GREEN TEA LEAVES AND PEANUT SHELLS AS BIOSORBENTS FOR REMOVAL OF CHROMIUM (VI) AND NICKEL (II) IONS FROM AQUEOUS SOLUTION

DHIVESH A/L M B RAMESH KUMAR

A project report submitted in partial fulfilment of the requirements for the award of Bachelor of Engineering (Honours) Chemical Engineering

Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman

April 2020

DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

Signature	:	D
Name	:	Dhivesh A/L M B Ramesh Kumar
ID No.	:	1502288
Date	:	17/05/2020

APPROVAL FOR SUBMISSION

I certify that this project report entitled "GREEN TEA LEAVES AND PEANUT SHELLS AS BIOSORBENT FOR REMOVAL OF CHROMIUM (VI) AND NICKEL (II) IONS FROM AQUEOUS SOLUTION" was prepared by DHIVESH A/L M B RAMESH KUMAR has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Engineering (Honours) Chemical Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature	:	Ane
Supervisor	:	Dr Sim Jia Huey
Date	:	17/05/2020
Signature	:	
Co-Supervisor	:	
Date	:	

The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2020, Dhivesh A/L M B Ramesh Kumar. All right reserved.

ACKNOWLEDGEMENT

I would like to thank everyone who has helped me to successfully complete this project. I would like to show my upmost gratitude to my supervisor Dr Sim Jia Huey for the guidance, advice and her tolerance in any difficulty faced during the project.

I also would like to express my gratitude and acknowledgement on the assistance provided by Universiti Tunku Abdul Rahman (UTAR) Laboratory staffs and LKC FES faculty staffs who had continuously helped me in carrying out the experiment and guide through the relative procedures.

On top of all, I would like to thank my loving parents and friends who had continuously stood be me during this project and provided me with the required information and emotional support.

ABSTRACT

This study was aimed to compare the relative removal efficiency of biosorbents (jasmine green tea leaves, genmaicha green tea leaves, salted peanut shells and unsalted peanut shells) on Nickel (II) and Chromium (VI) ions, to study the effects of initial biosorbent dosage and pH on heavy metal removal and to optimize the biosorption condition via Design Expert Software. The prescreening stage proved that jasmine green tea leaves was the most effective biosorbent in removing 90.98% of Chromium (VI) and 96.13 % of Nickel (II) ions. Next, five level full factorial experimental design was used in batch biosorption process to investigate the individual and interactive effects of initial biosorbent dosage and biosorption system pH on the removal of heavy metal ions. According to the ANOVA of the design, initial biosorbent dosage and pH were considered as the significant factor in the removal of Chromium (VI) and Nickel (II) ions by jasmine green tea leaves. The numerical optimization tool provided that 100 % removal of Cr (VI) can be obtained using 2.011 g of jasmine green tea leave with system pH 3, while, 92.42 % removal of Ni (II) can be obtained using 2.000 g of jasmine green tea leave with system pH 7. Characterisation study on the biosorbent of before biosorption and after biosorption were performed using SEM-EDX, FTIR and XRD to detect the presence of heavy metals and changes in physical and chemical properties of the biosorbents. The SEM-EDX showed the large porous structure of the virgin jasmine green tea leaves and confirms the presence of Chromium and Nickel at 00.35 % and 02.02 % after adsorption, respectively. FTIR spectrum showed that hydroxyl, carbonyl and ether group were involved in the uptake of Ni (II), while, hydroxyl, alkene, carbonyl, aliphatic group, carboxyl and ether contributed in the uptake of Cr (VI). Finally, the analysis from XRD depicts that the adsorption of hexavalent chromium and nickel ions transformed amorphous surface of virgin jasmine green tea leaves into crystalline structure along with the increase in crystallite size from 2.1109 nm to 13.7927 nm and 58.8390, respectively. Higher removal efficiency of jasmine green tea leaves was strongly promoted by its large porous structure, high carbonaceous composition and oxygenated functional groups. The initial biosorbent dosage and pH of solution significantly influence the biosorption of Nickel and Chromium.

TABLE OF CONTENTS

i

TABLE OF CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	vii
LIST OF SYMBOLS / ABBREVIATIONS	ix
LIST OF APPENDICES	xi

CHAPTER

1	INTRO	DUCTION		1	
	1.1	Background	1	1	
	1.2	Importa	Importance of the study		
	1.3	Conven	tional approaches and new technologies on	3	
	heav	y metal ren	noval		
	1.4	Problem	n Statement	5	
	1.5	Aims ar	nd Objectives	7	
	1.6	Scope a	nd Limitation of the Study	7	
2	LIT	ERATURE	C REVIEW	9	
	2.1	Introduc	Introduction		
	2.2	Biosorp	Biosorption Mechanism		
	2.3	Selectio	Selection of Biosorbent 12		
		2.3.1 A	Agricultural Waste as Biosorbent	13	
	2.4	Selectio	n of Heavy Metals for the Study	15	
	2.5	Pre-trea	Pre-treatment of Biosorbents 15		
	2.6	Parameters Affecting Biosorption Efficiencies 20			
		2.6.1 I	nfluence of pH	20	
		2.6.2 I	nfluence of Contact Time	23	
		2.6.3 I	nfluence of Agitation Speed	25	
		2.6.4 I	nfluence of Initial Biosorbent Dosage	26	
		2.6.5	Influence of Initial Concentration of Heavy	28	
		Metal Ions			

2.7	Optin	num Operating Conditions for Biosorption	32
	Proce	ess	
ME	THODO	LOGY AND WORK PLAN	34
3.1	Introc	luction	34
	3.1.1	Material Preparation	35
3.2	Overv	view of Project Methodology	36
	3.2.1	Biosorbent Preparation	39
	3.2.2	Biosorbate Preparation	39
3.3	Batch	Adsorption Experiment	40
	3.3.1	Pre-screening of the Most Effective Biosorbent	40
	3.3.2	Optimization Study via Full Factorial	41
	Experim	ental Design	
		3.3.2.1 Effect of Biosorbent Dosage and	42
		pH of Aqueous Solution	
3.4	Analy	vsis of Experimental Data	46
	3.4.1	Percentage Removal of Heavy Metal Ions	46
	3.4.2	Statistical Analysis of Experimental Data and	46
	Optimizi	ing Factors	
3.5		Instrumental Analysis of Heavy Metal Ion	49
Cor	centration	and Characterisation Study of Biosorbent	
	3.5.1	Inductively Coupled Plasma Optical Emission	49
	Spectron	netry (ICP-OES)	
	3.5.2	Scanning Electron Microscopy with Energy	51
	Dispersi	ve X-ray Spectroscopy (SEM-EDX)	
	3.5.3	Fourier Transform Infrared Spectroscopy	52
	(FTIR)		
	3.5.4	X-ray Diffraction (XRD)	52
RE	SULTS A	ND DISCUSSION	54
4.1	Pre	e-screening of the Most Efficient Biosorbents	54
(Gr	een tea lea	wes and Peanut shells)	
4.2	Infl	uence of Initial Biosorbent Dosage and pH of	57
Aqı	eous Solu	ntion on Percentage Removal of Cr (VI) and Ni	
(II)	ions		

	4.2.1	Influence of Initial Biosorbent Dosage	60	
	4.2.2	2 Influence of pH of Aqueous Solution		
4.3	Statis	stical Analysis in Design Expert Software	68	
	4.3.1	Analysis of Variance (ANOVA)	71	
	4.3.2	Diagnostic Plots	75	
	4.3.3	Box-Cox Plot for Power Transformation	76	
	4.3.4	Model Graphs	78	
4.4	Opt	imization of Operating Condition using Design	02	
Exp	ert		82	
4.5	Char	acterisation of Green Tea Leaves	86	
	4.5.1	Scanning Electron Microscopy- Energy	97	
	Dispersi	ive X-ray Spectroscopy (SEM-EDX)	80	
	4.5.2	Fourier Transform Infrared Spectroscopy	20	
	(FTIR)			
	4.5.3	X-ray Diffraction (XRD)	93	
CO	NCLUSI	ON AND RECOMMENDATIONS	98	
5.1	Conc	lusion	98	
5.2	Reco	mmendations for Future Work	99	
REFEI	RENCES		101	

5

APPENDICES

106

LIST OF TABLES

TABLE	TITLE	PAGE		
Table 2.1	Experimental Results of Maximum Removal of Cr	14		
	(VI) and Ni (II) by Various Agricultural Adsorbent.			
Table 2.2	Maximum Contaminant Level (MCL) Drinking	15		
	Water Standards for Hazardous Heavy Metals.			
Table 2.3	Pre-treatment of Various Biosorbent Before	17		
	Adsorption Process.			
Table 2.4	Optimum pH of Various Biosorbent on Maximum	21		
	Removal of Cr (VI) and Ni (II) ions.			
Table 2.5	Optimum Contact Time of Various Biosorbent on	24		
	Reaching Adsorption Equilibrium.			
Table 2.6	Optimum Initial Biosorbent Dosage for Maximum	27		
	Removal of Cr (VI) and Ni (II) ions.			
Table 2.7	Optimum Initial concentration of heavy metal ions	30		
	for Maximum Removal of Cr (VI) and Ni (II) ions.			
Table 2.8	Summary of the Optimum Condition for Maximum	33		
	Removal of Cr (VI) and Ni (II) ions.			
Table 3.1	List of Materials used.	35		
Table 3.2	List of Equipment used.	35		
Table 3.3	Summary of Pre-screening Test Runs for the	41		
	Removal of Cr (VI) and Ni (II) using Jasmine Green			
	Tea Leaves, Genmaicha Green Tea Leaves, Salted			
	Peanut Shells and Unsalted Peanut Shells.			
Table 3.4	High and Low Levels of Factors	43		
Table 3.5	Summary of Test Runs for the Removal of Cr^{6+} using	44		
	the most efficient biosorbent Leaves as Biosorbents.			
Table 3.6	Summary of Test Runs for the Removal of Ni^{2+} using	45		
	the most efficient biosorbent Leaves as Biosorbents.			
Table 3.7	Numerical Optimization Criteria	47		
Table 3.8	Operating conditions of Inductively Coupled Plasma	50		
	Optical Emission Spectrometry (ICP-OES).			

- Table 3.9Operating conditions of
Microscopy with EnergyScanning Electron51Microscopy (SEM-EDX)Spectroscopy (SEM-EDX)
- Table 3.10Operating conditions of Fourier Transform Infrared52Spectroscopy (FTIR)
- Table 3.11Operating conditions of X-ray Diffractometer53(XRD)
- Table 4.1Pre-screening Results for Jasmine Green Tea,56Genmaicha Green Tea, Salted Peanut Shell and
Unsalted Peanut Shell56
- Table 4.2Experimental Design Matrix with Response for58Adsorption of Cr (VI) ion
- Table 4.3Experimental Design Matrix with Response for59Adsorption of Ni (II) ion
- Table 4.4Analysis of Variance (ANOVA) for removal of Cr69(VI)
- Table 4.5Analysis of Variance (ANOVA) for removal of Ni70(II)
- Table 4.6Summary of Analysis of Variance (ANOVA) for72removal of Cr (VI)
- Table 4.7Summary of Analysis of Variance (ANOVA) for72removal of Ni (II)
- Table 4.8Empirical Equation in Terms of Coded and Actual73Factors for removal of Cr (VI)
- Table 4.9Empirical Equation in Terms of Coded and Actual74Factors for removal of Ni (II)
- Table 4.10Constraints and Goals of Numerical Optimization of74Cr (VI) Removal
- Table 4.11Constraints and Goals of Numerical Optimization of75Ni (II) Removal
- Table 4.12Solution of Numerical Optimization of Cr (VI)83Removal

- Table 4.13Solution of Numerical Optimization of Ni (II)83RemovalTable 4.14Summary of Optimized Condition Generated fromBesign Expert for the Removal of Cr (VI) and Ni (II)Eable 4.15Expert for the Removal of Cr (VI) and Ni (II)
- Table 4.15Energy Dispersive X-ray (EDX) Microanalysis84Report of Virgin Jasmine Green Tea Leaves
- Table 4.16Energy Dispersive X-ray (EDX) Microanalysis85Report of Jasmine Green Tea Leaves After
Adsorption of Cr (VI)
- Table 4.17Energy Dispersive X-ray (EDX) Microanalysis88Report of Virgin Jasmine Green Tea Leaves
- Table 4.18Energy Dispersive X-ray (EDX) Microanalysis88Report of Jasmine Green Tea Leaves After
Adsorption of Cr (VI)
- Table 4.19Energy Dispersive X-ray (EDX) Microanalysis88Report of Jasmine Green Tea Leaves After
Adsorption of Ni (II)
- Table 4.20FourierTransformedInfrared(FTIR)Peak92Wavelengths with Respective Functional Groups
- Table 4.21Crystallite Size of Virgin Jasmine Green Tea97
- Table 4.22
 Crystallite
 Size
 of
 Jasmine
 Green
 Tea
 After
 97

 Adsorption of Cr (VI)
- Table 4.23CrystalliteSize ofJasmineGreenTeaAfter97Adsorption of Ni (II)

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Classification of Biosorption Mechanism.	10
Figure 2.2	Representation of Biosorption Mechanisms of Lead	11
	onto Biochar.	
Figure 2.3	Adsorption mechanism of Chromium hexavalent on	12
	lignin-based adsorbent.	
Figure 3.1	Experimental Flow Diagram	36
Figure 3.2	Gantt Chart	38
Figure 3.3	Overview of Full Factorial Design on Optimization	48
	Strategy.	
Figure 4.1	Pre-screening of Different Biosorbents on Removal	56
	Percentage, R (%).	
Figure 4.2	Percentage Removal, R (%) of Heavy Metal Ions at	63
	Different pH and at Different Initial Biosorbent	
	Dosage of Jasmine Green Tea Leave on the Removal	
	of (a) Cr (VI) and (b) Ni (II) ions.	
Figure 4.3	Figure 4.3: Percentage Removal, R (%) of Heavy	67
	Metal Ions with 3g, 3.5g and 4g Dosage of Jasmine	
	Green Tea Leave on the Adsorption of (a) Cr (VI)	
	and (b) Ni (II) ions.	
Figure 4.4	Predicted vs Actual Plot for Removal Percentage of	76
	Cr (VI).	
Figure 4.5	Predicted vs Actual Plot for Removal Percentage of	76
	Ni (II).	
Figure 4.6	Box-Cox Plot for Power Transform for removal of	77
	Cr (VI).	
Figure 4.7	Box-Cox Plot for Power Transform for removal of	77
	Ni (II).	
Figure 4.8	Contour Plot for Interaction between Initial Biosorbent Dosage (g) and pH of on Removal Percentage of Cr (VI).	79

- Figure 4.9 3D Surface Plot for Interaction between Initial 80 Biosorbent Dosage (g) and pH of on Removal Percentage of Cr (VI). Figure 4.10 Contour Plot for Interaction between Initial 81 Biosorbent Dosage (g) and pH of on Removal Percentage of Ni (II). Figure 4.11 3D Surface Plot for Interaction between Initial 82 Biosorbent Dosage (g), pH and Removal Percentage of Ni (II). Figure 4.12 SEM Images of Jasmine Green Tea Leaves Before 86 Adsorption at a) 1000x and b) 2000x Magnification. Figure 4.13 SEM Images of Jasmine Green Tea Leaves After 87 Adsorption of Cr (VI) ions at a) 1800x and b) 2700x Magnification. Figure 4.14 SEM Images of Jasmine Green Tea Leaves After 87 Adsorption of Ni (II) ions at a) 1300x and b) 2700x Magnification. Figure 4.15 Fourier Transformed Infrared (FTIR) Spectra of 91 Jasmine Green Tea Leaves Before and After Adsorption (a)Raw, (b) After adsorption of Ni (II) and (c) After adsorption of Cr (VI). Figure 4.16 94 XRD Spectra of Raw Jasmine Green Tea Leaves. Figure 4.17 XRD Spectra of Jasmine Green Tea Leaves After 94 Adsorption of Cr (VI) ions. Figure 4.18 XRD Spectra of Jasmine Green Tea Leaves After
 - Figure 4.18 XRD Spectra of Jasmine Green Tea Leaves After 95 Adsorption of Ni (II) ions.

LIST OF SYMBOLS / ABBREVIATIONS

0 (-		
%	Percentage		
$^{\circ}\!C$	Degree Celsius		
mm	millimeter		
μm	micro-meter		
rpm	revolution per meter		
ррт	Parts per million		
C_e	Concentration of the molecules at equilibrium, mg/L		
C_{f}	Final concentration of the molecules, mg/L		
Q_e	Equilibrium adsorption capacity, mg/g		
q_m	Maximum adsorption capacity, mg/g		
${\mathcal C}_0$	Highest initial concentration of molecules examined, mg/L		
C_{0}	Initial metal concentration, mg/L		
R^2	Correlation coefficient		
V	Volume of metal ion solution, L		
т	Weight of adsorbents, g		
Q e,cal	Calculated equilibrium adsorption capacity, mg/g		
Q e,exp	Experimental value of equilibrium biosorption capacity, mg/g		
$ar{Q}_{e,exp}$	Average experimental value of equilibrium biosorption		
	capacity, mg/g		
Cr (VI)	Chromium (hexavalent) ion		
Cr (III)	Chromium (trivalent) ion		
Ni (II)	Nickel (II) ion		
Na (I)	Sodium ion		
Ca (II)	Calcium (II) ion		
Cu (II)	Copper (II) ion		
Zn (II)	Zinc (II) ion		
Pb	Lead		
Fe	Iron		
MCL	Maximum Contamination Limit		
DOE	Department of Environment		

XRD	X-ray Diffraction
SEM-EDX	Scanning Electron Microscopy with Energy Dispersive X-ray
	Spectroscopy
FTIR	Fourier Transform Infrared Spectroscopy
XRD	X-ray Diffraction
ICP-OES	Inductively Coupled Plasma Optical Emission Spectrometry
$NiSO_4(H_2O)_6$	Nickel (II) sulfate hexahydrate
$K_2Cr_2O_7$	Potassium dichromate
NaOH	Sodium hydroxide
HC1	Hydrochloric acid
L	Litre
RSM	Response Surface Methodology

LIST OF APPENDICES

- Appendix A Preparation of Heavy Metal Ion Solution
- Appendix B Preparation of 0.1 M of 37 % HCl
- Appendix C Preparation of 0.1 M of NaOH
- Appendix D Calibration Curve of Ni (II) Standard Solution
- Appendix E Calibration Curve of Cr (VI) Standard Solution
- Appendix F Sample Calculation of Removal Percentage, R (%) of Heavy Metal Ions
- Appendix G Spreadsheets of ICP-OES Results
- Appendix H EDX Results
- Appendix I XRD Raw Data
- Appendix J Sample Calculation of Crystallite Size, d_x (nm)

CHAPTER 1

INTRODUCTION

1.1 Background

In general, heavy metals are naturally occurring materials on the Earth's crust. As the industrial revolution begin, the amount of heavy metals that are being handled by various industries around the globe has risen significantly. The more the amount of heavy metals are being utilized in industrial sectors, larger volume of heavy metal by-products are being discharged into the environment as potential contaminants. Heavy metals pollution has risen to be a major environmental problem due to the discharge of metal or metal-bearing waste in water bodies. Commonly, heavy metals in the environment are influenced by the human activities such as mining, electrolysis deposition, electroplating, metal finishing industry, energy and fuel production, wood processing, electrical appliance manufacturing and metalliferous smelting discharge a large volume of sludges and wastewaters containing metal residues causing serious environmental pollution, degradation of water quality and health effects on consumers (Wang and Chen, 2006). Heavy metals are hard to be degraded naturally which makes them to be persistent in the environment for a long period. If this condition persists, there is a high possibility of water and soil contamination causing chronic and acute effects, especially towards consumers. Hence, it is important to remove these heavy metal ions that are dissolved in water bodies via water treatment.

1.2 Importance of the study

Heavy metals generally refer to any metals or metalloid ions that have a high relative atomic density ranging from 3.5 - 7 g/cm³ (Gautam, et al., 2014). Most of the metal ions fall into this category are highly soluble in water, carcinogenic and have high toxicity at low concentrations. Since these metals are proven to be non-degradable and have the tendency to persist in the environment, the metalloids can be absorbed by plants, later entering the animal and human body via consumption and adversely affecting their body activity and health. The effects on humans can be chronic or acute where chronic effects are caused by

long-term exposure and acute effects are caused by short-term exposure to heavy metals. It is highly dependent on the toxicity of the heavy metals that has been exposed.

Even though, a certain group of metals are essential to human body such as Iron , Zinc , Chromium and Copper, it becomes immensely toxic at a concentration above safe level (Daneshfozoun, Abdullah and Abdullah, 2017). These metals are acknowledged to be highly toxic that require immediate and effective removal from wastewater streams to avoid any long-term exposure to humans. Toxic metals as such can cause serious damage to target organs, nervous system, even death at an extreme level (Gunatilake, 2015). On the contrary, many regulations were established to minimize heavy metal exposure to human and environment.

Toxic metals such as chromium is commonly used in paper and pulp production, rubber manufacturing, leather and tanning industries. Based on Table 2.2, the allowable limit of chromium (hexavalent) in industrial effluent has a maximum concentration limit (MCL) of 0.05 mg/L. Long term exposure to chromium can cause liver, kidney, central nervous system damage and skin ulceration. While, exposure to aquatic life can cause decrease in the rate of photosynthesis, immune response and hematological problems in freshwater fish (Gautam, et al.,2014).

Meanwhile, exposure to nickel significantly affects the synthesis of red blood cells along with damage to liver and heart. Nickel are considered toxic when the dosage reaches (>0.2 mg/L) where it could result in nickel poisoning. Consequently, it could cause reduction in cell growth and even cancer (Gautam, et al., 2014). Chromium (VI) and nickel (II) as highly hazardous heavy metals that needs to be removed from the environment in an eco-friendly way with minimum waste generation.

1.3 Conventional approaches and new technologies on heavy metal removal

Currently, there are various approaches in practice to remove metals from aqueous solution which includes biological, physical and chemical treatments. The conventional approaches can be divided into ion exchange, adsorption using activated carbon and biological materials (biomass), chemical precipitation, ultra-filtration, reverse osmosis, phytoremediation, chemical coagulation-flocculation and electrochemical treatment. All these approaches have their respective advantages and limitations in metal ion removal from solutions.

Ultra-filtration approach is peer pressure-driven membrane operation where the heavy metals are removed through porous membranes.

On the other hand, ion exchange focuses on metal ion removal from aqueous solutions through the exchange of ions by electrostatic forces between the heavy metal ions and the surface charge of resins (Gunatilake, 2015). However, this method becomes ineffective for large numbers of competing monovalent and divalent ions such as Na^+ and Ca^{2+} .

Reverse osmosis approach focuses on separating heavy metal ions via semi-permeable membrane. The separation is performed by the dissolved solids in the aqueous solutions causing the pressure to be larger than the osmotic pressure. Both of these methods are enormously expensive when treating at a large scale (Gunatilake, 2015).

Chemical precipitation approach is performed through utilization of coagulants such as alum, lime, organic polymers and iron salts that are used to extract metals ions from solutions. The major drawback is that it is ineffective when removing metal ions with concentration of 1-100 mg/L (Volesky, 2001).

Chemical coagulation-flocculation process begins with coagulation of colloidal particles where the net surface charge of the particles will be reduced by the addition of coagulant. The coagulant extensively reduces the electrostatic repulsion forces between the colloidal particles, resulting in formation of lumps. Consequently, the remaining discrete particles are forced into flocculation process where the colloids are interacted with organic polymers, forming large flocs due to additional collisions. Followingly, the large flocs are removed from

the water collection by straining, filtration or floatation means (Gunatilake, 2015).

Moving on, electrochemical process is used to eliminate heavy metals from wastewater by precipitation means through the addition of weak acid or neutralized catholyte such as hydroperoxide. Through destabilizing and electrolytic oxidation, heavy metals are precipitated out through formation of flocs. Though, this approach shows incompetent metal precipitation, low aggregation of metal precipitates and poor settling in separation chamber. One common drawback that these treatments share is the production of large volume of toxic containing sludge upon treatment and the long-term environmental impact arising due to the sludge disposal (Gunatilake, 2015).

Phytoremediation technique is the use of certain plants such as aquatic plants in freshwater, marine and estuarine systems that act as a receptor for metal contaminants in water. The major disadvantage for this technique is the long treatment period for metal removal and difficulty in regenerating the plants for further biosorption (Joshi, 2017).

On top of all, the adsorption approach is currently considered as the rapid phenomenon of passive metal sequestration method. This is mainly due to its huge benefits on the basis of both efficiency and environment. In general, activated carbon is declared as the most widely accepted and utilized adsorbent in the adsorption of highly toxic and diverse form of pollutants all around the world. Commercially available activated carbons are widely employed in vast heavy metal ion removal process from wastewater effluent. It is made of crude graphite with highly porous and amorphous structure with crevices to molecular dimensions and visible cracks. Activated carbon are highly recommended due to its large pore size, vast surface area, microporous structure, high adsorption capacity, regeneration ability and renewable origin (Raval, Shah and Shah, 2016).

However, as a developing alternative, biosorbents are being vastly studied to be a potential replacement for activated carbon due to its various benefits. Various groups of biomaterials such as microbial biomass, agricultural waste, aquatic biomass, terrestrial biomass, soil and mineral deposits are considered as potential biosorbents to adsorb heavy metal ions from polluted water streams (Joseph, et al., 2019). These biomaterials' high metal sequestering characteristic and availability at cheaper rate makes them the ideal choice for metal removal processes, specifically in wastewater treatment. Biosorption is relatively cheap, less prone to sludge production, able to be regenerated and has high efficiency of metal recovery (Laboy-Nieves, Goosen and Emmanuel, 2010). Though, only those with adequately high adsorption capacity and affinity towards heavy metals are suitable to be used in a large-scale metal recovery process.

1.4 Problem Statement

Heavy metal contamination in wastewater streams has caused immense negative impacts on the environment and on human health. It tends to persist in the environment and prone to bioaccumulate in an organism once it has been consumed. This is mainly due to its non-biodegradable properties. Once heavy metal ions are consumed, the elements have a tendency to accumulate in the consumer's organs and eventually causing death. This occurrence is termed as heavy metal poisoning. Thus, it becomes extremely important to remove these heavy metal contents before human contact.

Activated carbon being the widely utilized adsorbent also accompanied by few disadvantages which creates a need to search for other alternative treatment methods. Activated carbon's use becomes restricted due to its costly supply chains. Eventually, the operation cost of treating wastewater in removing heavy metal ions will be increased due to the elevated cost of adsorbent. In addition, every adsorbent including activated carbon is said to reach a saturation state where the adsorbent will be exhausted after the active binding sites are completely filled with pollutants. Thus, regeneration is required before reusing the activated carbon. Generally, the activated carbon is regenerated via oxidation, chemical, electrochemical and thermal processes. Despite bearing the regeneration cost, activated carbon is said to face a reduction in adsorption capacity upon regeneration (Raval, Shah and Shah, 2016). Therefore, activated carbon is considered to be costly when treating large volume wastewater effluent. Therefore, it is required to develop cost-efficient and easily available material that has higher affinity towards heavy metal adsorption. As a potential substitute, low-cost adsorbents are generally preferred over activated carbon.

Low-cost adsorbents are commonly referred to any adsorbent that require lower processing cost prior to adsorption.

Various low-cost adsorbents, originated from natural biological materials, agricultural waste and terrestrial sources have been studied and applied in the extraction of heavy metals. In the past, many alternatives were studied based on their adsorption capacity towards various heavy metals. In this study, two kinds of green tea leaves (Jasmine and Genmaicha) and two kinds of peanut shells (Salted and Unsalted) were selected as biosorbents to adsorb heavy metals of Chromium (VI) and Nickel (II).

Green tea is one of the most consumed beverage worldwide with the average of billions of cups daily, and hence liberating considerable waste (Cherdchoo, Nithettham and Charoenpanich, 2019). Currently, there is various productions of green tea derived foods such as traditional medicine, matcha and beverages. The higher the consumption, the higher the waste produced. Hence, to handle such huge amount of waste, the environmentally friendly approach was to recycle these wastes as secondary useful materials. Taking into account of the fact that waste tea contains oxidizing organic chemicals mainly rich in oxygen. Most importantly, it consists of functional groups including amino carboxyl, phenolic, hydroxyl, and sulfonic functional groups that makes green tea to emerge as an efficient biosorbent. Green tea mainly composed of oxygenated functional groups could immensely contribute to the uptake of heavy metal ions either through ion exchange or complexation (Cherdchoo, Nithettham and Charoenpanich, 2019). Used green tea leaves have the potential to be cheap and efficient biosorbents for removing heavy metal ions from contaminated wastewater. Besides, there is not many researches have been conducted on the study of biosorption of green tea leaves and affinity towards Ni (II) and Cr (VI) ions.

Based on literature review taken from scientific thesis, there was no published report on the comparison between peanut shells and green tea leaves being a potential cost-effective adsorbent to remove Nickel and Chromium ions. Therefore, series of investigation had been carried out to search and develop an easily accessible biosorbent with low of cost for effective removal of hexavalent chromium and nickel ions from aqueous solution.

1.5 Aims and Objectives

The primary focus of this study is to optimize the operating condition of biosorbent process by using green tea leaves or peanut shells to adsorb Chromium (VI) and Nickel (II) ions at the maximum efficiency.

The objective of this study is:

- I. To screen for the most effective biosorbent (jasmine green tea leaves, genmaicha green tea leaves, salted peanut shells and unsalted peanut shells) for the adsorption of heavy metals (Cr (VI) and Ni (II)) in aqueous solution.
- II. To study the effects of initial biosorbent dosage and pH in affecting the percentage removal of Cr (VI) and Ni (II) ions from aqueous solution.
- III. To optimize the operating condition (Biosorption parameters: initial biosorbent dosage and pH of aqueous solution) of the batch biosorption process by using response surface methodology.
- IV. To perform characterisation study on the most effective biosorbent before and after adsorption process by using XRD, SEM-EDX and FTIR.

1.6 Scope and Limitation of the Study

In this study, jasmine green tea leaves, genmaicha green tea leaves, salted peanut shells and unsalted peanut shells are used as biosorbents for the removal of chromium (VI) and nickel (II) ions from aqueous solution. The effectiveness of the biosorbent is determined based on the removal efficiency of biosorbents.

As a preliminary study, jasmine green tea leaves, genmaicha green tea leaves, salted peanut shells and unsalted peanut shells was studied on their affinity towards Ni (II) and Cr (VI) ions. While, only the best biosorbent was be chosen to be used in further optimization of biosorption study and characterisation study. In addition, the adsorption of heavy metals onto a biosorbent can be majorly affected by initial concentration of metal ion in the aqueous solution, initial biosorbent dose and the pH of the solution. The influence of these factors on the percentage removal of heavy metal ions are further studied in this research. The parameters are selected on the basis of the most dominant effect provided on the removal efficiency of heavy metal ions.

The experimental runs were carried out based on the design in accordance with the Full Factorial Experimental design from Design Expert @ Software Version 12. The independent variable of initial biosorbent dosage and pH was optimized as numerical factors to obtain the maximum value of the response variable which is the percentage removal of the heavy metal ions.

As for the characterisation study, XRD and SEM-EDX were employed before and after the batch biosorption to identify the physical and chemical changes incurred by the biosorbent due to adsorption. XRD explores the crystallinity and elemental composition on the biosorbent surface while SEM-EDX provides the physical changes in the adsorbent surface morphology along with elemental identification (Abdolali, et al., 2016).

The major limitation of the study is the influence of other contributing factors on the removal efficiency. Biosorption of heavy metal ions might be affected by several physical and chemical factors such as contact time, particle size, initial concentration of heavy metal ions and temperature of the solution. When investigating the effect of one parameter, it is necessary to maintain the other parameters of the adsorption process at constant state to avoid any contradiction of results. Although, they are several influencing parameters, only the majorly affecting condition such as initial biosorbent dosage and initial pH of aqueous solution are studied. Furthermore, due to time constraint and insufficient samples, the most frequently studied scope of maximum biosorption capacity based on equilibrium behaviours described by isotherm models and thermodynamic parameters of the adsorption operation will not be included in this study.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In recent years, eliminating heavy metal ions from water bodies via adsorption using biomass has attracted much attention. It has become a hot topic among researchers due to the problems and shortcomings faced by the conventional methods in adsorbing heavy metal ions. It significantly reduces the elements of heavy metals in the solution, even when it is in the least concentration. This is achieved through binding of metal ions onto the vastly available active binding sites present on the surface of the biosorbent. Several biosorbents that were studied previously had proven to have high sequestrating properties of dissolved metal ions in dilute complex solution, significantly reducing the metal concentration. However, this high metal sequestering properties are not found in all biosorbents. Thus, detail study is required to determine the ideal biosorbent that have a higher affinity towards the desired heavy metal ions.

Biosorption refers to the adsorption of metal ions, elements or compound in an adsorbate onto a solid biological based adsorbent (Gadd, 1993). The process is driven by the high affinity of the biosorbent towards the adsorbate (heavy metal ions). The adsorption continues till the amount of metal ions adsorbed onto the biosorbent surface and its portion remaining in the solution reaches equilibrium (Ahalya, Ramachandra, and Kanamad, 2005).

This chapter aims to review the studies that are conducted previously on the efficiency of various potential biosorbents towards heavy metal adsorption. The study is performed to review the types of biosorbents and its efficiency in removing heavy metal ions under different conditions. The effects of the operating parameters such as agitation speed, temperature, pH, initial biosorbent dosage and initial concentration of metal ions on the removal efficiency of the heavy metal ions are studied thoroughly.

2.2 Biosorption Mechanism

The biosorption of metal ions onto solid biosorbent can be described qualitatively and quantitatively with several complex mechanism, depending on the nature and origin of the biosorbent species and the parameters of adsorption process. Complex mechanisms such as physical adsorption, ion exchange, chelation and entrapment of ions in the polysaccharide, are commonly described more specifically in the intra and inter fibrillar spaces of structural network (Volesky and Holan, 1995). These mechanisms and their respective adsorption pathway are well described in Figure 2.1.

Figure 2.1: Classification of Biosorption Mechanism (Pieper and Reineke, 2000).

As mentioned earlier, surface adsorption depicts an interaction between an adsorbent and adsorbate molecule. The high affinity of the adsorbent towards the adsorbate (heavy metal ions) will cause the attraction and binding of the elements by several process mechanisms. The mechanisms of biosorption can be classified into adsorption on pores and surface, chemisorption, chelation, ion exchange, surface complexation which can be well seen in Figure 2.1 (Sud, Mahajan and Kaur, 2008). Figure 2.2 represents the various category of biosorption mechanisms that could describe the behaviour of the biosorption.

Figure 2.2: Representation of Biosorption Mechanisms of Lead onto Biochar (Ifthikar, et al., 2017).

Figure 2.2 shows various pathways of biosorption, depending on the nature of the biosorbents. Agricultural waste used as biosorbents are composed of lignin and cellulose as major constituents and hemicellulose, proteins, lipids, extractives, simple sugars, starches, hydrocarbons, water and ash as minor constituents. These constituents are known to contain variety of functional groups that plays major part in the adsorption process which could attract and sequester metal ions. On the contrary, functional groups such as carbonyl, phenolic, hydroxyl, carboxyl, amino, amido, acetamido groups of chitins, esters, phosphate group in nucleic acids, structural polysaccharides and sulphydryl are largely involved in the adsorption process. The presence of various functional groups shows high affinity towards metal complexation (Volesky and Holan, 1995). Most importantly, the efficiency of a waste materials is evaluated based on the affinity, specificity, physio-chemical nature and biosorption capacity and heavy metal removal efficiency of the adsorbent.

The adsorption mechanism of heavy metal adsorbate on agricultural biosorbents can be expressed with surface adsorption followed by interstitial adsorption. The adsorption mechanism across the boundary layer of an adsorbent is well represented in Figure 2.3.

Figure 2.3: Adsorption mechanism of chromium hexavalent on lignin-based adsorbent (Liang, et al., 2013).

Figure 2.3 illustrates the diffusion of chromium hexavalent, Cr^{6+} ions across the aqueous boundary layer and into the biosorbent external boundary layer. First of all, surface adsorption occurs when the metal ionss travel through the bulk solution and diffuse across the liquid film boundary layer surrounding the biosorbent surface. The biosorbent offers numerous active adsorption binding sites for metals. Later, the diffused ions are attached onto the surface of the biosorbent due to the presence of opposite charges on the biosorbent surface. This phenomenon is strongly promoted by strong forces such as hydrogen bonding or weak Van Der Waals forces and dipole interactions (Joseph, et al., 2019).

This occurrence is followed by interstitial adsorption where the heavy metal ions are further diffused into the pores of the adsorbent and gets attached to the interior portion of the pores (Joseph, et al., 2019). This can be widely observed in microporous materials.

2.3 Selection of Biosorbent

In the past, various research has been conducted on the study of the metal uptake capacity and metal ion removal efficiency of agricultural waste. Besides, the optimum biosorbent that has higher affinity towards heavy metal ions in aqueous solution was determined. Different biosorbent shows different adsorption efficiency towards heavy metal ions as they are highly dependent on its physio-chemical characteristics and the micro-environment of the targeted metal ion solution (Naskar, et al., 2016). On practical basis, selecting the most optimum biosorbent depends on the availability, application and economical value of the biomass. Meanwhile, a predominant factor that has to be taken into account on scientific basis for determining a suitable sorbent is the equilibrium isotherm (Wang and Chen, 2009).

2.3.1 Agricultural Waste as Biosorbent

Agricultural wastes and by-products such as rice bran, coffee grounds and tea waste had been studied widely on the uptake of heavy metal ions from wastewater. Since these materials are not being reused after end of its life cycle, they could potentially be recycled as low-cost biosorbents. As mentioned earlier, biomass is mainly composed of cellulose, lignin and hemicellulose. In relation to functional groups, lignin is composed of alcohols, carboxylic, phenolic, ketones and aldehyde functional groups. These functional groups plays a major in promoting adsorption process due to their ability to bind heavy metals via donating electrons pairs to the metal ions in bulk solution, forming complexes (Abdel Ghani and El Chaghaby, 2014). Hemicellulose and pectin found in biomaterials have a general ability to bind toxic metals such as Cr (VI). Thus, different agro-waste shows different biosorption capacity due to the presence of different functional groups and surface characteristics on its biosorbent surface (Taşar, Kaya and Özer, 2014).

Table 2.1 summarizes various past researches that has been successfully proven that agro-waste as an effective biosorbent on adsorbing Ni (II) and Cr (VI) (heavy metal ions) from aqueous solution.

Biosorbent	Metal	Maximum heavy	Reference
	ion	metal removal (%)	
Camellia	Ni (II)	100.00	(Malkoc and Nuhoglu,
sinensis tea			2005)
leaves			
Sugarcane	Cr (VI)	92.00	(Garg, et al., 2007)
bagasse			
Wheat bran	Cr (VI)	51.00	(Kaya, et al., 2014)
Orange peel	Ni (II)	32.00	(Gonen and Serin, 2012)
Cashew nut	Ni (II)	73.89	(Senthil Kumar, et al.,
shell			2011)
Almond shell	Cr (VI)	55.00	(Pehlivan and Altun, 2008)
Walnut shell	Cr (VI)	85.32	
Hazelnut	Cr (VI)	88.46	
shell			
Coffee	Cr (VI)	85.25	(Cherdchoo, Nithettham
grounds			and Charoenpanich, 2019)
Mixed tea	Cr (VI)	95.08	
waste			
Rice bran	Ni (II)	57.00	(Zafar, et al., 2007)

Table 2.1: Experimental Results of Maximum Removal of Cr (VI) and Ni (II) by Various Agricultural Adsorbent.

Table 2.1 clearly depicts the removal percentage of various agricultural waste towards Ni (II) and Cr (VI) ions. Every study has been conducted with different operating conditions. Based on the displayed results, camellia sinesis tea leaves, mixed waste tea, sugarcane bagasse and hazelnut shell showed the upmost removal efficiency of 100.00 %, 95.08 %, 92.00 % and 88.46 %, respectively. On contrary, the optimum operating condition required by each biosorbent to achieve maximum heavy metal removal are not similar. Thus, it strongly depends on its composition and surface properties of the biosorbent.

2.4 Selection of Heavy Metals for the Study

There is a wide range of toxic heavy metals in water streams mainly caused by the discharge of metal containing effluents. They are considered as one of the critical environmental issues since it can be toxic to organisms and humans even at lower concentration. Therefore, strict regulation is set by the governmental bodies by limiting the contaminant limit of the toxic metals in water. Hexavalent chromium and nickel are highly toxic even at lower concentration. Thus, to control excessive exposure of hexavalent chromium and nickel to aquatic life and humans, the Maximum Contaminant Limit (MCL) is determined. The MCL recognized by the Department of Environment Malaysia (DOE) is shown in Table 2.2.

Table 2.2: Maximum Contaminant Level (MCL) Drinking Water Standards for Hazardous Heavy Metals.

Heavy metals	MCL (mg/L)	Reference
Chromium	0.05	(Department of Environment,
(hexavalent)		2010)
Nickel	0.20	(Department of Environment,
		2010)

The MCL of hexavalent chromium and nickel in wastewater streams are determined by the Department of Environment under the command of Ministry of Natural Resources and Environment. An increase the concentration level above the limits shown in Table 2.2 is considered as hazardous to the humans when exposed.

2.5 **Pre-treatment of Biosorbents**

In this study, raw biosorbents are planned to be used for the biosorption of Ni (II) and Cr (VI) ions. Since, biosorbents are generally obtained from external parties, it is essential to undergo pre-treatment to remove contaminants and prepare it for adsorption. Pre-treatment of adsorbents can immensely enhance its biosorption capacity as not all biomass holds a good biosorption capacity. It requires additional treatment to boost the adsorption efficiency of the biosorbent

Pre-treatment includes chemical treatment where the chemical treatment includes acid or alkali washing and physical treatment which involves drying, cutting, grinding, thermal heating and steam activation. However, the treatment varies with biosorbent type and the targeted metal ions.

Chemical treatment had also shown significant increase in adsorption capacity. Chemical treatment is usually performed to enhance the affinity of biosorbent towards the selected metal ion of interest. It involves alteration of chemical composition and modification of binding groups of biosorbents. For instance, acidic pre-treatment is one of the widely used methods to clean up biomass by leaching out light metal ions, odour-causing substances and other impurities. Other chemical treatments includes alkali, ethanol, formaldehyde treatment have proved successful improvements in biosorption capacity of adsorbents (Vijayaraghavan and Balasubramanian, 2015). Some of the pretreatment approaches to treat various biosorbents are shown in Table 2.3.

Agricultural waste used as biosorbent are generally grounded into small particles to increase the contact area between adsorbate in solution and biosorbent surface. In order to remove any presence of dust or soluble material, deionized water is used to thoroughly wash the sample. (Senthil Kumar, et al., 2011).

Biosorbent	Heavy	Pre-treatment	Reference
	Metal		
Camellia	Ni (II)	Camellia sinensis are high quality tea leaves that are harvested from tea	(Malkoc and Nuhoglu,
sinensis tea		plantations. The collected leaves were washed with distilled water until a	2005)
leaves		colourless solution is observed at room temperature. The decolourised	
		washed tea leaves are dried in an oven for few days.	
Wheat bran	Cr (VI)	The wheat bran was milled and washed with deionized water and oven dried	(Kaya, et al.,2014)
		at 60 °C. Dried adsorbent was sieved under 40-50 mesh fraction. Later, it	
		was washed again with deionized water and 0.1M NaOH followed by	
		washing with pure water. It was left to dry overnight at 60 °C.	
Sugarcane	Cr (VI)	Sugarcane bagasse collected from sugar-mill was separated from pith and	(Garg, et al., 2007)
bagasse		sun dried. Later, it was boiled in distilled water for 30 minutes and dried	
		again for 24 hours at 120 °C in an oven. After drying, it was grinded and	
		sieved at 150 µm.	

 Table 2.3: Pre-treatment of Various Biosorbents Before Adsorption Process.

