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ABSTRACT 

 

 Cryptosystem plays an important role in cyber security and users privacy 

protection. To achieve certain level of security, Public Key Cryptography 

algorithm is performed on large integer that is more than 64-bit, typical bit size 

supported by conventional Central Processing Unit (CPU) (e.g. 512-bit for 

Elliptic Curve Cryptography (ECC), 2048-bit for Rivest-Shamir-Adleman (RSA) 

and million bits for Fully Homomorphic Encryption (FHE)). The computation 

of cryptographic algorithm required a lot of large integer arithmetic computation, 

especially large integer exponentiation and modular operation. Hence, large 

integer multiplication as the core operation of large integer modular 

exponentiation is the key factor in determining the performance of the 

cryptosystem in term of computation time. 

 

 The minimum bit size of encryption/decryption keys to achieve certain 

security level have increased over years. CPU implementations are becoming 

less efficient in handling the computation of crypto algorithms. Hence, other 

contemporary processor architectures such as GPU and FPGA have become 

popular alternative to speed up the computation in recent years. 

 

 This dissertation first discusses several existing large integer 

multiplication algorithms and reviews different methods used to implement the 
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discussed algorithms done by other researchers in both Graphic Processing Unit 

(GPU) and Field Programmable Gate Array (FPGA).  

 

Compared to GPU, FPGA offered more low level design and 

development to the implementation. While GPU allowed users to configure each 

of the cores (processing units) to perform independent tasks, FPGA provides 

users a platform to design the processing units themselves to perform dedicated 

arithmetic and logic operation.  

 

In our GPU implementation, we present two different large integer 

algorithms implementation on two generation of NVIDIA GPU architectures, 

Kepler and Pascal. The former focuses on utilizing the shuffle instructions to 

reduce memory latency and bulk multiplication that is able to perform up to 900 

multiplications with operands size of 1024, 2048, 4096 and 8192-bit. This 

implementation also proved that our proposed method of utilizing the shuffle 

instructions feature to share data between registers memory is able to achieve up 

to 11.45% and 36.54% speedup when compared with conventional methods of 

storing data in GPU global memory and shared memory respectively; The later 

implementation on Pascal architecture aims to achieve single high speed 

multiplication of larger size by utilizing the available GPU resources. We are 

able to eliminate the bottleneck, the CRT algorithm from our previous 

implementation by replacing it with another level of CTFNT and hence increased 

the multiplication operand size to 4096, 192K, 384K and 768K-bit.  
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In our FPGA implementation, we focused on designing the processing 

unit ourselves that is capable of computing 3072-bit multiplication. We started 

with a preliminary design of a multiplier run with typical NTT module that 

perform computation in parallel-in-serial-out manner before we moved into 

design with radix-R FNT modules that are able to compute in parallel-in-parallel-

out manner for better performance. Both radix-2 and radix-4 FNT modules are 

implemented and a further design of radix-4 FNT module, named radix-4 

CTFNT module that is optimized to fit the multiplication algorithm we used is 

proposed. The proposed radix-4 design sacrificed the scalability for NTT with 

other parameters setup but is able to compute 16-points NTT with 10% faster 

performance and costs about 27% less resources to be implemented when 

compared to a typical radix-4 design.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Information communication across the Internet requires security protocol to 

protect important and confidential data such as banking transactions and 

personal details from attackers/hackers. For decades, cryptosystems have been 

used to achieve this goal by performing data encryption, decryption and 

authentication during data transmission. Most of the cryptosystems are 

implemented with complex algorithms which require a lot of computing 

resources (i.e. memory size and processing power), resulting in slow 

performance. 

 

Nowadays, Internet users are able to go online almost anytime from anywhere, 

thanks to the rapid growth of information and communication technologies. 

However, it is problematic if a cryptosystem is too slow to handle excessive 

requests from many users simultaneously. Leakage of secure information due to 

hackers’ attack are also serious problems faced by many organizations 

employing modern cryptosystem to protect sensitive data. Thus, faster, safer and 

more reliable cryptosystems are on high demand. 

 

The research for advanced cryptosystems hardware supports are heading 

towards new direction, from Central Processing Unit (CPU) to hardware 

accelerator such as Graphic Processing Unit (GPU) and Field Programmable 
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Gate Array (FPGA). This is because the architecture of GPU has more cores to 

perform multiple instructions simultaneously, which allowed faster computation 

for cryptographic algorithms. On the other hand, FPGA provides researchers to 

venture into techniques involving the design of the low level hardware modules. 

 

Public Key Cryptography (PKC) which is also known as asymmetric-key 

cryptography where encryption and decryption are done using a pair of two 

different keys, a public key and a private key. PKC works in a way that the 

information is encrypted by sender with the recipient’s public key (a key that can 

be accessed by anyone), but the encrypted information can only be decrypted by 

the recipient’s paired private key. In this case, the transmission of information 

can be secured unless the recipient’s paired private key is lost. 

 

In Public Key cryptosystem (e.g. RSA), modular exponentiation is the 

bottleneck that costs most of the computational time, wherein multiplication is 

the core part of the modular exponentiation. The goals of this project are to 

research and develop techniques for accelerating the large integer multiplication, 

with implementation in GPU (software) and FPGA (hardware). 

 

GPU is a popular platform to perform parallel computation, due to its massively 

parallel architecture (consists of multiple streaming multiprocessors (SMs)), 

which is capable in computing multiple instructions simultaneously. GPU also 

consists of deep memory hierarchy, with trade-off between memory size and  
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memory latency. Global memory has the largest capacity, followed by local 

memory, texture memory, constant memory, shared memory and registers. The 

global memory can be accessed by all threads within the same grid; the shared 

memory is limited to the threads within the same block while registers can only 

be used by a thread itself. However, started from NVIDIA GPU with Kepler or 

newer architecture, NVIDIA introduced a new feature known as “shuffle 

instruction” allowed registers to be visible by other threads within the same warp. 

 

For FPGA implementation, a large integer multiplier hardware can be designed 

using Hardware Description Language (HDL) such as Verilog or VHDL. A 

designed hardware can be synthesized and implemented on development tool 

such as Xilinx Vivado for verification and validation. Different from GPU, 

hardware resources available on a FPGA board are used for the implementation. 

For example, Block Random Access Memory (BRAM) will be used to 

synthesize the memory elements; Look-up Table (LUT) are used to synthesize 

the internal hardware circuit; and Digital Signal Processors (DSP) can be used 

to speed up certain logic and arithmetic computation. 

 

This project is divided into two phases. Phase one explores the possibilities of 

the efficient implementation of large integer multiplication in GPU, which 

involves investigation on the GPU architecture and implementation using 

parallel programming. Phase two focuses on hardware design and FPGA 

implementation of selected algorithm in phase one using Verilog HDL. The 

challenges include fitting the design into available resources on board, control 
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the data flow between sub-modules to meet desired functional behaviors and 

timing requirements. 
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1.2 Problem Statement 

1. Modular Exponentiation is the most resource demanding operation in 

many Public Key Cryptography (e.g. RSA). The existing 

implementations of modular multiplication using Number Theoretic 

Transform (NTT) are not fully optimized for new GPU architectures. 

 

2. Existing works of Modular Exponentiation in FPGA implementation 

only utilized the radix-2 architecture to implement NTT. The 

performance of other radices is not well studied, which may provide 

more opportunities for optimization. 
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1.3 Objectives 

1. To research and optimize the implementation of large integer 

multiplication in state of the art GPU architectures. 

 

2. To research and design a crypto-related processor capable in performing 

large integer multiplication in FPGA. 

 

3. To propose new technique to optimize the performance of the designed 

crypto-related processor.   
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1.4 Contributions 

In this research work, we presented two large integer multiplication 

implementations in GPU and one in FPGA: 

1. The first implementation in GPU provides multiplication from 1024-bit 

to 8192-bit and up to 900 number of multiplications can be computed 

simultaneously, which can be used in ECC and RSA cryptographic 

algorithms. This implementation has proven that the method of utilizing 

the shuffle instructions, a new feature release from GPU with Kepler 

architecture onwards is able to reduce memory latency. 

 

2. The second GPU implementation in this work is capable of computing 

large integer multiplication of 192K-bit, 384K-bit and 768K-bit, which 

is suitable to be used in toy version of Fully Homomorphic Encryption 

(FHE). This implementation shows a performance improvement in term 

of the operands size of the multiplication compared to the first 

implementation, with trading-off the ability of bulk multiplication. 

 

3. A 3072-bit multiplier is implemented in FPGA. We compared the 

performance between radix-2 and radix-4 FNT module both 

theoretically and practically. We then proposed the idea of integrating 

radix-4 FNT modules that are optimized solely for the Cooley-Tukey 

FNT scheme we used in our 3K-bit multiplication algorithm in replace 

of standard radix-4 modules, which is able to reduce about 27% of the 

hardware resources. 
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1.5 Dissertation Organization 

This chapter describes the motivation, problem statements, objectives and 

contributions of the project. The rest of the dissertation is organized as follows. 

Chapter 2 discusses about the background of our research including the 

algorithms and hardware platform; Chapter 3 presents the literature review on 

the similar research works done by the others; Chapter 4 describes the details of 

our implementation followed by the experimental setup and results in Chapter 5, 

and finally we conclude this project with conclusion and future works in Chapter 

6. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Graphic Processing Unit (GPU) 

Graphic Processing Unit (GPU) is designed with highly parallel architecture 

which consists of multiple streaming multiprocessors (SMs) used to render the 

colors of pixels to create images and videos. In recent years, GPU has been 

employed to accelerate non-graphic computation including scientific computing, 

digital signal processing and intensive mathematical calculations.  

 

2.1.1 GPU Programming Model  

CUDA is a parallel computing platform and programming model with a small 

set of extensions to the C language developed by NVIDIA (Cheng et al., 2014). 

CUDA programming allows heterogeneous computing between CPU and GPU, 

where the CPU and its memory are defined as “Host” while the GPU and its 

memory is called “Device”. A typical execution on CUDA programming 

involved three steps:  

1) Copy memory from host to device;  

2) Invoke kernel(s) to execute program on device;  

3) Copy memory back from device to host. 

 

A thread is the basic element that processes data in a GPU kernel. CUDA 

organizes threads in two-level thread hierarchy, the grid and the block. Multiple 
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threads are grouped together to form a thread blocks; and a grid is made up of a 

number of thread blocks. To be specific, a grid is organized as a 2D array of 

blocks, and a block is organized as a 3D array of threads. 

 

When a kernel is launched from host, a number of threads are spawned and each 

of them will executes the statements defined in the kernel function. During the 

execution, every 32 threads within a block are grouped into warps and each of 

these warps are then assigned to a streaming multiprocessor (the processing unit 

of GPU that consists of multiple cores) for execution. All of the threads within 

the same warp are implicitly synchronized. 

 

2.1.2 GPU Memory Management 

GPU architecture composes of deep memory hierarchy. Figure 2.1 illustrates 

different level of GPU memory, sorted from top to bottom is the memory level 

from largest to smallest memory size; while sorted from bottom to top is the 

memory level from shortest to longest memory latency. 

 

Figure 2.1 GPU Memory 
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Each of the GPU memory levels have their own constraints in threads 

accessibility. The global memory is GPU off-chip DRAM memory. It is 

accessible by all of the threads within the kernel; the shared memory is GPU on-

chip memory, which the access is limited to the threads within the same blocks; 

while the register is built individually on each of the core of the GPU streaming 

multiprocessors, which can only be accessed by the thread itself. The texture 

memory and constant memory are cached and read-only memory in GPU where 

the constant memory can be used to reduce the required memory bandwidth 

compared to global memory, and the texture memory are used when all reads in 

a warp are physically adjacent. The local memory is similar to register, which is 

only limited to access by the thread itself but perform slower, typically same 

speed with global memory. 

 

2.1.3 Shuffle Instruction 

Starting with NVIDIA GPU with Kepler or newer generation of architecture and 

CUDA compute capability of 3.0 or higher, NVIDIA introduced a new feature 

named “Shuffle Instruction”. This new feature is a mechanism that allows the 

threads within the same warp to read the data stored in each other’s registers 

without the need of going through higher memory level, such as shared memory 

and global memory.      
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2.2 Field Programmable Gate Array (FPGA) 

Field Programmable Gate Array (FPGA) are semiconductor devices that are 

based around a matrix of configurable logic blocks (CLBs) connected via 

programmable interconnects (Xilinx, 2018). It is an integrated circuit that can be 

configured to meet desired application or functionality requirements after 

manufacturing. FPGA is commonly used as a development board for designers 

or engineers in digital system design and development phase. 

 

2.2.1 FPGA Hardware Resources 

The hardware resources available on a FPGA are one of the most important 

factor that have to take into consideration when designing a digital system. 

Theoretically, the more the resources are used the better the performance of the 

design. However, using a lot of resources require a large area of hardware. 

Resources overutilization will also cause the design to not be able to fit into the 

targeted FPGA board. The hardware resources available on a FPGA board 

includes: Look-Up Tables (LUTs), LUTRAM (LUT Random Access Memory), 

BRAM (Block RAM), Flip-Flops, Digital Signal Processors (DSPs) and input-

output ports. The logics of a circuit are map into the LUTs when synthesized; 

the BRAM is the synchronous memory elements on board; the DSPs are used 

for fast arithmetic logic operation such as multiplication, normally used to speed 

up certain computation, especially the critical paths or used to reduce the number 

of LUTs used. 
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2.2.2 Hardware Description Language (HDL) 

Hardware Description Language (HDL) is a specialized computer language used 

to describe the structure and behaviour of digital logic circuits. There are two 

types of HDL, the synthesis based HDL and the simulation based HDL. The 

synthesis based HDL is used to model digital logic circuit known as hardware 

module. A hardware module can also be modelled by connecting multiple 

hardware modules of lower level, defined as sub-modules; the simulation based 

HDL is a set of HDL statements that are not synthesizable, but for the aid of 

design verification. This set of HDL statements provide a set of virtual inputs to 

the designed hardware module, and the expected outputs can be viewed in the 

form of simulation waveforms or memory elements in simulation tools when 

simulated. 

 

Two of the most commonly used HDLs are Verilog HDL and VHDL (VHSIC 

HDL, where VHSIC stands for Very High Speed Integrated Circuit). Verilog 

HDL is used in this research project. 
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2.2.3 FPGA Configuration 

Configuring FPGA involves following steps: Started with hardware module 

modelling using HDL with functional behaviour verification of the modelled 

module; followed by the hardware synthesis before going into hardware 

implementation. Both hardware synthesis and hardware implementation 

required functional and timing behaviour verification to ensure the correctness 

of the design. The last step will be bitstream generation of the implemented 

design and the generated bitstream is downloaded into the FPGA board. 

 

Hardware synthesis is the step that the Electronic Design Automation (EDA), is 

used to convert the designed hardware into LUTs, memory elements and other 

hardware resources available on the FPGA. Estimated values of required 

hardware resources will also be shown. EDA is the software program that assists 

in performing or automating design work. In this project, Xilinx Vivado HLx 

Edition 2016.3 is used. The hardware implementation step place and route the 

synthesized design to the targeted FPGA board virtually according to the design 

constraints file set in the EDA. The actual hardware resources utilization and 

power consumption are shown after the implementation. The timing behaviour 

simulation done after the hardware implementation will show the amount of time 

the signals or data required to go from one port to another. Once the 

implementation is done, the implemented design will be used to generate 

bitstream and load into the targeted FPGA board. 
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2.3 Modular Arithmetic and Large Integer Representation 

2.3.1 Modular Arithmetic 

Modular arithmetic refers to arithmetic operations (including addition, 

subtraction, multiplication and division) performed over a finite field and integer 

domain. The division is also known as multiplication of the dividend with the 

modular multiplicative inverse of the divisor. A finite field (also known as Galois 

field) is a field consists of a set of number ranged from 0 to M – 1, where M is 

the modulus, the number used to generate the finite field.  

 

In normal arithmetic, if the numbers a and b satisfied the equation a / b = 1, b is 

the multiplicative inverse of a (a / b = a x b-1). For example, 4 is the modular 

multiplicative inverse of 5 when M = 19 (5 x 4 mod 19 = 20 mod 19 = 1). In 

modular arithmetic, the modular multiplicative inverse exists if and only if the 

number, a is coprime with the modulo, M. Two numbers are said to be coprime 

with each other if and only if 1 is the only positive common factor that divides 

both of them.  
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2.3.2 Large Integer Representation 

In native computer systems, a single data supported is 64-bit. To represent a 

large integer, multiple 64-bit data are cascaded to form a large integer as shown 

in Figure 2.2. Each of these single data is known as a limb or precision. 

  

 

 

 

Figure 2.2 Large integer representation 

 

Similar to polynomial representation of a number, where the radix, R is equal to 

264.    

                                P(𝑅) =  ∑ 𝑎𝑖𝑅
𝑖𝑁 −1

𝑖=0                           (3.1) 

Table 2.1 Multiplication algorithms complexities 

Multiplication algorithm Complexity 

Standard school book methods   O(𝑛2) 

Karatsuba’s multiplication algorithm  O(𝑛𝑙𝑜𝑔23) ≈ O(𝑛1.585) 

Schönhage-Strassen’s Multiplication 
Algorithm (SSMA) 

 O(𝑛 log 𝑛 log log 𝑛) 

* 𝑛 is the number of data, or number of limbs.  
 

Table 2.1 shows three multiplication algorithms and their complexities. 

SSMA utilizes FFT (Fast Fourier Transform) to achieve efficient multiplication.   

64-bit 

128-bit 

(N * 64)-bit 
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2.4 Chinese Remainder Theorem (CRT) 

Chinese Remainder Theorem stated that there is a unique solution for a number 

if this number produce several residue numbers when divided by c numbers of 

positive integers (P0, P1, P2, …, Pc-1), known as CRT moduli, with the following 

requirements: 

1) These CRT must be co-prime to each other: 

𝐺𝐶𝐷(𝑃𝑖, 𝑃𝑗) ==  1, 𝑓𝑜𝑟 𝑖 ≠  𝑗;  0 ≤  𝑖 <  𝑐;  0 ≤  𝑗 <  𝑐;                                

(3.2) 

2) The solution number, X * Y is smaller than the product of all of these 

CRT moduli: 

𝑋 ∗ 𝑌 <  ∏ 𝑃𝑖
𝑐−1
0                                                        (3.3) 

A number, X can be converted to a series of coefficients, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑐−1, 

which is the set of residue numbers after dividing X with the set of CRT moduli 

individually. This operation is known as Forward CRT while the process to 

reconstruct the original number from all of these residue numbers is called 

Inverse CRT. 

