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APPLICATION OF SEQUENTIAL EXPERIMENTATION IN A PAPER 

GYROCOPTER SYSTEM 

 

 

 

ABSTRACT 

 

 

Although the design of experiments concept was introduced by Fisher in the early 

1920s, the most research on this topic was carried out in the academic environment. 

One year later, Fisher demonstrated the usefulness of his concept in agricultural 

experiment; he analysed the optimum water, rain, sunshine, fertilizer, and soil 

conditions needed to produce the best crop. Taguchi went further with the design of 

experiment concept by introducing his approach in 1986. The present project that the 

author is doing can be theoretical or make it to experimental. The knowledge of the 

project is quite general when the author is study and doing this project. The author 

should be able to handle and learning different type of experimentation, particularly 

in engineering type. In the industrial, we can improve their product on process by 

doing many type of experiment. There are so many factor that have to identified by 

choosing which factor is the most important one, and which factor should change by 

increasing, decreasing or maintain it. These are the thing in the project that author is 

going to learn on how to evaluate the type of experiment. The application of DOE 

can be either by simulation or experimental. So, the method of experimentation and 

the data analysis is the key of this project. The objective of the project is more 

toward learning the method of the experimentation, theory, calculation, and the data 

analysis. For this project, the author is going to apply the sequential experimentation 

in a paper gyrocopter system.   
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Historical Introduction 

 

Taguchi methods, like other quality methodologies, have reached Europe from Japan 

via the USA. At such, there are elements of both Japanese philosophy and American 

enthusiasm contained in them. 

 

Dr Genichi Taguchi was born on the 1
st
 January 1924, and developed his 

methods whilst working at the Electrical Communications Laboratory of the Nippon 

Telephone & Telegraph Company post 1950. In 1957-8, he published the first 

version of this two-volume book on Design of Experiments. In 1964, Taguchi 

became a Professor at Aoyama Gakiun University in Tokyo, a position he held until 

1982. In the early 1970s, Taguchi developed the concept of the Quality Loss 

Function. He published two other books in the 1970s and the third edition of Design 

of Experiments. At this stage, Taguchi‟s methods were still essentially unknown in 

the West, although applications were taking place in Taiwan and India. In this period 

and throughout the 1970s, most applications of his methods were on production 

processes, with a shift to product design during the last decade. By the late 1970s, 

Taguchi had an impressive record in Japan having won the Deming prize several 

times and was Director of the Japanese Academy of Quality. Following his 1980 

visit to the United States, American manufacturers increasingly implemented 

Taguchi‟s methodology. There was something of an adverse reaction among 

American statisticians to the methods, and possibly at the way they were being 
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marketed. Nonetheless, major US companies became involved in the methods, 

including Xerox, Ford and ITT (Wilson & Millar, 1990). 

 

 

 

1.2 The Design of Experiments Process 

 

The design of an experiment (DOE) is not a simple one-step process but is actually a 

series of steps which must follow a certain sequence for the experiment to yield an 

improved understanding of product or process performance. The DOE process is 

made up of three main phases: the planning phase, the conducting phase, and the 

analysis/interpretation phase. The steps in the DOE process are generically the same 

regardless of the experiment design, which is chosen to evaluate factorial effects. 

The experiment design can be anywhere between a full-factorial experiment and a 

very small fractional-factorial experiment. Many texts on the subject of designed 

experiments emphasize the analytical phase of the DOE process; however, positive 

experimental results are dependent upon the planning of the experiment and not on 

the analysis (Ross, 1996). 

 

 

 

1.3 Orthogonal Array Selection and Utilization 

 

A major step in the DOE process is the determination of the combination of factors 

and levels which will provide the experimenter with the desired information. One 

approach is to utilize a fractional-factorial approach whenever there are several 

factors involve, and this may be accomplished with the aid of orthogonal arrays. 

Orthogonal arrays are introduced from the viewpoint of the pragmatist who is always 

trying to make product or process improvement decisions with the minimum amount 

of test data. Using a minimal amount of test data is not necessarily a problem in itself; 

however, the considerations of what may make up a valid experiment from a risk 

viewpoint are seldom considered by the typically experimenter (Ross, 1996).  
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1.4 Sequential Experimentation 

 

Sequential experimentation is a very effective strategy when performing 

experimental design because it provides an element of efficiency which is required 

for a successful experimentation. Without sequential experimentation many 

experiment would be unfeasible due to the obvious restrictions in costs or a waste of 

money and resources if a comprehensive experiment determines that there are no 

significant factors. Sequential experimentation is executed by combining the runs of 

two (or more) experiments to assemble a larger design that can estimate factor effects 

and interactions of interest (Rios, 2008). 

 

 Rios (2008) points out that the current literature recommends that the initial 

design should be a fractional factorial of the highest possible resolution constructed 

using the minimum aberration criteria. The second fraction is commonly constructed 

using a standard augmentation technique called foldover. The foldover reverses the 

signs of one or more factors in the initial design for the follow-up experiment. 

 

Myers and Montgomery (2002) mention that Resolution III Designs are 

designs in which no main effects are aliased with any other main effect, but main 

effects are aliased with two-factor interactions and two-factor interactions may be 

aliased with each other. Box (1993) points out that because of the many uncertainties 

in choosing an appropriate experimental design, it is best to avoid “all encompassing” 

experiments which must necessarily be planned when least is known about the 

system. Instead, where possible, it is best to run smaller sets of experiments in 

sequence. 

 

According to Myers and Montgomery (2002), using fractional factorial 

designs often leads to great economy and efficiency in experimentation, particularly 

if the runs can be made sequentially. For example, suppose that we were 

investigating k = 4 factors (2
4
 = 16 runs). It is almost always preferable to run a 142 

IV  

fractional design (8 runs), analyse the results, and then decide on the best set of runs 

to perform the next. If it is necessary to resolve ambiguities, we can always run the 
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alternate fraction and complete the 2
4
 design. When this method is used to complete 

the design, both one-half fractions represent blocks of the complete design with the 

highest-order interaction confounded with blocks would be confounded. Thus, 

sequential experimentation has the result of losing information only on the highest-

order interaction. Alternatively, in many cases we learn enough from the one-half 

fraction to proceed to the next stage of experimentation, which might involve adding 

or removing factors, changing responses, or varying some of the factors over new 

ranges. 

 

 

 

1.5 The Paper Gyrocopter 

 

The gyrocopter (shown in Figure 1.1) has a number of control factors that have a 

high potential for interaction. The aim of the gyrocopter experiment is to produce a 

paper device that has a low terminal velocity, or high air resistance, so that it can 

floats slowly to the ground. Other requirements are that it be easily built, that it spins 

in a pleasing way as it falls, and that it has good stability in flight. This last 

requirement means that it is self-righting or that it orients itself properly for stable 

flight (Fowlkes & Creveling, 1995). 

 

Figure 1.1: The paper gyrocopter 
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For the gyrocopter case, there is nothing simple about the physical analysis. 

The optimum set points must be found empirically. Nevertheless, the requirements, 

along with a modicum of knowledge about flight, suggest several fundamental 

properties that need to be controlled independently. The terminal velocity depends 

upon the weight of the gyrocopter and the air resistance presented by the wings. The 

air resistance is assumed to be proportional to the surface area of the wings. The 

spinning motion is due to the torque provided by the wings. The moment of inertia 

and the air resistance to spinning determine the angular velocity. Stability depends on 

the location of the center of gravity. If it is below the point of attachment between the 

body and wings, then the gyrocopter will be stable in flight (Fowlkes & Creveling, 

1995). 

 

The only factor that controls the torque is the wing width. That is the critical 

control factor assignment. The resistance to falling is proportional to the wing area. 

Thus, wing length must be made a sliding level factor (dependent factor) to allow 

independent control of the area. Paper weight is important because the stiffer the 

paper, the less the wings can be deflected by the relative motion of the air and 

rotation of the gyrocopter. However, a simple addition to the design, wing gussets, 

can stiffen the wing folds independent of paper weight (Fowlkes & Creveling, 1995). 

 

 

 

1.6 Description of the project  

 

 To study the methodology for including more factors in an experiment to 

dealias factor interactions. 

 

 

 

1.7 Objective of the project 

 

 To apply the method of sequential experimentation. 
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1.8 Scope of the project 

 

 The scope is mainly confined to applying advanced experimental techniques. 

 

 

 

 



 

 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Taguchi’s Orthogonal Arrays 

 

A major part of what has become accepted as Taguchi‟s methodology is the use of 

his tabulated sets of orthogonal arrays. Orthogonal array is often referred as Taguchi 

Method because of this method is popularised by G. Taguchi. An orthogonal array is 

a type of experiment where the columns for the independent variables are 

“orthogonal” to one another. It is often employed in industrial experiments to study 

the effect of several control factors.  

 

Before proceeding further with a closer look, let‟s look at an example where 

orthogonal arrays have been employed. A typical tabulation is shown in Table 2.1, 

where there are seven control factor (A, B, C, D, E, F and G each at two levels) and 

three noise factors (P, Q and R each at two levels). This is an L8 (2
7
) design, the 8 

indicting the eight rows, trials or prototypes to be tested, with test characteristics in 

each case defined by the row of the table. (The L stands for Latin square.) A full 

factorial experiment would require 2
7
 = 128 experiments. Note that when we 

conducted a Taguchi experiment with a L8 (2
7
) orthogonal array, this design reduces 

2222222=128 trials to 8.  

 

 

 

 

 



 

Table 2.1: L8 (2
7
) orthogonal array 

 

P 1 2 1 2 

Q 2 2 1 1 

R 1 1 2 2 

Exp A B C D E F G 1 2 3 4 

1 1 1 1 2 2 2 1 y1,1 y1,2 y1,3 y1,4 

2 2 1 1 1 1 2 2 y2,1 y2,2 y2,3 y2,4 

3 1 2 1 1 2 1 2 y3,1 y3,2 y3,3 y3,4 

4 2 2 1 2 1 1 1 y4,1 y4,2 y4,3 y4,4 

5 1 1 2 2 1 1 2 y5,1 y5,2 y5,3 y5,4 

6 2 1 2 1 2 1 1 y6,1 y6,2 y6,3 y6,4 

7 1 2 2 1 1 2 1 y7,1 y7,2 y7,3 y7,4 

8 2 2 2 2 2 2 2 y8,1 y8,2 y8,3 y8,4 

 

 

The benefits of using orthogonal arrays are; firstly, conclusions valid over the 

entire region spanned by the control factors and their settings. Second benefit is large 

saving in the experimental effort. Thirdly, analysis is easy. 

 

To define an orthogonal array, one must identify; firstly, number of factors to 

be studied. Secondly, levels for each factor. Thirdly, identify the specific 2-factor 

interactions to be estimated. Lastly, identify the special difficulties that would be 

encountered in running the experiment. 

 

We know that with two-level full factorial experiments, we can estimate 

variable interactions. When two-level fractional designs are used, we begin to 

confound our interactions, and often lose the ability to obtain unconfused estimates 

of main and interaction effects. We have also seen that if the generators are chosen 

carefully then knowledge of lower order interactions can be obtained under that 

assumption that higher order interactions are negligible.  

 

These designs fundamentally sacrifice information about interactions to 

reduce testing, although a very limited number of interactions can be induced. The 

reason why „by and large‟ the interactions can be often safety neglected is that 

industrial responses are, of course, typically faster to evaluate than agricultural ones. 

Instead of a one year cycle to run a confirmatory trial to try out the predicted 

optimum, it may only take a few minutes, hours or perhaps days to evaluate one 



 

additional prototype. Thus missing interactions can be identified and if necessary a 

further trial run carried out (Wilson & Millar, 1990). 

 

According to Bolboaca & Jantschi (2007), a triad could better characterize 

the aim of manufacturing process optimisation which is best quality, less failures and 

higher productivity. Factorial analysis can be used in order to find the best values for 

parameters implies in the manufacturing process. Opposite to full factorial analysis, 

the Taguchi method reduces the number of experimental run to a reasonable one, in 

terms of cost and time, by using orthogonal arrays. The Taguchi method is used 

whenever the settings of interest parameters are necessary, not only for 

manufacturing processes. Therefore, the Taguchi approach is used in many domains 

such as environmental sciences, agricultural sciences, physics, chemistry, statistics, 

management and business, medicine, engineering and others. 
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2.2 Resolution III Designs 

 

2.2.1 Constructing Resolution III Designs 

 

The sequential use of fractional factorial designs is very useful, often leading to great 

economy and efficiency in experimentation. These ideas can be illustrate by using 

the class of resolution III designs. It is possible to construct resolution III designs for 

investigating up to k = N – 1 factors in only N runs, where N is a multiple of 4. These 

designs are frequently useful in industrial experimentation. Of particular importance 

are designs requiring “4 runs for up to 3 factors”, “8 runs for up to 7 factors”, and 

“16 runs for up to 15 factors”. If k = N – 1, the fractional design is said to be 

saturated (Montgomery, 2005). 

