributions’ flexibility will

also be discussed and properties such as the cumulative distribution

function (CDF), expected value, moment generating function (MGF),

variance, skewness and kurtosis will be derived. A conference proceeding

regarding the study of properties on generalized Beta distribution which is

about the derivations of the generalized Beta distribution’s properties has

been accepted for publication (Ng et al., 2018).

The popular maximum likelihood approach will be used for the

parameter estimation due to its generality and asymptotic efficiency while

model selection criteria such as Kolmogorov-Smirnov (K-S) test, Akaike

information criterion (AIC) and root mean square error (RMSE) will be

applied to compare the performance between the selected models. The

problem of computing the maximum likelihood estimator for the proposed
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mixture distribution faced by Chuah (2016) is solved using a certain

statistical software. It will be presented in Chapter 4. The distributions

will be fitted to rainfall volume dataset collected from the Langat river

basin but from a different reservoir as compared to Chuah (2016). Besides

that, comparisons and discussions will be done to see which model has a

better fit and to check whether the result supports the conclusion made by

Chuah (2016). A summary on the differences in methodologies used by

Chuah (2016) and this research is shown in Table 1.1 below.

Table 1.1: Summary of Research Studies

Study Chuah (2016) This Study

Dataset Data collected is on rainfall volume from Sg. Lui but from

different reservoirs.

Theoretical Modified Beta distribution’s An extended study on

properties is derived generalized Beta and

mixture of 2 modified

Log-Normal distributions’

properties is conducted.

Empirical Comparison of various models Comparison of 3

including the proposed distributions within the

distributions across the Beta Beta family and 3

and Skew Normal family distributions within the

were conducted using Skew Normal family were

the same data massaging conducted. Two different

and transformation data massaging and

method for both families. transformation methods

Mixture of 2 Log-Normal were applied to both

distribution is concluded to families separately.

be the best fitted model.
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In this research, aside from the introduction that was mentioned in

Chapter 1, literature review will be discussed in Chapter 2. The proposed

distributions will be introduced in Chapter 3 where some of the properties

for the two distributions are derived. The data collected and methodology

used in this research will be explained in Chapter 4. In Chapter 5, the

empirical results will be discussed and comparisons between the various

models selected will be presented using model selection criteria. Finally,

conclusions and comments on future research work will be presented in

Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

Although present distributions are commonly used in various field of

researches, there is still a drawback when it comes to flexibility where they

are unable to be a good representation as a model towards certain fields.

To overcome this, the method of generalization is introduced. Tahir et al.

(2015) mentioned that proposing generalized models attracted theoretical

and applied statisticians due to their flexible properties and the

generalization of the distributions are done either to provide a physical or

statistical argument in order to explain a generated data mechanism, was

an appropriate model that has been used successfully before or was a

model that has been proved to fit empirically well towards a dataset.

In this chapter, the Beta family distribution will be discussed in

Section 2.2 where distributions nested to the proposed generalized Beta

distribution will be introduced and various forms of generalized Beta

distributions will be briefly discussed. Whereas, the Skew Normal family

continuous distributions will be discussed in Section 2.3. Distributions

related to the proposed mixture of 2 modified Log-Normal distributions

such as the Skew Normal distribution will be reviewed. In Section 2.4, the

application of various distributions towards a wide range of studies will be

presented. In addition, different parameter estimation methods will be
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stated in Section 2.5 and finally various types of model evaluation metrics

as well as the selection criteria will be presented in Section 2.6.

2.2 Beta Family Distributions

In probability theory and statistics, Beta family distributions are

continuous distributions that are usually bounded by the interval (0,1)

and the parameters that appear as exponents of the random variable

actually control the shape of the distribution. Beta family distributions

with finite range gives an advantage in fitting a dataset because Beta

PDFs are versatile where it provides the advantage of modelling various

forms of uncertainties since they can produce increasing, decreasing,

unimodal, uniantimodal or even uniform shapes where it depends on it’s γ

and q parameters’ values (Johnson et al., 1996).

Nonetheless, the 2-parameter Beta distribution is undesirable in

certain ways because it’s precision is limited and has not much flexibility

in fitting certain types of data. Jacob (2013) even mentioned that the

application of the classical Beta distribution is limited due to its inability

to fit the data very well. He explained that the flexibility of the model

could be enhanced by adding more parameters to it. Hence, it is preferred

to have Beta models that are more flexible parametrically in order to

provide richer empirical descriptions about the data and also providing

more structures instead of a non-parametric estimator (Chuah, 2016).
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Various forms of generalized Beta distributions such as McDonald and

Xu (1995), Chotikapanich et al. (2007), Alexander et al. (2012) and other

related studies were developed in many studies in order to increase the

flexibility of the model in fitting the data. In Jacob (2013) research, the

development of the classical distribution with (0,1) and (0,∞) domains to

3, 4 and 5-parameter generalized Beta distributions and other Beta-type

models stated in the mentioned references through various methods were

derived and compiled. For instance, distributions developed from the Beta

generated distributions such as Beta Gamma, Beta Pareto and Beta

Rayleigh distributions as well as Beta distributions constructed from

special functions such as Beta Bessel, generalized Beta and Gauss

Hypergeometric distributions were shown in his research.

Although additional parameters were added to the classical Beta

distribution to increase it’s flexibility, it might not be enough to fit certain

shapes of data. During the fitting of the developed Beta distributions to

family income data by McDonald and Xu (1995), it was found out that

the 4-parameter generalized Beta was the better fit and not the

5-parameter model based on the likelihood and other model selection

criteria. Therefore, Jacob (2013) mentioned that the development of the

5-parameter generalized Beta distribution does not provide additional

flexibility compared to the 4-parameter distribution.

Due to the lack of additional flexibility in the 5-parameter generalized

Beta distribution, Chuah (2016) then proposed a 6-parameter generalized

Beta distribution. This generalized Beta distribution is expanded from the

generalized Gauss Hypergeometric function where the development was
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based on the special functions method mentioned above. The 6-parameter

generalized Beta distribution is an extension of the 5-parameter model

under the (0,1) domain with the addition of the 2F1 and 3F2

Hypergeometric functions. The presence of the Hypergeometric functions

provide the advantage of modelling complex numbers as well. Hence, it

would be of great interest to study the performance of this improved

flexible proposed generalized Beta distribution consisting of 6 parameters

(γ,ρ,β,α,σ and z) in fitting the data. In addition, the 6-parameter

generalized Beta distribution can be reduced to various Beta family

distributions by setting it’s parameters with certain values as follows:

1. Kumaraswamy distribution (Kumaraswamy, 1980)

z = 0; α = γ; ρ−β = q; b= 1 and γ = 1

2. Generalized Beta of the 1st Kind distribution (McDonald, 1984)

z = 0; α = γ and ρ−β = q

3. Gauss Hypergeometric distribution (Armero and Bayarri, 1994)

α = γ; ρ= β+ θ and z =−t

4. Standard Arcsine distribution

z = 0; α = 0; β = 0; γ = 0.5 and ρ= 0.5

2.3 Skew Normal Family Distributions

Skew Normal distribution introduced by Azzalini (1985) is a strongly

unimodal distribution with properties of “strict inclusion” for normal

density and mathematical tractability. It was derived from the Normal

distribution by multiplying the standard normal PDF with the CDF.

Mart́ınez-Flórez et al. (2013) mentioned that the proposal of the Skew
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Normal distribution was to conform data that has a range of asymmetry

and kurtosis that are out of the range allowed by the normal distribution.

Thus, it was also mentioned that Lin and Stoyanov (2009) presented the

Log-Skew Normal or modified Log-Normal distribution to conform data

with asymmetry and kurtosis that are out of the range allowed by the

Log-Normal distribution.

The presence of the logarithmic function, (ln) provides the advantage

for the distribution to cater data of various shapes including a

symmetrical one. It is suitable in modelling continuous random variables

that are greater than zero or data that appears to be more or less skewed.

Skewness occurs when average are low, variances are large and the values

cannot be negative (Limpert et al., 2001). These concepts are then applied

to the Skew Normal distribution which results in the modified Log-Normal

distribution. The PDF of the distribution is as follows:

f(x) = 2√
2πσx

e
− (lnx−µ)2

2σ2 ×
∫ ( xeµ )

(c)
σ

0

1√
2πt

e−
(ln t)2

2 dt

0<x <∞

σ > 0, µ ε <, −1≤ c≤ 1

However, Wirjanto and Xu (2009) stated that Gaussian related

distributions might exhibit substantial leptokurtosis, also known as fat

tails and asymmetry around the mean. Thus, they suggested the usage of

a more flexible model such as the mixture distribution to accommodate

this stylized fact. This suggestion was proposed because McDonald and

Butler (1987) explained that mixture distributions provide a framework

for models where a random variable of a distribution has a particular form
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which provide an approach to model randomized or heterogeneous data as

well as a rationale for some thick-tailed distributions.

In regards to the concerns of skewness, asymmetry and kurtosis as well

as flexibility to model positive value data, we are therefore interested to

further study the mixture of 2 modified Log-Normal distributions

proposed by Chuah (2016). The mixture distribution is closely related to

the Skew Normal distribution introduced by Azzalini (1985) with the

application of the Log-Normal properties. The distribution is modified

with the logarithmic of the random variable and the mixture provides the

flexibility for the distribution to be unimodal or bimodal where it is able

to model heterogeneous data as well. In addition, the mixture of 2

modified Log-Normal distributions can be reduced to the following

distributions by setting certain parameters of the proposed mixture

distributions with other values such as follows:

1. mixture of 2 Log-Normal distribution when c1, c2 = 0

2. modified Log-Normal when p= 1

3. Log-Normal distribution when c1, c2 = 0 and p= 1

A relationship chart between the Beta and Skew Normal families including

the proposed distributions is shown in Figure 2.1.
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Figure 2.1: Relationship Chart of Various Distributions (Chuah, 2016)
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2.4 Application to Various Field of Studies

Application of new models in distribution fitting can be done towards

various field of studies. For example under the Beta family distributions,

McDonald and Xu (1995) fitted the 4-parameter and 5-parameter Beta

distributions to income distribution, stock returns and regression analysis

and were compared with other Beta related distributions (i.e. generalized

Beta of first and second kind, exponential generalized Beta and etc.).

Chotikapanich et al. (2007) fitted a 3-parameter Beta-2 distribution, a

generalization of the normalized Beta model to income and inequality

data. Even Sarabia et al. (2014) fitted the bivariate Beta generated

models to income, health and education data. Moreover, the generalized

Beta distribution of the 1st kind along with special models of the

Beta-generated distributions such as generalized Beta Normal distribution

were applied to financial and voltage data by Alexander et al. (2012).

Besides applying Beta family distributions to man-made data, the

distributions were seen to be applied to environmental phenomena and

compared with other family distributions. Lima et al. (2016) proposed the

4-parameter Beta distribution that was used to estimate the intensity

duration frequency curve of rainfall. It was concluded to fit well towards

the historical data. In addition, it could be further evident from Khaleel

et al. (2017) research where a 1-parameter Beta Burr type X distribution

was introduced and known to fit better than other distributions towards a

certain rainfall dataset. Furthermore, Murshed et al. (2018) even modelled

the Beta-P distribution for flood frequency analysis and it turns out to

perform better than other well known distributions.
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For Skew Normal family distributions, numerous field of research were

explored to observe the applicability of their statistical distributions.

Related distributions such as the Log-Normal distribution was developed

to linear and non-linear Log-Normal models were applied to estimate the

soil water retention curves by Hwang and Choi (2006) and they were

found to be well performed. Besides that, application of Log-Skew Normal

distribution to wireless communication was studied by Li et al. (2011).