Table 2.3 (Continued)

Orange peel	Ni (II)	Orange peel was rinsed with tap water and cut into small pieces. Then, it	(Gonen and Serin,
		was oven dried about 100 °C followed by crushing and sieving to 1.80 mm	2012)
		size.	
Peanut shell	Cu (II)	The collected peanut shells were washed with tap water for 1-2 h to remove (Witek-K	
	Cr (III)	dirt and coloration. Then, distilled water was used to wash the shells	Szafran and Modelski,
		followed by drying in an oven for one day at 50 °C. Dried peanut shells were	2011)
		crushed, milled and sieved to less than 30 µm.	
Almond	Cr (VI)	Almond shells were grounded in ball mills to produce crumbs. The crumbs	(Pehlivan and Altun,
shell		are then sieved to filter out particle size under 100 μ m. Deionized water was	2008)
		used to wash the sieved biomass followed by drying for 24 hours at 100 $^{\circ}$ C.	
Walnut shell	Cr (VI)	Walnut shells were grounded in ball mills to produce crumbs. The crumbs	
		are then sieved to filter out particle size under 100 μ m. Deionized water was	
		used to wash the sieved biomass followed by drying for 24 hours at 100 $^{\circ}$ C.	
Hazelnut	Cr (VI)	Hazelnut shells were grounded in ball mills to produce crumbs. The crumbs	
shell		are then sieved to filter out particle size under 100 μ m. Deionized water was	
		used to wash the sieved biomass followed by drying for 24 hours at 100 °C.	
Barley	Ni (II)	Barley straw was dried under the sun, crushed and sieved to 0.425 - 3.35	(Thevannan, Mungroo
straw		mm sizes.	and Niu, 2010)

Table 2.3 (Continued)

Coffee grounds	Cr (VI)	The collected coffee grounds were oven dried at 60 °C for 3 days	(Cherdchoo, Nithettham
		and stored in desiccators before use.	and Charoenpanich, 2019)
Mixed tea waste	Cr (VI)	Mixed tea leave waste collected from coffee shops were washed	
		with boiling water until the water was virtually colourless to	
		remove coloured and soluble components. Then, the washed leaves	
		were dried in the sun for 3 days.	
Rice bran	Ni (II)	The samples were dried at 70 °C for one week. The dried sample	(Zafar, et al., 2007)
		were later protonated with three acids HCl, H ₂ SO ₄ and H ₃ PO ₄ . The	
		samples were washed with deionized water after each treatment	
		until reach near neutral. After treatment, the rice bran was dried in	
		a drying oven at 60 °C for 24 hours.	
2.6 Parameters Affecting Biosorption Efficiencies

The strongly influencing factors that contributes to the removal of metals from bulk such as pH of solution, agitation speed of samples, temperature during agitation, retention time of biosorption, preliminary metal ion concentration in the solution and initial biosorbent concentration readily affects the biosorption rate. However, the effects of these parameters are studied individually while maintaining the rest at fixed condition.

2.6.1 Influence of pH

The optimum pH required to achieve maximum adsorption by biosorbents differs according to the surface properties of the biosorbent and characteristics targeted heavy metals (Taşar, Kaya and Özer, 2014). This interrelation can be well explained by the functional groups (carboxyl, amino and phosphate groups) of biomass cell walls. The pH dependency for maximum removal efficiency differs according to the types of biomass as different biomass contains different functional groups (Nguyen, et al., 2013). Furthermore, the influence of pH largely affects the interaction between the surface charges on the biosorbent surface and the oppositely charged ions (counter ions). The solubility of metal ions in aqueous solution and the degree of ionization of biosorbent which hugely contributes to the adsorption process are also dependent on pH of solution (Park, Yun and Park, 2010).

Lower pH signifies increased concentration of protons (H^+) causing the overall surface charge on the biosorbent to be positive. However, the H^+ ions will compete effectively for active sites on biosorbent surface with the existing cationic metals (Cr^{6+} and Ni^{2+}) in aqueous solution causing a decrease in biosorption capacity. This is mainly because, H^+ ions are preferentially adsorbed onto the active binding sites rather than the metal ions due to its vast availability. The active sites on the biosorbent surface is protonated (rich in H^+) and will be incapable of binding the cations, at lower pH causing the metal ions to remain suspended in the solution (Witek-Krowiak, Szafran and Modelski, 2011).

Generally, the adsorption of heavy metals by biomass are conducted at a considerably higher initial pH of solution. Since higher pH of a solution provides a lower concentration of hydrogen (H⁺) ions, larger number of negatively charged ligands are likely to promote metal ion adsorption through

electrostatic precipitation. Meanwhile, this condition inversely affects if the desired heavy metal present as anions in the solution. Although, a very high pH might affect the solubility of metal ions resulting in metal hydroxide precipitation (Witek-Krowiak, Szafran and Modelski, 2011). To avoid precipitation of such metal complex during adsorption, several investigations were conducted devoted to find the starting pH of the initial precipitation. Table 2.4 summarises the optimum pH of aqueous solution for Cr^{6+} and Ni^{2+} metal adsorption. In theory, high percentage removal of Cr^{6+} is supported by strong electrostatic force of attraction. This is mainly due to the greater attractive forces caused by the hydroxide ions (OH⁻) surrounding the surface of adsorbate that enhances the interaction between Cr^{6+} with the biosorbents binding sites (Pehlivan and Altun, 2008).

Table 2.4: Optimum pH of Various Biosorbent on Maximum Removal of Cr (VI) and Ni (II) ions.

Biosorbent	Heavy Metals		References
Heavy Metals	Ni (II)	Cr (VI)	
Camellia sinensis	4.0	-	(Malkoc and Nuhoglu, 2005)
tea leaves			
Sugarcane bagasse	-	2.0	(Garg, et al., 2007)
Orange peel	5.0	-	(Gonen and Serin, 2012)
Cashew nut shell	5.0	-	(Senthil Kumar, et al., 2011)
Almond shell	-	3.0	(Pehlivan and Altun, 2008)
Walnut shell	-	3.5	
Hazelnut shell	-	3.5	
Barley straw	4.85	-	(Thevannan, Mungroo and Niu,
			2010)
Coffee grounds	-	2.0	(Cherdchoo, Nithettham and
Mixed waste tea	-	2.0	Charoenpanich, 2019)
Wheat bran	-	2.0	(Kaya, et al., 2014)
Rice bran	6.0	-	(Zafar, et al., 2007)

According the Table 2.4, previous studies shows that the optimum pH for Ni^{2+} was reported to be in the range of 4.0-6.0 for various biosorbents. These results are in agreement with the theory of the negatively charged biosorbent surface that supports the adsorption of positively charged ion (Ni²⁺) in the solution.

The influence of pH on Ni (II) was demonstrated by Thevannan, Mungroo and Niu (2010) where the pH of the nickel sulfate solutions was increased twice of its initial pH . It was noticed that, when the pH of the solution increased with the uptake of Ni²⁺ by Barley straw. However, further increase in pH resulted in decrease of Ni²⁺ uptake. Thus, pH of 4.85 was found to be the optimal value for adhering maximum adsorption capacity. According to Malkoc and Nuhoglu (2005), the batch biosorption of Ni (II) ions using Camellia sinensis tea leaves showed promising adsorption at pH 4.0 and significantly reduced as the pH value approached 2. This is due to the fact that at lower pH, the cationic Ni²⁺ have to compete with H⁺ ions due to protonation of biosorbent surface. Consequently, Ni²⁺ would be hindered from reaching the active binding sites of the biosorbent surface. Meanwhile, at higher pH, the Ni²⁺ gets precipitated to nickel hydroxide precipitate due to presence of hydroxide anions (OH⁻).

Conversely, the optimal level of pH was found to be in the range of 2.0-3.0 in removing Cr^{6+} . Pehlivan and Altun (2008) demonstrated the influence of pH on the adsorption of Cr^{6+} ions on almond shell under various pH of bulk solution. The study showed that, when the pH is in the range of 5.0-9.0, the percentage removal of Cr^{6+} decreased non-linearly. While the percentage removal exhibited an increase when the pH is in the range of 2.0 - 4.5. Thus, pH of 3.0 was selected as the optimal pH required to achieve highest percentage removal. Meanwhile, Cherdchoo, Nithettham and Charoenpanich (2019) stated that the pH of the aquoeus solution show a strong influence on the degree of ionization of the metals and the surface charge of bisorbent. Previous thesis showed that, the removal of Cr^{6+} ions can achieve maximum value of 95.08 % at pH 2 and had progressively reduced as the pH improved. This could be due to the fact that, the different ionic forms of Cr^{6+} .

When investigating the influence of pH on the adsorption of Cr^{6+} ions, several mechanisms such as electrostatic force, ion exchanges and chemical

complexation must be considered. One of the common mechanisms considered is electrostatic interaction between biosorbent and adsorbate. Cr^{6+} ion forms stable complexes when dissolved in aqueous solution such as dichromate $(Cr_2O_7^{2-})$, hydrogen chromate $(HCrO_4^{-})$, chromate (CrO_4^{2-}) and hydrogen dichromate $(HCr_2O_7^{-})$. At lower pH, the presence of dichromate ions $(Cr_2O_7^{2-})$ tends to promote electrostatic attraction between the positively charged biosorbent and itself which exist as negative charged anion. The dominant anion $HCrO_4^{-}$ which is considered as the dominant anion at lower pH of solution and the positively charged functional group on biosorbent surface plays a huge part in the high adsorption of Cr^{6+} ions.

2.6.2 Influence of Contact Time

The retention time provided for adsorption operation are also one of the influencing factors when discussing about the metal uptake capacity. The contact time can be well expressed with the time given for the immersion of a given amount of biosorbent in a constant volume and concentration of metal ion solution (Sadeek et al., 2015). When a pre-determined adsorbate volume is aimed to be used for the sequestration of heavy metal ions, rapid uptake of metal ions and the time need to achieve equilibrium adsorption state signifies the effectiveness of the adsorbent (Gonen and Serin, 2012). Hence, any adsorbent with the capability to provide high metal uptake capacity in a short period is considered as the ideal choice.

Sadeek, et al. (2015) denoted that the upsurge in contact time will cause the biosorbent fibres t,o swell which will eventually increases the area of contact. Thus, increasing the contact between the swelled fibres and metal ions, at the same time improving the interaction between the active functional groups and the metal ions. In other words, the increase in contact time significantly promotes sufficient time for the metal ions to be adsorbed onto the active sites of adsorbent surface. The optimum contact time of various biosorption studies on reaching adsorption equilibrium is demonstrated in Table 2.5 below.

Biosorbent	Contact	time to reach	References
	ad	sorption	
	equilil	orium (min)	
Heavy Metals	Ni (II)	Cr (VI)	
Camellia sinensis	120	-	(Malkoc and Nuhoglu,
tea leaves			2005)
Sugarcane bagasse	-	60	(Garg, et al., 2007)
Orange peel	14	-	(Gonen and Serin, 2012)
Cashew nut shell	- 30		(Senthil Kumar, et al.,
			2011)
Almond shell	-	60	(Pehlivan and Altun,
Walnut shell	-	100	2008)
Hazelnut shell	-	100	-
Barley straw	360	-	(Thevannan, Mungroo
			and Niu, 2010)
Coffee grounds	-	120	(Cherdchoo, Nithettham
Mixed waste tea	-	80	and Charoenpanich, 2019)
Wheat bran	-	180	(Kaya, et al.,2014)
Rice bran	240	-	(Zafar, et al., 2007)

Table 2.5: Optimum Contact Time of Various Biosorbent on ReachingAdsorption Equilibrium.

Table 2.5 shows various optimal contact time that has been recorded, in order to establish maximum heavy metal ion removal. These results do not show any notable trend mainly due to the contribution of other influencing parameter that are independent of the retention time in achieving high adsorption efficiency.

Based on the study conducted by Senthil Kumar, et al., (2011), the contact time showed no correspondence with the other adsorption operating condition. Thus, the increase in time of contact between the adsorbent (cashew nut shell) and the heavy metal ion (Ni (II)) resulted in an increase in removal efficiency, despite any change in other operating conditions. It was deduced that

removal percentage increase along with the time of contact until equilibrium is reached at 78 % removal after 30 minutes.

Consequently, any provided contact period beyond the equilibrium point had negligible effect on the percentage removal of heavy metals. The rapid adsorption in the early stage is explained by the larger number of available binding sites of the cashew nut shell for the Ni (II) adsorption. As the adsorption proceeds, the adsorbed Ni (II) ion forms a monolayer due to the fact that each binding site can fit only one ion. As the active adsorption sites in a system remaining constant the metal uptake rate begins to decrease when the active sites on the biosorbent surface becomes saturated with adsorbate ions. This is because of the repulsion of the solid molecules on the surface and the bulk phase (Gonen and Serin, 2012). In addition, the cashew nut shell becomes exhausted during the formation of monolayer and the uptake rate of Ni (II) becomes dependent on the rate at which the ions are transferred from exterior to the interior sites of the biosorbent surface (Senthil Kumar, et al., 2011).

In overall, the results in Table 2.5 shows that longer retention of adsorbate during biosorption will result in larger percentage of metal ion removal. However, it only applies until the saturation point where maximum removal is achieved. Any contact beyond the maximum limit would not show any change in results. Thus, to avoid prolonged period of experimentation, the appropriate time frame of contact of biosorbent and the heavy metal ions are studied.

2.6.3 Influence of Agitation Speed

Generally, the adsorption operation will be conducted in a shaking incubator which agitates the mixture of adsorbent and adsorbate at a constant speed. Agitation is recommended in majority of the study to reduce the experimentation time. This could be explained by the mass transfer of metal ions across the bulk solution followed by its diffusion across the external liquid film surrounding the adsorbent particles. In most cases, the transport is considered as the rate limiting step due to the extensive resistance offered by the thin liquid film of biosorbent. Thus, it is essential to ensure that proper mixing with sufficient contact between adsorbate and adsorbent surface is achieved in order to overcome the resistance. In other words, increasing the agitation speed could enhance degree of physio-chemical interaction between metal ions and charged biosorbents surface (Cherdchoo, Nithettham and Charoenpanich, 2019). However, above optimal limit might cause biomass break down and fragmentation.

2.6.4 Influence of Initial Biosorbent Dosage

Biosorbent is known to provide active binding sites for heavy metal ion adsorption. The percentage of metal removal and the biosorption capacity is directly ascribed to the biosorbent concentration, consequently relating to the number of available binding sites provided for adsorption. Thus, the initial dosage of biosorbent shows a strong influence of the adsorption operation (Abdel Ghani and El Chaghaby, 2014).

Studies on the influence of initial dosage of biosorbent are performed by increasing the biosorbent volume and determining the percentage removal and uptake capacity while maintaining the initial concentration of metal ions, pH and contact period at constant value. In theory, increasing the biosorbent concentration provides greater availability of active binding sites through larger surface area. However, the adsorption capacity will be significantly reduced due to lower adsorbate to binding site ratio where the metal ions are exposed to large surface area of binding sites. As the biosorbent dosage is at excessive level, overlapping or aggregation of binding sites available to the adsorbate, thus, longer diffusion path might cause lower adsorbate binding on to the active sites (Ferda Gönen, 2012). Whereas, at low adsorbent concentration the metal uptake by the biosorbent is denoted as relatively high. This is because of the high metalbiosorbent ratio resulting in large amount of metal ions being adsorbed per unit adsorbent (Abdel Ghani and El Chaghaby, 2014). The influence of adsorbent dosage on metal ions biosorption investigated by various researchers are shown in Table 2.6.

Biosorbent	Optimum Initial Biosorbent		Initial concentration of heavy	References
	Dosage (g/L)		metal ions (mg/L)	
Heavy Metals	Ni (II)	Cr (VI)		
Camellia sinensis	15	-	200	(Malkoc and Nuhoglu, 2005)
tea leaves				
Sugarcane	-	20	50	(Garg, et al., 2007)
bagasse				
Orange peel	2	-	100	(Gonen and Serin, 2012)
Cashew nut shell	3	-	20	(Senthil Kumar, et al., 2011)
Almond shell	-	50	10.4	(Pehlivan and Altun, 2008)
Walnut shell	-	30	10.4	—
Hazelnut shell	-	20	10.4	—
Coffee grounds	-	5	10	(Cherdchoo, Nithettham and Charoenpanich,
				2019)
Mixed waste tea	-	5	10	
Rice bran	5	-	100	(Zafar, et al., 2007)

Table 2.6: Optimum Initial Biosorbent Dosage for Maximum Removal of Cr (VI) and Ni (II) ions.

Table 2.6 provides reported information about the initial dose of biosorbent used to obtain maximum percentage removal on Ni (II) and Cr (VI) ions. The optimum concentration of biosorbent is also strongly dependent on the metal ion concentration in the aqueous solution. The range of optimal initial dosage of biosorbent exists within range of 5 - 15 g/L for Ni (II) and 5-50 g/L Cr (VI) ion solution.

In a previous study, the adsorption of Ni (II) on cashew nut shell were studied by varying the initial biosorbent dosage. It was reported that, the removal percentage increased sharply with an increase in biosorbent dose before reaching a saturation point at where the removal percentage showed a constant value. This was mainly due to the decrease in concentration gradient across the biosorbent surface. The maximum adsorption capacity of Ni (II) on cashew nut shell was concluded as 73.69 % with initial biosorbent dosage of 3 g/L. It was further explained that the adsorption efficiency of metal ions is strongly affected by the increase in number of binding sites available for adsorption whereas the number of available sites are dependent on the amount of adsorbent used in the adsorption process (Senthil Kumar, et al., 2011).

According to Table 2.6, the overall trend shows that the amount of biosorbent used to achieve higher metal uptake is considerably higher compared to the concentration of metal ions removed from the solution. This concludes that, a higher biosorbent dosage will be desired up to an optimal point. Beyond this optimal point will not show any increase in adsorption frequency due to the effect of mass transfer limitation caused by accumulation and staking of dense biosorbents at higher concentration.

2.6.5 Influence of Initial Concentration of Heavy Metal Ions

The initial concentration of metal ion represents the amount of adsorbate that is required to be removed from the bulk solution. It is also said to be a major influencing factor in metal uptake rate, since it is directly attributed to the transport of adsorbate molecules. This is mainly because the concentration of metal ion act as the driving force for the mass transfer of adsorbate molecules across boundary layer of adsorbent particles through concentration gradient. According to the past studies, the initial concentration of heavy metal ions is deducted to be inversely proportional to the percentage removal of metal ions while directly proportional to the biosorption capacity of the adsorbent (Abdel Ghani and El Chaghaby, 2014).

As the concentration of metal ions in the aqueous solution is increased, the biosorption capacity is observed to rise. This is mainly due to the strong driving force provided by the huge concentration of heavy metal ions to overcome the mass transfer resistance faced against the biosorbent boundary layer. When the concentration of metal ions in aqueous solution is relatively high the adsorbent surface can face overloading, which could lead to more ions to be left un-adsorbed due to the saturation of the binding sites. This could eventually result in lower percentage of heavy metal being removed from the non-changing volume of heavy metal solution. However, at lower concentration of metal ions the interaction between the metal ions and the biosorbent binding sites becomes intense, facilitating almost complete adsorption. Hence, a higher percentage removal of metal ions can be seen (Abdel Ghani and El Chaghaby, 2014). The influence of initial concentration of metal ions on biosorption investigated by various researchers are shown in Table 2.7.

Biosorbent	Optimum Initial concentration of heavy		Initial Biosorbent Dosage (g/L)	References
	metal ions (mg/L)			
Heavy Metals	Ni (II)	Cr (VI)		
Camellia sinensis tea	50		10	(Malkoc and Nuhoglu, 2005)
leaves				
Sugarcane bagasse	-	250	20	(Garg, et al., 2007)
Orange peel	10	-	2	(Gonen and Serin, 2012)
Cashew nut shell	20	-	3	(Senthil Kumar, et al., 2011)
Almond shell	-	26	25	(Pehlivan and Altun, 2008)
Walnut shell	-	26	25	
Hazelnut shell	-	26	25	
Coffee grounds	-	100	5	(Cherdchoo, Nithettham and
Mixed waste tea	-	80	5	Charoenpanich, 2019)
Rice bran	100		5	(Zafar, et al., 2007)

Table 2.7: Optimum Initial concentration of heavy metal ions for Maximum Adsorption Capacity.

Table 2.7 provides information about the initial concentration of heavy metal ions required to obtain maximum percentage removal of metal ions. The optimum initial concentration of heavy metal ions is also strongly dependent on the biosorbent dosage. The range of optimal initial concentration of heavy metal ions exists at about 10 - 100 mg/L for Ni (II) and 26 - 250 mg/L Cr (VI) solution.

The past study involving adsorption of Cr (VI) on mixed waste tea and coffee grounds showed almost complete adsorption when the initial Cr^{6+} concentration was tested at 40 mg/L and 35 mg/L respectively. The results showed that the metal uptake efficiency decreased as the initial Cr^{6+} concentration increased. This is explained by the limited available binding sites to compensate the high concentration of heavy metals (Cherdchoo, Nithettham and Charoenpanich, 2019).

This was further supported by another study conducted on the adsorption of Ni (II) ions on cashew nut shell where the initial concentration of heavy metal ions was altered as (10–50 mg/L) with constant biosorbent dose. The results exhibited a decline in percentage removal of Ni (II) ions from 77.68 % to 65.35 % and an increase in adsorption capacity from 2.589 to 10.892 mg/g when the heavy metal concentration is increased from 10 to 50 mg/L. The decrease in the removal percentage can be well explained by the saturation of available binding sites on the adsorbent surface above the maximum concentration of Ni (II) ions can be adsorbed. On the other hand, the increase in adsorption capacity can be attributed by higher adsorption rate and the all available active sites to be completely occupied by the high Ni (II) ions present in the aqueous solution (Senthil Kumar, et al., 2011).

According to Table 2.7, the overall trend shows that the initial concentration of metal ions investigated is significantly lower compared to the dosage of biosorbent used. Thus, it shows that higher metal removal can be achieved at lower concentration of metal ions, mainly caused by near complete adsorption of metal ions. This leads to maximum percentage removal of heavy metals, avoiding saturation of binding sites and un-adsorbed metal ions in the solution.

2.7 Optimum Operating Conditions for Biosorption Process

As discussed earlier, there are some critical biosorption condition that significantly influence the biosorption of metals such as temperature, contact time, agitation speed, pH of the solution, initial concentration of heavy metal ions and initial biosorbent dosage. Among the mentioned parameters, initial concentration of heavy metal ions, initial biosorbent dosage and pH can be deduced to be significant parameter in affecting the removal of Ni (II) and Cr (VI) ions from aqueous solution. This is because of the drastic change that was observed in percentage removal of heavy metal ions when the parameters were varied. The summary of the discussed biosorbent towards Ni (II) and Cr (VI) along with the optimal conditions for biosorption is shown in the Table 2.8.

Based on Table 2.8, the optimum pH of heavy metal solution for adsorption of Cr (VI) is 2 - 3.5 while for Ni (II) is 4 - 6. Meanwhile, the optimum biosorbent dosage strongly depends on the initial concentration of heavy metal ions which showed dosage of 5 - 15 g/L and 5 - 25 g/L for heavy metal ion concentration of 20 - 100 mg/L and 10 - 250 mg/L for Ni (II) and Cr (VI) ion respectively. Finally, the optimal contact time could be affected by the physical properties of the biosorbent while includes the biosorbent size and surface area. Based on the literature review, the optimal contact time ranges from 14 - 360 minutes.

Biosorbent	Metal	pН	Contact	Initial	Initial	Reference
	ion		time (min)	Biosorbent	concentration of	
				Dosage	heavy metal	
					ions (mg/L)	
Camellia sinensis tea	Ni (II)	4.0	120	15	50	(Malkoc and Nuhoglu,
leaves						2005)
Sugarcane bagasse	Cr (VI)	2.0	60	20	250	(Garg, et al., 2007)
Wheat bran	Cr (VI)	2.0	180	-	-	(Kaya, et al.,2014)
Orange peel	Ni (II)	5.0	14	2	100	(Gonen and Serin, 2012)
Cashew nut shell	Ni (II)	5.0	30	3	20	(Senthil Kumar, et al.,
						2011)
Almond shell	Cr (VI)	3.0	60	25	10.4	(Pehlivan and Altun,
Walnut shell	Cr (VI)	3.5	100	25	10.4	2008)
Hazelnut shell	Cr (VI)	3.5	100	25	10.4	
Barley straw	Ni (II)	4.85	360	-	-	(Thevannan, Mungroo
						and Niu, 2010)
Coffee grounds	Cr (VI)	2.0	120	5	100	(Cherdchoo, Nithettham
Mixed tea waste	Cr (VI)	2.0	80	5	80	and Charoenpanich,
						2019)
Rice bran	Ni (II)	6.0	240	5	100	(Zafar, et al., 2007)

Table 2.8: Summary of the Optimum Condition for Maximum Removal of Cr (VI) and Ni (II) ions

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

The aim of the experiment was to identify the most effective biosorbent and to determine the most optimal biosorption condition for maximum percentage removal of Ni (II) and Cr (VI) ions. The experiment was conducted in batch mode, where the biosorbents of green tea leaves and peanut shells were added in synthetic wastewater containing Ni (II) and Cr (VI) ions. As the first part of the study, the green tea leaves and peanut shells were used for biosorption of Ni (II) and Cr (VI) ions at fixed initial concentration of heavy metal ions, initial biosorbent concentration, speed of agitation of adsorption samples in shaking incubator, contact time provided for biosorption and pH of aqueous solution. This screening study was conducted to determine the most effective biosorbent. On the second part of the study, the effects of initial biosorbent dosage and pH of aqueous solution related to removal efficiency of heavy metal ions (Cr (VI) and Ni (II)) were studied at 5 level Full Factorial Experimental Design of Design Expert @ Software Version 12 was used to design the experimental runs for optimization study. Later, the optimum condition to achieve maximum removal of heavy metal ions were determined through RSM in Design Expert software. The material and equipment required to perform the batch biosorption experiment is shown in Table 3.1 and Table 3.2, respectively.

3.1.1 Material Preparation

Materials	Source
Potassium dichromate, K ₂ Cr ₂ O ₇	Friendemann Schmidt
	Chemical
Nickel (II) sulfate hexahydrate,	Sigma-Aldrich
$NiSO_4$ (H ₂ O) ₆	
Sodium hydroxide, NaOH	Merck Millipore
Hydrochloric acid, HCl	Merck Millipore
Deionized water	UTAR Laboratory
Distilled water	UTAR Laboratory

Table 3.1: List of Materials used.

Table 3.2: List of Equ	uipment used.
------------------------	---------------

Equipment	Model	Manufacturer
Electronic balance	Entris 224-1S	Sartorius
Convection Drying oven	Beschickung	Memmert
Sieve shaker	300 µm	Prada
Electrical blender	HR2056/90	Philips
pH probe and meter	PC 300	Eutech
Hotplate	LMS-1003	IKA
Shaking incubator	-	Labtech
Inductively Coupled Plasma	Optima 7000DV	Perkin Elmer
Optical Emission Spectrometry		
(ICP-OES)		
X-ray Diffractometer	XRD-6000	Shidmazu
Scanning Electron Microscopy	S-3400N	Hitachi
with Energy Dispersive X-ray		
Spectroscopy (SEM-EDX)		

3.2 Overview of Project Methodology

A summary of the work plan and methodology is represented below.

	Material Preparation				
1.	Jasmine and Genmaicha Green Tea Leaves				
٠	Jasmine green tea leaves were collected from "Taiwan Tea House"				
	outlet while genmaicha green tea leaves were collected from "Sushi				
	Mentai" outlet.				
•	Collected tea leaves were washed with boiling water until water turns				
	colourless.				
•	Followed by washing the leaves with distilled water for several times.				
•	Washed tea-leaves was heated to 80 °C for 24 hours in an oven.				
•	After heating, the samples were finely grinded and sieved to $350 \ \mu m$.				
2.	Peanut Shells				
•	Salted peanut shells were collected from a frequent consumer and				
	unsalted peanut shell were collected from a local market in Sungai				
	Long, Kajang.				
•	The collected peanut shells were washed with running tap water for				
	1-2 hours and rinsed again with distilled water for several times.				
•	Washed peanut shells were heated to 80 °C for 24 hours in an oven.				
•	After heating, the samples were finely grinded and sieved to 350 μ m.				
	Pre-screening for the Most Efficient Adsorbent				
٠	Identification of the most efficient biosorbent (jasmine green tea				

• Identification of the most efficient biosorbent (jasmine green tea leave/ genmaicha green tea leaves/ unsalted peanut shell/ salted peanut shell) through the efficiency of heavy metal ion removal percentage.

• The removal percentage of Ni (II) and Cr (VI) ions was examined under fixed initial concentration of heavy metal ions, initial biosorbent dosage, agitation speed, contact time and pH of aqueous solution.

• The percentage removal of heavy metal ions was determined by ICP-OES analysis.

The Study on the Effects of the Main Biosorption Parameters

- A total of 25 runs with the initial biosorbent dosage and pH of heavy metal solution being varied at 5 different levels were performed.
- Statistical analysis of experimental design in accordance to Full Factorial design via Design Expert software was performed to identify the effect of initial biosorbent dosage and pH of heavy metal solution on the removal efficiency of Ni (II) and Cr (VI) ions and the interaction between the biosorption parameters.

Optimization of Biosorption Condition

- The most optimum condition for the maximum percentage removal of heavy metal ions from aqueous solution were identified.
- The optimization tool of Design Expert software was used to identify the optimal combination of initial biosorbent dosage and pH of heavy metal solution to achieve maximum removal percentage of Cr (VI) and Ni (II) ions.

Figure 3.1: Experimental Flow Diagram

		2019						2020				
	Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15	Jan-15	Feb-15	Mar-15	Apr-15	May-15
Problem Formulation & Project Planning												
Literature search & Data gathering												
Designing, Planning and Preparation of Material for Experimentation.												
Pre-screening Stage (1 st stage of Experiment).												
Studying the Effects of Adsorption Parameters (2 nd stage of Experiment).												
Optimization of Parameters & Characterization studies (3 rd stage of Experiment												
Tabulation and Discussion of Results and Thesis Write Up												
Finalize thesis												

Figure 3.2: Gantt Chart

3.2.1 Biosorbent Preparation

Green Tea Leaves

Exhausted Jasmine green tea leaves were decided to be collected from a local "Taiwan Tea House" outlet in Sungai Long, Kajang. While, exhausted Genmaicha green tea leaves were collected from a local "Sushi Mentai" outlet in Sungai Long, Kajang. A total of 2 different kind of green tea leaves (jasmine green tea and genmaicha tea leaves) were collected from the outlet. The collected tea leaves are required to be washed with boiling water to remove soluble and coloured components. Hence, the leaves were washed until the wash water becomes colourless. Later, the washed leaves were sent to an oven to be heated at 80 °C for 24 hours to remove any the volatile components. After heating overnight, the samples were finely grinded and collected using a sieve shake with pore size of 300 µm.

Peanut Shell

Salted peanut shells were collected from a frequent peanut consumer and unsalted/unprocessed peanut were collected from a local market in Sungai Long, Kajang. At the same time, unsalted peanut shells were collected from a nearby market. The collected peanut shells were extensively washed in running tap water for 1–2 hour to remove any sort of dirt and coloration. It was followed by washing with distilled water several times and heating in an oven at 80 °C for 24 hours to eliminate any water content present within the sample. After heating overnight, the dried samples were finely grinded and collected using a sieve shaker with pore size of 300 μ m.

3.2.2 Biosorbate Preparation

The metal ions of Ni (II) and Cr (VI) can be obtained from Potassium dichromate, $K_2Cr_2O_7$ and Nickel (II) sulfate hexahydrate, NiSO₄ (H₂O)₆ salts, respectively. The salts were obtained from UTAR laboratory inventory. The acquired heavy metal salts which exist in crystalline state were weighed in an electronic balance and mixed with 1L of deionised water in a 1L schottt bottle. Approximately, 226.30 mg of Potassium dichromate and 210.90 mg of Nickel (II) sulfate hexahydrate, NiSO₄ (H₂O)₆ was mixed with 1L of deionised water to prepare 80 mg/L Cr (VI) and 80 mg/L Ni (II) stock solution, respectively.

identification of the mass of heavy metal salts to prepare 80 mg/L of heavy metal solution are shown in Appendix A. Besides, heavy metal solutions of 100 mg/L concentration was also prepared and diluted to 20 ppm, 40 ppm, 60 ppm, 80 ppm and 100 ppm to construct a calibration curve that could be used as standard reference point for identification of heavy metal ion concentration left after adsorption. The calibration curve obtained from the analysis of ICP-OES for nickel and chromium elements are shown in Appendix D and E, respectively. Approximately, 84.87 mg of Potassium dichromate, K₂Cr₂O₇ and 74.08 mg of Nickel (II) sulfate hexahydrate, NiSO₄ (H₂O)₆ was mixed with 300 mL of deionised water to prepare 100 mg/L Cr (VI) and 100 mg/L Ni (II) solution, respectively.

3.3 Batch Adsorption Experiment

The adsorption experiment was conducted on batch mode operation using green tea leaves and peanut shells as biosorbents to remove Cr (VI) and Ni (II) ions from synthetic wastewater.

3.3.1 Pre-screening of the Most Effective Biosorbent

The pre-screening stage was divided into two set of experiment where each set of experiment employs different biosorbent. For the first set of experiment, 6 units of 250 mL Erlenmeyer flask was prepared for adsorption studies. Out of the 6 flask, 3 units were filled with 50 mL of Cr (VI) solution and the other with equal amount of Ni (II) solution. Then, each solution was added with constant dose of jasmine green tea leaves (biosorbent) of 3 g. After addition of jasmine green tea leaves, the pH of Cr (VI) solution and Ni (II) solution was adjusted with the addition of acidic or basic solutions as shown in Table 3.3. Hydrochloric acid, HCl of 0.1M and sodium hydroxide, NaOH of 0.1M were used to adjust the pH of the heavy metal solution. The preparation of 0.1 M of HCL and 0.1 M of NaOH are done according to Appendix B and C, respectively. Upon adjustments, the biosorbent and metal solution mixture was placed in a shaking incubator to be agitated at 120 rpm at 27-30 °C for 24 hours. After 24 hours, the biosorbents are separated from the solution through filtration process using 150 mm filter paper and Büchner funnel. Later, 10 mL of the collected filtrate was transferred to 15 mL centrifuge tubes. The collected samples in the

centrifuge tubes were then sent to ICP-OES analysis to determine the concentration of heavy metal ion left in the solution upon adsorption. These procedures were repeated using genmaicha green tea leaves, salted peanut shell and unsalted peanut shell as biosorbents.

Before analysing Ni (II) and Cr (VI) ions present in the solution, a calibration curve of heavy metal ion was plotted. The calibration curve was used as a standard when determining the concentration of the heavy metal ion present in the solution before and after adsorption. The equilibrium (final) and initial concentration of metal ions identified from the solution were used as the basis to determine the most effective biosorbent for the removal of the respective heavy metals. Thereon, the most effective biosorbent are employed in optimization study for maximum removal of Cr (VI) and Ni (II) ions.

Table 3.3: Summary of Pre-screening Test Runs for the Removal of using Jasmine Green Tea Leaves, Genmaicha Green Tea Leaves, Salted Peanut Shells and Unsalted Peanut Shells.

Heavy metal ions	Cr (VI)	Ni (II)
Temperature (°C)	27-30	27-30
pH	2	6
Initial concentration of heavy metal ions	80	80
(mg/L)		
Initial Biosorbent Dose (g)	3	3

3.3.2 Optimization Study via Full Factorial Experimental Design

After selecting the most efficient biosorbent for the removal of Ni (II) and Cr (VI) ions in the pre-screening stage, the experimentation was performed to study the effects of the most significant biosorption parameters (biosorbent dosage and initial pH of solution) using only the most efficient biosorbent. For each parameter study, 5 levels of test runs were performed based on the Full Factorial Design of Design Expert Software @ Version 12 as the removal percentage of Cr (VI) and Ni (II) ions being the response factor. Later, the optimal value of the main parameters to reach maximum removal percentage of heavy metal ions were identified using optimization tool of Design Expert software.

Firstly, the effect of biosorbent dosage was conducted by varying the adsorbent dosage in the range of 2 g to 4 g. Meanwhile, the effect of pH of solution was tested by varying the pH in the range of 2 to 6 for Cr (VI) solution and 4 to 8 for Ni (II) solution. A clear representation of the test runs performed can be well seen in Table 3.5 and Table 3.6. Finally, the data obtained from the experimental runs of Full Factorial Design were used to develop an empirical model to describe the response of the adsorption process. This inadvertently reduces the total number of experimental runs that is required in order to achieve the most optimal solution and better response. This not only reduces the overall cost of the study but also the period required for completion of the study. Full factorial design takes into account of the effect of the main factors and all possible interaction effects. Full Factorial runs various combinations of the affecting factors to establish a best way to estimate all the main and interaction effects on the removal percentage of heavy metals (Nist, 2020).

Through statistical analysis, the interaction between the initial biosorbent dosage and pH along with their effect on the removal percentage of Ni (II) and Cr (VI) ions were studied. Later, the empirical model developed from the response of the Full Factorial Design was used to compute the most optimum condition for maximum percentage removal of heavy metal ions through optimization tool of Design Expert Software @ Version 12.

3.3.2.1 Effect of Biosorbent Dosage and pH of Aqueous Solution

As mentioned earlier, the influence of initial biosorbent dosage on percentage removal of heavy metal ions was done by varying the biosorbent concentration in the range of 2 g to 4 g. In the meantime, other affecting parameters such as metal ion concentration, temperature, contact time and agitation speed are kept constant excluding the pH of the solution. Firstly, 50 units of Erlenmeyer flasks were prepared. The first 25 flask were filled with 50 mL of Cr (VI) solution and the rest with equal amount of Ni (II) solution with a concentration of 80 mg/L respectively. Then, the most efficient biosorbent in the pre-screening stage were weighed in an electronic balance and added to each flask containing stock solution in the range of 2 g, 2.5 g, 3 g, 3.5 g and 4 g.

The effect of pH of solution on the percentage removal of heavy metal ions was studied by varying the pH in the range of 2 to 6 for Cr (VI) solution and 4 to 8 for Ni (II) solution. The study of effect of pH started with the preparation of 500mL of acidic solution, hydrochloric acid (HCl) and basic solution, sodium hydroxide (NaOH) with concentration of 0.1M for pH adjustments. Since, the maximum adsorption of Cr (VI) ion is observed in the pH range of 2 to 4, the pH of each set of Cr (VI) solution was adjusted to 2,3,4,5 and 6 with the addition of hydrochloric acid (HCl) and sodium hydroxide (NaOH). While, the maximum adsorption of Ni (II) ion was observed in the pH range of 4 to 6, the pH of each set of Ni (II) solution was adjusted to 4,5,6,7 and 8 for each sample solution by addition of hydrochloric acid (HCl). The pH of the solution was determined with a pH probe and meter.

After addition of biosorbent into the 50 units of Erlenmeyer flasks, the pH of the aqueous solution was adjusted in accordance with the Full Factorial Experimental runs developed as shown in Table 3.5 and Table 3.6. The, the mouth of the flask filled with adsorption media were sealed with aluminium foil and sent to a shaking incubator to agitate for 24 hours at 120 rpm and at temperature of 27-30 °C. After agitation, the solutions were transferred to 15 mL centrifuge tubes through filtration process using 150 mm filter paper and Büchner funnel. The filtrate is then taken to ICP-OES analysis to determine the concentration of heavy metal ion left in the solution after adsorption.

The range of the operating conditions for the each of the factors are shown in Table 3.4. While, the test runs that are planned to be conducted in relation to the two factors mentioned above are shown in Table 3.5 and Table 3.6. Finally, a peer representation of the optimization strategy is shown in Figure 3.3.

Factor	Cr (VI)		Ni	(II)
-	High	Low	High	Low
Initial Biosorbent	2	4	2	4
Dosage (g)				
pН	2	6	4	8

Table 3.4: High and Low Levels of Factors

Test Run	pH	Initial Biosorbent Dose (g)
1	2	2.0
2	2	2.5
3	2	3.0
4	2	3.5
5	2	4.0
6	3	2.0
7	3	2.5
8	3	3.0
9	3	3.5
10	3	4.0
11	4	2.0
12	4	2.5
13	4	3.0
14	4	3.5
15	4	4.0
16	5	2.0
17	5	2.5
18	5	3.0
19	5	3.5
20	5	4.0
21	6	2.0
22	6	2.5
23	6	3.0
24	6	3.5
25	6	4.0

Table 3.5: Summary of Test Runs for the Removal of Cr^{6+} using the most efficient biosorbent Leaves as Biosorbents.

Test Run	рН	Initial Biosorbent Dose (g)
1	4	2.0
2	4	2.5
3	4	3.0
4	4	3.5
5	4	4.0
6	5	2.0
7	5	2.5
8	5	3.0
9	5	3.5
10	5	4.0
11	6	2.0
12	6	2.5
13	6	3.0
14	6	3.5
15	6	4.0
16	7	2.0
17	7	2.5
18	7	3.0
19	7	3.5
20	7	4.0
21	8	2.0
22	8	2.5
23	8	3.0
24	8	3.5
25	8	4.0

Table 3.6: Summary of Test Runs for the Removal of Ni²⁺ using the most efficient biosorbent Leaves as Biosorbents.

Table 3.5 and Table 3.6 shows the test runs that are to be performed for the adsorption of Ni (II) ions and Cr (VI) using the most efficient biosorbent. The optimum conditions for biosorption process are determined based on the maximum heavy metal removal percentage.

3.4 Analysis of Experimental Data

3.4.1 Percentage Removal of Heavy Metal Ions

The percentage removal of heavy metal ions was determined for both prescreening and optimization stage. The percentage removal can be obtained as shown in Equation 3.1. The initial concentration of heavy metal ions (mg/L) is obtained through ICP-OES analysis before adsorption was performed. However, the equilibrium concentration (mg/L) was obtained through ICP-OES analysis after the aqueous solution has been in contact with biosorbent in a shaking incubator for 24 hours.

The percentage removal of metal ions can be determined by the following mass balance relationship:

Percentage removal (%) =
$$\frac{(C_0 - C_f)}{C_0} \times 100\%$$
 (3.1)

where C_0 is initial concentration (mg/L) of heavy metal ion in aqueous solution and C_f is final concentration (mg/L) of heavy metal ion in aqueous solution.

3.4.2 Statistical Analysis of Experimental Data and Optimizing Factors

The experimental data were employed and analyzed under full factorial design in Design Expert Software @ Version 12. A full factorial design indicates an experiment which includes trial runs that are designed to run at all possible combination of the factor levels. It allows the possibility of studying all potential interactions between the factors (Jmp, 2020). In this case, the factors being initial biosorbent dosage and pH of aqueous solution while the response being removal percentage of heavy metal ions. Normally, full factorial designs are large compared to the conventional designs mainly because it takes into account of every combination of the factor levels. The two operating factors are decided to be studied on 5 levels, making the design a 5-level factor. Thus, the full factorial design has $5^2 = 25$ runs. Since, the 5-level factorial is not directly available in the Design Expert @ Software Version 12, the design constructed under user defined option. The optimizing factors were classified as discrete numeric factors and the levels were decided as shown in Table 3.4. Then, the statistical analysis was performed by extracting and interpreting the Analysis of Variance (ANOVA), model of the design, R-squared value, "Predicted vs

Actual" plot, Box Cox plot, contour and 3D surface graphs. After, the model is termed significant and the R-squared value achieved an acceptable range, the process optimization was performed. The optimum operating conditions were determined through point prediction to achieve the desired goal. The numerical optimization criteria set in Design Expert Software is shown in Table 3.7.

 Table 3.7: Numerical Optimization Criteria

Criteria	Goal
Initial biosorbent dosage (g)	Minimize
pH	In range
Removal percentage (%)	Maximize

The optimization module will be set to maximize the percentage removal, where the best set of factor levels are selected to satisfy the target.

Figure 3.3: Overview of Full Factorial Design on Optimization Strategy

3.5 Instrumental Analysis of Heavy Metal Ion Concentration and Characterisation Study of Biosorbent

As mentioned earlier, the study begins with interpreting the removal efficiency of the adsorption process by identifying the final concentration of heavy metal ions left in the adsorption solution through Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) analysis. Later, the study proceeds with characterisation studies. The characterisation study refers to the study of the change in surface morphology and identification of elemental composition on biosorbent. Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) is employed to evaluate the change in surface morphology of biosorbent before and after adsorption. Fourier Transform Infrared Spectroscopy (FTIR) was mainly employed to identify the functional groups that may in any manner could contribute to the biosorption and to characterise the adsorption mechanism. While, X-ray Diffraction (XRD) is employed to detect the change in structural properties of the biosorbent before and after adsorption. It is also used to identify any presence of crystalline materials on the biosorbent surface after adsorption via XRD spectrum.

3.5.1 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

The adsorbent is added to the heavy metal ion solution and left in the shaking incubator for 24 hours at 120 rpm and 27-30 °C. After 24 hours, the adsorbent is separated from the solution through 150 mm filter paper and Büchner funnel. The filtrate is collected as samples and stored in 15 mL centrifuge tubes. The samples with unknown concentrations were then sent to Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) for analysis. The analysis in ICP-OES was aim to identify the heavy metal ion concentration that is left in the solution prior to adsorption. The final concentration of heavy metal ion also considered as the equilibrium concentration, Ce is later correlated with the initial concentration, Co to identify the removal percentage of the adsorption.

