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ABSTRACT 

 

Evapotranspiration (ET) is a process comprising of both evaporation and 

transpiration, which plays an important role in the hydrological cycle. A good 

precise estimation of it is very important in various fields including water 

resources, agriculture and irrigation systems. The purpose of the study is to 

estimate the reference evapotranspiration (ETo) in Peninsular Malaysia using 

extreme learning machine (ELM) and the ELM enhanced with the bootstrap 

aggregating fusion method, with climatic data as input to the model. The 

climatic data used to train the model included maximum temperature, mean 

temperature, minimum temperature, relative humidity, wind speed, and solar 

radiation. These data were obtained from eight stations in Peninsular Malaysia, 

which were the Alor Setar, Bayan Lepas, Ipoh, Kuala Lumpur International 

Airport (KLIA) Sepang, Lubok Merbau, Pulau Langkawi, Sitiawan and Subang 

stations. The data obtained were arranged into 63 combinations and each of 

these combination sets was used separately as input in the model estimation. 

The results generated were interpreted based on the root mean square error 

(RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), adjusted Nash-

Sutcliffe model efficiency coefficient (ANSE), mean bias error (MBE) as well 

as the mean absolute error (MAE). The results showed the best performance for 

most of the stations was the combination set with six climatic data as input for 

the model. Solar radiation was found to be the most important single input data 

for good model estimation. Bootstrap aggregating, also known as bagging did 

not improve but had reduced the performance of the model. A large amount of 

dataset utilized might be the reason for the inability of bagging to improve the 

performance of the model. Bootstrapping a huge amount of dataset might lead 

to over-fitting and thus reduce the accuracy in return. The large data size with 

respect to the low data dimensionality might also contribute to the 

ineffectiveness of the bagging to improve the model prediction. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Evapotranspiration (ET), as the name implies, refers to two processes whereby 

the water is lost back to the atmosphere: the loss of water from the surface of 

soil through evaporation and the loss of water from the crop through 

transpiration (Allen et al., 1998). ET plays a main role in the hydrologic cycle. 

According to Pokorny (2019), about 70% of the yearly precipitation in the 

United States returns to the atmosphere via ET. The return of precipitation to 

the atmosphere by ET in the western region of the United States having arid and 

semiarid climate is even higher at about 90%. According to Traore, Wang and 

Chung (2014), water shortage problems have led to a shortage of food and 

constrained economic growth in arid and semiarid regions of Africa. Therefore, 

a good estimation of ET is very crucial for agriculture, irrigation system 

management, environmental assessment and water allocation.  

The rate of ET process is affected by many factors. The amount of 

precipitation returns to the atmosphere by ET from a field is dependent on the 

ability of the plants to draw the water from the soil to the atmosphere during 

transpiration process and also the water or moisture content of the soil. Thus, 

the type of plants available in the field will affect the rate of ET. Other than the 

plants and soil, some of the climatic criteria also have significant impacts on ET. 

For example, solar radiation, temperature of both the evaporative surface and 

the air, surrounding vapour pressure and the speed of wind that moves above 

the evaporative surface. (Pereira, Cordery and Iacovides, 2009).  

Potential evapotranspiration (PET) was defined by Dingman (2015) in 

his book, “Physical Hydrology” as the ET rate of a huge field that is utterly 

covered with vegetation, having unlimited or abundant soil water and no 

occurrence of heat advection. Notwithstanding the abundant supply of water, 

there are still some vegetative-surface-related factors that strongly affect the ET 

rate, including the albedo of the surface, maximum leaf conductance as well as 

the atmospheric conductance. Therefore, the concept of PET was then replaced 

with the reference-crop evapotranspiration. Reference-crop evapotranspiration 
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(ETo) indicates the quantity of water transpired by a short green crop of even 

height that totally covers the ground surface and is with unlimited water supply.  

Due to the significance of ETo, a number of studies (Hill et al, 1983; 

Allen, 1983; Allen et al, 1998) had been carried out in the past few decades with 

the aim of developing new precise methods to estimate ETo and to improve the 

estimation performance of current methods at the same time. The value of ETo 

can be measured by using lysimeters that work on soil water balance (Xu and 

Chen, 2005) or by micrometeorological means, for example, eddy covariance 

or the Bowen ratio energy balance method (Campbell and Willamson, 1997). 

The downfall of the evapotranspiration measurement using lysimeter is that it is 

certainly time-consuming. Besides, careful and precise planning is required to 

carry out the method (Kumar et al., 2002). The ETo value also can be calculated 

using empirical equations which require climatic data. These empirical 

equations include the Priestley-Taylor (PT) equation, Hargreaves equation 

(HARG), Thornthwaite equation and the combined method such as the FAO-56 

Penman-Monteith or simply known as the Penman-Monteith (PM) equation. 

Among these methods, the PM method has been described to be better in 

estimating the ETo compared to other empirical equations. This method has 

always been used as the reference method in a number of studies, such as the 

studies done by Falamarzi and others in 2014, Gocic and others in 2016 as well 

as Ladlani and others in 2012.  

However, despite all the improvements mentioned above, their 

applications are difficult when there is only limited climatic data available. 

Consequently, a more advanced method is introduced, namely the artificial 

neural network (ANN). It is a non-linear mathematical network that relates the 

inputs and outputs of a system with complex processes. There are commonly 

five types of ANN models used to estimate ETo: back-propagation neural 

network (BPNN) (Kuo et al., 2011; Traore, Wang and Chung, 2014; Pakhale et 

al., 2015), extreme learning machine (ELM) (Patil and Deka, 2016; Gocic et al., 

2016; Dou and Yang, 2018), multilayer perceptron (MLP) (Traore, Luo and 

Fipps, 2015; Yassin, Alazba and Mattar, 2016; Antonopoulos and Antonopoulos, 

2017), generalized regression neural network (GRNN) (Traore, Wang and Kerh, 

2008; Heddam et al. 2013; Feng et al., 2017) and radial basis function (RBF) 

(Trajkovic, 2005; Trajkovic, 2009; Goodarzi and Islamian, 2018). 
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Bootstrap aggregating, also known as bagging, is a type of prediction 

combination method applied in the machine learning field. In bagging, bootstrap 

samples regarding training data sets are used to develop base models. The 

forecasts made by these samples are averaged to minimize the variance of 

forecasts without bagging. This method has high performance when the model 

is non-linear and the size of the data sample is not large (Elliott and 

Timmermann, 2013). Bagging can be used in ANN to improve estimation 

accuracy. 

 

1.2 Importance of the Study 

As the population in the world keeps on expanding, the management of water 

resources and irrigation needs to be enhanced to a higher level of efficiency to 

meet the demands all around the world. ET which is one of the most important 

components in the hydrological cycle greatly influences the volume of runoff, 

water required in the irrigation system and soil moisture content. Accurate 

estimation of ETo is a vital practice in water resource planning and water 

budgeting.  

 A good understanding and accurate estimation of ETo can contribute to 

a greener urbanization process. One of the systems that apply the idea of ET is 

the green stormwater infrastructure (GSI). GSI mitigates the runoff and 

pollutants by using hydrological components instead of drainage and sewerage 

systems. ETo plays an influential role in enhancing the ability of GSI systems 

by restoring the soil pore storage via the reduction of moisture (Ebrahimian, 

Wadzuk and Traver, 2019). 

 In tropical countries like Malaysia, hydrological changes are considered 

as one of the largest potential effects on global climate change (Parry et al., 

2007). In tropical regions, climate change leads to an increase in temperatures. 

The rise in temperature, in turn, induces a higher rate of evapotranspiration 

which will have an impact on the hydrological system as well as water resources 

(Shahid, 2011). Therefore, the ability to estimate the ETo and to evaluate its 

changes is very important in managing long-term water resources. Certainly, in 

the agricultural field, it is crucial to predict the change in ET due to climate 

change which will affect the amount of water loss (Tukimat, Harun and Shahid, 

2012). The significance of estimation on rice crop evapotranspiration was 



4 

explained by Lee, Najim and Aminul (2004) as some of the commercial paddy 

estates in Malaysia constantly find better means to manage crop and irrigation 

systems in order to enhance the productivity and so their profits. A good 

estimation of rice crop evapotranspiration will improve the irrigation planning 

and scheduling as well as crop and irrigation systems for large scale production, 

while helping in reducing costs of production. 

 

1.3 Problem Statement 

The estimation of ETo has been approached in various ways and many of them 

are by direct measurements and empirical methods; with the recommendation 

by FAO that the PM model as the standard way to obtain the ETo (Rahimikhoob 

and Hosseinzadeh, 2014). However, these methods utilize the climatic data of 

the respective region of study to calculate the value of ETo corresponding to the 

region but are not reliable when applied to other regions, especially those having 

distinct differences in climatic patterns. A large amount of data is required for 

the estimation and this makes it harder in that the data sets are not easily 

acquired. In many places where relating studies are carried out, hydrologists had 

to make reasonable assumptions on meteorological information that are not 

available (Sudheer, Gosain and Ramasastri, 2003).  

 Much focus has been placed on current methods like ANN, a non-linear 

and complex mathematical structure to estimate the ETo. This modelling 

structure had been used successfully to model intricate non-linear relationships 

in other types of application fields. Compared to conventional empirical 

methods, the ANN’s advantages over them is that it does not need well-

interpreted information about the complex relationships such as equations to 

describe the underlying process (Sudheer, Gosain and Ramasastri, 2003). The 

performance of ANN models was investigated in this study where one type of 

ANN model, the ELM was used to estimate the ETo in Malaysia. Besides, the 

bootstrap aggregating method was adopted in the modelling to test the effect of 

it on the accuracy of the results.  

 

1.4 Aim and Objectives 

The study is aimed at estimating the potential evapotranspiration using extreme 

learning machine (ELM) with bootstrap aggregating fusion method. 
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(i) To develop an ELM model with various combinations of climatic 

data for ETo estimation. 

(ii) To study the capability of the bootstrap aggregating fusion 

method to improve the model estimation accuracy. 

(iii) To interpret the performance of the ELM model by referring to 

the PM method as the reference standard. 

(iv) To determine the combination of climatic data that registers the 

best accuracy from the model. 

 

1.5 Scope and Limitation of the Study 

The focus of the study is to investigate the performance of ANN in the 

estimation of ETo. Extreme learning machine (ELM) is selected for the study to 

investigate its accuracy in estimating the ETo. The value of ETo that is calculated 

using the PM method will be set as a standard for the comparison. Bootstrap 

aggregating fusion method is incorporated in the modelling to reduce the errors. 

Climatic data from eight meteorological stations located on the west coast side 

of Peninsular Malaysia are acquired and used as the input variables for ANN 

models. These input variables include maximum temperature (Tmax), minimum 

temperature (Tmin), mean temperature (Tmean), mean relative humidity (RH), 

mean wind speed (U2) and solar radiation (Rs). The accuracy of neural network 

models is measured in terms of root mean square error (RMSE), mean absolute 

error (MAE), mean bias error (MBE), Nash-Sutcliffe model efficiency 

coefficient (NSE) and adjusted NSE. 

There are some limitations that may restrict the study to be carried out 

with the fullest coverage. Only one type of ANN model (ELM) is selected for 

this study due to the limited study period. Training of the models is time-

consuming and thus testing on all types of ANN models is not considered. These 

data are extracted from eight stations only and the time range of these data is 

from 2014 to 2018. 

 

1.6 Contribution of the Study 

This study aims to exploit the reliability of ANN models in estimating the ETo. 

ANN is viewed as a potential substitute for the empirical PM method which 

depends strongly on the availability of large amounts of data. It also works on 
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the different combinations of climatic factors as the inputs of ANN models. It 

is also one of the priorities to figure out the best data combination that gives the 

greatest precision.  It is hoped that knowledge of ANN will help in enhancing 

the estimation of ETo for the forecasting of ET. In Malaysia, an important part 

of the economy is contributed by agricultural activities, such as paddy and oil 

palm plantation, etc. Thus, the ability to estimate evapotranspiration accurately 

will result in a better economy. Besides, with better methods to estimate 

evapotranspiration, water resource and management as well as supply can be 

organized in more sufficient mean and water shortage issues can be reduced. 

 

1.7 Outline of the Report 

Chapter 1 provides an explanation of evapotranspiration, methods of estimation 

and limitations encountered in the study. Chapter 2 reviews the PM method, five 

types of ANN models which are the MLP, RBF, GRNN, BPNN and ELM. The 

review on the bootstrap aggregating fusion method is also covered in Chapter 2. 

Chapter 3 is the methodology part, where the processes of pre-processing, 

model training, and performance evaluation are described in detail. Data, results 

of the model estimations and interpretation are focused in Chapter 4 while 

Chapter 5 presents the conclusions of the study. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 FAO-56 Penman-Monteith Equation 

Reference evapotranspiration ETo is important as it acts as a standard for the 

comparison of evapotranspiration at different areas or time as well as provides 

relations for evapotranspiration of other crops. The FAO-56 Penman-Monteith 

(PM) method is recommended as the standard method to compute the ETo by 

the Food and Agriculture Organization of United Nations (FAO). The PM 

equation is the result of the combination of the original Penman-Monteith 

equation, aerodynamic equation and surface resistance equation. This equation 

requires several climatic variables which are solar radiation, air temperature, 

wind speed and humidity. The measurement of climatic variables should be 

carried out at a height of 2 m from a green grass surface covering a large area, 

shading the ground and without water supply shortage. The PM equation takes 

into consideration of both physical and physiological factors affecting the 

evapotranspiration process (Allen et al., 1998). 

 

2.2 Artificial Neural Network for Evapotranspiration 

Artificial neural network (ANN) is a computational model which can be thought 

of as a highly simplified form of biological neural network structure. It consists 

of numerous interconnected processing elements (PE) or simply known as 

neurons (Yegnanarayana, 2006). A PE consists of weighted inputs, transfer 

function, and one output. In each PE, inputs are regulated by the connection 

weights and combined to produce what so-called the activation function before 

being propagated across a transfer function to create an output. The sigmoid 

function is the most common transfer function used (Agatonovic-Kustrin and 

Beresford, 2000). ANN offers many advantages due to its processing 

characteristics including nonlinearity which results in a better fi t of data, 

robustness and generalization ability. This allows the model to be applied to 

unlearned data and learning ability. Besides, the model adaptivity enables it to 

update internal structure due to the changing environment. (Basheer and 
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Hajmeer, 2000). ANN has been incorporated in the evapotranspiration 

estimation and was found to have greater accuracy compared to conventional 

empirical methods (Trajkovic, 2009; Salim et al., 2013; Antonopoulos and 

Antonopoulos, 2017). 

 

 

Figure 2.1: Structure of an Artificial Neuron (Agatonovic-Kustrin and Beresford, 

2000). 

 

2.2.1 Multilayer Perceptron  

Multilayer perceptron models are one of the artificial neural networks that have 

been commonly used by researchers in the study of evapotranspiration 

estimation. Generally, these models composed of three layers, input layers, 

hidden layers and output layers. MLPs are classified as feed-forward ANN 

models which means the inputs transmit from the input layer via the hidden 

layer to the output layer, in a forward direction manner (Antonopoulos and 

Antonopoulos, 2017). There are two main stages in the MLP. Firstly, input 

values are fed forward via the hidden layer to generate output values which then 

used to compare with initial values to estimate the difference. After that, the best 

results with the smallest difference are optimized by adjusting the connection 

weights (Pham et al., 2017). 
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Figure 2.2: Typical Architecture of MLP (Traore, Luo and Fipps, 2015). 

 

Landeras, Ortiz-Barredo and López (2009) studied the weekly 

evapotranspiration prediction performance of the MLP-type ANN model and 

the auto regressive integrated moving average model (ARIMA) and compared 

the results with a model that obtained ETo based on weekly averages. The region 

of study was the Álava located in the Basque Country where its temperature, 

solar radiation, relative humidity and wind speed were collected for model 

inputs purpose. The results were compared in terms of root mean square 

difference (RMSD) and mean absolute deviation (MAD). Compared to the 

averaged-based model, the MLP and ARIMA model decreased the root mean 

square differences by 6% to 8% while standard deviation differences by 9% to 

16%. 

In the study carried out by Rahimikhoob (2010), MLP was used to 

estimate the ETo on the southern coast of the Caspian Sea with maximum 

temperature, minimum temperature and extra-terrestrial radiation data obtained 

from eight weather stations as input variables. The estimation of the MLP was 

compared with the one estimated by the HARG equation and the PM method 

was set as a benchmark. The coefficient of determination (R2) and RMSE of the 

estimation using the MLP were 0.95 and 0.41 mm/day respectively while The 
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R2 and RMSE of the estimation using the HARG were 0.91 and 0.51 mm/day 

respectively, indicating that MLP was better in performance. 

Jadeja (2011) compared the ability of the MLP and Epan X Kp equation 

in converting the pan evaporation data for ETo estimation. The climatic data 

used as inputs were the maximum and minimum temperatures of Sabarmati 

River in Gujarat. The ETo standard for the comparison was calculated using the 

PM method. The evaluation criteria included the RMSE, correlation coefficient 

(R) and R2. It was found that MLP was more accurate in estimating the ETo. 

Cobaner (2011) tested the effectiveness of two types of adaptive neuro 

fuzzy inference system (ANFIS) which were the grid partition based ANFIS 

(ANFIS-GP) and subtractive clustering based ANFIS (ANFIS-SC) in 

estimating the ETo using the climatic data from Santa Monica in Los Angeles, 

USA. The results of ANFIS models were compared with the estimations of the 

MLP model as well as the California Irrigation Management Information 

System (CIMIS) Penman, HARG and Ritchie equations. Four input variables 

were adopted which were average temperature, solar radiation, relative 

humidity and wind speed. Their performance was judged using the RMSE, 

MAE and determination coefficient statistics. ANFIS-SC was shown to be the 

model with the highest precision among all of these methods. From the 

perspective of input variable combination, the model having all variables had 

the top accuracy. 

Torres, Walker and McKee (2011) investigated the reliability of 

multivariate relevance vector machine (MVRVM) in predicting the ETo in 

Sevier River Basin in Central Utah, USA. There were only two climatic data 

used for the modelling, namely the maximum temperature and minimum 

temperature. The study was carried out in two scenarios, the first scenario 

utilized the already computed ETo data to forecast ETo while the second scenario 

used the already computed data to forecast other needed climatic variables and 

subsequently forecast the ETo. The evaluation criteria were the NSE and RMSE. 

The prediction of the MVRVM was compared with the one predicted by the 

MLP and it was found that the MVRVM was more reliable than the MLP. 

Traore, Luo and Fipps (2015) conducted a study on the performance of 

four ANN models, namely the MLP, generalized feed-forward (GFF), 
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probabilistic neural network (PNN) and linear regression (LR) in predicting the 

ETo at Dallas. The performance evaluation criteria included the MSE, R, 

normalised mean square error (NMSE), MAE and mean square error skill score 

(MSESS) while the PM method was used to obtain standard ETo. Among the 

combination of four variables, which were maximum temperature, minimum 

temperature, extra-terrestrial radiation and solar radiation, the combination that 

contained the maximum temperature, minimum temperature and solar radiation 

produced results with the greatest precision. The results showed that the MLP 

had a greater precision than other models. Researchers concluded that maximum 

temperature was the most important factor in forecasting the ETo while the solar 

radiation accuracy affected the performance the most.  

Kisi et al. (2015) tested the performance of five methods, the MLP, 

ANFIS-GP, ANFIS-SC and gene expression programming ANFIS (ANFIS-

GEP) as well as gene expression programming in forecasting the ETo hinged on 

the meteorological data acquired from 50 weather stations in Iran. Input 

variables for model training included altitude, latitude as well as longitude of 

the station and periodicity component. The RMSE and R2 were used to 

determine the performance of the models. The results showed that the former 

three models had similar accuracy while the ANFIS-GEP had the lowest 

accuracy.  

The ETo forecasting ability of four types of ANN models relying on 

forecasted temperature data were investigated by Luo et al. (2015). The four 

models were namely the MLP, generalized feed-forward (GFF), Probabilistic 

Neural Network (PNN) and Linear Regression (LR) with PM method as 

benchmark. Maximum temperature and minimum temperature were the input 

variables and their performances were tested using the NMSE, MAE and R2. 

The results showed that the MLP, PNN and GFF all performed well in the 

predictions except for the LR. 

Yassin, Alazba and Mattar (2016) carried out a study on the comparison 

of performance of the MLP and GEP models in estimating daily ETo in the 

Kingdom of Saudi Arabia. 30 years of climatic data, from 1980-2010, were 

obtained from 13 climatic stations and 65% of the data was used for training 

purpose while the rest were taken for the testing stage. These data included 
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maximum temperature, minimum temperature, average temperature, maximum 

relative humidity, minimum relative humidity, average relative humidity, wind 

speed, solar radiation and crop height. Standard ETo values were estimated by 

using the generalized PM method. Several items were utilized to interpret the 

estimation performance of the models which were R2, overall index of the model 

performance (OI), RMSE and MAE. Based on the results, R2 and RMSE of the 

MLP models were in the range of 67.6% to 99.8% and 0.20 to 2.95 mm/day 

respectively, which were generally higher than those of the GEP models with 

values 64.4% to 95.5% and 1.13 to 3.1 mm/day respectively. The models with 

all variables as inputs had the highest accuracy. The benefits of the ANN model 

were its flexibility and ability to model nonlinear relationships, as mentioned by 

the authors. 

Antonopoulos and Antonopoulos (2017) applied MLP models to run an 

estimation on ETo based on the five-year-period climatic data collected from a 

station in northern Greece. Temperature, relative humidity, solar radiation and 

wind speed were the input variables while RMSE and R were the evaluation 

criteria for performance. The PT, HARG, Makkink and mass transfer methods 

were also adopted for comparison with MLP models, and the PM method as 

referring standard. It was found that the MLP model with four input variables 

had the highest accuracy, and the accuracy decreased when the number of 

variables decreased. Generally, MLP models were better than empirical 

methods. However, the accuracy of ANN decreases with pooled data due to high 

non-linearity and less similarity among the data. 

In the research done by Ferreira et al. (2019), MLP-type ANN model 

and support vector machine (SVM) model were adopted to estimate the ETo in 

Brazil and then compared with original as well as calibrated version of empirical 

methods. These empirical methods included the HARG-Samani, Oudin, Hamon, 

Valiantzas, Romanenko and Schendel. They carried out the research in two 

scenarios. In the first scenario, the data of meteorological stations were 

categorized according to their climatic feature similarities and models were 

developed for each category. The second scenario incorporated previous 

climatic data as input variables for the models. In this study, only temperature 

and relative humidity were used as the input variables while the performance of 
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the methods in estimating ETo was measured using the RMSE, MBE and R2. 

Both, the MLP and SVM models performed better than empirical methods, with 

MLP models having registered the highest accuracy in both temperature-based 

as well as temperature and relative humidity-based models. Moreover, models 

with two input variables estimated ETo better than models with one input 

variable. 

Saggi and Jain (2019) used four types of models to estimate the ETo in 

Hoshiapur and Patiala in Punjab, and those were the deep learning MLP, 

generalized linear model (GLM), random forest (RF) and gradient-boosting 

machine (GBM). The climatic factors involved were the maximum temperature, 

minimum temperature, relative humidity, wind speed and sunshine hour. The 

results were interpreted using the NSE, R, R2, normalized root mean square error 

(NRMSE), root mean square logarithmic error (RMSLE), accuracy (ACC), log 

loss (LL) as well as mean per-class error (MCE). The results showed that deep 

learning MLP had the highest accuracy, with NSE ranged from 0.95-0.98, R2 

ranged from 0.95-0.99, ACC ranged from 85-95, MSE ranged from 0.0369-

0.1215 and RMSE ranged from 0.1921-0.2691. Deep learning MLP thus 

showed greater robustness than other common methods. 

Based on the previous researches, MLP models generally exhibited 

better performance and higher accuracy compared to conventional methods and 

many of the machine learning models but some machine learning models 

outperformed MLP such as MVRVM as shown in study done by Torres, Walker 

and McKee (2011). The accuracy of the estimation seems to increase with the 

increase in the number of input variables. 

 

2.2.2 Radial Basis Function 

Radial basis function (RBF) neural networks are nonlinear hybrid networks with 

three layers similar to MLP. The three layers are input layers, hidden layers and 

output layers. Generally, the Gaussian function is adopted in the hidden layer 

while the linear function is adopted in the output layer. The RBF process can be 

separated into unsupervised learning session and supervised learning session. 

The parameters and basic functions are determined in the first session while the 

weights between the hidden and output layers are determined in the second 
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session by applying the linear regression and reduce slope method (Dehghani et 

al, 2009).  This type of model utilizes the trial and error process to obtain the 

best architecture. This is achieved by varying the number of hidden layers and 

their neurons along with other components such as transfer function and 

learning algorithm (Goodarzi and Eslamian, 2018). 

 

 

Figure 2.3: Typical Structure of Radial Basis Function (Partal, 2015). 

 

Trajkovic (2009) analysed the reliability of RBF in converting the pan 

evapotranspiration to ETo values. The model was fed with climatic data obtained 

from Policoro, Italy and the outcomes were compared with the Christiansen, 

FAO-24 pan, and PM method with measurement using the lysimeter as the 

benchmark. The input variables provided for the RBF training were pan 

evaporation and extra-terrestrial radiation. The performance of these methods 

was tested using RMSE and R2. The results indicated that RBF with 0.433 

mm/day of RMSE was the lowest among all methods.  

In the study by Partal (2015), wavelet transformation technique was 

incorporated in both the RBF and multiple linear regression (MLR) models to 

estimate the ETo using the climatic data gathered from two weather stations in 

the US. Four input factors were used in the modelling, and these were solar 

radiation, temperature, relative humidity and wind speed. Comparison was 

made between seven models, including the RBF, wavelet-based RBF (WRBF), 

MLR, wavelet-based MLR (WMLR), HARG, PM method and Turc method. 
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MAE and R2 were the criteria used to study the precisions of the methods. The 

results showed that WRBF performed better than MLR. Besides, involvement 

of wavelet transformation in the modelling enhanced the performance greatly. 

They also stated that WRBF learns through the data in one time and is able to 

generalize from example from the time they are stored. 

Petković et al. (2015) compared the performance of two types of RBF 

networks, one worked with particle swarm optimization (RBF-PSO) while 

another worked with back-propagation (RBF-BP) in estimating the ETo in 

Serbia using 30-year period of climatic data. Maximum temperature, minimum 

temperature, sunshine hour, actual vapour pressure and wind speed. The 

reference equation used was the PM method and the performance of the models 

was evaluated based on RMSE, MAE and R2. RBF with particle swarm 

optimization was found to be better than RBF with back-propagation in the 

estimation. 

Goodarzi and Eslamian (2018) carried out an analysis of the 

performance of the RBF and genetic programming (GP) which were non-linear-

type models as well as the MLR which represented the linear-type model in 

estimating the monthly ETo in Isfahan. Maximum temperature, minimum 

temperature, mean temperature, relative humidity, wind speed and solar 

radiation were the input variables while RMSE and R2 were the performance 

evaluation elements. In terms of precision, GP models registered the lowest 

error with RMSE value of 0.21 but in terms of training speed, RBF turned out 

to be faster than GP. Both RBF and GP models registered the greater 

performance when all input variables were utilized compared to less input 

variables were utilized. It was mentioned by the authors that both RBF and GP 

are able to filter out noises, outliers and missing data as well as able to update 

the model with new data. 

In a nutshell, RBF showed a better estimation of ETo in the former 

studies, compared to conventional methods which require a large amount of 

input data. The modified RBF such as with the incorporation of particle swarm 

optimization can be used to further enhance the performance. 
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2.2.3 Generalized Regression Neural Network 

Generalized regression neural network (GRNN) which was proposed by Specht 

(1991) is an improved version of radial basis function. Similar to feed-forward 

neural network, it estimates any arbitrary function between inputs and outputs 

directly from the training data. However, the operation of the GRNN is different 

from the general feed-forward neural network in the way that it is based on non-

linear regression theory to estimate function (Feng et al., 2017). This type of 

model does not encounter local minima problem and does not require a 

repetitive training process. The architecture of GRNN model is made up of four 

layers which comprise input layer, pattern layer, summation layer and output 

layer. It is a parallel structure with one-pass learning algorithm which allows 

the transfer of data between layers smoothly even with a huge amount of data 

(Specht, 1991). There will be a weight connecting each node in the pattern layer 

to two nodes in the summation layer while each of these summation layer nodes 

calculates the weighted outputs and un-weighted outputs of the pattern nodes 

(Ladlani et al, 2012). 

 

 

Figure 2.4: Schematic Diagram of GRNN (Ladlani et al, 2012). 
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Ladlani et al. (2012) investigated the effectiveness of the GRNN and 

RBF in estimating the ETo in Algeria. Meteorological data including maximum 

temperature, minimum temperature, mean temperature, sunshine duration and 

relative humidity were used as input variables for the models with ETo 

calculated using the PM method as the standard. Other than these two models, 

HARG-Samani and PT equations were also adopted for comparison with the 

neural network models. RMSE, MAE, R and Willmott index of agreement (d) 

were used to test for their performance. In the study, GRNN showed the highest 

accuracy in estimating the ETo, followed by RBF. When all variables were 

utilized as inputs of the models, the precision was the best among all types of 

combinations. The researchers stated that these ANN models are responsive, 

fast, economical, suitable to be used in real-time and able to simulate possible 

conditions for both partially and totally available climatic data. 

