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APPLICATION OF CENTRAL COMPOSITE DESIGNS IN A PAPER 

GYROCOPTER SYSTEM 

 

 

ABSTRACT 

 

 

Basically, Design of Experiment (DOE) is a statistical technique used in quality 

control for planning, analysing and interpreting sets of experiments aimed at making 

wise decisions without incurring a high cost and consuming much time. Amongst the 

various types of DOE, Central Composite Design (CCD) is one of the methods in 

which my research design will be focusing on. CCD is intended to study non-linear 

functions and relationships between factors affecting response. Through the CCD 

method, I am able to determine the optimum factor which will contribute most to the 

flight time of a paper gyrocopter system and reduce the variation involve. Ultimately, 

we could obtain a more precise and better result. Thus, in order to perform the CCD 

method, we will be assisted by Microsoft Excel in generating outputs based on the 

variation of different combinations of factors. The paper gyrocopter system 

experiment is carried out within the university compound. After collecting the data 

needed, we are able to plot graphs and observe the output so that we could have a 

clearer understanding of the significance of each factor. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background of Design of Experiments (DOE) 

 

Design of Experiments (DOE) has portrayed a major contribution in science and 

technology since the time Sir Ronald Aylmer Fisher introduced this concept in the 

1940s (Belavendram, 2011). It was widely used by engineers and scientists for 

product design and development as well as process development and improvement. 

The concept of experimental design is to yield the most information from the fewest 

runs of an experiment. By applying experimental designs in a product cycle, the 

development lead time and cost could substantially be reduced. Besides, it would 

also lead the processes and products to perform better and achieve greater reliability.  

 

Since 1950s, George Edward Pelham Box (a statistician) and his 

collaborators had extensively introduced experimental design methods in chemical 

and process industry. It was used to investigate and monitor the systems or processes 

of a particular product. Typical examples are the production of wafers in the 

electronics industry, the manufacturing of engines in the car industry and the 

synthesis of compounds in the pharmaceutical industry. Over the past decades, there 

had been a tremendous increase in the demand and application of experimental 

design techniques in the industry environment. By applying such experimental 

designs, the total quality management (TQM) had improved, ultimately increasing 

the company‟s revenue.  
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The method for conducting experimental designs begins with determining the 

objectives of an experiment and identifying the factors involves for the study. A 

designed experiment requires establishing a detailed experimental plan in advance of 

conducting the experiment, which results in a streamlined approach in the data 

collection stage. Appropriately choosing experimental design maximizes the amount 

of information that can be obtained for a given amount of experimental effort. 

 

Basically, the design of experiments is divided into three categories, namely 

One-Factor-at-a-Time-method, Factorial Experimental design and orthogonal array. 

The illustration will be as follow: 

 

 

Figure 1.1: The overall view of Design of Experiment 

 

 

 

1.1.1 One-Factor-at-a-Time-method (OFAT) 

 

Sir Francis Bacon introduced the one-factor-at-a-time method (OFAT) in 

experimental design. It was one of the earliest methods which were commonly used 

in experimental design. As the name suggests, it involves the testing of one factor or 

cause at a time instead of simultaneously while the other variables remain constant.  

Design of 
Experiment 

One-Factor-at-a-
Time-method 

(OFAT) 

Factorial 
Experimental 

Design 

Orthogonal 
Array 

Mixture 
Experiments 

Taguchi Method 

Central 
Composite 

Design 

Orthogonal 
Composite 

Orthogonal 
Rotatable 

Central 
Composite 
Rotatable 
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 The OFAT method could be more advantages compared to factorial 

experimental design when: 

1. The numbers of runs are limited. 

2. The primary goal is to attain improvements in the system. 

3. The experimental error is not large compared to factor effects, which must be 

additive and independent of each other. 

 

 

1.1.2 Factorial Experimental Design 

 

The factorial experimental design method was pioneered by Sir Ronald Aylmer 

Fisher, a British statistician in the 19
th

 century. This statistical approach underlying 

design of experiments was largely developed by him while he was working at 

Rothamsted Experimental Station. This method was further developed to include 

fractional designs and response surface methods. In 1935, Fisher published "Design 

of Experiments," a book that emphasize on the features of experimental research 

design which is still commonly used until today.  

 

Factorial experiment design or factorial design is a more systematic method 

used to investigate the effect of two or more factors towards the output response of a 

system. Estimating the effects of various factors on the output of a process with a 

minimal number of observations is crucial to being able to optimize the output of the 

process. All the possible combinations of the varying levels of these factors are taken 

into account for each complete trial of the experiment.  Effective factorial design 

ensures that the least number of experiment runs are conducted to generate the 

maximum amount of information about how input variables affect the output of a 

process. 

 

According to (Fisher, 1926), he claimed that “complex” design (such as 

factorial design) was more efficient than studying one factor at a time. Hence, the 
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emergence of factorial experimental design was supposed to be an enhancement 

version of the one-factor-at-a-time method. The reasons stated for favouring the use 

of factorial design over OFAT are: 

 

 OFAT requires more runs and consumes more time to produce the same 

precision in effect estimation compared to multi factors design. 

 OFAT cannot estimate the interactions between different factors. 

 OFAT has the possibility of missing the optimal settings of factors which 

result in obtaining poor experimental results. 

 

 

1.1.3 Orthogonal Array 

 

Dr. Genichi Taguchi, a Japanese industrialist, popularised orthogonal array 

experiments. He had utilized the concept of orthogonal arrays to optimize and 

determine the best level of control factor which maximized the Signal-to-Noise ratios. 

Taguchi‟s orthogonal array method categorized all problems into 2 types, namely 

Static or Dynamic. In Static problems, the optimization is achieved for a point 

response by using a Target Performance Measure (TPM) and a Noise Performance 

Measure (NPM). There are three common Signal-to-Noise ratios - smaller-the-better, 

larger-the-better and nominal-the-best. On the other hand for Dynamic problems, the 

optimization is achieved for a line response by using suitable TPM and NPM based 

on the Slope and Linearity of a function. 