The distribution was transformed and fitted to overcome the drawback of

restriction for the skewness in the samples where it was observed to be

effective in providing accurate simulation results. The Skew Normal and

Skew-student distributions were even fitted to insurance claims data by

Eling (2012) and compared with 17 other distributions as well as

transformation kernel where they are seen to be good models.

Towards the application of the Skew Normal family distributions on

environmental studies, Adiku et al. (1997) did a study on Gamma

distribution and concluded that the 2-parameter distribution is more

appropriate for data with long tail distribution because it was found to be

a good fit to daily rainfall at two sites in Ghana. In addition, Gamma and

Log-Normal distributions were studied by Cho et al. (2004) and they

mentioned that both of the distributions matched well to the PDF of

rainfall data. In addition, Bartoletti and Loperfido (2010) fitted the Skew

Normal distribution to the air pollution data where it was seen to be a

very good fit.

On the other hand, there seems to be an increasing trend in applying

mixed-distributions towards environmental studies such as rainfall as well.
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Based on Woolhiser and Roldan (1982), they fitted the Exponential,

Gamma and mixed Exponential distributions to rainfall data and it was

concluded that the mixed distribution is superior compared to the others.

This is futher supported by Suhaila and Jemain (2007a), Suhaila and

Jemain (2007b), Suhaila and Jemain (2008) and Suhaila et al. (2011).

Studies were done on several types of combined discrete and continuous

mixed distributions towards rainfall data which included dry days. It was

concluded that the mixed Log-Normal distribution has the best fit in most

of the rain stations in Peninsular Malaysia. Thus, this shows that mixture

distributions are favourable in modelling rainfall data.

Besides, parameters re-calibrations could also be considered where such

practices are common in the banking industry. Parameter re-calibration is

a method of parameter initialization before proceeding with the fitting

process. For example, certain information about the data is known which

help in setting certain parameters of a model to some fixed calculated

values. It was stated in some studies that this method produce parameters

that helped improved the estimation strength of the models studied.

In the study of Tong et al. (2016), it was mentioned that the

zero-adjusted gamma model is more accurate in calibration than the

benchmark models. In addition, Tong et al. (2013) presented that the zero

adjusted gamma model presents a powerful alternative to existing loss

given default approaches using a semi-parametric model. Even Misankova

et al. (2015) mentioned that used structural models and reduced-form

models as well as Loss Given Default models to become a part of credit

risk is accepted not only by academic institutions but also by the banking
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industries. Spuchl’akova and Cug (2015) also concluded that reduced-form

models based on the assumption that the market price of defaultable

financial instruments disclose the investors’ expectations about credit risk

parameters have proven useful in analysing the dynamics of credit spreads.

Comparisons could be done to identify whether re-calibrated distributions

would produce more accurate estimations for the proposed distributions

for various field of studies.

Due to the common interest of applying statistical distributions to

environmental phenomena such as rainfall volume for both the Beta and

Skew Normal families, the proposed distributions (i.e. generalized Beta

and mixture of 2 modified Log-Normal) will be applied to that particular

field of study as well. Moreover, the fitting results of the proposed models

could be compared with Chuah (2016) to observe whether the results are

consistent or not. Parameter re-calibrations as mentioned above will be

used to calculate the zero-inflated probability and will be explained in

detail later.

2.5 Methods of Parameter Estimation

In literature, many parameter estimation techniques such as Method of

Moments (MOM), Maximum Likelihood Estimators (MLE), Least Squares

Method (LSM), and maximum goodness-of-fit estimator were introduced.

Currently, many studies are ongoing to identify which method is more

suitable to be used depending on the type of distributions under study or

the type of data that is being fitted to. Such studies could be seen in
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Zhang (1997), Nwobi and Ugomma (2014), Karakoca et al. (2015) and

Kateregga et al. (2017). Even new methods of distribution fitting were

proposed to fit certain type of complex distributions such as a combination

of 2 methods in Fournier et al. (2007), MLE-Least Squares approach in

George and Ramachandran (2011) and a newly proposed approach

consisting of 5 various methods in Elmahdy and Aboutahoun (2013).

From the studies mentioned above, there are many different methods

of parameter estimation. However, it can be seen that MLE is one of the

most common method used in many research due to its efficiency as well

as asymptotically unbiased properties (Teimouri et al., 2013). Fisher

(1925) introduced the concepts of consistency, efficiency as well as

sufficiency into statistical theory. They can be found in the MLE method

that was well mentioned in Norden (1972). In addition, Myung (2003)

mentioned that among the two general methods of parameter estimation,

MLE and LSM, MLE is important in the theory of inference which

possesses many optimal properties in parameter estimation mentioned

above and inferential techniques in statistics. On the other hand, LSM is

just primarily a descriptive tool. Aside from the advantages of the MLE

mentioned above, it is also preferable as it could also be used to fit

censored data as well (Natrella, 2010).

In many studies, it could be observed that MLE tends to be preferred

for certain kind of distributions or will perform better than other

estimation methods. For example under the Beta family distributions, it

was mentioned in Bowman and Shenton (1992) that over a limited

parameter space in the Beta distribution, MLE is preferred for the
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estimation of the parameters. Furthermore, the classical Beta distribution

was also fitted using various estimation method such as MLE, MOM,

quantile estimator and etc. In Owen (2008), it was concluded that the

MLE performed as well as the straightforward MOM and quantile

estimation method. Besides that, Erick et al. (2016) manage to improve

the MLE method using the Expectation-Maximization algorithm to cater

for Type II censoring scheme data to be fitted to the Kumaraswamy

(1980) distribution.

For the Skew Normal family distribution, Dey (2010) estimated the

parameters of the Skew Normal distribution using the MLE method by

approximating the ratio of the PDF and CDF by linear and non-linear

functions. It was concluded that the linear approximation performance

was quite satisfactory. Besides that, Karakoca et al. (2015) mentioned that

the MLE was the best performed method in fitting its mixture distribution

for data with large sample sizes. Hanevik (2016) fitted the Black Scholes

model which is very well related to the Log-Normal distribution and

mentioned that MLE is preferred as it uses more information of the

likelihood function to estimate the parameters making the estimates

produce smaller variance and being less biased. As the rainfall data is a

censored type data and there are favourable results of using the MLE as

the parameter estimation method in fitting complex as well as mixture

models, hence it is chosen to fit the proposed distributions in this research.
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2.6 Types of Model Selection Criteria and Evaluation Metrics

Model selection criteria are important and are also common practices in

examining the performance of a different fitted models. The correct choice

of models to detect the similarities and differences depend on the

appropriate use of model selection strategies as they might favour different

models (see Wong (1994)). Thus, choosing the correct model selection

criteria is important in order to obtain reliable results. Here, several

model selection criteria for examining the performance of a set of

alternative models are reviewed. They are the K-S goodness of fit test,

Chi-Square goodness of fit test, AIC, Bayesian Information Criteria (BIC),

log-likelihood ratio test (LRT), RMSE and mean absolute error (MAE).

Goodness of fit test is a type of model selection criteria that are

usually applied to test a hypothesis about a certain population’s

distribution. A few of the most commonly used tests are the K-S test and

Chi-Square (χ2) test. To choose an appropriate goodness of fit test among

the two, Massey Jr (1951) discussed the advantage of the K-S test to the

χ2 test in their research. Firstly, it was mentioned that the K-S test will

be able to detect smaller deviations in cumulative distributions compared

to the χ2 test. Secondly, it is also stated that the K-S test treats each

observation individually and thus does not lose information by grouping

which is needed by the χ2 test especially when the sample size is small.

Lilliefors (1967) even stated that the K-S test appears to be more powerful

compared to the χ2 test for any sample size. Furthermore, Mitchell

(1971)’s research supported the advantage mentioned by explaining that

the K-S test does not have the expected frequencies constraints which is
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normally associated with χ2. Therefore, with these advantages mentioned,

the K-S test is chosen for this research.

In Wong (1994), it was explained that LRT is only useful for

moderating sample sizes in conjunction with nested Chi-square difference

test while the AIC are systematically biased toward models incorporating

group differences in log-linear modelling. The BIC is known to be the

most reliable in his research as it provides consistent results when the

sample size is sufficiently large. Anderson and Burnham (1999) mentioned

that Kullback-Leibler information criteria such as AIC, corrected AIC

(AICc) and corrected Quasi-AIC (QAICc), attempt to select good

approximating models for inference based on the principle of parsimony

where it does not assume a true model exists. On the other hand, criteria

such as BIC, minimum description length (MDL) and Hannan-Quinn

(HQ) are “dimension consistent” that consistently estimate the dimension

of the true model where it was assumed to exists which requires very large

sample sizes.

It was also mentioned in Cavanaugh (2009)that AIC should be selected

when the primary goal of modelling is predictive where a model is build to

predict new outcomes. Whereas, BIC should be used when the goal is

descriptive, where a model is developed to represent the most meaningful

factors influencing the outcome based assessment of relative importance.

As this research is to identify the most suitable model that could estimate

the frequency of rainfall volume and a true model was not assumed to

exist, AIC is chosen as a model selection criteria.
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To choose between model evaluation metrics such as RMSE and MAE,

Willmott and Matsuura (2005) mentioned that RMSE is inappropriate as

it is a function of three characteristics for a set of errors and MAE is a

more natural measure of unambiguous average error. However, Chai and

Draxler (2014) managed to show that the RMSE which has been used as a

standard metric to measure model performances in meteorology, air

quality and climate research is not ambiguous and is more appropriate

than MAE when the errors follow a normal distribution. They mentioned

that RMSE is preferable as it avoids the use of absolute value, which is

highly undesirable in many mathematical calculations especially on model

error sensitivities or data assimilation applications. In addition, the sum

of squared errors is often defined as the cost function to be minimized by

adjusting model parameters where penalizing large errors through the

defined least-square terms proves to be very effective in improving model

performance. As this research is related to climate, RMSE is thus chosen.

The proposed distributions will be introduced in the next chapter. Their

properties will be derived using various known theorems and concepts.
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CHAPTER 3

PROPOSED DISTRIBUTIONS

From Chuah (2016), three new distributions were proposed which are the

modified Beta, generalized Beta and mixture of 2 modified Log-Normal

distributions. Studies were done on the modified Beta distribution where

it’s properties were developed. However, no further studies were done on

the remaining two proposed models (i.e. generalized Beta and mixture of 2

modified Log-Normal) where some of their properties are derived in this

research.

In this chapter, theoretical studies on the derivation of the proposed

generalized Beta distribution will be shown in Section 3.1. Under this

section, the theories needed to derive the properties of the generalized

Beta distribution will be presented in Section 3.1.1 Related Theories. In

addition, a basic introduction on the PDF and CDF including the

flexibility of the PDF will be discussed in Section 3.1.2 Density Function.

Under Section 3.1.3 Moment Generating Function (MGF), the expected

value, general moment, variance, skewness and kurtosis properties will be

derived in that respective order.

The derivation of the proposed mixture of 2 modified Log-Normal

distributions will be shown in Section 3.2. The theories involved will be

stated in Section 3.2.1 such as the related distributions and functions used

together with the lemma needed. Under Section 3.2.2 Density Function,
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an introduction on the PDF and also its flexibility as well as the CDF will

be explained which includes the factorization and simplification of the

mixture distribution. Section 3.2.3 Moment Generating Function (MGF)

will present the derivations of the expected value, general moment,

variance, skewness and kurtosis accordingly.

Detailed proves of the equations and functions can be found in the

appendix.