Heddam et al. (2013) compared the ability of both GRNN and MLR in 

estimating the monthly PET in Guelma, northeast of Algeria. The input 

variables fed into the models consisted of maximum temperature, minimum 

temperature, mean temperature, sunshine duration and wind speed and RMSE, 

MAE, R and d were the criteria used for determining the performance of the 

models. It was found that the GRNN registered more accurate ETo than the MLR. 

GRNN was also applied by Feng et al. (2017) to estimate the ETo hinged 

on the climatic data acquired from two stations in the southwest of China and 

then compared with random forests (RF) model. The input variables were 

maximum temperature, minimum temperature, solar radiation, wind speed, 

relative humidity and extra-terrestrial radiation. These models were trained 

using two combinations of input variables. The first combination used all the 

climatic data whereas the second combination only used temperature and extra-

terrestrial radiation as input factors. The performance of the models was rated 

using RMSE, MAE and NSE with the aid of the k-fold test. For both stations, 

RF models with the first variable combination were the highest in terms of 

accuracy. The results showed that both models gave ETo estimation at high 

precision, but RF was slightly higher than GRNN. 

Feng et al. (2017) estimated the ETo utilizing ELM and GRNN with 

solely temperature data obtained from six weather stations in Sichuan basin. 
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There were only three climatic variables used as input variables, namely 

maximum temperature, minimum temperature and extra-terrestrial radiation 

while evaluation components were RRMSE, MAE as well as NSE. The results 

of the two models were compared with HARG and calibrated HARG. They 

trained the models with two conditions. In the first condition, only local data of 

each station was used in the training while in the second condition, the data from 

all stations were used in training and then applied for each station. For the first 

condition, ELM had a higher accuracy, with a value of 0.198 for RRMSE, 0.267 

for MAE and 0.891 for NS. For the second condition, GRNN turned out to be 

the model that reported higher accuracy, with a value of 0.194 for RRMSE, 

0.263 for MAE and 0.895 for NSE. The authors stated that ELM was faster than 

GRNN in terms of training and testing processes.  

As a summary, GRNN also registered desirable performance in terms of 

ETo estimation and is a potential alternative to conventional methods. As stated 

by Specht (1991), this type of model offers advantages including that it does not 

need a repetitive training procedure and is a one-pass learning algorithm that 

enables the smooth transfer of vast data amount through the layers. 

 

2.2.4 Back-Propagation Neural Network 

Back-propagation neural networks (BPNN) are one of the most widely used 

forward neural networks. These models are multilayer mapping networks that 

propagate the information forward while minimizing the error backward. Thus, 

they are also known as error back-propagation networks. In the back-

propagation learning algorithm, the network’s connection weights and 

thresholds are initialized by random means. These two components are then 

adjusted to minimize the errors of the output and actual values through the 

gradient descent by using training data. The training process is completed when 

the error reaches the set level and the connection weights as well as the 

thresholds are determined (Wang, Zeng and Chen, 2015). 
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Figure 2.5: Schematic Diagram of BPNN (Pakhale et al., 2015). 

 

Traore, Wang and kerh (2010) carried out a study on the performance of 

the BPNN in the modelling the ETo in the Bobo-Dioulasso region in Sudano-

Sahelian zone of Burkina Faso. Temperature data was used as the input variables 

of the modelling as many of the climatic data was unavailable in the region 

while sunshine duration, relative humidity and wind speed variables were added 

as extra variables to test the effects on performance. The result of the BPNN 

was compared with the result of HARG, by setting PM method as standard 

reference with RMSE, MAE and R2 as evaluation criteria. It was shown that 

BPNN models are more accurate than HARG due to the better generalization 

ability. The introduction of wind variables into the BPNN models increased the 

accuracy the most when compared to sunshine duration and relative humidity, 

rising the R2 by 9.52%. The input variable combination that offered the highest 

accuracy was the one that had included all the five variables.  

In the study conducted by Kuo et al. (2011), the prediction performance 

of the BPNN based on PM method was compared to the one based on pan 

evapotranspiration method. Chia Nan was selected as the area of study and ten 

weather factors were adopted. Those were maximum temperature, minimum 

temperature, average temperature, relative humidity, wind speed, solar radiation 

amount, sunshine duration, dew point, morning ground temperature and 
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afternoon ground temperature. The evaluation criteria for the prediction 

performance were the MAE and R. They found out the forecasted errors were 

1.67% and 13.23% for PM method and pan evapotranspiration method 

respectively, proving that BPNN model is able to predict ETo more accurately 

when it is based on PM method. The model that used all the variables as input 

variables registered the best accuracy. Besides, they also ranked the ten factors 

according to their importance in optimizing the degree of correlation between 

the factors and the predicted ETo. It was found that wind speed was the most 

impactful. 

Huo et al. (2012) investigated the performance of BPNN models in 

estimating the ETo utilizing the climatic data from three stations in northwest 

China. Maximum temperature, minimum temperature, wind speed, relative 

humidity and sunshine duration were adopted as input variables. Four other 

methods were adopted to make comparison on the ETo estimation of ANN, 

including multiple linear regressions (MLR), PM equation, PT equation and 

HARG-Samani equation. The precision of these methods was measured based 

on RMSE, relative error (RE) and R2 and results showed that ANN models had 

the higher accuracy over the other methods. They also found out the ANN model 

with five input variables was better than three or four input variables only as the 

model consisted of all five input variables reported the highest accuracy. The 

effects of climatic variables in terms of accuracy were evaluated using 

connection weight method. Maximum temperature, minimum temperature and 

relative humidity were found to be the most important variables. They 

concluded that the better performance of ANN models is due to the ability to 

capture the nonlinear input-output relationship.  

Falamarzi et al. (2014) tested the ability of both ANN with BPNN type 

model and wavelet-based neural network (WNN) in estimating the daily ETo 

based on the meteorological data from the Redesdale station in Australia. 

Maximum and minimum temperature were used as the input variables with wind 

speed as the extra variable to investigate its effect on the performance of models. 

The evaluation criteria were the RMSE, absolute percentage error (APE), NSE 

and R. The results showed that both models predicted the ETo at desirable 

precision level. The best model was the decomposed time series WNN with two 
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input variables, six neurons and one output, giving 1.03 mm/day, 0.79, 22% and 

0.89 for RMSE, NS, APE and R respectively. 

BPNN is utilized in the study carried by Traore, Wang and Chung (2014) 

to estimate the ET in Dedougou. The climatic data used as input variables 

included maximum temperature, minimum temperature, relative humidity, wind 

speed, extra-terrestrial radiation and sunshine duration. The comparison of 

accuracy was made between BPNN, Blaney-Criddle (BCR) and Reference 

Model of Burkina Faso (RMBF) with PM method as standard. RMSE, MAE 

and R2 were the evaluation criteria used to measure their precisions. It was 

shown that BPNN was the most accurate method and the introduction of wind 

speed as input variables increased the accuracy significantly. Models with all 

variables showed the lowest error.  

Pakhale et al. (2015) applied three types of ANN models, namely BPNN, 

RBF and GRNN to estimate the daily grass reference crop evapotranspiration in 

Ameleke watershed with PM method as the standard method. Seven input 

variables were adopted, namely, maximum temperature, minimum temperature, 

average temperature, relative humidity, wind speed, rainfall and net radiation. 

RMSE, model efficiency (E) and R2 were the criteria used to test their 

performance. In their study, BPNN showed the highest accuracy among the 

three models. It was explained by the authors that ANN methods are simpler, 

develop models faster and can be used on minimal data structure compared to 

PM method. 

Panda et al. (2018) tested the performance of BPNN and RBF in 

estimating the homogenous pine forest daily evapotranspiration flux at Coastal 

North Carolina, USA. Remote-sensing based estimation tools were adopted by 

them which required ANN models, ArcGIS-based automated geospatial model 

and software to forecast the ET flux. Two principal component analysis (PCA) 

bands were used as input data, namely PC1 and PC2. The performance of the 

models was determined using average absolute error and average accuracy. 

BPNN models registered values of 0.18 Wm-2 and 81% of average absolute error 

and average accuracy respectively, while RBF reported values of 0.15 Wm-2 and 

85%.  
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As one of the most commonly used ANN models in the estimation of 

ETo, many studies were done on the estimation performance of BPNN and 

showed that it generally proved a higher accuracy compared to the conventional 

methods. However, it was also shown that there was machine learning algorithm 

that had a higher estimation precision than the BPNN, for example, RBF. At the 

same time, it can be seen that the accuracy of the model increased when the 

number of input variables increased. 

 

2.2.5 Extreme Learning Machine 

Extreme learning machine (ELM) is a type of learning algorithm applied to the 

single layer feed-forward neural network (SLFN). This learning algorithm 

chooses hidden nodes randomly but analytically decides the weights of output 

of SLFN. ELM has much faster learning speed with conventional feed-forward 

neural network learning algorithms as comparison and has more favourable 

generalization capability. It is able to achieve the lowest training error as well 

as the smallest norm of weights (Huang, Zhu and Siew, 2006). Besides, this 

algorithm does not need much human intervention as the hidden nodes are 

chosen randomly (Gocic et al., 2016).   

 

 

Figure 2.6: Typical Structure of ELM (You et al., 2014). 
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Weekly reference crop evapotranspiration in Jodhpur and Pali weather 

stations in Thar Desert, India was estimated using improved ELM in the study 

done by Patil and Deka (2016). Three ways of input variable combinations were 

tested: first one consisted only of maximum and minimum temperature data 

from local stations whereas the other two combinations adopted ETo values 

from other stations together with local temperature data. HARG equation, 

BPNN type ANN model and least-square support vector machine (LS-SVM) 

were used to compare the performance with ELM. The climatic data used to 

train the models included maximum temperature, minimum temperature, 

maximum relative humidity, minimum relative humidity, wind speed and solar 

radiation. The estimation performance of the model was measured in terms of 

RMSE, NSE and threshold statistics (TS). The results indicated that the ELM 

model was more precise than HARG and ANN models but is almost the same 

as the LS-SVM model. The model with first type of combination showed the 

highest accuracy. Besides, they found that the ELM had the fastest training 

speed among all the models with an average time of 0.004 seconds. 

Gocic et al. (2016) analysed the ability of the ELM to estimate the 

monthly ETo in Nis and Belgrade stations in Serbia by using ETo values obtained 

from different equations, namely the Adjusted HARG, PT and Turc equations. 

Input climatic variables were maximum temperature, minimum temperature, 

wind speed, actual vapour pressure and sunshine hours while the PM method 

was used as standard. The precision evaluation criteria included MAD, mean 

absolute percentage error (MAPE), RMSE, R and R2. ELM model with ETo of 

adjusted HARG reported the greatest accuracy in both stations. It was stated that 

the advantage of the ELM is that it can estimate the ETo with an incomplete data 

set. 

Feng et al. (2016) adopted ELM, genetic algorithm neural network 

(GANN) and WNN to estimate the ETo for region of southwest China. Besides, 

temperature-based and radiation-based models were developed for the three 

types of networks and their performance was compared with the HARG and 

modified HARG for temperature-based models and the Makkink, PT and 

Ritchie for radiation-based models. Five input variables used were the 

maximum temperature, minimum temperature, wind speed, relative humidity 
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and sunshine duration. RMSE and MAE were the criteria determined in order 

to compare the performance of the methods. Results showed that ELM and 

GANN were more superior compared to WNN. In terms of temperature-based 

and radiation-based models, the ELM and GANN models still gave a better 

accuracy than the others. In terms of variable combination, the one with all 

variables gave the greatest accuracy. They stated that ELM creates input weights 

and biases randomly and tuning is not required for the hidden layer, which make 

it superior to the WNN and BPNN. 

The performance of ELM and ANFIS in estimating the ETo in four 

different ecosystems were analysed by Dou and Yang (2018). The mean, 

maximum, minimum, standard deviation, kurtosis and skewness of four 

variables including air temperature, net radiation, relative humidity and soil 

temperature were used as input variables. The effectiveness of the two models 

were compared with conventional ANN and SVM models. Through the 

evaluation of accuracy based on R2, NSE and RMSE, ELM and ANFIS 

registered good results. Three types of hybrid ELM, complex ELM (C-ELM), 

self-adaptive evolutionary ELM (SaE-ELM) and online sequential ELM (OS-

ELM) were also developed and it was found that these hybrids were better than 

the original ELM in estimation. Likewise, the ANFIS-GP, ANFIS-SC and fuzzy 

c-means clustering ANFIS (ANFIS-FCM) also showed higher accuracy 

compared to the original ANFIS. They concluded that the better accuracy of 

both ELM and ANFIS is due to the robustness and feasibility. 

Kisi and Alizamir (2018) conducted a study on estimation of ETo using 

wavelet-based ELM (WELM), a model that combines discrete wavelet 

transform and ELM. Meteorological data including mean temperature, solar 

radiation, relative humidity and wind speed were obtained from Ankara and 

Kirikkale stations in central Anatolia, Turkey as input data. Comparison in 

terms of performance were made between ELM (WELM) and wavelet-based 

ANN (WANN), single ANN, ELM as well as OS-ELM. The Evaluation criteria 

used were RMSE, NSE, MAE and R2. Models that incorporated wavelet method 

showed better precisions compared to the other models. Besides, researchers 

also found out that models with four input variables reported the highest 

accuracy with solar radiation being the most important variable. 
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In a nutshell, the performance of ELM for ETo estimation was higher 

than the other comparison methods in the previous researches reviewed. 

Compared to conventional feed-forward ANN models, the ELM offers much 

faster learning speed and better generalization ability. Besides, the hidden nodes 

are selected randomly and therefore require less human monitoring.  
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Table 2.1: Summary of Journals Reviewed. 

No. Method Input Variables Study Area Best Model and Its Combination 

Preference 

Authors & 

Years of 

Publication 

1 BPNN, HARG Equation Tmax, Tmin, Ra, RH, 

U2, n 

Bobo-Dioulasso in the 

Western region of Bukina 

Faso in Sudano-Sahelian 

(semi-arid climate) 

Model: BPNN 

1. Tmax, Tmin, Ra, RH, U2 

2. Tmax, Tmin, Ra, U2 

3. Tmax, Tmin, RH, U2 

4. Tmax, Tmin, U2 

5. Tmax, Tmin, RH 

6. Tmax, Tmin, Ra, RH 

7. Tmax, Tmin, Ra 

8. Tmax, Tmin, Ra, n 

9. Tmax, Tmin 

10.Tmax, Tmin, n 

(Wang, Traore 

and Kerh, 2010) 

2 BPNN (PM and pan 

evapotranspiration method 

as output layer) 

Tmax, Tmin, Tmean, RH, 

U2, n, Rs, dew point, 

morning ground 

temperature, 

afternoon ground 

temperature 

Chia Nan irrigated area of 

Tainan (humid subtropical 

climate) 

Model: BPNN (PM as output layer) 

1. Tmax, Tmin and Tmean, RH, U2, n, Rs, 

dew point, morning ground 

temperature, afternoon ground 

temperature 

2. Tmax, Tmin, RH, U2, Rs, dew point 

3. Tmean, RH, U2, Rs 

(Kuo et al., 2011) 

3 BPNN, PM Equation, MLR, 

PT Equation, HARG-

Samani Equation 

Tmax, Tmin, RH, n, U2 Shiyang River basin in Gansu 

Province of northwest China 

(south basin: highly gelid, 

semi-arid; middle basin: cool  

Model: BPNN 

1. Tmax, Tmin, RH, n, U2 

2. Tmax, Tmin, RH, U2 

3. Tmax, Tmin, RH, n 

(Huo et al., 2012) 
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Table 2.1 (Continued) 

   and arid; north basin: warmer 

and more arid) 

4. Tmax, Tmin, RH 

5. Tmax, Tmin, n, U2 

6. Tmax, Tmin, U2 

7. Tmax, Tmin, n 

8. RH, n, U2 

 

4 ANN, WNN Tmax, Tmin, U2 Redesdale climatology station 

(oceanic climate) 

Model: WNN 

1. Decomposed Tmax, Tmin 

2. Original Tmax, Tmin, U2 

3. Original Tmax, Tmin 

4. Decomposed Tmax, Tmin, U2 

(Falamarzi et al., 

2014) 

5 BPNN, RMBF, BCR Tmax, Tmin, RH, U2, 

Ra, n 

Dedougou, western Burkina 

Faso (semi-arid climate) 

Model: BPNN 

1. Tmax, Tmin, Ra, RH, n, U2 

2. Tmax, Tmin, Ra, U2 

3. Tmax, Tmin, Ra 

4. Tmax, Tmin, Ra, RH 

5. Tmax, Tmin, Ra, RH, n 

(Wang, Traore 

and Chung, 2014) 

6 BPNN, RBF, GRNN Tmax, Tmin, Tmean, RH, 

U2, P, Rs 

Ameleke watershed, Ethopia 

(tropical climate) 

Model: BPNN 

1. Tmax, Tmin and Tmean, RH, U2, P, Rs 

(Pakhale et al., 

2015) 

7 BPNN, RBF Remote sensing Coastal North Carolina, USA 

(oceanic climate) 

Model: RBF 

1. PC1, PC2 

(Panda et al., 

2018) 

8 HARG Equation, ELM, LS-

SVM 

Tmax, Tmin, RHmax, 

RHmin, U2, Rs 

Jodhpur and Pali in Thar 

Desert, India (arid climate) 

Model: ELM 

1. Tmax, Tmin (local station) 

2. Tmax, Tmin (others station) 

3. Tmax (others station), Tmin 

(Patil and Deka, 

2016) 
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Table 2.1 (Continued) 

9 ELM 

Training: Adjusted HARG 

Equation, PT Equation, Turc 

Equation 

Tmax, Tmin, U2, ea, n Belgrade (humid subtropical 

climate) and Nis (oceanic 

climate) in Serbia 

Model: ELM with adjusted HARG 

1. Tmax, Tmin, U2, ea, n 

(Gocic et al., 

2016) 

10 ELM, GANN, WNN, 

HARG Equation, modified 

HARG Equation, Makkink 

Equation, PT Equation, 

Ritchie Equation 

Tmax, Tmin, U2, RH, n Hilly Area of Central Sichuan 

(HACS), Southwest China 

(warm and humid climate) 

Model: ELM, GANN 

1. Tmax, Tmin, U2, RH, n 

2. Tmax, Tmin 

3. Tmax, Tmin, n 

(Feng et al., 

2016) 

11 ANN, ELM, C-ELM, SaE-

ELM, OS-ELM, SVM, 

ANFIS-GP, ANFIS-SC, 

ANFIS-FCM 

Ta, Rs, RH, Ts (all 

variables include 

mean, maximum, 

minimum, standard 

deviation, kurtosis, 

and skewness) 

Vaira Ranch in US 

(Mediterranean climate), 

Hainich National Park in 

Germany (oceanic climate), 

Lonzee in Belgium (oceanic 

climate), Degero-Stromyr in 

Sweden (Subarctic climate) 

Model: ELM, ANFIS 

1. Ta, Rs, RH, Ts, 

(Dou and Yang, 

2018) 

12 WELM, WANN, ANN, 

ELM, OS-ELM 

Tmean, Rs, RH, U2 Ankara and Kirikkale in 

central Anatolia region of 

Turkey (semi-arid climate) 

Model: WELM, ELM 

1. Rs, Tmean, RH, U2 

2. Rs, Tmean, RH 

3. Rs, Tmean 

4. Rs 

5. Tmean 

6. RH 

7. U2 

(Kisi and 

Alizamir, 2018) 
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Table 2.1 (Continued) 

13 GRNN, RBF, HARG 

Equation, PT Equation 

Tmax, Tmin, Tmean, RH, 

U2, n 

Dar El Beida, Algiers, Algeria 

(Mediterranean climate) 

Model: GRNN 

1. Tmax, Tmin, Tmean, RH, U2, n 

2. Tmax, Tmin, Tmean, U2, n 

3. Tmax, Tmin, Tmean, n 

4. Tmax, Tmin, Tmean 

5. Tmax, Tmean 

(Ladlani et al., 

2012) 

14 GRNN, MLR n, Tmax, Tmin, Tmean, 

U2 

Guelma, Algeria (semi-arid 

climate) 

Model: GRNN 

1. n, Tmax, Tmin, Tmean, U2 

(Salim et al., 

2013) 

15 RF, GRNN Tmax, Tmin, Rs, U2, 

RH, Ra 

Chengdu and Nanchong in 

Sichuan basin, southwest 

China (humid and warm 

climate) 

Model: RF 

Chengdu: 

1. RF1 (Tmax, Tmin, Rs, U2, RH) 

2. GRNN1 (Tmax, Tmin, Rs, U2, RH) 

3. RF2 (Tmax, Tmin, Ra) 

4. GRNN2 (Tmax, Tmin, Ra) 

Nanchong: 

1. RF1 (Tmax, Tmin, Rs, U2, RH) 

2. GRNN1 (Tmax, Tmin, Rs, U2, RH) 

3. RF2 (Tmax, Tmin Ra) 

4. GRNN2 (Tmax, Tmin, Ra) 

(Feng et al., 

2017) 

16 ELM, GRNN, HARG 

Equation, Calibrated HARG 

Equation 

Tmax, Tmin, Ra Chengdu, Liangping, 

Mianyang, Nanchong, 

Neijiang, Shapingba in 

Sichuan basin, sounthwest 

China (warm and humid 

climate) 

Model: GRNN (Pooled),  

ELM (Individual) 

1. Tmax, Tmin, Ra 

(Feng et al., 

2017) 
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Table 2.1 (Continued) 

17 MLP, ARIMA T, Rs, RH, U2 Álava in Basque Country, 

Northern Spain (oceanic 

climate) 

Model: MLP, ARIMA 

1. T, Rs, RH, U2 

(Landeras, Ortiz-

Barredo and 

Lopez, 2009) 

18 MLP, HARG Equation Tmax, Tmin, RH, U2 Caspian Sea, Iran (humid 

subtropical climate) 

Model: MLP 

1. Tmax, Tmin, RH, U2 

(Rahimikhoob, 

2010) 

19 MLP,  Epan X Kp equation Tmax, Tmin Sabarmati River, Gujarat 

State (semi-arid climate) 

Model: MLP 

1. Tmax, Tmin 

(Jadeja, 2011) 

20 MLP, CIMIS Penman 

Equation, HARG Equation, 

Ritchie Equation, ANFIS-

GP, ANFIS-SC 

Tmean, RH, Rs, U2 Santa Monica in Los Angeles 

(moderate Mediterranean 

climate) 

Model: S-ANFIS 

1. Rs, Tmean, RH, U2 

2. Rs, Tmean, RH 

3. Rs, Tmean, U2 

4. Rs, Tmean 

5. Rs 

6. Tmean 

7. U2 

8. RH 

(Cobaner, 2011) 

21 MLP, HARG Equation, 

MVRVM 

Tmax, Tmin Sevier River Basin in Central 

Utah, USA (semi-dessert 

climate) 

Model: MVRVM 

1. Tmax, Tmin 

(Torres, Walker 

and McKee, 

2011) 

22 MLP, GEP, ANFIS-SC, 

ANFIS-GP 

Longitude and 

latitude values, 

station altitude and 

periodicity 

component 

50 stations in Iran (arid and 

semi-arid climate) 

Model: MLP 

1. Longitude and latitude values, 

station altitude and periodicity 

component 

(Kisi et al., 2015) 
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Table 2.1 (Continued) 

23 MLP, PNN, GFF, LR Tmax, Tmin Jiangsu Province, China 

(humid subtropical climate) 

Model: MLP, PNN, GFF 

1. Tmax, Tmin 

(Luo et al., 2015) 

24 MLP, GEP Tmax, Tmin, Tmean, 

RHmax, RHmin, 

RHmean, U2, Rs, hc 

Kingdom of Saudi Arabia 

(arid climate) 

Model: MLP 

1. Tmax, Tmin, Tmean, RHmax, RHmin, 

RHmean, U2, Rs, hc 

2. Tmax, Tmin, Tmean, RHmax, RHmin, 

RHmean, U2, hc 

3. Tmax, Tmin, Tmean, U2, Rs, hc 

4. Tmax, Tmin, Tmean, U2, hc 

5. Tmax, Tmin, Tmean, RHmax, RHmin, 

RHmean, Rs, hc 

6. Tmax, Tmin, Tmean, RHmax, RHmin, 

RHmean, hc 

7. Tmax, Tmin, Tmean, Rs, hc 

8. Tmax, Tmin, Tmean, hc 

(Yassin, Alazba 

and Mattar, 2016) 

25 MLP, PNN, GFF, LR Tmax, Tmin, Ra, Rs Dallas, State of Texas (humid 

subtropical climate) 

Model: MLP 

1. Tmax, Tmin, Rs 

2. Tmax, Tmin, Ra 

3. Tmax, Tmin 

(Traore, Luo and 

Fipps, 2015) 

26 PT Equation, HARG 

Equation, FAO-24 Makkink 

Equation, mass transfer 

method, MLP 

T, RH, Rs, U2 Aminteo, West Macedonia, of 

northern Greece (humid 

subtropical climate) 

Model: MLP 

1. T, RH, Rs, U2 

2. T, RH, Rs 

3. T, Rs 

4. T, RH 

5. T 

(Antonopoulos 

and 

Antonopoulos, 

2017) 
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Table 2.1 (Continued) 

27 MLP, SVM, HARG-Samani 

Equation, Oudin Equation, 

Hamon Equation, Valiantzas 

Equation, Romanenko 

Equation, Schendel 

Equation 

T, RH Brazil (equatorial, tropical, 

high altitude tropical, atlantic 

tropical, semi-arid, 

subtropical) 

Model: MLP 

1. T, RH 

2. T 

(Ferreira et al., 

2019) 

28 DL-MLP, GLM, RF, GBM Tmax, Tmin, RH, U2, n Hoshiarpur (monsoon-

influenced humid subtropical  

climate) and Patiala (hot 

semi-arid climate) in Punjab, 

northern India 

Model: DL-MLP 

1. Tmax, Tmin, RH, U2, n 

(Saggi and Jain, 

2019) 

29 pan-based RBF, 

Christiansen Equation, 

FAO-24 pan Equation, PM 

Equation 

Epan, Ra Policoro, Italy; Novi Sad, 

Serbia and Kimberly, Idaho, 

USA (Mediterranean semi-

arid climate) 

Model: RBF 

1. Epan, Ra 

(Trajkovic, 2009) 

30 WMLR, MLR, WRBF, PM 

Equation, HARG Equation 

and Turc Equation 

T, Rs, U2, RH Otay Lake and Escondido 

SPA in San Diego, Davis in 

Yolo (Mediterranean climate) 

Model: WRBF 

1. Rs 

2. T, Rs 

3. T, Rs, U2 

4. T, Rs, RH, U2 

(Partal, 2015) 

31 RBF, GP, MLR Tmax, Tmin, RH, U2, Rs Isfahan synoptic station in 

central Iran (hot and dry 

climate) 

Model: RBF (fastest), GP (accuracy) 

For GP case: 

1. Tmean, U2, Rs 

2. Tmean, U2, RH 

(Goodarzi and 

Eslamian, 2018) 
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Table 2.1 (Continued) 

    3. Tmean, U2, RH, Rs 

4. Tmean, RH, Rs 

5. Tmax, Tmin, U2 

6. Tmax, Tmin, Rs 

7. Tmax, Tmin, RH 

8. U2, RH, Rs 

 

32 RBF-PSO, RBF-BP, ANN, 

SVM 

Tmax, Tmin, ea, n, U2 Serbia (moderately 

continental climate) 

Model: RBF-PSO 

1. Tmax, Tmin, ea, n, U2 

(Petkovic et al., 

2015) 
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2.3 Bootstrap Aggregating 

The bootstrap method is a method that works on data-based simulation for the 

purpose of statistical inference. It was first introduced by Bradley Efron (1979). 

According to Efron and Tibshirani (1993), resampling of data is carried out 

intensively using the replacement method to generate the bootstrap samples and 

the replicate of each sample is obtained. Through the data resampling, a set of 

bootstrap samples with a more desirable understanding of the average and the 

variability of the initial datasets can be reached. This method forms the basis of 

bootstrap aggregating or also known as bagging which was proposed by 

Breiman (1996) in order to reduce the estimation error of learning algorithms. 

In bagging method, B independent bootstrap samples are drawn from the 

original sample. Each sample is applied to the learning algorithm and the B 

resultant models are then aggregated (Pino-Mejías et al., 2008). 

 

 

Figure 2.7: Procedure of Bootstrap Aggregating (Lan, 2019). 
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In the modelling of ANN, estimation tends to be biased between the 

space of input and output sections due to the underestimation or overestimation 

of deterministic function, unfitting architecture setting and premature halting of 

training (Tiwari and Chatterjee, 2010). Due to this reason, bootstrapping method 

has been incorporated in the neural networks modelling and applied in 

performing bootstrap aggregation (bagging) for multi-model ensembles. The 

estimation accuracy of neural network model can be enhanced with data 

resampling to obtain multiple versions of datasets and aggregating them 

(Breiman, 1996). Theoretically, a higher accuracy of estimation can be achieved 

by increasing the number of bootstrap replication but in practice, the increment 

will not guarantee desired results with the exchange of longer training time (Xu 

et al., 2017). Therefore, the number of repetitions usually ranges from 50 to 200. 