The ICP-OES analysis begins with constructing calibration curve of the analysing heavy metal ion. Firstly, 100 ppm concentration of Cr (VI) solution were prepared by dissolving 84.87 mg of Potassium dichromate, K₂Cr₂O₇ in 300

mL of deionised water to prepare 100 mg/L Cr (VI) solution. Later, the prepared solution was diluted to 80 ppm, 60 ppm, 40 ppm and 20 ppm and stored in 50 mL centrifuge tubes. The different concentration of Cr (VI) solution were analysed in ICP-OES along with deionised water to plot the calibration curve based on their mean corrected intensity. The solutions were placed in the Perkin Elmer autosampler followed by injecting the solution into the spray chamber of ICP-OES by a peristaltic pump through a nebulizer. The atomized aerosol is lead into an argon plasma. The concentration of the element is determined based on the intensity of the photon rays. The operating conditions of the ICP-OES maintained during the analysis are shown in Table 3.8. After the calibration curve was plotted, the adsorption samples were compared with the calibration curve to obtain the final concentration of adsorption. These steps were repeated for the analysis of Ni (II) solution were 74.08 mg of Nickel (II) sulfate hexahydrate, NiSO₄ (H₂O)₆ was dissolved in 300 mL of deionised water to prepare 100 mg/L solution.

Operating parameters	Operating condition
RF power	1300 W
Plasma Gas	Argon
Plasma Gas Flow	15 L/min
Peristaltic pump flow rate	1.5 mL/min
Spray chamber	Cyclonic
Replicates	3
Cleaning effluent	Deionized water

Table 3.8: Operating conditions of Inductively Coupled Plasma OpticalEmission Spectrometry (ICP-OES).

3.5.2 Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX)

The samples of biosorbent was analysed in Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) before and after adsorption. SEM was employed to study the change in surface morphology before and after adsorption, while the EDX was employed to confirm the presence of the heavy metals on the binding sites. SEM-EDX provides a visual perspective of high depth and detailed image of the porosity and surface structure of the biosorbent. While, SEM is used for just surface visual, EDX aims to detect the presence of unknown elements near the surface of the biosorbent. In this study, the before and after adsorption samples of the most efficient biosorbent were sent to SEM-EDX to observe the change in surface morphology and to determine the presence of heavy metals on the surface prior to adsorption. The heavy metal loaded biosorbent residues were separated from the solution through filtration and dried in oven at 80 °C overnight. The dried biosorbents were crushed to powders in pestle and mortar and sent to the SEM-EDX analysis. The powders were placed on the SEM pin mount specimen holder. The specimen holders were then sent to the sputter coating where the samples will be coated with Gold and Palladium. Then, the coated samples were mounted onto the SEM sample stage. The change in surface structure and porosity were identified from SEM analysis while the elemental composition on the surface are obtained from EDX analysis. The operating conditions of the SEM-EDX analysis are shown in Table 3.9.

Operating parameters	Operating condition
Coating	Gold (Ag) and Palladium (Pd)
Electron Energy	15 kV
EDX Mode	Low vacuum
Magnification	500x - 3000x

Table 3.9: Operating conditions of Scanning Electron Microscopy with EnergyDispersive X-ray Spectroscopy (SEM-EDX)

3.5.3 Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy (FTIR) analysis shows the presence of many functional group, indicating the complex structure of the biosorbent. The heavy metal loaded residues of biosorbents from the adsorption process were filtered and dried in the oven at 80 °C overnight. The dried biosorbents were then crushed to powders using pestle and mortar. Later, they were placed on the FTIR analysis stage for analysis. The peaks and bands obtained from the spectra can be used to identify the changes in the functional group of the biosorbent before and after adsorption. The change in the vibrational frequency and intensity indicates adsorption had occurred with the involvement of functional groups present on the surface of the biosorbent. The FTIR spectra of the sample were analysed in the range of 4000-600 cm⁻¹. The operating condition that is maintained during the analysis is shown in Table 3.10.

Operating parameters	Operating condition
Temperature	26 °C
Humidity	42 %
Resolution	4 cm ⁻¹

 Table 3.10: Operating conditions of Fourier Transform Infrared Spectroscopy

 (FTIR)

3.5.4 X-ray Diffraction (XRD)

X-ray Diffraction (XRD) is mainly used for identification of unknown crystalline materials such as inorganic compounds. The biosorbent was also required to be analysed under XRD before and after adsorption to identify the change in the peak obtained from the XRD spectrum. The peak observed in the spectrum indicates the presence of inorganic compounds such as heavy metals and presence of functional groups in the biosorbent due to its primary constituents such as cellulose and lignin. After adsorption, the change in peak could be evaluated to identify the kinetics of adsorption that has been occurred. In this study, the most efficient biosorbent was analysed in XRD, before and after adsorption to determine the presence of crystalline materials via the change in crystallinity of the biosorbent surface. After separating the biosorbents from

the solution prior to adsorption, the heavy metal loaded solid residues are dried in the oven at 80 °C for 24 hours. The dried biosorbents are then crushed to powder in pestle and mortar and sent to XRD analysis. The biosorbent powder are placed in the sample holder and fitted into the XRD sample stage. The XRD analysis is carried out with a measuring range of 10° to 70° at 2° per min as shown in Table 3.11.

Table 3.11: Operating conditions of X-ray Diffractometer (XRD)

Operating parameters	Operating condition
Measuring angle range	10-70°
Rotation speed	2° / min

The calculation of crystallite size from the XRD raw data can be obtained with the use of Debye Scherrer's equation is shown as Equation 3.2.

Crystallite size,
$$d_x(nm) = \frac{0.94 \lambda}{FWHM \cdot \cos \theta}$$
 (3.2)

where,

 d_x = Crystallite size, nm λ = X-ray wavelength (CuK α) = 0.15406 nm FWHM = Full Width Half Maximum, rad θ = Bragg's angle, rad

CHAPTER 4

RESULTS AND DISCUSSION

In this study, two factors influencing the removal percentage of Cr (VI) and Ni (II) ions using biosorbents were studied in detail. As discussed in the literature review, initial biosorbent dosage and initial pH of aqueous solution showed the most prominent influence on the percentage removal of nickel and chromium ions. Therefore, these parameters were varied based on the Full Factorial Experimental Design of Design Expert @ Software Version 12. The experimental data obtained from the biosorption process were used as input for the response in Design Expert Software. The results obtained from the software were subjected to statistical analysis where the data were evaluated based on individual and interactive effects of the parameters on heavy metal adsorption. Response Surface Methodology (RSM) explores the relationships between several manipulated variables and one or more response variables. The influence of the operating parameters on the removal efficiency of Cr (VI) and Ni (II) ions were discussed based on the results and graphs obtained from the ANOVA analysis of Design Expert. Later, the empirical model developed from the input of response was used to optimize the initial biosorbent dosage and pH to achieve maximum removal percentage of Cr (VI) and Ni (II) ions. At the final stage, characterisation study was performed on fresh and used biosorbents with X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared (FTIR) to display the physical and chemical properties of the biosorbents.

4.1 Pre-screening of the Most Efficient Biosorbents (Green tea leaves and Peanut shells)

As mentioned in the methodological section, exhausted green tea leaves and peanut shells were selected as potential biosorbents to adsorb Ni (II) and Cr (VI) ions. The batch adsorption process was carried out in accordance to the operating condition of the heavy metal ions as shown in Table 3.3. Based on the availability of raw material supply, two different kinds of green tea leaves and

two different kinds of peanut shells were attempted. The biosorbents used in this study were jasmine green tea leaves, genmaicha green tea leaves, salted peanut shells and unsalted peanut shells. These raw materials were used as biosorbents for the removal of Ni (II) and Cr (VI) ions from aqueous solution. The corresponding percentage removal observed from the experiment are displayed in Table 4.1. The percentage removal of heavy metal ions was deduced based on the final metal ion concentration obtained from ICP-OES as shown in Appendix G after correlating with the percentage removal equation 3.1. Meanwhile, the sample calculation of percentage removal of Cr (VI) using jasmine green tea leaves were well shown in Appendix F. Based on the removal percentage obtained, it can be deduced that both the green tea leaves showed greater affinity towards heavy metal ions (Cr (VI) and Ni (II)) compared to both salted and unsalted peanut shells. The removal percentage for Cr (VI) and Ni (II) by jasmine green tea leaves were 91.95 % and 96.16 % while the removal percentage by genmaicha green tea leaves were 89.21 % and 92.04 % respectively. Whereas, the removal percentage by salted peanut shell for Cr (VI) and Ni (II) were 81.94 % and 92.61 % while by unsalted peanut shell were 56.26 % and 61.60 % respectively. On average, the results clearly showed that jasmine green tea leave was the most effective biosorbent for the removal of both Cr (VI) and Ni (II) ions. Hence, jasmine green tea leave was chosen to be used in the subsequent stages of biosorption studies.
Biosorbent	Final M Concen (mg	etal Ion tration /L)	Concentr Metal Removed	ration of I Ion I (mg/L)	Percentage Removal, R (%)	
Heavy	Cr (VI)	Ni (II)	Cr (VI)	Ni (II)	Cr (VI)	Ni (II)
Metal Ions						
Jasmine	6.442	3.073	73.56	76.93	91.95	96.16
Green Tea						
Genmaicha	8.635	6.366	71.37	73.63	89.21	92.04
Green Tea						
Salted	14.450	5.912	65.55	74.09	81.94	92.61
Peanut Shell						
Unsalted	34.99	30.72	45.01	49.28	56.26	61.60
Peanut Shell						

Table 4.1: Pre-screening Results for Jasmine Green Tea, Genmaicha Green Tea, Salted Peanut Shell and Unsalted Peanut Shell

Figure 4.1: Pre-screening of Different Biosorbents on their Removal Percentage, R (%) of Cr (VI) and Ni (II) ions.

4.2 Influence of Initial Biosorbent Dosage and pH of Aqueous Solution on Percentage Removal of Cr (VI) and Ni (II) ions

During pre-screening stage, jasmine green tea leave was selected to be used in the batch biosorption of Cr (VI) and Ni (II) ions. The batch biosorption process was performed based on the experimental runs generated via full factorial experimental design of Design Expert @ Software Version 12. The initial biosorbent dosage and the pH of the aqueous solution were studied at five different levels. The initial biosorbent dosage and pH being the main manipulated factor, the removal percentage was measured as the response factor. The removal percentage of Cr (VI) and Ni (II) obtained from experimental runs at different initial biosorbent dosage and pH combinations is shown in Table 4.2 and Table 4.3 respectively. The initial biosorbent dosage and pH of aqueous solution are varied at five different levels. The removal percentage of Ni (II) is tested twice and the average removal percentage was considered while for removal of Cr (VI) only one reading is obtained due to time constraint. Later, the trend of the removal percentage influenced by both initial biosorbent dosage and pH of aqueous solution were plotted and analysed as shown in Figure 4.2.

	Removal Percentage, R (%)					
рН	рН 2	рН 3	рН 4	рН 5	рН 6	
Initial Biosorbent Dose						
2.0 g	99.92	99.89	99.93	99.96	97.42	
2.5 g	66.40	90.21	98.08	94.94	92.48	
3.0 g	79.76	92.57	98.32	93.51	91.45	
3.5 g	88.80	95.33	98.49	98.59	97.90	
4.0 g	100.00	100.00	99.99	99.87	99.87	

Table 4.2: Removal Percentage, R (%) of Cr (VI) Obtained at Different Biosorbent Dose and pH combination.

	Removal Percentage, R (%)														
pH		pH 4	ļ.		рН 5	5		рН 6	Ì		pH 7	1		pH 8	}
Initial															
Biosorbent	1	2	Average	1	2	Average	1	2	Average	1	2	Average	1	2	Average
Dose															
2.0 g	78.23	78.88	78.55	87.46	86.38	86.92	86.65	86.93	86.79	93.00	93.38	93.19	76.53	61.73	69.13
2.5 g	80.16	82.26	81.21	85.00	87.08	86.04	85.63	93.14	89.38	92.96	93.35	93.15	81.09	71.78	76.43
3.0 g	85.45	78.36	81.91	84.30	91.30	87.80	88.47	88.59	88.53	92.29	92.60	92.44	84.93	82.58	83.75
3.5 g	84.23	99.24	91.73	89.68	99.14	94.41	89.62	89.90	89.76	92.54	92.89	92.71	86.45	83.93	85.19
4.0 g	93.00	83.51	88.25	89.57	98.97	94.27	90.18	87.84	89.01	88.93	88.87	88.90	87.36	84.78	86.07

Table 4.3: Removal Percentage, R (%) of Ni (II) Obtained at Different Biosorbent Dose and pH combination.

4.2.1 Influence of Initial Biosorbent Dosage

The initial biosorbent dosage plays a significant role in the biosorption efficiency of the adsorbents. The study on the influence of the initial biosorbent dosage of jasmine green tea leaves was conducted by varying the biosorbent dosage while maintaining the concentration of heavy metal solution at 80 mg/L. The effect of biosorbent dosage on the removal percentage of heavy metal ions were studied in the range of 2 to 4 g with an interval of 0.5 g. Figure 4.2 (a) and 4.2 (b) depicts the percentage removal of Cr (VI) and Ni (II) ions at varying the biosorbent dosage and pH of solution, respectively.

Theoretically, the increase in dosage of biosorbent for the same amount of available heavy metal ions will lead to an increase in adsorption frequency, thus higher removal percentage can be seen. The increase in removal efficiency of heavy metal ions from aqueous solutions can be caused by the increase in number of exchangeable sites available for adsorption (Senthil Kumar, 2011). This was mainly due to the largely available adsorption binding sites offered by the large surface area of biosorbent in high dosage. Thus, more binding sites will be available, resulting in higher amount of metal uptake (Abdel Ghani and El Chaghaby, 2014). The optimum initial biosorbent dosage was deduced based on the maximum removal percentage of the heavy metal ions at equilibrium. This trend has been widely expressed in the study of Cherdchoo, Nithettham and Charoenpanich (2019); Amarasinghe and Williams (2007) and Nigam, et al. (2019). This theory can be well fitted to be result obtained for the removal of Ni (II) ions in Figure 4.2 (b).

The overall trend shown in Figure 4.2 (a) shows a slow decline at the initial stage from 2 g to 3 g followed by a gradual increase from 3 g to 4 g. The highest removal percentage of Cr (VI) ions of 100.00 % was obtained at pH 2 and pH 3 with the biosorbent dosage of 4 g. This shows the optimal initial biosorbent dosage to achieve maximum removal percentage was 4g where all of the heavy metal ions present in the solution were completely adsorbed onto the adsorption sites. However, the overall trend of the removal percentage of heavy metal ions from aqueous solution against the biosorbent dosage does not fit the theoretical normalities mentioned earlier. This could be caused by several reasons that might have potentially affected the result of the experimentation. Firstly, the analysis for the 2 g of biosorbent at different pH was analysed in ICP-OES at different period compared to the rest of the included data. The environment of the ICP-OES such as spectral interference, matrix effects and operating mode during analysis highly affects the performance of the analysis (HORIBA, n.d.). This could have potentially affected the result. Secondly, the green tea used for the 2 g of biosorbent analysis, was freshly prepared adsorbent material unlike the adsorbent material used for the rest of the analysis. Thus, the period of storage on jasmine green tea leaves could have affect the efficiency of the adsorbent towards adsorbing the Cr (VI) ions.

Figure 4.2 (b) shows an overall increased trend in the removal percentage, before reaching a saturation point (peak). The removal percentage of Ni (II) ions shows a slow increase from biosorbent dosage 2 g to 3 g. The lowest peak (83.75%) was obtained at pH 8 with the biosorbent dosage of 3 g and the highest peak (94.41%) was obtained at pH 5 with biosorbent dosage of 3.5 g. This was caused by the equilibrium has been achieved. Higher concentration of biosorbent resulted in higher amount of biosorption sites, however after the optimal point, the agglomeration of the biosorbent particles can lead to overlapping of binding sites and longer diffusional path of the metal ions (Cherdchoo, Nithettham and Charoenpanich, 2019). This will eventually restrict the adsorption process of the heavy metal ions and unsaturation of adsorbent sites. Despite employing agitation in a shaking incubator to enhance the mixing during adsorption, further addition of biosorbent beyond equilibrium will only show reduced adsorption efficiency due to some of the adsorption sites remain unsaturated caused by overlapping (Nigam, et al., 2019). The optimal initial biosorbent dosage was highly dependent on the pH of the aqueous solution.

Figure 4.2: Percentage Removal, R (%) of Heavy Metal Ions at Different pH and at Different Initial Biosorbent Dosage of Jasmine Green Tea Leave on the Removal of (a) Cr (VI) and (b) Ni (II) ions.

4.2.2 Influence of pH of Aqueous Solution

Influence of pH of heavy metal solution during adsorption on the removal percentage was studied in detailed. The initial pH of the solution was varied at five different level where the pH of Cr (VI) solution was studied with pH 2,3,4,5 and 6 whereas the pH of Ni (II) solution was studied with pH 4,5,6,7 and 8. In order to prevent precipitation, the pH range was not exceeded beyond pH 8 (Nigam, et al., 2019). The pH range for the respective heavy metal ion solution were decided based on the formation of cation or anion when dissociated in water. Figure 4.3 (a) and 4.3 (b) represents at constant biosorbent dosage, the effect of pH on the removal of Cr (VI) and Ni (II) ions respectively. Based on Figure 4.3 (a), the removal percentage of Cr (VI) from aqueous solution has reached maximum of 98.32 % at pH 4. While, the maximum removal percentage of Ni (II) of 94.41 % was observed at pH 5. The effect of pH on the removal percentage of heavy metal ions was decided to be studied at initial biosorbent dosage of 3 g, 3.5 g and 4 g. The optimum biosorbent dosage found earlier for removal of both Cr (VI) and Ni (II) ions were about 3 - 4 g. Thus, 3 g to 4 g adsorbent dosage was chosen as the ideal range, during the study of the effects of pH on removal percentage.

Based on Figure 4.3 (a), the maximum removal percentage was observed at system of pH 4. As mentioned in the literature review, the optimum pH range published for the removal of Cr (VI) ions were typically in the range of 2 to 4. Hence, Figure 4.3 (a) supports the results obtained in the previously studied thesis. The removal percentage of heavy metals was increased slowly with the pH increment till pH 4. Thereafter, removal percentage reduced as the pH increased to 6. Thus, system of pH 4 was determined as the optimal pH required to remove highest amount of hexavalent chromium. This was mainly because, Cr (VI) solution dissociate into different chromate anions (CrO_4^{2-} , H₂CrO₄, HCrO₄⁻ and $Cr_2O_7^{2-}$) in water. The stability of these ions were highly dependent on the pH of the aqueous solution (Pehlivan and Altun, 2008). At the same time, the pH of the aqueous solution strongly affects the adsorbent surface charge and the degree of ionization of the heavy metals (Abdel Ghani and El Chaghaby, 2014).. At acidic condition of pH 4, these anions will be dominantly available and the adsorbent surface will be protonated. Among the wide group of anions, HCrO₄⁻ that was dominantly available at high acidic condition were strongly attracted to the positively charged adsorbent surface via electrostatic attraction (Cherdchoo, Nithettham and Charoenpanich, 2019). At lower pH, the green tea leaves surface will be surrounded by hydronium ions (H^+ and H_3O^+) which promotes the attraction of chromate anions onto the binding sites of the biosorbent (Pehlivan and Altun, 2007). The most dominantly available chromium species at lower pH is hydrogen chromate ion (HCrO₄⁻) which would transform into chromium oxoanion (CrO_4^{-}) and chromate anion ($Cr_2O_7^{2-}$) as the pH increases. Since, higher removal of Cr (VI) ions were observed at more acidic condition on the positively charged green tea leaves, it can be deduced that hydrogen chromate ion (HCrO₄⁻) was the active chromium species observed to be adsorbed onto the green tea (Sarin, et al., 2006). Besides, it was also reported that, the dichromate ions go through reduction to form Cr³⁺ at lower sytem pH. Thus, having a much smaller ionic size, Cr^{3+} can be easily replaced by cationic hydronium (H^+ and H_3O^+) on the biosorbent surface, resulting in higher adsorption at acidic condition. The reduction of dichromate ion ($Cr_2O_7^{2-}$) into Cr^{3+} is shown below in Equation 4.1 and 4.2.

$$Cr_2O_7^{2-} + 14H + 6e^- \rightarrow 2Cr^{3+} + 7H_2O_2$$
 (Eqn. 4.1)

$$Cr_2O_7^{2-} + 4H_2O + 3e^- \rightarrow Cr (OH)_3 + 5OH^-$$
 (Eqn. 4.2)
(Garg, et al., 2007)

On the contrary, at pH above 4 the removal percentage showed a steep decline was mainly because of the interference caused by decrease in electrostatic attraction and the presence of hydroxide ions (OH⁻) in bulk solution. The presence of OH⁻ ions will lead to competitive adsorption with chromium oxoanion (CrO₄⁻) and chromate anion (Cr₂O₇²⁻) that could significantly reduce the adsorption efficiency due to lower adsorption sites availability for chromium species ions due to the occupation of binding sites (Pehlivan and Altun, 2007).

According to Figure 4.3 (b), the optimal removal percentage of Ni (II) ions was observed at system of pH 5. Beyond pH 5, steep decline can be seen when the pH was approaching system pH 8. As mentioned earlier, at lower pH, the

adsorbent surface will be protonated leading to electrostatic repulsion between the positively charged ligands on the biosorbent surface and Ni (II). At the same time, the competitive adsorption of protons (H⁺ and H₃O⁺) and Ni (II) ions could also hugely reduce the metal uptake rate (Flores-Garnica, et al., 2013). Higher concentration and mobility of H^+ and H_3O^+ ions at lower pH conditions which will hinder the Ni (II) ions from reaching the adsorbent active sites due to repulsive forces (Senthil Kumar, et al., 2011). In addition, adsorption of Ni (II) ions also decreases at lower pH hinders the due to surface functional group that contribute to the removal of heavy metals, experiencing repulsive forces by the H^+ ions. As the pH progress to the optimal value, the removal efficiency gradually increases as the adsorption of cationic Ni (II) build-up due to the increase in negatively charged biosorbent surface (Zafar, et al., 2007). Increase in pH of the system until optimal level of 5 will reduce the H⁺ ions along with the competition for adsorption onto the binding sites. However, the decrease in removal percentage beyond pH 5 can be caused by hydroxylated complex formation due to precipitation of Ni (II) into nickel hydroxide due to the presence of OH⁻ ions as reported by Malkoc and Nuhoglu (2005). Such insoluble complexes formation, not only reduce the amount of nickel available for adsorption but also reduces the affinity of nickel ions towards the biosorbent (Zafar, et al., 2007).

Anyhow, the trend of the removal percentage at different pH at initial biosorbent dosage of 4 g shows that the initial biosorbent dosage acts as the predominant force in affecting the removal percentage of Cr (VI) ions rather than the pH of the aqueous solution which resulted in least changes in removal percentage over the range of pH.

Figure 4.3: Percentage Removal, R (%) of Heavy Metal Ions with 3g, 3.5g and 4g Dosage of Jasmine Green Tea Leave on the Adsorption of (a) Cr (VI) and (b) Ni (II) ions.

4.3 Statistical Analysis in Design Expert Software

After studying the effects of initial biosorbent dosage and pH on the removal percentage of Cr (VI) and Ni (II) ion, statistical analysis was performed on experimental data collected via Full Factorial Experimental run in Design Expert @ Software Version 12. The influences of the individual effects of two parameters and the interaction effect between these two parameters on the adsorption efficiency of heavy metal ions were evaluated through response surface methodology (RSM). As mentioned earlier, each parameter was studied on five different levels. The experimental design for the Full Factorial Design which includes two factors (Factor A: Initial biosorbent dosage; Factor B: pH) at five levels was shown in Table 4.4 and Table 4.5. A total of 25 experimental runs for each Cr (VI) and Ni (II) ion removal were designed. Meanwhile, removal percentage of heavy metal ions (Cr (VI) and Ni (II)) was considered a response factor to measure the performance of the biosorption process.

Both of the affecting factors, initial biosorbent dosage (A) and pH (B) were analysed quantitatively (numerical) and thus a qualitative judgement was made. Thus, Table 4.2 and 4.3 shows the removal percentage corresponding to varying biosorbent dosage and pH of aqueous solution. The response variable was collected from various experimental runs with different combination of Factor A and B. The removal percentage was obtained from Equation 3.1 by correlating the initial concentration of heavy metal ions and final metal ion concentration of the aqueous solution that was measured with ICP-OES. This model represents a 5^2 full factorial design with a total of 25 runs which fully complement all possible factor combination to measure the interaction as well as the main effects on the responding variable (Witek-Krowiak, et al., 2014).

TEST	Factor A	Factor B	Response
RUNS	Initial biosorbent dose	рН	Removal percentage
	(g)		(%)
1	2.0	2	99.92
2	2.5	2	66.40
3	3.0	2	79.76
4	3.5	2	88.80
5	4.0	2	100.00
6	2.0	3	99.89
7	2.5	3	90.21
8	3.0	3	92.57
9	3.5	3	95.33
10	4.0	3	100.00
11	2.0	4	99.93
12	2.5	4	98.08
13	3.0	4	98.32
14	3.5	4	98.49
15	4.0	4	99.99
16	2.0	5	99.96
17	2.5	5	94.94
18	3.0	5	93.51
19	3.5	5	98.59
20	4.0	5	99.87
21	2.0	6	97.42
22	2.5	6	92.48
23	3.0	6	91.45
24	3.5	6	97.90
25	4.0	6	99.87

Table 4.4: Experimental Design Matrix with Response for Adsorption of Cr (VI) ion

TEST	Factor A	Factor B	Response		
RUNS -	Initial biosorbent dose	рН	Removal percentage		
	(g)		(%)		
1	2.0	4	78.55		
2	2.5	4	81.21		
3	3.0	4	81.91		
4	3.5	4	91.73		
5	4.0	4	88.25		
6	2.0	5	86.92		
7	2.5	5	86.04		
8	3.0	5	87.80		
9	3.5	5	94.41		
10	4.0	5	94.27		
11	2.0	6	86.79		
12	2.5	6	89.38		
13	3.0	6	88.53		
14	3.5	6	89.76		
15	4.0	6	89.01		
16	2.0	7	93.19		
17	2.5	7	93.15		
18	3.0	7	92.44		
19	3.5	7	92.71		
20	4.0	7	88.90		
21	2.0	8	69.13		
22	2.5	8	76.43		
23	3.0	8	83.75		
24	3.5	8	85.19		
25	4.0	8	86.07		

Table 4.5: Experimental Design Matrix with Response for Adsorption of Ni (II) ion

4.3.1 Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) was a critical module in statistical analysis where it defines the significance of the design model as well as the term included in the model (StatEase, 2020).. The significance of the model was normally based on the model P-value in association with the model F-value. The model was termed significant if the "P-value > F-value". In the meantime, the model terms were deemed significant only if the P-value < 0.0500 (StatEase, 2020)... Table 4.6 and 4.7 represents the findings from ANOVA for the removal of Cr (VI) and Ni (II) respectively. Most importantly, the model suggested for the response variable of Cr (VI) and Ni (II) removal percentage was Quartic model. These models were later modified by eliminating the most insignificant model terms that do not support the hierarchy. This was to ensure that the significance of the model and the precision of the empirical model was maximized. From Table 4.6, the empirical model with F-value 13.75 was termed significant in accordance with the P-value (0.0001 < 0.0500). In this case, the terms that were significant with "P-value > F-value" less than 0.1000 were A, B, AB, B², A²B, A³, A²B² and A³B. Meanwhile, Table 4.5 representing the empirical model of Ni (II) removal with F-value 20.39 was also termed significant in accordance with the P-value (0.0001 < 0.0500). The significant model terms with "P-value > F-value" less than 0.1000 were B, AB, B², AB², B³, AB³ and B⁴. To be noted that, there was only 0.01 % chance that the F-values for both Cr (VI) and Ni (II) removal could be affected by noise.

Source	Sum of Squares	df	Mean Square	F-value	P-value	Remark
Model	1296.12	10	129.61	13.75	< 0.0001	significant
A-Initial						
biosorbent	80.05	1	80.05	8.49	0.0113	
dosage						
B-pH	356.27	1	356.27	37.79	< 0.0001	
AB	63.79	1	63.79	6.77	0.0209	
A ²	7.51	1	7.51	0.7962	0.3873	
B ²	358.73	1	358.73	38.05	< 0.0001	
A ² B	156.01	1	156.01	16.55	0.0012	
AB ²	22.31	1	22.31	2.37	0.1462	
A ³	101.93	1	101.93	10.81	0.0054	
A^2B^2	133.12	1	133.12	14.12	0.0021	
A ³ B	56.85	1	56.85	6.03	0.0277	
Residual	131.98	14	9.43			
Cor Total	1428.10	24				

Table 4.6: Analysis of Variance (ANOVA) for removal of Cr (VI)

Table 4.7: Analysis of Variance (ANOVA) for removal of Ni (II)

Source	Sum of Squares	df	Mean Square	F- value	P-value	Remark
Model	818.21	11	74.38	20.39	< 0.0001	significant
A-Initial						
biosorbent	8.49	1	8.49	2.33	0.1512	
dosage						
B-pH	26.64	1	26.64	7.30	0.0181	
AB	57.65	1	57.65	15.80	0.0016	
A ²	9.78	1	9.78	2.68	0.1255	
B^2	25.23	1	25.23	6.91	0.0208	
A ² B	13.50	1	13.50	3.70	0.0766	
AB ²	106.26	1	106.26	29.13	0.0001	
A ³	9.84	1	9.84	2.70	0.1245	
B ³	35.11	1	35.11	9.62	0.0084	
AB ³	60.81	1	60.81	16.67	0.0013	
B⁴	67.87	1	67.87	18.60	0.0008	
Residual	47.43	13	3.65			
Cor Total	865.64	24				

The reliability of the empirical model can further be ensured by evaluating the coefficient of determination, R^2 value. The R^2 value shows the accuracy of the response generated with the predicted response (Connor, 2020). At the same time, it shows the variation observed in the response by the selected model towards the predicted manipulated variable. The R^2 value ranges from 0 to 1 and a higher value depicts a more accurate representation of the response. Besides that, the predicted R^2 value indicates the ability to predict the future observation based on the response variable provided. The adjusted R^2 value in association with the predicted R^2 value which adjusts the number of irrelevant model terms (StatEase, 2020). The difference between adjusted R^2 and predicted R^2 value was at < 0.20 to be considered as they were in reasonable agreement. Meanwhile, adequate precision parameter was used to determine the signal to noise ratio and compares the average prediction errors to the range of predicted values at the design points. An adequate precision value of greater than 4 was desirable (StatEase, 2020).

Table 4.8 shows the summary of the ANOVA for the removal of Cr (VI) ions. The R^2 value of the empirical model was indicated as 0.9076. It shows that 90.76 % of the variation in the response variable can be explained through the empirical model. Since, there was no insignificant model terms that lays out of the model hierarchy support to be eliminated, the adjusted R^2 value cannot be further optimized. These could be an effect of the response variable (removal percentage) experimental data that has been recorded that does not fit the normalities.

Significant Model Terms	A, B, AB, A ² , B ² , A ² B, AB ² , A ³ , A ² B ² ,		
	A ³ B		
R ²	0.9076		
Adjusted R ²	0.8416		
Predicted R ²	0.4562		
Adeq Precision	13.7315		

Table 4.8: Summary of Analysis of Variance (ANOVA) for removal of Cr (VI)

Table 4.9 summarises the ANOVA of the removal of Ni (II) ion. The predicted R^2 was obtained as 0.7041 which was in reasonable agreement with the adjusted R^2 of 0.8988. While, the adequate precision measures the signal to noise ratio of (18.361 > 4.00) indicating that was it an adequate signal. This ensures that the model can be used to navigate the design space. The empirical model has shown prominent significance which could ensure precision results during optimization

Significant Model Terms	$A, B, AB, A^2, B^2, A^2B, AB^2, A^3, B^3,$
	AB^3, B^4
R ²	0.9452
Adjusted R ²	0.8988
Predicted R ²	0.7041
Adeq Precision	18.3613

Table 4.9: Summary of Analysis of Variance (ANOVA) for removal of Ni (II)

Based on the ANOVA analysis, the empirical model of the removal of Cr (VI) and Ni (II) ions were shown in Table 4.10 and 4.11 respectively.

Table 4.10: Empirical Equation in Terms of Coded and Actual Factors for removal of Cr (VI)

	Mathematical Model
Coded	Removal percentage = $97.89 + 8.18A + 8.32B - 9.60AB + 2.04A^2$
Factors	$-14.11B^2 - 8.45A^2B + 3.19AB^2 - 9.52A^3 + 13.19A^2B^2 + 10.05$
Actual	Removal percentage = 1349.30300 - 1189.78367 (initial
Factors	biosorbent dosage) - 345.12948 (pH) + 308.10180 (initial
	biosorbent dosage) + 338.30400 (initial biosorbent dosage) +
	23.74565 $(pH)^2$ - 75.83482 (initial biosorbent dosage) ² (pH) -
	18.98076 (initial biosorbent dosage)(pH) ² - 29.62533 (initial
	biosorbent dosage) ³ + 3.29653 (initial biosorbent dosage) ² (pH) ²

	Mathematical Model							
Coded	Removal percentage = $89.44 + 2.66A + 4.72B - 9.13AB - 1.50A^2$							
Factors	$+ \ 14.08B^2 - \ 2.48A^2B \ + \ 6.97AB^2 - \ 2.96A^3 \ \text{-} 5.59B^3 \ + \ 10.40AB^3 \ \text{-}$							
	$20.55B^4$							
Actual	Removal percentage = $-614.34286 - 303.54752$ (initial biosorbent							
Factors	dosage) + 638.51776 (pH) + 122.34419 (initial biosorbent							
	dosage)(pH) + 32.57257 (initial biosorbent dosage) ² – 196.37195							
	$(pH)^2 - 1.24200$ (initial biosorbent dosage) ² (pH) - 21.65157 (initial							
	biosorbent dosage)(pH) ² – 2.95733 (initial biosorbent dosage) ³ +							
	26.22667 (pH) ³ +1.29967 (initial biosorbent dosage)(pH) ³ –							
	1.28433 (pH) ⁴							

Table 4.11: Empirical Equation in Terms of Coded and Actual Factors for removal of Ni (II)

4.3.2 Diagnostic Plots

As the R^2 value for the model of Ni (II) and Cr (VI) ion removal were discussed in the earlier section, this section demonstrates the predicted plots of the empirical model. These confirms the correct prediction of the statistical model on the heavy metal ions removal efficiency. Figure 4.4 and 4.5 depicts the plot of experimental responses versus the predicted responses on removal percentage of Cr (VI) and Ni (II) ions respectively. Based on Figure 4.4 and 4.5, it can be seen that the experimental values of removal percentage of Ni (II) ions lie closer to the predicted values compared to removal percentage of Cr (VI). This can be supported by the R² value for the model discussed earlier where for the removal percentage of Cr (VI) (R²: 0.9075) while for removal percentage of Ni (II) (R²: 0.9452). Hence, this shows that the empirical model of Ni (II) removal was able to predict the response more accurately compared to empirical model of Cr (VI) removal based on the range of data provided.

Figure 4.4: Predicted vs Actual Plot for Removal Percentage of Cr (VI).

Figure 4.5: Predicted vs Actual Plot for Removal Percentage of Ni (II).

4.3.3 Box-Cox Plot for Power Transformation

A Box-Cox plot acts as a tool to aid the users to determine the most suitable power transformation required for a response data. The power transformation was commonly described with the value of lambda, λ . Power transformation is commonly applied to a set of test data that are not ascertain with the assumption of normality. When the real data that was obtained goes through an appropriate transformation, it can yield a data set that can follow the normal distribution as expected (Nist, 2020). The Design Expert software shows the current power transformation as well as considers the minimum lambda value and the lambdas at 95 % confidence interval, if it was within \pm 3 lambda limits.

Based on the results obtained from Design Expert @ Software Version 12, the initial Box-Cox plot obtained from the ANOVA analysis for the removal or Ni (II) and Cr (VI) was shown in Figure 4.6 and 4.7 respectively. Both the plot shows the current lambda value to be at 1. Even though, both Box-Cox plot provided a recommended logarithmic function ($\lambda =3$), there was no recommendation indicated for power transformation. This shows that the power transformation that was intended to be recommended falls outside the confidence interval (StatEase, 2020). Since, there was no recommendation provided by the Design Expert software for any transform of logarithmic function, the current logarithmic function ($\lambda =1$) was followed to obtained the results of normality.

Figure 4.6: Box-Cox Plot for Power Transform for removal of Cr (VI).

Figure 4.7: Box-Cox Plot for Power Transform for removal of Ni (II).

4.3.4 Model Graphs

In general, high biosorbent dosage of jasmine green tea leaves has indicated higher removal efficiency of heavy metal ions. However, the removal efficiency was also strongly affected by the pH of the aqueous solution. Therefore, the interaction between these numeric factors at fixed initial concentration of heavy metal ions of 80 mg/L were identified using model graphs such as contour plot and 3D surface plot with the removal percentage being the measurement of the biosorption efficiency. In the current study, the trend of interaction between the Factor A (initial biosorbent dosage) and Factor B (pH) on the Response (removal percentage) of the model was projected through a 3D surface plot and contour plot extracted from Design Expert Software. From the model graphs obtained, the regions can be subdivided into "productive" and "non-productive" region of the empirical model which were classified based on the colour of the region. The bright red colour indicates the region of peak which shows the highest removal percentage of heavy metal ions, followed by yellow, green and blue colour (El-Naggar, et al., 2018).

Figure 4.8 and Figure 4.9 show the contour plot and 3D surface plot of model term of Factor A and Factor B on the removal percentage of Cr (VI) ions respectively. From the plots, when the initial biosorbent dosage was just at 2 g and the pH of the aqueous solution has increased to 4, the removal percentage of Cr (VI) ions increased substantially, indicating high adsorption efficiency. At initial biosorbent dosage of 2 g and pH of 4, almost all the Cr (VI) ions have been removed. However, at the region with higher initial biosorbent dosage of 2.5 g and 3 g, removal percentage of heavy metal ions were low. This might be due to occurrence of overlapping of active binding sites at saturated biosorbent dosage (Cherdchoo, Nithettham and Charoenpanich, 2019). In contrast, when the pH decreased below 4, the removal percentage of Cr (VI) ions from aqueous solution has decreased regardless on the initial biosorbent dosage. This indicates lower adsorption efficiency by the green tea leaves at pH lower than 4. It can be deduced that the combination of pH and initial biosorbent dosage at red "productive region" was favourable whereas the combination of pH and initial biosorbent dosage at blue to red "non-productive region" should be avoided to achieve maximum Cr (VI) removal percentage.

Figure 4.9 shows a 3D surface plot of interaction between the Factor A (initial biosorbent dosage) and Factor B (pH) the removal percentage of Cr (VI) ions. It shows a broad peak at pH 4, irrespective of initial biosorbent dosage, indicating maximum removal percentage. Therefore, pH was considered as the most evident factor in the adsorption of Cr (VI) ions. In the meantime, the removal percentage of Cr (VI) did not show any increase beyond pH 4 regardless of initial biosorbent dosage. Thus, the optimal value for removal of Cr (VI) could be strongly fall at pH 4. This deduction was further supported by the claim provided by Nigam, et al. (2019) which stated that maximum removal of Cr (VI) using tea waste was observed at pH 3.9.

Figure 4.8: Contour Plot for Interaction between Initial Biosorbent Dosage (g) and pH of on Removal Percentage of Cr (VI).

Figure 4.9: 3D Surface Plot for Interaction between Initial Biosorbent Dosage (g), pH and Removal Percentage of Cr (VI).

Figure 4.10 and Figure 4.11 show the contour plot and 3D surface plot of model term of Factor A and Factor B on the removal percentage of Ni (II) ions respectively. The current view shows that, when the pH was increased to 7 and the biosorbent dosage was increased to 4 g, the removal percentage of Ni (II) ions showed a strong increase in removal percentage, indicating high adsorption efficiency. In contrast, when the pH decreased below 7, the removal percentage of Ni (II) ions from aqueous solution has decreased substantially regardless on the initial biosorbent dosage. This indicates lower adsorption efficiency by the green tea leaves at pH lower than 7. However, this did not comply when the initial biosorbent dosage reaches 4 g, where the removal percentage was optimum at pH 4 to 5. This could be caused by the initial biosorbent dosage appeared as the significant factor on the removal of Ni (II). Thus, when the system was in the range of pH 4 to 5 and biosorbent concentration at 4 g, Ni (II) removal percentage showed significant drop. This could be caused by the accumulation of biosorbent due to excessive biosorbent concentration resulting in unsaturation of adsorption sites (Cherdchoo, Nithettham and Charoenpanich, 2019). Based on Figure 4.10, the combination

of pH and initial biosorbent dosage at red "productive region" was favourable whereas the combination of pH and initial biosorbent dosage at blue to red "nonproductive region" should be avoided to achieve maximum Ni (II) removal percentage.

Figure 4.11 shows a 3D surface plot of interaction between the Factor A (initial biosorbent dosage) and Factor B (pH) the removal percentage of Ni (II) ions. It shows a broad peak at pH 7, irrespective of initial biosorbent dosage, for higher removal percentage. At the same time, an optimum peak was found at pH 4 to 5 and at initial biosorbent dosage of 4 g. On the contrary, pH was considered as the most significant factor in the adsorption of Ni (II) ions. Thus, the optimal value for removal of Ni (II) was at pH 7 and at initial biosorbent dosage of 4 g. This deduction was further supported by the claim provided by Shah, et al. (2015) which stated that the optimal pH to obtain maximum Ni (II) removal using tea waste can be seen at system pH 7. The adsorption of Ni (II) ions has been proven to show poor removal efficiency below pH 7 due to high concentration of competing H⁺ ions and beyond pH 7 due to the metal hydroxide precipitation.

Figure 4.10: Contour Plot for Interaction between Initial Biosorbent Dosage (g) and pH of on Removal Percentage of Ni (II).

3D Surface

Figure 4.11: 3D Surface Plot for Interaction between Initial Biosorbent Dosage (g), pH and Removal Percentage of Ni (II).

4.4 **Optimization of Operating Condition using Design Expert**

The process optimization was performed under numerical optimization in Design Expert @ Software Version 12. The numerical optimization tool takes into account of the design evaluation, ANOVA statistics data and diagnostic graphs of the model that was developed. This was to makes sure, the optimization tool provides a good estimation of the true response surface based on the model (StatEase, 2020). In this case, the empirical model of Cr (VI) and Ni (II) from the ANOVA analysis was used. The main aim of the optimization process is to determine the optimal value of initial biosorbent dosage and initial pH of the aqueous solution to yield the maximum removal percentage of heavy metal ions (Cr (VI) and Ni (II)). The criteria set for the removal of Cr (VI) and Ni (II) ions in Design Expert Numerical Optimization tool were shown in Table 4.12 and Table 4.13, respectively. The response (removal percentage %) was given the most importance as it correlates with the objective of the study. The best optimal solution was selected based on the highest removal percentage of heavy metal ions followed by minimum biosorbent dosage. In industry, an optimized process always uses less resources to achieve their goal. In this case, to achieve maximum removal of heavy metal ions, minimal amount of biosorbent is expected to reduce the processing cost. Thus, the goal of optimization process was to obtain the best combination of condition that fulfil all the goals and achieve a high desirability value.

Table 4.12: Constraints and Goals of Numerical Optimization of Cr (VI) Removal

Criteria	Lower Limit	Upper Limit	Goal
Initial biosorbent dosage (g)	2	4	Minimize
рН	2	6	In range
Removal percentage (%)	66.4	100	Maximize

Table 4.13: Constraints and Goals of Numerical Optimization of Ni (II) Removal

Criteria	Lower Limit	Upper Limit	Goal
Initial biosorbent dosage (g)	2	4	Minimize
рН	4	8	In range
Removal percentage (%)	69.13	100	Maximize

Based on the constraint and goals shown in Table 4.12 and Table 4.13, it can be seen that the removal percentage of heavy metal ion was desired to reach maximum while maintaining initial biosorbent dosage at minimum and pH in range. Once optimize, a series of solutions that falls within these constraints was generated as shown in Table 4.14 and Table 4.15. Table 4.14 represents a total of 8 solutions for Cr (VI) removal with desirability ranging from 0.329 to 0.999 and removal percentage ranging from 90.070 % to 100.000 %. Meanwhile, Table 4.15 represents a total of 5 solutions with desirability ranging from 0.460 to 0.868 that offers removal percentage of Ni (II) ranging from 79.419 % to 92.415 %.