 

 

 

1.2 Aim and Objectives 

 

There are numerous methods in experimental design. Nevertheless, the focus of this 

research would be on Central Composite Design.  
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The objectives of this research are as follow: 

1. To develop a suitable Central Composite Design model using 

Microsoft Excel to aid in experimental designs 

2. To generate an appropriate model  

3. To conduct analysis of variance (ANOVA) 

4. To determine the optimum condition of an experiment 

5. To validate the optimum condition by simulation, which includes 

control and noise factors 

6. To create a spreadsheet for various purposes. 

 

 

 

1.3 Problem Statement 

 

Variation in every production process is unavoidable. Therefore, the role of an 

engineer is to reduce these variations by improving the system performance through 

identifying the causes of variation and then taking actions to control them to meet 

respective goals. 

 

 The ultimate aim of this research is to apply Central Composite Design (CCD) 

in an industrial environment with the aid of advanced computer data analysis to 

reduce such variations. We believe that this model will produce the highest relative 

accuracy in experimental design. This could be seen when we create the spread sheet 

using Microsoft Excel. Not to mention that CCD is also more theoretical compared 

to orthogonal array and mixture components. Therefore, we are able to achieve a 

greater precision of results while performing any experiment. 
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Central Composite Design 

 

Central Composite Design (CCD) would be the highlight of this final year project as 

we will study in depth regarding this method to perform experiments and to optimize 

a product or process. CCD is categorized under a type of orthogonal array, so as for 

the Taguchi method and mixture experiment. Each of these methods has their own 

significance and it will be further discussed in the subsections later.  

 

A CCD has three groups of design points (Ramlan, May 2008): 

 

1. Two-level factorial or fractional factorial design points 

2. Axial points (star points) 

3. Center points 

 

CCD‟s are designed to estimate the coefficient of a quadratic model. All point 

descriptions will be in terms of coded values of the factors. 
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2.1.1 Factorial Points 

 

The two-level factorial part of the design consists of all possible combinations of the 

+1 and -1 levels of the factors. For instance, in a two factor case, there are four 

design points: 

(-1, -1) (+1, -1) (-1, +1) (+1, +1) 

 

 

 

2.1.2 Star or Axial Points 

 

Basically, CCD designs involve plotting a number of „star points‟ to form a sphere 

shape which allows the estimation of curvature. According to (Paul D. Berger, 2002), 

for every CCD design, it will have k factors and 2k star points. It is essential to have 

twice the amount of star points involved for every factor. Star points represent new 

extreme low and high values for each factor in the design. Thus, CCD not only has 

integer values but also decimal numbers. This is to provide a more accurate result. 

 

The star points have all of the factors set to 0, the midpoint, except one factor, 

which has the value +/- alpha (α). For a two factor problem, the star points are:  

(-α, 0) (α, 0) (0, -α) (0, α) 

  

A CCD is made rotatable by the choice of α. The value of α for rotatability 

depends on the number of points in the factorial portion of the design. In fact, 

   (  )
 

 ⁄  yields a rotatable central composite design where    is the number of 

points used in the factorial portion of the design. 

 

 

 

2.1.3 Centre Points 

 

The centre points provide information about the existence of curvature. As the name 

implies, centre points are points with all levels set to coded level 0 (the midpoint of 
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each factor range). Centre points are usually repeated 4-6 times to get a good 

estimation of experimental error (pure error) and the quadratic terms of the model. 

For example with two factors, the design will be created with five centre points by 

default. 

 

 According to (Montgomery, 2001), sometimes experiment must be conducted 

in situations where there is little or no prior information about process variability. In 

such cases, running two or three centre points as the first few runs in the experiment 

can be very helpful. These runs can provide a preliminary estimate of variability. If 

the magnitude of the variability seems reasonable, then we may proceed. Otherwise, 

if larger than anticipated variability is observed, stop the runs.  

 

 

 

2.2 The Extension of CCD 

 

Within the compound of CCD, it is then further extended to Orthogonal Composite, 

Orthogonal Rotatable and Central Composite Rotatable. Central Composite 

Rotatable is also divided into 3 sub-categories, namely circumscribed (CCC), 

inscribed (CCI) and face centered (CCF). Most of the time, we are uncertain about 

the best method to use in a given study. Hence, to make the correct selection, we 

must be able to distinguish the difference between the region of interest and region of 

operability. 

 

 Region of interest- a geometric region defined by lower and upper limits 

on study-variable level setting combinations that are of interest to the 

experimenter 

 Region of operability- a geometric region defined by lower and upper 

limits on study-variable level setting combinations that can be 

operationally achieved with acceptable safety and that will output a 

testable product 
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CCC is the origin of a CCD. The design and the number of factors determine 

the location of a star point with a distance of α from the center of the circle. These 

designs have circular, spherical, or hyper spherical symmetry and require 5 levels for 

each factor. 

 

 

Figure 2.1: Circumscribed Central Composite 

 

 

For CCI, factor settings are used as the star point to create a factorial or 

fractional factorial design. As the name inscribed suggest, it is a scaled down version 

of the CCC design with each factor level of the CCC design divided by α. CCI 

requires 5 levels for each factor as well. 

 

 

Figure 2.2: Inscribed Central Composite 

 

 

 For CCF, the center of each face of the factorial space is the star point. Hence, 

this variety require 3 levels of each factor, α = ±1. 
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Figure 2.3: Face Centered Central Composite 

 

 

 

2.3 CCD leading to Response Surface Methodology (RSM) 

 

Apparently, response surface methodology (RSM) and central composite design 

(CCD) are more or less interrelated. Both of these methods were pioneered by G. E. 

P. Box and K. B. Wilson in 1951 in the field of experimental design and analysis. 

According to (Richard & Verseput, 2000), Response Surface Methodologies is also a 

branch of Design of Experiment (DOE) which the response of interest is influenced 

by several variables of the process and the main objective of using this method is to 

find the optimum condition. 

 

In the RSM, a group of design alternatives is first sampled based on some 

experimental design methods. Central Composite Design (CCD) is one such method 

often used and is also selected in this research. The main idea of RSM consists of 

using a particular set of mathematical and statistical methods experiments to obtain 

an optimal response. Box and Wilson suggest using a first-degree polynomial model 

to do this. They acknowledge that this model is only an approximation, but use it 

because such a model is easy to estimate and apply, even when little is known about 

the process. 

 

The RSM is selected to explore the capacity decision space in this research 

because it is able to search in a continuous space with reduced computational cost. 

