
DESIGN AND DEVELOPMENT OF A PRACTICAL
MACROSCOPIC WOOD IDENTIFICATION SYSTEM

USING DEEP LEARNING

TANG XIN JIE

MASTER OF ENGINEERING SCIENCE 

LEE KONG CHIAN FACULTY OF ENGINEERING
SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN
APRIL 2019



DESIGN AND DEVELOPMENT OF A PRACTICAL MACROSCOPIC
WOOD IDENTIFICATION SYSTEM USING DEEP LEARNING

By

TANG XIN JIE

A dissertation submitted to the
Lee Kong Chian Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,
in partial fulfillment of the requirements for the degree of

Master of Engineering Science
April 2019

http://fes.utar.edu.my/
http://www.utar.edu.my/


ABSTRACT

Design and Development of a Practical Macroscopic Wood Identification
System Using Deep Learning

Tang Xin Jie

Wood serves as raw material for countless industries due to its unique material char-

acteristics. As such, different wood types are graded and valued accordingly based

on their commercial value as raw material. Hence, wood identification is needed

to ensure the correct wood type for usage. Macroscopic level wood identification

that has been practiced by wood anatomists for decades can identify wood up to

genus level for any commercial timber group. However, this knowledge is difficult

to transfer to the industry non-experts. In this research, a rapid and robust macro-

scopic wood identification system is proposed using deep learning method with

off-the-shelf smart-phone and retrofitted macro-lens as image acquisition device.

Trained deep learning model is deployed as a cloud service accessible via Internet.

This research collects and verifies data by wood anatomists on 100 Malaysian Trop-

ical Timber types using the image acquisition device. A new Convolution Neural

Network BlazeNet designed by the author, achieved better accuracy when bench-

marked against SqueezeNet in this research. A cloud based wood identification

system was deployed accompanied by an iOS application, Mywood-ID.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wood, yielded by tree has been applied in many industries ranging from construc-

tion, paper making, furniture manufacturing and others. Different wood types are

graded commercially based on material characteristics, demand from industries and

rarity respectively. When trading is involved, the seller should declare the wood

types and on the other hand, buyer has to verify the wood types to prevent fraud-

ulent in trading. Therefore, there is need for wood identification to identify wood

types.

Wood trading also gives rise to illegal logging and deforestation, endan-

gering the world. Wood identification provides one of the most valuable supports

in combating illegal logging and timber regulation. Wood identification in macro-

scopic as well as microscopic level are well established among wood anatomists

through active research that spans over decades. Moreover, macroscopic level wood

identification can identify wood up to genus level using 10-15x hand lens by Gas-

son (2011) and Koch et al. (2015). It might not able to identify up to species level

as specified by CITES, however, macroscopic wood identification can serve as a

first line of identification to fight against illegal logging and timber trade for law

enforcement authority. The United Nations Office on Drugs and Crime published

a practical guideline on Best Practice Guide for Forensic Timber Identification in

2016 shows the importance of wood identification as stated in Anonymous (2016).

Macroscopic level wood identification solves one of the problems faced by
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wood industry on identifying wood types and more crucially the commercial value.

However, this knowledge is not easily transferable to the non-expert especially front

line law enforcer as it takes special training to obtain proficiency in the knowledge.

Generally, front line field screening of woods are done with hand lenses and keys,

atlases of woods, or field manuals as in Henderson (1964), Ilic et al. (1991) and

on International Trade in Endangered Species of Wild Fauna and Flora (2002).

Such keys works on the basis of wood structure observed macroscopically shows

abundant, characteristic distinctions typically allowing genus level identification.

For more confident specificity identification, experts have to resolve to microscopic

characters identification in the laboratory. In short, experts with hand lenses are still

the state-of-the-art in the field.

Having stated that, macroscopic wood identification requires professional

training in order for one to reach proficient level. The time and cost in establish-

ing and maintaining this human-based domain knowledge, and the inconsistency

of accuracy among those exercising such knowledge, signifies that this approach

is limited in terms of scaling up to meet the ever-rising demands of wood experts.

Forest Research Institute Malaysia (FRIM) offers charged professional wood iden-

tification services by Wood Anatomy Laboratory. A macroscopic hand lens with

10-15x magnification is used to examine the features on transverse cross section of

wood which is the standard practices by wood anatomists as described in Anony-

mous (2009).

Computer vision has the potential to provide a practical and cost effective

way to complement human-based domain knowledge for field identification of trad-

ing wood. One of the primary advantages of this potential is the reproducibility of

robust identifications, independent of individual human training. Robustness and

reproducibility are the keys in developing such system. Hence, sufficient images of

the woods in question are required for training classifiers and such images should

be captured in the field. Therefore, this motivated the author to create a practical

2



automated wood types identification system that can transfer simple know-how in

wood identification to industry.

In computer vision terms, the problem of image-based wood identification

is one of texture-based image classification when the transverse cross section of

wood is magnified to 10 times or higher. Computer vision techniques are used to

extract the textural features from wood images. These features are then used to train

a classifier using machine learning method. In recent years, deep learning methods

are widely used in the field of pattern recognition with state-of-art performance ei-

ther in supervised or unsupervised learning. Generally, deep learning required large

datasets to train in order to achieve great performance. Therefore, this stresses the

importance of large dataset in order to leverage the prowess of deep learning. Con-

volution Neural Network (ConvNet) which is a type of supervised deep learning

method is an end-to-end method which consists of feature extractor and neural net-

work classifier in an all-in-one architecture. Due to the end-to-end system wide

design, ConvNet can be optimized to achieve great accuracy and outperform exist-

ing computer vision techniques.

In short introduction, this project as initiated by FRIM aims to build a mo-

bile wood types identification system which works on macroscopic transverse cross

section wood images. The overall idea to is replicate human wood anatomist with

deep learning model hosted in the cloud as a service as illustrated in Figure 1.1.

Build upon the works of Siew et al. (2017) and Lee (2016), the author aims

to improve system as in terms of classification accuracy and evaluate and deploy

the system as a service. At current stage of the project, a server is hosted in the

cloud with a deep learning classifier to serve mobile application as client. A simple

overview of the architecture is shown in Figure 1.1, the front end application serves

as a user interface to capture and upload macroscopic wood cross section images to

the server. After classification, the server will then return the probabilities of wood

types based on the uploaded wood type image. The mobile application is intended

3



FIGURE 1.1: Overall project overview.

to be installed in smart-phone coupled with macroscopic lens. As for the server, a

trained ConvNet classifier will be hosted to perform classification.

1.2 Problem Statement

In current practices, macroscopic level wood types identification relies on highly

trained human experts and the availability of such expertise cannot cope with the

demand of international interest in wood identification.

Wood types information is critical for the industry especially custom en-

forcer to tackle illegal wood log exportation. Current practice of human expert

identification is slow, time consuming and non-reproducible as discussed in 1.1.

Hence, this project aims to build a mobile wood types identification system that

can cut down the identification time with close to human or better level of accu-

racy and reproducible, with great mobility and accessibility where users can use

the system everywhere.

The main performance assessment criteria are accuracy in identifying wood

4



types, the time of identification, the mobility of the system and the practicality

of the system. Note that the system is built upon identifying macroscopic cross

section wood type images as this replicates how wood anatomist identifies wood

types. Several computer based wood types identification systems are developed

such as the intelligence system developed by Khalid et al. (2008). The design used

an industrial monochrome camera setup as image acquisition device to capture high

quality monochrome macroscopic cross section wood types images in laboratory.

This intelligence system lacks the mobility and accessibility as it limits the image

acquisition process in the laboratory only.

Based on the work of Siew et al. (2017), deep learning method ConvNet

outperformed the computer vision based methods as well as the state-of-the-art

ConvNet method in terms of accuracy in classification. With the inclusion of

dropout layer and patches prediction, Siew was able to leverage the disadvan-

tage of lack of training data. This shows that deep learning method is suitable

for wood types classification problem. However, the work was only focused on

Forest Species Database Macroscopic (FSD-M) de Paula Filho et al. (2009) dataset

which consists of high quality Brazilian wood types images which are acquired in

the laboratory with industrial standard camera.

Further down the road, Lee (2016) used mobile smart-phone as the image

acquisition device with retrofitted macroscopic lens. This method of image ac-

quisition differs from laboratory practices where carefully prepared wood samples

are captured using macroscopic camera under controlled environment. Using the

trained classifier on laboratory image, the performance was disappointing as great

accuracy could not be reproduced using smart-phone acquired image. The discrep-

ancy of image quality between laboratory and smart-phone images rendered the

laboratory image dataset insignificant for the new system. However, this quality

discrepancy did not hinder the usage of smart-phone due to its mobility and acces-

sibility. A detailed discussion of works by Siew et al. (2017) and Lee (2016) are
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written in Section 2.3.

As discussed in Section 1.1, deep learning method is data driven in order to

achieve great overall performance. Since laboratory images were not transferable

to the new system, there is a need to collect a huge dataset that consists of images

of macroscopic transverse cross section of wood that are prepared using on-the-

field method. The wood samples preparation method which will be discussed in

Section 4.1.3 is the common in-situ practice by human expert in the field. The key

idea is to collect data that closely resembles the field-deployable practices to ensure

practicality.

Having said that, this image digitization process requires wood samples

and human efforts from FRIM. To facilitate the data collection process, the author

proposes to build a web based data collection mobile application with the aim of

building a large-scale professionally annotated and verified wood types images. As

a result, a digitized wood types database or digital Xylarium would be created at

the end of data collection.

With large-scale data collected, the next challenge will be the architecture

of ConvNet which is the core brain of system. An optimized ConvNet architecture

can improve overall classification accuracy while maintaining small footprint of

ConvNet. Therefore, the study into the disign and optimization of ConvNet to suit

this problem is proposed by the author.

Based on the discussion above, the need to create a practical wood type

identification system is summarized as follows:

1. There is a need to improve the classification performance by improving the

ConvNet architecture.

2. There is a need to collect large scale data using the current mobile smart-

phone setup to train the classifier.

6



1.3 Research Question

The goal of this project is to develop a practical mobile wood identification system

using deep learning method. The output of this project is expected to improve the

classification accuracy of the wood type classifier. The general research question is

as follows:

How to build a practical mobile macroscopic wood identification system

using Convolution Neural Network?

The following are sub questions of the main research question:

1. What are the current issues faced by the mobile wood type identification

system?

2. How to improve the accuracy and performance of the wood type identifica-

tion system?

3. How to design a practical mobile wood type identification system and wood

feature highlighting system using deep learning method?

4. How to validate the significance of proposed method on building a practical

mobile wood type identification system?

1.4 Objective

This section discuss the main objectives for this study. The objectives are as fol-

lows:

1. To study and analyze the current issues related to mobile wood identification

system using deep learning method.

2. To develop a practical wood identification service to identify macroscopic

wood types by optimizing ConvNet architecture for classification.
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3. To collect large-scale dataset for classifier and compile a digitized wood types

database that consists of Malaysian Timber group.

4. To evaluate the performance of wood types classification.

1.5 Scope of Work

This section describes the scope of work for the project. The scope involves:

1. The development of data collection and verification application to facilitate

data collection process. The data collector application is designed to be easy

to use with simple annotation with continuous image capturing function. On

the other hand, the verifier application is designed for human expert to verify

the annotation of the collected data.

2. Designing and maintaining the wood type database (DigitalXylarium) based

on the data collected.

3. Compilation of dataset for training, evaluation and testing of classifier.

4. Optimize and improve the classification accuracy and the performance of

wood type classifier.

5. Develop and improve the web based system architecture to ensure the scala-

bility of the system as a service.

1.6 Significance of Study

The outcome of this research is expected to develop a practical mobile macroscopic

wood type identification application that can be used to identify wood types with

high accuracy, high mobility and practical to use. It should replicate or close to
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human accuracy in wood types identification within the seconds of time and can

perform on-the-spot identification.

A new image acquisition method is introduced in this project which consists

of mobile smart-phone and commercially available 21x magnification macroscopic

lens. As opposed to customized imaging device, this setup offers lower cost of

ownership to acquire macroscopic cross sectional of wood images.

Besides that, a digital Xylarium is created at the end of this project. Through

the process the data collection for dataset compilation, at the same time, wood

samples are digitized and stored in digital database for preservation and for future

references. Digitization of the Xylarium provides a pathway to preserve invalu-

able wood samples and serves as a new communication medium to the research

community which is beneficial to FRIM.

1.7 List of Publications

1. Tang, X.J., Tay, Y.H., Siam, N.A. and Lim, S.C., 2017. Rapid and Robust

Automated Macroscopic Wood Identification System using Smartphone with

Macro-lens.arXiv preprint arXiv:1709.08154.

2. Tang, X.J., Tay, Y.H., Siam, N.A. and Lim, S.C., 2018.MyWood-ID: Au-

tomated Macroscopic Wood Identification System using Smartphone and

macro-lens.ACM International Conference Proceeding Series, pp. 37-43.

Publication 1 was submitted to The 9th Pacific Regional Wood Anatomy Confer-

ence (PRWAC 2017).

1.8 Dissertation Outline

The structure of the thesis is as follows:
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• Chapter 2 reviews prior works in the related domain and their influence on

the proposed design.

• Chapter 3 discusses theoretical background of the method used in this disser-

tation.

• Chapter 4 discusses the detailed methodology used in the research.

• The experimental results and analysis on datasets will be detailed in Chapter

5.

• Finally, the conclusion of the research and future works will be discussed in

Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

As discussed in Chapter 1 background study, the literature review will focus on

macroscopic wood types identification problem in particularly identification on

macroscopic transverse cross section of wood samples. When magnified to macro-

scopic level, wood structure observed shows abundant, characteristic distinctions in

textural form as shown in Figure 2.1. At such, this type of identification is catego-

rized under texture recognition problems due to the unique textural features found

on the surface of macroscopic cross section of varying wood types. For texture

recognition, there are two type of approaches for this problem namely handcrafted

feature extraction using computer vision technique coupled with machine learning

method for classification and deep learning method which is an end-to-end method.