3.1 Generalized Beta Distribution

3.1.1 Related Theories

To derive the properties of generalized Beta distribution, the 2F1

Hypergeometric contiguous relation function is needed. It was found in

Rakha et al. (2011), Equation (22) where two Hypergeometric function

with the same argument z is said to be contiguous if their parameters a,b

and c differ by integers as follows:

c2F1(a,b;c;z)−a2F1(a+ 1, b;c+ 1;z) + (a− c)2F1(a,b;c+ 1;z) = 0

=⇒ 2F1(a,b;c;z) =a2F1(a+1,b;c+1;z)−(a−c)2F1(a,b;c+1;z)
c
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3.1.2 Density Functions

Probability Density Function, PDF

f(x) =
Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β)(1−z)σxγ−1(1−x)ρ−1(1−zx)−σF (α,β;γ;x)

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1)B(γ,ρ) , (3.1)

where σ > 0,γ > 0, z < 0.5,(γ+ρ−α−β)> 0.

3F2 is a generalized Hypergeometric function defined by:

3F2(α1,α2,α3;β1,β2;z) =
∞∑
k=0

(α1)k(α2)k(α3)k
(β1)k(β2)k

zk

k! ,

F (α,β;γ;x) = 2F1(α,β;γ;x)

and 2F1 is a Hypergeometric function defined by:

2F1(a,b;c;z) =∑∞
k=0

(a)k(b)k
(c)k

zk

k!

Given that∫ 1

0
xγ−1(1−x)ρ−1(1−zx)−σF (α,β;γ;x)dx= Γ(γ)Γ(ρ)Γ(γ+ρ−α−β)

Γ(γ+ρ−α)Γ(γ+ρ−β) (1−z)−σ×

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z

z−1),

where Re(γ)> 0,Re(ρ)> 0,Re(γ+ρ−α−β)> 0, |arg(1−z)< π|

(Gradshteyn and Ryzhik, 2014)

It can be easily shown that

∫ 1

0

Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β)(1− z)σxγ−1(1−x)ρ−1(1− zx)−σF (α,β;γ;x)

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1)B(γ,ρ) dx= 1

Density Function Flexibility

From the generalized Beta distribution, it can be understood that the

model is complex and is also a generalized version for many Beta family

distributions. Therefore, this distribution has an advantage in terms of
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flexibility and versatility where it could provide descriptions to numerous

different data types which includes increasing, decreasing, bath-tub,

uniantimodal or even unimodal shape distribution based on the x-variable

that is within the range of 0 and 1 (0 < x < 1) as well as the value of its

parameters. By identifying the shapes of the density functions based on

the parameters, it will help in identifying the values of the parameters

that needs to be initialized for an actual dataset empirical study. Their

flexibility is illustrated graphically to identify their fitting capability as

shown below. Figure 3.1 illustrates the various forms of PDF for the

6-parameter generalized Beta distribution set with different parameter

values as shown in Table 3.1.

Table 3.1: Generalized Beta Distribution Parameters

Set (Colour) γ ρ α β σ z

A (Blue) 0.476 5.275 0.501 0.380 6.620 0.285

B (Green) 6 5 -2 2 2 1

C (Red) 0.5 1.5 1 0.5 0 0.4

D (Light Blue) 3 1 2 1 2 0.25

E (Purple) 3 1.5 -1.5 1 2 0.4

F (Dark Yellow) 2 3 -1 -1 1 0.3

Figure 3.1: Generalized Beta Distribution Versatile PDF
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Cumulative Distribution Function, CDF

In the e-handbook of Natrella (2010), it was mention that the CDF of the

Beta distribution is also called the incomplete Beta function ratio denoted

by Ix defined by:

F (x) = Ix(p,q) =
∫ x
0 t

p−1(1− t)q−1 dt

B(p,q) , 0≤ x≤ 1; p,q > 0

where B is the Beta function.

The incomplete Beta function is also found in the generalized Beta

distribution at integration part as follows:∫ 1
0 x

γ−1(1−x)ρ−1dx

B(γ,ρ)

Therefore, the CDF general form of the generalized Beta distribution

could not be derived.

3.1.3 Moment Generating Function, MGF

To ensure that the derivations are systematically shown, a constant h is

assigned to represent the parameters that do not contain the x-variable as

they will not be affected by the integration.

Let

h=
Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β)(1−z)σ

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1)B(γ,ρ)

=⇒ f(x) = hxγ−1(1−x)ρ−1(1−zx)−σF (α,β;γ;x)
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Expected Value, E[X]

E[X] =
∫ 1

0
hx ·xγ−1(1−x)ρ−1(1− zx)−σF (α,β;γ;x) dx

=
∫ 1

0
hx(γ−1)+1(1−x)ρ−1(1− zx)−σF (α,β;γ;x) dx (3.2)

From Equation (3.2), it can be seen that the γ parameter is affected

when the x-variable is multiplied per expected value definition. Under the

modified Beta distribution from Chuah (2016), the properties were derived

based on a table of equations by Gradshteyn and Ryzhik (2014). Direct

comparison could be made on the modified Beta distribution to derive its

properties. However, the same approach could not be followed for the

generalized Beta distribution as the γ parameter also exists in the 2F1

Hypergeometric function, F (α,β;γ;x). In order to derive the properties,

the contiguous relation function mentioned in Section 3.1.1 is needed

where the following is obtained:

E[X] =
∫ 1

0
hx(γ−1)+1(1−x)ρ−1(1−zx)−σF (α,β;γ;x)dx

=
∫ 1

0
hx(γ−1)+1(1−x)ρ−1(1−zx)−σα2F1(α+ 1,β;γ+ 1;x)

γ
−

(α−γ)2F1(α,β;γ+ 1;x)
γ

dx

= h

∫ 1

0

α

γ
x(γ−1)+1(1−x)ρ−1(1−zx)−σ2F1(α+ 1,β;γ+ 1;x)dx−

h

∫ 1

0

α−γ
γ

x(γ−1)+1(1−x)ρ−1(1−zx)−σ2F1(α,β;γ+ 1;x)dx

From here, it can be seen that adjustments have been made to the γ

parameter of the 2F1 Hypergeometric Function. With this, the table of

equations by Gradshteyn and Ryzhik (2014) and direct comparison

method mentioned above can be used to obtain the properties of the

generalized Beta distribution as follows:
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E[X] = hα

γ
[Γ(γ+ 1)Γ(ρ)Γ(γ+ρ− α−β)

Γ(γ+ρ−α)Γ(γ+ 1 +ρ−β) (1−z)−σ

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ 1 +ρ−β; z

z−1)]−

h(α−γ)
γ

[Γ(γ+ 1)Γ(ρ)Γ(γ+ 1 +ρ−α−β)
Γ(γ+ 1 +ρ−α)Γ(γ+ 1 +ρ−β) (1−z)−σ

3F2(ρ,σ,γ+ 1 +ρ−α−β;γ+ 1 +ρ−α,γ+ 1 +ρ−β; z

z−1)]

Through the substitution of h, the following equation is expanded:

E[X] = α

γ
[ Γ(γ+ 1)Γ(γ+ρ−β)Γ(ρ)
Γ(γ+ 1 +ρ−β)Γ(γ+ρ)B(ρ,γ)

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ 1 +ρ−β; z
z−1)

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1) ]

− α−γ
γ

[ Γ(γ+ρ−α)Γ(γ+ρ−β)Γ(γ+ 1)Γ(γ+ 1 +ρ−α−β)Γ(ρ)
Γ(γ+ 1 +ρ−α)Γ(γ+ 1 +ρ−β)Γ(γ+ρ−α−β)Γ(γ+ρ)B(γ,ρ)

3F2(ρ,σ,γ+ 1 +ρ−α−β;γ+ 1 +ρ−α,γ+ 1 +ρ−β; z
z−1)

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1) ] (3.3)

General Moment

To obtain the 2nd, 3rd, 4th moments and etc., multiple recursions are

needed. As it only affects the 2F1 Hypergeometric function, a generalized

form could be derived. From the expansion derived as shown in Appendix

A, a Binomial expansion pattern (1,1 ; 1,2,1 and 1,3,3,1) could be seen.

After some derivations, a generalized version is formed:

2F1(a,b;c;z) =
n+1∑
k=1

(
n

k−1

)
(−1)n−k+1 (a)k−1(a− c−n+k)n−k+1

(c)n

2F1(a+k−1, b;c+n;z) (3.4)

By placing Equation (3.4) into the general moment function, the following

equation is obtained:
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E[Xn] =
Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β)(1−z)σ

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1)B(γ,ρ)∫ 1

0
xγ−1+n(1−x)ρ−1(1−zx)−σ

n+1∑
k=1

(
n

k−1

)
(−1)n−k+1 (α)k−1(α−γ−n+k)n−k+1

(γ)n

2F1(α+k−1,β;γ+n;x) dx (3.5)

Thus, the general moment of the generalized Beta distribution is derived.

Variance,Var[X]; Skewness,skew(x) and Kurtosis, kurt(x)

The general formula of the variance, skewness and kurtosis are as follows:

V ar[X] = E[X2]− (E[X])2 (3.6)

Skew(x) = E[(x−µ
σ

)3] = E[X3]−3E[X]E[X2] + 2E[X]3

(E[X2]−E[X]2)
3
2

(3.7)

Kurt(x) = E[(x−µ
σ

)4] = E[X4]−4E[X]E[X3] + 6E[X]2E[X2]−3E[X]4

(E[X2]−E[X]2)2 (3.8)

To obtain the general form of Equations (3.6), (3.7) and (3.8), the 2nd,

3rd and 4th moments are needed respectively. They can be obtained by

substituting n with the nth moment needed to the Equation (3.5). As the

function will be long and complex, it will not be shown in this dissertation.

Table 3.2 summarizes the proposed generalized Beta distribution’s

properties.
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Table 3.2: Properties of generalized Beta distribution

Parameter(s) γ > 0,σ > 0, z < 0.5

(γ+ρ−α−β)> 0

PDF
Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β) (1−z)σxγ−1(1−x)ρ−1(1−zx)−σF (α,β;γ;x)

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1 )B(γ,ρ) ,

0< x < 1

where F (a,b;c;z) is the 2F1 Hypergeometric function,

3F2(a,b,c;y;z) is the 3F2 Hypergeometric function

Γ is the gamma function and

B is the Beta function

CDF Ix(γ,ρ,α,β,σ,z)

=
Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β) (1−z)σ

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1 )B(γ,ρ)∫ x

0 t
γ−1(1− t)ρ−1(1−zt)−σF (α,β;γ; t) dt,

0< x < 1

where Ix(γ,ρ,α,β,σ,z) is the incomplete Beta

function of the generalized Beta distribution

E[X] α
γ [ Γ(γ+1)Γ(γ+ρ−β)Γ(ρ)

Γ(γ+1+ρ−β)Γ(γ+ρ)B(ρ,γ)
3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+1+ρ−β; z

z−1 )
3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z

z−1 ) ]

−α−γγ [ Γ(γ+ρ−α)Γ(γ+ρ−β)Γ(γ+1)Γ(γ+1+ρ−α−β)Γ(ρ)
Γ(γ+1+ρ−α)Γ(γ+1+ρ−β)Γ(γ+ρ−α−β)Γ(γ+ρ)B(γ,ρ)

3F2(ρ,σ,γ+1+ρ−α−β;γ+1+ρ−α,γ+1+ρ−β; z
z−1 )

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1 ) ]

VAR[X] E[X2]− (E[X])2

General Moment E[Xn] =
Γ(γ+ρ−α)Γ(γ+ρ−β)
Γ(γ+ρ)Γ(γ+ρ−α−β) (1−z)σ

3F2(ρ,σ,γ+ρ−α−β;γ+ρ−α,γ+ρ−β; z
z−1 )B(γ,ρ)∫ 1

0 x
γ−1+n(1−x)ρ−1(1− zx)−σ∑n+1

k=1
(
n
k−1

)
(−1)n−k+1 (α)k−1(α−γ−n+k)n−k+1

(γ)n

2F1(α+k−1,β;γ+n;x)dx

The Hypergeometric functions can be defined by 3F2(α1,α2,α3;β1,β2;z) =∑∞
k=0

(α1)k(α2)k(α3)k
(β1)k(β2)k

zk

k! and F (α,β;γ;x) = 2F1(α,β;γ;x) =
∑∞
k=0

(a)k(b)k
(c)k

zk

k!
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3.2 Mixture of 2 Modified Log-Normal Distributions

3.2.1 Related Theories

To derive the properties of the mixture of 2 modified Log-Normal

distributions, three important references are needed which are the Owen’s

T-function, Skew Normal distribution’s properties and Lemma 2.1 (Brown,

2001). The Owen’s T-function and Skew Normal distribution’s properties

are needed to derive the CDF. Lemma 2.1, a summarized function derived

by Brown (2001) from page 5 to page 7 of the thesis is needed to derive

the expected value, the general moment, variance, skewness and kurtosis.