Forward CRT: 

 𝑎𝑖 = 𝑋 𝑚𝑜𝑑 𝑃𝑖 , 0 ≤ 𝑖 < 𝑐                                                                                       (3.4) 

Inverse CRT:  

 𝑋 =  ∑ 𝑎𝑖
𝑐−1
𝑖=0 𝑚𝑖𝑞𝑖  𝑚𝑜𝑑 𝑷                                                                                         (3.5) 

where P = ∏ 𝑃𝑖
𝑐−1
0 ,           𝑚𝑖 =

𝑷

𝑃𝑖
,         𝑞𝑖 =  𝑚𝑖

−1 𝑚𝑜𝑑 𝑃𝑖  
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2.5 Schὂnhage-Strassen Multiplication Algorithm (SSMA) 

Schὂnhage-Strassen Multiplication Algorithm is a well-known multiplication 

algorithm due to its low computational complexity of O(n log n (log log (n))), 

where n is the number of input data. Standard school book multiplication 

algorithm is done in time domain, with a computational complexity of O(n2). 

SSMA allows the multiplication to be computed in frequency domain for better 

efficiency. The multiplication perform in frequency domain is known as 

convolution, which is point-wise multiplication that is able to achieve low 

computational complexity of O(n).  

 

The performance of SSMA mainly rely on the transformation of the operands 

between time and frequency domain using NTT, which has a computation 

complexity of O(n2).  

 

A standard SSMA involved three NTTs (two forward transforms for both of the 

multiplication operands and one inverse transform for the product). 

Pseudocode of SSMA: 

Input   : x and y, multi-precision large integers, the multiplier and multiplicand. 

Output : z, multi-precision large integers, the product. 

1) X  NTT(x); //Forward NTT 

2) Y  NTT(y); //Forward NTT 

3) Z  CONVO(X, Y); //convolution 

4) z  INTT(Z); //Inverse NTT 

5) evaluation();  //resolve the carries of z 
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2.6 Fourier Transform 

In electrical engineering and digital signals processing, Fourier Transform is 

known as a process to transform a signal from its time domain to frequency 

domain or vice-versa. The transformation from time domain to frequency 

domain is known as Forward Transform and transformation from frequency 

domain to time domain is called Inverse Transform. Fourier transform is 

computed using integral function, which performs on a continuous signal over a 

period of time. 

 

2.6.1 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) is a discrete version of the Fourier transform, 

which collect N number of samples from the said continuous signal at a specific 

sampling rate. Same with Fourier Transform, DFT is computed in complex 

domain (operation involves imaginary and floating points number).  

Forward Transform (DFT): 

■ 𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 ,   0 ≤ 𝑛 < 𝑁 

Inverse Transform (DFT): 

■ 𝑥𝑘 =
1

𝑁
∑ 𝑋𝑛

𝑁−1
𝑛=0 𝑒𝑗

2𝜋

𝑁
𝑛𝑘,   0 ≤ 𝑘 < 𝑁 

  

 
x : series of DFT input elements 

X : series of DFT output elements 

N : number of DFT samples 

j : imaginary number 

e : Euler’s constant 
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2.6.2 Fast Fourier Transform (FFT) 

Fast Fourier Transform (FFT) is defined as a fast way to compute Discrete 

Fourier Transform (DFT). Typically improve the computational complexity 

from O(N2) to O(N log N), where N is the number of FFT samples.  

 

Multiple algorithms can be used to implement FFT. For example, the 

“Decimation-In-Time” (DIT) or “Decimation-In-Frequency” (DIF) FFT, Radix-

R FFT, Good-Thomas FFT (GTFFT), and Cooley-Tukey FFT (CTFFT). There 

are also mixed-radix FFT and split-radix FFT, which are considered special 

cases of Radix-R FFT.  

 

2.6.2.1 Decimation-In-Time FFT and Decimation-In-Frequency FFT 

A FFT algorithm can be computed by using “Decimation-In-Time” (DIT) or 

“Decimation-In-Frequency” (DIF) approaches. Both the DIT and DIF FFT 

employed divide-and-conquer technique to compute an N-point DFT in multiple 

DFTs of smaller size. The main difference between them is that DIT FFT divides 

N number of DFT points in old and even manner at each level whereas DIF FFT 

divides them into first-half and second-half of points at each level.  
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DIT Forward Transform (DFT): 

𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 ,   0 ≤ 𝑛 < 𝑁; root of unity, W = 𝑒−𝑗
2𝜋

𝑁  

      = ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1
𝑘∈𝑒𝑣𝑒𝑛 +  ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1

𝑘∈𝑜𝑑𝑑  

      = ∑ 𝑥(2𝑘)𝑊𝑛(2𝑘)
𝑁

2
−1

𝑘=0 + ∑ 𝑥(2𝑘+1)𝑊𝑛(2𝑘+1)
𝑁

2
−1

𝑘=0  

      = ∑ 𝑥(2𝑘)𝑊𝑛(2𝑘)
𝑁

2
−1

𝑘=0 + 𝑊𝑛 ∑ 𝑥(2𝑘+1)𝑊𝑛(2𝑘)
𝑁

2
−1

𝑘=0  

 

DIF Forward Transform (DFT): 

𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 ,   0 ≤ 𝑛 < 𝑁; root of unity, W = 𝑒−𝑗
2𝜋

𝑁  

      = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 +  ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1

𝑘=
𝑁

2

 

      = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 +  ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛(𝑘+

𝑁

2
)

𝑁

2
−1

𝑘=0  

     = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 +  𝑊𝑛
𝑁

2 ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛𝑘

𝑁

2
−1

𝑘=0  
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2.6.2.2 Radix-R FFT 

A radix-R FFT decomposes an N-point DFT into N/R number of R-point DFTs 

through logRN levels of decomposition. Given l is equal to the index of the level 

and the index of the top level DFT (before any decomposition) is equal to 0 with 

increment of 1 at each level of decomposition, the number of DFTs at each level 

is equal to Rl; the number of points in one DFT is equal to N/Rl. Note that for an 

N-point DFT to be implemented with radix-R FFT, N must be a power of R. A 

method known as “mixed-radix FFT” can be used to overcome this issue when 

N is not a power of R by performing different radix of FFT decomposition at 

different level.  

 

Figure 2.3 shows the 2-point FFT structures (a.k.a. the butterfly structures), the 

smallest module of a radix-2 FFT for both DIT and DIF FFT where ip0 and ip1 

are the input to the FFT; op0 and op1 are the output to the FFT. The *W indicates 

the twiddle factors multiplication of the FFT. The different between radix-2 DIT 

FFT and radix-2 DIF FFT is when the twiddle factor multiplication to the second 

input, ip1 is performed. The former performs the multiplication before the 

crossing add-and-subtract operation while the later do it after the crossing add-

and-subtract operation. 

 

Figure 2.3 Radix-2 DIT and DIF 2-point FFT modules 

 



 

24 

 

Both the DIT and DIF FFT as discussed in previous section (section 2.6.2.1) can 

be implemented with radix-R FFT. Figure 2.4 shows how multiple radix-2 FFT 

modules can be connected together to compute 4-point FFT, where the diagram 

on the left is implemented with DIT FFT structure while the one on the right is 

built with DIF FFT. Figure 2.5 and Figure 2.6 illustrate the flow of 8-point FFT 

implemented with radix-2 DIT FFT and DIF FFT respectively. The dashes boxes 

indicate the radix-2 modules. 

 

 

Figure 2.4 4-point Radix-2 DIT and DIF FFT comparison 
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Figure 2.5 8-point Radix-2 DIT FFT 

 

  

Figure 2.6 8-point Radix-2 DIF FFT 
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Equation below derived the radix-4 DIF FFT from radix-2 DIF FFT. 

DIF Forward Transform (DFT): 

𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 ,   0 ≤ 𝑛 < 𝑁; root of unity, let W = 𝑒−𝑗
2𝜋

𝑁  

     = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 +  𝑊𝑛
𝑁

2 ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛𝑘

𝑁

2
−1

𝑘=0  

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

4
−1

𝑘=0 +  ∑ 𝑥𝑘𝑊𝑛𝑘
2𝑁

4
−1

𝑘=
𝑁

4

+  ∑ 𝑥𝑘𝑊𝑛𝑘
3𝑁

4
−1

𝑘=
2𝑁

4

+  ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1

𝑘=
3𝑁

4

 

= ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

4
−1

𝑘=0 + ∑ 𝑥
(𝑘+

𝑁

4
)
𝑊𝑛(𝑘+

𝑁

4
)

𝑁

4
−1

𝑘=0 + ∑ 𝑥
(𝑘+

2𝑁

4
)
𝑊𝑛(𝑘+

2𝑁

4
)

𝑁

4
−1

𝑘=0 +

∑ 𝑥
(𝑘+

3𝑁

4
)
𝑊𝑛(𝑘+

3𝑁

4
)

𝑁

4
−1

𝑘=0   

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

4
−1

𝑘=0 + 𝑊𝑛
𝑁

4 ∑ 𝑥
(𝑘+

𝑁

4
)
𝑊𝑛𝑘

𝑁

4
−1

𝑘=0 + 𝑊𝑛
𝑁

2 ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛𝑘

𝑁

4
−1

𝑘=0 +

𝑊3𝑛
𝑁

4 ∑ 𝑥
(𝑘+

3𝑁

4
)
𝑊𝑛𝑘

𝑁

4
−1

𝑘=0   

 

Figure 2.7 shows the structures of radix-4 FFT. The structure on the left is a 

detailed version of a single radix-4 FFT module while the one on the right is a 

simplified version. The internal operations are omitted for simplicity. 

 

Figure 2.7 radix-4 FFT module  
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2.6.2.3 Good-Thomas FFT (GTFFT) 

Good-Thomas FFT (GTFFT) (a.k.a. Prime Factor FFT) is a FFT algorithm that 

lets N = N1 * N2 and breaks an N-point DFT into (N1 * N2)-point DFT, where N1 

and N2 have to be relatively prime. The (N1 * N2)-point DFT can be computed in 

two steps, started with N2 number of N1-point DFT followed by N1 number of 

N2-point DFT. Hence, the GTFFT is sometimes defined as a FFT algorithm that 

compute a DFT in two-dimensional FFT.  

The GTFFT equation can be derived by substituting the following equation into 

the DFT forward transform equation: 

▪ 𝑛 = 𝑁2𝑛1 + 𝑁1𝑛2 𝑚𝑜𝑑 𝑁,       0 ≤ 𝑛1 < 𝑁1, 0 ≤ 𝑛2 < 𝑁2  

▪ 𝑘 = 𝑁2
−1𝑁2𝑘1 +  𝑁1

−1𝑁1𝑘2, 0 ≤ 𝑘1 < 𝑁1, 0 ≤ 𝑘2 < 𝑁2  

Where: 

𝑁1
−1denotes the modular multiplicative inverse of 𝑁1𝑚𝑜𝑑 𝑁2 and 

▪ 𝑁2
−1denotes the modular multiplicative inverse of 𝑁2𝑚𝑜𝑑 𝑁1. 

 

Forward Transform (GTFFT): 

▪ 𝑋𝑁2
−1𝑁2𝑘1+ 𝑁1

−1𝑁1𝑘2
 = ∑ (

𝑁1−1
𝑛1=0 ∑ 𝑥𝑁2𝑛1+𝑁1𝑛2

𝑒
−𝑗

2𝜋

𝑁2
𝑛2𝑘2)𝑒

−𝑗
2𝜋

𝑁1
𝑛1𝑘1𝑁2−1

𝑛2=0  

Inverse Transform (GTFFT): 

■ 𝑥𝑁2
−1𝑁2𝑘1+ 𝑁1

−1𝑁1𝑘2
 = ∑ (

𝑁1−1
𝑛1=0 ∑ 𝑋𝑁2𝑛1+𝑁1𝑛2

𝑒
−𝑗

2𝜋

𝑁2
𝑛2𝑘2)𝑒

−𝑗
2𝜋

𝑁1
𝑛1𝑘1𝑁2−1

𝑛2=0  
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2.6.2.4 Cooley-Tukey FFT (CTFFT) 

CTFFT is a FFT algorithm that allows a large size DFT to be computed with 

multiple DFTs of smaller size, improving parallelism. Similar to GTFFT, 

CTFFT uses a special indexing method to access the large size DFT in two 

dimensions’ manner by dividing the DFT size (let N = N1* N2), except N1 does 

not necessary have to be coprime with N2. It is also sometimes described as a 

FFT algorithm that compute a single row N-points DFT in two dimensional row-

by-column, (N1 * N2)-points DFTs, with N1 number of rows and N2 number of 

columns, where N = N1 * N2. Generally, CTFFT consists of three steps:  

1) Row FFT (N1 number of N2 points DFT); 

2) Twiddle factors multiplication; 

3) Column FFT (N2 number of N1 points DFT); 

Forward Transform (CTFFT): 

■ 𝑋𝑗1+𝑁1𝑗2
 = ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑥𝑁2𝑖1+𝑖2

𝑒
−𝑗

2𝜋

𝑁1
𝑖1𝑗1)𝑒−𝑗

2𝜋

𝑁
𝑖2𝑗1]𝑒

−𝑗
2𝜋

𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0  

Inverse Transform (CTFFT): 

▪ 𝑥𝑗1+𝑁1𝑗2
 = 𝑁−1 ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑋𝑁2𝑖1+𝑖2

𝑒
−𝑗

2𝜋

𝑁1
𝑖1𝑗1)𝑒−𝑗

2𝜋

𝑁
𝑖2𝑗1]𝑒

−𝑗
2𝜋

𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0  

 

The above equations can be derived by substituting the following equation into 

the equation in NTT:  

▪ 𝑖 =  𝑁2𝑖1 +  𝑖2, 0 ≤ 𝑖1 < 𝑁1, 0 ≤ 𝑖2 < 𝑁2  

▪ 𝑗 =  𝑁1𝑗2 + 𝑗1, 0 ≤ 𝑗1 < 𝑁1, 0 ≤ 𝑗2 < 𝑁2   
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2.6.3 Number Theoretic Transform (NTT) 

Number Theoretic Transform (NTT) is a mathematics function that transform a 

set of data between its time and frequency domain. Same with Fourier transform 

and DFT, transformation of time-to-frequency domain is called Forward 

Transform and frequency-to-time domain transformation is known as Inverse 

Transform. This transformation is performed over a finite field. 

Forward Transform (NTT): 

■ 𝑋𝑗 = ∑ 𝑥𝑖𝑔
𝑖𝑗𝑁−1

𝑖=0 𝑚𝑜𝑑 𝑀,   0 ≤ 𝑗 < 𝑁 

Inverse Transform (NTT): 

■ 𝑥𝑖 = 𝑁−1 ∑ 𝑋𝑗𝑔𝑖𝑗𝑁−1
𝑗=0 𝑚𝑜𝑑 𝑀,   0 ≤ 𝑖 < 𝑁 

x : series of NTT input elements 

X : series of NTT output elements 

N : NTT size, number of elements to be transformed 

g : primitive Nth root of unity 

M : modulus 

 

 

The Nth root of unity, r, is a number that when multiply itself N times will yield 

1 in a finite field, rN ≡ (1 mod M), where M is the modulus used to generate the 

finite field and r must be larger than 1 and smaller than M (1 < r < M – 1). For 

the Nth root of unity to be primitive, r must be the smallest positive integer found 

within the range. 
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Pseudocode of NTT: 

Input   :  1) x, series of NTT input elements;  

                 2) tf, series of precomputed twiddle factors; 

Output : X, series of NTT output elements; 

tmp; //temporary value; 

1) for j := 0 to N - 1 do 

2)      Xj := 0 

3)      for i := 0 to N - 1 do 

4)             tmp  xi * tfij mod M 

5)             Xj  Xj  + tmp mod M 

6)     end 

7) end 
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2.6.4 Fast Number Theoretic Transform (FNT) 

Both DFT and NTT shared the same definition: the output data with index i, is 

equals to the summation of products from the input data with their respective 

twiddle factors. The main difference between both of the transformation is, the 

DFT is computed in complex domain that involved floating-point arithmetic 

while NTT is performed in integer domain of finite fields, computed with 

modular arithmetic. Thus, the FFT algorithm can also be applied on NTT to 

speed up the computation. 

 

In subsequent discussions, we refer FFT as a fast way to compute DFT and 

denote Fast Number Theoretic Transform (FNT) as fast way to compute NTT 

for the rest of the dissertation. For instance, the CTFFT algorithm can be 

modified to become CTFNT by replacing the root of unity in DFT, 𝑒−𝑗
2𝜋

𝑁 , with 

the root of unity of NTT, 𝑔𝑁  and changing the computation domain from 

complex domain to integer finite field domain. 

 

Forward Transform (CTFNT): 

■ 𝑋𝑗1+𝑁1𝑗2
 = ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑥𝑁2𝑖1+𝑖2

𝑔𝑁1
𝑖1𝑗1)𝑔𝑁

𝑖2𝑗1]𝑔𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0  𝑚𝑜𝑑 𝑀 

 

Inverse Transform (CTFNT): 

■ 𝑥𝑗1+𝑁1𝑗2
 = 𝑁−1 ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑋𝑁2𝑖1+𝑖2

𝑔𝑁1
𝑖1𝑗1)𝑔𝑁

𝑖2𝑗1]𝑔𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0  𝑚𝑜𝑑 𝑀  
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Figure 2.8 shows the flowchart for the CTFNT in a simple flow which included 

three sub-processes, the column NTTs, twiddle factors multiplication and row 

NTTs. The flowchart for twiddle factors multiplication is illustrated in Figure 

2.9 while the flowcharts of both columns NTTs and row NTTs are shown side-

by-side in Figure 2.10 for better comparison. Note that the flowcharts of both 

column NTTs and row NTTs are similar with the difference of the indices used. 