This chapter covers review on computer vision methods and deep learning

method in wood type identification in section 2.1 and section 2.2 respectively. Next,

review of current and related work is detailed in section 2.3. The review of deep

learning method covering convolution neural network is detailed in Chapter 3 for a

in depth technical review.

2.1 Computer Vision Methods

For computer vision method, researchers design a feature extractor to extract the

useful information that can describe or represent the texture of images. Encoded

feature vectors are then used to train a machine learning classifier. For wood texture
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FIGURE 2.1: Example of textures observed at macroscopic level on transverse
cross section of Dark Red Meranti captured using smart-phone with macro-lens.

classification, the following authors applied a few computer vision feature extrac-

tor for this problem. Tou et al. (2007) applied Gabor Filters and Gray-level Co-

occurrence Matrix (GLCM). Besides that, Khalid et al. (2008) also applied GLCM

in wood type classification. Nasirzadeh et al. (2010) used the Local Binary Pattern

(LBP) to extract the intensity of the pixels from the images and classify them us-

ing k-nearest neighbour (k-NN) methods into different forest species. Besides that,

Cavalin et al. (2013) proposed the use of a combined classifier, which combines

feature extractor such as color-based feature, GCLM, LBP and Complete Local

Binary Pattern (CLBP).
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Computer vision approaches are a two-part system which consists of feature

extractor and machine learning classifier as shown in the top part of Figure 2.2. The

aim of the feature extractor is to extract interesting features from the images. The

handcrafted features are then encoded or vectorized to represent the input image.

The representations are then be used as training data for machine learning classifier

for classification purpose. Commonly used machine learning classifiers are support

vector machine (SVM), neural network, and clustering methods.

Researchers face two challenges which are the designs of feature extractor

and machine learning classifier algorithm. These methods can perform theoreti-

cally with great accuracy but it may require great effort to design and optimize

the two-part system. Using different feature extraction method might extract more

unique and representative features but the next question lies ahead. Can the clas-

sifier able to classify them well? Classifier plays an important role in the overall

identification problem and tuning and optimizing it is a great challenge.

Since the goal of the system is to have a high accuracy in identifying wood

types, computer vision approaches impose high technical difficulties as researcher

have to optimize the feature extractor as well as the classifier. Good performance

can only be achieved when a good feature extractor meets a good classifier.

2.2 Deep Learning Methods

On the other hand, deep learning method is described as an end-to-end method

where the feature extractor is combined with the classifier as a one-part architec-

ture as shown in the bottom part of Figure 2.2. As such, deep learning method

especially Convolution Neural Networks (ConvNets) have the ability to learn fea-

ture extraction and classification through supervised training from training data. As

opposed to computer vision method, the designing work and the optimization of the

system is now narrowed down to the design of convolution network architecture.

13



FIGURE 2.2: Comparison of Computer Vision Method (Top) and Deep Learning
(Bottom) Design Pipeline

ConvNet approach excels in image classification problem. Hafemann et al.

(2014) proposed using ConvNet on wood texture identification on Forest Species

Database Macroscopic (FSD-M) dataset which consists of Brazilian wood types

published by de Paula Filho et al. (2009). This paper showed that ConvNet outper-

formed the existing computer vision approaches on microscopic wood images with

97.32% accuracy by a margin of 4.32 % to the best computer vision method. A

detailed comparison on classification between computer vision methods and Con-

vNet is shown in the paper. However, the method did not outperform the work by

Cavalin et al. (2013) which combine multiple feature extractors for classification.

Using multiple feature extractors increase the representation of the input images,

hence it can improve the accuracy on classification. However, this approach in-

creases the complexity of the system.

Table 2.1 extracted from Siew et al. (2017) shows the comparison in terms

of accuracy in classification on computer vision based methods and deep learning

methods. The work by Siew et al. (2017) using deep learning method registered

the best accuracy. Deep learning method is easy to design and it outperforms the
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TABLE 2.1: Classification on Macroscopic images dataset from Siew et al. (2017)

Features and Algorithm Accuracy
Color-based features (SVM) 87.53%
Gabor Filters (SVM) 87.66%
ConvNet + Locally Connected Layers 95.77%
CLBP 96.22%
Multiple Classifiers (SVM) 97.77%
Proposed method (Improved ConvNet) 98.16%

existing computer vision based method.

2.3 Current and related work

Current works on wood types identification by Siew et al. (2017) and Lee (2016)

shows good result using deep learning method. The work by Siew et al. (2017)

showed that using Dropout Layer proposed by Srivastava et al. (2014) improved

the classification accuracy of wood types on FSD-M dataset as shown in Table 2.1.

Siew pointed out the issue of lack of training data adversely affected the accuracy

of classification during cross validation because of over-fitting issue in ConvNet.

To counter this problem, patches prediction as well as the inclusion of dropout

layer were introduced to improve the generalization of model. Small patches were

extracted from a input image and used for training. This significantly increases the

size of training dataset.

For classification, a number of patches were extracted from the input im-

age and classified by ConvNet. The patches predictions were then fused using

Vote Rule to obtain the final prediction of wood type. This work shown that the

macroscopic texture on wood types was local and abundantly repetitive among

classes of wood types. However, this work focused on publicly available open-

sourced FSD-M dataset which consists of high quality laboratory prepared macro-

scopic wood images. The method of laboratory image acquisition was described in

de Paula Filho et al. (2009). The wood samples were carefully prepared to expose
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refreshed macroscopic transverse wood structure. Next, these features were then

captured using macroscopic camera with controlled illumination.

Works by Lee (2016), as a continuation of Siew et al. (2017) work, on the

other hand explores the practicality of developing and deploying ConvNet wood

types classifier into a web based mobile service with the introduction of a mo-

bile smart-phone image acquisition method. Mobile smart-phone with retrofitted

macroscopic lens solved the mobility and accessibility problem as it lifted the con-

straint of location of identification where previously only limited in the laboratory

with human wood experts.

Lee (2016) started his work by testing smart-phone acquired images with

the classifier trained on laboratory images. The performance was however, dis-

appointing as previous great accuracy was not reproducible with smart-phone im-

ages. Upon investigation, laboratory trained classifier could not cope with huge

discrepancy of quality in images captured using smart-phone setup. In contrast to

laboratory images, wood samples prepared on the field were rough with a simple

cut using razor blade as depicted in Section 4.1.3. Hence, the wood structures ex-

posed on macroscopic level were less visible. Besides that, structured illumination

is not readily accessible in the field. As a result, smart-phone captured images that

supposed to represent the images in-field demonstrated great variance in terms of

exposure and most importantly the macroscopic visible wood structures. These dis-

crepancies of quality of images obtained by mobile smart-phone camera as shown

in Figure 2.3 hindered the accuracy of classifications substantially using laboratory

trained classifier.

TABLE 2.2: Best classification accuracy from Lee (2016)

Top-N Accuracy
Top-1 78%
Top-3 92%
Top-5 95%
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Lee (2016) work showed that laboratory trained classifier were not trans-

ferable to adapt real world field images in a straightforward way. Besides that, Lee

stressed out the problem of insufficient real world field data as captured using the

smart-phone setup. Huge variation in image quality posed significant hindrance to

laboratory trained classifier. Lee performed data augmentation to increase the data

size of training data with hope to counter the deficit of insufficient training.

The best classification accuracy is shown in Table 2.2. However the best

accuracy was still behind the achievement by Siew et al. (2017). This further

strengthened the notion of inability of laboratory trained classifier in coping with

real world on-field data. Besides that, there were limitation of data augmentation

method to replicate the real world data in terms of variation. One way to remedy

this hindrance is to collect large scale real world field images with much natural

variations.

FIGURE 2.3: Laboratory (Left) and field (Right) images of Tembusu sample from
Lee (2016)

In short summary, Siew explored the possibility of using ConvNet as op-

posed to computer vision based method for wood type identification. Built on his

work, Lee explored the practicality of using mobile smart-phone with macroscopic

lens as imaging device to perform real world wood type identification. Since deep

learning is a data driven algorithm, both authors agreed on the lack of training data

hindered the performance of classification.
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2.3.1 Xylotron

XyloTron by Hermanson et al. (2013) from USDA Forest Products Laboratory pro-

vides a field deployable wood identification system that comprises of a customized

camera with a computer running machine vision algorithm program as shown in

Figure 2.4. These systems and approaches prove that computer-aided machine vi-

sion system is viable in macroscopic wood anatomy identification. A common

characteristic between Khalid et al. (2008) system and XyloTron system is a spe-

cialized camera module with structured light source. This is to ensure the consis-

tency of the image acquisition process to capture well-lit macroscopic wood image

so that the machine vision model can identify the timber types correctly. However,

this setup brought some drawbacks to the scalability of the application.

FIGURE 2.4: A demonstration of Xylotron device on wood identification

Firstly, Khalid et al. (2008) camera module was not meant to be portable

as it was designed for laboratory. XyloTrons camera module solved the portability

problem by custom fabricating a camera module with imaging sensors, controlled
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illumination light source and some connection ports to communicate with an exter-

nal computer running the machine vision program. This setup is field-deploy ready

but it involves some works to deploy it to frontline like the assembly of the camera

module and installation of software.

2.3.2 Species Level Identification

Work by Ravindran et al. (2018) used ConvNet on classification of CITES-listed

and other neotropical Meliaceae wood images. In this work, the author focused

on 10-class species-level model on Meliaceae family as well as 6-class genus-level

model. Patches of wood images similar to Siew et al. (2017) and image-level im-

ages were used to train a ConvNet with great performance achieving over 90%

accuracy. The significance of this work showed that ConvNet was able to classify

wood images down to species level albeit with lower accuracy than genus-level

classification.

2.4 Residual Network and DenseNet

Residual Net (ResNet) by He et al. (2016) from Microsoft Research, winner of

2015 ImageNet Competition, introduced a new way of connection for ConvNet

layer that offer skipping between layers. The intuition behind ResNet was that a

layer should be able to fully represent its input and output under ideal condition.

However, this is not true as the network goes deeper with layers where vanishing

gradient problem arises. Hence, ResNet introduced the learning of residual func-

tion to mitigate this problem. As a result, ResNet architecture allows very deep

ConvNet with 153 layers.

ResNet opened new door in skipping module when layers are allowed to

bypass next layer and take a shortcut to next few layers. New architecture such
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as Highway Net by Srivastava et al. (2015), and DenseNet by Huang et al. (2017)

were introduced.

DenseNet was built with Dense Block where any layer within the block are

all directly connected to all subsequent layers. In other words, all subsequent layers

receive feature maps from previous layers using concatenation methods. Dense

connections between layers in Dense Block permits better information flows from

back to front or from top to down in the network. This makes DenseNet easier to

train as error can be back-propagated easily with better information flow. Besides

that, the passing down of feature maps from preceding layers to subsequent layers

can reduce redundancy in parameters and in turn reduces the size of network.

2.5 Summary of Review

As a summary of review, the lack of training data and the negligence of global

context knowledge of classifier in wood types image reduced the performance of

classifier based on the work of Lee (2016). Hence, the author proposes to collect

large-scale real world data to enlarge the training dataset and remove patches gen-

eration. With great amount of data, the whole image is used for training so that the

global context of the wood images is learned in order to improve the accuracy of

the classifier and the practicality of the mobile wood identification system.
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CHAPTER 3

THEORETICAL BACKGROUND

This chapter will discuss some fundamental concepts of Deep Learning that covers

Artificial Neural Network, Convolution Neural Network (ConvNet) and some of

the ConvNet design.

3.1 Artificial Neural Network

Artificial Neural Network (ANN), as its name implied, it is built with a network

of artificial neurons that interconnect to each other. The idea behind ANN is to

model biological nervous system, in particularly brain. In general consensus, ANN

is deemed as a non-linear modeling tool that serves as a function approximation

that maps the relationship from input to output data.

3.1.1 Artificial Neuron

Artificial Neuron, the fundamental building block of ANN, is modeled after a bio-

logical neuron that processes inputs as shown in Figure 3.1. It is modeled after a

simple mathematical function as shown in Equation 3.1.

t = σ (−→w · −→x + b) (3.1)
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FIGURE 3.1: Artificial Neuron Concept

Based on Equation 3.1, −→w consists of n array of weights {w1,w2, . . . ,wn}

and−→x , contains n array of inputs denoted {x1, x2, . . . , xn}. Dot product of vector−→w

and vector−→x is then summed with scalar bias, b. The output is passed to activation

function denoted σ to get neuron output of t. The non-linearity of ANN is achieved

by the activation function in most cases. Commonly used activation functions are

defined as follows.

Activation Functions:

1. Hyperbolic tangent, tanh

2. Sigmoid

3. Softmax

4. Rectifier Linear Unit, ReLU

For this research, ReLU, defined in Equation 3.2 is chosen as the activation

function for the deep learning ConvNet architecture for its high computation speed

as verified by Krizhevsky et al. (2012).

σ (x ) = max (0, x ) (3.2)
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3.1.2 Multi-layer Perceptron

A neuron as discussed in 3.1.1 is simple function approximation tool with lim-

ited learning capacity. Adding more neurons and connecting them in layer fashion

creates a more powerful modeling tool. Enter multi-layer perceptron, (MLP) as

shown in Figure 3.2. With backpropagation algorithm, MLP can solve non-linear

problems.

FIGURE 3.2: A model of multi-layer perceptrons

A simple and classic MLP consists of 3 layers which are input layer, a

middle layer as known as hidden layer and output layer. The number of hidden

layer determines the ability of a model in finding the relationship between inputs

and output at higher degree.

In details, the i th output from layer l − 1 will multiply to their respective

weight wij . Next, i th output are summed with respect to j th together with their

biases in j th neurons. Lastly, the output of summation is then pass to activation

function in layer l. The output is then pass to the next layer until it reaches the

output layer.
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3.1.3 Forward Propagation

Forward propagation is a process of computing the output of each node from the

first hidden layer to the last output layer of multi-layer perceptrons. These compu-

tation refers applying activation functions on each node.

In this research, ReLU is chosen as the activation function for hidden layer.

As for the output layer, softmax function is used instead which is defined in Equa-

tion 3.4. Softmax function is designed to solve multiclass classification problem.

