

IMPLEMENTATION OF HIGH SPEED LARGE INTEGER
MULTIPLICATION ALGORITHM ON CONTEMPORARY

ARCHITECTURE

CHANG BOON CHIAO

MASTER OF ENGINEERING SCIENCE

LEE KONG CHIAN FACULTY OF ENGINEERING AND
SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

OCTOBER 2018

IMPLEMENTATION OF HIGH SPEED LARGE INTEGER

MULTIPLICATION ALGORITHM ON CONTEMPORARY

ARCHITECTURE

By

CHANG BOON CHIAO

A dissertation submitted to the Department of Mechatronics and Bio-Medical

Engineering,

Lee Kong Chian Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Engineering Science

October 2018

ii

ABSTRACT

 Cryptosystem plays an important role in cyber security and users privacy

protection. To achieve certain level of security, Public Key Cryptography

algorithm is performed on large integer that is more than 64-bit, typical bit size

supported by conventional Central Processing Unit (CPU) (e.g. 512-bit for

Elliptic Curve Cryptography (ECC), 2048-bit for Rivest-Shamir-Adleman (RSA)

and million bits for Fully Homomorphic Encryption (FHE)). The computation

of cryptographic algorithm required a lot of large integer arithmetic computation,

especially large integer exponentiation and modular operation. Hence, large

integer multiplication as the core operation of large integer modular

exponentiation is the key factor in determining the performance of the

cryptosystem in term of computation time.

 The minimum bit size of encryption/decryption keys to achieve certain

security level have increased over years. CPU implementations are becoming

less efficient in handling the computation of crypto algorithms. Hence, other

contemporary processor architectures such as GPU and FPGA have become

popular alternative to speed up the computation in recent years.

 This dissertation first discusses several existing large integer

multiplication algorithms and reviews different methods used to implement the

iii

discussed algorithms done by other researchers in both Graphic Processing Unit

(GPU) and Field Programmable Gate Array (FPGA).

Compared to GPU, FPGA offered more low level design and

development to the implementation. While GPU allowed users to configure each

of the cores (processing units) to perform independent tasks, FPGA provides

users a platform to design the processing units themselves to perform dedicated

arithmetic and logic operation.

In our GPU implementation, we present two different large integer

algorithms implementation on two generation of NVIDIA GPU architectures,

Kepler and Pascal. The former focuses on utilizing the shuffle instructions to

reduce memory latency and bulk multiplication that is able to perform up to 900

multiplications with operands size of 1024, 2048, 4096 and 8192-bit. This

implementation also proved that our proposed method of utilizing the shuffle

instructions feature to share data between registers memory is able to achieve up

to 11.45% and 36.54% speedup when compared with conventional methods of

storing data in GPU global memory and shared memory respectively; The later

implementation on Pascal architecture aims to achieve single high speed

multiplication of larger size by utilizing the available GPU resources. We are

able to eliminate the bottleneck, the CRT algorithm from our previous

implementation by replacing it with another level of CTFNT and hence increased

the multiplication operand size to 4096, 192K, 384K and 768K-bit.

iv

In our FPGA implementation, we focused on designing the processing

unit ourselves that is capable of computing 3072-bit multiplication. We started

with a preliminary design of a multiplier run with typical NTT module that

perform computation in parallel-in-serial-out manner before we moved into

design with radix-R FNT modules that are able to compute in parallel-in-parallel-

out manner for better performance. Both radix-2 and radix-4 FNT modules are

implemented and a further design of radix-4 FNT module, named radix-4

CTFNT module that is optimized to fit the multiplication algorithm we used is

proposed. The proposed radix-4 design sacrificed the scalability for NTT with

other parameters setup but is able to compute 16-points NTT with 10% faster

performance and costs about 27% less resources to be implemented when

compared to a typical radix-4 design.

v

ACKNOWLEDGEMENTS

I wish to express my profound gratitude and sincere thanks to my

supervisor, Prof. Goi Bok Min and co-supervisor Dr. Lee Wai Kong for their

guidance in this research work, not only the technical skills but also

encouragement they have given to me when I’m lost and lack of confidence. I

would also like to say thank you to my lecturer Mr. Mok Kai Ming, who has

been teaching me about hardware design since I am an undergraduate student.

Besides, I would also like to extend my appreciation to my friends and lab

members, especially Mr. Kiat Wei Pau, Mr. Tan Beng Liong, Mr. See Jin Chuan,

Mr. Wong Xian Fu, Mr. Goey Jia Zheng, Mr. Phoon Jun Hoe and Mr. Siew Kar

Hoe in sharing both their knowledge and experiences in GPU implementation

and hardware developments. Last but not least, I would like to thank my parents

for their understanding and supports for the decisions I made. Thank you for

always be there for me, I would not have make it this far without you all.

This research work is partially supported by Ministry of Science,

Technology and Innovation (MOSTI), Malaysia under grant 01-02-11-SF0202.

vi

APPROVAL SHEET

This dissertation entitled “IMPLEMENTATION OF HIGH SPEED LARGE

INTEGER MULTIPLICATION ALGORITHM ON CONTEMPORARY

ARCHITECTURE” was prepared by CHANG BOON CHIAO and submitted

as partial fulfilment of the requirements for the degree of Master of Engineering

Science at Universiti Tunku Abdul Rahman.

Approved by:

(Ir. Prof. Dr. Goi Bok Min) Date:…………………….

Supervisor

Department of Mechatronics and BioMedical Engineering

Lee Kong Chian Faculty of Engineering & Science

Universiti Tunku Abdul Rahman

(Dr. Lee Wai Kong) Date: …………………….

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

vii

SUBMISSION SHEET

LEE KONG CHIAN FACULTY OF ENGINEERING & SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF DISSERTATION

It is hereby certified that CHANG BOON CHIAO (ID No:

_16UEM01742) has completed this dissertation entitled

“IMPLEMENTATION OF HIGH SPEED LARGE INTEGER

MULTIPLICATION ALGORITHM ON CONTEMPORARY

ARCHITECTURE” under the supervision of Ir. Prof. Dr. Goi Bok Min

(Supervisor) from the Department of Mechatronics and BioMedical

Engineering, Lee Kong Chian Faculty of Engineering & Science, and Dr.

Lee Wai Kong (Co-Supervisor) from the Department of Computer and

Communication Technology, Faculty of Information and Communication

Technology.

I understand that University will upload softcopy of my dissertation in pdf

format into UTAR Institutional Repository, which may be made accessible

to UTAR community and public.

Yours truly,

(CHANG BOON CHIAO)

*Delete whichever not applicable

viii

DECLARATION

DECLARATION

I Chang Boon Chiao hereby declare that the dissertation is based on my

original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

Name : CHANG BOON CHIAO

Date :

ix

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS v

APPROVAL SHEET vi

SUBMISSION SHEET vii

DECLARATION viii

TABLE OF CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xvi

CHAPTER 1 2

INTRODUCTION 2

1.1 Motivation 2

1.2 Problem Statement 6

1.3 Objectives 7

1.4 Contributions 8

1.5 Dissertation Organization 9

CHAPTER 2 10

BACKGROUND 10

2.1 Graphic Processing Unit (GPU) 10

2.1.1 GPU Programming Model 10

2.1.2 GPU Memory Management 11

2.1.3 Shuffle Instruction 12

2.2 Field Programmable Gate Array (FPGA) 13

2.2.1 FPGA Hardware Resources 13

2.2.2 Hardware Description Language (HDL) 14

2.2.3 FPGA Configuration 15

2.3 Modular Arithmetic and Large Integer Representation 16

2.3.1 Modular Arithmetic 16

2.3.2 Large Integer Representation 17

2.4 Chinese Remainder Theorem (CRT) 18

2.5 Schὂnhage-Strassen Multiplication Algorithm (SSMA) 19

2.6 Fourier Transform 20

2.6.1 Discrete Fourier Transform 20

2.6.2 Fast Fourier Transform (FFT) 21

x

2.6.2.1 Decimation-In-Time FFT and Decimation-In-Frequency FFT 21

2.6.2.2 Radix-R FFT 23

2.6.2.3 Good-Thomas FFT (GTFFT) 27

2.6.2.4 Cooley-Tukey FFT (CTFFT) 28

2.6.3 Number Theoretic Transform (NTT) 29

2.6.4 Fast Number Theoretic Transform (FNT) 31

2.7 Summary 33

CHAPTER 3 37

LITERATURE REVIEW 37

3.1 Implementation in GPU 37

3.2 Implementation in FPGA 40

3.3 Summary 43

CHAPTER 4 46

IMPLEMENTTION DETAILS 46

4.1 Modular Arithmetic Functions 46

4.1.1 Modular addition 46

4.1.2 Modular subtraction 47

4.1.3 Modular multiplication 47

4.2 Large Integer Multiplication on NVIDIA GPU with Kepler Architecture

 50

4.2.1 NTT Implementation 52

4.2.2 SSMA Implementation 54

4.2.3 CRT Implementation 57

4.2.4 Memory allocation 60

4.3 Large Integer Multiplication on NVIDIA GPU with Pascal Architecture

 63

4.3.1 CTFNT Implementation 65

4.3.1.1 CTFNT Decomposition 65

4.3.1.2 CTFNT Kernels Implementation 67

4.3.2 SSMA Implementation 70

4.4 FPGA Implementation 72

4.4.1 Preliminary Design: SSMA with typical NTT 74

4.4.1.1 Findings 82

4.4.2 Second Design: SSMA with radix-4 FNT 83

4.4.2.1 Radix-2 and radix-4 FNT module 85

4.4.2.2 CTFNT Decomposition 87

4.4.2.2 Findings 92

4.4.3 Third Design: SSMA with dedicated Radix-4 CTFNT 93

xi

4.4.3.1 Improved radix-4 CTFNT 93

4.4.3.2 Timing performance of 16-point NTT 93

4.4.3.3 Multiple radix-4 column/row-NTTs design 95

4.4.4 Hardware Module 99

4.4.4.1 Design Overview 99

4.4.4.2 b_addModP 100

4.4.4.3 b_subModP 101

4.4.4.4 b_shl48ModP 102

4.4.4.5 b_shl96ModP 103

4.4.4.6 b_mulModP 104

4.4.4.7 b_r4_ntt 106

4.4.4.8 b_r4_ntt_m 109

4.4.4.9 b_4r4_ntt_m 112

4.4.4.10 b_4r4_ntt_m_mem 116

4.4.4.11 b_bram_16 119

4.4.4.12 b_bram_tf16 123

4.4.4.13 b_bram_ct16 125

4.4.4.14 b_readdr_gen 130

CHAPTER 5 131

EXPERIMENTAL SETUP AND RESULTS 131

5.1 Large Integer Multiplication on NVIDIA GPU with Kepler Architecture

 131

5.1.1 Experimental Setup 131

5.1.2 Experimental Results 132

5.1.3 Findings 136

5.2 Large Integer Multiplication on NVIDIA GPU with Pascal Architecture

 138

5.2.1 Experimental Setup 138

5.2.2 Experimental Results 138

5.2.3 Findings 139

5.3 FPGA Implementation 141

5.3.1 Experimental Setup 141

5.3.2 Experimental Results 141

5.3.3 Findings 144

CHAPTER 6 145

CONCLUSION AND FUTURE WORK 145

6.1 Conclusion 145

6.2 Future Work 147

xii

6.2.1 Recommendation for Algorithm Improvement 147

6.2.2 Recommendation for FPGA Improvement 148

REFERENCES 149

ACHIEVEMENT 152

xiii

LIST OF TABLES

Table Page

Table 2.1 Multiplication algorithms complexities 17

Table 4.1 List of primitive root of unity 53

Table 4.2 Primitive root of unity for N = 4096, 16384, 32768 and 65536 63

Table 4.3 CTNTT decomposition and multiplication size supported 65

Table 4.4 Computation Equation of an 8-point NTT 74

Table 4.5 Computation Equation of an 8-point NTT (Simplified) 74

Table 4.6 Level of decomposition of radix-R FNT against NTTSIZE, N 83

Table 4.7 SSMA operation and clock cycles count 89

Table 4.8 Resource utilization and timing performance for 16-point NTT 94

Table 4.9 Description: 64-bit modular adder 100

Table 4.10 Description: 64-bit modular subtractor 101

Table 4.11 Description: 64-bit modular 48-bit left shifter 102

Table 4.12 Description: 64-bit modular 96-bit left shifter 103

Table 4.13 Description: 64-bit modular multipler 104

Table 4.14 Description: 4-point NTT processing unit 106

Table 4.15 Description: 4-point NTT processing unit with multiplier 109

Table 4.16 Description: 16-point NTT processing unit 113

Table 4.17 Description: 16-point NTT processing unit with memory unit 116

Table 5.1 Experimental results: Time spent for different sections of algorithm

 133

Table 5.2 Experimental results: Total time and Average time per multiplication

(ms) 133

Table 5.3 Timing performance comparison 139

Table 5.4 Hardware resource utilization comparison 142

Table 5.5 Timing performance comparison 143

xiv

LIST OF FIGURES

Figures Page

Figure 2.1 GPU Memory 11

Figure 2.2 Large integer representation 17

Figure 2.3 Radix-2 DIT and DIF 2-point FFT modules 23

Figure 2.4 4-point Radix-2 DIT and DIF FFT comparison 24

Figure 2.5 8-point Radix-2 DIT FFT 25

Figure 2.6 8-point Radix-2 DIF FFT 25

Figure 2.7 radix-4 FFT module 26

Figure 2.8 Flowchart of CTFNT 33

Figure 2.9 Flowchart of Twiddle Factors Multiplication 33

Figure 2.10 Flowcharts of Column NTTs and Row NTTs 34

Figure 4.1 SSMA flow illustration 55

Figure 4.2 Eight threads in one block 56

Figure 4.3 Two-dimensional threads in one block 56

Figure 4.4 CRT implementation illustration 58

Figure 4.5 CRT implementation with extra modulus illustration 59

Figure 4.6 Column-by-column access: No bank conflict 61

Figure 4.7 Row-by-row access: Bank conflict 61

Figure 4.8 CTFNT First Kernel 67

Figure 4.9 CTFNT Second Kernel 68

Figure 4.10 CTFNT Third Kernel 69

Figure 4.11 SSMA kernels implementation 71

Figure 4.12 FPGA development cycle 72

Figure 4.13 Block diagram of 8-point NTT processing unit 76

Figure 4.14 Block diagram of full 8-point NTT processing unit 76

Figure 4.15 Block diagram of pipelining 8-point NTT processing unit 78

Figure 4.16 Block diagram: 64-point NTT processing unit 80

Figure 4.17 Block diagram: SSMA module 81

Figure 4.18 Level of decomposition of radix-R FNT against NTTSIZE, N 83

Figure 4.19 Block diagram: radix-2 FNT module 86

xv

Figure 4.20 Block diagram: radix-4 FNT module built with (2x2) radix-2

modules 86

Figure 4.21 Block diagram: radix-4 FNT module 86

Figure 4.22 256-point NTT CTFNT decomposition 87

Figure 4.23 Block diagram: SSMA module 88

Figure 4.24 Pipelined and non-pipelined timing comparison 91

Figure 4.25 Timing diagram for partial –pipelined design 91

Figure 4.26 Block diagram: multiple radix-4 column/row-NTTs design 95

Figure 4.27 Block diagram: multiple radix-4 column/row-NTTs design

(modified) 96

Figure 4.28 Timing diagram for data flow control 97

Figure 4.29 SSMA design flow 98

Figure 4.30 Design overview 99

Figure 4.29 Interface diagram: 64-bit modular adder 100

Figure 4.30 Interface diagram: 64-bit modular subtractor 101

Figure 4.31 Interface diagram: 64-bit modular 48-bit left shifter 102

Figure 4.32 Interface diagram: 64-bit modular 96-bit left shifter 103

Figure 4.33 Interface diagram: 64-bit modular multiplier 104

Figure 4.34 Internal Interface diagram: 64-bit modular multiplier 105

Figure 4.35 Interface diagram: 4-point NTT processing unit 106

Figure 4.36 Internal Interface diagram: 4-point NTT processing unit 108

Figure 4.37 Interface diagram: 4-point NTT processing unit with multiplier109

Figure 4.37 Internal Interface diagram: 4-point NTT processing unit with

multiplier 111

Figure 4.38 Interface diagram: 16-point NTT processing unit 112

Figure 4.39 Interface diagram: 16-point NTT processing unit with memory

unit 116

Figure 4.40 Interface diagram: Memory unit for operands 119

Figure 4.41 Interface diagram: Memory unit for twiddle factors 123

Figure 4.42 Interface diagram: Full memory unit 125

Figure 4.43 Interface diagram: Read/Write address generator 130

Figure 5.1 SSMA time in GPU (1024-bit and 2048-bit operands) 135

Figure 5.2 SSMA time in GPU (4096-bit and 8192-bit operands) 135

Figure 5.3 Overall experimental results 136

xvi

LIST OF ABBREVIATIONS

ASIC

CLB

CPU

CRT

CTFFT

DFT

DIF

DIT

DSP

GCD

GMP

GPU

GTFFT

ECC

EDA

FFT

FHE

FNT

FPGA

HDL

IFFT

INTT

IoTs

LUT

NTL

NTT

NWT

PKC

RAM

RSA

SM

SSMA

VHDL

VHSIC

Application-Specific Integrated Circuit

Configurable Logic Blocks

Central Processing Unit

Chinese Remainder Theorem

Cooley-Tukey FFT

Discrete Fourier Transform

Decimation in Time

Decimation in Frequency

Digital Signal Processor

Greatest Common Divisor

GNU Multiple Precision Arithmetic Library

Graphic Processing Unit

Good-Thomas Fast Fourier Transform

Elliptic Curve Cryptography

Electronic Design Automation

Fast Fourier Transform

Fully Homomorphic Encryption

Fast Number Theoretic Transform

Field Programmable Gate Array

Hardware Description Language

Inverse Fast Fourier Transform

Inverse Number Theoretic Transform

Internet of Things

Look-Up Table

Number Theory Library

Number Theoretic Transform

Number Theoretic Weighted Transform

Public Key Cryptography

Random Access Memory

Rivest-Shamir-Adleman

Streaming Multiprocessor

Schönhage-Strassen Multiplication Algorithm

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

2

CHAPTER 1

INTRODUCTION

1.1 Motivation

Information communication across the Internet requires security protocol to

protect important and confidential data such as banking transactions and

personal details from attackers/hackers. For decades, cryptosystems have been

used to achieve this goal by performing data encryption, decryption and

authentication during data transmission. Most of the cryptosystems are

implemented with complex algorithms which require a lot of computing

resources (i.e. memory size and processing power), resulting in slow

performance.

Nowadays, Internet users are able to go online almost anytime from anywhere,

thanks to the rapid growth of information and communication technologies.

However, it is problematic if a cryptosystem is too slow to handle excessive

requests from many users simultaneously. Leakage of secure information due to

hackers’ attack are also serious problems faced by many organizations

employing modern cryptosystem to protect sensitive data. Thus, faster, safer and

more reliable cryptosystems are on high demand.

The research for advanced cryptosystems hardware supports are heading

towards new direction, from Central Processing Unit (CPU) to hardware

accelerator such as Graphic Processing Unit (GPU) and Field Programmable

3

Gate Array (FPGA). This is because the architecture of GPU has more cores to

perform multiple instructions simultaneously, which allowed faster computation

for cryptographic algorithms. On the other hand, FPGA provides researchers to

venture into techniques involving the design of the low level hardware modules.

Public Key Cryptography (PKC) which is also known as asymmetric-key

cryptography where encryption and decryption are done using a pair of two

different keys, a public key and a private key. PKC works in a way that the

information is encrypted by sender with the recipient’s public key (a key that can

be accessed by anyone), but the encrypted information can only be decrypted by

the recipient’s paired private key. In this case, the transmission of information

can be secured unless the recipient’s paired private key is lost.

In Public Key cryptosystem (e.g. RSA), modular exponentiation is the

bottleneck that costs most of the computational time, wherein multiplication is

the core part of the modular exponentiation. The goals of this project are to

research and develop techniques for accelerating the large integer multiplication,

with implementation in GPU (software) and FPGA (hardware).