No.	Initial biosorbent	pН	Removal	Desirability
	dosage (g)		percentage (%)	
1	2.000	5.000	99.947	0.999
2	2.011	3.000	100.000	0.998
3	2.056	4.000	100.000	0.989
4	2.000	2.000	97.726	0.957
5	2.000	6.000	96.568	0.935
6	3.522	2.000	90.070	0.470
7	3.881	5.000	100.000	0.347
8	3.897	4.000	100.000	0.329

Table 4.14: Solution of Numerical Optimization of Cr (VI) Removal

Table 4.15: Solution of Numerical Optimization of Ni (II) Removal

No.	Initial biosorbent	pН	Removal	Desirability
	dosage (g)		percentage (%)	
1	2.000	7.000	92.415	0.868
2	2.000	6.000	88.239	0.787
3	2.000	5.000	85.049	0.718
4	2.000	4.000	79.419	0.577
5	2.931	8.000	81.332	0.460

From Table 4.14, solution 2 was chosen as the optimum solution for the removal of Cr (VI) ion with initial biosorbent dosage of 2.011 g and pH value 5 to yield complete removal percentage of Cr (VI). The optimal solution was chosen based on the main goal of the study which was the percentage removal percentage of heavy metal ion. Solution 2 provides the highest removal percentage (100 %) at higher desirability of 0.998. Another aspect to consider was the initial biosorbent dosage, where solution 2 requires almost the least amount of biosorbent to achieve highest removal efficiency. As a supporting factor, pH 3 that was included in the solution correlates with the optimum pH recorded in the literature review. The optimum pH value obtained falls close to the value obtained in the study of Cherdchoo, Nithettham and Charoenpanich

(2019) and Nigam, et al. (2019). Hence, solution 2 falls under the feasible range of adsorption condition.

From Table 4.15, solution 1 was selected as the optimum solution for the removal of Ni (II) ion with initial biosorbent dosage of 2.000 g and pH 7 to yield a maximum removal percentage of 92.415 %. Based on the solution 1 provides the highest removal percentage at the desirability of 0.868 which was a fairly high value. Thus, the desirability of the solution does not range far from zero outside of the limits to the goal (StatEase, 2020). In comparison, none of the other solution able to achieve removal efficiency of more than 86 % as given in solution 1. In addition, the low desirability function value of the other solutions also indicates that the solution falls far from the limits of the goal. Besides, solution 1 also offers the least amount of initial biosorbent dosage to achieve highest removal efficiency. As another supporting factor, pH value of 7 that was included in the solution correlates with the optimum pH recorded in the literature review of the previous studies involving Cr (VI) by biosorbents where the optimum pH falls within 6 to 8 (Singh, H., 2013). The pH value obtained falls close to the value obtained in the study of Malakahmad, Tan and Yavari (2016) and Malkoc and Nuhoglu (2005). Hence, solution 1 was decided to be the feasible and optimal adsorption condition for the removal of Ni (II) ion. The summary of the optimum condition generated by Design Expert Software for the removal of Cr (VI) and Ni (II) ions were shown in Table 4.16.

Criteria	Cr (VI)	Ni (II)
A: Initial biosorbent dosage (g)	2.011	2.000
B: pH	3.000	7.000
Response: Removal percentage (%)	100.00	92.42
Desirability Reliability	0.998 0.9075	0.868 0.9452

Table 4.16: Summary of Optimized Condition Generated from Design Expert for the Removal of Cr (VI) and Ni (II)

4.5 Characterisation of Green Tea Leaves

Various characterisation tests were performed on exhausted jasmine green tea leaves to study the physical and chemical changes in relative to the heavy metal uptake of the biosorbent. Characterisation study such as SEM-EDX, XRD and FTIR were performed and discussed in the upcoming section. The results attained were compared with literatures findings to check for any abnormalities and discrepancies of the results.

4.5.1 Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDX)

The surface morphology of an adsorbent can be well displayed through Scanning Electron Microscopy (SEM). This analysis was performed on exhausted jasmine green tea leave powder with particle size less than 350 μ m. The green tea leave powder was examined before and after adsorption of heavy metal ions (Cr (VI) and Ni (II)). This test aims to identify any changes in the surface topology or composition of the biosorbent prior to adsorption. The analysis was performed with a working distance of 6800 μ m, accelerating voltage of 15.0 kV and magnification ranging from 1000x to 2700x, which ever that was able to provide clear and detailed representation of the biosorbent surface. Figure 4.12 illustrates the SEM micrographs of exhausted jasmine green tea leave powder before adsorption while Figure 4.13 and Figure 4.14 represents the SEM micrographs after adsorption of Cr (VI) and Ni (II) respectively.

Figure 4.12: SEM Images of Jasmine Green Tea Leaves Before Adsorption at a) 1000x and b) 2000x Magnification.

Figure 4.13: SEM Images of Jasmine Green Tea Leaves After Adsorption of Cr (VI) ions at a) 1800x and b) 2700x Magnification.

Figure 4.14: SEM Images of Jasmine Green Tea Leaves After Adsorption of Ni (II) ions at a) 1300x and b) 2700x Magnification.

In Figure 4.12, the SEM micrograph of virgin jasmine green tea leave displays uneven and rough surface that depicts large volume of asymmetric pores on the surface of the adsorbent. These porous structures were deemed to have large internal surface area with abundant adsorption sites which could offer higher biosorption rate (Harikishore Kumar, Ramana, Seshaiah and Reddy, 2011). This supports the metal uptake capacity of green tea leaves that has been recorded earlier in the pre-screening stage. The larger area of adsorption sites allows high amount of metal ions to efficiently adhere on to the adsorbent. This can be clearly seen in Figure 4.13 and Figure 4.14 where prior to adsorption, the total pores volume of the biosorbent surface have significantly reduced. A smoother surface was formed covered with brighter and shiny coating, indicates the presence of heavy metals (Venugopal, Mohanty and Kaustubha, 2011).

The presence of Ni (II) and Cr (VI) ions on the green tea leave surface were validated with EDX spectroscopy as shown in Table 4.18 and Table 4.19 respectively. While, Table 4.17 depicts the composition of virgin jasmine green tea leaves before adsorption of heavy metal ions. The EDX results are displayed in Appendix H.

Table 4.17: Energy Dispersive X-ray (EDX) Microanalysis Report of Virgin Jasmine Green Tea Leaves

Element	Weight, Wt. (%)	After Matrix, At (%)
Carbon (CK)	50.50	57.21
Nitrogen (NK)	05.78	05.62
Oxygen (OK)	43.71	37.17

Table 4.18: Energy Dispersive X-ray (EDX) Microanalysis Report of Jasmine Green Tea Leaves After Adsorption of Cr (VI)

Element	Weight, Wt. (%)	After Matrix, At (%)
Carbon (<i>CK</i>)	62.44	68.64
Nitrogen (NK)	04.84	04.56
Oxygen (OK)	32.37	26.71
Chromium (CrK)	00.35	00.09

Table 4.19: Energy Dispersive X-ray (EDX) Microanalysis Report of Jasmine Green Tea Leaves After Adsorption of Ni (II)

Element	Weight, Wt. (%)	After Matrix, At (%)
Carbon (CK)	41.68	54.13
Nitrogen (NK)	02.04	01.38
Oxygen (OK)	40.60	39.58
Nickel (NiK)	02.02	00.54

Table 4.18 indicates the presence of the Cr (VI) at about (00.35 %) in the jasmine green tea leaves after adsorption process. Meanwhile, Table 4.19 confirms the presence Ni (II) at about (02.02 %) in the jasmine green tea leaves after adsorption process. Although, the detected value of the weight percentage

of heavy metals on the biosorbent surface was not an accurate representation of the actual value, this ultimately confirmed the adsorption of heavy metal ions on the green tea leaves. Based on Table 4.17, it was observed that virgin jasmine green tea leave was composed of high amount of carbon, calcium and oxygen on its surface (Nigam, et al., 2019). Based on the results, jasmine green tea leaves exhibit high adsorption efficiency due to its rich content of carbon and calcium as similar to activated carbon (Malakahmad, Tan and Yavari, 2016).

4.5.2 Fourier Transform Infrared Spectroscopy (FTIR)

The raw jasmine green tea leaves along with the green tea leaves collected prior to the adsorption of Cr (VI) and Ni (II) were analysed with Fourier Transformed Infrared (FTIR) using Perkin Elmer Spectrum RXI spectrophotometer. The biosorbent were studied before and after adsorption to identify the presence of functional group on the biosorbent surface that could in any manner interact with the heavy metal ions during adsorption. Analysis of FTIR spectrum of biosorbent on the shift of peaks indicated the functional group involved in the adsorption process have bonded with heavy metal ions (Malakahmad, Tan and Yavari, 2016). The functional group and their respective wavenumber of FTIR were shown in Table 4.20. The FTIR spectrum was measured in wavelength range of 600 - 4000 cm⁻¹. Hence, a plot of transmittance (%) against wavelength (cm⁻¹) for raw green tea leaves, after adsorption of Ni (II) and after adsorption of Cr (VI) was displayed in Figure 4.15 (a), 4.15 (b) and 4.15 (c) respectively.

Based on Figure 4.15 (a), several peaks were undergoing peak shift for biosorbent after adsorption process, compared to virgin biosorbent. Each peak represents a single or complex functional group. The difference in peak wavelength observed was listed in Table 4.17. The peaks of 3287.91 cm⁻¹, 2917.65 cm⁻¹, 2849.68 cm⁻¹, 1734.05 cm⁻¹,1617.67 cm⁻¹ and 1027.05 cm⁻¹ have been spotted in the FTIR spectrum of raw biosorbent. The strong and broad band at 3287.91 cm⁻¹ represents a strong band of hydroxyl (O-H) group (Nigam, et al., 2019). The band observed at 2917.65 cm⁻¹ and 2849.68 cm⁻¹ could be assigned to aliphatic compounds with (C-H) stretch (Cherdchoo, Nithettham and Charoenpanich 2019). While, the band at 1734.05 cm⁻¹ showed (C-O-C) stretching in polysaccharides ether functional group (Senthilkumar and

Sivakumar, 2014). The peak at 1617.67 cm⁻¹ might be caused by (C=C) stretch in aromatic ring and (C=O) stretch in polyphenols (Malkoc and Nuhoglu, 2005). Lastly, the steep and strong peak at 1027.05cm⁻¹ could be assigned to (C-OH) stretching vibration of carboxylic acid and alcohol (Nigam, et al., 2019). On overall, it can be deduced that green tea leaves were rich in polysaccharides, polyphenols, carboxylic acid and amines.

After adsorption of Ni (II) ions, Figure 4.15 (b) shows the shift in peaks of 3287.91 cm⁻¹, 1734.05 cm⁻¹ and 1617.67 cm⁻¹ to 3305.83 cm⁻¹, 1732.09 cm⁻¹ and 1619.08cm⁻¹. This indicates that hydroxyl (O-H) group, carbonyl (C=O) and ether (C-O-C) group were involved in the adsorption of Ni (II) ions. Other than that, Figure 4.15 (c) shows the shift in peaks of 3287.91 cm^{-1} , 2917.65 cm^{-1} , 1734.05 cm⁻¹,1617.67 cm⁻¹ and 1027.05 cm⁻¹ to 3292.30 cm⁻¹, 2918.79 cm⁻¹, 1730.89 cm⁻¹,1624.38 cm⁻¹ and 1025.34 cm⁻¹, after adsorption of Cr (VI) ions. Hence, hydroxyl (O-H) group, alkene (C=C), carbonyl (C=O), aliphatic group (C-H), carboxyl (C-OH) and ether (C-O-C) were involved in Cr (VI) uptake (Nigam, et al., 2019). In addition, possible stretching in vibrations of (C-H) group on the green tea leave surface can also be noted. The shifting of peaks and stretching of bands observed after heavy metal loading can be attributed to the changes in ionic functional group caused by the counter ions (Ni (II) and Cr (VI)), supporting their contribution towards metal adsorption (Sanusi, et al.,2018). Jasmine green tea is composed of high amount of oxygenated functional group such as hydroxyl (O-H), carbonyl (C=O), ether (C-O-C) and carboxyl (C-OH) group (Malakahmad, Tan and Yavari, 2016). These functional group observed to be involved in the uptake of Ni (II) and Cr (VI), demonstrates that the adsorption can be expressed as physical adsorption supported by electrostatic columbic forces between oxygenated functional group and heavy metal ions (Malakahmad, Tan and Yavari, 2016).

Figure 4.15: Fourier Transformed Infrared (FTIR) Spectra of Jasmine Green Tea Leaves Before and After Adsorption (a)Raw, (b) After adsorption of Ni (II) and (c) After adsorption of Cr (VI).
	Way	venumber (cm ⁻	1)		Bond	Functional Group	Reference
Raw Jasmine Green Tea Leave	Ni (II) Loaded	Band Difference	Cr (VI) Loaded	Band Difference			
3287.91	3305.83	-17.92	3292.30	-4.39	O-H stretching, H-bonding	Alcohol, phenols and amines	(Nigam, et al., 2019); (Senthilkumar and
2917.65	2917.81	-0.16	2918.79	-1.14	C-H stretching	Alkanes	Sivakumar. 2014)
2849.68	2849.94	-0.26	2850.44	-0.76			, - ,
1734.05	1732.09	1.96	1730.89	3.16	C-O-C stretch	Ethers	(Senthilkumar and Sivakumar, 2014)
1617 67	1610.08	1 /1	1624 38	6 71	C=C and C=O	Alkenes and carbonyl	(Malkoc and Nuhoglu,
1017.07	1019.08	-1.41	1024.30	-0.71	stretching	Aikenes and carbonyi	2005)
1027.05	1026.53	0.52	1025.34	1.71	C-OH stretching	Carboxylic acid, alcohol and aliphatic amines	(Nigam, et al., 2019)

Table 4.20: Fourier Transformed Infrared (FTIR) Peak Wavelengths with Respective Functional Groups

4.5.3 X-ray Diffraction (XRD)

The exhausted jasmine green tea leaves were examined with X-ray Diffraction (XRD) in angle range of 10 - 70° at a rotation speed of 2° per minute using Cu K α spectral line at 40 kV. The biosorbent were analysed before and after adsorption of Cr (VI) and Ni (II) ions using X-ray diffractometer. The aim of the analysis was to study the changes of crystalline structure of the biosorbent. The presence of heavy metals on the biosorbent surface were generally identified through the changes in X-ray diffraction patterns of the raw green tea leaves after adsorption process (Cai, et al., 2015). A plot of X-ray diffracted intensities against the rotation angle of the samples was measured and recorded. Figure 4.16, Figure 4.17 and Figure 4.18 depicts the X-ray diffraction pattern of raw jasmine green tea, Cr (VI) loaded jasmine green tea and Ni (II) loaded jasmine green tea respectively. The XRD raw data is displayed in Appendix I. The crystallinity of the biosorbent was evaluated quantitatively based on the peak height or peak area observed from the diffraction patterns.

Figure 4.16: XRD Spectra of Raw Jasmine Green Tea Leaves.

Figure 4.17: XRD Spectra of Jasmine Green Tea Leaves After Adsorption of Cr (VI) ions.

Figure 4.18: XRD Spectra of Jasmine Green Tea Leaves After Adsorption of Ni (II) ions.

Based on Figure 4.16, XRD profile shows a broad peak around $2\theta = 21.3400^{\circ}$ but without any sharp peaks with one or two sharp peaks with low intensity. This indicates that raw green tea leave had a less crystalline structure. The majority of the species present in the green tea leaves were amorphous. Amorphous materials were said to be filled with large volume of active sites rendering higher metal uptake capacity (Cai, et al., 2015). In addition, the presence of broad peak at $2\theta = 21.3400^{\circ}$, could be associated with the organic functional group of related to lignin and cellulose that were widely present in most tea leaves (Lin, et al., 2020).

Based on Figure 4.17, a distinct peak at 2θ of 64.6382 ° has been observed on green tea leaves after the adsorption of Cr (VI) ions. While, Figure 4.18 showed a distinct peak at 2θ of 64.6312 ° has been observed on green tea leaves after the adsorption of Ni (II) ions.

When a specific foreign element presents on a surface, the changes in X-ray diffraction pattern of the biosorbent will decide the crystallinity of the element. In this case, both Cr (VI) and Ni (II) loaded green tea samples showed distinct peaks at 2θ =64.6382 ° and 64.6312 °, respectively. This strongly suggests that these heavy metal adsorption on to the biosorbent has distorted the amorphous structure of the virgin jasmine green tea leaves into crystalline structure (Shrestha, et al., 2016).

The crystallite size of the XRD raw data obtained through Debye Scherrer's equation according to Eqn. 3.2, are shown in Table 4.21, 4.22 and 4.23. The sample calculation to obtain crystallite size for peak No.9 of virgin jasmine green tea was shown in Appendix J. Table 4.21, 4.22 and 4.23 represent the crystallite size calculated from the 2 Theta, 2θ (deg) and FWHM (deg) obtained from the three most significant peaks of XRD raw data. Table 4.21 representing virgin jasmine green tea XRD analysis, showed average crystallite size of 2.1109 nm. However, the average crystallite size showed massive increase after the adsorption of Cr (VI) and Ni (II) ions which showed crystallite size of 13.7927 nm and 58.8390 nm, respectively. This proves that the surface area of the virgin jasmine green tea has showed significant decrease after the biosorption of heavy metals (Singh, et al., 2020). Besides the phase change from

amorphous to crystalline structure, the decrease in surface area caused by the increase in crystallite size, further confirms that adsorption has taken place.

		-		-		
No	Peak	2 Theta,	2 Theta,	FWHM	FWHM	Crystallite
	No.	20 (deg)	20 (rad)	(deg)	(rad)	size (nm)
1	9	21.24	0.3707	4	0.0698	2.1109
2	8	20.02	0.3494	0	0	0
3	7	18.98	0.3313	0	0	0
					Average	2.1109

Table 4.21: Crystallite Size of Virgin Jasmine Green Tea

Table 4.22: Crystallite Size of Jasmine Green Tea After Adsorption of Cr (VI)

No	Peak	2 Theta,	2 Theta,	FWHM	FWHM	Crystallite
	No.	20 (deg)	2 θ (rad)	(deg)	(rad)	size (nm)
1	10	21.54	0.3759	0	0	0
2	27	64.6328	1.1280	0.6036	0.0105	13.7927
3	9	19.88	0.3470	0	0	0
					Average	13.7927

Table 4.23: Crystallite Size of Jasmine Green Tea After Adsorption of Ni (II)

No	Peak	2 Theta,	2 Theta,	FWHM	FWHM	Crystallite
	No.	20 (deg)	2 θ (rad)	(deg)	(rad)	size (nm)
1	14	64.7105	1.1294	0.16	0.002792	61.3895
2	11	38.0513	0.6641	0.1583	0.002763	55.4442
3	13	44.2986	0.7732	0.1501	0.002620	59.6833
					Average	58.8390

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, the jasmine green tea leaves, genmaicha green tea leaves, salted peanut shells and unsalted peanut shells were screened for the biosorbent efficiencies in removing two hazardous heavy metal ions (Cr (VI) and Ni (II)) in aqueous solution. Based on the results obtained, jasmine green tea leaves emerged as the most effective biosorbent with the highest affinity towards Cr (VI) and Ni (II) ions where removal percentage of 90.98 % and 96.13 % respectively had been recorded. Therefore, jasmine green tea leave was selected to be used as optimum biosorbent in the study to determine the effects of initial biosorbent dosage and initial pH of aqueous solution on the removal percentage of Cr (VI) and Ni (II) ions. In overall, the removal percentage of those heavy metal ions increased initially with the increased in biosorbent dosage and pH and decreased after reaching the optimum point.

Hence, the initial biosorbent dosage and initial pH of aqueous solution are declared as the dominant parameters affecting the removal percentage of Cr (VI) and Ni (II) ions by jasmine green tea leaves. The optimal condition for the removal of Cr (VI) ions are at pH 3 with initial biosorbent dosage of 2.011 g. Meanwhile, optimal condition for the removal of Ni (II) ions are at pH 7 with initial biosorbent dosage of 2.000 g. Under optimum operating conditions, the maximum removal percentage of Cr (VI) and Ni (II) ions by jasmine green tea leaves can be reach at 100.00 % and 92.415 %, respectively. SEM-EDX analysis showed that after adsorption, the surface porosity on the biosorbent surface was reduced and covered with shiny coating of heavy metals after adsorption. The presence of Cr and Ni on the biosorbent surface by elemental identification confirmed that after adsorption of heavy metal ions by jasmine green tea leaves had successfully occurred. The FTIR analysis exhibited that the functional hydroxyl (O-H) group, carbonyl (C=O) and ether (C-O-C) group were involved in the biosorption of Ni (II) ions while hydroxyl (O-H) group, alkene (C=C), carbonyl (C=O), aliphatic group (C-H), carboxyl (C-OH) and ether (C-O-C) contributed to the adsorption of Cr (VI). From XRD analysis, the amorphous surface of virgin jasmine green tea leaves had been distorted into crystalline structure after adsorption of Cr (VI) and Ni (II) ions.

5.2 **Recommendations for Future Work**

The main goal of the current study was to identify the most efficient biosorbent for the removal of Ni (II) and Cr (VI) ions and to optimize the biosorption condition statistically using Design Expert Software. However, due to time constraint and sample limitations, only the effects of initial biosorbent dosage and initial pH of aqueous solution were studied. Therefore, it was recommended to include contributing adsorption parameters such as initial concentration of heavy metal ions, contact time, temperature and agitation speed in the future work. In this way, a higher level of factorial design with multiple independent variables can be developed to further enhance the accuracy of the biosorption condition through optimization.

In addition, the effect of initial biosorbent dosage of the removal percentage of Ni (II) and Cr (VI) ions are studied by varying the dosage from 2 g to 4 g. In majority of the combination, almost complete removal of Cr (VI) ions can be seen, despite higher levels of pH (6). This clearly indicates that, the biosorbent dosage provided to 50 mL of Cr (VI) with 80 mg/L concentration was excessive. While, almost complete removal can be achieved even at the lowest biosorbent dosage limit of 2 g, the future studies can focus on the effects of initial biosorbent dosage less than 2g.

Other than that, kinetic study of using several kinetic models such pseudofirst order and pseudo-second order can be used to determine the biosorption mechanism. The study was performed on time dependency, where the equilibrium biosorption capacity was recorded at varying contact period and fitted to the kinetic plots. In the meantime, the pH, initial biosorbent dosage and agitation speed of the biosorption process are maintained at fixed value. Based on the rate constant, k obtained from the kinetic plots, the value of activation energy, E_a was calculated (Taşar, Kaya and Özer, 2014). Then, the value of activation energy, E_a correlated with the adsorption mechanism that has been observed.

Besides that, the study of isotherm to describe the biosorption equilibrium can also be included. Generally, the biosorption equilibrium data obtained from batch experiments are fitted to the isotherm models to identify the distribution of adsorbate molecules between the liquid phase (aqueous solution) and the solid phase (adsorbent). A graph of equilibrium adsorption capacity, qe against equilibrium heavy metal concentration, Ce was plotted under constant pH and temperature. The experimental data are fitted to the isotherm models using the method of linear least-squares regression. For a single solute system, the two widely accepted and studied equilibrium adsorption isotherm models are Langmuir and Fruendlich models (Ahalya, Ramachandra, and Kanamad, 2005). The properties of the adsorption are determined by correlating data obtained from experimentation into Langmuir and Fruendlich isotherm models while the best fitted model can be said to be well describe the adsorption. To study the behavior of the adsorption through isotherm studies, the batch biosorption process have to be performed with varying initial concentration of heavy metal ions at fixed optimum pH, temperature and initial biosorbent dosage (Witek-Krowiak, Szafran and Modelski, 2011). The equilibrium adsorption capacity, Q e,exp obtained from experimental data was compared with equilibrium adsorption capacity, Q e,cal obtained from the isotherm model. The best fitted model can be expressed through the identification of correlation coefficient (\mathbb{R}^2). The correlation coefficient ranges from 0 to 1. The closer the value of \mathbb{R}^2 to 1, the well fitted the data to the isotherm models.

REFERENCES

Abdel Ghani, N.T. and El Chaghaby, G.A., 2014. Biosorption for metal ions removal from aqueous solutions: A review of recent studies. *International Journal of Latest Research in Science and Technology*, [online] Available at: http://www.mnkjournals.com/ijlrst.htm [Accessed 15 July 2019].

Abdolali, A., Ngo, H.H., Guo, W., Lu, S., Chen, S.S., Nguyen, N.C., Zhang, X., Wang, J. and Wu, Y., 2016. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a labscale study. *Science of the Total Environment*, 542, pp.603–611.

Ahalya, N., Kanamadi, R. D. and Ramachandra, T. V., 2005. Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum), *Electronic J Biotechnol*, 8, pp.258-264.

Amarasinghe, B.M.W.P.K. and Williams, R.A., 2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. *Chemical Engineering Journal*, 132(1–3), pp.299–309.

Cai, H.M., Chen, G.J., Peng, C.Y., Zhang, Z.Z., Dong, Y.Y., Shang, G.Z., Zhu, X.H., Gao, H.J. and Wan, X.C., 2015. Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent. *Applied Surface Science*, pp.34–44.

Cherdchoo, W., Nithettham, S. and Charoenpanich, J., 2019. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. *Chemosphere*, 221, pp.758–767.

Connor, S., 2020. *How-To: Analyse A 2-Level Factorial Design Using Design-Expert 10 Software* | *Prism.* [online] Available at: https://www.prismtc.co.uk/resources/blogs-and-articles/how-to-analyse-a-2-level-factorial-design-using-design-expert-10-software [Accessed 29 March 2020].

Daneshfozoun, S., Abdullah, M.A. and Abdullah, B., 2017. Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. *Industrial Crops and Products*, 105, pp.93–103.

Department of Environment, 2010. *Environmental Requirements: A Guide For Investors*.11th ed. Putrajaya, Malaysia: Ministry of Natural Resources and Environment, pp.62.

El-Naggar, N.E.A., Hamouda, R.A., Mousa, I.E., Abdel-Hamid, M.S. and Rabei, N.H., 2018. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. *Scientific Reports*, 8(1), pp.1–19.

Flores-Garnica, J.G., Morales-Barrera, L., Pineda-Camacho, G. and Cristiani-Urbina, E., 2013. Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds. *Bioresource Technology*, 136, pp.635–643.

Gadd, G.M., 1993. Interactions of fungi with toxic metals. *Phytologist*, 124, pp.25–60.

Garg, U.K., Kaur, M.P., Garg, V.K. and Sud, D., 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. *Journal of Hazardous Materials*, 140(1–2), pp.60–68.

Gautam, R.K., Sharma, S.K., Mahiya, S. and Chattopadhyaya, M.C., 2014. CHAPTER 1. Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. *Heavy Metals In Water*, pp.1–24.

Gonen, F. and Serin, D.S., 2012. Adsorption study on orange peel: Removal of Ni(II) ions from aqueous solution. *African Journal of Biotechnology*, 11(5), pp.1250–1258.

Gunatilake, S.K., 2015. Methods of Removing Heavy Metals from. *Journal of Multidisciplinary Engineering Science Studies Industrial Wastewater*, 1(1), pp.13–18.

Harminder Singh, 2011. Adsorption of Nickel from aqueous solutions using low cost bio-waste adsorbents. *Water Quality Research Journal of Canada*.

HORIBA. n.d. *Performances In ICP-OES*. [online] Available at: https://www.horiba.com/en_en/icp-oes-performances/ [Accessed 30 March 2020].

Ifthikar, J., Wang, T., Khan, A., Jawad, A., Sun, T., Jiao, X., Chen, Z., Wang, J., Wang, Q., Wang, H. and Jawad, A., 2017. Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications. *Bioresource Technology*, 238, pp.399–406.

Jmp.com. 2020. *Full Factorial Designs. Statistical Discovery*. [online] Available at: https://www.jmp.com/support/help/14-2/full-factorial-designs.shtml [Accessed 18 March 2020].

José, A.F.-L., José, M.A. and María, D.A., 2014. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass. *The Scientific World Journal*, 2014, pp.670249.

Joseph, L., Jun, B.M., Flora, J.R.V., Park, C.M. and Yoon, Y., 2019. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. *Chemosphere*, 229, pp.142–159.

Joshi, N.C., 2017. Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent. *European Journal of Pharmaceutical and Medical Research*, [online] Available at: <<u>http://www.ejpmr.com/admin/assets/article_issue/1485854916.pdf</u>> [Accessed 2 August 2019].

Kaya, K., Pehlivan, E., Schmidt, C. and Bahadir, M., 2014. Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions. *Food Chemistry*, 158, pp.112–117.

Lin, D., Wu, F., Hu, Y., Zhang, T., Liu, C., Hu, Q., Hu, Y., Xue, Z., Han, H. and Ko, T.H., 2020. Adsorption of Dye by Waste Black Tea Powder: Parameters, Kinetic, Equilibrium, and Thermodynamic Studies. *Journal of Chemistry*, 2020.

Malakahmad, A., Tan, S. and Yavari, S., 2016. Valorization of Wasted Black Tea as a Low-Cost Adsorbent for Nickel and Zinc Removal from Aqueous Solution. *Journal of Chemistry*, 2016.

Malkoc, E. and Nuhoglu, Y., 2005. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. 127, pp.120–128.

Naskar, A., Guha, A.K., Mukherjee, M. and Ray, L., 2016. Adsorption of nickel onto Bacillus cereus M116: A mechanistic approach. *Separation Science and Technology (Philadelphia)*, 51(3), pp.427–438.

Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Zhang, J., Liang, S., Yue, Q.Y., Li, Q. and Nguyen, T. V., 2013. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. *Bioresource Technology*, 148, pp.574–585.

Nigam, M., Rajoriya, S., Rani Singh, S. and Kumar, P., 2019. Adsorption of Cr (VI) ion from tannery wastewater on tea waste: Kinetics, equilibrium and thermodynamics studies. *Journal of Environmental Chemical Engineering*. [online] Available at: https://linkinghub.elsevier.com/retrieve/pii/S2213343719303112 [Accessed 19 July 2019].

Nist.gov. 2020. 5.3.3.3.2. Full Factorial Example. [online] Available at: https://www.itl.nist.gov/div898/handbook/pri/section3/pri3332.htm [Accessed 29 March 2020].

Park, D., Yun, Y. S. and Park, J. M., 2010. The past, present, and future trends of biosorption. *Biotechnol Bioproc E*, 15, 86–102.

Pehlivan, E. and Altun, T., 2008. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. *Journal of Hazardous Materials*, 155(1–2), pp.378–384.

Pieper, D.H. and Reineke, W., 2000. Engineering bacteria for bioremediation. *Current Opinion in Biotechnology*, 11(3), pp.262–270.

Raval, N.P., Shah, P.U. and Shah, N.K., 2016. Adsorptive removal of nickel(II) ions from aqueous environment: A review. *Journal of Environmental Management*, 179, pp.1–20.

Reddy, D.H.K., Ramana, D.K.V., Seshaiah, K. and Reddy, A.V.R., 2011. Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. *Desalination*, 268(1–3), pp.150–157.

Sadeek, S.A., Negm, N.A., Hefni, H.H.H. and Abdel Wahab, M.M., 2015. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures. *International Journal of Biological Macromolecules*, 81, pp.400–409.

Sanusi, K.A., Sunday, N.S., Hassan, M.S. and Abdulqadir, T.A., 2018. The effect of operational parameters on biosorption of Cd2+, Ni2+ and Cr6+ using Glycine max pod (Soya Bean). *Environmental Risk Assessment and Remediation*, 02(02).

Sarin, V. and Pant, K.K., 2006. Removal of chromium from industrial waste by using eucalyptus bark. *Bioresource Technology*, 97(1), pp.15–20.

Senthil Kumar, P.S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T. and Sivanesan, S., 2011. Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. *Chemical Engineering Journal*, 167(1), pp.122–131.

Shah, J., Jan, M.R., Ul Haq, A. and Zeeshan, M., 2015. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves. *Journal of Saudi Chemical Society*, [online] 19(3), pp.301–310.

Shrestha, B., Kour, J. and Ghimire, K.N., 2016. Adsorptive Removal of Heavy Metals from Aqueous Solution with Environmental Friendly Material— Exhausted Tea Leaves. *Advances in Chemical Engineering and Science*, 06(04), pp.525–540.

Singh, S., Kumar, V., Datta, S., Dhanjal, D.S., Sharma, K., Samuel, J. and Singh, J., 2020. Current advancement and future prospect of biosorbents for bioremediation. *Science of the Total Environment*, 709.

Statease.com. 2020. *Stat-Ease* » *V11* » *Adequate Precision*. [online] Available at: ">https://www.statease.com/docs/v11/navigation/adequate-precision/> [Accessed 29 March 2020].

Sud, D., Mahajan, G. and Kaur, M.P., 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. *Bioresource Technology*, 99(14), pp.6017–6027.

Taşar, Ş., Kaya, F. and Özer, A., 2014. Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. *Journal of Environmental Chemical Engineering*, 2(2), pp.1018–1026.

Thevannan, A., Mungroo, R. and Niu, H.C., 2010. Biosorption of nickel with barley straw. *Bioresource Technology*, 101(6), pp.1776–1780.

Venugopal, V. and Mohanty, K., 2011. Biosorptive uptake of Cr (VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies. *Chemical Engineering Journal*, [online] 174(1), pp.151–158.

Vijayaraghavan, K. and Balasubramanian, R., 2015. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the stateof-the-art of biosorption processes and future directions. *Journal of Environmental Management*, 160, pp.283–296.

Volesky, B., 2001. Detoxification of metal-bearing effluents: Biosorption for the next century, *Hydrometallurgy*, 59, pp.203-216.

Volesky, B. and Holan, Z. R., 1995. Biosorption of heavy metals. *Biotechnol Prog.*, 11, pp.235–250.

Wang, J., Chen, C., 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. *Biotechnol. Adv.*, 24, pp.427-451.

Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A. and Pokomeda, K., 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. *Bioresource Technology*, 160, pp.150–160.

Witek-Krowiak, A., Szafran, R.G. and Modelski, S., 2011. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. *Desalination*, 265(1–3), pp.126–134.

Zafar, M.N., Nadeem, R. and Hanif, M.A., 2007. Biosorption of nickel from protonated rice bran. *J. Hazard. Mater*, 143, pp. 478–485.

APPENDICES

Appendix A: Preparation of Heavy Metal Ion Solution

The biosorption process was performed with relative biosorbents with constant metal ion concentration of 80 mg/L solution. In this study, Ni (II) solution and Cr (VI) solution were used for the biosorption of heavy metal ions. Nickel (II) sulfate hexahydrate, NiSO₄ (H₂O)₆ and Potassium dichromate, $K_2Cr_2O_7$ salts were used to prepare 1L of Ni (II) and Cr (VI) heavy metal solution.

A. Preparation of 1 Litre of 80 mg/L (80 ppm) of Ni (II) solution

i. Determining the percentage of Ni (II) ions in NiSO₄ (H₂O)₆:

Given,

Molecular weight of NiSO₄ (H₂O)₆: 154.75 g/mol

Molecular weight of Ni (II): 58.693 g/mol

$$\frac{58.693 \ g/mol}{154.75 \ g/mol} \times 100\% = 37.93\% \ of \ Ni \ (II) \ ions \ in \ NiSO_4(H_2O)_6$$

This also proves that 100 g of Nickel (ii) sulfate hexahydrate, $NiSO_4$ (H₂O)₆ would consists of 37.93 g of Ni (II) ions.

 Determining the mass of NiSO₄(H₂O)₆ required to obtain 80 mg of Ni (II):

$$100 \text{ g of } NiSO_4(H_2O)_6 \rightarrow 37.93 \text{ g of } Ni (II) ions$$

$$x mg of NiSO_4(H_2O)_6 \rightarrow 80 mg of Ni (II) ions$$

$$x = \frac{80 \ mg \times \frac{1g}{1000 \ mg} \times 100 \ g \ NiSO_4(H_2O)_6}{37.93 \ g \ of \ Ni} = 0.2109 \ g \ NiSO_4(H_2O)_6}$$

Thus, this shows that 0.2109 g of NiSO₄ (H₂O)₆ is required to prepare 80 mg of Ni (II) solution.

 Determining the mass of NiSO₄ (H₂O)₆ required to obtain 80 mg/L of Ni (II) in 1 litre:

$$\frac{80 \text{ mg of Ni (II) ion}}{1 \text{ Litre}} = 80 \frac{\text{mg}}{L} \approx 80 \text{ ppm Ni (II) ions}$$

Therefore, to prepare 1 litre of 80 mg/L Ni (II) solution 0.2109 g of NiSO₄ $(H_2O)_6$ has to be dissolved.

- B. Preparation of 1 Litre of 80 mg/L (80 ppm) of Cr (VI) solution
 - i. Determining the percentage of Cr (VI) ions in Potassium dichromate, K₂Cr₂O₇:

Given,

Molecular weight of K₂Cr₂O₇: 294.19 g/mol

Molecular weight of Cr (VI): 51.996 g/mol

$$\frac{2 \times 51.996 \ g/mol}{294.19 \ g/mol} \times 100\% = 35.35\% \ of \ Cr \ (VI) \ ions \ in \ K_2 Cr_2 O_7$$

This also proves that 100 g of Potassium dichromate, $K_2Cr_2O_7$ would consists of 35.35 g of Cr (VI) ions.

ii. Determining the mass of K₂Cr₂O₇ required to obtain 80 mg of Cr (VI):

100 g of
$$K_2Cr_2O_7 \rightarrow 35.35$$
 g of Cr (VI) ions

$$x mg \ of K_2 Cr_2 O_7 \rightarrow 80 \ mg \ of \ Cr \ (VI) \ ions$$

$$x = \frac{80 \ mg \times \frac{1g}{1000 \ mg} \times 100 \ g \ K_2 C r_2 O_7}{35.35 \ g \ of \ Cr \ (VI)} = 0.2263 \ g \ of \ K_2 C r_2 O_7$$

iii. Determining the mass of K₂Cr₂O₇ required to obtain 80 mg/L of Cr (VI) in 1 Litre:
 80 mg of Cr (VI) ion mg

$$\frac{80 \text{ mg of } Cr (VI) \text{ ion}}{1 \text{ Litre}} = 80 \frac{\text{mg}}{L} \approx 80 \text{ ppm } Cr (VI) \text{ ions}$$

Therefore, to prepare 1 litre of 80 mg/L Cr (VI) solution 0.2263 g of $K_2Cr_2O_7$ has to be dissolved.

i. Determining the Molarity of 37 % HCl:

Molecular weight of HCl = 36.46 g/mol

Specific gravity of 37% HCl = 1.19 g/mL

HCl (37%) volume/volume percent = 37 mL/100 mL

$$HCl \ Molarity \ (M) = \frac{37 \ mL}{100 \ mL} \times \frac{1.19 \ g}{mL} \times \frac{1000 \ mL}{1L} \times \frac{mol}{36.46 \ g}$$
$$HCl \ Molarity \ (M) = 12.07 \ mol/L$$

 Determining the volume of 37 % HCl required to prepare 500 mL of 0.1 M of HCl solution:

$$M_1 V_1 = M_2 V_2$$

$$(12.07 M)V_1 = (0.1 M)(0.5 L)$$

$$V_1 = 0.004125 L \approx 4.143 mL$$

where

 M_1 = Initial concentration of 37 % HCl solution, mol/L

 V_1 = Volume of 37 % HCl solution, L

 M_2 = Final concentration of diluted HCl solution, mol/L

 V_2 = Final volume of diluted HCl solution, L

Therefore, 4.143 mL of 37 % of HCl solution was added to prepare 500 ml of 0.1 M HCl solution.

i. Determining the mass of NaOH pellets to prepare 1 litre of 0.1 M NaOH solution:

Given,

Concentration of NaOH pellets = 97 %

Molecular weight of NaOH = 40.00 g/mol

 $mass of (NaOH) = Molarity (M) \times Volume (L) \times MW_{NaOH} \times Purity$ $mass of (NaOH) = \frac{0.1 \ mol}{L} \times \left(500 \ mL \ \times \frac{1L}{1000 mL}\right) \times \frac{40 \ g}{mol} \times \frac{100}{97}$ $mass of (NaOH) = 2.06 \ g$

Hence, 2.08 g of NaOH was dissolved to prepare 500 mL of 0.1 M of NaOH solution.

Ni 231.604

Figure D-1: Calibration Curve of Ni (II) Obtained from ICP-OES

Cr 267.716

Figure E-1: Calibration Curve of Cr (VI) Obtained from ICP-OES

Appendix F: Sample Calculation of Removal Percentage, R (%) of Heavy Metal Ions

From Table 4.1, the biosorption of Cr (VI) ion using jasmine green tea leave during the pre-screening stage resulted in final metal ion concentration of 6.442 mg/L.

