

NEAR-RANGE WATER BODY DETECTION AND OBSTACLE

DETECTION IN RAINFOREST TERRAIN/ TROPICAL TERRAIN

By

TEOH CHEE WAY

A thesis submitted to the Department of Mechatronics and BioMedical

Engineering,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Engineering Science

May 2011

ii

ABSTRACT

NEAR-RANGE WATER BODY DETECTION AND OBSTACLE

DETECTION FOR AUTONOMOUS VEHICLE IN

RAINFOREST/TROPICAL TERRAIN

Teoh Chee Way

The needs to use autonomous vehicle for rainforest terrain is increasing day by

day. Many projects were launched with the aim of developing a fully

autonomous vehicle that is able to maneuver from a location to a location

without colliding with obstacle. However, the applications of these vehicles are

limited due to limitation of sensors used and the knowledge on how to make

use of the information provided by the sensors. Vision sensors are commonly

used in vehicle guidance as they provide more information compared to other

type of sensors. The interpretation of the visual information is very important,

therefore it is necessary to carry out research to make use of the information for

terrain classification and obstacle detection.

 In this thesis, disparity and color feature from stereo camera have been

studied closely to provide solution for visual guidance in rainforest terrain.

New methodologies have been proposed utilizing polarizing effect on the

stereo camera to solve prevalent challenges that appear in rainforest terrain.

Particularly, the proposed methodologies are used to solve ground truth

determination, tree trunks detection and water body detection.

iii

The V-disparity image is used together with color information to

determine the ground region that may be travelled by the autonomous vehicle.

The main contribution of this ground detection module is that it is very robust

to vehicle orientation and tilt. In addition, the proposed of using K-means color

clustering method in ground profile determination is effective even when there

is no distinct feature that may represent the ground region.

 Using the proposed ground plane detection algorithm, two task-specific

modules are introduced to deal with tree trunks and water body that may

present in the rainforest scene. Tree trunks and water body are typical hazards

that can be found in rainforest terrain. Sobel edge detection and U-disparity

image is used to extract the tree trunks from the scene with the assumption that

the tree trunks are vertical or near vertical. This method can detect most of the

tree trunks present as tree trunks in rainforest terrain are usually vertical and

tall. The proposed U-disparity scheme shows effective results for near vertical

tree trunks obstacles.

 The water body detection module utilized multiple features in texture,

disparity and partial polarization. Stereo camera with different polarization

angles are applied on each side of the stereo camera. Based on experiments

conducted, it is shown that water body has significant changes in brightness

and disparity when different polarization angles are applied. Based on the

difference and coupled with low-texture characteristic and sky reflection

detection, most of the water region can be detected using the proposed

polarization technique.

iv

AKNOWLEDGMENTS

This thesis would never have been completed if it were not for the

amazing support, encouragement and kindest of so many people.

 First, I would like to begin by thanking my supervisors, Assistant

Professor Dr Tan Ching Seong and Assistant Professor Dr Tan Yong Chai. I

sincerely appreciate them for giving me continuous guidance, constructive

discussions, encouragement and endless patience. I would like to thank both of

them for their useful comments and positive criticisms on the completion of

this thesis.

 I would like to acknowledge my fellow research mates, Chan Kim

Chon and Tee Yu Hon for their help and assistance in various occasions.

Special thanks to Christine Gee who have offered me a hand in many ways

while I was pursuing my research.

 I am grateful to UTAR for providing me facilities and financial

assistance to carry out my research work. I also wish to thank workplace mates

for the great environment and joyful atmosphere while carrying out this

research.

 Finally, I would like express my heartfelt gratitude to dear family for

their continuous encouragement, understanding and love. I would like to

dedicate this work to them.

v

APPROVAL SHEET

This thesis entitled “NEAR-RANGE WATER BODY DETECTION AND

OBSTACLE DETECTION FOR AUTONOMOUS VEHICLE IN

RAINFOREST TERRAIN” was prepared by TEOH CHEE WAY and

submitted as partial fulfillment of the requirements for the degree of Master of

Engineering Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Tan Ching Seong)

Date: 28 May 2011

Assistant Professor/Supervisor

Department of Mechatronics and BioMedical Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

(Dr. Tan Yong Chai)

Date: 28 May 2011

Assistant Professor/Co-supervisor

Department of Mechanical and Material Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

vi

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 28 May 2011

PERMISSION SHEET

It is hereby certified that TEOH CHEE WAY (ID No: 08UEM08100) has

completed this thesis entitled “NEAR-RANGE WATER BODY DETECTION

AND OBSTACLE DETECTION FOR AUTONOMOUS VEHICLE IN

RAINFOREST TERRAIN” under the supervision of Dr Tan Ching Seong

(Supervisor) from the Department of Mechatronics and BioMedical

Engineering, Faculty of Engineering and Science, and Dr Tan Yong Chai (Co-

Supervisor) from the Department of Mechanical and Material Engineering,

Faculty of Engineering and Science.