I) Owen’s T-Function

T (x,a) = 1
2π

∫ a

0

e−
x2(1+t2)

2

1 + t2
dt= 1

8erfc(− x√
2

)erfc( x√
2

),

where erf = 2√
π

∫ x

0
e−t

2
dt, erfc(x) = 1− erf(x) = 2√

π

∫ ∞
x

e−t
2
dt

II) Skew-Normal Distribution

f(x) = 2√
2πσ

e−
(x−µ)2

2σ2

∫ αx−µ
σ

−∞

1√
2π
e−

t2
2 dt, F (X) = Φ(x−µ

σ
)−2T (x−µ

σ
,α)

E[X] = µ+σδ

√
2
π
, where δ = α√

1 +α2
, V ar[X] = σ2(1−2δ

2

π
)

skew = 4−π
2

(δ
√

2
π )3

(1−2 δ2

π )
3
2

kurtosis = 2(π−3)
(δ
√

2
π )4

(1−2 δ2

π )2

III) Lemma 2.1

E{Φ(hY +k)}= Φ( k√
1+h2 )
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3.2.2 Density Functions

Probability Density Function, PDF

f(x) = 2[ p√
2πσ1x

e
− (lnx−µ1)2

2σ2
1

∫ ( x
eµ1 )

(c1)
σ1

0

1√
2πt

e−
(lnt)2

2 dt +

1−p√
2πσ2x

e
− (lnx−µ2)2

2σ2
2

∫ ( x
eµ2 )

(c2)
σ2

0

1√
2πt

e−
(lnt)2

2 dt]

(3.9)

First, the integral part of equation (3.9) will be integrated. Let :

u= ln t =⇒ du= 1
t dt

When t→ 0⇒ u→−∞

When t=( x
eµi )

ci
σi =⇒ u= ci

σi
(lnx−µi), where i=1,2

Therefore,

∫ ( x
eµ1 )

(c1)
σ1

0

1√
2πt

e−
(ln t)2

2 dt

=
∫ ci

σi
(lnx−µi)

−∞

1√
2πt

e−
u2
2 t du

=
∫ ci

σi
(lnx−µi)

−∞

1√
2π
e−

u2
2 du∼Norm(µ= 0,σ = 1)

= Φ( ci
σi

(lnx−µi))

= Φ(zi), where z = ci
σi

(lnx−µi) and i= 1,2

=⇒ f(x) = 2[ p√
2πσ1x

e
− (lnx−µ1)2

2σ2
1 Φ( c1

σ1
(lnx−µ1))+

1−p√
2πσ2x

e
− (lnx−µ2)2

2σ2
2 Φ( c2

σ2
(lnx−µ2))] (3.10)

=⇒ f(x) = 2[ p√
2πσ1x

e−
z21
2 Φ(c1z1) + 1−p√

2πσ2x
e−

z22
2 Φ(c2z2)], (3.11)

where zi = lnx−µi
σi

∀ i= 1,2
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Density Function Flexibility

From the mixture of 2 modified Log-Normal distributions PDF, it can be

seen as a flexible unimodal or bimodal distribution with various peaks’

magnitude due to the mixture properties present. For example, the first

peak can be higher than the second or vice versa, only one peak is graphed

which is approximately a Log-Normal distribution, both peaks are almost

equivalent in height and etc. Such forms could be illustrated as the

x−variable only accepts values greater than zero (x > 0) which provides a

lot of flexibility from the diversified range of x. Figure 3.2 illustrates the

various PDF forms given different parameter values as tabled in Table 3.3.

Table 3.3: Mixture of 2 Modified Log-Normal Distributions Parameters

Set (Colour) p µ1 σ1 c1 µ2 σ2 c2

A (Blue) 0.387 3.232 0.623 0.188 1.419 1.267 0.065

B (Green) 0.8 1 1 -1 1 1 -1

C (Red) 0.85 0 1 0.2 1.5 0.1 -0.1

D (Light Blue) 0.2 0 0.5 -0.1 2 0.1 0.1

E (Purple) 0.7 1 0.2 0.5 0.1 0.2 1

F (Dark Yellow) 0.65 1 0.4 0.5 0.5 0.35 1

Figure 3.2: Mixture of 2 Modified Log-Normal Distributions Versatile PDF
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Cumulative Distribution Function, CDF

F (X) =
∫ x

0
f(y) dy

F (X) =
∫ x

0
2[ p√

2πσ1y
e
− (lny−µ1)2

2σ2
1 Φ( c1

σ1
(lny−µ1)) +

1−p√
2πσ2y

e
− (lny−µ2)2

2σ2
2 Φ( c2

σ2
(lny−µ2))] dy

By letting lny = a, y = ea =⇒ dy = ea da

When y = x =⇒ a= lnx

When y approaches 0, ln0 is indefinite. Therefore, when lny is limit to 0,

the value tends to approach towards negative infinity.

F (X) = 2 lim
k→0

∫ lnx

k
[ p√

2πσ1
e
− (a−µ1)2

2σ2
1 Φ( c1

σ1
(a−µ1)) +

1−p√
2πσ2

e
− (a−µ2)2

2σ2
2 Φ( c2

σ2
(a−µ2))] da

= 2
∫ lnx

−∞
[ p√

2πσ1
e
− (a−µ1)2

2σ2
1 Φ( c1

σ1
(a−µ1)) +

1−p√
2πσ2

e
− (a−µ2)2

2σ2
2 Φ( c2

σ2
(a−µ2))] da

= 2[
∫ lnx

−∞

p√
2πσ1

e
− (a−µ1)2

2σ2
1 Φ( c1

σ1
(a−µ1)) da +

∫ lnx

−∞

1−p√
2πσ2

e
− (a−µ2)2

2σ2
2 Φ( c2

σ2
(a−µ2)) da] (3.12)

By comparing the Skew-Normal Distribution with Equation (3.12), the
following is obtained:

F (X) = 2{p[ 12Φ( lnx−µ1
σ1

)−T ( lnx−µ1
σ1

, c1)] + (1−p)[12Φ( lnx−µ2
σ2

)−T ( lnx−µ2
σ2

, c2)]}

= p[Φ( lnx−µ1
σ1

)−2T ( lnx−µ1
σ1

, c1)] + (1−p)[Φ( lnx−µ2
σ2

)−2T ( lnx−µ2
σ2

, c2)],

(3.13)

where Φ(x′)∼N(µ′ = 0,σ′ = 1) and T (h,a)∼Owen′s T −function
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3.2.3 Moment Generating Function, MGF

Expected of X, (E[X])

E[X] =
∫ ∞
−∞

xf(x)dx

=
∫ ∞

0
x(2)[ p√

2πσ1x
e
− (lnx−µ1)2

2σ2
1 Φ( c1

σ1
(lnx−µ1)) +

1−p√
2πσ2x

e
− (lnx−µ2)2

2σ2
2 Φ( c2

σ2
(lnx−µ2))] dx

After some derivations done as shown in Appendix B, the following is

obtained.

E[X] = 2peµ1+ 1
2σ

2
1E{Φ(c1(b1 +σ1))}+ 2(1−p)eµ2+ 1

2σ
2
2E{Φ(c2(b2 +σ2))}

By applying Lemma 2.1, E{Φ(hY + k)} = Φ( k√
1+h2 ), where h and k are

constants, the following equation is obtained:

E[X] = 2[peµ1+ 1
2σ

2
1Φ( c1σ1√

1 + c21
) + (1−p)eµ2+ 1

2σ
2
2Φ( c2σ2√

1 + c22
)] (3.14)

General Moment

The general moment for the mixture of 2 modified Log-Normal

distributions is similar to the Skew-Normal distribution with some minor

differences. Through the comparison of the Log-Normal distribution and

Normal distribution’s moment, it can be seen that E[Y t] of the

Log-Normal distribution is equivalent to Mx(t) of the Normal distribution.

This is proved mathematically as shown in Appendix C where the n

differentiation of Mn
x (t) of the Normal is equal to E[Xn] of the

Log-Normal.
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The same concept can be applied to the mixture of 2 modified

Log-Normal distribution sas the proposed distribution is actually the 2

mixture, log of the Skew Normal distribution. For example, the mean of

the mixture of 2 modified Log-Normal distribution could be obtained by

assigning the value 1 to the t-variable of the Skew Normal distribution’s

general moment as derived in Appendix D. The Log-Normal and Normal

distributions’ concept in Appendix C as well as Appendix D are applied to

the mixture of 2 modified Log-Normal distributions. Therefore, the

general moment of the proposed mixture is as follows:

My(t) = E[etY ] = E[Xt]

= 2[peµ1t+ 1
2σ

2
1t

2Φ( c1σ1t√
1 + c2

1

) + (1−p)eµ2t+ 1
2σ

2
2t

2Φ( c2σ2t√
1 + c2

2

)], (3.15)

where Y = lnX

Variance, Var[X]

From the equation derived above, multiple moments can be obtained. By

using the same concept mentioned, the 2nd moment, E[X2] can be found

by substituting t= 2 to the moment function as follows:

E[X2] =Mx(2) = 2[pe2µ1+2σ2
1 Φ( 2c1σ1√

1 + c2
1

) + (1−p)e2µ2+2σ2
2 Φ( 2c2σ2√

1 + c2
2

)] (3.16)

With E[X2], the variance could be calculated as follows:

V ar[X] = E[X2]− (E[X])2

= 2[pe2µ1+2σ2
1 Φ( 2c1σ1√

1 + c2
1

) + (1−p)e2µ2+2σ2
2 Φ( 2c2σ2√

1 + c2
2

)]−

22(peµ1+ 1
2σ

2
1 Φ( c1σ1√

1 + c2
1

) + (1−p)eµ2+ 1
2σ

2
2 Φ( c2σ2√

1 + c2
2

))2
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= 2pe2µ1+2σ2
1 Φ( 2c1σ1√

1 + c2
1

) + 2(1−p)e2µ2+2σ2
2 Φ( 2c2σ2√

1 + c2
2

)−

4[p2e2µ1+σ2
1 Φ2( c1σ1√

1 + c2
1

) + (1−p)2e2µ2+σ2
2 Φ2( c2σ2√

1 + c2
2

)]+

2p(1−p)eµ1+µ2+ 1
2σ

2
1+ 1

2σ
2
2 Φ( c1σ1√

1 + c2
1

)Φ( c2σ2√
1 + c2

2

)]

V ar[X] = 2pe2µ1+σ2
1 [eσ2

1 Φ( 2c1σ1√
1 + c2

1

)−2pΦ2( c1σ1√
1 + c2

1

)]+

2(1−p)e2µ2+σ2
2 [eσ2

2 Φ( 2c2σ2√
1 + c2

2

)−2(1−p)Φ2( c2σ2√
1 + c2

2

)]−

8p(1−p)eµ1+µ2+ 1
2σ

2
1+ 1

2σ
2
2 Φ( c1σ1√

1 + c2
1

)Φ( c2σ2√
1 + c2

2

) (3.17)

Skewness, Skew(x) and Kurtosis, Kurt(x)

In order to derive the skewness and kurtosis, the 1st, 2nd, 3rd and 4th

moments are needed (i.e. E[X], E[X2],E[X3] and E[X4]). The moments

mentioned above can be derived by substituting t = 1,2,3 and 4

respectively to the general moment of the mixture of 2 modified

Log-Normal distributions. The four moment equations needed are

available in Appendix E.