GPU is a popular platform to perform parallel computation, due to its massively

parallel architecture (consists of multiple streaming multiprocessors (SMs)),

which is capable in computing multiple instructions simultaneously. GPU also

consists of deep memory hierarchy, with trade-off between memory size and

4

memory latency. Global memory has the largest capacity, followed by local

memory, texture memory, constant memory, shared memory and registers. The

global memory can be accessed by all threads within the same grid; the shared

memory is limited to the threads within the same block while registers can only

be used by a thread itself. However, started from NVIDIA GPU with Kepler or

newer architecture, NVIDIA introduced a new feature known as “shuffle

instruction” allowed registers to be visible by other threads within the same warp.

For FPGA implementation, a large integer multiplier hardware can be designed

using Hardware Description Language (HDL) such as Verilog or VHDL. A

designed hardware can be synthesized and implemented on development tool

such as Xilinx Vivado for verification and validation. Different from GPU,

hardware resources available on a FPGA board are used for the implementation.

For example, Block Random Access Memory (BRAM) will be used to

synthesize the memory elements; Look-up Table (LUT) are used to synthesize

the internal hardware circuit; and Digital Signal Processors (DSP) can be used

to speed up certain logic and arithmetic computation.

This project is divided into two phases. Phase one explores the possibilities of

the efficient implementation of large integer multiplication in GPU, which

involves investigation on the GPU architecture and implementation using

parallel programming. Phase two focuses on hardware design and FPGA

implementation of selected algorithm in phase one using Verilog HDL. The

challenges include fitting the design into available resources on board, control

5

the data flow between sub-modules to meet desired functional behaviors and

timing requirements.

6

1.2 Problem Statement

1. Modular Exponentiation is the most resource demanding operation in

many Public Key Cryptography (e.g. RSA). The existing

implementations of modular multiplication using Number Theoretic

Transform (NTT) are not fully optimized for new GPU architectures.

2. Existing works of Modular Exponentiation in FPGA implementation

only utilized the radix-2 architecture to implement NTT. The

performance of other radices is not well studied, which may provide

more opportunities for optimization.

7

1.3 Objectives

1. To research and optimize the implementation of large integer

multiplication in state of the art GPU architectures.

2. To research and design a crypto-related processor capable in performing

large integer multiplication in FPGA.

3. To propose new technique to optimize the performance of the designed

crypto-related processor.

8

1.4 Contributions

In this research work, we presented two large integer multiplication

implementations in GPU and one in FPGA:

1. The first implementation in GPU provides multiplication from 1024-bit

to 8192-bit and up to 900 number of multiplications can be computed

simultaneously, which can be used in ECC and RSA cryptographic

algorithms. This implementation has proven that the method of utilizing

the shuffle instructions, a new feature release from GPU with Kepler

architecture onwards is able to reduce memory latency.

2. The second GPU implementation in this work is capable of computing

large integer multiplication of 192K-bit, 384K-bit and 768K-bit, which

is suitable to be used in toy version of Fully Homomorphic Encryption

(FHE). This implementation shows a performance improvement in term

of the operands size of the multiplication compared to the first

implementation, with trading-off the ability of bulk multiplication.

3. A 3072-bit multiplier is implemented in FPGA. We compared the

performance between radix-2 and radix-4 FNT module both

theoretically and practically. We then proposed the idea of integrating

radix-4 FNT modules that are optimized solely for the Cooley-Tukey

FNT scheme we used in our 3K-bit multiplication algorithm in replace

of standard radix-4 modules, which is able to reduce about 27% of the

hardware resources.

9

1.5 Dissertation Organization

This chapter describes the motivation, problem statements, objectives and

contributions of the project. The rest of the dissertation is organized as follows.

Chapter 2 discusses about the background of our research including the

algorithms and hardware platform; Chapter 3 presents the literature review on

the similar research works done by the others; Chapter 4 describes the details of

our implementation followed by the experimental setup and results in Chapter 5,

and finally we conclude this project with conclusion and future works in Chapter

6.

10

CHAPTER 2

BACKGROUND

2.1 Graphic Processing Unit (GPU)

Graphic Processing Unit (GPU) is designed with highly parallel architecture

which consists of multiple streaming multiprocessors (SMs) used to render the

colors of pixels to create images and videos. In recent years, GPU has been

employed to accelerate non-graphic computation including scientific computing,

digital signal processing and intensive mathematical calculations.

2.1.1 GPU Programming Model

CUDA is a parallel computing platform and programming model with a small

set of extensions to the C language developed by NVIDIA (Cheng et al., 2014).

CUDA programming allows heterogeneous computing between CPU and GPU,

where the CPU and its memory are defined as “Host” while the GPU and its

memory is called “Device”. A typical execution on CUDA programming

involved three steps:

1) Copy memory from host to device;

2) Invoke kernel(s) to execute program on device;

3) Copy memory back from device to host.

A thread is the basic element that processes data in a GPU kernel. CUDA

organizes threads in two-level thread hierarchy, the grid and the block. Multiple

11

threads are grouped together to form a thread blocks; and a grid is made up of a

number of thread blocks. To be specific, a grid is organized as a 2D array of

blocks, and a block is organized as a 3D array of threads.

When a kernel is launched from host, a number of threads are spawned and each

of them will executes the statements defined in the kernel function. During the

execution, every 32 threads within a block are grouped into warps and each of

these warps are then assigned to a streaming multiprocessor (the processing unit

of GPU that consists of multiple cores) for execution. All of the threads within

the same warp are implicitly synchronized.

2.1.2 GPU Memory Management

GPU architecture composes of deep memory hierarchy. Figure 2.1 illustrates

different level of GPU memory, sorted from top to bottom is the memory level

from largest to smallest memory size; while sorted from bottom to top is the

memory level from shortest to longest memory latency.

Figure 2.1 GPU Memory

12

Each of the GPU memory levels have their own constraints in threads

accessibility. The global memory is GPU off-chip DRAM memory. It is

accessible by all of the threads within the kernel; the shared memory is GPU on-

chip memory, which the access is limited to the threads within the same blocks;

while the register is built individually on each of the core of the GPU streaming

multiprocessors, which can only be accessed by the thread itself. The texture

memory and constant memory are cached and read-only memory in GPU where

the constant memory can be used to reduce the required memory bandwidth

compared to global memory, and the texture memory are used when all reads in

a warp are physically adjacent. The local memory is similar to register, which is

only limited to access by the thread itself but perform slower, typically same

speed with global memory.

2.1.3 Shuffle Instruction

Starting with NVIDIA GPU with Kepler or newer generation of architecture and

CUDA compute capability of 3.0 or higher, NVIDIA introduced a new feature

named “Shuffle Instruction”. This new feature is a mechanism that allows the

threads within the same warp to read the data stored in each other’s registers

without the need of going through higher memory level, such as shared memory

and global memory.

13

2.2 Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) are semiconductor devices that are

based around a matrix of configurable logic blocks (CLBs) connected via

programmable interconnects (Xilinx, 2018). It is an integrated circuit that can be

configured to meet desired application or functionality requirements after

manufacturing. FPGA is commonly used as a development board for designers

or engineers in digital system design and development phase.

2.2.1 FPGA Hardware Resources

The hardware resources available on a FPGA are one of the most important

factor that have to take into consideration when designing a digital system.

Theoretically, the more the resources are used the better the performance of the

design. However, using a lot of resources require a large area of hardware.

Resources overutilization will also cause the design to not be able to fit into the

targeted FPGA board. The hardware resources available on a FPGA board

includes: Look-Up Tables (LUTs), LUTRAM (LUT Random Access Memory),

BRAM (Block RAM), Flip-Flops, Digital Signal Processors (DSPs) and input-

output ports. The logics of a circuit are map into the LUTs when synthesized;

the BRAM is the synchronous memory elements on board; the DSPs are used

for fast arithmetic logic operation such as multiplication, normally used to speed

up certain computation, especially the critical paths or used to reduce the number

of LUTs used.

14

2.2.2 Hardware Description Language (HDL)

Hardware Description Language (HDL) is a specialized computer language used

to describe the structure and behaviour of digital logic circuits. There are two

types of HDL, the synthesis based HDL and the simulation based HDL. The

synthesis based HDL is used to model digital logic circuit known as hardware

module. A hardware module can also be modelled by connecting multiple

hardware modules of lower level, defined as sub-modules; the simulation based

HDL is a set of HDL statements that are not synthesizable, but for the aid of

design verification. This set of HDL statements provide a set of virtual inputs to

the designed hardware module, and the expected outputs can be viewed in the

form of simulation waveforms or memory elements in simulation tools when

simulated.

Two of the most commonly used HDLs are Verilog HDL and VHDL (VHSIC

HDL, where VHSIC stands for Very High Speed Integrated Circuit). Verilog

HDL is used in this research project.

15

2.2.3 FPGA Configuration

Configuring FPGA involves following steps: Started with hardware module

modelling using HDL with functional behaviour verification of the modelled

module; followed by the hardware synthesis before going into hardware

implementation. Both hardware synthesis and hardware implementation

required functional and timing behaviour verification to ensure the correctness

of the design. The last step will be bitstream generation of the implemented

design and the generated bitstream is downloaded into the FPGA board.

Hardware synthesis is the step that the Electronic Design Automation (EDA), is

used to convert the designed hardware into LUTs, memory elements and other

hardware resources available on the FPGA. Estimated values of required

hardware resources will also be shown. EDA is the software program that assists

in performing or automating design work. In this project, Xilinx Vivado HLx

Edition 2016.3 is used. The hardware implementation step place and route the

synthesized design to the targeted FPGA board virtually according to the design

constraints file set in the EDA. The actual hardware resources utilization and

power consumption are shown after the implementation. The timing behaviour

simulation done after the hardware implementation will show the amount of time

the signals or data required to go from one port to another. Once the

implementation is done, the implemented design will be used to generate

bitstream and load into the targeted FPGA board.

16

2.3 Modular Arithmetic and Large Integer Representation

2.3.1 Modular Arithmetic

Modular arithmetic refers to arithmetic operations (including addition,

subtraction, multiplication and division) performed over a finite field and integer

domain. The division is also known as multiplication of the dividend with the

modular multiplicative inverse of the divisor. A finite field (also known as Galois

field) is a field consists of a set of number ranged from 0 to M – 1, where M is

the modulus, the number used to generate the finite field.

In normal arithmetic, if the numbers a and b satisfied the equation a / b = 1, b is

the multiplicative inverse of a (a / b = a x b-1). For example, 4 is the modular

multiplicative inverse of 5 when M = 19 (5 x 4 mod 19 = 20 mod 19 = 1). In

modular arithmetic, the modular multiplicative inverse exists if and only if the

number, a is coprime with the modulo, M. Two numbers are said to be coprime

with each other if and only if 1 is the only positive common factor that divides

both of them.

17

2.3.2 Large Integer Representation

In native computer systems, a single data supported is 64-bit. To represent a

large integer, multiple 64-bit data are cascaded to form a large integer as shown

in Figure 2.2. Each of these single data is known as a limb or precision.

Figure 2.2 Large integer representation

Similar to polynomial representation of a number, where the radix, R is equal to

264.

 P(𝑅) = ∑ 𝑎𝑖𝑅
𝑖𝑁 −1

𝑖=0 (3.1)

Table 2.1 Multiplication algorithms complexities

Multiplication algorithm Complexity

Standard school book methods O(𝑛2)

Karatsuba’s multiplication algorithm O(𝑛𝑙𝑜𝑔23) ≈ O(𝑛1.585)

Schönhage-Strassen’s Multiplication
Algorithm (SSMA)

 O(𝑛 log 𝑛 log log 𝑛)

* 𝑛 is the number of data, or number of limbs.

Table 2.1 shows three multiplication algorithms and their complexities.

SSMA utilizes FFT (Fast Fourier Transform) to achieve efficient multiplication.

64-bit

128-bit

(N * 64)-bit

18

2.4 Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem stated that there is a unique solution for a number

if this number produce several residue numbers when divided by c numbers of

positive integers (P0, P1, P2, …, Pc-1), known as CRT moduli, with the following

requirements:

1) These CRT must be co-prime to each other:

𝐺𝐶𝐷(𝑃𝑖, 𝑃𝑗) == 1, 𝑓𝑜𝑟 𝑖 ≠ 𝑗; 0 ≤ 𝑖 < 𝑐; 0 ≤ 𝑗 < 𝑐;

(3.2)

2) The solution number, X * Y is smaller than the product of all of these

CRT moduli:

𝑋 ∗ 𝑌 < ∏ 𝑃𝑖
𝑐−1
0 (3.3)

A number, X can be converted to a series of coefficients, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑐−1,

which is the set of residue numbers after dividing X with the set of CRT moduli

individually. This operation is known as Forward CRT while the process to

reconstruct the original number from all of these residue numbers is called

Inverse CRT.

Forward CRT:

 𝑎𝑖 = 𝑋 𝑚𝑜𝑑 𝑃𝑖 , 0 ≤ 𝑖 < 𝑐 (3.4)

Inverse CRT:

 𝑋 = ∑ 𝑎𝑖
𝑐−1
𝑖=0 𝑚𝑖𝑞𝑖 𝑚𝑜𝑑 𝑷 (3.5)

where P = ∏ 𝑃𝑖
𝑐−1
0 , 𝑚𝑖 =

𝑷

𝑃𝑖
, 𝑞𝑖 = 𝑚𝑖

−1 𝑚𝑜𝑑 𝑃𝑖

19

2.5 Schὂnhage-Strassen Multiplication Algorithm (SSMA)

Schὂnhage-Strassen Multiplication Algorithm is a well-known multiplication

algorithm due to its low computational complexity of O(n log n (log log (n))),

where n is the number of input data. Standard school book multiplication

algorithm is done in time domain, with a computational complexity of O(n2).

SSMA allows the multiplication to be computed in frequency domain for better

efficiency. The multiplication perform in frequency domain is known as

convolution, which is point-wise multiplication that is able to achieve low

computational complexity of O(n).

The performance of SSMA mainly rely on the transformation of the operands

between time and frequency domain using NTT, which has a computation

complexity of O(n2).

A standard SSMA involved three NTTs (two forward transforms for both of the

multiplication operands and one inverse transform for the product).

Pseudocode of SSMA:

Input : x and y, multi-precision large integers, the multiplier and multiplicand.

Output : z, multi-precision large integers, the product.

1) X  NTT(x); //Forward NTT

2) Y  NTT(y); //Forward NTT

3) Z  CONVO(X, Y); //convolution

4) z  INTT(Z); //Inverse NTT

5) evaluation(); //resolve the carries of z

20

2.6 Fourier Transform

In electrical engineering and digital signals processing, Fourier Transform is

known as a process to transform a signal from its time domain to frequency

domain or vice-versa. The transformation from time domain to frequency

domain is known as Forward Transform and transformation from frequency

domain to time domain is called Inverse Transform. Fourier transform is

computed using integral function, which performs on a continuous signal over a

period of time.

2.6.1 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a discrete version of the Fourier transform,

which collect N number of samples from the said continuous signal at a specific

sampling rate. Same with Fourier Transform, DFT is computed in complex

domain (operation involves imaginary and floating points number).

Forward Transform (DFT):

■ 𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 , 0 ≤ 𝑛 < 𝑁

Inverse Transform (DFT):

■ 𝑥𝑘 =
1

𝑁
∑ 𝑋𝑛

𝑁−1
𝑛=0 𝑒𝑗

2𝜋

𝑁
𝑛𝑘, 0 ≤ 𝑘 < 𝑁

x : series of DFT input elements

X : series of DFT output elements

N : number of DFT samples

j : imaginary number

e : Euler’s constant

21

2.6.2 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) is defined as a fast way to compute Discrete

Fourier Transform (DFT). Typically improve the computational complexity

from O(N2) to O(N log N), where N is the number of FFT samples.

Multiple algorithms can be used to implement FFT. For example, the

“Decimation-In-Time” (DIT) or “Decimation-In-Frequency” (DIF) FFT, Radix-

R FFT, Good-Thomas FFT (GTFFT), and Cooley-Tukey FFT (CTFFT). There

are also mixed-radix FFT and split-radix FFT, which are considered special

cases of Radix-R FFT.

2.6.2.1 Decimation-In-Time FFT and Decimation-In-Frequency FFT

A FFT algorithm can be computed by using “Decimation-In-Time” (DIT) or

“Decimation-In-Frequency” (DIF) approaches. Both the DIT and DIF FFT

employed divide-and-conquer technique to compute an N-point DFT in multiple

DFTs of smaller size. The main difference between them is that DIT FFT divides

N number of DFT points in old and even manner at each level whereas DIF FFT

divides them into first-half and second-half of points at each level.

22

DIT Forward Transform (DFT):

𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 , 0 ≤ 𝑛 < 𝑁; root of unity, W = 𝑒−𝑗
2𝜋

𝑁

 = ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1
𝑘∈𝑒𝑣𝑒𝑛 + ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1

𝑘∈𝑜𝑑𝑑

 = ∑ 𝑥(2𝑘)𝑊𝑛(2𝑘)
𝑁

2
−1

𝑘=0 + ∑ 𝑥(2𝑘+1)𝑊𝑛(2𝑘+1)
𝑁

2
−1

𝑘=0

 = ∑ 𝑥(2𝑘)𝑊𝑛(2𝑘)
𝑁

2
−1

𝑘=0 + 𝑊𝑛 ∑ 𝑥(2𝑘+1)𝑊𝑛(2𝑘)
𝑁

2
−1

𝑘=0

DIF Forward Transform (DFT):

𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 , 0 ≤ 𝑛 < 𝑁; root of unity, W = 𝑒−𝑗
2𝜋

𝑁

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 + ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1

𝑘=
𝑁

2

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 + ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛(𝑘+

𝑁

2
)

𝑁

2
−1

𝑘=0

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 + 𝑊𝑛
𝑁

2 ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛𝑘

𝑁

2
−1

𝑘=0

23

2.6.2.2 Radix-R FFT

A radix-R FFT decomposes an N-point DFT into N/R number of R-point DFTs

through logRN levels of decomposition. Given l is equal to the index of the level

and the index of the top level DFT (before any decomposition) is equal to 0 with

increment of 1 at each level of decomposition, the number of DFTs at each level

is equal to Rl; the number of points in one DFT is equal to N/Rl. Note that for an

N-point DFT to be implemented with radix-R FFT, N must be a power of R. A

method known as “mixed-radix FFT” can be used to overcome this issue when

N is not a power of R by performing different radix of FFT decomposition at

different level.

Figure 2.3 shows the 2-point FFT structures (a.k.a. the butterfly structures), the

smallest module of a radix-2 FFT for both DIT and DIF FFT where ip0 and ip1

are the input to the FFT; op0 and op1 are the output to the FFT. The *W indicates

the twiddle factors multiplication of the FFT. The different between radix-2 DIT

FFT and radix-2 DIF FFT is when the twiddle factor multiplication to the second

input, ip1 is performed. The former performs the multiplication before the

crossing add-and-subtract operation while the later do it after the crossing add-

and-subtract operation.

Figure 2.3 Radix-2 DIT and DIF 2-point FFT modules

24

Both the DIT and DIF FFT as discussed in previous section (section 2.6.2.1) can

be implemented with radix-R FFT. Figure 2.4 shows how multiple radix-2 FFT

modules can be connected together to compute 4-point FFT, where the diagram

on the left is implemented with DIT FFT structure while the one on the right is

built with DIF FFT. Figure 2.5 and Figure 2.6 illustrate the flow of 8-point FFT

implemented with radix-2 DIT FFT and DIF FFT respectively. The dashes boxes

indicate the radix-2 modules.

Figure 2.4 4-point Radix-2 DIT and DIF FFT comparison

25

Figure 2.5 8-point Radix-2 DIT FFT

Figure 2.6 8-point Radix-2 DIF FFT

26

Equation below derived the radix-4 DIF FFT from radix-2 DIF FFT.

