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ABSTRACT 

 

 

ABNORMAL EVENT DETECTION IN SURVEILLANCE VIDEOS 

USING SPATIOTEMPORAL AUTOENCODER 

 

 

 Chong Yong Shean  

 

 

 

 

 

 

This research presents an efficient method for detecting anomalies in videos. 

Recent applications of convolutional neural networks have shown promises of 

convolutional layers for object detection and recognition, especially in images. 

However, convolutional neural networks are supervised and require labels as 

learning signals. Hence, a spatiotemporal autoencoder architecture is proposed 

for anomaly detection in videos including crowded scenes. The proposed 

architecture includes two main components, one spatial autoencoder for 

learning feature representation, and one temporal autoencoder for learning the 

temporal evolution of the spatial features. During training, the model is trained 

with only normal scenes, with the objective to minimise the reconstruction error 

between the input video volume and the output video volume reconstructed by 

the learned model. After the model is trained, normal video volume is expected 

to have low reconstruction error, whereas abnormal video volume is expected 

to have a high reconstruction error. By thresholding on the error produced by 

each testing input volumes, our system will be able to detect when an abnormal 

event occurs. The model is evaluated on four surveillance video datasets and 

compared using the area under ROC curve and abnormal event count. 

Experimental results on UMN, Avenue, and UCSD benchmarks confirm that the 

ii



proposed method can detect more abnormal events with lower false alarm rate 

than some state-of-the-art methods. The advantage of the proposed method is 

that it is unsupervised — the only ingredient required is long video segments 

containing most normal events in a fixed view. Also, no feature engineering is 

required as the model automatically learns the most useful features from the 

training data. Further investigations will be carried out to improve the result of 

video anomaly detection by having human feedback to update the learned model 

for better detection and reduced false alarms. 
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CHAPTER 1

INTRODUCTION

1.1 Background

In daily life, surveillance cameras can be found everywhere, from in-

door like shops and workplaces, to outdoor such as roads and highways. The

primary purposes of these cameras are to provide a sense of security to the pub-

lic, provides evidence, and also to prevent crime.

Currently, surveillance videos are either being monitored by human se-

curity officials, or for record purpose only. However, It is difficult for security

guards to stay alert to what is happening in the videos being monitored, since

video consists of mostly monotonous scenes, and unusual events rarely occur.

Therefore, there is a need to automate the process so that less human effort is

required to monitor the video stream and to scan every footage in search for

interesting events.

Existing video surveillance solutions in the market mainly fall into one

of these three categories: a) business surveillance, b) home security, c) baby

or pet monitoring. In business scenarios, surveillance solutions are employed

to monitor activity around a business or retail store. Cameras are installed to

monitor office buildings after hours for security, whereas in retail stores they are

used to discourage theft. People who are concerned about their home security

may purchase a surveillance camera to install at home and monitor activities

around their homes. Parents who wish to monitor their baby’s needs when they

are resting or busy with other activities may also purchase a camera to place it

near their baby so they would not miss any event or accident. Surveillance cam-

eras and systems are adverse in the market for consumers to meet their specific

needs. Among the popular commercial solutions are provided by large compa-

nies such as D-Link, Nest, and Sharp. These systems offer to stream live videos



to users device on demand, while some also send email or SMS alerts to users

when events happen at the installed venue.

1.2 Problem Statement

The ability to detect anomalies in real-time is very valuable, so that

appropriate actions can be taken as soon as it is detected to avoid or reduce

negative consequences. Thus, many research efforts are done to replace the

need for manually detecting anomalous situations, to create an automated video

surveillance system. Despite the importance, accurately determining anomalies

can be very challenging.

The processing pipeline for such systems usually involves several steps

including pre-processing, feature detection and description, sequence or context

modelling, and anomaly detection based on certain measure or threshold. De-

pending on the feature detection method, the pre-processing step might include

background subtraction, object detection and tracking. To achieve the objective

of automatically detecting anomalous events, some appearance and dynamics of

events have to be captured. Some examples of conventional feature extractors

are optical flow-based descriptors (Xiao et al., 2015; Laptev et al., 2008; Reddy

et al., 2011) and trajectory-based descriptors (Zhou et al., 2015; Li et al., 2011;

Piciarelli et al., 2008; Mo et al., 2014).

Most research works focus on hand engineering features (Kläser et al.,

2008; Cong et al., 2013; Roshtkhari and Levine, 2013) for particular scenes or

datasets, but these features need to be manually tuned each time a different sce-

nario is introduced. Meanwhile, deep learning methods are trending in visual-

based tasks, due to its capability to produce good representations with raw input.

Therefore in this research, we put emphasis on applying deep learning methods

to extract discriminative features from video data.
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Generally speaking, the term “unusual events” refers to all of the events

which can potentially cause security interest. However, the definition of unusual

events is highly contextual. For business surveillance, an unusual event can be

entering premises after hour; for home surveillance, an unusual event can be

loitering around the doors and windows of the house; and for traffic surveillance,

an unusual event can be driving a vehicle in the direction opposite to the main

flow.

Also, an event considered to be unusual in one context can be a usual

event in another environment. For example, running in a restaurant would be

unusual, but running at a park would be normal. Moreover, the definition of un-

usual events can be ambiguous and often vaguely defined. A person may think

walking around on a subway platform is normal, but some may think it should

be flagged as an anomaly since it could be suspicious. These challenges have

made it difficult to automatically identify video patterns that produce anomalies

in real-world applications.

1.3 Related Works

There are many successful cases in the related field of action recogni-

tion, such as Tran et al. (2015); Karpathy et al. (2014); Ji et al. (2013) and Oneata

et al. (2013). However, these methods only apply to labelled video footages

where events of interest are clearly defined and do not involve highly occluded

scenes, such as crowded scenes. Furthermore, the cost of labelling every type

of event is extremely high. Even so, it is not guaranteed to cover every past

and future events. The recorded video footage is likely not long enough to cap-

ture all types of activities, especially abnormal activities which rarely or never

occurred.

Recent effort on detecting anomalies by treating the task as a binary

classification problem (normal and abnormal) in Zhou et al. (2016) proved it
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being effective and accurate, but the practicality of such method is limited since

footages of abnormal events are difficult to obtain due to its rarity.

Therefore, many researchers have turned to models that can be trained

with the absence of abnormal footages (Cong et al., 2013; Lu et al., 2013;

Sabokrou et al., 2015; Hasan et al., 2016). Typically, researchers build and train

a statistical model with features extracted from videos containing only normal

events, then based on the trained model, unseen video segments that are unable

to fit well into the trained model (i.e. samples with low probability measured

based on the trained model) would be detected as unusual events. Since normal

events are much more abundant and easily obtained compared to unusual events,

this approach is more applicable to real-world scenarios.

Various types of features are used to represent the appearance and mo-

tion dynamics in videos. These include, but not limited to trajectory features

(Jiang et al., 2009; Wang et al., 2013; Bera et al., 2016), optical flow (Zhou

et al., 2011; Fang et al., 2016), and spatiotemporal features (Lu et al., 2013;

Zhao et al., 2011). A detailed review of these methodologies is discussed in the

next chapter.

However, this group of methods still have its limitations – they employ

pre-defined features to represent the appearance and motion dynamics in the

videos. These features may do well in a set of videos, but not applicable to

another. This results in inconsistent performance of these methods and there is

a need to redesign suitable features for different environments.

1.4 Research Objectives

This research aims to develop techniques for unusual event detection

in videos, which are robust in the presence of the challenges listed in the pre-

vious section. This is achieved by addressing the challenges in the following

objectives:
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1. Extract useful features in videos of various environments: Though it may

seem straightforward to use object trajectories to describe motion dynam-

ics, it is very challenging to track all moving objects in a crowded scene

due to occlusions and perspective distortions. As a result, it is impractical

to extract object trajectories as the feature to represent events in videos.

On the other hand, using pre-defined low-level features such as dynamic

textures and optical flow may be optimal for one environment but sub-

optimal for another. This research investigates the suitability of using

learned features from training a deep neural network architecture such as

spatiotemporal autoencoder for event representation, which is robust to

various environments and requires no pre-defined features.

2. Eliminate tracking and grid-based processing: To overcome computa-

tional complexity in calculating low-level features, videos are usually

sliced into small spatiotemporal windows, where feature vectors are com-

puted for each window rather than the whole scene. This approach also

helps to detect local events where instances occur within a small region.

However, determination of the size of such a window is a challenge, es-

pecially in scenes with large crowd or perspective distortion. The devel-

opment of an end-to-end technique provides a solution for fast processing

without splitting each frame into small grids and meets the requirement

of real-time detection.

3. Use unsupervised learning methods for unusual event detection: It is very

tedious and impractical to label a large video dataset, i.e. marking bound-

ing boxes and label each box with its corresponding type of event. With

the unsupervised approach, a training dataset can be built by collecting

footages of only normal events. The labour for filtering footages contain-

ing unusual events is relatively low compared to a fine level annotation.

This research intends to develop techniques for unusual event detection

in various environments with little to no prior knowledge while greatly
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reducing labelling effort.

4. Avoid pre-determining the types (or the number of types) of unusual events

since it is unknown beforehand: Some existing detection methods attempt

to anticipate the types of unusual events, while some methods cluster the

features into a pre-defined number of groups. These assumptions violate

the fact that the number of possible events in any surveillance application

is infinite. For practicality, this dissertation proposes a method which is

independent of these assumptions.

1.5 Research Scope

This research investigates the capability of unsupervised learning method

in capturing regular patterns in surveillance videos. It is assumed that abnormal

events are instances that rarely or never occur in the training videos. Because

no semantic context nor labelling is provided to our system, the proposed model

is expected to learn regular spatiotemporal patterns from long training videos,

and during inference, detect those instances which do not fit into our model as

anomalies.