Based on Equation 3.3, assume that L th layer is the final layer and zLi is the output

of a neuron in that layer. WL
i and bLi are the weight matrix and biases of last layer,

yLi is the output of i th neuron in the second to last layer. This equation is merely

a neuronal function as defined in Equation 3.1. In Equation 3.4, yLi is the output

of a neuron in output layer. The summation part in the denominator of Equation

3.4 represents the summation of every output of neurons in output layer. In a way,

softmax function can be deemed as normalized output probability.

zLi = WL
i y

L−1 + bLi (3.3)

yL
i =

ez
L
i∑

i e
zLi

(3.4)

In short, the forward propagation is completed when the final outputs from

output layer is obtained.
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3.1.4 Training Objective

In machine learning, the core idea of training a model lies in the loss function

denoted L. In supervised training, L calculates the scalar distance of prediction

output −→y L and target output
−→
t , denoted L

(−→y L,
−→
t
)

, Each training samples is

associated with a target, denoted
(−→x ,−→t ). In simple terms, this loss function

measures the error made by the model with respect to the target.

In the case of supervised training, the training objective focuses on min-

imizing the sum of loss function applied to all training samples. Common loss

functions used in Deep Learning community are defined as follows:

Loss Functions:

1. Square Error, Equation 3.5

2. Cross Entropy Error, Equation 3.6

L
(−→y L,

−→
t
)

=
1

2

∑
c

(
yLc − tc

)2
(3.5)

L
(−→y L,

−→
t
)

= −
∑
c

(
tc log yLc

)2
(3.6)

In Equation 3.5 and Equation 3.6, yLc refers to output of neuron c in the last

layer of MLP, and tc is the identity function applied to the ground truth t defined in

Equation 3.7.

f (x) =

1, t = c

0, otherwise
(3.7)
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3.1.5 Back Propagation

MLP permits higher capacity in modeling complex relationship between inputs and

outputs by increasing higher number of hidden layer. However, there is a problem

in training the model effectively. Rumelhart et al. (1986) proposed back propaga-

tion algorithm in a MLP. This algorithm provides an effective method to update

parameters in the model iteratively and enables the model to generalize to any non-

linear activation function.

The working principle of back propagation depends on calculating the deriva-

tives of loss function or error with respect to model weights. This error derivatives

is propagated back from the last layer to the previous layer, all the way to the first

input layer, one layer at a time. It travels the opposite direction of forward propa-

gation and hence the name back propagation. The relationship of error with respect

to weights gives the model an idea of how the weights affect the error in the loss

function. Therefore, the model now can adjust weights more effectively that can

lead to minimization of error and this is called Gradient-based learning.

3.1.6 Training Algorithm

Back propagation in Section 3.1.5 gives the model an idea on how weights affecting

the final loss. Training algorithm solves the problem of updating the model’s pa-

rameters efficiently and effectively to achieve faster convergence of error. The most

popular training algorithm used is Stochastic Gradient Descent (SGD) algorithm.

The generalized algorithm as defined by Duda et al. (1973) is described below in

high level.
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Algorithm: Stochastic Gradient Descent

Begin

while not Convergence Criteria() do
x batch, y batch← next batch size examples from (X, y)

network state← ForwardProp(W, x batch)

Wgrad← BackProp(network state, y batch)

∆ W←−σWgrad

W←W + ∆W

end
Algorithm 1: Stochastic Gradient Descent

The inputs are as follows:

1. W, weights and biases of model

2. (X, y), dataset and batch size, the number of training sample in each iteration

3. σ, learning rate

For simplicity in notation, model parameter of weights and biases is denoted

as W. In practical implementations, each layer is defined in 2-dimensional matrix

of weights and 1-dimensional biases.

In simple terms, SGD iterates over a mini-batch of dataset at each iteration

instead of the full batch of dataset. The iteration starts by sampling a mini-batch

of dataset determined the batch size, performs forward propagation followed by

back propagation to obtain the derivatives of loss function. Then, these derivatives

are used to update the weights and the iteration is finished. Next mini-batch is

generated and the process repeats until convergence criteria is met.

Most common convergence criteria are as follows:

1. Maximum epoch, number of times the whole training dataset is iterated over

2. Desired value of cost function is met

3. Loss function shows no improvement after few epochs
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In practice, one potential drawback of SGD is that the occurrence of oscil-

lations in gradient due to not all examples are taken into account in each weights

update. This may cause slow convergence and potential fatal explosion of gradient,

i.e divergence of gradient. One workaround strategy is to introduce momentum

terms to weight updates equation as shown in Equation 3.8.

∆w
(j)
ij = −σδE(t)

δwi
+ β∆w

(t−1)
ij (3.8)

The idea to take the running average of derivatives by joining the previous

update ∆w
(t−1)
ij into current update iteration. β represents momentum usually in

the range of 0.5 - 1.0 controls the amount of previous weight updates in the current

iteration. This can help smoothen the oscillation of gradient introduced by SGD.

3.2 Deep Learning

Deep learning is a branch of machine learning that consists of model with huge

number of hierarchical hidden layer, hence the name deep. The branch of research

sees great implementation in solving pattern recognition, optimization and graphi-

cal representation problem. The abundance of data and the accessible to high per-

formance graphical processing unit (GPU) drives the development of Deep Learn-

ing at exponential pace.

The success of back propagation implementation revitalized the machine

learning research back in 1980s. At this time, machine learning model such as MLP

with one hidden layer, Support Vector Machine, and etc. were proposed. However,

these models were considered shallow due to low number of hidden layer or node.

Fast forward to 2006, Hinton et al. (2006) success in training a Restricted

Boltzmann Machine, RBM shift the focus of machine learning research to Deep
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Learning. RBM is a generative model that learns the pattern of input data in unsu-

pervised training. The weights learned are then used to initialized a neural network

for classification or feature extraction purposes. At the same time, auto-encoders

by Bengio et al. (2007) identified that training can be done at each layer in a greedy

layer-wise format.

In the interest of this research, Convolution Neural Network (ConvNet) is

widely applied in image classification problem, popularized by Krizhevsky et al.

(2012) in the ImageNet competition.

3.2.1 Convolution Neural Network

ConvNet was first proposed by LeCun et al. (1989) for handwritten zip code recog-

nition. ConvNet, is a type of feed forward neural networks that is built with addi-

tional convolution and pooling layers which have these three characteristics: local

receptive fields, shared weights and spatial or temporal sub-sampling LeCun et al.

(1989). At that time, ConvNet is the first truly successful in training multi-layer

network. This is due to the weights sharing feature that reduces the number of

parameters as opposed to MLP with the same number of hidden layer.

However, the development of ConvNet was not popularized since then due

to limitation of computing power and lack of big scale dataset. Breakthrough came

from AlexNet by Krizhevsky et al. (2012) and large scale dataset like Imagenet by

Deng et al. (2009). AlexNet shown that the ability of 7-layer ConvNet in classify-

ing 1000 classes of images.

Since then, ConvNet has become the go-to tools in solving problems for

image classification, object detection and face recognition with good performance.

The trend of development of ConvNet focused on building larger and deeper Con-

vNet architecture to improve the accuracy of classification. However, deeper Con-

vNet has substantially more parameters to train which translate to more training
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time and possible over-fitting issue due to limited dataset.

FIGURE 3.3: A generic ConvNet design composed of convolution layer, pooling
layer and fully connected layer.

Figure 3.3 shows a generic design of ConvNet solving image classification

problem which consists of convolution layer, pooling layer, fully connected layer.

These layers are discussed in the following sections.

3.2.1.1 Convolution Layer

Convolution layer uses the convolution technique in computer vision to convolve

learn-able filters with input images to produce feature maps. Each neuron in the

filter is not fully connected to the previous layer. The main benefits of using con-

volution layers is that, it reduces the computation complexity and time compared

to fully connected layers. In short, these data-driven convolution filters are tasked

to extract interesting features.

The formulation of 2-dimensional Convolution layer is defined in Equation

3.9.

ylrc = σ

(
Fr∑
i=1

Fc∑
j=1

yl−1
(r+i−1)(c+j−1)w

l
ij + bl

)
(3.9)
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where

• ylrc, the output unit at row, r, column c

• Fr and Fc are the number of rows and columns in the 2-dimensional filter

• wlij , value of filter at position i, j

• yl−1
(r+i−1)(c+j−1), value of input to this layer at position r+ i− 1 and c+ j − 1

• bt, bias term

3.2.1.2 Pooling Layer

Features that are extracted by convolution layer is ready to be passed to classifica-

tion layer at least in classical machine learning approach. However, these features

remained huge in number which in turn results high number of parameter if con-

nected in fully connected fashion. A down-sampling method is needed to reduce

the number of parameter. Enter pooling layer.

Pooling layer performs down-sampling of data and it is usually connected

after convolution layer. The main intuition of pooling layer is from the observation

of the static property of image, which means that a feature extracted by one neuron

might be extracted by another neuron. In other words, same extracted feature can

be aggregated by statistical method such as averaging the feature. This aggregation

method is called pooling, the most commonly used pooling methods are listed as

follows:

• Average Pooling

• Max Pooling

ylrc = maxi,jε[0,1,...,m]y
l−1
(r+i−1)(c+j−1) (3.10)
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where

• ylrc, the output unit at row, r, column c

• yl−1
(r+i−1)(c+j−1), value of input to this layer at position r+ i− 1 and c+ j − 1

The formulation of max pooling is defined in Equation 3.10. It reduces the

parameters from the input layer and summarizes the feature responses. Together

with convolution layer and fully connected layer, the input data is transformed from

a 3-dimensional image to a 1-dimensional vector consists of the probabilities of

each class.

3.2.1.3 Fire Module

Figure 3.3 shows a generic and simple design of ConvNet. SqueezeNet from Ian-

dola et al. (2016), on the other hand proposed a ConvNet that is 50 times smaller

than AlexNet in terms of parameters while achieving similar accuracy in classifica-

tion.

The core of SqueezeNet is the Fire Module that comprises of 1x1 squeeze

convolution layer followed by 1x1 and 3x3 expand convolution layer. 8 Fire Mod-

ules were used in SqueezeNet model with max pooling layer and global average

layer.
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FIGURE 3.4: Fire Module of SqueezeNet comprises Squeeze Layer and Expand
Layer.

Figure 3.4 shows the Fire Module as defined in SqNet. This module consists

of 2 layers namely Squeeze Layer and Expand Layer. Only 1x1 convolution filter

Is used in Squeeze Layer with reduced number of output from previous layer. Next,

Expand Layer which is connected after Squeeze Layer consists of 1x1 convolution

filter and 3x3 convolution filters. There is a total of 8 Fire Modules as defined in

SqNet.

The core idea of reducing parameters for SqNet is achieved through Squeeze

Layer in Fire module where the number of output feature maps are reduced in com-

parison to the input feature maps. The usage of 1x1 convolution filter with rectifier

activation function (ReLU) selects a limited number of the best feature maps from

input. Next, the Expand layer increase the number of feature maps with 1 x 1 and

3 x 3 convolution filters. For 3x3 filters, it is more like conventional convolution

filters that learn the abstraction of the previous Squeeze layer. Note that padding of

1 is used in 3 x 3 filters to ensure the output feature maps of Expand layer have the

same dimensions.
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CHAPTER 4

METHODOLOGY

This chapter discusses the methodology of this research. This research used deep

learning model in particularly ConvNet to recognize 100 Malaysian Tropical tim-

ber types. Supervised learning was applied where data in the form of RGB colour

images with accurate and verified annotation were used to train the deep learning

model. Hence, the main research focused on the development and design of Con-

vNet classifier. Therefore, the procedure of the research is defined as follows:

1. Collect and verify data

2. Compile dataset for training and validation

3. Design ConvNet architecture

4. Train and validate classifier

5. Evaluate the performance of classifier

Each procedure above is discussed in detail in the following sections.

4.1 Data Collection and Verification

This section discusses the type of data collected and the verification process of data.
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4.1.1 Macroscopic Cross-sectional Wood Types Images

The data collected for macroscopic wood identification was cross-sectional macro-

scopic wood images in colour RGB format. The cross section of wood exposes

unique macroscopic feature which allows human anatomist to identify the wood

type up to genus level with relatively high accuracy without resolving down to mi-

croscopic level. A hand lens with macroscopic magnification magnifies the wood

feature for human identification. This practice is well established among wood

anatomist as described in Gasson (2011).

4.1.2 Image Acquisition Device

The main function of an image acquisition device is to mimic human anatomist on

identifying wood type at macroscopic level. Hence, it comprised of a smart-phone

with retrofitted macroscopic lens of 20 x magnification as depicted in Figure 4.1.

The goal of the data collection was to collect real-world field images captured by

the image acquisition device. The key specification of image acquisition device is

tabulated in Table 4.1.

FIGURE 4.1: Image Acquisition Device comprised of smart-phone and 20x macro
lens.

Smart-phone comes with varying camera resolutions ranging from 8 Megapix-

els to 20 Megapixels and above. However, the optical focal length of these camera
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TABLE 4.1: Table of image acquisition device specification

Device iPhone 6 iPhone 6s
Manufacturer Apple Apple
Camera Resolution (megapixel) 8.0 12.0
Focal Length (mm) 28.0 28.0
Macro lens magnification (times) 20 20
Effective area of view after magnification (mm2) 157.95 157.95

FIGURE 4.2: Image captured by smart-phone with macro lens and the flow of
preprocessing.

commonly falls in the range of averagely 28mm. This observation allows us to as-

sume that the actual area of views after 20 times magnification of different smart-

phone camera are marginally similar. In fact, this assumption held true as we used

smart-phone with different camera module of 8 Megapixel and 12 Megapixel for

development. As per Fig. 4.16, the actual area of tissue captured after magnifica-

tion is 157.95mm2 with 2% variation between different camera module. A squared

center portion of the image were cropped and down-sampled to 256 pixel × 256

pixel after preprocessing which represents the actual area of tissue is 42.90mm2.
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4.1.3 Wood Specimen Preparation Prior to Data Collection

FIGURE 4.3: The process of preparation of wood specimen to expose macro-
scopic feature prior to data collection.