DIF Forward Transform (DFT):

𝑋𝑛 = ∑ 𝑥𝑘𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑘=0 , 0 ≤ 𝑛 < 𝑁; root of unity, let W = 𝑒−𝑗
2𝜋

𝑁

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

2
−1

𝑘=0 + 𝑊𝑛
𝑁

2 ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛𝑘

𝑁

2
−1

𝑘=0

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

4
−1

𝑘=0 + ∑ 𝑥𝑘𝑊𝑛𝑘
2𝑁

4
−1

𝑘=
𝑁

4

+ ∑ 𝑥𝑘𝑊𝑛𝑘
3𝑁

4
−1

𝑘=
2𝑁

4

+ ∑ 𝑥𝑘𝑊𝑛𝑘𝑁−1

𝑘=
3𝑁

4

= ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

4
−1

𝑘=0 + ∑ 𝑥
(𝑘+

𝑁

4
)
𝑊𝑛(𝑘+

𝑁

4
)

𝑁

4
−1

𝑘=0 + ∑ 𝑥
(𝑘+

2𝑁

4
)
𝑊𝑛(𝑘+

2𝑁

4
)

𝑁

4
−1

𝑘=0 +

∑ 𝑥
(𝑘+

3𝑁

4
)
𝑊𝑛(𝑘+

3𝑁

4
)

𝑁

4
−1

𝑘=0

 = ∑ 𝑥𝑘𝑊𝑛𝑘
𝑁

4
−1

𝑘=0 + 𝑊𝑛
𝑁

4 ∑ 𝑥
(𝑘+

𝑁

4
)
𝑊𝑛𝑘

𝑁

4
−1

𝑘=0 + 𝑊𝑛
𝑁

2 ∑ 𝑥
(𝑘+

𝑁

2
)
𝑊𝑛𝑘

𝑁

4
−1

𝑘=0 +

𝑊3𝑛
𝑁

4 ∑ 𝑥
(𝑘+

3𝑁

4
)
𝑊𝑛𝑘

𝑁

4
−1

𝑘=0

Figure 2.7 shows the structures of radix-4 FFT. The structure on the left is a

detailed version of a single radix-4 FFT module while the one on the right is a

simplified version. The internal operations are omitted for simplicity.

Figure 2.7 radix-4 FFT module

27

2.6.2.3 Good-Thomas FFT (GTFFT)

Good-Thomas FFT (GTFFT) (a.k.a. Prime Factor FFT) is a FFT algorithm that

lets N = N1 * N2 and breaks an N-point DFT into (N1 * N2)-point DFT, where N1

and N2 have to be relatively prime. The (N1 * N2)-point DFT can be computed in

two steps, started with N2 number of N1-point DFT followed by N1 number of

N2-point DFT. Hence, the GTFFT is sometimes defined as a FFT algorithm that

compute a DFT in two-dimensional FFT.

The GTFFT equation can be derived by substituting the following equation into

the DFT forward transform equation:

▪ 𝑛 = 𝑁2𝑛1 + 𝑁1𝑛2 𝑚𝑜𝑑 𝑁, 0 ≤ 𝑛1 < 𝑁1, 0 ≤ 𝑛2 < 𝑁2

▪ 𝑘 = 𝑁2
−1𝑁2𝑘1 + 𝑁1

−1𝑁1𝑘2, 0 ≤ 𝑘1 < 𝑁1, 0 ≤ 𝑘2 < 𝑁2

Where:

𝑁1
−1denotes the modular multiplicative inverse of 𝑁1𝑚𝑜𝑑 𝑁2 and

▪ 𝑁2
−1denotes the modular multiplicative inverse of 𝑁2𝑚𝑜𝑑 𝑁1.

Forward Transform (GTFFT):

▪ 𝑋𝑁2
−1𝑁2𝑘1+ 𝑁1

−1𝑁1𝑘2
 = ∑ (

𝑁1−1
𝑛1=0 ∑ 𝑥𝑁2𝑛1+𝑁1𝑛2

𝑒
−𝑗

2𝜋

𝑁2
𝑛2𝑘2)𝑒

−𝑗
2𝜋

𝑁1
𝑛1𝑘1𝑁2−1

𝑛2=0

Inverse Transform (GTFFT):

■ 𝑥𝑁2
−1𝑁2𝑘1+ 𝑁1

−1𝑁1𝑘2
 = ∑ (

𝑁1−1
𝑛1=0 ∑ 𝑋𝑁2𝑛1+𝑁1𝑛2

𝑒
−𝑗

2𝜋

𝑁2
𝑛2𝑘2)𝑒

−𝑗
2𝜋

𝑁1
𝑛1𝑘1𝑁2−1

𝑛2=0

28

2.6.2.4 Cooley-Tukey FFT (CTFFT)

CTFFT is a FFT algorithm that allows a large size DFT to be computed with

multiple DFTs of smaller size, improving parallelism. Similar to GTFFT,

CTFFT uses a special indexing method to access the large size DFT in two

dimensions’ manner by dividing the DFT size (let N = N1* N2), except N1 does

not necessary have to be coprime with N2. It is also sometimes described as a

FFT algorithm that compute a single row N-points DFT in two dimensional row-

by-column, (N1 * N2)-points DFTs, with N1 number of rows and N2 number of

columns, where N = N1 * N2. Generally, CTFFT consists of three steps:

1) Row FFT (N1 number of N2 points DFT);

2) Twiddle factors multiplication;

3) Column FFT (N2 number of N1 points DFT);

Forward Transform (CTFFT):

■ 𝑋𝑗1+𝑁1𝑗2
 = ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑥𝑁2𝑖1+𝑖2

𝑒
−𝑗

2𝜋

𝑁1
𝑖1𝑗1)𝑒−𝑗

2𝜋

𝑁
𝑖2𝑗1]𝑒

−𝑗
2𝜋

𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0

Inverse Transform (CTFFT):

▪ 𝑥𝑗1+𝑁1𝑗2
 = 𝑁−1 ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑋𝑁2𝑖1+𝑖2

𝑒
−𝑗

2𝜋

𝑁1
𝑖1𝑗1)𝑒−𝑗

2𝜋

𝑁
𝑖2𝑗1]𝑒

−𝑗
2𝜋

𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0

The above equations can be derived by substituting the following equation into

the equation in NTT:

▪ 𝑖 = 𝑁2𝑖1 + 𝑖2, 0 ≤ 𝑖1 < 𝑁1, 0 ≤ 𝑖2 < 𝑁2

▪ 𝑗 = 𝑁1𝑗2 + 𝑗1, 0 ≤ 𝑗1 < 𝑁1, 0 ≤ 𝑗2 < 𝑁2

29

2.6.3 Number Theoretic Transform (NTT)

Number Theoretic Transform (NTT) is a mathematics function that transform a

set of data between its time and frequency domain. Same with Fourier transform

and DFT, transformation of time-to-frequency domain is called Forward

Transform and frequency-to-time domain transformation is known as Inverse

Transform. This transformation is performed over a finite field.

Forward Transform (NTT):

■ 𝑋𝑗 = ∑ 𝑥𝑖𝑔
𝑖𝑗𝑁−1

𝑖=0 𝑚𝑜𝑑 𝑀, 0 ≤ 𝑗 < 𝑁

Inverse Transform (NTT):

■ 𝑥𝑖 = 𝑁−1 ∑ 𝑋𝑗𝑔𝑖𝑗𝑁−1
𝑗=0 𝑚𝑜𝑑 𝑀, 0 ≤ 𝑖 < 𝑁

x : series of NTT input elements

X : series of NTT output elements

N : NTT size, number of elements to be transformed

g : primitive Nth root of unity

M : modulus

The Nth root of unity, r, is a number that when multiply itself N times will yield

1 in a finite field, rN ≡ (1 mod M), where M is the modulus used to generate the

finite field and r must be larger than 1 and smaller than M (1 < r < M – 1). For

the Nth root of unity to be primitive, r must be the smallest positive integer found

within the range.

30

Pseudocode of NTT:

Input : 1) x, series of NTT input elements;

 2) tf, series of precomputed twiddle factors;

Output : X, series of NTT output elements;

tmp; //temporary value;

1) for j := 0 to N - 1 do

2) Xj := 0

3) for i := 0 to N - 1 do

4) tmp  xi * tfij mod M

5) Xj  Xj + tmp mod M

6) end

7) end

31

2.6.4 Fast Number Theoretic Transform (FNT)

Both DFT and NTT shared the same definition: the output data with index i, is

equals to the summation of products from the input data with their respective

twiddle factors. The main difference between both of the transformation is, the

DFT is computed in complex domain that involved floating-point arithmetic

while NTT is performed in integer domain of finite fields, computed with

modular arithmetic. Thus, the FFT algorithm can also be applied on NTT to

speed up the computation.

In subsequent discussions, we refer FFT as a fast way to compute DFT and

denote Fast Number Theoretic Transform (FNT) as fast way to compute NTT

for the rest of the dissertation. For instance, the CTFFT algorithm can be

modified to become CTFNT by replacing the root of unity in DFT, 𝑒−𝑗
2𝜋

𝑁 , with

the root of unity of NTT, 𝑔𝑁 and changing the computation domain from

complex domain to integer finite field domain.

Forward Transform (CTFNT):

■ 𝑋𝑗1+𝑁1𝑗2
 = ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑥𝑁2𝑖1+𝑖2

𝑔𝑁1
𝑖1𝑗1)𝑔𝑁

𝑖2𝑗1]𝑔𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0 𝑚𝑜𝑑 𝑀

Inverse Transform (CTFNT):

■ 𝑥𝑗1+𝑁1𝑗2
 = 𝑁−1 ∑ [(

𝑁2−1
𝑖2=0 ∑ 𝑋𝑁2𝑖1+𝑖2

𝑔𝑁1
𝑖1𝑗1)𝑔𝑁

𝑖2𝑗1]𝑔𝑁2
𝑖2𝑗2𝑁1−1

𝑖1=0 𝑚𝑜𝑑 𝑀

32

Figure 2.8 shows the flowchart for the CTFNT in a simple flow which included

three sub-processes, the column NTTs, twiddle factors multiplication and row

NTTs. The flowchart for twiddle factors multiplication is illustrated in Figure

2.9 while the flowcharts of both columns NTTs and row NTTs are shown side-

by-side in Figure 2.10 for better comparison. Note that the flowcharts of both

column NTTs and row NTTs are similar with the difference of the indices used.

Pseudocode of CTFNT:

Input : 1) x, series of NTT input elements;

 2) t, series of temporary intermediate value;

 3) tfN0, series of precomputed twiddle factors for N;

 4) tfN1, series of precomputed twiddle factors for N1;

 5) tfN2, series of precomputed twiddle factors for N2;

Output : X, series of NTT output elements;

tmp; //temporary value;

//column NTTs

1) for i2 := 0 to N2 - 1 do

2) for j1 := 0 to N1 - 1 do

3) t(i2 * N1 + j1) := 0

4) for i1 := 0 to N1 - 1 do

5) tmp  x(i1 * N2 + j1) * tfN1(i2 * i1) mod M

6) t(i2 * N1 + j1)  t(i2 * N1 + j1) + tmp mod M

7) end

8) end

9) end

//twiddle factors multiplication

10) for i2 := 0 to N2 - 1 do

11) for j1 := 0 to N1 - 1 do

12) t(i2 * N1 + j1)  t(i2 * N1 + j1) * tfN0(i2 * j1) mod M

13) end

14) end

//row NTTs

15) for i1 := 0 to N1 - 1 do

16) for j2 := 0 to N2 - 1 do

17) t(i1 * N2 + j2) := 0

18) for i2 := 0 to N2 - 1 do

19) tmp  t(i1 * N2 + j1) * tfN2(i2 * i1) mod M

20) X(i1 * N2 + j1)  X(i1 * N2 + j1) + tmp mod M

21) end

22) end

23) end

33

Figure 2.8 Flowchart of CTFNT

Figure 2.9 Flowchart of Twiddle Factors Multiplication

34

Figure 2.10 Flowcharts of Column NTTs and Row NTTs

35

2.7 Summary

The study between GTFFT and CTFFT shows that although GTFFT does not

require twiddle factors multiplication in between row FFTs and column FFTs,

its transformation size is limited to only relatively prime numbers, which will

affect the effectiveness of balance workload distribution in implementation. In

this case, CTFFT is more suitable as the transformation size is more dynamic.

Similar to radix-R FFT, CTFFT employs divide-and-conquer method to compute

a full FFT. The main difference between them is radix-R FFT divides the N-FFT

into R number of FFTs at each level until each of the FFTs have only R number

of data; while CTFFT is more dynamic that divides a N-points FFT into (N1 *

N2)-points FFT, where N = N1 * N2. CTFFT can also be used recursively to

achieve higher level of parallelism.

Comparing radix-2 and radix-4 FFT, radix-2 FFT module is smaller and simple

compare to radix-4 FFT module, and radix-4 FFT module also have longer

latency compare to radix-2 FFT module. However, since a radix-R FFT module

computes R number of data at each level, a radix-4 FFT module is able to

compute more data than a radix-2 FFT module at each level. Hence,

implementing radix-4 FFT module effectively can help to reduce the number of

read and write access to data memory at the costs of extra hardware resources

and slightly more complex control logic compare to radix-2 FFT module. A

radix-4 FFT module can also be implemented by connecting four radix-2 FFT

modules in two-by-two manner.

36

Theoretically, a radix-R FFT module with higher value of R is able to compute

more data at each level, reducing the number of levels and hence reduce the

number of memory access. However, increasing the value of R will also reduce

the level of parallelism. The improvement of reducing the number of levels is

also diminishing as the value of R grow higher.

In this work, NTT is more suitable to be used in SSMA compared to DFT as

only integer domain is involved in SSMA. Using DFT will also introduce round-

off errors when the transformation size increased. Different FFT algorithms can

be used in different levels of the FFT decomposition. In our implementation, we

focus on combining CTFNT with radix-4 FNT for SSMA.

Comparing GPU and FPGA, GPU is considered low costs for implementation

but FPGA is able to perform faster computation. NVIDIA GPU provides CUDA,

a programming platform that allowed the designers or programmers to configure

kernel and manage different level of memory conveniently and systematically;

the FPGA design platform is more scalable as the designers are able to design

the system processing units themselves.

37

CHAPTER 3

LITERATURE REVIEW

3.1 Implementation in GPU

Graphic Processing Unit (GPU) is known for its highly parallel architecture with

thousands of cores (processing units) to compute the color pixels of images and

rendering video. However, the idea of employing GPU to accelerate various

general purpose algorithms (typically run in CPU) such as scientific computing

and cryptosystems has becoming popular in recent years. The research works

done by (Emmart et al., 2011; Emeliyanenko et al., 2009; and T. Honda et al.,

2015) in exploiting GPU to compute large integer multiplication had shown

significant improvements over CPU implementation.

Both of the research works by Emmart and Weems (2011) and Emeliyanenko

(2009) employed Schönhage-Strassen Multiplication Algorithm (SSMA) in their

implementation. The works done by Emeliyanenko (2009) is able to outperform

NTL and GMP (libraries for large integer multiplication) implementation in

CPU with 512, 1024, and 2048-bit multiplication. Emmart and Weems (2011)

integrated Cooley-Tukey FFT with Swartauber and Stockham indexing method

into their SSMA implementation, achieving a maximum speedup of 19 times

with multiplication operands ranged from 255K-bit to 16320K-bit when running

the implementation on NVIDIA GTX480 GPU and Intel Core i7 870.

38

GPU with newer architecture comes with new features can be used to improve

these works. For example, starting from NVIDIA Fermi GPU architecture, 64-

bit multiplication is supported from high-level-language programmer's

perspective, eliminated the needs of breaking operands into residue numbers of

24-bit to utilize native multiplication as in the work done by Emeliyanenko

(2009). Besides, from NVIDIA Kepler onwards, new “shuffle instruction” is

introduced to all new GPU, which allowed threads within the same warp to read

registers from each other without the needs of going into higher memory level

can help to reduce the needs of access to shared memory as done in the work of

Emmart and Weems (2011).

The work done by T. Honda et al. (2015) utilized the “shuffle instructions”

feature to perform bulk multi-precision integer multiplication (compute 100,000

multiplication simultaneously) ranged from 1024-bit to 32,768-bit with three

different multiplication algorithms: Comba’s multiplication, Karatsuba’s

multiplication and recursive Karatsuba’s multiplication is able to achieve a

maximum speedup factor of 62.88 for 1024-bit multiplication and 18.71 times

speedup for 32,768-bit multiplication. The comparison is done with NVIDIA

GeForce GTX 980 with GNU multi precision library (GMP) running in Intel

Xeon X7460 CPU.

W. Dai et al. (2015) presented a CUDA GPU library for Homomorphic

encryption (cuHE) in their work. The implementation use GPU and interface

with NTL library to compute Number Theoretic Transform (NTT) and Chinese

39

Remainder Theorem (CRT) for the applications of Prince block cipher and

homomorphic sorting algorithms. Implemented on NVIDIA Geforce GTX 680,

GTX770 and GTX690, their work has shown a 40 times speedup on a single

GPU, 135 times on three GPUs simultaneously over the work done in CPU by

Doröz et al. (2014). This work also able to show a speedup of 25 times when

compared to Dai et al.’s work (2014) implemented on the same GPU device. The

authors also utilized the multi-streams method to speed up the memory copy

operations between CPU and GPU. There is no result of multiplication shown in

the works, but there is possibility of using the NTT function provided in this

library to implement SSMA.

40

3.2 Implementation in FPGA

Aside of GPU, FPGA is an alternative hardware platform that can be designed

to perform dedicated algorithms. W. Dai et al. (2016) ’s researches and W. Dai

et al. (2017) have shown a comprehensive studies of Montgomery modular

multiplication implementation on FPGA based on SSMA. Designed with

Verilog-HDL and implemented with Xilinx ISE 13.3 design tool on Xilinx

Virtex-6 (xc6vlx130t-1) FPGA board, the research work done by Chen et al.

(2016) presented multiplication with operands size ranged from 1K-bit to 4K-

bit. The work is done with different parameters set to show the trade-off between

faster computation and smaller area. The authors also proposed a novel method

known as “carry-save arithmetic” to improve parallelism for the resolve carries

part of the SSMA, achieving 3100-bit and 4124-bit modular multiplications in

6.74 and 7.78us respectively. This method outperformed previous state-of-the-

art work by Huang et al. (2011) for operand size of 3072-bit and above in term

of computation latency and area-latency. FPGA design are often limited by the

hardware resources such as the Lookup Table (LUTs) and memory available on

board. Implementation with fully N-point NTT butterfly structures could lead to

resources over-utilized; while using a single NTT butterfly structure repeatedly

could help to minimize the resources required but on the other hand increased

the latency. The work done by Chen et al. (2016) here utilized double radix-2

NTT modules in their implementation, but the use of a single radix-4 NTT

module is yet to explore.

W. Dai et al. (2017) have further improved their SSMA over their previous work

by Chen et al. (2016) by replacing Number Theoretic Transform (NTT), the most

41

crucial part of SSMA with Number Theoretic Weighted Transform (NWT). This

method can efficiently reduce the convolution length in the SSMA by half, with

an additional multiplication to the “weight”, a set of extra parameters for each of

the elements within the NTT. Next, the authors integrate the Montgomery

Modular Multiplication into McLaughlin’s framework, achieving better area-

time efficiency compared to their previous work (Chen et al., 2016) (50.9% for

1,024-bit, 41.9% for 2,048-bit, 37.8% for 4,096-bit and 103.2% for 7,680-bit

multiplication).

The work done by Chen et al. (2015) replaced acyclic convolution in SSMA with

negative wrapped convolution. This method removes the needs of zero-padding

half of the NTT elements required for typical SSMA, reduced the transformation

size of NTT by half, which is similar to the method used by Dai et al. (2017) as

described above. Same with the work by Chen et al. (2016), this work is

implemented with two radix-2 NTT modules as their smallest NTT processing

unit. However, each of the radix-2 NTT modules is used to compute forward

transform for both of the input operands independently at the same time instead

of using both of the modules to compute the first input operand followed by the

second. The authors also implemented their design with pipeline architecture to

increase module throughput and support higher frequency. Implemented in

Spartan-6 (xc6slx100-3) FPGA using Verilog with Xilinx ISE14.7, the authors

are able to achieve an average of 3.5 times speedup when compared to the work

done by Pöppelmann and Güneysu (2012).

42

Targeted for the uses of Fully Homomorphic Encryption (FHE), Y. Doröz et al.

(2014) published a work that is able to compute very large multiplication of two

1,179,648-bit operands in 7.74ms, synthesized in Synopsis Design Compiler

with TSMC 90nm cell library. Similar to the works done by (Chen et al., 2016;

Dai et al., 2017), SSMA is used in the implementation with the difference of

using Cooley-Tukey FFT decomposition to reduce the computation time of NTT

instead of fully radix-2. However, the implementation is done with 98,304-point

NTT, a non-power-of-2 NTT transformation will affect the level of parallelism.