Given,

Initial concentration, $C_0 (mg/L)$ of heavy metal ion = 80 mg/L Final concentration, Ce (mg/L) of heavy metal ion = 6.442 mg/L

Percentage removal,
$$R(\%) = \frac{(C_0 - C_f)}{C_0} \times 100\%$$

Percentage removal,
$$R(\%) = \frac{(80 - 6.442)}{80} \times 100\%$$

Percentage removal,
$$R(\%) = 91.95\%$$

Appendix G: Spreadsheets of ICP-OES Results

Page

1

Analysis Begun						
Start Time: 1/22/2020 Logged In Analyst: Pe Spectrometer: Optima	0 2:43:41 PM erkin Elmer 7000		Plasma On ' Technique: Autosample:	Time: 1/22 ICP Conti r: S10	/2020 1:51:38 PM nuous	
Sample Information Fi	ile: C:\Document	s and Setting	s\All Users	\PerkinElm	er\ICP\Data\Sample Informa	tion\
Batch ID: Results Data Set: Nic Results Library: C:\I	dhivesh, pro ckel Documents and Se Results.mdb	escreening Ni ttings\Perkin	.sif Elmer\Desk	top\studen	t results\2020\dhivesh\	
Method Loaded Method Name: Dhivesh IEC File: Method Description: N	2 Nickel calibratio		Method Las MSF File:	t Saved: 1	/22/2020 2:38:32 PM	:====
Sequence No.: 1 Sample ID: Calib Blan Analyst: Initial Sample Wt: Dilution: Wash Time:	nk 1		Autosample: Date Colled Data Type: Initial San Sample Prej	r Location sted: 1/22 Original mple Vol: o Vol:	:: 1 /2020 2:43:41 PM	
Replicate Data: Calib	o Blank 1				·····	·
Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604	Net Intensity -954.5 -928.7 -986.0	Corrected Intensity -954.5 -928.7 -986.0	Conc. [0.00] [0.00] [0.00]	Calib. Units mg/L mg/L mg/L	Analysis Time 2:44:50 PM 2:45:00 PM 2:45:10 PM	
Mean Data: Calib Blar	nk 1					·
Me	ean Corrected	Std Dov P	SD C	Calib		
Ni 231.604	-956.4	28.70 3.	00% [0	.00] mg/L		
Sequence No.: 2 Sample ID: 20ppm Analyst: Initial Sample Wt: Dilution: Wash Time: 30			Autosample: Date Collec Data Type: Initial Sar Sample Prej Auto Dilut:	r Location sted: 1/22 Original mple Vol: o Vol: ion Factor	:: 2 /2020 2:45:57 PM :: 1	
Replicate Data: 20ppr	n				······	·
Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604	Net Intensity 1951793.5 1955726.9 1950903.8	Corrected Intensity 1952750.0 1956683.3 1951860.2	Conc . [20] [20] [20]	Calib. Units mg/L mg/L mg/L	Analysis Time 2:47:06 PM 2:47:08 PM 2:47:10 PM	
Mean Data: 20ppm						
Analyte Ni 231.604	ean Corrected Intensity 1953764.5	Std.Dev. R 2566.60 0.	SD C 0	Calib onc. Units [20] mg/L		
Sequence No.: 3 Sample ID: 40ppm Analyst:			Autosample: Date Collec Data Type:	r Location cted: 1/22 Original	: 3 /2020 2:47:51 PM	:====

Method: Dhivesh2		F	age	2	Date:	1/22/2020 3:18:37 PM
Initial Sample Wt:			Initi Sampl	al Sample Vol: e Prep Vol:		
Wash Time: 30			Auto	Dilution Factor	: 1	
Replicate Data: 40	ppm					
	Net	Corrected		Calib.	Analysis	
Repi# Analyte	2016102 0	2017120 2		Conc. Units	2.10.50 DM	
2 Ni 231.604	3877244 2	3878200 6		[40] mg/L	2.40.J9 PM	
3 Ni 231 604	3903752 0	3904708 4		[40] mg/L	2.19.02 III 2.49.04 PM	
5 11 251.001	3903732.0	3901700.1		[10] [[],1]	2.19.01 111	
Mean Data: 40ppm						
	Mean Corrected	<i>a</i> , 1 b		Calib		
Analyte	Intensity	Std.Dev. F	ISD	Conc. Units		
NI 231.604	3866682.7	44906.41 1.	108	[40] mg/L		
Sequence No.: 4 Sample ID: 60ppm			Autos Date	ampler Location	 : 4 /2020 2:49:	45 PM
Analyst:			Data	Type: Original		
Initial Sample Wt:			Initi	al Sample Vol:		
Dilution:			Sampl	e Prep Vol:		
Wash Time: 30			Auto	Dilution Factor	: 1	
Replicate Data: 60	 ppm					
-	Net	Corrected		Calib.	Analysis	
Repl# Analyte	Intensity	Intensity		Conc. Units	Time	
1 Ni 231.604	5608940.2	5609896.6		[60] mg/L	2:50:54 PM	
2 Ni 231.604	5647878.7	5648835.2		[60] mg/L	2:50:57 PM	
3 Ni 231.604	5688064.4	5689020.9		[60] mg/L	2:51:00 PM	
Mean Data: 60ppm						
	Mean Corrected			Calib		
Analyte	Intensity	Std.Dev. F	RSD	Conc. Units		
Ni 231.604	5649250.9	39563.75 0.	108	[60] mg/L		
Sequence No.: 5			Autos	ampler Location	 : 5	
Sample ID: 80ppm			Date	Collected: 1/22,	/2020 2:51:	41 PM
Analyst:			Data	Type: Original		
Initial Sample Wt:			Initi	al Sample Vol:		
Dilution:			Sampl	e Prep Vol:		
Wash Time: 30			Auto	Dilution Factor	: 1	
Replicate Data: 80	 ppm					
	Net	Corrected		Calib.	Analysis	
Repl# Analyte	Intensity	Intensity		Conc. Units	Time	
1 Ni 231.604	7180131.2	7181087.6		[80] mg/L	2:52:51 PM	
2 Ni 231.604	7315350.5	7316306.9		[80] mg/L	2:52:54 PM	
3 Ni 231.604	7325956.0	7326912.5		[80] mg/L	2:52:57 PM	
Mean Data: 80ppm						
	Mean Corrected			Calib		
Analyte	Intensity	Std.Dev. F	RSD	Conc. Units		
Ni 231.604	7274769.0	81303.58 1.	12%	[80] mg/L		
Semience No · 6			====== کینt م	ampler Location	 · 6	
Sample ID 10000			Date	Collected: 1/22	 /2020 2·53·	39 PM
Analyst			Date	Type: Original	, 2020 2.00:	55 IN
Initial Campio Mt.			Jaid Thiti	al Sample Vol		
Dilution:			Came 1	a Dren Vol:		
Wash Time 20				Dilution Factor	• 1	
			AULU	STRUCTON FACTOR		

Replicate Data: 100	 ppm					
Repl# Analyte	Net Intensity	Corrected Intensity	Calib Conc. Units	. Anal Ti	ysis me	
1 Ni 231.604	8502424.0	8503380.5	[100] mg/L	2:54	:46 PM	
2 Ni 231.604 3 Ni 231.604	8536435.3 8584299.2	8537391.7	[100] mg/L [100] mg/L	2:54	:49 PM :52 PM	
			[100] mg/H			
Mean Data: 100ppm	Moon Corrected		c	alib		
Analyte	Intensity	Std.Dev. R	SD Conc. U	nits		
Ji 231.604	8542009.3	41132.43 0.	48% [100] m	g/L		
Calibration Summary						
Analyte Stds Ni 231.604 5	. Equation Lin, Calc Int	Intercept 229486.9	Slope Cu 86370	rvature 0.00000	Corr. Coef. 0.997462	Reslope
Sequence No.: 7			Autosampler Loca	======== tion: 7		
Sample ID: blank			Date Collected:	1/22/2020	2:55:33 PM	
Analyst: Initial Sample Wt:			Initial Sample V	nai ol:		
Dilution:			Sample Prep Vol:			
Wash Time: 30			Auto Dilution Fa	ctor: 1		
Replicate Data: blan	nk Not	Corrected	Calib		 Samplo	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units	•	Conc. Units	Time
1 Ni 231.604	12173.3	13129.7	-2.505 mg/L		-2.505 mg/L	2:56:41 P
2 Ni 231.604	10707.9	11664.4	-2.522 mg/L		-2.522 mg/L	2:56:49 P
5 NI 251.004	9703.2	10719.0	-2.555 mg/L		-2.555 mg/L	2.J0.J0 F
Mean Data: blank	Mean Corrected	Calib.		S	ample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. U	Inits Std.	Dev. RSD
Ni 231.604	11837.9	-2.520 mg/L	0.0141	-2.520 n	ng/L 0.0	141 0.56%
QC value less that QC Failed. Continue	an the lower limi e with analysis.	t for Ni 231.	604 Recovery = N	ot calcul	ated	
Sequence No.: 8			Autosampler Loca	======================================		
Sample ID: 60ppm			Date Collected:	1/22/2020	2:59:14 PM	
Initial Sample Wt:			Initial Sample V	ol:		
Dilution:			Sample Prep Vol:			
Nash Time: 120			Auto Dilution Fa	ctor: 1		
Replicate Data: 60pp	om					
Repl# Analvte	Net Intensity	Corrected Intensity	Calib Conc Units	•	Sample Conc. Units	Analysis Time
1 Ni 231.604	5584546.1	5585502.5	62.02 mg/L		62.02 mg/L	3:00:23 P
2 Ni 231.604 3 Ni 231.604	5595716.2 5587744.0	5596672.6 5588700.4	62.15 mg/L 62.05 mg/L		62.15 mg/L 62.05 mg/L	3:00:26 P 3:00:28 P
Mean Data: 60000						
lacan baca. ooppiii	Mean Corrected	Calib.		5	ample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. U	nits Std.	Dev. RSD
Ji 231.604	5590291.9	62.07 mg/L	0.067	62.07 n	ng/L 0.	067 0.11%
QC value within . All analyte(s) passe	iimits for Ni 231 ed QC.	.ou4 Kecover	y = ⊥∪3.45%			

Sequence No.: 9 Sample ID: stock Analyst: Initial Sample Wt: Dilution: Wash Time: 120			Autosampler Locat Date Collected: 1 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 9 /22/202 al ol: tor: 1	20 3:02:		
Replicate Data: st	ock Net	Corrected	Calib.			Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 Ni 231.604	7004285.2	7005241.7	78.45 mg/L		78.45	mg/L	3:03:47 PM
3 Ni 231.604	7079367.8	7080324.2	79.32 mg/L		79.32	mg/L mg/L	3:03:54 PM
Mean Data: stock							
	Mean Corrected	Calib.		-	Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev	r. RSD
NI 231.604	/0/8/12.4	/9.31 mg/L	0.842	/9.31	mg/L	0.842	1.06%
Sequence No.: 10 Sample ID: green t Analyst: Initial Sample Wt: Dilution: Wash Time: 120	ea Ni		Autosampler Locat Date Collected: 1 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 10 /22/202 mal ol: stor: 1	20 3:06:		
Replicate Data: gr	een tea Ni						
Repl# Analyte	Net Intensity	Corrected	Calib. Conc Units		Conc	Sample Units	Analysis Time
1 Ni 231.604	486656.8	487613.3	2.989 mg/L		2.989	mg/L	3:07:15 PM
2 Ni 231.604	505782.4	506738.8	3.210 mg/L		3.210	mg/L	3:07:18 PM
3 Ni 231.604	489281.3	490237.7	3.019 mg/L		3.019	mg/L	3:07:21 PM
Mean Data: green t	 ea Ni						
	Mean Corrected	Calib.		~	Sample	<i>a</i> , 1 a	2.62
Analyte Ni 231.604	494863.3	3.073 mg/L	0.1200	Conc . 3.073	mg/L	0.1200	7. RSD) 3.91%
Sequence No.: 11 Sample ID: geinmac Analyst: Initial Sample Wt: Dilution: Wash Time: 120			Autosampler Locat Date Collected: 1 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 1: /22/202 aal bl: stor: 1	====== L 20 3:09:		
Replicate Data: ge	inmacha Ni	Connected					Anolucia
Repl# Analvte	Intensity	Intensitv	Conc. Units		Conc	Units	Time
1 Ni 231.604	760418.5	761375.0	6.159 mg/L		6.159	mg/L	3:10:41 PM
2 Ni 231.604	779754.8	780711.3	6.382 mg/L		6.382	mg/L	3:10:43 PM
3 Ni 231.604	794886.6	795843.1	6.558 mg/L		6.558	mg/L	3:10:45 PM
Mean Data: geinmac	ha Ni						
Analysta	Mean Corrected	Calib.		0	Sample	01 J P	
Ni 231.604	779309.8	6.366 mg/L	0.2000	conc . 6.366	mg/L	0.2000) 3.14%
Sequence No.: 12 Sample ID: salted	peanut Ni		Autosampler Locat Date Collected: 1	ion: 12	2 2 20 3:12:	====== 56 рм	

Metho	d: Dhivesh2		F	age 5			Date: 2	1/22/2020) 3:18:37 PM
Analy Initi Dilut Wash	st: al Sample Wt: ion: Time: 120			Data Type: Initial Sa Sample Pre Auto Dilut	Origina mple Vol p Vol: ion Fact	al L: cor: 1			
Repli	cate Data: sa	alted peanut Ni							
		Net	Corrected		Calib.			Sample	Analysis
Repl#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	742393.0	743349.4	5.950	mg/L		5.950	mg/L	3:14:06 PM
2	Ni 231.604	732264.5	733220.9	5.833	mg/L		5.833	mg/L	3:14:09 PM
3	Ni 231.604	742692.3	743648.7	5.953	mg/L		5.953	mg/L	3:14:12 PM
 Mean	 Data: salted	peanut Ni							
		Mean Corrected	Calib.				Sample		
Analy	te	Intensity	Conc. Units	Std.De	v.	Conc.	Units	Std.I	Dev. RSD
	1 604	740072 0	5 012 mg/T	0 0 0 0	-	F 010	m cr / T	0 06	87 1.16%
Ni 23 ===== Seque	nce No.: 13	740073.0	5.912 mg/L	Autosample	' ====================================	5.912	111G7 L ========= 3 20 3 · 1 6 · 1		
Ni 23 Seque Sampl Analy Initi Dilut Wash	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120	ed peanut Ni	3.912 mg/ u	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut	r Locati cted: 1/ Origina mple Vol p Vol: ion Fact	5.912 lon: 13 /22/202 al L: cor: 1	nig/L 	23 PM	
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur	ed peanut Ni		Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut	r Locati cted: 1/ Origina mple Vol p Vol: ion Fact	22/202 al	nig/L 3 20 3:16::	23 PM	
Ni 23 Seque Sampl Analy Initi Dilut Wash Repli	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur	ed peanut Ni msalted peanut Ni Net	Corrected	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut	r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib.	5.912 con: 1: (22/20) al .: cor: 1	nig/L 3 20 3:16::	23 PM Sample	Analysis
Ni 23 Seque Sampl Analy Initi Dilut Wash Repli Repl#	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte	ad peanut Ni salted peanut Ni Net Intensity	Corrected Intensity	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut	r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units		Conc.	23 PM Sample Units	Analysis Time
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli Repl# 1	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte Ni 231.604	ed peanut Ni salted peanut Ni Net Intensity 2868960.4	Corrected Intensity 2869916.8	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut Conc. 30.57	r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units mg/L		Conc. 30.57	23 PM Sample Units mg/L	Analysis 3:17:32 PM
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli Repl# 1 2	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte Ni 231.604 Ni 231.604	ed peanut Ni salted peanut Ni Net Intensity 2868960.4 2849847.2	Corrected Intensity 2869916.8 2850803.6	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut Conc. 30.57 30.35	<pre>r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units mg/L mg/L </pre>	5.912 con: 1: (22/20) al cor: 1 cor: 1	Conc. 30.37 30.37	23 PM Sample Units mg/L mg/L	Analysis Time 3:17:32 PM 3:17:35 PM
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli Repl# 1 2 3	<pre>nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte Ni 231.604 Ni 231.604 Ni 231.604</pre>	ed peanut Ni salted peanut Ni Net Intensity 2868960.4 2849847.2 2924956.1	Corrected Intensity 2869916.8 2850803.6 2925912.6	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut Conc. 30.57 30.35 31.22	<pre>r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units mg/L mg/L mg/L mg/L</pre>		Conc. 30.57 30.35 31.22	23 PM Sample Units mg/L mg/L mg/L	Analysis Time 3:17:32 PM 3:17:35 PM 3:17:37 PM
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli 1 2 3 Mean	<pre>nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte Ni 231.604 Ni 231.604 Ni 231.604 Ni 231.604</pre>	red peanut Ni salted peanut Ni nsalted peanut Ni Net Intensity 2868960.4 2849847.2 2924956.1 ed peanut Ni	Corrected Intensity 2869916.8 2850803.6 2925912.6	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut Conc. 30.57 30.35 31.22	<pre>r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units mg/L mg/L mg/L </pre>		Conc. 30.57 30.35 31.22	Sample Units mg/L mg/L mg/L	Analysis Time 3:17:32 PM 3:17:35 PM 3:17:37 PM
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli 1 2 3 Mean	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: unsalte	ed peanut Ni salted peanut Ni nsalted peanut Ni Net Intensity 2868960.4 2849847.2 2924956.1 ed peanut Ni Mean Corrected	Corrected Intensity 2869916.8 2850803.6 2925912.6 Calib.	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut Conc. 30.57 30.35 31.22	<pre>r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units mg/L mg/L mg/L </pre>		Conc. 30.57 31.22 Sample	23 PM Sample Units mg/L mg/L mg/L	Analysis Time 3:17:32 PM 3:17:35 PM 3:17:37 PM
Ni 23 ===== Seque Sampl Analy Initi Dilut Wash Repli 2 3 Mean Analy	nce No.: 13 e ID: unsalte st: al Sample Wt: ion: Time: 120 cate Data: ur Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: unsalte	ed peanut Ni msalted peanut Ni Net Intensity 2868960.4 2849847.2 2924956.1 ed peanut Ni Mean Corrected Intensity	Corrected Intensity 2869916.8 2850803.6 2925912.6 Calib. Conc. Units	Autosample Date Colle Data Type: Initial Sa Sample Pre Auto Dilut Conc. 30.57 30.35 31.22	<pre>r Locati cted: 1/ Origina mple Vol p Vol: ion Fact Calib. Units mg/L mg/L mg/L</pre>	Conc.	Conc. 30.57 30.35 31.22 Sample Units	23 PM Sample Units mg/L mg/L mg/L Std.I	Analysis Time 3:17:32 PM 3:17:35 PM 3:17:37 PM

Analysis Begun							
Start Time: 3/5/202	0 10:08:36 AM		Plasma On Time: 3	3/5/2020	0 10:03:	30 AM	
Logged In Analyst: Spectrometer: Optim	Perkin Elmer a 7000		Technique: ICP Co Autosampler: S10	ontinuo	us		
Sample Information	File: C:\Document: dhivesh, pro	s and Setting escreening Ni	s\All Users\Perkin .2.sif	nElmer\:	ICP\Data	\Sample In	formation\
Batch ID:	· _	-					
Results Data Set: n Results Library: C:	i parameters \Documents and Se Results.mdb	ttings\Perkin	Elmer\Desktop\stu	ident re	esults\2	020\dhives	h/
======================================							======
Method Name: Dhives	h3		Method Last Saved	1: 2/18,	/2020 2:	15:52 PM	
IEC File:			MSF File:				
Method Description:							
Sequence No.: 1 Sample ID: DI blank			Autosampler Locat	ion: 1	 0 10:08:	 36 AM	
Analyst:			Data Type: Origin	nal			
Initial Sample Wt:			Initial Sample Vo	bl :			
Dilution:			Sample Prep Vol:				
Wash Time:							
Replicate Data: DI	blank						
Popl# Appluto	Net	Corrected	Calib. Cong Units		Cong	Sample	Analysis
1 Ni 231.604	-800.1	16.5	0.689 mg/L		0.689	ma/L	10:09:45 7
2 Ni 231.604	-826.2	-9.7	0.688 mg/L		0.688	mg/L	10:09:58 A
3 Ni 231.604	-735.6	81.0	0.689 mg/L		0.689	mg/L	10:10:09 A
Mean Data: DI blank							
1	Mean Corrected	Calib.			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.De	v. RSD
Ni 231.604	29.3	0.689 mg/L	0.0006	0.689	mg/L	0.000	6 0.09%
Sequence No.: 2	nH4-reading1		Autosampler Locat	ion: 9	 n 10·12·	========= 27 дм	
Analyst:	_pn4 reduingr		Data Type: Origin	nal	. 10.12.	27 111	
Initial Sample Wt:			Initial Sample Vo	51:			
Dilution:			Sample Prep Vol:				
Wash Time: 120			Auto Dilution Fac	ctor: 1			
Replicate Data: dos	e-2.0_pH4-reading	 1					
	Net	Corrected	Calib.		~	Sample	Analysis
Kepi# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	"I'1Me
1 NI ZJI.604 2 Ni 231 604	1017005 0	1218712 /	17 22 mg/L		⊥/./6 17 つつ	шу/Ц ma/T	10.13.35 F
3 Ni 231.604	1221161.0	1221977.6	17.27 mg/L		17.27	mg/L	10:13:40 A
Mean Data: dose-2 0	pH4-reading1						
	Mean Corrected	Calib.			Sample		
Analyte Ni 231.604	Intensity 1232994.0	Conc. Units 17.42 mg/L	Std.Dev. 0.298	Conc. 17.42	Units mg/L	Std.De 0.29	ev. RSD 8 1.71%
Sequence No.: 3			Autosampler Locat	ion: 10	 0		
Sample ID: dose-2.5 Analyst:	_pH4-reading1		Date Collected: 3 Data Type: Origin	3/5/2020 nal	0 10:15:	51 AM	

Method: Dhivesh3		I	age 2	D	ate: 3	3/5/2020	11:33:26 A	м
Initial Sample Wt: Dilution: Wash Time: 120			Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ol: stor: 1				
Replicate Data: do	se-2.5_pH4-reading: Net	1 Corrected	Calib.			Sample	Analysis	
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time	
1 Ni 231.604	1125217.3	1126033.9	15.96 mg/L		15.96	mg/L	10:17:01	AM
2 Ni 231.604	1121413.2	1122229.8	15.91 mg/L		15.91	mg/L	10:17:04	AM
3 Ni 231.604	1107357.5	1108174.1	15.72 mg/L		15.72	mg/L	10:17:07	AM
Mean Data: dose-2.	5_pH4-reading1							
	Mean Corrected	Calib.		Sa	mple			
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Un	its	Std.I	Dev. RSD	
Ni 231.604	1118812.6	15.87 mg/L	0.128	15.87 mg	/L	0.1	128 0.80%	
Sequence No.: 4 Sample ID: dose-3. Analyst: Initial Sample Wt: Dilution: Wash Time: 120	0_pH4-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 11 2/5/2020 1 al d: tor: 1	====== 0:19:1			
Replicate Data: do	se-3.0 pH4-reading	 1						
	Net	Corrected	Calib.			Sample	Analvsis	
Repl# Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time	
1 Ni 231.604	812861.4	813678.0	11.73 mg/L		11.73	mg/L	10:20:28	AM
2 Ni 231.604	822564.3	823380.9	11.86 mg/L		11.86	mg/L	10:20:30	AM
3 Ni 231.604	784227.1	785043.7	11.34 mg/L		11.34	mg/L	10:20:32	AM
Mean Data: dose-3.	0_pH4-reading1							
No a luch a	Mean Corrected	Calib.		Sa	mple	0± -1 -		
Maiyte Ni 231.604	807367.5	11.64 mg/L	0.270	11.64 mg	1 15 /L	Std.I 0.2	270 RSD	
Sequence No.: 5 Sample ID: dose-3. Analyst: Initial Sample Wt: Dilution: Wash Time: 120	5_pH4-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 12 2/5/2020 1 al 21: 2tor: 1	====== 0:22:4			
Replicate Data: do	se-3.5_pH4-reading	 1						
Dom 1 H Dr 1+	Net	Corrected	Calib.		0	Sample	Analysis	
t Ni 221 CO4	Intensity	Intensity	LONC. Units		Conc .	UNITS	Time	7\ 1\ 1
1 NI Z31.004	0002//.l	000UYJ./ 071010 7	12./1 MG/L 12.52 ~~/T		12 F2	шу/ц mg/т	10.23.53	AM
2 IN1 231.604 3 Ni 221 604	00000E 0	0/1010./ 0016/1 /	12.52 Mg/L		12.JZ	шу/ц mg/т	10.23:55	AM
J 11 2 JI. 004	000023.0		12.05 mg/L			шу/ ц	10.23:31	лч
Mean Data: dose-3.	5_pH4-reading1 Mean Corrected	Calib		Sa	mple			
Analyte Ni 231.604	Intensity 879851.3	Conc. Units 12.62 mg/L	Std.Dev. 0.099	Conc. Un 12.62 mg	its /L	Std.I 0.0	Dev. RSD 099 0.78%	
Sequence No.: 6 Sample ID: dose-4. Analyst: Initial Sample Wt: Dilution:	eeeeeeeeeeeeeeeeeeeeeeee		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol:	ion: 13 5/2020 1 al 01:	====== 0:26:0)9 AM		
Wash Time: 120			Auto Dilution Fac	tor: 1				

Page 3

		1				
	Net	Corrected	Calib.	-	Sample	Analysis
Repl# Analyte	Intensity	Intensity	Conc. Units	Conc.	Units	Time
1 Ni 231.604	361554.4	362371.0	5.604 mg/L	5.604	mg/L	10:27:18
2 Ni 231.604	364954.8	365//1.3	5.650 mg/L	5.650	mg/L	10:2/:21
3 NI 231.604	358022.7	358839.3	5.556 mg/L	5.556	mg/L	10:27:25
Mean Data: dose-4.	0_pH4-reading1					
	Mean Corrected	Calib.	a. 1 -	Sample	a	
Analyte Ni 231.604	Intensity 362327.2	5.604 mg/L	Std.Dev. 0.0470	5.604 mg/L	0.04	ev. RSD
	002027.2	0.001 mg/1	0.01/0	5.001 mg/ 1	0.01	,0 0.010
Sequence No.: 7			Autosampler Locat	ion: 14		
Sample ID: dose-2.	0_pH5-reading1		Date Collected: 3	/5/2020 10:29:	37 AM	
Analyst: Initial Samalo Wt:			Data Type: Origin	.a⊥ .1.		
Dilution:			Sample Prop Vol:	1.		
Wash Time: 120			Auto Dilution Fac	tor: 1		
Replicate Data. do	Net	Corrected	Calib.		Sample	Analvsis
Repl# Analyte	Intensitv	Intensitv	Conc. Units	Conc.	Units	Time
1 Ni 231.604	684951.0	685767.6	9.992 mg/L	9.992	mg/L	10:30:45
2 Ni 231.604	694407.3	695223.9	10.12 mg/L	10.12	mg/L	10:30:47
3 Ni 231.604	683767.6	684584.2	9.976 mg/L	9.976	mg/L	10:30:49
Mean Data: dose-2.	0_pH5-reading1 Mean Corrected	Calib.		Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.D	ev. RSD
Ni 231.604	688525.2	10.03 mg/L	0.079	10.03 mg/L	0.0	79 0.79%
Sequence No.: 8 Sample ID: dose-2.	5_pH5-reading1		Autosampler Locat Date Collected: 3	ion: 15 /5/2020 10:33:		
Midiyst: Initial Sample Wt:			Initial Sample Vo	ai 1.		
			Sample Prep Vol:	1.		
Dilution:			bampie liep voi.			
Dilution: Wash Time: 120			Auto Dilution Fac	tor: 1		
Note of the second seco	se-2.5 pH5-reading		Auto Dilution Fac			
Note of the second seco	se-2.5_pH5-reading	 1 Corrected	Auto Dilution Fac	tor: 1	Sample	Analysis
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte		1 Corrected Intensity	Auto Dilution Fac Calib. Conc. Units	cor: 1 Conc.	Sample Units	Analysis Time
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604	se-2.5_pH5-reading Net Intensity 826483.1	1 Corrected Intensity 827299.6	Auto Dilution Fac 	Conc. 11.91	Sample Units mg/L	Analysis Time 10:34:08
Dilution: Wash Time: 120 Replicate Data: dc Repl# Analyte 1 1 Ni 231.604 2 Ni 231.604	<pre>>se-2.5_pH5-reading Net Intensity 826483.1 839129.4</pre>	1 Corrected Intensity 827299.6 839945.9	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L	Conc. 11.91 12.08	Sample Units mg/L mg/L	Analysis Time 10:34:08 10:34:10
Dilution: Wash Time: 120 Replicate Data: dc 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604	pse-2.5_pH5-reading Net Intensity 826483.1 839129.4 833471.3	1 Corrected Intensity 827299.6 839945.9 834287.9	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L 12.01 mg/L	Conc. 11.91 12.08 12.01	Sample Units mg/L mg/L mg/L	Analysis Time 10:34:08 10:34:10 10:34:12
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 4 Mean Data: dose-2.	<pre>>se-2.5_pH5-reading</pre>	1 Corrected Intensity 827299.6 839945.9 834287.9	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L 12.01 mg/L	Conc. 11.91 12.08 12.01	Sample Units mg/L mg/L mg/L	Analysis Time 10:34:08 10:34:10 10:34:12
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2.	<pre>>se-2.5_pH5-reading Net Intensity 826483.1 839129.4 833471.3 5_pH5-reading1 Mean Corrected</pre>	1 Corrected Intensity 827299.6 839945.9 834287.9 Calib.	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L 12.01 mg/L	Conc. 11.91 12.08 12.01 Sample	Sample Units mg/L mg/L mg/L	Analysis Time 10:34:08 10:34:10 10:34:12
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 4 Viean Data: dose-2.	<pre>>se-2.5_pH5-reading Net Intensity 826483.1 839129.4 833471.3 5_pH5-reading1 Mean Corrected Intensity</pre>	1 Corrected Intensity 827299.6 839945.9 834287.9 Calib. Conc. Units	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L 12.01 mg/L Std.Dev.	Conc. 11.91 12.08 12.01 Sample Conc. Units	Sample Units mg/L mg/L mg/L Std.D	Analysis Time 10:34:08 10:34:10 10:34:12
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Analyte Vi 231.604	<pre>>se-2.5_pH5-reading Net Intensity 826483.1 839129.4 833471.3 5_pH5-reading1 Mean Corrected Intensity 833844.5</pre>	1 Corrected Intensity 827299.6 839945.9 834287.9 Calib. Conc. Units 12.00 mg/L	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L 12.01 mg/L Std.Dev. 0.086	Conc. 11.91 12.08 12.01 Sample Conc. Units 12.00 mg/L	Sample Units mg/L mg/L mg/L Std.D 0.0	Analysis Time 10:34:08 10:34:10 10:34:12 ev. RSD 86 0.72%
Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Analyte Ni 231.604 Sequence No.: 9 Sample ID: dose-3. Analyst: Initial Sample Wt: Dilution:	<pre>>se-2.5_pH5-reading Net Intensity 826483.1 839129.4 833471.3 5_pH5-reading1 Mean Corrected Intensity 833844.5 0_pH5-reading1</pre>	1 Corrected Intensity 827299.6 839945.9 834287.9 Calib. Conc. Units 12.00 mg/L	Auto Dilution Fac Calib. Conc. Units 11.91 mg/L 12.08 mg/L 12.01 mg/L 	Conc. 11.91 12.08 12.01 Sample Conc. Units 12.00 mg/L ion: 16 /5/2020 10:36: al 1:	Sample Units mg/L mg/L 	Analysis Time 10:34:08 10:34:10 10:34:12 ev. RSD 86 0.72%

Replicate Data: dose-3.0_pH5-reading1

NetCorrected ConstantCalib. ConstantSample LateAnalysis1121.60410.2017.110.2017.210.2017.23NS 231.60462035.150057910.60500.713NS 231.60462035.110.65500.7110.2017.324Mean Data:dose-3.0_pd5-reading1SampleSample10.027AmalyteMean CorrectedCalib.SampleStd.Dev.Cane.AmalyteStd.Dev.Cane.Std.Dev.Cane.Cane.Sequence No.: 10Sample D:Cane.Std.Dev.Cane.Cane.Sample D:Std.Dev.Cane.Std.Dev.Cane.Cane.Sequence No.: 10Sample D:Cane.Autosampler Location: 17Sample MalysisSample D:Sample D:CorrectedCalib.Sample MalysisInitial Sample M:Initial Sample W:Initial Sample W:NalysisReplicate Data:dose-3.5_pd5-reading1Autosample MalysisSid.Dev.Replicate Data:dose-3.5_pd5-reading1Sid.Dev.Cone.UnitsMair 231.604Sid973.2Sid97.2Sid2.Dev.Sid2.Dev.MalyteIntensityCone.UnitsSide Dev.Sid2.Dev.MalyteIntensityCone.UnitsSid Dev.Sid2.Dev.MalyteIntensityCone.UnitsSid.Dev.Cone.MalyteIntensityCone.UnitsSid.Dev.Cone.MalyteIntensity<	Method: Dhivesh3			Page 4			Date: 3/5/2020 11:33:26 AM				
Repl# Analyte Intensity Intensity Conc. Units Conc. Units Conc. Units Time 1 N1 233.604 880206.1 881784.7 12.65 mg/L 12.49 mg/L 10.37:30 2 N1 231.604 872337.2 873153.9 12.153 mg/L 12.55 mg/L 12.55 mg/L 10.37:30 Man Data: dose-3.0_pHS-reading1 Sample Sample Sample Sample Manlyte Mesn Corrected Conc. Units Std.Dev. Conc. Units Std.Dev. Std.Dev. Std.Dev. Sequence No.: 10 Sample Th: Data Corrected Conc. Units Std.Dev. Std.Dev. Sequence No.: 10 Sample Th: Data Corrected Conc. Units Std.Dev. Std.Dev. Sequence No.: 10 Sample Th: Data Corrected Conc. Units Std.Dev. Std.Dev. Sequence No.: 10 Sample Th: Data Corrected Calib. Sample Analyte Thesis Corrected Calib. Sample Analyte Std.Dev. Sample Analyte Notostastore Corrected Colib. <			Not	Corrected	Calib		Sam		nalveie		
1 Ni 231.004 0.0270.5 12.45 mg/L 12.45 mg/L 10.337.32 3 Ni 231.004 0.02337.3 0.0174.7 12.65 mg/L 12.45 mg/L 10.337.32 4 0.0137.32 0.0137.32 0.0137.32 0.0137.32 12.53 mg/L 12.45 mg/L 10.337.32 4 0.0237.3 0.7333.5.9 12.55 mg/L 12.65 mg/L 12.55 mg/L 10.337.32 4 0.0237.3 0.015.5 0.022 0.015.5 0.022	Repl#	# Analvte	Intensity	Intensity	Conc. Units	Co	onc. Uni	ts	Time		
2 11 23. 10 880096.1 881784.7. 12.55 mg/r. 10.37:32 Mean Data: Gose-3.5_pH5-reading1 Autosampler Location: 17 Date Type: Original Nata Type: Original Repl# Analyte Intensity Intensity Intensity Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Intensity Conc. Units Conc. Units Sample Analyte Intensity Intensity Sol222.7 Sol222 mg/L Sol22 mg/L Sol2 mg/L Dividois Man Data: dose-3.5_pH5-reading1 Sample Sample Sol2 mg/L Sol2 mg/L Sol2 mg/L Dividois Man Data: dose-4.0_pH5-reading1 Sample Sample Sol22 mg/L Sol22 mg/L <td< th=""><th>1</th><th>Ni 231.604</th><th>869270.4</th><th>870087.0</th><th>12.49 mg/L</th><th>12</th><th>2.49 mg/</th><th>'L 1</th><th>0:37:30 A</th><th>١M</th></td<>	1	Ni 231.604	869270.4	870087.0	12.49 mg/L	12	2.49 mg/	'L 1	0:37:30 A	١M	
3 N1 231.604 872337.3 873153.9 12.53 mg/f. 12.55 mg/f. 50.002 12.56 mg/f. 6.002 12.56 mg/f. 6.002 0.002 <t< td=""><td>2</td><td>Ni 231.604</td><td>880968.1</td><td>881784.7</td><td>12.65 mg/L</td><td>12</td><td>2.65 mg/</td><td>'L 1</td><td>0:37:32 A</td><td>١M</td></t<>	2	Ni 231.604	880968.1	881784.7	12.65 mg/L	12	2.65 mg/	'L 1	0:37:32 A	١M	
Mean Date: dose-3.0 pH5-reading1 Mean Corrected Analyte N1 231.604 Mean Corrected Sample D: dose-3.5 pH5-reading1 Mean Tate: 120 Analyte N1 231.604 Mean Corrected Repl4 Analyte N1 231.604 Mean Corrected Calib. Sample D: dose-3.5 pH5-reading1 Mean Corrected N1 231.604 Mean Corrected N1 231.604 Mean Corrected N1 231.604 Mean Corrected N1 231.604 Mean Corrected N1 231.604 Mean Corrected N1 231.604 Mean Corrected Mean Corrected N1 231.604 Mean Corrected Mean Corrected N1 231.604 Mean Corrected Mean Correcte	3	Ni 231.604	872337.3	873153.9	12.53 mg/L	12	2.53 mg/	'L 1	0:37:34 A	١M	
Mean Corrected N1/231.604Conc. Units 875008.5Std.Dev. Conc. Units 12.56 mg/f.Sample 0.082Sample 12.56 mg/f.Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082Sample 0.082No 0.082<	 Mean	Data: dose-3.	0 pH5-reading1								
Analyte Intensity Conc. Units Std.Dev. Canc. Units Std.Dev. RSD M1 231.604 ST5005.5 12.56 mg/l 0.082 0.682 0.682 0.682 Sequence No.: 10 Autosample T. Location: 17 Date Collectdi 3/5/2020 10:39:44 AM Sample D: 0.68e-3.5_pH5-reading1 Date Collectdi 3/5/2020 10:39:44 AM Wash Time: 120 Auto Dulution Factor: 1 Replicate Data: dose-3.5_pH5-reading1 Sample T. Contiss Sample T. Contiss Repli Analyte Intensity Intensity Conc. Units Sample Analyte 1 M1 231.604 561072.7 561889.3 8.311 mg/l 8.311 mg/l 1.0140.52 2 M1 231.604 561072.7 561889.3 8.311 mg/l 8.311 mg/l 1.0140.55 3 N1 231.604 561072.7 561889.3 8.311 mg/l 8.310 mg/l 0.0930 1.0140.55 4 Malosample M: Conc. Units Sample Nalotis Nalotis Nalotis 50597.5 8.253 mg/l 0.0930 8.253 mg/l 0.0930 1.0143:07 Sequence No.: 11 Matosample Vc: Sample Vc: <td></td> <td></td> <td>Mean Corrected</td> <td>Calib.</td> <td></td> <td>Sam</td> <td>ple</td> <td></td> <td></td> <td></td>			Mean Corrected	Calib.		Sam	ple				
N: 231.604 875008.5 12.56 mg/L 0.082 12.56 mg/L 0.082 0.668 Gequence No.: 10 Sample ID: dose-3.5_PH5-reading1 Autosampler Location: 17 Date Collected: 3/5/2020 10:39:44 AM Datalyst: Initial Sample Wt: Dilution: Replif Analyte Intensity Intensity Conc. Units Conc. Units Std. Dev. Conc. Units Std. Dev. RSD Nalyte: Nalyte Sequence No.: 11 Sample ID: dose-4.0_PH5-reading1 Autosampler Location: 18 Sample ID: dose-4.0_PH5-reading1 Sample Rep Vol: Sample Rep Vol: Sample Analyst: Initial Sample Mt: Dilution: Replif Analyte Intensity Conc. Units Std. Dev. Conc. Units Std. Dev. RSD Nalyte ID: dose-4.0_PH5-reading1 Autosampler Location: 18 Sample ID: dose-4.0_PH5-reading1 Nalyte ID: dose-4.0_PH5-reading1 Autosampler Location: 1 Replif Analyte Intensity Conc. Units Std. Dev. RSD Std. Std. Std. Std. Std. Std. Std. Std.	Analy	yte .	Intensity	Conc. Units	Std.Dev.	Conc. Unit	ts	Std.Dev.	RSD		
Sequence No.: 10 Autosampler Location: 17 Sample D: dose-3.5_pH5-reading1 Data Type: Original Initial Sample W: Intensity Intensity Conc. Units Conc. Units Tame Peple Analyst: Corrected Calib. Sample Physical Conc. Units C	Ni 23	31.604	875008.5	12.56 mg/L	0.082	12.56 mg/1	L	0.082	0.66%		
Dilution: Sample Prep Vol: Auto Dilution Factor: 1 Auto Banje M: 10:44:18 Auto Dilution Factor: 1 Auto Banje M: 21:604 Side Mag/L Side Mag/L Si	Seque Sampl Analy Initi	ence No.: 10 Le ID: dose-3. yst: Lal Sample Wt:	5_pH5-reading1		Autosampler Locat: Date Collected: 3, Data Type: Origina Initial Sample Vo	======================================					
Replicate Data: dose-3.5_pH5-reading1 Net Corrected Calib. Conc. Units Time Repl# Analyte Intensity Intensity Conc. Units Conc. Units Time Not 231.604 Stample Not 231.604 <th colspan<="" td=""><td>Dilut Wash</td><td>ion: Time: 120</td><td></td><td></td><td>Sample Prep Vol: Auto Dilution Fact</td><td>tor: 1</td><td></td><td></td><td></td><td></td></th>	<td>Dilut Wash</td> <td>ion: Time: 120</td> <td></td> <td></td> <td>Sample Prep Vol: Auto Dilution Fact</td> <td>tor: 1</td> <td></td> <td></td> <td></td> <td></td>	Dilut Wash	ion: Time: 120			Sample Prep Vol: Auto Dilution Fact	tor: 1				
Net Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Gonc Units Conc. Units	 Repli		se-3.5 pH5-reading	 1							
Repl# Analyte Intensity Intensity Conc. Units Conc. Units Time 1 Ni 231.604 561072.7 561889.3 8.311 mg/L 8.311 mg/L 10:40:55 2 Ni 231.604 560396.1 561212.7 8.302 mg/L 8.311 mg/L 10:40:55 3 Ni 231.604 560396.1 561212.7 8.302 mg/L 8.302 mg/L 10:40:57			Net	Corrected	Calib.		Sam	nple A	nalysis		
1 Ni 231.604 561072.7 561889.3 8.311 mg/L 8.311 mg/L 10:40:52 3 Ni 231.604 560396.1 56121.7 8.302 mg/L 8.302 mg/L 10:40:54 Mean Data: dose-3.5_pH5-reading1 Mean Corrected Calib. Sample Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Sequence No.: 11 Sample floces-4.0_pH5-reading1 Data Collected: 3/5/2020 10:43:07 AM Data Type: Original Intial Sample Vol: Shitis Sample floces-4.0_pH5-reading1 Data Collected: 3/5/2020 10:43:07 AM Data Type: Original Initial Sample W: Intensity Corrected Calib. Sample Analysis Ni 231.604 559102.8 559919.4 8.284 mg/L 8.284 mg/L 10:44:16 3 Ni 231.604 5571062.6 571879.2 8.447 mg/L 8.447 mg/L 10:44:16 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.16 mg/L 10:44:16 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.16 mg/L 10:44:16 3 Ni	Repl#	Analyte	Intensity	Intensity	Conc. Units	Co	onc. Uni	.ts	Time		
2 NI 231.604 548673.9 549690.5 8.146 mg/L 8.146 mg/L 10:40:54 3 NI 231.604 560396.1 561212.7 8.302 mg/L 8.302 mg/L 10:40:57 Mean Data: dose-3.5_pH5-reading1 Mean Corrected Calib. Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Sequence No.: 11 Sample TD: dose-4.0_pH5-reading1 Autosampler Location: 18 Date Collected: 3/5/2020 10:43:07 AM Analyte: Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Britial Sample Wt: Intensity Conc. Units Conc. Units Time Replé Analyte Intensity Corrected Calib. Sample Analysis Replé Analyte Intensity Conc. Units Conc. Units Time 1 Ni 231.604 560704.8 561821.4 8.306 mg/L 8.346 mg/L 10:44:18 3 Ni 231.604 571879.2 8.447 mg/L 8.346 mg/L 10:44:18 3 Ni 231.604 571879.2 8.447 mg/L 8.346 mg/L 10:44:18 3 Ni	1	Ni 231.604	561072.7	561889.3	8.311 mg/L	8	.311 mg/	'L 1	0:40:52 A	٩W	
3 Ni 231.604 560396.1 561212.7 8.302 mg/L 8.302 mg/L 10:40:57 Mean Data: dose-3.5_pH5-reading1 Mean Corrected Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Ni 231.604 S57597.5 8.253 mg/L 0.0930 8.253 mg/L 0.0930 1.13% Sequence No.: 11 Autosampler Location: 18 Sample ID: dose-4.0_pH5-reading1 Data Collected: 3/5/2020 10:43:07 AM Analyts: Initial Sample W: Initial Sample Vol: Dilution: Sample Prep Vol: Sample Prep Vol: Wash Time: 120 Net Corrected Calib. Sample Analysis 1 Ni 231.604 569102.8 559192.4 8.284 mg/L 8.284 mg/L 10:44:16 3 Ni 231.604 567104.8 561521.4 8.306 mg/L 8.342 mg/L 10:44:18 3 Ni 231.604 5671074.8 557197.2 8.447 mg/L 8.244 mg/L 10:44:10 Mean Oardeed of Bissing Conc. Units Sample Prep Vol: 8.346 mg/L 0.0881 10:44:10 Maalyte Intensity Conc. Units Std.Dev. Rop	2	Ni 231.604	548873.9	549690.5	8.146 mg/L	8	.146 mg/	'L 1	0:40:54 A	٩M	
Mean Data: dose-3.5_pH5-reading1 Mean Corrected Analyte Conc. Units Intensity Std.Dev. Conc. Units Sample Std.Dev. 8.253 mg/L Std.Dev. 0.0930 Std.Dev. 8.253 mg/L RSD 0.0930 Nats 8.253 mg/L Sequence No.: 11 Autosampler Location: 18 Sample To: dose-4.0_pH5-reading1 Autosampler Location: 18 Data Type: Original Initial Sample Wt: Dilution: Autosampler Location: 18 Data Collected: 3/5/2020 10:43:07 AM Data Type: Original Initial Sample Wt: Data Type: Original Initial Sample V01: Sample Free V01: Repl# Analyte Intensity Intensity Store Corrected Store Calib. Sample Analysis Conc. Units Sample Analysis Time Repl# Analyte Intensity Intensity Store Conc. Units Conc. Units Time Ni 231.604 559102.8 55919.4 8.284 mg/L 8.284 mg/L 8.284 mg/L 10:44:16 2 Ni 231.604 560704.8 561521.4 8.306 mg/L 10:44:16 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.240 mg/L 0.0881 1.064 Mean Corrected Analyte Intensity Conc. Units Std.Dev. Rop.L Not 20:46:31 AM Data Type: Original Initial Sample Wt: Dilution: Sample Free Vol: Autosampler Location: 19 Date Collected: 3/5/2020 10:46:31 AM Data Type: Original Initial Sample Wt: Dilution: Sample Prep Vol: Autosample Free Vol: Autosam	3	Ni 231.604	560396.1	561212.7	8.302 mg/L	8	.302 mg/	L 1	0:40:57 A	١M	
Mean CorrectedCalib.Sample Std.Dev.NalyteIntensityConc. UnitsStd.Dev.RSDNi 231.604557597.58.253 mg/L0.09308.253 mg/L0.09301.13%Sequence No.: 11Autosampler Location: 18Sample ID: dose-4.0_pH5-reading1Date Collected: 3/5/2020 10:43:07 AMAnalyts:Date Collected: 3/5/2020 10:43:07 AMInitial Sample W:Initial Sample Vol:Dilution:Sample TheoreticWash Time:120Auto Dilution Factor: 1Replf AnalyteIntensityI Ni 231.604559102.8SorrectedCalib.Sample ID: dose-4.0_pH5-reading1Mem CorrectedCalib.Replf AnalyteIntensityI Ni 231.604559102.8SorrectedCalib.Sample ID: dose-4.0_pH5-reading1Mean CorrectedCalib.Sample ID: dose-4.0_pH5-reading1Mean CorrectedConc. UnitsStd.Dev.SorrectedCalib.Sample ID: dose-4.0_pH5-reading1Mean CorrectedConc. UnitsStd.Dev.Sequence No.: 12Sample ID: dose-2.0_pH7-reading1AnalyteIntensityConc. UnitsSequence No.: 12Sample ID: dose-2.0_pH7-reading1Nalyts:Initial Sample W:Dilution:Sample ID: dose-2.0_pH7-reading1Mash Time:NetCorrectedCalib.Sample ID: dose-2.0_pH7-reading1Net </td <td>Mean</td> <td>Data: dose-3.</td> <td>5_pH5-reading1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mean	Data: dose-3.	5_pH5-reading1								
Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Ni 231.604 557597.5 8.253 mg/L 0.0930 8.253 mg/L 0.0930 1.13% Sequence No.: 11 Autosampler Location: 18 Date Collected: 3/5/2020 10:43:07 AM Analyst: Analyt: Data Type: Original Initial Sample Vol: Sample Prep Vol: Mash Time: 120 Auto Dilution Factor: 1 Auto Dilution Factor: 1			Mean Corrected	Calib.		Sam	ple				
Sequence No.: 11 Autosampler Location: 18 Sample Di dose-4.0_pH5-reading1 Date Collected: 3/5/2020 10:43:07 AM Analyst: Initial Sample Wt: Initial Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replf Analyte Intensity Intensity Conc. Units Conc. Units Std.Dev. RSD Mai 231.604 559102.8 4.346 mg/L 8.284 mg/L 10:44:16 2 Ni 231.604 560704.8 561521.4 8.306 mg/L 8.284 mg/L 10:44:16 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.284 mg/L 10:44:16 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.447 mg/L 10:44:20 Mean Data: dose-4.0_pH5-reading1 Mean Corrected Calib. Sample Analyte Intensity Conc. Units Std.Dev. RSD Ni 231.604 564440.0 8.346 mg/L 0.0881 8.346 mg/L 0.0881 1.068	Analy Ni 23	7 te 31.604	Intensity 557597.5	8.253 mg/L	Std.Dev. 0.0930	8.253 mg/1	L s L	Std.Dev. 0.0930	RSD 1.13%		
Replicate Data: dose-4.0_pH5-reading1 Net Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Conc. Units Stample Intensity Conc. Units Std.Dev. RSD Mean Data: dose-4.0_pH5-reading1 Mean Corrected Calib. Sample Mean Corrected Calib. Sample Net Corrected Calib. Sample ID: dose-2.0_pH7-reading1 Net Corrected Calib. Sample Prep Vol: Mata Type: Original Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Mash Time: 120 Auto Dilution Factor: 1 Initial Sample Analysis Net Corrected Calib. Sample Analysis Net Corrected Calib. Sample Prep Vol: Mata Type: Original Initial Sample Vol: Sample Prep Vol:	Sampl Analy Initi Dilut Wash	le ID: dose-4. yst: Lal Sample Wt: tion: Time: 120	0_pH5-reading1		Date Collected: 3, Data Type: Origina Initial Sample Vol Sample Prep Vol: Auto Dilution Fact	/5/2020 10 al 1: tor: 1	:43:07 A	м			
NetCorrectedCalib.SampleAnalysisRepl# AnalyteIntensityIntensityConc. UnitsConc. UnitsTime1Ni 231.604559102.8559919.48.284 mg/L8.284 mg/L8.284 mg/L10:44:162Ni 231.604560704.8561521.48.306 mg/L8.306 mg/L10:44:183Ni 231.604571062.6571879.28.447 mg/L8.447 mg/L10:44:20Mean CorrectedCalib.SampleAnalyteIntensityConc. UnitsStd.Dev.Conc. UnitsStd.Dev.Conc. UnitsStd.Dev.Conc. UnitsStd.Dev.Conc. UnitsStd.Dev. Conc. UnitsStd.Dev. Conc. UnitsStd.Dev. Conc. UnitsStd.Dev. RSDNi 231.604564440.08.346 mg/L0.08818.346 mg/L0.08811.06%	 Repli		ose-4.0_pH5-reading	 1							
Rep1# Analyte Intensity Intensity Conc. Units Conc. Units Time 1 Ni 231.604 559102.8 559919.4 8.284 mg/L 8.284 mg/L 10:44:16 2 Ni 231.604 560704.8 561521.4 8.306 mg/L 8.284 mg/L 10:44:16 3 Ni 231.604 560704.8 561521.4 8.306 mg/L 8.447 mg/L 10:44:16 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.447 mg/L 10:44:20 Mean Data: dose-4.0_pH5-reading1 Mean Corrected Calib. Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Ni 231.604 564440.0 8.346 mg/L 0.0881 8.346 mg/L 0.0881 8.346 mg/L 0.0881 8.346 mg/L 0.0881 1.06% Sample ID: dose-2.0_pH7-reading1 Date Collected: 3/5/2020 10:46:31 AM Analyst: Data Type: Original Initial Sample Wt: Dilution: Wash Time: 120 Net Corrected Calib. Sample Prep Vol: Auto Dilution Factor: 1 Sample Analysis Repl# Analyte Intensity Intensity Conc. Units Conc. Units Conc. Units Timesity Conc. Units Conc. Units Timesity Conc. Units Conc. Units Conc. Units Timesity Conc. Units Conc. Units Conc. Units Timesity Conc. Units Conc			Net	Corrected	Calib.		Sam	nple A	nalysis		
1 Ni 231.604 559102.8 5591919.4 8.284 mg/L 8.284 mg/L 10:44:16 2 Ni 231.604 560704.8 561521.4 8.306 mg/L 8.306 mg/L 10:44:18 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.447 mg/L 10:44:18 Mean Data: dose-4.0_pH5-reading1 8.447 mg/L 8.447 mg/L 8.447 mg/L 10:44:20 Mean Data: dose-4.0_pH5-reading1 Mean Corrected Calib. Sample 8.447 mg/L 10:44:20 Mean Corrected Calib. Sample Std.Dev. Conc. Units Std.Dev. RSD Ni 231.604 564440.0 8.346 mg/L 0.0881 8.346 mg/L 0.0881 1.06%	Rep1#	Analyte	Intensity	Intensity	Conc. Units	Co	onc. Uni	.ts	Time		
2 Ni 231.604 560704.8 561521.4 8.306 mg/L 8.306 mg/L 10:44:18 3 Ni 231.604 571062.6 571879.2 8.447 mg/L 8.447 mg/L 10:44:20 Mean Data: dose-4.0_pH5-reading1 Mean Corrected Calib. Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Ni 231.604 564440.0 8.346 mg/L 0.0881 8.346 mg/L 0.0881 1.06% Sequence No.: 12 Sample ID: dose-2.0_pH7-reading1 Date Collected: 3/5/2020 10:46:31 AM Analyst: Initial Sample Vol: Data Type: Original Initial Sample Wt: Initial Sample Prep Vol: Auto Dilution Factor: 1 Pate Corrected Calib. Sample Analysis Replicate Data: dose-2.0_pH7-reading1 Net Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Conc. Units Time	1	Ni 231.604	559102.8	559919.4	8.284 mg/L	8	.284 mg/	L 1	0:44:16 A	١M	
Mean Data: dose-4.0_pH5-reading1 Mean Corrected Calib. Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Ni 231.604 564440.0 8.346 mg/L 0.0881 8.346 mg/L 0.0881 1.06%	2 3	Ni 231.604 Ni 231.604	560704.8 571062.6	561521.4 571879.2	8.306 mg/L 8.447 mg/L	8	.306 mg/ .447 mg/	L 1 'L 1	0:44:18 A 0:44:20 A	M۸ M۶	
Mean Corrected Analyte Ni 231.604Intensity 564440.0Conc. Units 8.346 mg/LSample O.0881Sample 8.346 mg/LStd.Dev. O.0881RSD 8.346 mg/LSequence No.: 12 Sample ID: dose-2.0_pH7-reading1 Analyst: Initial Sample Wt: Dilution: Wash Time: 120Autosampler Location: 19 Data Type: Original Initial Sample Vol: Sample Prep Vol: Auto Dilution Factor: 1Replicate Data: dose-2.0_pH7-reading1 Net Corrected Corrected Corrected Corrected Conc. Units Conc. Units Conc. Units Conc. Units Conc. UnitsSample Analysis Time	 Mean	Data: dose-4.	 0 рН5-reading1								
AnalyteIntensityConc. UnitsStd. Dev.Conc. UnitsStd. Dev.RSDNi 231.604564440.08.346 mg/L0.08818.346 mg/L0.08811.06%Sequence No.: 12Autosampler Location: 19Sample ID: dose-2.0_pH7-reading1Date Collected: 3/5/2020 10:46:31 AMAnalyst:Data Type: OriginalInitial Sample Wt:Initial Sample Vol:Dilution:Sample Prep Vol:Wash Time:120Auto Dilution Factor: 1Replicate Data: dose-2.0_pH7-reading1NetCorrectedCorrectedCalib.Sample AnalyteIntensityIntensityCorrectedConc. UnitsConc. UnitsConc. UnitsNetCorrectedConc. UnitsConc. UnitsConc. UnitsConc. UnitsNotCorrectedConc. UnitsConc. UnitsNetConc. UnitsConc. UnitsConc. UnitsConc. UnitsConc. UnitsNotConc. UnitsConc. UnitsConc. Units			Mean Corrected	Calib.		Sam	ple				
Ni 231.604 564440.0 8.346 mg/L 0.0881 8.346 mg/L 0.0881 1.06% Sequence No.: 12 Autosampler Location: 19 Sample ID: dose-2.0_pH7-reading1 Date Collected: 3/5/2020 10:46:31 AM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose-2.0_pH7-reading1 Net Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Intensity Conc. Units Conc. Units Conc. Units Conc. Units	Analy	<i>i</i> te	Intensity	Conc. Units	Std.Dev.	Conc. Unit	ts	Std.Dev.	RSD		
Sequence No.: 12 Autosampler Location: 19 Sample ID: dose-2.0_pH7-reading1 Date Collected: 3/5/2020 10:46:31 AM Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose-2.0_pH7-reading1 Net Net Corrected Calib. Sample Repl# Analyte Intensity Intensity Conc. Units Conc. Units	Ni 23	31.604	564440.0	8.346 mg/L	0.0881	8.346 mg/1	L	0.0881	1.06%		
Replicate Data: dose-2.0_pH7-reading1 Net Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Conc. Units Conc. Units Time	Seque Sampl Analy Initi Dilut Wash	ence No.: 12 Le ID: dose-2. yst: Lal Sample Wt: tion: Time: 120	0_pH7-reading1		Autosampler Locat: Date Collected: 3, Data Type: Origina Initial Sample Vol Sample Prep Vol: Auto Dilution Fact	======================================	:46:31 A	M			
Replicate Data: dose-2.0_pH7-reading1 Net Corrected Calib. Sample Analysis Repl# Analyte Intensity Intensity Conc. Units Conc. Units Time 1 Nic 021 (04 200504 5 2014411 1 5 501 m/l 10 47 20											
Net Corrected Callb. Sample Analysis Repl# Analyte Intensity Intensity Conc. Units Time No.021_004 200004 for 00000000000000000000000000000000000	Repli	cate Data: do	se-2.0_pH7-reading	1	A 1.1		~	- 10			
Reply maryle intensity conc. Units Conc. Units Time	De-1 4	+ 7001	Net	Corrected	Calib.	~	San	ıp⊥e A∷	nalysis Time		
I NI 231.604 360594.5 361411.1 5.591 mg/L 5.591 mg/L 10:4/:39	терт# 1	Ni 231.604	360594.5	361411.1	5.591 mg/L	5	.591 mg/	L 1	0:47:39 A	M	