Pseudocode of CTFNT: 

Input   :  1) x, series of NTT input elements;  

                 2) t, series of temporary intermediate value; 

                 3) tfN0, series of precomputed twiddle factors for N; 

                 4) tfN1, series of precomputed twiddle factors for N1; 

                 5) tfN2, series of precomputed twiddle factors for N2; 

Output   : X, series of NTT output elements; 

tmp; //temporary value;  

//column NTTs 

1) for i2 := 0 to N2 - 1 do 

2)      for j1 := 0 to N1 - 1 do 

3)             t(i2 * N1 + j1) := 0 

4)             for i1 := 0 to N1 - 1 do 

5)              tmp  x(i1 * N2 + j1)  * tfN1(i2 * i1) mod M 

6)                   t(i2 * N1 + j1)  t(i2 * N1 + j1)  + tmp mod M 

7)             end 

8)       end 

9) end 

 

//twiddle factors multiplication 

10) for i2 := 0 to N2 - 1 do 

11)       for j1 := 0 to N1 - 1 do  

12)             t(i2 * N1 + j1)  t(i2 * N1 + j1)  * tfN0(i2 * j1) mod M 

13)       end 

14) end 

 

//row NTTs 

15) for i1 := 0 to N1 - 1 do 

16)      for j2 := 0 to N2 - 1 do 

17)             t(i1 * N2 + j2) := 0 

18)             for i2 := 0 to N2 - 1 do 

19)              tmp  t(i1 * N2 + j1)  * tfN2(i2 * i1) mod M 

20)                   X(i1 * N2 + j1)  X(i1 * N2 + j1)  + tmp mod M 

21)             end 

22)       end 

23) end 

 

 

 

 



 

33 

 

 

Figure 2.8 Flowchart of CTFNT 

 

 

Figure 2.9 Flowchart of Twiddle Factors Multiplication 
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Figure 2.10 Flowcharts of Column NTTs and Row NTTs 
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2.7 Summary 

The study between GTFFT and CTFFT shows that although GTFFT does not 

require twiddle factors multiplication in between row FFTs and column FFTs, 

its transformation size is limited to only relatively prime numbers, which will 

affect the effectiveness of balance workload distribution in implementation. In 

this case, CTFFT is more suitable as the transformation size is more dynamic.  

 

Similar to radix-R FFT, CTFFT employs divide-and-conquer method to compute 

a full FFT. The main difference between them is radix-R FFT divides the N-FFT 

into R number of FFTs at each level until each of the FFTs have only R number 

of data; while CTFFT is more dynamic that divides a N-points FFT into (N1 * 

N2)-points FFT, where N = N1 * N2. CTFFT can also be used recursively to 

achieve higher level of parallelism. 

 

Comparing radix-2 and radix-4 FFT, radix-2 FFT module is smaller and simple 

compare to radix-4 FFT module, and radix-4 FFT module also have longer 

latency compare to radix-2 FFT module. However, since a radix-R FFT module 

computes R number of data at each level, a radix-4 FFT module is able to 

compute more data than a radix-2 FFT module at each level. Hence, 

implementing radix-4 FFT module effectively can help to reduce the number of 

read and write access to data memory at the costs of extra hardware resources 

and slightly more complex control logic compare to radix-2 FFT module. A 

radix-4 FFT module can also be implemented by connecting four radix-2 FFT 

modules in two-by-two manner. 
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Theoretically, a radix-R FFT module with higher value of R is able to compute 

more data at each level, reducing the number of levels and hence reduce the 

number of memory access. However, increasing the value of R will also reduce 

the level of parallelism. The improvement of reducing the number of levels is 

also diminishing as the value of R grow higher. 

 

In this work, NTT is more suitable to be used in SSMA compared to DFT as 

only integer domain is involved in SSMA. Using DFT will also introduce round-

off errors when the transformation size increased. Different FFT algorithms can 

be used in different levels of the FFT decomposition. In our implementation, we 

focus on combining CTFNT with radix-4 FNT for SSMA. 

 

Comparing GPU and FPGA, GPU is considered low costs for implementation 

but FPGA is able to perform faster computation. NVIDIA GPU provides CUDA, 

a programming platform that allowed the designers or programmers to configure 

kernel and manage different level of memory conveniently and systematically; 

the FPGA design platform is more scalable as the designers are able to design 

the system processing units themselves. 
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CHAPTER 3  

LITERATURE REVIEW 

 

3.1 Implementation in GPU 

Graphic Processing Unit (GPU) is known for its highly parallel architecture with 

thousands of cores (processing units) to compute the color pixels of images and 

rendering video. However, the idea of employing GPU to accelerate various 

general purpose algorithms (typically run in CPU) such as scientific computing 

and cryptosystems has becoming popular in recent years. The research works 

done by (Emmart et al., 2011; Emeliyanenko et al., 2009; and T. Honda et al., 

2015) in exploiting GPU to compute large integer multiplication had shown 

significant improvements over CPU implementation.  

 

Both of the research works by Emmart and Weems (2011) and Emeliyanenko 

(2009) employed Schönhage-Strassen Multiplication Algorithm (SSMA) in their 

implementation. The works done by Emeliyanenko (2009) is able to outperform 

NTL and GMP (libraries for large integer multiplication) implementation in 

CPU with 512, 1024, and 2048-bit multiplication. Emmart and Weems (2011) 

integrated Cooley-Tukey FFT with Swartauber and Stockham indexing method 

into their SSMA implementation, achieving a maximum speedup of 19 times 

with multiplication operands ranged from 255K-bit to 16320K-bit when running 

the implementation on NVIDIA GTX480 GPU and Intel Core i7 870.  
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GPU with newer architecture comes with new features can be used to improve 

these works. For example, starting from NVIDIA Fermi GPU architecture, 64-

bit multiplication is supported from high-level-language programmer's 

perspective, eliminated the needs of breaking operands into residue numbers of 

24-bit to utilize native multiplication as in the work done by Emeliyanenko 

(2009). Besides, from NVIDIA Kepler onwards, new “shuffle instruction” is 

introduced to all new GPU, which allowed threads within the same warp to read 

registers from each other without the needs of going into higher memory level 

can help to reduce the needs of access to shared memory as done in the work of 

Emmart and Weems (2011).  

 

The work done by T. Honda et al. (2015) utilized the “shuffle instructions” 

feature to perform bulk multi-precision integer multiplication (compute 100,000 

multiplication simultaneously) ranged from 1024-bit to 32,768-bit with three 

different multiplication algorithms: Comba’s multiplication, Karatsuba’s 

multiplication and recursive Karatsuba’s multiplication is able to achieve a 

maximum speedup factor of 62.88 for 1024-bit multiplication and 18.71 times 

speedup for 32,768-bit multiplication. The comparison is done with NVIDIA 

GeForce GTX 980 with GNU multi precision library (GMP) running in Intel 

Xeon X7460 CPU.  

 

W. Dai et al. (2015) presented a CUDA GPU library for Homomorphic 

encryption (cuHE) in their work. The implementation use GPU and interface 

with NTL library to compute Number Theoretic Transform (NTT) and Chinese 
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Remainder Theorem (CRT) for the applications of Prince block cipher and 

homomorphic sorting algorithms. Implemented on NVIDIA Geforce GTX 680, 

GTX770 and GTX690, their work has shown a 40 times speedup on a single 

GPU, 135 times on three GPUs simultaneously over the work done in CPU by 

Doröz et al. (2014). This work also able to show a speedup of 25 times when 

compared to Dai et al.’s work (2014) implemented on the same GPU device. The 

authors also utilized the multi-streams method to speed up the memory copy 

operations between CPU and GPU. There is no result of multiplication shown in 

the works, but there is possibility of using the NTT function provided in this 

library to implement SSMA. 
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3.2 Implementation in FPGA 

Aside of GPU, FPGA is an alternative hardware platform that can be designed 

to perform dedicated algorithms. W. Dai et al. (2016) ’s researches and W. Dai 

et al. (2017) have shown a comprehensive studies of Montgomery modular 

multiplication implementation on FPGA based on SSMA. Designed with 

Verilog-HDL and implemented with Xilinx ISE 13.3 design tool on Xilinx 

Virtex-6 (xc6vlx130t-1) FPGA board, the research work done by Chen et al. 

(2016) presented multiplication with operands size ranged from 1K-bit to 4K-

bit. The work is done with different parameters set to show the trade-off between 

faster computation and smaller area. The authors also proposed a novel method 

known as “carry-save arithmetic” to improve parallelism for the resolve carries 

part of the SSMA, achieving 3100-bit and 4124-bit modular multiplications in 

6.74 and 7.78us respectively. This method outperformed previous state-of-the-

art work by Huang et al. (2011) for operand size of 3072-bit and above in term 

of computation latency and area-latency. FPGA design are often limited by the 

hardware resources such as the Lookup Table (LUTs) and memory available on 

board. Implementation with fully N-point NTT butterfly structures could lead to 

resources over-utilized; while using a single NTT butterfly structure repeatedly 

could help to minimize the resources required but on the other hand increased 

the latency. The work done by Chen et al. (2016) here utilized double radix-2 

NTT modules in their implementation, but the use of a single radix-4 NTT 

module is yet to explore. 

 

W. Dai et al. (2017) have further improved their SSMA over their previous work 

by Chen et al. (2016) by replacing Number Theoretic Transform (NTT), the most 
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crucial part of SSMA with Number Theoretic Weighted Transform (NWT). This 

method can efficiently reduce the convolution length in the SSMA by half, with 

an additional multiplication to the “weight”, a set of extra parameters for each of 

the elements within the NTT. Next, the authors integrate the Montgomery 

Modular Multiplication into McLaughlin’s framework, achieving better area-

time efficiency compared to their previous work (Chen et al., 2016) (50.9% for 

1,024-bit, 41.9% for 2,048-bit, 37.8% for 4,096-bit and 103.2% for 7,680-bit 

multiplication). 

 

The work done by Chen et al. (2015) replaced acyclic convolution in SSMA with 

negative wrapped convolution. This method removes the needs of zero-padding 

half of the NTT elements required for typical SSMA, reduced the transformation 

size of NTT by half, which is similar to the method used by Dai et al. (2017) as 

described above. Same with the work by Chen et al. (2016), this work is 

implemented with two radix-2 NTT modules as their smallest NTT processing 

unit. However, each of the radix-2 NTT modules is used to compute forward 

transform for both of the input operands independently at the same time instead 

of using both of the modules to compute the first input operand followed by the 

second. The authors also implemented their design with pipeline architecture to 

increase module throughput and support higher frequency. Implemented in 

Spartan-6 (xc6slx100-3) FPGA using Verilog with Xilinx ISE14.7, the authors 

are able to achieve an average of 3.5 times speedup when compared to the work 

done by Pöppelmann and Güneysu (2012).  
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Targeted for the uses of Fully Homomorphic Encryption (FHE), Y. Doröz et al. 

(2014) published a work that is able to compute very large multiplication of two 

1,179,648-bit operands in 7.74ms, synthesized in Synopsis Design Compiler 

with TSMC 90nm cell library. Similar to the works done by (Chen et al., 2016; 

Dai et al., 2017), SSMA is used in the implementation with the difference of 

using Cooley-Tukey FFT decomposition to reduce the computation time of NTT 

instead of fully radix-2. However, the implementation is done with 98,304-point 

NTT, a non-power-of-2 NTT transformation will affect the level of parallelism. 
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3.3 Summary 

Crypto algorithms such as ECC (Elliptic Curve Cryptography), RSA (Rivest-

Shamir-Adleman) and FHE (Fully Homomorphic Encryption) require intensive 

use of large integer arithmetic operations, from 512-bit (ECC), 2048-bit (RSA) 

up to millions-bit (FHE). Out of all arithmetic operations, modular 

exponentiation is the operation that costs the most computation time with 

multiplication as the core operation. 

 

Multiplication algorithms including Comba’s multiplication, Karatsuba’s 

multiplication and especially SSMA have been widely studied and implemented 

with various methods across different platforms using GPU, FPGA and 

Application-Specific Integrated Circuit (ASIC)  in the works of (Emmart and 

Weems, 2011; Emeliyanenko, 2009; Honda, Ito and Nakano, 2015; Dai and 

Sunar, 2015; Dai et al., 2014; Chen et al., 2016; Dai et al., 2017; Huang et al., 

2011; Doröz et al., 2014; Chen et al., 2015; Pöppelmann and Güneysu, 2012; 

Huang and Wang, 2015) in order to achieve faster computation time, higher 

throughput, lesser hardware resources or better area-time efficiency. 

 

The computational complexity for standard schoolbook’s and Comba’s 

multiplication is O(n2) and 𝑂(𝑛𝑙𝑜𝑔23)  for the Karatsuba’s multiplication 

algorithm, where n is the number of precisions used to form the large integer. 

The Karatsuba’s method reduces the number of internal multiplications between 

different precisions of the multiplicand and multiplier operands, at the costs of 

extra number of additions, which are cheaper operations in term of computation. 
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Implementing the Karatsuba’s multiplication algorithm recursively can further 

reduce the number of internal multiplication. However, the work done by T. 

Honda et al.  (2015) showed that applying Karatsuba’s multiplication algorithm 

at each level will also increases the number of read and write memory access, 

which introduce extra overhead in GPU implementation. Hence, optimizing the 

algorithm to achieve lower computation complexity alone is not enough. Taking 

the hardware specifications into consideration is crucial as well. 

 

SSMA appeared to be the most commonly used algorithms for large integer 

multiplication as it has the lowest computational complexity of O(n log n log log 

n) among the others. This algorithm is introduced by Schönhage and Strassen 

(1971), which utilized the FFT to perform point-wise multiplication in frequency 

domain of the number to achieve such a low computational complexity. Hence, 

it is also sometimes being called FFT-based multiplication or FFT-based 

polynomial multiplication. 

 

However, performing FFT and inverse FFT in this algorithm incurred overhead. 

The work done by Baktır and Sunar (2006) stated that the integer has to be at 

least 1000-bit in order to compensate the overhead incurred. This value can be 

vary due to the algorithms used to implement the FFT and hardware specification.  

 

SSMA is being implemented in the research works: (Emmart and Weems, 2011; 

Emeliyanenko, 2009; Dai and Sunar, 2015; Chen et al., 2016; Dai et al., 2017;  
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Chen et al., 2015; Huang and Wang, 2015), using different algorithms to 

compute FFT and altering the parameters set of the FFT to get the most optimum 

results. The works by Chen et al. (2016) and Dai et al. (2017) even integrated 

SSMA into Montgomery modular multiplication in replaced of traditional 

interleaved method and showed a significant improvement in their 

implementation over previous works.  
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CHAPTER 4 

IMPLEMENTION DETAILS 

 

4.1 Modular Arithmetic Functions 

The data type UINT64 (unsigned long long int), 64-bit unsigned integer, and the 

largest bit size of single precision supported to run in GPU is used for the 

implementation of NTT in this work. To avoid overflow or underflow during the 

arithmetic operations, three modular functions are implemented with the 

modulus, P = 0xFFFF_FFFF_0000_0001 as follows: 

• UINT64 _addModP(UINT64 in1, UINT64 in2) ; //Modular addition 

• UINT64 _subModP(UINT64 in1, UINT64 in2) ; //Modular subtraction 

• UINT64 _mulModP(UINT64 in1, UINT64 in2) ; //Modular multiplication 

 

4.1.1 Modular addition 

The implementation of the modular addition can be done by first adding both the 

inputs and check if the result is smaller than the first input. If yes, overflow 

happened and adding additional value of 0xFFFF_FFFF to the result can help to 

recover the missing value in the finite field of P. Lastly, check if the result is 

greater or equal to P. If yes, return the result with P subtracted from it else return 

the result untouched. 
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4.1.2 Modular subtraction 

For the modular subtraction function, subtract the second input (subtrahend) 

from the first input (minuend). Check if the underflow condition happened by 

comparing the result with the minuend. If the result is greater than the minuend, 

underflow occurred. Adding the result with P to recover the actual result in the 

finite field. Lastly, check if the result is greater or equal to P. If yes, return the 

result with P subtracted from it else return the result untouched. This function is 

also used to make sure no negative value will be incurred throughout the entire 

program. 

 

4.1.3 Modular multiplication 

The implementation for the modular multiplication is more complex compared 

to addition and subtraction as multiplying two data of 64-bit each yield a result 

of 128-bit, which is way more than a single precision can handle. In general, any 

number can be represented in its polynomial form, which is the summation of a 

series of coefficients multiply with its radix to the power of its respective index, 

𝐴(r)  =  ∑ 𝑎𝑖𝑟
𝑖𝑁−1

𝑖=0 , where A is the number, r is the radix and ai is the set of 

coefficients. Similarly, An 128-bit number can be represented in four 

coefficients of radix, r = 2
32, setting all the coefficients at 32-bit each, as shown 

below: 

𝐴128−𝑏𝑖𝑡(232) =  𝑎3𝑟3 +  𝑎2𝑟2 + 𝑎1𝑟1 +  𝑎0𝑟0
 

                             𝐴128−𝑏𝑖𝑡(232)

=  𝑎3(232)3 +  𝑎2(232)2 +  𝑎1(232)1 +  𝑎0(232)0 

           𝐴128−𝑏𝑖𝑡(232) =  𝑎3(296) +  𝑎2(264) +  𝑎1(232) +  𝑎0 
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One of the special characteristics of this special prime, P (known as Solinas 

Prime) can be used to overcome this issue. This prime number, P selected is 

equal to 264
 – 232 + 1. Using this prime to generate the finite field has the 

following properties: 

1) 2192 𝑚𝑜𝑑 𝑃 = 1 

2) 2160 𝑚𝑜𝑑 𝑃 = 1 −  232 

3) 2128 𝑚𝑜𝑑 𝑃 = −232 

4) 296  𝑚𝑜𝑑 𝑃 = −1 

5) 264  𝑚𝑜𝑑 𝑃 = 232 −  1 

By substituting the fourth and fifth into the previous equation yields: 

𝐴128−𝑏𝑖𝑡(232) 𝑚𝑜𝑑 𝑃 =  (232)(𝑎2 + 𝑎1)  −  (𝑎3 +  𝑎2) +  𝑎0 

By definition, multiplication of two double precisions numbers, A and B is equal 

to: 

𝐶 = 𝐴 ∗ 𝐵 

𝐶128−𝑏𝑖𝑡 = (264)(𝐴ℎ𝐵ℎ) + (232)(𝐴ℎ𝐵𝑙 +  𝐴𝑙𝐵ℎ) + 𝐴𝑙𝐵𝑙 

Where h denotes the higher precision and l denotes the lower precision of the 

operands, and 

       𝐿𝑒𝑡 𝑍 =  𝐴ℎ𝐵ℎ; 

                       𝐿𝑒𝑡 𝑌 =  (𝐴ℎ𝐵𝑙 +  𝐴𝑙𝐵ℎ); 

𝐿𝑒𝑡 X = 𝐴𝑙𝐵𝑙; 

𝐶128−𝑏𝑖𝑡 = (264)(𝑍) +  (232)(𝑌) + 𝑋 
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The values of 𝑎3, 𝑎2, 𝑎1 𝑎𝑛𝑑 𝑎0 can be extracted from: 

𝑎0 = 𝑋𝑙 

𝑎1 = 𝑌𝑙 +  𝑋ℎ ; 𝑖𝑔𝑛𝑜𝑟𝑒 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑀𝑆𝐵, 𝑠𝑡𝑜𝑟𝑒 𝑡𝑜 𝑎1_𝑐𝑜𝑢𝑡; 

𝑎2 = 𝑍𝑙 +  𝑌ℎ +  𝑎1_𝑐𝑜𝑢𝑡; 𝑖𝑔𝑛𝑜𝑟𝑒 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑀𝑆𝐵, 𝑠𝑡𝑜𝑟𝑒 𝑡𝑜 𝑎2_𝑐𝑜𝑢𝑡; 

𝑎3 = 𝑍ℎ +  𝑎2_𝑐𝑜𝑢𝑡; 
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4.2 Large Integer Multiplication on NVIDIA GPU with Kepler 

Architecture 

In this work, an SSMA function that is capable of performing (512 * 512)-bit 

multiplication is implemented with three 64-point NTTs (two forward NTTs and 

one inverse NTT). The Cooley-Tukey FFT method is used to speed up the 64-

point NTT by computing a one dimensional 64-points NTT in two dimensional 

NTT of eight 8-point NTTs (denotes as (8 * 8)-point CTFNT) to increase parallel 

computability. Next, CRT is applied on the top level of the mentioned algorithm 

to combine multiple SSMAs of (512 * 512)-bit multiplications and achieve 

multiplication of larger bit size.  