 

A design for studying up to seven factors in eight runs is the 
472 

III  design. 

This design is a one-sixteenth fraction of the 2
7
. It may be constructed by first 

writing down as the basic design the plus and minus level for a full 2
3
 design in A, B, 

and C and then associating the levels of four additional factors with the interactions 

of the original three as follows: D = AB, E = AC, F = BC, and G = ABC. Thus, the 

generators for this design are I = ABD, I = ACE, I = BCF, and I = ABCG. The 

design is shown in Table 2.2.  

 

Table 2.2: The Saturated 
472 

III  Design with the Generators I = ABD, I = ACE,  

I = BCF, and I = ABCG 

 

LA LB LC LD LE LF LG 

FG EG DG EF DF DE AF 

CE CF BF CG BG AG BE 

BD AD AE AB AC BC CD 

Exp A B C D=AB E=AC F=BC G=ABC 

1 -1 -1 -1 1 1 1 -1 

2 1 -1 -1 -1 -1 1 1 

3 -1 1 -1 -1 1 -1 1 

4 1 1 -1 1 -1 -1 -1 

5 -1 -1 1 1 -1 -1 1 

6 1 -1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 1 -1 

8 1 1 1 1 1 1 1 
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The complete defining relation for this design is obtained by multiplying the 

four generators ABD, ACE, BCF, and ABCG together two at a time, three at a time, 

and four at a time, yielding 

I = ABD = ACE = BCF = ABCG 

2@ a time, I = BCDE =ACDF = CDG = ABEF = BEG = AFG 

3@ a time, I = DEF = ADEG = BDFG = CEFG 

4@ a time, I = ABCDEFG 

So that 

ABCDEFG=

CEFG=BDFG=ADEG=DEF=

AFG=BEG=ABEF=CDG=ACDF=BCDE=

ABCG=BCF=ACE=ABD=I

 

 

To find the aliases of any effect, simply multiply the effect by each word in the 

defining relation. For example, the aliases of A are: 

BCDEFG=

ACEFG=ABDFG=DEG=DEF=

FG=ABED=BEF=ACDG=CDF=BCDE=

BCG=ABCF=CE=BD=A

A

A
 

Taking only the two-factor interactions FG=CE=BD=A  as shown in column A 

in Table 2.2. 

 

Similarly, for example, the aliases of B are 

B = AD = ABCE = CF = ACG = CDE = ABCDF = BCDG = AEF = EG = ABFG  

= BDEF = ABDEG = BCEFG = DFG = ACDEFG 

 

And EGCF=AD=B   as shown in column A in Table 2.2. 

 

The seven degrees of freedom in this design may be used to estimate the 

seven main effects. Each of these effects has 15 aliases: however, if we assume that 

three-factor and higher interactions are negligible, then considerable simplification in 

the alias structure results. Making this assumption, each of the linear combinations 

associated with the seven main effects in this design actually estimates the main 

effect and three two-factor interactions:  
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AFBECDGl

DEAGBCFl

DFBGACEl

EFCGABDl

DGBFAECl

EGCFADBl

FGCEBDAl

G

F

E

D

C

B

A















 (2.1) 

In obtaining these aliases, we have ignored the three-factor and higher-order 

interactions, assuming that they will be negligible in most practical applications 

where a design of this type would be considered (Montgomery, 2005). 

 

 

 

2.2.2 Fold Over of Resolution III Fractions to Separate Aliased Effects 

 

By combining fractional factorial designs in which certain signs are switched, we can 

systematically isolate effects of potential interest. The alias structure for any fraction 

with the signs for one or more factors reversed is obtained by making changes of sign 

on the appropriate factors in the alias structure of the original fraction. This type of 

sequential experiment is called fold-over of the original design, and it is used in 

resolution III designs to break the links between main effects and two-factor 

interactions. There are two types of sequential experimentation: 

 Dealiasing any one main effect and all its 2-factor interactions (single-factor 

fold over), 

 Dealiasing all main effects (full fold-over). 

 

 

 

2.2.3 Single-factor fold-over 

 

In a single-factor fold-over, we add to a fractional factorial design of resolution III a 

second fraction of the same size with the signs for only one of the factors reversed. In 

the combined design, we will be able to estimate the main effect of the factor for 
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which the signs were reversed as well as all two-factor interactions involving that 

factor. To illustrate, consider the 472 

III  design in Table 2.2. Suppose that along with 

this principal fraction a second fractional design with the signs reversed in the 

column for factor D is also run. That is, the column for D in the second fraction is 

 - + + - - + + -, as shown in Table 2.3.  

 

Table 2.3: Single-factor Fold-over of the 
472 

III  Design with the Signs Reversed in 

the Column for factor D in Table 2.2 

 

L'A L'B L'C L'D L'E L'F L'G 

FG EG -DG -EF -DF -DE AF 

CE CF BF -CG BG AG BE 

-BD -AD AE -AB AC BC -CD 

Exp A B C D=-AB E=AC F=BC G=ABC 

9 -1 -1 -1 -1 1 1 -1 

10 1 -1 -1 1 -1 1 1 

11 -1 1 -1 1 1 -1 1 

12 1 1 -1 -1 -1 -1 -1 

13 -1 -1 1 -1 -1 -1 1 

14 1 -1 1 1 1 -1 -1 

15 -1 1 1 1 -1 1 -1 

16 1 1 1 -1 1 1 1 

 

 

The effects that may be estimated from the first fraction are shown in 

Equation (2.1), and from the second fraction we obtain 
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'

'

'

'

 (2.2) 

assuming that three-factor and higher interactions are insignificant. Now from the 

two linear combinations of effects ½(li + l’i) and ½(li – l’i) we obtain 
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i ½(li + l’i) ½(li – l’i) 

A A + CE + FG BD 

B B + CF + EG AD 

C C + AE +BF DG 

D D AB + CG + EF 

E E + AC +BG DF 

F F + BC + AG DE 

G G + BE +AF CD 

 

 

Thus, we have isolated the main effect of D and all of its two-factor interactions. In 

general, if we add to a fractional design of resolution III or higher a further fraction 

with the signs of a single factor reversed, then the combined design will provide 

estimates of the main effect of that factor and its two-factor interactions. This is 

called a single-factor fold over (Montgomery, 2005). 

 

 

 

2.2.4 Full fold-over 

 

While the single-factor fold-over strategy illustrated in section 2.2.3 is occasionally 

proves helpful, there is another variation of this technique that used frequently. In a 

full fold-over, we add to a resolution III fractional a second fraction in which the 

signs for all the factors are reversed. This type of fold-over breaks the alias links 

between all main effects and their two-factor interactions. That is, we may use the 

combined design to estimate all the main effects clear of any two-factor interactions. 

To illustrate, consider the 
472 

III  design in Table 2.2. Suppose that along with this 

principal fraction a second fractional design in which the signs in the column for all 

the factors are reversed, as shown in Table 2.4.  
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Table 2.4: Full Fold-over of the 
472 

III  Design with the Signs Reversed in the 

Column for all the factors in Table 2.2 

 

L'A L'B L'C L'D L'E L'F L'G 

-FG -EG -DG -EF -DF -DE -AF 

-CE -CF -BF -CG -BG -AG -BE 

-BD -AD -AE -AB -AC -BC -CD 

Exp A B C D E F G 

9 1 1 1 -1 -1 -1 1 

10 -1 1 1 1 1 -1 -1 

11 1 -1 1 1 -1 1 -1 

12 -1 -1 1 -1 1 1 1 

13 1 1 -1 -1 1 1 -1 

14 -1 1 -1 1 -1 1 1 

15 1 -1 -1 1 1 -1 1 

16 -1 -1 -1 -1 -1 -1 -1 

 

To separate the main effects and the two-factor interactions, a second fraction 

is run with all the signs reversed. This fold-over design is shown in Table 2.4. Notice 

that when we fold over a resolution III design in this manner, we (in effect) change 

the signs on the generators that have an odd number of letters. The effects estimated 

by this fraction are 
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 (2.3) 

By combining the effect estimates from this second fraction with the effect estimates 

from the original eight runs, we obtain the following estimates of the effects: 
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i ½(li + l’i) ½(li – l’i) 

A A BD + CE +FG 

B B  AD + CF +EG 

C C AE + BF + DG 

D D AB + CG + EF 

E E AC + BG + DF 

F F BC + AG + DE 

G G CD + BE + AF 

 

 

 

2.2.5 Advantages of Sequential Experimentation 

 

If an experimenter wishes to conduct a 2
4
 design involving 16 trials, it is 

almost always better to conduct a half-fraction containing 8 trials first, analyse the 

results and conduct the second half-fraction to complete the design if necessary. It 

may also note that: Firstly, the experimenter should randomise within each fraction. 

Secondly, if both fractions are run, these fractions will be randomised orthogonal 

blocks of the complete design. Thirdly, no information is lost except that those 

people who concerning the interaction which is actually confounded with the block 

contrast. Lastly, the design run as two randomised fractions eliminates block 

differences and can therefore give greater precision than the whole design.  

 

 

 

2.3 Bicycle Example 

 

A bicycle performance analyst is conducting an experiment to study the time takes to 

pedal up a hill and has built an apparatus in which several factors can be controlled 

during the test (Updated Spring 2005). The factors he initially regards as important 

are set (A), dynamo (B), handlebars (C), gear (D), raincoat (E), breakfast (F) and 

tires (G). Two levels of each factor are considered. He suspects that only a few of 

these seven factors are of major importance and that high-order interactions between 
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the factors can be neglected. On the basis of this assumption, the analyst decides to 

run a screening experiment to identify the most important factors and then to 

concentrate further study on those. To screen seven factors, he runs the treatment 

combinations from the 472 

III  design in Table 2.2 in random order which obtaining the 

times in minutes, as shown in Table 2.6.  

 

Table 2.5: Factors for study 

Control Description 
LeveL  

(-1) 
LeveL  

(1) 

A Set Up Down 

B Dynamo Off On 

C Handlebars Up Down 

D Gear Low Medium 

E Raincoat On Off 

F Breakfast Yes No 

G Tires Hard Soft 

 

 

 

Table 2.6: A 
472 

III  Design for the Experiment of Time Bicycle Takes 

 

ABCG LA LB LC LD LE LF LG 

 
BCF FG EG DG EF DF DE AF 

ACE CE CF BF CG BG AG BE 

ABD BD AD AE AB AC BC CD 

Exp I A B C D=AB E=AC F=BC G=ABC y 

1 1 -1 -1 -1 1 1 1 -1 69 

2 1 1 -1 -1 -1 -1 1 1 52 

3 1 -1 1 -1 -1 1 -1 1 60 

4 1 1 1 -1 1 -1 -1 -1 83 

5 1 -1 -1 1 1 -1 -1 1 71 

6 1 1 -1 1 -1 1 -1 -1 50 

7 1 -1 1 1 -1 -1 1 -1 59 

8 1 1 1 1 1 1 1 1 88 

 

 

 

2.3.1 First fraction design 

 

Seven main effects and their aliases may be estimated from these data. From 

Equation (2.1), we see that the effects and their aliases are 
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 (2.4) 

A contrast such as lA is obtained by multiplying a column of signs for factor A 

by the observation y and dividing by the number of observations for the sign, usually 

N/2 (for a 2-level factor) where N is the number of observations in y except lI where 

we divide by N since I is a column +. Also, we note that lI = y , the overall 

experimental average. 

For example, 

 lA = ¼ ( -69 + 52 – 60 + 83 – 71 + 50 – 59 + 88 ) = 3.5 

 

The largest three effects are lA, lB, and lD. The simplest interpretation of the 

data is that the main effects of A, B, and D are all significant. However, this 

interpretation is not unique, because one could also logically conclude that „A, B, and 

the AB interaction‟, or perhaps „B, D, and the BD interaction‟, or perhaps „A, D, and 

the AD interaction‟ are the true effects. A will be aliased with BD, B will be aliased 

with AD, and D will be aliased with AB, so the interactions cannot be separated from 

the main effects.  