Skewness formula:

Skew(x) = E[(x−µ
σ

)3] = E[X3]−3E[X]E[X2] + 2E3[X]
(E[X2]−E2[X])

3
2

(3.18)

The Kurtosis Formula is as follows:

Kurt(x) = E[(x−µ
σ

)4] = E[X4]−4E[X]E[X3] + 6E2[X]E[X2]−3E4[X]
(E[X2]−E2[X])2

(3.19)
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To derive the general form of the skewness and kurtosis for the mixture

of 2 modified Log-Normal distributions, the moments obtained in

Appendix E need to be substituted to equation (3.18) and (3.19)

accordingly. Due to the complexity of the equation, it is will not be shown.

Table 3.4 below summarizes the properties of the proposed mixture of 2

modified Log-Normal distributions derived in this research.

Table 3.4: Properties of mixture of 2 modified Log-Normal distributions

Parameter(s) µ1 ε<, σ1 > 0, 0≤ c1 ≤ 1

µ2 ε<, σ2 > 0, 0≤ c2 ≤ 1

0≤ p≤ 1

PDF 2[ p√
2πσ1x

e−
z21
2 Φ(c1z1) + 1−p√

2πσ2x
e−

z22
2 Φ(c2z2)],

where zi = lnx−µi
σi

and

Φ(czi) is the CDF of the normal distribution

∀ i= 1,2

CDF p[Φ( lnx−µ1
σ1

)−2T ( lnx−µ1
σ1

, c1)]+

(1−p)[Φ( lnx−µ2
σ2

)−2T ( lnx−µ2
σ2

, c2)],

where Φ(x′)∼N(µ′ = 0,σ′ = 1) and

T (h,a)∼ Owen’s T-function

E[X] 2[peµ1+ 1
2σ

2
1Φ( c1σ1√

1+c21
) + (1−p)eµ2+ 1

2σ
2
2Φ( c2σ2√

1+c22
)]

VAR[X] 2pe2µ1+σ2
1 [eσ2

1 Φ( 2c1σ1√
1+c2

1
)−2pΦ2( c1σ1√

1+c2
1
)]+

2(1−p)e2µ2+σ2
2 [eσ2

2 Φ( 2c2σ2√
1+c2

2
)−2(1−p)Φ2( c2σ2√

1+c2
2
)]−

8p(1−p)eµ1+µ2+ 1
2σ

2
1+ 1

2σ
2
2 Φ( c1σ1√

1+c2
1
)Φ( c2σ2√

1+c2
2
)

General Moment My(t) = E[etY ] = E[Xt]

E[Xt] = 2[peµ1t+ 1
2σ

2
1t

2Φ( c1σ1t√
1+c2

1
)+

(1−p)eµ2t+ 1
2σ

2
2t

2Φ( c2σ2t√
1+c2

2
)],

where Y = lnX
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The research methodology used for the empirical studies where the

proposed distributions and other selected models are fitted to a certain

area of study will be discussed in the next chapter.
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CHAPTER 4

RESEARCH METHODOLOGY

In this chapter, the procedures used for the empirical studies will be

elaborated. In Section 4.1, a detailed explanation on data massaging,

splitting and transformation will be shown while derivations of the

maximum likelihood estimation will be presented in Section 4.2. The

simulation algorithm will be discussed in Section 4.3 and the model

selection criteria in Section 4.4.

The empirical studies are conducted through distribution fitting to

estimate the parameters of the proposed distributions and their respective

families. Furthermore, data simulation will be done and evaluated as well.

In this research, the considered dataset will be on rainfall volume collected

from Sg Lui, Hulu Langat, Selangor from year 2002 to 2012. Before the

estimation and fitting were done, certain adjustments need to be made.

Based on the proposed model family distributions, the x-variable

constraint for the Beta family and proposed generalized Beta distribution’s

is 0 < x < 1 while the Skew Normal continuous family and proposed

mixture of 2 modified Log-Normal distributions’ variable constraint is

x > 0. The minimum value of the data is 0 mm and and the maximum

rainfall volume is 136.1 mm. Thus, the data need to be rescaled to extend

the x-variable’s range in order to proceed with the distribution fitting

process. The procedures to fit and simulate the data for Beta family and

Skew Normal continuous family distributions are slightly different. They

will be explained in the Section 4.1.1 and Section 4.1.2 respectively.
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The parameters will be estimated using the MLE method. The Python

software will be used to undergo this procedure with the help of the

Non-Linear Least-Squares Minimization package due to its consideration

of the parameters’ constraints (Newville et al., 2014). The distributions

are “ln” and then squared which transforms the minimization process to

maximization. Further elaborations on its derivatives will be shown in

Section 4.2. With the estimated parameters, simulation is proceeded using

the Accept-Reject algorithm (Casella et al., 2004). The performance of the

proposed distributions will be compared with a few related classical

continuous distributions for each of the statistical distribution families.

Among the models compared, the best performed model will be selected

based on the model evaluation metrics and selection criteria results.

Under the Beta family distributions, two models are chosen to be

compared with the proposed generalized Beta distribution which are as

follows:

1. Beta distribution,

2. Gauss Hypergeometric distribution.

The properties of the two Beta-family distributions mentioned are listed

below.
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Table 4.1: Properties of Beta distribution

Parameter(s) a > 0, b > 0

PDF xa−1(1−x)b−1

B(a,b) ,

where 0< x < 1

CDF Ix(a,b) =
∫ x

0 t
a−1(1−t)b−1 dt

B(a,b) , (Natrella, 2010)

where 0< x < 1; a,b > 0 and

Ix(a,b) is the incomplete Beta function

E[X] a
a+b

VAR[X] ab
(a+b)2(a+b+1)

General Moment Γ(a+b)Γ(a+n)
Γ(a)Γ(a+b+n)

B(a,b) is the Beta function defined by Γ(a)Γ(b)
Γ(a+b)
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Table 4.2: Properties of Gauss Hypergeometric distribution

Parameter(s) θ > 0, γ > 0, −∞< σ <∞

PDF xγ−1(1−x)θ−1(1+tx)−σ
2F1(γ,σ;γ+θ;−t)B(γ,θ) ,

0< x < 1

where 2F1 is the Hypergeometric function

CDF xγ

γB(γ,θ)
F1(γ,1−θ,σ;γ+1;x,−tx)

2F1(γ,σ;γ+θ;−t) ,

0< x < 1

where 2F1(a,b;c;z) is the 2F1 and

F1(a,b1, b2;c;z1,z2) is Appell’s 1st

Hypergeometric functions

E[X) γ
γ+θ

2F1(σ,γ+1;γ+θ+1;−t)
2F1(σ,γ;γ+θ;−t)

VAR[X] γ
γ+θ [

γ+1
γ+θ+1

2F1(σ,γ+2;γ+θ+2;−t)
2F1(σ,γ;γ+θ;−t) −

γ
γ+θ{

2F1(σ,γ+1;γ+θ+1;−t)
2F1(σ,γ;γ+θ;−t) }2]

General Moment Γ(γ+n)Γ(γ+θ)
Γ(γ)Γ(γ+θ+n)

2F1(σ,γ+n;γ+θ+n;−t)
2F1(σ,γ;γ+θ;−t)

The 2F1 Hypergeometric functions can be defined by F (α,β;γ;x) = 2F1(α,β;γ;x)

=
∑∞
k=0

(a)k(b)k
(c)k

zk

k! and

F1(a,b1, b2;c;z1,z2) is Appell’s first Hypergeometric function defined by∑∞
r1,r2=0

(a)r1+r2 (b1)r1 (b2)r2
(c)r1+r2

z
r1
1 z

r2
2

r1!r2!

(Nagar and Bedoya Valencia, 2011)

For the Skew Normal family distributions, two models are chosen aside

from the proposed mixture of 2 modified Log-Normal distributions. They

are as follows:

1. Exponential distribution,

2. Gamma distribution.

The properties of the mentioned distributions are presented in the tables

below.
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Table 4.3: Properties of Exponential distribution

Parameter(s) β > 0

PDF 1
βe
−x
β

0< x <∞

CDF 1− e
−x
β

0< x <∞

E[X] β

VAR[X] β2

General Moment n!βn

Table 4.4: Properties of Gamma distribution

Parameter(s) α > 0, θ > 0

PDF 1
Γ(α)θα xα−1e

−x
θ ,

0< x <∞

where Γ(α) is the Gamma function

CDF 1
Γ(α)γ(α, xθ ),

0< x <∞

where γ(α, xθ ) is the lower

incomplete gamma function

E[X] αθ

VAR[X] αθ2

General Moment θnΓ(α+n)
Γ(α)

The Gamma function can be defined by Γ(α) =
∫∞
0 xα−1e−xdx and the lower incomplete

gamma function can be defined by γ(α, xθ ) =
∫ x
θ

0 tα−1e−tdt
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4.1 Data Massaging, Splitting and Distribution Transformation

4.1.1 Beta Family Distributions

For Beta family distributions, the following steps are considered for the

empirical studies:

1. Data are massaged and distributions are transformed.

2. The massaged data are split into 80% and 20% with the first 80% being

the train data and the remaining 20% being the test data, [80:20].

3. The selected distributions will be fitted using the train data.

4. The estimated parameters will be used to simulate a set of data which

has the same count as the test data.

5. The distributions will be tested via K-S test to identify whether the

data follows the specified distribution.

6. The performance of the fitted models will be tested using AIC.

7. The accuracy of the simulated data will be measured using RMSE.

Based on the generalized Beta and Beta family distributions, they do

not accept values less than or equal to zero and values greater than or equal

to one (0< x < 1). To transform, the method introduced by Smithson and

Verkuilen (2006) is used where the data is linearly transformed from their

original scale to an open unit interval (0,1). The method starts off with a

normalizing process as follows:
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x′ = x−a
b−a ,

where x is the original data value;

x′ is the newly normalized value;

a and b are the smallest and highest value in the dataset.

Then, the range of the data is compressed to avoid zeros and ones by:

x′′ = x′(N−1)+0.5
N ,

where x′′ is the newly transformed data;

N is the data sample size.

