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ABSTRACT 

 

DATA PRE-PROCESSING TECHNIQUES FOR IMPROVING RIVER 

WATER LEVEL PREDICTION: A CASE STUDY OF THE DUNGUN 

RIVER, TERENGGANU, MALAYSIA 

 

Ervin Tiu Shan Khai 

 

 

 

An accurate river water level prediction model is vital for the development of 

flood mitigation plans in a river basin, and the accuracy of input data is 

important for ensuring good predictions. In this research study, a Support 

Vector Regression (SVR) model was applied to predict river water levels at 

the Dungun River, Terengganu, Malaysia. A major challenge of this study is 

to process the observed rainfall series which may tend to be incomplete and 

inconsistent. A better observed rainfall series data can lead to improved 

performance of the river water level prediction model. This study adopted the 

data pre-processing techniques to first improve the observed rainfall series. 

Three data pre-processing techniques namely; the Variational Mode 

Decomposition (VMD) method, the Boosting method and the Boosting-VMD 

method, were adopted to pre-process the observed rainfall series at the basin 

prior to applying them into the prediction model. Rainfall series and river 

water levels from November to February (Northeast Monsoon period) for the 

period of 1996-2016 were used. The three pre-processed rainfall series and the 
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original observed rainfall series were then separately and individually, used to 

predict river water levels using the SVR model. The predicted river water 

levels from the four modified SVR models namely; the Ori-SVR (using 

original observed rainfall) model, the VMD-SVR (using VMD method) model, 

the B-SVR (using Boosting method) model, and the B-VMD-SVR (using 

Boosting-VMD method) model, were assessed against the observed river 

water levels, using non-parametric statistics (Model prediction errors’ range, 

standard deviation and confidence interval range) and parametric statistics 

(Bias, Root-Mean-Square Error, Mean Absolute Percentage Error, Nash-

Sutcliffe Efficiency Coefficient and Mean Absolute Error) where appropriate, 

to assess the three data pre-processing techniques in enhancing the SVR model. 

Results indicated that the VMD, the Boosting and the Boosting-VMD methods 

afforded data improvements that boosted the performance of SVR models. 

Further statistical analyses showed that the SVR model cum the Boosting-

VMD method that is, the (B-VMD-SVR) to be the most robust, with results of 

model prediction error’s range (4.27; Min: -2.95, Max: 1.32), model prediction 

error’s standard deviation (0.4200), model prediction error’s confidence 

interval range ([-0.02, 0.01]; Standard error: 0.00868), Bias (0.00), Root-

Mean-Square Error (0.42), Mean Absolute Percentage Error (4.36), Nash-

Sutcliffe Efficiency Coefficient (0.96) and Mean Absolute Error (0.28). 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

1.1 Background 

 

The Dungun River Basin is one of seven districts in the state of 

Terengganu, Malaysia. It is categorized as one of the more severe flood prone 

areas in Peninsular Malaysia. Some limited research had previously been 

carried out by researchers at the Dungun River Basin, due to the regular 

flooding events in the Dungun River Basin. 

 

Hafiz et al. (2013) had reported on the flood forecasting and early 

warning system for the Dungun River Basin. An Integrated Flood Analysis 

System (IFAS) model has been implemented for the research study. It was 

found out that the Dungun River Basin suffers from annual regular severe 

flooding due to the prolong rainfall events caused by the Northeast monsoon at 

the East Coast Region of Peninsular Malaysia. Severe flooding will result in 

the loss of properties, crops and even deaths. People around the flood prone 

areas should be warned through the flood forecasting and early warning 

system so that they can evacuate immediately. 

 

Lariyah (2014) had investigated the hydrological extreme flood event 

in Dungun River Basin region. In 20th century, the hydrological extreme 

events have been associated with the climate changes and variabilities, causing
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major flooding which resulted in severe economic losses and lives. Due to the 

geographical location of Malaysia, the Northeast Monsoons will bring 

abundant amounts of rainfall. The Department of Irrigation and Drainage 

(DID) Malaysia reiterated that major floods had occurred annually since 2001. 

 

Wu et al. (2009) stated that suitable data pre-processing technique can 

help in improving the performance of data-driven models. Hybrid models 

which combine both data pre-processing techniques and Artificial Intelligence 

models have been introduced to estimate river water levels. During the late 

1990s, the Empirical Mode Decomposition (EMD) which was introduced by 

Huang et al. (1998) was widely used in recursively decomposing signal into 

different modes of unknown signals. However, another entirely non-recursive 

model which is more robust to sampling and noise namely, the Variational 

Mode Decomposition (VMD) was introduced later to overcome the limitations 

of the EMD (Dragomiretskiy and Zosso, 2014).  

 

Ensemble learning techniques have also employed widely in the 

hydrological modelling and estimation of hydrologic variables in recent years 

(Anctil and Lauzon, 2004; Snelder et al., 2009). Boosting is one of the 

ensemble methods that was used to improve the performance of weak 

predictors. A linear combination of the models can be created using Boosting 

method (Hancock et al., 2005). However, the ensemble methods have still yet 

to be explored in the field of hydrology field, especially in river water level 

prediction. 
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Since early 20th century, artificial intelligence was introduced into 

engineering and science problems, especially in the prediction and modelling 

of non-linear hydrological applications. In the last two decades, the Support 

Vector Machine (SVM) was introduced as a brand-new statistical learning 

method. It was a robust and effective method for both classification (Vapnik, 

1995) and regression (Collobert and Bengio, 2001; Drucker el al., 1996) for a 

noisy set of data. The SVM was originally used for classification procedure 

purposes, and recently another version of the SVM called the Support Vector 

Regression (SVR) was introduced (Vapnik et al. 1997). The SVR has also 

used extensively in hydrology and other fields (Moradkhani et al. 2004; Yu et 

al. 2006; Lin et al. 2006; Wu et al. 2008; Lin et al. 2009; Chen et al. 2010; 

Yoon et al. 2011; Yousefi et al 2015). 

 

 

1.2 Problem Statement 

 

 As late as 2016, the National Disaster Management Agency (NADMA), 

Malaysia have stated that continuous heavy rain had frequently caused severe 

inundating floods in the state of Terengganu, Malaysia forcing hundreds to 

evacuate. Some of the affected areas in the Terengganu state had recorded 

almost 250 mm of rainfall over a 24-hour period, which was considered a 

severe case. The worst affected areas in the state are the districts of Kuala 

Terengganu and Kemaman. Then, the districts of Hulu Terengganu, Marang 

and Dungun have also been pounded with heavy rains since 28 November 

2016. In early 2017, the flooding became even serious in some other states in 
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Peninsular Malaysia. In Kelantan and Terengganu, approximately 25,000 

people had evacuated from their homes. Areas of neighbouring southern 

Thailand was also affected severely, and the latest reports claimed that 96 

people have died due to the flooding since early of the year (FloodList, 2017). 

 

The river water level prediction model is used to calculate the 

conversion of rainfall series into river water level. The model must be trained 

and validated before it can be used. The observed rainfall data tend to be 

incomplete, inconsistent and lacking in certain behaviours or trends which 

more likely are a lead cause to many errors. Hence, data pre-processing 

techniques should be applied to improve the observed rainfall series data.  

This can then allow for improving the performance of river water level 

prediction model. And, more advance and latest modelling techniques such as 

the incorporation of artificial intelligence in the models are needed for more 

accurate river water level prediction.  

 

 

1.3 Aim and Objectives 

 

The aim of this study is to determine the best data pre-processing 

technique to be used in tandem with the flood level prediction model in order 

to improve the performance of the selected river water level prediction model 

for the Dungun River Basin, Terengganu state. The specific objectives of this 

study are stated as below: 
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i. To process observed rainfall series using data pre-processing 

techniques to be used as the input for the river water level prediction 

model, 

ii. To train and validate the river water level prediction model using the 

processed rainfall series and the observed rainfall series, and 

iii. To assess the performance of all the data pre-processing techniques 

using appropriate model performance assessment measures. 

 

 

1.4 Significance of Study 

 

It is quite important to conduct research to gain more accurate river 

water level prediction results for the water resources system in the Dungun 

River Basin. Through this study, the selected best improved river water level 

prediction model can be employed for the development of a flood mitigation 

emergency management plan and to ensure sustainable management of the 

Dungun River Basin. The data pre-processing techniques for analysing and 

denoising the observed rainfall series is used to improve the river water level 

prediction model. The results obtained from this study are beneficial to the 

hydrology field, especially in the field of flood forecasting and flood 

management. It can be used to predict river water level for flood mitigation 

purposes.  
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1.5 Scope of Work 

 

The scope of work includes the application of data pre-processing 

techniques to improve the observed rainfall series for the three rainfall stations 

in the Dungun River Basin and the application of river water level prediction 

model to predict river water level based on the processed rainfall series. Based 

on the literature review, only three data pre-processing techniques will be 

chosen as the techniques for this research study. The data pre-processing 

techniques (VMD method, Boosting method, Boosting-VMD method) are 

employed to improve the performance of chosen river water level prediction 

model, which is the SVR model. In this research study, only the SVR model 

will be implemented for predicting river water level using the processed and 

observed rainfall series. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

 

2.1 Data Pre-Processing Techniques 

 

2.1.1 Empirical Mode Decomposition (EMD) 

 

The EMD method, which was introduced by Huang et al. (1998) is a 

multi-resolution signal pre-processing technique which is able to decompose 

time series into its intrinsic components adaptively. The incoming signal can 

be decomposed into a series using EMD, namely the Intrinsic Mode Function 

(IMF). The EMD can used to analyse the input signal without using any pre-

determined basis functions as done for the Fourier and wavelet transforms 

(Huang et al., 1998; Lee and Ouarda, 2010). An IMF is a function that need to 

satisfy the two conditions stated below: 

 

i. In the whole data set, the number of extrema (both maxima and 

minima) and the number of zero crossings must either equal or differ at 

most by one, and 

ii. At any point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero. 

 

The IMF are amplitude-modulated-frequency-modulated (AM-FM) 

signals whose equation is shown in Equation 2.1: 
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 𝑢𝑘(𝑡) =  𝐴𝑘(𝑡) cos(ɸ𝑘(𝑡)) (2.1) 

 

where the phase ɸk(t) is a non-decreasing function, ɸ’
k(t) ≥ 0, the envelope is 

non-negative Ak(t) ≥ 0, and both the envelope Ak(t) and the instantaneous 

frequency ⍵k(t) = ɸ’
k(t) vary much slower than the phase ɸk(t). 

 

Furthermore, the EMD is self-adaptive and data driven. Hence, this 

method is suitable to be used for both non-linear and non-stationary time 

series data analysis. Due to the attractive characteristics of EMD, it was 

involved extensively in several area signal processing, such as in mechanical 

engineering (Ricci and Pennacchi, 2011), signal de-noising (Li et al., 2011; 

Lahmiri and Boukadoum, 2014a; 2015a), speaker identification (Wu et al., 

2011), biomedical image analysis (Ai et al., 2011; Lahmiri and Boukadoum, 

2014b; 2015b), DNA sequence analysis (Zhang et al., 2012), and machinery 

fault diagnosis (Cheng et al., 2012). In addition, the EMD was used in the 

economic and financial data analysis as well, such as modelling and predicting 

crude oil price (Zhang et al., 2008; Zhang et al., 2009), stock market (Cheng et 

al., 2014), electricity price (An et al., 2013; Lisi and Nan, 2014), and foreign 

exchange rate (Lin et al., 2012; Premanode and Toumazou, 2013). 

 

Apart from that, EMD has also applied widely in the fields of 

hydrological and water resources such as river water level prediction, which is 

the main focus of this research study. Some researches regarding EMD cum 

streamflow forecasting model had been done to yield the data for streamflow 

forecasting purpose (Napolitano et al., 2011, Huang et al., 2014 and Wang et 
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al., 2015). Zhu et al. (2016) had used the support vector machine model to 

predict the monthly streamflow. They had using the discrete wavelet analysis 

(DWA) and the EMD for time series decomposition and found that both 

methods help in enhancing the accuracy of streamflow forecasting. 

 

 

2.1.2 Variational Mode Decomposition (VMD) 

 

As stated by Aneesh et al. (2015), the VMD uses calculus of variation 

to decompose the signal into various modes of IMFs. Dragomiretskiy and 

Zosso (2014) was the first to introduce the multi-resolution VMD model as an 

alternative to the EMD method in order to overcome its limitations. As 

previous mentioned, the EMD was an adaptive technique by Huang et al. 

(1998) to decompose signal into different modes of unknown recursively. 

However, the limitations of the EMD while lacking in sensitivity to noise and 

sampling as well as algorithm ad-hoc nature lacking mathematical theory, also  

could only be partially solved by using more mathematical attempts to 

decomposition problem like synchro-squeezing, empirical wavelets or 

recursive variational decomposition (Dragomiretskiy and Zosso, 2014). 

 

Hence, an entirely non-recursive VMD method was introduced as an 

alternative to EMD, which was able to extract the modes concurrently, 

properly balancing errors between them and separate tones of similar 

frequencies (Dragomiretskiy and Zosso, 2014). An optimization methodology 

called the Alternate Direction Method of Multipliers (ADMM) was proposed 
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in the VMD to search the central frequencies and IMFs centred on those 

frequencies concurrently. However, the EMD is sifting recursively and 

backward error correction is not allowed (Aneesh et al., 2015).  

 

Apart from the statement by Aneesh et al. (2015), Dragomiretskiy and 

Zosso (2014) stated that VMD was able to show an optimized and positive 

results using ADMM approach. In their study, the preliminary results showed 

the attractive performance with respect to the previous EMD. The EMD was 

mostly limited when it is unable to cope with noise properly. As stated 

previously, the EMD is sifting recursively in most methods while not allowing 

for backward error correction. This will specifically inhibit the coping of the 

noise. Here, the VMD showed a more promising practical decomposition 

result as it is more robust to sampling and noise and it can address the 

presence of noise in the input signal specifically as compared to that of EMD 

(Dragomiretskiy and Zosso, 2014). 

 

In summary, the tones of similar frequencies can be separated using 

VMD (Dragomiretskiy and Zosso, 2014). Dragomiretskiy and Zosso (2014) 

stated that VMD outperforms the EMD using simulated harmonic functions. 

Salim (2016) performed the VMD approach which integrated with the general 

regression neural network model to analyse and forecast the economic and 

financial series. He stated that VMD had better performance as compared to 

the EMD in terms of noisy signals analysis. The VMD can be processed faster 

and had faster convergence while dealing with large dataset. It is noteworthy 

that VMD outperforms EMD in some ways. 
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Besides that, the VMD was also found to contribute widely and 

possess outstanding performance in different field of studies. It had been 

applied to the fields of biomedical signal denoising (Lahmiri and Boukadoum, 

2014c; 2015c) as well as the international stock markets analysis (Lahmiri, 

2015d). Furthermore, Aditya et al. (2016) presented a novel method for 

denoising knee joint vibration (VAG) signals using VMD. They proved the 

VMD superiority in denoising raw VAG signals as compared to previous 

methods such as the wavelet-soft thresholding, the EMD-detrended fluctuation 

analysis and the EMD-filtering. However, the effectiveness of VMD against 

EMD in modelling especially river water level prediction modelling is still yet 

to be explored. 

 

 

2.1.3 Discrete Wavelet Analysis (DWA) 

 

Wavelet analysis is considered as an interesting tool for analysing time 

series variation. Through changing the scale and shifting factors of a mother 

wavelet (w), the incoming signal can be decomposed into multiple lower 

resolution levels. Both high-pass filter and low-pass filter were used to 

perform the wavelet analysis (Nalley et al., 2012). 