Although the proposed method does not rely on tracking, it does come

with the limitation of non-tracking approaches. Since non-tracking approaches

do not work in moving camera views, the proposed method will only be evalu-

ated on video datasets captured from a fixed camera view.

1.6 Contributions

This dissertation presents a novel framework to represent video data by

a set of general features, which are inferred automatically from a long video

footage through a deep learning approach. Specifically, a deep neural network

composed of a stack of convolutional autoencoders was used to process video

frames in an unsupervised manner that captured spatial structures in the data,
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which, grouped together, compose the video representation. Then, this repre-

sentation is fed into a stack of convolutional temporal autoencoders to learn the

regular temporal patterns.

The proposed method is domain free (i.e. not related to any specific

task, no domain expert required), does not require any additional human effort,

and can be easily applied to different scenes. To prove the effectiveness of the

proposed method, the method is applied to real-world datasets and show that the

proposed method consistently outperforms similar methods while maintaining a

short running time. Part of the results in this dissertation was reported in Chong

and Tay (2017).

1.7 List of Publications

1. Chong Y.S. and Tay Y.H., 2017. Abnormal event detection in videos us-

ing spatiotemporal autoencoder. In: Cong F., Leung A., Wei Q. (eds)

Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes

in Computer Science, vol 10262. Springer, Cham.

2. Chong Y.S. and Tay Y.H., 2015. Modeling video-based anomaly detection

using deep architectures: Challenges and possibilities. In: 10th Asian

Control Conference (ASCC) 2015. pp. 1-8.

1.8 Dissertation Outline

The structure of the dissertation is as follows:

• Chapter 2 reviews prior works in the related domain and their influence

on the proposed design.

• Chapter 3 presents the implementation details of the proposed method and

the evaluation techniques.

• The experimental results and analysis on various datasets will be detailed

in Chapter 4.
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• Finally, the effectiveness and potential of the proposed method will be

discussed in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In real-world environments, video segments can be easily obtained pro-

vided access to the installed surveillance cameras. Segments of interest are

those containing abnormal events. However, most of these abnormal instances

are beforehand unknown, as this would require predicting all the ways some-

thing could happen out of the norm. It is therefore simply impossible to learn a

model for all that is abnormal or irregular. How can we find an anomaly without

knowing what to look for?

An anomaly is defined as something that deviates from what is stan-

dard, normal, or expected. In terms of probability, anomalies are events of low

probability with respect to a probabilistic model of regular events. In the context

of videos, anomalies are unusual events that occur very rarely or never occurred

in the entire video sequence. Since abnormal events rarely or never occur, the

effort of filtering out segments containing abnormal events is relatively little

compared to annotating every instance in long videos with its corresponding

event label.

Since it is easier to get video data where the scene is normal in contrast

to obtaining what is abnormal, we could focus on a setting where the training

data contains only normal visual patterns. A popular approach adopted in this

area is to first learn the normal patterns from the training videos, then abnormal

events are detected as those deviated from the normal patterns. The majority of

the work on abnormal event detection relies on the extraction of local features

from videos, that are then used to train a normalcy model.

The general process of automatic event detection is depicted in Figure

2.1. Videos are partitioned into a training set and a testing set. The testing set



Figure 2.1: Overview of the process of automatic surveillance event
detection. Dashed line arrows refer to the training workflow, while solid

line arrows outline the evaluation process.

is later used to evaluate the performance of the system. Features are extracted

from the training set to represent events. An effective feature descriptor should

be able to distinguish the abnormal events from normal events. Next, a nor-

malcy model is built to associate high probabilities with feature vectors which

represent normal events. Then, at test time, if the probability computed based

on the normalcy model for the unseen video segment is higher, the segment is

then classified as containing abnormal event(s).

The success of an event detection system depends on the effectiveness

of solving two fundamental problems: (a) the design of feature descriptor to

represent the event, and (b) the design of the classifier or model to detect the

event.

2.1 Event Representation

This section reviews the literature on addressing the first problem – the

design of feature descriptor to represent surveillance events effectively.
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2.1.1 Event Representation by Trajectory Features

Following the definition by Ko (2008), trajectories are paths derived

from the location of particular points of an object in time. The generation of

motion trajectories from a sequence of images typically involves the detection

of tokens in each frame and the correspondence of such tokens from one frame

to another.

Trajectories have long been popular in video analysis and anomaly de-

tection (Zhou et al., 2015; Li et al., 2011; Piciarelli et al., 2008; Mo et al., 2014)

because they are relatively easy to extract and it is straightforward to interpret.

Trajectories are effective at capturing the global structure of object motions

through accurate long-term observation (Zhou et al., 2011). Typically, trajecto-

ries are generated by tracking foreground objects in the scene after performing

background subtraction.

In a work by Piciarelli et al. (2008), the trajectories are subsampled to

a vector representation and clustered with a one-class SVM to form the feature

space containing the normal trajectories. If a new trajectory falls outside the

computed hypervolume, it is identified as abnormal.

Mo et al. (2014) applied sparse reconstruction techniques to learn a

dictionary of normal trajectories. At the evaluation phase, any new trajectories

that could not be well reconstructed using few bases from the learned dictionary

would be detected as an anomaly. A similar approach is adopted by Li et al.

(2011).

Recently, there are also methods proposed using tracklets (Zhou et al.,

2011). Tracklets are fragments of a complete trajectory. They terminate when

occlusions and scene clutter arise. According to (Zhou et al., 2011), they are

more conservative and less likely to drift than long trajectories. In Mousavi

et al. (2015), statistics of the tracklets obtained are computed and the latent
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Dirichlet allocations (LDA) generative model is employed for modelling and

classification of events.

However, the accuracy of trajectory analysis relies heavily on tracking,

which precise tracking still remains a significant challenge in computer vision,

particularly in complex situations. To extract accurate spatiotemporal informa-

tion from trajectories, a fixed view is assumed and any camera movement will

result in inaccurate or broken trajectories. Due to these limitations, tracking-

based approaches can be applied to scenes with less clutter but are ineffective

for detecting unusual patterns in a crowded or complex scenario.

2.1.2 Event Representation by Local Features

To overcome the limitations of relying on motion features extracted

from trajectories, a number of studies have been focused on analysing each

frame at either the pixel or the region level by dividing each frame into smaller

patches.

Unlike trajectory-based features, local features do not rely on tracking.

They rely mainly on extracting and analyzing low-level visual features, such as

the histogram of oriented gradients (Xiao et al., 2015), the histogram of oriented

flows (Laptev et al., 2008) and optical flow (Reddy et al., 2011), by employing

spatiotemporal video volumes through dense sampling and interest point selec-

tion (Dollár et al., 2005). These approaches perform better in cluttered scenar-

ios, when compared to tracking-based methods.

For example, in the work of Lu et al. (2013), the authors use multiple

scales of the same frame, split them into small patches, extract low-level fea-

tures from each patch, and then learn the combinations that build up the normal

pattern. To capture local features from coarse- to fine-level, the authors extract

features from a spatial pyramid as shown in Figure 2.2.
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Figure 2.2: A spatial pyramid for local feature extraction. The numbers in
the figure refer to the number of combination required to describe each

patch location. The image is adopted from Lu et al. (2013).

In the work of Zhong et al. (2004), the authors extract short sequences

from the video where each sequence extracted are assumed to contain only one

event. After performing background subtraction, they compute a spatial his-

togram by blocks containing object motion. This method involves tedious man-

ual preprocessing and also unable to locate the anomalous region. Han et al.

(2013) adopted a feature descriptor called Multi-scale Histogram of Optical

Field (MHOF) (Cong et al., 2011), which not only describes motion direction

but also preserves more motion-energy information.

Cong et al. (2013) proposed a region-based descriptor called “Motion

Context” to describe both motion and appearance information of the spatio-

temporal segment. The author uses Edge Orientation Histogram (EOH) as ap-

pearance descriptor and Multi-layer Histogram of Optical Flow (MHOF) as mo-

tion descriptor. Then for each queried spatiotemporal segment, it searches for its

best match in the training dataset, and determine the normality using a dynamic

threshold. This method is more efficient compared to their previous work using

the sparse reconstruction method.

A similar category of descriptors is spatiotemporal video volume de-

scriptors (HOG3D) (Kläser et al., 2008): these volumes are characterised by
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the histogram of the spatio-temporal gradient in polar coordinates (Roshtkhari

and Levine, 2013). In Lu et al. (2013), 3D gradient features of each spatiotem-

poral cube are extracted from the video sequence and trained to obtain sparse

combinations with allowable reconstruction errors.

2.1.3 Event Representation by Learned Features

The problem of how to represent video sequences is the most fun-

damental problem in surveillance event detection. Instead of introducing the

increasingly more complex handcrafted features, recent researches have now

moved to use efficient and robust algorithms that learn to extract feature rep-

resentations from images and videos in a fully unsupervised manner. There

are several existing methods for representing images and video sequences using

learned features from raw pixel values and frames.

The success of deep learning methods in various applications conse-

quently caused the rise of such methods in anomaly detection. The term deep

learning refers to learning a hierarchical set of features through multiple lay-

ers of hidden nodes in an artificial neural network. Unlike previously stated

methods, there is no need to define a specific set of features to extract from the

dataset – deep learning methods learn the useful features directly from the data

with minimal preprocessing.