 

 

 

2.3.2 Second fraction design 

 

To separate the main effects and the two-factor interactions, a second fraction 

is run with all the signs reversed. This fold-over design is shown in Table 2.7 along 

with the observed responses. Notice that when we fold over a resolution III design in 

this manner, we (in effect) change the signs on the generators that have an odd 

number of letters. The effects estimated by this fraction are 
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Table 2.7: Fold-over of the 
472 

III  Design in Table 2.6 

 ABCG L'A L'B L'C L'D L'E L'F L'G  

 -BCF -FG -EG -DG -EF -DF -DE -AF  

 -ACE -CE -CF -BF -CG -BG -AG -BE  

 -ABD -BD -AD -AE -AB -AC -BC -CD  

Exp I A B C D E F G y 

9 1 1 1 1 -1 -1 -1 1 63 

10 1 -1 1 1 1 1 -1 -1 82 

11 1 1 -1 1 1 -1 1 -1 73 

12 1 -1 -1 1 -1 1 1 1 53 

13 1 1 1 -1 -1 1 1 -1 64 

14 1 -1 1 -1 1 -1 1 1 84 

15 1 1 -1 -1 1 1 -1 1 72 

16 1 -1 -1 -1 -1 -1 -1 -1 45 

 

 

 

2.3.3 Linear Contrasts 

 

We now develop the idea of a linear contrast. For a pair of linear contrasts we can 

always take their sum or difference and obtain two further linear contrasts. Let us 

consider the linear contrast of A, which is lA and lA’: 

FGCEBDAl
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Therefore, the sum of the linear contrast is: 
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And the difference of the contrast is: 

  FGCEBDllor

FGCEBDll

AA

AA





'

'

2

1

)(2

 

 

Using a similar procedure for A, B, C, …, G. By combining the effect estimates from 

this second fraction with the effect estimates from the original eight runs, we obtain 

the following estimates of the effects: 

i ½(li + l’i) ½(li – l’i) 

A A = 2.75 BD + CE +FG = 0.75 

B B = 12.25 AD + CF +EG = -0.25 

C C = 1.25 AE + BF + DG = -0.25 

D D = 22 AB + CG + EF = 0.5 

E E = 1 AC + BG + DF = -0.5 

F F = 2 BC + AG + DE = -1 

G G = 2.25 CD + BE + AF = 0.25 

 

 The largest two effects are B and D. Furthermore, the third largest 

effect is BD + CE + FG, so it seems reasonable to attribute this to the BD interaction. 

The analyst used the two factors dynamo (B) and gear (D) in subsequent experiments 

with the other factors A, C, E, and F at standard settings and verified the results 

obtained here.  

 

 

 

2.3.4 Combined design 

 

Sequential experimentation is executed by combining the runs of two (or more) 

experiments to assemble a larger design that can estimate factor effects and 

interactions of interest.  
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Table 2.8: De-aliasing all main effect. 

                 FG EG DG EF DF DE CD BCF  

 ABCG               CE CF BF CG BG BC BE ACE  

Exp I A B C D E F G BD AD DG AB DF DE CD ABD  

1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 69 

2 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 52 

3 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 60 

4 1 1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 83 

5 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 71 

6 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 50 

7 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 59 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 88 

9 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 -1 63 

10 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 82 

11 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 73 

12 1 -1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 53 

13 1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 64 

14 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 -1 -1 84 

15 1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 72 

16 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 -1 45 

 

 

Table 2.9: Response Table 

TPM A B C D E F G BD AD DG AB DF DE CD ABD 

-1 65.38 60.63 66.13 55.75 66.25 65.75 65.63 66.38 66.88 66.88 66.5 67 67.25 66.63 67 

1 68.13 72.88 67.38 77.75 67.25 67.75 67.88 67.13 66.63 66.63 67 66.5 66.25 66.88 66.5 

Diff 2.75 12.25 1.25 22 1 2 2.25 0.75 0.25 0.25 0.5 0.5 1 0.25 0.5 

SSQ 30.25 600.3 6.25 1936 4 16 20.25 2.25 0.25 0.25 1 1 4 0.25 1 

Rank 3 2 6 1 7 5 4 9 12 12 10 10 7 12 10 

Opt 1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 1 -1 
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Table 2.10: Analysis of Variance 

Source Pool SSQ DOF VAR Ftest Ssq' Rho 

A 0 30.25 1 30.25 14.14 28.11 1.07 

B 0 600.25 1 600.25 280.64 598.11 22.80 

C 1 6.25 1 6.25 2.92     

D 0 1936 1 1936 905.14 1933.86 73.73 

E 1 4 1 4 1.87     

F 0 16 1 16 7.48 13.86 0.53 

G 0 20.25 1 20.25 9.47 18.11 0.69 

BD 1 2.25 1 2.25 1.05     

AD 1 0.25 1 0.25 0.12     

DG 1 0.25 1 0.25 0.12     

AB 1 1 1 1 0.47     

DF 1 1 1 1 0.47     

DE 1 4 1 4 1.87     

CD 1 0.25 1 0.25 0.12     

ABD 1 1           

Error               

Pooled   19.250 9 2.14 1 30.94 1.18 

St   2623 15 174.87   2623.00 100.00 

Sm   71289 1         

ST   73912 16         

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Step of “Design of Experiment” 

 

Several steps that are needed for design of experiment. The 20-Step Design of 

Experiments proposed by Belavendram (2007) is shown below. 

 

Table 3.1: Step of “Design of Experiment” 

Step 1. Name of Researcher 

Step 2. Objective 

Step 3. Problem Statement 

Step 4. Quality Characteristics 

Step 5. Current Level of Problem  

Step 6. Quality Loss Function 

Step 7. Cause-Effect Diagram 

Step 8. Parameter-Diagram 

Step 9. Factors for Study 

Step 10. Experimental design 

Step 11. Response Table 

Step 12. Analysis of variance 

Step 13. Factor Level Averages 

Step 14. Response Graphs 

Step 15. Optimum Factor Selection  

Step 16. Predicted Values 



 

Step 17. Confirmation Experiment 

Step 18. Full Scale Implementation 

Step 19. Gain Calculation 

Step 20. Conclusion 

 

 

 

3.1.1 Step 2: Objective 

 

The project objectives are to study the methodology for including more factors in an 

experiment to dealias factor interactions.  In other word, we want to apply the 

method of sequential experimentation. Since our project title is application of 

sequential experimentation in a paper gyrocopter system. So, the objective of 

conducting the experiment is to optimize the flight time of a paper gyrocopter falling 

from a height of 3 m from 2 second to 3 second.  

 

 

 

3.1.2 Step 3: Problem Statement 

 

There are several problems encountered in our experiment. First, the preliminary 

design of gyrocopter has a low flight time, which is about 2 second. Due to this 

problem, different design of gyrocopter has been fabricated to obtain longer flight 

duration. However, some of the designs are subjected to unbalance spinning motion 

which is hard to control. Lastly, the air flow at the outdoor environment is unsteady, 

which increases the tendency of the gyrocopter to hit the obstacles such as wall, table 

and chair.  

 

 

 

3.1.3 Step 4: Quality Characteristics 

 

What is to be measured? This is effectively the response. What is this and how is it to 

be measured? Quality characteristics can be described as the product features which 



 

can be used to measure the quality of a product that is directly associated to the 

customer satisfaction. Some of the quality characteristics of a product are the 

geometry, physical and functional properties. Quality characteristics emphasizes of 

the use of statistical process control (SPC), which applies statistical method to 

monitor and control a process so that the process is operating at its optimum 

condition to produce product with high quality. 

 

The key components of quality characteristics are Target Performance 

Measure (TPM) and Noise Performance Measure (NPM). The function of TPM is to 

adjust to target while NPM is an objective measure to reduce variability.  

 

Generally, quality characteristics are classified into five categories which are 

nominal the best, smaller the better, larger the better, signed target and yield. The 

first three types of quality characteristics are widely applied for the industrial 

processes due to their ease of understanding as well as for comparison purposes. The 

type of characteristics determines the objective target intended. Beside, the equation 

of Target Performance Measure (TPM) and Noise Performance Measure (NPM) are 

provided for each quality characteristic as shown in Table 3.2. So, much of the data 

analysis later in a design of experiments is determined by the type quality 

characteristic.  

 

Table 3.2: Signal-to-Noise Ratio 

Characteristic TPM NPM 

Nominal the best 𝑦  −10𝑙𝑜𝑔  
𝜎2

𝑦 
  

Smaller the better 𝑦  −10𝑙𝑜𝑔 𝜎2 + 𝑦 2  

Larger the better 𝑦  −10𝑙𝑜𝑔  
1

𝑦 2
 1 +

3𝜎2

𝑦 2
   

Signed target 𝑦  −10𝑙𝑜𝑔𝜎2 

Yield P −10𝑙𝑜𝑔  
1

𝑃
− 1  

Where 𝑦  is the mean and  is the standard deviation. 

 



 

In the experiment, the intended target is to capture the flight time response of 

the gyrocopter. The unit of measure used for the flight time is in seconds. Therefore, 

Larger-the-Better is used in this experiment since we wish to obtain a longer flight 

period of the gyrocopter to meet the requirements.  

 

 

 

3.1.4 Step 5: Current Level of Problem 

 

The current level of problem is an indication of the status quo. This should clearly 

show the current performance of the response being measured. In particular, the 

target, process mean and variation should be evident from a suitable graphical 

representation.  

 

 

 

3.1.5 Step 6: Quality Loss Function 

 

The quality loss function is often attributed to Taguchi although there is evidence 

that it may be used earlier without attribution. The quadratic loss function is an 

approach to quantifying the “average quality loss” based on its deviation from the 

target. This is often done on a “loss per piece” basis. Many statistics are not at ease 

with this method. If this is the case, the stakeholder should identify a suitable method 

of quantifying the loss. After all, the practical need for this loss function 

quantification is for a comparison of cost savings. Any other reasonable method may 

be used.  

 

 

 

3.1.6 Step 7: Cause-Effect Diagram 

 

The cause-effect diagram step allows us to brainstorm for factors affecting the 

response. It is not unusual that an optimization be done by an individual. Even in that 

case, the cause-effect diagram forces us to look for all likely causes that affect the 



 

response. It is commonly used during product design and quality defect prevention 

stages. 

 

 

Figure 3.1: The Cause and Effect Diagram 

 

 

According to our experiment, there are three major categories of factors 

which can affect the outcome or in this case, flight time of the gyrocopter. First of all, 

control factors usually consist of two or more levels and can be controlled by 

designers. Moreover, control factors contribute significant effect to the flight time of 

the gyrocopter. Meanwhile, the noise factors would cause variation in the results. 

Noise factors usually arise as a result of different measuring apparatus, people, 

environment and methods are used during the experiment. Lastly, signal factors are 

usually fixed throughout the entire experiment. For instance, the dropping height is 

fixed to 3 m in our experiment.  
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3.1.7 Step 8:  Parameter-Diagram 

 

After identified the likely causes, the next step is to build a Parameter Diagram. This 

diagram is essentially a short list of factors that can be classified according to its role 

in the experiment.  

 

 

Figure 3.2: Parameter Diagram 

 

 

Parameter diagram creates relationship between inputs and outputs of a 

system through mathematical model. Parameter diagram takes all the noise factors 

into consideration, fix the signal factors throughout the whole process and finally 

choose the appropriate control factors in order to achieve optimum outcome. Indeed, 

parameter diagram is usually used when we want to minimize the design sensitivity 

and variation in the outcomes. 

 

 

3.1.8 Step 9: Factors for Study 

 

Control factors are factors that are easy and inexpensive to control in the design of 

the product. Noise factors are factors that may affect the response of interest but 
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which are difficult to control when the product is being manufactured or being used 

by the customer (although they can be controllable for purposes of a test). These 

noise factors are often functions of environmental conditions, for example, humidity, 

properties of raw materials, temperature, etc. Signal factors change the overall effect 

of the response. They are often included for study in an experiment and no optimum 

condition is selectable. Instead, the signal value is set according to the user‟s 

condition.  