 

This multi-precision multiplication algorithm is implemented on three different 

GPU memory levels: 1) global memory, 2) shared memory and 3) registers, to 

compare and study the performance with different memory latency. The 

implementation on registers is the main propose idea of this project. The data 

stored in registers of a thread are not visible to the others before NVIDIA 

released GPU with Kepler architecture in 2012, which come with a new feature 

known as “Shuffle Instruction” that allowed the threads within the same warp to 

read the registers data of each other without the needs of going up to memory of 

higher latency.  

 

This implementation is able to perform up to 900 multiplications of 1024-bit, 

2048-bit, 4096-bit and 8192-bit multiplication simultaneously on average of 

0.095ms, 1.119ms, 1.132ms and 1.113ms respectively, and achieved maximum 
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speedup of 11.45% and 36.54% compared to global memory and shared memory 

implementation.  
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4.2.1 NTT Implementation 

Number Theoretic Transform (NTT) appears to be the most crucial parts in the 

SSMA algorithm, as a standard SSMA algorithm involves three NTTs (two 

Forward NTTs and one Inverse NTT) and one convolution. Convolution is a 

rather simple and direct part of the algorithm, since it is point-wise multiplication 

between both of the transformed operands in frequency domain, with a 

computational complexity of O(n), where n is the number of precisions. 

However, the computational complexity of a primitive NTT algorithm is equal 

to O(n2). Hence, the Cooley-Tukey Fast Fourier Transform (CTFFT) method 

typically used to speed up Discrete Fourier Transform (DFT) is used in this work 

to reduce the computational complexity of NTT. The use of CTFFT method on 

NTT (denoted as CTFNT) can efficiently reduce the computational complexity 

from O(n2) to O(n log n). 

 

To use NTT in SSMA, the modulus, M has to be co-prime with the NTT size, N, 

so that the Nth primitive root of unity, g exists. In this project, the 64-bit Solinas 

prime number, P = 0xFFFFFFFF00000001 is selected. Since a prime number 

is always co-prime with any other numbers, the requirement is fulfilled. This 

special prime number has the primitive root of unity in power-of-2 for several 

small NTT sizes, relaxing the needs of twiddle factors multiplication in NTT by 

using left shifting instead of exact multiplication. Secondly, the bit size of each 

of the elements in the NTT, n has to meet the requirement:  

(N/2)(2n-1)2 < P. 
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Table 4.1 List of primitive root of unity 

N Primitive root of 

unity, g 

Number of bit 

(left shifting) 

4 0x1000000000000 48 

8 0x1000000 24 

16 0x1000 12 

32 0x40 6 

64 0x8 3 

192 0x2 1 

6 0x100000000 32 

12 0x10000 16 

24 0x100 8 

48 0x10 4 

96 0x4 2 

 

Table 4.1 shows the primitive root of unity, g for different values of N and 

respective number of bit for left shifting. 
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4.2.2 SSMA Implementation  

The (512 * 512)-bit SSMA is implemented with 64-point NTT, with all of the 

elements in NTT being set to 16-bit each. Since half of the elements have to be 

reserved for zero-padding, the operand size for the multiplication is equal to 32 

points * 16-bit = 512-bit. The 64-point NTT can be decomposed into two 

dimensional CTFNT of (1 * 64), (2 * 32), (4 * 16), (8 * 8), (16 * 4), (32 * 2), or 

(64 * 1) points. The experiments for all of the possible combinations mentioned 

above has been carried out and the results shown that the (8 * 8)-point CTFNT 

combination has the most optimum performance in term of computational time. 

 

Figure 4.1 illustrates the flow of the SSMA function. Both of the operands, the 

multiplicand, X and the multiplier, Y are randomly generated using the GMP 

library. Firstly, both of these operands are broken into their multi-precisions 

representation of 64 limbs of 16-bit each. Half of the most significant limbs are 

filled with zeroes before forward transformed into frequency domain. Secondly, 

convolution is carried out to get the product, Z in frequency domain. Thirdly, Z 

is inverse transformed back to its time domain. Lastly, evaluation is performed 

to get the exact product. Note that the small letter x, y and z with subscripts (e.g. 

x0) are used to denote the data in time domain while capital letter X, Y, and Z 

with subscripts are used to represent the data in frequency domain. The arrow 

bars on the right show the flow of the program from start to finish and the 

execution running in either CPU or GPU. 
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Figure 4.1 SSMA flow illustration 

 

In GPU kernel, each SSMA is set to run in one block of two dimensional threads. 

The x-dimension is fixed with eight threads, whereby each of this thread is able 

to compute a single 8-point NTT independently, together a 64-point NTT ((8 * 

8)-point CTFNT) can be computed. The y-dimension is used to determine the 

number of CRT moduli, c, for the large integer multiplication. The value of c is 

configurable between 4, 8, 16 or 32 for operand size of 1024-bit, 2048-bit, 4096-

bit or 8192-bit respectively. The number of CRT moduli, c, are corresponds to 

the number of SSMA run in the program. 

  

Figure 4.2 illustrates how eight threads are launched to compute a single SSMA 

and Figure 4.3 shows how c rows of these eight threads can be replicated in y-

dimension for multiple SSMAs according to number of CRT moduli. 
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Figure 4.2 Eight threads in one block 

 

 

 

Figure 4.3 Two-dimensional threads in one block 
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4.2.3 CRT Implementation  

The bottleneck of the SSMA implementation discussed in the previous section 

is the maximum operand size supported, which is limited to only 512-bit. To 

achieve large integer multiplication with larger operand size, the idea of 

concatenating multiple SSMAs to support larger operand size can be done by 

implementing CRT on top of these SSMAs.  

 

Figure 4.4 illustrates the implementation of CRT algorithm on top of several 

SSMAs. The implementation in this work supports 1024-bit, 2048-bit, 4096-bit 

and 8192-bit multiplication, the size of the input operands shown in Figure 4.2 

with configuration of c = 4, c = 8, c = 16, and c = 32 respectively, where c is the 

number of CRT moduli required for the CRT and ICRT operations. The number 

of CRT moduli, c, can be determined by dividing the bit size of the product (sum 

of the bit size of both the input operands) with 512, the bit size of one single 

CRT moduli. 
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Figure 4.4 CRT implementation illustration 

 

From Figure 4.4, two of the input operands, X and Y are first converted into two 

series of CRT coefficients, 𝑋𝑃0
to 𝑋𝑃(𝑐−1)

 and 𝑌𝑃0
to 𝑌𝑃(𝑐−1)

 by performing 

forward CRTs, which divide X and Y with c numbers of 512-bit CRT moduli to 

get the residue numbers. Both the large integer operands and the set of 512-bit 

CRT moduli are generated randomly using GMP library. Two series of these X 

and Y CRT coefficients are then paired according to their indices and fed into 

multiple SSMAs simultaneously to produce the series of CRT coefficients of the 

product, 𝑍𝑃0
to 𝑍𝑃(𝑐−1)

. Lastly, Inverse CRT is performed on this series of 

coefficients to get the final product, Z. 
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However, the implementation discussed as in Figure 4.4 is not able to support 

exact x-bit multiplication (x = 1024, 2048, 4096, 8192). This is because the bit 

size product of all the CRT moduli(𝑷 = ∏ 𝑃𝑖)𝑐−1
𝑖=0 , is slightly less than the 

expected product size. For example, in (8192 * 8192)-bit multiplication, c = 32, 

the bit size of P is equal to 16372-bit instead of the expected 16384-bit. This 

problem has causes the maximum operand sizes supported implementation to be 

1023-bit, 2046-bit, 4091-bit and 8185-bit instead of expected 1024-bit, 2048-bit, 

4096-bit and 8192-bit respectively. 

To overcome this problem, an extra CRT modulus can be added to increase the 

bit size of P, and hence able to compensate the missing bits of the expected 

operand size. Adding an extra 512-bit can be costly in terms of computation time. 

Hence, a small modulus of 16-bit is used instead. Figure 4.5 shows the flow of 

the implementation after adding in the extra CRT modulus. 

 

 

Figure 4.5 CRT implementation with extra modulus illustration 
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4.2.4 Memory allocation 

The twiddle factors are needed for the CTFNT are precomputed before passing 

into the GPU memory to save computation time. The first version of the 

implementation stores the precomputed twiddle factors in the global memory of 

the GPU for the ease of access and sharing between threads from different blocks. 

The twiddle factors stored are being read frequently as they are needed in every 

iteration of the CTFNT. Hence, in the second version of the implementation, the 

shared memory of the GPU is used to store the precomputed twiddle factors to 

improve the performance by reducing the memory read latency.  

 

However, this implementation introduced bank conflict when reading data from 

the shared memory. Bank conflict happened when more than one thread are 

trying to read data of different locations from the same memory bank. In this 

case, the memory read operations from the shared memory will be serialized. 

Bank conflict happened due to the memory access pattern of the CTFNT, which 

access the shared memory in a column-by-column manner followed by row-by-

row manner in its column-NTTs and row-NTTs operations respectively. During 

the column-by-column memory access, each of the threads are reading the data 

from different memory banks, no bank conflict occurred. When the threads are 

reading the data in row-by-row manner, all of the threads are trying to read the 

data from the same memory bank, bank conflict happened.  

Figure 4.6 and Figure 4.7 illustrate the memory access pattern in column-by-

column and row-by-row manners, from the first access to eight access across 
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eight different banks. The numbers 0 to 63 illustrate the indices of the twiddle 

factors stored. 

 

        

Figure 4.6 Column-by-column access: No bank conflict 

 

 

 

Figure 4.7 Row-by-row access: Bank conflict 
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In GPU memory hierarchy, the GPU registers are the memory with lowest 

latency. Conventionally, the data stored inside registers of a thread are only 

limited for the uses of the thread itself, which is not visible to the others. In 2012, 

NVIDIA has released new generation of GPU, the GPU with Kepler architecture. 

GPU from this generation and onwards come with a new feature known as 

“Shuffle Instruction” that allowed the threads within the same warp of the GPU 

to read the registers data from each other without the needs of going through 

shared memory or global memory. 

 

In our third version of the implementation, we proposed a novel method by 

utilizing the “Shuffle Instruction” to store the precomputed twiddle factors into 

the registers, reducing the memory latency from both global memory and shared 

memory implementation and bank conflict in shared memory can be avoided. In 

this implementation, two sets of precomputed twiddle factors, the set of twiddle 

factors for 64-point NTT and 8-point NTT (for the uses of CTFNT) are 

distributed among the threads within the same warp, each thread will hold four 

twiddle factors, two from each set.  

 

During the computation, all of the threads will shuffle their registers to the 

respective thread that holding the twiddle factors with the corresponding index, 

this process is repeated in each iteration until all of the NTTs are computed. 
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4.3 Large Integer Multiplication on NVIDIA GPU with Pascal 

Architecture 

This implementation is an improvement over our previous work (Section 4.2) in 

term of multiplication operands size supported. The bottlenecks of our previous 

large integer multiplication algorithm implementation are the CRT and ICRT 

operations, which is needed to combine multiple (512-bit * 512-bit) SSMAs to 

achieve multiplication with larger bit size.   

 

In this implementation, we are able to eliminate CRT in replace of extra levels 

of CTFNT. This approach increased the NTT size (number of points supported 

in an NTT) to accommodate more precisions for operand of larger size, and using 

only one SSMA is sufficient to compute one large integer multiplication. 

However, the advantage of using left shifting for twiddle factors multiplication 

is not available for NTT of larger size as the values are not a power of two within 

the finite field.  

 

Table 4.2 Primitive root of unity for N = 4096, 16384, 32768 and 65536 

 

 

 

 

 

Table 4.2 shows the primitive root of unity, g, for NTT size of 4096, 16384, 

32768 and 65536 in hexadecimal form. The modular multiplier discussed in 

section 4.1.3 is used for the multiplication instead. 

N Primitive root of unity, g 

4096 0x984E_C519_4D00_5735 

16384 0x97B0_081F_0175_31DF 

32768 0x2E43_53DF_CE41_DEAF 

65536 0xDC92_18A8_6D10_F3A3 
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NTTs with NTT size as listed in Table 4.2 are implemented with multi-level 

CTFNT. This work is implemented on NVIDIA GPU GTX1070 with Pascal 

architecture released on year 2016. Our work is able to achieve multiplication 

with operands size of 49,152-bit, 196,608-bit, 393,216-bit and 786,432-bit in 

less than 1ms, 1.12ms, 1.24ms and 1.37ms respectively.  
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4.3.1 CTFNT Implementation 

4.3.1.1 CTFNT Decomposition 

Generally, Cooley-Tukey Fast Number Theoretic Transform (CTFNT) divides 

an N-point NTT into (N1 * N2)-point NTT, where N = N1 * N2. One level of 

CTFNT involves three steps: the column NTTs, followed by the twiddle factors 

multiplication for N and end with the row NTTs. From the CTFNT equation in 

section 3.6.4, the inner summation is known as the column NTTs, while the outer 

summation is the row NTTs. Each of these N1-points column NTTs and N2-

points row NTTs can be further divided by applying another level of CTFNT. 

 

In this work, 4096-point NTT is implemented with (64 * 64)-point CTFNT, 

where each of the 64-point column NTTs are implemented with (8 * 8)-point 

CTFNT (4096-point NTT = (64 * (8 * 8))-point CTNTT). We set this 4096-point 

NTT as base case by fixing N1 = 4096 and configure only N2 at the values of 4, 

8 and 12 to compute NTT for NTT size of 16384, 32768 and 65536 respectively.  

 

Table 4.3 CTNTT decomposition and multiplication size supported 

 NTTSIZE, 

N 

N1 N2 CTFNT 

decomposition 

 Operand 

size (bit) 

Product 

size (bit) 

1 4096 4096 1 1 * (64 * (8 * 8)) 49,152 96K 

2 16384 4096 4 4 * (64 * (8 * 8)) 196,608 384K 

3 32768 4096 8 8 * (64 * (8 * 8)) 393,216 768K 

4 65536 4096 16 16 * (64 * (8 * 

8)) 

786,432 1,536K 
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Table 4.3 shows the size of multiplication operands supported and the level of 

CTFNT decomposition of our implementation. All four of the NTTs are 

implemented with three levels of CTFNT.  

• First level : N     = N1 * N2 

• Second level : N1   = N11 * N12 → N = (N11 * N12) * N2  

• Third level : N11 = N111 * N112 → N = ((N111 * N112) * N12) * N2 

 

In our implementation, the second and third level of the CTFNT decomposition 

are done symmetrically, where the number of row NTTs is equal to the number 

of column NTTs (e.g.: Let N1 = N2, hence N = N1
2 or N = N2

2). Only one set of 

precomputed twiddle factors is needed to store into GPU as they are the same 

for both of the CTFNT’s columns NTTs and row NTTs, hence reduced the 

memory required. 
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4.3.1.2 CTFNT Kernels Implementation 

Three GPU kernels are designed to compute CTFNT for both the multiplication 

operands simultaneously. Each of these kernels in charge of handling each of the 

three steps of the first level CTNTT: 

a) Kernel 1: N2 number of column NTTs (N2 * N1-point NTTs) 

b) Kernel 2: Twiddle Factors Multiplication  (N point-wise multiplication) 

c) Kernel 3: N1 number of row NTTs (N1 * N2-point NTTs) 

 

In the first kernel, a block of 64 threads are designed to compute the base case, 

4096-point NTT by dividing it into (64 * 64)-point CTFNT, where each of these 

threads compute a single 64-point NTT independently. These 64-point NTTs are 

further divided into (8 * 8)-point CTFNT within the threads themselves. A total 

number of (2 * N2) of these blocks are launched in this kernel to compute the 

column NTTs of the first level CTFNT in our implementation, where the lower 

N2 blocks (block 0 to block N2 – 1) compute forward column NTTs for operand 

X while upper N2 blocks (block N2 to block 2 * N2 – 1) compute forward column 

NTTs for operands Y. In short, the first kernel is used to compute N2 number of 

4096-point column NTTs for both of the multiplication operands. Figure 4.8 

illustrates the blocks and threads allocation in first kernel. 