Specifically, convolutional neural networks (ConvNet) have proved its

effectiveness in a wide range of applications such as object recognition (Si-

monyan and Zisserman, 2014b), person detection (Vu et al., 2015), and action

recognition (Tran et al., 2015; Simonyan and Zisserman, 2014a). ConvNet con-

sists of a stack of convolutional layers with a fully-connected layer and a soft-

max classifier, and convolutional autoencoder is essentially a ConvNet with its

fully-connected layer and classifier replaced by a mirrored stack of convolu-

tional layers.
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Sabokrou et al. (2015) introduce a global anomaly detection framework

based on features learned from an autoencoder. Stacked denoising autoencoders

are used by Xu et al. (2017) to learn motion and appearance feature representa-

tions. Ravanbakhsh et al. (2016) propose a Binary Quantization Layer plugged

as a final layer on top of a ConvNet, which represents temporal motion patterns

for the task of abnormality segmentation. Hasan et al. (2016) used a convo-

lutional autoencoder to learn normal activity patterns from raw pixels. On the

other hand, a convolutional variant of long-short term memory (LSTM) archi-

tecture is employed in a work by Medel (2016) to capture the spatial and tem-

poral dynamics of normal events in videos. Their reported result proves the

usefulness of learned representation on videos through a stack of neural hidden

layers.

Despite its simplicity, some limitations remain in these recently pro-

posed methods. Though 3D ConvNet performed excellently in learning discrim-

inative features between the anomalies and the normal events, it is impractical

to apply in real-world scenarios due to the absence of video segments contain-

ing abnormal events. Meanwhile, in the convolutional autoencoder proposed by

Hasan et al. (2016), convolution and pooling operations are performed only spa-

tially, even though the proposed network takes multiple frames as input, because

of the 2D convolutions, after the first convolution layer, temporal information is

collapsed completely (Tran et al., 2015).

For a comprehensive review of video features, interested readers can

refer to Chong and Tay (2015).

2.1.4 Section Summary

Table 2.1 summarises the advantages, limitations and example applica-

tions of each feature category.
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Table 2.1: Summary of three categories of video features covered in 

Section 2.1. 

Type of 

Features 

Trajectories Local Features Learned Features 

Description Track the 

location 

of particular 

points of an 

object 

in time to obtain 

the motion path 

of the object. 

 

Low-level visual 

features extracted 

through dense 

sampling and 

interest point 

selection. 

Extract features 

from abundant 

data without 

explicitly 

defining 

a specific set of 

features. 

Advantages • Able to 

capture the 

global 

structure of 

object 

motions 

 

• Easy to 

interpret 

• Able to work 

in cluttered 

scenarios 

 

• Does not rely 

on tracking 

 

• Background 

subtraction is 

not 

compulsory 

• Does not rely 

on tracking and 

background 

subtraction 

 

• Does not 

require the 

selection of the 

type of features 

 

• Does not 

require 

splitting into 

regions 

Limitations • Require 

background 

subtraction 

 

• Require 

precise 

object 

tracking 

 

• Sensitive to 

occlusions 

• Require 

splitting into 

multiple 

regions and 

subsequently 

perform 

summarisation 

from each 

region 

 

• Require careful 

selection of the 

type of local 

features to be 

extracted 

• Learned 

features are 

difficult to 

interpret 

 

• Tuning a large 

set of 

hyperparameter

s can be 

tedious and 

time-

consuming 

Applications Zhou et al. 

(2015); Li et al. 

(2011); Piciarelli 

et al. (2008); Mo 

et al. (2014) 

Lu et al. (2013); 

Zhong et al. 

(2004); Cong et al. 

(2013); Klaser et 

al. (2008) 

Sakurada and Yairi 

(2014); Hasan et 

al. (2016); 

Chalapathy et al. 

(2017) 

 



2.2 Classification Model

Once feature vectors have been extracted to represent the events, these

feature vectors are fed as the input to a classification model for event detection.

Some commonly applied event detection models have already been mentioned

in Section 2.1.1 and 2.1.2. In this section, the literature is grouped into two cat-

egories: methods based on supervised learning, and unsupervised approaches.

2.2.1 Supervised Approach

Today, the supervised approach is by far the more common across a

wide range of industry use cases because it is usually fast and accurate. Input

videos are properly annotated with its event type and fed into a supervised model

to learn the mapping between the video features and the corresponding event

label. These methods build explicit models of normal and abnormal behaviour

based on the labelled data. This approach assumes prior knowledge of both

normal and abnormal events are available.

In the event where prior knowledge is available, for instance, in traf-

fic surveillance, having a certain level of supervision in the surveillance system

proved to perform well (Inoue et al., 2011; Yuan et al., 2009). Among the pop-

ular architectures used to classify video features are artificial neural networks

(ANN) and support vector machines (SVM).

Inspired by biological nervous systems, an artificial neural network con-

sists of an interconnected network of artificial neurons. Neural networks become

widely used in solving nonlinear problems such as prediction, pattern recogni-

tion, and function optimisations. For classification tasks, an activation function

(usually sigmoid or softmax) is applied to the final layer which consists of the

number of classes to classify.
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Support Vector Machines (SVM) is also a popular choice for many clas-

sification problems. The goal of SVM is to find the optimal separating hyper-

plane in a feature space (Lauer et al., 2007). By specifying different kernel

functions as the decision function, SVM can be versatile to cope with various

scenarios encountered in real-world applications. SVM was initially designed to

solve binary classification problems, but can be extended to perform multi-class

classifications.

For example, Kläser et al. (2008) use non-linear support vector ma-

chines with chi-square kernel to learn multi-class event classification based on

histograms of visual word occurrences. Rajesh et al. (2013) applied a neural net-

work to classify moving vehicles in their proposed traffic surveillance system.

In a more narrowly defined task such as abandoned object detection, supervised

approach is also suitable – Tian et al. (2011) defined a set of rules that works

together with background subtraction technique and person detection model to

detect abandoned objects in a scene.

Generally, the supervised approach is good for abnormal event detec-

tion if the abnormal events are well defined and there are sufficient anomalous

examples. However, supervised techniques have these disadvantages according

to Numenta (2015):

• Most supervised models are not very adaptive to pattern changes. To learn

new data patterns, a new model would need to be trained with labelled

data. Thus, these models are not suitable for real-time or streaming data.

• The labelling process involves tedious human effort and must be repeated

periodically for new data examples.

• The labelling process can be error-prone and mistakes in labelling can

cause poor model performance.
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• It is difficult to anticipate rare or unseen anomalies, thus even more chal-

lenging to model these anomalies with supervised methods.

2.2.2 Unsupervised Approach

Due to the nature that anomaly is unbounded and cannot be anticipated,

the most widely adopted models are based on unsupervised learning. In unsu-

pervised learning, there is no labelled dataset and since there are no annotations

to guide the learning process, researchers have designed alternative objective

functions to serve as the teaching signal.

Since abnormal events are rare and unknown to an unsupervised model,

normal events can be utilized to build a normality model. Then a test sequence

can be considered abnormal if the probability of generating the sequence from

the normality model is very low.

One of the popular architectures based on this assumption is Hidden

Markov Models (HMMs). The hidden states and transitions in HMMs are used

to model temporal dependencies among components (Gupta et al., 2014). The

Viterbi algorithm is applied to extract the most probable sequence.

Kratz and Nishino (2009) propose a method to model statistics of spatio-

temporal gradients with a coupled HMM. Jiang et al. (2009) propose a method

that models trajectories as HMMs and clusters them into groups of HMMs that

are similar in terms of the distributions they represent. A similarity metric be-

tween HMMs is designed to compute the distance of each trajectory to the clus-

ters.

Jiang et al. (2011) use HMM for co-occurrence anomalies. In Saligrama

et al. (2010), Markov Random Fields (MRFs) are incorporated for spatial co-

occurring anomalies. Similarly, the authors in Cui et al. (2007) proposed to

model events as HMMs and determine the posterior probability of an observa-

tion given past events using a Sequential Monte Carlo framework.
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Although HMMs benefit from relatively fast and powerful training and

decoding algorithms, it does not model high-dimensional datasets efficiently.

To model k bits of information, it needs 2k hidden states. Hence, HMMs do not

scale well to real life datasets.

Another group of graphical models that is capable of modelling co-

occurring events is probabilistic topic models (Blei, 2012), including its various

extensions such as latent Dirichlet allocation (LDA), probabilistic latent seman-

tic analysis (pLSA), and hierarchical Dirichlet process (HDP). Originally, these

generative models were applied to automatic text analysis but also proved effec-

tive to analyse video data. By training a generative model with normal events

and learning a set of discriminative features which can describe normal events

well, then abnormal events can be detected as those that are badly explained by

the trained model.

In topic models, documents are random mixtures over latent topics,

where each topic is represented by a distribution over words. Similarly, video

clips of different action categories can be represented by a distribution over vi-

sual words. Abnormal events are characterized by low word-topic probabilities

or having visual words from normal topics, but co-occurring in an unusual and

unique combination (Popoola and Wang, 2012).

Mousavi et al. (2016) computed a tracking-based feature – histogram

of oriented tracklets on 3D video patches and applied LDA to learn normal

behavioural patterns in crowded scenarios. An example of using non-tracking

based feature is presented in the work of Hu et al. (2016) which uses pixel

gradient features as the input to their LDA model.

Varadarajan and Odobez (2009) describe each activity by location, mo-

tion, and size features and use these features to form the visual words. By

counting for each video clip (document) the number of times a word occurs
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in it, a bag-of-words representation is obtained. The obtained representation is

then used to compute the log-likelihood of the words in the document.

Though powerful, topic models suffer from a few limitations. In a doc-

ument, the words are modelled as independent of each other. Ignoring the cor-

relations of words in a document may not fit reality. Furthermore, to facilitate

the computation of probability, the high-dimensional video data are often sum-

marised into statistics that may not be representative of the events, which may

cause potential inaccuracies.

