
I 
 

THEORETICAL METHOD FOR TESTING AN UNTESTABLE 

CASES  

By 

Chang Wing Le 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF COMPUTER SCIENCE (HONS) 

Faculty of Information and Communication Technology 

(Kampar Campus) 

 

 

May 2019 

  



II 
 

UNIVERSITI TUNKU ABDUL RAHMAN 

REPORT STATUS DECLARATION FORM 

 

 

Title:  __________________________________________________________ 

__________________________________________________________ 

__________________________________________________________ 

 

Academic Session: _____________ 

 

I   __________________________________________________________ 

(CAPITAL LETTER) 

 

declare that I allow this Final Year Project Report to be kept in 

Universiti Tunku Abdul Rahman Library subject to the regulations as follows: 

1. The dissertation is a property of the Library. 

2. The Library is allowed to make copies of this dissertation for academic purposes. 

 

 

 

 

Verified by, 

 

 

_________________________  _________________________ 

(Author’s signature)     (Supervisor’s signature) 

 

Address: 

__________________________ 

__________________________  _________________________ 

__________________________   Supervisor’s name 

 

Date: _____________________       Date: ____________________ 

 

  



III 
 

THEORETICAL METHOD FOR TESTING AN UNTESTABLE 

CASES  

By 

Chang Wing Le 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF COMPUTER SCIENCE (HONS) 

Faculty of Information and Communication Technology 

(Kampar Campus) 

 

 

May 2019 



IV 
 

DECLARATION OF ORIGINALITY 

 

I declare that this report entitled “THEORETICAL METHOD FOR TESTING AN 

UNTESTABLE CASES” is my own work except as cited in the references. The report has not 

been accepted for any degree and is not being submitted concurrently in candidature for any degree 

or other award. 

 

 

 

Signature  : _________________________ 

 

Name   : _________________________ 

 

Date   : _________________________ 

 

  



V 
 

ACKNOWLEDGEMENTS 

I would like to express my deepest gratitude to my supervisor, Dr Tse Siu Hong Savio. Dr Savio 

had been given a lot of helping for guiding me on how to progress for this project. His patience 

helped me to have my time to stepped out from comfort zone.  I also need to thank my parents 

for giving unconditional support for the choice of my education. 

  



VI 
 

ABSTRACT 

In the area of software testing, there are many untestable cases due to the lack of oracles.  

Examples are finding a hotel with minimum price, using a spreadsheet to find sum or average of a 

large set of numbers, simulation, etc..  In the literature, it is called the Oracle Problem.   Oracle 

Problem cannot be solved completely due to the natures of the requirements of the functions.  What 

we can do is to alleviate the problem by showing more evidence on the correctness of the functions. 

We notice that many numerical functions are not testable, like sin(29.8o), finding the natural 

number e, finding π, etc., when the correctness is measured to a large number of decimal point 

digits.  For those functions with integer outputs, the scenarios are not much better.  There is an 

example—finding n!, which is not testable when n is large, like 100000.  In this project, we develop 

four methods which show evidences on the correctness of n!  

The first method is to apply the Wilson theorem in the literature, which states the property of 

n! when n+1 is a prime. We use this property for testing n! when the input is prime. 

The second method is length-testing.  Without computing n!, we only find the length of n!, 

because it is much easier than n! itself.  If a function being tested gives the correct n!, the length 

of this output n! must perfectly match our finding on the length of n!. 

The third method is prime-counting.  Without computing n!, we want to match the numbers 

of factors of “3” (say), “5”, “7”, etc., inside n!, with our theoretical results. 

The fourth method is metamorphic-testing, which is a new technique in software testing 

proposed within these 10 years.  We show that it is possible to apply this on finding n!, and we 

will also prove its very low probability of errors.  

By the above methods, we alleviate the Oracle Problem for testing n!. We consider this project 

as a milestone in exploring some more general techniques for testing other numerical functions.  

  



VII 
 

TABLE OF CONTENTS 

FRONT PAGE i 

REPORT STATUS DECLARATION FORM ii 

TITLE PAGE iii 

DECLARATION OF ORIGINALITY iv 

ACKNOWLEDGEMENTS v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF FIGURES x 

  

CHAPTER 1   INTRODUCTION 1 

1.1 Background 1 

1.2    Problem Statement 4 

   1.3    Contribution (Why choose factorial number as test case) 7 

  



VIII 
 

CHAPTER 2   FOUR METHOD 8 

2.1 Applying Wilson’s theorem 8 

2.2 Length-testing 9 

2.3    Prime counting 12 

         Fact 2.3.1 12 

         Lemma 2.3.2 12 

         Lemma 2.3.3 12 

         Lemma 2.3.4 13 

         2.3.5 Intuition of the proof 15 

         2.3.6 For the result in Lemma 2.3.4, stating how can it be 

verified by experiment 

18 

         2.3.7 Testing factorial numbers through prime factorization 19 

         2.3.8 Lower value prime factors always have higher 

occurrence to higher value prime factors 

20 

         2.3.9 All prime numbers with value lower than n for n! must 

be exist 

20 

         2.3.10 Changes of prime factors occurrence when value of 

actual prime number changed 

21 

         2.3.11 Extra Information 21 

2.4 Metamorphic testing with combination function 22 

  

CHAPTER 3   CONCLUSION 24 

 

BIBLIOGRAPHY 

26 

  

Appendix A: Poster A-1 

  

Appendix B: Plagiarism Check Result B-1 

 

 



IX 
 

LIST OF FIGURES 

Figure Number Title Page 

   

Figure 2.2.1 Concept of missing one value before decimal point due to 

truncation 

9 

Figure 2.2.2  Value of log1010K+t 10 

Figure 2.2.3 Value of log1010K+t part 2 10 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 Background 

Software testing is an important branch in Software Engineering.  Since testing a program is 

basically incomputable, in computational theory; however, it is the gateway to make sure that the 

systems to be delivered are reasonably error-free.  In order to make software testing efficient, 

oracles are needed.  Oracle is referred to the inputs which can be used for verifying (but not 

proving) the correctness systems efficiently.   

Untestable cases in software testing are those programs having no oracles so far. In the 

literature, it is also called Oracle Problem.  In short, oracles are in the format of (input, output); 

and Untestable cases occur when the output cannot be found efficiently.  Often for testing these 

programs could lead to countless number of test-cases and consuming a lot of time thus untestable 

cases had been one of the basic challenges for software tester. Difficulty for testing these programs 

often caused by its error-prone behavior or output results that are too difficult to be verified by 

human manually.  It is also known as “test oracle problem”. Test oracle is collection of information 

to determine if a test have passed or failed, normally specifying a set of inputs and desired output. 