43

3.3 Summary

Crypto algorithms such as ECC (Elliptic Curve Cryptography), RSA (Rivest-

Shamir-Adleman) and FHE (Fully Homomorphic Encryption) require intensive

use of large integer arithmetic operations, from 512-bit (ECC), 2048-bit (RSA)

up to millions-bit (FHE). Out of all arithmetic operations, modular

exponentiation is the operation that costs the most computation time with

multiplication as the core operation.

Multiplication algorithms including Comba’s multiplication, Karatsuba’s

multiplication and especially SSMA have been widely studied and implemented

with various methods across different platforms using GPU, FPGA and

Application-Specific Integrated Circuit (ASIC) in the works of (Emmart and

Weems, 2011; Emeliyanenko, 2009; Honda, Ito and Nakano, 2015; Dai and

Sunar, 2015; Dai et al., 2014; Chen et al., 2016; Dai et al., 2017; Huang et al.,

2011; Doröz et al., 2014; Chen et al., 2015; Pöppelmann and Güneysu, 2012;

Huang and Wang, 2015) in order to achieve faster computation time, higher

throughput, lesser hardware resources or better area-time efficiency.

The computational complexity for standard schoolbook’s and Comba’s

multiplication is O(n2) and 𝑂(𝑛𝑙𝑜𝑔23) for the Karatsuba’s multiplication

algorithm, where n is the number of precisions used to form the large integer.

The Karatsuba’s method reduces the number of internal multiplications between

different precisions of the multiplicand and multiplier operands, at the costs of

extra number of additions, which are cheaper operations in term of computation.

44

Implementing the Karatsuba’s multiplication algorithm recursively can further

reduce the number of internal multiplication. However, the work done by T.

Honda et al. (2015) showed that applying Karatsuba’s multiplication algorithm

at each level will also increases the number of read and write memory access,

which introduce extra overhead in GPU implementation. Hence, optimizing the

algorithm to achieve lower computation complexity alone is not enough. Taking

the hardware specifications into consideration is crucial as well.

SSMA appeared to be the most commonly used algorithms for large integer

multiplication as it has the lowest computational complexity of O(n log n log log

n) among the others. This algorithm is introduced by Schönhage and Strassen

(1971), which utilized the FFT to perform point-wise multiplication in frequency

domain of the number to achieve such a low computational complexity. Hence,

it is also sometimes being called FFT-based multiplication or FFT-based

polynomial multiplication.

However, performing FFT and inverse FFT in this algorithm incurred overhead.

The work done by Baktır and Sunar (2006) stated that the integer has to be at

least 1000-bit in order to compensate the overhead incurred. This value can be

vary due to the algorithms used to implement the FFT and hardware specification.

SSMA is being implemented in the research works: (Emmart and Weems, 2011;

Emeliyanenko, 2009; Dai and Sunar, 2015; Chen et al., 2016; Dai et al., 2017;

45

Chen et al., 2015; Huang and Wang, 2015), using different algorithms to

compute FFT and altering the parameters set of the FFT to get the most optimum

results. The works by Chen et al. (2016) and Dai et al. (2017) even integrated

SSMA into Montgomery modular multiplication in replaced of traditional

interleaved method and showed a significant improvement in their

implementation over previous works.

46

CHAPTER 4

IMPLEMENTION DETAILS

4.1 Modular Arithmetic Functions

The data type UINT64 (unsigned long long int), 64-bit unsigned integer, and the

largest bit size of single precision supported to run in GPU is used for the

implementation of NTT in this work. To avoid overflow or underflow during the

arithmetic operations, three modular functions are implemented with the

modulus, P = 0xFFFF_FFFF_0000_0001 as follows:

• UINT64 _addModP(UINT64 in1, UINT64 in2) ; //Modular addition

• UINT64 _subModP(UINT64 in1, UINT64 in2) ; //Modular subtraction

• UINT64 _mulModP(UINT64 in1, UINT64 in2) ; //Modular multiplication

4.1.1 Modular addition

The implementation of the modular addition can be done by first adding both the

inputs and check if the result is smaller than the first input. If yes, overflow

happened and adding additional value of 0xFFFF_FFFF to the result can help to

recover the missing value in the finite field of P. Lastly, check if the result is

greater or equal to P. If yes, return the result with P subtracted from it else return

the result untouched.

47

4.1.2 Modular subtraction

For the modular subtraction function, subtract the second input (subtrahend)

from the first input (minuend). Check if the underflow condition happened by

comparing the result with the minuend. If the result is greater than the minuend,

underflow occurred. Adding the result with P to recover the actual result in the

finite field. Lastly, check if the result is greater or equal to P. If yes, return the

result with P subtracted from it else return the result untouched. This function is

also used to make sure no negative value will be incurred throughout the entire

program.

4.1.3 Modular multiplication

The implementation for the modular multiplication is more complex compared

to addition and subtraction as multiplying two data of 64-bit each yield a result

of 128-bit, which is way more than a single precision can handle. In general, any

number can be represented in its polynomial form, which is the summation of a

series of coefficients multiply with its radix to the power of its respective index,

𝐴(r) = ∑ 𝑎𝑖𝑟
𝑖𝑁−1

𝑖=0 , where A is the number, r is the radix and ai is the set of

coefficients. Similarly, An 128-bit number can be represented in four

coefficients of radix, r = 2
32, setting all the coefficients at 32-bit each, as shown

below:

𝐴128−𝑏𝑖𝑡(232) = 𝑎3𝑟3 + 𝑎2𝑟2 + 𝑎1𝑟1 + 𝑎0𝑟0

 𝐴128−𝑏𝑖𝑡(232)

= 𝑎3(232)3 + 𝑎2(232)2 + 𝑎1(232)1 + 𝑎0(232)0

 𝐴128−𝑏𝑖𝑡(232) = 𝑎3(296) + 𝑎2(264) + 𝑎1(232) + 𝑎0

48

One of the special characteristics of this special prime, P (known as Solinas

Prime) can be used to overcome this issue. This prime number, P selected is

equal to 264
 – 232 + 1. Using this prime to generate the finite field has the

following properties:

1) 2192 𝑚𝑜𝑑 𝑃 = 1

2) 2160 𝑚𝑜𝑑 𝑃 = 1 − 232

3) 2128 𝑚𝑜𝑑 𝑃 = −232

4) 296 𝑚𝑜𝑑 𝑃 = −1

5) 264 𝑚𝑜𝑑 𝑃 = 232 − 1

By substituting the fourth and fifth into the previous equation yields:

𝐴128−𝑏𝑖𝑡(232) 𝑚𝑜𝑑 𝑃 = (232)(𝑎2 + 𝑎1) − (𝑎3 + 𝑎2) + 𝑎0

By definition, multiplication of two double precisions numbers, A and B is equal

to:

𝐶 = 𝐴 ∗ 𝐵

𝐶128−𝑏𝑖𝑡 = (264)(𝐴ℎ𝐵ℎ) + (232)(𝐴ℎ𝐵𝑙 + 𝐴𝑙𝐵ℎ) + 𝐴𝑙𝐵𝑙

Where h denotes the higher precision and l denotes the lower precision of the

operands, and

 𝐿𝑒𝑡 𝑍 = 𝐴ℎ𝐵ℎ;

 𝐿𝑒𝑡 𝑌 = (𝐴ℎ𝐵𝑙 + 𝐴𝑙𝐵ℎ);

𝐿𝑒𝑡 X = 𝐴𝑙𝐵𝑙;

𝐶128−𝑏𝑖𝑡 = (264)(𝑍) + (232)(𝑌) + 𝑋

49

The values of 𝑎3, 𝑎2, 𝑎1 𝑎𝑛𝑑 𝑎0 can be extracted from:

𝑎0 = 𝑋𝑙

𝑎1 = 𝑌𝑙 + 𝑋ℎ ; 𝑖𝑔𝑛𝑜𝑟𝑒 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑀𝑆𝐵, 𝑠𝑡𝑜𝑟𝑒 𝑡𝑜 𝑎1_𝑐𝑜𝑢𝑡;

𝑎2 = 𝑍𝑙 + 𝑌ℎ + 𝑎1_𝑐𝑜𝑢𝑡; 𝑖𝑔𝑛𝑜𝑟𝑒 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑀𝑆𝐵, 𝑠𝑡𝑜𝑟𝑒 𝑡𝑜 𝑎2_𝑐𝑜𝑢𝑡;

𝑎3 = 𝑍ℎ + 𝑎2_𝑐𝑜𝑢𝑡;

50

4.2 Large Integer Multiplication on NVIDIA GPU with Kepler

Architecture

In this work, an SSMA function that is capable of performing (512 * 512)-bit

multiplication is implemented with three 64-point NTTs (two forward NTTs and

one inverse NTT). The Cooley-Tukey FFT method is used to speed up the 64-

point NTT by computing a one dimensional 64-points NTT in two dimensional

NTT of eight 8-point NTTs (denotes as (8 * 8)-point CTFNT) to increase parallel

computability. Next, CRT is applied on the top level of the mentioned algorithm

to combine multiple SSMAs of (512 * 512)-bit multiplications and achieve

multiplication of larger bit size.

This multi-precision multiplication algorithm is implemented on three different

GPU memory levels: 1) global memory, 2) shared memory and 3) registers, to

compare and study the performance with different memory latency. The

implementation on registers is the main propose idea of this project. The data

stored in registers of a thread are not visible to the others before NVIDIA

released GPU with Kepler architecture in 2012, which come with a new feature

known as “Shuffle Instruction” that allowed the threads within the same warp to

read the registers data of each other without the needs of going up to memory of

higher latency.

This implementation is able to perform up to 900 multiplications of 1024-bit,

2048-bit, 4096-bit and 8192-bit multiplication simultaneously on average of

0.095ms, 1.119ms, 1.132ms and 1.113ms respectively, and achieved maximum

51

speedup of 11.45% and 36.54% compared to global memory and shared memory

implementation.

52

4.2.1 NTT Implementation

Number Theoretic Transform (NTT) appears to be the most crucial parts in the

SSMA algorithm, as a standard SSMA algorithm involves three NTTs (two

Forward NTTs and one Inverse NTT) and one convolution. Convolution is a

rather simple and direct part of the algorithm, since it is point-wise multiplication

between both of the transformed operands in frequency domain, with a

computational complexity of O(n), where n is the number of precisions.

However, the computational complexity of a primitive NTT algorithm is equal

to O(n2). Hence, the Cooley-Tukey Fast Fourier Transform (CTFFT) method

typically used to speed up Discrete Fourier Transform (DFT) is used in this work

to reduce the computational complexity of NTT. The use of CTFFT method on

NTT (denoted as CTFNT) can efficiently reduce the computational complexity

from O(n2) to O(n log n).

To use NTT in SSMA, the modulus, M has to be co-prime with the NTT size, N,

so that the Nth primitive root of unity, g exists. In this project, the 64-bit Solinas

prime number, P = 0xFFFFFFFF00000001 is selected. Since a prime number

is always co-prime with any other numbers, the requirement is fulfilled. This

special prime number has the primitive root of unity in power-of-2 for several

small NTT sizes, relaxing the needs of twiddle factors multiplication in NTT by

using left shifting instead of exact multiplication. Secondly, the bit size of each

of the elements in the NTT, n has to meet the requirement:

(N/2)(2n-1)2 < P.

53

Table 4.1 List of primitive root of unity

N Primitive root of

unity, g

Number of bit

(left shifting)

4 0x1000000000000 48

8 0x1000000 24

16 0x1000 12

32 0x40 6

64 0x8 3

192 0x2 1

6 0x100000000 32

12 0x10000 16

24 0x100 8

48 0x10 4

96 0x4 2

Table 4.1 shows the primitive root of unity, g for different values of N and

respective number of bit for left shifting.

54

4.2.2 SSMA Implementation

The (512 * 512)-bit SSMA is implemented with 64-point NTT, with all of the

elements in NTT being set to 16-bit each. Since half of the elements have to be

reserved for zero-padding, the operand size for the multiplication is equal to 32

points * 16-bit = 512-bit. The 64-point NTT can be decomposed into two

dimensional CTFNT of (1 * 64), (2 * 32), (4 * 16), (8 * 8), (16 * 4), (32 * 2), or

(64 * 1) points. The experiments for all of the possible combinations mentioned

above has been carried out and the results shown that the (8 * 8)-point CTFNT

combination has the most optimum performance in term of computational time.

Figure 4.1 illustrates the flow of the SSMA function. Both of the operands, the

multiplicand, X and the multiplier, Y are randomly generated using the GMP

library. Firstly, both of these operands are broken into their multi-precisions

representation of 64 limbs of 16-bit each. Half of the most significant limbs are

filled with zeroes before forward transformed into frequency domain. Secondly,

convolution is carried out to get the product, Z in frequency domain. Thirdly, Z

is inverse transformed back to its time domain. Lastly, evaluation is performed

to get the exact product. Note that the small letter x, y and z with subscripts (e.g.

x0) are used to denote the data in time domain while capital letter X, Y, and Z

with subscripts are used to represent the data in frequency domain. The arrow

bars on the right show the flow of the program from start to finish and the

execution running in either CPU or GPU.

55

Figure 4.1 SSMA flow illustration

In GPU kernel, each SSMA is set to run in one block of two dimensional threads.

The x-dimension is fixed with eight threads, whereby each of this thread is able

to compute a single 8-point NTT independently, together a 64-point NTT ((8 *

8)-point CTFNT) can be computed. The y-dimension is used to determine the

number of CRT moduli, c, for the large integer multiplication. The value of c is

configurable between 4, 8, 16 or 32 for operand size of 1024-bit, 2048-bit, 4096-

bit or 8192-bit respectively. The number of CRT moduli, c, are corresponds to

the number of SSMA run in the program.

Figure 4.2 illustrates how eight threads are launched to compute a single SSMA

and Figure 4.3 shows how c rows of these eight threads can be replicated in y-

dimension for multiple SSMAs according to number of CRT moduli.

56

Figure 4.2 Eight threads in one block

Figure 4.3 Two-dimensional threads in one block

57

4.2.3 CRT Implementation

The bottleneck of the SSMA implementation discussed in the previous section

is the maximum operand size supported, which is limited to only 512-bit. To

achieve large integer multiplication with larger operand size, the idea of

concatenating multiple SSMAs to support larger operand size can be done by

implementing CRT on top of these SSMAs.

Figure 4.4 illustrates the implementation of CRT algorithm on top of several

SSMAs. The implementation in this work supports 1024-bit, 2048-bit, 4096-bit

and 8192-bit multiplication, the size of the input operands shown in Figure 4.2

with configuration of c = 4, c = 8, c = 16, and c = 32 respectively, where c is the

number of CRT moduli required for the CRT and ICRT operations. The number

of CRT moduli, c, can be determined by dividing the bit size of the product (sum

of the bit size of both the input operands) with 512, the bit size of one single

CRT moduli.

58

Figure 4.4 CRT implementation illustration

From Figure 4.4, two of the input operands, X and Y are first converted into two

series of CRT coefficients, 𝑋𝑃0
to 𝑋𝑃(𝑐−1)

 and 𝑌𝑃0
to 𝑌𝑃(𝑐−1)

 by performing

forward CRTs, which divide X and Y with c numbers of 512-bit CRT moduli to

get the residue numbers. Both the large integer operands and the set of 512-bit

CRT moduli are generated randomly using GMP library. Two series of these X

and Y CRT coefficients are then paired according to their indices and fed into

multiple SSMAs simultaneously to produce the series of CRT coefficients of the

product, 𝑍𝑃0
to 𝑍𝑃(𝑐−1)

. Lastly, Inverse CRT is performed on this series of

coefficients to get the final product, Z.

59

However, the implementation discussed as in Figure 4.4 is not able to support

exact x-bit multiplication (x = 1024, 2048, 4096, 8192). This is because the bit

size product of all the CRT moduli(𝑷 = ∏ 𝑃𝑖)𝑐−1
𝑖=0 , is slightly less than the

expected product size. For example, in (8192 * 8192)-bit multiplication, c = 32,

the bit size of P is equal to 16372-bit instead of the expected 16384-bit. This

problem has causes the maximum operand sizes supported implementation to be

1023-bit, 2046-bit, 4091-bit and 8185-bit instead of expected 1024-bit, 2048-bit,

4096-bit and 8192-bit respectively.

To overcome this problem, an extra CRT modulus can be added to increase the

bit size of P, and hence able to compensate the missing bits of the expected

operand size. Adding an extra 512-bit can be costly in terms of computation time.

Hence, a small modulus of 16-bit is used instead. Figure 4.5 shows the flow of

the implementation after adding in the extra CRT modulus.

Figure 4.5 CRT implementation with extra modulus illustration

60

4.2.4 Memory allocation

The twiddle factors are needed for the CTFNT are precomputed before passing

into the GPU memory to save computation time. The first version of the

implementation stores the precomputed twiddle factors in the global memory of

the GPU for the ease of access and sharing between threads from different blocks.

The twiddle factors stored are being read frequently as they are needed in every

iteration of the CTFNT. Hence, in the second version of the implementation, the

shared memory of the GPU is used to store the precomputed twiddle factors to

improve the performance by reducing the memory read latency.

However, this implementation introduced bank conflict when reading data from

the shared memory. Bank conflict happened when more than one thread are

trying to read data of different locations from the same memory bank. In this

case, the memory read operations from the shared memory will be serialized.

Bank conflict happened due to the memory access pattern of the CTFNT, which

access the shared memory in a column-by-column manner followed by row-by-

row manner in its column-NTTs and row-NTTs operations respectively. During

the column-by-column memory access, each of the threads are reading the data

from different memory banks, no bank conflict occurred. When the threads are

reading the data in row-by-row manner, all of the threads are trying to read the

data from the same memory bank, bank conflict happened.

Figure 4.6 and Figure 4.7 illustrate the memory access pattern in column-by-

column and row-by-row manners, from the first access to eight access across

61

eight different banks. The numbers 0 to 63 illustrate the indices of the twiddle

factors stored.

Figure 4.6 Column-by-column access: No bank conflict

Figure 4.7 Row-by-row access: Bank conflict

62

In GPU memory hierarchy, the GPU registers are the memory with lowest

latency. Conventionally, the data stored inside registers of a thread are only

limited for the uses of the thread itself, which is not visible to the others. In 2012,

NVIDIA has released new generation of GPU, the GPU with Kepler architecture.

GPU from this generation and onwards come with a new feature known as

“Shuffle Instruction” that allowed the threads within the same warp of the GPU

to read the registers data from each other without the needs of going through

shared memory or global memory.

In our third version of the implementation, we proposed a novel method by

utilizing the “Shuffle Instruction” to store the precomputed twiddle factors into

the registers, reducing the memory latency from both global memory and shared

memory implementation and bank conflict in shared memory can be avoided. In

this implementation, two sets of precomputed twiddle factors, the set of twiddle

factors for 64-point NTT and 8-point NTT (for the uses of CTFNT) are

distributed among the threads within the same warp, each thread will hold four

twiddle factors, two from each set.

During the computation, all of the threads will shuffle their registers to the

respective thread that holding the twiddle factors with the corresponding index,

this process is repeated in each iteration until all of the NTTs are computed.

63

4.3 Large Integer Multiplication on NVIDIA GPU with Pascal

Architecture

This implementation is an improvement over our previous work (Section 4.2) in

term of multiplication operands size supported. The bottlenecks of our previous

large integer multiplication algorithm implementation are the CRT and ICRT

operations, which is needed to combine multiple (512-bit * 512-bit) SSMAs to

achieve multiplication with larger bit size.

In this implementation, we are able to eliminate CRT in replace of extra levels

of CTFNT. This approach increased the NTT size (number of points supported

in an NTT) to accommodate more precisions for operand of larger size, and using

only one SSMA is sufficient to compute one large integer multiplication.

However, the advantage of using left shifting for twiddle factors multiplication

is not available for NTT of larger size as the values are not a power of two within

the finite field.

Table 4.2 Primitive root of unity for N = 4096, 16384, 32768 and 65536

Table 4.2 shows the primitive root of unity, g, for NTT size of 4096, 16384,

32768 and 65536 in hexadecimal form. The modular multiplier discussed in

section 4.1.3 is used for the multiplication instead.