 

In this step therefore, the factor level settings (current and proposed levels) 

are specified for subsequent experimentation. By factor levels it is meant whether a 

factor is studied 2-levels, 3-levels, etc. Although more levels may appear better, 

since experimental trials increase by a power function, often 2-level factors are 

suitable for screening experiments and for most practical reasons 3-level factors are 

sufficient to detect curvature (Belavendram, 2007). 

 

 

 

Table 3.3: Factors for study 

Control Description Level  (-1) Level (1) Units 

A Paper type manila kad A4/80 gsm 

B Body width 2 3 cm 

C Body Length 6 10 cm 

D Wing Length 8 12 cm 

E Shoulder  2 4 cm 

F Wing width 2 4 cm 

G Clip 1 2 pcs 

 

Noise Description Level (-1) Level (1) 

P Thrower Gee Yih Khoon Ooi Lip Khun 

Q Location Outdoor Indoor 

R Time piece Mobile Phone Watch 

 

Signal Description Level 1 Units 

H Height of Throw 3 m 

 

 

 

 



 

3.1.9 Step 10: Experimental Design 

 

The Experimental Design step is where the experimental recipes are created. This 

forms the “table of factor settings” that allow us to construct the experimental trials. 

In most cases, a good design should include a direct product design consisting of a 

control factor array and noise factor array. Data collection then follows the factor 

settings. Data for experimental trials can be logically and easily entered into a two 

way array. 

 

 

 

3.1.10 Step 11: Response Table 

 

Once data is entered, a response table of values indicating the mean effects of the 

performance indicators, such as the Target Performance Measure (TPM) and Noise 

Performance Measures (NPM), are calculated. Response tables show some 

information regarding factor importance; however, they do not show the factor 

effects relative to the experimental error (Belavendram, 2007). 

 

 

 

3.1.11 Step 12: Analysis of Variance (ANOVA) 

 

The analysis of variance is where the significance of the factor effects is 

calculated relative to the experimental error. Pooling of factors should be done 

intuitively based on the factors that can be pooled. A dynamic approach would be 

ideal as users can see the effects real-time and make decision easily (Belavendram, 

2007).  

 

To perform the analysis of variance, some of the value we should get it from 

the data. Below is the formula using in analysis of variance.  
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Figure 3.3: ANOVA Formula Sheet 

where 

S  = SSQ 

ST  = total sum of squares 

Sm  = sum of squares of the mean 

Se  = error sum of square 

V  = degree of freedom, DOF 

vT  = total degree of freedom 

ve  = degree of freedom for error 

V  = variance (VAR) 

S’  = SSq‟ 

  = percentage of variance, Rho 

 

 

 

 

 



 

3.1.12 Step 13: Factor Level Averages 

 

Information from Steps 11 and 12 are combined to generate these tables 

which show the mean factor levels for the performance measures.  

 

 

 

3.1.13 Step 14: Response Graphs 

 

Data from the response tables are not very easily appreciated unless shown as 

a graphical display. The response graphs display factor effects very clearly. So that 

most of us will now begin to “feel” the processes we studied.  

 

 

 

3.1.14 Step 15: Optimum Factor Selection  

 

Once the analysis of variance is completed and unimportant factors pooled to error, 

the remaining factors can be considered important towards the response that is being 

studied.  

 

Given the response type in Step 4, optimum conditions can be routinely 

calculated. Likewise, since the current condition is known from step 9, it is also 

possible to include comparisons of the current condition. With a dynamic model, we 

can evaluate other optimum conditions as required and immediately compare its 

performance with the recommended optimum condition. Most commercial Design of 

Experiments software does not come anywhere close to this.  

 

 

 

3.1.15 Step 16: Predicted Values 

 

Even if we conducted full factorial experiments, it is necessary to calculate the 

response performance at the predicted value (PV), i.e. the optimum condition.  



 

 

 

 

3.1.16 Step 17: Confirmation Experiment 

 

Following the estimation of the predicted value, a confirmation experiment (CE) 

must be conducted with factor level settings as in the optimum condition. In any 

fractional experiment, there will be many interactions that are not included in the 

experimental model. If all the important factor effects including any interactions 

account for a large contribution (i.e. small experimental error), then the confirmation 

experiment (CE) must be approximately equal to the predicted value (PV). That is, if 

(all other effects)  0, then the model has not adequately captured (important factors) 

and the experiment is said to be not successful. So, need to go back to the drawing 

board again.  

 

 

 

3.1.17 Step 18: Full Scale Implementation 

 

If the Confirmation Experiments verifies the Predicted Value, then a control 

implementation can be done under operating conditions. A series of observations can 

then be done at the optimum condition. A comparison of “Before” and “After” 

graphs is drawn to provide a visual impression of the optimization.  

 

 

 

3.1.18 Step 19: Gain Calculation 

 

A quantitative gain calculation also needs to be performed, so that there is a one-to-

one objective or manager„s bottom-line comparison in monetary units. Even a 50% 

improvement may fail to pleased by the senior manager, if the value of this 

improvement is only, say RM10 per unit, compared to another improvement of only 

10% but with a cost gain of RM100 per unit. Thus, the manager has to know both the 



 

percentage gain as well as the monetary gain. Monetary gain is best displayed in a 

bar chart on a 10 – 100% bar height.  

 

 

 

3.1.19 Step 20: Conclusion 

 

Finally, reach to the conclusion. Here, we can summarize any implementation 

action, lesson learnt and cost savings achieved.  

 

 

 

3.2 Confidence Intervals 

 

Confidence intervals are used to establish the process average at the predicted 

condition. This prediction is usually a point estimate. To improve the situation I have 

to know for instance that 95% (confidence level) of the confirmation test results must 

be within ± x units (confidence interval) of the predicted mean. There are three cases 

where the confidence intervals have to calculate: 

1. for the factor level 

2. for the predicted mean 

3. for the confirmation experiment 

 

 

 

3.2.1 Confidence interval for the factor level 

 

The method of calculating the confidence interval for a factor level is use the formula:  

 

 

𝐶𝐼 =  𝐹𝛼 ,𝑣1,𝑣2 × 𝑉𝑒 ×  
1

𝑛
  

 



 

where 

Fα,v1,v2  = the tabulated F-ratio 

α  = risk. The confidence level = 1 - risk
 

v1  = the degree of freedom for the numerator associated with a mean and is   

always 1 for a confidence interval 

v2  = the degrees of freedom for the denominator associated with the degrees of 

freedom for the pooled error variance 

Ve  = is the pooled error variance 

n  = number of observations used to calculate the mean 

 

Hence, if the true mean is 𝜇𝐴1     , 

𝜇𝐴1    = 𝐴1    ± 𝐶𝐼 

𝐴1    − 𝐶𝐼 ≤ 𝜇𝐴1    ≤ 𝐴1    + 𝐶𝐼 

 

 

 

3.2.2 Confidence Interval for the predicted mean 

 

To calculate the confidence interval for the predicted optimum process mean, we use 

the following formula: 

𝐶𝐼 =  𝐹𝛼 ,𝑣1,𝑣2 × 𝑉𝑒 ×  
1

𝑛𝑒𝑓𝑓
  

Where neff is the effective number of observations, 

𝑛𝑒𝑓𝑓 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑠𝑢𝑚 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑚𝑒𝑎𝑛
 

 For the effective number of observation must include the degrees of freedom 

for the overall mean. Note that neff depends on the number of degrees of freedom 

used to calculate the predicted optimum process mean and does not depend on which 

factor levels is used. Thus, all factors and interaction terms used in calculating the 

predicted mean must be included in the degrees of freedom for calculating neff. The 

confidence interval for this optimum process mean therefore: 

µPredicted  CI ≤ µPredicted ≤ µpredicted + CI 

 



 

 

 

3.2.3 Confidence interval for the confirmation experiment 

 

The confirmation experiment is used to verify that the predicted mean for the factors 

and level chosen from an orthogonal array experiment is valid. If too few samples are 

taken, then it should be difficult to establish the validity of the predicted mean. 

Hence, we shall provide a formula to calculate the confidence intervals for a 

confirmation experiment as follow: 

𝐶𝐼 =  𝐹𝛼 ,𝑣1,𝑣2 × 𝑉𝑒 ×  
1

𝑛𝑒𝑓𝑓
+

1

𝑟
  

where r is the sample size (number of replicates) for the confirmation experiment. If 

the r approached a very large number (infinity), then 1/r approaches zero and the 

formula is reduced to that of the confidence interval around a predicted mean. As r 

become smaller, 1/r become larger and the confidence interval increase. Of course, r 

cannot be less than one. The confidence interval is therefore 

µconfirmation  CI ≤ µconfirmation ≤ µconfirmation + CI 

 

 

 

 

 

 



 

 

 

 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Current Level of Problem 

 

The response table below shows the flight time records of the preliminary gyrocopter 

which was dropped from height of 3 m. Based on the table, the mean time of the 

paper gyrocopter is 2.30 second. In this experiment, we want to increase the flight 

time of paper gyrocopter to 3 seconds or above by using sequential experiment.  

 

Table 4.1: Current Level of Problem 

Observation Response Spec 

1 2.25 3.00 

2 2.09 3.00 

3 2.38 3.00 

4 2.22 3.00 

5 2.22 3.00 

6 2.34 3.00 

7 2.59 3.00 

8 2.32 3.00 

9 2.41 3.00 

10 2.25 3.00 

11 2.22 3.00 

12 2.25 3.00 

13 2.22 3.00 

14 2.34 3.00 

15 2.38 3.00 

 

 

The response graph below depicts the flight time response of the preliminary 

gyrocopter falling based on 15 observations in our experiment. From the graph, it is 



 

apparent that there is no presence of outlier during the trials. With that, we intend to 

increase the current flight time from approximately 2 seconds to the specification of 

3 seconds or above as indicated by the red line in the graph.  

 

 

Figure 4.1: Current Level of Problem 

 

 

 

4.2 Quality Loss Function 

 

Assume that the loss for the specification of 3 seconds is $1. So the k coefficient is 9. 

The quality loss function can be established as follow: 

𝐿 𝑦 =
𝑘

𝑦2
 

∴ 𝐿(𝑦) =
9

𝑦2
 

 

 

 

 

 

 

 

 

 



 

Table 4.2: Quality Loss Function 

Spec, y Loss, L(y) 

1.0 9.00 

1.5 4.00 

2.0 2.25 

2.5 1.44 

3.0 1.00 

3.5 0.73 

4.0 0.56 

4.5 0.44 

5.0 0.36 

5.5 0.30 

6.0 0.25 

6.5 0.21 

 

 

 

Figure 4.2: Quality Loss Function 

 

 

 

 

 

 

 

4.3 First fraction design (Part 1) 

 

First fraction design is the initial orthogonal array which shown in table below.  

 



 

Table 4.3: First fraction design (Part 1) 

 

ABCG LA LB LC LD LE LF LG 
 

 

BCF FG EG DG EF DF DE AF 

-1
 

1
 

1
 

-1
 

P
 

ACE CE CF BF CG BG AG BE 

-1
 

1
 

-1
 

1
 

Q
 

ABD BD AD AE AB AC BC CD 

-1
 

-1
 

1
 

1
 

R
 

Exp I A B C D=AB E=AC F=BC G=ABC 1 2 3 4 TPM NPM 

1 1 -1 -1 -1 1 1 1 -1 2.02 2.50 2.03 2.13 2.170 6.591 

2 1 1 -1 -1 -1 -1 1 1 2.61 3.16 3.06 2.75 2.895 9.131 

3 1 -1 1 -1 -1 1 -1 1 1.79 1.83 2.16 1.72 1.875 5.321 

4 1 1 1 -1 1 -1 -1 -1 3.66 3.83 3.85 3.97 3.828 11.644 

5 1 -1 -1 1 1 -1 -1 1 1.93 2.16 2.09 1.94 2.030 6.109 

6 1 1 -1 1 -1 1 -1 -1 2.80 3.13 3.19 2.82 2.985 9.439 

7 1 -1 1 1 -1 -1 1 -1 1.70 2.33 2.19 2.75 2.243 6.554 

8 1 1 1 1 1 1 1 1 2.49 3.55 2.94 2.59 2.893 8.882 
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4.3.1 Target Performance Measures and Noise Performance Measures 

 

Taguchi has suggested two performance measures: 

1. Target Performance Measure (TPM) 

2. Noise Performance Measure (NPM) 

 

4.3.1.1 Target Performance Measure (TPM) 

 

The target performance measure is essentially a measure of the mean response. It is 

used to identify control factor that largely affect the mean (and not the variability). 