A survey had been done for analyzing properties of test oracle and test oracle problems (Barr et 

al., 2015). In this survey (Barr et al., 2015), according to distinctively properties, these test oracles 

had been divided into different categories, calling “test oracles can be specified”, “test oracles can 

be derived”, “test oracles can be built from implicit information” and “no automatable oracle but 

can reduce human effort”. 

In effort to solve these pseudo-oracle problems, many specific software techniques such as 

metamorphic testing had been introduced by T.Y.Chen (Zhi Quan Zhou et al, 2004). Metamorphic 

testing originally being invented with the intention to complete testing by reducing number o test-

cases compare to general software testing technique. Metamorphic testing is performed but 

defining metamorphic relation between the program input and output to act as follow-up cases for 

multiple execution of desired program. According to a study, it suggests metamorphic testing could 

potentially helping on solving oracle problem to some degree even testing is performed but 

inexperienced testers (Liu, H., Kuo, F., Towey, D. and Chen, T, 2014). However, for each specific 

case, even applied with certain testing technique, it needed to be defined their own specific test 

cases which are highly dependent on tester skills. For untestable cases, the ideal way for testing a 



2 
 

program would be replicating the original program using different programming language and 

libraries bu different develop team, which called pseudo-oracle (Weyuker, 1982). However, it is 

too costly on using pseudo-oracle, if there is mismatch output between original and replicate 

program, it is difficult to determine which one is the correct one and needed for second replication 

(Weyuker, 1952). Hence, it is better to find some other methods on testing an untestable case. 

As an example for untestable cases, the sin function, let’s say for testing the output of sin(78), 

we can use test case sin(78)= sin(45+33) = sin(45)cos(33) + sin(45)cos(33), where sin(45)=
1

√2
, 

cos(45) = 
1

√2
. But in this case, the value of sin(33) and cos(33) could be difficult to tested out the 

result even for further extending (sin(33))=sin(30+3) and cos(33) = cos(30+3.) 

Another good example of untestable cases would be the pi number, π that a program is done 

for showring all digits for pi 3.14159265… that could be infinite long, normally the result it self 

automatically admitted as true result for further used in pi analysis. However, to confirm the pi 

program truly perform desired behavior, the whole output needed to be retest again, thus showing 

the importance of testing the cases what is considered as “untestable”. 

Factorial function is another untestable function, and we focus on this in this project.  There 

are many applications for factorial function such as combinatorics. Moreover, since factorial 

function could only give discrete values, efforts had been done one extending factorial function 

for wider appliances, one of them is the notable Gamma function. General factorial function n! can 

only receive positive integer arguments. Gamma function extends the range of argument to 

fractions and negative arguments. Unlike factorial function, Gamma function could give a 

continuous graph for further analysis, hence it could be said n! is a special case for Gamma function. 

General definition for Gamma function is (𝑧 + 1) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥 = (𝑧)!
∞

0
. There is also several 

derivation of Gamma formula done in use of n! such as (1 + 𝑛) =
(2𝑛)!

4𝑛𝑛!
√𝜋,, hence we can insert 

n! to test Gamma function.  This means that n! is needed to be determined first.  Another usage of 

factorial function is exponential function ex, which is equal to 1  + (x/1!) + (x2/2!) + (x3/3!) + … 

We believe that a correct value of n!, for large n, is useful in scientific computing.  For example, 

n particles will have n! permutations and under the model of uniform probabilities, each 

permutation is 1/n!.  A wrong value of n! will give a wrong probability, which may affect a lot 

especially in the mathematics of quantum mechanics. 



3 
 

It is common for social media on interpreting how to solve a large factorial number is 

simplifying the factorial number based on division by a very large factorial number with relatively 

smaller factorial number. For example, (51!-50!)/(50!-49!) = (50! x (51-1))/(49!x(50-1)) = 2550/49. 

However, this kind of solution is inadequate because the problem isn’t really related for finding 

actual large factorial number and instead applying art of problem solving onto simpler visible 

number due to the nature of division. It could be a very difficult task for verifying correctness of 

actual factorial number n! when n is larger. This project would bring contribution to advanced 

scientific calculator for finding actual factorial number but not the approximation. 

 

  



4 
 

1.2 Problem Statements 

Definition for factorial function is n! = 1* 2 * 3* … * (n-1) * n, value for n could only receive 

positive integer argument. One of the properties for factorial functions is that its value rises greatly 

on increasing the value of n, which makes it be difficult to be verified correctness of factorial 

number program output manually or automatically.  When n is large, n! is considered as an 

untestable function.   It is not surprising that one may not agree to test n! due to the simplicity of 

its iterative and recursive algorithms as shown below: 

 

factorial = 1;     Algorithm factorial(n) 

For i = 1 to n     if n = 1 

     factorial = factorial * i ;       return 1; 

return factorial;     return n*factorial(n-1); 

 

However, the above algorithms are correct and perfect only when n is small.   For large n, the 

integer or long integer type in any language will encounter overflow.  Programmers must construct 

an extremely long integer type by himself.  When the compiler platform or even the computer 

memory cannot withstand such long integer, programmers need to use secondary storage for 

storing any single integer.   The multiplication of integers of such type is certainly error prone, and 

therefore, systems which output n! are needed to be tested. 

Why n! is not testable?  Even when n is as small as 20, from our experience, we do not have 

any way to verify 20! = 3,715,891,200, except re-computing it, or performing division with 

divisors 1, 2, 3, …, 20.   Both methods are not preferred in software testing, because they are not 

oracles, but simply another program for n! which should be tested too.  In this sense, n! is not 

testable. 

 In this project, exploration on methods for testing n! is the main objective.  The immediate 

method on testing factorial program is using the famous Stirling formula.   Stirling formula is 

approximation to factorial formula which could give results closely to actual factorial number.   

The formula is stated below: 

𝑛! = √2𝜋 (
𝑛

𝑒
)

𝑛

(1 +  𝑂 (
1

𝑛
)) 



5 
 

As shown at the above, error rate for Stirling Approximation to actual factorial numbers n! would 

be 1/n, so the higher the value of n, the lower the error rate.  By taking an example, let’s say when 

n = 200, the error rate for Stirling Approximation would be just 1/200 = 0.005. While one may be 

satisfied with this low error rate, error rate 1/n means that only the first Θ(log n) bits can be ensured 

its correctness. 

 

Figure 1.2(a) Bits calculation for Stirling Formula 

 

Is Θ(log n) bit accuracy acceptable?  It depends on the whole length of n!.   We know that the 

length of a function f(n) is (log2⌊𝑓(𝑛)⌋)+1.  For n!, it would be (log2⌊𝑛!⌋)+1 = (log2n!)+1. 