N Primitive root of unity, g

4096 0x984E_C519_4D00_5735

16384 0x97B0_081F_0175_31DF

32768 0x2E43_53DF_CE41_DEAF

65536 0xDC92_18A8_6D10_F3A3

64

NTTs with NTT size as listed in Table 4.2 are implemented with multi-level

CTFNT. This work is implemented on NVIDIA GPU GTX1070 with Pascal

architecture released on year 2016. Our work is able to achieve multiplication

with operands size of 49,152-bit, 196,608-bit, 393,216-bit and 786,432-bit in

less than 1ms, 1.12ms, 1.24ms and 1.37ms respectively.

65

4.3.1 CTFNT Implementation

4.3.1.1 CTFNT Decomposition

Generally, Cooley-Tukey Fast Number Theoretic Transform (CTFNT) divides

an N-point NTT into (N1 * N2)-point NTT, where N = N1 * N2. One level of

CTFNT involves three steps: the column NTTs, followed by the twiddle factors

multiplication for N and end with the row NTTs. From the CTFNT equation in

section 3.6.4, the inner summation is known as the column NTTs, while the outer

summation is the row NTTs. Each of these N1-points column NTTs and N2-

points row NTTs can be further divided by applying another level of CTFNT.

In this work, 4096-point NTT is implemented with (64 * 64)-point CTFNT,

where each of the 64-point column NTTs are implemented with (8 * 8)-point

CTFNT (4096-point NTT = (64 * (8 * 8))-point CTNTT). We set this 4096-point

NTT as base case by fixing N1 = 4096 and configure only N2 at the values of 4,

8 and 12 to compute NTT for NTT size of 16384, 32768 and 65536 respectively.

Table 4.3 CTNTT decomposition and multiplication size supported

 NTTSIZE,

N

N1 N2 CTFNT

decomposition

 Operand

size (bit)

Product

size (bit)

1 4096 4096 1 1 * (64 * (8 * 8)) 49,152 96K

2 16384 4096 4 4 * (64 * (8 * 8)) 196,608 384K

3 32768 4096 8 8 * (64 * (8 * 8)) 393,216 768K

4 65536 4096 16 16 * (64 * (8 *

8))

786,432 1,536K

66

Table 4.3 shows the size of multiplication operands supported and the level of

CTFNT decomposition of our implementation. All four of the NTTs are

implemented with three levels of CTFNT.

• First level : N = N1 * N2

• Second level : N1 = N11 * N12 → N = (N11 * N12) * N2

• Third level : N11 = N111 * N112 → N = ((N111 * N112) * N12) * N2

In our implementation, the second and third level of the CTFNT decomposition

are done symmetrically, where the number of row NTTs is equal to the number

of column NTTs (e.g.: Let N1 = N2, hence N = N1
2 or N = N2

2). Only one set of

precomputed twiddle factors is needed to store into GPU as they are the same

for both of the CTFNT’s columns NTTs and row NTTs, hence reduced the

memory required.

67

4.3.1.2 CTFNT Kernels Implementation

Three GPU kernels are designed to compute CTFNT for both the multiplication

operands simultaneously. Each of these kernels in charge of handling each of the

three steps of the first level CTNTT:

a) Kernel 1: N2 number of column NTTs (N2 * N1-point NTTs)

b) Kernel 2: Twiddle Factors Multiplication (N point-wise multiplication)

c) Kernel 3: N1 number of row NTTs (N1 * N2-point NTTs)

In the first kernel, a block of 64 threads are designed to compute the base case,

4096-point NTT by dividing it into (64 * 64)-point CTFNT, where each of these

threads compute a single 64-point NTT independently. These 64-point NTTs are

further divided into (8 * 8)-point CTFNT within the threads themselves. A total

number of (2 * N2) of these blocks are launched in this kernel to compute the

column NTTs of the first level CTFNT in our implementation, where the lower

N2 blocks (block 0 to block N2 – 1) compute forward column NTTs for operand

X while upper N2 blocks (block N2 to block 2 * N2 – 1) compute forward column

NTTs for operands Y. In short, the first kernel is used to compute N2 number of

4096-point column NTTs for both of the multiplication operands. Figure 4.8

illustrates the blocks and threads allocation in first kernel.

Figure 4.8 CTFNT First Kernel

68

The second kernel is used for twiddle factors multiplication, which perform one

to one multiplication of the transformed data from the first kernel with the

twiddle factors of their respective indices. N number of threads are spawned

where eat of the threads will perform one multiplication for operand X and one

multiplication for operand Y. Since the maximum number of threads can be

spawned in a single block is limited to 1024, N/1024 number of blocks are

launched to have N number of threads. Figure 4.9 illustrates the blocks launched

and threads distribution.

Figure 4.9 CTFNT Second Kernel

The third kernel is used to compute N1 number of row NTTs, which is equal to

4096 N2 point-NTTs as the value of N1 is fixed at the value of 4096 in our

implementation. In this kernel, we launch 8 blocks with 1024 threads each,

where block 0 to block 3 is the lower set of block and block 4 to block 7 is the

upper set of block. Hence, both sets of block will have a total of 4096 threads

each. The lower set of block computes row NTTs for operand X whereas the

upper set of block computes row NTTs for operand Y. Figure 4.10 shows the

blocks and threads distribution for the third kernel.

69

Figure 4.10 CTFNT Third Kernel

Each of the blocks is used to compute 1024 N2-point row NTTs, where each of

the threads within the block is in charge of computing a single N2-point row

NTTs. Hence, the lower or upper set alone is capable of computing 4096 N2-

point NTTs (4 blocks * 1024 threads * N2 –point NTT = 4096 N2 point-NTTs).

For NTT size equal to 4096, only kernel one is needed to complete the

transformation.

70

4.3.2 SSMA Implementation

The SSMA in this work utilized the CTFNT implemented in section 4.3.1.1 to

perform the forward transform for both the input operands. Next, the transformed

operands are sent to another GPU kernel to perform convolution (point-wise-

multiplication of the operands in frequency domain). This convolution kernel

implementation is similar to the kernel 2 of CTNTT implementation as discussed

in section 4.3.1.2, except that the inputs are both the operands instead of the

operands with the precomputed twiddle factors. The CTFNT from the previous

section is used for the inverse CTFNT part of the SSMA with slightly

modifications:

1) Only half of the blocks are launched as there is only one operand Only

half of the blocks are launched as there is only one operand (the

convolution product, Z) has perform inverse transformation;

2) The twiddle factors of inverse transform are used instead of forward

transform;

3) The forth kernel, kernel 4 is implemented for the modular multiplicative

inverse N-1 multiplication needed for inverse transform;

The kernel 4 is similar to the convolution kernel in this SSMA implementation,

except that the first input is the product, Z while the second input of the function

is the modular multiplicative inverse, N-1 instead of a series of operand precisions.

The algorithm flow of this SSMA implementation is same as the flow illustrated

in Figure 4.1 with N of larger size. The implementation is illustrated in Figure

4.11 on the following page.

71

Figure 4.11 SSMA kernels implementation

72

4.4 FPGA Implementation

A hardware module that is capable of computing one level of (4 * 4)-point

CTFNT with multiplication is designed in this work. This module utilized

BRAM to store the intermediate data repeatedly to compute a 256-point NTT.

Extra control circuits are added into the implementation to perform SSMA by

utilizing the developed 256-point NTT module for three NTTs (two forward and

one inverse) and convolution. This SSMA design is able to compute

multiplication of 3072-bit.

The hardware modules in this work are designed using Verilog HDL. The

functional and timing behavior verification of the designed hardware are done in

Vivado HLx edition 2016.3 EDA tool. The clock speed is configured at 20MHz

the targeted FPGA board: Nexys4 DDR board with Xilinx Artix-7 FPGA (part

number = xc7a100tcsg324-1).

Figure 4.12 FPGA development cycle

Figure 4.12 shows the development cycle of a FPGA design used in our

implementation. Starting with designing the hardware modules in Verilog HDL,

followed by simulation to verify the functional behavior of the design using

Modelsim. In this phase, the number of clock cycles required to process the

73

intended operation will be shown regardless of the clock frequency. Next, the

verified design is ported and synthesized in Xilinx Vivado. This is to ensure that

the design can be developed into an actual hardware and an estimation of

hardware resources utilization on a targeted FPGA board will be shown. Lastly,

the synthesized design is implemented to the target board during the

implementation phase based on the design constraints. This is the most critical

phase throughout the development as the implementation result will show

whether the synthesized design can meet the timing requirement decided by the

developer. The implementation result will also provide the developer the power

consumption of the design. The development will go back to the previous phase

for optimization or when any error(s) happened in either one of the phases.

Section 4.4.1, 4.4.2 and 4.4.3 describe three different design and development

phases of this implementation.

74

4.4.1 Preliminary Design: SSMA with typical NTT

Table 4.4 shows an example of how each of the output of an 8-point NTT can be

computed using the forward transform NTT equation from section 3.6.3. Table

4.5 shows a simplified version of Table 4.4 with the addition operators are

omitted for better readability. The indices below indicate the index of the

respective input data.

Table 4.4 Computation Equation of an 8-point NTT

Output, Xj Computation equation

X0 x0g0 + x1g0 + x2g0 + x3g0 + x4g0 + x5g0 + x6g0 + x7g0

X1 x0g0 + x1g1 + x2g2 + x3g3 + x4g4 + x5g5 + x6g6 + x7g7

X2 x0g0 + x1g2 + x2g4 + x3g6 + x4g8 + x5g10 + x6g12 + x7g14

X3 x0g0 + x1g3 + x2g6 + x3g9 + x4g12 + x5g15 + x6g18 + x7g21

X4 x0g0 + x1g4 + x2g8 + x3g12 + x4g16 + x5g20 + x6g24 + x7g28

X5 x0g0 + x1g5 + x2g10 + x3g15 + x4g20 + x5g25 + x6g30 + x7g35

X6 x0g0 + x1g6 + x2g12 + x3g18 + x4g24 + x5g30 + x6g36 + x7g42

X7 x0g0 + x1g7 + x2g14 + x3g21 + x4g28 + x5g35 + x6g42 + x7g49

Table 4.5 Computation Equation of an 8-point NTT (Simplified)

Output, Xj Computation equation

X0 x0g0 x1g0 x2g0 x3g0 x4g0 x5g0 x6g0 x7g0

X1 x0g0 x1g1 x2g2 x3g3 x4g4 x5g5 x6g6 x7g7

X2 x0g0 x1g2 x2g4 x3g6 x4g8 x5g10 x6g12 x7g14

X3 x0g0 x1g3 x2g6 x3g9 x4g12 x5g15 x6g18 x7g21

X4 x0g0 x1g4 x2g8 x3g12 x4g16 x5g20 x6g24 x7g28

X5 x0g0 x1g5 x2g10 x3g15 x4g20 x5g25 x6g30 x7g35

X6 x0g0 x1g6 x2g12 x3g18 x4g24 x5g30 x6g36 x7g42

X7 x0g0 x1g7 x2g14 x3g21 x4g28 x5g35 x6g42 x7g49

Index, i 0 1 2 3 4 5 6 7

From Table 4.5, if only the set of input data, xi is being read from the

computation equation section vertically column-by-column, it is clear that they

are the same for the set of output data, Xj. Likewise, if only the set of twiddle

factors, gij is being read from the computation equation section vertically

75

column-by-column, we notice that the power for the set of twiddle factors are

actually increased by the respective indices of the set of input data as j increased.

These two facts indicate that all of the products of input with their respective

twiddle factors can be reused to compute the subsequence output after computing

current output by multiplying the products with gi instead of gij except for the

first output, X0 where the multiplication with g0 are redundant and can be

neglected. For instance, after computing the summation of products for X1, the

set of product (x0g
0, x1g

1, …, x7g
7) can be fed right back to the circuit, perform

multiplication again with the set of twiddle factors (g1, g2, …, g7) and compute

the summation of product for X2.

Figure 4.13 shows the block diagram of the designed 8-point NTT processing

unit. From Figure 4.13, ip_x0, ip_x1, …, ip_x7 are eight of the input of the 8-

point NTT. This set of input is fed into an adder to compute the sum of product,

which is the output data. At the same time, each of these input data are fed into

a shifter to perform twiddle factors multiplication. The set of output from these

shifters (p0, p1, …, p7) are fed into the next 8-point NTT processing unit to

compute the next output. Figure 4.14 shows how eight of these 8-point NTT

processing units can be instantiated to compute all eight output data.

76

Initial Design

Figure 4.13 Block diagram of 8-point NTT processing unit

Figure 4.14 Block diagram of full 8-point NTT processing unit

Ideally, by instantiating and concatenating eight of the design as shown in Figure

4.14, we are able to compute all of the eight point NTT output in one clock cycle.

However, this implementation is impractical as the output from each of the

individual module are dependent on the output of the previous module. This

creates a very long critical path (from the input of the first module to the last

77

NTT output). For instance, the latency of one individual module (from module

input to module output) is 50ns when synthesized. Thus, the last NTT output

takes 400ns to compute (minimum clock frequency required = 2.5MHz). This

will also cause all the previous modules to be idle once they have computed their

respective output as the next set of 8-point NTT input data have to queue until

the last output data of current 8-point NTT is computed. This architecture design

costs a lot of hardware resources, but only achieve low occupancy, hence it is an

inefficient design. Thus, the design in Figure 4.14 is then modified with

pipelining technique implementation. This implementation technique allowed a

single 8-point NTT processing unit to be reused for all eight points NTT, reduced

the required hardware resources and supported higher clock frequency of

20MHz, which is equal to 50ns period (the latency of a single designed module).

78

Improved Pipelining Design

Figure 4.15 Block diagram of pipelining 8-point NTT processing unit

The modified design with pipelining implementation as shown in Figure 4.15 is

similar to the original design as shown in Figure 4.13, except that a set of

registers are used to store the products for next output and an extra 16-to-8

multiplexer is used to select the input data either from new set of input data or

feedback data from previous clock cycle. Although this design took eight clock

cycle to finish the computation of an 8-point NTT compared to one clock cycle

of the original design, this design supports higher clock frequency. The latency

of this design to complete an 8-point NTT is equal to 50ns * 8 clock cycle =

400ns, same with the original design but about 8 times lesser resources are

required.

The maximum operand size supported for SSMA with 8-point NTT is equal to

(8 / 2) x 24-bit = 96-bit, which is insufficient for cryptosystem. Hence, we further

79

modify the design as shown in Figure 4.15 to support 64-point NTT by

increasing the number of input data and shifters to 64 (maximum operand size:

(64 / 2) x 24-bit = 768-bit, sufficient for ECC). However, the synthesized result

shows an estimated resources utilization of 373.59%. The latency of the

combination circuits in the 64-input adder also increased drastically.

To overcome the problems of resources overutilization and latency, the design

as shown in Figure 4.15 is reduced to compute four data at each clock cycle. A

64-point NTT is being broken down into sixteen parts of four input data each.

At each clock cycle, four input data are processed and hence 16 clock cycles are

needed to process all 64 data for one output. An extra accumulator is added into

the design for the summation of these sixteens parts data. An internal block RAM

is also instantiated in the design to store the intermediate data. Overall, 64 output

required 64/2 x 16 clock cycles = 512 clock cycles (divided by half as half of the

input data are zeroes, summation with them can be neglected). The block

diagram of the design is shown in Figure 4.16.

80

Figure 4.16 Block diagram: 64-point NTT processing unit

81

Two 64-point NTT processing units as shown in Figure 4.16 are instantiated for

the SSMA module. During forward transform mode, one of the processing units

is used to compute NTT for operand X and the other one is used to compute NTT

for operand Y; during inverse transform mode, both of the processing units are

used to compute INTT for the product, Z

Figure 4.17 Block diagram: SSMA module

. Figure 4.17 shown the block diagram of the SSMA module. From Figure 4.17,

the adder with the input connected to the output of both of the NTT processing

units are used to compute addition of two intermediate data during inverse NTT

of product Z while the multiplier with the input connected to the output of both

of the NTT processing units are used for convolution of the SSMA. The 2-to-1

multiplexer follows right after the adder and multiplier are used to select the data

to be stored into the block RAM. The whole SSMA took 1024 clock cycles or

51.2ms latency at 20MHz to complete (The first 512 clock cycles used for two

forward NTTs running in parallel while the last 512 clock cycles are used to

compute inverse NTT and the clock cycles required for convolution are hidden

within the 1024 clock cycles due to pipelining).

82

4.4.1.1 Findings

This implementation is based on a typical NTT with O(N2) computational

complexity. It shows that how an ideal functional behavior simulation of one

clock cycle 8-point NTT design can become be very different compared to the

timing behavior simulation during the synthesize phase. Having only one NTT

output produced at each clock cycle is highly inefficient. Hence, we modified

the design from parallel-in-serial-out design discussed in this section to parallel-

in-parallel-out design in next section.

83

4.4.2 Second Design: SSMA with radix-4 FNT

The goal in this design as compare to our previous preliminary design (Section

4.4.1) is to increase the supported operand size from 768-bit to 3072-bit. In this

implementation, we first compare the level of decomposition of radix-R FNT for

R = 2, 4, 8 and 16, with NTT size, N ranged from 2 to 1024 provided N is a

power-of-2 as shown in Table 4.6. Note that a fully radix-R FNT is only

applicable for N equals to the power of R, so some of the values in the Table is

not available for radix 4, 8 and 16. Figure 4.18 illustrates the number of

decomposition of radix-R FNT for different NTT sizes.

Table 4.6 Level of decomposition of radix-R FNT against NTTSIZE, N

 Level of decomposition, logRN

NTT size, N Radix-2 Radix-4 Radix-8 Radix-16

2 1 - - -

4 2 1 - -

8 3 - 1 -

16 4 2 - 1

32 5 - - -

64 6 3 2 -

128 7 - - -

256 8 4 - 2

512 9 - 3 -

1024 10 5 - -

Figure 4.18 Level of decomposition of radix-R FNT against NTTSIZE, N

R

84

Table 4.6 and Figure 4.18 show that every time when the radix, R is doubled, the

level of decomposition is reduced by half. Algorithmically, a radix-R FNT

processes R number of data at a time. Hence, radix-R FNT with higher value of

R is able to compute an N-point NTT faster. However, increasing the value of R

will reduce the degree of parallelism, which is contradict with our goal of

speeding up the computation by running on multiple processing units.

Furthermore, from hardware development perspective, designing a radix-R FNT

module with higher value of R costs extra resources and increases the

computation latency.

From Figure 4.18, radix-4 FNT is able to show a significant improvement

(reduced level of decomposition, which directly relates to the reduction of

computation time) over radix-2 FNT, but this improvement is diminishing for

the case of radix-8 and radix-16 FNTs. Radix-4 FNT shows an optimum point

of sacrificing a certain degree of parallelism for lesser FNT decomposition level.

Hence, we focus on the implementation using radix-2 and radix-4 FNTs in our

work.

85

4.4.2.1 Radix-2 and radix-4 FNT module

Figure 4.19, 4.19 and 4.20 show the block diagram of our design for a typical

radix-2 FNT module, a radix-4 FNT module built by connecting four radix-2

FNT modules in 2-by-2 manner (denotes as 4r2 FNT module for simplicity) and

a typical radix-4 FNT module respectively. A radix-2 FNT costs 4 clock cycles

to complete. Comparing both of the radix-4 FNT modules as shown in Figure

4.20 and Figure 4.21, the 4r2 FNT module has a latency of 7 clock cycles while

the typical radix-4 FNT module costs only 5 clock cycles, provided all of them

are running at same clock frequency of 20MHz. In term of hardware resources,

the typical radix-4 FNT module also costs one less modular multiplier

submodule and two stages lesser pipeline registers.

In short, the typical radix-4 FNT module is not only has lower latency but also

required lesser resources. Hence, we will be using this typical radix-4 FNT

module for our next implementation.