In the study done by Sharma and Tiwari (2009), bagging method had 

been incorporated in ANN model to predict the monthly runoff in Upper 

Damodar Valley Catchment. Five input variables were used in the study 

including standardized monthly rainfall, topography, soil, geomorphology, and 

normalized difference vegetation index. 188 set of data each having all the five 

input data were used, with 126 training sets which were obtained by random 

resampling and the rest of 62 sets as validation. A total of 50 replications of 

training set were selected randomly for bagging, and the estimates of the 

bootstrap replicates were averaged to obtain the final output. Maximum number 

of 100 intervals were set for each estimation of bootstrap replicate. Whenever a 

minimum value was acquired by the network objective function or the 

maximum number of intervals was reached, the training of each bootstrap sets 

would be terminated. The performance of the bootstrap-based ANN (BANN) 

was tested by comparing with single ANN and multiple regression models. 

BANN models consistently showed better results than single ANN and multiple 

regression models for each hierarchy of input variables. They concluded that the 

performance of BANN is due to its greater generalization ability.  

In the research carried out by Tiwari and Chatterjee (2010), BANN was 

used to analyse the uncertainty of hourly flood forecast. Low, medium and high 

peak water levels were the input variables. These models were used for 

forecasting a one to ten hour lead time and the average of the estimation results 
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represented the final water level forecast. Four BANN models were developed 

which adopted bootstrap aggregation of multi-model ensembles registered 

averaged outputs as well as more stable solution with conventional ANN models 

as a comparison. It was shown that the uncertainty of parameters could be 

quantified based on the confidence interval of BANN method and thus could 

improve the prediction reliability. 

Another study done by Liu et al. (2014) was to estimate the ice-cover 

thickness in rivers at two sites, which were the Athabasca River at Fort 

McMurray and Clear Water River at Draper using bootstrap based artificial 

neural network (BANN). Comparison was made between BANN models, 

conventional ANN models and MLR models. Input data used to train the models 

were water level, accumulated freezing degree days and air temperature. For 

both ANN and BANN models, architecture of single hidden layer and double 

hidden layer were also tested respectively. Bootstrap size ranged from 2 to 30 

were adopted and found that the performance rose with the increase of size until 

a certain size, and there was no more performance increase with the increase in 

bootstrap size. Optimum bootstrap size at Athabasca was 17 for both single and 

double hidden layers while at Draper, they were 11 and 19 respectively. The 

results pointed out that the model with the highest performance was the BANN 

model, followed by ANN model and lastly MLR model. It was mentioned that 

the BANN model had advantages in terms of ensemble modelling, enhanced 

model robustness as well as improved reliability. 

Bootstrap-based artificial neural network was also adopted in the study 

of energy efficiency optimization of a crude distillation unit carried out by 

Osuolale and Zhang (2015). In this study, ANN models for energy efficiency 

and product quality which were developed by simulation of data were used to 

optimize energy efficiency. Bootstrap sample of 30 neural networks was 

developed using product flow rate as input variable. It was shown that when 

neural network was used individually, its performance in training was 

inconsistent and the unseen validation data was not robust. On the other hand, 

BANN showed consistent training performance and unseen validation data. 

Bootstrap method was introduced to improve the accuracy and reliability of the 

models.  
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Tahir, Tehzeeb-ul-Hassan and Saqib (2016) compared the performance 

of both conventional BPNN model and the one with bootstrap aggregating 

algorithm in simulating the load-shedding in Pakistan. The generated power, 

load demand, load shed in 24 hours duration and frequency deviation were 

obtained from Pakistan’s power system as input variables. The result showed 

that the error between the actual and simulated results was reduced significantly 

when bagging algorithm was used compared to conventional ANN model. 

Based on the studies reviewed, it can be seen that the model prediction 

accuracy with bootstrap aggregating was increased compared to the one without 

bootstrap aggregating. This is because bootstrap aggregating is able to create 

more data version by data resampling. As the degree of accuracy of the 

estimation performed by a model is the main concern, bootstrap aggregating can 

be applied together to improve the reliability of the estimation. 

 

2.4 Summary 

In chapter 2, five types of ANN models including MLP, RBF, GRNN, BPNN 

and ELM are discussed on their application to the estimation of ETo and their 

degree of accuracy in the estimation. Generally, the ANN models show a higher 

accuracy compared to conventional methods in estimating the ETo, especially 

when there is not sufficient climatic data available. Besides, bootstrap 

aggregating can be incorporated to further enhance the performance of ANN 

models. This method resamples the data into multiple sets of data and aggregates 

them. 

In this study, ELM which can be viewed as the ANN model that needs 

the shortest training time was selected to study on its ability to provide 

satisfactory accuracy in estimating the ETo values in exchange for its renowned 

training speed. The effect of the addition of bootstrap aggregating fusion method 

to the model estimation ability will also be observed. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Workflow of Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overall Work Plan. 

 

3.2 Mapping, Location of Study and Data Acquisition 

Eight stations were selected for study which are positioned in Peninsular 

Malaysia (Figure 3.2). These eight stations are the Kuala Lumpur International 

Airport (KLIA) Sepang station which is located at 2°44’N latitude and 101°42’E 

Data Acquisition 

PM Method 

Data Normalization 

Model Training 

Tuning 

Training without 

Bootstrap 
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Training with 

Bootstrap 

Aggregating 

Performance Evaluation 

(RMSE, MAE, MBE, NSE, 

ANSE) 
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longitude, Alor Setar station which is located at 6°12’N latitude and 100°24’E 

longitude, Bayan Lepas station which is located at 5°18’N latitude and 100°16’E 

longitude, Ipoh station which is located at 4°34’N latitude and 101°06’E 

longitude, Lubok Merbau station which is located at 4°48’N latitude and 

100°54’E longitude, Pulau Langkawi station which is located at 6°20’N latitude 

and 99°44’E longitude, Sitiawan station which is located at 4°13’N latitude and 

100°42’E longitude and Subang station which is located at 3°08’N latitude and 

101°33’E longitude. 

 

 

Figure 3.2: Location of Study. 

 

In this study, the daily climatic data used composed of maximum 

temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), 24 

hours mean relative humidity (RH), 24 hours mean wind speed (U2), and solar 

radiation (Rs) for the eight stations. The period of these data ranged from 1st of 

January 2014 to 31st of December 2018, a period of five years. 

Using the six types of climatic data, a total of 63 ways of combinations 

can be obtained. Each combination was used as input for neural network model 

training. Table 3.1 shows the climatic data those are included in each of the 

combinations. 
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Table 3.1: Combinations of Climatic Data. 

Combination Tmax Tmin Tmean RH U2 Rs 

C1       

C2       

C3       

C4       

C5       

C6       

C7       

C8       

C9       

C10       

C11       

C12       

C13       

C14       

C15       

C16       

C17       

C18       

C19       

C20       

C21       

C22       

C23       

C24       

C25       

C26       

C27       

C28       

C29       

C30       

C31       

C32       

C33       

C34       

C35       

C36       

C37       

C38       
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C39       

Table 3.1 (Continued) 

C40       

C41       

C42       

C43       

C44       

C45       

C46       

C47       

C48       

C49       

C50       

C51       

C52       

C53       

C54       

C55       

C56       

C57       

C58       

C59       

C60       

C61       

C62       

C63       

The symbol  indicates that the parameter is involved in the combination. 

 

3.3 FAO-56 Penman-Monteith Method 

The FAO-56 Penman-Monteith Equation (PM) equation is used as a benchmark 

in this study to estimate the reference evapotranspiration (Allen et al., 1998):  

 

 𝐸𝑇𝑜 =
0.408∆(𝑅𝑛− 𝐺)+ 𝛾

900

𝑇+273
𝑈2(𝑒𝑠  − 𝑒𝑎  )

∆+𝛾(1+0.34𝑈2)
 (3.1) 

 

where 

ETo = reference evapotranspiration (mm day-1) 
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∆ = slope vapour pressure curve (kPa °C-1) 

Rn = net radiation at the crop surface (MJ m-2 day-1) 

G = soil heat flux density (MJ m-2 day-1) 

γ = psychrometric constant (kPa °C-1) 

T = mean daily air temperature at 2 m height (°C) 

U2 = wind speed at 2 m height (m s-1) 

es = saturation vapour pressure (kPa) 

ea = actual vapour pressure (kPa) 

es - ea = saturation vapour pressure deficit (kPa) 

 

3.4 Normalization of Data 

The data were normalized before being used to train the ANN models. The aim 

of normalization is to restrict the values of each data set within the range of 0 

and 1. The normalization equation used is as equation 3.2 below (Wang, Traore 

and Kerh, 2008): 

 

 𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (3.2) 

 

where 

Xnorm = normalized value of variable 

Xi = observed value of variable  

Xmin = minimum value of the variable 

Xmax = maximum value of variable 

 

3.5 Parameter Tuning 

The generalization performance of ANN model is dependent of the setting of 

hyper-parameters such as the number of nodes having in hidden layer, activation 

function in input layer and output layer and the learning rate. However, long 

processing time is required to test all the combination of the parameters 

aforementioned to find the best combination. Parameter tuning is a process of 

getting the optimum combination of parameters for the learning algorithm 

(Lahiri and Ghanta, 2009). 
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3.6 k-Fold Cross Validation 

k-fold cross-validation is a renowned method for estimating generalization error. 

In this type of cross-validation, the training data set is separated into k equal 

mutually exclusive subsets or called folds. The first fold is used as testing data 

and the rest of the subsets is utilized as training data and the error is calculated. 

This process is iterated k times and each time different fold is used as the testing 

data. The generalization error is then obtained by averaging the sum of the test 

errors with value of k (Duan, Keerthi and Poo, 2003). 

 

3.7 Extreme Learning Machine 

ELM model architecture comprises of input layer, hidden layer and output layer. 

A model of this learning algorithm with N arbitrary inputs with L hidden nodes 

and f(x) activation can be modelled as below: 

 

 ∑ 𝛽𝑖 𝑓(𝑤𝑖 𝑥𝑖 + 𝑏𝑖 )𝐿
𝑖=1 = 𝑦𝑖 , 𝑗 = 1,2,3, … , 𝑁 (3.3) 

 

where 

𝑥𝑖 = ith input 

𝑤𝑖 = ith input weight 

𝑏𝑖 = ith biases  

𝛽𝑖 = ith output weight 

 

The relation above can be represented in a compact form as (Patil and Deka, 

2016): 

 

 𝐻𝛽 = 𝑌 (3.4) 

 

where H is the output matrix for hidden nodes and is written as 

 

 𝐻 = (
𝑓(𝑤1𝑥1 + 𝑏1) … 𝑓(𝑤𝐿𝑥1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑓(𝑤1𝑥𝑁 + 𝑏1) … 𝑓(𝑤𝐿𝑥𝑁 + 𝑏𝐿)

) (3.5) 

 

 𝛽 = (𝛽1 … 𝛽𝐿)𝑇 (3.6) 
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 𝑌 = (𝑦𝑖 … 𝑦𝑁 )𝑇 (3.7) 

 

Before training, w and b will be produced randomly. After that, the 

hidden layer output matrix H will be first computed and using the H obtained, 

output weight matrix 𝛽 will be calculated. In this model, w and b are randomly 

chosen for hidden nodes and then the output weights are computed by obtaining 

the least-square solution (Feng et al, 2016). 

 

3.8 Activation Function of Model 

In neural network, activation function is aimed to convert activation level of a 

neuron into an output signal (Sibi, Jones and Siddarth, 2013). When the 

activation function used is infinitely differentiable at any interval, the 

parameters of the network need no adjustment as long as there is enough number 

of hidden nodes. Such activation functions include sigmoidal function, radial 

basis function (RBF), sine, cosine, exponential and some other non-regular 

functions as indicated by Huang and Babri (1998) in their study. Sigmoidal, 

RBF and sine functions were more commonly adopted functions in ELM model 

(Ding et al., 2013) and hence three of them were also used in this study. The 

expression of the three activation functions are as followed. 

 

Sigmoidal Function: 

 

 𝑓(𝑥) =
1

1+𝑒−𝑥 (3.8) 

 

where 

𝑥 = input of the function 

 

Sine Function: 

 

 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) (3.9) 

 

Radial Basis Function (RBF) with function g(x): 
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 𝑓(𝑥) = 𝑔(𝑏𝑖 ||𝑥 − 𝑎𝑖 ||) (3.10) 

 

where  

𝑎𝑖 = centre of ith RBF node 

𝑏𝑖 = impact factor of ith RBF node 

 

3.9 Bootstrap Aggregating Fusion Method 

In the application of bootstrapping method training datasets, multiple 

realizations can be simulated from each single dataset by iterating “sampling 

and replacement” of the original dataset with size of N to generate B bootstrap 

datasets. In this way, B neural networks are generated as each bootstrap dataset 

has different data. Each of these bootstrap datasets are provided with a model 

𝑓(𝑥)  and bootstrapping estimate 𝑓𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 (𝑥)  is computed (Sharma and 

Tiwari, 2009): 

 

 𝑓𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 (𝑥) =
1

𝐵
∑ 𝑓(𝑥)𝐵

𝑏=1  (3.11) 

 

3.10 Performance Evaluation 

The evaluation of performance of each model is carried out by comparing the 

models’ estimated values with the values estimated with the PM method. There 

are five evaluation criteria adopted in this study, namely; root mean square error 

(RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe 

model efficiency coefficient (NSE) and adjusted Nash-Sutcliffe model 

efficiency coefficient (ANSE).  

RMSE is the measure of the standard deviation of differences between 

PM estimated values and model estimated values (Patil and Deka, 2016). 

  

 𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖 −𝑌𝑖 )2 𝑛

𝑖=1

𝑛
 (3.12) 

 

where 

Xi = PM estimated value 
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Yi = model estimated value 

n = number of data 

 

MAE is the average of the absolute difference between the PM observed 

values and the model estimated value (Chai and Draxler, 2014). 

 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑖 − 𝑌𝑖 |𝑛

𝑖=1  (3.13) 

 

Similar to MAE, MBE also refers to the average of difference between 

the PM estimated value and model estimated value. The difference is that the 

signs of the errors are remained (Willmott and Matsuura, 2006).  

 

 𝑀𝐵𝐸 =
1

𝑛
∑ 𝑌𝑖 − 𝑋𝑖

𝑛
𝑖=1  (3.14) 

 

Nash-Sutcliffe model efficiency coefficient measures the efficiency of 

the models and can have value ranged from -∞ to 1. NSE with value of 1 means 

that the observed and estimated values are perfectly matched (Patil and Deka, 

2016). 

 

 𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖 −𝑌𝑖 )2 𝑛

𝑖=1

∑ (𝑋𝑖 −𝑋)2 𝑛
𝑖=1

 (3.15) 

 

ANSE is a modified NSE that has been adjusted for number of terms in 

the models. The equation is as followed: 

 

 𝐴𝑁𝑆𝐸 = 1 − (1 − 𝑁𝑆𝐸)
(𝑛−1)

(𝑛−𝑘)
 (3.16) 

 

where 

k = number of variables 

 

Results with lower values of RMSE, MAE and MBE values nearer to 

zero or higher values of NSE and ANSE indicate a better performance and 

accuracy.   
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Parameter Tuning of the Model 

Unlike other types of ANN which require tuning of various parameters, the 

ELM model just needs to be tuned for its hidden node number and activation 

function. The bias of the network needs not to be tuned. In this study, the 

optimum hidden node number as well as the activation function were found by 

trial and error. It can be observed that the optimum condition of these two 

parameters varied from one combination to another. 

 

4.1.1 Hidden Node Number 

Although the hidden neuron parameters such as bias need not to be tuned, it is 

crucial to tune the number of hidden nodes. The hidden node number tested in 

this study was ranged from 1 to 50. This range of node number was considered 

because the RMSE of the results for the case of more input variables mostly 

became stable at around 20 to 50. While for the case of fewer input variables, 

the RMSE either reached its stability at low node numbers or turned out to be 

higher as the node number increases. Therefore, the node number higher than 

50 was not considered in the training of the model. 

The optimum hidden node number for every combination of each station 

was different from each other. Based on Appendix A, it can be seen that the 

majority of the combinations with three or more input variables had optimum 

hidden nodes more than 10. Most combinations that had less than 10 optimum 

hidden nodes used just one or two climatic variables.  

Figure 4.1 is the graph of RMSE against node number for six input 

variables with the sigmoid function for the Alor Setar station. The graph shows 

a drop in RMSE with an increase in the number of hidden nodes and the drop in 

value is very small when the node number reaches around 30. However, when 

the number of input variables becomes lesser, the increase in node number no 

longer gives a decrease in RMSE or the RMSE reaches a stable value at a low 

node number, as shown in Figure 4.2. It was suggested that a higher hidden node 
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number has a higher possibility to yield more accurate results, but this is only 

true with sufficient number of climatic variables. The pattern shown by 

combination with a little number of input variables might not be good because 

a low number of input variables can hardly establish a good relationship to 

estimate the result, and therefore the change in node number is not important to 

help in tuning the result. 

 

 

Figure 4.1: Graph of RMSE against Hidden Node Number (Alor Setar, Sigmoid, 

C1). 

 

       

Figure 4.2: Graphs of RMSE against Hidden Node Number for (left) Alor Setar, 

Sigmoid, C60 and (right) Alor Setar, Sigmoid, C62. 

 

4.1.2 Activation function 

Three types of activation functions comprising of sigmoid, RBF and sine 

functions were utilized to train the ELM and compared for their performance. 

RMSE does not drop 

significantly starting 

from 20 nodes 
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Table 4.1 shows the percentage of the lowest RMSE given by each function 

among three of them for all 63 combinations. The sine function registered the 

highest percentage of lowest RMSE as well as highest NSE in four of the 

stations comprising of Bayan Lepas, Ipoh, KLIA Sepang and Langkawi. 

Sigmoid function showed the highest percentage for Alor Setar station and 

Subang station while RBF showed the highest percentage for Lubok Merbau 

station and Sitiawan station.  

 

Table 4.1: Percentage of the Activation Function giving Best Results in 63 

Combinations for Each Station. 

Stations Sigmoid (%) RBF (%) Sine (%) 

Alor Setar 46.03 15.87 38.10 

Bayan Lepas 31.75 31.75 36.50 

Ipoh 22.22 38.10 39.68 

KLIA Sepang 33.33 30.16 36.51 

Lubok Merbau 17.46 46.03 36.51 

Pulau Langkawi 34.92 23.81 41.27 

Sitiawan 28.58 44.44 26.98 

Subang 38.10 33.33 28.57 

 

The sine function might be effective in predicting the ETo with climate 

that is affected by airport activities as four of the stations that were well 

predicted by sine function have airports in the areas. Alor Setar and Subang also 

have airports nearby the stations but the ETo were well predicted using 

sigmoidal function for the two stations. This might due to the difference that a 

large field of vegetation exists nearby each of these two stations. On the other 

hand, RBF function might work well in regions which are not affected by airport 

activities in that RBF showed the largest percentage of lowest RMSE for Lubok 

Merbau and Sitiawan stations. 

 

4.2 Result Analysis for Conventional ELM 

For the Alor Setar station, C1 which consists of six climatic data had the lowest 

RMSE and highest NSE among 63 combinations, with values of 0.1530 and 

0.9745 respectively. For combinations with five variables, C4 had the best result 

with RMSE of 0.1642 and NSE of 0.9733 whereas C7 had the worst result with 
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RMSE of 0.3996 and NSE of 0.8593. For combinations with four variables, C13 

had the greatest performance with RMSE of 0.1804 and NSE of 0.9645 while 

C22 had the worst performance with RMSE of 0.4776 and NSE of 0.8006. For 

combinations with three variables, C33 had the best performance with RMSE 

of 0.2290 and NSE of 0.9445 while C42 had the worst performance with RMSE 

of 0.6619 and NSE of 0.6116. For combinations with two variables, C44 had 

the best result with RMSE of 0.3219 and NSE of 0.9035 and C50 had the worst 

result with RMSE of 1.1205 and NSE of -0.1074. Among combinations with 

only one input variable, C60 showed the highest performance with RMSE of 

0.6855 and NSE of 0.5879. The worst combination is C62 with RMSE of 1.6701 

and NSE of -1.4412. Based on Table 4.1, by comparing the best combinations 

selected from each of the variable amount categories, the accuracy of the result 

decreased as the number of input variables decreased. The performance 

evaluation of all 63 combinations for all stations is stated in Appendix A. 

 

Table 4.2: Result Performance at Alor Setar Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 29 0.1530 0.9745 0.9738 0.1308 0.0979 

5 C4 Sine 31 0.1642 0.9733 0.9727 0.1406 0.1114 

4 C13 Sigmoid 42 0.1804 0.9645 0.9639 0.1535 0.1158 

3 C33 Sigmoid 11 0.2290 0.9445 0.9439 0.1885 0.1164 

2 C44 Sine 27 0.3219 0.9035 0.9030 0.2652 0.2186 

1 C60 Sigmoid 5 0.6855 0.5879 0.5879 0.5336 0.1254 

 

For the Bayan Lepas station, C1 was the best among all 63 combinations, 

with RMSE of 0.1259 and NSE of 0.9846. In the case of combinations with five 

variables, C3 showed the greatest performance with RMSE of 0.1576 and NSE 

of 0.9765 while C7 showed the worst performance with RMSE of 0.6130 and 

NSE of 0.6775. For combinations with four variables, C13 had the best result 

with RMSE of 0.1653 and NSE of 0.9742 whereas C21 had the worst result with 

RMSE of 0.7340 and NSE of 0.5162. For combinations with three variables, the 

best result was presented by C23 with RMSE of 0.2034 and NSE of 0.9626 

while the worst was presented by C42 with RMSE of 1.2780 and NSE of -
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0.4486. For combinations with two variables, C44 had the best performance 

with RMSE of 0.3065 and NSE of 0.9134 and the worst was given by C52 with 

RMSE of 1.2562 and NSE of -0.3639. C58 turned out to have the best result 

among combinations with one variable. The values of RMSE and NSE for C58 

are 0.5292 and 0.7489 respectively. C62 with RMSE of 1.4767 and NSE of -

0.8756 had the lowest accuracy of all. By comparing the best combinations of 

one to six input variables, the performance deteriorated as the input variable 

amount decreased. 

 

Table 4.3: Result Performance at Bayan Lepas Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sigmoid 42 0.1259 0.9846 0.9842 0.1137 -0.0354 

5 C3 Sine 35 0.1576 0.9765 0.9759 0.1392 -0.0577 

4 C13 Sigmoid 24 0.1653 0.9742 0.9738 0.1446 -0.0501 

3 C23 Sine 13 0.2034 0.9626 0.9622 0.1661 0.0153 

2 C44 Sine 50 0.3065 0.9134 0.9129 0.2349 0.0831 

1 C58 Sigmoid 7 0.5292 0.7489 0.7489 0.4265 0.2399 

 

For the Ipoh station, C1 had the highest degree of accuracy of all, having 

RMSE of 0.1247 and NSE of 0.9684. In the case of combinations with five 

variables, C4 had the greatest result with RMSE of 0.1270 and NSE of 0.9671 

while C7 had the result with the lowest accuracy, having RMSE of 0.4005 and 

NSE of 0.7147. For combinations with four variables, C13 was ranked as the 

highest with RMSE of 0.1434 and NSE of 0.9605 while C12 was ranked as the 

lowest with RMSE of 0.4563 and NSE of 0.6239. For combinations with three 

variables, C33 had the greatest performance with RMSE of 0.1550 and NSE of 

0.9536 while C29 had the worst performance with RMSE of 0.5311 and NSE 

of 0.4972. For combinations with two variables, C53 recorded the best result 

with RMSE of 0.2195 and NSE of 0.9076 while C50 recorded the worst result 

with RMSE of 0.8896 and NSE of -0.4054. For combinations with one variable, 

C58 had the best result with RMSE of 0.3134 and NSE of 0.8168, unlike C62 

which was also the combination with the lowest performance of all, having 

RMSE of 1.1716 and NSE of -1.4428. Similar to the previous two stations, the 
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prediction accuracy dropped with the decrease in the number of input variables, 

in terms of the best combinations of one to six input variables. 

 

Table 4.4: Result Performance at Ipoh Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 RBF 41 0.1247 0.9684 0.9675 0.1064 0.0519 

5 C4 RBF 30 0.1270 0.9671 0.9664 0.1088 0.0536 

4 C13 Sigmoid 49 0.1434 0.9605 0.9599 0.1234 0.0562 

3 C33 Sine 8 0.1550 0.9536 0.9531 0.1276 0.0339 

2 C53 Sigmoid 8 0.2195 0.9076 0.9071 0.1806 0.1002 

1 C58 RBF 29 0.3134 0.8168 0.8168 0.2639 0.1925 

 

For the KLIA Sepang station, among the combinations with five 

variables, C5 was the best combination with RMSE of 0.4632 and NSE of 

0.7876 whereas C7 was the worst combination with RMSE of 0.8367 and NSE 

of 0.2981. In terms of combinations with four variables, the greatest 

performance was achieved by C14 with RMSE of 0.4486 and NSE of 0.7988 

while the worst performance was given by C22 with RMSE of 0.8968 and NSE 

of 0.2229. For combinations with three variables, C33 showed the highest 

accuracy with RMSE of 0.4945 and NSE of 0.7590 while C42 showed the 

lowest accuracy with RMSE of 1.0853 and NSE of -0.1577. For combinations 

with two variables, C43 was ranked as the best combination with RMSE of 

0.5778 and NSE of 0.6683 while C52 was ranked as the worst combination with 

RMSE of 1.3929 and NSE of -0.8598. For combinations with only one variable, 

C58 recorded the best result with RMSE of 0.7046 and NSE of 0.5138 while 

C61 registered RMSE of 1.6339 and NSE of -1.5011 which made it the worst 

combination of all. Regarding the comparison between the best combinations of 

one to six input variables, instead of C1, C14 from the category of four variables 

turned out to be the best of all combinations with RMSE of 0.4486 and NSE of 

0.7988, and this was followed by C5 from the category of five variables and 

then only C1. From three input variables downwards, the accuracy decreased as 

the variable number decreased.  
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Table 4.5: Result Performance at KLIA Sepang Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 34 0.4773 0.7726 0.7662 0.4220 0.2718 

5 C5 RBF 41 0.4632 0.7876 0.7828 0.4007 0.2431 

4 C14 RBF 45 0.4486 0.7988 0.7954 0.3808 0.2739 

3 C33 Sine 35 0.4945 0.7590 0.7563 0.4363 0.2866 

2 C43 RBF 14 0.5778 0.6683 0.6664 0.4882 0.4382 

1 C58 RBF 11 0.7046 0.5138 0.5138 0.5966 0.5277 

 

For the Lubok Merbau station, in the category of five variables, C4 was 

the combination that yielded the highest performance with RMSE of 0.1499 and 

NSE of 0.9615 while C7 remained the worst combination with RMSE of 0.3556 

and NSE of 0.8036. For combinations with four variables, C13 was ranked as 

the best combination with RMSE of 0.1428 and NSE of 0.9658 while C12 was 

ranked as the worst combination with RMSE of 0.4750 and NSE of 0.6416. For 

combinations with three variables, C25 was the best combination with RMSE 

of 0.1648 and NSE of 0.9563 while C29 was the worst combination with RMSE 

of 0.6011 and NSE of 0.4339. In the class of two variables, C53 showed the 

greatest result with RMSE of 0.1945 and NSE of 0.9394 while C50 showed the 

worst result with RMSE of 0.8290 and NSE of- 0.0675. C58 stood out to be the 

best combination in the category of one variable, having RMSE of 0.2295 and 

NSE of 0.9180 whereas C62 was the worst with RMSE of 1.1950 and NSE of -

1.2374. In terms of the best combinations of one to six input variables, C13 from 

the class of four variables held the most accurate result with RMSE of 0.1428 

and NSE of 0.9658. The second highest accurate combination was C1 with all 

input variables and was followed by C4. When the variable number dropped 

from three to one, it can be seen that the results became worse.  

For the Pulau Langkawi station, the combination that had the greatest 

performance out of all combinations was C1, with RMSE of 0.2127 and NSE of 

0.9570. In terms of combinations with five variables, it was C4 that had the best 

result with RMSE of 0.2176 and NSE of 0.9525 and C7 had the worst one with 

RMSE of 0.5464 and NSE of 0.7669. In the class of four variables, C13 showed 

the most accurate result with RMSE of 0.2286 and NSE of 0.9493 while C22 
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showed the least accurate result with RMSE of 0.6353 and NSE of 0.6836. For 

combinations with three variables, C33 was the best combination with RMSE 

of 0.2926 and NSE of 0.9273 while C42 was the worst combination with RMSE 

of 0.8863 and NSE of 0.3741. For combinations with two variables, C43 had 

the highest degree of accuracy with RMSE of 0.3573 and NSE of 0.8955 

whereas C50 had the lowest degree of accuracy with RMSE of 1.1686 and NSE 

of -0.0820. In terms of the category of only one input variable, C60 was found 

to be the best with RMSE of 0.8118 and NSE of 0.4850. C59 from the class of 

one variable was the worst combination of all 63 combinations, having 1.2784 

and -0.3036 for RMSE and NSE. In terms of the best combinations of one to six 

input variables, the prediction performance dropped with the number of 

variables.  