TPM is an objective measure to adjust to target. It is used to evaluate performance 

measurement data by averaging the four reading for each trial. This is essential to 

identify which factors can mostly affect the mean.  

 

For instance, TPM calculates the means of Experiment 1‟s readings by dividing the 

sum of readings by four, that is, (2.02+2.50+2.03+2.13)/4 = 2.170. This procedure is 

repeated for the succeeding trials. A detailed method of analysis is discussed in 

Belavendram (1995). 

 

 

 

4.3.1.2 Noise Performance Measure (NPM) 

 

For this final year project, to obtain a longer flight period of the gyrocopter, I used 

larger-the-better characteristics to analyze the noise performance measures. 

Therefore, 

𝑁𝑃𝑀 = −10𝑙𝑜𝑔  
1

𝑦 2
 1 +

3𝜎2

𝑦 2
   

 

The noise performance measure uses the signal-to-noise (SN) ratio to 

measure the sensitivity of the quality investigated to those uncontrollable factors 

(error) in the experiment. The high value of SN ratio is desirable because greater SN 

ratio will result in smaller product variance around the target value.  
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4.3.2 Response Table (Part 1) 

 

A response table is a method which displays the responses from the experiment 

based on various combinations of levels and factors.  

 

 

 

4.3.2.1 Response Table for TPM (Part 1) 

 

The response table for TPM (Part 1) is shown in table below. 

 

Table 4.4: Response Table for TPM (Part 1) 

TPM A B C D E F G 

-1 2.079 2.520 2.692 2.499 2.749 2.679 2.806 

1 3.150 2.709 2.538 2.730 2.481 2.550 2.423 

Diff 1.071 0.189 0.154 0.231 0.268 0.129 0.383 

SSQ 9.170 0.287 0.191 0.426 0.575 0.134 1.174 

Rank 1 5 6 4 3 7 2 

Opt 1 1 -1 1 -1 -1 -1 

 

 

The sample calculation for the response table for TPM is shown below.  

 

The average flight time of control factor A in Level -1, 2.079 can be 

calculated by taking the average of TPM based on the trial tested under Level -1 of 

factor A, that is, (2.170+1.875+2.030+2.243)/4 = 2.079. This step is repeated for the 

subsequent control factors under both levels to calculate the average flight duration 

in Level -1 and Level 1, on TPM.  

 

Next, the difference between the level -1 and level 1, denoted as “Diff”, is 

also introduced in the response table. Also, the determination of Sum of Squares, 

SSQ for the response table requires the values of Sm and 
2y . For that, 

2y  can be 

defined as the average of TPM for the eight trials or experiments. For instance, SSQ 
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for control factor A can be obtained by applying the equation of  𝑆𝑆𝑄 =

 𝑛𝐴−1𝑦 𝐴−1
2  +  𝑛𝐴1𝑦 𝐴1

2  − 𝑆𝑚 , where 𝑆𝑚 = 𝑛𝑦 2, n=32. So, SSQ for control factor A 

is (16×2.079
2
)+(16×3.150

2
)(32×2.615

2
) = 9.170. The same way applies to the 

following control factors to measure their respective SSQ values.  

 

In addition, response table also exhibits the rank of the factors. In this case, 

the rank of factors is determined based on the different values between Level -1 and 

Level 1, which signifies the larger the difference, the more important the factor is.  

 

From Table 4.4, it is observed that factor A, factor G and factor E play a vital 

role in influencing the flight time of gyrocopter. In contrast, factor F and factor C are 

the most insignificant factors which are unlikely to alter the flight duration in a great 

extent.  

 

Moreover, the optimum factor level, denoted as “Opt” in the response table, 

is established based on the higher TPM values of Level -1 and Level 1. In this case, 

we intend to obtain a higher flight time of gyrocopter on the TPM, which means 

“Larger the Better”.  

 

 

 

4.3.2.2 Response Table for NPM (Part 1) 

 

The response table for NPM (Part 1) is shown in table below.  

 

Table 4.5: Response Table for NPM (Part 1) 

NPM A B C D E F G 

-1 6.144 7.817 8.172 7.611 8.360 8.128 8.557 

1 9.774 8.100 7.746 8.307 7.558 7.789 7.361 

Diff 3.630 0.283 0.425 0.695 0.801 0.339 1.196 

SSQ 26.354 0.160 0.362 0.967 1.285 0.229 2.861 

Rank 1 7 5 4 3 6 2 

Opt 1 1 -1 1 -1 -1 -1 

 

 



44 

The concept and the calculation for the response table for NPM are quite 

similar with the response table for TPM. The only difference between both responses 

tables is the n for NPM is no longer is 32. The n for Table 4.5 is 8. So, SSQ for 

control factor A is (4×6.144
2
)+(4×9.774

2
)(8×7.959

2
) = 26.354. The same way 

applies to the following control factors to measure their respective SSQ values.  

 

 

 

4.3.3 Analysis of Variance (ANOVA) 

 

The analysis of variance is used to find out the significant factor. There are two types 

of analysis of variance that I did: 

1. Analysis of Variance for TPM 

2. Analysis of Variance for NPM 

 

4.3.3.1 Analysis of Variance for TPM (Part 1) 

 

The ANOVA for TPM (Part 1) is shown in table below. 

 

Table 4.6: Analysis of Variance for TPM (Part 1) 

Source Pool SSQ DOF VAR Ftest  Ssq' Rho 

A 0 9.170 1 9.170 86.564 9.064 65.277 

B 1 0.287 1 0.287 2.708     

C 1 0.191 1 0.191 1.800     

D 1 0.426 1 0.426 4.017     

E 0 0.575 1 0.575 5.429 0.469 3.379 

F 1 0.134 1 0.134 1.264     

G 0 1.174 1 1.174 11.085 1.068 7.694 

Error 1 1.929 24 0.080 0.759     

Pooled   2.966 28 0.106 1.000 3.284 23.650 

St   13.885 31 0.448   13.885 100.000 

Sm   218.771 1         

ST   232.656 32         

Pool 3 Factors are included in model. 

 

 

In the analysis of variance, the insignificance factors had been pool, the 

pooling was started by pooling the factor with the smallest sum of square. From the 
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Table 4.6, there are three significant factor which is factor A, E and G, which have 

higher value of SSQ among other factors. Hence, four insignificant factors are 

pooled. 

 

The sample calculation for the ANOVA for TPM (Part 1) is shown below. 

 

SSQ 

1. The values of SSQ for seven factors can be getting from the Response Table. 

2. Se = 13.885  (9.170+0.287+0.191+0.426+0.575+0.134+1.174) = 1.929  

3. SSQPooled = 0+(1*0.287)+(1*0.191)+(1*0.426)+0+(1*0.134)+0+(1*1.929) 

=2.966 

 

DOF 

1. DOFST = 8*4 =32 

2. DOFSm = 1 

3. DOFSt = DOFST  DOFSm = 32 – 1 = 31 

 

Variance 

1. VAR = SSQ/DOF Eg: VA = SA/vA =9.170/1 = 9.170 

2. Ve =1.929/24 = 0.080 

3. Vpool = 2.966/28 = 0.106 

 

Ftest 

Ftest = Vari / Varpool  Eg: Ftest(A) = 9.170/0.106 = 86.564 

 

SSq‟ 

1. SSq‟ is calculated based on the three significant factors which are factor A, E 

and G. 

2. Samples of calculation are shown in below: 

 SSq‟A = SSQ  DOF*Vpool = 9.170  (1*0.106) = 9.064 

 SSq‟pool = SSq‟St  (SSq‟A + SSq‟E + SSq‟G)  

SSq‟pool = 13.885  (9.064 + 0.469 + 1.068) = 3.284  

 



46 

 

Rho 

Rho = (SSq‟ / SSq‟St)*100% 

RhoA = (9.064 / 13.885)*100% = 65.277% 

 

From the calculated Rho, factor A has the highest percentage (65.277%), followed by 

factor G (7.694%) and E (3.379%). These three factors are factors that can affect the 

flight time significantly. 

 

 

 

4.3.3.2 Analysis of Variance for NPM (Part 1) 

 

The ANOVA for NPM (Part 1) is shown in table below. 

 

Table 4.7: Analysis of Variance for NPM (Part 1) 

Source Pool SSQ DOF VAR Ftest  Ssq' Rho 

A 0 26.354 1 26.354 61.338 25.925 80.464 

B 1 0.160 1 0.160 0.373     

C 1 0.362 1 0.362 0.842     

D 1 0.967 1 0.967 2.251     

E 0 1.285 1 1.285 2.990 0.855 2.654 

F 1 0.229 1 0.229 0.534     

G 0 2.861 1 2.861 6.659 2.432 7.547 

Error               

Pooled   1.719 4 0.430 1.000 3.008 9.335 

St   32.219 7 4.603   32.219 100.000 

Sm   506.745 1         

ST   538.963 8         

Pool 3 Factors are included in model. 

 

 

In the analysis of variance, the insignificance factors had been pool, the 

pooling was started by pooling the factor with the smallest sum of square. From the 

Table 4.7, there are three significant factor which is factor A, E and G, which have 

higher value of SSQ among other factors. Hence, four insignificant factors are 

pooled. In the ANOVA for NPM, there is no error because of there is no degree of 

freedom for error. ve = vt  (vA+vB+vC+vD+vE+vF+vG) = 7(1+1+1+1+1+1+1) = 0 
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The sample calculation for the ANOVA for NPM (Part 1) is shown below. 

 

SSQ 

1. The values of SSQ for seven factors can be getting from the Response Table. 

2. SSQPooled = 0+(1*0.160)+(1*0.362)+(1*0.967)+0+(1*0.229)+0  = 1.719 

 

DOF 

1. DOFST = 8 

2. DOFSm = 1 

3. DOFSt = DOFST  DOFSm = 8 – 1 = 7 

 

Variance 

1. VAR = SSQ/DOF Eg: VA = SA/vA =26.354/1 = 26.354 

2. Vpool = 1.719/4 = 0.430 

 

Ftest 

Ftest = Vari / Varpool  Eg: Ftest(A) = 26.354/0.430 = 61.338 

 

SSq‟ 

1. SSq‟ is calculated based on the three significant factors which are factor A, E 

and G. 

2. Samples of calculation are shown in below: 

 SSq‟A = SSQ  DOF*Vpool = 26.354  (1*0.430) = 25.925 

 SSq‟pool = SSq‟St  (SSq‟A + SSq‟E + SSq‟G)  

SSq‟pool = 32.219  (25.925 + 0.855 + 2.432) = 3.008  

 

Rho 

Rho = (SSq‟ / SSq‟St)*100% 

RhoA = (25.925 / 32.219)*100% = 80.464% 
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From the calculated Rho, factor A has the highest percentage (80.464%), 

followed by factor G (7.547%) and E (2.654%). These three factors are factors that 

can affect the flight time significantly.  

 

 

 

4.3.4 Confidence Interval for factor levels (Part 1) 

 

The formula below is provided to calculate the confidence interval for factor levels: 

n
VeFCI vv

1
2,1,    

Where, 

 F  = tabulated F-ratio 

 α  = risk 

 v1  = DOF associated with a mean 

 v2  = DOF for the pooled error variance 

 Ve  = pooled error variance 

 n  = number of observations 

 

For TPM, 

 F0.05,1,28 = 4.196 

 117857.0
32

1
106.0196.4 TPMCI  

 

For NPM, 

 F0.05,1,4 = 7.71 

 643436.0
8

1
430.071.7 NPMCI  

 

The risk taken is assumed at 0.05. DOF of mean and pooled error variance, 

and pooled error variance are obtained in ANOVA in Table 4.6 and Table 4.7.  
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4.3.5 Factor Level Averages (Part 1) 

 

After obtained the values of confidence interval for factor levels, then the factor level 

averages for TPM and NPM has been shown in table below. 