For upper bound, 

log(n!) + 1 = log(1) + log(2) + log(3) + ⋯ + log(𝑛) + 1

≤ log(𝑛) + log(𝑛) + log(𝑛) + ⋯ + log(𝑛) + 1 = 𝑛𝑙𝑜𝑔(𝑛) + 1 

For lower bound, 

log(n!) + 1 = log(1) + log(2) + log(3) + ⋯ + log(𝑛) + 1

≥ log (
𝑛

2
) + log (

𝑛

2
+ 1) + log (

𝑛

2
+ 2) + … + log(𝑛) + 1 =

𝑛

2
𝑙𝑜𝑔 (

𝑛

2
) + 1 

Hence, the length of n! is O(n log n), and therefore, the correctness of O(log n) leading digits 

contribute little to the correctness of the whole n!. 

Could we count the trailing zeroes?  We only need to consider all factors 2*5 to get the result 

from the factorial numbers, each 2*5 factor would mean there is one trail zero for the number. 

Since in factorial number higher value of prime factor always have lower occurrence than lower 

value of prime factor, hence only calculated for factors of 5 equals to the number of trailing zeroes. 

 

Calculation is as follow:  



6 
 

Let’s say 

5𝑘−1 <  𝑛 ≤ 5𝑘  

Then 

5n > 5𝑘 >  𝑛 

𝑛!  ≤ 5𝑘! 

 

From section 2.3 later, it would be reviewed that pk! has ((pk – 1) / (p-1)) factors of p, where p is a 

prime. 

Hence, 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 5 ≤  
5𝑘 − 1

5 − 1
= 𝛩(5𝑘) = 𝛩(𝑛) 

 

Since the trailing zeros used up would be  Θ(n) of spaces which is still insignificant compare 

to Θ(n log n).  It can be concluded that Θ(log n) bits guaranteed by Stirling formula and Θ(n) 

trailing zeros together are still not significant enough to be used as test case for actual factorial 

program output. For further increasing testable digits, trailing zeros in factorial number is found. 

There would be always some digits in the middle of factorial number that are untestable, the ratio 

of these untestable digits to factorial number needed to be find out too in order to know efficiency 

of this testing method. 

 

 

 

 

  



7 
 

1.3 Contribution (Why choose factorial number as test case) 

For scientific calculator, especially those used by researcher who are going on a real-life large 

project which highly dependent on real environment needed to get true result as accurate as 

possible when doing calculation. This is because on large project, such as launching a rocket 

toward the space, a slightly deviation from the true calculation result could lead to the rocket 

launch towards a very different direction. Factorial number as a common quantity number, had its 

many application on combinatorics and approximation of other function such as exponential and 

logarithm. In this project, it assumed factorial number would be an important property for 

incoming future scientific works and needed to be computed as accurate as possible.  

 

As illustrate at section 1.2, factorial number result is difficult to test and consume high 

computation power. In this project, several methods are explored and give its importance on testing 

factorial number at different condition. Methods such as testing using Wilson theorem and length 

testing could compute fast and can be used as earlier testing for factorial number. Although 

methods mentioned above suggested to be used as an earlier testing, these methods are considered 

as high efficiency for finding faults on the program too. Other than these two, this project also 

included methods so called prime-counting and metamorphic-testing, these computes result 

relatively slower than methods mentioned earlier, but could show more irregular pattern on the 

program faults. 

 

This project may contribute effort for building advanced scientific calculator which want to 

get actual factorial number. Algorithm for factorial number had been studied carefully at the 

past, with both approximation or getting the actual factorial number. Nevertheless, output of n! 

program could be a difficult task for testing its correctness, hence contents in this project could 

be used to relieving the problem thus reducing the error might got when developers try to build a 

factorial number program.  



8 
 

CHAPTER 2: FOUR METHODS 

2.1 Applying Wilson’s theorem 

Wilson’s theorem (Andrew Ohana, 2009) stated that integer p > 1, then (p-1)! + 1 is divisible by 

p if and only if p is prime.  

(n − 1)! ≡ −1(mod n) 

By giving the condition if and only if, if n is a prime, Wilson’s theorem can be used for testing the 

factorial function.  It is not difficult to determine whether an integer is a prime, because we can 

apply Agrawal et al’s polynomial time algorithm (Manindra Agrawal et al, 2004)。 

 

In the literature, this problem is called primality testing.  Though we have the primality testing 

done in P-time, it is still difficult to find a prime within a range of integers because of its scarcity.  

This is the short-coming for applying Wilson’s Theorem. 

 

 

  



9 
 

2.2 Length-testing 

We count the number of base-10 digits in n!.  Number of digits could be a good testing method as 

early testing for factorial number. The number of digits for a number x is always as  1 + ⌊𝑙𝑜𝑔𝑥⌋. 

In the case of factorial number, the number of digits is: 

1 + ⌊log10𝑛!⌋ = 1 + ⌊log10(1 ∗ 2 ∗ 3 ∗ 4 ∗ … ∗ 𝑛 − 1 ∗ 𝑛⌋

= 1 + ⌊log101 + log102 + log103 + log104 + … +log10(𝑛 − 1) + log10𝑛⌋ 

The formula above list an appropriate property of factorial number since the time complexity for 

addition above is only O(n log log n) and if computed correctly it could be 100% effectiveness on 

confirming fault on the program when numbers of digits for the output is not matching with 

formula above.  Before on confirming the 100% effectiveness, there would be some aspect need 

to be concern with the method, in order to achieve effectiveness mentioned above. 

 

In this project, we do not assume the reliability of log function in any built-in library, due to the 

unopened source of truncation or round off techniques.  Our method requires the software tester 

to write his own function of logarithm and at which point the truncation takes place depends on an 

input parameter. No matter how well the precision is, the effect of many truncations may affect 

the integer part of the final sum. 

 

     Figure 2.2.1  Concept of missing one value before decimal point due to truncation



10 
 

 

Truncation occurs at each log10i, i=1, 2, …, n.  Suppose all digits after the pth decimal point 

will be truncated.  The error for each truncation will be at most 10-p, and totally, the total 

error will be at most n*10-p. This will be at most 1 unit at the (p − ⌊𝑙𝑜𝑔 𝑛⌋)th decimal point.  

However, this value  may cause one number missing from the 1 + ⌊𝑙𝑜𝑔 𝑛!⌋ and becoming 

⌊log 𝑛!⌋ which is not accurate for the properties of actual factorial number. When this 

occurs, the format of log n! must have “9” for each digit from the 1st to the (p-⌊log n⌋-1)th 

decimal point.  However the missing-one effect will not occur when we try m! where 

m=n+1 and m is not a power of 10.  In case n+1 is a power of 10, then we set m=n+2.  We 

explain the reason below: 

 

Lets say 10𝐾 + 1 ≤ 𝑚 < 10𝐾+1, for m! 