Besides HMM and topic models, a widely adopted normality model

is a Gaussian Mixture Model (GMM). A GMM is a probabilistic model that

assumes the data is drawn from a mixture of Gaussian distributions. It is flexible

and capable of approximating multi-modal distributions. One can train a GMM

using the expectation-maximization (EM) algorithm. Once it is trained with

normal events, the probability of test patterns can be computed and abnormal

events likely to be associated with low likelihood values (Roshtkhari and Levine,

2013; Basharat et al., 2008; Sabokrou et al., 2015).

However, when there is a cluster or mixture lacking enough samples,

the covariance matrix may become singular, leading the algorithm to diverge.

This is usually overcome by performing dimension reduction or regularising the

covariances artificially. Also, to determine the optimal number of mixtures, in-

formation theoretical criteria are required to aid the decision. Therefore, GMMs

are limited to applications where the feature vectors are low dimensional com-

pared to the number of training samples.

Another similar technique is sparse reconstruction (Cong et al., 2011;

Zhao et al., 2011). The underlying principle of these methods is that any new

feature representation of a normal/anomalous event can be approximately repre-

sented as a (sparse) linear combination of feature representations (of previously
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observed events) in a learned dictionary. This assumes that all previously ob-

served events are normal events. Because the basis function of the dictionary

is trained on normal events, the reconstruction cost is expected to be high for

abnormal motion patterns. By thresholding the reconstruction cost, abnormal

events can be detected. The idea of sparse reconstruction is applied across many

papers (Lu et al., 2013; Cong et al., 2011; Xiao et al., 2015) due to the ease of

implementation and low computational cost. It is also possible to include some

a priori knowledge about the application by adding weights to selected features.

However, since classical bags of visual words approaches group similar

volumes, all compositional information are destroyed in the process of group-

ing visual words. It is also required to pre-determine the number of clusters

(Hu et al., 2016), which can only be found through trial-and-error during testing

time. Though some methods proposed to automatically determine the suitable

number of clusters or dictionary atom (Lu et al., 2013), it requires repeating the

training process which increases the training time drastically. In addition, code-

book models require searching over a large space (Roshtkhari and Levine, 2013)

even during the time of testing, making it impractical for real-time anomaly de-

tection.

As an alternative way to classify instances in the presence of data from

only a single class (in this context, the normal class), a one-class classifier such

as one-class SVM has been extensively used for anomaly detection problems.

For instance, Ma et al. (2015) and Xu et al. (2017) used one-class SVM to learn

the boundary enclosing normal patterns from extracted features. Also, a similar

one-class approach named space-time Markov random field (MRF) was devised

by Kim and Grauman (2009).

Most of the previous work uses hand-crafted features to model normal

activity patterns. Following the success of deep learning applications in the

field of computer vision (Simonyan and Zisserman, 2014b; Vu et al., 2015; Tran
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et al., 2015; Simonyan and Zisserman, 2014a), a few authors (Hasan et al., 2016;

Medel, 2016) were inspired to use deep-learning based approach to learn normal

patterns from raw pixels. In these end-to-end approaches, there is no need to

address the design of feature extractor and event detection model separately.

Hasan et al. (2016) used an end-to-end convolutional autoencoder to

detect anomalies in surveillance videos. The idea of using autoencoders for

anomaly detection task is also presented in the work of Sakurada and Yairi

(2014) and Chalapathy et al. (2017).

On the other hand, long short term memory (LSTM) model is well-

known for learning temporal patterns and predicting time series data. Medel

(2016) has recently proposed to apply convolutional LSTMs for learning the

regular temporal patterns in videos and his findings show great promise of what

deep neural network can learn. However, convolutional LSTM layers applied

by Medel (2016) are memory-intensive – the training will need to be executed

on very small mini-batches, which results in slow training and testing time.

2.2.3 Section Summary

Table 2.2 summarises the characteristics, where it is suitable, represen-

tative models and example applications of each models’ category.

2.3 Chapter Summary

This chapter reviewed the literature on addressing two important parts

of the abnormal video event detection problem: 1) designing feature descrip-

tor that represent surveillance events effectively, 2) applying these features to

classification models for event detection. Applying research insights from this

chapter, the implementation details of the proposed method will be discussed in

the following chapter.
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Table 2.2: Summary of two categories of classification models covered in 

Section 2.2. 

Type of 

Approach 

Supervised Approach Unsupervised Approach 

Characteristics Learn the mapping 

between the video 

features and the 

corresponding event label. 

 

Build a probabilistic model of 

normal events by fitting video 

features of normal events 

during training, then 

determine the probability of 

generating a test sequence 

from the model.  

 

When it is 

suitable 
• Normal and abnormal 

events are clearly 

defined 

 

• Prior knowledge of 

both normal and 

abnormal events are 

available 

 

• Has labelled video 

data of both categories 

 

• Type of events cannot be 

clearly defined nor 

anticipated 

 

• Difficult to obtain a 

labelled dataset 

 

• The event category of 

interest (i.e. abnormal 

events) can be detected 

probabilistically 

 

Representative 

models 
• Artificial Neural 

Network (ANN) 

 

• Support Vector 

Machines (SVM) 

 

• Gaussian Mixture 

Models (can be 

unsupervised too) 

• Hidden Markov Models 

(HMM) 

 

• Probabilistic Topic 

Models 

 

• One-class SVM 

 

• Sparse reconstruction 

 

 

Applications • Human action 

classification (Klaser 

et al., 2008) 

 

• Vehicle classification 

and stopped vehicle 

detection (Rajesh et 

al., 2013) 

 

• Abandoned object 

detection (Tian et al., 

2011) 

• Time series analysis and 

outlier detection (Gupta et 

al., 2014) 

 

• Anomaly detection in 

extremely crowded scenes 

(Kratz and Nishino, 2009) 

 

• Prediction of video pixels 

(Medel, 2016) 

 



CHAPTER 3

METHODOLOGY

The proposed method described in this chapter is based on the assump-

tion that when an abnormal event occurs, these frames of video would contain

appearance and/or motion patterns which are significantly different from the

normal footages. Inspired by Hasan et al. (2016), we train an end-to-end model

that consists of a spatial feature extractor and a temporal encoder-decoder which

together learns the temporal patterns of the input volume of frames. The model

is trained with video volumes consists of only normal scenes, with the objective

to minimize the reconstruction error between the input video volume and the

output video volume reconstructed by the learned model. After the model is

properly trained, normal video volume is expected to have low reconstruction

error, whereas video volume consisting of abnormal scenes is expected to have

high reconstruction error. By thresholding on the error produced by each testing

input volumes, our system will be able to detect when an abnormal event occurs.

Our proposed model takes an input of T − 1 frames captured at time

t = 1, 2, ..., T−1, and output the prediction of frame t = T . A general overview

of the proposed architecture is presented in Figure 3.1.

The proposed approach consists of three main stages: preprocessing,

feature learning, and anomaly detection. Each stage is detailed in the following

sections.

3.1 Preprocessing

The task of this stage is to convert raw data to the aligned and acceptable

input for the model. Each frame is extracted from the raw videos and resized to

224×224. Then the images are converted to grayscale to reduce dimensionality.



Figure 3.1: Our proposed network architecture. It takes a sequence of
length T − 1 as input, and output a reconstruction of the consequent frame

of the input sequence. The spatial encoder takes one frame at a time as
input, after which T − 1 frames have been processed, the encoded features
of T − 1 frames are concatenated and fed into temporal encoder for motion
encoding. The output of the model is the T -th frame of the input sequence.

To ensure that the input images are all on the same scale, the pixel values are

scaled between 0 and 1 and subtracted every frame from its global mean image

for normalisation. The mean image is calculated by averaging the pixel values at

each location of every frame in the training dataset. After that, T−1 consecutive

frames are concatenated into video volumes, while setting the T -th frame as the

groundtruth for training.

3.2 Feature Learning

We propose a convolutional spatiotemporal autoencoder to learn the

regular patterns in the training videos. Our proposed architecture consists of two

parts — spatial autoencoder for learning spatial structures of each video frame,

and temporal encoder-decoder for learning temporal patterns of the encoded

spatial structures. As illustrated in Figure 3.2, the spatial encoder and decoder

have two convolutional and deconvolutional layers respectively, while the tem-

poral encoder is a three-layer convolutional long short term memory (LSTM)

model. Convolutional layers are well-known for its superb performance in ob-

ject recognition, while LSTM model is widely used for sequence learning and

time-series modelling and has proved its performance in applications such as
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Figure 3.2: Layer configuration of the proposed network architecture. The
numbers at the rightmost denote the output size of each layer.

speech translation and handwriting recognition.

Generally, in deciding what parameters to use in our proposed model,

we look for similar problems and deep learning architectures which have already

been shown to work. Then a suitable model can be developed by experimenta-

tion. We follow the kernel size as implemented in Hasan et al. (2016) to use

11 × 11, 5 × 5, and 3 × 3 for convolutional layers. However, we replaced the

pooling layer with a convolutional layer with increased stride. The intention of

pooling is to reduce the number of extracted features and to avoid overfitting.

Springenberg et al. (2014) and Zagoruyko and Komodakis (2016) have proved

that max-pooling layers can be replaced by convolutional layers with increased

stride without loss in accuracy. Besides, we used a smaller number of filters

as compared to Hasan et al. (2016) because applying a large number of filters

quickly filled up the whole memory due to the extra time dimension. We had to

gradually reduce the number of filters until the model can fit into the memory

constraint (64GB RAM).