 

Table 4.8: Factor Level Averages (Part 1) 

TPM Mean Mean+CI Mean-CI 
 

NPM Mean Mean+CI Mean-CI 

A1 2.079 2.197 1.962 
 

A1 6.144 6.787 5.500 

A2 3.150 3.268 3.032 
 

A2 9.774 10.417 9.130 

        
 

        

B1 2.520 2.638 2.402 
 

B1 7.817 8.461 7.174 

B2 2.709 2.827 2.592 
 

B2 8.100 8.744 7.457 

        
 

        

C1 2.692 2.810 2.574 
 

C1 8.172 8.815 7.528 

C2 2.538 2.655 2.420 
 

C2 7.746 8.390 7.103 

        
 

        

D1 2.499 2.617 2.382 
 

D1 7.611 8.255 6.968 

D2 2.730 2.848 2.612 
 

D2 8.307 8.950 7.663 

        
 

        

E1 2.749 2.867 2.631 
 

E1 8.360 9.003 7.716 

E2 2.481 2.598 2.363 
 

E2 7.558 8.202 6.915 

        
 

        

F1 2.679 2.797 2.562 
 

F1 8.128 8.772 7.485 

F2 2.550 2.668 2.432 
 

F2 7.789 8.433 7.146 

        
 

        

G1 2.806 2.924 2.688 
 

G1 8.557 9.200 7.913 

G2 2.423 2.541 2.305 
 

G2 7.361 8.004 6.717 

 

 

 

4.3.6 Response Graphs (Part 1) 

 

After the table of factor level average is generate, then the response graphs has been 

plotted in figure below. 

 



50 

 

Figure 4.3: Response Graph for TPM (Part 1) 

 

 

Figure 4.4: Response Graph for NPM (Part 1) 

 

 

From the response graph above, we can observe that there are differences between 

level 1 and level 2 for various control factors. The aim of this experiment is to 

enhance the gyrocopter‟s flight time or we want the flight time to be “the larger, the 

better” Therefore, levels with higher value of TPM and NPM are desirable and 
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chosen for as the level for each control factor. For instance, level 1 is chosen for 

control factors like C, E, F and G while level 2 is selected for control factors such as 

A, B and D.  

 

We can observe that the control factor A and G show the largest difference 

between level 1 and 2. The differences in level 1 and 2 for control factors B, C, D, E 

and F are moderate. This indicates that not all the control factors are critical in 

influencing the flight time of gyrocopter.  

 

 

 

4.4 Second fraction design (Part 2) 

 

A second fraction design is run with the signs for only one of the factors reversed. 

For this final year project, a second fractional design with the signs reversed in the 

column for factor D is run. This is called as a single-factor fold–over.  
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Table 4.9: Second fraction design (Part 2) 

 

ABCG L'A L'B L'C L'D L'E L'F L'G 
 

 

BCF FG EG -DG -EF -DF -DE AF 

-1
 

1
 

1
 

-1
 

P
 

ACE CE CF BF -CG BG AG BE 

-1
 

1
 

-1
 

1
 

Q
 

-ABD -BD -AD AE -AB AC BC -CD 

-1
 

-1
 

1
 

1
 

R
 

Exp I A B C D=-AB E=AC F=BC G=ABC 1 2 3 4 TPM NPM 

9 1 -1 -1 -1 -1 1 1 -1 2.19 2.29 2.1 2.03 2.153 6.623 

10 1 1 -1 -1 1 -1 1 1 2.9 4.08 3.47 3.47 3.480 10.589 

11 1 -1 1 -1 1 1 -1 1 1.85 2.21 2.21 1.75 2.005 5.859 

12 1 1 1 -1 -1 -1 -1 -1 3.3 3.32 3.72 3.22 3.390 10.547 

13 1 -1 -1 1 -1 -1 -1 1 1.44 2.4 2.34 2 2.045 5.649 

14 1 1 -1 1 1 1 -1 -1 2.08 2.83 2.57 1.97 2.363 7.098 

15 1 -1 1 1 1 -1 1 -1 2.48 2.49 2.22 2.06 2.313 7.176 

16 1 1 1 1 -1 1 1 1 2.4 2.81 2.47 2.44 2.530 7.990 
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4.4.1 Response Table (Part 2) 

 

The response table for TPM and NPM is shown in table below. 

 

Table 4.10: Response Table for TPM (Part 2) 

TPM A B C D E F G 

-1 2.129 2.510 2.757 2.529 2.807 2.451 2.554 

1 2.941 2.559 2.313 2.540 2.263 2.619 2.515 

Diff 0.812 0.049 0.444 0.011 0.544 0.168 0.039 

SSQ 5.273 0.020 1.580 0.001 2.371 0.226 0.012 

Rank 1 5 3 7 2 4 6 

Opt 1 1 -1 1 -1 1 -1 

 

 

Table 4.11: Response Table for NPM (Part 2) 

NPM A B C D E F G 

-1 6.327 7.490 8.405 7.702 8.490 7.288 7.861 

1 9.056 7.893 6.978 7.680 6.893 8.095 7.522 

Diff 2.729 0.403 1.426 0.022 1.597 0.806 0.339 

SSQ 14.899 0.326 4.069 0.001 5.104 1.300 0.230 

Rank 1 5 3 7 2 4 6 

Opt 1 1 -1 -1 -1 1 -1 

 

 

The calculation method for the response table can be referring back to 

Chapter 4.3.2 Response Table (Part 1).   

 

From the response table for TPM and NPM, it is observed that factor A, 

factor E and factor C play a vital role in influencing the flight time of gyrocopter. In 

contrast, factor G and factor D are the most insignificant factors which are unlikely 

to alter the flight duration in a great extent. Apart from that, the optimum level show 

in both response tables for control factor D is also different. The optimum level for 

control factor D in the response table for TPM is level 1, while the optimum level for 

control factor D in the response table for NPM is level -1. The difference in level for 

control factor D inside both the response table may be due to the signs reversed in 

the column for factor D in second fraction design. Since control factor D is one of the 

most insignificant factors, hence we not need to worry about it.  
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4.4.2 Analysis of Variance (Part 2) 

 

The ANOVA for TPM and NPM is shown in table below. 

 

Table 4.12: Analysis of Variance for TPM (Part 2) 

Source Pool SSQ DOF VAR Ftest  Ssq' Rho 

A 0 5.273 1 5.273 56.077 5.179 43.681 

B 1 0.020 1 0.020 0.207     

C 0 1.580 1 1.580 16.800 1.486 12.531 

D 1 0.001 1 0.001 0.010     

E 0 2.371 1 2.371 25.212 2.277 19.202 

F 1 0.226 1 0.226 2.405     

G 1 0.012 1 0.012 0.132     

Error 1 2.374 24 0.099 1.052     

Pooled   2.633 28 0.094 1.000 2.915 24.586 

St   11.857 31 0.382   11.857 100.000 

Sm   205.589 1         

ST   217.445 32         

Pool 3 Factors are included in model. 

 

 

Table 4.13: Analysis of Variance for NPM (Part 2) 

Source Pool SSQ DOF VAR Ftest  Ssq' Rho 

A 0 14.899 1 14.899 32.095 14.434 55.671 

B 1 0.326 1 0.326 0.701     

C 0 4.069 1 4.069 8.766 3.605 13.903 

D 1 0.001 1 0.001 0.002     

E 0 5.104 1 5.104 10.994 4.639 17.893 

F 1 1.300 1 1.300 2.800     

G 1 0.230 1 0.230 0.496     

Error               

Pooled   1.857 4 0.464 1.000 3.249 12.533 

St   25.928 7 3.704   25.928 100.000 

Sm   473.269 1         

ST   499.197 8         

Pool 3 Factors are included in model. 

 

 

In the analysis of variance, the insignificance factors had been pool, the 

pooling was started by pooling the factor with the smallest sum of square. From the 

table above, there are three significant factors which is factor A, C and E, which have 
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higher value of SSQ among other factors. Hence, four insignificant factors are 

pooled. 

 

The calculation for the ANOVA can be referring back to the sample 

calculation for the Chapter 4.3.3 Analysis of Variance (ANOVA).  

 

 

 

4.4.3 Confidence Interval for factor levels (Part 2) 

 

The formula below is provided to calculate the confidence interval for factor levels: 

n
VeFCI vv

1
2,1,    

Where, 

 F  = tabulated F-ratio 

 α  = risk 

 v1  = DOF associated with a mean 

 v2  = DOF for the pooled error variance 

 Ve  = pooled error variance 

 n  = number of observations 

 

For TPM, 

 F0.05,1,28 = 4.196 

 111041.0
32

1
094.0196.4 TPMCI  

 

For NPM, 

 F0.05,1,4 = 7.71 

 668807.0
8

1
464.071.7 NPMCI  

 

The risk taken is assumed at 0.05. DOF of mean and pooled error variance, 

and pooled error variance are obtained in ANOVA in Table 4.12 and Table 4.13.  
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4.4.4 Factor Level Averages (Part 2) 

 

After obtained the values of confidence interval for factor levels, then the factor level 

averages for TPM and NPM has been shown in table below. 

 

Table 4.14: Factor Level Averages (Part 2) 

TPM Mean Mean+CI Mean-CI 
 

NPM Mean Mean+CI Mean-CI 

A1 2.129 2.240 2.018 
 

A1 6.327 6.996 5.658 

A2 2.941 3.052 2.830 
 

A2 9.056 9.725 8.387 

        
 

        

B1 2.510 2.621 2.399 
 

B1 7.490 8.159 6.821 

B2 2.559 2.670 2.448 
 

B2 7.893 8.562 7.224 

        
 

        

C1 2.757 2.868 2.646 
 

C1 8.405 9.073 7.736 

C2 2.313 2.424 2.201 
 

C2 6.978 7.647 6.309 

        
 

        

D1 2.529 2.640 2.418 
 

D1 7.702 8.371 7.034 

D2 2.540 2.651 2.429 
 

D2 7.680 8.349 7.012 

        
 

        

E1 2.807 2.918 2.696 
 

E1 8.490 9.159 7.821 

E2 2.263 2.374 2.151 
 

E2 6.893 7.562 6.224 

        
 

        

F1 2.451 2.562 2.340 
 

F1 7.288 7.957 6.620 

F2 2.619 2.730 2.508 
 

F2 8.095 8.763 7.426 

        
 

        

G1 2.554 2.665 2.443 
 

G1 7.861 8.530 7.192 

G2 2.515 2.626 2.404 
 

G2 7.522 8.191 6.853 

 

 

 

4.4.5 Response Graphs (Part 2) 

 

After the table of factor level average is generate, then the response graphs has been 

plotted in figure below.  
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Figure 4.5: Response Graph for TPM (Part 2) 

 

 

Figure 4.6: Response Graph for NPM (Part 2) 

 

 

From the response graph above, we can observe that there are differences between 

level 1 and level 2 for various control factors. The aim of this experiment is to 

enhance the gyrocopter‟s flight time or we want the flight time to be “the larger, the 

better” Therefore, levels with higher value of TPM and NPM are desirable and 
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chosen for as the level for each control factor. For instance, level 1 is chosen for 

control factors like C, E and G while level 2 is selected for control factors such as A, 

B and F.  

 

We can observe that the difference in level 1 and 2 for control factor D is 

considerably small while control factor A, C and E show the largest difference 

between level 1 and 2. The differences in level 1 and 2 for control factors B, D, F and 

G are moderate. This indicates that not all the control factors are critical in 

influencing the flight time of gyrocopter.  

 

 

 

4.5 Combined design (Part 3 = Part 1 + Part 2) 

 

Sequential experimentation is executed by combining the runs of two (or more) 

experiments to assemble a larger design that can estimate factor effects and 

interactions of interest. 
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Table 4.15: Combined design (Part 3 = Part 1 + Part 2) 

  

ABCG                               

-1
 

1
 

1
 

-1
 

P
 

  

BCF FG EG DG   DF DE CD       EF         

-1
 

1
 

-1
 

1
 

Q
 

ACE CE CF BF   BG BC BE       CG         

-1
 

-1
 

1
 

1
 

R
 

Exp I A B C D E F G BD AD DG AB DF DE CD ABD 1 2 3 4 TPM NPM 

1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 2.02 2.5 2.03 2.13 2.170 6.591 

2 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 2.61 3.16 3.06 2.75 2.895 9.131 

3 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1.79 1.83 2.16 1.72 1.875 5.321 

4 1 1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 3.66 3.83 3.85 3.97 3.828 11.644 

5 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1.93 2.16 2.09 1.94 2.030 6.109 

6 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 2.8 3.13 3.19 2.82 2.985 9.439 

7 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1.7 2.33 2.19 2.75 2.243 6.554 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2.49 3.55 2.94 2.59 2.893 8.882 

9 1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1 -1 2.19 2.29 2.1 2.03 2.153 6.623 

10 1 1 -1 -1 1 -1 1 1 -1 1 1 -1 1 -1 -1 -1 2.9 4.08 3.47 3.47 3.480 10.589 

11 1 -1 1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1.85 2.21 2.21 1.75 2.005 5.859 

12 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 3.3 3.32 3.72 3.22 3.390 10.547 

13 1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 -1 -1 1.44 2.4 2.34 2 2.045 5.649 

14 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 2.08 2.83 2.57 1.97 2.363 7.098 

15 1 -1 1 1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 -1 2.48 2.49 2.22 2.06 2.313 7.176 

16 1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 2.4 2.81 2.47 2.44 2.530 7.990 
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4.5.1 Response Table (Part 3) 

 

The response table for TPM and NPM is shown in table below. 