The flow of data collection starts as follows. Firstly, the wood specimens were

prepared as shown in Figure 4.3. The cross-section of the wood specimen was

cut using a razor cutter to refresh the surface of the specimen. This is a standard

practice among wood anatomist to expose a clean and refreshed wood features for

identification. With a proper refreshed surface, the specimen was ready for data

collection.
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4.1.4 Data Collection and Verification

FIGURE 4.4: The data collection and verification process using cloud based ap-
plication.
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FIGURE 4.5: The flow chart of data collection and verification39



The overall architecture of data collection and verification is shown in Figure 4.4

and the process flow chart is shown in Figure 4.5.

To create an efficient and fluid data collection process, 2 cloud-based appli-

cations were developed namely Data Collector and Data Verifier. Data Collector,

a mobile application was developed to run on image acquisition device, which is a

smart-phone as shown in Figure 4.1. This application was a streamlined image an-

notation and image uploading application. On the other hand, the counterpart Data

Verifier application was designed as a web-application to retrieve collected data

from cloud database and let user, particularly wood anatomist to verify or delete

images based on the quality and annotation accuracy.

The flow of data collection started from getting the uniquely labeled wood

specimens from Wood Xylarium, a library that stored wood specimens in a con-

trolled environment. Next, user had to prepare the image acquisition device by

retrofitting macro lens and launched Data Collector application. Wood specimens

were needed to be prepared as described in Figure 4.3 to expose clean and re-

freshed macroscopic wood features on the cross section of specimens. After that,

user needed to key in the wood labels and specimen ID in the Data Collector input

fields. With correct annotations, user now can start to capture multiple images on

the prepared specimen with varying rotations, and lighting conditions. Captured

and annotated images were then uploaded to cloud database for storage. The cycle

continued when new specimens are prepared.

After kick-starting data collection process, wood anatomist on the other

hand started verifying collected data. For data verification, user needed to use the

Data Verifier web-application that is designed to run on desktop web browser. The

process started by retrieving collected images and annotations from cloud database.

Wood Anatomists had to decide between verifying and deleting images based on

image quality and accuracy of annotations. Blurry images or incorrect annotations

would result images being deleted. Decisions were sent to cloud database and
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data entries would be updated accordingly. The process ended when there are no

unverified images. All in all, the flow chart shows that data collection and data

verification run in parallel and in phases.

The data collection was carried out in phases over the span of 3 months.

The data collection team was assigned to collect data on each wood types with

all available specimens from the Xylarium within a given timeframe. On average,

the team has to collect data for 33 wood types for every month. In the parallel

timeline, data verification team formed by human anatomists were verifying the

data collected by data collection team on the validity of specimens ID, class labels

and image quality. Together, the data collection team and data verification team

worked hand in hand in preparing dataset for training

The commercial value of wood types determined the order of data collec-

tion where highly commercialized wood types were collected first. As result, at the

end of first month of data collection, a 20-class dataset was generated for training.

Subsequently, 60-class and ultimately the 100-class were generated in the second

and third months of data collection. Therefore, the research progressed in 3 phases

where ConvNets were trained on dateset of 20-class, 60-class and 100-class fol-

lowed by analysis.

4.2 Dataset Compilation

As per Figure 4.4, a digital Xylarium, digital wood library was created with the

collected and fully annotated wood images at the end of data collection and ver-

ification. A total of 101,546 images from 1,919 specimens for 100 classes were

collected as notated in Appendix A.

To ensure the generalization of a classifier, it is important to cross validate

training and validation data. Hence, the dataset should be separated in such a way

that the validation data is unseen by the classifier from training. For the dataset
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generation, the data was separated by the specimen ID. 5 random chosen speci-

men IDs from each wood type are used for validation dataset where the remaining

specimen IDs are used for training. This cross-validation setup was to ensure the

classifier would not over-fit to the training specimens and it was a good measure on

the performance to unseen specimens in the field.

The next step was to compile collected images into datasets for training

and validation. For cross-validation setup, images of wood types were separated

based on their specimen ID. This was to ensure images from training specimens

are unseen to validation specimens.

After cross-validation setup of wood images, these images were then aug-

mented and balanced using methods as described in the following list. The details

are discussed in the following subsections.

4.2.1 Cross validation

This subsection discusses the steps of cross validation in separating the data into

training and validation datasets.

Cross validation procedure:

1. Retrieve verified data from database for specimen’s IDs.

2. Random choose a maximum of 5 IDs for validation.

3. Remaining IDs are set for training

4. Update database on separated specimens’ IDs for training and validation
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FIGURE 4.6: The flow chart for cross validation on dataset

Figure 4.6 shows the flow on separating dataset for cross validation pur-

pose. This process was only applied to verified data by human anatomists after

the completion of data verification process. A query was made to the database to

get list of specimen’s IDs for each wood types. After that, a maximum of 5 spec-

imen’s IDs were randomly chosen for validation while the remaining IDs were set
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for training. Next, the separated IDs were then updated to the database for future

dataset generation.

Referring to Appendix A, averagely there were 681 images and 335 images

allocated for training and validation for each class. On the specimen’s side, there

were about 15 and 5 specimens for training and validation.

4.2.2 Augmentation

The idea of augmentation is to increase size of dataset and balance number of im-

ages per class. Due to the capacity of ConvNet, performance is dependent to the

size of dataset. Hence, a series of augmentation methods were used to increase the

size of dataset.

The selection of augmentation method was based on the assumption to im-

prove the robustness of classifier on varying conditions of use such as different

lighting, limited focused image, and angle of orientation.

The augmentations were categorized into offline and online augmentations.

For offline augmentation, images were augmented and store in database whereas

online augmentation refered to augmentation applies to image during training of

the classifier.

4.2.2.1 Offline Augmentation

Offline random augmentation methods:

1. Rotation augmentation

2. Brightness augmentation

3. Rim-blurring augmentation

4. Field of view resizing augmentation
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FIGURE 4.7: Flow chart for offline augmentation

Figure 4.7 shows the flow of offline augmentation. At the beginning, images

were retrieved from cloud database as used in data collection and data verification.

Note, augmentations only worked on verified images. Images were then randomly

augmented by a combination of augmentation methods, namely rotation augmen-

tation, rim-blurring augmentation, brightness adjustment augmentation and field
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of view resizing augmentation. After random augmentations, the center-square of

image was then cropped followed by down-sampling to 256 × 256 pixels. Lastly,

augmented images were stored in local hard drive and this signified the end of

offline augmentation process.

The reason of down-sampling to 256 × 256 pixels for width and height

was to follow ImageNet dataset standard by Deng et al. (2009) as most ConvNet

architectures were designed to take 256× 256 images.

TABLE 4.2: Table of parameters range for offline augmentations

Table 4.2 shows the range of parameters for offline augmentations and these

augmentations will be discussed in the following sunsections.

4.2.2.2 Rotation Augmentation

FIGURE 4.8: Examples of rotation augmentation, center-cropped and down-
sampled to 256×256. From Left: Input Image, 65, 125, 225, 285 and 320 degrees

rotations.

For rotation augmentations, the parameters were in the range of 0 – 355 degrees

with the interval of 5 degrees. A randomly chosen degree rotated the image using

geometric angle transformation method. Examples are shown in Figure 4.8.
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4.2.2.3 Brightness Augmentation

FIGURE 4.9: Examples of brightness augmentation, center-cropped and down-
sampled to 256×256. From Left: Input Image, 0.5, 0.8, 1.1, 1.3, and 1.5 gammas

brightness adjustment.

As for brightness adjustment, this augmentation method was to adjust the gamma

value of image and the parameters used were in the range of 0.5 to 1.5 with an

interval of 0.1. Hence, the image was randomly darkened or brightened based on

the randomized chosen parameter. Examples are shown in Figure 4.9.

4.2.2.4 Rim-blurring Augmentation

FIGURE 4.10: Examples of rim-blurring augmentation, center-cropped and
down-sampled to 256 × 256. From Left: Input Image, 0.50, 0.55, 0.60, 0.65,

and 0.70 ratios of rim-blurring.

As for rim-blurring augmentation method, this distortion method aimed to blur out

the outer rim of the image which left the center part of the image in focused. The

parameter for this method defined the percentage of portion of center in-focused

relative to the blurred outer rim. For example, a ratio of 0.5 signifies that 50% of

the center portion of the image was in-focused where the remaining 50% of the

outer rim was blurred. A range of 0.5 – 0.7 with an interval of 0.05 were randomly

chosen to rim-blur the images. The reason behind the design of this method was
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to apply a constraint to the classifier and tries to reduce the effect of optical barrel

distortion of the macro lenses leaving the center portion in focused and undistorted.

With this distortion method, it forced the classifier to focus its attention to the center

portion of the image. Examples are shown in Figure 4.10.

4.2.2.5 Field of View Resizing Augmentation

FIGURE 4.11: Examples of resize augmentation, center-cropped and down-
sampled to 256 × 256. From Left: Input Image, 0.50, 0.55, 0.60, 0.65, and 0.70

resize ratios of resizing.

Image captured by image acquisition device was in 4 : 3 aspect ratio. As per

publicly open source image dataset, e.g. ImageNet Dataset, a square image was

cropped from the raw image. This gave rise to the last augmentation method where

user can define the field of view of the cropped image from the raw image. As a

result, the difference of field of view could be chosen to create the effect of multi

scaling of images. This method takes parameter within the range of 0.5 – 0.7 with

an interval of 0.05 where 0.5 means that 50% of the center portion of the image

was cropped from the raw image. Besides that, the center cropping method also

mitigated the issue of optical barrel distortion on image introduced by the macro

lens. Examples are shown in Figure 4.11.

4.2.2.6 Online Augmentation

Online augmentation referred to on-the-fly augmentation in training phase where

images were randomly augmented before passing into the ConvNet for forward
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propagation. In comparison to offline augmentation, online augmentation did not

store images on local storage but it required computational power to augment the

data on-the-fly during training where offline augmentation requires one off compu-

tation. It was a compromise between storage space and computational power where

user had to choose from in order to enjoy the benefits of limited local storage while

having a hugely augmented dataset for training of ConvNet. If storage is abundant,

it is advisable to use offline augmentation to reduce the computational workload

and in turn reduces the training time of ConvNet. The augmentation methods are

defined as follows:

Online random augmentation methods:

1. Colour jittering augmentation

2. Random cropping

3. Mirror flipping

Figure 4.12 shows the flow for online augmentation. There are two groups

of augmentations where the first group is colour jittering augmentation follows by

group of random cropping and mirror flipping.
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FIGURE 4.12: Flow chart for online augmentation
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4.2.2.7 Colour Jittering Augmentation

TABLE 4.3: Colour jittering augmentation method and parameters detail

Table 4.3 shows the details of online augmentation method, namely colour jittering

distortion method. This method randomly altered the hue and saturation of the

image to simulate a warm or cool colour temperature in the image. The author

foreseen that the white balance in the smart-phone camera may generate different

colour temperature under the influence of varying ambient lighting temperature.

Therefore, this method gave variation of colour temperature to the image for the

ConvNet to learn. Examples are shown in Figure 4.13.

Image was first rescaled back to 0 – 255 for each data point. Next, im-

age was then converted to HSV format. The hue and saturation values of image

were randomly altered. Next, image was converted back to RGB format and lastly

rescaled to 0 – 1 floating number for each data point.

FIGURE 4.13: Examples of online colour jittering distortion augmentation. From
Left: Input Image, 3, 5, 6, 8, and 15 hues and saturation values jittering.
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4.2.2.8 Random Cropping Augmentation

FIGURE 4.14: Random Cropping from input image of 256 × 256 to 227 × 227
output image.

Random cropping was used to augment data by randomly cropping a smaller squared

image from input image to create translation to input image. This methods simu-

lated translation in image. Examples are shown in Figure 4.14.

4.2.2.9 Mirror Flipping Augmentation

FIGURE 4.15: Examples of mirror flippings. From Left: Input image, vertical
flipping and horizontal flipping.

Mirror flip method was used to randomly flip image using either horizontal or ver-

tical axis. Examples are shown in Figure 4.15.
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4.2.3 Preprocessing

For training of ConvNet, preprocessing was applied to data prior forward propaga-

tion. Preprocessing usually includes normalization of images to help the general-

ization of ConvNet.

For preprocessing, the author applied mean image subtraction, rescaling

data to 0 – 1 floating number. A mean image was calculated from training dataset

which served as a normalization to center the values of the image. ConvNet or neu-

ral networks often learns better from data between the range of 0.0 – 1.0. Therefore,

the image was rescaled to between 0 – 1 for each pixel. As per major ConvNet de-

signed for ImageNet dataset, input image was squarely cropped and down-sampled

to 227× 227 pixels. The procedures are defined in Figure 4.16.

Preprocessing Procedure:

1. Mean Image Subtraction

2. Rescale data point to 0− 1 floating number
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FIGURE 4.16: Flow chart for preprocessing of image.

4.2.4 Dataset Generation

After offline augmentations, training and validation of different sizes were gener-

ated using the procedure as follows:
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FIGURE 4.17: Flow chart for Dataset Generation.
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Dataset generation procedure:

1. User defined the wood types to be included in the dataset

2. Query was made to the database to gather all the raw and augmented images

for the given wood types

3. Wood types were separated into train and validation dataset based on speci-

men IDs for cross-validation purpose

4. Two text files with image file paths and labels were generated as train.txt and

val.txt

5. The text files were then compiled into 2 LMDB datasets.

6. Preprocessing was applied to all the images as defined in text files.

Center-cropped image into square image.

Down-sampled the image to 256× 256 pixels width and height.

7. A dataset was generated with train and validation LMDBs.

Figure 4.17 shows the flow on generating a dataset. User defined the list of

wood types to be included in the dataset. The number of wood types determined the

dataset sizes. Queries were made to the database that contains information of sepa-

rated specimens’ IDs for cross validation. Next, text files were created with image

file paths and labels for training and validation. Given the text files, images were

preprocessed and added to LMDB database. The preprocessing methods included

center-cropping image into square image and down-sampling the cropped image to

256 × 256 pixels in width and height. Lastly, two of the training and validation

LMDBs formed a dataset for training.