 

Continuous wavelets analysis (CWA) and the discrete wavelets 

analysis (DWA) are the two main types of wavelet transform. CWA 

decomposes signal on all scales whereas the DWA decomposes on discrete 

number of scales. For CWA, it requires more computation time and data 
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during decomposition. However, as compared to the CWA, the DWA needs 

lesser computation time and it is easier to develop (Adamowski and Chan, 

2011). Thus, for practical applications, the DWA is usually preferred and it is 

widely used in engineering applications. Percival (2008) stated that DWA is 

more suitable for rainfall data analysis as CWA was unable to generate the 

time series information. Chou (2007) stated that the transformation by DWA is 

more simplified due to the dyadic calculation of position and scale of a signal. 

Not to mention, the signal can even be decomposed into approximation and 

detail series using DWA (Misiti and Misiti, 1996). 

 

As stated by Lee and Yamamoto (1994), the Haar, Meyer, Morlet and 

Daubechies wavelets are the four common mother wavelets. Maheswaran et al. 

(2013) also stated that there are several wavelets in the family of wavelets 

which are distinguished by their respective number of decompositions such as 

the Haar wavelet, Daubechies 2 wavelet (db2), Symlet (sym) or Spline. The 

appropriate settings for the filter bank are based on the selection of a wavelet 

family. According to Maheswaran and Khosa (2011b), the wavelets’ type and 

order, as well as the levels of decomposition for the time series will have 

diverse features. However, the db wavelet is the most common DWA family 

which has been applied in hydro-meteorological studies because of its 

characteristics. Two types of evaluation criteria namely the mean relative error 

(MRE) and the relative error were used to assess the type of mother wavelet 

and the appropriate level of decompositions (de Artigas et al., 2006; Nalley et 

al., 2012). 
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2.1.3.1 Haar Wavelet 

 

The Haar wavelet is a type of discrete wavelet function and sequence 

of rescaled square shape function. It possesses two functions which are the 

scaling function, ϕ (father wavelet) and wavelet, ψ (mother wavelet) that 

generated a family which used to break up or reconstruct a signal. The wavelet 

analysis which is based on the Haar scaling function is simple as its building 

blocks are translations and dilations. de Chazal et al. (2000) stated that the 

Haar wavelet (also called as Daubechies 1) was suitable for the classification 

task as it required the least computation. It is simple for applications as the 

process of Haar wavelet is sharp and compact (Kumar and Georgiou, 1997). 

 

 Maheswaran and Khosa (2012) had compared different kind of 

wavelets for hydrologic forecasting. In the model application, the researchers 

had dealt with three case studies with different time series. In the study, they 

stated that the Haar wavelet’s feature which possesses relatively narrow span 

over was found to be applicable in signals that have sharp changes. However, 

it was categorized as a wavelet which have transient features as compared to 

other wavelets in wavelet family. It is only recommended for time steps that 

have short term features. It is expected to be implemented in daily streamflow 

time series. 

 

Through this several criteria, some best wavelet family had been 

chosen. By using several quantitative standard statistical performance 

evaluation measures for performance and accuracy checking, Haar wavelet 
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possessed a better performance as compared to other wavelets. Therefore, 

Haar wavelet is recommended to be used for time series of daily streamflow 

(Maheswaran and Khosa, 2012). 

 

 

2.1.3.2 Daubechies Wavelet (db) 

 

Daubechies wavelet (db) was discovered by Ingrid Daubechies. This 

also includes the Haar wavelet as previous mentioned, which is written as db1, 

as a special case. The concepts of the Daubechies wavelet is similar to the 

Haar wavelet in terms of trend and fluctuation. However, the Daubechies 

wavelet has different properties in how scaling functions and wavelets are 

defined. 

 

 The high-pass and low-pass filters are the function sets that were 

operated by the Daubechies wavelet for time series decomposition purpose. 

The incoming signal are processed by using both high-pass and low-pass 

filters and eventually the signal are separated into two different scales which 

are details and approximation. For the approximation time series, the signal is 

decomposed into high-scale and low frequency components and vice versa for 

the details time series.  

 

Maheswaran and Khosa (2012) had investigated the suitability of 

wavelets for different time series in their research’s case studies to compare 

the different wavelets for hydrologic forecasting. In the model application, 

they had dealt with the seasonal and monthly streamflow time series analysis. 
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Throughout the case studies, they found out that db2 are recommended for 

time series having non-linear features and long-term memory such as seasonal 

and monthly time series. The underlying long-term features can be extracted 

more effectively using db2 wavelet as it possessed good frequency localization 

capabilities. Therefore, db2 wavelet is recommended to be used for time series 

of seasonal and monthly streamflow. 

 

 

2.1.3.3 B-spline Wavelet 

 

B-spline wavelet is well-known for its compactly supported 

characteristics and it can be formulated in an explicit form analytically. 

According to Chui (1992), the mth order of B-spline function was presented in 

the recursive form while the 0th order of B-spline corresponds to the well-

known Haar wavelet, as shown in Equations 2.2 and 2.3. 

 

 𝑁𝑚(𝑥) =  
𝑥

𝑚 − 1
𝑁𝑚−1(𝑥) +  

𝑚 − 𝑥

𝑚 − 1
𝑁𝑚−1(𝑥 − 1), 𝑚 ≥ 2 (2.2) 

 

where 

 𝑁1(𝑥) =  𝜒[0,1)(𝑥) =  {
1
0

   
𝑖𝑓 𝑥 ∈ [0,1)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.3) 

 

 Based on Wei and Billings (2006), the B-splines wavelets are unique 

among other various basis functions due to their three integrating remarkable 

properties which are stated below: 
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i. B-splines have compact support, 

ii. B-splines can be analytically formulated, and 

iii. B-splines are suitable for multi-resolution analysis. 

 

 

2.1.3.4 Sym Wavelet 

 

Sym wavelet, also known as symlet (in a compact form) is nearly 

symmetrical and it possesses similar properties to the general Daubechies 

wavelets, dbNs, as abovementioned. It was proposed in the Daubechies as 

modifications to the db family. At a given support width, the symlet possessed 

the highest number of vanishing moments. The associated scaling filters of 

symlet are close to linear-phase filters (Nibhanupudi, 2003). The symlet be 

able to both orthogonal and biorthogonal and it provides the compact support 

as well, as similar to B-spline wavelet as abovementioned. Several types of 

sym wavelet are clearly shown in Figure 2.1. 

 

 

Figure 2.1: Types of Sym Wavelets (The MathWorks, 2005) 
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2.1.4 Moving Average (MA) 

 

Moving Average (MA) can smoothen the input data by replacing one-

to-one data point by using the average of the k neighbouring data points. The k 

neighbouring data points are the length of memory window. By getting the 

average points with the immediate neighbours’ data points, those large 

irregular components at any point of time can exert a smaller effect which will 

in turn decrease the inaccuracy of data obtained (Newbold et al., 2003). The 

MA method is carried out by smoothing the results with same weight of data 

value. MA includes the centering, backward and forward types. Only 

backward mode was used as another two types may necessitate future 

observed values. The k-term unweighted moving average 𝑦𝑡
∗  is shown in 

Equation 2.4 when the backward moving mode is implemented (Lee et al., 

2000). 

 

 𝑦𝑡
∗ =  

(∑ 𝑦𝑡−𝑖
𝑘−1
𝑖=0 )

𝑘
 (2.4) 

 

where t = k, …, N. The choice of the window length k is by a trial and error 

procedure with a minimization of the loss of the objective function. 

 

 de Vos and Rientjes (2005) proposed the MA method to be coupled 

with the Artificial Neural Networks (ANN). The MA method as a data pre-

processing technique was found to be able to enhance the performance of 

ANN. As stated by the researchers, the lagged predictions of ANN results 

were caused by the previous ANN observed input data. The MA method was 
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used as a new relatively effective solution to obtain a new model inputs as 

compared to that of original data series. 

 

 Wu et al. (2009) had predicted the monthly streamflow using data pre-

processing techniques cum data-driven models. Singular Spectrum Analysis 

(SSA) and Moving Average (MA) were used in the study. In the research 

study, they found out that both the data pre-processing techniques improved 

the model performance, where the MA method had better result. The 

correlation between the input and output components of models were adjusted 

and enhanced by using the MA method. 

 

 

2.1.5 Principal Component Analysis (PCA) 

 

Pearson (1901) has introduced the Principal Component Analysis 

(PCA) and this method has been developed independently by Hotelling (1933). 

Recently, this method has been used widely for data analysis. The 

dimensionality of a data set with many interrelated variables can be reduced 

using PCA and the variation present was retained in the data set as much as 

possible. 

 

 Hu et al. (2007) adopted the PCA method in Rainfall-Runoff Neural 

Network (RRNN) model. The generalization performance of RRNN model 

will decrease if there are too many input neurons in RRNN model. The 

principal components can be significantly extracted from the lagged input 
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hydro meteorological data with incorporation of the PCA method. Hence, the 

method improved the prediction accuracy of the RRNN model. 

 

 

2.1.6 Singular Spectrum Analysis (SSA) 

 

SSA can be used to decompose the incoming signal into the sum of its 

independent components, in which the independent components are identified 

as a trend, oscillatory behaviour or noise (Rocco, 2013). Based on Golyandina 

et al. (2001), the SSA method is categorized into two stages which are 

decomposition and reconstruction stages. In the research study, the researchers 

established the Linear Recurrent Formulae (LRF) model that coupled with 

SSA technique and found that the hybrid models outperform the original 

modes, showing results with better performance. 

 

 SSA was performed as an efficient and effective data pre-processing 

technique in avoiding the effect of discontinuous or intermittent signals. It was 

coupled with different types of streamflow forecasting models (Lisi et al., 

1995; Sivapragasam et al., 2001; Baratta et al., 2003; Ba et al., 2017). Lisi et al. 

(1995) implemented SSA to extract the important and significant components 

in the study of the incoming signal and used the Artificial Neural Networks 

(ANN) for prediction. Throughout the process, the first “p” significant 

components were summed up to reconstruct the original time series. Besides 

that, Sivapragasam et al. (2001) used SSA coupled with SVM for hydrological 

analysis. The hybrid model was shown to be superior to the original SVM 
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model as once again showed that SSA technique helped in improve the 

performance of hydrological model. 

 

 Zhang et al. (2011) used SSA cum the Auto Regressive Integrated 

Moving Average (ARIMA) for hydrological forecasting. The annual 

streamflow data are collected from Biliuhe Reservoir and Dahuofang 

Reservoir, China for runoff analysis. Another hybrid model which consists of 

SSA and LRF model are used for comparison purpose. In the research study, 

the SSA-ARIMA model gained the popularity and had a better performance 

compared to that of the SSA-LRF model. , The SSA-ARIMA hybrid model 

was superior to that of ARIMA single model itself. The SSA technique has 

significantly improved the runoff forecasting results. 

 

 

2.1.7 Boosting Method 

 

The Boosting method is able to enhance the prediction accuracy of 

weak predictors such as decision (regression) trees and artificial neural 

networks. Schapire (1990) has introduced the first boosting algorithm. The 

prediction accuracy of original datasets can be optimized by replicating 

datasets through fitting an additive model of base functions using Boosting 

method (Hancock et al., 2005). Chou et al. (2011) has also stated that the 

Boosting method can inherit the benefits of regression trees while overcoming 

their errors in obtaining the best possible solution in any given application.  
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 Deng et al. (2005) had incorporated two famous ensemble methods 

(bagging and boosting) into the SVM model for nonlinear time series 

prediction. They stated that these two ensemble methods had successfully 

improved the performance of the single SVM model. Halil and Onur (2013) 

had adopted the ensemble techniques (bagging and boosting) to enhance the 

monthly streamflow prediction accuracy of streamflow forecasting model. The 

monthly streamflow time series can be forecasted using tree-based ensemble 

models. However, there has been little research regarding ensemble methods 

conducted previously, especially in the prediction of river water level.  

 

 

2.1.8 Summary 

 

Seven types of data pre-processing techniques were used for analysing 

data and denoising purpose as abovementioned, which are EMD, VMD, DWA 

which including Haar wavelet, Daubechies wavelet B-spline wavelet and Sym 

wavelet, MA, PCA, SSA and Boosting method. Some model performance 

measures had been implemented to evaluate the performances of the data pre-

processing techniques. The statistical method will then be decided after the 

observed rainfall series have been assessed using following normality tests. 

 

For comparison purposes, some researches regarding the seven types 

of data pre-processing techniques had been carried out. Wu et al. (2010) had 

used several data pre-processing techniques namely MA, PCA and SSA 

together with the Modular Artificial Neural Networks (MANN) model to 
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predict the rainfall time series. In the research study, the results indicated that 

SSA showed more noticeable advantages as compared to that of MA and PCA 

and the enhancement of model performance using SSA was more superior. 

Hence, SSA outperforms the MA and PCA methods (Wu et al., 2010). 

 

 Aman (2015) had enhanced the streamflow using the Least Square 

Support Vector Machine (LSSVM) model coupled with SSA and DWA. In 

their research, both data pre-processing techniques could enhance the 

performance of LSSVM model as compared to that of original model. 

However, performance evaluation done showed that the DWA technique could 

performed better than the SSA technique. The DWA approach had determined 

the input variables of model output in a more accurate way. 

 

Zhu et al. (2016) proposed a streamflow estimation by using SVM 

coupled with different methods of times series decomposition. They found out 

that both DWA and EMD could enhance the streamflow forecasting. However, 

DWA outperforms the EMD in terms of performance evaluation. Furthermore, 

another research which was done by Amar and Guennoun (2012) had 

indicated that wavelets transform performed better as compared to that of 

EMD. They had done research of measurement of the U.S core inflation using 

wavelet transformation and EMD. The wavelets transformation has performed 

well in the case of more complicated trend as compared to that of EMD. 

 

 Salim (2016) had analysed and forecasted the economic and financial 

time series using VMD. He stated that EMD has been successfully used in 
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forecasting purpose. However, VMD, an alternative to EMD was proposed to 

perform more effectively and efficiently as compared to EMD. The upgraded 

version of VMD possessed a better performance in terms of MAE, MAPE and 

RMSE and this indicated that VMD performed better than EMD in 

decomposition approach. 

 

 Halil and Onur (2013) had used the ensemble methods to enhance the 

monthly streamflow accuracy. In this research study, ensemble methods 

(Bagging and boosting methods) had showed a remarkable prediction in 

monthly streamflow forecasting. The Boosting method was chosen as one of 

the data pre-processing techniques for this research study. 

 

 In summary, the VMD, DWA and Boosting methods obtained the good 

performance and accuracy as compared to that of EMD, MA, PCA and SSA 

methods as abovementioned. Throughout the years, there were quite several 

research studies regarding DWA applied in hydrological time series analysis 

as abovementioned. However, the ensemble method (Boosting method) is 

quite new in this field. Hence, Boosting method can be a great exploration on 

analysing and denoising data for river water level prediction. Therefore, the 

VMD and the Boosting method will be implemented for analysing data and 

denoising purpose prior to predicting with the respected river water level 

prediction model. Both the data pre-processing techniques have their own 

characteristics and properties for the data analysis. The selected data pre-

processing techniques will be evaluated using the respective model 

performance measures to evaluate their accuracy and performance. 
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2.2 River Water Level Prediction Models 

 

Malaysia is prone to natural disasters that are only associated with 

extreme high or low rainfall such as floods and droughts. Here, the river water 

level prediction model plays an important role in predicting the future river 

water level in order to aid mitigating efforts against the calamities mentioned. 

Several models had been reviewed to obtain a better river water level 

prediction method. The river water level prediction models chosen for this 

study are the Support Vector Regression (SVR), the Artificial Neural Network 

(ANN) and the Adaptive Neuro Fuzzy Inference System (ANFIS). 