od: Dhivesh3		P	age 5		Date:	3/5/2020	11:33:26 AM
Ni 231.604 Ni 231.604	361129.3 361324.5	361945.9 362141.1	5.599 mg/L 5.601 mg/L		5.599 5.601	mg/L mg/L	10:47:42 AN 10:47:45 AN
Data: dose-2.0 J yte 31.604	_pH7-reading1 Mean Corrected Intensity 361832.7	Calib. Conc. Units 5.597 mg/L	Std.Dev. 0.0051	Conc . 5.597	Sample Units mg/L	Std.D 0.00	ev. RSD 51 0.09%
ence No.: 13 le ID: dose-2.5 yst: ial Sample Wt: tion: Time: 120	pH7-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	zion: 20 3/5/2020 hal bl: ctor: 1	 0 0 10:49:	===	
icate Data: dos	e-2.5_pH7-reading	 1 2					
# Analyte Ni 231.604	Net Intensity 364604.9 360010 0	Intensity 365421.5 361735 6	Callb. Conc. Units 5.646 mg/L 5.596 mg/L		Conc . 5.646	Sample Units mg/L mg/I	Analysis Time 10:51:05 AJ
Ni 231.604	365214.7	366031.3	5.654 mg/L		5.654	mg/L	10:51:12 A
Data: dose-2.5	_pH7-reading1 Mean Corrected	Calib.			Sample		
yte 31.604	Intensity 364396.1	Conc. Units 5.632 mg/L	Std.Dev. 0.0315	Conc. 5.632	Units mg/L	Std.D 0.03	ev. RSD 15 0.56%
ence No.: 14 le ID: dose-3.0 yst: ial Sample Wt: tion: Time: 120	pH7-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	210n: 23 3/5/2020 nal pl: ctor: 1	1 10:53:	23 AM	
icate Data: dos	e-3.0_pH7-reading Net	1 Corrected	Calib			Sample	Analysis
# Analyte Ni 231.604 Ni 231.604 Ni 231.604	Intensity 397063.5 408934.0 403740.6	Intensity 397880.1 409750.6 404557.2	Conc. Units 6.086 mg/L 6.247 mg/L 6.177 mg/L		Conc . 6.086 6.247 6.177	Units mg/L mg/L mg/L	Time 10:54:31 AI 10:54:34 AI 10:54:37 AI
Data: dose-3.0	_pH7-reading1						
yte 31.604	Intensity 404062.6	Conc. Units 6.170 mg/L	Std.Dev. 0.0807	Conc. 6.170	Units mg/L	Std.D 0.08	ev. RSD 07 1.31%
ence No.: 15 le ID: dose-3.5 yst: ial Sample Wt: tion: Time: 120	pH7-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	zion: 22 3/5/2020 hal bl: ctor: 1	2 0 10:56:		
icate Data: dos	e-3.5_pH7-reading Not	1 Corrected	Calib			Sample	Analysis
# Analyte Ni 231.604 Ni 231.604 Ni 231.604	Intensity 388325.4 387394.6 390157.3	Intensity 389142.0 388211.2 390973.9	Conc. Units 5.967 mg/L 5.955 mg/L 5.992 mg/L	-	Conc. 5.967 5.955 5.992	Units mg/L mg/L mg/L	Time 10:57:58 AJ 10:58:01 AJ 10:58:05 AJ
	Data: dose-2.0 yte 31.604 Mi 231.604 Data: dose-2.0 yte 31.604 Participation: Time: 120 icate Data: dose # Analyte Ni 231.604 Ni 231.604 Ni 231.604 Ni 231.604 Ni 231.604 Data: dose-2.5 yte 31.604 Participation: Time: 120 icate Data: dose-3.0 yte 31.604 Participation: Time: 120 icate Data: dose-3.0 yte 31.604 Participation: Time: 120 icate Data: dose-3.0 yte 31.604 Participation: Time: 120 Data: dose-3.0 yte 31.604 Participation: Time: 120 icate Data: dose-3.0 yte 31.604 Participation: Time: 120 Ni 231.604 Ni 231.604	Data: Dhivesh3 Ni 231.604 361129.3 Ni 231.604 361324.5 Data: dose-2.0_pH7-reading1 Wean Corrected yte Intensity 31.604 361832.7 Data: dose-2.5_pH7-reading1 yst: ial Sample Wt: tion: Time: 120 Jicate Data: dose-2.5_pH7-reading1 Ni 231.604 36404.9 Ni 231.604 36404.9 Ni 231.604 364396.1 Data: dose-2.5_pH7-reading1 Mean Corrected yte Intensity 31.604 364396.1 Data: dose-3.0_pH7-reading1 yst: ial Sample Wt: tion: Time: 120 Intensity Ni 231.604 408934.0 Ni 231.604 403740.6 Ni 231.604 404062.6 Data: dose-3.5_pH7-reading1 Mean Corrected yte Intensity 31.604 404062.6 Data: dose-3.5_pH7-reading1 Mean Corrected yte Intensity 31.604 404062.6	ba: Dhivesh3 P Ni 231.604 361129.3 361945.9 Ni 231.604 361324.5 362141.1 Data: dose-2.0_pH7-reading1 Mean Corrected Calib. yte Intensity Conc. Units 31.604 361832.7 5.597 mg/L ence No.: 13 le ID: dose-2.5_pH7-reading1 yst: ial Sample Wt: tion: Time: 120 icate Data: dose-2.5_pH7-reading1 Net icate Data: dose-2.5_pH7-reading1 S6421.5 Ni 231.604 3660919.0 361735.6 Ni 231.604 3660919.0 361735.6 Ni 231.604 364396.1 5.632 mg/L bit 231.604 364396.1 5.632 mg/L ence No.: 14 Mean Corrected Calib. yst: ial Sample Wt: tion: tion: Time: 120 Corrected icate Data: dose-3.0_pH7-reading1 Net Corrected yst: ial Sample Wt: tion: 397880.1 ii 231.604 408934.0 409750.6 Ni 231.604 Mean Corrected Calib. yst:	Dati Drivesh3 Page 5 Ni 231.604 361129.3 361945.9 5.599 mg/L Data: dose-2.0_pH7-reading1 Mean Corrected Calib. pte Intensity Conc. Units Std. Dev. ance No.: 13 Autosampler Local le ID: dose-2.5_pH7-reading1 Data Type: Origin Data Type: Origin sile ID: dose-2.5_pH7-reading1 Data Type: Origin Data Type: Origin icate Data: dose-2.5_pH7-reading1 Net Corrected Calib. icate Data: dose-2.5_pH7-reading1 Net Corrected Calib. in 231.604 366919.0 361735.6 5.596 mg/L Ni 231.604 366919.0 361735.6 5.596 mg/L Ni 231.604 366919.0 361735.6 5.596 mg/L Data: dose-2.5_pH7-reading1 Mean Corrected Calib. yte Intensity Conc. Units Std. Dev. 31.604 364396.1 5.632 mg/L 0.0315 sance No.: 14 Mean Corrected Calib. yst: Intensity Corrected Calib. yst: Intensity Intensity Conc. Units sanple Wt: Intensity Corrected Calib. Ni 231.604 403934.0 409750.6 6.	Dat: Date: Description Description <thdescription< th=""> <thdescription< th=""> <thdescripti< td=""><td>Date Page 5 Date: N1 231.604 361129.3 361945.9 5.599 mg/L 5.599 Data: dose-2.0_pH7-reading1 Coll Stephen Sample pte Intensity Conc. Units Std.Dav. Conc. Units Std.Dav. Conc. Units slie ID: dose-2.5_pH7-reading1 Autosampler Location: 20 Date Type: Original rine: 120 Date Corrected Calib. Sample Prev Vol: anta Type: Original Initial Sample Vol: Sample Prev Vol: Sample Prev Vol: atto Dilution Factor: 1 Nate Corrected Calib. Sample Prev Vol: isal.604 366031.3 S.654 mg/L S.654 Mi 231.604 366031.3 S.654 mg/L S.654 Mi 231.604 366394.1 S.632 mg/L S.632 Mi 231.604 364396.1 S.632 mg/L S.654 mg/L S.654 Jate Colected: Std.Dev. Conc. Units Sample pte Intensity Conc. Units Std.Dev. Conc. Units Jate dose-3.0_</td><td>Date Date: Jorde: Date: Jorde: <thjorde:< th=""> <thjorde:< th=""></thjorde:<></thjorde:<></td></thdescripti<></thdescription<></thdescription<>	Date Page 5 Date: N1 231.604 361129.3 361945.9 5.599 mg/L 5.599 Data: dose-2.0_pH7-reading1 Coll Stephen Sample pte Intensity Conc. Units Std.Dav. Conc. Units Std.Dav. Conc. Units slie ID: dose-2.5_pH7-reading1 Autosampler Location: 20 Date Type: Original rine: 120 Date Corrected Calib. Sample Prev Vol: anta Type: Original Initial Sample Vol: Sample Prev Vol: Sample Prev Vol: atto Dilution Factor: 1 Nate Corrected Calib. Sample Prev Vol: isal.604 366031.3 S.654 mg/L S.654 Mi 231.604 366031.3 S.654 mg/L S.654 Mi 231.604 366394.1 S.632 mg/L S.632 Mi 231.604 364396.1 S.632 mg/L S.654 mg/L S.654 Jate Colected: Std.Dev. Conc. Units Sample pte Intensity Conc. Units Std.Dev. Conc. Units Jate dose-3.0_	Date Date: Jorde: Date: Jorde: Jorde: <thjorde:< th=""> <thjorde:< th=""></thjorde:<></thjorde:<>

Page 6

	5_pH/-reading1 Mean Corrected	Calib.			Sample		
Analyte Ni 231.604	Intensity 389442.4	Conc. Units 5.972 mg/L	Std.Dev. 0.0191	Conc. 5.972	Units mg/L	Std.Dev 0.0191	. RSD 0.32%
Sequence No.: 16 Sample ID: dose-4. Analyst: Initial Sample Wt: Dilution: Wash Time: 120	0_pH7-reading1		Autosampler Loc. Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F	ation: 2 3/5/202 inal Vol: : actor: 1	3 0 11:00:		
Replicate Data: do	ose-4.0_pH7-reading: Net	L Corrected	Cali			Sample	Analysis
Repl# Analvte	Intensity	Intensity	Conc. Unit	s.	Conc.	Units	Time
1 Ni 231.604	605821.7	606638.3	8.918 mg/L	-	8.918	mq/L	L1:01:26
2 Ni 231.604	602652.4	603469.0	8.875 mg/L		8.875	mq/L	L1:01:28
3 Ni 231.604	595955.3	596771.9	8.784 mg/L		8.784	mg/L :	L1:01:30
Mean Data: dose-4.	0_pH7-reading1						
	Mean Corrected	Calib.	a , 1 b	~	Sample	a. 1 p	5.65
Analyte Ni 231.604	Intensity 602293.1	S.859 mg/L	Std.Dev. 0.0683	Conc . 8.859	Units mg/L	Std.Dev 0.0683	. RSD 0.77%
Dilution:			Sample Prep Vol	:			
Wash Time: 120 Replicate Data: do	pse-2.0 pH8-reading		Auto Dilution F	actor: 1			
Wash Time: 120 Replicate Data: do	ose-2.0_pH8-reading Net	L Corrected	Calii	actor: 1 		Sample i	Analysis
Nash Time: 120 Replicate Data: do Repl# Analyte	ose-2.0_pH8-reading Net Intensity	L Corrected Intensity	Calii Conc. Unit	actor: 1 b. s	Conc.	Sample i Units	Analysis Time
Nash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604	ose-2.0_pH8-reading Net Intensity 1331410.0	Corrected Intensity 1332226.6	Calil Conc. Unit 18.76 mg/L	actor: 1 b. s	Conc . 18.76	Sample J Units mg/L	Analysis Time 11:04:51
Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604	se-2.0_pH8-reading: Net Intensity 1331410.0 1340038.5 1327512.6	Corrected Intensity 1332226.6 1340855.1 1328329.2	Cali Conc. Unit 18.76 mg/L 18.88 mg/L 18.71 mg/L	actor: 1 b. s	Conc. 18.76 18.88 18.71	Sample J Units mg/L mg/L mg/L	Analysis Time L1:04:51 L1:04:53 L1:04:56
Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 4 Mean Data: dose-2.	ose-2.0_pH8-reading: Net Intensity 1331410.0 1340038.5 1327512.6 0_pH8-reading1 Mean Corrected Intensity	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units	Cali Conc. Unit 18.76 mg/L 18.88 mg/L 18.71 mg/L	Conc.	Conc. 18.76 18.88 18.71 Sample Units	Sample i Units mg/L i mg/L i Std Dev	Analysis Time 11:04:51 11:04:53 11:04:56
Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Analyte Ni 231.604	ose-2.0_pH8-reading: Net Intensity 1331410.0 1340038.5 1327512.6 0_pH8-reading1 Mean Corrected Intensity 1333803.6	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units 18.78 mg/L	Calii Conc. Unit 18.76 mg/L 18.88 mg/L 18.71 mg/L 	conc . 18.78	Conc. 18.76 18.88 18.71 Sample Units mg/L	Sample I Units mg/L mg/L mg/L mg/L mg/L Std.Dev 0.087	Analysis Time 11:04:51 11:04:53 11:04:56 . RSD 0.46%
Wash Time: 120 Replicate Data: dc Replicate Data: dc Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Analyte Ni 231.604 Sequence No.: 18 Sample ID: dose-2. Analyst: Initial Sample Wt: Dilution: Vash Time: 120	<pre>pse-2.0_pH8-reading:</pre>	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units 18.78 mg/L	Calii Conc. Unit 18.76 mg/L 18.88 mg/L 18.71 mg/L Std.Dev. 0.087 Autosampler Loc. Date Collected: Data Type: Orig Initial Sample Y Sample Prep Vol Auto Dilution F	Conc. 18.78 ation: 2. 3/5/202 inal Vol: : actor: 1	Conc. 18.76 18.88 18.71 Sample Units mg/L 5 0 11:07:	Sample i Units mg/L i mg/L i Std.Dev 0.087	Analysis Time 11:04:51 11:04:53 11:04:56 . RSD 0.46%
Wash Time: 120 Replicate Data: dc Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Analyte Ni 231.604 Sequence No.: 18 Sample ID: dose-2. Analyst: Initial Sample Wt: Dilution: Wash Time: 120 Replicate Data: do	<pre>pse-2.0_pH8-reading:</pre>	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units 18.78 mg/L	Calii Conc. Unit 18.76 mg/L 18.88 mg/L 18.71 mg/L Std.Dev. 0.087 Autosampler Loc. Date Collected: Data Type: Orig Initial Sample Yep Vol Auto Dilution F	Conc. 18.78 ation: 2 3/5/202 inal Vol: actor: 1	Conc. 18.76 18.88 18.71 Sample Units mg/L 5 0 11:07:	Sample i Units mg/L mg/L Std.Dev 0.087	Analysis Time 11:04:51 11:04:53 11:04:56 . RSD 0.46%
Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Malyte Ni 231.604 Sequence No.: 18 Sample ID: dose-2. Analyst: Initial Sample Wt: Dilution: Wash Time: 120 Replicate Data: do Replicate Data: do	<pre>pse-2.0_pH8-reading:</pre>	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units 18.78 mg/L	Calii Conc. Unit 18.76 mg/L 18.76 mg/L 18.88 mg/L 18.71 mg/L Std.Dev. 0.087 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Yol Auto Dilution F	actor: 1 	Conc. 18.76 18.88 18.71 Sample Units mg/L 50 0 11:07:	Sample i Units mg/L i mg/L i Std.Dev 0.087	Analysis Time 11:04:51 11:04:53 11:04:56 . RSD 0.46%
Wash Time: 120 Replicate Data: dc Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Maalyte Ni 231.604 Sequence No.: 18 Sample ID: dose-2. Analyst: Initial Sample Wt: Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604	<pre>pse-2.0_pH8-reading:</pre>	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units 18.78 mg/L	Calii Conc. Unit 18.76 mg/L 18.76 mg/L 18.88 mg/L 18.71 mg/L Std.Dev. 0.087 Autosampler Loc Date Collected: Data Type: Orig Initial Sample Tool Auto Dilution F Sample Prep Vol Auto Dilution F Calii Conc. Unit	actor: 1 	Conc. 18.76 18.88 18.71 Sample Units mg/L 50 0 11:07: Conc. 15 13	Sample i Units mg/L mg/L Std.Dev 0.087 07 AM	Analysis Time 11:04:51 11:04:53 11:04:56 . RSD 0.46%
Wash Time: 120 Replicate Data: dc Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose-2. Maalyte Ni 231.604 Sequence No.: 18 Sample ID: dose-2. Analyst: Initial Sample Wt: Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Ni 231.604 2 Ni 231.604	<pre>pse-2.0_pH8-reading:</pre>	Corrected Intensity 1332226.6 1340855.1 1328329.2 Calib. Conc. Units 18.78 mg/L Corrected Intensity 1064410.9 1073105.4	Calif Conc. Unit 18.76 mg/L 18.88 mg/L 18.71 mg/L 	actor: 1 	Conc. 18.76 18.88 18.71 Sample Units mg/L 50 011:07: Conc. 15.13 15.25	Sample i Units mg/L mg/L Std.Dev 0.087 07 AM	Analysis Time 11:04:51 11:04:53 11:04:56 . RSD 0.46% . RSD 0.46% . Time 11:08:16 11:08:18

Mean Data: dose-2.5_pH8-reading1 Mean Corrected

Sample

Method: Dhivesh3		F	age 7		Date:	3/5/2020 1	1:33:26 AM
Analyte Ni 231.604	Intensity 1064662.9	Conc. Units 15.13 mg/L	Std.Dev. 0.113	Conc. 15.13	Units mg/L	Std.De 0.11	v. RSD 3 0.75%
Sequence No.: 19 Sample ID: dose-3.0 Analyst: Initial Sample Wt: Dilution: Wash Time: 120	_pH8-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 20 3/5/2020 al ol: ctor: 1	====== 6 0 11:10:	32 AM	
Replicate Data: dos	e-3.0_pH8-reading	 1					
Repl# Analyte 1 Ni 231.604	Net Intensity 847458.1	Corrected Intensity 848274.6	Calib. Conc. Units 12.20 mg/L		Conc. 12.20	Sample Units mg/L	Analysis Time 11:11:41 AM
2 Ni 231.604 3 Ni 231.604	846551.3 818296.2	847367.9 819112.8	12.18 mg/L 11.80 mg/L		12.18 11.80	mg/L mg/L	11:11:43 AM 11:11:45 AM
Mean Data: dose-3.0	_pH8-reading1						
Analyte Ni 231.604	Intensity 838251.8	Callb. Conc. Units 12.06 mg/L	Std.Dev. 0.225	Conc. 12.06	Sample Units mg/L	Std.De 0.22	v. RSD 5 1.87%
Sequence No.: 20 Sample ID: dose-3.5 Analyst: Initial Sample Wt: Dilution: Wash Time: 120	pH8-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 2 3/5/2020 nal ol: tor: 1	7 0 11:13:	=======	
Replicate Data: dos	e-3.5_pH8-reading	 1					
Repl# Analyte 1 Ni 231.604 2 Ni 231.604 	Intensity 733627.2 739016.9	Intensity 734443.8 739833.5	Conc. Units 10.65 mg/L 10.73 mg/L		Conc . 10.65 10.73	Units mg/L mg/L	Time 11:15:04 AM 11:15:06 AM
3 NI 231.604	//0364.8	//1181.3	11.15 mg/L		11.15	mg/L	11:15:08 AM
Mean Data: dose-3.5	_pH8-reading1 Mean Corrected	Calib.			Sample		
Analyte Ni 231.604	Intensity 748486.2	Conc. Units 10.84 mg/L	Std.Dev. 0.269	Conc. 10.84	Units mg/L	Std.De 0.26	v. RSD 9 2.48%
Sequence No.: 21 Sample ID: dose-4.0 Analyst: Initial Sample Wt: Dilution: Wash Time: 120	pH8-reading1		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 28 3/5/2020 nal ol: ctor: 1	====== B D 11:17:		
Replicate Data: dos	e-4.0_pH8-reading	1					
Repl# Analyte	Net Intensity	Corrected Intensity	Calib. Conc. Units		Conc.	Sample Units	Analysis Time
1 Ni 231.604	697957.5	698774.1	10.17 mg/L		10.17	mg/L	11:18:27 AM
2 Ni 231.604 3 Ni 231.604	691787.0 690289.2	692603.6 691105.7	10.08 mg/L 10.06 mg/L		10.08 10.06	mg/L mg/L	11:18:29 AM 11:18:31 AM
Mean Data: dose-4.0	_pH8-reading1						
Analvte	Mean Corrected Intensity	Calib. Conc. Units	Std.Dev.	Conc	sample Units	Std De	V. RSD
Ni 231.604	694161.2	10.11 mg/L	0.055	10.11	mg/L	0.05	5 0.55%

Analysis Begun								
Start Time: 3/5/20 Logged In Analyst:	20 11:24:18 AM Perkin Elmer		Plasma On Time: 3/5/2020 10:03:30 AM Technique: ICP Continuous					
Spectrometer: Opti	ma 7000		Autosampier: Sio					
Sample Information	File: C:\Document: dhivesh, pro	s and Setting escreening Ni	s\All Users\Perki 2.sif	nElmer\ICP\Data	\Sample I	Information\		
Batch ID:								
Results Library: C	n1 parameters .\Documents and Set	ttings\Perkin	Elmer\Desktop\st	udent results\2	020\dhive	sh\		
hobaloo libialy. o	Results.mdb	00211g0 (20211211			020 (011200			
Sequence No · 1			Autosampler Locat	======================================				
Sample ID: 4g-pH4-	reading2		Date Collected: 3	3/5/2020 11:24:	18 AM			
Analyst:			Data Type: Origin	nal				
Initial Sample Wt:			Initial Sample Vo	ol:				
Dilution: Wash Time:			Sample Prep Vol:					
Replicate Data: 4g	-pH4-reading2	Corrected	Calib		Samplo	Analusis		
Repl# Analvte	Intensity	Intensity	Conc. Units	Conc.	Units	Time		
1 Ni 231.604	934104.3	934920.9	13.37 mg/L	13.37	mg/L	11:25:28 AM		
2 Ni 231.604	908809.7	909626.3	13.03 mg/L	13.03	mg/L	11:25:31 AM		
3 Ni 231.604	919636.5	920453.1	13.18 mg/L	13.18	mg/L	11:25:33 AM		
Mean Data: 4g-pH4-	reading2							
	Mean Corrected	Calib.		Sample				
Analyte Ni 231.604	Intensity 921666.8	Conc. Units 13.19 mg/L	Std.Dev. 0.172	Conc. Units 13.19 mg/L	Std.E 0.1	Dev. RSD .72 1.31%		
Seguence No · 2				======================================				
Sample ID: 2.5g-pH	6-reading2		Date Collected: 3	3/5/2020 11:27:	44 AM			
Analyst:	-		Data Type: Origin	nal				
Initial Sample Wt:			Initial Sample Vo	ol:				
Dilution:			Sample Prep Vol:					
wash Time: 120			Auto Dilution Fa	ctor: 1				
Replicate Data: 2.	5g-pH6-reading2							
Popl# Appleto	Net	Corrected	Calib Cong Units	Cong	Sample	Analysis		
1 Ni 231.604	807165.7	807982.3	11.65 mg/L	11.65	ma/T	11:28:52 AM		
2 Ni 231.604	793513.1	794329.7	11.46 mg/L	11.46	mg/L	11:28:55 AM		
3 Ni 231.604	787326.4	788143.0	11.38 mg/L	11.38	mg/L	11:28:57 AM		
Mean Data: 2.5g-pH	 6-reading2							
	Mean Corrected	Calib.		Sample				
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.I	ev. RSD		
Ni 231.604	796818.3	11.50 mg/L	0.138	11.50 mg/L	0.1	.38 1.20%		
Sequence No.: 3			Autosampler Locat	tion: 11				
Sample ID: 4g-pH6-	reading1		Date Collected: 3	3/5/2020 11:31:	08 AM			
Analyst:			Data Type: Origin	na⊥ ol∙				
Dilution.			Sample Prep Vol.	JI .				
Wash Time: 120			Auto Dilution Fac	ctor: 1				
Replicate Data: 4g	 -pH6-reading1							
-	Net	Corrected	Calib		Sample	Analysis		
Metho	d: Dhivesh3		Page	e 9		Date:	3/5/2020 1	L1:33:26 AM
----------------	---------------------	------------------------------	---------------------------	---------------------------	------------------------	----------------------	------------------------	-------------------------
Repl#	Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1	Ni 231.604	514660.1	515476.7	7.681 mg/L		7.681	mg/L	11:32:18 AM
2	Ni 231.604	531414.4	532230.9	7.909 mg/L		7.909	mg/L	11:32:21 AM
3	Ni 231.604	535761.3	536577.9	7.968 mg/L		7.968	mg/L	11:32:23 AM
Mean 1	Data: 4g-pH6	-reading1						
		Mean Corrected	Calib.			Sample		
Analy Ni 23	t e 1.604	Intensity 528095.2	Conc. Units 7.853 mg/L	Std.Dev. 0.1512	Conc . 7.853	Units mg/L	Std.De 0.151	ev. RSD 1.92%

Sequence	e No.: 5			Autosampler Locat	tion: 1	2		
Sample	ID: dose-3.	5 pH5-reading2		Date Collected:	3/13/20	20 1:02:	57 PM	
Analyst		-Fur terring		Data Type: Origin	nal	100 C		
Initial	Sample Wt .			Initial Sample V	01.			
Dilutio	bampre no.			Sample Brop Vol:				
Mach Mi				Sample Flep Vol.				
wash il	me: 120			Auco Dilución Fa	ctor. I			
Replica	to Data: do	se-3 5 pH5-reading	 2					
Repried	ce Daca. do	Not	Corrected	Calib			Sample	Analysis
Repl# A	nalvto	Intensity	Intonsity	Conc Units		Conc	Units	Timo
1 N	1 231 604	-729 9	86.7	0 689 mg/L		0 689	mg/T	1.04.11 PM
2 1	: 221.004	015 4	1.0	0.600 mg/1		0.009	mg/L	1.04.11 PM
2 IN	1 231.604	-015.4	2.2	0.688 mg/L		0.000	mg/L	1:04:20 PM
N C	1 231.004	-791.4	25.1	0.669 mg/1		0.009	mg/ ц	1:04:29 PM
Mean Dat	ta: dose-3	5 pH5-reading2						
mean ba	cal dobe of	Moan Corrected	Calib			Samplo		
Analyta		Intoneity	Conc Unite	Std Dov	Cong	Unite	Std Dou	DCD
Ni 221	601	27 7	0 600 mg/T	0 0006	0 600	unics ma/L	0.0004	
NI 251.	004	57.7	0.003 mg/L	0.0008	0.009	шдуц	0.0000	0.09%
Sequence	e No.: 6			Autosampler Locat	tion: 1	3		
Sample	ID: dose-4.	0 pH5-reading1		Date Collected:	3/13/20	20 1:06:	47 PM	
Analyst	•			Data Type: Origin	nal		5.8 5555	
Initial	Sample Wt :			Initial Sample Ve	01:			
Dilutio	n.			Sample Prop Vol:				
Wach Ti	120			Auto Dilution Fa	stor: 1			
	me. 120			Auco Dilución Pac				
Replica	te Data: do	se-4.0_pH5-reading	1 Corrected	Calib			Comple	Applucia
D 14 3		Nec	Corrected	Callb	•		Sampie	Analysis
Repi# A	nalyce	Incensity	Incensicy	cone. Units		cone.	Units	Time
1 N	1 231.604	8701.4	9518.0	0.817 mg/L		0.817	mg/L	1:07:57 PM
2 N	1 231.604	12487.7	13304.3	0.869 mg/L		0.869	mg/L	1:08:06 PM
3 N	1 231.604	6083.7	6900.3	0./82 mg/L		0.782	mg/L	1:08:15 PM
Moan Da	ta: doso-4	0 pH5-reading1						
		Mean Corrected	Calib.			Sample		
Analyto		Intensity	Conc Units	Std Dov	Conc	Units	Std Dev	RSD
Ni 231.	604	9907.5	0.823 mg/L	0.0437	0.823	mg/L	0.0437	5.31%
Sequenc	e No.: 3			Autosampler Loc	ation:	9		
Sample	ID: dose-2.	0_pH4-reading1		Date Collected:	3/3/20	20 2:44:	34 PM	
Analyst	:			Data Type: Orig	inal			
Initial	Sample Wt:			Initial Sample	Vol:			
Replica	te Data: do	se-2.0_pH4-reading	1				2 1	1 121 128
127 19210-03	1021 20	Net	Corrected	Calib	94) 	- 325	Sample	Analysis
Repl# A	nalyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1 N	i 231.604	1159652.5	1160469.1	16.43 mg/L		16.43	mg/L	2:45:42 PM
2 N	i 231.604	1211918.9	1212735.5	17.14 mg/L		17.14	mg/L	2:45:45 PM
3 N	i 231.604	1211675.6	1212492.2	17.14 mg/L		17.14	mg/L	2:45:47 PM
Moan Da	ta: doso-2	0 pH4-reading1						
Hean Da	cu. uvse-2.	Mean Corrected	Calib			Sample		
Analuto		Intonsity	Conc Unite	Std Dov	Conc	Unite	Std Dow	RSD
Ni 231	604	1195232 3	16.90 mg/L	0 409	16.90	mg/L	0 409	2 42%
		++	+0.00 mg/H	0.100	20.00	-mg/ 11	0.400	

Sequence No.: 4 Sample ID: dose-2.5_ Analyst: Initial Sample Wt: Dilution: Wash Time: 120		Autosampler Location: 10 Date Collected: 3/3/2020 2:47:58 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: Auto Dilution Factor: 1							
Replicate Data: dose	-2.5_pH4-reading	1							
_	Net	Corrected		Calib.			Sample	Analysis	
Repl# Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time	
1 Ni 231.604	95/995.5	958812.1	13.70	mg/L		13.70	mg/L	2:49:06 PM	
2 Ni 231.604 3 Ni 231.604	1041475.8	1042292.4	14.06	mg/L mg/L		14.06	mg/L mg/L	2:49:09 PM 2:49:11 PM	
Mean Data: dose-2.5_	pH4-reading1	Calib				Comple			
Analyto	Intonsity	Conc Units	Std Do	U7 2	Conc	Units	Std Dov	PSD	
Ni 231.604	995495.0	14.19 mg/L	0.57	9	14.19	mg/L	0.579	4.08%	
Dilution: Wash Time: 120			Sample Pr Auto Dilu	ep Vol: tion Fa	ctor:	1			
Replicate Data: dose	-3.5_pH4-reading	L 		0-141			C		
Bopl# Appluto	Intonsity	Intensity	Cong	Callb.		Cong	Sample	Analysis	
1 Ni 231 604	4452 1	5268 7	0 760	mg/L		0 760	ma/L	2.56.23 PM	
2 Ni 231 604	-6639.7	-5823.2	0.609	mg/L		0.609	mcr/L	2:56:34 PM	
Saturated outside	auto integration	1 window (code	e 5)	mg/ 1		0.000			
3 Ni 231.604	-17205.0	-16388.4	0.466	mg/L		0.466	mg/L	2:56:45 PM	
Saturated outside	auto integration	1 window (code	2 5)						
Mean Data: dose-3.5_ M	pH4-reading1 ean Corrected	Calib.				Sample			
Analyte	Intensity	Conc. Units	Std.Dev	7.	Conc.	Units	Std. Dev	. RSD	
Ni 231.604 Saturated outside	-5647.6 auto integration	0.612 mg/L 1 window (code	0.146 e 5)	9	0.612	mg/L	0.1469	24.02%	
Sequence No.: 7 Sample ID: dose-2.0_ Analyst:	pH5-reading1		Autosample: Date Collec Data Type:	r Locati cted: 3/ Origina	on: 13 3/2020	3) 2:59:0	5 PM		
Initial Sample Wt:			Initial Sar	nple Vol					
Dilucion:			Sample Prep	D VOL:					

Wash Time: 120

Auto Dilution Factor: 1

Popli	ato Data: do	so 2 0 pHE roading				******			
Repiir	cate Data. do	Not.	Corrected		Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	746263.4	747080.0	10.82	mg/L		10.82	mg/L	3:00:14 PM
2	Ni 231.604	753285.2	754101.8	10.92	mg/L		10.92	mg/L	3:00:17 PM
3	Ni 231.604	756042.9	756859.4	10.96	mg/L		10.96	mg/L	3:00:19 PM
Mean I	Data: dose-2.	0_pH5-reading1							
		Mean Corrected	Calib.				Sample		
Analyt	e	Intensity	Conc. Units	Std.Dev	7.	Conc.	Units	Std.	Dev. RSD
Ni 231	1.604	752680.4	10.90 mg/L	0.068	8	10.90	mg/L	0.	068 0.63%
Sequen Sample Analys Initia Dilut: Wash	nce No.: 2 e ID: dose_2. st: al Sample Wt: ion: Time: 120	0д-рН6		Autosamples Date Collec Data Type: Initial Sar Sample Prep Auto Dilut:	r Locat cted: 2 Origin mple Vo p Vol: ion Fac	ion: 9 /26/20: al 1: tor: 1	20 9:31:	11 AM	
Replic	cate Data: do	se_2.0g-pH6							
		Net	Corrected		Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	724904.9	725721.5	10.53	mg/L		10.53	mg/L	9:32:19 AM
2	Ni 231.604	734679.9	735496.5	10.67	mg/L		10.67	mg/L	9:32:23 AM
3	Ni 231.604	747428.6	748245.2	10.84	mg/L		10.84	mg/L	9:32:25 AM
Mean I	Data: dose_2.	0g-pH6							
		Mean Corrected	Calib.				Sample		
Analyt	te	Intensity	Conc. Units	Std. Dev	σ.	Conc.	Units	Std.	Dev. RSD
Ni 23:	1.604	736487.7	10.68 mg/L	0.153	3	10.68	mg/L	0.	153 1.43%
Sequer Sample Analys Initia Dilut:	nce No.: 3 e ID: dose_2. st: al Sample Wt: ion:	5д-рН6		Autosample Date Collec Data Type: Initial Sar Sample Prep	r Locat cted: 2 Origin mple Vo p Vol:	ion: 1 /26/20: al 1:	0 20 9:34:	36 AM	