Although the dataset is now within the x−variable constraint, a

transformation process needs to be done on the distributions as well. To

transform, let

x= y

b−a
N −1
N
− a

b−a
N −1
N

+ 1
2N =⇒ dx= N −1

N(b−a) dy,

∫ x

0
f(x) dx=

∫ y
b−a

N−1
N
− a
b−a

N−1
N

+ 1
2N

0

N −1
N(b−a)f( y

b−a
N −1
N
− a

b−a
N −1
N

+ 1
2N ) dy,

where 0< y < 1

With the transformation process completed, the distribution fitting and

simulation processes for the Beta family distribution can be proceeded.
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4.1.2 Skew Normal Continuous Family Distributions

For Skew Normal Continuous family distributions, the following are the

procedures done in this empirical study:

1. The collected data are split into 80% and 20% with the first 80% of

the dataset being the train data and the remaining 20% being the test

data, [80:20].

2. The train data is then split to zero and non-zero data.

3. The parameters will be estimated using the non-zero data and the

zero data will be used to calculated the zero inflated probability.

4. The estimated parameters and zero inflated probability will be used

to simulate a set of data which has the same count as the test data.

5. The distributions will be tested via K-S test to identify whether the

data follows the specified distribution.

6. The performance of the models fitted will be tested using AIC.

7. The accuracy of the simulated data will be measured using RMSE.

For the mixture of 2 modified Log-Normal distributions and Skew

Normal Continuous family distributions, they do not accept zero-values

data where the zero-value represents no rainfall due to the presence of the

‘ln’ function. In order to solve this, the zero-inflation method discussed by

Mullahy (1986) and Pakoksung and Takagi (2017) is introduced. This

method splits the train data to zero and non-zero values where the general

formula of the zero-inflated method is as follows:
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P (Y = y) = ω+ (1−ω) ·f(y),

where Y is the count data;

ω is the zero-inflation probability;

f(y) is the probability density function of the fitted distribution.

After the splitting is completed, the non-zero train data is used to fit

the distributions to estimate their parameters while the zero-value data is

used for parameter re-calibration to calculate the zero-inflation probability,

ω with the following formula:

ω = n0train
Ntrain

,

where n0train is the number of zero-value data in the train dataset;

Ntrain is the number of train data.

With the splitting of data completed, the distribution fitting and

simulation processes can be continued.

4.2 Maximum Likelihood Estimation Derivations

The MLE method is defined as follows:

Suppose X1, X2, . . . , Xn are n independent and identically distributed (IID)

samples random variables with joint probability density denoted as

fθ(x1,x2, . . . ,xn) = f(x1,x2, . . . ,xn|θ),

where θ is the vector of k parameters (θ1, θ2, . . . , θk) for a particular

distribution.
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Given the observed IID values X1 = x1,X2 = x2, . . . ,Xn = xn, the

likelihood of θ which is the probability of observing a given set of data as

a function of θ represented by:

L(θ;x1,x2, . . . ,xn) = f(x1,x2, . . . ,xn|θ)

=
n∏
i=1

f(xi|θ),

where L(θ;x1,x2, . . . ,xn) is the likelihood function of θ.

The maximum likelihood estimator of θ are the values of k parameters

estimated that maximizes the likelihood function L(θ;x1,x2, . . . ,xn)

making the observed data the “most likely or probable” to occur.

In some ways, maximizing the product of the density functions can be

quite tedious. Therefore, it is often assumed the fact that logarithm is an

increasing function making the maximizing of the log-likelihood function

equivalent to the maximizing of the likelihood function which is as follows:

l(θ;x1,x2, . . . ,xn) = log(
n∏
i=1

f(xi|θ)),

where l(θ;x1,x2, . . . ,xn) is the log-likelihood function.

The maximizing procedure is done through the 1st differentiation process

and then equating it to zero which is as follows:

∂
∂θ (∑n

i=1 log(f(xi|θ))) = 0

In the Non-Linear Least-Squares Minimization package written by

Newville et al. (2014) from the Python software, it was stated that the

main task of fitting a model to a set of data using non-linear least-squares

is to write an objective function that takes the values of the fitting

variables and calculates an array of values to be minimized. The objective
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function returns an array of values (datameasured - datamodel) scaled by

some weighing factor such as the inverse of the uncertainty in the data

where the chi-square statistics is defined as follows:

χ2 =
N∑
i

[ymeasi −ymodeli (v)]2
ε2i

,

where ymeasi is the set of measured data or raw data;

ymodeli (v) is the model calculated value;

v is a set or array of x-variables in the model to be fitted;

εi is the estimated uncertainty in the data;

N is the number of observed data. (Newville et al., 2014)

However, as the data obtained does not consider or assume to have

any uncertainties the base objective function is to minimize the residual

array, ymeasi − ymodeli (v). In addition, the data obtained contains only the

x-variable which is rainfall volume and the measured data, ymeasi does not

exist. Therefore, the final form of the objective function is to minimize the

following model:

χ2 =
N∑
i

[ymodeli ]2

As minimizing the function starting from different initialized parameter

values will estimate many different parameter values, the ymodeli is then

logged (“ln”). Once the ”ln” function is placed, the objective function is

now very similar to the log-likelihood function in the MLE as shown below:

χ2 =
N∑
i

[ln(ymodeli )]2

Maximizing the log-likelihood function is now the main objective in this

research. As ymodeli is actually the PDF where it is within 0 and 1 (0 <

50



f(x)< 1) in this research, the log of it would be less than zero (lnf(x)< 0).

Maximizing the log-likelihood of the model is to calculate the value that is

closest to zero. However by squaring the log-density function, all the values

are now positive making the largest value in the log-density function to be

the smallest in the square of the log-density function. Thus, minimizing

the sum of square of the log-density function is maximizing the sum of log-

density function. Therefore, the final form of the objective function is now

as follows:

χ2 =
N∑
i

[ln(fmodel(xi))]2

4.3 Simulation Algorithm

To simulate, the Accept-Reject algorithm by Casella et al. (2004) will be

used. The following steps are the standard algorithm of the simulation:

At iteration i(i≥ 1)

1. Generate Xi ∼ gi and Ui ∼ U [0,1] independently.

2. Ui ≤ εif(Xi)/gi(Xi), accept Xi ∼ f ;

3. otherwise, move to iteration i+ 1.

The algorithm mentioned can be used directly for the generalized Beta

and Beta family distribution. However, a slight modification needs to be

made for the mixture of 2 modified Log-Normal and Skew Normal family

distribution. A randomized probability of the Uniform distribution needs

to be generated before continuing with the Accept-Reject algorithm. If the

probability randomized is less than or equal to the zero-inflated

probability (ωi ≤ ω), a zero-value is returned or else it will proceed on to
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the Accept-Reject algorithm simulation. The modified procedure is now as

follows:

At iteration j(j ≥ 1) and k(k ≥ 1)

1. Generate Xk ∼ U [0,1].

2. If Xk < ω, then return 0. Else proceed to Accept-Reject algorithm.

3. Generate Xj ∼ gj and Uj ∼ U [0,1] independently.

4. Uj ≤ εjf(Xj)/gj(Xj), accept Xj ∼ f ;

5. otherwise, move to iteration j+ 1.

4.4 Model Selection Criteria

Model evaluation metrics and selection criteria such as the K-S test,

RMSE and AIC are used to identify whether the rainfall volume follow a

certain distribution as well as to measure the accuracy level of the

simulated values and also the performance of the model respectively based

on the test data. The K-S test starts off by identifying the null hypothesis

and alternative hypothesis which are as follows:

H0 : The frequency of rainfall volume data follow a specified distribution.

H1 : The frequency of rainfall volume data do not follow a specified

distribution.

The specified distributions mentioned are the distributions where the

data were fitted to. Thus, the K-S test is defined as follows:
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D = max
1≤i≤N

(|F0(xi)−SN (xi−1)|, |SN (xi)−F0(xi)|),

where N is the sample size,

F0(xi) is the theoretical cumulative distribution and

SN (xi) is the cumulative step-function of a sample

(i.e. SN (xi) = k
N , where k is the number of observations less than

or equal to xi).

(Massey Jr, 1951)

The test statistics critical point, Dα(N) such that Pr[D >Dα(N)] = α

is obtained from the K-S table which can found in Massey Jr (1951). If

D >Dα(N), then the null hypothesis, H0 is rejected else it is accepted at

α% level of significance.

After identifying whether the distributions follow a specified

distribution, it is important to determine which model is the better fit.

Therefore, the AIC is chosen to measure the performance of the model

where it has the following formula:

AIC = 2k−2l̂,

where k is the number of parameters present in the distribution;

l̂ is the log-likelihood function.

In order to evaluate the accuracy and estimation strength of the models,

the RMSE is calculated with the following formula:

RMSE =
√∑n

i=1(yi−xi)2

n ,

where yi is the simulated value;

xi is the actual value from the test dataset;

n is the sample size.
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Empirical results will be discussed in the next chapter. The results

of the parameter estimation as well as the calculated values of the model

selection criteria will be tabled and compared with various models that was

mentioned earlier in this chapter.
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CHAPTER 5

EMPIRICAL RESEARCH FINDINGS AND DISCUSSION

With the theoretical studies done on both of the proposed distribution, it

is important to apply the theoretical concepts towards practical situations.

In order to understand the versatility of the proposed distributions in

fitting a real dataset, they will be applied to rainfall volume in this

research. In addition, the results could also be checked to identify whether

do they support the conclusion made by Chuah (2016).

In this chapter, a description of the rainfall data collected will be

described in Section 5.1. The results of the parameter estimation as well

as the model selection criteria will be organized in a table and discussed in

Section 5.2.

5.1 Description of Rainfall Volume Data

As mentioned, the data used in this research is on daily rainfall volume

collected from Sg Lui, Hulu Langat, Selangor from the year 2002 to 2012.

The trend of rainfall volume is illustrated in Figure 5.1.
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Figure 5.1: Rainfall Trend (2002-2012)

Figure 5.1 shows that in most days, Sg. Lui experienced no rainfall

and on average the volume for a rainy day is approximately less than 20

mm per day. It is also observed that the highest volume of rainfall would

reach to an amount that is close to almost 100 mm per day for at least

once a year. However in year 2012, the highest amount of rainfall volume

detected is close to 140 mm. A summarized information of the data is

shown in Table 5.1.

Table 5.1: Statistical Properties of Collected Rainfall Volume Dataset

Dataset E[X] Std. Dev (X) Count Min Max

Original (mm) 6.4889 13.42 3846 0 136.10

Transformed (mm) 0.04780 0.09857 3846 0.00013 0.99987

Overall, there are 3846 days worth of rainfall volume data in millimetre

(mm) with a minimum rainfall of 0 mm which implies no rainfall and a

maximum of 136.1 mm. The average rainfall volume is 6.4889 mm with a

standard deviation of 13.4186 mm. However after transforming the data,
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it has now a minimum value of 0.00013 mm and a maximum value of

0.99987 mm with an average of 0.04780 mm along with a standard

deviation of 0.09857 mm.

From the statistical properties of the data calculated, it can be seen

that the low average amount of rainfall obtained is because of the high

occurrence of zero rainfall which is more than the number of rainy days

during the span of 10 years. Besides that, there are also days when the

rainfall volumes are higher than 100 mm based on Figure 5.1 which are a

lot higher than the average rainfall calculated. Such fluctuations in rainfall

greatly affects the standard deviation causing it to be relatively high due

to the high volatility of the dataset. Hence, it can be concluded that in

the region of Sg Lui, Hulu Langat, Selangor, it experiences higher number

of non-rainy days and the average volume of rainfall collected is relatively

low. Furthermore, the high volatility of the rainfall volume will cause

difficulty in estimating the rainfall amount on a daily basis.