 

 

2.2.1 Support Vector Machine (SVM) 

 

The SVM was effective for both classifications (Vapnik, 1995) and 

regression (Collobert and Bengio 2001; Drucker et al. 1996); for a noisy set of 

data. Till then, Kisi and Cimen (2011) stated that the SVM had been in use in 

different fields (Smola, 1996; Vapnik et al., 1997; Gao et al., 2001; Yoon et al., 

2004; McNamara et al., 2005; Awad et al., 2007, Kaheil et al., 2008; Matías 

2004). Khan and Coulibaly (2006) used the SVM to forecast future water 

levels and they found that the SVM showed a better performance compared to 

two other streamflow forecasting models for 3 to 12 months-lead predictions 

by evaluating using the performance measures. 
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As mentioned above, the SVM was originally used for classification 

procedure purposes, and then, recently another version of the SVM called the 

SVR, has become another application form of the SVM (Vapnik et al., 1997). 

The regression problems with SVM can solved using the SVR as formulated 

in Equation 2.5. 

 

 

𝑦̂ = f(x) =  ⍵𝑖  . ɸ𝑖(𝑥) + 𝑏 

 

(2.5) 

where ⍵i is a weight vector, b is a bias, and ɸi denotes a nonlinear transfer 

function that maps the input vectors into a high-dimensional feature space in 

which theoretically a simple linear regression able to match with the complex 

nonlinear regression of the input space. It is also crucial to determine the 

parameters used for model training and validation. For the SVR, the 

regularization parameter, C and insensitive loss function, ε are the two main 

input parameters once the kernel function and data in training set are fixed. 

 

For reconstruction of the SVM, the structural risk minimization (SRM) 

induction principle (Vapnik, 1995) is implemented instead of the empirical 

risk minimization (ERM). The SRM induction principle can reduce both the 

empirical risk and the model complexity, simultaneously, in turn improving 

the generalization ability of the SVMs. This can aid in preventing the 

possibilities of under-fitting or over-fitting of model, as shown in Figure 3.2. 
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Figure 2.2: Structural Risk Minimization (SRM) Induction Principle 

(Cherkassky and Mulier, 1998) 

 

Bray and Han (2004) used the SVR to produce an appropriate model 

structure for forecasting streamflow accurately. They stated that SVM model 

has been applied in many fields especially in classification tasks such as 

pattern recognition. Despite the SVM having gained a great success in the 

field of classification tasks, the SVM still produce an appropriate model 

structure for rainfall and runoff modelling. Yu et al. (2006) successfully 

predicted flood stages using SVR in Lan-Yang River, Taiwan. Employment of 

the SVR has been successfully used to solve the forecasting problems with 

hydrologic variables. Apart from that, Kisi and Cimen (2011) had used the 

Wavelet-Support Vector Regression (WSVR) conjunction model to forecast 

the monthly streamflow and showed that the DWA was able to enhance the 

performance of the SVR model. 
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Again, the SVR has been successfully applied in different problems 

and contributed widely to the hydrological field (Moradkhani et al., 2004; Yu 

et al., 2006; Lin et al., 2006; Wu et al., 2008; Lin et al., 2009; Chen et al., 

2010; Yoon et al., 2011; Yousefi et al., 2015; Ghorbani et al., 2016; Zhu et al., 

2016; Wang et al., 2013). Dibike et al. (2001) studied the use of the SVM for 

rainfall-runoff modelling and found that the SVM was able to provide quite an 

accurate prediction of streamflow. Liong and Sivapragasam (2002) used the 

SVR analysis for flood stage forecasting and they stated that the SVR is based 

on the principal of Structural Risk Minimization (SRM) as opposed to the 

principal of Empirical Risk Minimization (ERM). This statement was also 

supported by other researchers (Yu et al., 2006, Wu et al., 2012).  The 

researchers had compared the SVR analysis with that of ANN and they stated 

the prediction accuracy of SVR analysis was much better than that from ANN 

and could overcome a lot of limitations of the ANN. Hence, the SVR appeared 

to be a very promising prediction tool in water level prediction.  

  

However, the SVR model has its own limitations. Using the SVR 

model, the non-stationary of original hydrological data may differ over a range 

of scales (Cannas et al., 2006; Adamowski and Chan, 2011). Hu et al. (2013a) 

stated that the fluctuation and intrinsic complexity of time series data can be 

the problem to the assumption of results obtained. Another concern is that the 

design of the input vector is usually based on the experience, and in an 

arbitrary way, despite it being an important parameter for the time series 

prediction engine. 
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2.2.2 Artificial Neural Network (ANN) 

 

The ANN possessed the capabilities to imitate the biological neural 

networks of human brain, by mapping the complex non-linear relationships 

and processes that are inherent among several influencing variables through a 

model structure (Haykin, 1999). In short, ANN is a form of a non-linear 

regression model that uses a set of weights to perform the input-output 

mapping, through several neurons in a hidden layer. Determination of the 

number of hidden layers, the number of neurons in the connection and the type 

of training algorithm can be crucial to the model performance. Thus, these 

need to be pre-determined precisely before running the whole ANN model. 

The ANN has been shown to have contributed significantly to the hydrological 

field (Tingsanchali and Gautam, 2000; Chen et al., 2006). 

 

As stated by Abrahart et al. (2012), ANN has been used widely in time 

series predictions and it can be applied in noisy environments and dense 

interconnections of simple computational elements. Solomatine and Ostfeld 

(2008) stated that the ANN has been widely used in river basin management 

and other related problems. It has been used widely in several streamflow 

forecasting events (Tiwari and Chatterjee, 2009; Feng 2013; Awchi 2014). 

The characteristics of ANN, which is non-linear, can even solve complicated 

problems more accurately than linear techniques do (Cameron et al., 1999). 

 

ANN can also adjust their behaviour according to the environment in 

order to produce consistent responses; the network is able to mimic the 
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patterns directly from their instances even though the data may be distorted 

and incomplete. It can even abstract the important characteristics that contain 

irrelevant data in inputs. ANN is able to act faster than other alternative 

methods due to its highly parallel characteristic which makes it able to execute 

operations simultaneously (Cameron et al., 1999).  

 

However, ANN also have some drawbacks for certain applications. 

There is no learnable function and insufficient size of data set in ANN, so it 

may fail to produce a promising solution. Besides that, a trial-and-error 

problem needs to be applied as the optimum network geometry of ANN is 

considered as problem dependent. ANN is unable to respond accurately if 

there were major changes as they are calibrated on historical data and an 

assumption has been made that the relationship learned will be applied in 

future (Cameron et al., 1999). Furthermore, ANN is not able to extrapolate 

beyond the training data range (Flood and Kartam, 1994; Minns and Hall, 

1996; Tokar and Johnson, 1999). This is due to the characteristics of ANN 

model being unable to understand the underlying physical processes (Bowden 

et al., 2012). 

 

 

2.2.3 Adaptive Neuro Fuzzy Inference System (ANFIS) 

 

The characteristics of the decision making of ANFIS are based on a set 

of logical rules, so-called fuzzy logic and fuzzy set theory (Zadeh, 1965). In 

the past, fuzzy logic-based modelling approaches had been introduced into the 
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hydrological modelling and water resources field (See and Openshaw, 2000; 

Xiong et al., 2001; Shrestha et al., 1996; Fontane et al., 1997; Yu et al., 2000; 

Chang and Chen, 2001; Lohani et al., 2006, 2007a, 2007b; Badrzadeh et al., 

2017). The ANFIS model was proposed by combining both the ANN and 

fuzzy logic, and this newly proposed model has been applied widely in many 

researches. For ANFIS model, the type of membership function and the 

determination of number of membership functions for each input are needed. 

 

 According to Jang (1992, 1993), ANFIS used the learning ability of 

ANN for the purpose to express the input-output relationship. The fuzzy rules 

are constructed by determining the input structure. The results of the system 

obtained are from the reasoning capability of fuzzy logic (Firat and Gungor, 

2008). These methods are used to adapt themselves and learn to do better 

when it comes to a new environment (Jang, 1992, 1993). 

 

 Through the years, ANFIS had been widely deployed in the 

hydrological and water resources field. Chang and Chang (2001) reported that 

the ANFIS model helped to provide a higher efficiency of reservoir operation 

as compared to the classical models based on the rule curve. The researchers 

claimed that once information is sufficient to construct the fuzzy rules using 

ANFIS, it will perform more effective than the rule-curve-based model. 

 

 El-Shafie et al. (2007) had adopted ANFIS model to forecast the 

inflow of river on a monthly time series basis. The ANFIS model was able to 

divide the input space into fuzzy sub-spaces and maps the output using a set of 
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linear function. In their research study, the ANFIS model was used to compare 

with that of the ANN model and they found that the ANFIS is able to enhance 

forecasting accuracy especially in extreme inflow events. 

 

 Shu and Ouarda (2008) had applied the ANFIS model for estimating 

the regional flood frequency at ungauged sites. Therein, an ANFIS model was 

used to compare with that of ANN model as well as the Nonlinear Regression 

(NLR) approach and the Nonlinear Regression with Regionalization approach 

(NLR-R). The results showed that the ANFIS possessed a better generalization 

capability than those of the ANN, NLR and NLR-R approaches. 

 

A neuro-fuzzy network-based inflow forecasting model has also been 

developed for Brazilian hydroelectric plants (Ballini et al., 2001). Ballini et al., 

(2001) used a class of neuro-fuzzy network that was applied to the problem of 

seasonal streamflow forecasting as well as the monthly streamflow forecasting. 

The ANFIS model was compared with the ANN model and autoregressive-

moving average model and showed that the ANFIS model performed much 

better than the two models in streamflow forecasting. 

 

2.2.4 Summary 

 

There are three potential river water level prediction models that can 

be used for river water level prediction as previously mentioned, and they are: 

the SVR, the ANN and the ANFIS models. Some methods of scrutinizing 

model performance measures had been discussed to evaluate the effectiveness 
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of the data pre-processing techniques. The engaging statistical methods will be 

decided after the observed rainfall series have been assessed using established 

normality tests. 

 

 Some researches regarding the three specific river water level 

prediction models had been studied for comparison purpose. Lohani et al. 

(2012) had developed autoregressive (AR), ANN and ANFIS in hydrological 

time series modelling and forecasting. AR models, which is one of the types of 

stochastic models was not taken for comparison. By comparing the ANFIS 

and ANN models, the coefficient of correlation (R) and Nash-Sutcliffe 

Efficiency Coefficient (NSEC) values of ANFIS model were higher than that 

of ANN model as well as the Root-Mean-Square Error (RMSE) value was 

lower than that of ANN model. It was proven that ANFIS model does better 

than the ANN model in their study. 

 

However, another research study carried out by He et al. (2014) 

compared the ANN, ANFIS and SVM (using SVR) for river flow forecasting. 

As compared to ANN and ANFIS, the SVM model was shown to have 

performed better through their evaluating using performance measures and 

had achieved a better accuracy in the forecasting of river flow. 

 

In a nutshell, data pre-processing techniques which are specifically 

here for this current study, the VMD and the Boosting method are used for 

denoising and analysing observed rainfall series before the pre-processed data 

input are used for predicting using the water level prediction model, the SVR 
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model. The resulting river water level output data from the SVR model will be 

further evaluated using the respective model performance measures that have 

already been delineated. Daily, monthly, seasonal and annually time series 

analysis of observed rainfall series will be implemented. 

 

 

2.3 Model Assessment 

 

2.3.1 Homogeneity Test 

 

For river water level prediction, the homogeneity of the observed 

rainfall series collected from different rainfall stations is extremely important. 

Several methods have been employed by different researchers to assess the 

homogeneity of observed rainfall series collected, and they are the standard 

normal homogeneity test, the Buishand range test, the Pettitt test and the Von 

Neumann ratio test (Wijingaard et al., 2003; Sahin and Cigizoglu, 2010; Kang 

and Yusof, 2012). 

 

These four absolute tests were used to assess the homogeneity of 

European daily temperature and precipitation series (Wijingaard et al., 2003). 

It was found that relocation of stations as well as the way of observing and 

measuring techniques can affect the homogeneity of the series. The 

homogeneity of the rainfall series in Peninsular Malaysia had been 

investigated by Kang and Yusof (2012). In their research study, 33 stations 

over the Damansara, Johor and Kelantan areas were selected, with less than 10% 
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missing data. All four tests were put to the annual mean, maximum and 

median of each of the rainfall station, tested at 95% level of significance. With 

the classification of homogeneity of the rainfall series, the annual mean and 

annual maximum series of all stations were found to be ‘useful’. However, 4 

stations were considered as ‘doubtful’ and 1 station was considered as ‘suspect’ 

for the annual median series. It was observed that the percentage of missing 

data will not affect the homogeneity of the rainfall series. 

 

 

2.3.2 Normality Test 

 

Several methods were adopted to assess the normality of observed 

rainfall series (input data set). They are mainly based on the graphical and 

statistical methods. For graphical methods, it is less accurate and not useful for 

small sample size. Instead, statistical methods can provide a more accurate and 

precise results as actual probabilities are calculated. 

 

Nornadiah and Yap (2011) compared the power of four formal tests of 

normality which are; the Shapiro-Wilk (SW) test, Kolmogorov-Smirnov (KS) 

test, Lilliefors (LF) test and the Anderson-Darling (AD) test. In their research 

study, the normality statistical tests were compared with the respective critical 

values to obtain the power of each test. From the results obtained, it was 

shown that the most powerful normality test was from the SW test, followed 

by the AD test, LF test and then, lastly KS test. The findings were similar to 
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the findings of Mendes and Pala (2003) and Keskin (2006). All four tests were 

not performed well for small sample size.  

 

 

2.3.3 Model Performance Measures 

 

2.3.3.1 Non-Parametric Statistics 

 

The non-parametric inferential statistics of Bootstrapping, Bias 

Corrected and the Accelerated (BCa) procedure was used to assess the model 

prediction errors. The optimum model prediction error’s range, standard 

deviation and confidence interval range were selected using numerical 

analysis algorithm (Fattorini, 1999; Mordecai, 2003; Jon, 2004; Jorge and 

Stephen, 2006; Ruszczyński, 2006) and to assess two null hypotheses. Thus, 

the SPSS software was used in this study. The BCa procedure with 2,000 

samplings in non-parametric Bootstrapping technique (Efron and Tibshirani, 

1994; Efron, 2010) was conducted at 95% and 99% of confidence interval to 

derive the key parameters of the said model performance measures. 

 

 

2.3.3.2 Parametric Statistics 

 

The procedures of parametric statistics rely on the assumptions about 

the shape of the distribution, which are assumed to be normal distribution, and 

about the parameters, which are assumed to be means and standard deviations. 
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Both, parametric and non-parametric statistics, are commonly applied in order 

to determine the trends (Hamed and Rao, 1998). Examples of parametric tests 

are linear regression, Ordinary Least Squares (OLS) and student t-test. 

According to Corder and Foreman (2009), parametric methods are more 

powerful in nature as they have more assumptions associated than those of 

non-parametric methods. However, time series is assumed to be normally 

distributed and independent for parametric statistics. The parametric methods 

are not often robust when the input data does not satisfy the assumption of 

parametric methods to be normally distributed, the methods can be greatly 

misleading (Kundzewicz and Robson, 2004). 
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CHAPTER 3 

 

3 METHODOLOGY 

 

 

3.1 Flowchart 

 

The flowchart for the research study is illustrated in Figure 3.1. The 

river water level prediction began with the collection of observed rainfall 

series and river water level from the DID, Malaysia. The collected observed 

rainfall series were sorted using the homogeneity test to produce a more 

homogenous observed rainfall series. The normality test was conducted on the 

observed rainfall series (input) to check whether the input data are normally 

distributed or non-normally distributed. The selected data pre-processing 

techniques are the VMD method, the Boosting method and the combined 

Boosting-VMD method whereas the chosen river water level prediction model 

is the SVR model. 