 

Table 4.6: Result Performance at Lubok Merbau Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 26 0.1488 0.9591 0.9579 0.1268 -0.0728 

5 C4 Sigmoid 9 0.1499 0.9615 0.9606 0.1263 -0.0349 

4 C13 Sigmoid 8 0.1428 0.9658 0.9652 0.1154 0.0027 

3 C25 Sigmoid 13 0.1648 0.9563 0.9558 0.1340 -0.0164 

2 C53 Sigmoid 6 0.1945 0.9394 0.9391 0.1533 -0.0194 

1 C58 Sigmoid 33 0.2295 0.9180 0.9180 0.1867 0.0707 

 

Table 4.7: Result Performance at Pulau Langkawi Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sigmoid 22 0.2127 0.9570 0.9558 0.1821 0.1568 

5 C4 Sine 32 0.2176 0.9525 0.9514 0.1892 0.1507 

4 C13 RBF 32 0.2286 0.9493 0.9484 0.1953 0.1571 

3 C33 Sine 40 0.2926 0.9273 0.9265 0.2477 0.1737 

2 C43 Sine 42 0.3573 0.8955 0.8949 0.2893 0.1706 

1 C60 RBF 11 0.8118 0.4850 0.4850 0.6542 0.0401 

 

In the category of five variables for Sitiawan station, C4 was ranked as 

the best combination with RMSE of 0.2819 and NSE of 0.8529 while C7 was 
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ranked as the worst one with RMSE of 0.5753 and NSE of 0.4675. For 

combinations with four variables, C14 was the best combination with RMSE of 

0.2884 and NSE of 0.8587 while C22 was the worst combination with RMSE 

of 0.6357 and NSE of 0.3499. For combinations with three variables, C27 

showed the greatest result with RMSE of 0.3072 and NSE of 0.8408 whereas 

C38 showed the worst result with RMSE of 0.6982 and NSE of 0.2186. For 

combinations with two variables, C53 had the greatest performance with RMSE 

of 0.3139 and NSE of 0.8268 while C50 had the worst performance with RMSE 

of 0.8421 and NSE of -0.1551. In terms of combinations with one variable, C58 

held the best result with RMSE of 0.3834 and NSE of 0.7644 while C62 held 

the worst result with RMSE of 1.1803 and NSE of -1.2129, which was also the 

worst among all 63 combinations. In terms of the best combinations of one to 

six input variables, C4 from the class of five variables was found to be the one 

with the highest degree of performance with RMSE of 0.2819 and NSE of 

0.8529. This was followed by C14 from the category of four variables and then 

C1 with all six data. While from three variables downwards, the results 

deteriorated as the number of variables decreased. 

 

Table 4.8: Result Performance at Sitiawan Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 RBF 15 0.3049 0.8410 0.8362 0.2631 0.1706 

5 C4 RBF 12 0.2819 0.8529 0.8494 0.2386 0.1444 

4 C14 RBF 9 0.2884 0.8587 0.8561 0.2471 0.1330 

3 C27 RBF 48 0.3072 0.8408 0.8389 0.2608 0.1305 

2 C53 Sine 24 0.3139 0.8268 0.8258 0.2670 0.1823 

1 C58 Sigmoid 27 0.3834 0.7644 0.7644 0.3263 0.2387 

 

For the Subang station, in the category of five variables, C2 had the most 

accurate result with RMSE of 0.2832 and NSE of 0.9085 while C7 has the least 

accurate result with RMSE of 0.9755 and NSE of -0.0392. For combinations 

with four variables, C9 had the greatest performance with RMSE of 0.2806 and 

NSE of 0.9094 while C12 had the worst performance with RMSE of 0.9885 and 

NSE of -0.0418. For combinations with three variables, C33 was the 
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combination that yielded the best result with RMSE of 0.2762 and NSE of 

0.9098 whereas C37 yielded the worst result with RMSE of 1.1722 and NSE of 

-0.5961. In the class of two variables, C49 showed the highest degree of 

accuracy with RMSE of 0.3194 and NSE of 0.8875 while C47 showed the 

lowest degree of accuracy with RMSE of 1.3169 and NSE of -1.0420. The best 

combination in the class of one variable was C58 with RMSE of 0.3834 and 

NSE of 0.8418. C62 from the class of one variable was the worst of all with 

RMSE of 1.6513 and NSE of -1.9073. C9 from the category of four variables 

turned out to be the most accurate in the comparison between the best 

combinations of one to six input variables. C1 and C2 were ranked as second 

and third, and then C33, C48 and lastly C58. 

 

Table 4.9: Result Performance at Subang Station using ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 38 0.2517 0.9207 0.9184 0.2098 0.0555 

5 C2 Sigmoid 10 0.2534 0.9270 0.9254 0.2051 0.0464 

4 C9 RBF 13 0.2435 0.9317 0.9305 0.1951 0.0558 

3 C33 Sigmoid 44 0.2625 0.9194 0.9185 0.2168 0.0226 

2 C49 Sigmoid 5 0.2863 0.9118 0.9113 0.2272 0.0168 

1 C58 Sine 5 0.3795 0.8466 0.8466 0.3105 0.1288 

 

Out of the eight stations, four of them (Alor Setar, Bayan Lepas, Ipoh 

and Pulau Langkawi) provided the most accurate results out of all combinations 

with C1 which consists of all input variables. On the other hand, combinations 

with five variables showed the best prediction for Sitiawan station while 

combinations with four variables showed the best prediction for KLIA Sepang, 

Lubok Merbau and Subang stations. Thus, it can be seen that the application of 

all six input variables has a greater capability to yield more accurate result for 

conventional ELM. The results estimated based on four and five climatic data 

also have high accuracy, depending on the variables used. However, the result 

would not be the highest among all combinations once the amount of variables 

is three or lower. This might be because the model becomes harder to develop 
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a well-defined relationship between the inputs and the outputs when there are 

no sufficient variables. 

For the comparison between six ways of combinations with five 

variables, C4 having Tmax, Tmin, RH, U2 and Rs (or without Tmean) showed a better 

performance by yielding the most accurate estimation for five out of eight 

stations. On the other hand, it can be seen that C7 was the worst combination 

for all stations and this combination does not have Rs as input variable. This 

shows that the result will be badly affected if the Rs is removed.  

Among 15 ways of combinations with four variables, C13 which 

consists of Tmax, RH, U2 and Rs (or without Tmean and Tmin) registered the highest 

prediction accuracy for five out of eight stations. On the other hand, from the 

worst performance point of view, four stations showed that C22 was the worst 

combination. This combination does not have U2 and Rs as input data.  

In the case of 20 types of combinations with three variables, C33 having 

Tmax, U2 and Rs (or without Tmean, Tmin and RH) was ranked as the best as it gave 

results with the lowest error for five stations. On the other hand, C42 was found 

to be the combination that yielded the least accurate result in four of the stations 

which took the largest percentage compared to other combinations with three 

variables, and this combination does not incorporate RH, U2 and Rs. 

C53 with Tmax and Rs only turned out to be the best between 15 types of 

combinations with two variables by having the lowest error of estimation for 

three stations. From the bad performance viewpoint, C50 which does not 

include Tmax, Tmin, RH and Rs yielded the lowest accuracy for four of the stations. 

When only one variable was used to train the model, C58 with Rs only 

showed a better performance by having the most accurate results for six out of 

eight stations. This shows that Rs is the best variable for a better estimation of 

ETo compared to the other five variables when only one climatic data is used. 

On the contrary, C62 which consists of Tmean as the only input variable recorded 

the worst results for six of the stations.  

Based on the discussion on the all the combinations with five, four, three, 

two and one variable, every combination that was found to be the best has a 

similarity, it is the Rs must be included as one of the variables. Besides, the 

results had the lowest accuracy in each category for the combinations not having 
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Rs. Regarding the condition, Rs can be said to be the most effective and 

important input variable to accurately predict the ETo in Peninsular Malaysia 

using ELM.  

Besides, Tmax and U2 are also very impactful in the estimation of ETo. 

All the best combinations from categories of six to two variables include Tmax. 

The results became worst for the category of two variables with the absence of 

Tmax. While in the case of U2, all the best combinations from six to three 

variables also include U2 and the results turned to be the worst for categories of 

four variables and three variables with the absence of U2. Both Tmax and U2, 

however, must be accompanied by Rs to work well. On the other hand, Tmean can 

be indicated as the least impactful climatic data because starting from 

combinations with five variables to one variable, the best combinations do not 

include Tmean. This is followed by Tmin which has its absence as an input variable 

starting from the best combinations of the class of four variables to one variable. 

The two processes of ET, evaporation and transpiration both depends on 

the energy supply, vapour pressure gradient and wind. Hence, solar radiation, 

air temperature, wind speed and humidity are the main weather parameters 

determining the magnitude of ET (Allen et al., 1998). In the study, it can be seen 

that Rs is the most important climatic data out of all six types of climatic data. 

The ability of climatic data Rs to generate a result with high accuracy might due 

to the fact that energy is required in the conversion of water molecules from 

liquid to vapour form and the main source of energy is direct solar radiation 

(Bucur, 2019). Besides, Peninsular Malaysia is located in a tropical region with 

long sunshine duration and high intensity of solar radiation. According to 

Hakemzadeh et al. (2013), Peninsular Malaysia averagely receives six hours of 

sunshine in a day. Solar radiation is closely connected to the sunshine duration. 

The annual average daily solar radiation in 2009 ranged from 13.67 MJ m-2 day-

1 to 17.18 MJ m-2 day-1 with the highest value recorded at 19.28 MJ m-2 day-1. 

The high solar radiation might provide a strong correlation between solar 

radiation and ETo. Tmax and U2 are also quite impactful climatic variables. This 

might because of the fact that high temperature is also one of the energy 

suppliers for evapotranspiration, just not as critical as solar radiation. On the 

other hand, wind speed plays an important role in maintaining a low water 
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saturation on the surrounding air in order to promote ET (Allen et al., 1998). 

Therefore, the two parameters might have a considerably good correlation with 

ETo. The value of Tmean used in this study was calculated by merely finding the 

average of Tmax and Tmin but not the detailed average temperature of one whole 

day temperature values. This might cause Tmean and ETo to have low correlation, 

and therefore does not show much importance in the estimation. 

It is observed that some stations’ most accurate results, however, had 

lower accuracy compared to other stations’ most accurate results. The best 

results registered by KLIA Sepang, Sitiawan and Subang were 0.4486 (by C14), 

0.2819 (by C4) and 0.2435 (by C9) respectively, which were relatively less 

accurate compared to the best results registered by Alor Setar, Bayan Lepas, 

Ipoh, Lubok Merbau and Pulau Langkawi stations with RMSE of 0.1530 (by 

C1), 0.1259 (by C1), 0.1247 (by C1) 0.1428 (by C13) and 0.2127 (by C1) 

respectively. It can be noticed that Alor Setar, Bayan Lepas, Ipoh, Lubok 

Merbau and Pulau Langkawi stations are all located in the northern area of 

Peninsular Malaysia while KLIA Sepang, Sitiawan and Subang are located at 

the middle of Peninsular Malaysia. Therefore, the performance of the estimation 

might also depend on the location of the station. 

By observing the results of conventional ELM from Appendix A, 

majority of the results predicted at Alor Setar, Ipoh, KLIA Sepang, Pulau 

Langkawi, Sitiawan and Subang stations had positive MBE values. This 

indicates that the use of climatic data of these six stations tends to overestimate 

the ETo. However, about one-quarter of all the combinations for Bayan Lepas 

station and about three-quarter of all the combinations for Lubok Merbau station 

produced negative MBE values, indicating a higher tendency of underestimation 

of ETo by these combinations.  

 

4.3 Result Analysis for Bagged ELM 

In the category of five variables of Alor Setar station, C4 was found to have the 

best performance with RMSE of 0.1744 and NSE of 0.9689 while C7 had the 

worst performance with RMSE of 0.4483 and NSE of 0.8190. For combinations 

with four variables, result of C13 had the highest degree of accuracy with RMSE 

of 0.1897 and NSE of 0.961 while result of C12 had the lowest accuracy with 
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RMSE of 0.5264 and NSE of 0.7530. For combinations with three variables, 

C33 was the combination that had the best result with RMSE of 0.2442 and NSE 

of 0.9330 whereas C29 had the worst result with RMSE of 0.7784 and NSE of 

0.4301. For the class of two variables, C44 had the greatest performance with 

RMSE of 0.3497 and NSE of 0.8836 while C50 had the worst performance with 

RMSE of 1.2051 and NSE of -0.3195. In terms of the category of one variable, 

C60 showed the best result with RMSE of 0.7044 and NSE of 0.5628 while C62 

showed the worst result with RMSE of 1.7915 and NSE of -1.8745, which was 

also the worst of all 63 combinations. By comparing the best combinations of 

one to six input variables, the result of C4 had the top performance with RMSE 

of 0.1744 and NSE of 0.9689. This was followed by C1 and then C13, C33, C44 

and lastly C60.  

 

Table 4.10: Result Performance at Alor Setar Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 29 0.1789 0.9651 0.9642 0.1566 0.1230 

5 C4 Sine 31 0.1744 0.9689 0.9682 0.1511 0.1211 

4 C13 Sigmoid 42 0.1897 0.9611 0.9604 0.1628 0.1251 

3 C33 Sigmoid 11 0.2442 0.9330 0.9323 0.2077 0.1262 

2 C44 Sine 27 0.3497 0.8836 0.8830 0.2932 0.2195 

1 C60 Sigmoid 5 0.7044 0.5628 0.5628 0.5503 0.1445 

 

In the case of Bayan Lepas station, the combination that showed the 

greatest performance of all was C1 with RMSE of 0.1404 and NSE of 0.9805. 

For combinations with five variables, the best combination was C3 with RMSE 

of 0.1723 and NSE of 0.9711 while the worst combination was C7 with RMSE 

of 0.7019 and NSE of 0.5575.  For the combinations with four variables, C13 

had the most accurate result with RMSE of 0.1832 and NSE of 0.9663 whereas 

C21 had the least accurate result with RMSE of 0.7954 and NSE of 0.4302. In 

the category of three variables, C23 had the best performance with RMSE of 

0.2290 and NSE of 0.9491 while C42 had the worst performance with RMSE 

of 1.3166 and NSE of -0.5485. For combinations with two variables, C43 

showed the highest degree of accuracy with RMSE of 0.3529 and NSE of 0.8860 
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while C57 showed the lowest degree of accuracy with RMSE of 1.4407 and 

NSE of -0.9865. In the class of one variable, C58 was the best combination with 

RMSE of 0.5444 and NSE of 0.7321. The result of C62 from the class of one 

variable was the worst out of all 63 combinations, with RMSE of 1.5244 and 

NSE of -1.0094. By comparing the best combinations of one to six input 

variables, it can be seen that the performance dropped with the decrease in 

variable amount. 

 

Table 4.11: Result Performance at Bayan Lepas Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sigmoid 42 0.1404 0.9805 0.9799 0.1266 -0.0480 

5 C3 Sine 35 0.1723 0.9711 0.9704 0.1537 -0.0593 

4 C13 Sigmoid 24 0.1832 0.9663 0.9658 0.1635 -0.0654 

3 C23 Sine 13 0.2290 0.9491 0.9486 0.1943 -0.0154 

2 C43 Sine 16 0.3529 0.8860 0.8853 0.2835 0.0145 

1 C58 Sigmoid 7 0.5444 0.7321 0.7321 0.4422 0.2499 

 

For Ipoh station, C1 also held the greatest performance of all with values 

of 0.1335 and 0.9644 for RMSE and NSE respectively. In terms of combinations 

with five variables, C4 was the best combination with RMSE of 0.1336 and NSE 

of 0.9643 while C7 was the worst combination with RMSE of 0.4229 and NSE 

of 0.6758. For combinations with four variables, C13 showed the most accurate 

result with RMSE of 0.1526 and NSE of 0.9552 while C22 showed the least 

accurate result with RMSE of 0.5397 and NSE of 0.3751. In the category of 

three variables, C33 was the best combination with RMSE of 0.1900 and NSE 

of 0.9254 while C26 was the worst combination with RMSE of 0.6104 and NSE 

of 0.2730. In the class of two variables, C53 was the best combination with 

RMSE of 0.2249 and NSE of 0.9023 while C50 was the worst combination with 

RMSE of 0.9700 and NSE of -0.6985. For combinations with one variable, C58 

was the one that yielded the greatest performance with RMSE of 0.3454 and 

NSE of 0.7641 while C62 yielded the worst performance with RMSE of 1.2234 

and NSE of -1.6912, which was also the worst of all combinations. In terms of 
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the best combinations of one to six input variables, as the number of variables 

decreased, the prediction result became less accurate.  

 

Table 4.12: Result Performance at Ipoh Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 RBF 41 0.1335 0.9644 0.9634 0.1158 0.0528 

5 C4 RBF 30 0.1336 0.9643 0.9635 0.1155 0.0539 

4 C13 Sigmoid 49 0.1526 0.9552 0.9544 0.1325 0.0607 

3 C33 Sine 8 0.1900 0.9254 0.9245 0.1650 0.0749 

2 C53 Sigmoid 8 0.2249 0.9023 0.9017 0.1858 0.1054 

1 C58 RBF 29 0.3454 0.7641 0.7641 0.2966 0.2344 

 

Based on the result of KLIA Sepang station, in the category of five 

variables, C5 was found to be the best combination with RMSE of 0.4784 and 

NSE of 0.7579 whereas C7 was the worst combination with RMSE of 0.9057 

and NSE of 0.1633. For combinations with four variables, C14 showed the 

greatest result with RMSE of 0.4919 and NSE of 0.7493 whereas C22 showed 

the worst result with RMSE of 0.9651 and NSE of 0.0797. For combinations 

with three variables, C33 had the greatest performance with RMSE of 0.5270 

and NSE of 0.7184 while C42 had the worst performance with RMSE of 1.2907 

and NSE of -0.7781. For the class of two variables, C43 had the best 

performance with RMSE of 0.6609 and NSE of 0.6227 while C52 had the worst 

performance with RMSE of 1.8166 and NSE of -2.7513. For combinations with 

one variable, C58 showed the best result with RMSE of 0.7828 and NSE of 

0.3927 while C62 showed the least accurate result. RMSE and NSE of C62 were 

1.6355 and -1.5047 respectively, which made it the worst combination of all. In 

terms of the best combinations of one to six input variables, C5 from the class 

of five variables turned out to be the top with RMSE of 0.4784 and NSE of 

0.7579, and this was followed by C1 and then C14. From three variables 

downwards, it is clear that the performance deteriorated as the variable amount 

decreased.  
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Table 4.13: Result Performance at KLIA Sepang Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 34 0.4859 0.7588 0.7520 0.4314 0.3072 

5 C5 RBF 41 0.4784 0.7579 0.7525 0.4196 0.2594 

4 C14 RBF 45 0.4919 0.7493 0.7451 0.4320 0.3100 

3 C33 Sine 35 0.5270 0.7184 0.7152 0.4670 0.3035 

2 C43 RBF 14 0.6099 0.6227 0.6206 0.5272 0.3818 

1 C58 RBF 11 0.7828 0.3927 0.3927 0.6757 0.5687 

 

For Lubok Merbau station, among the combinations with five variables, 

C3 was found to show the best result with RMSE of 0.1604 and NSE of 0.9533 

while C7 was found to show the worst result with RMSE of 0.3799 and NSE of 

0.7732. For combinations with four variables, C8 yielded the most accurate 

result with RMSE of 0.1639 and NSE of 0.9549 while C12 yielded the least 

accurate result with RMSE of 0.4995 and NSE of 0.6000. For combinations with 

three variables, C25 showed the greatest performance with RMSE of 0.1703 and 

NSE of 0.9529 while C29 showed the worst performance with RMSE of 0.6615 

and NSE of 0.2803. For the class of two variables, C44 was ranked as the best 

combination with RMSE of 0.2017 and NSE of 0.9353 while C51 was ranked 

as the worst combination with RMSE of 0.9299 and NSE of -0.8916. For the 

class of one variable, C58 was the best combination with RMSE of 0.2540 and 

NSE of 0.8863. On the other hand, C62 was found to have the worst result of 

all with RMSE of 1.3262 and NSE of -1.8127. In terms of the best combinations 

of one to six input variables, C3 from the class of five variables was ranked as 

the best with RMSE of 0.1604 and NSE of 0.9533, followed by C1 and C8. 

Descending from three variables, the accuracy of results declined with the 

variable amount.  

For combinations with five variables of Pulau Langkawi station, C4 had 

the greatest performance with RMSE of 0.2298 and NSE of 0.9470 while C7 

had the worst performance with RMSE of 0.5849 and NSE of 0.7292. For 

combinations with four variables, C13 showed the greatest result with RMSE 

of 0.2400 and NSE of 0.9434 while C22 showed the worst result with RMSE of 

0.6900 and NSE of 0.6212. In the category of three variables, the combination 
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that yielded the best result was C25 with RMSE of 0.3325 and NSE of 0.9087 

whereas the combination that yielded the worst result was C42 with RMSE of 

0.9569 and NSE of 0.2411. In the class of two variables, C43 showed the highest 

degree of accuracy with RMSE of 0.4891 and NSE of 0.7532, unlike C50 that 

showed the lowest degree of accuracy with RMSE of 1.2453 and NSE of -

0.2480. In the category of only one input variable, C60 had the best performance 

with RMSE of 0.8737 and NSE of 0.3728 whereas C62 had the worst 

performance with RMSE of 1.5638 and NSE of -0.9472. C62 was also the worst 

combination out of all 63 combinations. In terms of the best combinations of 

one to six input variables, C4 was ranked as the top with RMSE of 0.2298 and 

NSE of 0.9470. This was followed by C1, C13, C25, C43 and lastly C60. 

 

Table 4.14: Result Performance at Lubok Merbau Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 26 0.1630 0.9509 0.9494 0.1393 -0.0883 

5 C3 Sine 30 0.1604 0.9533 0.9522 0.1374 -0.0845 

4 C8 RBF 23 0.1639 0.9549 0.9541 0.1360 -0.0528 

3 C25 Sigmoid 13 0.1703 0.9529 0.9523 0.1388 -0.0204 

2 C44 Sine 9 0.2017 0.9353 0.9349 0.1634 0.0528 

1 C58 Sigmoid 33 0.2540 0.8863 0.8863 0.2111 0.0915 

 

Table 4.15: Result Performance at Pulau Langkawi Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sigmoid 22 0.2317 0.9477 0.9462 0.2004 0.1518 

5 C4 Sine 32 0.2298 0.9470 0.9458 0.2000 0.1568 

4 C13 RBF 32 0.2400 0.9434 0.9425 0.2080 0.1550 

3 C25 Sigmoid 13 0.3325 0.9087 0.9077 0.2727 0.2076 

2 C43 Sine 42 0.4891 0.7532 0.7518 0.4204 0.1338 

1 C60 RBF 11 0.8737 0.3728 0.3728 0.7114 0.0537 

 

For Sitiawan station, in the class of five variables, C2 was the best 

combination with RMSE of 0.3270 and NSE of 0.8208 while C7 was the worst 

combination with RMSE of 0.5935 and NSE of 0.4104. In the category of four 
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variables, C10 was found to have the most accurate result with RMSE of 0.3159 

and NSE of 0.8297 while C22 was found to have the least accurate result with 

RMSE of 0.6974 and NSE of 0.2039. For combinations with three variables, 

C23 showed the best performance with RMSE of 0.3175 and NSE of 0.8333 

while C41 showed the worst performance with RMSE of 0.7441 and NSE of 

0.0431. For combinations with two variables, C43 was ranked as the best 

combination with RMSE of 0.3342 and NSE of 0.8127 while C50 was ranked 

as the worst combination with RMSE of 1.0065 and NSE of -0.8611. C58 stood 

out as the best combination in the category of one variable with RMSE of 0.4002 

and NSE of 0.7331. On the other hand, C62 was the worst from the category of 

one variable which was also the worst of all, having RMSE of 1.2704 and NSE 

of -1.6969. In terms of the best combinations of one to six input variables, C10 

from the category of four variables held the first place with RMSE of 0.3159 

and NSE of 0.8297. C23 from the class of three variables turned out to be the 

combination that had the second highest accuracy followed by C2 and then only 

C1.  

 

Table 4.16: Result Performance at Sitiawan Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 RBF 15 0.3371 0.8052 0.7993 0.2975 0.1963 

5 C2 RBF 19 0.3270 0.8208 0.8165 0.2850 0.1599 

4 C10 Sine 49 0.3159 0.8297 0.8266 0.2720 0.1693 

3 C23 RBF 15 0.3175 0.8333 0.8313 0.2704 0.1698 

2 C43 RBF 10 0.3342 0.8127 0.8116 0.2846 0.1831 

1 C58 Sigmoid 27 0.4002 0.7331 0.7331 0.3449 0.2660 

 

For Subang station, C5 was the best combination in the category of five 

variables with RMSE of 0.2557 and NSE of 0.9207 while C7 was the worst in 

this category with RMSE of 0.9314 and NSE of 0.0889. For combinations with 

four variables, C14 had the greatest performance with RMSE of 0.2634 and 

NSE of 0.9192 while C21 had the worst performance with RMSE of 0.9464 and 

NSE of 0.0485. For combinations with three variables, C33 showed the most 

accurate result with RMSE of 0.2625 and NSE of 0.9194 whereas C31 showed 
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the least accurate result with RMSE of 0.9938 and NSE of -0.0295. For 

combinations with two variables, C43 was the best combination with RMSE of 

0.3107 and NSE of 0.8964 while C56 was the worst combination with RMSE 

of 1.1346 and NSE of -0.3349. In the class of one variable, C58 was the 

combination that yielded the best result with RMSE of 0.3795 and NSE of 

0.8466. In contrast, C62 yielded the result with RMSE of 1.5384 and NSE of -

1.4703, which made it to be the worst combination of all. In terms of the best 

combinations of one to six input variables, C5 from the class of five variables 

showed the highest accuracy result with RMSE of 0.2530 and NSE of 0.9193. 

This is followed by C14 from the class of four variables and then C1 from the 

class of all input variables. Starting from three variables downwards, the 

prediction performance dropped with the number of variables. 

 

Table 4.17: Result Performance at Subang Station using Bagged ELM. 

Number 

of 

Variables 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Nodes 

RMSE NSE ANSE MAE MBE 

6 C1 Sine 38 0.2627 0.9152 0.9128 0.2225 0.0550 

5 C5 RBF 45 0.2530 0.9193 0.9174 0.2099 0.0502 

4 C14 Sigmoid 48 0.2565 0.9206 0.9193 0.2117 0.0513 

3 C33 Sigmoid 44 0.2762 0.9098 0.9088 0.2290 0.0443 

2 C43 Sigmoid 4 0.3157 0.8826 0.8819 0.2562 0.0321 

1 C58 Sine 5 0.3834 0.8418 0.8418 0.3135 0.1202 

 

Among all eight stations, two of the stations (Bayan Lepas and Ipoh) 

provided the most accurate results out of all combinations with C1 which applies 

all input variables. On the other hand, combinations with five variables showed 

the best prediction accuracy for five of the stations which include Alor Setar, 

KLIA Sepang, Lubok Merbau, Pulau Langkawi and Subang. In the case of the 

class of four variables, only Sitiawan station registered the greatest accuracy 

with the combination in this class. It can be seen that the application of five 

variables has the greater capability to yield more accurate result for bagged 

ELM. Nevertheless, the results predicted based on four and six climatic data 

also can provide high accuracy, depending on the variables adopted. Similar to 
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the conventional ELM, the result would not be the most accurate among all 

combinations once the amount of input variables is three or lower. 

For the comparison between six types of combinations with five 

variables, C4 which includes Tmax, Tmin, RH, U2 and Rs was the one that yielded 

a better performance for most of the stations, which were three out of eight 

stations compared to C3 and C5 which yielded better results for two stations 

respectively. In contrast, it is obvious that all of the stations showed that C7 was 

the worst combination which does not include Rs data as input variable. 

For combinations with four variables, C13 comprising of Tmax, RH, U2 

and Rs as input variables recorded the highest accuracy for half of the total 

number of stations. On the other hand, four stations reported the worst result by 

using C22. C22 is a combination that does not involve U2 and Rs. Therefore, it 

can be said that U2 and Rs are very much important in ensuring a good prediction 

when only four input variables are used. 

In between 20 types of combinations with three variables, C33 was 

ranked as the best as it showed the best results for four of the stations. This 

combination involves Tmax, U2 and Rs. On the other hand, C42 which does not 

incorporate RH, U2 and Rs remained as the worst combination by yielding the 

least accurate result in three of the stations. 

In the class of two variables, C43 (U2 and Rs) turned out to be the best 

by showing the lowest error of estimations for five stations, while from the bad 

performance point of view, C50 which does not include Tmax, Tmin, RH and Rs 

yielded the lowest accuracy for four of the stations. 

C58 which consists of Rs as the input training data showed the best 

results for six out of eight stations in the category of one variable, hence making 

it the top combination in this class. On the contrary, all of the stations recorded 

the worst performance of estimation when only Tmean was used as climatic input 

data, which refers to C62. 

It can be seen from all the combinations with five, four, three, two and 

one variable, every combination that was found to be the best contains Rs as one 

of the input variables. Likewise, all the worst combinations from each of the 

variable number categories do not have Rs. Therefore, Rs can be concluded as 

the most effective and important climatic data.  
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Similar to conventional ELM, Tmax and U2 can be observed to be present 

in most of the best combinations. All the best combinations from six to three 

input variables include Tmax. The prediction result became the worst for the 

category of two variables with the absence of Tmax. While for U2, all the best 

combinations from six to two variables have it as one of the input data and the 

performance became the least accurate for categories of four variables and three 

variables with the absence of U2. Both Tmax and U2, however, require Rs to be 

present to work well, as in the case of conventional ELM. On the contrary, the 

least impactful climatic data is Tmean in that starting from combinations with five 

variables, all the best combinations determined do not include Tmean. Tmin is also 

can be seen to be less important as it was not included as one of the input data 

to generate the best performance from the class of four variables to one variable.   