86

Figure 4.19 Block diagram: radix-2 FNT module

Figure 4.20 Block diagram: radix-4 FNT module built with (2x2) radix-2

modules

Figure 4.21 Block diagram: radix-4 FNT module

87

4.4.2.2 CTFNT Decomposition

Two levels of CTFNT are used in implementing the 256-point NTT. Both levels

of the decomposition are done symmetrically (N1 = N2) to save the memory

required to store the precomputed twiddle factors by sharing them for both the

column and row NTTs of CTFNT. The first level of decomposition divides the

256-point NTT into (16 * 16)-point CTFNT, and each of the 16-point NTTs is

then divided into (4 * 4)-point CTFNT at the second level decomposition. All of

the 4-point NTTs at the second level will be computed using the typical radix-4

CTFNT module discussed in previous section (section 4.4.2.1). Figure 4.22

illustrates the 256-point NTT decomposition used in this implementation.

Figure 4.22 256-point NTT CTFNT decomposition

88

Figure 4.23 shows the block diagram of implementing a SSMA module using

typical radix-4 FNT module. The functions of each part of the blocks are

described as follows:

a) Block RAM, memory unit of the module;

b) Typical radix-4 FNT module, four input and four output;

c) Twiddle factors multipliers;

d) Temporary registers to store the intermediate data of FNT and

convolution unit;

e) Typical radix-4 FNT module, four input and four output;

f) Twiddle factors multipliers;

Figure 4.23 Block diagram: SSMA module

Part (a), (b) and (c) are used to compute column-NTTs, four points at a time. The

results are stored into part (d), the temporary registers and wait until all the

column-NTTs before proceed to row-NTTs. The row-NTTs are handled by part

(e), (f) and (a). The column-NTTs read data from the block RAM and write to

temporary registers; while the row-NTTs read data from the temporary registers

and write back to the block RAM. Part (d) compute the convolution of the SSMA

by reading and writing the data to and from the block RAM without the needs of

intermediate memory.

89

Table 4.7 SSMA operation and clock cycles count

Steps Operation Clock

cycles

(without

pipeline)

Clock

cycles

(partial

pipelined)

1. Fetch four NTT data from BRAM. 1

12
2. Compute one 4-point column NTT. 5

3. Multiply the NTT output with twiddle factors. 2

4. Store the column NTT data into temporary

registers.

1

5. Repeat step (1) to (4) 3 times to complete

(4*4)-point column NTT.

27

6. Fetch four NTT data from temporary

registers.

1

12 7. Compute one 4-point row NTT. 5

8. Multiply the NTT output with twiddle factors. 2

9. Store the row NTT data back to the BRAM. 1

10. Repeat step (6) to (9) 3 times to complete

(4*4)-point row NTT.

27

11. Repeat step (1) to (10) 15 times to complete

(16*16)-point column NTT.

1080 360

12. Repeat step (1) to (11) for (16*16)-point row

NTT.

1152 384

13. Repeat step (1) to (12) for second

multiplication operand.

2304 768

14. Fetch four NTT data from BRAM. 1

67
15. Run convolution of the SSMA, four points at

a time.

2

16. Store results of step (15) back to block RAM. 1

17. Repeat step (14) to (16) sixty three times to

complete full convolution.

126

18. Repeat step (1) to (12) for inverse NTT. 2304 768

 Total: 7042 2371

 Latency(20MHz): 352.1ms 118.55ms

Table 4.7 show the flow of the multiplication and number of clock cycles needed

to complete each of the steps. Table 4.7 states that a total number of 7042 clock

cycles are needed to complete SSMA with 256-point NTT when the design is

not pipelined. Figure 4.24 shows the comparison of the timing diagram of the

pipelined and not pipelined design.

90

However, the pipelined design discusses in this section is actually “partial-

pipelined”. This mean some of the steps can be run concurrently, the clock cycles

are overlapped to improve the latency. The column-NTTs, row-NTTs and

convolution parts are three different parts of the circuit that are pipelined. The

pipelined result is also shown in Table 4.7, where 2371 clock cycles or 118.55ms

is needed to complete the SSMA with 256-points. This timing diagram for this

partial-pipelined design is shown in Figure 4.25.

91

Figure 4.24 Pipelined and non-pipelined timing comparison

Figure 4.25 Timing diagram for partial –pipelined design

92

4.4.2.2 Findings

The problem of this design is the dependency between the column-NTTs, row-

NTTs and convolution, where the row-NTTs have to wait for the column-NTTs

to complete before proceed; and the convolution have to wait for both the

(16*16)-column-NTTs and (16*16)-row-NTTs to complete before it started.

This causes the other two parts have to be idle when one is processing, drastically

reduce the hardware occupancy and efficiency. In our next design, we aimed to

improve this by modifying the circuit to become fully pipelined.

93

4.4.3 Third Design: SSMA with dedicated Radix-4 CTFNT

4.4.3.1 Improved radix-4 CTFNT

The typical radix-4 FNT module as shown in Figure 4.21 utilizes two 64-bit

modular multipliers to perform the twiddle factors multiplication of the 4-points

NTT. The twiddle factors used for this radix-4 NTT are constant values of

0x1000000000000, 0x10000000000002 for forward transform and

0x10000000000002, 0x10000000000003 for inverse transform. The

multiplication with these twiddle factors can be calculated through left shifting

operation for 48-bit, 96-bit and 144-bit respectively, to reduce the hardware

resources needed. The details of design is shown in section 4.4.4.7.

4.4.3.2 Timing performance of 16-point NTT

In this work, three different hardware modules are designed to compute 16-point

NTT as a preliminary study to the performance.

1. First design: A single radix-2 module is used repeatedly to compute the

16-point NTT;

2. Second design: Four radix-2 modules are instantiated to build a radix-4

module as shown in Figure 3.4 to speed up the computation by reducing

memory access to the BRAM at the costs of extra hardware resources;

3. Third design: we propose a novel radix-4 NTT design that is dedicated

for the used with CTFNT implementation as discussed in section 4.4.3.1.

We denote this module as radix-4 CTFNT module. The drawback of this

radix-4 CTFNT module is that the scalability of using it for non-power-

of-4 NTT size is sacrificed

94

Table 4.8 Resource utilization and timing performance for 16-point NTT

Hardware

Design

Resources Timing

Look-

up

Table

(LUTs)

Flip

-

Flop

(FF)

LUTRA

M

BRA

M

DSP Clock

Cycle

Perio

d

(ns)

 Latency

(ns)

Radix-2

NTT

1687 456 3 4 12 36 50 1800

Radix-4

NTT

6662 206

3

68 7 48 20 50 1000

Radix-4

CTFNT

6421 180

5

35 8 45 18 50 900

Table 4.8 shows the hardware resources utilization and timing result of three of

the designs when used to compute 16-point NTT.

Table 4.8 also indicates that our proposed design is able to outperform a typical

radix-4 module (built with four radix-2 modules connected in two-by-two

manner as shown in Figure 3.4) in term of both hardware resources utilization

and timing performance. Although the basic radix-2 NTT module costs lesser

resources compared to our proposed design, our proposed design is able to

compute 16-point NTT with only half of the computation time. This is a

reasonable tradeoff between hardware resources and timing performance.

95

4.4.3.3 Multiple radix-4 column/row-NTTs design

To remove the dependency between the column and row NTTs and convolution

in the design as discussed in section 4.4.2, we modify the design from a

sequential column-NTTs to row-NTTs to a parallel multiple radix-4

column/row-NTTs design, where the set of typical radix-4 FNT modules can be

configured to perform either column or row NTTs. The design is shown in Figure

4.26.

Figure 4.26 Block diagram: multiple radix-4 column/row-NTTs design

Four typical radix-4 FNT modules are instantiated and arranged in parallel as

shown in Figure 4.26 to allow four 4-point NTTs to be computed at the same

time. Multiplexers are used to select the input either from the local set of BRAM

or the other sets. The computed 4-point NTTs results are passed into multipliers

for twiddle factors multiplication before storing back to the BRAM.

96

However, to allow four of the radix-4 FNT modules to compute column-NTTs

or row-NTTs, extra control signals are needed to route the data before storing

them back to the BRAM. Figure 4.27 shows the block diagram of the design

with extra control added.

Figure 4.27 Block diagram: multiple radix-4 column/row-NTTs design

(modified)

Figure 4.27 shows the block diagram from Figure 4.27 modified with extra

control signals. Extra pipeline registers are also added to the output of the

multipliers to avoid collision of data when two or more data are trying to write

into the same BRAM. For instance, when four of the data from the multipliers

are trying to write into BRAM0, the second data will be delayed by one clock

cycle, the third one is delayed by two clock cycles and three clock cycles for the

fourth one. Figure 4.28 illustrates the sequences of the data flow, where the input

are fed in to the module in order and the output are delayed. The delays costs

97

three clock cycles to fill up the pipeline fully but this tradeoff is insignificant as

the full SSMA took 198 clock cycles to compute.

Figure 4.28 Timing diagram for data flow control

The details of this radix-4 CTFNT module is shown in section 4.4.4.7, denotes

as b_r4_ntt. Four of the NTT output from this module are connected to one

multiplier each to form b_r4_ntt_m in section 4.4.4.8. These multipliers are used

for twiddle factors multiplication (step 1b), 2) and 3b) shown in Figure 4.29) and

the convolution in SSMA. Next, four of these b_r4_ntt_m modules are

instantiated as sub-modules to create b_4r4_ntt_m (section 4.4.4.9). If we

describe the process between reading data from BRAM and writing back to it as

a loop, this b_4r4_ntt_m is able to compute one level of (4 * 4)-point CTFNT

multiplication during each loop. Figure 4.29 illustrates the flow of how a full

3072-bit SSMA can be perform using this module as an extension from Figure

4.22.

98

Figure 4.29 SSMA design flow

Every two subsequent steps (including sub-steps) from Figure 4.29 are computed

in one loop, where the first step is the 4-point NTT followed by multiplication.

This multiplication can be twiddle factors multiplication, convolution or

multiplicative inverse multiplication. Step 1a) to 3c) are the process to compute

forward NTT of first multiplication operand, the forward NTT of second

multiplication operand is computed from step 5a) to 7c). Step 9a) to 12) compute

the inverse NTT for the multiplication product. A total number of 12 loops are

needed to complete a 3072-bit SSMA. Note that step 4) is an idle step. This idle

operation is done by performing multiplication with one to the respective data.

Extra control logic can be implemented into the design to bypass this step but

only two clock cycles can be save from the multiplication which is not worth of

the hardware resources. The experimental results of this design is shown in

section 5.3.

99

4.4.4 Hardware Module

This section provides the details of all the hardware modules in this

implementation with interface diagrams and table to describe the functionalities

including each of the input output pins of each of the modules.

4.4.4.1 Design Overview

b_4r4_ntt_m_mem

b_4r4_ntt_m

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_r4_ntt_m
b_r4_ntt b_mulModP

b_mulModP

b_mulModP

b_mulModP

b_bram_ct16

b_bram_16

b_bram_tf16

b_bram_16

b_readdr_gen

Figure 4.30 Design overview

*Modular arithmetic units (b_addModP, b_subModP, b_shl48ModP and

b_shl96ModP) are hidden from Figure 4.24 for readability.

100

4.4.4.2 b_addModP

b_addModP
bi_0[63:0] bo_0[63:0]
bi_1[63:0]

Figure 4.29 Interface diagram: 64-bit modular adder

Table 4.9 Description: 64-bit modular adder

Module name

b_addModP

Functionality

Perform modular addition of two 64-bit operands, with modulus =

0xFFFFFFFF00000001.

Pin name Direction Width (Bits) Function

bo_0 Output 64 Sum of modular addition.

bi_0 Input 64 First operand of modular

addition.

bi_1 Input 64 Second operand of modular

addition.

101

4.4.4.3 b_subModP

b_subModP
bi_0[63:0] bo_0[63:0]
bi_1[63:0]

Figure 4.30 Interface diagram: 64-bit modular subtractor

Table 4.10 Description: 64-bit modular subtractor

Module name

b_subModP

Functionality

Perform modular subtraction of two 64-bit operands, with modulus =

0xFFFFFFFF00000001.

Pin name Direction Width

(Bits)

Function

bo_0 Output 64 Difference of modular

subtraction.

bi_0 Input 64 First operand of modular

subtraction.

bi_1 Input 64 Second operand of modular

subtraction.

102

4.4.4.4 b_shl48ModP

b_shl48ModP
bi_0[63:0] bo_0[63:0]

Figure 4.31 Interface diagram: 64-bit modular 48-bit left shifter

Table 4.11 Description: 64-bit modular 48-bit left shifter

Module name

b_shl48ModP

Functionality

Perform modular left shift 48-bit of input 64-bit operand, with modulo =

0xFFFFFFFF00000001. Dedicated for the use of twiddle factor multiplication

for 4-points NTT for twiddle factor = 0x1000000000000.

Pin name Direction Width

(Bits)

Function

bo_0 Output 64 Result of modular left shift.

bi_0 Input 64 Input operand of modular left

shift.

103

4.4.4.5 b_shl96ModP

b_shl96ModP
bi_0[63:0] bo_0[63:0]

Figure 4.32 Interface diagram: 64-bit modular 96-bit left shifter

Table 4.12 Description: 64-bit modular 96-bit left shifter

Module name

b_shl96ModP

Functionality

Perform modular left shift 96-bit of input 64-bit operand, with modulo =

0xFFFFFFFF00000001. Dedicated for the use of twiddle factor multiplication

for 4-points NTT for twiddle factor = (0x1000000000000)2.

Pin name Direction Width

(Bits)

Function

bo_0 Output 64 Result of modular left shift.

bi_0 Input 64 Input operand of modular left

shift.

104

4.4.4.6 b_mulModP

b_mulModP
bi_0[63:0] bo_0[63:0]
bi_1[63:0]

Figure 4.33 Interface diagram: 64-bit modular multiplier

Table 4.13 Description: 64-bit modular multipler

Module name

b_mulModP

Functionality

Perform modular multiplication of two 64-bit operands, with modulus =

0xFFFFFFFF00000001 in two clock cycles.

Pin name Direction Width

(Bits)

Function

bo_0 Output 64 Product of modular multiplication.

bi_0 Input 64 First operand of modular

multiplication.

bi_1 Input 64 Second operand of modular

multiplication.

105

Figure 4.34 Internal Interface diagram: 64-bit modular multiplier

106

4.4.4.7 b_r4_ntt

b_r4_ntt
bi_0[63:0] bo_0[63:0]
bi_1[63:0] bo_1[63:0]
bi_2[63:0] bo_2[63:0]
bi_3[63:0] bo_3[63:0]

bi_fw_iv_n
bi_rst
bi_clk

Figure 4.35 Interface diagram: 4-point NTT processing unit

Table 4.14 Description: 4-point NTT processing unit

Module name

b_r4_ntt

Functionality

Compute 4-points NTT, perform forward transform or inverse transform

based on selected mode. The output with larger indices are designed to be one

clock cycle later than smaller output to meet the requirements for the memory

access patterns.

Pin name Direction Width

(Bits)

Function

bo_0 Output 64 First output of transformation.

bo_1 Output 64 Second output of transformation.

bo_2 Output 64 Third output of transformation.

bo_3 Output 64 Forth output of transformation.

bi_0 Input 64 First input of transformation.

bi_1 Input 64 Second input of transformation.

bi_2 Input 64 Third input of transformation.

bi_3 Input 64 Forth input of transformation.

107

Continued from Table 4.14

Pin name Direction Width

(Bits)

Function

bi_fw_iv_n Input 1 Select transformation mode:

0: Inverse transform.

1: Forward transform.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

108

Figure 4.36 Internal Interface diagram: 4-point NTT processing unit

109

4.4.4.8 b_r4_ntt_m

b_r4_ntt_m
bi_0[63:0] bo_0[63:0]
bi_1[63:0] bo_1[63:0]
bi_2[63:0] bo_2[63:0]
bi_3[63:0] bo_3[63:0]

bi_tf0[63:0]
bi_tf1[63:0]
bi_tf2[63:0]
bi_tf3[63:0]

bi_fw_iv_n
bi_rst
bi_clk

Figure 4.37 Interface diagram: 4-point NTT processing unit with

multiplier

Table 4.15 Description: 4-point NTT processing unit with multiplier

Module name

b_r4_ntt_m

Functionality

Compute 4-points NTT with twiddle factors multiplication. Built by

connecting four b_mulModP to each of the output of b_r4_ntt.

Pin name Direction Width

(Bits)

Function

bo_0 Output 64 First output of transformation.

bo_1 Output 64 Second output of transformation.

bo_2 Output 64 Third output of transformation.

bo_3 Output 64 Forth output of transformation.

bi_0 Input 64 First input of transformation.

bi_1 Input 64 Second input of transformation.

bi_2 Input 64 Third input of transformation.

110

Continued from Table 4.15

Pin name Direction Width

(Bits)

Function

bi_3 Input 64 Forth input of transformation.

bi_tf0 Input 64 First twiddle factor input.

bi_tf1 Input 64 Second twiddle factor input.

bi_tf2 Input 64 Third twiddle factor input.

bi_tf3 Input 64 Forth twiddle factor input.

bi_fw_iv_n Input 1 Select transformation mode:

0: Inverse transform.

1: Forward transform.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

111

Figure 4.37 Internal Interface diagram: 4-point NTT processing unit with

multiplier

112

4.4.4.9 b_4r4_ntt_m

b_4r4_ntt_m
bi_00[63:0] bo_00[63:0]
bi_01[63:0] bo_01[63:0]
bi_02[63:0] bo_02[63:0]
bi_03[63:0] bo_03[63:0]
bi_04[63:0] bo_04[63:0]
bi_05[63:0] bo_05[63:0]
bi_06[63:0] bo_06[63:0]
bi_07[63:0] bo_07[63:0]
bi_08[63:0] bo_08[63:0]
bi_09[63:0] bo_09[63:0]
bi_10[63:0] bo_10[63:0]
bi_11[63:0] bo_11[63:0]
bi_12[63:0] bo_12[63:0]
bi_13[63:0] bo_13[63:0]
bi_14[63:0] bo_14[63:0]
bi_15[63:0] bo_15[63:0]

bi_tf00[63:0]
bi_tf01[63:0]
bi_tf02[63:0]
bi_tf03[63:0]
bi_tf04[63:0]
bi_tf05[63:0]
bi_tf06[63:0]
bi_tf07[63:0]
bi_tf08[63:0]
bi_tf09[63:0]
bi_tf10[63:0]
bi_tf11[63:0]
bi_tf12[63:0]
bi_tf13[63:0]
bi_tf14[63:0]
bi_tf15[63:0]

bi_fw_iv_n
bi_rst
bi_clk

Figure 4.38 Interface diagram: 16-point NTT processing unit

113

Table 4.16 Description: 16-point NTT processing unit

Module name

b_4r4_ntt_m

Functionality

Compute four 4-points NTTs with twiddle factors multiplication. Compose of

four units of b_r4_ntt.

Pin name Direction Width

(Bits)

Function

bo_00 Output 64 First output of first 4-points NTT.

bo_01 Output 64 Second output of first 4-points

NTT.

bo_02 Output 64 Third output of first 4-points NTT.

bo_03 Output 64 Forth output of first 4-points NTT.

bo_04 Output 64 First output of second 4-points

NTT.

bo_05 Output 64 Second output of second 4-points

NTT.

bo_06 Output 64 Third output of second 4-points

NTT.

bo_07 Output 64 Forth output of second 4-points

NTT.

bo_08 Output 64 First output of third 4-points NTT.

bo_09 Output 64 Second output of third 4-points

NTT.

bo_10 Output 64 Third output of third 4-points NTT.

bo_11 Output 64 Forth output of third 4-points NTT.

bo_12 Output 64 First output of forth 4-points NTT.

bo_13 Output 64 Second output of forth 4-points

NTT.

bo_14 Output 64 Third output of forth 4-points NTT.

bo_15 Output 64 Forth output of forth 4-points NTT.

bi_00 Input 64 First input of first 4-points NTT.

bi_01 Input 64 Second input of first 4-points NTT.