Claim: For  m = 10𝐾 + 1, log (10𝐾 + 1) = K + 0.000 … 000x …, where x is any non-zero 

digit, and the number of “0”s in the decimal points before x is no more than ⌊𝑙𝑜𝑔𝑛⌋. 

Proof: 

log( 10𝐾 + 1) = log(10𝐾) (1 +
1

10𝐾
) = log 10𝐾 + log (1 +

1

10𝐾
)

= K +
1

𝑙𝑛10
ln (1 +

1

10𝐾
) ≤ 𝐾 +

1

𝑙𝑛10
(

1

10𝐾
) 

Q.E.D. 

From 𝐾 +
1

𝑙𝑛10
(

1

10𝐾), it become ln(1 + y) ≤ y for small y, to illustrate it graphically it 

would be as below: 

               



11 
 

Figure 2.2.1 Value of log1010K+t  Figure 2.2.1 Value of log1010K+t 

 

Let’s say K=8, then there must be always 8 zeroes between the decimal point and non-

zero value after it. As the increasing value of  𝑛 ≥ 10𝐾, it also could be seen that the 

zeroes in between becoming lesser. However, with one column having K zeroes in 

between, it is already sufficient for doing truncation after K space without affecting the 

value before the decimal point. 

 

This method is used as below: 

 

For any given n,  

if n+1 is not 10𝑘for any k, 

    let m=n+1 

else // for some k, 𝑛 + 1 = 10𝑘 

    let m=n+2; 

 

Also let 

A = 1 + ⌊𝑙𝑜𝑔 𝑛!⌋ 

A’= 1 + ⌊𝑙𝑜𝑔 𝑚!⌋ 

B = length of result from factorial program using input n 

B’= length of result from factorial program using input m 

 

Then compare the value of A and B, A’ and B’ which give conclusion based on the below 

condition: 

If fulfilling any condition 1 combine with condition 2, then report no error. Else, report 

error. 

Condition 1 Condition 2  Output 

B=A B’=A’ Report no error 

B=A-1 B’=A’-1 

  



12 
 

2.3  Prime counting 

2.3.1 The number of times that a prime p appears inside n! where p ≤ n 

Fact 2.3.1 For any positive integers, a and b, and a prime b<p, we have ap+b indivisible 

by p.  

 

Using Fact 2.3.1, we can prove Lemma 2.3.2, below. 

 

Lemma 2.3.2 For any prime 𝑝, positive integers 𝑠, 𝑘, 𝑖, 𝑗, such that 𝑠 ≤ 𝑘, 𝑖 ≤ 𝑝 − 2 , when 

𝑗[1, 𝑝𝑘], 𝑝𝑠 can divide (𝑖𝑝𝑘 + 𝑗) if and only if  𝑝𝑠 can divide j; and when 𝑗[1, 𝑝𝑘 − 1],  

𝑝𝑠 can divide ((𝑝 − 1)𝑝𝑘 + 𝑗) if and only if  𝑝𝑠 can divide j.   

 

Lemma 2.3.3 For any prime p, the number of factors, which are equal to p, in 1 ∗ 2 ∗ … ∗

𝑝𝑘  is (𝑝𝑘 − 1)/(𝑝 − 1). 

 

Proof: We prove this by mathematical induction.  When k=1, the number of factors, which 

are equal to p, inside  1 ∗ 2 ∗ … ∗ 𝑝𝑘  is trivially one, and therefore, the lemma is true for 

k=1.   

 

Inductive case: Suppose that the number of factors, which are equal to p, in 1 ∗ 2 ∗ … ∗

𝑝𝑘−1 is (𝑝𝑘−1 − 1)/(𝑝 − 1).  We now prove that the number of factors, which are equal 

to p, in 1 ∗ 2 ∗ … ∗ 𝑝𝑘  is (𝑝𝑘 − 1)/(𝑝 − 1). 

 

Since  1 ∗ 2 ∗ … ∗ 𝑝𝑘  = 1 ∗ 2 ∗ … ∗ 𝑝𝑘−1  * (𝑝𝑘−1 + 1) ∗ (𝑝𝑘−1 + 2) ∗ … ∗ 𝑝𝑘 , it suffices 

to show that the number of factors, which are equal to p, in (𝑝𝑘−1 + 1) ∗ (𝑝𝑘−1 + 2) ∗ … ∗

𝑝𝑘  is 𝑝𝑘−1.   

 

Rewriting (𝑝𝑘−1 + 1) ∗ (𝑝𝑘−1 + 2) ∗ … ∗ 𝑝𝑘  into the product of 𝑝 − 1  expressions as 

follows: 

.[(𝑝𝑘−1 + 1) ∗ (𝑝𝑘−1 + 2) ∗ … ∗ (𝑝𝑘−1 + 𝑝𝑘−1)] ∗ 

 [(2𝑝𝑘−1 + 1) ∗ (2𝑝𝑘−1 + 2) ∗ … ∗ (2𝑝𝑘−1 + 𝑝𝑘−1)] ∗ 



13 
 

 [(3𝑝𝑘−1 + 1) ∗ (3𝑝𝑘−1 + 2) ∗ … ∗ (3𝑝𝑘−1 + 𝑝𝑘−1)] ∗ 

…………… 

 [((𝑝 − 2)𝑝𝑘−1 + 1) ∗ ((𝑝 − 2)𝑝𝑘−1 + 2) ∗ … ∗ ((𝑝 − 2)𝑝𝑘−1 + 𝑝𝑘−1)] ∗ 

 [((𝑝 − 1)𝑝𝑘−1 + 1) ∗ ((𝑝 − 1)𝑝𝑘−1 + 2) ∗ … ∗ ((𝑝 − 1)𝑝𝑘−1 + 𝑝𝑘−1)]. 

 

We can further rewrite the first 𝑝 − 2 expressions as 

[(𝑖𝑝𝑘−1 + 1) ∗ (𝑖𝑝𝑘−1 + 2) ∗ … ∗ (𝑖𝑝𝑘−1 + 𝑝𝑘−1)], 

where 𝑖[1, 𝑝 − 2] .  By Lemma 2.3.2, for any positive integer s, 𝑝𝑠  can divide 

(𝑖𝑝𝑘−1 + 𝑗), where 𝑗[1, 𝑝𝑘−1], if and only if  𝑝𝑠  can divide j.  Hence, the number of 

factors, which are equal to p, in the ith expression is the same as that in 1 ∗ 2 ∗ … ∗ 𝑝𝑘−1, 

and it equals to (𝑝𝑘−1 − 1)/(𝑝 − 1) by the inductive hypothesis. 