 

4.4 Conventional and Bagged ELM Comparison 

Figure 4.3 shows the scatter plots of model estimated ETo against PM estimated 

ETo for the best combinations of one to six input variables for the Sitiawan 

station, both conventional and bagged ELM. The results of Sitiawan were 

selected for the comparison because there is a large area of palm oil plantation 

field in the vicinity. It can be observed from the series of scatter plots that the 

more data points in plots of bagged ELM are further from the line of perfect 

estimation compared to those in plots of conventional ELM, indicating that they 

had lower NSE compared to those of conventional ELM. Besides, the data 

points in plots of bagged ELM are more scattered compared to those in plots of 

conventional ELM. Moreover, in plots of bagged ELM, more data points are 

located above the line of perfect estimation compared to plots of conventional 

one. Since the MBE for all combinations of Sitiawan station had positive values, 

the observation mentioned previously means higher positive MBE values for 

the case of bagged ELM. Therefore, it is clear that the results of the bagged 

ELM were not better than those of the conventional ELM. For all the best 

combinations with six, five, four, three, two and one input variable, none of the 

bagged results were more accurate than those predicted by conventional ELM.  

In the study of hierarchical prediction of monthly runoff done by Sharma 

and Tiwari (2009), bootstrapped ANN was proved to be better than single ANN. 
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The same result were demonstrated by other researchers such as Tiwari, Song, 

Chatterjee and Gupta (2013) in their research on river flow forecasting, Wang 

et al. (2013) in their research on monthly water quality forecasting, Liu et al. 

(2014) in their study on the estimation of river ice cover thickness as well as 

Tahir, Tehzeeb-ul-Hassan and Saqib (2016) in their study on the optimal 

scheduling of electrical power. The amount of dataset used in these studies was 

small, ranged from 24 to 525. Unlike the research just mentioned, the present 

study applied a relatively large amount of dataset, ranged from 1729 to 1821. A 

large amount of dataset utilized might be the reason for the inability of bagging 

to improve the performance of the model. Bootstrapping a huge amount of 

dataset might lead to over-fitting and thus reduce the accuracy in return.  

The large amount of data compared to the low data dimensionality might 

also contribute to the inability of the bagging to improve the model performance. 

In the study of bagging, Breiman (1996) stated that the efficiency of the method 

is affected by the stability of the prediction or classification of the model. 

Bagging can improve the performance of an unstable procedure but can slightly 

reduce the performance of a stable procedure. In the study on the effect of 

bagging on linear classifier done by Skurichina and Duin (1998), it was stated 

that the stability depends on the composition of training dataset. If the size of 

the training set is comparable to the data dimensionality, then the models are 

very sensitive to the changes in the dataset or simply known as unstable. On the 

contrary, if very large data size is used, the models are not sensitive to the data 

changes or stable. The more stable the model, the less effective the bagging is. 

In another study carried out by Skurichina, Kuncheva and Duin (2002), it was 

observed that the bagging is usually useful to deal with critical training sample 

size, which means the amount of data is comparable with its dimensionality. In 

the current study, the amount of dataset used is almost 2000, while the data 

dimensionality is just low at a value of 6. The data size is much larger than its 

dimensionality. This might result in a relatively high stability for the prediction 

which in turn cause the bagging to be ineffective.  

In the study carried out by Belayneh et al. (2016), ANN with bootstrap 

was also found to yield a worse result compared to ANN itself. It was explained 

that the circumstance of the better performance of single ANN compared to 
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bagged ANN is totally possible since the bagged ANN averages over every 

ensemble to provide the prediction while single ANN has only one prediction 

to consider. 

 

 

(A1)                                                       (B1) 

 

(A2)                                                       (B2) 

 

(A3)                                                       (B3) 
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(A4)                                                       (B4) 

 

(A5)                                                        (B5) 

 

(A6)                                                       (B6) 

 

Figure 4.3: Scatter Plots of Best Combinations of Six to One Input Variable 

(A1-A6) for Conventional ELM and Corresponding Combinations (B1-B6) for 

Bagged ELM. 

 

All the combinations of Sitiawan station with and without bootstrap 

yielded positive MBE values. The same condition went to other stations, with 

the combinations that registered positive MBE values remained positive after 

bootstrapping while the combinations that registered negative MBE values 
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remained negative after bootstrapping. Therefore, it can be concluded that in 

terms of MBE, the trend yielded by conventional ELM persisted even after 

bootstrapping is adopted into the ELM model. 

For the Sitiawan station, four of the best combinations out of all variable 

amount categories for conventional ELM no longer remained as the best for 

bagged ELM. This also happened to some other stations, for example, at Bayan 

Lepas and Pulau Langkawi stations, each with one different best combination 

as well as at the Lubok Merbau and Subang stations with three different best 

combinations. This showed that the application of bagging would affect the 

importance of input parameters. However, based on the interpretation done in 

sections 4.2 and 4.3 which included all stations, generally, Rs still turned out to 

be the most impactful parameter of all. On the other hand, it can be seen that 

Tmean had the lowest ability to generate better result.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The ability of the ELM to estimate the ETo in Peninsular Malaysia based on 

meteorological data was examined in this study. For the study purpose, six types 

of climatic data comprising of Tmax, Tmean, Tmin, RH, U2 and Rs, from the Alor 

Setar, Bayan Lepas, Ipoh, Klia Sepang, Lubok Merbau, Pulau Langkawi, 

Sitiawan and Subang stations were adopted as input variables to the ELM model 

for the ETo estimation. 63 sets of climatic data combinations were applied as 

inputs for the model estimation and each of the combinations was tuned for the 

optimum hidden neuron number and activation function. Three types of 

activation functions were used in the model, which include sigmoidal function, 

radial basis function and sine function. The results predicted by the model were 

compared with PM equation and its performance was measured in terms of 

RMSE, NSE, ANSE, MAE and MBE. In the parameter tuning section, the 

optimum hidden neuron number and activation function varied for every 

combination.  

The model showed the best performance for the majority of the stations 

when all the six data were used as input variables, while certain combinations 

with five variables and combinations with four variables also showed great 

performance, depending on which climatic variables were used. The results 

revealed that Rs is the most important input variable to give a high performance 

of model estimation. Tmax and U2 are also very impactful in giving a good model 

estimation but they require the presence of Rs. On the other hand, it can be seen 

that Tmean is the least impactful data in the performance of the model. Besides, 

it was found that the results for stations located in the northern region of 

Peninsular Malaysia were generally better than those located in the middle 

region.  

Furthermore, bootstrap aggregating fusion method was employed in the 

training of ELM to test for its ability to improve the performance of the neural 

network. However, the results showed no improvement but deterioration after 
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the application of bagging. The deterioration could be due to a large data size 

applied which led to over-fitting. The large amount of data compared to the low 

data dimensionality could also contribute to the inability of bagging to improve 

the model performance. 

 

5.2 Recommendations for Future Work 

The climatic data used in this study were obtained only from eight stations of 

Peninsular Malaysia. A trend was observed that the best results generated by the 

stations located near the northern region were more accurate than the best results 

generated by the stations located in the middle region. Based on the trend, it can 

be concluded that the performance of the model estimation might be affected by 

the location of the station. Thus, data from more stations from northern, middle 

and even southern regions as well as East Malaysia can be adopted to further 

examine the effect of the station’s location on the model performance.  

Besides, the climatic data adopted in this study were of a period of five 

years only. Estimation based on a longer time period of data such as 10 years 

can be carried out as the climatic data involving a longer period of time might 

provide a greater performance in terms of model estimation.   



75 

 

REFERENCES 

 

Agatonovic-Kustrin, S. and Beresford, R., 2000. Basic concepts of artificial 

neural network (ANN) modeling and its application in pharmaceutical research. 

Journal of Pharmaceutical and Biomedical Analysis, 22(5), pp. 717-727. 

 

Allen, R.G., 1983. New approaches to estimating crop evapotranspiration. Acta 

Horticulturae, 335, pp. 287-294. 

 

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop 

evapotranspiration. Guidelines for computing crop water requirements. Rome, 

Italy: Food and Agricultural Organization. 

 

Antonopoulos, V.Z. and Antonopoulos, A.V., 2017. Daily reference 

evapotranspiration estimates by artificial neural networks technique and 

empirical equations using limited input climate variables. Computers and 

Electronics in Agriculture, 132, pp. 86-96. 

 

Basheer, I. and Hajmeer, M., 2000. Artificial neural networks: fundamentals, 

computing, design, and application. Journal of Microbiological Methods, 43(1), 

pp. 3-31. 

 

Belayneh, A., Adamowski, J., Khalil, B., and Quilty, J., 2016. Coupling 

machine learning methods with wavelet transforms and the bootstrap and 

boosting ensemble approaches for drought prediction. Atmospheric Research, 

172-173, pp. 37-47. 

 

Breiman, L., 1996. Bagging predictors. Machine Learning, 24, pp. 123-140. 

 

Bucur, D. ed., 2019. Advanced Evapotranspiration Methods and Applications. 

[e-book] IntechOpen. Available at: Google Scholar <https://scholar.google.com> 

[Accessed on 9 January 2020]. 

 

Campbell, D.I. and Williamson, J.L., 1997. Evaporation from a raised peat bog. 

Journal of Hydrology, 193, pp. 142-160. 

 

Chai, T. and Draxler, R.R., 2014. Root mean square error (RMSE) or mean 

absolute error (MAE)? – Arguments against avoiding RMSE in the literature. 

Geoscientific Model Development, 7, pp. 1247-1250. 

 

Cobaner, M., 2011. Evapotranspiration estimation by two different neuro-fuzzy 

inference systems. Journal of Hydrology, 398, pp. 292-302. 

 

Dehghani, A.A., Asgari, M. and Mosaedi, A., 2009. Comparison of geostatistics, 

artificial neural networks  and  adaptive  neuro  fuzzy  inference  system  

approaches  in  groundwater  level interpolation  (case  study:  Ghazvin  aquifer). 

Journal of Agricultural Sciences and Natural Resources, 16(1-b), pp. 517-528. 

 



76 

 

Dingman, S.L., 2015. Physical hydrology. 3rd ed. Long Grove, Illinois: 

Waveland Press, Inc. 

 

Ding, S., Zhao, H., Zhang, Y., Xu, X., and Nie, R., 2013. Extreme learning 

machine: algorithm, theory and applications. Artificial Intelligence Review, 

44(1), pp. 103-115. 

 

Dou, X.M. and Yang, Y.G., 2018. Evapotranspiration estimation using four 

different machine learning approaches in different terrestrial ecosystems. 

Computers and Electronics in Agriculture, 148, pp. 95-106. 

 

Duan, K., Keerthi, S.S., and Poo, A.N., 2003. Evaluation of simple performance 

measures for tuning SVM hyperparameters. Neurocomputing, 51, pp. 41-59. 

 

Ebrahimian, A., Wadzuk, B. and Traver, R., 2019. Evapotranspiration in green 

stormwater infrastructure systems. Science of the Total Environment, 688, pp. 

797-810. 

 

Efron, B., 1979. Bootstrap methods: Another look at the jackknife. The Annals 

of Statistics, 7(1), pp. 1-26. 

 

Efron, B. and Tibshirani, R.J., 1993. An introduction to the bootstrap. London: 

Chapman and Hall. 

 

Elliott, G. and Timmermann, A. eds., 2013. Handbook of economic forecasting. 

Oxford: North-Holland. 

 

Falamarzi, Y., Palizdan, N., Huang, Y.F. and Lee, T.S., 2014. Estimating 

evapotranspiration from temperature and wind speed data using artificial and 

wavelet neural networks (WNNs). Agricultural Water Management, 140, pp. 

26-36. 

 

Ferreira, L.B., Fernando, F.C., Rubens, A.O. and Elpídio, I.F.F., 2019. 

Estimation of reference evapotranspiration in Brazil with limited meteorological 

data using ANN and SVM – a new approach. Journal of Hydrology, 572, pp. 

556-570. 

 

Feng, Y., Cui, N.B., Gong, D.Z., Zhang, Q.W. and Zhao, L., 2017. Evaluation 

of random forests and generalized regression neural networks for daily reference 

evapotranspiration modelling. Agricultural Water Management, 193, pp. 163-

173. 

 

Feng, Y., Cui, N.B., Zhao, L., Hu, X.T. and Gong, D.Z., 2016. Comparison of 

ELM, GANN, WNN and empirical models for estimating reference 

evapotranspiration in humid region of Southwest China. Journal of Hydrology, 

536, pp. 376-383. 

 

Feng, Y., Peng, Y., Cui, N., Gong, D. and Zhang, K., 2017. Modeling reference 

evapotranspiration using extreme learning machine and generalized regression 



77 

 

neural network only with temperature data. Computers and Electronics in 

Agriculture, 136, pp. 71-78. 

 

Gocic, M., Petković, D., Shamshirband, S. and Kamsin, A., 2016. Comparative 

analysis of reference evapotranspiration equations modelling by extreme 

learning machine. Computers and Electronics in Agriculture, 127, pp. 56-63. 

 

Goodarzi, M. and Eslamian, S., 2018. Performance evaluation of linear and 

nonlinear models for the estimation of reference evapotranspiration. 

International Journal of Hydrology Science and Technology, 8(1), pp. 1-15. 

 

Hakemzadeh, M.H., Shavalipour, A., Sopian, K., Haris, S.M., and Zaidi, S.H., 

2013. New formulation for the estimation of monthly average daily solar 

irradiation for the tropics: A case study of Peninsular Malaysia. International 

Journal of Photoenergy, 2013, pp. 1-6. 

 

Heddam, S., Ladlani, I., Houichi, L. and Djemili, L., 2013. Modelling monthly 

potential evapotranspiration (ETP) using generalized regression neural 

networks (GRNN): Case study of the semi-arid region of Guelma Northeast of 

Algeria. Proceeding du Séminaire International sur 1’Hydrogéologie et 

1’Environment SIHE 2013 Ouargla, pp. 226-229. 

 

Hill R.W., Johns, E.L. and Frevert. D.K., 1983. Comparison of equations used 

for estimating agricultural crop evapotranspiration with field research. Denver: 

Bureau of Reclamation, U.S Department of the Interior, Engineering and 

Research Center. 

 

Huang, G.B., and Babri, H.A., 1998. Upper bounds on the number of hidden 

neurons in feedforward networks with arbitrary bounded nonlinear activation 

functions. IEEE Trans. Neural Networks, 9(1), pp. 224-229. 

 

Huang, G.B., Zhu, Q.Y. and Siew, C.K., 2006. Extreme learning machine: 

Theory and applications. Neurocomputing, 70, pp. 489-501. 

 

Huo, Z., Feng, S., Kang, S. and Dai, X., 2012. Artificial neural network models 

for reference evapotranspiration in an arid area of northwest China. Journal of 

Arid Environments, 82, pp. 81-90. 

 

Jackson, S.L., 2009. Statistics: Plain and simple. 2nd ed. California: Wadsworth. 

 

Jadeja, V., 2011. Artificial neural network estimation of reference 

evapotranspiration from pan evaporation in a semiarid environment . In: B.V.M 

Engineering College, National Conference on Recent Trends in Engineering & 

Technology. V.V.Nagar, Gujarat, India, 13-14 May 2011. Bhavnagar, India: 

Shantilal Shah Engineering College. 

 

Kisi, O. and Alizamir, M., 2018. Modelling reference evapotranspiration using 

a new wavelet conjunction heuristic method: Wavelet extreme learning machine 

vs wavelet neural networks. Agricultural and Forest Meteorology, 263, pp. 41-

48. 



78 

 

 

Kisi, O., Sanikhani, H., Zounemat-Kermani, M. and Niazi, F., 2015. Long-term 

monthly evapotranspiration modeling by several data-driven methods without 

climatic data. Computers and Electronics in Agriculture, 115, pp. 66-77. 

 

Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W. and Pruitt, W.O., 

2002. Estimating evapotranspiration using artificial neural network. Journal of 

Irrigation and Drainage Engineering. 128, pp. 224-233. 

 

Kuo, S.F., Chen, F.W., Liao, P.Y. and Liu, C.W., 2011. A comparative study on 

the estimation of evapotranspiration using backpropagation neural network: 

Penman-Monteith method versus pan evaporation method. Paddy and Water 

Environment, 9(4), pp. 413-424. 

 

Ladlani, I., Houichi, L., Djemili, L., Heddam, S. and Belouz, K., 2012. 

Modeling daily reference evapotranspiration (ET0) in the north of Algeria using 

generalized regression neural networks (GRNN) and radial basis function neural 

networks (RBFNN): A comparative study. Meteorology and Atmospheric 

Physics, 118(3–4), pp. 163-178. 

 

Lahiri, S.K. and Ghanta, K.C., 2009. Artificial neural network model with 

parameter tuning assisted by genetic algorithm technique: study of critical 

velocity of slurry flow in pipeline. Asia-Pacific Journal of Chemical 

Engineering, 5, pp. 763-777. 

 

Lan, H., 2019. Decision Trees and Random Forests for Classification and 

Regression pt.2. [online] Towards Data Science. Available at: 

https://towardsdatascience.com/decision-trees-and-random-forests-for-

classification-and-regression-pt-2-2b1fcd03e342 [Accessed 18 August 2019]. 

 

Landeras, G., Ortiz-Barredo, A. and López, J.J., 2009. Forecasting weekly 

evapotranspiration with ARIMA and artificial neural network models. Journal 

of Irrigation and Drainage Engineering, 135(3), pp. 323-334. 

 

Lee, T.S., Najim, M.M.M. and Aminul, M.H., 2004. Estimating 

evapotranspiration of irrigated rice at the West Coast of the Peninsular of 

Malaysia. Journal of Applied Irrigation Science, 39, pp. 104-117. 

 

Luo, Y., Traore, S., Lyu, X., Wang, W., Wang, Y., Xie, Y., Jiao, X. and Fipps, 

G., 2015. Medium range daily reference evapotranspiration forecasting by using 

ann and public weather forecasts. Water Resources Management, 29(10), pp. 

3863-3876. 

 

Osuolale, F.N., and Zhang, J., 2015. Multi-objective optimisation of 

atmospheric crude distillation system operations based on bootstrap aggregated 

neural network models. Computer Aided Chemical Engineering, pp. 671-676. 

 

Pakhale, G.K., Nale, J.P., Temesgen, W.B. and Muluneh, W.D., 2015. 

Modelling reference evapotranspiration using artificial neural network: A case 



79 

 

study of Ameleke watershed, Ethiopia. International Journal of Scientific and 

Research Publications, 5(1), pp. 2250-3153.  

 

Panda, S., Amatya, D.M., Jackson, R., Sun, G. and Noormets, A., 2018. 

Automated geospatial models of varying complexities for pine forest 

evapotranspiration estimation with advanced data mining. Water, 10(11), 1687. 

 

Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, 

C.E. eds., 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. 

Cambridge, UK: Cambridge University Press. 

 

Partal, T., 2015. Comparison of wavelet based hybrid models for daily 

evapotranspiration estimation using meteorological data. KSCE Journal of Civil 

Engineering, 20(5), pp. 2050-2058. 

 

Patil, A.P. and Deka, P.C., 2016. An extreme learning machine approach for 

modeling evapotranspiration using extrinsic inputs. Computers and Electronics 

in Agriculture, 121, pp. 385-392.  

 

Pereira, L.S., Cordery, I. and Iacovides, I., 2009. Coping with water scarcity: 

addressing the challenges. Berlin: Springer Science + BuSiness Media 2009. 

 

Petković, D., Gocic, M., Shamshirband, S., Qasem, S.N. and Trajkovic, S., 2015. 

Particle swarm optimization-based radial basis function network for estimation 

of reference evapotranspiration. Theoretical and Applied Climatology, 125(3-

4), pp. 555-563. 

 

Pham, B.T., Bui, D.T., Prakash, I. and Dholakia, M.B., 2017. Hybrid integration 

of multilayer perceptron neural networks and machine learning ensembles for 

landslide susceptibility assessment at Himalayan area (India) using GIS. 

CATENA, 149, pp. 52-63. 

 

Pino-Mejías, R., Jiménez-Gamero, M.-D., Cubiles-de-la-Vega, M.-D., and 

Pascual-Acosta, A., 2008. Reduced bootstrap aggregating of learning 

algorithms. Pattern Recognition Letters, 29(3), pp. 265-271. 

 

Pokorny, J., 2019. Evapotranspiration. Encyclopedia of Ecology, 2nd Edition, 2, 

pp. 292-303.  

 

Rahimikhoob, A., 2010. Estimation of evapotranspiration based on only air 

temperature data using artificial neural networks for a subtropical climate in Iran. 

Theoretical and Applied Climatology, 101, pp. 83-91. 

 

Rahimikhoob, A. and Hosseinzadeh, M., 2014. Assessment of Blaney-Criddle 

equation for calculating reference evapotranspiration with NOAA/AVHRR data. 

Water Resources Management, 28(10), pp. 3365-3375. 

 

Saggi, M.K. and Jain, S., 2019. Reference evapotranspiration estimation and 

modeling of the Punjab Northern India using deep learning. Computers and 

Electronics in Agriculture, 156, pp. 387-398. 



80 

 

 

Shahid, S., 2011. Impacts of climate change on irrigation water demand in 

northwestern Bangladesh. Climatic Change, 105(3-4), pp. 433-453. 

 

Sharma, S.K. and Tiwari, K.N., 2009. Bootstrap based artificial neural network 

(BANN) analysis for hierarchical prediction of monthly runoff in Upper 

Damodar Valley Catchment. Journal of Hydrology, 374(3-4), pp. 209-222. 

 

Sibi, P., Jones, S.A., and Siddarth, P., 2013. Analysis of different activation 

functions using back propagation neural networks. Journal of Theoretical and 

Applied Information Technology, 47(3), pp. 1264-1268. 

 

Skurichina, M., and Duin, R.P.W., 1998. Bagging for linear classifiers. Pattern 

Recognition, 31(7), pp. 909-930. 

 

Skurichina, M., Kuncheva, L., and Duin, R.P.W., 2002. Bagging and boosting 

for the nearest mean classifier: Effects of sample size on diversity and accuracy. 

Lecture Notes in Computer Science, pp. 1-10. 

 

Specht, D.F., 1991. A general regression neural network. IEEE Transactions on 

Neural Networks, 2(6), pp. 568-576. 

 

Sudheer, K.P., Gosain, A.K. and Ramasastri, K.S., 2003. Estimating actual 

evapotranspiration from limited climatic data using neural computing technique. 

Journal of Irrigation and Drainage Engineering, 129(3), pp. 214-218. 

 

Tiwari, M.K., and Chatterjee, C., 2010. Uncertainty assessment and ensemble 

flood forecasting using bootstrap based artificial neural networks (BANNs). 

Journal of Hydrology, 382(1-4), pp. 20-33. 

 

Tahir, M.F., Tehzeeb-ul-Hassan and Saqib, M.A., 2016. Optimal scheduling of 

electrical power in energy-deficient scenarios using artificial neural network 

and Bootstrap aggregating. International Journal of Electrical Power & Energy 

Systems, 83, pp. 49-57. 

 

Tiwari, M.K., Song, K.Y., Chatterjee, C., and Gupta, M.M., 2013. Improving 

reliability of river flow forecasting using neural networks, wavelets and self-

organising maps. Journal of Hydroinformatics, 15(2), pp. 486-502. 

 

Trajkovic, S., 2009. Comparison of radial basis function networks and empirical 

equations for converting from pan evaporation to reference evapotranspiration. 

Hydrological Processes, 23(6), pp. 874-880. 

 

Trajkovic, S., 2009. Temperature-based approaches for estimating reference 

evapotranspiration. Journal of Irrigation and Drainage Engineering, 131, pp. 

316-323. 

 

Traore, S., Luo, Y. and Fipps, G., 2015. Deployment of artificial neural network 

for short-term forecasting of evapotranspiration using public weather forecast 

restricted messages. Agricultural Water Management, 163, pp. 363-379.  



81 

 

 

Traore, S., Wang, Y.M. and Chung, W.G., 2014. Predictive accuracy of 

backpropagation neural network methodology in evapotranspiration forecasting 

in Dédougou region, western Burkina Faso. Journal of Earth System Science, 

123(2), pp. 307-318. 

 

Traore, S., Wang, Y.M. and Kerh, T., 2008. Modeling reference 

evapotranspiration by generalized regression neural network in semiarid zone 

of Africa. WSEAS Transactions on Information Science and Applications, 5(6), 

pp. 991-1000. 

 

Traore, S., Wang, Y.M. and Kerh, T., 2010. Artificial neural network for 

modeling reference evapotranspiration complex process in Sudano-Sahelian 

zone. Agricultural Water Management, 97(5), pp. 707-714. 

 

Torres, A.F., Walker, W.R. and McKee, M., 2011. Forecasting daily potential 

evapotranspiration using machine learning and limited climatic data. 

Agricultural Water Management, 98(4), pp. 553-562. 

 

Tukimat, N.N. A, Harun, S. and Shahid, S., 2012. Comparison of different 

methods in estimating potential evapotranspiration at Muda Irrigation Scheme 

of Malaysia. Journal of Agriculture and Rural Development in the Tropics and 

Subtropics, 113(1), pp. 77-85. 

 

Wang, L., Zeng, Y. and Chen, T., 2015. Back propagation neural network with 

adaptive differential evolution algorithm for time series forecasting. Expert 

Systems with Applications, 42(2), pp. 855-863. 

 

Wang, Y.M., Traore, S. and Kerh, T.F., 2008. Neural network approach for 

estimating reference evapotranspiration from limited climatic data in Burkina 

Faso. WSEAS Transaction on Computers, 7(6), pp. 704-713. 

 

Wang, Y., Zheng, T., Zhao, Y., Jiang, J., Wang, Y., Guo, L., and Wang, P., 

2013. Monthly water quality forecasting and uncertainty assessment via 

bootstrapped wavelet neural networks under missing data for Harbin, China. 

Environmental Science and Pollution Research, 20(12), pp. 8909-8923. 

 

Watson, P.K. and Teelucksingh, S.S., 2002. A practical introduction to 

econometric methods: classical and modern. Mona, Kingston 7, Jamaica: The 

University of the Indies Press. 

 

Willmott, C.J. and Matsuura, K., 2006. On the use of dimensioned measures of 

error to evaluate the performance of spatial interpolators. International Journal 

of Geographical Information Science, 20(1), pp. 89-102. 

 

Xu, C.Y. and Chen, D., 2005. Comparison of seven models for estimation of 

evapotranspiration and groundwater recharge using lysimeter measurement data 

in Germany. Hydrological Processes, 19(18), pp. 3717-3734. 

 



82 

 

Yassin, M.A., Alazba, A.A. and Mattar, M.A., 2016. Artificial neural networks 

versus gene expression programming for estimating reference 

evapotranspiration in arid climate. Agricultural Water Management, 163, pp. 

110-124. 

 

Yegnanarayana, B., 2006. Artificial neural network. New Delhi: Prentice Hall 

of India. 

 

You, Z.H., Li, S., Gao, X., Luo, X. and Ji, Z., 2014. Large-scale protein-protein 

interactions detection by integrating big biosensing data with computational 

model. BioMed Research International, 2014, pp. 1-9. 