Table 4.4 shows the detail of dataset generated after augmentations. There

were a total of 3 dataset of varying number of classes namely, 20-class, 60-class and

100-class with the exception of 20-class dataset where 2 sizes of are available. Each
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TABLE 4.4: Detail of dataset

class was balanced with augmented and non-augmented images to 18,000 images

for training. As for validation, each class was balanced up to 3,000 images. For

the largest dataset of 100-class, there were 1,800,000 training images and 300,000

validation images. As mentioned in section 4.2.1, the training and validation im-

ages were separated based on specimens ID, where the validation specimens were

unseen to the ConvNet during training.

4.3 Convolution Neural Network Design

To kickstart the process of ConvNet design, SqueezeNet (SqNet) by Iandola et al.

(2016) was used for transfer learning and served as benchmark. Next, a new net-

work design by the author, namely BlazeNet (BzNet) was used to improve the

performance of classifier. Other than that, the author also introduced a variant of

BlazeNet architecture with colour conversion layer (BzNet Colour). Besides, a

grayscale classifier was also trained for benchmark purpose.

ConvNet Model Architectures:

1. SqueezeNet (SqNet, Sq)

2. BlazeNet (BzNet, Bz)

3. BlazeNet Colour Conversion (BzNet Colour, BzC)

4. BlazeNet Grayscale (BzNetGray, BzG)
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4.3.1 SqueezeNet

AlexNet by Krizhevsky et al. (2012) showed promising result on applying ConvNet

on ImageNet-1000 class problem. Since then, researchers have been looking to

minimize the size of ConvNet while achieving similar or better result than AlexNet.

SqueezeNet (SqNet) was used as benchmark network in this research.

4.3.1.1 Transfer Learning

In practice, it is expensive in terms of computational power to train ConvNet from

scratch, i.e. with weight initialization at the beginning of training. For ImageNet

1000-class training, it would take days to complete the full training from scratch.

However, pretrained ConvNet weights can be used for transfer learning where a

pretrained ConvNet on ImageNet used as starting weight for further training on

new dataset. This is common practice to reduce computation power and mitigate

the problem of small dataset.

TABLE 4.5: Detail of minified SqueezeNet used for transfer learning with output
class set to 100 classes. Note: * marked the layer that is different from original

SqueezeNet.
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As benchmark classifier, SqNet pretrained weights were used as transfer

learning to train on DW-20 datasets. However, several modifications were made to

the last three Fire Modules, namely Fire7, Fire8 and Fire9 to reduce the number of

depth of filter as shown in Table 4.5. The overall network consists of 18 layers with

521,301 parameters.

4.3.2 BlazeNet

Using pretrained SqNet yielded impressive result in wood types identification.

However, is there any better ConvNet architecture that can perform better than

SqNet for this application? Since the introduction of SqNet, researchers were going

deep into building smaller network with different modules to improve performance

while reducing network size.
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4.3.2.1 Blaze Module

FIGURE 4.18: Blaze Module consists of Squeeze Layer with 1 × 1 convolution
filter followed by Expand Layer with only 3× 3 convolution filter.

Using the idea of DenseNet dense connections as discussed in Section 2.4, coupled

with Fire Module from SqueezeNet, the author introduced a new module namely

Blaze Module as shown in Figure 4.18. Blaze Module, with its root from Fire mod-

ule consists of Squeeze Layer with 1× 1 convolution filter followed be only 3× 3

convolution filter in the subsequent Expand Layer. As opposed to Fire module, the

major difference is the omission of 1× 1 convolution filters in Expand Layer. This
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decision was made to reduce parameters and make way for skip connections. Be-

sides that, skip connections inspired by DenseNet are added from the Input Layer

and Squeeze Layer to the Expand Layer. This is implemented through concate-

nation layer which combines feature maps from Input Layer, Squeeze Layer and

Expand Layer. Each Blaze Module is 2 layers in depth.

As per Squeeze layer in SqueezeNet, it reduces output feature maps using

1× 1 convolution filters, hence the name ”squeeze”. For Expand layer, 3× 3 con-

volution filters with padding set to 1 learn the abstractions. With skip connections,

the output of Blaze module concatenates feature maps from Input Layer, Squeeze

layer and Expand layer while maintaining the same feature maps dimensions. For

example, input with 64 feature maps are squeezed into 16 feature maps in Squeeze

Layer. Then, the Expand Layer applies 3×3 convolution onto the 16 feature maps.

Lastly, the Blaze Module outputs a total of 96 feature maps where 64 from input

layer, 16 from Squeeze Layer and 16 from Expand Layer. Note that all convolutions

are followed by ReLU.

The intuition behind Blaze Module is that using 1× 1 convolution layer to

find the best feature maps from the input layer as discussed in Section 4.3.2.2. In

other words, a Blaze module tries to look for the best input feature maps, applies

abstraction to these feature maps and pass these feature maps to the next layer. This

satisfied the idea of removing redundant feature maps as no recurring features are

needed as the feature maps flow through the module via skip connections. Note that

Input Layer feature maps are pass through the module to the output to strengthen

the idea of free data flowing for better error back propagation.

To summarize, Blaze Module takes in input feature maps, finds the best

feature maps, learns new abstraction and outputs these new feature maps along

with existing input feature maps.

61



4.3.2.2 1 x 1 Convolution Filter

This section discusses the operation of convolution layer and how 1×1 convolution

layer helps in achieving parameter reduction and finding the best feature maps.
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FIGURE 4.19: Illustration of how a 1× 1 convolution filter works on input chan-
nels of 3 with 1 output feature map.
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Convolution Layer Operation Procedure:

1. Apply convolution on N-inputs with N-filters

2. New feature maps are produced with each input

3. Summation of feature maps with bias

4. A new feature map is produced at output

Figure 4.19 illustrates the procedure of convolution in a 1× 1 Convolution

Layer. This illustration consists of only one feature map as output. Hence, this

convolution layer is in the shape of (1, 3, 3, 3) based on the dimension of

(Number of Output Feature Map, Number of Input Channel, Width of Fea-

ture Map, Height of Feature Map)

To produce one feature map, the filter weight shape is set to (1, 3, 3, 3)

according to the dimension of

(Number of Output Feature Map, Number of Input Channel, Width of Filter

Kernel, Height of Filter Kernel)

Based on the dimension, each input channel is assigned with one 1 × 1

filter weight. Moreover, the number of bias is dependent on the number of output

feature map which in this case is 1. Convolution of 1 × 1 filter weight is simply a

matrix multiplication of the input channel feature map with the weight as shown in

Figure 4.19. For example, Channel 1 is multiplied with Weight 1 of value 2. After

matrices multiplication of each channel and respective weight, the output feature

maps are then sum together using matrix addition. The summation of feature maps

is then added with bias of the filter. Lastly, a rectifier function ReLU is applied to

the feature map to output the final output map.

The filter weights are used to demonstrate how 1×1 convolution filter select

the best feature from input channel. The weights and bias are trainable in training

phase. As shown in Figure 4.19, Weight 1 is set to 2, Weight 2 is 0 while Weight

3 is −1. The output feature map of Weight 2 is zeroed which means that the filter
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thinks that Channel 2 is not important. On contrary, Weight 1 and Weight 3 find

that Channel 1 and Channel 3 consist of good features. With ReLU at the end of

the process, negative values are zeroed and left only with positive values. Hence,

positive weight can be regarded as asserting a good feature while negative weight

tries to reduce the importance of feature.

In summary, 1×1 convolution learn to find the best input feature map using

trainable 1 × 1 convolution filter kernel to apply weightage to each input feature

map. The sign of the weights is an important tool to select the best features.
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4.3.2.3 Blaze Block

FIGURE 4.20: Architecture of a Blaze Block with 2 Blaze modules connected in
subsequent fashion.
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Figure 4.20 shows the basic connection of Blaze Block using 2 Blaze Modules.

The input for Blaze Module 2 is Concatenate(Concat) Layer 1 which consists of

feature maps from Squeeze Layer 1 and Expand Layer 2. The flow of feature maps

continues through Squeeze Layer 2 and Expand Layer 2. At the end of output,

Concat Layer 2 consists of feature maps from Squeeze Layer 1, Expand Layer 2,

Squeeze Layer 1 and Expand Layer 2.
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4.3.2.4 Architecture

FIGURE 4.21: Overall Architecture of BlazeNet.
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Figure 4.21 shows the overall architecture BlazeNet convolution neural network

with detail of parameters shows in Table 4.6. As per SqueezeNet, BlazeNet took in

RGB image in 227×227×3 dimension. The first convolution layer, Conv1 was set

to output 32 feature maps with ReLU. Next, Blaze2 Layer which contained only

one Blaze Module set to output 32 feature maps with 16 from Squeeze Layer and

16 from Expand Layer. A skip connection was used to connect Conv1 with Blaze2.

The concatenated 64 feature maps from Conv1 and Blaze2 were then max-pooled

to reduce the dimension of feature maps by half.

TABLE 4.6: Parameter detail for BlazeNet Architecture. Note, both Embed and
FC-100 layers are Fully connected layers.

After that, the network was constructed with a series of Blaze Block and

Max-pooling layer. Note that the Blaze Block hereafter uses 2 Blaze Modules with

depth of 4 as shown in Figure 2. Max-pooling reduced the dimension of feature

maps by half progressively as the network gets deeper. The idea was to let the

Blaze Blocks to learn the features at different dimensions. At the output of Blaze

Block, the input features were passed down and retained along with new features

learnt in the block. These outputs are down-sampled and passed to another Blaze

Block to learn on smaller dimension.
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At Max-pool 9 Layer, which outputed 384 feature maps, consisted of orig-

inal 32 features from Conv1 along with new features learned by Blaze Blocks. In

other words, 352 additional new feature maps are added through Blaze Blocks.

After Maxpool9, the network resolves back to a more conventional ConvNet

where a convolution layer is added. Conv10 reduced the input feature maps of 384

of Maxpool9 to 128 feature maps. Again, 1 × 1 convolution filters were used in

Conv10 to learn 128 of the best feature maps from Maxpool9. These feature maps

were then down-sampled using global average pooling to reduce the dimension to

1 × 1. Next, a fully connected layer was connected with output set to 256. This

layer was designed as layer to embed the information of input image. Lastly, the

last fully connected layer serves as the classification layer where the number of

output was set to follow the number of classes which in this case was 100.

As a short summary, Blazenet can be regarded as a feature extractor that

embed the input image for classification. In the feature extraction, Blaze Block

was used to pass down information from input layers after each block while at the

same time learning new features along the way that can best represent the input

image. This network was designed to be compact with reduced parameters as it

just 23% of the size of equivalent SqNet for this application.

4.3.3 BlazeNet Colour Conversion

A colour conversion module was introduced to improve the robustness against

colour temperature while retaining the overall accuracy. Upon closer investiga-

tion on colour temperature, under different conditions, colour temperature affects

the colour of the wood types in the image. Warmer or cooler colour tones may

render the colour information associated with wood types useless. In this situation,

one might propose that using grayscale to reduce the effect of colour information

affecting the prediction of classifier.
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To study and improve the performance of BzNet, grayscale dataset was

generated and trained to compare with the Colour Conversion Module as introduced

by the author.

4.3.3.1 Colour Conversion Module

FIGURE 4.22: Colour Conversion Module for BlazeNet Colour Conversion ar-
chitecture.

The intuition behind Colour Conversion Module was to let ConvNet to learn

the best colour information that can represent a wood type. Grayscale is considered

a straight forward conversion from a 3 channel RGB image to just single channel

intensity.

71



Using a 1 × 1 convolution filter with single output, the Colour Conversion

module learned to extract the best input feature maps which in this case the inputs

are red, green and blue channels of input image. Setting stride parameter to 1 main-

tains the input channels width and height. As described in Section 4.3.2.2, Colour

Conversion module was tasked to find the best colour channel or a combination

of channels that can represent wood types. In contrast to grayscale conversion,

Colour Conversion Module was a method that was learnable from data in convert-

ing 3 channels image to single channel image.

4.3.3.2 Architecture

TABLE 4.7: Details of BlazeNet Colour Conversion network layer.
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The Colour Conversion Module used a 1×1 convolution filter with 3 inputs

and single output. It was connected in between the Input Data Layer and BzNet first

layer. As planned, it converted RGB images to single channel image and pass into

BzNet. The detail of layer parameters for BlazeNet Colour Conversion architecture

is tabulated in Table 4.7.

4.3.4 BlazeNet Grayscale

BlazeNet Grayscale was served as a benchmark comparison to BzNet Colour. The

architecture was similar to BzNet with the exception of input image which was

a single channel grayscale image. Detailed architecture are described in section

4.3.4.1.

4.3.4.1 Architecture

Table 4.8 shows the details of BzNet Gray architecture in layers. The most signif-

icant difference is that the input image is a 1-channel grayscale image as opposed

to 3-channel RGB image. Hence, the parameters of first conv1 layer was reduced

due the reduction of input image channel.

4.3.5 Comparison of Architecture

This section summarizes the ConvNet architectures mentioned in the previous sec-

tions and tabulated in Table 4.9.

The comparison criteria are Number of parameters for the architecture,

Floating points operation per second (FLOPS), Model size in Megabytes, Predic-

tion time for 50 images, Average of prediction time for 50 images and Average of

prediction time for single image. As seen in Table 4.9, one observation is that the
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TABLE 4.8: Details of BlazeNet Grayscale network layer.

TABLE 4.9: Comparison of ConvNet Architectures. Note: The predictions were
run on CPU only.

number of parameters is directly correlated to FLOPS and model size. The higher

in number of parameters, the higher FLOPS and model size and vice versa.

As for number of parameter, SqNet records the highest at 521,301 followed

by BzNet Colour at 160,200, BzNet at 160,196 and BzNet Gray at 159,624. The

difference between BzNets are within the margin of 0.4%. Generally, the size of

BzNets are 30% of SqNet or approximately 3 times smaller than SqNet as demon-

strated in the model size. The reduction of parameters gives BzNets the gain in

FLOPS which is approximately 40% of SqNet. In other words, SqNet FLOPS is
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2.5 times of BzNets. Lower FLOPS is beneficial on computation as it reduces the

load of computing.