 

Table 4.16: Response Table for TPM (Part 3) 

TPM A B C D E F G BD AD DG AB DF DE CD ABD 

-1 2.104 2.515 2.724 2.514 2.778 2.565 2.680 2.510 2.540 2.502 2.520 2.506 2.649 2.661 2.535 

1 3.045 2.634 2.425 2.635 2.372 2.584 2.469 2.639 2.610 2.647 2.630 2.644 2.500 2.489 2.615 

Diff 0.941 0.119 0.299 0.121 0.406 0.019 0.211 0.129 0.070 0.145 0.110 0.138 0.149 0.172 0.080 

SSQ 14.175 0.228 1.434 0.233 2.641 0.006 0.714 0.268 0.078 0.336 0.194 0.305 0.354 0.473 0.102 

Rank 1 11 3 10 2 15 4 9 14 7 12 8 6 5 13 

Opt 1 1 -1 1 -1 1 -1 1 1 1 1 1 -1 -1 1 

 

 

Table 4.17: Response Table for NPM (Part 3) 

NPM A B C D E F G BD AD DG AB DF DE CD ABD 

-1 6.235 7.654 8.288 7.657 8.425 7.708 8.209 7.600 7.855 7.575 7.646 7.626 8.111 8.039 7.691 

1 9.415 7.997 7.362 7.993 7.225 7.942 7.441 8.050 7.795 8.075 8.005 8.024 7.539 7.611 7.959 

Diff 3.180 0.343 0.926 0.337 1.199 0.234 0.768 0.450 0.060 0.501 0.359 0.398 0.572 0.428 0.267 

SSQ 40.442 0.471 3.429 0.453 5.755 0.219 2.358 0.811 0.015 1.002 0.515 0.634 1.311 0.734 0.286 

Rank 1 11 3 12 2 14 4 7 15 6 10 9 5 8 13 

Opt 1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 -1 1 
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The calculation method for the response table can be referring back to 

Chapter 4.3.2 Response Table (Part 1).    

 

 

 

4.5.2 Analysis of Variance (Part 3) 

 

The ANOVA for TPM and NPM is shown in table below. 

 

Table 4.18: Analysis of Variance for TPM (Part 3) 

Source Pool SSQ DOF VAR Ftest Ssq' Rho 

A 0 14.175 1 14.175 111.990 14.049 54.359 

B 1 0.228 1 0.228 1.801     

C 0 1.434 1 1.434 11.329 1.307 5.059 

D 1 0.233 1 0.233 1.839     

E 0 2.641 1 2.641 20.862 2.514 9.728 

F 1 0.006 1 0.006 0.047     

G 1 0.714 1 0.714 5.641     

BD 1 0.268 1 0.268 2.116     

AD 1 0.078 1 0.078 0.619     

DG 1 0.336 1 0.336 2.658     

AB 1 0.194 1 0.194 1.530     

DF 1 0.305 1 0.305 2.412     

DE 1 0.354 1 0.354 2.797     

CD 1 0.473 1 0.473 3.734     

ABD 1 0.102 1 0.102 0.809     

Error 1 4.303 48 0.090 0.708     

Pooled   7.595 60 0.127 1.000 7.974 30.855 

St   25.844 63 0.410   25.844 100.000 

Sm   424.257 1         

ST   450.101 64         

Pool 3 Factors are included in model. 
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Table 4.19: Analysis of Variance for NPM (Part 3) 

Source Pool SSQ DOF VAR Ftest Ssq' Rho 

A 0 40.442 1 40.442 55.101 39.708 67.954 

B 1 0.471 1 0.471 0.642     

C 0 3.429 1 3.429 4.672 2.695 4.612 

D 1 0.453 1 0.453 0.618     

E 0 5.755 1 5.755 7.841 5.021 8.593 

F 1 0.219 1 0.219 0.298     

G 1 2.358 1 2.358 3.212     

BD 1 0.811 1 0.811 1.105     

AD 1 0.015 1 0.015 0.020     

DG 1 1.002 1 1.002 1.365     

AB 1 0.515 1 0.515 0.701     

DF 1 0.634 1 0.634 0.863     

DE 1 1.311 1 1.311 1.786     

CD 1 0.734 1 0.734 1.000     

ABD 1 0.286 1 0.286 0.390     

Error               

Pooled   8.808 12 0.734 1.000 11.009 18.841 

St   58.433 15 3.896   58.433 100.000 

Sm   979.728 1         

ST   1038.160 16         

Pool 3 Factors are included in model. 

 

 

In the analysis of variance, the insignificance factors had been pool, the 

pooling was started by pooling the factor with the smallest sum of square. From the 

table above, there are three significant factors which is factor A, C and E, which have 

higher value of SSQ among other factors. Hence, four insignificant factors and all the 

two-factor interactions are pooled. 

 

The calculation for the ANOVA can be referring back to the sample 

calculation for the Chapter 4.3.3 Analysis of Variance (ANOVA).  
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4.5.3 Significant data 

 

The significant data for TPM and NPM taken from ANOVA is shown in figure 

below.  

 

 

Figure 4.7: Significance Data for TPM show by SSQ 

 

 

 

Figure 4.8: Significance Data for NPM show by SSQ 
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Figure 4.9: Significance Data for TPM show by percentage of Rho 

 

 

 

Figure 4.10: Significance Data for NPM show by percentage of Rho 

 

 

The figure (bar chart and pie chart) indicates that we only need to consider 

three significant data that own higher percentage of Rho, which are factor A, factor C 

and factor E. Nevertheless, other factors and all the two-factor interactions are not 

significant factors, which do not affect much on the flight time. 
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4.5.4 Confidence Interval for factor levels (Part 3) 

 

The formula below is provided to calculate the confidence interval for factor levels: 

n
VeFCI vv

1
2,1,    

Where, 

 F  = tabulated F-ratio 

 α  = risk 

 v1  = DOF associated with a mean 

 v2  = DOF for the pooled error variance 

 Ve  = pooled error variance 

 n  = number of observations 

 

For TPM, 

 F0.05,1,60 = 4 

 088957.0
64

1
127.04 TPMCI  

 

For NPM, 

 F0.05,1,12 = 4.75 

 466655.0
16

1
734.075.4 NPMCI  

 

The risk taken is assumed at 0.05. DOF of mean and pooled error variance, 

and pooled error variance are obtained in ANOVA in Table 4.18 and Table 4.19.  

 

 

4.5.5 Factor Level Averages (Part 3) 

 

After obtained the values of confidence interval for factor levels, then the factor level 

averages for TPM and NPM has been shown in table below. 
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Table 4.20: Factor Level Averages (Part 3) 

TPM Mean Mean+CI Mean-CI 

  

NPM Mean Mean+CI Mean-CI 

A1 2.104 2.193 2.015 A1 6.235 6.702 5.769 

A2 3.045 3.134 2.956 A2 9.415 9.882 8.948 

                

B1 2.515 2.604 2.426 B1 7.654 8.120 7.187 

B2 2.634 2.723 2.545 B2 7.997 8.463 7.530 

                

C1 2.724 2.813 2.635 C1 8.288 8.755 7.821 

C2 2.425 2.514 2.336 C2 7.362 7.829 6.896 

                

D1 2.514 2.603 2.425 D1 7.657 8.123 7.190 

D2 2.635 2.724 2.546 D2 7.993 8.460 7.527 

                

E1 2.778 2.867 2.689 E1 8.425 8.892 7.958 

E2 2.372 2.461 2.283 E2 7.225 7.692 6.759 

                

F1 2.565 2.654 2.476 F1 7.708 8.175 7.242 

F2 2.584 2.673 2.495 F2 7.942 8.409 7.475 

                

G1 2.680 2.769 2.591 G1 8.209 8.676 7.742 

G2 2.469 2.558 2.380 G2 7.441 7.908 6.975 

                

BD1 2.510 2.599 2.421 BD1 7.600 8.067 7.133 

BD2 2.639 2.728 2.550 BD2 8.050 8.517 7.584 

                

AD1 2.540 2.629 2.451 AD1 7.855 8.322 7.389 

AD2 2.610 2.699 2.521 AD2 7.795 8.262 7.328 

                

DG1 2.502 2.591 2.413 DG1 7.575 8.042 7.108 

DG2 2.647 2.736 2.558 DG2 8.075 8.542 7.609 

                

AB1 2.520 2.609 2.431 AB1 7.646 8.112 7.179 

AB2 2.630 2.719 2.541 AB2 8.005 8.471 7.538 

                

DF1 2.506 2.595 2.417 DF1 7.626 8.093 7.160 

DF2 2.644 2.733 2.555 DF2 8.024 8.491 7.557 

                

DE1 2.649 2.738 2.560 DE1 8.111 8.578 7.645 

DE2 2.500 2.589 2.411 DE2 7.539 8.006 7.072 

                

CD1 2.661 2.750 2.572 CD1 8.039 8.506 7.573 

CD2 2.489 2.578 2.400 CD2 7.611 8.078 7.144 

                

ABD1 2.535 2.624 2.446 ABD1 7.691 8.158 7.225 

ABD2 2.615 2.704 2.526 ABD2 7.959 8.425 7.492 
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4.5.6 Response Graphs (Part 3) 

 

After the table of factor level average is generate, then the response graphs has been plotted in figure below.  

 

 

Figure 4.11: Response Graph for TPM (Part 3) 
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Figure 4.12: Response Graph for NPM (Part 3) 

 

 



69 

From the response graph above, we can observe that there are differences between 

level 1 and level 2 for various control factors and two-factor interactions. The aim of 

this experiment is to enhance the gyrocopter‟s flight time or we want the flight time 

to be “the larger, the better” Therefore, levels with higher value of TPM and NPM 

are desirable and chosen for as the level for each control factor. For instance, level 1 

is chosen for control factors like C, E and G while level 2 is selected for control 

factors such as A, B, D and F.  

 

We can observe that the difference in level 1 and 2 for two-factor interactions 

is considerably small while control factor A, C and E show the largest difference 

between level 1 and 2. The differences in level 1 and 2 for control factors B, D, F and 

G are moderate. This indicates that not all the control factors and two-factor 

interactions are critical in influencing the flight time of gyrocopter.  

 

 

 

4.6 Optimum factor selection 

 

By using the response graph or comparing the values of TPM and NPM between 

level -1 and level 1, we can easily identify the optimum level for each factor. With 

that, an optimum set of design factors can be attained. The optimum factor selection 

is shown in Table 4.21. Among these factors, we found that A, C and E are the main 

factors which bring significant effects on the overall duration for the gyrocopter to 

spinning down to the ground from a height of 3 m.  
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Table 4.21: Optimum Factor Selection 

 
TPM NPM   

Source Opt Rank Rho Opt Rank Rho Comments Decision TPM NPM 

A 1 1 54.359 1 1 67.95 80gsm A4 paper is the optimum paper type. 1 3.045 9.41 

B 1 11   1 11   Body width of 3 cm leads to optimum result. 1     

C -1 3 5.059 -1 3 4.61 Body length of 6 cm leads to optimum result. -1 2.724 8.29 

D 1 10   1 12   Wing length of 12 cm give rise to optimum results. 1     

E -1 2 9.728 -1 2 8.59 Shoulder height of 2 cm gives rise to optimum result. -1 2.778 8.42 

F 1 15   1 14   Wing width of 4 cm give rise to optimum result. 1     

G -1 4   -1 4   1 piece of clip contributes to optimum result. -1     

Process µ (TPM) = 2.57 

Process µ (NPM) = 7.83 

Predicted µ (TPM) = 3.40 

Predicted µ (NPM) = 10.01 
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4.7 Predicted Values 

 

The sample calculation for the predicted values is shown below. 