 

Before the SVR procedure, the observed rainfall series were processed 

using different data pre-processing techniques. Then, the four models’ river 

water levels were predicted based on the processed rainfall series using the 

Ori-SVR (observed rainfall series), the VMD-SVR (VMD method) series, the 

B-SVR (Boosting method) series and the B-VMD-SVR (Booting-VMD 

method) series. Last but not least, all the predicted river water levels from the 

SVR were assessed with the observed river water levels using the proven 

performance measures. The resulting predicted river water levels from SVR 
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were assessed against the observed river water levels, using non-parametric 

statistics (Model prediction errors’ range and standard deviation) and 

parametric statistics (Bias, Root-Mean-Square Error, Mean Absolute 

Percentage Error, Nash-Sutcliffe Efficiency Coefficient and Mean Absolute 

Error).  

 

Besides that, the normality test was once again conducted on the 

residuals of predicted river water levels (output) to decide on another 

performance measure to be employed. If the residuals of predicted river water 

levels are normally distributed, the model prediction errors’ mean confidence 

interval range will be used; but if the residuals of predicted river water levels 

are non-normally distributed, then the model prediction errors’ median 

confidence interval range will be used. 
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Figure 3.1: Overall Flowchart of the Research Procedures  

Reject 

Start 

Homogenous? 

Collection of Observed Rainfall Series and 

River Water Level from the Department of 

Irrigation and Drainage (DID) Malaysia 

Homogeneity Tests 

No 

Yes 

Process rainfall series using the VMD method, the Boosting method and the 

Boosting-VMD method based on the observed rainfall series 

Assess the four predicted river 

water levels with the observed 

river water level using non-

parametric statistics (Model 

Prediction Errors’ Range and 

Standard Deviation) 

Assess the four predicted 

river water levels with the 

observed river water level 

using parametric statistics 

(Bias, RMSE, MAPE, 

NSEC and MAE) 

 

Normality Tests for Observed Rainfall Series (Input) 

Predict river water levels based on the processed rainfall series using Ori-SVR (observed 

rainfall series), VMD-SVR (VMD method), B-SVR (Boosting method) and B-VMD-SVR 

(Boosting-VMD method)  

 

 

Normality Tests for 

Residuals of Predicted 

River Water Levels 

(Output) 

Normal? 
Yes 

Assess the four predicted river 

water levels with the observed 

river water level using parametric 

statistic (Model prediction errors’ 

mean confidence interval range) 

Assess the four predicted river 

water levels with the observed river 

water level using non-parametric 

statistic (Model prediction errors’ 

median confidence interval range) 

End 

No 
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3.2 Study Area 

 

The Dungun River is the main river in the basin which is located 

between latitudes 4o36’10’N to 4o53’02’N and between longitudes 

103o07’25’E to 103o25’50’E, and the Dungun district is one of the seven 

districts in the state of Terengganu, Malaysia. The area of the Dungun River 

Basin is approximately 1,800 km2. Sungai Dungun flows for about 110 

kilometres, flowing from Pasir Raja to Kuala Jengai, Jerangau, and finally 

discharging at Kuala Dungun. The river width ranges from 50 to 300 meters. 

The Dungun River receives runoffs from its main tributaries such as the 

Telemboh, Lok, Kelmin, Loh and Perlis rivers before discharging into South 

China Sea. The location of Dungun River Basin in Peninsular Malaysia and 

the three stations within the basin is shown in Figure 3.2. 

 

 

Figure 3.2: Location of the Dungun River Basin and the three rainfall 

stations 
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3.3 Data Acquisition 

 

All the rainfall series and river water level were obtained from the DID, 

Malaysia. There are three rainfall stations within the catchment (Figure 3.2) 

each having a continuous good recording period. The hourly rainfall series at 

each station was accumulated to calculate the total daily, total monthly and 

total seasonal data series. A mean rainfall series from 1996 to 2016 (20 years) 

had been determined. Station 3 at downstream was selected as the only river 

water level station (4832441) within the basin. The details of the stations are 

clearly shown in Table 3.1. 

 

Table 3.1: The name, station code and coordinates of the three stations 

Station 

No. 

Rainfall 

Station 

Code 

Water 

Level 

Station 

Code 

Station Name Latitude Longitude 

1 4529001 - 

Rumah Pam 

Paya Kempian 

at Pasir Raja 

4°34'05''N 102°58'45''E 

2 4730002 - 
Kg. Surau at 

Kuala Jengai 
4°44'05''N 103°05'15''E 

3 4832011 4832441 

Jambatan 

Jerangau at 

Terengganu 

4°50'35''N 103°12'15''E 

 

A mean rainfall data series within the catchment (3 rainfall stations) 

was computed using the Thiessen Polygon method. The area weightage for the 

respective 3 rainfall stations are shown in Figure 3.3 and Table 3.2. 
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Figure 3.3: Map of area weighted of three rainfall stations using Thiessen 

Polygon method 

 

Table 3.2: Area weighted of three rainfall stations using Thiessen Polygon 

method 

Station 

No. 

Rainfall 

Station 

Code 

Station Name 
Area, Ai 

(km2) 

Area 

Weighted 

(Ai/AT) 

1 4529001 
Rumah Pam Paya 

Kempian at Pasir Raja 
825.41 0.4442 

2 4730002 
Kg. Surau at Kuala 

Jengai 
607.13 0.3268 

3 4832011 
Jambatan Jerangau at 

Terengganu 
425.46 0.2290 

  Total (AT) = 1858.00 1.0000 

 

 

3.4 Homogeneity Test 

 

Observed rainfall series used for river water level prediction purpose 

are normally affected by weather and climate only. However, there are other 

factors such as location of rainfall station, environment of rainfall station; 
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different observing and practices might also affect the homogeneity of the 

recorded rainfall time series. Therefore, homogeneity tests are implemented 

for the observed rainfall series of every rainfall stations before further 

investigating, to obtain a more homogenous observed rainfall series. There are 

four homogeneity tests which are applied to the observed rainfall series, 

namely the Standard Normal Homogeneity Test (SNHT), the Buishand Range 

test (BR), the Pettitt test (PeT) and the Von Neumann Ratio test (VNR). All 

four absolute tests are applied to the observed rainfall time series concurrently. 

The critical values for the homogeneity tests are stated in Table 3.3 

 

 The criteria that was used in this research study is similar to the one 

proposed by Wijingaard et al. (2003) and which was used to determine the 

homogeneity of data series. The classification of homogeneity of observed 

rainfall series is stated as follow and all the four tests were tested at 95% 

significance level: 

 

i. If one or none of the tests reject the null hypothesis: ‘Useful’, 

ii. If any two tests reject the null hypothesis: ‘Doubtful’, and 

iii. If three or all tests reject the null hypothesis: ‘Suspect’. 

 

Table 3.3: The 5% Critical Values for the homogeneity tests (Wijingaard 

et al., 2003) 

n 
𝑻𝟎 

(SNHT) 
𝑹 √𝒏⁄  

(BR) 

𝑿𝑬 

(PeT) 

𝑵 

(VNR) 

20 6.95 1.43 57 1.30 

30 7.65 1.50 107 1.42 

40 8.10 1.53 167 1.49 

50 8.45 1.55 235 1.54 
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3.4.1 Standard Normal Homogeneity Test (SNHT) 

 

The SNHT can detect breaks at the starting and ending of a series. The 

annual series are assumed to be normal. The statistic of the test can be 

computed as shown in Equations 3.1 and 3.2. 

 

 𝑇𝑘 = 𝑘𝑧1
2̅̅ ̅ + (𝑛 − 𝑘)𝑧2

2̅̅ ̅ , 𝑘 = 1,2, … , 𝑛 (3.1) 

 

where, 

 𝑧1̅ =
1

𝑘
∑

(𝑌𝑖 − 𝑌̅)

𝑠

𝑘

𝑖=1

and 𝑧2̅ =
1

𝑛 − 𝑘
∑

(𝑌𝑖 − 𝑌̅)

𝑠

𝑛

𝑖=𝑘+1

 (3.2) 

 

𝑌𝑖 = The annual series to be tested 

i = The year from 1 to n 

𝑌̅ = The mean 

s = The standard deviation 

 

If there is a break in the series at year K, then Tk comes to a maximum 

near the year k = K. Thus, the test statistic is stated in Equation 3.3. 

 

 𝑇0 = max
1≤𝑘≤𝑛

𝑇𝑘 (3.3) 

 

If T0 is larger than the critical value, the null hypothesis is rejected. 

The critical values are contingent on the sample size n which stated in Table 

3.3. 
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3.4.2 The Buishand Range Test (BR) 

 

The BR test is more effective in detecting the break in the middle of a 

series. However, the Yi values are assumed to be normally distributed. The 

adjusted partial sum is stated in Equation 3.4. 

 

 𝑆0
∗ = 0  and 𝑆𝑘

∗ = ∑(𝑌𝑖 − 𝑌̅),

𝑘

𝑖=1

𝑘 = 1,2, … , 𝑛 (3.4) 

 

If the series is homogeneous, the values of 𝑆𝑘
∗ will vary around 0. On 

the other hand, if there is a break in year K, the 𝑆𝑘
∗ achieves either a maximum 

or a minimum value. The ‘rescaled adjusted range’ R can be attained using the 

formula stated in Equation 3.5. 

 

 𝑅 =
( max

0≤𝑘≤𝑛
𝑆𝑘

∗ − min
0≤𝑘≤𝑛

𝑆𝑘
∗)

𝑠
 (3.5) 

 

The R is used to calculate the significance of the mean deviation. The 

critical value of 
𝑅

√𝑛
 stated in Table 3.3 is used to determine whether to accept 

or to reject the null hypothesis. 
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3.4.3 The Pettitt Test (PeT) 

 

The PeT possesses similar capabilities to the BR test. It is more 

competent in detecting the break in the middle of a series. However, since the 

PeT is based on the rank, it does not involve any normality assumption of the 

data. Besides that, the non-parametric rank-based PeT is less sensitive to the 

outliers as compared to other tests. The statistic of the PeT can be assessed 

using formula stated in Equation 3.6. 

 

 𝑋𝑘 = 2 ∑ 𝑟𝑖

𝑘

𝑖=1

− 𝑘(𝑛 + 1) , 𝑘 = 1,2, … , 𝑛 (3.6) 

 

where ri is the rank of Yi. 

 

Xk shows maximum or minimum if the break happens near the year k = 

E, as shown in Equation 3.7. 

 

 𝑋𝐸 = max
1≤𝑘≤𝑛

|𝑋𝑘| (3.7) 

   

The critical values of 𝑋𝐸 are stated in Table 3.3. 
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3.4.4 The Von Neumann Ratio Test (VNR) 

 

The VMR test examines whether a series is randomly distributed 

instead of detecting the breaks in the series as other methods do. The test 

statistics of VMR test is shown in Equation 3.8. 

 

 𝑁 =
∑ (𝑌𝑖 − 𝑌𝑖+1)2𝑛−1

𝑖=1

∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

 (3.8) 

 

The projected value N is 2 when the series is homogeneous. If there is 

a break in the series, N will tend to be lower. When the series has instant 

variations in the mean, the value of N will increase above 2. The critical values 

of N are stated in Table 3.3. 

 

 

3.5 Normality Test 

 

For normal distribution of data, parametric statistic tests had been 

implemented to evaluate the observed rainfall series. If the observed rainfall 

series are non-normally distributed, then the non-parametric statistic tests are 

preferred. There are several tests that are used to assess the normality of 

observed rainfall series. For the normal distributed data, the observed rainfall 

series must pass all the stated normality tests.  

 

In frequentist statistics statistical hypothesis testing, the observed 

rainfall series are tested against the null hypothesis that it is normally 
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distributed. The normality that calculated using statistical methods are shown 

as follow:  

 

i. Significance Level > 95 % or α > 0.05: Observed rainfall series are 

normal, 

ii. Significance Level < 95 % or α < 0.05: Observed rainfall series are not 

normal. 

 

To pass the normality test, it is necessary to pass all the frequentist 

tests. If the results of any one of the frequentist tests are showing not normal, 

then the observed rainfall series is considered not normally distributed and 

non-parametric tests will then be implemented. The frequentist tests are the 

Shapiro-Wilk Test (SW), the Kolmogorov-Smirnov test (KS), the Jarque-Bera 

Test (JB) and the Anderson-Darling Test (AD). 

 

 

3.5.1 Shapiro-Wilk Test (SW) 

 

The SW test was proposed in 1965. It was originally restricted for a 

sample size of less than 50 as it works best for this sample size. For the SW 

test, the W statistics is calculated. The null hypothesis is that a random sample 

(x1, x2, x3, … , xn) is normally distributed. The small value of W is evidence 

that the data are not normally distributed. The W statistics is defined in 

Equation 3.9: 
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 𝑊 =
∑ 𝑎𝑖𝑥𝑖

2𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 (3.9) 

 

where, 

xi = The ith order statistic 

𝑥̅ = The sample mean 

ai = (a1, … , an) = 
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)
1
2

 

and m = (m1, … , mn)
T are the expected values of the order statistics of 

independent and identically distributed random variables sampled from the 

standard normal distribution and V is the covariance matric of those order 

statistics. 

 

 

3.5.2 Kolmogorov-Smirnov Test (KS) 

 

The KS test works best for a sample size of more than 50, totally 

opposite to that of the Shapiro-Wilk test above. The null hypothesis is that a 

random sample (x1, x2, x3, … , xn) is normally distributed. Conover (1999) 

defined the test statistics, T proposed by Kolmogorov (1933) is shown in 

Equation 3.10. 

 

 𝑇 =  𝑠𝑢𝑝𝑥|𝐹∗(𝑥) −  𝐹𝑛(𝑥)| (3.10) 

 

where, 

‘sup’ = Supremum, the greatest value 
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F*(x) = The hypothesized distribution function 

Fn(x) = The EDF estimated based on the random sample 

 

 In the KS test, the F*(x) is indicated the normal distribution with mean, 

𝜇 and standard deviation, 𝜎. The test interpretation of the KS test is as follow: 

 

Null Hypothesis, Ho: F(x) = F*(x) for all x from -∞ to ∞ (The data follow a 

specified distribution) 

Alternative Hypothesis, Ha: F(x) ≠ F*(x) for at least one value of x (The data 

do not follow the specified distribution) 

 

 If T exceed the 1-α quantile as given by the table of quantiles for the 

KS test statistics, then the Ho is rejected at the level of significance, α. 

 

 

3.5.3 Jarque-Bera Test (JB) 

 

The JB test is a goodness-of-fit test of whether the sample data have 

the skewness and kurtosis matching a normal distribution. It is usually used 

for large data sets, because some other normality tests are not reliable when 

the sample size is large. For example, the SW test is not reliable with sample 

size of more than 2,000 and it only works best for sample size of less than 50. 

This test was named after Carlos Jarque and Anil K. Bera. The statistics of the 

JB test is defined in Equations 3.11, 3.12 and 3.13. 
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 𝐽𝐵 =  𝑛(
(𝑘3)2

6
+

(𝑘4)2

24
) (3.11) 

 

 𝑘3 =  
∑ (𝑥𝑖 − 𝑥̅)3𝑛

𝑖=1

𝑛𝑠3
 (3.12) 

   

 
𝑘4 =  

∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1

𝑛𝑠4
− 3 

(3.13) 

 

where, 

𝑥 is each observation 

𝑛 is the sample size 

𝑠 is the standard deviation 

𝑘3 is skewness 

𝑘4 is kurtosis 

 

 The JB statistics can be compared to the critical values of the Chi-

Squared (𝜒2) distribution to determine the critical value at an alpha level of 

0.05. 