3.2.1 Autoencoder

An autoencoder is an artificial neural network which made up of two

components: an encoder and a decoder. It is commonly used for dimensionality

reduction by compressing the input to a smaller number of encoder nodes. Sim-

ilar to ANNs, autoencoders are usually trained using back-propagation but in
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an unsupervised manner, by minimizing the reconstruction error of the decoded

output from the original inputs. With a nonlinear activation function, an autoen-

coder can learn more useful features than some common linear transformation

methods such as PCA.

3.2.2 Spatial Convolution

The main purpose of convolution in the context of a convolutional net-

work is to extract features from the input image. Convolution preserves the spa-

tial structure by learning image features from small grids of input data. Math-

ematically, a convolution operation performs dot products between the filters

and local regions of the input. Suppose that a convolutional layer is set up and

preceded by a n × n square input layer. If a m ×m filter W is used, then the

convolutional layer output will be of size (n−m+ 1)× (n−m+ 1).

A convolutional network learns the values of each filter from its training

data, with pre-defined parameters such as the number of filters, filter size, the

number of layers prior to training. With more number of filters, more features

get extracted and the better the model becomes at recognizing patterns in novel

instances. However, more filters would add to computational complexity, so we

need to find balance by not setting the number of filters too large.

3.2.3 Recurrent Neural Network (RNN)

In a traditional feedforward neural network, all inputs (and outputs) are

assumed to be independent of each other. However, learning temporal depen-

dencies between inputs are important in tasks involving sequences, for example,

a word predictor model should be able to derive information from the past in-

puts. RNN works just like a feedforward network, except that the values of its

output vector are influenced not only by the input vector but also on the entire

history of inputs. Theoretically, RNNs can capture temporal information in ar-
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bitrarily long sequences, but due to vanishing gradients, they are often limited

to looking back only a few steps.

3.2.4 Long Short Term Memory (LSTM)

To overcome this problem, a variant of RNN is introduced: long short

term memory (LSTM) model which incorporates a recurrent gate called forget

gate. With the new structure, LSTMs prevent backpropagated errors from van-

ishing or exploding, thus can work on long sequences and they can be stacked

together to capture higher level information. The formulation of a typical LSTM

unit is summarised in Figure 3.3 and equations 3.1 through 3.6.

ft = σ(Wf ⊗ [ht−1, xt] + bf ) (3.1)

it = σ(Wi ⊗ [ht−1, xt] + bi) (3.2)

Ĉt = tanh(WC ⊗ [ht−1, xt] + bC) (3.3)

Ct = ft ⊗ Ct−1 + it ⊗ Ĉt (3.4)

ot = σ(Wo ⊗ [ht−1, xt] + bo) (3.5)

ht = ot ⊗ tanh(Ct) (3.6)

Equation 3.1 represents the forget layer, equation 3.2 and 3.3 are where

new information is added, 3.4 combines old and new information, whereas equa-

tion 3.5 and3.6 output what has been learned so far to the LSTM unit at the next

timestep. The variable xt denotes the input vector, ht denotes the hidden state,
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Figure 3.3: The structure of a typical LSTM unit. The blue line represents
an optional peephole structure, which allows the internal state to look
back (peep) at the previous cell state Ct−1 for a better decision. Best

viewed in colour.

and Ct denotes the cell state at time t. W are the trainable weight matrices, b

are the bias vectors, and the symbol ⊗ denotes the Hadamard product.

3.2.5 Convolutional LSTM

A variant of the LSTM architecture, namely Convolutional Long Short-

term Memory (ConvLSTM) model was introduced by Shi et al. (2015) and has

been recently utilised by Patraucean et al. (2016) for video frame prediction.

Compared to the usual fully connected LSTM (FC-LSTM), ConvLSTM has its

matrix operations replaced with convolutions. By using convolution for both

input-to-hidden and hidden-to-hidden connections, ConvLSTM requires fewer

weights and yield better spatial feature maps. The formulation of the ConvL-

STM unit can be summarised with equations 3.7 through 3.12.

ft = σ(Wf ∗ [ht−1, xt, Ct−1] + bf ) (3.7)

it = σ(Wi ∗ [ht−1, xt, Ct−1] + bi) (3.8)
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Ĉt = tanh(WC ∗ [ht−1, xt] + bC) (3.9)

Ct = ft ⊗ Ct−1 + it ⊗ Ĉt (3.10)

ot = σ(Wo ∗ [ht−1, xt, Ct−1] + bo) (3.11)

ht = ot ⊗ tanh(Ct) (3.12)

While the equations are similar in nature to equations 3.1 through 3.6,

the input is fed in as images, while the set of weights for every connection is re-

placed by convolutional filters (the symbol ∗ denotes a convolution operation).

This allows ConvLSTM work better with images than the FC-LSTM due to its

ability to propagate spatial characteristics temporally through each ConvLSTM

state. Note that this convolutional variant also adds an optional ‘peephole’ con-

nections to allow the unit to derive past information better.

3.3 Activation Functions

In neural networks, the activation function of a node defines the output

of that node given an input or set of inputs. Activation functions play a key

role in introducing non-linearity into a neural network. This allows a response

variable to vary non-linearly with its input variables.

3.3.1 Rectified Linear Unit (ReLU)

ReLU is a simple element-wise activation function f(x) = max(0, x)

thresholded at zero. Before ReLU was introduced by Nair and Hinton (2010),

sigmoid and tanh were popular choices among researchers working with neural
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networks. Sigmoid function is given by f(x) = 1/(1+e−x), while tanh function

is defined as f(x) = (ex − e−x)/(ex + e−x).

With the rise of deeper neural networks, the problem of vanishing gra-

dient arises and this decreases the learning capability of deeper layers. ReLU

helps to avoid vanishing gradients because of the output of ReLU is not bounded

at one like sigmoid does. The constant gradient of ReLUs also results in faster

learning. Krizhevsky et al. (2012) state that ReLU train six times fast than tanh

to reach same training error.

A normalisation technique that works well with ReLUs is batch normal-

isation. Batch normalisation (BN) is introduced by Ioffe and Szegedy (2015) to

address the internal covariance shift phenomenon by normalising layer inputs

to zero mean and unit variance. Applying this technique to neural networks

make the network less sensitive to initialization and can be trained with higher

learning rates. It also acts as a regularizer like Dropout (Srivastava et al., 2014).

ReLU + BN combination is used extensively in Residual Network developed by

He et al. (2016) which won ILSVRC 2015.

3.4 Optimizers

Gradient descent is a method to minimize an objective function J(θ)

parameterized by a model’s parameters θ ∈ Rd by updating the parameters in

the opposite direction of the gradient of the objective function ∇θJ(θ) with

respect to the parameters (Dangeti, 2017). The learning rate α determines the

step size required to reach a local minimum.

The stochastic gradient descent (SGD) algorithm (Ng, 2000) updates

the parameters θ of the objective J(θ) for each training example x(i) and label

y(i) as,

θ = θ − α∇θJ(θ;x
(i),y(i)).

32



Due to SGD performing one update at a time, the high variance in each

update causes the objective function to fluctuate heavily. To overcome this,

SGD performs updates with respect to minibatch to reduce the variance and

thus leads to more stable convergence. Also, the data needs to be randomly

shuffled prior to each epoch of training to avoid bias in the gradient and lead to

poor convergence.

Though SGD is fairly simple to implement, it does not guarantee good

convergence (Ruder, 2016), and has a few disadvantages:

• A number of hyperparameters are required to tuned, such as the regular-

ization parameter and the number of iterations.

• A learning rate that is too small results in slow convergence, while a learn-

ing rate too large can cause the loss function to fluctuate or lead to diver-

gence.

• Learning rate schedules which controls the learning rate are pre-defined

before training hence unable to adapt to different datasets.

3.4.1 Adaptive Moment Estimation (Adam)

To address some of the limitations of SGD, we propose to use algo-

rithms that adapt the learning rate to the model parameters. Adam (Kingma and

Ba, 2014) is a method that calculates adaptive learning rates for each parameter.

Besides storing past squared gradients v like RMSprop does, Adam also keeps

a history of the past gradients m:

g = ∇θf(θ)

m = β1m+ (1− β1)g

v = β2v + (1− β2)g2
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During the initial time steps, as m and v are initialised as vectors of

0’s, they are biased towards 0, especially when the decay rates are small. In an

attempt to counteract these biases, the first and second moment estimates are

calculated as follows:

m̂ =
m

1− β1

v̂ =
v

1− β2

Finally Adam updates parameters as follows:

θ = θ − α√
v̂ + ε

m̂

The authors of the algorithm propose default values of 0.9 for β1, 0.999

for β2, and 10−8 for ε. Adam was shown to work well in practice and compares

favourably to other adaptive learning-based algorithms.

3.5 Reconstruction Error and Regularity Score

The reconstruction error of all pixel values I in frame t of the video

sequence is taken as the Euclidean distance between the input frame and the

reconstructed frame:

e(t) = ||x(t)− fW (x(t))||2 (3.13)

where fW denotes the weights in the spatiotemporal model.

Once the model is trained, we can evaluate our model’s performance by

feeding in testing data and check whether it is capable of detecting abnormal

events while keeping false alarm rate low. To better compare with Hasan et al.

(2016), we used the same formula to calculate the regularity score for all frames,

the only difference being the learned model is of a different kind.
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Based on the reconstruction error, we then compute the abnormality

score sa(t) by scaling the error values between 0 and 1. Subsequently, regularity

score sr(t) can be simply derived by subtracting abnormality score from 1:

sa(t) =
e(t)− e(t)min

e(t)max

(3.14)

sr(t) = 1− sa(t) (3.15)

3.6 Anomaly Detection

It is straightforward to determine whether a video frame is normal or

anomalous. The reconstruction error of each frame determines whether the

frame is classified as anomalous. The threshold determines how sensitive we

wish the detection system to behave — for example, setting a low threshold

makes the system become sensitive to the happenings in the scene, where more

alarms would be triggered.