Sequence No.: 3 Sample ID: dose_2.5g-pH6_reading2					Autosampler Location: 10 Date Collected: 2/26/2020 9:52:56 AM							
Analy	yst:				Data Type: Original Initial Sample Vol:							
Init:	ial Sample Wt:											
Dilut	tion:				Sample Prep	Vol:						
Wash	Time: 120											
Repl	icate Data: dose	e_2.5g-pH6_reading	g2									
		Net	Cor	rected	22247 CAN 10 C	Calib.		ORANO LINES	Sample	Analysis		
Repla	# Analyte	Intensity	Inte	ensity	Conc.	Units		Conc.	Units	Time		
1	Ni 231.604	850517.2	85	1333.8	12.24	mg/L		12.24	mg/L	9:54:05 AM		
2	N1 231.604	8/0025.8	87	0842.4	12.50	mg/L		12.50	mg/L	9:54:07 AM		
2	N1 231.604	849281.8	65	0098.4	12.22	mg/L		12.22	mg/ L	9:54:09 AM		
Mean	Data: dose_2.5	g-pH6_reading2										
		Mean Corrected		Calib.				Sample				
Analy	yte	Intensity	Conc.	Units	Std. Dev	1.	Conc.	Units	Std. Dev	. RSD		
Ni 2.	31.604	857424.9	12.32	mg/L	0.158	3	12.32	mg/L	0.158	3 1.28%		
Initi Dilut Wash	ial Sample Wt: tion: Time: 120				Initial Sar Sample Prep Auto Dilut:	origin ple Vo vol: ion Fac	l: tor: 1					
Repli	icate Data: dose	_3.0g-pH6										
		Net	Cor	rected		Calib.			Sample	Analysis		
Repl	# Analyte	Intensity	Inte	ensity	Conc.	Units		Conc.	Units	Time		
1	Ni 231.604	624210.7	62	5027.3	9.168	mg/L		9.168	mg/L	9:39:09 AM		
2	Ni 231.604	633472.5	63	4289.1	9.293	mg/L		9.293	mg/L	9:39:11 AM		
3	Ni 231.604	627478.2	62	8294.8	9.212	mg/L		9.212	mg/L	9:39:14 AM		
Mean	Data: dose_3.00	д-рН6										
	N	Mean Corrected		Calib.				Sample				
Analy	te	Intensity	Conc.	Units	Std. Dev	<i>.</i>	Conc.	Units	Std. Dev	. RSD		
Ni 23	31.604	629203.7	9.224	mg/L	0.063	7	9.224	mg/L	0.063	7 0.69%		
Sector	nce No · 5				Autosamples		ion: 1	 2				
Sampl	le ID: dose 3.50	r-pH6			Date Colle	ted: 2	/26/20	20 9:41	25 AM			
Analy	/st:				Data Type:	Origin	al					
Initi	al Sample Wt:				Initial Sar	mple Vo	1:					
Dilution:			Sample Prep	Vol:								
Wash	Time: 120				Auto Dilut:	ion Fac	tor: 1					

Replie	cate Data: do	ose 3.5g-pH6							
		Net	Corrected		Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	551398.0	552214.6	8.180	mg/L		8.180	mg/L	9:42:34 A
2	Ni 231.604	564455.2	565271.8	8.357	mg/L		8.357	mg/L	9:42:38 A
3	Ni 231.604	566514.4	567331.0	8.385	mg/L		8. <mark>38</mark> 5	mg/L	9:42:40 A
Mean I	Data: dose_3.	.5g-pH6							
		Mean Corrected	Calib.				Sample		
Analy	te	Intensity	Conc. Units	Std. De	σ.	Conc.	Units	Std.I	Dev. RSD
Ni 23:	1.604	561605.8	8.307 mg/L	0.111	2	8.307	mg/L	0.13	112 1.34%
Sequer	nce No.: 2			Autosample:	r Locat	ion: 9			
Sample	e ID: dose_2.	.0g-pH6_reading2		Date Colle	cted: 2	/26/20	20 9:49:	32 AM	
Analys	st:			Data Type:	Origin	al			
Initia	al Sample Wt:			Initial Sam	nple Vo	1:			
Dilut	ion:			Sample Prep	p Vol:				
Wash 1	Time: 120			Auto Dilut:	ion Fac	tor: 1			
Replic	cate Data: do	ose_2.0g-pH6_readin	g2						
		Net	Corrected	1.000	Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	728940.3	729756.9	10.59	mg/L		10.59	mg/L	9:50:40 A
2	Ni 231.604	718942.1	719758.7	10.45	mg/L		10.45	mg/L	9:50:43 A
3	Ni 231.604	711392.5	712209.1	10.35	mg/L		10.35	mg/L	9:50:45 A
Mean I	Data: dose_2.	0g-pH6_reading2							
		Mean Corrected	Calib.				Sample		
Analyt	te	Intensity	Conc. Units	Std. De	ν.	Conc.	Units	Std.I	Dev. RSD
Ni 23:	1.604	720574.9	10.46 mg/L	0.11	9	10.46	mg/L	0.1	119 1.14%
Seque	nce No.: 3			Autosample	r Locat	ion: 1	0		
Sample	e ID: dose_2.	.5g-pH6_reading2		Date Colle	cted: 2	/26/20	20 9:52:	56 AM	
Analy	st:			Data Type:	Origin	al			
Initia	al Sample Wt:	1		Initial Sau	nple Vo	1:			
Dilut:	ion:			Sample Prep	p Vol:				
Wash !	Time: 120			Auto Dilut:	ion Fac	tor: 1			
Replie	cate Data: do	ose_2.5g-pH6_readin	g2						
80 (MR)		Net	Corrected	256	Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	850517.2	851333.8	12.24	mg/L		12.24	mg/L	9:54:05 A
2	Ni 231.604	870025.8	870842.4	12.50	mg/L		12.50	mg/L	9:54:07 A
3	Ni 231.604	849281.8	850098.4	12.22	mg/L		12.22	mg/L	9:54:09 A
Mean I	Data: dose_2.	.5g-pH6_reading2							
		Mean Corrected	Calib.				Sample		
Analy	te	Intensity	Conc. Units	Std. De	σ.	Conc.	Units	Std.I	Dev. RSD
Ni 23	1.604	857424.9	12.32 mg/L	0.15	В	12.32	mg/L	0.3	158 1.28%

Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120	.0g-pH6_reading2 ∴	Autosampler Location: 11 Date Collected: 2/26/2020 9:56:20 AM Data Type: Original Initial Sample Vol: Sample Prep Vol: Auto Dilution Factor: 1							
Replicate Data: d	lose_3.0g-pH6_readin	g2							
	Net	Corrected	(Calib.	028885	Sample	Analysis		
Repl# Analyte	Intensity	Intensity	Conc. t	Jnits	Conc.	Units	Time		
1 N1 Z31.604	617003.3	61/819.9	9.070 t	ng/L	9.070	mg/L	9:57:30 AM		
3 Ni 231.604	621397.2	622213.8	9.129 1	ng/L	9.129	mg/L	9:57:34 AM		
Mean Data: dose_3	.0g-pH6_reading2	Calib			Samplo				
Analyto	Intensity	Conc. Units	Std Dev	Conc	Units	Std	Dov. RSD		
Ni 231.604	622136.8	9.128 mg/L	0.0580	9.12	8 mg/L	0.0	580 0.64%		
Sequence No.: 5 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120	5g-pH6_reading2		Autosampler Date Collect Data Type: (Initial Samp Sample Prep Auto Dilutio	Location: ed: 2/26/2 Driginal ole Vol: Vol: on Factor:	12 020 9:59: 1	46 AM			
Replicate Data: d	ose_3.5g-pH6_reading	J 2	-						
Replicate Data: d	ose_3.5g-pH6_reading Net	J2 Corrected	C	alib.	C	Sample	Analysis		
Replicate Data: d	ose_3.5g-pH6_reading Net Intensity	Corrected Intensity	Conc. U	alib. nits	Conc.	Sample Units	Analysis Time		
Replicate Data: d Repl# Analyte 1 Ni 231.604 2 Ni 231.604	ose_3.5g-pH6_reading Net Intensity 547693.3 543930 9	Corrected Intensity 548509.9 544747 4	Conc. U 8.130 m 8.072 m	alib. nits g/L g/L	Conc. 8.130	Sample Units mg/L mg/L	Analysis Time 10:00:55 AN		
Replicate Data: d Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604	ose_3.5g-pH6_reading Net Intensity 547693.3 543930.8 540066.3	Corrected Intensity 548509.9 544747.4 540882.9	Conc. U 8.130 m 8.078 m 8.026 m	alib. nits g/L g/L g/L	Conc. 8.130 8.078 8.026	Sample Units mg/L mg/L mg/L	Analysis Time 10:00:55 AN 10:00:58 AN 10:01:00 AN		
Replicate Data: d Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 Mean Data: dose_3	ose_3.5g-pH6_reading Net Intensity 547693.3 543930.8 540066.3 .5g-pH6_reading2 Mean Corrected	g2 Corrected Intensity 548509.9 544747.4 540882.9	C Conc. U 8.130 m 8.078 m 8.026 m	alib. nits g/L g/L g/L	Conc. 8.130 8.078 8.026	Sample Units mg/L mg/L mg/L	Analysis Time 10:00:55 AN 10:00:58 AN 10:01:00 AN		
Replicate Data: c Repl# Analyte 1 Ni 231.604 2 Ni 231.604 3 Ni 231.604 	ose_3.5g-pH6_reading Net Intensity 547693.3 543930.8 540066.3 .5g-pH6_reading2 Mean Corrected Intensity	2 Corrected Intensity 548509.9 544747.4 540882.9 Calib. Conc. Units	C Conc. U 8.130 m 8.078 m 8.026 m	alib. nits g/L g/L g/L	Conc. 8.130 8.078 8.026 Sample Units	Sample Units mg/L mg/L mg/L	Analysis Time 10:00:55 AN 10:00:58 AN 10:01:00 AN		

=====											
Segue	ence No.: 4			Autosampler Location: 11							
Samo	le TD: dose 3	Og-pH6 reading?		Date Collected	1. 2/26/20	20 9.56.	20 AM				
Samp.	ie ib. dose_5.	og-pho_reading2		Date corrected	1. 2/20/20	20 9.50.	ZU AM				
Analy	yst:			Data Type: Ori	Iginal						
Init	ial Sample Wt:			Initial Sample	Vol:						
Dilut	tion:			Sample Prep Vo	bl :						
Wash	Time: 120			Auto Dilution	Factor: 1						
Rep1:	icate Data: do	ose_3.0g-pH6_readin	g2 Corrected	Cal	lib		Sample	Analysis			
Denla	H Analyta	Intensity	Intensity	Cong Uni	to.	Cong	Unite	Time			
Repi	Maryce	c17002 2	ci 7010 0	0.070 mm	LLS /	0.070	Units	0.57.20 AM			
-	NI 231.004	625560 0	626276 6	9.070 mg/	Ц /т	9.070	mg/1	0.57.30 AM			
2	NI 251.604	625560.0	626376.6	9.186 mg/	L (-	9.186	mg/L	9:57:52 AM			
3	NI 231.604	621397.2	622213.8	9.129 mg/	Ц	9.129	mg/L	9:57:34 AM			
Mean	Data: dose 3.	0g-pH6 reading2									
	a na kata na di sa kata na ma kata	Mean Corrected	Calib			Sample					
Anal	vte	Intensity	Conc Units	Std Dev	Conc	Unite	Std De	W PSD			
Ni 2	31 604	622136 B	9 128 mg/T.	0.0580	9 129	mg/L	0 058	0 0 64%			
NI Z.	51.004	022130.0	5.128 mg/L	0.0380	5.120	шдул	0.056	0 0.018			
Seque	ence No.: 5			Autosampler Lo	cation: 1	 2					
Samp.	le ID: dose_3.	5g-pH6_reading2		Date Collected	1: 2/26/20	20 9:59:	46 AM				
Analy	vst:			Data Type: Ori	ginal						
Init	ial Sample Wt:			Initial Sample	Vol:						
Dilut	tion			Sample Prep Vo	1.						
Wash	Time: 120			Auto Dilution	Factor: 1						
Pepli	cate Data: 30	-nH4-reading2			<u>raccor.</u> 1						
Repri	cate bata. Jy	Net	Corrected	Cal	ib.		Sample	Analysis			
Rep1#	Analyte	Intensity	Intensity	Conc. Uni	ts	Conc.	Units	Time			
1	Ni 231.604	1238397.2	1239213.8	17.50 mg/	L	17.50	mg/L	2:40:03 PM			
2	Ni 231.604	1220301.0	1221117.6	17.25 mg/	L	17.25	mg/L	2:40:06 PM			
3	Ni 231.604	1214705.5	1215522.1	17.18 mg/	L	17.18	mg/L	2:40:08 PM			
Monn	Data: 3g-DU4-	roading?									
Hean	baca. 5g-phi-	Mean Corrected	Calib			Sample					
Analy	***	Thtonsitu	Cong Units	St d Derr	Cono	Unite	St d De	DCD			
Ni 23	31.604	1225284.5	17.31 mg/L	0.168	17.31	mg/L	0.16	8 0.97%			
Seque	ence No.: 4			Autosampler Lo	cation: 1	1					
Sampl	le ID: 2.5g-pH vst:	5-reading2		Date Collected Data Type: Ori	l: 3/17/202 ginal	20 2:41:4	49 PM				
Initi	al Sample Wt:			Initial Sample	Vol						
Dilut	ion:			Sample Prop Vo	1.						
Wash	Time: 90			Auto Dilution	Factor: 1						
Repli	Lcate Data: 2.	5g-pH5-reading2	Corrected	(~1	ib		Sample	Analveie			
Pop 1	Analuta	Intersity	Intensity	Cone Uni	+ -	Cone	Unite	Time			
Kep1#	Mialyce	Incensity	Thensicy	Lone. Uni		tone.	UNILS	1 IIIe			
1	NI 231.604	/08816.6	709633.2	10.32 mg/	т. т	10.32	mg/L	2:42:58 PM			
2	N1 231.604	/08292.2	709108.8	10.31 mg/	Г	10.31	mg/L	2:43:00 PM			
3	Ni 231.604	715441.0	716257.6	10.41 mg/	L	10.41	mg/L	2:43:02 PM			

Mean Data: 2.5g-pH	5-reading2								
	Mean Corrected		Calib.				Sample		
Analyte	Intensity	Conc.	Units	Std. De	ν.	Conc.	Units	Std. Dev	r. RSD
Ni 231.604	711666.5	10.34	mg/L	0.05	4	10.34	mg/L	0.054	0.52%
Sequence No.: 5				Autosample	r Locat	ion: 1	 2		
Sample ID: 3g-pH5-	reading2			Date Colle	cted: 3	/17/20	20 2:44:	43 PM	
Analyst:				Data Type:	Origin	al			
Initial Sample Wt:				Initial Sam	mple Vo	1:			
Dilution:				Sample Prep	p Vol:				
Wash Time: 90				Auto Dilut	ion Fac	tor: 1			
Replicate Data: 3g	-pH5-reading2								
	Net	Cor	rected		Calib.			Sample	Analysis
Repl# Analyte	Intensity	Int	ensity	Conc.	Units		Conc.	Units	Time
1 Ni 231.604	442178.6	44	2995.2	6.698	mg/L		6.698	mg/L	2:45:52 PM
2 Ni 231.604	466839.9	46	7656.5	7.033	mg/L		7.033	mg/L	2:45:56 PM
3 Ni 231.604	476185.7	47	7002.3	7.159	mg/L		7.159	mg/L	2:45:59 PM
Mean Data: 3g-pH5-	reading2								
	Mean Corrected		Calib.				Sample		
Analyte	Intensity	Conc.	Units	Std. De	ν.	Conc.	Units	Std. Dev	r. RSD
Ni 231.604	462551.3	6.963	mg/L	0.238	3	6.963	mg/L	0.2383	3.42%
Sequence No.: 6				Autosampl	er Loca	ation:	13		
Sample ID: 2.5g-pH	16-reading2			Date Coll	ected:	3/17/2	020 2:4	7:41 PM	
Analyst:	852			Data Type	: Origi	inal			
Initial Sample Wt:				Initial S	ample V	lol:			
Dilution:				Sample Pr	ep Vol:				
Wash Time: 90				Auto Dilu	tion Fa	actor:	1		

rebiti	cate Data: 2.	og-pho-reading2							
		Net	Corrected		Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	358954.4	359771.0	5.569	mg/L		5.569	mg/L	2:48:50 PI
2	Ni 231.604	348411.5	349228.1	5.426	mg/L		5.426	mg/L	2:48:54 PI
3	Ni 231.604	352275.2	353091.7	5.478	mg/L		5.478	mg/L	2:48:58 P
Mean 1	Data: 2.5g-pH	6-reading2							
		Mean Corrected	Calib.				Sample		
Analy	te	Intensity	Conc. Units	Std. De	7.	Conc.	Units	Std. Der	A. RSD
Ni 23	1.604	354030.3	5.491 mg/L	0.072	4	5.491	mg/L	0.0724	4 1.32%
Sequer Sample Analy: Initia Dilut	nce No.: 7 e ID: 4g-pH6- st: al Sample Wt: ion:	reading2		Autosample: Date Collec Data Type: Initial Sam Sample Prep	r Locat cted: 3 Origin mple Vo o Vol:	ion: 14 /17/20: al 1:	4 20 2:50:	40 PM	
Wash	Time: 90			Auto Dilut:	ion Fac	tor: 1			
Repli	cate Data: 4g	-pH6-reading2							
		Net	Corrected		Calib.		100-07-04-08	Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Time
1	Ni 231.604	657404.8	658221.4	9.618	mg/L		9.618	mg/L	2:51:48 PI
2	Ni 231.604	664979.1	665795.7	9.721	mg/L		9.721	mg/L	2:51:50 P
3	Ni 231.604	674660.0	675476.6	9.852	mg/L		9.852	mg/L	2:51:52 Pl
Mean	Data: 4g-pH6-	reading2 Mean Corrected	Calib.				Sample		
Analy	te	Intensity	Conc. Units	Std. De	v.	Conc.	Units	Std. De	v. RSD
-		666497.9	9.730 mg/L	0.117	3	9.730	mg/L	0.117	3 1.21%
Ni 23	1.604								
Ni 23 Seque: Sample Analy: Initi: Dilut: Wash	1.604 nce No.: 8 e ID: 2g-pH7-: st: al Sample Wt: ion: Time: 90	reading2		Autosample Date Colle Data Type: Initial Sam Sample Prep Auto Dilut	r Locat cted: 3 Origin mple Vo p Vol: ion Fac	ion: 1 /17/20 al bl: tor: 1	5 20 2:53:	33 PM	
Ni 23 Sequer Samplo Analy Initi. Dilut. Wash	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g	reading2 -pH7-reading2 Net	Corrected	Autosample: Date Coller Data Type: Initial San Sample Prej Auto Dilut	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib.	ion: 1. //17/20 al l: tor: 1	5 20 2:53:	33 PM Sample	Analysis
Ni 23 Seque Samplo Analy Initi Dilut Repli Repli	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g Analyte	reading2 -pH7-reading2 Net Intensity	Corrected	Autosample: Date Collec Data Type: Initial San Sample Prep Auto Dilut: Conc.	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units	ion: 1. /17/20: al 1: tor: 1	5 20 2:53: Conc.	33 PM Sample Units	Analysis Time
Ni 23 Sequer Samplo Analy Initia Dilut Wash Replia Replia	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g Analyte Ni 231.604	reading2 -pH7-reading2 Net Intensity 335857.6	Corrected Intensity 336674.2	Autosample: Date Collec Data Type: Initial San Sample Prep Auto Dilut: Conc. 5.256	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units mg/L	ion: 1. /17/20 al bl: ctor: 1	5 20 2:53: Conc. 5.256	33 PM Sample Units mg/L	Analysis Time 2:54:41 P
Ni 23 Sequer Samplo Analy Initi Dilut Wash Repli Repli 1 2	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 	reading2 -pH7-reading2 Net Intensity 335857.6 340302.1	Corrected Intensity 336674.2 341118.7	Autosample: Date Collec Data Type: Initial San Sample Prep Auto Dilut: Conc. 5.256 5.316	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units mg/L mg/L	ion: 1. 2/17/20: al 1: tor: 1	5 20 2:53: Conc. 5.256 5.316	33 PM Sample Units mg/L mg/L	Analysis Time 2:54:41 P 2:54:44 P
Ni 23 Sequer Sample Analy Initi Dilut Wash Repli Repli 1 2 3	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g Analyte Ni 231.604 Ni 231.604 Ni 231.604	reading2 -pH7-reading2 Net Intensity 335857.6 340302.1 340587.5	Corrected Intensity 336674.2 341118.7 341404.1	Autosample Date Colle Data Type: Initial Sam Sample Prey Auto Dilut Conc. 5.256 5.316 5.320	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units mg/L mg/L mg/L	ion: 1 2/17/20 al 1: tor: 1	5 20 2:53: Conc. 5.256 5.316 5.320	33 PM Sample Units mg/L mg/L mg/L	Analysis Time 2:54:41 P 2:54:44 P 2:54:48 P
Ni 23 Sequer Sample Analy Initi Dilut Wash Repli Repli 1 2 3 Mean 1	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g Analyte Ni 231.604 Ni 231.604 Ni 231.604 Ni 231.604	reading2 -pH7-reading2 Net Intensity 335857.6 340302.1 340587.5 reading2	Corrected Intensity 336674.2 341118.7 341404.1	Autosample: Date Colle Data Type: Initial Sam Sample Prey Auto Dilut: Conc. 5.256 5.316 5.320	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units mg/L mg/L mg/L	ion: 1 /17/20 al l: tor: 1	5 20 2:53: Conc. 5.256 5.316 5.320	33 PM Sample Units mg/L mg/L mg/L	Analysis Time 2:54:41 P 2:54:44 P 2:54:48 P
Ni 23 Sequer Samplo Analy Initi Dilut Wash Repli Repli 1 2 3 Mean	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: 2g-pH7-	reading2 -pH7-reading2 Net Intensity 335857.6 340302.1 340587.5 reading2 Mean Corrected	Corrected Intensity 336674.2 341118.7 341404.1 Calib.	Autosample: Date Colle Data Type: Initial Sam Sample Prey Auto Dilut: Conc. 5.256 5.316 5.320	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units mg/L mg/L mg/L	ion: 1 /17/20 al l: tor: 1	5 20 2:53: Conc. 5.256 5.316 5.320 Sample	33 PM Sample Units mg/L mg/L mg/L	Analysis Time 2:54:41 P 2:54:44 P 2:54:48 P
Ni 23 Sequer Sample Analy Initia Dilut Wash Repli Repli 1 2 3 Mean 1 Analy	1.604 nce No.: 8 e ID: 2g-pH7- st: al Sample Wt: ion: Time: 90 cate Data: 2g Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: 2g-pH7- te	reading2 -pH7-reading2 Net Intensity 335857.6 340302.1 340587.5 reading2 Mean Corrected Intensity	Corrected Intensity 336674.2 341118.7 341404.1 Calib. Conc. Units	Autosample: Date Colle Data Type: Initial Sam Sample Prey Auto Dilut: Conc. 5.256 5.316 5.320 Std.Dev	r Locat cted: 3 Origin mple Vo p Vol: ion Fac Calib. Units mg/L mg/L mg/L	ion: 1 /17/20 al l: tor: 1	5 20 2:53: Conc. 5.256 5.316 5.320 Sample Units	33 PM Sample Units mg/L mg/L mg/L Std.Dev	Analysis Time 2:54:41 P 2:54:44 P 2:54:48 P

Sequ Samp Anal Init Dilu Wash	ence N le ID: yst: ial Sa tion: Time:	0.: 9 2.5g-pH mple Wt: 90	17-reading2		Autosampler Location: 16 Date Collected: 3/17/2020 2:56:29 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: Auto Dilution Factor: 1						
Repl	icate	Data: 2.	5g-pH7-reading2								
1210-7-121			Net	Co	rrected		Cali	ο.		Sample	Analysis
Repl	# Anal	yte	Intensity	/ Int	ensity	Conc.	Units		Conc.	Units	Time
1	N1 2	31.604	340875.5	34	1692.1	5.324	mg/L		5.324	mg/L	2:5/:3/ PM
2	N1 2	31.604	337030.2	2 33	7846.8	5.272	mg/L		5.272	mg/L	2:57:40 PM
3	Ni 2	31.604	344828.2	2 34	5644.7	5.377	mg/L		5.3//	mg/L	2:57:43 PN
Mean	Data:	2.5g-pH	7-reading2								
			Mean Corrected		Calib.				Sample		
Anal	yte		Intensity	Conc.	Units	Std. De	ν.	Conc.	Units	Std. De	v. RSD
Ni 2	31.604		341727.9	5.324	mg/L	0.052	9	5.324	mg/L	0.052	9 0.99%
Seque Samp Anal Init Dilu Wash	ence N le ID: yst: ial Sau tion: Time:	o.: 10 3g-pH7- mple Wt: 90	reading2			Autosample Date Colle Data Type: Initial San Sample Prey Auto Dilut	r Locat cted: 3 Origin mple Vo p Vol: ion Fac	ion: 1 /17/20 al 1: tor: 1	7 20 2:59:	24 PM	
Repl	icate	Data: 3g	-pH7-reading2	Cor	rected		Calib			Sample	Analysis

		Net	Corrected		Calib.		Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units	Conc.	Units	Time
1	Ni 231.604	382918.4	383735.0	5.894	mg/L	5.894	mg/L	3:00:32 PM
2	Ni 231.604	386285.9	387102.4	5.940	mg/L	5.940	mg/L	3:00:35 PM
3	Ni 231.604	385844.1	386660.6	5.934	mg/L	5.934	mg/L	3:00:37 PM
								1.000

Mean	Data: 3g-pH7	-reading2						
		Mean Corrected	Calib.			Sample		
Analy	te	Intensity	Conc. Units	Std. Dev.	Conc.	Units	Std.D	ev. RSD
Ni 23	1.604	385832.7	5.923 mg/L	0.0248	5.923	mg/L	0.02	48 0.42%
Seque	nce No.: 11			Autosampler Locat	ion: 1	 B		
Sampl	e ID: 3.5q-p	H7-reading2		Date Collected: 3	/17/20	20 3:02:	18 PM	
Analy	st:			Data Type: Origin	al			
Initi	al Sample Wt	:		Initial Sample Vo	1:			
Dilut	ion:			Sample Prep Vol:				
Wash	Time: 90			Auto Dilution Fac	tor: 1			
Repli	.cate Data: 3	.5g-pH7-reading2						
		Net	Corrected	Calib.			Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc. Units		Conc.	Units	Time
1	Ni 231.604	368783.1	369599.6	5.702 mg/L		5.702	mg/L	3:03:26 PM
2	Ni 231.604	363301.0	364117.6	5.628 mg/L		5.628	mg/L	3:03:29 PM
3	Ni 231.604	370460.3	371276.9	5.725 mg/L		5.725	mg/L	3:03:32 PM
Mean	Data: 3.5g-p	H7-reading2						
		Mean Corrected	Calib.			Sample		
Analy Ni 23	1.604	Intensity 368331.4	Conc. Units 5.685 mg/L	Std.Dev. 0.0508	Conc . 5.685	Units mg/L	Std.D 0.05	ev. RSD 08 0.89%
Seque Sampl Analy Initi Dilut Wash	ence No.: 12 .e ID: 4g-pH7 vst: .al Sample Wt .ion: Time: 90	-reading2 :		Autosampler Locat Date Collected: 3 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	:ion: 1 3/17/20 hal bl: stor: 1	9 20 3:05:	13 PM	
Repli	.cate Data: 4	g-pH7-reading2						
		Net	Corrected	Calib.			Sample	Analysis
	the second s	Intensity	Intensity	Conc. Units		Conc.	Units	Time
Rep1#	Analyte	FOODEL	C00700 7			N N KG	TO CT / L	The same and the Fill
Repl#	Analyte Ni 231.604	599964.2	600780.7	8.839 mg/L		0.055	mg/1	3:06:21 FM
Rep1#	Analyte Ni 231.604 Ni 231.604	599964.2 608385.8	600780.7 609202.4	8.839 mg/L 8.953 mg/L		8.953	mg/L	3:06:24 PM
Rep1# 1 2 3	Analyte Ni 231.604 Ni 231.604 Ni 231.604	599964.2 608385.8 606452.7	600780.7 609202.4 607269.3	8.839 mg/L 8.953 mg/L 8.927 mg/L		8.953 8.927	mg/L mg/L	3:06:21 PM 3:06:24 PM 3:06:26 PM
Rep1# 1 2 3 Mean	Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: 4g-pH7	599964.2 608385.8 606452.7 -reading2	600780.7 609202.4 607269.3	8.839 mg/L 8.953 mg/L 8.927 mg/L		8.953	mg/L mg/L mg/L	3:06:24 PM 3:06:26 PM
Rep1# 1 2 3 Mean	Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: 4g-pH7	599964.2 608385.8 606452.7 -reading2 Mean Corrected	600780.7 609202.4 607269.3 	8.839 mg/L 8.953 mg/L 8.927 mg/L		8.953 8.927 Sample	mg/L mg/L	3:06:24 PM 3:06:26 PM
Repl# 1 2 3 Mean Analy	Analyte Ni 231.604 Ni 231.604 Ni 231.604 Data: 4g-pH7	599964.2 608385.8 606452.7 -reading2 Mean Corrected Intensity	600780.7 609202.4 607269.3 Calib Conc. Units	8.839 mg/L 8.953 mg/L 8.927 mg/L Std.Dev.	Conc.	8.953 8.927 Sample Units	mg/L mg/L mg/L Std.D	3:06:24 PM 3:06:26 PM

Sequence No.: 13			Autosampler I	Location: 20) Ten service s					
Sample ID: 4g-pH8-r	eading2		Date Collecte	ed: 3/17/202	20 3:08:	07 PM				
Analyst:			Data Type: Or	riginal						
Initial Sample Wt:			Initial Sampl	le Vol:						
Dilution:			Sample Prep V	Vol:						
Wash Time: 90			Auto Dilution Factor: 1							
Poplicate Data: 4g-	pue_reading2									
Replicate Data. 49-	Net	Corrected	Ca	alib.		Sample	Analysis			
Repl# Analyte	Intensity	Intensity	Conc. Ur	nits	Conc.	Units	Time			
1 Ni 231.604	837591.6	838408.2	12.06 mc	a/L	12.06	ma/L	3:09:15 PM			
2 Ni 231.604	846502.9	847319.5	12.18 mc	a/L	12.18	mg/L	3:09:17 PM			
3 Ni 231.604	855348.4	856164.9	12.30 mg	g/L	12.30	mg/L	3:09:20 PM			
Mean Data: 4g-pH8-r	eading2									
-	Mean Corrected	Calib.			Sample					
Analyte	Intensity	Conc. Units	Std. Dev.	Conc.	Units	Std.	Dev. RSD			
Ni 231.604	847297.5	12.18 mg/L	0.120	12.18	mg/L	0.	120 0.99%			
Sequence No.: 14			Autosampler I	Location: 21						
Sample ID: 3.5g-pH8	-reading2		Date Collecte	ed: 3/17/202	20 3:11:	00 PM				
Analyst:			Data Type: Or	riginal						
Initial Sample Wt:			Initial Sampl	le Vol:						
Dilution:			Sample Prep V	Vol:						
Wash Time: 90			Auto Dilution	n Factor: 1						
Replicate Data: 3.5	g-pH8-reading2									
	Net	Corrected	Ca	alib.		Sample	Analysis			
Repl# Analyte	Intensity	Intensity	Conc. Ur	nits	Conc.	Units	Time			
1 Ni 231.604	902834.0	903650.6	12.95 mc	g/L	12.95	mg/L	3:12:08 PM			
2 Ni 231.604	878879.9	879696.5	12.62 mg	g/L	12.62	mg/L	3:12:11 PM			
3 Ni 231.604	908187.9	909004.5	13.02 mg	g/L	13.02	mg/L	3:12:13 PM			
Mean Data: 3.5g-pH8	-reading2									
	Mean Corrected	Calib.			Sample					
Analyte	Intensity	Conc. Units	Std. Dev.	Conc.	Units	Std.	Dev. RSD			
Ni 231.604	897450.5	12.86 mg/L	0.212	12.86	mg/L	0.	212 1.65%			
Seguence No.: 15			Autosampler I	Location: 22	2 2					
Sample ID: 3g-pH8-r	eading2		Date Collecte	ed: 3/17/202	20 3:13:	53 PM				
Analyst:			Data Type: On	riginal						
Initial Sample Wt:			Initial Sampl	le Vol:						
Dilution:			Sample Prep V	Vol:						
Wash Time: 90			Auto Dilution	n Factor: 1						
Replicate Data: 3g-	pH8-reading2									
	Net	Corrected	Ca	alib.		Sample	Analysis			
Repl# Analyte	Intensity	Intensity	Conc. Ur	nits	Conc.	Units	Time			
1 Ni 231.604	951797.0	952613.6	13.61 mg	g/L	13.61	mg/L	3:15:02 PM			
2 Ni 231.604	991310.7	992127.3	14.15 mg	g/L	14.15	mg/L	3:15:05 PM			
3 Ni 231.604	983998.7	984815.3	14.05 mg	g/L	14.05	mg/L	3:15:07 PM			
			: 							

Mean Data: 3g-pH8-	reading2									
	Mean Corrected	Ca	lib.				Sample			
Analyte	Intensity	Conc. Un	its	Std. De	v.	Conc.	Units	Std.	Dev. R	SD
Ni 231.604	976518.7	13.94 mg	/L	0.28	5	13.94	mg/L	0.	.285 2.	05%
Sequence No.: 16		aan inaa maati aan inaa inaa inaa inaa		Autosample	r Locat	ion: 2	3			
Sample ID: 2.5g-pH	8-reading2			Date Colle	cted: 3	/17/20	20 3:16:	48 PM		
Analyst:	1.77			Data Type:	Origin	al				
Initial Sample Wt:				Initial Sam	mple Vo	1:				
Dilution:				Sample Prep	p Vol:					
Wash Time: 90				Auto Dilut	ion Fac	tor: 1				
Replicate Data: 2.	5g-pH8-reading2									
	Net	Correc	ted		Calib.			Sample	Analy	sis
Repl# Analyte	Intensity	Intens	itv	Conc.	Units		Conc.	Units	Tim	e
1 Ni 231.604	1601415.1	160223	1.6	22.42	mg/L		22.42	mg/L	3:17:	57 PM
2 Ni 231.604	1593807.5	159462	4.1	22.32	mg/L		22.32	mg/L	3:17:	59 PM
3 Ni 231.604	1642608.4	164342	5.0	22.98	mg/L		22.98	mg/L	3:18:	01 PM
Mean Data: 2.5g-pH	8-reading2									
	Mean Corrected	Ca	lib.				Sample			
Analyte	Intensity	Conc. Un	its	Std. De	v.	Conc.	Units	Std.	Dev. R	SD
Ni 231.604	1613426.9	22.58 mg	/L	0.35	6	22.58	mg/L	0.	.356 1.	58%
Sequence No.: 17				Autosample	r Loc <mark>a</mark> t	ion: 2	4			
Sample ID: 2g-pH8-	reading2			Date Colled	cted: 3	/17/20:	20 3:19:4	12 PM		
Analyst:				Data Type:	Origin	al				
Initial Sample Wt:				Initial Sar	nple Vo.	1:				
Dilution:				Sample Prep	Vol:					
Wash Time: 90				Auto Dilut:	ion Fac	tor: 1				
Replicate Data: 2g	-pH8-reading2									
	Net	Correc	ted	1210	Calib.		-	Sample	Analys	sis
Repl# Analyte	Intensity	Intens	ity	Conc.	Units		Conc.	Units	Time	9
1 Ni 231.604	2174200.1	217501	6.7	30.20	mg/L		30.20	mg/L	3:20:5	DI PM
2 Ni 231.604	2224354.3	222517	0.9	30.88	mg/L		30.88	mg/L	3:20:5	DJ PM
3 Ni 231.604	2218032.9	221884	9.5	30.79	mg/L		30.79	mg/L	3:20:5	56 PM
Mean Data: 2g-pH8-	reading2									
	Mean Corrected	Ca	lib.				Sample			
Analyte	Intensity	Conc. Un	its	Std. Dev	7 .	Conc.	Units	Std.	Dev. RS	SD
Ni 231.604	2206345.7	30.62 mg	/L	0.37	1	30.62	mg/L	0.	371 1.2	218

Page

1

Analysis Begun						=======
Start Time: 1/22/2 Logged In Analyst: Spectrometer: Opti	020 1:58:47 PM Perkin Elmer ma 7000		Plasma On Time: 1/2 Technique: ICP Cont Autosampler: S10	22/2020 1:51: tinuous	38 PM	
Sample Information	File: C:\Document	s and Setting	s\All Users\PerkinE	lmer\ICP\Data	\Sample In	formation\
Batch ID: Results Data Set: Results Library: C	dnivesn, pro chromium vi :\Documents and Se Results.mdb	escreening.si ttings\Perkin	r Elmer\Desktop\stude	ent results\2	020\dhives	'n\
Sequence No.: 1 Sample ID: blank Analyst: Initial Sample Wt: Dilution: Wash Time:			Autosampler Locatic Date Collected: 1/2 Data Type: Origina Initial Sample Vol Sample Prep Vol:	 on: 7 22/2020 1:58: 1 :	======	
Replicate Data: bl	ank					
Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716	Net Intensity 702.4 826.4 819.6	Corrected Intensity -147.4 -23.4 -30.2	Calib. Conc. Units 0.089 mg/L 0.090 mg/L 0.090 mg/L	Conc . 0.089 0.090 0.090	Sample Units mg/L mg/L mg/L	Analysis Time 1:59:55 PM 2:00:04 PM 2:00:14 PM
Mean Data: blank						
Analyte Cr 267.716 QC value within All analyte(s) pas	Mean Corrected Intensity -67.0 limits for Cr 267 sed QC.	Calib. Conc. Units 0.090 mg/L .716 Recover	Std.Dev. 0 0.0002 0 Ty = Not calculated	Sample Conc. Units 0.090 mg/L	Std.De 0.000	v. RSD 2 0.22%
Sequence No.: 2 Sample ID: stock Analyst: Initial Sample Wt: Dilution: Wash Time: 120			Autosampler Locatio Date Collected: 1/2 Data Type: Origina Initial Sample Vol Sample Prep Vol: Auto Dilution Facto	on: 9 22/2020 2:02: 1 : or: 1		
Replicate Data: st	ock					
Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716	Net Intensity 24738828.4 25106314.8 24741778.1	Corrected Intensity 24737978.6 25105465.0 24740928.3	Calib. Conc. Units 71.07 mg/L 72.13 mg/L 71.08 mg/L	Conc. 71.07 72.13 71.08	Sample Units mg/L mg/L mg/L	Analysis Time 2:03:39 PM 2:03:44 PM 2:03:48 PM
Mean Data: stock						
Analyte Cr 267.716	Mean Corrected Intensity 24861457.3	Calib. Conc. Units 71.43 mg/L	Std.Dev. 0.606	Sample Conc. Units 71.43 mg/L	Std.De 0.60	₩. RSD 6 0.85%
Sequence No.: 3 Sample ID: green t Analyst: Initial Sample Wt: Dilution: Wash Time: 120	ea cr		Autosampler Locatio Date Collected: 1/2 Data Type: Origina Initial Sample Vol Sample Prep Vol: Auto Dilution Facto	on: 10 22/2020 2:06: 1 : or: 1		

Method: dhivesh

Page 2

Repli	cate Data: gr	een tea cr						
Repri	cate Data. gr	Net	Corrected	c	Calib.		Sample	Analysis
Repl#	Analyte	Intensity	Intensity	Conc. (Jnits	Conc.	Units	Time
1	Cr 267.716	2238631.3	2237781.5	6.511 r	ng/L	6.511	mg/L	2:07:09 P
2	Cr 267.716	2236288.6	2235438.8	6.504 r	ng/L	6.504	mg/L	2:07:12 P
3	Cr 26/./16	2169321.4	21684/1.6	6.312 r	ng/L	6.312	mg/L	2:0/:14 P
Mean	Data: green to	ea cr						
	-	Mean Corrected	Calib.			Sample		
Analy	te	Intensity	Conc. Units	Std.Dev.	. Conc.	Units	Std.I	Dev. RSD
Cr 26	7.716	2213897.3	6.442 mg/L	0.1129	6.442	mg/L	0.11	1.75%
Seque Sample Analy Initi Dilut Wash	nce No.: 4 e ID: geinmac st: al Sample Wt: ion: Time: 120			Autosampler Date Collect Data Type: (Initial Samp Sample Prep Auto Dilutio	Location: 1 ced: 1/22/20 Driginal ple Vol: Vol: pn Factor: 1	====== 1 20 2:09:	25 PM	
 Repli	cate Data: ge	inmacha cr						
1	jO	Net	Corrected	c	Calib.		Sample	Analysis
Repl#	Analyte	Intensity	Intensity	Conc. U	Jnits	Conc.	Units	Time
1	Cr 267.716	2981699.8	2980850.0	8.643 r	ng/L	8.643	mg/L	2:10:34 E
2	Cr 267.716	2992999.7	2992149.9	8.675 r	ng/L	8.675	mg/L	2:10:36 E
3	Cr 267.716	2962227.7	2961377.9	8.587 r	ng/L	8.587	mg/L	2:10:38 E
Mean 1	Data: geinmac	 ha cr						
_		Mean Corrected	Calib.			Sample		
Analy	te	Intensity	Conc. Units	Std.Dev.	. Conc.	Units	Std.I	Dev. RSD
CI 20	1.110	2970123.9	0.033 mg/1	0.0117	0.033	шдуш	0.0-	11/ 0.328
Seque: Sample Analy Initi Dilut Wash	nce No.: 5 e ID: salted j st: al Sample Wt: ion: Time: 120	peanut cr		Autosampler Date Collect Data Type: (Initial Samp Sample Prep Auto Dilutio	Location: 1 ced: 1/22/20 Driginal ple Vol: Vol: Dn Factor: 1	2 20 2:12:	50 PM	
Repli	cate Data: sa	lted peanut cr						
		Net	Corrected		Calib.	~	Sample	Analysis
керт#	Analyte	Intensity	Intensity	Conc. (Jnits	Conc.	Units	1'1me
1	Cr 267.716	4980606.4	49/9/56.6	14.38 r	ng/L ng/L	14.38	mg/L mg/I	2:13:59 F
2	CI = 267.716	49002//.0	490/420.U	14.40 I 17 50 m	ng/L ng/I	14.40	mg/L	2:14:02 F
5	CI 20/./10	5049101.5	5040511.5	14.50 1	lig/ц	14.50	шд/ц	2.14.04 r
Mean	Data: salted j	peanut cr						
. -		Mean Corrected	Calib.	. . • =	-	Sample	<u> </u>	
Analy	te	Intensity	Conc. Units	Std.Dev	. Conc.	Units	Std.I	Dev. RSD
Cr 26	/./10	2002165.4	14.45 mg/L	0.108	14.45	mg/L	0.1	LUX U./5%
Seque Samplo Analy Initi Dilut Wash	nce No.: 6 e ID: unsalted st: al Sample Wt: ion: Time: 120	d peanut cr		Autosampler Date Collect Data Type: (Initial Samp Sample Prep Auto Dilutio	Location: 1 ced: 1/22/20 Driginal ole Vol: Vol: Dn Factor: 1	====== 3 20 2:16:		
Repli	cate Data: un	salted peanut cr Net	Corrected		Calib.		Sample	Analysis

Method	d: dhivesh			F	age 3		Date:	1/22/2020 2	2:20:38 PM
Repl# 1 2 3	Analyte Cr 267.716 Cr 267.716 Cr 267.716	Intensity 12067679.8 12219250.4 12202991.5	Int 1206 1221 1220	ensity 6830.0 8400.6 2141.7	Conc. Units 34.71 mg/L 35.15 mg/L 35.10 mg/L		Conc. 34.71 35.15 35.10	Units mg/L mg/L mg/L	Time 2:17:25 PM 2:17:29 PM 2:17:32 PM
Mean I	Data: unsalted	d peanut cr Mean Corrected		Calib.			Sample		
Analyt Cr 26	ce 7.716	Intensity 12162457.4	Conc. 34.99	Units mg/L	Std.Dev. 0.239	Conc . 34.99	Units mg/L	Std.Dev 0.239	7. RSD 0.68%
Sequer Sample Analys Initia Diluts Wash S User of	nce No.: 7 e ID: 60ppm st: al Sample Wt: ion: Fime: 120 canceled analy	 ysis.			Autosampler Locat Date Collected: 1 Data Type: Origin Initial Sample Vo Sample Prep Vol: Auto Dilution Fac	ion: 8 /22/20 al bl: tor: 1	20 2:19:		

Autosampler Location: 9 Sequence No.: 2 Date Collected: 2/26/2020 10:24:03 AM Sample ID: dose_2.5g-pH2_reading1 Analyst: Data Type: Original Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Dilution: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose_2.5g-pH2_reading1
 Net
 Corrected
 Calib.