As the data is split to train and test data at 80% and 20% respectively,

there are 3077 data to fit the models and another 769 data to be tested

using the model selection criteria mentioned. However, in order to test the

distribution using the K-S test, the cumulative step-up function needs to

be calculated for each values and the data needs to be re-arranged with

duplicates being removed. Thus, there are only 209 values left after the

re-arrangement. The K-S test critical point,Dα(N) at α = 5% significance

level is obtained from the following formula (see Massey Jr (1951)):

D0.05(N) = 1.36√
N

,

where N is the number of samples.
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Therefore, the critical point at 5% level of significance with 209 sample

size is 0.093941 (i.e. D0.05(209) = 0.093941).

Under the empirical studies, the parameter estimation of the 2

proposed distributions (generalized Beta and mixture of 2 modified

Log-Normal) including the other models (Beta, Gauss Hyopergeometric,

Exponential and Gamma) mentioned as well as simulation processes were

conducted. The discussion of the results will be presented in the next

section.

5.2 Results and Discussion

The empirical studies in this research were carried out in two groups

which are the Beta family and Skew Normal family. As mentioned above,

generalized Beta, Beta and Gauss Hypergeometric distributions will be

compared under the Beta family distributions. Meanwhile, the mixture of

2 modified Log-Normal, Exponential and Gamma distributions will be

compared under the Skew Normal family distributions. In Section 5.2.1,

the Beta family distributions (Distr.) results consisting of the estimated

parameters (Par.), K-S test, AIC, RMSE together with VaR values will be

summarized in Table 5.2 and illustrated graphically in Figure 5.2. In

Section 5.2.2, the Skew Normal family distributions results will be

summarized in Table 5.3 and graphed in Figure 5.3.
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5.2.1 Beta Family Results and Discussion

Table 5.2: Summary of Beta Family Fittings and Selection Criteria

Distr. Generalized Beta *Beta Gauss Hypergeometric

Par. γ = 0.4756,ρ= 5.2754, a= 0.4853, a= 0.4615, b= 4.2182,

α = 0.5010,β = 0.3801, b= 3.5419 c=−0.3754, z = 8.4294

σ = 6.6201, z = 0.2850

K-S 0.4631 0.4632 0.4630

AIC 3257.17 3235.68 3239.81

RMSE (mm) 0.1914 0.1822 0.1894

VaR (mm) 0.6172 0.6333 0.6238

* represents the best performed model

Figure 5.2: Fitting of Beta Family Distributions to Rainfall Volume
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From Figure 5.2, it is observed that all the selected Beta family

distributions fit do not touch most of the mid-points of the rainfall volume

histogram. The three Beta family distributions seem to fit poorly towards

rainfall volume data. Nonetheless, the overlapping lines in the graph show

that the distributions have comparable estimation strength and fitting

capability. Unfortunately, the performance of each distribution could not

be clearly identified from the graph alone due to insufficient statistical

evidence as well as their similar estimation strength. Therefore, the model

selection criteria results calculated in Table 5.2 needs to be referred.

Based on Table 5.2, the K-S test statistic values for the generalized

Beta, Beta and Gauss Hypergeometric distributions are 0.4631, 0.4632 and

0.4630 respectively. The values stated are all higher than the critical

point, (D0.05(209) = 0.093941741) which shows that there is significant

evidence to conclude that the null hypothesis is rejected. This mean the

rainfall volume data do not follow the three specified statistical

distributions. Although the results are unfavourable, it is still important

to identify which model among the Beta family distributions has the

better fit by referring to the AIC values.

The AIC of the generalized Beta, Beta and Gauss Hypergeometric

distributions are 3257.17, 3235.68 and 3239.81 respectively. Based on the

AIC values, it is concluded that the Beta distribution is the best

performed model as it has the lowest AIC among the models compared.

This is followed by the Gauss Hypergeometric distribution and lastly the

generalized Beta distribution.

60



Meanwhile, the calculated RMSE values for the generalized Beta, Beta

and Gauss Hypergeometric distributions are 0.1914 mm, 0.1822 mm and

0.1894 mm respectively which is approximately 0.19 mm on average.

These values indicate that the distributions have comparable estimation

strength towards rainfall volume which is consistent with the illustration

made in Figure 5.2. From the Beta family’s properties, it is known that

x-variable’s constraint is between 0 and 1 (0< x < 1) and the minimum as

well as maximum values after the data is scaled is 0.00013 mm and

0.999987 mm respectively. An approximate 0.19 mm RMSE implies that

the simulated values differ from the actual values by almost 20% of the

data range which is relatively quite large.

From the graph and results of the statistical tests, it is concluded that the

selected Beta family distributions perform poorly in fitting rainfall volume

dataset with the Beta distribution being the better fitted model among the

models compared.
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5.2.2 Skew Normal Family Results and Discussion

Table 5.3: Summary of Skew Normal Family Fittings and Selection Criteria

Distr. *Mixture of 2 Exponential Gamma

modified Log-Normal

Par. p= 0.3871 β = 18.0063 α = 0.8003,

µ1 = 3.2317,µ2 = 1.419, θ = 22.7681

σ1 = 0.6226,σ2 = 1.2671,

c1 = 0.1881,c2 = 0.0648

K-S 0.07967 0.07674 0.08268

AIC 3973.37 4037.35 4011.84

RMSE (mm) 15.92 16.00 16.26

VaR (mm) 43.85 40.30 44.10

* represents the best performed model

Figure 5.3: Fitting of Skew Normal Continuous Family Distributions to
Rainfall Volume
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From Figure 5.3, it could be seen that all the selected fitted

distributions pass through most of the histogram’s mid-points. This

indicates a good performance in fitting rainfall volume data by the

selected Skew Normal family models. Furthermore, it could also be

observed that the estimation strength and fitting capability of the three

distributions are quite similar as the lines of the distributions are close to

each other. However, the performance of the distributions could not be

concluded from the graph and the model selection criteria are needed.

Based on Table 5.3, the calculated K-S test statistics for the mixture of

2 modified Log-Normal, Exponential and Gamma distributions are

0.07967, 0.07674 and 0.08268 respectively. The values are lesser than the

critical point of the K-S test statistic at 5% significant level

(D0.05(209) = 0.093941741). Hence, the null hypothesis is not rejected.

There is insufficient evidence to conclude that the rainfall volume dataset

do not follow the three distributions specified at 5% level of significance.

In order to identify which model is the better fit, the AIC values are

computed. By referring to the AIC values in Table 5.3, the best performed

model among the three distributions for this dataset is the proposed

mixture of 2 modified Log-Normal distributions with an AIC value of

3973.37 followed by Gamma with 4011.84 and lastly Exponential with

4037.35 AIC values.

In the meantime, the RMSE values calculated in Table 5.3 for the

mixture of 2 modified Log-Normal, Exponential and Gamma distributions
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are 15.9191 mm, 16.0464 mm and 16.2641 mm respectively which are

approximately 16 mm. This suggests that the three distributions have

similar estimation strength and fitting capability which supports Figure

5.3 illustration. For the Skew Normal family distributions, their x-variable

constraint is x > 0 while the minimum and maximum rainfall volume are 0

mm and 136.1 mm respectively. As the RMSE values of the distributions

are close to 16 mm, it shows that the simulated values differ from the

actual values by about 12% of the data range which is reasonably minimal.

In a nutshell, from the graph illustrated as well as test statistics and

model selection criteria calculated, the Skew Normal family distributions

performed well in fitting rainfall volume data with the proposed mixture

distribution being the better fitted model in this study.

5.2.3 Summary of Results and Discussion

To summarize, the three distributions (generalized Beta, Beta and Gauss

Hypergeometric) under the Beta family seem to fit poorly to rainfall volume

data with the proposed distribution being the worst performed. On the

other hand, the Skew Normal family distributions (mixture of 2 modified

Log-Normal, Exponential and Gamma) seem to fit well to rainfall data with

the proposed mixture distribution being the best performed model among

the three distributions. The comparisons of the models are done within their

family distribution as different transformation methods were used on both

the data and models due to the different x-variable constraints. Therefore,

comparison among the two family distributions could not be done.
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Although it was mentioned that the proposed distributions are very

flexible and versatile that could provide a good description to different

types of data, the generalized Beta distribution showed otherwise. This

conclusion occurred might due to the complication in fitting the 3F2 and

2F1 Hypergeometric function that is part of the generalized Beta together

with the Gauss Hypergeometric distributions as they are able to model

complex numbers too. Other parameter estimation methods might need to

be studied and higher level of computing power is needed to be considered

in order to fit such complex distributions in this field of study.

In addition to the various model selection criteria used to analyse the

fitting capability and estimation strength of the models towards rainfall

volume data, the VaR at 95% confidence level was also calculated. The

VaR for the Beta family generalized Beta, Beta and Gauss

Hypergeometric distributions are 0.6172 mm, 0.6333 mm and 0.6238 mm

respectively. On the other hand, the VaR for the Skew Normal family

mixture of 2 modified Log-Normal, Exponential and Gamma distributions

are 43.85 mm, 40.30 mm and 44.10 mm respectively. The values represents

that at 95% confidence level, the daily rainfall volume will not exceed the

respective values calculated within a certain period of time. If the daily

rainfall volume were to exceed the amount stated, this indicates that there

is a chance of flood or heavy downpour occurrences at 5% confidence level.

The results discussed can be extended further for a more in-depth analysis

which might be useful in other field of studies.

The conclusion as well as future research work that could be proceeded

on in this study will be discussed in the following chapter.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this research, the properties of the two proposed models, the

generalized Beta and also the mixture of 2 modified Log-Normal

distributions are derived. The properties for the 6-parameter generalized

Beta distribution are developed with a lot of emphasis being placed on the

contiguous relation function by Rakha et al. (2011) and the table of

equations by Gradshteyn and Ryzhik (2014). However, the general form of

the CDF for the generalized Beta distribution is unable to be derived as it

contains the incomplete Beta function ratio (Natrella, 2010). On the other

hand, the mixture of 2 modified Log-Normal distributions’ properties were

derived using multiple substitutions and reference towards various

theorems such as the Owen’s T-function, Skew Normal and Log-Normal

distributions’ concepts along with Lemma 2.1 from Brown (2001).

For the empirical studies, they are done using simulation and

distribution fitting that is applied to rainfall volume data. The simulations

were done using Accept-Reject algorithm while the distributions were

fitted using MLE method and the results were concluded based on K-S

test, AIC and RMSE model selection criteria. The results concluded that

Beta family distributions seem to perform poorly in fitting rainfall volume

data with Beta distribution being the better fit, followed by Gauss

Hypergeometric distribution and the proposed generalized Beta

distribution. However, the Skew Normal family distributions seem to fit

well to rainfall volume with the mixture of 2 modified Log-Normal
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distributions being the best performed model followed by Gamma and

then Exponential distributions for this dataset.

From the conclusion stated, the proposed mixture distribution fitted

better than the other two classical Skew Normal family distributions is

inline with the conlusion made by Chuah (2016). Nonetheless, the poor

fitting of the 6-parameter generalized Beta distribution among the three

Beta family distributions contradicts with the conclusion made by Chuah

(2016). It was mentioned that the generalized Beta distribution fit better

than it’s sub-distributions. The contradiction occurred might be due to

the different data massaging and distribution transformation method,

statistical software as well as parameter estimation method used.

Although the conclusions are formed through the fitting of the distribution

to only one rainfall dataset, they could be fitted to more datasets from

different areas for a better support towards the conclusion made.