3.7 Evaluation metrics

This section introduces the evaluation metrics used in this study. Sec-

tion 3.7.1 will first introduce the Receiver Operating Characteristic (ROC) Curve,

which is a fundamental evaluation tool for anomaly detection. A complete eval-

uation also requires the annotation of ground truth. Then in Section 3.7.2, we

discuss how the detected event count for each dataset is computed based on a

post-processing technique.

3.7.1 Receiver Operating Characteristic (ROC) Curve

We obtain the true positive rate (TPR) and false positive rate (FPR) by

setting at different error threshold obtained from Section 3.6 in order to calculate
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the area under the receiver operating characteristic (ROC) curve (AUC). The

equal error rate (EER) is obtained when the false positive rate equals to the false

negative rate. The larger AUC indicates a better system. Because the range of

FPR and TPR are [0, 1], the range of AUC is also [0, 1]. A perfect ROC will

yield an AUC of 1. In the case of anomaly detection, a low EER also indicates a

better performing system, since it implies that the system is able to detect more

abnormal events at a low false alarm rate.

3.7.2 Anomalous Event Count

Following the practice in Hasan et al. (2016), to reduce the noisy and

unmeaningful minima in the regularity score, we group local minima with a

fixed temporal window of 50 frames. We assume local minima within 50 frames

belong to the same abnormal event. This is a reasonable length of the temporal

window as an abnormal event should be at least 2-3 seconds long to be mean-

ingful (videos are captured at 24-30 fps).

3.8 Chapter Summary

This chapter discussed the three stages of our proposed approach. We

have also explained the justifications of the techniques and parameters we ap-

plied in our proposed model. By applying these techniques, the effectiveness

of these techniques will be shown experimentally in the following chapter. In

the next chapter, the datasets we used to evaluate our method and the results

obtained will be discussed in detail.
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CHAPTER 4

EXPERIMENTS AND DISCUSSIONS

4.1 Datasets

We train our model on the three most commonly used benchmarking

datasets: UMN 1, Avenue (Lu et al., 2013), and UCSD Ped1 and Ped2 (Mahade-

van et al., 2010). All videos are taken from a fixed position for each dataset. All

training videos contain only normal events. Testing videos have both normal

and abnormal events.

All three datasets have different activity contexts and definitions of nor-

mal and abnormal events. In general, we define normal activities as those occur

frequently in each dataset, and abnormal activities are those fall outside the

norm. Thus, normal activities can differ across datasets, as the contexts are

different.

There are two major categories of anomalous events: global and local

anomalous events. Global anomalous events are defined as those events which

abnormalities involve the whole scene, where local anomalous events are those

which only a portion of the scene contains some abnormal activities. A standard

video dataset for global anomalies is the UMN dataset. Avenue and UCSD

Pedestrians are benchmarking video datasets for local anomaly detection.

4.1.1 UMN

The UMN dataset is captured from 3 different scenes, including indoor

and outdoor scenes. The footage from each scene has a different duration, and

each contains several clips. The total number of frames is 7739. We set aside

60% of all frames for training, while leaving the rest for testing.
1http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi



4.1.2 Avenue

In Avenue dataset, there is a total of 16 training and 21 testing video

clips. Each clip’s duration varies between less than a minute to two minutes

long. The normal scenes consist of people walking between the staircase and

subway entrance, whereas the abnormal events are people running, walking in

the opposite direction, loitering and etc. The challenges of this dataset include

camera shakes and a few outliers in the training data. Also, some normal pattern

seldom appears in the training data.

4.1.3 UCSD Pedestrians

UCSD Ped1 dataset has 34 training and 36 testing video clips, where

each clip contains 200 frames. The videos consist of groups of people walking

towards and away from the camera. UCSD Ped2 dataset has 16 training and 12

testing video clips, where the number of frames of each clip varies. The videos

consist of walking pedestrians parallel to the camera plane. Anomalies of the

two datasets include bikers, skaters, carts, wheelchairs and people walking in

the grass area.

4.2 Experimental Setup

We train the reconstructive model by minimising the reconstruction er-

ror of the input volume, whereas the predictive model is trained by minimising

the prediction error of the subsequent frame of the input volume. We use Adam

optimiser with an initial learning rate of 0.001 and allow it taking the role of set-

ting the learning rate automatically based on the model’s weight update history.

Setting a learning rate too large will cause the training to diverge, while setting

a learning rate too small will take too long to converge. The values of the initial

learning rate and other hyperparameters in the optimiser follow those provided

by Kingma and Ba (2014). To ensure the data fit into the GPU memory, we
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use mini-batches of size between 8 and 32, depending on the time length. 15%

of training volumes are held out for use as the validation data. Each training

volume is trained for a maximum of 500 epochs or until the reconstruction loss

of validation data stop decreasing after 20 consecutive epochs. The maximum

number of training epochs is empirically selected at 500 as we observed that the

experiments we performed would have converged before 100 epochs. The time

length is preset at T = 8 so that it is long enough but not too long to fit into our

GPU memory during training.

The weights of all convolutional and recurrent layers are initialised us-

ing the Glorot uniform initialiser (Glorot and Bengio, 2010). The algorithm

automatically scales the initial weights based on the number of input and out-

put neurons to prevent the weights from starting out too small or large. If the

weights start too small, the learning signal shrinks as it passes through each layer

until they become too small to be useful. Too large of the weights might cause

the output to become saturated and the gradients to approach zero, rendering the

weights useless. Glorot initialiser ensures that the weights are in the reasonable

range prior to training, thus speeds up the convergence of the network. The

weight values are drawn from a uniform distribution between [−m,m], where

m =
√
6/(nin + nout), where nin is the number of input neurons and nout is the

number of output neurons.

All models are implemented in Python programming language using

a popular deep learning framework Keras 2. Keras is a high-level neural net-

works application programming interface (API), capable of running on top of

deep learning library such as Google Tensorflow 3. Keras supports both convo-

lutional networks and recurrent networks, as well as combinations of both. It

is also highly modular – neural layers, cost functions, optimisers, initialisation

schemes, activation functions, regularisation schemes are all standalone mod-

2https://keras.io
3https://www.tensorflow.org
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ules that users can combine to create new models. The computing-intensive

operations are accelerated by parallelising the computations on graphical pro-

cessing units (GPUs). All evaluations and visualisations were also executed

in Python with the aid of scientific computing libraries such as Numpy 4 and

Scikit-Learn 5.

4.3 Results

In this section, we used time length T = 8 for all experiments and

applied the same preprocessing steps prescribed in Section 3.1 for all datasets

unless otherwise specified.

4.3.1 Global Anomalous Events: UMN dataset

We noticed that there is no predefined groundtruth for this dataset –

most researchers who evaluated on this dataset uses the result of the publisher

of this dataset as the groundtruth label. Though every abnormal event is well-

captured by the publisher, it was slightly late at detecting the abnormalities. For

each scene, we present in Figure 4.1 the original “groundtruth” and the adjusted

groundtruth labels along with our detection result for comparison.

When the abnormal event is starting, the reconstruction error rose and

created a spike when the whole crowd is dispersing. The error drops when the

level of abnormality in the scene drops, as the crowd leave the scene entirely.

All three scenes share the same type of abnormal event, which is the crowd

dispersing from the scene. We showcase the reconstruction error plot against

each frame from each scene in Figure 4.1. Figure 4.2 shows an example of a

detected abnormal event where it was not labelled in the adjusted groundtruth.

The Lawn scene has even lighting condition in all frames, whereas there

4http://www.numpy.org
5http://scikit-learn.org
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(a) Lawn Scene
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(b) Plaza Scene
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(c) Indoor Scene

Figure 4.1: Reconstruction error of all three scenes from the UMN
dataset, output by the proposed method. The red shaded region indicates
the original groundtruth, where the green region represents the adjusted

groundtruth. All events are successfully captured by our models.
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(a) Reconstruction error of a frame
from the Indoor scene

(b) A frame from the Indoor scene

Figure 4.2: Figure 4.2a shows the reconstruction error of the testing frame
on the right. The brighter region on the left figure highlights the region

where the reconstruction error is higher. We observed that in the training
dataset there was no such scenario where person enters the upper region

of the scene.

were slight lighting changes in the Plaza scene. The Indoor scene is more chal-

lenging in terms of lighting changes when the door opens and closes. Though

motion patterns vary in each clip, all three scenes are simplistic and have a simi-

lar definition of abnormal events thus most existing methods could achieve very

high AUC (> 90%) on this dataset (based on the original groundtruth).

Table 4.1 shows the frame-level AUC of ours and of other methods on

the three scenes from the UMN dataset. Our method did not achieve a compara-

ble AUC value. As reconstruction error is calculated by the Euclidean distance

between the input frame and the reconstructed frame, when the crowd is leaving

the scene and only a few people are left in sight, we observed that the recon-

structed frame resembles the background more than a walking crowd. As our

model try to predict the next frame provided T −1 consecutive frames, if no one

is walking or running in a particular region in T − 1 frames, our model will not

”hallucinate” walking crowds in that region too. This cause the reconstruction

error to be low when only a few people are left in the scene, even when they are

running.
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Table 4.1: Comparison of area under ROC curve (AUC) of different
methods on each scene from the UMN dataset. Higher AUC is better.

Some papers only publish the average AUC of all three scenes.