 

 

3.5.4 Anderson-Darling Test (AD) 

 

The AD test is further modified from the Cramer-Von Mises (CVM) 

test. Farrel and Stewart (2006) stated that the AD test gives more weight to the 

tails of the distribution. According to Arshad et al. (2003), the AD test is even 

more powerful than that of EDF tests.  
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The statistics for this test proposed by Anderson and Darling (1954) is 

defined in Equation 3.14. 

 

 𝑊𝑛
2 =  𝑛 ∫ [𝐹𝑛(𝑥) − 𝐹∗(𝑥)]2

∞

−∞

𝜑 (𝐹∗(𝑋))𝑑𝐹∗(𝑥) (3.14) 

 

where, 

𝜑 is a nonnegative weight function that calculated through formula stated in 

Equation 3.15. 

 

 𝜑 =  [𝐹∗(𝑥)(1 − 𝐹∗(𝑥))]−1 (3.15) 

  

Arshad et al. (2003) had applied the formula as shown in Equation 

3.16, to simplify the statistics computation. 

 

 𝑊𝑛
2 =  −𝑛 −

1

𝑛
∑(2𝑖 − 1){𝑙𝑜𝑔𝐹∗(𝑋𝑖) + log (1 − 𝐹∗(𝑋𝑛+1−𝑖)} (3.16) 

 

where, 

F*(xi) = The cumulative distribution function of the specified distribution 

xis = The ordered data 

n = The sample size 
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3.6 Data Pre-Processing Techniques 

 

3.6.1 Variational Mode Decomposition (VMD) 

 

The VMD, proposed by Dragomiretskiy and Zosso (2014) decomposes 

the incoming signal into k discrete number of sub-signals (modes), 𝑢𝑘, where 

each mode possesses the limited bandwidth in the spectral domain. The modes, 

𝑢𝑘  have specific sparsity properties while reproducing the input. Therefore, 

each of the mode k is required to be compacted the most around a centre 

pulsation, 𝜔𝑘 determined along the decomposition process. The VMD method 

will find out the central frequencies and IMFs located at the centre of the 

frequencies concurrently using an optimization method namely the ADMM. 

The original formulation of the optimization problem is continuous in the time 

domain. The algorithm of the VMD which assess the bandwidth of a one-

dimension signal is stated as follows: 

 

i. For each mode, 𝑢𝑘 , the associated analytic signal was computed by 

means of the Hilbert transform to obtain the unilateral frequency 

spectrum. 

ii. For each mode, the mode’s frequency spectrum was shifted to 

baseband by mixing with an exponential tuned to the respective 

estimated centre frequency. 

iii. The bandwidth was estimated through the Gaussian smoothness of the 

demodulated signal. 
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The constrained variational problem which was given by 

Dragomiretskiy and Zosso (2014) is stated in Equations 3.17 and 3.18. 

 

 
𝑚𝑖𝑛

𝑢𝑘 , 𝜔𝑘
{∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘

} (3.17) 

 

subject to, 

 ∑ 𝑢𝑘 = 𝑓

𝑘

 (3.18) 

 

where, 

𝑓 = The signal 

𝑢 = The mode 

𝜔 = The frequency 

𝛿 = The Dirac distribution 

𝑡 = Time script 

𝑘 = Number of modes 

∗ = Convolution 

The mode 𝑢 with high-order 𝑘 represents the low frequency components. 

 

 

3.6.2 Boosting Method 

 

The Boosting method is an ensemble method which help to improve 

the accuracy of any given learning algorithm (Schapire 1990; Freund and 

Schapire 1996). The central idea of the boosting method is to create a 
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sequence of models so that each subsequent model concentrates on the 

training cases that were not well predicted by the previous one (Freund and 

Schapire 1996). It assists in boosting “weak” learning algorithms, which 

perform just slightly better than random guessing, into a relatively “strong” 

learning algorithm. The base learning algorithm generates a new weak 

prediction rule, and after many rounds of generation, the boosting algorithm 

combines all the so-called weak rules into a single prediction rule and this will 

result in higher accuracy than that of any one of the individual weak rules. 

 

For the Boosting method, the ‘fitensemble’ function in the MATLAB 

was used to boost the rainfall series. As suggested by Friedman (1999), the 

Least Squares Boosting (LS-Boost) fits for the regression of time series. 

Hence, in MATLAB, the “LSBoost” with shrinkage were used to combine 

weak learners and generate a more accurate ensemble (Cordiner 2009). After 

all these, the boosted rainfall series were imported to the ‘fitsvm’ function in 

MATLAB for model training and validation using the SVR model. 

 

 

3.6.3 Boosting-VMD Method 

 

The Boosting-VMD method is a hybrid of the VMD and the Boosting 

methods. Processed rainfall series using the VMD method will be further 

processed and decomposed using the Boosting method. It will be a double 

decomposition method and the methodologies are similar to the steps stated a 

forehand. 
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3.7 River Water Level Prediction Model – Support Vector 

Regression (SVR) 

 

The SVM which was proposed by Vapnik (1995), is known as a 

classification and was extended to include regression. Thus, the SVR is 

derived from the SVM and is to solve the regression problems with the SVM. 

The regression function of the SVM that relates the input vector  𝑥  to the 

output 𝑦̂ is formulated as stated in Equation 3.19. 

 

 𝑦̂ = 𝑓(𝑥) =  𝜔𝑇 . ɸ(𝑥) + 𝑏 (3.19) 

 

where, 

𝜔𝑇 = A weight vector 

b = A bias 

ɸ = A nonlinear transfer function 

 

 According to the SRM induction principle, ⍵i and b are estimated by 

minimizing the structural risk function stated in Equations 3.20 and 3.21: 

 

 R =
1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝐿𝜀(𝑦̂𝑖)

𝑁𝑑

𝑖−1

 (3.20) 

 

where C represents the regularization parameter that weighing between the 

model complexity and its empirical error and Vapnik’s 𝜀 -insensitive loss 

function 𝐿𝜀 is defined as: 
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 𝑓𝐿𝜀(𝑦̂) = |𝑦 − 𝑦̂|𝜀 = {
0

|𝑦 − 𝑦̂| − 𝜀
      

𝑓𝑜𝑟 |𝑦 − 𝑦̂| < 𝜀

𝑓𝑜𝑟 |𝑦 − 𝑦̂| ≥ 𝜀
 (3.21) 

 

Vapnik (1995) expressed the SVR problems through the optimization 

problem. The optimization problems are normally worked out in its dual form 

using Lagrange multipliers, where 𝛼 and 𝛼′ are dual Lagrange multipliers. The 

optimal Lagrange multipliers 𝛼∗  are solved by the standard quadratic 

programming algorithm. The SVR function can then be rewritten as shown in 

Equations 3.22 and 3.23. 

 

 𝑓(x) =  ∑ 𝛼𝑖
∗𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑁𝑑

𝑖−1

 (3.22) 

 

where the kernel function 𝐾(𝑥𝑖 , 𝑥) is defined as: 

 

 𝐾(𝑥𝑖, 𝑥) = ∅(𝑥𝑖)
𝑇∅(𝑥) (3.23) 

 

In the case of nonlinear regression, an SVM uses Radial Basis 

Function, RBF kernel due to its ability in parameters tuning to cope with 

different pattern analysis (Kecman 2001). RBF is implemented for the kernel 

function as stated in Equation 3.24. 

 

 𝐾(𝑥𝑖, 𝑥) = 𝑒𝑥𝑝 (−
1

𝑛𝑥

|𝑥𝑖 − 𝑥|2) (3.24) 

 

where 𝑛𝑥 is the number of components in input vector 𝑥. 
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 Some of the solved Lagrange multipliers (𝛼 − 𝛼′) are zero and they 

must be excluded from the regression functions. After resolving the non-zero 

Lagrange multipliers and the corresponding input vectors of the training data, 

which are called as support vectors, into the regression function, the final 

regression function can then be rewritten as shown in Equation 3.25. 

 

 𝑓(x) =  ∑ 𝛼𝑘𝐾(𝑥𝑘, 𝑥) + 𝑏

𝑁𝑠𝑣

𝑘−1

 (3.25) 

 

where, 

𝑥𝑘 = The kth support vector 

𝑁𝑠𝑣 = Number of the support vectors 

 

In MATLAB, the ‘fitrsvm’ function was used for model training and 

validation. Rainfall series from November 1996 to February 2014 (90%) were 

for model training and November 2014 to February 2016 (10%) were used for 

validation thereafter. 

 

 

3.8 Model Performance Measures 

 

There are several model performance measures which can be used to 

evaluate the model performances. For this research, the models’ performance 

was evaluated using both the non-parametric and parametric statistics. 
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3.8.1 Non-Parametric Statistics - Residual Modelling Statistics 

 

Non-parametric, residual modelling statistics was adopted. Non-

parametric inferential statistics of Bootstrapping, Bias Corrected and 

Accelerated (BCa) procedure were adopted to assess model prediction errors. 

The model prediction error’s range, standard deviation and confidence interval 

range were used to assess the different predictive model’s prediction error. 

Finally, the best model was determined based on the smallest range and 

standard deviation’s error (in magnitude), as well as the narrowest prediction 

error’s confidence interval range. A negative value indicated that the model 

tends to under predict while a positive value indicate that the model tends to 

over predict. All the residual modelling statistics were analysed and processed 

with the SPSS software. 

 

 

3.8.2 Parametric Statistics 

 

For parametric statistics, five standard performance measures were 

chosen, and they are the Bias Method, the Root-Mean-Square Error (RMSE), 

the Mean Absolute Percentage Error (MAPE), the Nash-Sutcliffe Efficiency 

Coefficient (NSEC) and the Mean Absolute Error (MAE). Finally, the best 

model was determined based on the lowest Bias (in magnitude), and the 

RMSE, MAPE, MAE and the highest NSEC. 
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3.8.2.1 Bias 

 

The Bias is a measurement to check the differences between the 

predicted water levels and the observed water level, as shown in Equation 3.26. 

It can be used to check whether the model is under or over predicting. 

Therefore, positive values of small magnitudes are preferred (over predictions 

are preferable, on the safe side). 

 

 𝐵𝑖𝑎𝑠 = ∑
𝑄𝑖

′ − 𝑄𝑖

𝑛

𝑛

𝑖=1
 (3.26) 

 

where, 

n = The number of observations 

𝑄𝑖 = The observed water levels 

𝑄𝑖
′ = The predicted water levels 

 

 

3.8.2.2 Root-Mean-Square Error (RMSE) 

 

The RMSE is the square root of the mean / average of the squared of 

all the errors. The RMSE is a very commonly used measurement and it 

produces an exceptionally general-purpose error metric for numerical 

predictions. However, the RMSE amplifies and produces a larger error as 

compared to the MAPE. This may result in misleading conclusions. The 

RMSE is defined in Equation 3.27. 
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 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑄𝑖 − 𝑄𝑖

′)2

𝑛

𝑖=1

 (3.27) 

 

where, 

n = The number of observations 

𝑄𝑖 = The observed water levels 

𝑄𝑖
′ = The predicted water levels 

 

 

3.8.2.3 Mean Absolute Percentage Error (MAPE) 

 

The MAPE which also known as the Mean Absolute Percentage 

Deviation (MAPD), is used to calculate the prediction precision of a 

forecasting method in statistics. The MAPE can enhance the error 

measurement as compared to that of the RMSE since it does not magnify large 

errors as does the RMSE. However, there are some drawbacks for the 

measurement of the MAPE. The MAPE will go to extreme when the actual 

observed value is small (approximately zero) as the denominator of the 

equation is the actual observed value, 𝑄𝑖. The MAPE is defined in Equation 

3.28. 

 

 𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑄𝑖 − 𝑄𝑖
′

𝑄𝑖
| 𝑥 100 %

𝑛

𝑖=1

 (3.28) 
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where, 

n = The number of observations 

𝑄𝑖 = The observed water levels 

𝑄𝑖
′ = The predicted water levels 

 

 Lewis (1982) had acquired a scale of judgement for the accuracy of the 

forecasted model using the MAPE. The scale of judgement for the MAPE 

accordingly is as shown in Table 3.4. 

 

Table 3.4: The Scale of Judgement for Mean Absolute Percentage Error 

(Lewis, 1982) 

Mean Absolute Percentage Error 

(MAPE) 

Judgement of Forecast Accuracy 

Less than 10 % Highly accurate 

11 % to 20 % Good Forecast 

21 % to 50 % Reasonable Forecast 

51 % or more Inaccurate Forecast 

 

 

3.8.2.4 Mean Absolute Error (MAE) 

 

The MAE measures the differences between the predicted water levels 

and the observed water levels as similar to the Bias, but absolute values of the 

difference will be taken for the MAE. The lower the value of the MAE, the 

better the performance of the model. The MAE is defined in Equation 3.29.  

 

 𝑀𝐴𝐸 = ∑
|𝑄𝑖

′ − 𝑄𝑖|

𝑛

𝑛

𝑖=1
 (3.291) 
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where, 

n = The number of observations 

𝑄𝑖 = The observed water levels 

𝑄𝑖
′ = The predicted water levels 

 

 

3.8.2.5 Nash-Sutcliffe Efficiency Coefficient (NSEC) 

 

The NSEC is used to assess the predictive power of hydrological 

models. It is a normalized statistic that determine the relative magnitude of the 

residual variance as compared to that of the measured data variance (Nash and 

Sutcliffe, 1970). The NSEC is defined in Equation 3.30. 

 

 𝑁𝑆𝐸𝐶 =  1 −
∑ (𝑄𝑖 − 𝑄𝑖

′)2𝑛
𝑖=1

∑ (𝑄𝑖 − 𝑄𝑖̅)2𝑛
𝑖=1

 (3.30) 

 

where, 

n = The number of observations 

𝑄𝑖 = The observed water levels 

𝑄𝑖
′ = The predicted water levels 

𝑄𝑖̅ = The mean for observed water levels 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

 

4.1 Homogeneity Tests 

 

The homogeneity tests were implemented on the observed rainfall 

series from the three rainfall stations to obtain a more homogenous observed 

rainfall series. If the significance level, α > 0.05, it means that the data are 

homogenous. Based on the results from the homogeneity tests as shown in 

Table 4.1, all the significance level of four tests of station 1 and station 2 for 

the months of Jan, Feb, Nov and Dec are more than 0.05. With these results, 

the homogeneity of all months are categorized as useful. However, for station 

3, only in one of the months that had failed the PeT test, which is at Feb (α = 

0.045). And despite it was shown that only in one test that had the 

homogeneity rejected, that is for the month of Feb at station 3, it was however 

accepted that the homogeneity of all months at station 3 were categorized as 

useful on an overall basis, if nothing else. The results of homogeneity tests for 

three rainfall stations are clearly shown in Table 4.1. 
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Table 4.1: Homogeneity Tests of Observed Rainfall Series for Station 1 

(4529001), Station 2 (4730002) and Station 3 (4832011) 

Station Month 

Homogeneity Test 

(Significance Level, α) Homogeneity 

SNHT BR PeT VNR 

Station 1 

(4529001) 

Jan 0.376 0.278 0.619 0.682 Useful 

Feb 0.419 0.788 0.156 0.668 Useful 

Nov 0.144 0.112 0.487 0.147 Useful 

Dec 0.142 0.161 0.484 0.120 Useful 

Station 2 

(4730002) 

Jan 0.206 0.119 0.159 0.728 Useful 

Feb 0.494 0.741 0.974 0.740 Useful 

Nov 0.154 0.139 0.226 0.432 Useful 

Dec 0.215 0.127 0.484 0.382 Useful 

Station 3 

(4832011) 

Jan 0.277 0.149 0.232 0.490 Useful 

Feb 0.518 0.780 0.045 0.717 Useful 

Nov 0.411 0.433 0.739 0.766 Useful 

Dec 0.130 0.083 0.327 0.140 Useful 

 

 

4.2 Normality Test for Observed Rainfall Series (Input) 

 

The normality tests such as the SW test, the KS test, the JB test and the 

AD test were first applied to the observed rainfall series (input). The test 

interpretations are stated as follow: 

 

Null hypothesis, Ho: Normally distributed observed rainfall series (α > 0.05) 

Alternative hypothesis, Ha: Non-normally distributed observed rainfall series 

        (α < 0.05) 

 

Based on the results from normality tests as shown in Table 4.2, all the 

significance level of four tests of stations 1, 2 and 3 are lesser than 0.05, 

thence the null hypothesis, Ho should be rejected and the alternative 

hypothesis, Ha accepted. Hence, the observed rainfall series were conclusively 
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non-normally distributed, and thus non-parametric statistics are to be used. 