Capacity decision space is defined as a continuous space with the range between zero 
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and maximum of a plant‟s capacity. Methods such as the Factorial Design or the 

OFAT are not appropriate in exploring this space as the space must be divided into 

levels before experiments could be conducted. If the intervals between levels are big, 

which leads to a low resolution of the exploration, completing all experiments will 

still leave a large space unexplored. If intervals between levels are small, the cost of 

conducting experiments will then become very expensive.  

 

On the contrary, for the RSM, although during experiment design phase, the 

decision space have to be divided to get structured samples in the space, during the 

second phase optimization of regression model is conducted over the entire space 

without being constrained in the discrete space. Since the optimization is conducted 

upon some mathematically simple regression model, it takes less computational time 

than optimization on the original formulation. An issue though is that optimization is 

done with a model for which the coefficients are estimated, not known. 

 

Thus, an optimum value may only look optimal for the estimated response 

model, but be far from the truth because of variability in the coefficients. 

Nevertheless, when it is not feasible to find an optimal value with a complicated 

function, RSM provides a way of improving the response with reduced 

computational cost. 

 

 

 

2.3.1 Optimization of Stationary Points 

 

The contour plots in RSM enable us to optimize the predicted response (Montgomery 

D. C., 2001). Those points are called the stationary points and they can be obtained 

by using a general mathematical solution for the location of the stationary point or in 

other words, the optimal levels. The second-order model in matrix notation would be 

like the following: 

 

  ̂    ̂    x’b + x’Bx 

 

where 
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x = [

  

  

   
  

]     b =

[
 
 
 
 
 ̂ 

 ̂ 

   
 ̂ ]

 
 
 
 

     and     B = 

[
 
 
 
 
  ̂   

 ̂  

 
    ̂    

        
 ̂  

 
     ̂    

        

                     ̂  ]
 
 
 
 
 

 

 

A further explanation would be b is a (k x 1) vector of the first-order 

regression coefficients and B is a (k x k) symmetric matrix whose main diagonal 

elements are the pure quadratic coefficients ( ̂    and whose off-diagonal elements 

are one-half the mixed quadratic coefficients ( ̂       j). The derivative of   ̂ with 

respect to the elements of the vector x equated to 0 is  

  

 
    ̂

   
 = b + 2Bx = 0 

 

Thus, stationary point is determined by: 

 

      
 

 
      

 

 

 

2.4 CCD over Taguchi’s orthogonal array method 

 

In this section, we will discuss the reasons we select CCD over Taguchi 

method as our DOE. Central Composite Design (CCD) and Taguchi‟s method are 

both very useful sort of experimental design. However, both of these methods have 

different kinds of approaches. It is vital to identify the suitable kind of design 

experiments at the beginning while carrying out a study. This is to ensure that the 

results obtained are relevant, sufficient and resourceful. In this study, I have chosen 

CCD over Taguchi‟s method and further illustration of respective approaches will be 

as follow: 
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Taguchi laid a strong emphasis on variability reduction. His method includes 

two important parts, namely the crossed array designs as the experimental strategy 

and signal-to-noise ratios (SNR) as the analysis method. Despite criticisms put 

forward by Western statisticians concerning about his approach, the methods 

advocated by Taguchi have been successfully applied to many real-life situations. 

 

Taguchi‟s design strategies include crossed or orthogonal arrays where the 

inner array that consists of the control variables x, is crossed with the outer array that 

contains the noise variables z. The inner or outer array is a factorial or fractional 

factorial design, and the outer array is crossed with every combination of the inner 

array. The orthogonal arrays are denoted by    
  , where r represents the number 

of runs in the array, k is the number of variables, and m is the number of levels of 

each variable. 

 

Taguchi proposes three stages of robust design: system design, parameter 

design, and tolerance design. The goals of Taguchi‟s experimental design can be 

summarized as designing robust products or processes that are insensitive to 

environmental conditions (external noise factors), developing robust products that 

are insensitive to component variation (internal noise factors), and minimizing 

variation around a target value. The most important parts of Taguchi's philosophy are 

the reduction of variability and minimization of non-conformance cost. They are 

consistent with the modern continuous quality improvement philosophy. 

 

On the other hand, CCD has a different kind of approach to solve robust 

design problem and optimize a product or process. It has many advantages over 

Taguchi‟s methods of experimental design and data analysis. However, many 

companies or engineers in the industry world do not fully understand the better 

approaches coming from the academic field and are still using Taguchi‟s methods, 

even though the academy has discussed and reviewed robust design for over 20 years 

and statisticians have repeatedly compared Taguchi‟s methods with other new 

approaches (including RSM). The statisticians should focus on training people 

working in industry to clarify the misunderstanding and close the gap between 

academia and industry. 
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CCD can be used as part of sequential design experiments through RSM. The 

factorial points contribute toward the estimation of linear or two-factor interaction 

terms, while the star or axial points are chosen based on the region of interest and 

region of operability. Not to mention that the centre points could also aid to obtain a 

good estimation of experimental error (pure error) and the quadratic terms of the 

model. The dual response surface approach is able to estimate two response models 

at the same time, one for the process mean and another for the process variance. Thus, 

CCD involves a combined array design which combines the design and noise 

variables into one single design, while Taguchi‟s crossed array includes two designs: 

one is inner array design consisting of the control variables, and the other is outer 

array design containing the noise variables.  

 

Plus, CCD method is able to portray a greater precision of results compared 

to Taguchi‟s method. This is because CCD takes into account the axial (star) points 

and centre points while performing the experiment. Hence, it is able to provide a lot 

of information regarding the experimental variable effects and experimental error 

within a minimum number of runs. A better and clearer vision of the simulation 

could also be observed when all the points are plotted. Not to mention that CCD also 

fulfils most of the company‟s goal, which is to minimize the cost by running lesser 

experiments and yet being able to sustain the quality of a product.  