 

Consider [((𝑝 − 1)𝑝𝑘−1 + 1) ∗ ((𝑝 − 1)𝑝𝑘−1 + 2) ∗ … ∗ ((𝑝 − 1)𝑝𝑘−1 + 𝑝𝑘−1)].   

By Lemma 2.3.2, for some integer s, 𝑝𝑠  can divide ((𝑝 − 1)𝑝𝑘−1 + 𝑗),  where 

𝑗[1, 𝑝𝑘−1 − 1], if and only if  𝑝𝑠  can divide j.  Note that, the factor ((𝑝 − 1)𝑝𝑘−1 +

𝑝𝑘−1)  is exactly 𝑝𝑘 .  Hence, the number of factors, which are equal to p, inside 

[((𝑝 − 1)𝑝𝑘−1 + 1) ∗ ((𝑝 − 1)𝑝𝑘−1 + 2) ∗ … ∗ ((𝑝 − 1)𝑝𝑘−1 + 𝑝𝑘−1)]  is the same as 

that inside 1 ∗ 2 ∗ … ∗ 𝑝𝑘−1 plus one. That is, 
(𝑝𝑘−1−1)

𝑝−1
+ 1, by the inductive hypothesis. 

  

Summing up, the number of factors, which are equal to p, in (𝑝𝑘−1 + 1) ∗ (𝑝𝑘−1 + 2) ∗

… ∗ 𝑝𝑘  is  [
(𝑝𝑘−1−1)

𝑝−1
] (𝑝 − 2) +

(𝑝𝑘−1−1)

𝑝−1
+ 1 = 𝑝𝑘−1.    

 

Lemma 2.3.4 For any prime p, and positive integer 𝑎 < 𝑝, the number of factors, which 

are equal to p, in 1 ∗ 2 ∗ … ∗ 𝑎 ∙ 𝑝𝑘 is 𝑎(𝑝𝑘 − 1)/(𝑝 − 1). 

 

Proof: By using Lemmas 2.3.2 and 2.3.3.   

 



14 
 

Now we prove for the case that 𝑛 may or may not be a power of prime 𝑝.  We first express 

𝑛  as  𝑎𝑘𝑝𝑘+𝑎𝑘−1𝑝𝑘−1 + ⋯ + 𝑎1𝑝 + 𝑎0 , where 𝑎𝑖 < 𝑝 , 𝑖 ∈ [0, 𝑘],  for some positive 

integer 𝑘. 

 

We partition 𝑛! into 𝑘 + 1 expressions, and then sum up the number of appearance of 𝑝 

inside them.   

 [1 ∗ 2 ∗ … ∗ 𝑎𝑘𝑝𝑘] ∗ 

 [(𝑎𝑘𝑝𝑘 + 1) ∗ (𝑎𝑘𝑝𝑘 + 2) ∗ … ∗ (𝑎𝑘𝑝𝑘 + 𝑎𝑘−1𝑝𝑘−1)] ∗ 

 [(𝑎𝑘𝑝𝑘 + 𝑎𝑘−1𝑝𝑘−1 + 1) ∗ (𝑎𝑘𝑝𝑘 + 𝑎𝑘−1𝑝𝑘−1 + 2) ∗ … ∗ (𝑎𝑘𝑝𝑘 + 𝑎𝑘−1𝑝𝑘−1 +

𝑎𝑘−2𝑝𝑘−2)] ∗ 

 ………… 

 ………… 

 (𝑎𝑘𝑝𝑘+𝑎𝑘−1𝑝𝑘−1 + ⋯ + 𝑎1𝑝 + 1) ∗ (𝑎𝑘𝑝𝑘+𝑎𝑘−1𝑝𝑘−1 + ⋯ + 𝑎1𝑝 + 2) ∗ … ∗

(𝑎𝑘𝑝𝑘+𝑎𝑘−1𝑝𝑘−1 + ⋯ + 𝑎1𝑝 + 𝑎0)]. 

 

By extending Lemma 2.3.2, the number of appearance of 𝑝 inside them is the same as that 

inside the following expressions:   

 [1 ∗ 2 ∗ … ∗ 𝑎𝑘𝑝𝑘] , [1 ∗ 2 ∗ … ∗ 𝑎𝑘−1𝑝𝑘−1] , [1 ∗ 2 ∗ … ∗ 𝑎𝑘−2𝑝𝑘−2] , ……, [1 ∗ 2 ∗ … ∗

𝑎1𝑝], and [1 ∗ 2 ∗ … ∗ 𝑎0]. 

Hence, by Lemma 2.3.4, the number of appearance of 𝑝 in 𝑛! is 𝑎𝑘(𝑝𝑘 − 1)/(𝑝 − 1) + 

𝑎𝑘−1(𝑝𝑘−1 − 1)/(𝑝 − 1)  + …+ 𝑎1(𝑝1 − 1)/(𝑝 − 1)  + 𝑎0(𝑝0 − 1)/(𝑝 − 1) , or 

∑
𝑎𝑖(𝑝𝑖−1)

𝑝−1

𝑘
𝑖=1 , because the last term is zero. 

 

Let us take an example — 338!. 

Express 338 in base 5 would be 2323(base5) or 2(53) + 3(52) + 2(51) + 3(50). 

 

Let us say Fi5(x) is the number of factors of 5 for x. 

 



15 
 

Fi5(338!) = 𝐹𝑖5(2(53)!) + 𝐹𝑖𝑃(3(52)!) + 𝐹𝑖𝑃(2(51)!) + 𝐹𝑖𝑃(3(50)!)

= 2(𝐹𝑖5(53!)) + 3(𝐹𝑖𝑃(52)!) + 2𝐹𝑖𝑃(51)!) + 3(𝐹𝑖𝑃(50)!)

= 2 (
53 − 1

5 − 1
) + 3 (

52 − 1

5 − 1
) + 2 (

51 − 1

5 − 1
) + 3 (

50 − 1

5 − 1
)

= 62 + 18 + 2 + 0 = 82 

 

2.3.5 Intuition of the proof 

if n =  𝑝𝑘 , then the number of factors of p = 1 + p + 𝑝2 + ⋯ + 𝑝𝑘−1 =
𝑝𝑘 − 1

𝑝 − 1
 

 

Let’s say: 

𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑖𝑛 𝑛! 𝑎𝑟𝑒 1,2,3, … , 𝑝, 𝑝 + 1, … ,2p, … , 𝑝2, … , 𝑝3, 𝑝𝑘  

Terms that consist of factor p are p, 2p, 3p, … , 𝑝2, 𝑝2 + 𝑝, 𝑝2 + 2𝑝, … , 𝑝3, … , 𝑝𝑘 

 

By taking one p from all the factors, number of p taken would be 𝑝𝑘−1. 