The results of normality tests for observed rainfall series (input) are shown in 

Table 4.2. 

 

Table 4.2: Results of Normality Tests for Observed Rainfall Series (Input) 

Station 

No. 

Station 

Code 

Normality Test (Significance Level, α) 

Shapiro-

Wilk 

Test 

Kolmogorov-

Smirnov 

Test 

Jarque-

Bera 

Test 

Anderson-

Darling 

Test 

1 4529001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

2 4730002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

3 4832011 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

 

4.3 Data Pre-Processing Techniques 

 

The data pre-processing techniques (VMD method, Boosting method 

and Boosting-VMD method) were carried out on the daily, monthly and 

seasonal rainfall series of Northeast Monsoon (November to February) only. 

For the decomposition of the observed rainfall series using the different data 

pre-processing techniques, several input parameters for the certain techniques 

must be pre-determined precisely to produce the best processed rainfall series 

for predicting river water level using the SVR model in the later part. Then, in 

the later part of water level prediction, the regularization parameter, C and the 

insensitive loss function, ε will be the main input parameters for the model 

training and validation. The selection of C and ε value for model training and 

validation will be further discussed in the later. For now, the MAE in model 
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validation set was used as the determining factor to select the best processed 

rainfall data for each of the data pre-processing techniques. 

 

 

4.3.1 Variational Mode Decomposition (VMD) 

 

For the VMD method, the balancing parameter of the data fidelity 

constraint, a is the manipulated input parameter that need to be pre-determined 

to produce the most ideal case of processed rainfall using the VMD method. 

The optimal a value was chosen from the series of a = 10, 20, 30, 40, 50 by 

the trial-and-error approach, minimizing the MAE between the observed and 

predicted values. The MAE (validation set) of a = 10, 20, 30, 40, 50 are 

1.2197, 1.1738, 1.2002, 1.1476, 1.1489, respectively. As shown in Figure 4.1, 

the lowest MAE occurred at a = 40. Therefore, the optimal a value is 

determined as 40 for the VMD method. The optimal balancing parameter of 

the data fidelity constraint, a of VMD method are stated in Table 4.3 and 

Figure 4.1. 

 

Table 4.3: Optimal a of VMD method 

Balancing 

Parameter of 

Data Fidelity 

Constraint, a 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, 

ε 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

10 140 0.1 0.9007 1.2197 0.3190 

20 120 0.1 0.8944 1.1738 0.2794 

30 3 0.1 0.9096 1.2002 0.2906 

40 8 0.1 0.8925 1.1476 0.2551 

50 900 0.1 0.8995 1.1489 0.2494 
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Figure 4.1: Validation MAE vs. a of VMD method 

 

 

4.3.2 Boosting Method 

 

For the Boosting method, the constant input parameters chosen are the 

LSBoost (which is used for the regression method) and the ‘Tree’ learner 

(which applicable to all methods except ‘Subspace’). The optimal number of 

ensemble learning cycles, NLearn is the manipulated input parameter that 

need to be pre-determined to produce the most ideal case of processed rainfall 

using Boosting method. It was chosen from the series of NLearn = 1, 10, 100, 

1000, 10000, 100000 by a trial-and-error approach, minimizing the MAE 

between the observed and predicted values. The MAE (validation set) of 

NLearn = 1, 10, 100, 1000, 10000, 100000 are 0.9391, 0.5305, 0.2987, 0.3704, 

(10, 1.2197)

(20, 1.1738)

(30, 1.2002)

(40, 1.1476)

(50, 1.1489)

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

0 10 20 30 40 50 60

V
al

id
at

io
n

 M
A

E

a



 

69 

0.5111, 0.8686, respectively. As shown in Figure 4.2, the lowest MAE is 

0.2850 which occurred at NLearn = 150. The total number of 2,405 rainfall 

data were used to enhance the accuracy of the learning algorithm. Only 150 

number of “weak” learning algorithm needed to combine into a single 

prediction rule. Hence, the optimal NLearn is determined as 150 for the 

Boosting method. The optimal NLearn of Boosting method are stated in Table 

4.4 and Figure 4.2. 

 

Table 4.4: Optimal NLearn of Boosting Method 

Number of 

Ensemble 

Learning 

Cycles, 

NLearn 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, ε 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

1 1000 0.1 0.7445 0.9391 0.1946 

10 1000 0.8 0.4357 0.5305 0.0948 

100 27 0.1 0.3360 0.2987 -0.0373 

1,000 30 0.1 0.3603 0.3704 0.0101 

10,000 1000 0.1 0.3980 0.5111 0.1131 

100,000 150 0.1 0.7075 0.8686 0.1611 

 

 

Figure 4.2: Validation MAE vs. NLearn of Boosting Method 
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4.3.3 Boosting-VMD Method 

 

For the Boosting-VMD method, the input parameters chosen are 

similar to that of the Boosting method. The optimal number of ensemble 

learning cycles, NLearn need to be pre-determined to produce the most ideal 

case of processed rainfall using Boosting-VMD method. The MAE (validation 

set) of NLearn = 1, 10, 100, 1000, 10000, 100000 are 0.9419, 0.3032, 0.2515, 

0.2841, 0.4298, 0.7911, respectively. As shown in Figure 4.3, the lowest MAE 

is 0.2501 which occurred at NLearn = 25. The total number of 2,405 rainfall 

data were used to enhance the accuracy of the learning algorithm. Only 25 

number of “weak” learning algorithm needed to combine into a single 

prediction rule. Hence, the optimal number of ensemble learning cycles, 

NLearn is determined as 25. The optimal NLearn of Boosting-VMD method 

are stated in Table 4.5 and Figure 4.3. 

 

Table 4.5: Optimal NLearn of Boosting-VMD Method 

Number of 

Ensemble 

Learning 

Cycles, 

NLearn 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, ε 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

1 1000 0.1 0.7395 0.9419 0.2024 

10 1000 0.8 0.3363 0.3032 -0.0331 

100 90 0.1 0.2588 0.2515 -0.0073 

1,000 1000 0.1 0.2541 0.2841 0.0300 

10,000 1000 0.1 0.4088 0.4298 0.0210 

100,000 25 0.1 0.6461 0.7911 0.1450 
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Figure 4.3: Validation MAE vs. NLearn of Boosting-VMD method 

 

In conclusion, the three data pre-processing techniques had been 

successfully used to process the observed rainfall series, to be used as the 

input for the river water level prediction model (the SVR model). The 

processed rainfall series were the most ideal case for each of their own 

technique, based on the determining factor and pre-determined input 

parameters as abovementioned. The graphs of observed rainfall series and 

processed rainfall series using different data pre-processing techniques are 

clearly shown in Figure 4.4, Figure 4.5 and Figure 4.6. 
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Figure 4.4: Graphs of observed and processed rainfall series using VMD method

0.00

0.10

0.20

0.30

1
9

9
6

1
9

9
6

1
9

9
7

1
9

9
7

1
9

9
8

1
9

9
8

1
9

9
8

1
9

9
9

1
9

9
9

2
0

0
0

2
0

0
0

2
0

0
0

2
0

0
1

2
0

0
1

2
0

0
2

2
0

0
2

2
0

0
2

2
0

0
3

2
0

0
3

2
0

0
4

2
0

0
4

2
0

0
4

2
0

0
5

2
0

0
5

2
0

0
6

2
0

0
6

2
0

0
6

2
0

0
7

2
0

0
7

2
0

0
8

2
0

0
8

2
0

0
8

2
0

0
9

2
0

0
9

2
0

1
0

2
0

1
0

2
0

1
0

2
0

1
1

2
0

1
1

2
0

1
2

2
0

1
2

2
0

1
2

2
0

1
3

2
0

1
3

2
0

1
4

2
0

1
4

2
0

1
4

2
0

1
5

2
0

1
5

2
0

1
6

2
0

1
6

R
ai

n
fa

ll 
(m

)

Period (Year)

Observed Rainfall Processed Rainfall Using VMD method



 

73 

 

Figure 4.5: Graphs of observed and processed rainfall series using Boosting method
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Figure 4.6: Graphs of observed and processed rainfall series using Boosting-VMD method

0.00

0.10

0.20

0.30

1
9

9
6

1
9

9
6

1
9

9
7

1
9

9
7

1
9

9
8

1
9

9
8

1
9

9
8

1
9

9
9

1
9

9
9

2
0

0
0

2
0

0
0

2
0

0
0

2
0

0
1

2
0

0
1

2
0

0
2

2
0

0
2

2
0

0
2

2
0

0
3

2
0

0
3

2
0

0
4

2
0

0
4

2
0

0
4

2
0

0
5

2
0

0
5

2
0

0
6

2
0

0
6

2
0

0
6

2
0

0
7

2
0

0
7

2
0

0
8

2
0

0
8

2
0

0
8

2
0

0
9

2
0

0
9

2
0

1
0

2
0

1
0

2
0

1
0

2
0

1
1

2
0

1
1

2
0

1
2

2
0

1
2

2
0

1
2

2
0

1
3

2
0

1
3

2
0

1
4

2
0

1
4

2
0

1
4

2
0

1
5

2
0

1
5

2
0

1
6

2
0

1
6

R
ai

n
fa

ll 
(m

)

Period (Year)

Observed Rainfall Processed Rainfall Using Boosting-VMD Method



 

75 

4.4 River Water Level Prediction Model – Support Vector 

Regression (SVR) 

 

The SVR was used to predict river water levels based on, separately, 

the observed and the processed rainfall series. The data were split into a 

randomly selected ratio of 90:10 for model training and model validation, 

respectively. For the past records, there is no ideal ratio split for a training set 

and validation set and thus mostly, the split is arbitrary. For this research study, 

the data collected were from small data sets which possessed only 20 years of 

rainfall and river water level data. Hence, ratio of 90:10 split was preferable. 

Data from November 1996 to February 2014 (18-year) were allocated for 

model training and the remaining data from November 2014 to February 2016 

(2-year) were to be used for model validation. 

 

During the model training and validation with the SVR, several input 

parameters must be pre-determined precisely as it is a vital phase for model 

training and validation. It also extremely affects the accuracy of the model. 

The regularization parameter, C and insensitive loss function, ε are the main 

input parameters for the model training and validation to predict water levels. 

The selection of C and ε as model inputs is discussed in the next section. 

Intermittently, the most appropriate kernel function found is a Radial Basis 

Kernel (RBF) function. The MAE in the validation set was used as the 

determining factor for choosing the optimal input parameters to be used. The 

kernel function and model input parameters are chosen by the trial-and-error 

approach, minimizing the MAE between the observed and predicted water 

levels. 



 

76 

4.4.1 Selection of C and ε 

 

4.4.1.1 Model Ori-SVR (Observed Rainfall Series) 

 

For the predicted river water levels based using Ori-SVR (the original 

observed rainfall series), the lowest MAE (validation set) was 1.2537 when C 

= 1.65 and ε = 0.1, as shown in Table 4.6 and Figure 4.7. 

 

Table 4.6: MAE of Ori-SVR 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, ε 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

0.1 0.1 0.9999 1.2911 0.2912 

1 0.1 0.9567 1.2552 0.2985 

10 0.1 0.9357 1.2622 0.3265 

100 0.1 0.8989 1.3362 0.4373 

1,000 0.1 0.9272 1.3185 0.3913 

 

 

Figure 4.7: Validation MAE vs. C of Ori-SVR 
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4.4.1.2 Model VMD-SVR (VMD Method) 

 

For the predicted river water levels based on the processed rainfall 

series using the VMD-SVR (VMD method), the lowest MAE (validation set) 

was 1.1476 when C = 8 and ε = 0.1, as shown in Table 4.7 and Figure 4.8. 

 

Table 4.7: MAE of VMD-SVR 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, 

ε 

Balancing 

Parameter, 

a 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

0.1 0.1 40 0.9608 1.2427 0.2819 

1 0.1 40 0.9261 1.1704 0.2443 

10 0.1 40 0.8909 1.1507 0.2598 

100 0.1 40 0.8805 1.2006 0.3202 

1,000 0.1 40 0.8695 1.2910 0.4215 

 

 

Figure 4.8: Validation MAE vs. C of VMD-SVR 
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4.4.1.3 Model B-SVR (Boosting Method) 

 

For the predicted river water levels based on the processed rainfall 

series using the B-SVR (Boosting method), the lowest MAE (validation set) 

was 0.2850 when C = 27 and ε = 0.1, as shown in Table 4.8 and Figure 4.9. 

 

Table 4.8: MAE of B-SVR 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, 

ε 

Number of 

Ensemble 

Learning 

Cycles, 

NLearn 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

0.1 0.1 150 0.3845 0.5052 0.1207 

1 0.1 150 0.3439 0.3525 0.0086 

10 0.1 150 0.3368 0.3031 -0.0337 

100 0.1 150 0.3355 0.3011 -0.0344 

1,000 0.1 150 0.3308 0.3215 -0.0093 

 

 

Figure 4.9: Validation MAE vs. C of B-SVR 
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4.4.1.4 Model B-VMD-SVR (Boosting-VMD Method) 

 

For the predicted river water levels based on the processed rainfall 

series using the B-VMD-SVR (Boosting-VMD method), the lowest MAE 

(validation set) was 0.2501 when C = 90 and ε = 0.1, as shown in Table 4.9 

and Figure 4.10. 

 

Table 4.9: MAE of B-VMD-SVR 

Regularization 

Parameter, C 

Insensitive 

Loss 

Function, 

ε 

Number of 

Ensemble 

Learning 

Cycles, 

NLearn 

Mean Absolute Error, MAE 

Training 

Set 

Validation 

Set 
Difference 

0.1 0.1 25 0.3184 0.3870 0.0686 

1 0.1 25 0.2913 0.3097 0.0184 

10 0.1 25 0.2873 0.2791 -0.0082 

100 0.1 25 0.2588 0.2515 -0.0073 

1,000 0.1 25 0.2850 0.2795 -0.0055 

 

 

Figure 4.10: Validation MAE vs. C of B-VMD-SVR 
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4.5 Model Development and Application 

 

As mentioned above, during the study with SVR, the optimal input 

parameters for each of the models (Ori-SVR, VMD-SVR, B-SVR and B-

VMD-SVR) were obtained. For Ori-SVR, C = 1.65 and ε = 0.1; for VMD-

SVR, C = 8 and ε = 0.1; for B-SVR, C = 27 and ε = 0.1; and for B-VMD-SVR, 

C = 90 and ε = 0.1. From these optimal input parameters obtained, the optimal 

predicted river water levels for every model were determined. 