 

Figure 4.8 CTFNT First  Kernel 
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The second kernel is used for twiddle factors multiplication, which perform one 

to one multiplication of the transformed data from the first kernel with the 

twiddle factors of their respective indices. N number of threads are spawned 

where eat of the threads will perform one multiplication for operand X and one 

multiplication for operand Y. Since the maximum number of threads can be 

spawned in a single block is limited to 1024, N/1024 number of blocks are 

launched to have N number of threads. Figure 4.9 illustrates the blocks launched 

and threads distribution. 

 

 

Figure 4.9 CTFNT Second Kernel 

 

The third kernel is used to compute N1 number of row NTTs, which is equal to 

4096 N2 point-NTTs as the value of N1 is fixed at the value of 4096 in our 

implementation. In this kernel, we launch 8 blocks with 1024 threads each, 

where block 0 to block 3 is the lower set of block and block 4 to block 7 is the 

upper set of block. Hence, both sets of block will have a total of 4096 threads 

each. The lower set of block computes row NTTs for operand X whereas the 

upper set of block computes row NTTs for operand Y. Figure 4.10 shows the 

blocks and threads distribution for the third kernel. 
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Figure 4.10 CTFNT Third Kernel 

 

Each of the blocks is used to compute 1024 N2-point row NTTs, where each of 

the threads within the block is in charge of computing a single N2-point row 

NTTs. Hence, the lower or upper set alone is capable of computing 4096 N2-

point NTTs (4 blocks * 1024 threads * N2 –point NTT = 4096 N2 point-NTTs).  

 

For NTT size equal to 4096, only kernel one is needed to complete the 

transformation. 
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4.3.2 SSMA Implementation 

The SSMA in this work utilized the CTFNT implemented in section 4.3.1.1 to 

perform the forward transform for both the input operands. Next, the transformed 

operands are sent to another GPU kernel to perform convolution (point-wise-

multiplication of the operands in frequency domain). This convolution kernel 

implementation is similar to the kernel 2 of CTNTT implementation as discussed 

in section 4.3.1.2, except that the inputs are both the operands instead of the 

operands with the precomputed twiddle factors. The CTFNT from the previous 

section is used for the inverse CTFNT part of the SSMA with slightly 

modifications:  

1) Only half of the blocks are launched as there is only one operand Only 

half of the blocks are launched as there is only one operand (the 

convolution product, Z) has perform inverse transformation; 

2) The twiddle factors of inverse transform are used instead of forward 

transform;  

3) The forth kernel, kernel 4 is implemented for the modular multiplicative 

inverse N-1 multiplication needed for inverse transform; 

 

The kernel 4 is similar to the convolution kernel in this SSMA implementation, 

except that the first input is the product, Z while the second input of the function 

is the modular multiplicative inverse, N-1 instead of a series of operand precisions. 

The algorithm flow of this SSMA implementation is same as the flow illustrated 

in Figure 4.1 with N of larger size. The implementation is illustrated in Figure 

4.11 on the following page. 
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Figure 4.11 SSMA kernels implementation 
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4.4 FPGA Implementation  

A hardware module that is capable of computing one level of (4 * 4)-point 

CTFNT with multiplication is designed in this work. This module utilized 

BRAM to store the intermediate data repeatedly to compute a 256-point NTT. 

Extra control circuits are added into the implementation to perform SSMA by 

utilizing the developed 256-point NTT module for three NTTs (two forward and 

one inverse) and convolution. This SSMA design is able to compute 

multiplication of 3072-bit. 

 

The hardware modules in this work are designed using Verilog HDL. The 

functional and timing behavior verification of the designed hardware are done in 

Vivado HLx edition 2016.3 EDA tool. The clock speed is configured at 20MHz 

the targeted FPGA board: Nexys4 DDR board with Xilinx Artix-7 FPGA (part 

number = xc7a100tcsg324-1). 

 

 

Figure 4.12 FPGA development cycle 

 

Figure 4.12 shows the development cycle of a FPGA design used in our 

implementation. Starting with designing the hardware modules in Verilog HDL, 

followed by simulation to verify the functional behavior of the design using 

Modelsim. In this phase, the number of clock cycles required to process the  
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intended operation will be shown regardless of the clock frequency. Next, the 

verified design is ported and synthesized in Xilinx Vivado. This is to ensure that 

the design can be developed into an actual hardware and an estimation of 

hardware resources utilization on a targeted FPGA board will be shown. Lastly, 

the synthesized design is implemented to the target board during the 

implementation phase based on the design constraints. This is the most critical 

phase throughout the development as the implementation result will show 

whether the synthesized design can meet the timing requirement decided by the 

developer. The implementation result will also provide the developer the power 

consumption of the design. The development will go back to the previous phase 

for optimization or when any error(s) happened in either one of the phases. 

 

Section 4.4.1, 4.4.2 and 4.4.3 describe three different design and development 

phases of this implementation. 
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4.4.1 Preliminary Design: SSMA with typical NTT 

Table 4.4 shows an example of how each of the output of an 8-point NTT can be 

computed using the forward transform NTT equation from section 3.6.3. Table 

4.5 shows a simplified version of Table 4.4 with the addition operators are 

omitted for better readability. The indices below indicate the index of the 

respective input data.  

Table 4.4 Computation Equation of an 8-point NTT 

Output, Xj Computation equation 

X0 x0g0 + x1g0 + x2g0 + x3g0 + x4g0 + x5g0 + x6g0 + x7g0 

X1 x0g0 + x1g1 + x2g2 + x3g3 + x4g4 + x5g5 + x6g6 + x7g7 

X2 x0g0 + x1g2 + x2g4 + x3g6 + x4g8 + x5g10 + x6g12 + x7g14 

X3 x0g0 + x1g3 + x2g6 + x3g9 + x4g12 + x5g15 + x6g18 + x7g21 

X4 x0g0 + x1g4 + x2g8 + x3g12 + x4g16 + x5g20 + x6g24 + x7g28 

X5 x0g0 + x1g5 + x2g10 + x3g15 + x4g20 + x5g25 + x6g30 + x7g35 

X6 x0g0 + x1g6 + x2g12 + x3g18 + x4g24 + x5g30 + x6g36 + x7g42 

X7 x0g0 + x1g7 + x2g14 + x3g21 + x4g28 + x5g35 + x6g42 + x7g49 

 

Table 4.5 Computation Equation of an 8-point NTT (Simplified) 

Output, Xj Computation equation 

X0 x0g0 x1g0 x2g0 x3g0 x4g0 x5g0 x6g0 x7g0 

X1 x0g0 x1g1 x2g2 x3g3 x4g4 x5g5 x6g6 x7g7 

X2 x0g0 x1g2 x2g4 x3g6 x4g8 x5g10 x6g12 x7g14 

X3 x0g0 x1g3 x2g6 x3g9 x4g12 x5g15 x6g18 x7g21 

X4 x0g0 x1g4 x2g8 x3g12 x4g16 x5g20 x6g24 x7g28 

X5 x0g0 x1g5 x2g10 x3g15 x4g20 x5g25 x6g30 x7g35 

X6 x0g0 x1g6 x2g12 x3g18 x4g24 x5g30 x6g36 x7g42 

X7 x0g0 x1g7 x2g14 x3g21 x4g28 x5g35 x6g42 x7g49 

Index, i 0 1 2 3 4 5 6 7 

 

 

From Table 4.5, if only the set of input data, xi is being read from the 

computation equation section vertically column-by-column, it is clear that they 

are the same for the set of output data, Xj. Likewise, if only the set of twiddle 

factors, gij is being read from the computation equation section vertically 
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column-by-column, we notice that the power for the set of twiddle factors are 

actually increased by the respective indices of the set of input data as j increased. 

These two facts indicate that all of the products of input with their respective 

twiddle factors can be reused to compute the subsequence output after computing 

current output by multiplying the products with gi instead of gij except for the 

first output, X0 where the multiplication with g0 are redundant and can be 

neglected. For instance, after computing the summation of products for X1, the 

set of product (x0g
0, x1g

1, …, x7g
7) can be fed right back to the circuit, perform 

multiplication again with the set of twiddle factors (g1, g2, …, g7) and compute 

the summation of product for X2. 

 

Figure 4.13 shows the block diagram of the designed 8-point NTT processing 

unit. From Figure 4.13, ip_x0, ip_x1, …, ip_x7 are eight of the input of the 8-

point NTT. This set of input is fed into an adder to compute the sum of product, 

which is the output data. At the same time, each of these input data are fed into 

a shifter to perform twiddle factors multiplication. The set of output from these 

shifters (p0, p1, …, p7) are fed into the next 8-point NTT processing unit to 

compute the next output. Figure 4.14 shows how eight of these 8-point NTT 

processing units can be instantiated to compute all eight output data. 
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Initial Design 

 

Figure 4.13 Block diagram of 8-point NTT processing unit 

 

Figure 4.14 Block diagram of full 8-point NTT processing unit 

 

Ideally, by instantiating and concatenating eight of the design as shown in Figure 

4.14, we are able to compute all of the eight point NTT output in one clock cycle. 

However, this implementation is impractical as the output from each of the 

individual module are dependent on the output of the previous module. This 

creates a very long critical path (from the input of the first module to the last  
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NTT output). For instance, the latency of one individual module (from module 

input to module output) is 50ns when synthesized. Thus, the last NTT output 

takes 400ns to compute (minimum clock frequency required = 2.5MHz). This 

will also cause all the previous modules to be idle once they have computed their 

respective output as the next set of 8-point NTT input data have to queue until 

the last output data of current 8-point NTT is computed. This architecture design 

costs a lot of hardware resources, but only achieve low occupancy, hence it is an 

inefficient design. Thus, the design in Figure 4.14 is then modified with 

pipelining technique implementation. This implementation technique allowed a 

single 8-point NTT processing unit to be reused for all eight points NTT, reduced 

the required hardware resources and supported higher clock frequency of 

20MHz, which is equal to 50ns period (the latency of a single designed module).  
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Improved Pipelining Design 

 

Figure 4.15 Block diagram of pipelining 8-point NTT processing unit 

 

The modified design with pipelining implementation as shown in Figure 4.15 is 

similar to the original design as shown in Figure 4.13, except that a set of 

registers are used to store the products for next output and an extra 16-to-8 

multiplexer is used to select the input data either from new set of input data or 

feedback data from previous clock cycle. Although this design took eight clock 

cycle to finish the computation of an 8-point NTT compared to one clock cycle 

of the original design, this design supports higher clock frequency. The latency 

of this design to complete an 8-point NTT is equal to 50ns * 8 clock cycle = 

400ns, same with the original design but about 8 times lesser resources are 

required. 

 

The maximum operand size supported for SSMA with 8-point NTT is equal to 

(8 / 2) x 24-bit = 96-bit, which is insufficient for cryptosystem. Hence, we further  
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modify the design as shown in Figure 4.15 to support 64-point NTT by 

increasing the number of input data and shifters to 64 (maximum operand size: 

(64 / 2) x 24-bit = 768-bit, sufficient for ECC). However, the synthesized result 

shows an estimated resources utilization of 373.59%. The latency of the 

combination circuits in the 64-input adder also increased drastically.  

 

To overcome the problems of resources overutilization and latency, the design 

as shown in Figure 4.15 is reduced to compute four data at each clock cycle. A 

64-point NTT is being broken down into sixteen parts of four input data each. 

At each clock cycle, four input data are processed and hence 16 clock cycles are 

needed to process all 64 data for one output. An extra accumulator is added into 

the design for the summation of these sixteens parts data. An internal block RAM 

is also instantiated in the design to store the intermediate data. Overall, 64 output 

required 64/2 x 16 clock cycles = 512 clock cycles (divided by half as half of the 

input data are zeroes, summation with them can be neglected). The block 

diagram of the design is shown in Figure 4.16. 
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Figure 4.16 Block diagram: 64-point NTT processing unit 
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Two 64-point NTT processing units as shown in Figure 4.16 are instantiated for 

the SSMA module. During forward transform mode, one of the processing units 

is used to compute NTT for operand X and the other one is used to compute NTT 

for operand Y; during inverse transform mode, both of the processing units are 

used to compute INTT for the product, Z 

 

 

Figure 4.17 Block diagram: SSMA module 

 

. Figure 4.17 shown the block diagram of the SSMA module. From Figure 4.17, 

the adder with the input connected to the output of both of the NTT processing 

units are used to compute addition of two intermediate data during inverse NTT 

of product Z while the multiplier with the input connected to the output of both 

of the NTT processing units are used for convolution of the SSMA. The 2-to-1 

multiplexer follows right after the adder and multiplier are used to select the data 

to be stored into the block RAM. The whole SSMA took 1024 clock cycles or 

51.2ms latency at 20MHz to complete (The first 512 clock cycles used for two 

forward NTTs running in parallel while the last 512 clock cycles are used to 

compute inverse NTT and the clock cycles required for convolution are hidden 

within the 1024 clock cycles due to pipelining).  
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4.4.1.1 Findings 

This implementation is based on a typical NTT with O(N2) computational 

complexity. It shows that how an ideal functional behavior simulation of one 

clock cycle 8-point NTT design can become be very different compared to the 

timing behavior simulation during the synthesize phase. Having only one NTT 

output produced at each clock cycle is highly inefficient. Hence, we modified 

the design from parallel-in-serial-out design discussed in this section to parallel-

in-parallel-out design in next section.  
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4.4.2 Second Design: SSMA with radix-4 FNT  

The goal in this design as compare to our previous preliminary design (Section 

4.4.1) is to increase the supported operand size from 768-bit to 3072-bit. In this 

implementation, we first compare the level of decomposition of radix-R FNT for 

R = 2, 4, 8 and 16, with NTT size, N ranged from 2 to 1024 provided N is a 

power-of-2 as shown in Table 4.6. Note that a fully radix-R FNT is only 

applicable for N equals to the power of R, so some of the values in the Table is 

not available for radix 4, 8 and 16. Figure 4.18 illustrates the number of 

decomposition of radix-R FNT for different NTT sizes.   

Table 4.6 Level of decomposition of radix-R FNT against NTTSIZE, N 

 Level of decomposition, logRN 

NTT size, N Radix-2 Radix-4 Radix-8 Radix-16 

2 1 - - - 

4 2 1 - - 

8 3 - 1 - 

16 4 2 - 1 

32 5 - - - 

64 6 3 2 - 

128 7 - - - 

256 8 4 - 2 

512 9 - 3 - 

1024 10 5 - - 

 

  

Figure 4.18 Level of decomposition of radix-R FNT against NTTSIZE, N 

 

R
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Table 4.6 and Figure 4.18 show that every time when the radix, R is doubled, the 

level of decomposition is reduced by half. Algorithmically, a radix-R FNT 

processes R number of data at a time. Hence, radix-R FNT with higher value of 

R is able to compute an N-point NTT faster. However, increasing the value of R 

will reduce the degree of parallelism, which is contradict with our goal of 

speeding up the computation by running on multiple processing units. 

Furthermore, from hardware development perspective, designing a radix-R FNT 

module with higher value of R costs extra resources and increases the 

computation latency.  

 

From Figure 4.18, radix-4 FNT is able to show a significant improvement 

(reduced level of decomposition, which directly relates to the reduction of 

computation time) over radix-2 FNT, but this improvement is diminishing for 

the case of radix-8 and radix-16 FNTs. Radix-4 FNT shows an optimum point 

of sacrificing a certain degree of parallelism for lesser FNT decomposition level. 

Hence, we focus on the implementation using radix-2 and radix-4 FNTs in our 

work. 
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4.4.2.1 Radix-2 and radix-4 FNT module 

Figure 4.19, 4.19 and 4.20 show the block diagram of our design for a typical 

radix-2 FNT module, a radix-4 FNT module built by connecting four radix-2 

FNT modules in 2-by-2 manner (denotes as 4r2 FNT module for simplicity) and 

a typical radix-4 FNT module respectively. A radix-2 FNT costs 4 clock cycles 

to complete. Comparing both of the radix-4 FNT modules as shown in Figure 

4.20 and Figure 4.21, the 4r2 FNT module has a latency of 7 clock cycles while 

the typical radix-4 FNT module costs only 5 clock cycles, provided all of them 

are running at same clock frequency of 20MHz. In term of hardware resources, 

the typical radix-4 FNT module also costs one less modular multiplier 

submodule and two stages lesser pipeline registers.  

 

In short, the typical radix-4 FNT module is not only has lower latency but also 

required lesser resources. Hence, we will be using this typical radix-4 FNT 

module for our next implementation. 
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Figure 4.19 Block diagram: radix-2 FNT module 

 

 

Figure 4.20 Block diagram: radix-4 FNT module built with (2x2) radix-2 

modules 

 

 

Figure 4.21 Block diagram: radix-4 FNT module  
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4.4.2.2 CTFNT Decomposition   

Two levels of CTFNT are used in implementing the 256-point NTT. Both levels 

of the decomposition are done symmetrically (N1 = N2) to save the memory 

required to store the precomputed twiddle factors by sharing them for both the 

column and row NTTs of CTFNT. The first level of decomposition divides the 

256-point NTT into (16 * 16)-point CTFNT, and each of the 16-point NTTs is 

then divided into (4 * 4)-point CTFNT at the second level decomposition. All of 

the 4-point NTTs at the second level will be computed using the typical radix-4 

CTFNT module discussed in previous section (section 4.4.2.1). Figure 4.22 

illustrates the 256-point NTT decomposition used in this implementation. 

 

  

Figure 4.22 256-point NTT CTFNT decomposition 
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Figure 4.23 shows the block diagram of implementing a SSMA module using 

typical radix-4 FNT module. The functions of each part of the blocks are 

described as follows: 

a) Block RAM, memory unit of the module; 

b) Typical radix-4 FNT module, four input and four output; 

c) Twiddle factors multipliers; 

d) Temporary registers to store the intermediate data of FNT and 

convolution unit; 

e)  Typical radix-4 FNT module, four input and four output; 

f) Twiddle factors multipliers; 

 

Figure 4.23 Block diagram: SSMA module 

 

Part (a), (b) and (c) are used to compute column-NTTs, four points at a time. The 

results are stored into part (d), the temporary registers and wait until all the 

column-NTTs before proceed to row-NTTs. The row-NTTs are handled by part 

(e), (f) and (a). The column-NTTs read data from the block RAM and write to 

temporary registers; while the row-NTTs read data from the temporary registers 

and write back to the block RAM. Part (d) compute the convolution of the SSMA 

by reading and writing the data to and from the block RAM without the needs of 

intermediate memory. 
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Table 4.7 SSMA operation and clock cycles count 

Steps Operation  Clock 

cycles 

(without 

pipeline) 

Clock 

cycles 

(partial 

pipelined) 

1. Fetch four NTT data from BRAM. 1  

 

12 
2. Compute one 4-point column NTT. 5 

3. Multiply the NTT output with twiddle factors. 2 

4. Store the column NTT data into temporary 

registers. 