 

After taking the p, the factors would become: 1,2,3, … , p, p + 1, … 𝑝𝑘−1. 

The factors above would be the whole factors of 𝑝𝑘−1!. 

From this we can see that next time number of factor p would be taken is 𝑝𝑘−2. 

And the next time number of factor p would be taken is 𝑝𝑘−3. 

 

From this, we can see that the total number for factors of p being factored out along the 

progress would be pk-1 + pk-2 + pk-3 + … + p2 + p + 1, or it could be stated as following: 

For factorial function n!, when n 

=  𝑝𝑘 , the occurrence for factor p in n!  would be 
𝑝𝑘 − 1

𝑝 − 1
 

 

From the result about, we can concluded that when n = pk for factorial function n!, the 

factorial program output could be tested by extracted all factors of p to see if  the number 

of factors p would be match the number ((pk – 1) / (p-1)). Since n! in the form of pk! can 



16 
 

produce very huge number with just small value of p and k, hence it would just suitable for 

huge factorial number. 

 

Let’s say 5𝑘! < 𝑛! < 5𝑘+1! ,  

then 𝑛 = 𝑎0(5𝑘) + 𝑎1(5𝑘−1)+ 𝑎2(5𝑘−2) + 𝑎3(5𝑘−3) + ⋯ + 𝑎𝑘−1(51) + 𝑎𝑘(50) 

after finding value of coefficients a0, a1, a2, …, ak-1, ak, 

writing to these coefficients together is convert n onto a number in base 5. 

 

 For an example, if q = 407 in q! , then 53! < 𝑞! < 54!, 𝑞 = 3(53) + 1(52) + 1(51) +

2(50), 

q written in base 5 is writing coefficients together = 3112(base 5). 

 

Moreover, 5k and 5k+1
 in base 5 would always be 0100…000 and 1000…000, like in 

example above 53 and 54 in base 5 would be 01000 and 10000. 

 

In example above, range of q would be 01001 to 04444, then we can see that in the case of  

5k! < n! < 5k+1! , the range of n could be 0100…001 to 0444…444. 

 

In n!,  for finding number of factors of p when 𝑝𝑘! < 𝑛! < 𝑝𝑘+1!, it is needed to find 

relationship between n in base p (coefficients for a0, a1, a2, …, ak-1 in the above) and 

number of factors of p.  

Initially it is intended to use property for pk!, let’s say property(i), pk! have 
𝑝𝑘−1

𝑝−1
 number of 

factors of p and add it with number of factor of p from pk! to n!, however it may suggest 

that there is no such need for this. After determining relationship between n in base p 

(coefficients for a0, a1, a2, …, ak-1 in the above) and number of factors of p, it shows the 

relationship is an extension to property(i). 

 

For factorial number n!, start from 000…000(base p), and incremental of digit in p0 means 

add 1 value to n, which means in denary there is increase of one more multiplying term for 



17 
 

n!. However incremental in digits (or coefficient) of p0 (digits until p-1) gives no 

multiplying term that contain factor of p. 

 

Each incremental in digits for p1(until p-1) give p multiplying terms for n! in denary where 

one term of these term would contain one p factor. 

 

Each incremental in digits for p2(until p-1) give p2 multiplying terms for n! in denary where 

p-1 term of these term would contain one factor of p and one of these terms contain two 

factors of p. 

 

The illustration is as following: 

1*2*3*…*p*….*2p*…*3p*…* p2 * …* 2p2 * … * p3 * … * 2p3*… 

 

For every p multiplying terms (1 to p, p to 2p, 3p to 4p,…, with not reaching p2) there 

contain 1 factor of p. 

 

When counting factors of p from term 1 until p2, where would be p(1) + 1 factors of p 

where the term p2 give (one extra) factor of p. Hence when incrementing one digit of p2 

give p+1 factors of p. 

 

When counting factors of p from term 1 until p3, where there would be p(p+1) +1 factors 

of p where the term p3 give (one more extra factor) of p. Hence when incrementing one 

digit of p3 give p2 + p +1 factors of p. 

As a result, it could be seen that incrementing one digit of p4 give p3 + p2 + p + 1 number 

of factors of p. 

 

Incrementing one digit of p5 give p4 + p3 + p2 + p + 1 number of factors of p. 

We can conclude that an incremental of digit in pk given n in base p results in pk-1 + pk-2 

+ … + p +1 = (pk – 1)/ (p -1) number of factors of p which is the similar result of 

properties(i).  

 



18 
 

Below are some extra properties that we also can conclude: 

Let’s say FiP(x) is finding number of factors of p for x. 

Then 

FiP(n!) = 𝐹𝑖𝑃(𝑎0𝑝𝑘!) + 𝐹𝑖𝑃(𝑎2𝑝𝑘−1!) + 𝐹𝑖𝑃(𝑎3𝑝𝑘−2!) + ⋯ + 𝐹𝑖𝑃(𝑎𝑘−1𝑝1!)

+ 𝐹𝑖𝑃(𝑎𝑘𝑝0!), 

where n = 𝑎0𝑝𝑘 + 𝑎2𝑝𝑘−1 + 𝑎3𝑝𝑘−2 + ⋯ + 𝑎𝑘−1𝑝1 + 𝑎𝑘𝑝0 

And  

FiP(a(𝑝𝑘)!) = a(FiP(𝑝𝑘!)), given that 0 ≤ a < p 

 

2.3.6 For the result in Lemma 2.3.4, stating how can it be verified by experiment 

Basic logic flows of program: 

 

 count = 0; 

 x, p , k  << input; 

 while (x % p == 0){ 

  x = x / p; 

  ++count; 

 } 

If count == ((pk – 1) / (p-1)) 

 return true; 

else 

 return false; 

 

First input value of n in the form of pk to get output from the factorial program shows, then 

the rest modulus and division is the only mathematical operations for performing this 

experiment. Since it need to be taken out all the factors of p, so just  

 

1) Initially taking the output of factorial program modulus by p to see if it equals to zero 

(means the output contain factor of p.). If equal to zero go to step 2, otherwise go to step 3. 

2) Divide the output by p and increase the counting of factor p by one. Return to step 1 

again using divided output. 



19 
 

3) Checking the counting of factor p would be same as ((pk – 1) / (p-1)). 

4) If the counting result is same then it would verify the statement in (b).   