 

The MAE (validation set) was used as the determining factor to select 

the best model for each of the models Ori-SVR, VMD-SVR, B-SVR and B-

VMD-SVR, based on the optimal input parameters (C and ε). The lower the 

MAE value, the better the prediction of river water levels using river water 

level prediction model. During the study with SVR, according to the optimal 

input parameters for every model, the lowest MAE obtained were 1.2537, 

1.1476, 0.2850, 0.2501 for the models Ori-SVR, VMD-SVR, B-SVR, B-

VMD-SVR, respectively.  

 

The hydrographs of observed river water levels and predicted river 

water levels using observed and processed rainfall series for validation sets (2 

years of river water level series) are shown in Figure 4.11. 
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(b) 

 

Figure 4.11: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

validation sets of 2014-2016 (a) year 2014-2015 (b) year 2015-2016 
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After the prediction of river water levels using the SVR, the 

differences between the predicted maximum river water levels for every model 

and the observed maximum river water levels; as well as differences between 

the predicted minimum river water levels for every model and the observed 

minimum river water levels, were determined.  

 

The differences (in metre) between the observed maximum river water 

levels and the predicted maximum river water levels for the various models 

Ori-SVR, VMD-SVR, B-SVR, B-VMD-SVR are 6.76 m, 3.68 m, 4.46 m, 1.88 

m, respectively (for training set) and 6.63 m, 3.78 m, 4.35 m, 1.75 m, 

respectively (for validation set).  

 

Similarly, the differences (in metre) between the observed minimum 

river water levels and the predicted minimum river water levels for the various 

models Ori-SVR, VMD-SVR, B-SVR, B-VMD-SVR are 1.33 m, 1.24 m, 0.51 

m, 0.42 m, respectively (for training set) and 1.16 m, 1.07 m, 0.34 m, 0.25 m, 

respectively (for validation set). 

 

It can be observed that amongst all the models, the model B-VMD-

SVR (Boosting-VMD method) gave the least differences for both the 

maximum and the minimum water level. The results are tabulated in Table 

4.10 and Table 4.11. 
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Table 4.10: Differences between predicted maximum river water levels 

for every model and observed maximum river water levels 

Period 
Time 

(Year) 
Model 

Predicted 

Max 

Water 

Level (m) 

Observed 

Max 

Water 

Level (m) 

Differences 

(m) (%) 

Training 18 

Ori-SVR 7.68 14.44 6.76 46.81 

VMD-SVR 10.76 14.44 3.68 25.48 

B-SVR 9.98 14.44 4.46 30.89 

B-VMD-SVR 12.56 14.44 1.88 13.02 

Validation 2 

Ori-SVR 7.68 14.31 6.63 46.33 

VMD-SVR 10.53 14.31 3.78 26.42 

B-SVR 9.96 14.31 4.35 30.40 

B-VMD-SVR 12.56 14.31 1.75 12.23 

 

Table 4.11: Differences between predicted minimum river water levels for 

every model and observed minimum river water levels 

Period 
Time 

(Year) 
Model 

Predicted 

Min 

Water 

Level (m) 

Observed 

Min 

Water 

Level (m) 

Differences 

(m) (%) 

Training 18 

Ori-SVR 5.67 4.34 1.33 30.65 

VMD-SVR 5.58 4.34 1.24 28.57 

B-SVR 4.85 4.34 0.51 11.75 

B-VMD-SVR 4.76 4.34 0.42 9.68 

Validation 2 

Ori-SVR 5.67 4.51 1.16 25.72 

VMD-SVR 5.58 4.51 1.07 23.73 

B-SVR 4.85 4.51 0.34 7.54 

B-VMD-SVR 4.76 4.51 0.25 5.54 

 

 

4.6 Model Performance Measures 

 

The predicted river water levels from both the processed and the 

observed rainfall series, were assessed against the observed river water levels, 

using certain assessment measures to evaluate the models’ performance. Both 

non-parametric and parametric statistics were adopted. 

 



 

85 

4.6.1 Non-Parametric Statistics – Residual Modelling Statistics 

 

4.6.1.1 Model Prediction Error’s Range and Standard Deviation 

 

For non-parametric statistics, the residual modelling statistics were 

used to evaluate the models’ performance (Ori-SVR, VMD-SVR, B-SVR and 

B-VMD-SVR) with the significance level of 99% (α = 0.01). The statistics of 

residual modelling statistics (Model prediction errors’ range and standard 

deviation) are shown in Table 4.12. 

 

Table 4.12: Model Prediction Errors’ Range and Standard Deviation 

Model 

Statistics 

Model Prediction 

Errors’ Range 
Ranking 

Model 

Prediction 

Errors’ 

Standard 

Deviation 

Ranking 

Ori-SVR 
12.05 

(Min: -8.17, Max: 3.88) 
3rd  1.4842 4th  

VMD-SVR 
13.62 

(Min: -7.74, Max: 5.88) 
4th  1.3523 3rd  

B-SVR 
6.66 

(Min: -4.92, Max: 1.74) 
2nd  0.5747 2nd  

B-VMD-SVR 
4.27 

(Min: -2.95, Max: 1.32) 
1st  0.4200 1st  

 

Rankings were assigned to each model (ranking 1st for the best model 

and ranking 4th for the worst model). Based on the ranking of model prediction 

errors’ range and standard deviation as shown in Table 4.12, amongst all the 

models, the predicted river water levels with the processed rainfall series using 

the B-VMD-SVR (Boosting-VMD method) achieved the best ranking (with 

smallest model prediction error’s range and standard deviation). Low model 
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prediction error’s range and standard deviation indicated that the fluctuation of 

error is small and model stability is high, respectively. Thus, there is higher 

capability for model to achieve higher accuracy. 

 

 

4.6.1.2 Normality Test for Residuals of Predicted River Water Levels 

(Output) 

 

The normality tests such as the SW test, the KS test, and the JB test 

were applied to the residuals of the predicted river water levels (output). For 

the JB test, the test interpretations are based on the critical values of the Chi-

Squared (𝜒2) distribution. However, for the SW test and the KS test, the test 

interpretations are stated as follow: 

 

Null hypothesis, Ho: Normally distributed residuals of predicted river water 

levels (α > 0.05) 

Alternative hypothesis, Ha: Non-normally distributed residuals of predicted 

river water levels (α < 0.05) 

 

The number of observations, n is 2,405. Thus, SW test is not applicable 

here as it is only applicable for n which less than 2,000. However, the test 

results of SW were still shown in Table 4.13 as it was auto-generated from the 

SPSS software. Based on the results from normality tests as shown in Table 

4.13, the significance level of the KS test for all the models are more than 0.05, 

following which, the null hypothesis, Ho should be accepted and reject the 

alternative hypothesis, Ha. 
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For the JB test, the degree of freedom (n – number of parameter) is 

2,402. The critical 𝜒2 value is 9,007. Based on the results of the normality 

tests as shown in Table 4.13, the calculated JB statistics of Ori-SVR and 

VMD-SVR are less than 9,007 whereas the JB statistics of B-SVR and B-

VMD-SVR are more than 9,007. Hence, the Ori-SVR and the VMD-SVR 

were conclusively normally distributed (use model prediction errors’ mean 

confidence interval range as next model performance measure), whereas the 

B-SVR and the B-VMD-SVR were conclusively non-normally distributed (use 

model prediction errors’ median confidence interval range as next model 

performance measure). The model prediction errors’ confidence interval range 

was selected to evaluate the models’ performance with the significance level 

of 99% (α = 0.01). The results of the normality tests for residuals of predicted 

river water levels (output) are shown in Table 4.13. 

 

Table 4.13: Normality Tests for Residuals of Predicted River Water 

Levels (Output) 

Model 

Statistics 

Shapiro-Wilk 

Test 

Kolmogorov-

Smirnov Test 

Jarque-Bera 

Test 

Ori-SVR 0.846 0.167 418 

VMD-SVR 0.898 0.129 691 

B-SVR 0.739 0.171 5,599,525 

B-VMD-SVR 0.892 0.102 199,849,857 

 

 

4.6.1.3 Model Prediction Error’s Confidence Interval Range 

 

As abovementioned, the residuals of predicted river water levels 

(output) of Ori-SVR and VMD-SVR were normally distributed whereas the 
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residuals of predicted river water levels (output) of B-SVR and B-VMD-SVR 

were non-normally distributed. Therefore, the model prediction errors’ mean 

confidence interval range was chosen for the Ori-SVR and the VMD-SVR, 

whereas the model prediction errors’ median confidence interval range was 

chosen for the B-SVR and the B-VMD-SVR, as the model performance 

measure to evaluate the models’ performance with the significance level of 99% 

(α = 0.01). The statistics of residual modelling statistics (Model prediction 

errors’ confidence interval range) is shown in Table 4.14. 

 

Table 4.14: Model Prediction Errors’ Confidence Interval Range 

Model 

Statistics 

Model Prediction Errors 

Standard 

Error 
Ranking 

Mean 

Confidence 

Interval Range 

Median 

Confidence 

Interval Range 

Ori-SVR [-0.37, -0.21] - 0.03027 4th  

VMD-SVR [-0.26, -0.11] - 0.02757 3rd  

B-SVR - [-0.01, 0.01] 0.00870 2nd  

B-VMD-SVR - [-0.02, 0.01] 0.00868 1st  

 

As shown in Table 4.14, the rankings of residual modelling statistics 

(Model prediction errors’ confidence interval range) for residuals of predicted 

river water levels from both processed and observed rainfall series were 

ranked from the narrowest to the broadest model prediction errors’ confidence 

interval range, as well as from the lowest to the highest standard error. The 

rankings from 1st to 4th were assigned to the B-VMD-SVR, B-SVR, VMD-

SVR and Ori-SVR, respectively. On average, the model prediction error’s 

confidence interval range of the B-VMD-SVR (Boosting-VMD method) was 
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nearer to zero value and achieved the best ranking (with narrowest model 

prediction error’s mean confidence interval range); amongst all the models. 

 

 

4.6.2 Parametric Statistics 

 

For parametric statistics, the goodness-of-fit of every statistical test 

which was used to evaluate the models’ performance (Ori-SVR, VMD-SVR, 

B-SVR and B-VMD-SVR) are shown in Table 4.15, for both the training and 

validation sets of predicted river water levels from both the processed and the 

observed rainfall series. 

 

Table 4.15: Parametric Statistics of all Models 

Period 
Time 

(Year) 
Model 

Goodness-of-fit 

Bias RMSE MAPE NSEC MAE 

Training 18 

Ori-SVR -0.34 1.47 12.85 0.22 0.93 

VMD-SVR -0.23 1.34 12.70 0.35 0.89 

B-SVR -0.07 0.56 4.55 0.89 0.34 

B-VMD-SVR -0.07 0.43 4.11 0.93 0.29 

Validation 2 

Ori-SVR 0.18 1.85 18.89 0.25 1.25 

VMD-SVR 0.28 1.56 17.81 0.46 1.15 

B-SVR -0.07 0.71 3.89 0.89 0.30 

B-VMD-SVR 0.00 0.42 4.36 0.96 0.28 

 

As shown in the model performance measures above, it was observed 

that the VMD-SVR, B-SVR and B-VMD-SVR obtained better results than the 

Ori-SVR. All processed rainfall series (using different data pre-processing 

techniques) resulted in improved performance of the river water level 

prediction model. The VMD-SVR obtained the third best results. Based on the 

parametric statistics, the VMD-SVR gave better results for both training (Bias 
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= - 0.23, RMSE = 1.34, MAPE = 12.70, NSEC = 0.35, MAE = 0.89) and 

validation (Bias = 0.28, RMSE = 1.56, MAPE = 17.81, NSEC = 0.46, MAE = 

1.15) sets as compared to the Ori-SVR for both training (Bias = - 0.34, RMSE 

= 1.47, MAPE = 12.85, NSEC = 0.22, MAE = 0.93) and validation (Bias = 

0.18, RMSE = 1.85, MAPE = 18.89, NSEC = 0.25, MAE = 1.25) sets. With 

the validation set, although the Ori-SVR obtained the lowest bias as compared 

to that of VMD-SVR, the VMD-SVR still outperformed Ori-SVR in terms of 

another four (RMSE, MAPE, NSEC and MAE) out of five tests. Besides that, 

based on the non-parametric statistics (Residual modelling statistics), the 

VMD-SVR was ranked as 4th, 3rd and 3rd for model prediction error’s range, 

standard deviation and confidence interval range, respectively; whereas the 

Ori-SVR was ranked as 3rd, 4th and 4th for model prediction error’s range, 

standard deviation and confidence interval range, respectively. Although the 

Ori-SVR and the VMD-SVR possessed the equal rankings for model 

prediction errors’ range and standard deviation, the VMD-SVR (3rd ranking) 

still was better than the Ori-SVR (4th ranking) in terms of model prediction 

error’s confidence interval range. The VMD method had extracted the modes 

of rainfall series concurrently and properly balancing the errors between them. 

The modes were extracted continuously and decomposed non-recursively. 

During the sifting process of IMF components that were used to eliminate the 

noises and smoothen the uneven amplitudes of the IMFs curve (observed 

rainfall series), the IMFs will be extracted concurrently, and this can cope with 

the noises more properly. When no more IMFs can be extracted, the final 

IMFs curve will be the decomposed / processed rainfall series. After the 
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decomposition process, several noises had been eliminated, and smoother 

rainfall series was easier learnt in the SVR model to predict river water levels. 

 

The second best result came from the B-SVR. Based on the parametric 

statistics, B-SVR obtained better results for both training (Bias = -0.07, RMSE 

= 0.56, MAPE = 4.55, NSEC = 0.89, MAE = 0.34) and validation (Bias = -

0.07, RMSE = 0.71, MAPE = 3.89, NSEC = 0.89, MAE = 0.30) sets as 

compared to the VMD-SVR. The B-SVR bested the VMD-SVR in terms of all 

five (Bias, RMSE, MAPE, NSEC and MAE) tests. At the same time, based on 

the non-parametric statistics (Residual modelling statistics), B-SVR was 

ranked 2nd for all model prediction error’s range, standard deviation and 

confidence interval range; whereas VMD-SVR was ranked respectively 4th, 3rd 

and 3rd for model prediction error’s range, standard deviation and confidence 

interval range. Obviously, the B-SVR possessed better rankings in terms of 

model prediction error’s range, standard deviation and confidence interval 

range as compared to that of VMD-SVR. For model prediction error’s 

confidence interval range, B-SVR obtained a narrower range and lower 

standard error. Hence, B-SVR was better than the VMD-SVR in term of 

residual modelling statistics. In the Boosting method, a new rainfall learning 

set is formed through making bootstrap replicas using multiple versions of 

rainfall series. The predicted rainfall series that was processed using the 

Boosting method is a mean over different versions of predictors (Grunwald et 

al. 2009). According to Zhang et al. (2008), the Boosting method combines the 

outcomes from various predictors and permutated the training data and to 

combine the approximation generated from the base learners. The Boosting 
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method assists in boosting “weak” learning algorithms, which performs just 

slightly better than random guessing, into a relatively “stronger” learning 

algorithm. After many rounds of generation, the boosting algorithm combines 

all the weak rules into a single prediction rule and this will be the new learning 

sets of rainfall series. As compared to the VMD method, the Boosting method 

assists in boosting “weak” learning algorithm more specifically and directly 

rather than just extracting the mode concurrently and smoothen the uneven 

amplitudes of rainfall series curve. This will be more effective in processing 

the so called “weak” rainfall series into a “stronger” rainfall series, which act 

as the learning algorithm for the later part of river water level prediction. 

 

Last but not least, the best results originated from the B-VMD-SVR. 