1 

5. Repeat step (1) to (4) 3 times to complete 

(4*4)-point column NTT. 

27 

6. Fetch four NTT data from temporary 

registers. 

1  

 

12 7. Compute one 4-point row NTT. 5 

8. Multiply the NTT output with twiddle factors. 2 

9. Store the row NTT data back to the BRAM. 1 

10. Repeat step (6) to (9) 3 times to complete 

(4*4)-point row NTT. 

27 

11. Repeat step (1) to (10) 15 times to complete 

(16*16)-point column NTT. 

1080 360 

12. Repeat step (1) to (11) for (16*16)-point row 

NTT. 

1152 384 

13. Repeat step (1) to (12) for second 

multiplication operand. 

2304 768 

14. Fetch four NTT data from BRAM. 1  

 

67 
15. Run convolution of the SSMA, four points at 

a time. 

2 

16. Store results of step (15) back to block RAM. 1 

17. Repeat step (14) to (16) sixty three times to 

complete full convolution. 

126 

18. Repeat step (1) to (12) for inverse NTT. 2304 768 

 Total: 7042 2371 

 Latency(20MHz): 352.1ms 118.55ms 

 

 

Table 4.7 show the flow of the multiplication and number of clock cycles needed 

to complete each of the steps. Table 4.7 states that a total number of 7042 clock 

cycles are needed to complete SSMA with 256-point NTT when the design is 

not pipelined. Figure 4.24 shows the comparison of the timing diagram of the 

pipelined and not pipelined design. 
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However, the pipelined design discusses in this section is actually “partial-

pipelined”. This mean some of the steps can be run concurrently, the clock cycles 

are overlapped to improve the latency. The column-NTTs, row-NTTs and 

convolution parts are three different parts of the circuit that are pipelined. The 

pipelined result is also shown in Table 4.7, where 2371 clock cycles or 118.55ms 

is needed to complete the SSMA with 256-points. This timing diagram for this 

partial-pipelined design is shown in Figure 4.25. 
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Figure 4.24 Pipelined and non-pipelined timing comparison 

 

 

Figure 4.25 Timing diagram for partial –pipelined design 
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4.4.2.2 Findings 

The problem of this design is the dependency between the column-NTTs, row-

NTTs and convolution, where the row-NTTs have to wait for the column-NTTs 

to complete before proceed; and the convolution have to wait for both the 

(16*16)-column-NTTs and (16*16)-row-NTTs to complete before it started. 

This causes the other two parts have to be idle when one is processing, drastically 

reduce the hardware occupancy and efficiency. In our next design, we aimed to 

improve this by modifying the circuit to become fully pipelined. 
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4.4.3 Third Design: SSMA with dedicated Radix-4 CTFNT 

4.4.3.1 Improved radix-4 CTFNT 

The typical radix-4 FNT module as shown in Figure 4.21 utilizes two 64-bit 

modular multipliers to perform the twiddle factors multiplication of the 4-points 

NTT. The twiddle factors used for this radix-4 NTT are constant values of 

0x1000000000000, 0x10000000000002 for forward transform and 

0x10000000000002, 0x10000000000003 for inverse transform. The 

multiplication with these twiddle factors can be calculated through left shifting 

operation for 48-bit, 96-bit and 144-bit respectively, to reduce the hardware 

resources needed. The details of design is shown in section 4.4.4.7.  

 

4.4.3.2 Timing performance of 16-point NTT  

In this work, three different hardware modules are designed to compute 16-point 

NTT as a preliminary study to the performance. 

1. First design: A single radix-2 module is used repeatedly to compute the 

16-point NTT;  

2. Second design: Four radix-2 modules are instantiated to build a radix-4 

module as shown in Figure 3.4 to speed up the computation by reducing 

memory access to the BRAM at the costs of extra hardware resources;  

3. Third design: we propose a novel radix-4 NTT design that is dedicated 

for the used with CTFNT implementation as discussed in section 4.4.3.1. 

We denote this module as radix-4 CTFNT module. The drawback of this 

radix-4 CTFNT module is that the scalability of using it for non-power-

of-4 NTT size is sacrificed 



 

94 

 

Table 4.8 Resource utilization and timing performance for 16-point NTT 

Hardware 

Design 

Resources Timing 

Look-

up 

Table 

(LUTs) 

Flip

-

Flop 

(FF) 

LUTRA

M 

BRA

M 

DSP Clock 

Cycle 

Perio

d 

(ns) 

  Latency 

(ns) 

Radix-2 

NTT 

1687 456 3 4 12 36 50 1800 

Radix-4 

NTT 

6662 206

3 

68 7 48 20 50 1000 

Radix-4 

CTFNT 

6421 180

5 

35 8 45 18 50 900 

 

Table 4.8 shows the hardware resources utilization and timing result of three of 

the designs when used to compute 16-point NTT. 

 

Table 4.8 also indicates that our proposed design is able to outperform a typical 

radix-4 module (built with four radix-2 modules connected in two-by-two 

manner as shown in Figure 3.4) in term of both hardware resources utilization 

and timing performance. Although the basic radix-2 NTT module costs lesser 

resources compared to our proposed design, our proposed design is able to 

compute 16-point NTT with only half of the computation time. This is a 

reasonable tradeoff between hardware resources and timing performance. 
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4.4.3.3 Multiple radix-4 column/row-NTTs design 

To remove the dependency between the column and row NTTs and convolution 

in the design as discussed in section 4.4.2, we modify the design from a 

sequential column-NTTs to row-NTTs to a parallel multiple radix-4 

column/row-NTTs design, where the set of typical radix-4 FNT modules can be 

configured to perform either column or row NTTs. The design is shown in Figure 

4.26.  

 

Figure 4.26 Block diagram: multiple radix-4 column/row-NTTs design 

 

Four typical radix-4 FNT modules are instantiated and arranged in parallel as 

shown in Figure 4.26 to allow four 4-point NTTs to be computed at the same 

time. Multiplexers are used to select the input either from the local set of BRAM 

or the other sets. The computed 4-point NTTs results are passed into multipliers 

for twiddle factors multiplication before storing back to the BRAM.  
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However, to allow four of the radix-4 FNT modules to compute column-NTTs 

or row-NTTs, extra control signals are needed to route the data before storing 

them back to the BRAM. Figure 4.27 shows the block diagram of the design 

with extra control added. 

 

Figure 4.27 Block diagram: multiple radix-4 column/row-NTTs design 

(modified) 

 

Figure 4.27 shows the block diagram from Figure 4.27 modified with extra 

control signals. Extra pipeline registers are also added to the output of the 

multipliers to avoid collision of data when two or more data are trying to write 

into the same BRAM. For instance, when four of the data from the multipliers 

are trying to write into BRAM0, the second data will be delayed by one clock 

cycle, the third one is delayed by two clock cycles and three clock cycles for the 

fourth one. Figure 4.28 illustrates the sequences of the data flow, where the input 

are fed in to the module in order and the output are delayed. The delays costs 
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three clock cycles to fill up the pipeline fully but this tradeoff is insignificant as 

the full SSMA took 198 clock cycles to compute. 

 

 

Figure 4.28 Timing diagram for data flow control 

  

The details of this radix-4 CTFNT module is shown in section 4.4.4.7, denotes 

as b_r4_ntt. Four of the NTT output from this module are connected to one 

multiplier each to form b_r4_ntt_m in section 4.4.4.8. These multipliers are used 

for twiddle factors multiplication (step 1b), 2) and 3b) shown in Figure 4.29) and 

the convolution in SSMA. Next, four of these b_r4_ntt_m modules are 

instantiated as sub-modules to create b_4r4_ntt_m (section 4.4.4.9). If we 

describe the process between reading data from BRAM and writing back to it as 

a loop, this b_4r4_ntt_m is able to compute one level of (4 * 4)-point CTFNT 

multiplication during each loop. Figure 4.29 illustrates the flow of how a full 

3072-bit SSMA can be perform using this module as an extension from Figure 

4.22. 
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Figure 4.29 SSMA design flow  

 

Every two subsequent steps (including sub-steps) from Figure 4.29 are computed 

in one loop, where the first step is the 4-point NTT followed by multiplication. 

This multiplication can be twiddle factors multiplication, convolution or 

multiplicative inverse multiplication. Step 1a) to 3c) are the process to compute 

forward NTT of first multiplication operand, the forward NTT of second 

multiplication operand is computed from step 5a) to 7c). Step 9a) to 12) compute 

the inverse NTT for the multiplication product. A total number of 12 loops are 

needed to complete a 3072-bit SSMA. Note that step 4) is an idle step. This idle 

operation is done by performing multiplication with one to the respective data. 

Extra control logic can be implemented into the design to bypass this step but 

only two clock cycles can be save from the multiplication which is not worth of 

the hardware resources. The experimental results of this design is shown in 

section 5.3. 
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4.4.4 Hardware Module 

This section provides the details of all the hardware modules in this 

implementation with interface diagrams and table to describe the functionalities 

including each of the input output pins of each of the modules. 

4.4.4.1 Design Overview 

b_4r4_ntt_m_mem

b_4r4_ntt_m

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_bram_ct16

b_bram_16

b_bram_tf16

b_bram_16

b_readdr_gen

 

Figure 4.30 Design overview  

*Modular arithmetic units (b_addModP, b_subModP, b_shl48ModP and 

b_shl96ModP) are hidden from Figure 4.24 for readability.  
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4.4.4.2 b_addModP 

 

b_addModP
bi_0[63:0]       bo_0[63:0]                          
bi_1[63:0]       

 

Figure 4.29 Interface diagram:  64-bit  modular adder 

 

Table 4.9 Description:  64-bit  modular adder 

Module name 

b_addModP 

Functionality 

Perform modular addition of two 64-bit operands, with modulus = 

0xFFFFFFFF00000001. 

Pin name Direction Width (Bits) Function 

bo_0 Output 64 Sum of modular addition. 

bi_0 Input 64 First operand of modular 

addition. 

bi_1 Input 64 Second operand of modular 

addition. 
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4.4.4.3 b_subModP 

 

b_subModP
bi_0[63:0]       bo_0[63:0]                          
bi_1[63:0]       

 

Figure 4.30 Interface diagram:  64-bit  modular subtractor 

 

Table 4.10 Description:  64-bit  modular subtractor 

Module name 

b_subModP 

Functionality 

Perform modular subtraction of two 64-bit operands, with modulus = 

0xFFFFFFFF00000001. 

Pin name Direction Width 

(Bits) 

Function 

bo_0 Output 64 Difference of modular 

subtraction. 

bi_0 Input 64 First operand of modular 

subtraction. 

bi_1 Input 64 Second operand of modular 

subtraction. 
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4.4.4.4 b_shl48ModP 

 

b_shl48ModP
bi_0[63:0]       bo_0[63:0]                          
     

 

Figure 4.31 Interface diagram:  64-bit  modular 48-bit left shifter 

 

Table 4.11 Description:  64-bit  modular 48-bit left shifter 

Module name 

b_shl48ModP 

Functionality 

Perform modular left shift 48-bit of input 64-bit operand, with modulo = 

0xFFFFFFFF00000001. Dedicated for the use of twiddle factor multiplication 

for 4-points NTT for twiddle factor = 0x1000000000000. 

Pin name Direction Width 

(Bits) 

Function 

bo_0 Output 64 Result of modular left shift. 

bi_0 Input 64 Input operand of modular left 

shift. 
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4.4.4.5 b_shl96ModP 

 

b_shl96ModP
bi_0[63:0]       bo_0[63:0]                          
     

 

Figure 4.32 Interface diagram:  64-bit  modular 96-bit left shifter 

 

Table 4.12 Description:  64-bit  modular 96-bit left shifter 

Module name 

b_shl96ModP 

Functionality 

Perform modular left shift 96-bit of input 64-bit operand, with modulo = 

0xFFFFFFFF00000001. Dedicated for the use of twiddle factor multiplication 

for 4-points NTT for twiddle factor = (0x1000000000000)2. 

Pin name Direction Width 

(Bits) 

Function 

bo_0 Output 64 Result of modular left shift. 

bi_0 Input 64 Input operand of modular left 

shift. 
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4.4.4.6 b_mulModP 

 

b_mulModP
bi_0[63:0]       bo_0[63:0]                          
bi_1[63:0]       

 

Figure 4.33 Interface diagram:  64-bit  modular multiplier 

 

Table 4.13 Description:  64-bit  modular multipler 

Module name 

b_mulModP 

Functionality 

Perform modular multiplication of two 64-bit operands, with modulus = 

0xFFFFFFFF00000001 in two clock cycles. 

Pin name Direction Width 

(Bits) 

Function 

bo_0 Output 64 Product of modular multiplication. 

bi_0 Input 64 First operand of modular 

multiplication. 

bi_1 Input 64 Second operand of modular 

multiplication. 
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Figure 4.34 Internal Interface diagram:  64-bit  modular multiplier 
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4.4.4.7 b_r4_ntt 

 

b_r4_ntt
bi_0[63:0]       bo_0[63:0]
bi_1[63:0]       bo_1[63:0]
bi_2[63:0]       bo_2[63:0]
bi_3[63:0]       bo_3[63:0]

bi_fw_iv_n
bi_rst
bi_clk

 

Figure 4.35 Interface diagram:  4-point NTT processing unit 

 

Table 4.14 Description:  4-point NTT processing unit 

Module name 

b_r4_ntt 

Functionality 

Compute 4-points NTT, perform forward transform or inverse transform 

based on selected mode. The output with larger indices are designed to be one 

clock cycle later than smaller output to meet the requirements for the memory 

access patterns. 

Pin name Direction Width 

(Bits) 

Function 

bo_0 Output 64 First output of transformation. 

bo_1 Output 64 Second output of transformation. 

bo_2 Output 64 Third output of transformation. 

bo_3 Output 64 Forth output of transformation. 

bi_0 Input 64 First input of transformation. 

bi_1 Input 64 Second input of transformation. 

bi_2 Input 64 Third input of transformation. 

bi_3 Input 64 Forth input of transformation. 
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Continued from Table 4.14 

Pin name Direction Width 

(Bits) 

Function 

bi_fw_iv_n Input 1 Select transformation mode: 

0: Inverse transform. 

1: Forward transform. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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Figure 4.36 Internal Interface diagram:  4-point NTT processing unit 
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4.4.4.8 b_r4_ntt_m 

 

b_r4_ntt_m
bi_0[63:0]       bo_0[63:0]
bi_1[63:0]       bo_1[63:0]
bi_2[63:0]       bo_2[63:0]
bi_3[63:0]       bo_3[63:0]

bi_tf0[63:0]
bi_tf1[63:0]
bi_tf2[63:0]
bi_tf3[63:0]

bi_fw_iv_n
bi_rst
bi_clk

 

Figure 4.37 Interface diagram:  4-point NTT processing unit with 

multiplier 

 

Table 4.15 Description:  4-point NTT processing unit with multiplier 

Module name 

b_r4_ntt_m 

Functionality 

Compute 4-points NTT with twiddle factors multiplication. Built by 

connecting four b_mulModP to each of the output of b_r4_ntt.  

 

Pin name Direction Width 

(Bits) 

Function 

bo_0 Output 64 First output of transformation. 

bo_1 Output 64 Second output of transformation. 

bo_2 Output 64 Third output of transformation. 

bo_3 Output 64 Forth output of transformation. 

bi_0 Input 64 First input of transformation. 

bi_1 Input 64 Second input of transformation. 

bi_2 Input 64 Third input of transformation. 
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Continued from Table 4.15 

Pin name Direction Width 

(Bits) 

Function 

bi_3 Input 64 Forth input of transformation. 

bi_tf0 Input 64 First twiddle factor input. 

bi_tf1 Input 64 Second twiddle factor input. 

bi_tf2 Input 64 Third twiddle factor input. 

bi_tf3 Input 64 Forth twiddle factor input. 

bi_fw_iv_n Input 1 Select transformation mode: 

0: Inverse transform. 

1: Forward transform. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 

 

  



 

111 

 

 

Figure 4.37 Internal Interface diagram:  4-point NTT processing unit with 

multiplier 

 

  



 

112 

 

4.4.4.9 b_4r4_ntt_m 

 

b_4r4_ntt_m
bi_00[63:0]    bo_00[63:0]
bi_01[63:0]    bo_01[63:0]
bi_02[63:0]    bo_02[63:0]
bi_03[63:0]    bo_03[63:0]
bi_04[63:0]    bo_04[63:0]
bi_05[63:0]    bo_05[63:0]
bi_06[63:0]    bo_06[63:0]
bi_07[63:0]    bo_07[63:0]
bi_08[63:0]    bo_08[63:0]
bi_09[63:0]    bo_09[63:0]
bi_10[63:0]    bo_10[63:0]
bi_11[63:0]    bo_11[63:0]
bi_12[63:0]    bo_12[63:0]
bi_13[63:0]    bo_13[63:0]
bi_14[63:0]    bo_14[63:0]
bi_15[63:0]    bo_15[63:0]

bi_tf00[63:0]
bi_tf01[63:0]
bi_tf02[63:0]
bi_tf03[63:0]
bi_tf04[63:0]
bi_tf05[63:0]
bi_tf06[63:0]
bi_tf07[63:0]
bi_tf08[63:0]
bi_tf09[63:0]
bi_tf10[63:0]
bi_tf11[63:0]
bi_tf12[63:0]
bi_tf13[63:0]
bi_tf14[63:0]
bi_tf15[63:0]

bi_fw_iv_n
bi_rst
bi_clk

 

Figure 4.38 Interface diagram:  16-point NTT processing unit 
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Table 4.16 Description:  16-point NTT processing unit 

Module name 

b_4r4_ntt_m 

Functionality 

Compute four 4-points NTTs with twiddle factors multiplication. Compose of 

four units of b_r4_ntt.  