 

 

2.3.7 Testing factorial numbers through prime factorization 

By using prime factorization to get out first few prime factors and its occurrence for 

factorial number, the properties of prime factors could give some information that if 

factorial program output is faulty. When there is some alteration on value of actual factorial 

number, changes on these properties is significant even for small value prime factors (<13).  

 

The basic flow for prime factorization (from up to down) would be: 

 

n = 2; 

x << input; 

Primefac(x){ 

 if x < n 

  return; 

 if (x % n != 0) 

  ++n; 

 else 

  x = x / n; 

  output n; 

  Primefac (x); 

} 

 

Below shows some result for prime factorization of factorial numbers (for prime numbers 

until 13) by program done in section done in section 3.5: 

 

Result 1) Value used: 120! 

Prime factorization result: 2 ^ 116 + 3 ^ 58 + 5 ^ 28 + 7 ^ 19 + 11 ^ 10 + 13 ^ 9 +  ...  

Result 2) Value used: 120! (with one digit changed) 



20 
 

Prime factorization result: 2 ^ 116 + 5 ^ 28 +  ...  

Result 3) Value used:120! (added value of 3 on third digit) 

Prime factorization result: 2 ^ 116 + 3 ^ 1 + 5 ^ 28 +  ...  

Result 4) Value used:120! (added value of 5 on last 8th digit) 

Prime factorization result: 2 ^ 10 + 5 ^ 7 +  ...  

Result 5) Value used:120! (added value of 2*3*5*7*11*13 or 30030) 

 Prime factorization result: 2 ^ 1 + 3 ^ 1 + 5 ^ 1 + 7 ^ 1 + 11 ^ 1 + 13 ^ 1 +  ...  

Result 6) Value used: 120! (added with 2*12 or 18446744073709551616) 

Prime factorization result: 2 ^ 64 +  ...  

Result 7) Value used: 120! (added with 2*3+3*3+5*3+7*3+11*3+13*3 or 123) 

Prime factorization result: 3 ^ 1 +  ... 

 

Exploration of the testing results and prime number properties for factorial is as below: 

 

2.3.8 Lower value prime factors always have higher occurrence to higher value prime 

factors 

For factor of 2, its number in factorial number incremental by at least once for every 

incremental value of n in n! starting from 2. 

For factor of 3, its number in factorial number incremental by at least once for every 

incremental value of n in n! starting from 3. 

……. 

Lower value prime factors always increase its occurrence in factorial number faster than 

higher value along with n. The significant of this property shown in Result 3 and 5. In result 

3, factor of 3 have higher occurrence than 5. In result 5, prime factors from 2 to 13 share 

the same occurrence. 

 

2.3.9 All prime numbers with value lower than n for n! must be exist 

Since n! is divisible by all numbers from one to n, n! must divisible by all prime numbers 

lower than n. Hence all prime numbers lower than n have to be existed. 

 



21 
 

The significant of this proper shown property shown in Result 2, 3, 4 ,6 ,7. All these results 

show the altered factorial number causing missing of prime factors even the factors are in 

small value. 

 

2.3.10 Changes of prime factors occurrence when value of actual prime number 

changed 

When there is changes on the value of factorial number, there is chances occurrence of 

prime factors changes. For example, in result 4, occurrence for factor of 2 changed from 

116 to 10 and factor of 5 from 28 to 7. 

The way for finding occurrence of prime factor for actual prime number is as following: 

1) For n! and prime a, divide n by a and get the value (without remainder.) If the value 

is 0 then go to step 5. Else increment power of a by one and repeat step 1. 

2) Add up all the value that done step 1, then it is the occurrence of factor a for n!. 

 

This property is only suitable for testing factorial numbers by just small value prime factors 

if there is no list of prime factors for referring. 

 

2.3.11 Extra Information 

When there is changes value of factorial number n!, it has chances that there would be 

occurrence of prime factor with higher value than n, however, the computation for testing 

out this prime factor would be require much effort to done, which is not suitable for 

performing program testing. 

  



22 
 

2.4 Metamorphic testing with combination function 

The idea of metamorphic testing is to test a function by using the same function. The 

general combination function is as below: 

(
𝑛

𝑟
) =

𝑛!

r! (𝑛 − 𝑟)!
 

By changing the formula above, we could get a new definition for factorial number. 

n! = r! (𝑛 − 𝑟)! (
𝑛

𝑟
) 

where r = 1,2,3,4  ,… , n-1.  We use the function to output n!, r!, and (n-r)!, and then use 

the above formula for verification.  (𝑛
𝑟

) can be computed in O(r) step, but each step is very 

long integer multiplication or division.  This is a method to test the factorial function. 

 

In order to reduce computation time, r is replaced as n/2 as below: 

n! = ⌈
𝑛

2
⌉ ! ⌊

𝑛

2
⌋ ! (

𝑛
𝑛
2

) 

With formula above, difference between ⌈
𝑛

2
⌉ and ⌊𝑛 −

𝑛

2
⌋ would not larger than 1 which 

reduce the computation time when applying metamorphic testing. 

By “metamorphic”, we refer metamorphic testing to a testing technique that using 

metamorphic relation between inputs and outputs to verify the correctness of an output.  In 

this case, this project is using the factorial number defined inside the formula ( ⌈
𝑛

2
⌉ ! and 

⌊
𝑛

2
⌋ !) to test correctness of n! output. Factorial number defined inside the formula ( ⌈

𝑛

2
⌉ ! 

and ⌊
𝑛

2
⌋ !) could be further defined further through recursive function. 

For example, let’s say  ⌈
𝑛

2
⌉  is even number, then it could be further defined onto  

⌈
𝑛

2
⌉ ! = ⌈

𝑛

4
⌉ ! ⌊

𝑛

4
⌋ ! (

𝑛
2
𝑛
4

) 

And could be further defined again until ⌈
𝑛

𝑘
⌉ and ⌊

𝑛

𝑘
⌋ equal to one. The recursive function 

could be said being applied using metamorphic testing. 



23 
 

One drawback of this method is the possibility of getting wrong n! and ⌈
𝑛

2
⌉ ! while the 

equality n! = ⌈
𝑛

2
⌉ ! ⌊

𝑛

2
⌋ ! (𝑛

𝑛

2

) still holds.  For simplicity, we make that such probability is no 

more than 1/10. 

Precisely, the probability that the program is faulty and test result is n! = ⌈
𝑛

2
⌉ ! ⌊

𝑛

2
⌋ ! (𝑛

𝑛

2

) 

would be 1/10, then given the program is faulty and n! ≠ ⌈
𝑛

2
⌉ ! ⌊

𝑛

2
⌋ ! (𝑛

𝑛

2

) is 9/10, for one test 

case. 

if p((LHS = RHS)|wrong program) =
1

10
, 

then p((LHS ≠ RHS)|wrong program) =
9

10
, 

 

Because we can use r=1, 2, …, n-1, for the test cases, we randomly choose log n numbers, 

out of n-1 possible values of r, where base-10 logarithm is applied.  Now, p((LHS=RHS in 

all log n trials)|wrong program) = (1/10)log n = 1/n.  The probability 1/n is considered low 

in the literature.  However this method still considered using moderate high computation 

time. 