Based on the parametric statistics, the B-VMD-SVR obtained better results for 

both training (Bias = -0.07, RMSE = 0.43, MAPE = 4.11, NSEC = 0.93, MAE 

= 0.29) and validation (Bias = 0.00, RMSE = 0.42, MAPE = 4.36, NSEC = 

0.96, MAE = 0.28) sets when compared to the B-SVR. In training set, 

although B-VMD-SVR obtained the same bias value with B-SVR, the B-

VMD-SVR still outperformed the B-SVR in terms of another four (RMSE, 

MAPE, NSEC and MAE) out of five tests. In validation set, although B-

VMD-SVR obtained higher MAPE as compared to that of B-SVR, the B-

VMD-SVR still outperformed B-SVR in terms of another four (Bias, RMSE, 

NSEC and MAE) out of five tests. At the same time, based on the non-

parametric statistics (Residual modelling statistics), the B-VMD-SVR was 

ranked as 1st for all model prediction error’s range, standard deviation and 

confidence interval range; whereas the B-SVR was ranked as 2nd for all model 
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prediction error’s range, standard deviation and confidence interval range, 

respectively. For model prediction errors’s confidence interval range, the B-

VMD-SVR obtained a narrower range and lower standard error when 

compared to those of the B-SVR. Hence, B-VMD-SVR outclassed the B-SVR 

in term of residual modelling statistics. The Boosting-VMD method was a 

hybrid of the VMD and the Boosting method. The generated IMFs curve from 

the VMD were further decomposed and boosted using the Boosting method. 

As shown in Table 4.4 and Table 4.5, Boosting method and Boosting-VMD 

method obtained the lowest MAE at NLearn = 150 and NLearn = 25, 

respectively. Only 25 number of “weak” learning algorithm was needed to 

combine into a single prediction rule for Boosting-VMD method, whereas 150 

number of “weak” learning algorithm was needed to combine into a single 

prediction rule for Boosting method. Besides that, the Boosting-VMD method 

also obtained lower MAE (validation set) which is 0.2765 than that of 

Boosting method at 0.2987. These showed that a lesser error was obtained 

while boosting the “weak” learning algorithm of rainfall series which 

decomposed using VMD method earlier before Boosting method. Combining 

both the VMD and the Boosting method, the smoothen rainfall series curve 

will be easier for the Boosting method to boost the “weak” learning algorithm. 

This can help in processing the rainfall series more properly for further river 

water level prediction using the SVR. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 Conclusions 

 

Four data-pre-processing-technique-modified-SVR river water level 

prediction models namely; the Ori-SVR (using observed rainfall), the VMD-

SVR (using VMD method), the B-SVR (using Boosting method) and the B-

VMD-SVR (using Boosting-VMD method) to predict the river water levels, at 

the Dungun River, Terengganu were developed in this study. All the predicted 

river water levels were assessed against the observed river water levels, using 

non-parametric statistics (Model prediction errors’ range, standard deviation 

and confidence interval range) and parametric statistics (Bias, RMSE, MAPE, 

NSEC and MAE) where appropriate, to assess the three data pre-processing 

techniques in enhancing the SVR model. 

 

It was concluded that the accuracy of the SVR models were creditably 

improved with the using of the processed rainfall series that had gone through 

the VMD method (VMD-SVR), the Boosting method (B-SVR) or the 

Boosting-VMD method (B-VMD-SVR) data pre-processing techniques, when 

compared to those with the use of only the non-processed original observed 

rainfall series. Three methods were shown to be robust in processing the 

rainfall series a priori to inputting into the SVR model for river water level 



 

95 

prediction. For the VMD method, it was able to extract the modes of observed 

rainfall series concurrently and properly balancing the errors between them. 

Hence, the noise can be decomposed and eliminated, concurrently and non-

recursively. The Boosting method was also investigated for use to enhance the 

performance of weak learners of the observed rainfall series. From the results 

shown, the optimal number of ensemble learning cycles, NLearn of Boosting 

method and Boosting-VMD method are 150 and 25, respectively. The number 

of ensemble learning cycles denoting the number of trained weak learners, the 

training difficulties were getting lesser when the observed rainfall series were 

first processed using VMD method in eliminating the errors beforehand. The 

double decomposition of observed rainfall series using both the VMD method 

followed with the Boosting method show better results as the optimal number 

of ensemble learning cycles was lesser as compared to the single Boosting 

method.  

 

Each of the models Ori-SVR, VMD-SVR, B-SVR and B-VMD-SVR 

were well trained and validated with the optimal C and ε as input parameters. 

From these optimal input parameters obtained, the optimal predicted river 

water levels for every model were determined. The model B-VMD-SVR (in 

training and validation sets) closely mimic the pattern of observed river water 

levels, showing the best result of predicted river water levels; amongst all the 

models. 

 

The predicted river water levels were assessed against the observed 

river water levels, using non-parametric statistics and parametric statistics to 
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assess the performance of three data pre-processing techniques. From the 

overall results shown, for both non-parametric statistics and parametric 

statistics, the accuracy of data pre-processing techniques was increased from 

the VMD method to the Boosting method and lastly, the Boosting-VMD 

method. All in all, the Boosting-VMD method (B-VMD-SVR) was the best 

data pre-processing technique for improving data series resulting in the best 

river water levels prediction with the SVR model for the Dungun River, 

Terengganu, with acceptable, reasonable and commendable results of model 

prediction error’s range (4.27; Min: -2.95, Max: 1.32), model prediction 

error’s standard deviation (0.4200), model prediction error’s confidence 

interval range ([-0.02, 0.01]; Standard error: 0.00868), Bias (0.00), Root-

Mean-Square Error (0.42), Mean Absolute Percentage Error (4.36), Nash-

Sutcliffe Efficiency Coefficient (0.96) and Mean Absolute Error (0.28). 

 

 

5.2 Recommendations 

 

This study focused only on river water level prediction at the Dungun 

River, Terengganu, a tropical climate region. Other rivers with different 

physical characteristics and under different climate environment ought to be 

carried out in future using similar approaches to further examine the 

performance of the proposed model. 

 

 There were only three data pre-processing techniques adopted to 

process observed rainfall series in this study. Further studies on few more 



 

97 

other data pre-processing techniques are encouraged to adopt before applying 

in other study areas to help in increasing the scalability of the model used.  

 

The SVR model was used as the base river water level prediction 

model in this study. Further studies on the VMD method, the Boosting method 

and the Boosting-VMD method with other machine learning methods to 

examine their performances can also be performed to see if similar results can 

be obtained as those of with the SVR models.  

 

 The period used for the river water level prediction in this study was 

20 years (from 1996 to 2016). A longer period of rainfall series should be used 

in the future so that more training data set are applicable to increase the 

accuracy of river water level prediction model.  
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APPENDICES 

 

APPENDIX A 

 

 

Figure A.1: Validation MAE vs. C of Ori-SVR (ε = 0.1) 

 

 

Figure A.2: Validation MAE vs. C of Ori-SVR (ε = 1) 
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Figure A.3: Validation MAE vs. C of Ori-SVR (ε = 10), VMD-SVR (a = 10, 

20 ,30 ,40 ,50), B-SVR and B-VMD-SVR (NLearn = 1, 10, 100, 

1,000, 10,000, 100,000) 

 

 

Figure A.4: Validation MAE vs. C of Ori-SVR (ε = 100), VMD-SVR (a = 

10, 20 ,30 ,40 ,50), B-SVR and B-VMD-SVR (NLearn = 1, 10, 

100, 1,000, 10,000, 100,000) 
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Figure A.5: Validation MAE vs. ε of Ori-SVR 

 

 

Figure A.6: Validation MAE vs. C of VMD-SVR (a = 10, ε = 0.1) 
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Figure A.7: Validation MAE vs. C of VMD-SVR (a = 10, ε = 1.0) 

 

 

Figure A.8: Validation MAE vs. ε of VMD-SVR (a = 10) 
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Figure A.9: Validation MAE vs. C of VMD-SVR (a = 10) 

 

 

Figure A.10: Validation MAE vs. C of VMD-SVR (a = 20, ε = 0.1) 
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Figure A.11: Validation MAE vs. C of VMD-SVR (a = 20, ε = 1.0) 

 

 

Figure A.12: Validation MAE vs. ε of VMD-SVR (a = 20) 

 

1.29
1.3

1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39

1.4
1.41
1.42
1.43
1.44

0.1 1 10 100 1000

V
al

id
at

io
n

 M
A

E

C

ε=1.0

1.18

1.28

1.38

1.48

1.58

1.68

0.1 1 10 100

V
al

id
at

io
n

 M
A

E

ε



 

117 

 

Figure A.13: Validation MAE vs. C of VMD-SVR (a = 20) 

 

 

 

Figure A.14: Validation MAE vs. C of VMD-SVR (a = 30, ε = 0.1) 
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Figure A.15: Validation MAE vs. C of VMD-SVR (a = 30, ε = 1.0) 

 

 

Figure A.16: Validation MAE vs. ε of VMD-SVR (a = 30) 
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Figure A.17: Validation MAE vs. C of VMD-SVR (a = 30) 

 

 

Figure A.18: Validation MAE vs. C of VMD-SVR (a = 40, ε = 0.1) 
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Figure A.19: Validation MAE vs. C of VMD-SVR (a = 40, ε = 1.0) 

 

 

Figure A.20: Validation MAE vs. ε of VMD-SVR (a = 40) 
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Figure A.21: Validation MAE vs. C of VMD-SVR (a = 50, ε = 0.1) 

 

 

Figure A.22: Validation MAE vs. C of VMD-SVR (a = 50, ε = 1.0) 
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Figure A.23: Validation MAE vs. ε of VMD-SVR (a = 50) 

 

 

Figure A.24: Validation MAE vs. C of VMD-SVR (a = 50) 
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Figure A.25: Validation MAE vs. C of B-SVR (NLearn = 1, ε = 0.1) 

 

 

Figure A.26: Validation MAE vs. C of B-SVR (NLearn = 1, ε = 1) 
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Figure A.27: Validation MAE vs. ε of B-SVR (NLearn = 1) 

 

 

Figure A.28: Validation MAE vs. C of B-SVR (NLearn = 1) 
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Figure A.29: Validation MAE vs. C of B-SVR (NLearn = 10, ε = 0.1) 

 

 

Figure A.30: Validation MAE vs. C of B-SVR (NLearn = 10, ε = 1) 
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Figure A.31: Validation MAE vs. ε of B-SVR (NLearn = 10) 

 

 

Figure A.32: Validation MAE vs. C of B-SVR (NLearn = 10, ε = 0.8) 
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Figure A.33: Validation MAE vs. C of B-SVR (NLearn = 10) 

 

 

Figure A.34: Validation MAE vs. C of B-SVR (NLearn = 100, ε = 0.1) 
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Figure A.35: Validation MAE vs. C of B-SVR (NLearn = 100, ε = 1) 

 

 

Figure A.36: Validation MAE vs. ε of B-SVR (NLearn = 100) 
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Figure A.37: Validation MAE vs. C of B-SVR (NLearn = 1,000, ε = 0.1) 

 

 

Figure A.38: Validation MAE vs. C of B-SVR (NLearn = 1,000, ε = 1) 
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Figure A.39: Validation MAE vs. ε of B-SVR (NLearn = 1,000) 

 

 

Figure A.40: Validation MAE vs. C of B-SVR (NLearn = 1,000) 
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Figure A.41: Validation MAE vs. C of B-SVR (NLearn = 10,000, ε = 0.1) 

 

 

Figure A.42: Validation MAE vs. C of B-SVR (NLearn = 10,000, ε = 1) 
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Figure A.43: Validation MAE vs. ε of B-SVR (NLearn = 10,000) 

 

 

Figure A.44: Validation MAE vs. C of B-SVR (NLearn = 10,000) 
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Figure A.45: Validation MAE vs. C of B-SVR (NLearn = 100,000, ε = 0.1) 

 

 

Figure A.46: Validation MAE vs. C of B-SVR (NLearn = 100,000, ε = 1) 
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Figure A.47: Validation MAE vs. ε of B-SVR (NLearn = 100,000) 

 

 

Figure A.48: Validation MAE vs. C of B-SVR (NLearn = 100,000) 
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Figure A.49: Validation MAE vs. C of B-VMD-SVR (NLearn = 1, ε = 0.1) 

 

 

Figure A.50: Validation MAE vs. C of B-VMD-SVR (NLearn = 1, ε = 1) 
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Figure A.51: Validation MAE vs. ε of B-VMD-SVR (NLearn = 1) 

 

 

Figure A.52: Validation MAE vs. C of B-VMD-SVR (NLearn = 1) 
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Figure A.53: Validation MAE vs. C of B-VMD-SVR (NLearn = 10, ε = 0.1) 

 

 

Figure A.54: Validation MAE vs. C of B-VMD-SVR (NLearn = 10, ε = 1) 
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Figure A.55: Validation MAE vs. ε of B-VMD-SVR (NLearn = 10) 

 

 

Figure A.56: Validation MAE vs. C of B-VMD-SVR (NLearn = 10) 
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Figure A.57: Validation MAE vs. C of B-VMD-SVR (NLearn = 100, ε = 

0.1) 

 

 

Figure A.58: Validation MAE vs. C of B-VMD-SVR (NLearn = 100, ε = 1) 
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Figure A.59: Validation MAE vs. ε of B-VMD-SVR (NLearn = 100) 

 

 

Figure A.60: Validation MAE vs. C of B-VMD-SVR (NLearn = 1,000, ε = 

0.1) 
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Figure A.61: Validation MAE vs. C of B-VMD-SVR (NLearn = 1,000, ε = 

1) 

 

 

Figure A.62: Validation MAE vs. ε of B-VMD-SVR (NLearn = 1,000) 
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Figure A.63: Validation MAE vs. C of B-VMD-SVR (NLearn = 1,000) 

 

 

Figure A.64: Validation MAE vs. C of B-VMD-SVR (NLearn = 10,000, ε = 

0.1) 
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Figure A.65: Validation MAE vs. C of B-VMD-SVR (NLearn = 10,000, ε = 

1) 

 

 

Figure A.66: Validation MAE vs. ε of B-VMD-SVR (NLearn = 10,000) 
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Figure A.67: Validation MAE vs. C of B-VMD-SVR (NLearn = 10,000) 

 

 

Figure A.68: Validation MAE vs. C of B-VMD-SVR (NLearn = 100,000, ε 

= 0.1) 
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Figure A.69: Validation MAE vs. C of B-VMD-SVR (NLearn = 100,000, ε 

= 1) 

 

 

Figure A.70: Validation MAE vs. ε of B-VMD-SVR (NLearn = 100,000) 
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Figure A.71: Validation MAE vs. C of B-VMD-SVR (NLearn = 100,000) 
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APPENDIX B 

 

 

Figure B.1: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 1996-1997 
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Figure B.2: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 1997-1998 
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Figure B.3: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 1998-1999 
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Figure B.4: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 1999-2000 
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Figure B.5: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2000-2001 
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Figure B.6: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2001-2002 
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Figure B.7: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2002-2003 
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Figure B.8: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2003-2004 

 

 

 

4

6

8

10

12

14

1/11/2003 1/12/2003 1/1/2004 1/2/2004

W
at

e
r 

Le
ve

l (
m

)

Period (Date)

Observed River Water Level B-VMD-SVR (Optimum Model) B-SVR VMD-SVR Ori-SVR



 

155 

 

Figure B.9: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2004-2005 
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Figure B.10: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2005-2006 
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Figure B.11: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2006-2007 
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Figure B.12: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2007-2008 
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Figure B.13: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2008-2009 
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Figure B.14: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2009-2010 
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Figure B.15: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2010-2011 
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Figure B.16: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2011-2012 
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Figure B.17: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2012-2013 
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Figure B.18: Hydrograph of observed river water levels and predicted river water levels using processed and observed rainfall series for 

training sets of 2013-2014 
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