 

Pin name Direction Width 

(Bits) 

Function 

bo_00 Output 64 First output of first 4-points NTT. 

bo_01 Output 64 Second output of first 4-points 

NTT. 

bo_02 Output 64 Third output of first 4-points NTT. 

bo_03 Output 64 Forth output of first 4-points NTT. 

bo_04 Output 64 First output of second 4-points 

NTT. 

bo_05 Output 64 Second output of second 4-points 

NTT. 

bo_06 Output 64 Third output of second 4-points 

NTT. 

bo_07 Output 64 Forth output of second 4-points 

NTT. 

bo_08 Output 64 First output of third 4-points NTT. 

bo_09 Output 64 Second output of third 4-points 

NTT. 

bo_10 Output 64 Third output of third 4-points NTT. 

bo_11 Output 64 Forth output of third 4-points NTT. 

bo_12 Output 64 First output of forth 4-points NTT. 

bo_13 Output 64 Second output of forth 4-points 

NTT. 

bo_14 Output 64 Third output of forth 4-points NTT. 

bo_15 Output 64 Forth output of forth 4-points NTT. 

bi_00 Input 64 First input of first 4-points NTT. 

bi_01 Input 64 Second input of first 4-points NTT. 
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Continued from Table 4.16 

Pin name Direction Width 

(Bits) 

Function 

bi_02 Input 64 Third input of first 4-points NTT. 

bi_03 Input 64 Forth input of first 4-points NTT. 

bi_04 Input 64 First input of second 4-points NTT. 

bi_05 Input 64 Second input of second 4-points 

NTT. 

bi_06 Input 64 Third input of second 4-points NTT. 

bi_07 Input 64 Forth input of second 4-points NTT. 

bi_08 Input 64 First input of third 4-points NTT. 

bi_09 Input 64 Second input of third 4-points NTT. 

bi_10 Input 64 Third input of third 4-points NTT. 

bi_11 Input 64 Forth input of third 4-points NTT. 

bi_12 Input 64 First input of forth 4-points NTT. 

bi_13 Input 64 Second input of forth 4-points NTT. 

bi_14 Input 64 Third input of forth 4-points NTT. 

bi_15 Input 64 Forth input of forth 4-points NTT. 

bi_tf00 Input 64 First twiddle factor of first 4-points 

NTT. 

bi_tf01 Input 64 Second twiddle factor of first 4-

points NTT. 

bi_tf02 Input 64 Third twiddle factor of first 4-points 

NTT. 

bi_tf03 Input 64 Forth twiddle factor of first 4-points 

NTT. 

bi_tf04 Input 64 First twiddle factor of second 4-

points NTT. 

bi_tf05 Input 64 Second twiddle factor of second 4-

points NTT. 

bi_tf06 Input 64 Third twiddle factor of second 4-

points NTT. 

bi_tf07 Input 64 Forth twiddle factor of second 4-

points NTT. 



 

115 

 

Continued from Table 4.16 

Pin name Direction Width 

(Bits) 

Function 

bi_tf08 Input 64 First twiddle factor of third 4-points 

NTT. 

bi_tf09 Input 64 Second twiddle factor of third 4-

points NTT. 

bi_tf10 Input 64 Third twiddle factor of third 4-

points NTT. 

bi_tf11 Input 64 Forth twiddle factor of third 4-

points NTT. 

bi_tf12 Input 64 First twiddle factor of forth 4-points 

NTT. 

bi_tf13 Input 64 Second twiddle factor of forth 4-

points NTT. 

bi_tf14 Input 64 Third twiddle factor of forth 4-

points NTT. 

bi_tf15 Input 64 Forth twiddle factor of forth 4-

points NTT. 

bi_fw_iv_n Input 1 Select transformation mode: 

0: Inverse transform. 

1: Forward transform. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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4.4.4.10 b_4r4_ntt_m_mem 

 

b_4r4_ntt_m_mem
bi_mem_sel0[1:0]     
bi_mem_sel1[1:0]     
bi_mem_sel2[1:0]     
bi_mem_sel3[1:0]     

bi_ntt_in_sel
bi_fw_iv_n
bi_y_x_n
bi_wr_en0
bi_convo
bi_rst
bi_clk

 

Figure 4.39 Interface diagram:  16-point NTT processing unit with 

memory unit 

 

Table 4.17 Description:  16-point NTT processing unit with memory unit 

Module name 

b_4r4_ntt_m_mem 

Functionality 

Compute four 4-points NTTs with twiddle factors multiplication at once. 

Reading the data from the memory and writing them back to the memory after 

execution, repeat until a 256-points NTT or a full SSMA is computed. 

Compose of the main execution unit, b_4r4_ntt with the main memory unit, 

b_bram_ct16.   
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Continued from Table 4.17 

Pin name Direction Width 

(Bits) 

Function 

bi_mem_in_sel0 Input 2 Select signal for first set 

memory input: 

00: Input from NTT module first 

output. 

01: Input from NTT module 

second output. 

10: Input from NTT module 

third output. 

11: Input from NTT module 

forth output. 

bi_mem_in_sel1 Input 2 Select signal for second set 

memory input: 

00: Input from NTT module first 

output. 

01: Input from NTT module 

second output. 

10: Input from NTT module 

third output. 

11: Input from NTT module 

forth output. 

bi_mem_in_sel2 Input 2 Select signal for third set 

memory input: 

00: Input from NTT module first 

output. 

01: Input from NTT module 

second output. 

10: Input from NTT module 

third output. 

11: Input from NTT module 

forth output. 
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Continued from Table 4.17 

Pin name Direction Width 

(Bits) 

Function 

bi_mem_in_sel3 Input 2 Select signal for forth set 

memory input: 

00: Input from NTT module first 

output. 

01: Input from NTT module 

second output. 

10: Input from NTT module 

third output. 

11: Input from NTT module 

forth output. 

bi_ntt_in_sel Input 1 Select signal for NTT input 

mode: 

0: Normal. 

1: Shuffle. 

bi_fw_iv_n Input 1 Select transformation mode: 

0: Inverse transform. 

1: Forward transform. 

bi_y_x_n Input 1 Select signal for read memory: 

0: BRAM for operand X. 

1: BRAM for operand Y. 

bi_wr_en0 Input 1 Enable signal for write memory: 

0: Disable. 

1: Enable. 

bi_convo Input 1 Select multiplication mode: 

0: Twiddle factors. 

1: Convolution. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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4.4.4.11 b_bram_16 

b_bram_16
bi_00[63:0]    bo_00[63:0]
bi_01[63:0]    bo_01[63:0]
bi_02[63:0]    bo_02[63:0]
bi_03[63:0]    bo_03[63:0]
bi_04[63:0]    bo_04[63:0]
bi_05[63:0]    bo_05[63:0]
bi_06[63:0]    bo_06[63:0]
bi_07[63:0]    bo_07[63:0]
bi_08[63:0]    bo_08[63:0]
bi_09[63:0]    bo_09[63:0]
bi_10[63:0]    bo_10[63:0]
bi_11[63:0]    bo_11[63:0]
bi_12[63:0]    bo_12[63:0]
bi_13[63:0]    bo_13[63:0]
bi_14[63:0]    bo_14[63:0]
bi_15[63:0]    bo_15[63:0]

bi_readdr_0
bi_wraddr_0
bi_wraddr_1
bi_wraddr_2
bi_wraddr_3

bi_wr_en0
bi_wr_en1
bi_wr_en2
bi_wr_en3

bi_ram_en
bi_rst
bi_clk

 

Figure 4.40 Interface diagram:  Memory unit for operands 

 

Table 4.18 Description:  Memory unit for operands 

Module name 

b_bram_16 

Functionality 

Memory unit to store operands with sixteen input and sixteen output. 

Implemented with sixteen block RAM, each consists of sixteen registers 

with 64-bit each. 

 

Pin name Direction Width 

(Bits) 

Function 

bo_00 Output 64 First output of first 4-points NTT. 

bo_01 Output 64 Second output of first 4-points 

NTT. 

bo_02 Output 64 Third output of first 4-points NTT. 
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Continued from Table 4.18 

Pin name Direction Width 

(Bits) 

Function 

bo_03 Output 64 Forth output of first 4-points NTT. 

bo_04 Output 64 First output of second 4-points 

NTT. 

bo_05 Output 64 Second output of second 4-points 

NTT. 

bo_06 Output 64 Third output of second 4-points 

NTT. 

bo_07 Output 64 Forth output of second 4-points 

NTT. 

bo_08 Output 64 First output of third 4-points NTT. 

bo_09 Output 64 Second output of third 4-points 

NTT. 

bo_10 Output 64 Third output of third 4-points NTT. 

bo_11 Output 64 Forth output of third 4-points NTT. 

bo_12 Output 64 First output of forth 4-points NTT. 

bo_13 Output 64 Second output of forth 4-points 

NTT. 

bo_14 Output 64 Third output of forth 4-points NTT. 

bo_15 Output 64 Forth output of forth 4-points NTT. 

bi_00 Input 64 First input of first 4-points NTT. 

bi_01 Input 64 Second input of first 4-points NTT. 

bi_02 Input 64 Third input of first 4-points NTT. 

bi_03 Input 64 Forth input of first 4-points NTT. 

bi_04 Input 64 First input of second 4-points NTT. 

bi_05 Input 64 Second input of second 4-points 

NTT. 

bi_06 Input 64 Third input of second 4-points 

NTT. 

bi_07 Input 64 Forth input of second 4-points 

NTT. 

bi_08 Input 64 First input of third 4-points NTT. 
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Continued from Table 4.18 

Pin name Direction Width 

(Bits) 

Function 

bi_09 Input 64 Second input of third 4-points 

NTT. 

bi_10 Input 64 Third input of third 4-points NTT. 

bi_11 Input 64 Forth input of third 4-points NTT. 

bi_12 Input 64 First input of forth 4-points NTT. 

bi_13 Input 64 Second input of forth 4-points 

NTT. 

bi_14 Input 64 Third input of forth 4-points NTT. 

bi_15 Input 64 Forth input of forth 4-points NTT. 

bi_readdr_0 Input 4 Read address for the memory 

output. 

bi_wraddr_0 Input 4 Write address for first set of data. 

bi_wraddr_1 Input 4 Write address for second set of 

data. 

bi_wraddr_2 Input 4 Write address for third set of data. 

bi_wraddr_3 Input 4 Write address for forth set of data. 

bi_wr_en0 Input 1 Write enable signal for first set of 

memory: 

0: Disable. 

1: Enable. 

bi_wr_en1 Input 1 Write enable signal for second set 

of memory: 

0: Disable. 

1: Enable. 

bi_wr_en2 Input 1 Write enable signal for third set of 

memory: 

0: Disable. 

1: Enable. 

bi_wr_en3 Input 1 Write enable signal for forth set of 

memory: 

0: Disable. 

1: Enable. 
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Continued from Table 4.18 

Pin name Direction Width 

(Bits) 

Function 

bi_ram_en Input 1 Enable signal for the entire unit: 

0: Disable. 

1: Enable. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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4.4.4.12 b_bram_tf16 

 

b_bram_tf16
bi_readdr_tf[6:0]  bo_00[63:0] 
                                 bo_01[63:0]
                                 bo_02[63:0]
                                 bo_03[63:0]
                                 bo_04[63:0]
                                 bo_05[63:0]
                                 bo_06[63:0]
                                 bo_07[63:0]
                                 bo_08[63:0]
                                 bo_09[63:0]
                                 bo_10[63:0]
bi_fw_iv_n             bo_11[63:0]
bi_rst                       bo_12[63:0]
bi_clk                       bo_13[63:0]
                                 bo_14[63:0]
                                 bo_15[63:0]

 

Figure 4.41 Interface diagram:  Memory unit for twiddle factors 

 

Table 4.19 Description:  Memory unit for twiddle factors 

Module name 

b_bram_tf16 

Functionality 

Memory unit (read only) used to store precomputed twiddle factors. 

Implemented with sixteen block RAM, each consists of sixteen registers 

with 64-bit each. 

 

Pin name Direction Width 

(Bits) 

Function 

bo_00 Output 64 First twiddle factor of first 4-points 

NTT. 

bo_01 Output 64 Second twiddle factor of first 4-

points NTT. 

bo_02 Output 64 Third twiddle factor of first 4-points 

NTT. 

bo_03 Output 64 Forth twiddle factor of first 4-points 

NTT. 

bo_04 Output 64 First twiddle factor of second 4-

points NTT. 
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Continued from Table 4.19 

Pin name Direction Width 

(Bits) 

Function 

bo_05 Output 64 Second twiddle factor of second 4-

points NTT. 

bo_06 Output 64 Third twiddle factor of second 4-

points NTT. 

bo_07 Output 64 Forth twiddle factor of second 4-

points NTT. 

bo_08 Output 64 First twiddle factor of third 4-points 

NTT. 

bo_09 Output 64 Second twiddle factor of third 4-

points NTT. 

bo_10 Output 64 Third twiddle factor of third 4-

points NTT. 

bo_11 Output 64 Forth twiddle factor of third 4-

points NTT. 

bo_12 Output 64 First twiddle factor of forth 4-points 

NTT. 

bo_13 Output 64 Second twiddle factor of forth 4-

points NTT. 

bo_14 Output 64 Third twiddle factor of forth 4-

points NTT. 

bo_15 Output 64 Forth twiddle factor of forth 4-

points NTT. 

bi_readdr_tf Input 7 Read address for the memory 

output. 

bi_fw_iv_n Input 1 Select twiddle factor for 

transformation mode: 

0: Inverse transform. 

1: Forward transform. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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4.4.4.13 b_bram_ct16 

b_bram_ct16
bi_00[63:0]    bo_00[63:0]
bi_01[63:0]   bo_01[63:0]
bi_02[63:0]    bo_02[63:0]
bi_03[63:0]    bo_03[63:0]
bi_04[63:0]    bo_04[63:0]
bi_05[63:0]    bo_05[63:0]
bi_06[63:0]    bo_06[63:0]
bi_07[63:0]    bo_07[63:0]
bi_08[63:0]    bo_08[63:0]
bi_09[63:0]    bo_09[63:0]
bi_10[63:0]    bo_10[63:0]
bi_11[63:0]    bo_11[63:0]
bi_12[63:0]    bo_12[63:0]
bi_13[63:0]    bo_13[63:0]
bi_14[63:0]    bo_14[63:0]
bi_15[63:0]    bo_15[63:0]

bi_readdr_tf[6:0]     bo_tf00[63:0]
bi_readdr_0[3:0]      bo_tf01[63:0]

     bo_tf02[63:0]
bi_wraddr_0[4:0]     bo_tf03[63:0]
bi_wraddr_1[3:0]     bo_tf04[63:0]
bi_wraddr_2[3:0]     bo_tf05[63:0]
bi_wraddr_3[3:0]     bo_tf06[63:0]

     bo_tf07[63:0]
bi_wr_en0          bo_tf08[63:0]
bi_wr_en1          bo_tf09[63:0]
bi_wr_en2          bo_tf10[63:0]
bi_wr_en3          bo_tf11[63:0]

          bo_tf12[63:0]
bi_y_x_n           bo_tf13[63:0]
bi_convo           bo_tf14[63:0]

       bo_tf15[63:0]
bi_rst
bi_clk

 

Figure 4.42 Interface diagram:  Full memory unit  

 

Table 4.20 Description:  Full memory unit 

Module name 

b_bram_ct16 

Functionality 

Main memory unit consists one b_bram_tf16 and two b_bram_16 (one for 

operand X and one for operand Y) with control logic to select the block 

output. 
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Continued from Table 4.20 

Pin name Direction Width 

(Bits) 

Function 

bo_00 Output 64 First output for first 4-points NTT. 

bo_01 Output 64 Second output for first 4-points 

NTT. 

bo_02 Output 64 Third output for first 4-points NTT. 

bo_03 Output 64 Forth output for first 4-points NTT. 

bo_04 Output 64 First output for second 4-points 

NTT. 

bo_05 Output 64 Second output for second 4-points 

NTT. 

bo_06 Output 64 Third output for second 4-points 

NTT. 

bo_07 Output 64 Forth output for second 4-points 

NTT. 

bo_08 Output 64 First output for third 4-points NTT. 

bo_09 Output 64 Second output for third 4-points 

NTT. 

bo_10 Output 64 Third output for third 4-points 

NTT. 

bo_11 Output 64 Forth output for third 4-points 

NTT. 

bo_12 Output 64 First output for forth 4-points NTT. 

bo_13 Output 64 Second output for forth 4-points 

NTT. 

bo_14 Output 64 Third output for forth 4-points 

NTT. 

bo_15 Output 64 Forth output for forth 4-points 

NTT. 

bo_tf00 Output 64 First twiddle factor of first 4-points 

NTT. 

bo_tf01 Output 64 Second twiddle factor of first 4-

points NTT. 

bo_tf02 Output 64 Third twiddle factor of first 4-

points NTT. 
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Continued from Table 4.20 

Pin name Direction Width 

(Bits) 

Function 

bo_tf03 Output 64 Forth twiddle factor of first 4-

points NTT. 

bo_tf04 Output 64 First twiddle factor of second 4-

points NTT. 

bo_tf05 Output 64 Second twiddle factor of second 4-

points NTT. 

bo_tf06 Output 64 Third twiddle factor of second 4-

points NTT. 

bo_tf07 Output 64 Forth twiddle factor of second 4-

points NTT. 

bo_tf08 Output 64 First twiddle factor of third 4-points 

NTT. 

bo_tf09 Output 64 Second twiddle factor of third 4-

points NTT. 

bo_tf10 Output 64 Third twiddle factor of third 4-

points NTT. 

bo_tf11 Output 64 Forth twiddle factor of third 4-

points NTT. 

bo_tf12 Output 64 First twiddle factor of forth 4-

points NTT. 

bo_tf13 Output 64 Second twiddle factor of forth 4-

points NTT. 

bo_tf14 Output 64 Third twiddle factor of forth 4-

points NTT. 

bo_tf15 Output 64 Forth twiddle factor of forth 4-

points NTT. 

bi_00 Input 64 First input of first 4-points NTT. 

bi_01 Input 64 Second input of first 4-points NTT. 

bi_02 Input 64 Third input of first 4-points NTT. 

bi_03 Input 64 Forth input of first 4-points NTT. 

bi_04 Input 64 First input of second 4-points NTT. 

bi_05 Input 64 Second input of second 4-points 

NTT. 
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Continued from Table 4.20 

Pin name Direction Width 

(Bits) 

Function 

bi_06 Input 64 Third input of second 4-points 

NTT. 

bi_07 Input 64 Forth input of second 4-points 

NTT. 

bi_08 Input 64 First input of third 4-points NTT. 

bi_09 Input 64 Second input of third 4-points NTT. 

bi_10 Input 64 Third input of third 4-points NTT. 

bi_11 Input 64 Forth input of third 4-points NTT. 

bi_12 Input 64 First input of forth 4-points NTT. 

bi_13 Input 64 Second input of forth 4-points 

NTT. 

bi_14 Input 64 Third input of forth 4-points NTT. 

bi_15 Input 64 Forth input of forth 4-points NTT. 

bi_readdr_tf Input 7 Read address for the twiddle factors 

memory output. 

bi_readdr_0 Input 4 Read address for the operand 

memory output. 

bi_wraddr_0 Input 4 Write address for first set of data. 

bi_wraddr_1 Input 4 Write address for second set of 

data. 

bi_wraddr_2 Input 4 Write address for third set of data. 

bi_wraddr_3 Input 5 Write address for forth set of data. 

bi_wr_en0 Input 1 Write enable signal for first set of 

memory: 

0: Disable. 