On the Average Prediction Time, the gain of FLOPS reduction is not re-

flected in the prediction time of image. For single image prediction, the reduction

of time is merely 6.72%. This is because of the preprocessing time of image is the

same across all architecture.

In summary, BzNets are approximately 3 times smaller than benchmarked

SqNet in number of parameter, FLOPS and model size.

4.4 Evaluation of Classifier Performance

This section discusses the evaluation criteria for classifier performance. The criteria

are listed as follows:

Evaluation Criteria for Classifier:

1. Top-1 Accuracy

2. Top-2 Accuracy

3. Confusion Matrix

4. Recall

5. Precision

6. F1 score

The detail of each evaluation criterion is discussed in Section 4.4.1. These

criteria are applied in the tests defined as follows:

Types of Test for Classifier:

1. Validation Test

2. Robustness Test
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There are two types of tests defined by the author and are discussed in the

following Section 4.4.2 and Section 4.4.3.

4.4.1 Evaluation Criteria

4.4.1.1 Top-N Accuracy

Assume P is the prediction of classifier that outputs an array of class labels based

on number of class, k as follows:

P (s) = [s1, s2, ..., sk−1] (4.1)

where k = number of class

Top-1 is defined as follows:

Top1 ε argmaxP (s) (4.2)

where it is the highest probability of labels in single prediction of single

image.

As for Top-2, it is defined as follows:

Top2 ε argmaxP (s)0−1 (4.3)

The correct label or True Positive is within the second highest of prediction

for single image.
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Using the following formula to calculate overall accuracy of classifier on

all test images,

Accuracy =
TP∑

(TP + FP + TN + FN)
× 100% (4.4)

where TP = True Positive, FP = False Positive, TN = True Negative, FN =

False Negative

At such, the Top-1 and Top-2 accuracy are defined as follows:

Top1Accuracy =

∑
j argmaxP (s)∑

j(TP + FP + TN + FN)
× 100% (4.5)

Top2Accuracy =

∑
j argmaxP (s)0−n∑

j(TP + FP + TN + FN)
× 100% (4.6)

where n = 2, j = number of test images

4.4.1.2 Recall

Recall is formulated as follows:

Recall =
TP∑

(TP + FN)
× 100% (4.7)

4.4.1.3 Precision

Precision is formulated as follows:
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Precision =
TP∑

(TP + FP )
× 100% (4.8)

4.4.1.4 F1 Score

F1 score is formulated as follows:

F1score = 2 × Recall × Precision

Recall + Precision
(4.9)

4.4.1.5 Confusion Matrix

Confusion matrix is a common tool to evaluate classifier on the given truth and

predictions. It is often shown in a table form or diagram. The detail of table of

confusion matrix is shown in Table 4.10.

TABLE 4.10: Sample of confusion matrix. NOTE: TP = True Positive, TN = True
Negative, FP = False Positive.

Table 4.10 shows the sample confusion matrix table. Header row shows the

prediction of each wood types where the first row shows the truth of each wood

types. The last column and the last row show recall and precision respectively. The

diagonal of the table shows the number of true positive, I.e. the predictions matched

truths. The region to the right TP shows FN where predictions do not match the
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truths. The bottom region of TP shows FP where the predictions from the classifier

is wrong.

At the end of each row, recall is calculated based on Equation 4.7 as the

ratio of true positive and the sum of TP and FN. In other words, recall measures the

per-class accuracy or how well the classifier in identifying each class.

At the end of each column, precision is calculated based on Equation 4.8 as

the ratio of TP and the sum of TP and FP. Precision is the measure of how reliable

is the prediction of classifier. For instance, when the classifier predicted class A,

how likely it is in actual is class A? High precision means that classifier is very

confident in its prediction. On the contrary, low precision means that the classifier

is not very confident in the prediction where it is most likely going to be wrong.

4.4.2 Validation Test

As per Section 4.2, the validation test runs on the validation dataset generated. The

dataset consists of unseen images from the training which are separated based on

specimen ID.

The evaluation criteria for validation test is as follows:

Validation Test Evaluation Criteria:

1. Top 1 Accuracy

2. Top 2 Accuracy

3. Recall

4. Precision

5. F1 Score

6. Confusion Matrix
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4.4.3 Robustness Test

4.4.3.1 Introduction

Robustness test is defined as how robust is the ConvNet on recognizing wood types

under different conditions that may perturb the input image in the field. The au-

thor made a few assumptions to the perturbations that may occur in field when the

classifier is deployed.

These perturbations are as defined in the list below includes variation in

colour temperature, brightness, occlusion, rotations and field of view. Therefore,

the author defined an evaluation on the performance of trained ConvNet on robust-

ness against the aforementioned challenging conditions.

Robustness Test Conditions:

1. Colour Temperature

2. Brightness Level

3. Limited Focus

4. Orientation

5. Field of view

Since the image acquisition device consists of a smart-phone camera, the

author assumed that colour temperature is critical in changing the colour of input

image under different lighting. For example, under a tungsten light, the white bal-

ance of the camera may add coldness or warmness to input images. As a result,

the colour information of the wood types might not be represented accurately as it

is highly controlled by the camera automatic white balance control. Hence, colour

temperature test is added to robustness test.
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As for brightness, the author foreseen that the classifier has to work in dif-

ferent lighting situations such as a well-lit laboratory, a factory or in the forest with

darkened shades. Digital images are represented with numerical integer. Brightness

as well as colour information change the value directly to reproduce the brightness

effect to the image. With this consideration, the author added brightness test to

robustness test.

Due to nature of the retrofitted macro lens, it exhibits optical barrel distor-

tion where center of the image is warped towards the camera. Together with limited

depth of field, the outer rim of the image could be easily out-of-focus, resulting in a

blurring image. Moreover, wood specimen is prepared by a simple cut on the cross-

section where a flat cut is preferred as it can get the best focused image. However,

it would take experience and skill to achieve such flat cut. Judging from the end

user perspective, where not only confined to wood anatomist, it is difficult to get

perfect image. Hence, the classifier has to be able to identify wood types with given

limited focused image.

As for orientation, there are not specified reference orientation where the

image has to align to certain orientation and it might cause confusion to classifier.

Hence, it is added to the robustness test to find out how susceptible is the classifier

to different orientation of the input macroscopic wood images.

Lastly, the magnification level of the macro lens directly determines the

field of view in the input images. A smaller field of view is achieved with higher

magnification level and vice versa. It is intriguing for the author to study the effect

of different field of view on the classifier performance. The changing of field of

view is added to robustness test.

In order to test on the robustness of ConvNet, a dataset is generated to

serve as standardized test dataset for all trained ConvNet. The detail of generating

robustness dataset is depicted in the following sections as well as the evaluations

criteria.
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4.4.3.2 Robustness Dataset

To test on trained ConvNet, the test data should be unseen from the training. As per

Section 4.2.4, wood specimens were separated for training and validation. Hence,

validation specimens were used to generate robustness dataset to ensure that the

data is unseen. The augmentation methods as defined in Section 4.2.2.1 were used

to generate the robustness dataset with every parameter in the range. In addition,

a new colour temperature augmentation method is added to generate robustness

dataset. 20 images from each wood type were randomly selected from the valida-

tion specimens and augmented. The details are tabulated in Table 4.11.

TABLE 4.11: Detail of robustness dataset augmentations

A total of 91 augmentations were applied to each image which results in

1820 images for each wood types. The final dataset size was dependent on the

number of classes.

4.4.3.2.1 Colour Temperature On testing the effect of colour temperature, im-

ages were augmented by changing the colour temperature. Warm and cool images

were generated for each input images as shown in Figure 4.23. The augmented

images had different colour of the wood specimen.
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FIGURE 4.23: Example of colour temperature augmentation. From Left: Input
image, warm colour image, cool colour image.

4.4.3.2.2 Brightness Level Brightness adjustment was used to augment image

for different brightness. This was achieved by using look-up table with precom-

puted values from input gamma parameter to change the numerical values of image

to either brighten or darken the image.

4.4.3.2.3 Limited Focus To test on limited focusing, rim-bluring method as de-

fined in offline augmentation was used to blur the outer rim of the image to reduce

the portion of in-focused object in the image. The parameter controls the ratio

of in-focused object to out-of-focused outer rim part. For example, a ratio of 0.5

means that the center 50% of the image is in-focused where the remaining 50% of

the outer rim is blurred.

4.4.3.2.4 Orientation Geometric transformation was used to rotate the input

image based on given parameter on angles. Input images were rotated to create

orientations spanning 0 – 355 degrees.

4.4.3.2.5 Field of View The idea of changing the field of view was to simulate

different magnification level. The input images were in full size 8 to 12 Megapixels

with 4 : 3 aspect ratios. The middle portion of the image was then squarely cropped

out and down-sampled to 256×256. To change the field of view, the middle portion

of the input image could be altered before being down-sampled. For instance, input

83



parameter of 0.5 signifies that 50% of the center portion is cropped. 0.7 means that

70% of the center portion is cropped. 50% crop results in a smaller field of view

where 70% crop gives a bigger field of view.

4.4.3.3 Robustness Test Results

To evaluate the robustness, the trained ConvNet was then tested on generated ro-

bustness dataset. The performance was evaluated on how many correct predictions

for each wood type and respective robustness augmentations of 20 images. Accu-

racies were calculated for rotations, resizing, blurring, brightness and colour tem-

peratures for each wood type. This shows the robustness of classifying wood types.

Wrong predictions are tabulated in confusion matrix along with top confusions for

each wood types. Overall accuracies for all testing criteria are summed and the

average was calculated to show the robustness of classifier.

TABLE 4.12: The sample generated report of robustness test.

Table 4.12 shows the sample of generated robustness test report. The table

header shows wood type, tests and overall column. The wood type column shows

the number of wood types included in the test. Every new row stores information

for new wood type.

The following columns show individual tests result of correct predictions.

For example, the next column shows the rotation accuracy of wood type. The cal-

culation is the percentage of correct predictions of images generated for rotations.
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The same calculations are applied to next tests, namely resizing, blurring, bright-

ness and colour temperature.

The last column shows the overall summary of each row of wood types.

This column summarizes the performance of wood types on robustness by calcu-

lating the percentage of correct predictions of all tests.

The last row of Table 4.12 shows the overall statistic for each column. This

row sums up the overall test result of particular test by calculating the mean. For

instance, in the rotation test column, the overall result is the average of rotation

test of all wood types. This last row of results is essential to identify the best and

the worst robustness of classifier. The last column and last row shows the overall

Robustness Index where it averages all the test results in the last row. The last row

of the table is the overall results that is crucial for comparison of classifiers.

4.5 Summary

This chapter discussed the overall methodology of this research that covered data

collection and verification, dataset compilation, design of ConvNet and evaluation

criteria for classifier.

The next chapter will discuss on the result with respective discussions.
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CHAPTER 5

RESULT AND DISCUSSION

This chapter discusses the results. First, the result for validation test as per Sec-

tion 4.4.2 is shown and discussed followed by robustness test as per Section 4.4.3.

Results on all datasets were shown, namely DW-20-1n, DW-20-3n, DW-60-3n and

DW-100-3n as shown in Table 4.4. However, the largest dataset DW-100-3n will

be emphasized in discussions because the corresponding classifier is deployed in

service.

5.1 Validation Test Result

5.1.1 Accuracy

TABLE 5.1: Top-1 accuracy, Top-2 accuracy and validation loss for classifiers.
NOTE: Highlighted cells are the highest among classifiers.
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FIGURE 5.1: Overall Top-1 and Top-2 Accuracy for classifiers on various
datasets. Top-1(Left) and Top-2(Right).

Table 5.1 tabulated overall Top-1, Top-2 accuracy of validation test on clas-

sifiers as well as validation loss. The results were plotted in Figure 5.1.

In 20-class datasets namely DW-20-1n and DW-20-3n, SqNet in overall

recorded the best Top-1 and Top-2 accuracy. BzNet settled at second place followed

by BzNet Colour and BzNet Gray. In DW-20-1n dataset, SqNet recorded 89.98%

and 96.49% for Top-1 and Top-2 accuracies respectively. The difference between

SqNet and second-placed BzNet is 5.71% on Top-1 accuracy. Besides that, SqNet

recorded the lowest validation loss at 0.529%.

Moving on to DW-20-3n, which was three times larger than DW-20-1n

dataset, SqNet still dominated with Top-1 and Top-2 accuracies of 90.63% and

96.80% followed by BzNet at 89.65% and 96.59%. The difference in Top-1 be-

tween SqNet and BzNet reduced to 0.98%, down from 5.71% in previous dataset.

As for validation loss, BzNet was the lowest at 0.398.

One observation in the 20-class dataset was that the effect of pretrained

weights of SqNet. All networks with exception of SqNet are trained from scratch,

i.e. new weights were initialized at the beginning of training. Due to this advantage,
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SqNet generally performed better than other networks in terms of classification ac-

curacy. However, as the dataset became larger, the advantage seemed diminishing

as second-placed BzNet was closing in with 0.98% difference in accuracy.

On the 60-class dataset, DW-60-3n, BzNet recorded the best Top-1 and

Top-2 accuracies at 82.50% and 89.86% respectively. The former recorded lower

validation loss as well. SqNet, previously the best classifier in 20-class datasets

settled at second place with 80.29% and 89.86% Top-1 and Top-2 accuracies. The

gap between the former and latter classifier in Top-1 accuracy was 2.21%. As for

validation loss, BzNet still recorded the lowest at 0.791.

As dataset grew larger in terms of number of class and number of train-

ing images, the effect of pretrained weights of SqNet lost its advantage. BzNet

recorded the best accuracy while achieving the lowest validation loss.

Moving on to the largest dataset, DW-100-3n, the trend continued as BzNet

recorded the highest Top-1 and Top-2 accuracies at 77.17% and 86.60%. SqNet

was at second with Top-1 and Top-2 accuracies of 74.29% and 83.95%. As for

validation loss, BzNet was the lowest at 1.482. The difference between BzNet and

SqNet in Top-1 accuracy was 2.85% which translated to about 8,550 images in the

validation dataset of 300,000 images.