  



83 

 

APPENDICES 

 

APPENDIX A: Result Performance of All Combinations  

 

Table A-1: Full Result Performance at Alor Setar station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 29 0.1530 0.9745 0.9738 0.1308 0.0979 

C2 RBF 35 0.1978 0.9633 0.9625 0.1653 0.1145 

C3 RBF 33 0.1800 0.9664 0.9657 0.1539 0.1164 

C4 Sine 31 0.1642 0.9733 0.9727 0.1406 0.1114 

C5 Sine 22 0.2321 0.9423 0.9410 0.1922 0.1141 

C6 Sigmoid 24 0.2354 0.9460 0.9448 0.1957 0.1515 

C7 Sigmoid 48 0.3996 0.8593 0.8561 0.3152 0.0216 

C8 Sine 16 0.2068 0.9611 0.9605 0.1727 0.1051 

C9 RBF 19 0.2083 0.9587 0.9580 0.1709 0.1070 

C10 Sine 49 0.2662 0.9331 0.9320 0.2165 0.1319 

C11 Sine 17 0.2565 0.9392 0.9382 0.2143 0.1211 

C12 Sine 49 0.4694 0.8069 0.8036 0.3692 0.0975 

C13 Sigmoid 42 0.1804 0.9645 0.9639 0.1535 0.1158 

C14 Sigmoid 34 0.2281 0.9427 0.9418 0.1904 0.1221 

C15 Sine 17 0.3028 0.9092 0.9077 0.2571 0.2154 

C16 Sigmoid 40 0.4321 0.8372 0.8344 0.3443 -0.0033 

C17 Sigmoid 25 0.2196 0.9491 0.9482 0.1824 0.0718 

C18 Sine 17 0.2512 0.9379 0.9368 0.2113 0.1470 

C19 Sigmoid 43 0.4285 0.8395 0.8368 0.3441 0.0148 

C20 RBF 14 0.4759 0.7947 0.7912 0.4170 0.3534 

C21 RBF 49 0.4729 0.8006 0.7973 0.3801 0.0716 

C22 Sigmoid 49 0.4776 0.8006 0.7972 0.3794 0.0786 

C23 RBF 50 0.2835 0.9230 0.9222 0.2326 0.1593 

C24 Sigmoid 27 0.2605 0.9364 0.9357 0.2067 0.1079 

C25 Sine 11 0.2990 0.9124 0.9114 0.2519 0.1880 

C26 Sine 47 0.5818 0.7028 0.6995 0.4512 0.0758 

C27 Sine 27 0.3430 0.8942 0.8930 0.2733 0.1659 

C28 Sine 11 0.2604 0.9365 0.9358 0.2149 0.1401 

C29 Sine 46 0.6588 0.6195 0.6152 0.5107 0.0593 

C30 Sigmoid 49 0.4948 0.7805 0.7780 0.4280 0.3650 

C31 Sine 39 0.4988 0.7822 0.7798 0.3842 0.1117 

C32 Sine 25 0.5373 0.7440 0.7411 0.4281 0.1222 
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Table A-1 (Continued) 

C33 Sigmoid 11 0.2290 0.9445 0.9439 0.1885 0.1164 

C34 Sigmoid 13 0.3380 0.8907 0.8895 0.2870 0.2555 

C35 RBF 25 0.4421 0.8287 0.8268 0.3518 -0.0258 

C36 Sine 10 0.4913 0.7781 0.7757 0.4214 0.3406 

C37 Sigmoid 48 0.4855 0.7927 0.7904 0.3891 0.0993 

C38 Sine 41 0.4956 0.7853 0.7829 0.3949 0.1032 

C39 Sigmoid 13 0.4870 0.7834 0.7810 0.4245 0.3642 

C40 Sigmoid 31 0.5063 0.7729 0.7703 0.4057 0.1329 

C41 Sigmoid 41 0.5057 0.7759 0.7734 0.4051 0.1253 

C42 Sigmoid 42 0.6619 0.6116 0.6073 0.5368 0.3506 

C43 Sigmoid 26 0.3710 0.8746 0.8739 0.2978 0.2290 

C44 Sine 27 0.3219 0.9035 0.9030 0.2652 0.2186 

C45 Sigmoid 21 0.6438 0.6353 0.6333 0.4917 0.1278 

C46 Sigmoid 47 0.5355 0.7332 0.7317 0.4528 0.3734 

C47 Sigmoid 18 0.6715 0.6059 0.6037 0.5297 0.0807 

C48 Sigmoid 35 0.6127 0.6711 0.6692 0.4831 0.1258 

C49 RBF 23 0.6840 0.5818 0.5794 0.5931 0.5495 

C50 RBF 14 1.1205 -0.1074 -0.1135 0.9225 -0.3470 

C51 Sigmoid 16 0.6967 0.5759 0.5735 0.5406 0.1689 

C52 Sigmoid 4 0.6568 0.6218 0.6197 0.5160 0.2031 

C53 Sigmoid 8 0.4814 0.7866 0.7854 0.4237 0.3647 

C54 Sigmoid 18 0.5040 0.7769 0.7756 0.4022 0.1032 

C55 Sine 24 0.5310 0.7525 0.7511 0.4229 0.1437 

C56 RBF 36 0.7326 0.5229 0.5202 0.5970 0.2573 

C57 Sigmoid 3 0.6783 0.5895 0.5872 0.5468 0.2354 

C58 Sine 10 0.7252 0.5353 0.5353 0.6308 0.5935 

C59 Sine 7 1.1765 -0.2119 -0.2119 0.9719 -0.4170 

C60 Sigmoid 5 0.6855 0.5879 0.5879 0.5336 0.1254 

C61 Sine 2 0.8890 0.3111 0.3111 0.6901 0.0864 

C62 Sine 1 1.6701 -1.4412 -1.4412 1.3534 0.4734 

C63 Sigmoid 6 0.7745 0.4729 0.4729 0.6308 0.4406 

 

Table A-2: Full Result Performance at Bayan Lepas station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sigmoid 42 0.1259 0.9846 0.9842 0.1137 -0.0354 

C2 Sine 38 0.1898 0.9638 0.9629 0.1619 -0.0234 

C3 Sine 35 0.1576 0.9765 0.9759 0.1392 -0.0577 

C4 Sine 16 0.1727 0.9728 0.9722 0.1485 0.0298 
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Table A-2 (Continued) 

C5 Sigmoid 29 0.2251 0.9550 0.9540 0.1805 -0.0513 

C6 Sigmoid 38 0.2744 0.9302 0.9286 0.2279 0.0385 

C7 RBF 8 0.6130 0.6775 0.6702 0.4937 0.1114 

C8 RBF 18 0.1836 0.9702 0.9697 0.1490 -0.0006 

C9 Sigmoid 14 0.1877 0.9688 0.9683 0.1558 -0.0197 

C10 Sine 49 0.2593 0.9394 0.9384 0.2071 -0.0471 

C11 Sine 14 0.2830 0.9283 0.9271 0.2249 0.0915 

C12 RBF 10 0.6607 0.6256 0.6193 0.5266 0.1995 

C13 Sigmoid 24 0.1653 0.9742 0.9738 0.1446 -0.0501 

C14 Sigmoid 28 0.2427 0.9480 0.9471 0.2043 -0.0665 

C15 Sigmoid 16 0.2876 0.9180 0.9166 0.2311 0.0431 

C16 Sine 50 0.6227 0.6641 0.6585 0.4953 0.1126 

C17 Sine 35 0.2211 0.9567 0.9560 0.1776 -0.0420 

C18 Sine 46 0.2599 0.9396 0.9385 0.2119 0.0297 

C19 Sine 45 0.6234 0.6587 0.6530 0.5037 0.1629 

C20 Sine 45 0.4631 0.8012 0.7978 0.3650 0.2038 

C21 Sigmoid 23 0.7340 0.5162 0.5081 0.5976 0.2712 

C22 Sigmoid 36 0.6485 0.6372 0.6310 0.5195 0.2056 

C23 Sine 13 0.2034 0.9626 0.9622 0.1661 0.0153 

C24 Sigmoid 29 0.2686 0.9366 0.9358 0.2126 0.0122 

C25 Sigmoid 6 0.3057 0.9150 0.9141 0.2465 0.0981 

C26 Sine 12 0.6963 0.5834 0.5787 0.5541 0.1448 

C27 Sine 33 0.3047 0.9152 0.9142 0.2375 0.0523 

C28 Sine 19 0.2858 0.9265 0.9257 0.2345 0.0486 

C29 RBF 9 0.7236 0.5522 0.5472 0.5670 0.1303 

C30 Sine 43 0.5742 0.7119 0.7086 0.4851 0.3207 

C31 RBF 27 0.7711 0.4882 0.4825 0.6134 0.1153 

C32 RBF 29 0.6909 0.5896 0.5851 0.5517 0.1347 

C33 RBF 45 0.2403 0.9477 0.9471 0.1970 -0.0931 

C34 RBF 13 0.3087 0.9084 0.9074 0.2549 0.0882 

C35 RBF 31 0.6214 0.6679 0.6642 0.4942 0.0808 

C36 RBF 41 0.4455 0.8230 0.8210 0.3439 0.1298 

C37 Sine 40 0.7311 0.5384 0.5332 0.5916 0.1753 

C38 RBF 46 0.6452 0.6440 0.6400 0.5170 0.0586 

C39 RBF 32 0.4632 0.8126 0.8105 0.3742 0.1960 

C40 RBF 48 0.7598 0.4977 0.4921 0.6083 0.1806 

C41 RBF 41 0.6576 0.6272 0.6231 0.5252 0.1149 

C42 Sine 27 1.2780 -0.4486 -0.4648 1.0953 0.9241 

C43 Sine 16 0.3229 0.9083 0.9078 0.2498 0.0261 

C44 Sine 50 0.3065 0.9134 0.9129 0.2349 0.0831 
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Table A-2 (Continued) 

C45 RBF 14 0.6952 0.5856 0.5833 0.5472 -0.0372 

C46 Sine 32 0.5143 0.7632 0.7619 0.4252 0.2621 

C47 Sigmoid 14 0.8370 0.4004 0.3971 0.6515 -0.0657 

C48 Sine 30 0.7067 0.5721 0.5698 0.5616 0.1189 

C49 Sigmoid 41 0.4917 0.7859 0.7847 0.3908 0.1872 

C50 RBF 25 1.0579 0.0342 0.0288 0.8354 -0.2846 

C51 Sigmoid 10 0.7500 0.5185 0.5158 0.5965 0.2309 

C52 Sine 4 1.2562 -0.3639 -0.3715 1.0417 0.7476 

C53 RBF 35 0.4269 0.8348 0.8339 0.3155 0.1066 

C54 Sigmoid 15 0.8001 0.4394 0.4363 0.6452 0.2168 

C55 Sigmoid 28 0.6580 0.6287 0.6267 0.5238 0.1819 

C56 RBF 29 1.2008 -0.3153 -0.3226 1.0180 0.6835 

C57 RBF 34 1.1571 -0.1600 -0.1664 0.9636 0.6226 

C58 Sigmoid 7 0.5292 0.7489 0.7489 0.4265 0.2399 

C59 Sine 7 1.0906 -0.0318 -0.0318 0.8771 -0.4238 

C60 Sigmoid 7 0.7186 0.5577 0.5577 0.5748 0.1133 

C61 Sigmoid 2 1.3384 -0.5414 -0.5414 1.0928 0.6341 

C62 Sigmoid 2 1.4767 -0.8756 -0.8756 1.1882 0.1813 

C63 RBF 8 1.3987 -0.7144 -0.7144 1.2067 1.0018 

 

Table A-3: Full Result Performance at Ipoh station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 RBF 41 0.1247 0.9684 0.9675 0.1064 0.0519 

C2 RBF 42 0.1606 0.9510 0.9499 0.1359 0.0718 

C3 Sigmoid 25 0.1362 0.9646 0.9637 0.1168 0.0552 

C4 RBF 30 0.1270 0.9671 0.9664 0.1088 0.0536 

C5 Sine 18 0.1535 0.9554 0.9544 0.1291 0.0510 

C6 RBF 28 0.1896 0.9270 0.9253 0.1559 0.0934 

C7 RBF 34 0.4005 0.7147 0.7083 0.3202 0.1538 

C8 Sine 49 0.1485 0.9582 0.9575 0.1238 0.0549 

C9 Sine 44 0.1901 0.9303 0.9292 0.1641 0.0786 

C10 Sine 47 0.1833 0.9385 0.9375 0.1535 0.0720 

C11 RBF 48 0.2176 0.9091 0.9076 0.1793 0.1261 

C12 Sigmoid 19 0.4563 0.6239 0.6175 0.3588 0.0721 

C13 Sigmoid 49 0.1434 0.9605 0.9599 0.1234 0.0562 

C14 Sine 18 0.1533 0.9527 0.9519 0.1306 0.0533 

C15 RBF 10 0.2066 0.9197 0.9183 0.1708 0.1133 

C16 Sine 41 0.4167 0.6913 0.6861 0.3334 0.0760 



87 

 

Table A-3 (Continued) 

C17 Sine 23 0.1476 0.9575 0.9568 0.1248 0.0293 

C18 Sigmoid 47 0.1962 0.9261 0.9249 0.1608 0.1115 

C19 Sine 39 0.3991 0.7162 0.7114 0.3191 0.1168 

C20 Sigmoid 34 0.2232 0.9034 0.9018 0.1849 0.1091 

C21 RBF 20 0.4142 0.6950 0.6899 0.3312 0.1761 

C22 RBF 43 0.4253 0.6760 0.6706 0.3379 0.0950 

C23 Sigmoid 43 0.2246 0.9046 0.9035 0.1909 0.1194 

C24 Sine 36 0.1897 0.9343 0.9336 0.1596 0.0692 

C25 Sine 37 0.2331 0.8952 0.8940 0.1939 0.1169 

C26 Sine 41 0.4867 0.5765 0.5717 0.3859 0.0072 

C27 RBF 32 0.2565 0.8807 0.8793 0.2208 0.1160 

C28 Sigmoid 30 0.2229 0.9027 0.9016 0.1853 0.1000 

C29 Sigmoid 27 0.5311 0.4972 0.4916 0.4220 -0.0391 

C30 Sine 36 0.2689 0.8654 0.8639 0.2245 0.1640 

C31 RBF 13 0.4779 0.5914 0.5868 0.3775 0.1032 

C32 RBF 19 0.5226 0.5148 0.5094 0.4182 0.1172 

C33 Sine 8 0.1550 0.9536 0.9531 0.1276 0.0339 

C34 Sine 14 0.2015 0.9229 0.9220 0.1657 0.1116 

C35 RBF 45 0.4121 0.6971 0.6937 0.3283 0.0798 

C36 Sine 43 0.2322 0.8997 0.8985 0.1962 0.1284 

C37 Sine 29 0.4574 0.6251 0.6209 0.3661 0.1673 

C38 RBF 28 0.4531 0.6327 0.6285 0.3589 0.1406 

C39 Sine 42 0.2173 0.9110 0.9100 0.1807 0.1054 

C40 Sigmoid 18 0.4669 0.6104 0.6061 0.3739 0.1774 

C41 RBF 24 0.4509 0.6311 0.6270 0.3628 0.1399 

C42 Sine 38 0.4832 0.5813 0.5766 0.3901 0.1862 

C43 RBF 24 0.2723 0.8629 0.8622 0.2312 0.1436 

C44 Sine 35 0.2764 0.8619 0.8611 0.2333 0.1433 

C45 Sine 22 0.5370 0.4884 0.4855 0.4250 0.0778 

C46 Sine 14 0.2767 0.8538 0.8530 0.2334 0.1760 

C47 RBF 14 0.5915 0.3727 0.3692 0.4716 0.1499 

C48 RBF 24 0.5497 0.4611 0.4581 0.4347 0.1342 

C49 RBF 16 0.2989 0.8362 0.8353 0.2529 0.1925 

C50 RBF 8 0.8896 -0.4054 -0.4132 0.6976 0.0100 

C51 Sine 10 0.5960 0.3662 0.3627 0.4695 0.0543 

C52 Sine 4 0.5668 0.4234 0.4202 0.4491 0.0717 

C53 Sigmoid 8 0.2195 0.9076 0.9071 0.1806 0.1002 

C54 Sine 11 0.4747 0.5980 0.5958 0.3801 0.1788 

C55 RBF 16 0.4531 0.6316 0.6295 0.3601 0.1584 

C56 Sigmoid 5 0.5800 0.3958 0.3925 0.4747 0.3179 
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Table A-3 (Continued) 

C57 Sigmoid 8 0.5511 0.4548 0.4518 0.4476 0.2561 

C58 RBF 29 0.3134 0.8168 0.8168 0.2639 0.1925 

C59 Sigmoid 3 0.9422 -0.5753 -0.5753 0.7296 0.1314 

C60 Sine 7 0.6028 0.3531 0.3531 0.4745 0.1547 

C61 RBF 8 0.7415 0.0134 0.0134 0.6033 0.3764 

C62 Sigmoid 2 1.1716 -1.4428 -1.4428 0.9269 -0.1747 

C63 RBF 3 0.5928 0.3691 0.3691 0.4847 0.3412 

 

Table A-4: Full Result Performance at KLIA Sepang station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 34 0.4773 0.7726 0.7662 0.4220 0.2718 

C2 RBF 43 0.5074 0.7442 0.7384 0.4454 0.3086 

C3 Sine 32 0.4865 0.7574 0.7519 0.4311 0.2972 

C4 Sigmoid 49 0.4813 0.7683 0.7631 0.4255 0.3089 

C5 RBF 41 0.4632 0.7876 0.7828 0.4007 0.2431 

C6 Sine 50 0.5583 0.6964 0.6896 0.4852 0.3744 

C7 Sine 35 0.8367 0.2981 0.2822 0.7056 0.4263 

C8 Sigmoid 47 0.5085 0.7410 0.7367 0.4435 0.3610 

C9 Sine 43 0.5250 0.7253 0.7207 0.4628 0.3548 

C10 Sine 43 0.5271 0.7070 0.7021 0.4530 0.4014 

C11 RBF 22 0.5741 0.6711 0.6655 0.4932 0.3667 

C12 RBF 28 0.7686 0.4413 0.4319 0.6204 0.0848 

C13 Sine 44 0.4954 0.7540 0.7499 0.4388 0.2985 

C14 RBF 45 0.4486 0.7988 0.7954 0.3808 0.2739 

C15 Sine 39 0.5989 0.6336 0.6274 0.5182 0.3984 

C16 RBF 36 0.8306 0.3526 0.3417 0.6824 0.3301 

C17 Sine 16 0.4770 0.7765 0.7728 0.4066 0.2581 

C18 Sigmoid 43 0.5621 0.6860 0.6808 0.4853 0.3741 

C19 RBF 31 0.8641 0.2898 0.2779 0.7187 0.3306 

C20 Sigmoid 43 0.6737 0.5570 0.5495 0.5869 0.5440 

C21 Sigmoid 48 0.7740 0.4205 0.4108 0.6277 0.3204 

C22 Sine 24 0.8968 0.2229 0.2098 0.7456 0.4392 

C23 Sigmoid 7 0.5155 0.7225 0.7194 0.4423 0.3183 

C24 Sine 21 0.5499 0.7027 0.6994 0.4768 0.3562 

C25 Sine 47 0.5988 0.6169 0.6127 0.5179 0.4490 

C26 RBF 17 0.8311 0.3528 0.3455 0.6723 0.0660 

C27 Sine 25 0.5496 0.6950 0.6916 0.4731 0.3573 

C28 RBF 49 0.5767 0.6682 0.6645 0.5054 0.3898 
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Table A-4 (Continued) 

C29 Sine 18 0.8397 0.3420 0.3347 0.6578 0.0937 

C30 Sigmoid 43 0.7614 0.4170 0.4105 0.6575 0.6095 

C31 Sine 9 0.8693 0.2886 0.2806 0.7097 0.2647 

C32 RBF 9 0.8756 0.2859 0.2779 0.7009 0.2372 

C33 Sine 35 0.4945 0.7590 0.7563 0.4363 0.2866 

C34 Sine 29 0.6217 0.5746 0.5699 0.5368 0.4712 

C35 RBF 33 0.8150 0.3737 0.3667 0.6656 0.2741 

C36 Sine 47 0.6885 0.5286 0.5234 0.5999 0.5568 

C37 Sigmoid 37 0.8177 0.3646 0.3575 0.6730 0.0669 

C38 Sigmoid 38 0.8307 0.3364 0.3290 0.6778 0.3076 

C39 Sine 26 0.7076 0.5031 0.4975 0.6110 0.5675 

C40 RBF 35 0.8122 0.3714 0.3644 0.6635 0.1553 

C41 RBF 24 0.8620 0.2814 0.2734 0.7092 0.4320 

C42 RBF 41 1.0853 -0.1577 -0.1706 0.9039 0.6690 

C43 RBF 14 0.5778 0.6683 0.6664 0.4882 0.4382 

C44 Sine 34 0.6584 0.5537 0.5512 0.5616 0.5141 

C45 Sigmoid 9 0.8809 0.2772 0.2731 0.6936 0.1764 

C46 Sigmoid 32 0.6748 0.5215 0.5188 0.5742 0.4442 

C47 Sigmoid 14 0.8990 0.2464 0.2423 0.7290 0.3074 

C48 Sigmoid 8 0.8966 0.2465 0.2423 0.7325 0.1566 

C49 Sigmoid 39 0.7231 0.4566 0.4536 0.6169 0.4453 

C50 Sigmoid 21 1.1046 -0.1321 -0.1384 0.8807 -0.2177 

C51 Sigmoid 18 0.8668 0.3031 0.2992 0.6917 0.0539 

C52 Sine 38 1.3929 -0.8598 -0.8701 1.1547 0.9275 

C53 Sine 16 0.7479 0.4523 0.4493 0.6506 0.6053 

C54 RBF 14 0.7917 0.4062 0.4029 0.6504 0.2796 

C55 Sigmoid 23 0.8424 0.3015 0.2976 0.6947 0.2925 

C56 RBF 24 1.0025 0.0188 0.0134 0.8240 0.4462 

C57 RBF 33 1.1006 -0.1810 -0.1876 0.9012 0.5913 

C58 RBF 11 0.7046 0.5138 0.5138 0.5966 0.5277 

C59 Sigmoid 6 1.1081 -0.1452 -0.1452 0.8878 -0.2387 

C60 Sine 4 0.9101 0.2164 0.2164 0.7334 0.1677 

C61 Sigmoid 4 1.6339 -1.5011 -1.5011 1.3912 1.2306 

C62 Sigmoid 4 1.5236 -1.1459 -1.1459 1.2126 -0.2377 

C63 Sigmoid 11 1.1338 -0.2846 -0.2846 0.9458 0.6241 

 

Table A-5: Full Result Performance at Lubok Merbau station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 
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Table A-5 (Continued) 

C1 Sine 26 0.1488 0.9591 0.9579 0.1268 -0.0728 

C2 Sine 30 0.1631 0.9568 0.9557 0.1349 -0.0388 

C3 Sine 30 0.1507 0.9590 0.9580 0.1269 -0.0688 

C4 Sigmoid 9 0.1499 0.9615 0.9606 0.1263 -0.0349 

C5 RBF 19 0.1571 0.9556 0.9546 0.1315 -0.0604 

C6 Sine 19 0.1511 0.9604 0.9595 0.1206 -0.0509 

C7 Sine 26 0.3556 0.8036 0.7989 0.2823 0.0112 

C8 RBF 23 0.1627 0.9565 0.9557 0.1345 -0.0548 

C9 RBF 17 0.1657 0.9555 0.9547 0.1381 -0.0275 

C10 RBF 23 0.1608 0.9573 0.9566 0.1322 -0.0246 

C11 RBF 31 0.1658 0.9559 0.9551 0.1348 -0.0300 

C12 Sine 23 0.4750 0.6416 0.6352 0.3811 -0.0857 

C13 Sigmoid 8 0.1428 0.9658 0.9652 0.1154 0.0027 

C14 RBF 25 0.1569 0.9541 0.9532 0.1327 -0.0674 

C15 Sine 17 0.1624 0.9553 0.9545 0.1310 -0.0453 

C16 Sine 24 0.3710 0.7854 0.7816 0.2950 -0.0241 

C17 Sine 14 0.1595 0.9539 0.9531 0.1337 -0.0734 

C18 Sigmoid 7 0.1555 0.9604 0.9597 0.1207 -0.0109 

C19 RBF 21 0.3643 0.7938 0.7902 0.2898 -0.0061 

C20 RBF 38 0.1842 0.9447 0.9437 0.1470 -0.0402 

C21 RBF 19 0.3643 0.7932 0.7896 0.2901 0.0144 

C22 Sigmoid 19 0.4210 0.7235 0.7186 0.3336 0.0172 

C23 Sine 26 0.1869 0.9455 0.9448 0.1533 0.0028 

C24 RBF 15 0.1659 0.9542 0.9537 0.1370 -0.0397 

C25 Sigmoid 13 0.1648 0.9563 0.9558 0.1340 -0.0164 

C26 RBF 13 0.5140 0.5831 0.5782 0.4117 -0.1017 

C27 RBF 23 0.1808 0.9467 0.9461 0.1483 -0.0336 

C28 Sigmoid 20 0.1774 0.9502 0.9496 0.1461 -0.0369 

C29 RBF 18 0.6011 0.4339 0.4272 0.4733 -0.1463 

C30 RBF 48 0.1920 0.9416 0.9409 0.1540 -0.0243 

C31 RBF 12 0.4820 0.6324 0.6280 0.3880 -0.0070 

C32 RBF 25 0.5395 0.5414 0.5360 0.4358 -0.0727 

C33 Sine 8 0.1664 0.9518 0.9513 0.1375 -0.0562 

C34 Sine 12 0.1826 0.9458 0.9452 0.1494 -0.0245 

C35 Sine 16 0.3710 0.7853 0.7828 0.2962 -0.0371 

C36 Sine 36 0.1908 0.9411 0.9404 0.1531 -0.0503 

C37 Sigmoid 24 0.3869 0.7667 0.7640 0.3107 -0.0147 

C38 Sigmoid 17 0.4305 0.7110 0.7076 0.3408 0.0326 

C39 Sine 8 0.1821 0.9471 0.9464 0.1426 -0.0359 

C40 RBF 15 0.3710 0.7856 0.7830 0.2954 -0.0315 
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Table A-5 (Continued) 

C41 RBF 18 0.4271 0.7153 0.7120 0.3355 -0.0141 

C42 RBF 19 0.4505 0.6793 0.6755 0.3576 0.0039 

C43 RBF 20 0.1984 0.9377 0.9373 0.1642 -0.0140 

C44 Sine 9 0.2022 0.9357 0.9353 0.1642 0.0549 

C45 Sine 10 0.5996 0.4363 0.4330 0.4631 -0.1089 

C46 RBF 44 0.2037 0.9340 0.9336 0.1663 -0.0183 

C47 RBF 8 0.5485 0.5258 0.5231 0.4312 -0.0104 

C48 RBF 23 0.5666 0.4926 0.4896 0.4578 -0.1323 

C49 RBF 31 0.2056 0.9319 0.9315 0.1660 0.0264 

C50 RBF 8 0.8290 -0.0675 -0.0737 0.6533 -0.2841 

C51 RBF 35 0.6586 0.3124 0.3083 0.5215 0.0474 

C52 RBF 23 0.5486 0.5214 0.5186 0.4436 0.0227 

C53 Sigmoid 6 0.1945 0.9394 0.9391 0.1533 -0.0194 

C54 Sigmoid 7 0.3981 0.7532 0.7518 0.3203 -0.0411 

C55 RBF 8 0.4413 0.6967 0.6949 0.3508 0.0242 

C56 Sine 11 0.4868 0.6315 0.6293 0.3890 0.0575 

C57 Sine 13 0.4914 0.6224 0.6201 0.3912 0.0207 

C58 Sigmoid 33 0.2295 0.9180 0.9180 0.1867 0.0707 

C59 Sine 4 0.8559 -0.1435 -0.1435 0.6758 -0.3954 

C60 Sine 21 0.6509 0.3373 0.3373 0.5158 0.0373 

C61 RBF 8 0.6356 0.3627 0.3627 0.5081 0.0236 

C62 Sine 1 1.1950 -1.2374 -1.2374 0.9293 -0.1035 

C63 Sine 5 0.5005 0.6073 0.6073 0.3985 0.0216 

 

Table A-6: Full Result Performance at Pulau Langkawi station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sigmoid 22 0.2127 0.9570 0.9558 0.1821 0.1568 

C2 Sigmoid 19 0.2445 0.9458 0.9446 0.2041 0.1240 

C3 Sigmoid 23 0.2183 0.9539 0.9529 0.1883 0.1438 

C4 Sine 32 0.2176 0.9525 0.9514 0.1892 0.1507 

C5 Sigmoid 21 0.2654 0.9399 0.9385 0.2223 0.1129 

C6 Sigmoid 37 0.3402 0.9033 0.9011 0.2843 0.2463 

C7 Sine 39 0.5464 0.7669 0.7617 0.4295 0.0912 

C8 Sine 13 0.2457 0.9474 0.9465 0.2041 0.1304 

C9 Sigmoid 34 0.2499 0.9449 0.9439 0.2111 0.1565 

C10 Sine 48 0.2943 0.9278 0.9266 0.2392 0.1704 

C11 Sigmoid 18 0.3306 0.9111 0.9096 0.2738 0.2047 

C12 RBF 33 0.5978 0.7210 0.7163 0.4737 0.0651 
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Table A-6 (Continued) 

C13 RBF 32 0.2286 0.9493 0.9484 0.1953 0.1571 

C14 Sine 19 0.2989 0.9251 0.9238 0.2556 0.1234 

C15 Sine 37 0.3328 0.9093 0.9078 0.2708 0.2259 

C16 Sine 41 0.5733 0.7436 0.7392 0.4539 0.0618 

C17 Sine 45 0.2876 0.9305 0.9293 0.2426 0.1731 

C18 Sine 21 0.3525 0.8943 0.8925 0.2935 0.2528 

C19 Sine 44 0.5641 0.7522 0.7481 0.4463 0.0636 

C20 Sine 21 0.6343 0.6712 0.6657 0.5395 0.4661 

C21 Sigmoid 50 0.6033 0.7160 0.7112 0.4758 0.0054 

C22 Sigmoid 35 0.6353 0.6836 0.6783 0.5092 0.2587 

C23 Sine 42 0.3303 0.8999 0.8987 0.2805 0.1915 

C24 Sine 28 0.3172 0.9158 0.9149 0.2600 0.1666 

C25 Sigmoid 13 0.3203 0.9162 0.9153 0.2619 0.2053 

C26 Sine 17 0.6534 0.6657 0.6619 0.5260 -0.0356 

C27 Sine 26 0.3397 0.9046 0.9035 0.2794 0.1935 

C28 Sigmoid 19 0.3467 0.8987 0.8976 0.2884 0.2370 

C29 Sine 30 0.7082 0.6091 0.6047 0.5619 -0.0661 

C30 Sigmoid 16 0.8650 0.3990 0.3923 0.7476 0.6837 

C31 Sigmoid 44 0.6569 0.6629 0.6592 0.5038 -0.0002 

C32 RBF 30 0.6428 0.6782 0.6746 0.5083 0.0794 

C33 Sine 40 0.2926 0.9273 0.9265 0.2477 0.1737 

C34 Sigmoid 15 0.3856 0.8744 0.8730 0.3202 0.2752 

C35 RBF 38 0.5793 0.7379 0.7350 0.4616 0.0847 

C36 RBF 40 0.6418 0.6708 0.6672 0.5543 0.4865 

C37 Sigmoid 28 0.6233 0.6959 0.6925 0.5000 0.0742 

C38 RBF 34 0.6348 0.6839 0.6804 0.5059 0.1738 

C39 Sine 14 0.6077 0.6899 0.6864 0.5184 0.4255 

C40 Sigmoid 42 0.6390 0.6803 0.6767 0.5033 0.0661 

C41 Sigmoid 38 0.6125 0.7067 0.7034 0.4922 0.1254 

C42 Sigmoid 34 0.8863 0.3741 0.3671 0.7163 0.3736 

C43 Sine 42 0.3573 0.8955 0.8949 0.2893 0.1706 

C44 Sine 32 0.4205 0.8373 0.8364 0.3410 0.2661 

C45 Sine 13 0.7360 0.5774 0.5750 0.5903 0.0131 

C46 Sigmoid 38 0.9849 0.2389 0.2347 0.8601 0.8160 

C47 Sigmoid 44 0.8194 0.4729 0.4700 0.6336 0.2364 

C48 RBF 17 0.6489 0.6719 0.6700 0.5215 0.0124 

C49 Sine 7 1.1333 -0.0110 -0.0167 0.9870 0.9541 

C50 RBF 15 1.1686 -0.0820 -0.0880 0.9599 -0.4402 

C51 Sine 24 0.7735 0.5334 0.5308 0.6191 -0.0511 

C52 RBF 15 1.0265 0.1648 0.1602 0.8308 0.5512 
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Table A-6 (Continued) 