Method
AUC(%)

Lawn Plaza Indoor

Optical Flow
(Mehran et al., 2009)

84.0

Social Force
(Mehran et al., 2009)

96.0

Sparse Reconstruction
(Cong et al., 2011)

99.5 96.4 97.5

Ours (original groundtruth) 42.3 28.0 70.6

Ours (adjusted groundtruth) 69.3 86.4 86.0

Our result is far from perfect, however, our objective is to showcase the

generalisation capability of our model to detect various types of abnormal events

without manually defining appearance or motion attributes and heuristics. We

have shown that our method can distinguish abnormal events from the normal

activities in each scene, and have even detected one more which were not de-

fined in the groundtruth. In the following sections, our model will be evaluated

against the more challenging local anomaly datasets.

4.3.2 Local Anomalous Events: Avenue and UCSD datasets

Table 4.2 shows the frame-level AUC and EER of ours and of other

methods on the three local anomaly datasets. These figures are obtained from

the published papers respectively, except Hasan et al. (2016) where we have

access to the authors’ source code and have it re-evaluated using our evalua-

tion method. We outperform all other considered methods in two out of three

datasets, with respect to frame-level AUC and EER. As pointed out by Medel

(2016), the groundtruth annotation is incomplete as it is missing several in-

stances of pedestrians walking off the walkway in Ped1 testing dataset. Plus,

a few corrupted video frames were included in the testing set, triggering of our
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Table 4.2: Comparison of area under ROC curve (AUC) and Equal Error
Rate (EER) of different methods on local anomaly datasets. Higher AUC
and lower EER are better. Most papers did not publish their AUC/EER

for Avenue dataset.

Method
AUC/EER(%)

Ped1 Ped2 Avenue

Adam et al. (2008) 77.1/38.0 -/42.0

N/A

Mehran et al. (2009) 67.5/31.0 55.6/42.0

Mahadevan et al. (2010) 74.2/32.0 61.3/36.0

Wang and Snoussi (2013) 72.7/33.1 87.5/20.0

Hasan et al. (2016) 74.9/29.5 85.9/21.7 80.4/27.3

Xu et al. (2017) 92.1/16.0 90.8/17.0 N/A

Ours 77.1/27.5 93.0/13.3 80.8/26.2

Table 4.3: Anomalous event and false alarm count detected by different
methods on various event type in Avenue dataset.

Run Loiter Throw
Opposite

Direc-
tion

False
Alarm

Groundtruth 12 8 19 8 0

Ours 11 8 19 8 9

anomaly detector.

4.3.3 Avenue dataset

Figure 4.3 shows the training profile and the ROC curve of Avenue

dataset using the proposed model. Note that we applied Adam optimiser with

the same hyperparameters across all experiments.

Anomalous event count by event type

The event count breakdown according to the types of event is presented

in Table 4.3 for Avenue dataset. All throwing, loitering and irregular interaction
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(a) Model training and validation loss on
Avenue dataset. (b) ROC curve of the Avenue dataset.

Figure 4.3: Training profile and ROC curve of Avenue dataset using the
proposed model.

events are well captured by our proposed system. These are strong abnormalities

that are significantly different from what was captured in the normal scenes.

Some examples of abnormalities detected are presented in Figure 4.4.

However, our system does have difficulties in detecting certain types of

event. Missed detection of running events are due to (1) the crowded activities

where multiple foreground events take place; and (2) the object of interest is

far away from the camera. 5 out of 9 false alarms were due to camera shake,

whereas the rest of the false alarms are caused by obstruction to the camera,

such as walking outside the shaded area of the station. Examples of false alarms

can be seen in Figure 4.5.

Predicting future frames with a predictive model

An advantage of using the predictive model to learn regularities is that

its prediction can be inspected visually, enables us to gain an insight into what

the model learned. We allowed the predictive model to predict 4 consecutive

frames at timestep t + 1, t + 2, t + 3 and t + 4, given the initial 7 groundtruth

frames at timestep t − 6, t − 5, t − 4, t − 3, t − 2, t − 1, and t. The upper row

of each figure denotes the groundtruth frames and predicted frames are at the

bottom row.
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(a) Video #1: Loitering, running, and opposite direction

(b) Video #3: Running
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(c) Video #5: Bag throwing

(d) Video #6: Opposite direction and bag throwing
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(e) Video #15: Opposite direction

Figure 4.4: Regularity score of video #1, #3, #5, #6 and #15 from the
Avenue dataset, output by the proposed method. These events are

successfully captured by our model.
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(a) Video #12: Throwing

(b) Video #16: Bicycle (opposite direction)

Figure 4.5: Regularity score of video #12 and #16 from the Avenue dataset.
There are some false positives due to camera shake and activities that were

closer to the camera. Our model was also late at detecting the bicycle
event in video #16.
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Figure 4.6: Predicting frames in normal scenes of Avenue test set video #7.
Though the details of pedestrians in the future reconstruction are slightly

blurred, the motion of pedestrian walking can still be seen across the
predicted frames.

Figure 4.7: Predicting frames in abnormal scenes of Avenue test set video
#3. It can be observed that the shape of the running person disappears in

later frames.

From Figure 4.6, the normal appearance and motions are well con-

structed, though some details of the pedestrians are lost due to the generalisation

of a person’s appearance by the predictive model. On the other hand, a running

person cannot be constructed because such instance is unseen in the training

data, hence ‘disappeared’ in future frames, as shown in Figure 4.7.

4.3.4 Ped1 dataset

Figure 4.8 shows the training profile and the ROC curve of UCSD Ped1

dataset using the proposed model.
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(a) Model training and validation loss on
Ped1 dataset. (b) ROC curve of the Ped1 dataset.

Figure 4.8: Training profile and ROC curve of Ped1 dataset using the
proposed model.

Table 4.4: Anomalous event and false alarm count detected by different
methods on various event type in Ped1 dataset. Grass refers to pedestrians

walking on grass event, while miscellaneous events include running and
walking in a group.

Biker Skater Cart Wheelchair
/ Trolley

Grass Misc. False
Alarm

Groundtruth 30 13 6 3 4 4 0

Ours 30 13 6 2 3 3 10

Anomalous event count by event type

The event count breakdown according to type of event is presented in

Table 4.4 for Ped1 dataset. All bicycle and cart instances are well captured

by our proposed system. These are strong abnormalities that are significantly

different from what was captured in the normal scenes. Some examples of ab-

normalities detected are presented in Figure 4.9.

We observed that several instances of defined anomalies occurred in

the training videos of Ped1 dataset. For instance, there were two instances of

biker and three instances of walking on grass event. However, this does not stop

the anomaly detector from classifying these observed instances as anomalous

because these events are rare relative to the pedestrian walking event by the
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number of occurrences in the training videos.

However, our system does have difficulties in detecting certain types of

event. A walking on grass and a running event were missed by both models.

Missed detection of the skater is due to the crowded usual activities around the

skater. Some examples of missed events are shown in Figure 4.10. Similar

to the observation in Avenue dataset, our model is sensitive to camera shakes

and glitches. Other false alarms are due to the pedestrian motion walking in an

unusual direction as depicted in Figure 4.11.

Predicting future frames with a predictive model

The predictive model is trained to predict (t+ 1)-th frame based on the

given t frames, thus able to predict future frames given the past input frames.

This section showcases the future frames predicted by the predictive model. To

amplify the visual differences, we allow the model to predict future frames at

multiple timesteps.

Figure 4.12 shows the ability of the model to extrapolate the motion

of pedestrians towards the direction each pedestrian is taking in the past given

frames. The pedestrians on the walkway lose very little resolution at every pre-

dicted timestep even though the model is not trained to predict more than one

frame at a time. It can also be seen that the position of each pedestrian’s feet

changes at each timestep and the changes resemble closely to the actual walking

motion.

The cart seen in Figure 4.13 does not belong on a pedestrian walkway,

as it is not observed in the training videos. As such, it is abnormal and unable to

be predicted properly. It can be seen that the prediction of pedestrians walking

– a normal event, within the anomalous sequence is portrayed correctly by the

model, while the cart loses detail with each timestep. Similarly, bicycles are not

observed in the training set, thus the model could not predict properly the shape
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(a) Video #1: Biker

(b) Video #8: Skater
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(c) Video #24: Cart

(d) Video #32: Biker

Figure 4.9: Regularity score of video #1, #8, #24 and #32 from the Ped1
dataset, output by the proposed method. These events are successfully

captured by our model.
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(a) Video #17: Running (b) Video #31: Walking on grass

(c) Video #23: Wheelchair

Figure 4.10: Examples of missed events in video #17, #23 and #31 from the
Ped1 dataset. Our model missed the above running and walking on grass

event, and a wheelchair event.

(a) Video #10: Frame glitch (b) Video #12: Unusual direction

Figure 4.11: Examples of false positives in video #10 and #12 from the
Ped1 dataset. There are some false positives due to frame glitches as seen

in Figure 4.11a. As presented in Figure 4.11b, walking in an unusual
direction is detected as an anomaly by the proposed models.
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Figure 4.12: Predicting frames in normal scenes of Ped1 test set video #36.
Bottom row magnifies the portion annotated by the bounding box in the
upper row for a clearer view. The walking motion can be observed in the

legs of the pedestrians.

Figure 4.13: Predicting frames in abnormal scenes of Ped1 test set video
#36. It can be observed that the shape of the cart ‘evolves’ into a

pedestrian-like shape in later frames. Also, the appearance of the bicycle
has collapsed and disappeared in future frames.

of a bicycle – at each successive timestep, the appearance of bicycle collapses

and eventually only the biker remains visible in the scene.