Besides BzNet and SqNet, the remaining classifiers namely BzNet Colour

and BzNet Gray fall into third and fourth place in all datasets in terms of Top-1 and

Top-2 accuracies. As for validation loss, these two classifiers recorded lower loss

than SqNet in DW-60-3n and DW-100-3n datasets. The lower loss in validation did

not translate to higher accuracy in this case. This was partly explainable due to the

calculation of validation loss which was the cumulative difference of distance of

predicted label and ground truths label. It is possible that the predicted label was

correct but the difference of distance was huge.

One common similarity between BzNet Colour and BzNet Gray was that

the first convolution layer of these networks works on single channel image in
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grayscale. The difference was how the conversion from 3 channels RGB image

to single channel image took place. For BzNet Colour, the conversion was done

by learnable convolution layer whereby BzNet Gray applied simple grayscale con-

version. To certain extent, the colour information of images was neglected by the

networks. Wood type colour could be a crucial discriminative feature that separated

certain wood types. Hence, these two networks fall behind BzNet and SqNet when

they comes to validation accuracy.

In short summary in validation test, BzNet recorded the best Top-1 and

Top-2 accuracies at 77.17% and 86.60% in DW-100-3n dataset with the lowest

validation loss of 1.482. SqNet was second, BzNet Colour was third followed

lastly by BzNet Gray in accuracy. Pretrained weights gave advantage to SqNet in

smaller dataset.

5.1.2 Recall, Precision and F1 Score

FIGURE 5.2: Frequency distribution for recall, precision and f1 score for valida-
tion test for BzNet in DW-100-3n dataset.
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The previous section discussed the results on overall accuracy of classifiers. This

section focuses on the detail on BzNet performance in DW-100-3n dataset. Figure

5.2 shows the frequency distribution of scores for recall, precision and f1 score for

each wood types in validation test.

At first glance on Figure 5.2, one observation was that the majority of wood

types fall on the right side of the figure which were the groups of 70% and above.

Upon closer inspection, there were 73 out of 100 wood types scoring 70% and

above in recall where 34 of these wood types scored 90% and above. This translated

to 73% of wood types achieved 70% and above in recall.

The same trend applied to precision and f1 score. In the 70% and above

groups, 77 wood types fall into these groups for precision. For f1 score, 72 wood

types were 70% and above. In the 90% and above group, there are 31 wood types

for precision and 24 wood types for f1 score. On the other side of low performers,

there were 6 wood types scoring less than 50% in precision. Lastly, there are 10

wood types achieved 50% and lower for f1 score.

5.1.2.1 Low Performer in Recall

TABLE 5.2: Detail of low recall wood types in validation test on number of spec-
imens and number of images.
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Based on Figure 5.2, there were 10 wood types scores 50% and below in

recall. These wood types were tabulated in Table 5.2 with details of number of

specimens and number of images.

Based on Table 5.2, the number of specimens were below 10 averagely.

Generally, these wood types were less commonly found wood types in Malaysia

and there were subject to availability in FRIM Xylarium.

With cross-validation setup as per Section 4.2.1, 5 specimens were used for

validation test dataset with the exception of Mertas as the total number of specimen

was less than 5. After this setup, the training specimens were left with less than 5

specimens where in some classes the training specimens were less than the valida-

tion specimens. This partly explained the low performance of these wood types as

there were low correlation between training and validation specimens. Moreover,

there were variations in terms of ages for the specimens.

In order to improve recalls on these wood types, there are a few proposals.

Firstly, it is impossible to train a classifier where the training samples are fewer

than the validation samples while achieving good performance. Hence, the cross-

validation setup should be rerun with emphasis on these wood types to distribute the

specimens in such a way that the training specimens are higher than the validation

specimens. This method can partly alleviate the problem of low correlation in

training and validation specimens.

Besides that, one can increase the number of real specimens by collecting

more specimens. However, this method is only applicable if the xylarium comes

across new physical specimens.

The one outlier of these low performing wood types was Gerutu. The num-

ber of training specimens are larger than the validation specimens with a combined

specimens of 20. However, upon analysis on this wood type, the confusions are
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mainly from the same family of wood types. Wood types from the same scientif-

ically family shares similar macroscopic wood features. It can only be differenti-

ated confidently when certain unique features are observed. This applies to wood

anatomists as well.

5.2 Robustness Test Result

5.2.1 Overall Robustness Test

TABLE 5.3: Overall robustness test for classifiers on various datasets. NOTE:
Highlighted cell represents the best score in each dataset.

FIGURE 5.3: Overall Top-1 and Top-2 Accuracy for classifiers on various
datasets. Top-1(Left) and Top-2(Right).
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Table 5.3 tabulated the summary of overall robustness test for classifier on various

datasets. The results were also plotted in Figure 5.3 for easy visualization.

For overall robustness test, on DW20-1n dataset, SqNet recorded the best

performance at 85.71% followed by BzNet Colour. Pretrained weights gave advan-

tage to SqNet once again. However, BzNet Colour recorded the best performance

in robustness test for the remaining datasets.

BzNet, despite being a good performer in validation test in Section 5.1.1

scored poorly in 20-class datasets, grabbing the last place. On the 100-class dataset,

all of the classifiers record scored within the margin of 1.27%. However, in the

100-class dataset, BzNet grabs third place where SqNet recorded the worst score.

To further analyze robustness test, individual tests are discussed in the following

Section 5.2.2.

5.2.2 Robustness Individual Test

TABLE 5.4: Detail of individual robustness test results. NOTE: Highlighted cells
represent the best score in each test.
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Table 5.4 tabulated the details of individual robustness test, a total of 5 tests

as defined in Section 4.4.3. The tests will be discussed in sequence as follows.

1. Rotation Test

2. Field of View Test

3. Blurring Test

4. Brightness Test

5. Colour Temperature Test

5.2.2.1 Robustness Rotation Test

Firstly, Rotation Test which was set to investigate the robustness of classifier against

images with different rotations. In 20-class datasets, SqNet recorded the best score

of 89.18% and 89.98%. In DW-20-1n dataset, BzNet scored last with a margin of

6.86% behind SqNet. BzNet Colour was in second place followed by BzNet Gray

in third. However, BzNet closed the gap between leading SqNet to 1.2%, clinch-

ing second place in DW-20-3n dataset. BzNet Colour took third place followed

by BzNet Gray. The higher the scores mean that the classifier is robust against

rotations in images.

Moving to DW-60-3n dataset, BzNet grabbed the first place at 81.28% fol-

lowed by SqNet at 80.52%, BzNet Colour at 76.45% and BzNet Gray at 74.97%.

This trend was observed in the validation test. The same trend continued in the

DW-100-3n dataset.

5.2.2.2 Robustness Field of View Test

In the next test, Field of View Test was to study the effect of changing field of view

on classifier, i.e. zooming in and out. In this test, SqNet recorded best scores with
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a margin of 2-3% for 20-class datasets. In the DW-60-3n dataset, SqNet remained

the best with a marginal lead of 0.04% over second-placed BzNet. However, BzNet

scored the best result in 100-class DW-100-3n dataset. As per rotation test, BzNet

Colour and BzNet Gray sat in third and fourth place respectively in all datasets with

exception on DW-20-1n where BzNet came last.

5.2.2.3 Robustness Blurring Test

Blurring Test was to simulate limited in-focus of the object within the image. As

per tests above, same trend was observed where SqNet led in 20-class datasets

whereas BzNet recorded best results in 60-class and 100-class datasets. As opposed

to previous tests above, BzNet did not come last in any dataset, the worst place was

third in DW-20-1n dataset. In similar fashion, third and fourth place went to BzNet

Colour and BzNet Gray.

5.2.2.4 Robustness Brightness Test

Brightness test studied the effect of varying brightness level displayed in images

on classifier. As usual, SqNet performed better in 20-class and BzNet performed

better in remaining datasets. As observed in Blurring Test, BzNet did not come

last in any dataset where the worst being third place in DW-20-1n dataset. Upon

closer observation in DW-60-3n and DW-100-3n dataset, second-placed SqNet was

marginally behind BzNet.

5.2.2.5 Robustness Colour Temperature Test

Lastly, the final test is Colour Temperature Test. This test put the classifier to test on

warm and cold temperature images. The preceding trends as observed in previous
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four tests did not apply in this test. BzNet Colour recorded the best scores for all

datasets followed by BzNet Gray. BzNet grabbed last spot in all datasets.

Without colour information, the classifier was less likely to be confused by

colour temperature of image as demonstrated by BzNet Colour and BzNet Gray.

BzNet Colour with its learnable Colour Conversion Module as defined in Section

4.3.3.1, showed its advantage over BzNet Gray where it learned the best colour

conversion.

On the other hand, colour information plagued SqNet and BzNet in this test.

The same useful information used to differentiate some wood types was confusing

the classifier when the colour temperature shifted heavily from warm to cold.

5.2.2.6 Robustness Test Summary

TABLE 5.5: Top scores of individual robustness test. NOTE: Highlighted cells
represent the best score in each dataset.

Table 5.5 tabulated the highest score of every individual robustness test in

all datasets. This helps to understand classifiers regardless of architecture perform

in robustness test as a whole.

In general, classifiers were weak in Colour Temperature Test as it recorded

the least accuracy in all datasets. Next, Blurring Test was one place ahead of Colour

Temperature Test. This was expectable as deliberately blurred images reduce image

quality as well as losing important information graphically that could be useful

discriminative feature for classifier. It was glad to find out that classifiers fared
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relatively good in Brightness, Field of View and Rotation Tests. Some degrees of

varying brightness did not severely affect the classification performance.

BzNet recorded the best Top-1 and Top-2 accuracies in validation test how-

ever it was not the top performer in robustness test especially in the Colour Tem-

perature Test. However, on 60-class and 100-class datasets in robustness test, it

was relatively well performing in other individual tests.

As for SqNet, the pretrained weights on 1000-class ImageNet dataset gave it

the robustness on robustness tests. It was performing relatively good on individual

tests scoring averagely on second place.

On the other hand, BzNet Colour topped Colour Temperature Test which

made it robust against shifting of colour temperature in images. However, BzNet

Colour was third best in validation test followed by BzNet Gray in fourth position.

Colour information played an important role in the discrepancy BzNet Colour

and BzNet Gray in validation and robustness test. Colour information gave the edge

to BzNet and SqNet in discriminating some wood types hence both these networks

top validation test. It was worth noting that images in validation test are randomly

augmentated with combination of augmentation methods but they were less likely

to be in extreme condition. In the robustness test dataset, images were augmented

to every parameters defined in Table 4.11 which includes extreme conditions. At

the same time, this information introduced confusion when the colour temperature

was heavily shifted. This was the opportunity for BzNet Colour and BzNet Gray to

shine.
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FIGURE 5.4: Strength comparison of classifier on robustness test on 100-class
dataset, DW-100-3n.

Figure 5.4 shows the strength of classifiers on the DW-100-3n dataset. The

top performer in each test was given a rank of 4, followed by 3 for second place

and down to 2 and 1. This figure shows how classifiers fare against each other in

every robustness test.

One observation was that BzNet clinched top spots for every test except

Colour Temperature Test which was its weak spot. The second best classifier went

to SqNet followed by BzNet Colour in third place. As per previous discussion,

BzNet Colour scored highest accuracy in Colour Temperature Test.

Judging from the combination result of validation test and robustness test in

DW-100-3n dataset, BzNet was chosen to be the best classifier. Colour Temperature

Test simulates the worst case scenario which is less probably to encounter in real

world field deployment.

In a summary, BzNet scored the best in validation test and most robustness

test with SqNet being the second best candidate.
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5.3 Error Analysis

This section discusses the errors made by BzNet in particularly DW-100-3n dataset

and their corresponding solution. There were two major errors namely natural error

and robustness error. The main discussion lied in the errors that are either image

content-bound or classifier-bound which are discussed in the following sections.

5.3.1 Natural Error

Natural error or same family error was defined as error that human wood anatomist

faces in macroscopic wood identification. In other words, it is sensible error in

macroscopic wood identification. This error is not preventable even with deep

learning algorithm as it relates to the content of the captured image. Hence, this

error is regarded as image content-bound.

FIGURE 5.5: Example of natural error. Left image is Balau but predicted as Red
Balau. Right image is Dark Red Meranti, but predicted as Light Red Meranti.
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Appendix B shows wood types grouped together within their respective sci-

entific family group of 38 families. Genus within the same family shares some

similar macroscopic features with some minor differences. In a analogy to hu-

man family, siblings often shares lookalike faces. Can they be differentiated con-

fidently? The answer is yes when distinctive features are present in the context.

However, the confidence level is greatly depends on the present of unique discrim-

inative features in the observation. The same goes to wood types. In a way, natural

error can be considered as the limitation of macroscopic wood identification as the

macroscopic level cannot differentiate wood types confidently without resolving to

microscopic level. Figure 5.5 shows examples of natural error within the family of

Dipterocarpaceae. Balau, Red Balau, Dark Red Meranti and Light Red Meranti are

within the family of Dipterocarpaceae which shares similar macroscopic features.

According to inputs from wood anatomists in FRIM, some wood types can

be identified physically using quantities such as weight and odour. However, these

physical measures were absent in the context of image. Besides that, when in

doubt, wood anatomist would get a few different cut on the wood specimens to

expose more macroscopic feature with the hope of finding unique wood type defin-

ing macroscopic feature. However, this was often not the case for the training and

validation data collected. Not every single images contain uniquely discriminative

features.

TABLE 5.6: Top-1 and Top-2 accuracy on DW-100-3n and 38 families for BzNet

Table 5.6 shows Top-1 and Top-2 accuracies on DW-100-3n and 38 families

for BzNet. For Top-1 accuracy, the gap between wood types and families is 6.90%

which was the same family confusion error. In other words, 6.90% of wood types
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predicted did not match the ground truths but they were within the same family. On

the families classification, these predictions were correct.

On 38-family classification, the difference between Top-1 and Top-2 accu-

racy was 6.73%. This difference can be regarded as different family error. This

happened when the wood types predicted was not from the same family as the

ground truths and it was not natural from the perspective of wood anatomists. Ro-

bustness error may contribute to this error which is discussed in Section 5.3.2.