C53 Sine 31 0.6517 0.6600 0.6581 0.5606 0.4845 

C54 Sine 15 0.6536 0.6658 0.6640 0.5210 0.1414 

C55 Sigmoid 18 0.6346 0.6843 0.6826 0.5132 0.2087 

C56 RBF 22 0.9081 0.3478 0.3442 0.7391 0.4706 

C57 Sigmoid 23 0.8969 0.3522 0.3486 0.7251 0.4139 

C58 RBF 41 1.2229 -0.1679 -0.1679 1.0780 1.0437 

C59 Sine 5 1.2784 -0.3036 -0.3036 1.0812 -0.6258 

C60 RBF 11 0.8118 0.4850 0.4850 0.6542 0.0401 

C61 RBF 6 1.1844 -0.1144 -0.1144 0.9738 0.6754 

C62 RBF 3 1.4544 -0.6515 -0.6515 1.1589 0.0233 

C63 RBF 7 0.9137 0.3403 0.3403 0.7438 0.4809 

 

Table A-7: Full Result Performance at Sitiawan station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 RBF 15 0.3049 0.8410 0.8362 0.2631 0.1706 

C2 RBF 19 0.3153 0.8339 0.8300 0.2721 0.1505 

C3 Sigmoid 22 0.3220 0.8243 0.8201 0.2817 0.1807 

C4 RBF 12 0.2819 0.8529 0.8494 0.2386 0.1444 

C5 RBF 12 0.3127 0.8334 0.8294 0.2693 0.1459 

C6 Sine 16 0.3278 0.8197 0.8154 0.2806 0.1979 

C7 Sine 17 0.5753 0.4675 0.4548 0.4842 0.4158 

C8 RBF 46 0.3249 0.8240 0.8209 0.2833 0.1665 

C9 Sigmoid 50 0.3214 0.8292 0.8261 0.2812 0.1590 

C10 Sine 49 0.3052 0.8435 0.8407 0.2618 0.1603 

C11 RBF 14 0.3265 0.8223 0.8191 0.2774 0.1704 

C12 RBF 16 0.5554 0.5055 0.4967 0.4557 0.2458 

C13 RBF 22 0.3197 0.8224 0.8193 0.2779 0.1869 

C14 RBF 9 0.2884 0.8587 0.8561 0.2471 0.1330 

C15 RBF 12 0.3201 0.8314 0.8284 0.2712 0.1752 

C16 Sigmoid 5 0.4868 0.6111 0.6042 0.3907 0.1886 

C17 Sine 22 0.3165 0.8306 0.8276 0.2747 0.1664 

C18 RBF 12 0.3506 0.7987 0.7951 0.3016 0.2320 

C19 RBF 19 0.5321 0.5432 0.5350 0.4351 0.3306 

C20 Sigmoid 41 0.3209 0.8239 0.8207 0.2732 0.1820 

C21 Sine 6 0.5040 0.5875 0.5801 0.4084 0.2398 

C22 RBF 11 0.6357 0.3499 0.3383 0.5229 0.3931 

C23 RBF 15 0.3145 0.8372 0.8353 0.2678 0.1786 

C24 Sine 13 0.3188 0.8305 0.8285 0.2753 0.1590 
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Table A-7 (Continued) 

C25 RBF 9 0.3222 0.8290 0.8270 0.2730 0.1616 

C26 RBF 6 0.6204 0.3792 0.3719 0.5110 0.2958 

C27 RBF 48 0.3072 0.8408 0.8389 0.2608 0.1305 

C28 Sigmoid 50 0.3300 0.8200 0.8179 0.2841 0.2017 

C29 Sigmoid 5 0.5761 0.4647 0.4584 0.4596 0.0305 

C30 Sine 21 0.3261 0.8182 0.8160 0.2791 0.1793 

C31 Sine 10 0.5517 0.5107 0.5050 0.4470 0.2957 

C32 Sigmoid 5 0.6105 0.3995 0.3924 0.4904 0.1760 

C33 Sine 10 0.3264 0.8175 0.8153 0.2805 0.1717 

C34 Sigmoid 8 0.3258 0.8228 0.8207 0.2791 0.1958 

C35 RBF 13 0.6081 0.4026 0.3955 0.5059 0.4131 

C36 RBF 38 0.3281 0.8222 0.8201 0.2837 0.1672 

C37 RBF 19 0.6365 0.3337 0.3258 0.5306 0.3331 

C38 Sigmoid 23 0.6982 0.2186 0.2094 0.5788 0.3833 

C39 RBF 42 0.3100 0.8410 0.8391 0.2639 0.1624 

C40 RBF 14 0.5560 0.4909 0.4849 0.4525 0.3425 

C41 Sigmoid 47 0.6167 0.3779 0.3706 0.5008 0.3142 

C42 RBF 8 0.6621 0.2877 0.2793 0.5513 0.4306 

C43 RBF 10 0.3351 0.8148 0.8137 0.2848 0.1903 

C44 Sine 6 0.3492 0.8042 0.8030 0.2982 0.2188 

C45 Sine 4 0.6473 0.3301 0.3262 0.5245 0.0800 

C46 RBF 38 0.3260 0.8162 0.8151 0.2778 0.1425 

C47 Sine 12 0.6931 0.2174 0.2128 0.5703 0.3482 

C48 Sine 11 0.7562 0.0889 0.0835 0.6179 0.4511 

C49 Sigmoid 25 0.3382 0.8094 0.8083 0.2891 0.2034 

C50 Sigmoid 21 0.8421 -0.1551 -0.1619 0.6653 0.0869 

C51 RBF 16 0.7445 0.1098 0.1046 0.5954 0.3907 

C52 Sine 3 0.6477 0.3292 0.3253 0.5218 0.2839 

C53 Sine 24 0.3139 0.8268 0.8258 0.2670 0.1823 

C54 Sigmoid 12 0.6220 0.3741 0.3704 0.5125 0.3913 

C55 Sigmoid 3 0.6623 0.2982 0.2941 0.5435 0.3120 

C56 Sigmoid 28 0.7592 0.0547 0.0491 0.6303 0.4829 

C57 Sigmoid 6 0.6791 0.2343 0.2298 0.5621 0.4265 

C58 Sigmoid 27 0.3834 0.7644 0.7644 0.3263 0.2387 

C59 RBF 7 0.8529 -0.1887 -0.1887 0.6715 0.1967 

C60 Sine 5 0.8076 -0.0557 -0.0557 0.6580 0.4720 

C61 Sine 2 0.7409 0.1248 0.1248 0.5857 0.0689 

C62 Sigmoid 2 1.1803 -1.2129 -1.2129 0.9386 0.1388 

C63 RBF 3 0.7818 -0.0130 -0.0130 0.6553 0.5358 
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Table A-8: Full Result Performance at Subang station using ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 38 0.2627 0.9152 0.9128 0.2225 0.0550 

C2 Sigmoid 10 0.2832 0.9085 0.9064 0.2353 0.0364 

C3 Sine 41 0.2698 0.9131 0.9112 0.2292 0.0565 

C4 RBF 45 0.2594 0.9171 0.9152 0.2201 0.0497 

C5 RBF 45 0.2530 0.9193 0.9174 0.2099 0.0502 

C6 Sine 18 0.2879 0.9071 0.9050 0.2335 0.0626 

C7 RBF 47 0.9755 -0.0392 -0.0627 0.8275 0.5752 

C8 Sine 19 0.2797 0.9101 0.9086 0.2317 0.0751 

C9 RBF 13 0.2806 0.9094 0.9079 0.2312 0.0694 

C10 RBF 16 0.2887 0.9059 0.9043 0.2397 0.0652 

C11 RBF 21 0.2894 0.9081 0.9066 0.2356 0.0647 

C12 RBF 26 0.9885 -0.0418 -0.0594 0.8227 0.4438 

C13 RBF 15 0.2999 0.8927 0.8908 0.2544 0.0811 

C14 Sigmoid 48 0.2565 0.9206 0.9193 0.2117 0.0513 

C15 Sigmoid 9 0.3071 0.8943 0.8925 0.2511 0.1073 

C16 Sigmoid 38 0.9807 -0.0559 -0.0737 0.8335 0.5878 

C17 RBF 15 0.2891 0.9019 0.9003 0.2450 0.0332 

C18 RBF 24 0.2807 0.9116 0.9101 0.2272 0.0303 

C19 Sigmoid 47 0.9318 0.0462 0.0301 0.7795 0.4865 

C20 Sigmoid 13 0.2883 0.9078 0.9063 0.2352 0.0565 

C21 Sigmoid 29 0.9883 -0.0558 -0.0737 0.8324 0.5729 

C22 RBF 7 1.0615 -0.2179 -0.2385 0.9128 0.7043 

C23 Sigmoid 10 0.3090 0.8922 0.8910 0.2556 0.1008 

C24 RBF 22 0.2771 0.9121 0.9111 0.2285 0.0630 

C25 RBF 17 0.3034 0.8985 0.8973 0.2477 0.0844 

C26 Sigmoid 47 1.1405 -0.4944 -0.5111 0.9666 0.3438 

C27 Sigmoid 6 0.2776 0.9135 0.9125 0.2247 0.0184 

C28 Sine 7 0.3156 0.8864 0.8851 0.2592 0.0476 

C29 Sine 32 1.0667 -0.2196 -0.2333 0.8865 0.3605 

C30 Sigmoid 6 0.3101 0.8929 0.8917 0.2559 0.0730 

C31 Sigmoid 9 1.0492 -0.1590 -0.1720 0.8714 0.5193 

C32 RBF 5 1.0914 -0.2635 -0.2777 0.9086 0.3372 

C33 Sigmoid 44 0.2762 0.9098 0.9088 0.2290 0.0443 

C34 Sigmoid 38 0.3474 0.8621 0.8605 0.2893 0.0889 

C35 RBF 48 1.0151 -0.1844 -0.1976 0.8680 0.5106 

C36 RBF 15 0.3031 0.8979 0.8967 0.2479 0.0835 

C37 RBF 42 1.1722 -0.5961 -0.6139 1.0219 0.5408 
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Table A-8 (Continued) 

C38 Sine 6 1.0423 -0.1495 -0.1623 0.8861 0.6989 

C39 RBF 12 0.3016 0.9003 0.8992 0.2458 0.0334 

C40 Sine 15 0.9722 -0.0025 -0.0137 0.8237 0.5772 

C41 Sigmoid 4 0.9893 -0.0482 -0.0600 0.8367 0.5800 

C42 Sine 9 1.1218 -0.3271 -0.3420 0.9672 0.8071 

C43 Sigmoid 4 0.3157 0.8826 0.8819 0.2562 0.0321 

C44 Sigmoid 6 0.3451 0.8708 0.8701 0.2806 0.1555 

C45 Sine 12 0.9996 -0.0452 -0.0511 0.8105 0.2890 

C46 RBF 6 0.3274 0.8831 0.8825 0.2680 0.0889 

C47 Sigmoid 34 1.3169 -1.0420 -1.0534 1.1354 0.1499 

C48 Sigmoid 3 0.9912 -0.0212 -0.0269 0.8046 0.1310 

C49 Sigmoid 5 0.3194 0.8875 0.8869 0.2633 0.0224 

C50 RBF 28 1.3146 -0.8720 -0.8824 1.0953 -0.1086 

C51 Sigmoid 4 1.0566 -0.1701 -0.1767 0.8572 -0.0871 

C52 Sine 5 1.0796 -0.2163 -0.2230 0.8872 0.5718 

C53 Sine 18 0.3529 0.8613 0.8605 0.2911 0.0793 

C54 RBF 15 0.9644 -0.0001 -0.0057 0.8079 0.4813 

C55 Sigmoid 3 1.0428 -0.2031 -0.2098 0.8907 0.6823 

C56 Sine 5 1.1776 -0.4542 -0.4623 1.0164 0.8397 

C57 Sine 40 1.5055 -1.7710 -1.7864 1.3359 0.5656 

C58 Sine 5 0.3834 0.8418 0.8418 0.3135 0.1202 

C59 Sine 4 1.3396 -0.8662 -0.8662 1.0780 0.2590 

C60 Sine 2 1.2302 -0.7813 -0.7813 1.0367 -0.1959 

C61 Sigmoid 5 1.2576 -0.6663 -0.6663 1.0505 0.7907 

C62 Sine 2 1.6513 -1.9073 -1.9073 1.3709 0.4939 

C63 Sigmoid 3 1.1975 -0.5028 -0.5028 1.0360 0.8467 

 

Table A-9: Full Result Performance at Alor Setar station using Bagged ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 29 0.1789 0.9651 0.9642 0.1566 0.1230 

C2 RBF 35 0.2125 0.9559 0.9549 0.1797 0.1281 

C3 RBF 33 0.1850 0.9638 0.9630 0.1584 0.1184 

C4 Sine 31 0.1744 0.9689 0.9682 0.1511 0.1211 

C5 Sine 22 0.2547 0.9298 0.9282 0.2181 0.1324 

C6 Sigmoid 24 0.2495 0.9390 0.9377 0.2108 0.1489 

C7 Sigmoid 48 0.4483 0.8190 0.8149 0.3598 0.0808 

C8 Sine 16 0.2105 0.9575 0.9568 0.1770 0.1154 

C9 RBF 19 0.2269 0.9512 0.9504 0.1889 0.1333 
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Table A-9 (Continued) 

C10 Sine 49 0.2939 0.9128 0.9114 0.2429 0.1505 

C11 Sine 17 0.2749 0.9277 0.9264 0.2309 0.1465 

C12 Sine 49 0.5264 0.7530 0.7488 0.4209 0.0984 

C13 Sigmoid 42 0.1897 0.9611 0.9604 0.1628 0.1251 

C14 Sigmoid 34 0.2406 0.9344 0.9333 0.2039 0.1307 

C15 Sine 17 0.3231 0.8974 0.8956 0.2773 0.2298 

C16 Sigmoid 40 0.4706 0.8030 0.7997 0.3778 0.0455 

C17 Sigmoid 25 0.2329 0.9392 0.9382 0.1961 0.1114 

C18 Sine 17 0.2641 0.9313 0.9302 0.2235 0.1568 

C19 Sigmoid 43 0.4812 0.7912 0.7877 0.3896 0.0483 

C20 RBF 14 0.5030 0.7636 0.7596 0.4421 0.3796 

C21 RBF 49 0.5009 0.7722 0.7684 0.4068 0.0786 

C22 Sigmoid 49 0.5235 0.7550 0.7509 0.4226 0.0842 

C23 RBF 50 0.3048 0.9103 0.9093 0.2541 0.1302 

C24 Sigmoid 27 0.2826 0.9249 0.9241 0.2271 0.1258 

C25 Sine 11 0.3197 0.9007 0.8996 0.2714 0.2040 

C26 Sine 47 0.6460 0.6240 0.6198 0.5137 0.0907 

C27 Sine 27 0.3578 0.8814 0.8801 0.2902 0.2056 

C28 Sine 11 0.2643 0.9337 0.9330 0.2210 0.1291 

C29 Sine 46 0.7784 0.4301 0.4238 0.6325 -0.0886 

C30 Sigmoid 49 0.5344 0.7420 0.7391 0.4677 0.4030 

C31 Sine 39 0.5602 0.7180 0.7149 0.4411 0.0978 

C32 Sine 25 0.5800 0.6951 0.6917 0.4725 0.0697 

C33 Sigmoid 11 0.2442 0.9330 0.9323 0.2077 0.1262 

C34 Sigmoid 13 0.3528 0.8798 0.8785 0.3033 0.2690 

C35 RBF 25 0.4836 0.7922 0.7898 0.3885 0.0598 

C36 Sine 10 0.5107 0.7603 0.7576 0.4451 0.3777 

C37 Sigmoid 48 0.5344 0.7407 0.7378 0.4300 0.1440 

C38 Sine 41 0.5404 0.7378 0.7348 0.4358 0.0614 

C39 Sigmoid 13 0.4969 0.7704 0.7679 0.4346 0.3696 

C40 Sigmoid 31 0.5315 0.7484 0.7456 0.4296 0.1024 

C41 Sigmoid 41 0.5386 0.7418 0.7389 0.4369 0.0750 

C42 Sigmoid 42 0.6946 0.5616 0.5567 0.5695 0.3379 

C43 Sigmoid 26 0.3964 0.8308 0.8298 0.3220 0.1930 

C44 Sine 27 0.3497 0.8836 0.8830 0.2932 0.2195 

C45 Sigmoid 21 0.7155 0.5303 0.5277 0.5603 0.0710 

C46 Sigmoid 47 0.6606 0.5355 0.5329 0.5803 0.4413 

C47 Sigmoid 18 0.7193 0.5399 0.5373 0.5735 0.1015 

C48 Sigmoid 35 0.7785 0.3539 0.3503 0.6480 0.0129 

C49 RBF 23 0.6765 0.5826 0.5803 0.5860 0.5257 
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Table A-9 (Continued) 

C50 RBF 14 1.2051 -0.3195 -0.3268 1.0052 -0.4337 

C51 Sigmoid 16 0.7327 0.5237 0.5210 0.5823 0.0325 

C52 Sigmoid 4 0.6873 0.5801 0.5778 0.5466 0.2073 

C53 Sigmoid 8 0.4832 0.7848 0.7836 0.4235 0.3608 

C54 Sigmoid 18 0.5341 0.7463 0.7449 0.4306 0.0867 

C55 Sine 24 0.5858 0.6878 0.6861 0.4751 0.1868 

C56 RBF 36 0.8392 0.2840 0.2801 0.7025 0.3298 

C57 Sigmoid 3 0.7934 0.3908 0.3874 0.6580 0.2779 

C58 Sine 10 0.7250 0.5264 0.5264 0.6333 0.5914 

C59 Sine 7 1.2629 -0.4577 -0.4577 1.0556 -0.2675 

C60 Sigmoid 5 0.7044 0.5628 0.5628 0.5503 0.1445 

C61 Sine 2 0.9750 0.1392 0.1392 0.7795 0.1891 

C62 Sine 1 1.7915 -1.8745 -1.8745 1.4876 0.4318 

C63 Sigmoid 6 0.7843 0.4564 0.4564 0.6406 0.4406 

 

Table A-10: Full Result Performance at Bayan Lepas station using Bagged ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sigmoid 42 0.1404 0.9805 0.9799 0.1266 -0.0480 

C2 Sine 38 0.2062 0.9553 0.9543 0.1783 -0.0113 

C3 Sine 35 0.1723 0.9711 0.9704 0.1537 -0.0593 

C4 Sine 16 0.2056 0.9556 0.9546 0.1792 -0.0143 

C5 Sigmoid 29 0.3091 0.8979 0.8955 0.2676 -0.1373 

C6 Sigmoid 38 0.3029 0.9120 0.9101 0.2589 0.0464 

C7 RBF 8 0.7019 0.5575 0.5475 0.5753 0.2413 

C8 RBF 18 0.2228 0.9514 0.9506 0.1913 -0.0163 

C9 Sigmoid 14 0.2254 0.9490 0.9481 0.1948 -0.0270 

C10 Sine 49 0.3132 0.9084 0.9068 0.2582 -0.0396 

C11 Sine 14 0.3262 0.8986 0.8969 0.2711 0.0702 

C12 RBF 10 0.7145 0.5555 0.5480 0.5700 0.1830 

C13 Sigmoid 24 0.1832 0.9663 0.9658 0.1635 -0.0654 

C14 Sigmoid 28 0.2664 0.9339 0.9328 0.2257 -0.0900 

C15 Sigmoid 16 0.3317 0.8886 0.8867 0.2815 0.0546 

C16 Sine 50 0.7237 0.5224 0.5143 0.5960 0.1361 

C17 Sine 35 0.2724 0.9313 0.9301 0.2308 -0.0905 

C18 Sine 46 0.2849 0.9249 0.9237 0.2339 0.0565 

C19 Sine 45 0.7358 0.5183 0.5101 0.6045 0.1747 

C20 Sine 45 0.5157 0.7467 0.7424 0.4262 0.2689 

C21 Sigmoid 23 0.7954 0.4302 0.4206 0.6583 0.3466 



99 

 

Table A-10 (Continued) 

C22 Sigmoid 36 0.7191 0.5455 0.5379 0.5809 0.2696 

C23 Sine 13 0.2290 0.9491 0.9486 0.1943 -0.0154 

C24 Sigmoid 29 0.3215 0.8999 0.8988 0.2632 0.0555 

C25 Sigmoid 6 0.3867 0.8542 0.8525 0.3246 0.1698 

C26 Sine 12 0.7582 0.5013 0.4958 0.6091 0.1740 

C27 Sine 33 0.3509 0.8834 0.8821 0.2840 0.0538 

C28 Sine 19 0.3083 0.9115 0.9105 0.2591 0.0551 

C29 RBF 9 0.7861 0.4658 0.4598 0.6222 0.2188 

C30 Sine 43 0.6179 0.6472 0.6433 0.5288 0.3813 

C31 RBF 27 0.8504 0.3617 0.3545 0.6897 0.1728 

C32 RBF 29 0.7731 0.4635 0.4575 0.6253 0.1407 

C33 RBF 45 0.2836 0.9233 0.9225 0.2357 -0.0412 

C34 RBF 13 0.3411 0.8854 0.8841 0.2878 0.0843 

C35 RBF 31 0.6876 0.5854 0.5807 0.5558 0.1397 

C36 RBF 41 0.5082 0.7505 0.7478 0.4120 0.2157 

C37 Sine 40 0.8947 0.2588 0.2506 0.7423 0.2352 

C38 RBF 46 0.7538 0.4865 0.4808 0.6137 0.2027 

C39 RBF 32 0.5192 0.7503 0.7475 0.4321 0.2769 

C40 RBF 48 0.9245 0.2149 0.2061 0.7654 0.1406 

C41 RBF 41 0.7639 0.4682 0.4623 0.6222 0.1382 

C42 Sine 27 1.3166 -0.5485 -0.5658 1.1311 0.9458 

C43 Sine 16 0.3529 0.8860 0.8853 0.2835 0.0145 

C44 Sine 50 0.5871 0.4444 0.4413 0.5082 0.0060 

C45 RBF 14 0.7880 0.4383 0.4352 0.6368 0.0862 

C46 Sine 32 0.5809 0.6844 0.6827 0.4949 0.3411 

C47 Sigmoid 14 0.9140 0.2744 0.2703 0.7254 -0.0385 

C48 Sine 30 0.9991 -0.0843 -0.0904 0.8444 0.2415 

C49 Sigmoid 41 0.5678 0.6887 0.6870 0.4649 0.2018 

C50 RBF 25 1.2058 -0.3607 -0.3682 0.9866 -0.3857 

C51 Sigmoid 10 0.7670 0.4933 0.4905 0.6116 0.1945 

C52 Sine 4 1.3738 -0.6689 -0.6782 1.1619 0.8980 

C53 RBF 35 0.5030 0.7513 0.7499 0.4033 0.1700 

C54 Sigmoid 15 0.8312 0.3861 0.3827 0.6760 0.2187 

C55 Sigmoid 28 0.8964 0.1211 0.1162 0.7544 0.2129 

C56 RBF 29 1.3866 -0.7731 -0.7830 1.2018 0.8996 

C57 RBF 34 1.4407 -0.9865 -0.9976 1.2516 0.6482 

C58 Sigmoid 7 0.5444 0.7321 0.7321 0.4422 0.2499 

C59 Sine 7 1.1696 -0.2269 -0.2269 0.9503 -0.4309 

C60 Sigmoid 7 0.7838 0.4445 0.4445 0.6323 0.0805 

C61 Sigmoid 2 1.3804 -0.6765 -0.6765 1.1351 0.6313 
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Table A-10 (Continued) 

C62 Sigmoid 2 1.5244 -1.0094 -1.0094 1.2323 0.1660 

C63 RBF 8 1.4601 -0.8698 -0.8698 1.2669 1.0000 

 

Table A-11: Full Result Performance at Ipoh station using Bagged ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 RBF 41 0.1335 0.9644 0.9634 0.1158 0.0528 

C2 RBF 42 0.1675 0.9444 0.9432 0.1426 0.0706 

C3 Sigmoid 25 0.1434 0.9601 0.9591 0.1240 0.0613 

C4 RBF 30 0.1336 0.9643 0.9635 0.1155 0.0539 

C5 Sine 18 0.1612 0.9494 0.9482 0.1375 0.0548 

C6 RBF 28 0.2117 0.9090 0.9069 0.1794 0.1076 

C7 RBF 34 0.4229 0.6758 0.6685 0.3421 0.1317 

C8 Sine 49 0.1558 0.9522 0.9514 0.1309 0.0531 

C9 Sine 44 0.1891 0.9279 0.9267 0.1633 0.0836 

C10 Sine 47 0.1973 0.9272 0.9260 0.1681 0.0616 

C11 RBF 48 0.2539 0.8652 0.8629 0.2164 0.1202 

C12 Sigmoid 19 0.5125 0.5104 0.5021 0.4162 0.1100 

C13 Sigmoid 49 0.1526 0.9552 0.9544 0.1325 0.0607 

C14 Sine 18 0.1566 0.9520 0.9512 0.1339 0.0469 

C15 RBF 10 0.2163 0.9099 0.9083 0.1792 0.0982 

C16 Sine 41 0.4492 0.6310 0.6248 0.3624 0.0326 

C17 Sine 23 0.1539 0.9526 0.9518 0.1311 0.0404 

C18 Sigmoid 47 0.2215 0.9042 0.9026 0.1864 0.1121 

C19 Sine 39 0.4434 0.6369 0.6308 0.3581 0.0839 

C20 Sigmoid 34 0.2401 0.8890 0.8871 0.2014 0.1239 

C21 RBF 20 0.4234 0.6762 0.6707 0.3392 0.1618 

C22 RBF 43 0.5397 0.3751 0.3645 0.4503 0.0585 

C23 Sigmoid 43 0.2464 0.8822 0.8809 0.2137 0.1187 

C24 Sine 36 0.2134 0.9117 0.9107 0.1841 0.0610 

C25 Sine 37 0.2705 0.8547 0.8530 0.2310 0.1275 

C26 Sine 41 0.6104 0.2730 0.2648 0.5019 0.0557 

C27 RBF 32 0.2630 0.8661 0.8646 0.2275 0.1000 

C28 Sigmoid 30 0.2522 0.8738 0.8724 0.2151 0.1328 

C29 Sigmoid 27 0.5990 0.2984 0.2905 0.4858 -0.0661 

C30 Sine 36 0.2952 0.8266 0.8247 0.2509 0.1338 

C31 RBF 13 0.5058 0.5355 0.5303 0.4036 0.1123 

C32 RBF 19 0.5671 0.3829 0.3760 0.4624 0.1138 

C33 Sine 8 0.1900 0.9254 0.9245 0.1650 0.0749 
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Table A-11 (Continued) 

C34 Sine 14 0.2062 0.9179 0.9169 0.1712 0.1134 

C35 RBF 45 0.4810 0.5540 0.5490 0.3934 0.0115 

C36 Sine 43 0.2808 0.8360 0.8342 0.2439 0.1639 

C37 Sine 29 0.5032 0.5369 0.5317 0.4074 0.1537 

C38 RBF 28 0.5120 0.5115 0.5061 0.4159 0.1590 

C39 Sine 42 0.2667 0.8469 0.8452 0.2279 0.0911 

C40 Sigmoid 18 0.4836 0.5768 0.5721 0.3898 0.1524 

C41 RBF 24 0.5006 0.5160 0.5106 0.4074 0.1404 

C42 Sine 38 0.5976 0.2420 0.2335 0.5047 0.1281 

C43 RBF 24 0.3613 0.7043 0.7026 0.3198 0.0709 

C44 Sine 35 0.3100 0.7967 0.7955 0.2673 0.1567 

C45 Sine 22 0.6609 0.1741 0.1695 0.5441 0.1307 

C46 Sine 14 0.3020 0.8240 0.8230 0.2603 0.2082 

C47 RBF 14 0.6361 0.2619 0.2578 0.5160 0.1702 

C48 RBF 24 0.6400 0.2136 0.2092 0.5214 0.1774 

C49 RBF 16 0.3310 0.7885 0.7873 0.2852 0.1993 

C50 RBF 8 0.9700 -0.6985 -0.7080 0.7805 -0.1373 

C51 Sine 10 0.6164 0.3178 0.3140 0.4897 0.0248 

C52 Sine 4 0.5920 0.3709 0.3674 0.4745 0.0566 

C53 Sigmoid 8 0.2249 0.9023 0.9017 0.1858 0.1054 

C54 Sine 11 0.4881 0.5699 0.5675 0.3922 0.1791 

C55 RBF 16 0.4858 0.5705 0.5681 0.3907 0.1653 

C56 Sigmoid 5 0.6149 0.3080 0.3041 0.5091 0.3801 

C57 Sigmoid 8 0.5772 0.4004 0.3970 0.4731 0.2876 

C58 RBF 29 0.3454 0.7641 0.7641 0.2966 0.2344 

C59 Sigmoid 3 0.9901 -0.7630 -0.7630 0.7818 0.0560 

C60 Sine 7 0.6251 0.2961 0.2961 0.4956 0.1695 

C61 RBF 8 0.8404 -0.3808 -0.3808 0.7029 0.3265 

C62 Sigmoid 2 1.2234 -1.6912 -1.6912 0.9784 -0.2840 

C63 RBF 3 0.6209 0.2946 0.2946 0.5131 0.3739 

 