For future research work, empirical studies could be done on other

fields aside from rainfall analysis to observe how well does the proposed

distributions fit to different areas containing different shapes of data

through parameter estimation, simulation as well as model evaluation

metrics and selection criteria. The distributions could be applied to areas

such as income, stock returns and regression analysis (McDonald and Xu,

1995), health and education data (Sarabia et al., 2014) or even insurance

claims data (Eling, 2012). As the applied distributions in the mentioned

studies relate to the proposed distributions, it became of great interest to

study how well does a general form (6-parameter generalized Beta and

mixture of 2 modified Log-Normal) fit to the field of studies mentioned.
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Furthermore, other parameter estimation methods such as MOM or

even LSM could be used and compared with the MLE to identify the most

suitable method that can produce the most accurate estimates for the

parameters depending on the type of data. Besides that, the VaR values

calculated can be extended for future work where more analysis could be

done to improve the accuracy of the estimation on rainfall volume

frequency. The results might be important in other field of studies such as

flood insurance coverage, geographical or even marine life research.
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APPENDICES

In this section, there are 5 appendices titled Appendix A, B, C, D and

E which explains the derivations of the distributions’ properties that was

shown above in detail.
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APPENDIX A

This section expands the 3F2 Hypergeometric contiguous relation function

which shows a Binomial expansion pattern of 1,1; 1,2,1 and 1,3,3,1. It will

be used to derive the generalized form of n recursive functions for the 3F2

Hypergeometric function.

2F1(a,b;c;z) = a2F1(a+ 1, b;c+ 1;z)− (a− c)2F1(a,b;c+ 1;z)
c

= a

c
[ (a+ 1)2F1(a+ 2, b;c+ 2;z)− (a− c)2F1(a+ 1, b;c+ 2;z)

c+ 1 ]−

a− c
c

[a2F1(a+ 1, b;c+ 2;z)− (a− c−1)2F1(a,b;c+ 2;z)
c+ 1 ]

= a(a+ 1)
c(c+ 1) 2F1(a+ 2, b;c+ 2;z)−2a(a− c)

c(c+ 1) 2F1(a+ 1, b;c+ 2;z)+

(a− c)(a− c−1)
c(c+ 1) 2F1(a,b;c+ 2;z)

= a(a+ 1)
c(c+ 1) [ (a+ 2)2F1(a+ 3, b;c+ 3;z)− (a− c)2F1(a+ 2, b;c+ 3;z)

c+ 2 ]−

2a(a− c)
c(c+ 1) [ (a+ 1)2F1(a+ 2, b;c+ 3;z)− (a− c−1)2F1(a+ 1, b;c+ 3;z)

c+ 2 ]+

(a− c)(a− c−1)
c(c+ 1) [ (a)2F1(a+ 1, b;c+ 3;z)− (a− c−2)2F1(a,b;c+ 3;z)

c+ 2 ]

= a(a+ 1)(a+ 2)
c(c+ 1)(c+ 2) 2F1(a+ 3, b;c+ 3;z)−

3a(a+ 1)(a− c)
c(c+ 1)(c+ 2) 2F1(a+ 2, b;c+ 3;z)+

3a(a− c)(a− c−1)
c(c+ 1)(c+ 2) 2F1(a+ 1, b;c+ 3;z)−

(a− c)(a− c−1)(a− c−2)
c(c+ 1)(c+ 2) 2F1(a,b;c+ 3;z)
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APPENDIX B

This section explains a detailed step by step derivation of the expected

value of X, (E[X]) for the mixture of 2 modified Log-Normal distributions.

This includes applying Lemma 2.1 which is one of the related theories

mentioned in Section 3.2.1.

Expected of X, (E[X])

E[X] =
∫ ∞
−∞

xf(x)dx

=
∫ ∞

0
x(2)[ p√

2πσ1x
e
− (lnx−µ1)2

2σ2
1 Φ( c1

σ1
(lnx−µ1))+

1−p√
2πσ2x

e
− (lnx−µ2)2

2σ2
2 Φ( c2

σ2
(lnx−µ2))] dx

By letting y = lnx, then

dy = 1
xdx ; dx= eydy

When x is approaching to infinity, y is approaching to infinity as well.

When x is approaches to 0, ln0 is indefinite. Therefore, as lnx approaches

0, the value tends to approach to a larger negative number towards

negative infinity.

E[X] = lim
m→∞

lim
n→0

2
∫ m

n
ey[ p√

2πσ1
e
− (y−µ1)2

2σ2
1 Φ( c1

σ1
(y−µ1))+

1−p√
2πσ2

e
− (lny−µ2)2

2σ2
2 Φ( c2

σ2
(lny−µ2))] dy

= 2
∫ ∞
−∞

ey[ p√
2πσ1

e
− (y−µ1)2

2σ2
1 Φ( c1

σ1
(y−µ1))+

1−p√
2πσ2

e
− (lny−µ2)2

2σ2
2 Φ( c2

σ2
(lny−µ2))] dy

Then, let a1 = y−µ1
σ1

and a2 = y−µ2
σ2

. the following is obtained:
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da1 = 1
σ1
dy ; dy = σ1da1 and da2 = 1

σ2
dy ; dy = σ2da2

E[X] = 2
∫ ∞
−∞

ea1σ1+µ1 p√
2πσ1

e−
a2
1
2 Φ(c1a1)σ1 da1+

2
∫ ∞
−∞

ea2σ2+µ2 1−p√
2πσ2

e−
a2
2 Φ(c2a2)σ2 da2

= 2
∫ ∞
−∞

eµ1 p√
2πσ1

e
−a2

1+2a1σ1
2 Φ(c1a1)σ1 da1+

2
∫ ∞
−∞

eµ2 1−p√
2πσ2

e
−a2+2a2σ2

2 Φ(c2a2)σ2 da2

= 2
∫ ∞
−∞

eµ1 p√
2πσ1

e
−(a1−σ1)2+σ2

1
2 Φ(c1a1)σ1 da1+

2
∫ ∞
−∞

eµ2 1−p√
2πσ2

e
−(a2−σ2)2+σ2

2
2 Φ(c2a2)σ2 da2

= 2[peµ1+ 1
2σ

2
1
∫ ∞
−∞

1√
2πσ1

e
−(a1−σ1)2

2 Φ(c1a1)σ1da1+

(1−p)eµ2+ 1
2σ

2
2
∫ ∞
−∞

1√
2πσ2

e
−(a2−σ2)2

2 Φ(c2a2)σ2] da2

Now, let b1=a1-σ1 ; where db1=da1 and b2=a2-σ2 ; where db2=da2

E[X] = 2peµ1+ 1
2σ

2
1
∫ ∞
−∞

1√
2πσ1

e
−b21

2 Φ(c1(b1 +σ1))σ1 db1+

2(1−p)eµ2+ 1
2σ

2
2
∫ ∞
−∞

1√
2πσ2

e
−b22

2 Φ(c2(b2 +σ2))σ2 db2

E[X] = 2peµ1+ 1
2σ

2
1E{Φ(c1(b1 +σ1))}+ 2(1−p)eµ2+ 1

2σ
2
2E{Φ(c2(b2 +σ2))}

By applying Lemma 2.1 , E{Φ(hY + k)} = Φ( k√
1+h2 ), where h and k are

constants, the following equation is found:

E[X] = 2[peµ1+ 1
2σ

2
1Φ( c1σ1√

1 + c21
) + (1−p)eµ2+ 1

2σ
2
2Φ( c2σ2√

1 + c22
)] (B.1)
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APPENDIX C

This section explains about the relationship of the general moment

between the Normal distribution and the Log-Normal distribution.

Moment Functions of Normal and Log-Normal Distributions

The Normal distribution has the following moment generating function:

Mx(t) = eµt+
1
2σ

2t2

As the moment generating function is calculated using the following

formula, Mx(t) = E[etx] and the Log-Normal distribution as well as the

Normal distribution can be related with, Y = lnX =⇒ X = eY , the

following could be seen:

Mx(t) = E[etX ], where X ∼N(µ,σ)

M (n)
x (t) = E[Xnet],

M (n)
x (0) = E[Xn]

My(t) = E[etY ], where Y ∼ LN(µ,σ)

From Y = lnX =⇒ X = eY then,

My(t) = E[Xt]

∴M (n)
x (0) =My(t)
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APPENDIX D

This section shows a detailed explanation on the derivation of the general

moment for the Skew Normal distribution which includes the application

ofLemma 2.1. The first derivation of the moment is also presented in

order to derive the expected value of X, E[X].

Moment function of Skew Normal Distribution

Mx(t) = E[etx]

E[etx] = 2
∫ ∞
−∞

etxφ(x−µ
σ

)Φ(λ(x−µ
σ

)) dx

= 2
∫ ∞
−∞

etx
1√
2πσ

e
− (x−µ)2

2σ2 Φ(λ(x−µ)
σ

) dx

By letting y = x−µ
σ , then

dy = 1
σ dx ; dx= σ dy

83



E[etx] = 2
∫ ∞
−∞

et(yσ+µ) 1√
2πσ

e−
y2
2 Φ(λy)σ dy

= 2eµt
∫ ∞
−∞

1√
2π
e
−y2+2yσt

2 Φ(λy) dy

= 2eµt
∫ ∞
−∞

1√
2π
e
−(y−σt)2+σ2t2

2 Φ(λy) dy

= 2eµt+
1
2σ

2t2
∫ ∞
−∞

1√
2π
e
−(y−σt)2

2 Φ(λy) dy

Now, let z = y−σt ; where dz = dy

E[etx] = 2eµt+
1
2σ

2t2
∫ ∞
−∞

1√
2π
e
−z2

2 Φ(λ(z+σt)) dz

= 2eµt+
1
2σ

2t2E{Φ(λ(z+σt))}

By applying Lemma 2.1, E{Φ(hY + k)} = Φ( k√
1+h2 ), where h and k are

constants, the following equation is found:

Mx(t) = E[etx] = 2eµt+ 1
2σ

2t2Φ( λσt√
1+λ2 )

To calculate E[X], the first differentiation of the moment is needed.

M ′x(0) = 2eµt+ 1
2σ

2t2φ( λσt√
1+λ2 )( λσ√

1+λ2 ) + Φ( λσt√
1+λ2 )(2eµt+ 1

2σ
2t2)(µ+σ2t)|t=0

=⇒ E[X] = µ+σ( λ√
1+λ2 )(

√
2
π )
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APPENDIX E

This section shows the derivations to obtain the 1st, 2nd, 3rd and 4th

moment of the mixture of 2 modified Log-Normal distributions from its’

general moment through their respective substitution.

My(t) = E[etY ]

= E[Xt]

= 2[peµ1t+ 1
2σ

2
1t

2
Φ( c1σ1t√

1 + c21
) + (1−p)eµ2t+ 1

2σ
2
2t

2
Φ( c2σ2t√

1 + c22
)],

where Y = lnX

t=1 =⇒ E[X] = 2[peµ1+ 1
2σ

2
1Φ( c1σ1√

1+c21
) + (1−p)eµ2+ 1

2σ
2
2Φ( c2σ2√

1+c22
)]

t=2 =⇒ E[X2] = 2[pe2µ1+2σ2
1Φ( 2c1σ1√

1+c21
) + (1−p)e2µ2+2σ2

2Φ( 2c2σ2√
1+c22

)]

t=3 =⇒ E[X3] = 2[pe3µ1+ 9
2σ

2
1Φ( 3c1σ1√

1+c21
) + (1−p)e3µ2+ 9

2σ
2
2Φ( 3c2σ2√

1+c22
)]

t=4 =⇒ E[X4] = 2[pe4µ1+8σ2
1Φ( 4c1σ1√

1+c21
) + (1−p)e4µ2+8σ2

2Φ( 4c2σ2√
1+c22

)]
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