4.3.5 Ped2 dataset

Figure 4.14 shows the training profile and the ROC curve of UCSD

Ped2 dataset using the proposed model.
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(a) Model training and validation loss on
Ped2 dataset.

(b) Frame-level ROC curve of the Ped2
dataset.

Figure 4.14: Training profile and ROC curve of Ped2 dataset using the
proposed model.

Table 4.5: Anomalous event and false alarm count detected by different
methods on various event type in Ped2 dataset.

Biker Skater Cart False Alarm

Groundtruth 15 3 1 0

Ours 13 2 1 0

Anomalous event count by event type

The event count breakdown according to type of event is presented in

Table 4.5 for Ped2 dataset. Most bicycle and cart instances are well captured

by our proposed system. These are strong abnormalities that are significantly

different from what was captured in the normal scenes. Some examples of ab-

normalities detected are presented in Figure 4.15.

Several cycling events were missed by our model, as shown in Figure

4.16a. Two of the missed bike instances were located far away from the camera.

Another bike was missed due to occlusions in a crowded scene. Several false

alarms were triggered and these are mostly due to camera shake and occlusions

of multiple pedestrians.
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(a) Video #2 (b) Video #4

(c) Video #5 (d) Video #7

Figure 4.15: Regularity score of video #2, #4, #5 and #7 from the UCSD
Ped2 dataset, output by the reconstructive and predictive variants of the

proposed method.

(a) Video #11 (b) Video #12

Figure 4.16: Snapshots of video #11 and #12 from the UCSD Ped2 dataset,
showing the anomalous events which were failed to be captured by the

proposed method. Each of the anomalous instances is labelled with a red
bounding box.
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Figure 4.17: Predicting frames of Ped2 test set video #5. The bicycle
disappears in later frames while the biker evolves into a walking

pedestrian. The walking motion can be observed in the legs of the other
pedestrians.

Predicting future frames with a predictive model

The predictive model is trained to predict (t+ 1)-th frame based on the

given t frames, thus able to predict future frames given the past input frames.

This section showcases the future frames predicted by the predictive model.

To amplify the visual differences, we allow the model to predict future frames

at multiple timesteps. The upper row of Figure 4.17 and 4.18 denotes the

groundtruth frames and predicted frames are at the bottom row.

The bicycles seen in Figure 4.17 and 4.18 do not belong on a pedestrian

walkway, as it is not observed in the training videos. As such, it is abnormal and

unable to be predicted properly. It can be seen that the prediction of pedestrians

walking – a normal event, within the anomalous sequence is portrayed correctly

by the model, while the bicycle disappears with each timestep and the cyclist

evolves into a walking pedestrian. Similarly, skateboards are not observed in

the training set, thus the model could not predict properly the shape of a skate-

board – at each successive timestep, the appearance of skateboard collapses and

eventually only the skater remains visible in the scene.
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Figure 4.18: Predicting frames of Ped2 test set video #8. It can be observed
that the shape of the bicycle and skateboard disappear at each timestep.

4.4 Chapter Summary

This chapter presented the quantitative and qualitative analysis of the

results evaluated on the benchmark datasets using our proposed model and com-

pared with other existing methods. We have proved experimentally the capabil-

ity of unsupervised learning for automated abnormal event detection in surveil-

lance videos. We are able to achieve comparable performance for local anomaly

detection without preprocessing and manually defining spatiotemporal features.

In the following chapter, we will conclude this research and suggest a few ideas

on how our work can be improved.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

Video surveillance systems are of increasing importance in providing

public safety and security. However, the current implementation requires human

monitoring at all times. There has been a lot of research interest in automating

this process by allowing machines to learn the spatiotemporal patterns in videos

to identify abnormal events automatically. The challenges to delegate the task

of monitoring video events to the machine were listed in the first chapter of the

dissertation. This research aims to address these challenges by achieving the

following objectives:-

1. Extract useful features of videos in various environments

2. Eliminate tracking and grid-based processing

3. Use unsupervised learning methods for unusual event detection

4. Avoid pre-determining the types or the number of types of events

We have achieved these research objectives in previous chapters collec-

tively, as follows:

• Extract useful features of videos in various environments

We have developed an efficient model to capture spatiotemporal similar-

ities between frames. We introduce a deep neural network model con-

sisting of convolutional autoencoders to learn the regular activity patterns

while avoiding the curse of dimensionality. The first part of the neural net-

work is a spatial convolutional autoencoder, which serves the purpose of

extracting appearance features from individual frames. Then, the spatial



features are fed into a temporal autoencoder to capture temporal patterns.

By incorporating both autoencoders, the resulted features not only group

similar events together, but also able to differentiate event patterns which

have not been observed before. For example, our model perceives cy-

cling in Ped1 dataset and running events in Avenue dataset as anomalous,

because these events are not observed in the training dataset.

• Eliminate tracking and grid-based processing

In Chapter 2 we reviewed several groups of methods which used tracking

or applied grid-based processing in order to reduce dimensionality and to

cluster similar events. This approach is helpful in detecting local anoma-

lies where instances occur in a small region of the whole scene, however,

it is difficult to use tracking for large crowds or to determine the optimal

size of such grid. Using the proposed method, we are able to eliminate the

use of tracking and grids to detect both global and local abnormal events.

• Use unsupervised learning methods for unusual event detection

For long video footages, it is very tedious and impractical to label each

region of the video with its event category. We have developed a tech-

nique that can work on video footages with minimal labelling. To prepare

the training dataset, the only required ingredient is long video segments

with the assumption that no abnormal events have occurred in the pro-

vided segments. There is no need to draw bounding boxes of each event

or categorise the events into smaller categories. Though we have shown

that in the result discussion section where our probabilistic model would

still flag certain rare events that were occurred in the training dataset as

anomalous, this may be desirable and these events are worth noticing be-

cause these events may be the outliers of the training data.

• Avoid pre-determining the types or the number of types of events

In Chapter 2 we have reviewed several methods which are greatly depen-

64



dent on a specified number of event types in each video. In practical sce-

narios, it is impossible to anticipate the number of possible types of events

that would occur in each video stream since it is unknown beforehand. We

have shown experimentally that our model still performs comparably well

without making such assumptions.

We have addressed the above-mentioned challenges and achieved a com-

parable result of 77.1%, 93.0% and 80.8% respectively on local anomaly datasets

(UCSD Ped1, Ped2, and Avenue dataset). Though it is not new to implement

convolutional models nor LSTM for spatiotemporal anomaly detection, the con-

volutional autoencoder proposed by Hasan et al. (2016), convolution and pool-

ing operations are performed only spatially, even though the proposed network

takes multiple frames as input, because of the 2D convolutions, after the first

convolution layer, temporal information is collapsed completely (Tran et al.,

2015). While Medel (2016) used convolutional LSTM to learn spatiotempo-

ral features, we employed a combination of 3D convolutions and convolutional

LSTM layers to achieve comparable result with less computational time and

space.

5.2 Limitations and Future Works

Firstly, the spatiotemporal model operates in batch mode, which re-

quires the entire training video to be made available before computing the spatio-

temporal features. The model can be finetuned with new video segments, how-

ever, unlike the online models, it must be retrained and could only be updated

periodically but not real-time.

Secondly, it is difficult to manually modify the events to be flagged as

normal or abnormal. The basic assumption of the model is that abnormal events

are those that never happened or occurred rarely. Since the spatio-temporal pat-
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terns are learned probabilistically from the training dataset, therefore it is dif-

ficult to manually flag video events and adjust according to domain knowledge

and human supervision. Human supervision may be useful to provide a certain

level of semantics. Using the analogy of how human beings learn during their

infancy, in the first year, a baby starts to observe and explore the world around

him, but he may not know the semantics of things around him (unsupervised

learning). In the later years, he is taught by their parents the semantics and

meanings of these things (supervised learning).

In the context of learning a normality model, if an event is new to the

model but it should be considered normal, such event has to occur frequently

enough in order to be categorised as a ‘normal’ event by our model. Simi-

larly, if an event should be considered ‘abnormal’ but it occurs frequently in the

training videos, then these segments containing the specified event should be

excluded from the training data and have the model retrained to get these events

flagged as abnormal. For future work, we may look into alternative methods

that incorporate a human feedback loop, so that the learned model can adjust

itself according to feedbacks for better detection and reduced false alarms. One

idea is to add a supervised module to the current system, which the supervised

module works only on the video segments filtered by our proposed method, then

train a discriminative model to classify anomalies when enough video data has

been acquired.

Thirdly, most of the benchmark datasets are subjective or synthetic. The

UMN dataset is staged and acted by a fixed group of people. The Avenue dataset

is also partially staged. It is understandable because it is difficult to collect

abnormal events. Furthermore, it is very difficult to acquire real data due to

privacy. These datasets are collected based on the opinions of the published

authors, and the subjectivity of the groundtruth cannot be ruled out. Therefore, a

method with excellent performance for these datasets does not mean it will work

well in real applications. In future work, we would like to apply our framework

66



to real environments to evaluate its performance.

Also, we would like to investigate if the model could benefit from

longer video samples. Since none of the video segments are labelled, the defi-

nition of anomaly depends on the training video if an event does not occur or

occur rarely in the training video, it is still considered anomalous even though

it may be considered normal according to human common sense. This may be

improved through longer video samples where more samples of normal events

could have been captured.

Lastly, though our method could work without domain knowledge, it

only works in a fixed perspective and sensitive to camera shakes and glitches.

This is because our model does not understand the objects and semantics in the

videos, therefore unable to differentiate between a moving scene and moving

objects. A tradeoff between unsupervised learning and semantics understanding

to achieve robustness can be further explored.
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