 

 

 

2.5 Analysis of Variance (ANOVA) 

 

Generally, Analysis of variance (ANOVA) is used to study sampled-data 

relationships and analyse the difference between two or more means. This method 

enables the difference between two or more sample means to be analysed and 

achieved by subdividing the total sum of squares (Belavendram N. , May 1995). A 

major aim of analysing data from designed experiments is to quantify and evaluate 

the importance of possible sources of variation (Kempthorne, 2008). This can be 

achieved through the ANOVA associated with the underlying linear model, either in 

its univariate or multivariate. There are a few types of ANOVA, namely the one-way 
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ANOVA, multifactor ANOVA and General Linear Models. The elaborations will be 

as follow: 

 

2.5.1 One-way ANOVA 

 

The purpose of one-way ANOVA is to test for significant differences between class 

means and this is done by analysing the variances.  The one-way ANOVA is useful 

when the experiment involves only one factor. Therefore, we are able to compare in 

depth the effects of multiple levels of one factor and we could obtain multiple 

observations at each level. The factor can be either discrete or continuous. 

 

According to (George E.P. Box, 2005), the application of one-way ANOVA 

will be as follow: suppose that we have a number of observations of a dependent 

variable Y, and each observation is associated with a categorical factor X that has   

different “level” (possible values). Therefore, the ANOVA equation that represents 

this situation is: 

 

               
 

 

Where     is the      observation of   , the group that has the      level of X, µ is the 

overall mean of y,   is a parameter unique to the     treatment called the     

treatment effect, and     is the random error component that incorporates all other 

sources of variability in the experiment including measurement, variability arising 

from uncontrolled factors, differences between the experimental units to which the 

treatments are applied and the general background noise in the process.  

 

 

 

2.5.2 Multifactor ANOVA 

 

Multifactor ANOVA is used when there is more than one categorical factor arranged 

in a crossed pattern. When factors are crossed, the levels of one factor appear at more 

than one level of the other factors. 
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For example, with two independent variables, the model is: 

 

                             
 

 

Where        is the interaction term, representing the additional effect of being in 

both level   of the first variable and level j of the second variable. 

 

 

 

2.5.3 General Linear Model (GLM) 

 

Generalized linear models (GLMs) are used to do regression modelling for non-

normal data with a minimum of extra complication compared with normal linear 

regression. GLMs are flexible enough to include a wide range of common situations, 

but at the same time allow most of the familiar ideas of normal linear regression to 

carry over. Besides, GLM is also used whenever there are both crossed and nested 

factors, when some factors are fixed and some are random, and when both 

categorical and quantitative factors are present. 

 

The general linear model goes a step beyond the regression model by 

allowing linear transformations or linear combinations of multiple dependent 

variables. This extension gives the GLM important advantages over the multiple 

regression models. One advantage is that multivariate tests of significance can be 

employed when responses on multiple dependent variables are correlated. Separate 

univariate tests of significance for correlated dependent variables are not independent 

and may not be appropriate. Multivariate tests of significance of independent linear 

combinations of multiple dependent variables also can give insight into which 

dimensions of the response variables are, and are not, related to the predictor 

variables.  

 

Another advantage of GLM is the ability to analyse effects of repeated 

measure factors. Repeated measure designs, or within-subject designs, have 
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traditionally been analysed using ANOVA techniques. Linear combinations of 

responses reflecting a repeated measure effect (for example, the difference of 

responses on a measure under differing conditions) can be constructed and tested for 

significance using either the univariate or multivariate approach to analyse repeated 

measures in the general linear model. Hence the GLM allows us to summarize a wide 

variety of research outcomes. 

 

 

 

2.6 Quality Loss Function 

 

According to (Sharma, Cudney, Ragsdell, & Paryani, 2007), the quality loss function 

is developed by Genichi Taguchi. It is a continuous function which defines losses as 

a design parameter that deviates from an ideal or targeted value. Basically, Taguchi‟s 

philosophy takes into account three cases to evaluate the relationship between quality 

and variability, namely nominal-the-best (NTB), smaller-the-better (STB) and larger-

the-better (LTB). To start off (Montgomery D. C., 1998), Taguchi quantifies the 

deviation for NTB and STB from the requirements in terms of monetary units by 

using a quadratic loss function given by: 

 

                     
  

  
                         

Where Y is the quality characteristic, τ is the targeted value, k as the cost-related 

numerical constant,    as the point of intolerance and    as the cost of a corrective 

action. 

 

 

 

2.6.1 Nominal-the-best (NTB) 

 

For nominal-the-best (NTB), the best characteristic of a target value is the median of 

the specified upper and lower limits while the losses owing to deviance from the 

targeted value rise proportionally to the extent of deviance on either side of the mean. 
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As the quality is evaluated with respect to a nominal value τ, the loss function for 

NTB will be as follow: 

 

     
  

  
 
       

 

 

Figure 2.4: Nominal-the-best (NTB) 

 

 

 

2.6.2 Smaller-the-better (STB) 

 

For smaller-the-better (STB), the characteristics involve are only non-negative 

variables with target   . If the actual value becomes higher, the quality loss would 

also be greater. Thus, its loss function is given by as follow: 

 

      
  

  
    

 

Figure 2.5: Smaller-the-better (STB) 
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2.6.3 Larger-the-better (LTB) 

 

For larger-the-better (LTB), the characteristic should also be non-negative and it‟s 

most desirable value is infinity. Thus, if the actual value becomes higher, greater 

quality could be obtained and quality loss would be lesser. In this case, we could not 

replace      into equation (1). As an alternative, Taguchi proposes that if Y is LTB, 

and then    ⁄  should be STB and therefore its loss function is given as follow: 
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Figure 2.6: Larger-the-better (LTB)
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Research Design 

 

The research design for our study is to determine the optimal factor which affects the 

flight time of a paper gyrocopter system using the central composite design (CCD) 

method. Through the CCD method, we believe that it is able to provide us with the 

most information in order to obtain a greater precision of results. 

 

 We begin this methodology section by designing a template on Microsoft 

Excel for three different types of CCD, namely CCC, CCI and CCF. With the aid of 

Microsoft Excel, we are able to perform numerous applications by entering different 

formulas at the formula bar. For example, formulas such as CHOOSE, SUM, IF, 

CONCATENATE, SUMPRODUCT and MMULT are used extensively whenever 

needed at the Microsoft Excel formula bar. 

 

 

 

3.2 Designing an array based on suitable amount of factors and levels 

 

Basically, the amount of factors involved in an experiment will ultimately determines 

the design of an array. For this experiment, we have chosen 3 factors (X1, X2, and 

X3), namely wing length (X1), body width (X2) and shoulder length (X3) as the 

three significant factors in which we think will affect the flight time of the paper 

gyrocopter system. Based on CCD, these 3 factors also known as the independent 
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factors will then be combined to form 6 other combinations. The aim is to have more 

combinations of factors so that it covers most part of the region of interest to produce 

a more precise result.  