 

Predicted values for TPM 

PVTPM = y + Main effects + Interaction effects 

)()()( 111 yEyCyAyPVTPM  
+ Interaction effects 

)()()( 111 yEyCyAyPVTPM  
+ 0 

PVTPM = 2.57 + (3.045-2.57) + (2.724-2.57) + (2.778-2.57) 

PVTPM = 3.40 

 

Predicted values for NPM 

PVNPM = y + Main effects + Interaction effects 

)()()( 111 yEyCyAyPVNPM   + Interaction effects 

)()()( 111 yEyCyAyPVNPM   + 0 

PVNPM = 7.83 + (9.41-7.83) + (8.29-7.83) + (8.42-7.83) 

PVNPM = 10.48 

 

Confidence Interval for a predicted means 

The formula below is provided to calculate the confidence interval for factor levels: 














eff

vv
n

VeFCI
1

2,1,  

Where neff  is the effective number of observation 

 

For TPM, 

 F0.05,1,60 = 4 

 3564.0
13

1
127.04 










TPMCI  

 

For NPM, 

 F0.05,1,12 = 4.75 
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 9336.0
13

1
734.075.4 










NPMCI  

 

The risk taken is assumed at 0.05. DOF of mean and pooled error variance, 

and pooled error variance are obtained in ANOVA in Table 4.18 and Table 4.19.  

 

Predicted Value (TPM) must lie between [3.0436, 3.7564] 

Predicted Value (NPM) must lie between [9.5464, 11.4136] 

 

 

Figure 4.13: Optimum factor selection for TPM 

 

 

 

Figure 4.14: Optimum factor selection for NPM 
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By comparing the values between process µ and predicted µ, we found that 

the predicted µ is larger than the process µ. This indicates that all design factors of 

the gyrocopter have been optimized and this can lead to significant increase in the 

flight time. From the above sample calculation, we can clearly observe that not every 

single factor is used to calculate the predicted flight time for the gyrocopter with 

optimum set of design factors. This is because we want to ensure that the predicted 

flight time would be conservative and avoid over estimation. As a result, the actual 

flight time for the gyrocopter with optimum set of design factors would be longer 

than the predicted flight time, given that the condition of longer flight time is 

desirable.  

 

 

 

4.8 Confirmation Experiment 

 

After we have determined an optimum set of design factors, we need to conduct a 

confirmation test under the same noise factors conditions in order to verify the 

accuracy and validity of the experiment. Op C 1 represents the optimum set of design 

factors obtained through the experiment while Op C 2 and Op C 3 stands for set of 

design factors that are set by us based on our personal perception that this set design 

factors might give rise to better results. 

 

Confidence Interval for a confirmation experiment 

The formula below is provided to calculate the confidence interval for factor levels: 














rn
VeFCI

eff

vv

11
2,1,  

Where r = 15, 

 

For TPM, 

 F0.05,1,60 = 4 

 40.0
15

1

13

1
127.04 











TPMCI  
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For NPM, 

 F0.05,1,12 = 4.75 

 05.1
15

1

13

1
734.075.4 











NPMCI  

 

The risk taken is assumed at 0.05. DOF of mean and pooled error variance, 

and pooled error variance are obtained in ANOVA in Table 4.18 and Table 4.19.  
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Table 4.22: Confirmation Experiment 

 

 

P
 

-1
 

1
 

1
 

-1
 

 

Q
 

-1
 

1
 

-1
 

1
 

R
 

-1
 

-1
 

1
 

1
 

A B C D E F G 1 2 3 4 TPM-CI TPM TPM+CI NPM-CI NPM NPM+CI 

Op C 1 1 1 -1 1 -1 1 -1 3.86 3.62 3.97 3.57 3.355 3.755 4.155 10.408 11.459 12.509 

Op C 2 1 1 -1 1 -1 -1 -1 3.73 3.24 3.91 3.28 3.140 3.540 3.940 9.817 10.867 11.917 

Op C 3 1 1 -1 -1 -1 1 -1 3.38 3.16 3.16 3.38 2.870 3.270 3.670 9.221 10.271 11.322 
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Figure 4.15: Confirmation Experiment for TPM 

 

 

 

Figure 4.16: Confirmation Experiment for NPM 

 

 

By comparing the figures of TPM and NPM, we notice that Op C 1 has 

longer flight time than Op C 2 and Op C 3. Thus, this shows that the optimum set of 

design factors obtained through experiment gives us the optimum flight time.  
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4.9 Full Scale Implementation / Comparison of Before and After 

 

The table below shows the comparison of flight time between the gyrocopters from 

initial stage and optimum condition 1. At first, the flight time obtained from the 

initial stage gyrocopter are only ranging from 2.09 sec to 2.59 sec with none of them 

meet the specification flight time of 3 sec. 

 

Table 4.23: Full Scale Implementation 

No Before After Spec 

1 2.25 4.03 3.00 

2 2.09 4.18 3.00 

3 2.38 4.50 3.00 

4 2.22 4.41 3.00 

5 2.22 4.25 3.00 

6 2.34 4.44 3.00 

7 2.59 4.35 3.00 

8 2.32 4.15 3.00 

9 2.41 4.47 3.00 

10 2.25 4.28 3.00 

11 2.22 4.09 3.00 

12 2.25 4.03 3.00 

13 2.22 4.00 3.00 

14 2.34 4.10 3.00 

15 2.38 4.04 3.00 

 

 

After the optimization, the gyrocopter has a significant improvement in the 

flight time. In fact, the flight times obtained from the optimized gyrocopter are 

ranging from 4 sec to 4.50 sec with all of them exceed the specification flight time.  
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Figure 4.17: Comparison of Before and After Optimization 

 

 

The above graph is plotted after obtaining 15 readings from the initial stage 

gyrocopters and the optimized gyrocopter respectively. In fact, the graph clearly 

indicates that flight times obtained from the initial stage gyrocopter (Blue Line) are 

below the specification of 3 sec (Red Line). After the optimization, all of the flight 

times of the optimized gyrocopter (Pink Line) are above the specification.  
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4.10 Gain Calculation 

 

Table 4.24: Quality Improvement 

 
Loss 

No Before After Spec Before After 

1 2.25 4.03 3.00 1.78 0.55 

2 2.09 4.18 3.00 2.06 0.52 

3 2.38 4.50 3.00 1.59 0.44 

4 2.22 4.41 3.00 1.83 0.46 

5 2.22 4.25 3.00 1.83 0.50 

6 2.34 4.44 3.00 1.64 0.46 

7 2.59 4.35 3.00 1.34 0.48 

8 2.32 4.15 3.00 1.67 0.52 

9 2.41 4.47 3.00 1.55 0.45 

10 2.25 4.28 3.00 1.78 0.49 

11 2.22 4.09 3.00 1.83 0.54 

12 2.25 4.03 3.00 1.78 0.55 

13 2.22 4.00 3.00 1.83 0.56 

14 2.34 4.10 3.00 1.64 0.54 

15 2.38 4.04 3.00 1.59 0.55 

 
Total 25.73 7.61 

 

Gain Calculation         

            

  Before After       

Loss 1.00 1.00 $     

Target 0.00 0.00 s     

Spec 3.00 3.00 s     

k 9.00 9.00 $ / s2     

Variability NA NA s2     

Bias NA NA s2     

Mixture 1.72 0.55 s2     

Total 1.72 0.55 $ /Piece     

Cost   67.82 % Improvement in Cost 
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Figure 4.18: Cost Reduction $/Piece 

 

 

From the Figure 4.18, there is total 67.82% of improvement in cost reduction.  

 

 

 

4.11 Discussion on findings 

 

My project title is application of sequential experimentation in a paper gyrocopter 

system. In the discussion, I will not discussing about paper gyrocopter. I am more 

focus on one of the “design of experiment” approach, which is sequential 

experimentation. In this final year project, sequential experimentation was carried 

out by using Taguchi method approach. Taguchi method technique was used to 

design the experiments and analysis of variance for the analysis of results.  

 

There are two types of sequential experimentation, which are single-factor 

fold-over and full fold-over. This project details the single factor fold-over. Single-

factor fold over is to dealiasing any one main effect and all its two-factor interactions.  

 

Firstly, I would like to explain why sequential experimental is so useful. This 

final year project concerns improvement in the flight duration of paper gyrocopter. 

67.82% 
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To build a paper gyrocopter, we need to determine the seven factors. Each of the 

seven factors has two possible selections, which amounts to a total of 128 possible 

combinations. We encode each factor as letters and the corresponding selection as -1 

and +1. A full factorial experiment would require 2
7
 = 128 experiments. Taguchi 

experiment with a L8 (2
7
) orthogonal array reduces 128 experiments to 8 experiments. 

However, if the experiment duration and resources are very limited, then the 

experiments can be conducted sequentially. Since the experiments are conducted 

sequentially, at the end of each experiment, we are able to locate the optimal levels 

of the factors, and determine whether to run next experiment. So, there is a large 

saving in the experimental effort. If we want, we can always build towards the full 

experiment. Sequential experimental can save up to 50% of sampling time.  

 

Secondly, I would like to explain on how to conduct sequential experimental. 

In this final year project, we divide the Taguchi experiment into two part, which is 

part 1 and part 2. Each part is carry with a L8 (2
7
) orthogonal array. After getting data 

for this two part, we combined these two L8 (2
7
) together to form a L16 (2

15
) 

orthogonal array. L8 (2
7
) + L8 (2

7
) → L16 (2

15
). If we want to continue to conduct the 

experiment s sequentially, we can combined two L16 (2
15

) together to form a L32 (2
31

) 

orthogonal array. This has to depend on previous results to decide whether continue 

or stop. If the result is inconclusive, then conduct further experiments. So, there is no 

necessary that we must stop until L16 (2
15

) orthogonal array, we can further conduct 

experiment to L32 (2
31

) or L64 (2
63

) orthogonal array.  

 

The Taguchi method approach got 20 steps which are shown by step by step. 

So, it is better for us to follow the step given by this approach. Optimum factors and 

level were identified objectively.  

 

According to the analysis of TPM, NPM, response table and ANOVA, it is found 

that the most significant factors are the main effects. So, two-factor interaction 

doesn‟t affect on the control factors. This is because all the two-factor interaction is 

pooling already in the ANOVA table.  

 

After conducted the confirmation experiment using the predicted optimum 

condition, comparison of the experimental result with the expected performance is 
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done and it is found that there is an improvement. Before and after graph shows a 

breakthrough improvement. 
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CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 CONCLUSIONS 

 

In this final year project, sequential experimental analysis was carried out by the 

Taguchi method technique. There are two types of sequential experimentation, which 

are single-factor fold over and full fold-over. Single-factor fold over is to dealiasing 

any one main effect and all its two-factor interaction. While full fold-over is to 

dealising all main effects. In other words, a second fraction design with the signs for 

only one of the factors reversed is called as single-factor fold over. While a second 

fraction design in which the signs for all the factors are reversed is called as full fold-

over. 

 

Large experiments are costly and time consuming. Moreover, when we are 

going out to work especially in R&D department, the experiment duration and 

resources are very limited. Under these conditions, sequential experimentation is one 

of the good options for design of experiment approach. Meanwhile, some of the 

experiments have to depending on the budget and schedule. Since the experiments 

are conducted sequentially, first we have to see whether the experiment can give us 

the desired data. Then, we started to determine whether to run next experiment or not.  

 

So, sequential experimental provides an easier, faster, and better design of 

experiment approach. 
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5.2 RECOMMENDATION 

 

After completing this final year project, there are some suggestions and 

recommendations for the sequential experimentation: 

 

1. Sequential experimentation is an exciting area of research to achieve better 

improvement. The Taguchi method approach presented in this thesis had 

much to explore in the Design of Experiment field, in which the updated 

information could be used to determine the next stage of experiment. We may 

consider extending sequential experimental to dynamic characteristics in 

which both experimental approaches are related. 

 

2. It is not necessary for us to use Taguchi approach to calculate NPM. NPM is 

not only can apply by Taguchi approach, but also can apply in other area, 

such as coefficient of variation. So, the choice of NPM is entire on us. 

 

3. Sequential experimental can be used in many domain such as manufacturing 

processes, environment sciences, agricultural sciences, physics, chemistry, 

statistics, medicine, engineering and others. 
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