Table A-12: Full Result Performance at KLIA Sepang station using Bagged 

ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 34 0.4859 0.7588 0.7520 0.4314 0.3072 

C2 RBF 43 0.5249 0.7219 0.7157 0.4625 0.3555 

C3 Sine 32 0.5016 0.7384 0.7325 0.4451 0.3257 
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Table A-12 (Continued) 

C4 Sigmoid 49 0.4914 0.7556 0.7501 0.4363 0.3238 

C5 RBF 41 0.4784 0.7579 0.7525 0.4196 0.2594 

C6 Sine 50 0.6000 0.6395 0.6313 0.5290 0.3806 

C7 Sine 35 0.9057 0.1633 0.1444 0.7736 0.5112 

C8 Sigmoid 47 0.5091 0.7318 0.7272 0.4458 0.3730 

C9 Sine 43 0.5252 0.7200 0.7153 0.4614 0.3788 

C10 Sine 43 0.5630 0.6717 0.6662 0.4941 0.3707 

C11 RBF 22 0.6249 0.6078 0.6012 0.5495 0.4240 

C12 RBF 28 0.8823 0.2446 0.2318 0.7288 0.2219 

C13 Sine 44 0.4986 0.7479 0.7436 0.4407 0.3115 

C14 RBF 45 0.4919 0.7493 0.7451 0.4320 0.3100 

C15 Sine 39 0.6519 0.5568 0.5493 0.5732 0.4655 

C16 RBF 36 0.9263 0.1372 0.1227 0.7881 0.2733 

C17 Sine 16 0.5077 0.7376 0.7332 0.4464 0.3074 

C18 Sigmoid 43 0.5990 0.6345 0.6283 0.5238 0.3873 

C19 RBF 31 0.9126 0.1792 0.1654 0.7751 0.3194 

C20 Sigmoid 43 0.7130 0.4942 0.4857 0.6214 0.5634 

C21 Sigmoid 48 0.9151 0.1562 0.1420 0.7717 0.2886 

C22 Sine 24 0.9651 0.0797 0.0642 0.8162 0.5172 

C23 Sigmoid 7 0.5387 0.6980 0.6947 0.4627 0.3294 

C24 Sine 21 0.5791 0.6670 0.6633 0.5071 0.3738 

C25 Sine 47 0.6380 0.5631 0.5582 0.5555 0.4519 

C26 RBF 17 0.8978 0.2314 0.2228 0.7389 0.0980 

C27 Sine 25 0.5849 0.6583 0.6544 0.5062 0.3818 

C28 RBF 49 0.5811 0.6477 0.6437 0.5049 0.3330 

C29 Sine 18 0.8912 0.2526 0.2443 0.7074 0.0447 

C30 Sigmoid 43 0.8171 0.3197 0.3121 0.7223 0.6570 

C31 Sine 9 0.8790 0.2603 0.2520 0.7209 0.2647 

C32 RBF 9 0.9194 0.1974 0.1885 0.7480 0.2083 

C33 Sine 35 0.5270 0.7184 0.7152 0.4670 0.3035 

C34 Sine 29 0.6652 0.5237 0.5183 0.5811 0.4991 

C35 RBF 33 0.9399 0.0903 0.0802 0.8036 0.2266 

C36 Sine 47 0.7165 0.4751 0.4693 0.6203 0.5364 

C37 Sigmoid 37 1.0087 -0.1298 -0.1424 0.8682 0.3391 

C38 Sigmoid 38 1.0864 -0.2584 -0.2725 0.9407 0.3534 

C39 Sine 26 0.7279 0.4656 0.4597 0.6305 0.5655 

C40 RBF 35 0.9615 0.0663 0.0558 0.8103 0.2904 

C41 RBF 24 0.9340 0.1319 0.1222 0.7831 0.4261 

C42 RBF 41 1.2907 -0.7781 -0.7979 1.1214 0.7764 

C43 RBF 14 0.6099 0.6227 0.6206 0.5272 0.3818 
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Table A-12 (Continued) 

C44 Sine 34 0.7249 0.3121 0.3083 0.6278 0.5479 

C45 Sigmoid 9 0.9256 0.1946 0.1902 0.7376 0.1888 

C46 Sigmoid 32 0.8172 0.2283 0.2240 0.7234 0.4877 

C47 Sigmoid 14 0.9735 0.0702 0.0650 0.8042 0.2836 

C48 Sigmoid 8 0.9524 0.1299 0.1251 0.7888 0.1823 

C49 Sigmoid 39 0.9552 -0.1893 -0.1959 0.8575 0.6025 

C50 Sigmoid 21 1.2843 -0.7138 -0.7234 1.0651 -0.1672 

C51 Sigmoid 18 0.9503 0.1284 0.1236 0.7742 -0.0455 

C52 Sine 38 1.8166 -2.7513 -2.7722 1.6122 1.1807 

C53 Sine 16 0.7496 0.4356 0.4325 0.6512 0.5759 

C54 RBF 14 0.8852 0.2306 0.2263 0.7398 0.2119 

C55 Sigmoid 23 1.0483 -0.2221 -0.2289 0.8934 0.4912 

C56 RBF 24 1.3061 -0.9325 -0.9432 1.1324 0.6003 

C57 RBF 33 1.5318 -1.7996 -1.8151 1.3507 0.9104 

C58 RBF 11 0.7828 0.3927 0.3927 0.6757 0.5687 

C59 Sigmoid 6 1.3167 -0.8029 -0.8029 1.0993 -0.1888 

C60 Sine 4 0.9214 0.1997 0.1997 0.7434 0.1411 

C61 Sigmoid 4 1.6342 -1.5132 -1.5132 1.3898 1.2222 

C62 Sigmoid 4 1.6355 -1.5047 -1.5047 1.3237 -0.3071 

C63 Sigmoid 11 1.1953 -0.4449 -0.4449 1.0023 0.6774 

 

Table A-13: Full Result Performance at Lubok Merbau station using Bagged 

ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 26 0.1630 0.9509 0.9494 0.1393 -0.0883 

C2 Sine 30 0.1694 0.9521 0.9510 0.1414 -0.0488 

C3 Sine 30 0.1604 0.9533 0.9522 0.1374 -0.0845 

C4 Sigmoid 9 0.1662 0.9509 0.9498 0.1400 -0.0380 

C5 RBF 19 0.1755 0.9425 0.9412 0.1516 -0.0834 

C6 Sine 19 0.1795 0.9442 0.9429 0.1490 -0.0755 

C7 Sine 26 0.3799 0.7732 0.7678 0.3030 -0.0078 

C8 RBF 23 0.1639 0.9549 0.9541 0.1360 -0.0528 

C9 RBF 17 0.1735 0.9511 0.9502 0.1455 -0.0386 

C10 RBF 23 0.1848 0.9352 0.9340 0.1557 -0.0470 

C11 RBF 31 0.1685 0.9529 0.9521 0.1370 -0.0393 

C12 Sine 23 0.4995 0.6000 0.5929 0.4006 -0.0620 

C13 Sigmoid 8 0.1733 0.9480 0.9471 0.1443 -0.0449 



104 

 

Table A-13 (Continued) 

C14 RBF 25 0.1891 0.9151 0.9136 0.1650 -0.1015 

C15 Sine 17 0.1717 0.9511 0.9502 0.1399 -0.0370 

C16 Sine 24 0.3899 0.7616 0.7574 0.3090 -0.0181 

C17 Sine 14 0.1802 0.9381 0.9370 0.1539 -0.1013 

C18 Sigmoid 7 0.1820 0.9435 0.9425 0.1508 0.0018 

C19 RBF 21 0.3843 0.7665 0.7623 0.3068 -0.0347 

C20 RBF 38 0.1972 0.9359 0.9347 0.1604 -0.0566 

C21 RBF 19 0.3723 0.7817 0.7779 0.2968 -0.0110 

C22 Sigmoid 19 0.4488 0.6830 0.6773 0.3574 0.0133 

C23 Sine 26 0.2115 0.9075 0.9064 0.1770 -0.0191 

C24 RBF 15 0.1946 0.9208 0.9199 0.1661 -0.0564 

C25 Sigmoid 13 0.1703 0.9529 0.9523 0.1388 -0.0204 

C26 RBF 13 0.5260 0.5609 0.5557 0.4185 -0.0726 

C27 RBF 23 0.2182 0.8928 0.8916 0.1880 -0.0712 

C28 Sigmoid 20 0.1734 0.9510 0.9504 0.1422 -0.0374 

C29 RBF 18 0.6615 0.2830 0.2745 0.5330 -0.1501 

C30 RBF 48 0.2357 0.8900 0.8887 0.1947 -0.0080 

C31 RBF 12 0.4957 0.6087 0.6041 0.3985 0.0066 

C32 RBF 25 0.6007 0.3787 0.3714 0.4924 -0.1529 

C33 Sine 8 0.1743 0.9458 0.9452 0.1447 -0.0678 

C34 Sine 12 0.1840 0.9438 0.9431 0.1512 -0.0287 

C35 Sine 16 0.4029 0.7284 0.7252 0.3225 -0.0041 

C36 Sine 36 0.1928 0.9391 0.9384 0.1550 -0.0588 

C37 Sigmoid 24 0.4198 0.6950 0.6914 0.3410 -0.0623 

C38 Sigmoid 17 0.4494 0.6831 0.6793 0.3562 -0.0110 

C39 Sine 8 0.2074 0.9289 0.9280 0.1656 -0.0571 

C40 RBF 15 0.3836 0.7703 0.7676 0.3057 -0.0275 

C41 RBF 18 0.4517 0.6726 0.6688 0.3599 -0.0531 

C42 RBF 19 0.4943 0.5877 0.5828 0.4010 -0.0240 

C43 RBF 20 0.2409 0.8662 0.8654 0.2033 -0.0300 

C44 Sine 9 0.2017 0.9353 0.9349 0.1634 0.0528 

C45 Sine 10 0.6948 0.1482 0.1432 0.5616 0.0064 

C46 RBF 44 0.2654 0.8432 0.8423 0.2253 -0.0442 

C47 RBF 8 0.5604 0.5019 0.4990 0.4418 -0.0121 

C48 RBF 23 0.6229 0.3724 0.3688 0.5070 -0.1041 

C49 RBF 31 0.2868 0.7349 0.7334 0.2422 -0.0251 

C50 RBF 8 0.8797 -0.2187 -0.2259 0.7064 -0.4051 

C51 RBF 35 0.9299 -0.8916 -0.9026 0.7934 -0.1468 

C52 RBF 23 0.7024 -0.0763 -0.0826 0.5914 -0.1497 

C53 Sigmoid 6 0.2064 0.9311 0.9307 0.1655 -0.0363 
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Table A-13 (Continued) 

C54 Sigmoid 7 0.4044 0.7439 0.7424 0.3257 -0.0468 

C55 RBF 8 0.4568 0.6725 0.6706 0.3632 0.0333 

C56 Sine 11 0.4920 0.6223 0.6201 0.3938 0.0414 

C57 Sine 13 0.5048 0.5956 0.5933 0.4033 -0.0182 

C58 Sigmoid 33 0.2540 0.8863 0.8863 0.2111 0.0915 

C59 Sine 4 0.8878 -0.2435 -0.2435 0.7067 -0.3710 

C60 Sine 21 0.6793 0.2709 0.2709 0.5423 0.0686 

C61 RBF 8 0.6670 0.2906 0.2906 0.5364 -0.0308 

C62 Sine 1 1.3262 -1.8127 -1.8127 1.0587 -0.3407 

C63 Sine 5 0.5052 0.5994 0.5994 0.4030 0.0146 

 

Table A-14: Full Result Performance at Pulau Langkawi station using Bagged 

ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sigmoid 22 0.2317 0.9477 0.9462 0.2004 0.1518 

C2 Sigmoid 19 0.2653 0.9345 0.9330 0.2268 0.1552 

C3 Sigmoid 23 0.2383 0.9445 0.9432 0.2062 0.1509 

C4 Sine 32 0.2298 0.9470 0.9458 0.2000 0.1568 

C5 Sigmoid 21 0.2928 0.9239 0.9221 0.2511 0.1226 

C6 Sigmoid 37 0.3486 0.8967 0.8944 0.2933 0.2519 

C7 Sine 39 0.5849 0.7292 0.7231 0.4685 0.1238 

C8 Sine 13 0.2824 0.9278 0.9266 0.2411 0.1663 

C9 Sigmoid 34 0.2682 0.9370 0.9359 0.2287 0.1811 

C10 Sine 48 0.3589 0.8854 0.8835 0.3047 0.2263 

C11 Sigmoid 18 0.3494 0.8933 0.8915 0.2908 0.2302 

C12 RBF 33 0.6278 0.6877 0.6824 0.5000 0.0776 

C13 RBF 32 0.2400 0.9434 0.9425 0.2080 0.1550 

C14 Sine 19 0.3000 0.9207 0.9193 0.2569 0.1315 

C15 Sine 37 0.3701 0.8840 0.8820 0.3083 0.2685 

C16 Sine 41 0.6192 0.6960 0.6908 0.4945 0.1224 

C17 Sine 45 0.3117 0.9146 0.9131 0.2659 0.1940 

C18 Sine 21 0.3547 0.8916 0.8897 0.2976 0.2577 

C19 Sine 44 0.6186 0.6947 0.6895 0.4962 0.1056 

C20 Sine 21 0.6341 0.6612 0.6555 0.5385 0.4552 

C21 Sigmoid 50 0.6670 0.6387 0.6326 0.5304 0.1524 

C22 Sigmoid 35 0.6900 0.6212 0.6148 0.5584 0.3076 

C23 Sine 42 0.3539 0.8850 0.8837 0.3032 0.2132 
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Table A-14 (Continued) 

C24 Sine 28 0.3450 0.8993 0.8982 0.2896 0.1932 

C25 Sigmoid 13 0.3325 0.9087 0.9077 0.2727 0.2076 

C26 Sine 17 0.7045 0.6065 0.6021 0.5753 -0.0788 

C27 Sine 26 0.3660 0.8861 0.8848 0.3065 0.2200 

C28 Sigmoid 19 0.3520 0.8935 0.8923 0.2939 0.2374 

C29 Sine 30 0.7684 0.5283 0.5230 0.6157 -0.0076 

C30 Sigmoid 16 0.9061 0.3343 0.3268 0.7885 0.7273 

C31 Sigmoid 44 0.7971 0.4705 0.4646 0.6389 -0.0155 

C32 RBF 30 0.6891 0.6230 0.6188 0.5511 0.1221 

C33 Sine 40 0.3363 0.8987 0.8976 0.2915 0.2017 

C34 Sigmoid 15 0.4021 0.8613 0.8598 0.3378 0.2965 

C35 RBF 38 0.6112 0.7039 0.7006 0.4913 0.0994 

C36 RBF 40 0.6891 0.6056 0.6012 0.5999 0.5175 

C37 Sigmoid 28 0.7197 0.5840 0.5794 0.5839 0.1571 

C38 RBF 34 0.7390 0.5484 0.5434 0.6059 0.3279 

C39 Sine 14 0.6259 0.6678 0.6641 0.5338 0.4382 

C40 Sigmoid 42 0.7288 0.5596 0.5547 0.5858 0.0529 

C41 Sigmoid 38 0.6716 0.6425 0.6385 0.5460 0.2009 

C42 Sigmoid 34 0.9569 0.2411 0.2326 0.7891 0.4607 

C43 Sine 42 0.4891 0.7532 0.7518 0.4204 0.1338 

C44 Sine 32 0.4895 0.7775 0.7763 0.4153 0.2848 

C45 Sine 13 0.7968 0.4927 0.4899 0.6456 -0.0099 

C46 Sigmoid 38 0.9984 0.1427 0.1380 0.8830 0.7924 

C47 Sigmoid 44 1.2204 -0.4375 -0.4455 1.0345 0.1076 

C48 RBF 17 0.6916 0.6206 0.6185 0.5566 0.0928 

C49 Sine 7 1.1457 -0.0368 -0.0425 0.9997 0.9663 

C50 RBF 15 1.2453 -0.2480 -0.2549 1.0356 -0.5761 

C51 Sine 24 0.8281 0.4391 0.4360 0.6689 0.0250 

C52 RBF 15 1.1168 -0.0077 -0.0133 0.9230 0.5447 

C53 Sine 31 0.6794 0.6158 0.6136 0.5855 0.4988 

C54 Sine 15 0.6927 0.6200 0.6179 0.5558 0.1999 

C55 Sigmoid 18 0.6588 0.6585 0.6566 0.5358 0.2336 

C56 RBF 22 0.9711 0.2363 0.2321 0.7982 0.5532 

C57 Sigmoid 23 0.9794 0.2184 0.2140 0.8081 0.3781 

C58 RBF 41 1.2269 -0.1994 -0.1994 1.0861 1.0263 

C59 Sine 5 1.3201 -0.4096 -0.4096 1.1207 -0.6622 

C60 RBF 11 0.8737 0.3728 0.3728 0.7114 0.0537 

C61 RBF 6 1.2395 -0.2234 -0.2234 1.0297 0.7536 

C62 RBF 3 1.5638 -0.9472 -0.9472 1.2613 0.0225 

C63 RBF 7 0.9354 0.3051 0.3051 0.7634 0.5056 
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Table A-15: Full Result Performance at Sitiawan station using Bagged ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 RBF 15 0.3371 0.8052 0.7993 0.2975 0.1963 

C2 RBF 19 0.3270 0.8208 0.8165 0.2850 0.1599 

C3 Sigmoid 22 0.3271 0.8165 0.8122 0.2868 0.1845 

C4 RBF 12 0.3432 0.7974 0.7926 0.3034 0.1943 

C5 RBF 12 0.3429 0.7985 0.7937 0.3016 0.1941 

C6 Sine 16 0.3453 0.7988 0.7940 0.2991 0.2203 

C7 Sine 17 0.5935 0.4104 0.3963 0.5013 0.4229 

C8 RBF 46 0.3269 0.8187 0.8155 0.2845 0.1754 

C9 Sigmoid 50 0.3272 0.8198 0.8166 0.2852 0.1700 

C10 Sine 49 0.3159 0.8297 0.8266 0.2720 0.1693 

C11 RBF 14 0.3367 0.8095 0.8061 0.2899 0.1859 

C12 RBF 16 0.5755 0.4512 0.4414 0.4755 0.3116 

C13 RBF 22 0.3302 0.8124 0.8090 0.2892 0.1863 

C14 RBF 9 0.3529 0.7860 0.7822 0.3091 0.2065 

C15 RBF 12 0.3274 0.8173 0.8141 0.2813 0.1907 

C16 Sigmoid 5 0.5825 0.4170 0.4066 0.4883 0.3056 

C17 Sine 22 0.3201 0.8246 0.8215 0.2795 0.1760 

C18 RBF 12 0.3349 0.8114 0.8081 0.2891 0.2053 

C19 RBF 19 0.6170 0.3672 0.3559 0.5198 0.4294 

C20 Sigmoid 41 0.3434 0.7983 0.7947 0.2975 0.2036 

C21 Sine 6 0.6303 0.3085 0.2962 0.5394 0.4236 

C22 RBF 11 0.6974 0.2039 0.1897 0.5872 0.4807 

C23 RBF 15 0.3175 0.8333 0.8313 0.2704 0.1698 

C24 Sine 13 0.3229 0.8242 0.8222 0.2783 0.1639 

C25 RBF 9 0.3400 0.8067 0.8044 0.2915 0.1666 

C26 RBF 6 0.6695 0.2638 0.2551 0.5556 0.3447 

C27 RBF 48 0.3219 0.8230 0.8210 0.2760 0.1533 

C28 Sigmoid 50 0.3526 0.7922 0.7897 0.3075 0.2078 

C29 Sigmoid 5 0.6564 0.2878 0.2794 0.5359 -0.0731 

C30 Sine 21 0.3382 0.8046 0.8022 0.2899 0.1848 

C31 Sine 10 0.5864 0.4306 0.4238 0.4820 0.3055 

C32 Sigmoid 5 0.6456 0.3216 0.3136 0.5269 0.2553 

C33 Sine 10 0.3313 0.8083 0.8061 0.2888 0.1876 

C34 Sigmoid 8 0.3269 0.8201 0.8180 0.2804 0.2007 

C35 RBF 13 0.6497 0.3091 0.3010 0.5476 0.4620 

C36 RBF 38 0.3334 0.8108 0.8086 0.2881 0.1727 

C37 RBF 19 0.6651 0.2612 0.2525 0.5575 0.3911 
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Table A-15 (Continued) 

C38 Sigmoid 23 0.6897 0.2203 0.2111 0.5716 0.3602 

C39 RBF 42 0.3202 0.8242 0.8221 0.2739 0.1731 

C40 RBF 14 0.6067 0.3846 0.3773 0.5041 0.3902 

C41 Sigmoid 47 0.7441 0.0431 0.0319 0.6288 0.2694 

C42 RBF 8 0.7085 0.1734 0.1637 0.5979 0.4822 

C43 RBF 10 0.3342 0.8127 0.8116 0.2846 0.1831 

C44 Sine 6 0.3493 0.8036 0.8024 0.2975 0.2109 

C45 Sine 4 0.6532 0.3058 0.3017 0.5316 0.1015 

C46 RBF 38 0.3837 0.7102 0.7086 0.3364 0.1900 

C47 Sine 12 0.7638 0.0276 0.0219 0.6404 0.3455 

C48 Sine 11 0.7522 0.0850 0.0796 0.6173 0.3914 

C49 Sigmoid 25 0.3672 0.7623 0.7609 0.3169 0.2043 

C50 Sigmoid 21 1.0065 -0.8611 -0.8720 0.8321 -0.0988 

C51 RBF 16 0.7896 -0.0178 -0.0238 0.6449 0.3380 

C52 Sine 3 0.7300 0.0643 0.0588 0.6056 0.1948 

C53 Sine 24 0.3355 0.7981 0.7969 0.2887 0.1961 

C54 Sigmoid 12 0.6552 0.2921 0.2880 0.5446 0.3981 

C55 Sigmoid 3 0.6381 0.3271 0.3231 0.5233 0.3015 

C56 Sigmoid 28 0.9200 -0.5221 -0.5310 0.7929 0.4972 

C57 Sigmoid 6 0.7094 0.1743 0.1694 0.5913 0.4597 

C58 Sigmoid 27 0.4002 0.7331 0.7331 0.3449 0.2660 

C59 RBF 7 0.8927 -0.2989 -0.2989 0.7051 0.1866 

C60 Sine 5 0.8348 -0.1328 -0.1328 0.6876 0.4960 

C61 Sine 2 0.7802 -0.0139 -0.0139 0.6265 0.0607 

C62 Sigmoid 2 1.2704 -1.6969 -1.6969 1.0331 -0.0135 

C63 RBF 3 0.8234 -0.1202 -0.1202 0.6993 0.5933 

 

Table A-16: Full Result Performance at Subang station using Bagged ELM. 

Input 

Best 

Activation 

Function 

Best 

Hidden 

Neurons 

RMSE NSE ANSE MAE MBE 

C1 Sine 38 0.2517 0.9207 0.9184 0.2098 0.0555 

C2 Sigmoid 10 0.2534 0.9270 0.9254 0.2051 0.0464 

C3 Sine 41 0.2645 0.9175 0.9156 0.2235 0.0452 

C4 RBF 45 0.2643 0.9146 0.9126 0.2254 0.0467 

C5 RBF 45 0.2557 0.9207 0.9189 0.2122 0.0512 

C6 Sine 18 0.2745 0.9156 0.9137 0.2195 0.0498 

C7 RBF 47 0.9314 0.0889 0.0683 0.7685 0.5147 

C8 Sine 19 0.2802 0.9115 0.9100 0.2340 0.0780 

C9 RBF 13 0.2435 0.9317 0.9305 0.1951 0.0558 
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Table A-16 (Continued) 

C10 RBF 16 0.2825 0.9110 0.9095 0.2325 0.0621 

C11 RBF 21 0.2843 0.9124 0.9109 0.2308 0.0574 

C12 RBF 26 0.9299 0.0975 0.0823 0.7649 0.3539 

C13 RBF 15 0.2660 0.9083 0.9067 0.2200 0.1037 

C14 Sigmoid 48 0.2634 0.9192 0.9178 0.2192 0.0580 

C15 Sigmoid 9 0.2765 0.9164 0.9150 0.2201 0.0923 

C16 Sigmoid 38 0.9396 0.0577 0.0418 0.7903 0.5742 

C17 RBF 15 0.2570 0.9216 0.9203 0.2131 0.0721 

C18 RBF 24 0.2715 0.9177 0.9163 0.2181 0.0393 

C19 Sigmoid 47 0.8771 0.1912 0.1775 0.7237 0.4770 

C20 Sigmoid 13 0.2746 0.9170 0.9156 0.2210 0.0538 

C21 Sigmoid 29 0.9464 0.0485 0.0324 0.7882 0.5385 

C22 RBF 7 0.9419 0.0172 0.0006 0.7890 0.5195 

C23 Sigmoid 10 0.2958 0.9038 0.9027 0.2435 0.0847 

C24 RBF 22 0.2831 0.9101 0.9091 0.2333 0.0539 

C25 RBF 17 0.3015 0.9020 0.9009 0.2450 0.0683 

C26 Sigmoid 47 0.8984 0.1552 0.1457 0.7297 0.2827 

C27 Sigmoid 6 0.2678 0.9217 0.9208 0.2160 0.0080 

C28 Sine 7 0.2781 0.9164 0.9155 0.2237 0.0426 

C29 Sine 32 0.9259 0.0939 0.0838 0.7423 0.1537 

C30 Sigmoid 6 0.2991 0.9039 0.9028 0.2442 0.0507 

C31 Sigmoid 9 0.9938 -0.0295 -0.0410 0.8176 0.3709 

C32 RBF 5 0.9445 0.0697 0.0593 0.7665 0.2633 

C33 Sigmoid 44 0.2625 0.9194 0.9185 0.2168 0.0226 

C34 Sigmoid 38 0.3041 0.8986 0.8974 0.2460 0.0895 

C35 RBF 48 0.9027 0.1354 0.1257 0.7434 0.4837 

C36 RBF 15 0.2924 0.9056 0.9045 0.2369 0.0837 

C37 RBF 42 0.9514 0.0124 0.0013 0.7958 0.4710 

C38 Sine 6 0.9581 0.0345 0.0237 0.8020 0.5611 

C39 RBF 12 0.2790 0.9128 0.9119 0.2257 0.0295 

C40 Sine 15 0.9418 0.0642 0.0537 0.7919 0.5637 

C41 Sigmoid 4 0.9096 0.1207 0.1109 0.7467 0.3026 

C42 Sine 9 1.0851 -0.2179 -0.2315 0.9279 0.7660 

C43 Sigmoid 4 0.3107 0.8964 0.8958 0.2510 0.0121 

C44 Sigmoid 6 0.3348 0.8798 0.8792 0.2713 0.1522 

C45 Sine 12 0.9611 0.0446 0.0392 0.7775 0.2868 

C46 RBF 6 0.3086 0.8973 0.8967 0.2519 0.0971 

C47 Sigmoid 34 1.0373 -0.1207 -0.1269 0.8435 0.2389 

C48 Sigmoid 3 0.9827 0.0053 -0.0003 0.7927 0.1586 

C49 Sigmoid 5 0.2863 0.9118 0.9113 0.2272 0.0168 
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Table A-16 (Continued) 

C50 RBF 28 1.1345 -0.3424 -0.3498 0.9190 -0.0462 

C51 Sigmoid 4 1.0419 -0.1228 -0.1290 0.8416 -0.1699 

C52 Sine 5 1.0435 -0.1274 -0.1337 0.8470 0.5191 

C53 Sine 18 0.3244 0.8848 0.8841 0.2641 0.0948 

C54 RBF 15 0.9324 0.0763 0.0712 0.7780 0.4970 

C55 Sigmoid 3 1.0055 -0.0779 -0.0839 0.8515 0.6604 

C56 Sine 5 1.1346 -0.3349 -0.3423 0.9708 0.7899 

C57 Sine 40 1.1102 -0.3019 -0.3091 0.9322 0.5582 

C58 Sine 5 0.3795 0.8466 0.8466 0.3105 0.1288 

C59 Sine 4 1.3120 -0.7716 -0.7716 1.0524 0.2843 

C60 Sine 2 1.0305 -0.1045 -0.1045 0.8332 -0.1764 

C61 Sigmoid 5 1.2379 -0.5964 -0.5964 1.0277 0.7749 

C62 Sine 2 1.5384 -1.4703 -1.4703 1.2552 0.2625 

C63 Sigmoid 3 1.2039 -0.5171 -0.5171 1.0398 0.8523 

 

 

 