 

After identifying the three factors, we are able to set the number of levels to 

each factor. The number of levels also depends mainly on the type of CCD. For both 

CCC and CCI, they have 5 levels for every factor and for CCF, 3 levels are assigned 

to each factor. For example, CCC has 5 levels for each factor consisting of -1, 1.414, 

1, 0, 1, and 1.414 while CCF has only 3 levels, which are -1, 0 and 1. Besides, the 

value of each level also consists of the coded and uncoded value. 

  

Table 3.1: CCC with three independent factors 

  x0 x1 x2 x3 y 

1 1 -1 -1 -1 2.83 

2 1 -1 -1 1 3.03 

3 1 -1 1 -1 3.00 

4 1 -1 1 1 3.03 

5 1 1 -1 -1 3.43 

6 1 1 -1 1 3.43 

7 1 1 1 -1 3.23 

8 1 1 1 1 3.77 

9 1 -1.414 0 0 2.63 

10 1 1.414 0 0 3.57 

11 1 0 -1.414 0 3.70 

12 1 0 1.414 0 3.83 

13 1 0 0 -1.414 3.87 

14 1 0 0 1.414 4.03 

15 1 0 0 0 3.40 

16 1 0 0 0 3.50 

17 1 0 0 0 3.60 

18 1 0 0 0 3.40 

 

 

The array shown above is a central composite design array which consists of 

a total runs of 18 experiment and involves three independent factors (X1, X2, and X3) 

with each factor consists of five different levels (-1.414, -1, 0, 1, 1.414). Not to 

mention that the X0 row is the identity factor. From the array, you will notice that it 

is categorize into three different parts. This is to distinguish the Taguchi and the 

central composite design method. The array in red is known as the orthogonal array 

while the arrays in green and blue represents the axial points and the centre points 

respectively.  
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As mentioned earlier on, additional factors will be added on to the existing 

ones so that it covers most part of the region of interest to produce a more precise 

result. These additional factors are the quadratic factors (X1^2, X2^2 and X3^2) and 

the interaction factors (X1X2, X1X3 and X2X3).  

 

The different combinations of all the factors will then produce a dependent 

variable Y, which is indicated on the right column. This Y values corresponds to the 

flight time of the gyrocopter in which later will also be used in performing other 

analysis. 

  

 

 

3.3 Correlation Check 

 

To perform the correlation check, the main formula involved is              , 

where β is the regression coefficient. In order to do so, we will have to make use of 

the array shown previously to determine the correlation between the independent and 

dependent factors. 

 

Step One 

Table 3.2: X array multiply with the transpose of X array 

 
x0 x1 x2 x3 x1x2 x1x3 x2x3 x1^2 x2^2 x3^2 

x0 18 0 0 0 0 0 0 0 0 0 

x1 0 12 0 0 0 0 0 0 0 0 

x2 0 0 12 0 0 0 0 0 0 0 

x3 0 0 0 12 0 0 0 0 0 0 

x1x2 0 0 0 0 8 0 0 0 0 0 

x1x3 0 0 0 0 0 8 0 0 0 0 

x2x3 0 0 0 0 0 0 8 0 0 0 

x1^2 0 0 0 0 0 0 0 8 0 0 

x2^2 0 0 0 0 0 0 0 0 8 0 

x3^2 0 0 0 0 0 0 0 0 0 8 

 

 

Based on the formula, the first step is to multiply the X array with the transpose of X 

array. The formula involve to produce the array above can be obtained by just typing 

the command of “=MMULT(TRANSPOSE(X array),X array)” into the Microsoft 

Excel formula bar. The table above shows the result of after performing the formula.  
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Step Two 

The next step is to perform an inverse multiplication of the table above. The formula 

involved in this step is “=MINVERSE(         )”. Ultimately, you will get a new 

table as shown below. 

 

Table 3.3: Inverse of the (X
T
 X) array 

 
x0 x1 x2 x3 x1x2 x1x3 x2x3 x1^2 x2^2 x3^2 

x0 0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

x1 0.000 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

x2 0.000 0.000 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

x3 0.000 0.000 0.000 0.083 0.000 0.000 0.000 0.000 0.000 0.000 

x1x2 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 0.000 0.000 

x1x3 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 0.000 

x2x3 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 

x1^2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 

x2^2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 

x3^2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 

 

 

Step Three 

 

After doing the inverse multiplication, the inversed matrix above is then multiplied 

with the transpose of the original array. The Excel function performed is 

“=MMULT((          ,TRANSPOSE(X array)”. The result of this step will be as 

follow. 

 

Table 3.4: Multiplication of (X
T
 X)

-1
 with the X transpose array 

 
x0 x1 x2 x3 x1x2 x1x3 … 

 x0 0.056 0.056 0.056 0.056 0.056 0.056 … 0.056 

x1 -0.083 -0.083 -0.083 -0.083 0.083 0.083 … 0.000 

x2 -0.083 -0.083 0.083 0.083 -0.083 -0.083 … 0.000 

x3 -0.083 0.083 -0.083 0.083 -0.083 0.083 … 0.000 

x1x2 0.125 0.125 -0.125 -0.125 -0.125 -0.125 … 0.000 

x1x3 0.125 -0.125 0.125 -0.125 -0.125 0.125 … 0.000 

x2x3 0.125 -0.125 -0.125 0.125 0.125 -0.125 … 0.000 

x1^2 0.042 0.042 0.042 0.042 0.042 0.042 … -0.083 

x2^2 0.042 0.042 0.042 0.042 0.042 0.042 … -0.083 

x3^2 0.042 0.042 0.042 0.042 0.042 0.042 … -0.083 

 

Note that there will be an additional of 8 columns after the last quadratic factor. This 

is to allow the current array to be able to multiply with the Y array, which consist of 

18 rows.  
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Step Four 

 

Lastly, use the table above to multiply with the dependent variable Y to obtain the 

regression coefficient, β value. With these β values, we can then proceed with the 

analysis of variance, ANOVA. The β values can be obtained from the ANOVA table 

(Table 3-6). 