114

Continued from Table 4.16

Pin name Direction Width

(Bits)

Function

bi_02 Input 64 Third input of first 4-points NTT.

bi_03 Input 64 Forth input of first 4-points NTT.

bi_04 Input 64 First input of second 4-points NTT.

bi_05 Input 64 Second input of second 4-points

NTT.

bi_06 Input 64 Third input of second 4-points NTT.

bi_07 Input 64 Forth input of second 4-points NTT.

bi_08 Input 64 First input of third 4-points NTT.

bi_09 Input 64 Second input of third 4-points NTT.

bi_10 Input 64 Third input of third 4-points NTT.

bi_11 Input 64 Forth input of third 4-points NTT.

bi_12 Input 64 First input of forth 4-points NTT.

bi_13 Input 64 Second input of forth 4-points NTT.

bi_14 Input 64 Third input of forth 4-points NTT.

bi_15 Input 64 Forth input of forth 4-points NTT.

bi_tf00 Input 64 First twiddle factor of first 4-points

NTT.

bi_tf01 Input 64 Second twiddle factor of first 4-

points NTT.

bi_tf02 Input 64 Third twiddle factor of first 4-points

NTT.

bi_tf03 Input 64 Forth twiddle factor of first 4-points

NTT.

bi_tf04 Input 64 First twiddle factor of second 4-

points NTT.

bi_tf05 Input 64 Second twiddle factor of second 4-

points NTT.

bi_tf06 Input 64 Third twiddle factor of second 4-

points NTT.

bi_tf07 Input 64 Forth twiddle factor of second 4-

points NTT.

115

Continued from Table 4.16

Pin name Direction Width

(Bits)

Function

bi_tf08 Input 64 First twiddle factor of third 4-points

NTT.

bi_tf09 Input 64 Second twiddle factor of third 4-

points NTT.

bi_tf10 Input 64 Third twiddle factor of third 4-

points NTT.

bi_tf11 Input 64 Forth twiddle factor of third 4-

points NTT.

bi_tf12 Input 64 First twiddle factor of forth 4-points

NTT.

bi_tf13 Input 64 Second twiddle factor of forth 4-

points NTT.

bi_tf14 Input 64 Third twiddle factor of forth 4-

points NTT.

bi_tf15 Input 64 Forth twiddle factor of forth 4-

points NTT.

bi_fw_iv_n Input 1 Select transformation mode:

0: Inverse transform.

1: Forward transform.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

116

4.4.4.10 b_4r4_ntt_m_mem

b_4r4_ntt_m_mem
bi_mem_sel0[1:0]
bi_mem_sel1[1:0]
bi_mem_sel2[1:0]
bi_mem_sel3[1:0]

bi_ntt_in_sel
bi_fw_iv_n
bi_y_x_n
bi_wr_en0
bi_convo
bi_rst
bi_clk

Figure 4.39 Interface diagram: 16-point NTT processing unit with

memory unit

Table 4.17 Description: 16-point NTT processing unit with memory unit

Module name

b_4r4_ntt_m_mem

Functionality

Compute four 4-points NTTs with twiddle factors multiplication at once.

Reading the data from the memory and writing them back to the memory after

execution, repeat until a 256-points NTT or a full SSMA is computed.

Compose of the main execution unit, b_4r4_ntt with the main memory unit,

b_bram_ct16.

117

Continued from Table 4.17

Pin name Direction Width

(Bits)

Function

bi_mem_in_sel0 Input 2 Select signal for first set

memory input:

00: Input from NTT module first

output.

01: Input from NTT module

second output.

10: Input from NTT module

third output.

11: Input from NTT module

forth output.

bi_mem_in_sel1 Input 2 Select signal for second set

memory input:

00: Input from NTT module first

output.

01: Input from NTT module

second output.

10: Input from NTT module

third output.

11: Input from NTT module

forth output.

bi_mem_in_sel2 Input 2 Select signal for third set

memory input:

00: Input from NTT module first

output.

01: Input from NTT module

second output.

10: Input from NTT module

third output.

11: Input from NTT module

forth output.

118

Continued from Table 4.17

Pin name Direction Width

(Bits)

Function

bi_mem_in_sel3 Input 2 Select signal for forth set

memory input:

00: Input from NTT module first

output.

01: Input from NTT module

second output.

10: Input from NTT module

third output.

11: Input from NTT module

forth output.

bi_ntt_in_sel Input 1 Select signal for NTT input

mode:

0: Normal.

1: Shuffle.

bi_fw_iv_n Input 1 Select transformation mode:

0: Inverse transform.

1: Forward transform.

bi_y_x_n Input 1 Select signal for read memory:

0: BRAM for operand X.

1: BRAM for operand Y.

bi_wr_en0 Input 1 Enable signal for write memory:

0: Disable.

1: Enable.

bi_convo Input 1 Select multiplication mode:

0: Twiddle factors.

1: Convolution.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

119

4.4.4.11 b_bram_16

b_bram_16
bi_00[63:0] bo_00[63:0]
bi_01[63:0] bo_01[63:0]
bi_02[63:0] bo_02[63:0]
bi_03[63:0] bo_03[63:0]
bi_04[63:0] bo_04[63:0]
bi_05[63:0] bo_05[63:0]
bi_06[63:0] bo_06[63:0]
bi_07[63:0] bo_07[63:0]
bi_08[63:0] bo_08[63:0]
bi_09[63:0] bo_09[63:0]
bi_10[63:0] bo_10[63:0]
bi_11[63:0] bo_11[63:0]
bi_12[63:0] bo_12[63:0]
bi_13[63:0] bo_13[63:0]
bi_14[63:0] bo_14[63:0]
bi_15[63:0] bo_15[63:0]

bi_readdr_0
bi_wraddr_0
bi_wraddr_1
bi_wraddr_2
bi_wraddr_3

bi_wr_en0
bi_wr_en1
bi_wr_en2
bi_wr_en3

bi_ram_en
bi_rst
bi_clk

Figure 4.40 Interface diagram: Memory unit for operands

Table 4.18 Description: Memory unit for operands

Module name

b_bram_16

Functionality

Memory unit to store operands with sixteen input and sixteen output.

Implemented with sixteen block RAM, each consists of sixteen registers

with 64-bit each.

Pin name Direction Width

(Bits)

Function

bo_00 Output 64 First output of first 4-points NTT.

bo_01 Output 64 Second output of first 4-points

NTT.

bo_02 Output 64 Third output of first 4-points NTT.

120

Continued from Table 4.18

Pin name Direction Width

(Bits)

Function

bo_03 Output 64 Forth output of first 4-points NTT.

bo_04 Output 64 First output of second 4-points

NTT.

bo_05 Output 64 Second output of second 4-points

NTT.

bo_06 Output 64 Third output of second 4-points

NTT.

bo_07 Output 64 Forth output of second 4-points

NTT.

bo_08 Output 64 First output of third 4-points NTT.

bo_09 Output 64 Second output of third 4-points

NTT.

bo_10 Output 64 Third output of third 4-points NTT.

bo_11 Output 64 Forth output of third 4-points NTT.

bo_12 Output 64 First output of forth 4-points NTT.

bo_13 Output 64 Second output of forth 4-points

NTT.

bo_14 Output 64 Third output of forth 4-points NTT.

bo_15 Output 64 Forth output of forth 4-points NTT.

bi_00 Input 64 First input of first 4-points NTT.

bi_01 Input 64 Second input of first 4-points NTT.

bi_02 Input 64 Third input of first 4-points NTT.

bi_03 Input 64 Forth input of first 4-points NTT.

bi_04 Input 64 First input of second 4-points NTT.

bi_05 Input 64 Second input of second 4-points

NTT.

bi_06 Input 64 Third input of second 4-points

NTT.

bi_07 Input 64 Forth input of second 4-points

NTT.

bi_08 Input 64 First input of third 4-points NTT.

121

Continued from Table 4.18

Pin name Direction Width

(Bits)

Function

bi_09 Input 64 Second input of third 4-points

NTT.

bi_10 Input 64 Third input of third 4-points NTT.

bi_11 Input 64 Forth input of third 4-points NTT.

bi_12 Input 64 First input of forth 4-points NTT.

bi_13 Input 64 Second input of forth 4-points

NTT.

bi_14 Input 64 Third input of forth 4-points NTT.

bi_15 Input 64 Forth input of forth 4-points NTT.

bi_readdr_0 Input 4 Read address for the memory

output.

bi_wraddr_0 Input 4 Write address for first set of data.

bi_wraddr_1 Input 4 Write address for second set of

data.

bi_wraddr_2 Input 4 Write address for third set of data.

bi_wraddr_3 Input 4 Write address for forth set of data.

bi_wr_en0 Input 1 Write enable signal for first set of

memory:

0: Disable.

1: Enable.

bi_wr_en1 Input 1 Write enable signal for second set

of memory:

0: Disable.

1: Enable.

bi_wr_en2 Input 1 Write enable signal for third set of

memory:

0: Disable.

1: Enable.

bi_wr_en3 Input 1 Write enable signal for forth set of

memory:

0: Disable.

1: Enable.

122

Continued from Table 4.18

Pin name Direction Width

(Bits)

Function

bi_ram_en Input 1 Enable signal for the entire unit:

0: Disable.

1: Enable.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

123

4.4.4.12 b_bram_tf16

b_bram_tf16
bi_readdr_tf[6:0] bo_00[63:0]
 bo_01[63:0]
 bo_02[63:0]
 bo_03[63:0]
 bo_04[63:0]
 bo_05[63:0]
 bo_06[63:0]
 bo_07[63:0]
 bo_08[63:0]
 bo_09[63:0]
 bo_10[63:0]
bi_fw_iv_n bo_11[63:0]
bi_rst bo_12[63:0]
bi_clk bo_13[63:0]
 bo_14[63:0]
 bo_15[63:0]

Figure 4.41 Interface diagram: Memory unit for twiddle factors

Table 4.19 Description: Memory unit for twiddle factors

Module name

b_bram_tf16

Functionality

Memory unit (read only) used to store precomputed twiddle factors.

Implemented with sixteen block RAM, each consists of sixteen registers

with 64-bit each.

Pin name Direction Width

(Bits)

Function

bo_00 Output 64 First twiddle factor of first 4-points

NTT.

bo_01 Output 64 Second twiddle factor of first 4-

points NTT.

bo_02 Output 64 Third twiddle factor of first 4-points

NTT.

bo_03 Output 64 Forth twiddle factor of first 4-points

NTT.

bo_04 Output 64 First twiddle factor of second 4-

points NTT.

124

Continued from Table 4.19

Pin name Direction Width

(Bits)

Function

bo_05 Output 64 Second twiddle factor of second 4-

points NTT.

bo_06 Output 64 Third twiddle factor of second 4-

points NTT.

bo_07 Output 64 Forth twiddle factor of second 4-

points NTT.

bo_08 Output 64 First twiddle factor of third 4-points

NTT.

bo_09 Output 64 Second twiddle factor of third 4-

points NTT.

bo_10 Output 64 Third twiddle factor of third 4-

points NTT.

bo_11 Output 64 Forth twiddle factor of third 4-

points NTT.

bo_12 Output 64 First twiddle factor of forth 4-points

NTT.

bo_13 Output 64 Second twiddle factor of forth 4-

points NTT.

bo_14 Output 64 Third twiddle factor of forth 4-

points NTT.

bo_15 Output 64 Forth twiddle factor of forth 4-

points NTT.

bi_readdr_tf Input 7 Read address for the memory

output.

bi_fw_iv_n Input 1 Select twiddle factor for

transformation mode:

0: Inverse transform.

1: Forward transform.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

125

4.4.4.13 b_bram_ct16

b_bram_ct16
bi_00[63:0] bo_00[63:0]
bi_01[63:0] bo_01[63:0]
bi_02[63:0] bo_02[63:0]
bi_03[63:0] bo_03[63:0]
bi_04[63:0] bo_04[63:0]
bi_05[63:0] bo_05[63:0]
bi_06[63:0] bo_06[63:0]
bi_07[63:0] bo_07[63:0]
bi_08[63:0] bo_08[63:0]
bi_09[63:0] bo_09[63:0]
bi_10[63:0] bo_10[63:0]
bi_11[63:0] bo_11[63:0]
bi_12[63:0] bo_12[63:0]
bi_13[63:0] bo_13[63:0]
bi_14[63:0] bo_14[63:0]
bi_15[63:0] bo_15[63:0]

bi_readdr_tf[6:0] bo_tf00[63:0]
bi_readdr_0[3:0] bo_tf01[63:0]

 bo_tf02[63:0]
bi_wraddr_0[4:0] bo_tf03[63:0]
bi_wraddr_1[3:0] bo_tf04[63:0]
bi_wraddr_2[3:0] bo_tf05[63:0]
bi_wraddr_3[3:0] bo_tf06[63:0]

 bo_tf07[63:0]
bi_wr_en0 bo_tf08[63:0]
bi_wr_en1 bo_tf09[63:0]
bi_wr_en2 bo_tf10[63:0]
bi_wr_en3 bo_tf11[63:0]

 bo_tf12[63:0]
bi_y_x_n bo_tf13[63:0]
bi_convo bo_tf14[63:0]

 bo_tf15[63:0]
bi_rst
bi_clk

Figure 4.42 Interface diagram: Full memory unit

Table 4.20 Description: Full memory unit

Module name

b_bram_ct16

Functionality

Main memory unit consists one b_bram_tf16 and two b_bram_16 (one for

operand X and one for operand Y) with control logic to select the block

output.

126

Continued from Table 4.20

Pin name Direction Width

(Bits)

Function

bo_00 Output 64 First output for first 4-points NTT.

bo_01 Output 64 Second output for first 4-points

NTT.

bo_02 Output 64 Third output for first 4-points NTT.

bo_03 Output 64 Forth output for first 4-points NTT.

bo_04 Output 64 First output for second 4-points

NTT.

bo_05 Output 64 Second output for second 4-points

NTT.

bo_06 Output 64 Third output for second 4-points

NTT.

bo_07 Output 64 Forth output for second 4-points

NTT.

bo_08 Output 64 First output for third 4-points NTT.

bo_09 Output 64 Second output for third 4-points

NTT.

bo_10 Output 64 Third output for third 4-points

NTT.

bo_11 Output 64 Forth output for third 4-points

NTT.

bo_12 Output 64 First output for forth 4-points NTT.

bo_13 Output 64 Second output for forth 4-points

NTT.

bo_14 Output 64 Third output for forth 4-points

NTT.

bo_15 Output 64 Forth output for forth 4-points

NTT.

bo_tf00 Output 64 First twiddle factor of first 4-points

NTT.

bo_tf01 Output 64 Second twiddle factor of first 4-

points NTT.

bo_tf02 Output 64 Third twiddle factor of first 4-

points NTT.

127

Continued from Table 4.20

Pin name Direction Width

(Bits)

Function

bo_tf03 Output 64 Forth twiddle factor of first 4-

points NTT.

bo_tf04 Output 64 First twiddle factor of second 4-

points NTT.

bo_tf05 Output 64 Second twiddle factor of second 4-

points NTT.

bo_tf06 Output 64 Third twiddle factor of second 4-

points NTT.

bo_tf07 Output 64 Forth twiddle factor of second 4-

points NTT.

bo_tf08 Output 64 First twiddle factor of third 4-points

NTT.

bo_tf09 Output 64 Second twiddle factor of third 4-

points NTT.

bo_tf10 Output 64 Third twiddle factor of third 4-

points NTT.

bo_tf11 Output 64 Forth twiddle factor of third 4-

points NTT.

bo_tf12 Output 64 First twiddle factor of forth 4-

points NTT.

bo_tf13 Output 64 Second twiddle factor of forth 4-

points NTT.

bo_tf14 Output 64 Third twiddle factor of forth 4-

points NTT.

bo_tf15 Output 64 Forth twiddle factor of forth 4-

points NTT.

bi_00 Input 64 First input of first 4-points NTT.

bi_01 Input 64 Second input of first 4-points NTT.

bi_02 Input 64 Third input of first 4-points NTT.

bi_03 Input 64 Forth input of first 4-points NTT.

bi_04 Input 64 First input of second 4-points NTT.

bi_05 Input 64 Second input of second 4-points

NTT.

128

Continued from Table 4.20

Pin name Direction Width

(Bits)

Function

bi_06 Input 64 Third input of second 4-points

NTT.

bi_07 Input 64 Forth input of second 4-points

NTT.

bi_08 Input 64 First input of third 4-points NTT.

bi_09 Input 64 Second input of third 4-points NTT.

bi_10 Input 64 Third input of third 4-points NTT.

bi_11 Input 64 Forth input of third 4-points NTT.

bi_12 Input 64 First input of forth 4-points NTT.

bi_13 Input 64 Second input of forth 4-points

NTT.

bi_14 Input 64 Third input of forth 4-points NTT.

bi_15 Input 64 Forth input of forth 4-points NTT.

bi_readdr_tf Input 7 Read address for the twiddle factors

memory output.

bi_readdr_0 Input 4 Read address for the operand

memory output.

bi_wraddr_0 Input 4 Write address for first set of data.

bi_wraddr_1 Input 4 Write address for second set of

data.

bi_wraddr_2 Input 4 Write address for third set of data.

bi_wraddr_3 Input 5 Write address for forth set of data.

bi_wr_en0 Input 1 Write enable signal for first set of

memory:

0: Disable.

1: Enable.

bi_wr_en1 Input 1 Write enable signal for second set

of memory:

0: Disable.

1: Enable.

129

Continued from Table 4.20

Pin name Direction Width

(Bits)

Function

bi_wr_en2 Input 1 Write enable signal for third set of

memory:

0: Disable.

1: Enable.

bi_wr_en3 Input 1 Write enable signal for forth set of

memory:

0: Disable.

1: Enable.

bi_y_x_n Input 1 Select signal for read memory:

0: BRAM for operand X.

1: BRAM for operand Y.

bi_convo Input 1 Select multiplication mode:

0: Twiddle factors.

1: Convolution.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

130

4.4.4.14 b_readdr_gen

b_readdr_gen
bi_y_x_n bo_readdr_dt[4:0]
bi_ifft bo_wraddr_dt[4:0]
bi_rst bo_readdr_tf[5:0]
bi_clk

Figure 4.43 Interface diagram: Read/Write address generator

Table 4.21 Description: Read/Write address generator

Module name

b_readdr_gen

Functionality

Generate read and write addresses for operand X, operand Y and twiddle

factors memory units.

Pin name Direction Width

(Bits)

Function

bo_readdr_dt Output 5 Output read address for operand

memory.

bo_wraddr_dt Output 5 Output write address for operand

memory.

bo_readdr_tf Output 6 Output read address for twiddle

factors memory.

bi_y_x_n Input 1 Signal to determine current

processing operand:

0: Operand X.

1: Operand Y.

bi_ifft Input 1 Signal to determine current

transformation mode:

0: Forward transform.

1: Inverse transform.

bi_clk Input 1 Global clock signal.

bi_rst Input 1 Global reset signal.

131

CHAPTER 5

EXPERIMENTAL SETUP AND RESULTS

5.1 Large Integer Multiplication on NVIDIA GPU with Kepler

Architecture

The implementation discusses in this section is performed on NVIDIA GPU

Tesla K40c with Kepler architecture. Consists of 2880 cores or 15 SMX

(Streaming Multiprocessor) with 192 cores each running at 754MHz clock speed

and 12GB DRAM. This implementation is able to perform multiplication with

operand size of 1024-bit, 2048-bit, 4096-bit and 8192-bit in 0.095ms, 0.169ms,

0.444ms, and 1.113ms respectively.

5.1.1 Experimental Setup

The implementation in this work is setup to run bulk multiplication with four

different input operand sizes (1024-bit, 2048-bit, 4096-bit and 8192-bit). Each

of these test cases are set to compute 1, 10, 100, 500, 700 and 900 multiplications

simultaneously. All of the large integer operands are generated randomly. These

bulk multiplication of multiple operand sizes and various number of test cases

are implemented on three different GPU memory levels (global memory, shared

memory and registers).

The implementation is carried out in Visual Studio Community 2013 Version

12.0.31101.00 Update 4, integrated with NVIDIA CUDA 8.0 for GPU

132

programming and the GNU Multiple Precision Arithmetic Library (GMP)

Edition 6.1.0 is used for large integer representation and result correctness

verification. This experiment is run on a PC with Dual Intel Xeon E5-2600v4

and 64GB DDR4 RAM.

5.1.2 Experimental Results

Table 5.1 shows the computational time for different sections of the algorithm

while Table 5.2 shows the total time costs and the average time to compute one

multiplication for each of the test size with different operand size.

133

Table 5.1 Experimental results: Time spent for different sections of

algorithm

Table 5.2 Experimental results: Total time and Average time per

multiplication (ms)

134

Note that in Table 5.2, the CRT, ICRT, CRT (extra), ICRT (extra) and evaluation

sections are run with GMP in CPU and only the SSMA section is run in GPU

for three versions of the implementation. The uses of shuffle instruction in our

implementation shows the best performance compared to the global memory and

shared memory versions, especially when the operand size and test size

increased. We can observe a speedup of 10.26% to 11.45% when comparing the

shuffle instruction method with the global memory version, and 11.64% to

36.54% speedup with the shared memory version.