1: Enable. 

bi_wr_en1 Input 1 Write enable signal for second set 

of memory: 

0: Disable. 

1: Enable. 
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Continued from Table 4.20 

Pin name Direction Width 

(Bits) 

Function 

bi_wr_en2 Input 1 Write enable signal for third set of 

memory: 

0: Disable. 

1: Enable. 

bi_wr_en3 Input 1 Write enable signal for forth set of 

memory: 

0: Disable. 

1: Enable. 

bi_y_x_n Input 1 Select signal for read memory: 

0: BRAM for operand X. 

1: BRAM for operand Y. 

bi_convo Input 1 Select multiplication mode: 

0: Twiddle factors. 

1: Convolution. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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4.4.4.14 b_readdr_gen 

b_readdr_gen
bi_y_x_n    bo_readdr_dt[4:0] 
bi_ifft         bo_wraddr_dt[4:0]
bi_rst           bo_readdr_tf[5:0]
bi_clk

 

Figure 4.43 Interface diagram:  Read/Write address generator 

 

Table 4.21 Description:  Read/Write address generator 

Module name 

b_readdr_gen 

Functionality 

Generate read and write addresses for operand X, operand Y and twiddle 

factors memory units. 

 

Pin name Direction Width 

(Bits) 

Function 

bo_readdr_dt Output 5 Output read address for operand 

memory. 

bo_wraddr_dt Output 5 Output write address for operand 

memory. 

bo_readdr_tf Output 6 Output read address for twiddle 

factors memory. 

bi_y_x_n Input 1 Signal to determine current 

processing operand: 

0: Operand X. 

1: Operand Y. 

bi_ifft Input 1 Signal to determine current 

transformation mode: 

0: Forward transform. 

1: Inverse transform. 

bi_clk Input 1 Global clock signal. 

bi_rst Input 1 Global reset signal. 
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CHAPTER 5 

EXPERIMENTAL SETUP AND RESULTS 

 

5.1 Large Integer Multiplication on NVIDIA GPU with Kepler 

Architecture 

The implementation discusses in this section is performed on NVIDIA GPU 

Tesla K40c with Kepler architecture. Consists of 2880 cores or 15 SMX 

(Streaming Multiprocessor) with 192 cores each running at 754MHz clock speed 

and 12GB DRAM. This implementation is able to perform multiplication with 

operand size of 1024-bit, 2048-bit, 4096-bit and 8192-bit in 0.095ms, 0.169ms, 

0.444ms, and 1.113ms respectively. 

 

5.1.1 Experimental Setup 

The implementation in this work is setup to run bulk multiplication with four 

different input operand sizes (1024-bit, 2048-bit, 4096-bit and 8192-bit). Each 

of these test cases are set to compute 1, 10, 100, 500, 700 and 900 multiplications 

simultaneously. All of the large integer operands are generated randomly. These 

bulk multiplication of multiple operand sizes and various number of test cases 

are implemented on three different GPU memory levels (global memory, shared 

memory and registers). 

 

The implementation is carried out in Visual Studio Community 2013 Version 

12.0.31101.00 Update 4, integrated with NVIDIA CUDA 8.0 for GPU 
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programming and the GNU Multiple Precision Arithmetic Library (GMP) 

Edition 6.1.0 is used for large integer representation and result correctness 

verification. This experiment is run on a PC with Dual Intel Xeon E5-2600v4 

and 64GB DDR4 RAM. 

 

5.1.2 Experimental Results 

Table 5.1 shows the computational time for different sections of the algorithm 

while Table 5.2 shows the total time costs and the average time to compute one 

multiplication for each of the test size with different operand size. 
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Table 5.1 Experimental results: Time spent for different sections of 

algorithm 

 

 

Table 5.2 Experimental results: Total time and Average time per 

multiplication (ms) 

 

  



 

134 

 

Note that in Table 5.2, the CRT, ICRT, CRT (extra), ICRT (extra) and evaluation 

sections are run with GMP in CPU and only the SSMA section is run in GPU 

for three versions of the implementation. The uses of shuffle instruction in our 

implementation shows the best performance compared to the global memory and 

shared memory versions, especially when the operand size and test size 

increased. We can observe a speedup of 10.26% to 11.45% when comparing the 

shuffle instruction method with the global memory version, and 11.64% to  

36.54% speedup with the shared memory version. 

 

The results of the shared memory version is slower than the global memory 

version as it suffers from bank conflict issue, which we verified by using the 

profiling tool (Visual Profiler) provided NVIDIA. Emmart et al. (2011) 

mentioned that their work are able to avoid the bank conflict issue by transposing 

the twiddle factors stored in the shared memory before row-by-row memory 

access. However, performing transpose operation will also introduce memory 

access overhead. 
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Figure 5.1 and Figure 5.2 highlights the computation time of only the SSMA 

implementation in GPU for 1024-bit, 2048-bit, 4096-bit and 8192-bit.  

 

 

Figure 5.1 SSMA time in GPU (1024-bit and 2048-bit operands) 

 

  

 

Figure 5.2 SSMA time in GPU (4096-bit and 8192-bit operands) 
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Figure 5.3 shows the overall experimental result of our implementation. The y-

axis indicates the computational time in milliseconds, the x-axis indicates 

different operand sizes with global memory, shared memory and warp shuffle 

instructions and the z-axis indicates different number of test sizes (1, 10, 100, 

500, 700 and 900). 

 

 

Figure 5.3 Overall experimental results 

 

5.1.3 Findings 

In GPU, computing arithmetic and logic operations is fast but memory access is 

slow. During the computation of NTT, the precomputed twiddle factors are 

frequently accessed by the GPU kernels. Hence, the placement of the twiddle 

factors in GPU memory is one of the main bottleneck that affect the 

implementation performance. 

 

Conventionally, twiddle factors are stored in either global memory (easy access, 

accessible for all the threads within the same kernel) or shared memory (shorter 
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memory latency compared to global memory, each of the kernel thread blocks 

have to save a copy of the twiddle factors as the shared memory only accessible 

for the thread within the same block). In this implementation, we presented a 

novel method to store the twiddle factors into GPU registers. The set of twiddle 

factors are distributed among the threads within the same warp. Although the 

data stored in the registers are only limited to the thread itself, we utilize the 

“Shuffle Instruction” feature available from NVIDIA GPU with Kepler 

architecture generation to “shuffle” the registers data. This feature enabled the 

threads within the same warp to read the register data of each other by shuffling 

the values among them when the instruction is called. This method is able to 

avoid the bank conflicts issue happened in the implementation with shared 

memory. 

 

Besides, our implementation discussed in this section also proposed a technique 

to accommodate the missing bits issue introduced by the algorithm used in the 

implementation (cascading multiple SSMAs using CRT), by padding an extra 

16-bit CRT modulus instead of a large integer of 512-bit to reduce the 

computation latency.  
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5.2 Large Integer Multiplication on NVIDIA GPU with Pascal 

Architecture 

The implementation discusses in this section is performed on NVIDIA GPU 

GTX 1070 with Pascal architecture. This GPU consists of 1920 cores or 40 SMX 

with 64 cores each running at 1683MHz clock speed and 8GB DRAM. This 

implementation is able to achieve fast multiplication of 192K-bit, 384K-bit and 

768K-bit in 1.12ms, 1.24ms and 1.37ms. 

 

5.2.1 Experimental Setup 

Same with the implementation done in section 5.1, the implementation is carried 

out in Visual Studio Community 2013 Version 12.0.31101.00 Update 4, 

integrated with NVIDIA CUDA 8.0 for GPU programming and the GNU 

Multiple Precision Arithmetic Library (GMP) Edition 6.1.0 is used for large 

integer representation and result correctness verification. This experiment is run 

on a PC with Intel Core i7 6700K CPU @ 4.00GHz and 16GB DDR4 RAM. 

 

5.2.2 Experimental Results 

Table 5.3 shows the comparison of our work with the work done by W. Dai et 

al. (Dai and Sunar, 2015), which is using the similar algorithm with our work 

but different implementation. The data of timing performance of Dai and Sunar 

(2015) shown in Table 5.3 is collected by running their source codes in the same 

experimental environment with our work for a fair comparison. The source codes 

for the work of Dai and Sunar (2015) is open sources and available on Github. 

However, no implementation of SSMA is done by Dai and Sunar (2015). Hence, 
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we only compare our NTT timing performance with their work. The timing 

performance of our SSMA implementation is also shown in Table 5.3. Although 

we are able to improve our previous work by using similar algorithms as 

described in the work of Dai and Sunar (2015), but we are yet to achieve the 

same performance as they did in NTT. We extended our work to be used for 

SSMA and reserved the possibility to further improve our NTT part in future 

work. 

Table 5.3 Timing performance comparison 

 

5.2.3 Findings 

The implementation discussed in section 4.2 is considered a preliminary study 

and research on implementing large integer multiplication algorithm on GPU. 

We figured out that the integration of CRT into the implementation to link 

multiple SSMAs to achieve multiplication of larger bit size is the bottleneck of 

the implementation. Using multiple levels of CTFNT in replaced of CRT is an 

alternative method to achieve the same goal. However, implementing higher 

level of CTFNT with larger NTT size will sacrifice the advantages of using left 

shifting instead of actual multiplication for the multiplication of intermediate 

data as the root of unity is not a power of two. The implementation in this work 

NTT 

size 

Timing Performance (ms) SSMA 

(bit) 

Timing Performance 

(ms) 

 (Dai and Sunar, 

2015) 
Our work Our work 

4096 - 0.31 48K-bit 1.00 

16384 0.035 0.43 192K-bit 1.12 

32768 0.040 0.53 384K-bit 1.24 

65536 0.065 0.60 768K-bit 1.37 



 

140 

 

proved that this tradeoff is worthwhile as we are able to improve the not only the 

timing performance but also the largest operands size supported compared to our 

previous work. Besides that, using symmetric decomposition of CTFNT is able 

to reduce the GPU memory required to store the pre-computed twiddle factors 

as the set of twiddle factors for both column-NTTs and row-NTTs are the same.   
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5.3 FPGA Implementation 

5.3.1 Experimental Setup 

Three different NTT modules (Radix-2 NTT, Radix-4 NTT, Radix-4 CTFNT) 

are designed in this implementation. The preliminary results of computing 16-

point NTT shown in Table 4.4 reveals that the radix-4 CTFNT is able to achieve 

faster speed performance compared to radix-2 CTFNT. The radix-4 CTFNT 

module that shows the best performance is used as sub-modules to implement 

the full 3072-bit multiplier in this work. 

 

5.3.2 Experimental Results 

Table 5.4 shows the comparison of our work with the work done by D. D. Chen 

et.al in (Chen et al., 2016). We compare our 3K-bit multiplier with the ≈3K-bit 

multipliers the work done by Chen et al. (2016), which shows four ≈3K-bit 

multipliers implementation with four different parameter settings trade-off 

between lesser resources or faster computation time, implemented in Xilinx 13.3 

on Xilinx Virtex-6 (xc6vlx130t-1) FPGA. The LUTRAM and Flip-Flop 

utilization are not shown in their work. 

 

For fair comparison, we ran our implementation on the same platform (Xilinx 

ISE 13.3 on Xilinx Virtex-6 (xc6vlx130t-1) FPGA) with the work by Chen et al. 

(2016) as mentioned above. Our work is able to achieve 3.2% faster with extra 

40.7% LUTs resources when compared to their work with best timing 

performance. 
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Besides, we also implemented our work on Nexys4 DDR board with Xilinx 

Artix-7 FPGA (xc7a100tcsg324-1) FPGA, with Xilinx newer generation of EDA 

tools, Vivado 2016.3. Comparing Xilinx Virtex and Artix FPGA family, Virtex 

is focused on high speed computation while Artix is aimed for low power. This 

Artix-7 implementation in our work is targeted for application with low power 

requirement such as Internet of Things (IoTs). 

 

Table 5.4 Hardware resource utilization comparison  

Hardware design 

multiplier size 

(bit) 

Resource 

LUTs BRAM 

(36:18) 

DSP LUTRAM Flip-

Flop 

Our work 

[Artix-7]  

3072 20129 16:1 192 448 3535 

Our work 

[Virtex-6] 

3072 30489 48:0 192 - - 

 

(Chen et al., 

2016) 

[Virtex-6] 

3100 21672 33:11 108 - - 

3132 12147 22:0 27 - - 

3196 11728 22:0 27 - - 

3196 5835 11:0 9 - - 
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Table 5.5 Timing performance comparison  

 

Comparing our implementation in Xilinx Artix-7 FPGA to the work of Chen et 

al. (2016), our work required lesser clock cycle but we are running at lower clock 

frequency. We are able to outperform three of their designs (3132-bit and both 

the 3196-bit) that required lesser hardware resources in term of computation time 

but not the one with fastest performance. However, our Xilinx Virtex-6 FPGA 

implementation is able to outperform all of their implementation in term of 

computation time at the costs of extra resources.  

Hardware design 

multiplier size (bit) 

Resource 

Clock cycle Period (ns) Latency (ns) 

Our work 

[Artix-7]  

3072 198 50 9900 

Our work 

[Virtex-6] 

3072 198 33 6534 

 

(Chen et al., 

2016) 

[Virtex-6] 

3100 843 8.0 6740 

3132 1701 6.09 10360 

3196 3693 6.19 22860 

3196 3633 5.09 18490 



 

144 

 

5.3.3 Findings 

One of the main focuses in this FPGA implementation is to study the differences 

and performance of radix-2 and radix-4 NTT modules. By definition, a radix-R 

NTT module computes R-points NTT at each level. We found that using four 

radix-2 NTT module to construct one radix-4 NTT module can help to reduce 

the number of memory access to the BRAM by using extra registers to store the 

intermediate data during the computation of the 4-point NTT, but implementing 

a dedicated 4-point NTT module to replace this typical radix-4 NTT module that 

fixed the twiddle factors multiplication with left shifting instead of actual 

multiplication for the uses of CTFNT can help to further reduced the hardware 

resources required.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

This research project is divided into two phases, the first phase focuses on large 

integer multiplication algorithm implementation on GPU; the second phase aims 

to implement the similar algorithm on FPGA. 

 

Two different multiplication algorithms are implemented on two generations of 

NVIDIA GPUs: Kepler and Pascal architecture. The implementation on Kepler 

architecture performs large integer multiplication using CRT to combine 

multiple SSMAs. This implementation is able to compute bulk multiplication 

(up to 900 multiplications simultaneously) with operands size of 1024, 2048, 

4096 and 8192-bit, which is suitable for the uses of ECC and RSA. 

 

The second GPU implementation is performed on NVIDIA GPU with Pascal 

architecture. This implementation focus on a single large integer multiplication 

instead of bulk multiplication. In this implementation, multi-level CTFNT 

algorithm is used to increase the maximum operand size supported by a single 

SSMA, sacrificed the benefits of replacing twiddle factors multiplication with 

left shifting but also eliminated the needs of CRT. We also suggested the method 

of using symmetrical CTFNT decomposition to save GPU memory usage. This 
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implementation is able to achieve of 192K-bit, 384K-bit and 768K-bit in 1.12ms, 

1.24ms and 1.37ms respectively. 

 

We developed both radix-2 and radix-4 NTT modules in our FPGA 

implementation to study the performance of them both theoretically and 

practically. During the implementation, we presented a novel method of 

designing a radix-4 NTT module that are dedicated for the use of CTFNT. This 

design utilizes lesser resources compared to typical radix-4 NTT module that 

built with four radix-2 NTT modules.  
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6.2 Future Work 

The implemented multipliers in both GPU and FPGA can be further extended to 

perform modular multiplication and modular exponentiation.  

 

6.2.1 Recommendation for Algorithm Improvement 

NTT appears to be the most crucial part of the algorithm as it is the part that 

required most of the computation, which directly determine the performance of 

the implementation. An optimized modulus uses for the transformation is yet to 

be explored. The prime number used for NTT is a special prime number known 

as Solinas prime, same with the work done by Emmart et al. (2011). The prime 

number from this prime group has several properties (as discussed in section 4.1 

and section 4.2) that can help to speed up the computation. In contrast to the 

works done by (D. D. Chen et al., 2016; W. Dai et al., 2017), which use pseudo-

Fermat number, which has similar properties but extra parameters have to take 

into consideration for certain transformation size. The work done by Baktır S. 

Sunar B. in (Baktır and Sunar, 2006) also suggested the uses of Mersenne prime 

that allowed modular reduction to be done in frequency domain, which is a very 

good advantage for modular exponentiation. However, prime number from this 

group do not support much transformation sizes of power of two, which is not 

suitable to use with DIT and DIF FFT algorithms. 
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6.2.2 Recommendation for FPGA Improvement 

The performance of a FPGA implementation can be determined from several 

perspectives such as required hardware resources, timing performance, area-

latency efficiency and power consumption. The work presented in this project 

aimed to utilize as much resources as possible to achieve better timing 

performance. The main bottleneck in this work is the 64-bit multiplier 

(b_mulModP shown in section 4.4.4.6), which causes the clock speed to run at 

most 20MHz frequency to meet its timing requirement. Hence, a future work 

suggests on increasing and optimizing the number of pipeline stages in the 

design to support higher frequency can help to improve the timing performance. 
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