 

 

 

3.4 Contours of Constant Variance 

 

Contour plots play a very vital role in the study of the response surface model. 

According to (Montgomery, 2001), by generating contour plots for response surface 

analysis, we are able to characterize the shape of the surface and locate the optimum 

with reasonable precision. For this experiment, we have used a range of -1.25 to 1.25 

to determine the correlation contours of the constant variance.  

 

Table 3.5: Correlation Table 

0.722 -1.250 -1.000 -0.750 -0.500 -0.250 0.000 0.250 0.500 0.750 1.000 1.250 

1.250 1.310 0.996 0.807 0.701 0.649 0.634 0.649 0.701 0.807 0.996 1.310 

1.000 0.996 0.722 0.564 0.480 0.441 0.431 0.441 0.480 0.564 0.722 0.996 

0.750 0.807 0.564 0.429 0.363 0.334 0.327 0.334 0.363 0.429 0.564 0.807 

0.500 0.701 0.480 0.363 0.308 0.287 0.282 0.287 0.308 0.363 0.480 0.701 

0.250 0.649 0.441 0.334 0.287 0.271 0.267 0.271 0.287 0.334 0.441 0.649 

0.000 0.634 0.431 0.327 0.282 0.267 0.264 0.267 0.282 0.327 0.431 0.634 

-0.250 0.649 0.441 0.334 0.287 0.271 0.267 0.271 0.287 0.334 0.441 0.649 

-0.500 0.701 0.480 0.363 0.308 0.287 0.282 0.287 0.308 0.363 0.480 0.701 

-0.750 0.807 0.564 0.429 0.363 0.334 0.327 0.334 0.363 0.429 0.564 0.807 

-1.000 0.996 0.722 0.564 0.480 0.441 0.431 0.441 0.480 0.564 0.722 0.996 

-1.250 1.310 0.996 0.807 0.701 0.649 0.634 0.649 0.701 0.807 0.996 1.310 

 

 

From the data above, we are able to plot the response surface both in 2D and 

3D. These graphs are also known as response surface methodology. 
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Figure 3.1: 2D Response Surface Methodology 

 

 

Figure 3.2: 3D Response Surface Methodology 

 

 

 From the 2D graph, you will notice a circular shape of the diagram in which 

it corresponds to a Face Centred central composite design. When the range of the 

correlation table is extended further with smaller differences, the graphs would be 

smoother to portray a more circular 2D shape. 
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3.5 Analysis of Variance (ANOVA) 

 

The regression coefficients for the second order polynomial equations and results for 

the linear, quadratic and interaction term are calculated and presented in an ANOVA 

table as follows. 

 

Table 3.6: ANOVA Table 

 

 

 

Starting from the β column, the values are obtained by performing the 

formula             , in which it is already mentioned in the correlation check 

section (Chapter 3.3).  

 

Moving on, pool is obtained by checking the ranking of variance. The pool 

value of “0” shows that it is significant and “1” is the factor that is insignificant. 

Based on the table above, we have pooled three main effects, hence it means that 

only three factors with the highest significant/weightage are chosen. This could be 

done with the help of the Excel function of “IF” and “RANK”. The “RANK” 

function will rank the values of each variance and then display the values based on 

the number of main effects selected.  

 

Based on the significant factors which are not pooled, it will then have their 

SSq and Rho values calculated, as can be seen in the last two columns of the 

ANOVA table. The Rho values will indicate the significant of that particular factor 
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using percentage. On the other hand, the SSq values can be calculated by having the 

SSQ of the factor subtract the multiplication of the corresponding degree of freedom 

and the pool‟s variance.  

 

Finally, a graph of Rho against the factors is plotted to show the importance 

of that particular factor towards the output response of the experiment. A high 

percentage of pool will indicate that the experiment is ineffective. For our case, the 

pool percentage is still fairly acceptable. Despite adding more factors will reduce the 

pool percentage, the ideal amount of factors would range from one to four only. The 

graph which corresponds to the example‟s ANOVA table can be seen in the 

following: 

 

 

Figure 3.3: Graph of Rho against factor 

 

 

Based on the graph and simulations done by the Microsoft Excel software, we 

are able to analyze the results to determine the optimal factor which contributes most 

to the flight time of a paper gyrocopter system. Besides, we could also implement 

recommendations to further enhance the performance and discuss problems which 

cause the ineffective of that particular experiment. 
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3.6 Determining the optimum condition value 

 

In order to determine the optimum condition value (   , we will have to utilize the 

formula as follow: 

     
 

 
     

 

where b is a vector of the first order regression coefficients, β for X1, X2 and X3 

while B is the beta value of the quadratic factors along the diagonal while the off-

diagonal are interaction factors. (Montgomery D. C., 2001) 

 

 After obtaining the optimum values for each factor, the paper gyrocopter is 

constructed based on these new dimensions and the experiment is carried out again to 

produce a new set of results. Then, the flight time for before (blue line) and after 

(purple line) optimization are compared to see whether CCF has made any 

improvement towards the experiment. Not to mention that a targeted value (red line) 

will also be set as a benchmark to show if the optimized results reaches our 

expectations or not. By plotting the before and after optimization results together, the 

outcome will be as the following figure 3.4. 

 

 

Figure 3.4: Graph of before and after optimization 
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3.7 Quantity Loss Function (QLF) 

 

Last but not least, a quality loss function is performed to determine whether CCF has 

made any improvements in terms of cost towards the experiment. In our case, we 

will be using the Larger-the better (LTB) approach as we would want to increase the 

flight time of the paper gyrocopter while reducing the cost involved. The formula for 

LTB would be: 
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Therefore, once again, the graph which shows the reduction of cost in terms of 

percentage will be as the following figure 3.5.  

 

 

Figure 3.5: Graph which shows the reduction of cost 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSION 

 

 

 

4.1 Experimental Data 

 

As mentioned earlier on, we will be taking three factors into account for this paper 

gyrocopter system experiment. The three factors involve are the wing length (X1), 

body width (X2) and shoulder length (X3). At the starting point, we have set the 

range for X1 to be 6 cm to 10 cm while the range for both X2 and X3 are 2 cm to 3 

cm. In terms of the coded value, the higher and lower value will correspond to level 

1 and level -1 respectively. Not to mention that level 0 will be the average between 

the high and low value. 