FIGURE 5.6: Frequency distribution for recall, precision and f1 score for families
classification on DW-100-3n for BzNet.

Figure 5.6 shows the frequency distribution for recall, precision and f1 score

for 38-families classification for BzNet. At first glance, the major families fall

to the right portion of the figure which are the 70% and above groups. Closer

inspection shows that 32 out of 38 families score 70% and above in recall where

17 of these families score 90% and above. On the other hand, 6 out of 38 families

score 70% and below which were tabulated in Table 5.7.

From Table 5.7, there were only 3 out of 37 families scored 70% and below

for precision. As for f1 score, there are 6 out 38 families scored 70% and below.

6 out these families were found in recall with the additional of Ebenaceae family.
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TABLE 5.7: Families that achieved 70% and lower in recall, precision and f1
score

Recall Precision F1 Score
Tiliaceae Tiliaceae Tiliaceae

Combretaceae - Combretaceae
Ctenolophonaceae - Ctenolophonaceae

Lecythidadceae - Lecythidadceae
- Ebenaceae Ebenaceae

Lauraceae Lauraceae Lauraceae
Meliaceae - Meliaceae

Upon cross referencing with Appendix B and low recall performer of wood types

in Section 5.1.2.1, those wood types with low performance in recall belonged to

the 6 low performing families. As discussed in Section 5.1.2.1, the same problems

plagued the recall of these families.

5.3.2 Robustness Error

Robustness error refers to classifier errors in varying conditions as defined in Sec-

tion 4.4.3. The inability of classifier to be invariant to conditions happen in the

images is defined as robustness error. This error is strictly classifier-bound and it is

irrelevant to the contents captured in the image.

As shown in Section 5.2, robustness error is found due to the fact that no

100% accuracy is achieved in every individual Robustness Test. The chosen clas-

sifier, BzNet suffers from Colour Temperature Test where BzNet Colour shines.

This is the main challenge for this research as the author proposed the usage of

smart-phone as imaging device to acquire macroscopic wood images as opposed

to standardized method of image acquisition practiced in the laboratory under con-

trolled conditions.
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5.3.3 Solution and Recommendation

In this section, solutions and recommendations are discussed to improve the classi-

fier performance against errors discussed in previous sections, namely natural error

and robustness error.

There are no direct solution to solve natural error as it is the limitation

of macroscopic wood identification. However, in practical usage, users are rec-

ommended to get more cut on the specimens to expose more macroscopic wood

features that may confidently define a wood type.

As for robustness error, there is one solution proposed to tackle this error.

This first solution is the application of ensemble networks. Multiple classifiers with

different weights train to compliment each other by fusing the predictions in a hope

to minimize the effect of varying conditions on image.

Besides, the author proposed that merging the best characteristics of BzNet

and BzNet Colour in future ConvNet designs to help tackle the colour temperature

problem.

5.4 Summary

In this chapter, the results for validation test and robustness test were presented and

discussed in detailed. Besides that, error analysis on the classifier was discussed

along with recommendations on improvement. The best classifier in validation test

was BzNet in DW-100-3n dataset. As for robustness test, BzNet achieved the best

overall performance however, it underperformed in Colour Temperature Test where

BzNet Colour topped the test.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter concludes research and states future work for this research.

6.1 Conclusion

The objectives as defined in Section 1.4 are met at the end of this research. In

this research, the goal is to develop a practical macroscopic wood identification

system using deep learning method. At such, smart-phone with macro-lens was

used as image acquisition device. With this setup, a total of 101,546 macroscopic

cross section images of 100 types of wood were collected and verified by wood

anatomists. These data is used as dataset to train the deep learning model which is

ConvNet for this research. Besides that, a huge digitized Wood Xylarium is created

from the collected data.

The focus of this research lies in the design of ConvNet to improve clas-

sification of wood types. New ConvNet architectures, BlazeNet and its variant

BlazeNet Colour Conversion were designed and benchmarked against SqueezeNet

in two tests namely validation test and robustness test. In the 100-class dataset,

DW-100-3n, BzNet achieved the best Top-1 accuracy of 77.14% tested on the val-

idation dataset that consists of 300,000 images. The benchmark SqNet achieved

74.29% on the same dataset, 2.85% behind the leader BzNet. On the robustness

test, BzNet grabbed the third place behind BzNet Colour and BzNet Gray with a

close margin of 0.91% and 0.01%. The major downfall of BzNet was the Colour

Temperature Test where its variant BzNet Colour triumphed. In comparison to
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SqNet, BzNet was better in both validation and robustness test. Moreover, BzNet

is 3x smaller in terms of number of parameters.

The main errors faced by BzNet in this research was the same family error

and robustness error. Same family error refers to the predicted wood types are

in the same scientific family of the ground truth wood types. This is a common

error in the macroscopic wood identification as per wood anatomist. Besides that,

robustness test showed that the classifier suffered from robustness error.

In conclusion, this outcome of this research is a deployed and running cloud

service of 100 Malaysian Timber Identification system. The system is accessible

via an iOS application, namely Mywood-ID published in Apple Appstore. BzNet

is deployed as the classifier in the cloud server.

6.2 Future Work

The research presented in this thesis solved the problem defined in Section 1.3.

However, it created some works to be done in the future to improve current system

and future research direction.

Firstly, the performance of BzNet suffered from effect of varying colour

temperature on image despite being the best classifier in validation test. BzNet

Colour was designed to mitigate this problem but it partly solved the problem.

The first recommendation is to combine the BzNet and BzNet Colour to form an

ensemble classifier by fusing outcomes from two classifiers to get the best of both

world to achieve great accuracy in validation test and robustness test.

As discussed in Section 5.1.2.1, some of the wood types that suffered from

bad recall were having less number of training specimens compared to validation

specimens. To mitigate this problem, the cross validation setup of dataset has to

be rerun with emphasis on these wood types to transfer some of the validation

specimens to become training specimens. The rule of thumb is that the number of
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validation specimens should be lower than the training specimens.

Besides the improvements above, this research created some new research

directions in the future. Current cloud based system is good in accessibility due to

the wide coverage of the Internet. However, there is real use case that the system

is unreachable in area with limited Internet coverage. Hence, the future direction

is to embed the classifier into the smart-phone to make offline service available.

However, this is subject to the processing power of current and future smart-phone.

Lastly, dataset is crucial to this research. To improve the system, new

data is needed to increase the size and variation of dataset. To solve this prob-

lem, Deep Convolutional Generative Adversarial Network (DCGAN) is proposed

to learn from current available dataset to generate new data. DCGAN consists of

two parts, namely discriminator and generator. Discriminator is analogous to clas-

sifier that learns to discriminate the input into their respective classes. Generator, on

the other hand, learns to generate data that are closely resemble the real input data.

A robust generator can generate data that in turn used to training a new classifier.
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CHAPTER A

TIMBER TYPES DETAILS

TABLE A.1: Table of timber types collected

Class Name Specimen Number of Image
Training Validation Total Training Validation Total

Ramin 14 5 19 986 381 1,367
Karas 6 5 11 416 653 1,069
Merbau 10 5 15 878 678 1,556
Kempas 13 5 18 1,265 393 1,658
Rubberwood 3 5 8 675 410 1,085
Balau 25 5 30 1,543 255 1,798
Chengal 22 5 27 842 226 1,068
Keruing 70 5 75 1,737 116 1,853
Dark Red Meranti 35 5 40 1,600 200 1,800
Light Red Meranti 58 5 63 1,73 102 1,375
Jelutong 3 2 5 741 322 1,063
Red Balau 25 5 30 1,221 100 1,321
Teak 25 5 30 1,640 478 2,118
Tualang 3 5 8 537 465 1,002
Nyatoh 45 5 50 1,020 57 1,077
Keranji 9 5 14 733 319 1,052
Bintangor 31 5 36 986 129 1,115
Mengkulang 11 5 16 711 336 1,047
White Meranti 45 5 50 1,133 69 1,202
Yellow Meranti 47 5 52 1,001 109 1,110
Giam 27 5 32 1,107 215 1,322
Kapur 25 5 30 984 196 1,180
Kedondong 53 5 58 1,578 123 1,701
Kekatong 11 5 16 752 250 1,002
Kelat 44 5 49 1,494 195 1,689
Merawan 79 5 84 1,235 77 1,312
Mersawa 33 5 38 1,069 147 1,216
Resak 43 5 48 986 121 1,107
Sepetir 15 5 20 827 328 1,155
Sesendok 6 5 11 438 613 1,051
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TABLE A.2: Table of timber types collected (cont. 1)

Class Name Specimen Number of Image
Training Validation Total Training Validation Total

Durian 26 5 31 867 166 1,033
Geronggang 7 5 12 475 558 1,033
Gerutu 15 5 20 882 295 1,177
Merpauh 10 5 15 905 296 1,201
Kasai 7 5 12 612 509 1,121
Kembang Semangkok 5 5 10 604 424 1,028
Machang 20 5 25 1,349 275 1,624
Medang 44 5 49 1,722 238 1,960
Melunak 12 5 17 771 236 1,007
Penarahan 28 5 33 1,035 180 1,215
Pulai 13 5 18 866 167 1,033
Bitis 17 5 22 720 360 1,080
Rengas 24 5 29 1,234 339 1,573
Mempisang 41 5 46 932 76 1,008
Belian 1 5 6 53 1,039 1,092
Tembusu 7 5 12 520 489 1,009
Terentang 6 5 11 511 503 1,014
Acacia Mangium 3 2 5 571 551 1,122
Keledang 34 5 39 940 226 1,166
Terap 3 5 8 325 834 1,159
Kulim 12 5 17 610 432 1,042
Kungkur 2 2 4 624 388 1,012
Mata Ulat 11 5 16 898 262 1,160
Melantai 14 5 19 755 312 1,067
Meranti Bakau 8 5 13 548 517 1,065
Perupok 21 5 26 744 296 1,040
Punah 10 5 15 668 342 1,010
Simpoh 18 5 23 935 204 1,139
Sena 3 2 5 755 269 1,024
Seraya White 5 5 10 422 586 1,008
Ara 6 5 11 634 446 1,080
Bakau 8 5 13 641 480 1,121
Balek Angin 2 5 7 185 367 552
Batai 2 5 7 150 416 566
Bekak 4 5 9 319 402 721
Berangan 5 5 10 480 590 1,070
Tampoi 3 2 5 576 285 861
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TABLE A.3: Table of timber types collected (cont. 2)

Class Name Specimen Number of Image
Training Validation Total Training Validation Total

Chempaka 11 5 16 451 227 678
Delek 3 5 8 248 461 709
Derum 6 5 11 306 318 624
Dungun 16 5 21 493 147 640
Gelam 3 2 5 341 216 557
Kandis 9 5 14 408 202 610
Kasah 0 1 1 572 572 1,144
Kayu Malam 18 5 23 874 210 1,084
Kekabu 2 2 4 153 408 561
Kelampayan 3 2 5 326 227 553
Ketapang 3 5 8 196 376 572
Leban 5 5 10 308 301 609
Mahang 5 5 10 264 315 579
Ludai 4 5 9 304 297 601
Mempening 9 5 14 908 207 1,115
Meransi 4 5 9 279 324 603
Merbatu 2 2 4 585 582 1,167
Mertas 1 2 3 200 557 757
Minyak Berok 22 5 27 535 126 661
Nyireh 2 5 7 148 411 559
Pauh Kijang 5 5 10 364 298 662
Pelawan 5 5 10 299 259 558
Penaga 1 5 6 101 503 604
Perah 5 5 10 305 303 608
Putat 1 5 6 128 455 583
Rambutan 3 5 8 191 390 581
Saga 2 5 7 170 391 561
Sawa Luka 2 5 7 301 274 575
Sentang 3 2 5 407 150 557
Surian 1 5 6 100 458 558
Surian Batu 3 2 5 441 120 561
Tempinis 1 5 6 100 476 576
Tulang Daing 6 5 11 577 510 1,087
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CHAPTER B

TIMBER TYPES FAMILY DETAILS

TABLE B.1: Table of timber types family

Family Name Trade Name Family Name Trade Name
Dipterocarpaceae Balau Moraceae Keledang

Chengal Terap
Keruing Ara
Dark Red Meranti Tempinis
Light Red Meranti Anacardiaceae Merpauh
Red Balau Machang
White Meranti Rengas
Yellow Meranti Terentang
Giam Myrtaceae Kelat
Kapur Gelam
Merawan Pelawan
Mersawa Thymelaeaceae Ramin
Resak Karas
Gerutu Fagaceae Berangan
Melantai Mempening
Meranti Bakau Verbenaceae Teak
Seraya White Leban
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TABLE B.2: Table of timber types family

Family Name Trade Name Family Name Trade Name
Leguminosae Merbau Lauraceae Medang

Kempas Belian
Tualang Celastraceae Mata Ulat
Keranji Perupok
Kekatong Sapotaceae Nyatoh
Sepetir Bitis
Kungkur Bombacaceae Durian
Sena Kekabu
Batai Sapindaceae Bakau
Tulang Daing Meransi
Saga Kasai

Euphorbiaceae Rubberwood Rambutan
Sesendok Apocynaceae Jelutong
Balek Angin Pulai
Tampoi Dilleniaceae Simpoh
Mahang Olacaceae Kulim
Ludai Tiliaceae Melunak
Perah Annonaceae Mempisang

Guttiferae Bintangor Loganiaceae Tembusu
Geronggang Fabaceae Acacia Mangium
Derum Proteaceae Sawa Luka
Kandis Tetrameristaceae Punah
Penaga Myristicaceae Penarahan

Meliaceaes Bekak Burseraceae Kedondong
Nyireh Anisophylleaceae Delek
Sentang Chrysobalanaceae Merbatu
Surian Combretaceae Ketapang
Surian Batu Mertas

Sterculiaceae Mengkulang Ebenaceae Kayu Malam
Kembang Semangkok Putat
Dungun Magnoliaceae Chempaka
Kasah Simaroubaceae Pauh Kijang

Polygalaceae Minyak Berok Rubiaceae Kelampayan
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