 Intensity
 Intensity
 Conc.
 Units

 9300794.0
 9299944.2
 26.77 mg/L
 9347782.8
 9346933.0
 26.91 mg/L

 9360972.0
 9360122.2
 26.95 mg/L
 26.95 mg/L
 Calib. Sample Analysis
 Conc.
 Units
 Time

 26.77 mg/L
 10:25:12 AM

 26.91 mg/L
 10:25:15 AM

 26.95 mg/L
 10:25:18 AM
 Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716 ____ Mean Data: dose 2.5g-pH2 reading1 ose_2.5g-pH2_reading1 Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 0335666.5 26.00 mg/L 0.001 0.010 Analyte Cr 267.716 9335666.5 26.88 mg/L 0.091 26.88 mg/L 0.091 0.34% Sequence No.: 3 Autosampler Location: 10 Sample ID: dose_3g-pH2_reading1 Date Collected: 2/26/2020 10:27:31 AM Analyst: Data Type: Original Initial Sample Vol: Initial Sample Wt: Dilution: Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose_3g-pH2_reading1
 Net
 Corrected
 Calib.
 Sample
 Analysis

 Intensity
 Intensity
 Conc.
 Units
 Conc.
 Units
 Time

 5609983.3
 5609133.5
 16.18 mg/L
 16.18 mg/L
 10:28:40 AM

 5587330.7
 5586480.9
 16.12 mg/L
 16.12 mg/L
 10:28:42 AM

 5634153.7
 5633303.9
 16.25 mg/L
 16.25 mg/L
 10:28:45 AM
 Repl# Analyte 1 Cr 267.716 Cr 267.716 2 3 Cr 267.716 Mean Data: dose_3g-pH2_reading1 Mean Corrected Calib. Sample
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 5609639.5
 16.19 mg/L
 0.067
 16.19 mg/L
 Analyte Std. Dev. RSD 0.067 0.42% Cr 267.716 _____ Sequence No.: 4 Autosampler Location: 11 Sample ID: dose_3.5g-pH2_reading1 Date Collected: 2/26/2020 10:30:56 AM Data Type: Original Analyst: Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose 3.5g-pH2 reading1 Net Corrected
 Net
 Corrected
 Calib.

 Intensity
 Intensity
 Conc. Units

 3024090.2
 3023240.4
 8.765 mg/L

 3133867.0
 3133017.1
 9.080 mg/L

 3120648.8
 3119799.0
 9.042 mg/L
 Calib. Sample Analysis
 Conc.
 Units
 Time

 8.765 mg/L
 10:32:05 AM

 9.080 mg/L
 10:32:07 AM

 9.042 mg/L
 10:32:09 AM
 Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716

Analyte Cr 267.716	Mean Corrected Intensity 3092018.8	Conc. 8.962	Calib. Units mg/L	Std.Dev. 0.1720	Conc. 8.962	Sample Units mg/L	Std.Dev 0.1720	7. RSD) 1.92%
Sequence No.: 5 Sample ID: dose_2 Analyst: Initial Sample Wt Dilution: Wash Time: 120	.5g-pH3_reading1 :			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F	ation: 1 2/26/20 minal Vol: : actor: 1	2 20 10:34	:21 AM	
Replicate Data: de	ose_2.5g-pH3_readin	g1						
Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716	Net Intensity 2717428.8 2681128.2 2701371.3	Corr Inte 2716 2680 2700	579.0 278.4 521.5	Cali Conc. Unit 7.885 mg/L 7.781 mg/L 7.839 mg/L	b. s	Conc. 7.885 7.781 7.839	Sample Units mg/L mg/L mg/L	Analysis Time 10:35:31 A 10:35:33 A 10:35:36 A
Mean Data: dose_2	.5g-pH3_reading1		Calib			Samplo		
Analyte	Intensity 2699126 3	Conc.	Units	Std. Dev.	Conc.	Units	Std. Dev	RSD
Sequence No.: 6				Autosampler Loc	ation: 1	3		
Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120	g-pH3_reading1 :			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F	ation: 1 2/26/20 inal Vol: : actor: 1	3 20 10:37	:47 AM	
Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120	g-pH3_reading1 : g-pH3_reading1 :			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Auto Dilution	ation: 1 2/26/20 inal Vol: : actor: 1 ocation: d: 2/26/2 iginal e Vol: ol: Factor:	3 20 10:37 13 2020 10: 1	:47 AM 37:47 AM	
Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Replicate Data: do	g-pH3_reading1 : g-pH3_reading1 : se_3g-pH3_reading1 Not			Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Auto Dilution	ation: 1 2/26/20 jinal Vol: : actor: 1 ocation: 1 ocation: d: 2/26/2 iginal e Vol: ol: Factor:	3 20 10:37 13 2020 10: 1	:47 AM 37:47 AM	
Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte	g-pH3_reading1 : g-pH3_reading1 : se_3g-pH3_reading1 Net Net Intensity	Corre	ected	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Or Initial Sample Sample Prep Vo Auto Dilution	ation: 1 2/26/20 inal Vol: : actor: 1 ocation: d: 2/26/2 iginal e Vol: ol: Factor: b. s	3 20 10:37 13 2020 10: 1 Conc.	:47 AM 37:47 AM Sample Units	Analysis Time
Sequence No.: 6 Sample ID: dose_30 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_30 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Cr 267.716 2 Cr 267.716	g-pH3_reading1 : g-pH3_reading1 : se_3g-pH3_reading1 : Net Intensity 2018342.8 2058973.9	Corre Inter 2017	ected nsity 493.0	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Auto Dilution Califi Conc. Units 5.879 mg/L 5.965 mg/L	ation: 1 2/26/20 jinal Vol: : actor: 1 ocation: d: 2/26/2 iginal e Vol: ol: Factor: b. s	3 20 10:37 13 2020 10: 1 Conc. 5.879 5.995	:47 AM 37:47 AM Sample Units mg/L mg/L	Analysis Time 10:38:56 AI 10:38:58 AN
Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_3 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Replicate Data: do Replicate Data: do Repl# Analyte 1 Cr 267.716 2 Cr 267.716	g-pH3_reading1 : g-pH3_reading1 : se_3g-pH3_reading1 : Net Intensity 2018342.8 2058973.8 2045774.7	Corre Inter 2017 2058 2044	ected nsity 493.0 124.0 924.9	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo Auto Dilution Conc. Units 5.879 mg/L 5.995 mg/L 5.957 mg/L	Action: 1 2/26/20 Jinal Vol: Cactor: 1 Cactor: 1 Cocation: d: 2/26/ iginal e Vol: ol: Factor: b. s	3 20 10:37 13 2020 10: 1 2020 10: 1 0 5.879 5.995 5.957	:47 AM 37:47 AM 37:47 AM Sample Units mg/L mg/L mg/L mg/L	Analysis Time 10:38:56 AI 10:38:58 AI 10:39:01 AI
Sequence No.: 6 Sample ID: dose_30 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_30 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Replicate Data: dose_30 Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716	g-pH3_reading1 : g-pH3_reading1 : se_3g-pH3_reading1 : Intensity 2018342.8 2058973.8 2045774.7 -pH3_reading1 Mean Corrected	Corre Inter 2017- 2058: 2044:	ected nsity 493.0 124.0 924.9 Calib.	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Or: Initial Sample Sample Prep Vo Auto Dilution Conc. Units 5.879 mg/L 5.995 mg/L	ation: 1 2/26/20 yinal Vol: : actor: 1 ocation: d: 2/26/ iginal e Vol: ol: Factor: b. s	3 20 10:37 13 2020 10: 1 2020 10: 1 2020 10: 5.879 5.995 5.957 Sample	:47 AM 37:47 AM Sample Units mg/L mg/L mg/L	Analysis Time 10:38:56 AN 10:38:58 AN 10:39:01 AN
Sequence No.: 6 Sample ID: dose_30 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Sequence No.: 6 Sample ID: dose_30 Analyst: Initial Sample Wt Dilution: Wash Time: 120 Replicate Data: do Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716 3 Cr 267.716	g-pH3_reading1 : g-pH3_reading1 : se_3g-pH3_reading1 : Intensity 2018342.8 2058973.8 2045774.7 -pH3_reading1 Mean Corrected Intensity	Corre Inter 2017, 2058 2044 Conc. 1	ected nsity 493.0 124.0 924.9 Calib. Units	Autosampler Loc Date Collected: Data Type: Orig Initial Sample Sample Prep Vol Auto Dilution F Autosampler Lo Date Collected Data Type: Or Initial Sample Sample Prep Vo Auto Dilution Conc. Units 5.879 mg/L 5.995 mg/L 5.957 mg/L Std.Dev.	conc.	3 20 10:37 13 2020 10: 1 1 Conc. 5.879 5.995 5.957 Sample Units	:47 AM 37:47 AM 37:47 AM Sample Units mg/L mg/L mg/L mg/L Std.Dev	Analysis Time 10:38:56 An 10:38:58 An 10:39:01 An

Autosampler Location: 14 Date Collected: 2/26/2020 10:41:12 AM Sequence No.: 7 Sample ID: dose 3.5g-pH3 reading1 Data Type: Original Analyst: Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose_3.5g-pH3_reading1
 Net
 Corrected
 Calib.

 Intensity
 Intensity
 Conc.
 Units

 1288669.7
 1287819.9
 3.785 mg/L
 1259559.6
 1258709.8
 3.702 mg/L

 1265443.1
 1264593.3
 3.718 mg/L
 1264593.3
 1.718 mg/L
 Sample Analysis Conc. Units Time Repl# Analyte 3.785 mg/L 3.702 mg/L 1 Cr 267.716 2 Cr 267.716 10:42:23 AM 3.718 mg/L 3 Cr 267.716 10:42:25 AM Mean Data: dose 3.5g-pH3_reading1
 S.5g-ph3_reading1
 Sample

 Mean Corrected
 Calib.
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 1270374.3
 3.735 mg/L
 0.0442
 3.735 mg/L
 0.0442
 1.735 mg/L
Analyte 1270374.3 3.735 mg/L Cr 267.716 3.735 mg/L 0.0442 0.0442 1.18% Sequence No.: 11 Autosampler Location: 18 Date Collected: 2/26/2020 10:54:51 AM Sample ID: dose_2.5g-pH5_reading1 Data Type: Original Analyst: Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Auto Dilution Factor: 1 Wash Time: 120 Replicate Data: dose_2.5g-pH5_reading1
 Net
 Corrected
 Calib.
 Sample
 Analysis

 Intensity
 Intensity
 Conc.
 Units
 Time

 1384393.5
 1383543.7
 4.060 mg/L
 4.060 mg/L
 10:55:59 AM

 1367804.1
 1366954.3
 4.012 mg/L
 4.012 mg/L
 10:56:02 AM

 1387088.4
 1386238.6
 4.067 mg/L
 4.067 mg/L
 10:56:04 AM
 Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716 Mean Data: dose_2.5g-pH5_reading1 e_2.5g-pH5_reading1 Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 1378912.2 4.046 mg/L 0.0300 4.046 mg/L 0.0300 0.749 Analyte Cr 267.716 0.0300 0.74% Sequence No.: 12 Autosampler Location: 19 Sample ID: dose_3g-pH5_reading1 Date Collected: 2/26/2020 10:58:14 AM Data Type: Original Analyst: Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Wash Time: 120 Auto Dilution Factor: 1 Replicate Data: dose_3g-pH5_reading1
 Net
 Corrected
 Calib.
 Sample
 Analysis

 epl# Analyte
 Intensity
 Intensity
 Conc.
 Units
 Conc.
 Units
 Time

 1
 Cr 267.716
 1796145.4
 1795295.6
 5.241 mg/L
 5.241 mg/L
 10:59:22 AM

 2
 Cr 267.716
 1772318.5
 1771468.7
 5.173 mg/L
 5.173 mg/L
 10:59:24 AM

 3
 Cr 267.716
 1765401.7
 1764551.9
 5.153 mg/L
 5.153 mg/L
 10:59:26 AM
 Repl# Analyte

Mean	Data: dose_3	-pH5_reading1		alib				Comp			
Analy	yte	Intensity	Conc. U	Units	Std.I	ev.	Conc	. Units	s S	td. Dev.	RSI
Cr 20	67.716	1///105.4	5.189 m	ıд/L	0.04	163	5.18	9 mg/L		0.0463	0.8
Seque Sampl Analy Initi Dilut	ence No.: 15 le ID: dose_2. yst: ial Sample Wt: tion:	5g-pH6_reading1			Autosample: Date Collec Data Type: Initial Sam Sample Prep	r Locat cted: 2 Origin mple Vo p Vol:	ion: 22 /26/2020 al 01:) 11:08	:28 AM		
Wash	Time: 120				Auto Dilut:	ion Fac	tor: 1				
Repli	icate Data: do	se 2.5g-pH6 reading	q1								
-		Net	Correc	ted		Calib.			Sample	Anal	ysis
Repl	# Analyte	Intensity	Intens	ity	Conc.	Units		Conc.	Units	Ti	me
1	Cr 267.716	2081087.6	208023	7.8	6.059	mg/L		6.059	mg/L	11:0	9:38 A
2	Cr 267.716	2056218.1	205536	8.3	5.987	mg/L		5.987	mg/L	11:0	9:40 A
3	Cr 267.716	2058613.9	205776	4.1	5.994	mg/L		5.994	mg/L	11:0	9:42 A
Mean	Data: dose_2.	5g-pH6_reading1	62	115				'amp l o			
Analu	vto	Intensity	Conc Un	its	Std Dos	,	Conc I	Inits	Std	Dov	RSD
Cr 26	67.716	2064456.7	6.014 mg	/L	0.0394	1	6.014 n	ng/L	0.0	394 0	.65%
Seque Sampl Analy Initi Dilut Wash	ence No.: 16 le ID: dose_3g yst: ial Sample Wt: tion: Time: 120	-pH6_reading1			Autosample: Date Collec Data Type: Initial Sar Sample Prep Auto Dilut:	r Locat cted: 2 Origin mple Vo p Vol: ion Fac	ion: 23 /26/2020 al 1: tor: 1) 11:11	:53 AM		
<u>.</u>											
Repli	icate Data: do	se_3g-pH6_reading1	-	51.5		0-141					
D		Net	Correc	ted	C	Calib.			Sample	Anal	YSIS
Rebit	# Analyte	Intensity	Intens	ity	cone.	Units		Conc.	Units	T1	me a.oa a
1	CF 267.716	2304/18.4	233386	0.0	0.044	mg/L		0.044	mg/L	1111	3:02 A
3	Cr 267.716	2303937.5	232030	4.5	6.928	mg/L mg/L		6.748	mg/L	11:1	3:04 A
Mean	Data: dose 30	-pH6 reading1									
		Mean Corrected	Ca	lib.			5	Sample			
Analy	yte	Intensity	Conc. Un	its	Std. Dev	7.	Conc. L	Inits	Std.	Dev.	RSD
Cr 26	67.716	2352420.3	6.840 mg	/L	0.090	L	6.840 n	ng/L	0.0	901 1	.32%

Initial Sample Wt: Dilution: Wash Time: 120

Initial Sample Vol: Sample Prep Vol: Auto Dilution Factor: 1

Data Type: Original

Initial Sample Vol:

Auto Dilution Factor: 1

Sample Prep Vol:

Replicate Data: 4g-pH2-reading1
 Net
 Corrected
 Calib.
 Sample
 Analysis

 epl# Analyte
 Intensity
 Intensity
 Conc. Units
 Conc. Units
 Time

 1
 Cr 267.716
 Saturated3
 Saturated3
 Saturated3
 9:26:54 7
 Repl# Analyte 9:26:54 AM Saturated in preshot (code 3) 2 Cr 267.716 -54865.5 -55715.3 -0.070 mg/L -0.070 mg/L 9:27:04 AM Saturated within auto integration window (code 4) 3 Cr 267.716 -54970.5 -55820.3 -0.070 mg/L -0.070 mg/L 9:27:14 AM Saturated within auto integration window (code 4) Mean Data: 4g-pH2-reading1
 Mean Corrected
 Calib.
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 Saturated4
 -0.070 mg/L
 0.0002
 -0.070 mg/L
 0.0002
 0.30%
 Analyte Cr 267.716 Sequence No.: 3 Autosampler Location: 10 Sample ID: 4g-pH3-reading1 Date Collected: 3/10/2020 9:29:32 AM

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Sample ID: 4g-pH3-read Analyst: Initial Sample Wt: Dilution: Wash Time: 120

Replicate Data: 4q-pH3-reading1

Rep1#	Analyte	Net Intensity	Corrected Intensity		Conc.	Calib. Units	Conc.	Sample Units	Analysis Time
1	Cr 267.716	Saturated3	Saturated3						9:30:11 AM
Sa	turated in preshot	(code 3)							
2	Cr 267.716	-46354.5	-47204.3		-0.046	mg/L	-0.046	mg/L	9:30:21 AM
Sa	turated within auto	integration	window (code	4)		3.		2	
3	Cr 267.716	-46373.8	-47223.6		-0.046	mg/L	-0.046	mg/L	9:30:31 AM
Sa	turated within auto	integration	window (code	4)					

Mean Data: 4g-pH3-reading1

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std. Dev.	Conc.	Units	Std. Dev.	RSD
Cr 267.716	Saturated4	-0.046	mg/L	0.0000	-0.046	mg/L	0.0000	0.09%

Replicate Data: 4g-	pH4-reading1						
Bonl# Analuto	Net	Corrected	Conc	Calib.	Cong	Sample	Analysis
1 Cr 267.716	Saturated3	Saturated3	conc.	onics	conc.	UIILS	9:33:56 AM
Saturated in pres	shot (code 3)	20000 0	0.007	ma/1	0.007	mar / T	0.24.06 34
Saturated outside	-20139.2 e auto integration	-29009.0 1 window (code	5)	liig/ L	0.007	шg/ ц	9:54:06 AM
3 Cr 267.716	-28213.4	-29063.2	0.007	mg/L	0.007	mg/L	9:34:15 AM
Saturated within	auto integration	window (code	4)				
Mean Data: 4g-pH4-re	eading1						
Roff I	Mean Corrected	Calib.			Sample		
Analyte	Intensity	Conc. Units	Std.Dev	v. Conc.	Units	Std. Dev	r. RSD
Cr 267.716	Saturated4	0.007 mg/L	0.000	1 0.007	mg/L	0.000	1.67%
Sequence No.: 5 Sample ID: 4g-pH5-re Analyst: Initial Sample Wt: Dilution: Wash Time: 120	eading1		Autosamples Date Collec Data Type: Initial Sar Sample Prep Auto Dilut:	r Location: 1 cted: 3/10/20 Original mple Vol: p Vol: ion Factor: 1	2 20 9:36:	34 AM	
Replicate Data: 4g-	pH5-reading1						
Denil Desilute	Net	Corrected	G = = = =	Calib.	0	Sample	Analysis
1 Cr 267 716	1386 9	537 1	0 091	mg/L	0 091	units	9.37.13 AM
2 Cr 267.716	7786.6	6936.8	0.110	mg/L	0.110	mg/L	9:37:23 AM
Saturated outside	e auto integration	n window (code	5)	64.9 8 .079		199 -1 992-199	
3 Cr 267.716	9663.0	8813.2	0.115	mg/L	0.115	mg/L	9:37:32 AM
Saturated outside	e auco incegracion	i window (code	: 5)				
Mean Data: 4g-pH5-re	eading1						
Analuta	Mean Corrected	Calib.	04 d D-		Sample	and De	- DGD
cr 267.716	5429.0	0.105 mg/L	0.012	5 0.10 ⁵	ma/L	0.012	5 11.80%
	S 24 - 1 - 1		0.012			0.014	

					122 22 22 22 22 22 22					
Sequence No.: 6		Autosampler Location: 13								
Sample ID: 4g-pH6-re	ading1		Date Collected: 3/10/2020 9:39:51 AM							
Analyst:			Data Type:	Origina	1					
Initial Sample Wt:			Initial San	nple Vol	.:					
Dilution:			Sample Prep	p Vol:						
Wash Time: 120			Auto Dilut:	ion Fact	or: 1					
Replicate Data: 4g-p	H6-reading1	Corrected		Calib			Comple	1 m	1	
Deml# Brolute	Net	Corrected	Conc	Units.		Cong	Sampie	Ana	lime	
Repi# Analyce	Incensity	Incensicy	cone.	Units		Cone.	Units	0.1	Time	
1 Cr 267.716	15/4.4	724.0	0.092	mg/L		0.092	mg/L	9:4	10:30 AM	
2 Cr 267.716	4291.2	3441.4	0.100	mg/L		0.100	mg/L	9:4	10:39 AM	
Saturated outside	auto integration	n window (code	(2)	1+		0.110	1-			
3 CF 267.716	8481.4	/631.6	0.112	mg/L		0.112	mg/ь	9:4	40:48 AM	
Saturated outside	auto integration	n window (code	5)							
Mean Data: 4g-pH6-re	ading1							222223		
M	ean Corrected	Calib.				Sample				
Analyte	Intensity	Conc. Units	Std.Dev	7.	Conc.	Units	Std.D	ev.	RSD	
Cr 267.716	3932.5	0.101 mg/L	0.0100	0	0.101	mg/L	0.01	00	9.87%	
Saturated outside	auto integration	n window (code	5)							
Sequence No.: 7	adingl		Autosample	r Locati	on: 1	4	07 3.			
Sample ID: 2g-pH2-re	adingi		Date Colle	ctea: 3/	10/20.	20 9:43:	07 AM			
Sequence No.: 9	- 3:		Autosample	r Locati	lon: 1	6	~~ **			
Sample ID: 2g-pH4-re	adingi		Date Colle	ctea: 3/	10/20	20 9:49:	33 AM			
Analyst:			Data Type:	origina	11					
Initial Sample Wt:			Initial Sa	mple vol	.:					
Dilution:			Sample Pre	p Vol:						
Wash Time: 120			Auto Dilut	ion Fact	or: 1					
Replicate Data: 2g-n	H4-reading1									
	Net	Corrected		Calib.			Sample	An	alvsis	
Repl# Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	1	Time	
1 Cr 267.716	2398.9	1549.1	0.094	mg/L		0.094	ma/L	9:	50:11 AM	
2 Cr 267,716	-18406.8	-19256.6	0.035	mg/L		0.035	mg/L	9.	50:19 AM	
Saturated outside	auto integratio	n window (code	51	mg/ H		0.000	mg/ 1	· · ·	50.15 mi	
3 Cr 267 716	_18957 3	_19807 1	0.033	mer/T		0.033	mar/T	Q •	50.28 AM	
Saturated outside	auto integratio	n window (code	5)	mg/ D		0.000	mg/ n		50.20 Al	
Mean Data: 2g-pH4-re	ading1									
M	lean Corrected	Calib.	12242 7 454 499			Sample	12222-00			
Analyte	Intensity	Conc. Units	Std.De	v.	Conc.	Units	Std.D	ev.	RSD	
Cr 267.716	-12504.9	0.054 mg/L	0.03	49	0.05	i4 mg/L	0.	0349	64.67%	
Saturated outside	e auto integratio	on window (cod	le 5)							

Seguence No.: 1 Autosampler Location: 9 Date Collected: 2/18/2020 3:25:31 PM Sample ID: 3.5g pH 4 Data Type: Original Analyst: Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Wash Time: Replicate Data: 3.5g pH 4 Net Calib. Corrected Sample Analysis
 Net
 Corrected
 Calib.
 Sample
 Analysis

 Intensity
 Intensity
 Conc.
 Units
 Conc.
 Units
 Time

 391940.4
 391090.6
 1.212 mg/L
 1.212 mg/L
 3:26:43 PM

 385194.4
 384344.6
 1.193 mg/L
 1.193 mg/L
 3:26:46 PM

 395292.4
 394442.6
 1.222 mg/L
 1.222 mg/L
 3:26:49 PM
 Repl# Analyte 1 Cr 267.716 2 Cr 267.716 3 Cr 267.716 Mean Data: 3.5g pH 4
 Mean Corrected
 Calib.
 Sample

 Analyte
 Intensity
 Conc.
 Units
 Std.Dev.
 Conc.
 Units
 Std.Dev.
 RSD

 Cr 267.716
 389959.2
 1.209 mg/L
 0.0148
 1.209 mg/L
 0.0148
 1.209 mg/L
 0.0148 1.22% Sequence No.: 2 Autosampler Location: 10 Sample ID: 3.5g pH 5 Date Collected: 2/18/2020 3:29:01 PM Data Type: Original Analyst: Initial Sample Wt: Initial Sample Vol: Dilution: Sample Prep Vol: Auto Dilution Factor: 1 Wash Time: 120 Replicate Data: 3.5g pH 5
 Net
 Corrected
 Calib.
 Sample
 Analysis

 epl# Analyte
 Intensity
 Intensity
 Conc.
 Units
 Time

 1
 Cr 267.716
 361461.1
 360611.3
 1.125 mg/L
 1.125 mg/L
 3:30:09 PM

 2
 Cr 267.716
 365720.8
 364871.0
 1.137 mg/L
 1.137 mg/L
 3:30:13 PM

 3
 Cr 267.716
 361926.2
 361076.4
 1.126 mg/L
 1.126 mg/L
 3:30:16 PM
 Repl# Analyte Mean Data: 3.5g pH 5 a: 3.5g pH 5 Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 16 362186.2 1.129 mg/L 0.0067 1.129 mg/L 0.0067 0.598 Analyte 0.0067 0.59% Cr 267.716 Sequence No.: 3 Autosampler Location: 11 Date Collected: 2/18/2020 3:32:28 PM Sample ID: 3.5g pH 6 Data Type: Original Analyst: Initial Sample Wt:

Dilution:

Initial Sample Vol: Sample Prep Vol:

Replicate Data: 3	.5g pH 6								
	Net	Corrected		Calib.			Sample	Ana	lysis
Repl# Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Т	ime
1 Cr 267.716	550359.6	549509.8	1.667	mg/L		1.667	mg/L	3:3	3:37 PM
2 Cr 267.716	558070.6	557220.8	1.689	mg/L		1.689	mg/L	3:3	3:39 PM
3 Cr 267.716	556974.6	556124.8	1.686	mg/L		1.686	mg/L	3:3	3:42 PM
Mean Data: 3.5g p									
	Mean Corrected	Calib.				Sample			
Analyte	Intensity	Conc. Units	Std. De	v. (Conc. I	Units	Std	.Dev.	RSD
Cr 267.716	554285.1	1.680 mg/L	0.012	0 1	L.680 1	ng/L	0.0	0120	0.71%
Sequence No.: 4			Autosample	r Locatio	on: 12				
Sample ID: 3g pH	4		Date Colle	cted: 2/1	18/2020	3:35:	53 PM		
Analyst:			Data Type:	Original	L				
Initial Sample Wt			Initial Sam	mple Vol:					
Dilution:			Sample Prep	p Vol:					
Wash Time: 120			Auto Dilut:	ion Facto	or: 1				
Replicate Data: 3	g pH 4								
	Net	Corrected		Calib.			Sample	Ana	lysis
Repl# Analyte	Intensity	Intensity	Conc.	Units		Conc.	Units	Т	ime
1 Cr 267.716	441734.2	440884.4	1.355	mg/L		1.355	mg/L	3:3	7:02 FM
2 Cr 267.716	433020.6	432170.8	1.330	mg/L		1.330	mg/L	3:3	7:06 PM
3 Cr 267.716	439408.2	438558.4	1.348	mg/L		1.348	mg/L	3:3	7:09 PM
Mean Data: 3g pH	4								
	Mean Corrected	Calib				Sample	2		_
Analyte	Intensity	Conc. Units	Std.D	ev.	Conc.	Units	St	td.Dev.	RSD
Cr 267.716	437204.6	1.344 mg/L	0.01	29	1.344	mg/L	ļ	0.0129	0.96%
Seguence No · 5				r Locati	op · 13				
Sample ID: 2.5g p	H 4		Date Colle	cted: 2/	18/202	0 3:39:	21 PM		
Analyst:			Data Type:	Origina	1				
Initial Sample Wt			Initial Sa	mple Vol					
Dilution:	22.		Sample Pre	p Vol:	53				
Wash Time: 120			Auto Dilut	ion Facto	or: 1				
Replicate Data: 2	.5g pH 4	a		0.1.1			C 1		100
Daml# Buslate	Net	Corrected	0	Calib.		Car	Sample	Ana	lysis
t analyte	Intensity	AGTITO	Lonc.	ma/T		1 E10	ma /T	2.4	1me
1 CI 207.710	498620.5	47///U./	1.518	mg/L		1 518	mg/L	3:4	0.22 PM
2 Cr 267.716	508481.0	507031.2	1.546	mg/L		1 540	mg/L	3:4	0.35 PM
3 CF 267.716	50/86/.6	507017.8	1.545	mg/ц		1.545	mg/L	3:4	U:35 PM
Mean Data: 2.5g p	oH 4								
	Mean Corrected	Calib.				Sample			
Analyte	Intensity	Conc. Units	Std. De	v. (Conc.	Units	Std	.Dev.	RSD
Cr 267.716	504139.9	1.536 mg/L	0.015	9	1.536	mg/L	0.	0159	1.03%

Sequence No.: 6Autosampler Location: 14Sample ID: 2g pH 6Date Collected: 2/18/2020 3:42:47 PMAnalyst:Data Type: OriginalInitial Sample Wt:Initial Sample Vol:Dilution:Sample Prep Vol:Wash Time:120

Replicate Data: 2g pH 6

		Net	Corrected		Calib.		Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc.	Units	Conc.	Units	Time
1	Cr 267.716	690669.5	689819.7	2.069	mg/L	2.069	mg/L	3:43:55 PM
2	Cr 267.716	685947.4	685097.6	2.056	mg/L	2.056	mg/L	3:43:57 PM
3	Cr 267.716	690408.3	689558.5	2.068	mg/L	2.068	mg/L	3:43:59 PM

Mean Data: 2g pH 6

	Mean Corrected		Calib. Sample						
Analyte	Intensity	Conc.	Units	Std. Dev.	Conc.	Units	Std. Dev.	RSD	
Cr 267.716	688158.6	2.064	mg/L	0.0076	2.064	mg/L	0.0076	0.37%	

Sequence No.: 2	Autosampler Location: 9
Sample ID: 2g-pH2-reading2	Date Collected: 3/13/2020 12:10:26 PM
Analyst:	Data Type: Original
Initial Sample Wt:	Initial Sample Vol:
Dilution:	Sample Prep Vol:
Wash Time: 120	Auto Dilution Factor: 1

Replicate Data: 2g-pH2-reading2

		Net	Corrected	Calib.	S	Sample	Analysis
Rep1#	Analyte	Intensity	Intensity	Conc. Units	Conc. U	Units	Time
1	Cr 267.716	717.8	-132.0	0.090 mg/L	0.090 n	ng/L	12:11:04 PM
2	Cr 267.716	-932.2	-1782.0	0.085 mg/L	0.085 m	ng/L	12:11:14 PM
Sa	turated within auto	integration	window (code 4)				
3	Cr 267.716	-21541.5	-22391.3	0.026 mg/L	0.026 m	ng/L	12:11:24 PM
Sa	turated outside aut	o integration	window (code 5)				

Mean Data: 2g-pH2-reading2

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std. Dev.	Conc.	Units	Std. Dev.	RSD
Cr 267.716	-8101.8	0.067	mg/L	0.0356	0.067	mg/L	0.0356	53.39%

Mean Data: 2g-pH2-reading2

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std. Dev.	Conc.	Units	Std. Dev.	RSD
Cr 267.716	-8101.8	0.067	mg/L	0.0356	0.067	mg/L	0.0356	53.39%
Saturated out	side auto integrati	lon wind	ow (code	5)				

Sequence No.: 3

Autosampler Location: 10

Sample ID: 2g-pH3-reading1 Analyst: Initial Sample Wt: Dilution: Wash Time: 120 Date Collected: 3/13/2020 12:13:43 PM Data Type: Original Initial Sample Vol: Sample Prep Vol: Auto Dilution Factor: 1

Replicate Data: 2g-pH3-reading1

Conc.	Unite						
	UNITES	Conc. Units	Intensity	Intensity	e	Analyte	Rep1#
0.091	mg/L	0.091 mg/L	437.1	1286.9	.716	Cr 267.	1
0.084	mg/L	0.084 mg/L	-2200.3	-1350.5	.716	Cr 267.	2
			window (code	auto integration	within	urated	Sat
0.088	mg/L	0.088 mg/L	-491.7	358.1	.716	Cr 267.	3
			window (code	auto integration	within	urated	Sat
0.084	mg/L mg/L	0.084 mg/L 0.088 mg/L	-2200.3 window (code -491.7 window (code	-1350.5 auto integration 358.1 auto integration	.716 within .716 within	Cr 267. urated Cr 267. urated	2 Sat 3 Sat

Mean Data: 2g-pH3-reading1

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std. Dev.	Conc.	Units	Std. Dev.	RSD
Cr 267.716	-751.7	0.088	mg/L	0.0038	0.088	mg/L	0.0038	4.37%

Appendix H: EDX Results

Element	Wt%	At%
СК	50.50	57.21
NK	05.78	05.62
OK	43.71	37.17
Matrix	Correction	ZAF

Figure H-1: EDX Results of Virgin Jasmine Green Tea Leaves

Element	Wt%	At%
СК	41.68	54.13
OK	40.60	39.58
NK	02.04	01.38
NiK	02.02	00.54
Matrix	Correction	ZAF

Figure H-2: EDX Results of Ni (II) Loaded Jasmine Green Tea Leaves

Element	Wt%	At%
СК	62.44	68.64
NK	04.84	04.56
OK	32.37	26.71
CrK	00.35	00.09
Matrix	Correction	ZAF

Figure H-3: EDX Results of Cr (VI) Loaded Jasmine Green Tea Leaves

Appendix I: XRD Raw Data

Group : DrSim Data : DHIVESH_GREEN-TEA

ŧ	Strongest	3 peaks						
	no. peak	- 2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	19	21.3400	4.16036	100	4.00000	165	22832	
	28	20.0200	4.43159	82	0.00000	135	0	
	37	18.9800	4.67201	63	0.00000	104	0	
ŧ	Peak Data	List						
	peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1	11.3800	7.76934	3	0.32000	5	159	
	2	13.5600	6.52479	5	0.28000	8	204	
	3	14.9400	5.92506	26	1.22660	43	2616	
	4	15.6200	5.66862	24	0.00000	40	0	
	5	17.0800	5.18721	33	0.00000	55	0	
	6	18.4800	4.79728	56	0.00000	92	0	
	7	18.9800	4.67201	63	0.00000	104	0	
	8	20.0200	4.43159	82	0.00000	135	0	
	9	21.3400	4.16036	100	4.00000	165	22832	
	10	24.0800	3.69281	42	1.42000	70	4465	
	11	25.2600	3.52291	18	1.20000	29	1748	
	12	26.5600	3.35336	10	0.44000	16	441	
	13	27.4100	3.25127	5	0.30000	8	281	
	14	29.9300	2.98301	8	0.68000	13	467	
	15	30.6600	2.91363	4	0.16000	7	127	
	16	32.0800	2.78783	4	0.36000	7	188	
	17	34.5800	2.59179	7	0.52000	12	455	
	18	35.8050	2.50587	8	0.67000	14	593	
	19	38.2550	2.35083	17	0.69000	28	1078	
	20	39.6350	2.27210	3	0.13000	5	83	
	21	43.3800	2.08423	5	0.32000	8	205	
	22	44.4800	2.03521	7	0.60000	11	452	
	23	64.4960	1.44363	37	0.59200	61	1900	

		***	Basic	Data	Proces	8	***	ł			
#	Data In	fomat Grow Data Samj Com Date	tion 1p a ple Nma nent e & Tin	le Ne	:	D D D 0	rSin HIVE HIVE 2-12	n ISH_G ISH_G 2-20	REE REE 11:	N-TEA N-TEA 07:48	
ŧ	Measure X-ray	ment tube tare	Condit e get	ion	:	C 4	u 0.0	(kV)			
	Slits	Cur	rent		:	3 ח	0.0	(mA)			
		dive scat	ergence tter sl eiving	slit .it slit	: :		1.0 1.0 0.3	00000 00000 00000 00000	(d) (d) (mm)	eg) eg))	
	Scann	ing driv scar scar scar samj pres	ve axis n range n mode n speed pling p set tin	a l Ditch ne	:	T C	heta 10. onti 2. 0.	a-2Th .0000 Inuou .0000 .0200 .60 (eta - s S (d (d sec	70.0000 can eg/min) eg))	(deg)
*	Data Pr Smoot B.G.S Kal-a Peak	ocesa hing smoo ubtru samj repo 2 Sej Kal Searc	s Condi othing ottion pling p eat tim parate a2 rat ch	tion point points nes :10		A 5 A 5 3 M 5 A	UTO 1 UTO 1 0 ANU 0 (1 UTO]] &L] &)]			
	Syste Preci	dif: FWHI into FWHI m er: se po	ferenti M thref ensity M ratic ror Cor eak Cor	al po old threb (n- crecti	oints : iold : -1)/n : lon [lon [5 0 3 2 N N	1 .05(0 (<u>1</u> 0] 0]) (de par m	g) 11)		

Group : DrSim Data : DHIVESH_GREEN-CHROMIUM

ŧ	Strongest	: 3 peaks						
	no. peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1 10	21.5400	4.12218	100	0.00000	151	0	
	2 27	64.6382	1.44080	95	0.60360	143	4630	
	39	19.8800	4.46249	75	0.00000	113	0	
ŧ	Peak Data	List						
	peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1	11.6500	7.58988	3	0.10000	5	59	
	2	13.4200	6.59255	4	0.28000	6	108	
	3	13.7200	6.44906	5	0.08000	7	31	
	4	14.0400	6.30279	6	0.44000	9	225	
	5	15.0600	5.87812	17	0.90660	26	2788	
	6	16.6200	5.32973	26	0.00000	40	0	
	7	17.8000	4.97898	39	0.00000	59	0	
	8	18.7200	4.73631	58	0.00000	88	0	
	9	19.8800	4.46249	75	0.00000	113	0	
	10	21.5400	4.12218	100	0.00000	151	0	
	11	23.3800	3.80177	57	0.00000	86	0	
	12	24.1400	3.68377	42	1.66000	63	5740	
	13	25.7400	3.45830	14	0.00000	21	0	
	14	26.4000	3.37332	9	0.00000	14	0	
	15	26.5600	3.35336	10	0.92000	15	502	
	16	27.4308	3.24885	6	0.28830	9	252	
	17	28.3700	3.14339	5	0.14000	7	137	
	18	29.8550	2.99033	6	0.25000	9	181	
	19	34.7800	2.57734	10	0.68000	15	706	
	20	35.9366	2.49700	5	0.55330	8	247	
	21	36.9800	2.42890	4	0.24000	6	102	
	22	38.1000	2.36004	32	0.80000	48	1871	
	23	39.9266	2.25618	5	0.37330	7	205	
	24	41.3000	2.18427	3	0.08000	5	50	
	25	42.2750	2.13612	3	0.11000	5	50	
	26	44.2650	2.04459	19	0.63000	29	1088	
	27	64.6382	1.44080	95	0.60360	143	4630	
```
# Data Infomation
             Group : DrSim
Data : DHIVESH_GREEN-CHROMIUM
Sample Nmae : DHIVESH_GREEN-CHROMIUM
              Comment
                                         :
                                     : 02-12-20 12:15:02
              Date & Time
# Measurement Condition
     X-ray tube
             target
voltage
current
                                       : Cu
: 40.0 (kV)
                                        : 30.0 (mA)
     Slits
             Auto Slit: not Useddivergence slit: 1.00000 (deg)scatter slit: 1.00000 (deg)receiving slit: 0.30000 (mm)
     Scanning
             Ingdrive axis: Theta-2Thetascan range: 10.0000 - 70.0000 (deg)scan mode: Continuous Scanscan speed: 2.0000 (deg/min)sampling pitch: 0.0200 (deg)preset time: 0.60 (sec)
# Data Process Condition
     Smoothing
                                          [ AUTO ]
             smoothing points : 51

ibtruction [ AUTO ]

sampling points : 51

repeat times : 30

Separate [ Manuat
     B.G.Subtruction
     [ AUTO ]
     Peak Search
              differential points : 51
              FWHM threhold : 0.050 (deg)
              intensity threhold : 30 (par mil)
              FWHM ratio (n-1)/n : 2
     System error Correction [ NO ]
     Precise peak Correction [ NO ]
```

*** Basic Data Process ***

Group : DrSim Data : DHIVESH_GREEN-TEA-NICKEL

ŧ	Strongest	3 peaks						
	no. peak	- 2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	19	21.6800	4.09588	100	0.00000	140	0	
	2 33	64.6312	1.44094	91	0.59350	128	3884	
	3 10	22.6200	3.92775	89	0.00000	125	0	
ŧ	Peak Data	List						
	peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1	11.6150	7.61267	4	0.07000	6	45	
	2	12.7750	6.92391	4	0.27000	6	124	
	3	13.7400	6.43972	6	0.32000	8	210	
	4	15.3000	5.78645	23	0.78000	32	2821	
	5	16.7600	5.28552	23	0.00000	32	0	
	6	17.8600	4.96239	36	0.00000	50	0	
	7	19.6600	4.51192	66	0.00000	92	0	
	8	20.8800	4.25097	86	0.00000	120	0	
	9	21.6800	4.09588	100	0.00000	140	0	
	10	22.6200	3.92775	89	0.00000	125	0	
	11	23.3000	3.81464	68	0.00000	95	0	
	12	24.1200	3.68678	52	2.18000	73	7441	
	13	26.0200	3.42171	16	0.00000	22	0	
	14	26.8800	3.31416	12	1.00000	17	1449	
	15	30.3450	2.94315	9	0.63000	13	443	
	16	31.4550	2.84178	4	0.09000	6	56	
	17	32.6850	2.73759	4	0.05000	5	28	
	18	34.1800	2.62120	4	0.04000	5	31	
	19	34.7400	2.58021	8	0.40000	11	567	
	20	35.6600	2.51573	7	0.00000	10	0	
	21	35.8200	2.50486	9	1.16000	12	488	
	22	38.2100	2.35350	25	1.10000	35	1763	
	23	40.2800	2.23719	5	0.16000	7	162	
	24	42.5650	2.12223	4	0.09000	6	48	
	25	44.2575	2.04492	17	0.78500	24	1018	
	26	46.1600	1.96497	5	0.56000	7	266	
	27	47.1750	1.92503	6	0.27000	8	153	
	28	49.6650	1.83419	4	0.19000	5	106	
	29	53.5483	1.70997	4	0.12330	5	89	
	30	55.3950	1.65726	4	0.19000	5	95	
	31	55.5700	1.65245	3	0.14000	4	63	
	32	63.5800	1.46220	3	0.05340	4	19	
	33	64.6312	1.44094	91	0.59350	128	3884	

```
# Data Infomation
             Group : DrSim
Data : DHIVESH_GREEN-TEA-NICKEL
Sample Nmae : DHIVESH_GREEN-TEA-NI
             Comment
                                        :
                                    : 02-12-20 11:41:35
             Date & Time
# Measurement Condition
     X-ray tube
                                      : Cu
: 40.0 (kV)
             target
             target
voltage
current
                                        : 30.0 (mA)
     Slits
             Auto Slit: not Useddivergence slit: 1.00000 (deg)scatter slit: 1.00000 (deg)receiving slit: 0.30000 (mm)
     Scanning
             Ingdrive axis: Theta-2Thetascan range: 10.0000 - 70.0000 (deg)scan mode: Continuous Scanscan speed: 2.0000 (deg/min)sampling pitch: 0.0200 (deg)preset time: 0.60 (sec)
# Data Process Condition
     Smoothing
                                          [ AUTO ]
             smoothing points : 51
btruction [ AUTO ]
sampling points : 51
repeat times : 30
Separate [ MANUAL
     B.G.Subtruction
     [ AUTO ]
     Peak Search
             differential points : 51
             FWHM threhold : 0.050 (deg)
             intensity threhold : 30 (par mil)
             FWHM ratio (n-1)/n : 2
     System error Correction [ NO ]
     Precise peak Correction [ NO ]
```

*** Basic Data Process ***

APPENDIX J: Sample Calculation of Crystallite Size, d_x (nm)

The calculation of crystallite size from the XRD raw data can be obtained with the use of Debye Scherrer's equation is shown below.

$$d_x = \frac{0.94 \,\lambda}{FWHM \cdot \cos \theta}$$

where,

 d_x = Crystallite size, nm λ = X-ray wavelength (CuK α) = 0.15406 nm FWHM = Full Width Half Maximum, rad θ = Bragg's angle, rad

According to the XRD raw data of virgin jasmine green tea leaves, the information below is obtained:

2 Theta, 2θ (deg) = 21.24 ° Full Width Half Maximum, FWHM (deg) = 4 °

Unit Conversion from degrees to radians

2 Theta,
$$2\theta = 21.24 \circ \times \frac{\pi}{180^{\circ}}$$

2 Theta, $2\theta = 0.3707 \, rad$

Full Width Half Maximum, FWHM = $4^{\circ} \times \frac{\pi}{180^{\circ}}$ Full Width Half Maximum, FWHM = 0.0698

Calculation of Crystallite Size, d_x (nm)

Crystallite size,
$$d_x(nm) = \frac{0.94 \ (0.15406 \ nm)}{0.0698 \cdot \cos(\frac{0.3707}{2})}$$

Crystallite size, $d_x(nm) = 2.1109 \ nm$