 

Table 4.1: Coded and uncoded value for X1, X2 and X3 

Wing length UncVar 5.172 6 8 10 10.828 

x1 CodVar -1.414 -1 0 1 1.414 

       Body width UncVar 1.793 2 3 3 3.207 

x2 CodVar -1.414 -1 0 1 1.414 

       Shoulder length UncVar 1.793 2 3 3 3.207 

x3 CodVar -1.414 -1 0 1 1.414 

 

 

 For both CCC and CCI, there are 5 levels with 2 extra levels being values of 

±1.414 and ±0.7071 respectively. The real value (uncoded) of ±1.414 and ±0.7071 is 

then calculated using ratio from levels -1, 0 and 1. 
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4.2 Central Composite Face Centred (CCF) 

 

Table 4.2: Coded array for CCF 

  x0 x1 x2 x3 x1x2 x1x3 x2x3 x1^2 x2^2 x3^2 

1 1 -1 -1 -1 1 1 1 0.444 0.444 0.444 

2 1 -1 -1 1 1 -1 -1 0.444 0.444 0.444 

3 1 -1 1 -1 -1 1 -1 0.444 0.444 0.444 

4 1 -1 1 1 -1 -1 1 0.444 0.444 0.444 

5 1 1 -1 -1 -1 -1 1 0.444 0.444 0.444 

6 1 1 -1 1 -1 1 -1 0.444 0.444 0.444 

7 1 1 1 -1 1 -1 -1 0.444 0.444 0.444 

8 1 1 1 1 1 1 1 0.444 0.444 0.444 

9 1 -1.000 0 0 0 0 0 0.444 -0.556 -0.556 

10 1 1.000 0 0 0 0 0 0.444 -0.556 -0.556 

11 1 0 -1.000 0 0 0 0 -0.556 0.444 -0.556 

12 1 0 1.000 0 0 0 0 -0.556 0.444 -0.556 

13 1 0 0 -1.000 0 0 0 -0.556 -0.556 0.444 

14 1 0 0 1.000 0 0 0 -0.556 -0.556 0.444 

15 1 0 0 0 0 0 0 -0.556 -0.556 -0.556 

16 1 0 0 0 0 0 0 -0.556 -0.556 -0.556 

17 1 0 0 0 0 0 0 -0.556 -0.556 -0.556 

18 1 0 0 0 0 0 0 -0.556 -0.556 -0.556 

 

 

The array shown above is the actual experiment data for Face-centred Central 

Composite (CCF). It consists of a total runs of 18 experiments and involves three 

independent factors (X1, X2, and X3), namely wing length (X1), body width (X2) 

and shoulder length (X3). It is then further multiplied with each other to obtain 

additional factors, namely the interaction factors (X1X2, X1X3 and X2X3) and the 

quadratic factors (X1^2, X2^2 and X3^2).  

 

Each factor consists of three different levels (-1, 0 and 1). From the array, you 

will notice that it is categorize into three different parts. This is to distinguish the 

Taguchi and the central composite design method. The array in red is the orthogonal 

array for three factors CCF while the arrays in green and blue represents the axial 

points and the centre points respectively.  
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Table 4.3: Coded and uncoded value for CCF factors 

Wing length Uncoded 6 8 10 

x1 Coded -1 0 1 

     Body width Uncoded 2 2.5 3 

x2 Coded -1 0 1 

     Shoulder length Uncoded 2 2.5 3 

x3 Coded -1 0 1 

      

 

 For CCF, there isn‟t star points involve, thus the response surface model will 

displays a square (2D) or cube (3D) shape shown in Figure 4.1 and 4.2. Unlike CCC 

(circumscribed) and CCI (inscribed), there are star points involve which enables the 

response surface model to become a circle (2D) or sphere (3D) shape, hence 

covering most part of the region of interest to produce a more precise result. 

 

 

 

Figure 4.1: CCF 2D response surface graph 
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Figure 4.2: CCF 3D response surface graph 

 

 

Based on the different combinations of all the factors, we will then be able to 

run the experiment and produce a dependent variable Y result as shown in the table 

below. This Y values corresponds to the flight time of the gyrocopter and each 

experiment was run three times to obtain an average value of the duration. 

 

Table 4.4:Average value of  Y value 

Gyro No. Run1 Run2 Run3 
  

Y average 

1 2.6 2.8 3.1 
  

2.83 

2 3.0 2.8 3.3 
  

3.03 

3 3.0 3.1 2.9 
  

3.00 

4 3.1 3.0 3.0 
  

3.03 

5 3.4 3.7 3.2 
  

3.43 

6 3.3 3.4 3.6  3.43 

7 3.1 3.6 3.0 3.23 

8 4.2 3.8 3.3 3.77 

9 3.1 2.7 2.9 2.90 

10 3.6 3.7 3.6 3.63 

11 3.1 3.6 3.4 
  

3.37 

12 3.5 3.3 3.6 
  

3.47 

13 3.4 3.8 3.6 
  

3.60 

14 3.5 3.3 3.6 
  

3.47 

15 3.4 3.5 3.3 
  

3.40 

16 3.5 3.6 3.4 
  

3.50 

17 3.6 3.7 3.5 
  

3.60 

18 3.4 3.3 3.5 
  

3.40 
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4.2.1 Data Analysis based on ANOVA table 

 

For this data analysis section, we have decided to take into account only three main 

factors, which is X1 (57.0%),    (18.4%) and    (3.54%). According to the 

ANOVA table shown below, the pool value is 21.05%, which is still within the 

acceptable range. A lower pool value would be desirable as it indicates that the 

experiment was a success in the sense that the factors which are not pooled were 

highly significant. 

 

 Besides, it is also best that we only choose three factors or less when 

determining the significant factors involved. This is because when we were to select 

more factors, the Rho value for these additional factors will either be less than 1% 

(insignificant) or negative value.  

 

Table 4.5: ANOVA table for CCF 

 

 

 

Finally, a bar chart is then constructed to portray an even clearer picture of 

the percentages (Rho). 
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Figure 4.3: Graph of Rho (%) against Factors 

 

 

 

4.2.2 Data Interpretation based on response surface model 

 

From the graph above, the centre point of the light blue circle indicates the factor 

which contributes most to the highest or longest flight time. We are able to see that 

the longest flight time falls within the time range of 3.50 seconds to 3.70 seconds. 