The results of the shared memory version is slower than the global memory

version as it suffers from bank conflict issue, which we verified by using the

profiling tool (Visual Profiler) provided NVIDIA. Emmart et al. (2011)

mentioned that their work are able to avoid the bank conflict issue by transposing

the twiddle factors stored in the shared memory before row-by-row memory

access. However, performing transpose operation will also introduce memory

access overhead.

135

Figure 5.1 and Figure 5.2 highlights the computation time of only the SSMA

implementation in GPU for 1024-bit, 2048-bit, 4096-bit and 8192-bit.

Figure 5.1 SSMA time in GPU (1024-bit and 2048-bit operands)

Figure 5.2 SSMA time in GPU (4096-bit and 8192-bit operands)

136

Figure 5.3 shows the overall experimental result of our implementation. The y-

axis indicates the computational time in milliseconds, the x-axis indicates

different operand sizes with global memory, shared memory and warp shuffle

instructions and the z-axis indicates different number of test sizes (1, 10, 100,

500, 700 and 900).

Figure 5.3 Overall experimental results

5.1.3 Findings

In GPU, computing arithmetic and logic operations is fast but memory access is

slow. During the computation of NTT, the precomputed twiddle factors are

frequently accessed by the GPU kernels. Hence, the placement of the twiddle

factors in GPU memory is one of the main bottleneck that affect the

implementation performance.

Conventionally, twiddle factors are stored in either global memory (easy access,

accessible for all the threads within the same kernel) or shared memory (shorter

137

memory latency compared to global memory, each of the kernel thread blocks

have to save a copy of the twiddle factors as the shared memory only accessible

for the thread within the same block). In this implementation, we presented a

novel method to store the twiddle factors into GPU registers. The set of twiddle

factors are distributed among the threads within the same warp. Although the

data stored in the registers are only limited to the thread itself, we utilize the

“Shuffle Instruction” feature available from NVIDIA GPU with Kepler

architecture generation to “shuffle” the registers data. This feature enabled the

threads within the same warp to read the register data of each other by shuffling

the values among them when the instruction is called. This method is able to

avoid the bank conflicts issue happened in the implementation with shared

memory.

Besides, our implementation discussed in this section also proposed a technique

to accommodate the missing bits issue introduced by the algorithm used in the

implementation (cascading multiple SSMAs using CRT), by padding an extra

16-bit CRT modulus instead of a large integer of 512-bit to reduce the

computation latency.

138

5.2 Large Integer Multiplication on NVIDIA GPU with Pascal

Architecture

The implementation discusses in this section is performed on NVIDIA GPU

GTX 1070 with Pascal architecture. This GPU consists of 1920 cores or 40 SMX

with 64 cores each running at 1683MHz clock speed and 8GB DRAM. This

implementation is able to achieve fast multiplication of 192K-bit, 384K-bit and

768K-bit in 1.12ms, 1.24ms and 1.37ms.

5.2.1 Experimental Setup

Same with the implementation done in section 5.1, the implementation is carried

out in Visual Studio Community 2013 Version 12.0.31101.00 Update 4,

integrated with NVIDIA CUDA 8.0 for GPU programming and the GNU

Multiple Precision Arithmetic Library (GMP) Edition 6.1.0 is used for large

integer representation and result correctness verification. This experiment is run

on a PC with Intel Core i7 6700K CPU @ 4.00GHz and 16GB DDR4 RAM.

5.2.2 Experimental Results

Table 5.3 shows the comparison of our work with the work done by W. Dai et

al. (Dai and Sunar, 2015), which is using the similar algorithm with our work

but different implementation. The data of timing performance of Dai and Sunar

(2015) shown in Table 5.3 is collected by running their source codes in the same

experimental environment with our work for a fair comparison. The source codes

for the work of Dai and Sunar (2015) is open sources and available on Github.

However, no implementation of SSMA is done by Dai and Sunar (2015). Hence,

139

we only compare our NTT timing performance with their work. The timing

performance of our SSMA implementation is also shown in Table 5.3. Although

we are able to improve our previous work by using similar algorithms as

described in the work of Dai and Sunar (2015), but we are yet to achieve the

same performance as they did in NTT. We extended our work to be used for

SSMA and reserved the possibility to further improve our NTT part in future

work.

Table 5.3 Timing performance comparison

5.2.3 Findings

The implementation discussed in section 4.2 is considered a preliminary study

and research on implementing large integer multiplication algorithm on GPU.

We figured out that the integration of CRT into the implementation to link

multiple SSMAs to achieve multiplication of larger bit size is the bottleneck of

the implementation. Using multiple levels of CTFNT in replaced of CRT is an

alternative method to achieve the same goal. However, implementing higher

level of CTFNT with larger NTT size will sacrifice the advantages of using left

shifting instead of actual multiplication for the multiplication of intermediate

data as the root of unity is not a power of two. The implementation in this work

NTT

size

Timing Performance (ms) SSMA

(bit)

Timing Performance

(ms)

 (Dai and Sunar,

2015)
Our work Our work

4096 - 0.31 48K-bit 1.00

16384 0.035 0.43 192K-bit 1.12

32768 0.040 0.53 384K-bit 1.24

65536 0.065 0.60 768K-bit 1.37

140

proved that this tradeoff is worthwhile as we are able to improve the not only the

timing performance but also the largest operands size supported compared to our

previous work. Besides that, using symmetric decomposition of CTFNT is able

to reduce the GPU memory required to store the pre-computed twiddle factors

as the set of twiddle factors for both column-NTTs and row-NTTs are the same.

141

5.3 FPGA Implementation

5.3.1 Experimental Setup

Three different NTT modules (Radix-2 NTT, Radix-4 NTT, Radix-4 CTFNT)

are designed in this implementation. The preliminary results of computing 16-

point NTT shown in Table 4.4 reveals that the radix-4 CTFNT is able to achieve

faster speed performance compared to radix-2 CTFNT. The radix-4 CTFNT

module that shows the best performance is used as sub-modules to implement

the full 3072-bit multiplier in this work.

5.3.2 Experimental Results

Table 5.4 shows the comparison of our work with the work done by D. D. Chen

et.al in (Chen et al., 2016). We compare our 3K-bit multiplier with the ≈3K-bit

multipliers the work done by Chen et al. (2016), which shows four ≈3K-bit

multipliers implementation with four different parameter settings trade-off

between lesser resources or faster computation time, implemented in Xilinx 13.3

on Xilinx Virtex-6 (xc6vlx130t-1) FPGA. The LUTRAM and Flip-Flop

utilization are not shown in their work.

For fair comparison, we ran our implementation on the same platform (Xilinx

ISE 13.3 on Xilinx Virtex-6 (xc6vlx130t-1) FPGA) with the work by Chen et al.

(2016) as mentioned above. Our work is able to achieve 3.2% faster with extra

40.7% LUTs resources when compared to their work with best timing

performance.

142

Besides, we also implemented our work on Nexys4 DDR board with Xilinx

Artix-7 FPGA (xc7a100tcsg324-1) FPGA, with Xilinx newer generation of EDA

tools, Vivado 2016.3. Comparing Xilinx Virtex and Artix FPGA family, Virtex

is focused on high speed computation while Artix is aimed for low power. This

Artix-7 implementation in our work is targeted for application with low power

requirement such as Internet of Things (IoTs).

Table 5.4 Hardware resource utilization comparison

Hardware design

multiplier size

(bit)

Resource

LUTs BRAM

(36:18)

DSP LUTRAM Flip-

Flop

Our work

[Artix-7]

3072 20129 16:1 192 448 3535

Our work

[Virtex-6]

3072 30489 48:0 192 - -

(Chen et al.,

2016)

[Virtex-6]

3100 21672 33:11 108 - -

3132 12147 22:0 27 - -

3196 11728 22:0 27 - -

3196 5835 11:0 9 - -

143

Table 5.5 Timing performance comparison

Comparing our implementation in Xilinx Artix-7 FPGA to the work of Chen et

al. (2016), our work required lesser clock cycle but we are running at lower clock

frequency. We are able to outperform three of their designs (3132-bit and both

the 3196-bit) that required lesser hardware resources in term of computation time

but not the one with fastest performance. However, our Xilinx Virtex-6 FPGA

implementation is able to outperform all of their implementation in term of

computation time at the costs of extra resources.

Hardware design

multiplier size (bit)

Resource

Clock cycle Period (ns) Latency (ns)

Our work

[Artix-7]

3072 198 50 9900

Our work

[Virtex-6]

3072 198 33 6534

(Chen et al.,

2016)

[Virtex-6]

3100 843 8.0 6740

3132 1701 6.09 10360

3196 3693 6.19 22860

3196 3633 5.09 18490

144

5.3.3 Findings

One of the main focuses in this FPGA implementation is to study the differences

and performance of radix-2 and radix-4 NTT modules. By definition, a radix-R

NTT module computes R-points NTT at each level. We found that using four

radix-2 NTT module to construct one radix-4 NTT module can help to reduce

the number of memory access to the BRAM by using extra registers to store the

intermediate data during the computation of the 4-point NTT, but implementing

a dedicated 4-point NTT module to replace this typical radix-4 NTT module that

fixed the twiddle factors multiplication with left shifting instead of actual

multiplication for the uses of CTFNT can help to further reduced the hardware

resources required.

145

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This research project is divided into two phases, the first phase focuses on large

integer multiplication algorithm implementation on GPU; the second phase aims

to implement the similar algorithm on FPGA.

Two different multiplication algorithms are implemented on two generations of

NVIDIA GPUs: Kepler and Pascal architecture. The implementation on Kepler

architecture performs large integer multiplication using CRT to combine

multiple SSMAs. This implementation is able to compute bulk multiplication

(up to 900 multiplications simultaneously) with operands size of 1024, 2048,

4096 and 8192-bit, which is suitable for the uses of ECC and RSA.

The second GPU implementation is performed on NVIDIA GPU with Pascal

architecture. This implementation focus on a single large integer multiplication

instead of bulk multiplication. In this implementation, multi-level CTFNT

algorithm is used to increase the maximum operand size supported by a single

SSMA, sacrificed the benefits of replacing twiddle factors multiplication with

left shifting but also eliminated the needs of CRT. We also suggested the method

of using symmetrical CTFNT decomposition to save GPU memory usage. This

146

implementation is able to achieve of 192K-bit, 384K-bit and 768K-bit in 1.12ms,

1.24ms and 1.37ms respectively.

We developed both radix-2 and radix-4 NTT modules in our FPGA

implementation to study the performance of them both theoretically and

practically. During the implementation, we presented a novel method of

designing a radix-4 NTT module that are dedicated for the use of CTFNT. This

design utilizes lesser resources compared to typical radix-4 NTT module that

built with four radix-2 NTT modules.

147

6.2 Future Work

The implemented multipliers in both GPU and FPGA can be further extended to

perform modular multiplication and modular exponentiation.

6.2.1 Recommendation for Algorithm Improvement

NTT appears to be the most crucial part of the algorithm as it is the part that

required most of the computation, which directly determine the performance of

the implementation. An optimized modulus uses for the transformation is yet to

be explored. The prime number used for NTT is a special prime number known

as Solinas prime, same with the work done by Emmart et al. (2011). The prime

number from this prime group has several properties (as discussed in section 4.1

and section 4.2) that can help to speed up the computation. In contrast to the

works done by (D. D. Chen et al., 2016; W. Dai et al., 2017), which use pseudo-

Fermat number, which has similar properties but extra parameters have to take

into consideration for certain transformation size. The work done by Baktır S.

Sunar B. in (Baktır and Sunar, 2006) also suggested the uses of Mersenne prime

that allowed modular reduction to be done in frequency domain, which is a very

good advantage for modular exponentiation. However, prime number from this

group do not support much transformation sizes of power of two, which is not

suitable to use with DIT and DIF FFT algorithms.

148

6.2.2 Recommendation for FPGA Improvement

The performance of a FPGA implementation can be determined from several

perspectives such as required hardware resources, timing performance, area-

latency efficiency and power consumption. The work presented in this project

aimed to utilize as much resources as possible to achieve better timing

performance. The main bottleneck in this work is the 64-bit multiplier

(b_mulModP shown in section 4.4.4.6), which causes the clock speed to run at

most 20MHz frequency to meet its timing requirement. Hence, a future work

suggests on increasing and optimizing the number of pipeline stages in the

design to support higher frequency can help to improve the timing performance.

149

REFERENCES

Baktır, S. and Sunar, B., 2006. Finite field polynomial multiplication in the

frequency domain with application to elliptic curve cryptography. International

Symposium on Computer and Information Sciences, pp. 991-1001.

Wang, W., Hu, X., Chen, L., Huang, X., Sunar, B., 2015. “Exploring the

Feasibility of Fully Homomorphic Encryption”, IEEE Transactions on

Computers, 64(3), pp. 698-706.

Ye, J.H.and Shieh, M.-D. 2018. Low-Complexity VLSI Design of Large Integer

Multipliers for Fully Homomorphic Encryption, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 26(9), pp. 1727- 1736.

Bailey, D. H., and Borwein, J. M., 2015. “High-Precision Arithmetic in

Mathematical Physics”, Mathematics, (3), pp. 337-367.

Barakat, M., Saad, W., & Shokair, M. 2018. Implementation of Efficient

Multiplier for High Speed Applications Using FPGA. 2018 13th International

Conference on Computer Engineering and Systems (ICCES).

Cao, X., Moore, C., O’Neill, M., OSullivan, E., and Hanley, N., 2016. Optimised

multiplication architectures for accelerating fully homomorphic encryption,

IEEE Transactions on Computers, vol. 65, no. 9, pp. 2794-2806.

Chen, D.D., Mentens, N., Vercauteren, F., Roy, S.S., Cheung, R.C., Pao, D. and

Verbauwhede, I., 2015. High-Speed Polynomial Multiplication Architecture for

Ring-LWE and SHE Cryptosystems. IEEE Trans. on Circuits and Systems,

62(1), pp.157-166.

Chen, D.D., Yao, G.X., Cheung, R.C., Pao, D. and Koç, C.K., 2016. Parameter

space for the architecture of FFT-based Montgomery modular multiplication.

IEEE Transactions on Computers, 65(1), pp.147-160.

Cheng, J., Grossman, M. and McKercher, T., 2014. Professional Cuda C

Programming. John Wiley & Sons.

Cooley, J., & Tukey, J., 1965. An Algorithm for the Machine Calculation of

Complex Fourier Series. Mathematics of Computation, 19(90), 297-301.

Dai, W. and Sunar, B., 2015. cuHE: A homomorphic encryption accelerator

library. International Conference on Cryptography and Information Security in

the Balkans. pp. 169-186.

Dai, W., Chen, D.D., Cheung, R.C. and Koc, C.K., 2017. Area-time efficient

architecture of FFT-based Montgomery multiplication. IEEE Transactions on

Computers, (1), pp.1-1.

Dai, W., Doröz, Y. and Sunar, B., 2014. September. Accelerating NTRU based

homomorphic encryption using GPUs. High Performance Extreme Computing

Conference (HPEC), pp. 1-6.

150

Doröz, Y., Hu, Y. and Sunar, B., 2014. Homomorphic AES Evaluation using

NTRU. IACR Cryptology ePrint Archive, pp.39.

Doröz, Y., Öztürk, E. and Sunar, B., 2014. A million-bit multiplier architecture

for fully homomorphic encryption. Microprocessors and Microsystems, 38(8),

pp.766-775.

Emeliyanenko, P., 2009. Efficient multiplication of polynomials on graphics

hardware. In International Workshop on Advanced Parallel Processing

Technologies, pp. 134-149.

Emmart, N. and Weems, C.C., 2011. High precision integer multiplication with

a GPU using Strassen's algorithm with multiple FFT sizes. Parallel Processing

Letters, 21(03), pp.359-375.

Emmart, N., Luitjens, J., Weems, C. and Woolley, C., 2016, July. Optimizing

modular multiplication for nvidia's maxwell gpus. Computer Arithmetic

(ARITH), 2016 IEEE 23nd Symposium, pp. 47-54.

Feng, X., & Li, S. 2017. Design of an Area-Effcient Million-Bit Integer

Multiplier Using Double Modulus NTT. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 25(9), pp. 2658–2662.

Harvey, D., van der Hoeven, J., & Lecerf, G., 2016. Even faster integer

multiplication. Journal of Complexity, 36, pp. 1–30.

Honda, T., Ito, Y. and Nakano, K., 2015 A warp-synchronous implementation

for multiple-length multiplication on the GPU. 2015 Third International

Symposium on Computing and Networking (CANDAR), pp. 96-102.

Huang, M., Gaj, K. and El-Ghazawi, T., 2011. New hardware architectures for

Montgomery modular multiplication algorithm. IEEE Transactions on

computers, 60(7), pp.923-936.

Huang, X. and Wang, W., 2015. A novel and efficient design for an RSA

cryptosystem with a very large key size. IEEE Transactions on Circuits and

Systems II: Express Briefs, 62(10), pp.972-976.

Javeed, K., Irwin, D., & Wang, X. 2016. Design and Performance Comparison

of Modular Multipliers Implemented on FPGA Platform. Lecture Notes in

Computer Science, pp. 251–260.

Johansson, F., 2015. “Rigorous high-precision computation of the Hurwitz zeta

function and its derivatives”, Numerical Algorithms, 69(12), pp. 253-270.

Pöppelmann, T. and Güneysu, T., 2012. Towards efficient arithmetic for lattice-

based cryptography on reconfigurable hardware. In International Conference on

Cryptology and Information Security in Latin America, pp. 139-158

Rafferty, C., ONeill, M., & Hanley, N. 2017. Evaluation of Large Integer

Multiplication Methods on Hardware. IEEE Transactions on Computers, 66(8),

pp. 1369–1382.

Schonhage, A. and Strassen, V. 1971. Schnelle Multiplikation grosser Zahlen,

Computing, (7), pp. 281-292.

151

Schönhage, A. and Strassen, V., 1971. Schnelle multiplikation grosser zahlen.

Computing, 7(3-4), pp.281-292.

Senturk, A., & Gok, M. 2014. Sequential Large Multipliers on FPGAs. Journal

of Signal Processing Systems, 81(2), pp. 137–152.

Song, P.-F., Pan, J.-S., Yang, C.-S., & Lee, C.-Y. 2017. An efficient FPGA-

based accelerator design for convolution. 2017 IEEE 8th International

Conference on Awareness Science and Technology (iCAST).

Ullah, S., Rehman, S., Prabakaran, B. S., Kriebel, F., Hanif, M. A., Shafique, M.,

& Kumar, A. 2018. Area-optimized low-latency approximate multipliers for

FPGA-based hardware accelerators. Proceedings of the 55th Annual Design

Automation Conference on - DAC ’18.

Xilinx. 2018. Field Programmable Gate Array (FPGA). [ONLINE] Available at:

https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html.

[Accessed 27 August 2018].

Yang, Y., Wu, C., Li, Z., & Yang, J. 2016. Efficient FPGA implementation of

modular multiplication based on Montgomery algorithm. Microprocessors and

Microsystems, 47, pp. 209–215.

152

ACHIEVEMENT

PUBLICATION

1. Chang, B.C., Goi, B.M., Phan, R.C.W. and Lee, W.K., 2016, December.

Accelerating Multiple Precision Multiplication in GPU with Kepler

Architecture. In High Performance Computing and Communications;

IEEE 14th International Conference on Smart City; IEEE 2nd

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference on

(pp. 844-851). IEEE.

2. Chang, B.C., Goi, B.M., Phan, R.C.W. and Lee, W.K., 2018, April.

Multiplying very Large Integer in GPU with Pascal Architecture. In

2018 IEEE Symposium on Computer Applications & Industrial

Electronics (ISCAIE). IEEE.

3. Chang, B.C., Goi, B.M., Phan, R.C.W. and Lee, W.K., 2018. Evaluation

of Radix-2 and Radix-4 Number Theoretic Transform in FPGA for Large

Value Multiplication. IEEE Transactions on VLSI Systems (Preparing

for submission)