  



24 
 

CHAPTER 3: CONCLUSION 

Theoretically untestable cases are usually impossible to have a method that could 

confirmed the correctness of output with ease and efficiently. However, further 

improvements on the test case could be done for relieving the problem. Factorial number 

is not only difficult to test due to its large output but also its high computation complexity 

making efficient alternative testing method mostly unavailable. 

 

Testing by applying Wilson theorem could be used as earlier testing due to its fast 

computing time. It is important to note that when applying Wilson theorem value of n in 

n! for testing is defined randomly in order to achieving fast computation time. The random 

n value is gone through primality test to find its primality which only need polynomial time, 

conversely if n is defined intentionally along with its primality property, a high 

computation time is needed. 

 

For length-testing, it also could be used as an earlier test case due to its low 

computation time.  One advantage of length-testing is this method would not be interfering 

with the factorial number program output. The only thing that need to do after extracting 

output result is counting length of it (number of digits) and compare with expected length 

value. Since formula for calculating the expected length would give long decimal number 

before getting the lower floor, truncation had to be done during calculation. In this project 

show until which point after the decimal point had to be truncated in order not to interfering 

with the final result (given wrong length value). 

 

In this project also show prime counting (through prime factorization) could give 

distinct result to the faulty output. Through prime counting, it is easily to see the deviation 

on occurrence of prime factors on the program output with actual occurrence of prime 

factors based on n defined for the n!. With faulty output, there could be some other 

properties changes on the prime factors, included missing prime factor and lower prime 

factors have lower occurrence on higher prime factors. 

 



25 
 

For metamorphic-testing, this new technique in software testing could help to 

relieving the difficulty of black box testing on untestable cases. Metamorphic relation is 

done between input and output, which in this project the relation of factorial number is 

defined through the definition of combination function. What make the definition unique 

is through the definition of combination function, the new definition of factorial formula 

also contain another factorial number, and can be used for further testing. 

 

  



26 
 

BIBLIOGRAPHY 

[1] T barr et al.. 2015. The Oracle Problem in Software Testing: A Survey. IEEE 

Transactions on Software Engineering. 41(5), pp. . 

 

 [2] Liu, H., Kuo, F., Towey, D. and Chen, T. (2014). How Effectively Does Metamorphic 

Testing Alleviate the Oracle Problem?. IEEE Transactions on Software Engineering, 

[online] 40(1), pp.  422. Availableat:http://vuir.vu.edu.au/33046/1/TSEmt.pdf. 

 

 [3] Luciano Baresi and Michal Young. Test oracles. Technical Report CIS-TR-01-02, 

University of Oregon, Dept. of Computer and Information Science, August 2001. 

http://www.cs.uoregon.edu/∼michal/pubs/oracles.html. 

 

[4] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu. Application of 

metamorphic testing in numerical analysis. In Proceedings of the IASTEDInternational 

Conference on Software Engineering, page, 1998. 

 

[5] Elaine J. Weyuker. On testing non-testable programs. The Computer Journal, 

25(4):465–470, November 1982. 

 

[6] Maninda Agrawal, Neeraj Kayal and Nitin Saxena.(2004). PRIMES is in P. Available 

at:https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf 

 

[7] R. Andrew Ohana. (2009). A Generalization of Wilson’s Theorem. Available at: 

https://sites.math.washington.edu/~morrow/336_09/papers/Andrew.pdf 

  



27 
 

Poster 

 

  



28 
 

Turnitin Result 

 

The similarity result is high is due to my FYP report had high similarities. 

  



29 
 

UNIVERSITI TUNKU ABDUL RAHMAN 

FACULTY OF INFORMATION & COMMUNICATION 

TECHNOLOGY (KAMPAR CAMPUS) 

 

CHECKLIST FOR FYP1 THESIS SUBMISSION 

 

Student Id  

Student Name  

Supervisor Name  

 

 

TICK (√) DOCUMENT ITEMS 

Your report must include all the items below. Put a tick on the left column after you have 

checked your report with respect to the corresponding item. 

 Title Page 
 Signed form of the Declaration of Originality 

 Abstract 

 Table of Contents 

 List of Figures (if applicable) 

 List of Tables (if applicable) 

 List of Symbols (if applicable) 

 List of Abbreviations (if applicable) 

 Chapters / Content 

 Bibliography (or References) 

 All references in bibliography are cited in the thesis, especially in the chapter of literature 
review 

 Appendices (if applicable) 

 Poster 

 Signed Turnitin Report (Plagiarism Check Result – Form Number: FM-IAD-005) 

*Include this form (checklist) in the thesis (Bind together as the last page) 

 

I, the author, have checked and confirmed all the 
items listed in the table are included in my report. 
 
 
______________________ 
(Signature of Student) 
Date: 

Supervisor verification. Report with incorrect 

format can get 5 mark (1 grade) reduction. 
 
 
______________________ 
(Signature of Supervisor) 
Date: 

 

 



30 
 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

FACULTY OF INFORMATION & COMMUNICATION 

TECHNOLOGY (KAMPAR CAMPUS) 

CHECKLIST FOR FYP2 THESIS SUBMISSION 

Student Id  

Student Name  

Supervisor Name  

 

TICK (√) DOCUMENT ITEMS 

Your report must include all the items below. Put a tick on the left column after you have 

checked your report with respect to the corresponding item. 

 Front Cover  

 Signed Report Status Declaration Form 

 Title Page 

 Signed form of the Declaration of Originality 
 Acknowledgement 

 Abstract 

 Table of Contents 

 List of Figures (if applicable) 

 List of Tables (if applicable) 

 List of Symbols (if applicable) 

 List of Abbreviations (if applicable) 

 Chapters / Content 

 Bibliography (or References) 

 All references in bibliography are cited in the thesis, especially in the chapter of literature 
review 

 Appendices (if applicable) 

 Poster 

 Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005) 

*Include this form (checklist) in the thesis (Bind together as the last page) 

 

I, the author, have checked and confirmed all the 
items listed in the table are included in my report. 
 
 
______________________ 
(Signature of Student) 
Date: 

Supervisor verification. Report with incorrect 

format can get 5 mark (1 grade) reduction. 
 
 
______________________ 
(Signature of Supervisor) 
Date: 

 

 