 

 

Figure 4.4: Response Surface for X1 and X2 
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figure above, a linear graph is obtained. In other words, it shows that X3 is certainly 

not one of the significant factors and certainly does not portray any correlation with 

the X1 factor. Plus, this may also due to the choice when selecting the parameter for 

X3. Apparently, the interval for minimum and maximum parameter of X3, which is 2 
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cm and 3 cm respectively for the wing length, is too close. Thus, this will also affect 

the final outcome. 

 

 

Figure 4.5: Response Surface for X1 and X3 

 

 

 

4.2.3 Optimum condition value 

 

In order to determine the optimum condition value, we will have to utilize the 

formula as follow: 

     
 

 
     

 

  b   B       Xs 

  3.339 
 

      
 

  

X1 0.270 
 

-0.226 -0.004 0.038 
 

0.458 

X2 0.040 
 

-0.004 -0.076 0.046 
 

-0.289 

X3 0.063   0.038 0.046 0.041   -0.872 

Figure 4.6: Optimum values for CCF 

  

 

 The    column of values indicates the optimum dimension for factor X1 

(0.458), X2 (-0.289) and X3 (-0.872). However, these values are in the coded form. 
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Hence, we will have to perform simple ratio calculations based on the initial 

conditions to determine the coded value of   . 

 

Optimum Values 

Wing length Uncoded 7.08 6 8 10 8.92 

x1 Coded -0.46 -1 0 1 0.458 

         

Body width 
Uncoded 2.36 2 2.5 3 2.64 

x2 Coded -0.289 -1 0 1 0.29 

    
     

Shoulder length Uncoded 2 2.06 2.5 2.94 3 

x3 Coded -1 -0.872 0 0.872 1 

    
     

Figure 4.7: Uncoded optimum values for CCF 

 

 

 From the diagram above, we have already derived the uncoded CCF optimum 

values for X1, X2 and X3 respectively. Subsequently, we are able to construct the 

paper gyrocopter with these optimum dimensions. In our case, we have found out 

that when the wing length is 8.92 cm, body width is 2.36 cm and shoulder length is 

2.06 cm, the paper gyrocopter is performing at its best and contributing to the longest 

duration of flight time. 

 

 The experiment is then carried out again based on these optimum dimension 

and the results are as following: 

 

Table 4.6: Flight time for before and after optimization 

 
Before After Target 

1 3.30 4.3 4 

2 3.40 4.1 4 

3 3.50 4.3 4 

4 3.30 4.2 4 

5 3.40 4.1 4 

6 3.40 4.1 4 

7 3.50 4.3 4 

8 3.60 4.2 4 

9 3.30 4.2 4 

10 3.40 4.1 4 
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 According to the table, the overall trend of the flight time after optimization 

has improved significantly in comparison to the initial conditions. The optimized 

results are even better than our targeted value which is 4 seconds. The following 

graph will clearly displays that the values after optimization are greater than the 

targeted value and the values before optimization.  

 

 

Figure 4.8: Graph of before and after optimization 

 

 

 

4.2.4 Quality loss calculation 

 

Table 4.7: Quality Loss Calculation for CCF 

  Before After 

Loss 1.00 1.00 

Spec 4.00 4.00 

k 16.00 16.00 

  
 

  

Mixture 1.38 0.93 

Total 1.38 0.93 

Cost   32.42 
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Figure 4.9: Graph which shows the reduction of cost 

 

 

From the table and graph above, we could notice that the total cost of one paper 

gyrocopter has been reduced from RM1.38 to RM0.93. In terms of percentage, we 

have made an improvement of 32.42%. In other words, it also shows that face-

centred composite design is not only useful in obtaining the optimum condition of a 

paper gyrocopter but also to save the overall production cost of a paper gyrocopter. 
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CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

In conclusion, the main objective of this final year project, which is to apply central 

composite design on a paper gyrocopter system, has been achieved. This final year 

project has led us to understand the importance of design of experiment (DOE) in 

general and central composite design (CCD) in particular.  

 

Basically, this experiment is to determine the optimum factor which will 

contribute most to the flight time of a paper gyrocopter system. After carrying out the 

experiment, we are then able to generate the ANOVA table and plot the response 

surface graph to clearly identify the significant factors involve. Later on, the 

optimum condition for X1, X2 and X3 of a paper gyrocopter was also determined. 

The optimization is able to bring a significant decrease in cost per unit of a paper 

gyrocopter and an increment in flight time. In other words, CCF is proven useful and 

effective.  

 

Besides, we have also obtained the knowledge and skill of using Microsoft 

Excel through this project. Microsoft Excel is no doubt very powerful as it is 

equipped with numerous mathematical functions which ease our calculation. 

 

 

 

Comment [N1]: Reword this part. 
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5.2 Recommendations 

 

Although we are able to achieve the objective of this research design, there are also 

room for improvements to further enhance the results and reducing even more cost. 

 

 

 

5.2.1 Design parameters 

 

For this experiment, we have set the range for body width (X2) and shoulder length 

(X3) to be 2cm to 3cm. After running the experiment, the ANOVA table shown in 

table 4.5 indicates that the factor X2 and X3 are pooled, in other words not 

significant. Therefore, we may claim that the intervals for these two factors might be 

too close to show any significant changes and this will certainly cause the overall 

result of the experiment. Hence, we suggest that the intervals for all factors should 

not be too close with a difference of more than one. 

 

 

 

5.2.2 Amount and types of factors 

 

For this experiment, we only involve three factors, namely wing length, body width 

and shoulder length. There are certainly many more factors which will affect the 

flight time of the paper gyrocopter, such as the type of paper, body length and etc. 

However, we are uncertain as we did not involve all of the other factors. Plus, adding 

more factors might also help in determining the significant factors involve. 

 

 

 

5.2.3 Location of the experimental environment 

 

The location and environment also plays an important role when carrying out the 

experiment. For our case, the experiment was done in an open air condition within 

the university compound. Not to mention that there was wind blowing during the 
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course of our experiment. Therefore, we suggest that the experiment should be done 

in a confined area where there is no external disturbance so that the data would be 

more precise and variability of results could be reduced. 
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