I hereby give permission to my supervisors to write and prepare a manuscript

of these research findings for publishing in any form, if I did not prepare it

within six (6) months time from this date, provided, that my name is included

as one of the authors for this article. Arrangement of names will depend on my

supervisors.

vii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

 Name : Teoh Chee Way

 Date : 05 May 2011

viii

TABLE OF CONTENTS

Page

ABSTRACT ii

AKNOWLEDGMENTS iv
APPROVAL SHEET v
PERMISSION SHEET vi

DECLARATION vii
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii
CHAPTER 1 1

1.1 Research Motivation 1
1.2 Scope of Research 6
1.3 Thesis Outline 9

CHAPTER 2 12
2.1 Overview 12
2.2 Review of Visual Guidance for Outdoor Terrain: Structured 13

2.2.1 Methods based on NAVLAB and ALVINN 13
2.2.2 Methods based on ARGO 15

2.3 Review of Visual Guidance for Outdoor Terrain:

Unstructured 16
2.3.1 Methods by DEMO III 18

2.3.2 Methods by Darpa PerceptOR 20
2.3.3 Methods by LAGR 21

2.3.4 Methods by Manduchi et al (2005) 22
2.4 Challenges in Rainforest Terrain 23
2.5 Summary 26

CHAPTER 3 30
3.1 Overview 30

3.2 Visual Guidance System 31
3.2.1 Proposed System Architecture 33

3.3 Sensor Description 36
3.3.1 Bumblebee 2 Stereo Vision System 36
3.3.2 Triclops Stereo Vision SDK (PGR Software

Development Kit) 39
3.3.3 Intel OpenCV Library 40

3.3.4 Hardware Setup 40
3.4 Overview of Stereo Vision Principles 42

3.4.1 Visual Depth using Bumblebee 2 Stereo Vision

System 46

3.5 Summary 50

CHAPTER 4 52
4.1 Introduction 52

4.2 Overview of Ground Plane Detection 53

ix

4.2.1 Methods using V-Disparity by Labayrade et al

(2002) 54
4.3 Feature Extraction 60

4.3.1 Analysis on Disparity Image and V-Disparity Image

of Rainforest Terrain. 60
4.4 Color Feature from Stereo Imaging 62

4.4.1 Colour Distribution of Rainforest Scene 65
4.4.2 K-means Clustering 67
4.4.3 K-means Clustering: Number of Cluster

Determination 69
4.5 Developed Ground Plane Detection Algorithm 71

4.6 Experimental Results and Discussions 76
4.6.1 Simple Unstructured Terrain Experiment 78
4.6.2 Moderate Terrain Experiment 81
4.6.3 Complex Terrain Experiment 85

4.7 Summary 90

CHAPTER 5 94
5.1 Introduction 94
5.2 Overview of Obstacle Detection 95

5.2.1 Method by Huertas et al (2005) 97

5.3 Scene Consideration 98
5.4 Feature Extraction 99

5.4.1 U-disparity Image 99

5.4.2 Sobel Edge Detector 102

5.5 Tree Trunk Detection Algorithm 104
5.6 Experimental Results and Discussions 106
5.7 Summary 111

CHAPTER 6 113
6.1 Introduction 113

6.2 Overview of Water Body Detection 114
6.2.1 Method by The Jet Propulsion Laboratory (JPL) 114
6.2.2 Method using Polarization-Based Camera 117

6.3 Mathematical Description for Appearance of Water Body 119
6.3.1 Water Reflectance Model 120

6.3.2 Partial Linear Polarization 125
6.4 Feature Extraction 127

6.4.1 Water Cue from Partial Polarization Feature 129
6.4.2 Water Cue from Stereo Disparity Feature 131
6.4.3 Water Cue from Texture Feature 134

6.5 Algorithm: Fusing Water Cue 135
6.5.1 Sky Reflection Detection Module 136

6.5.2 Low-Texture Detection Module 138
6.5.3 Object Reflection and Invalid Disparity Pixel

Detection Module. 139
6.6 Experimental Results and Discussions 140

6.6.1 Running Water Detection 142
6.6.2 Standing Water Body Detection 146
6.6.3 Back-Lighting Error 148

6.7 Summary 150

CHAPTER 7 153

x

7.1 Contributions 153
7.2 Conclusion Remarks 156
7.3 Future works 157

Author’s Publication 161
References 162
Appendices 166
Appendix A 167
Appendix B 171

xi

LIST OF TABLES

Table 2.1: Summary of visual guidance system approaches in indoor

and semi-structured outdoor terrain. 28

Table 2.2: Summary of visual guidance system approaches in

unstructured outdoor terrain. 29

Table 3.1: Bumblebee 2 stereo camera specifications. 38

Table 3.2: Stereo correspondence approach. (Brown, Burschka, &

Hager, 2003). 44

Table 4.1: The number of regions resulted from the number of cluster

settings. The percentages of the regions are based on 30

samples. 70

Table 6.1: Average partial polarization for different objects and

terrain (average of 20 samples). 130

Table 6.2: Average relative smoothness for 20 samples for water

bodies and other objects in rainforest scene. 139

xii

LIST OF FIGURES

Figure 2.1: Notional Approach to Top Level Systematics of Ground

Mobile Robot Systems (Eicker, 2001). 17

Figure 3.1: General modules of visual guidance system (VGS). 32

Figure 3.2: Architecture of the visual guidance system. 34

Figure 3.3: Bumblebee 2 stereo vision system. 37

Figure 3.4: Bumblebee 2 stereo vision system and polarizer assembly

mounted in front. 41

Figure 3.5: Experiment setup with the pitch angle set at from the

negative x-axis. 42

Figure 3.6: Frontal parallel arrangement of two cameras. (Bradski &

Kaehler, 2008). 45

Figure 3.7: Triclops general computational stereo process (Point Grey

Research Inc, 2003). 47

Figure 3.8: Sample stereo image pair and disparity image. (a) Left

image. (b) Right Image. (c) Disparity Image. 49

Figure 4.1: Sample stereo image and its V-disparity image frame of

reference (Labayrade, Aubert, & Tarel, 2002). (a) Stereo

image (left). (b) Stereo image (right). (c) V-disparity

image. (d) V-disparity image with ground correlation line

(blue line) and obstacle profile (white line). 55

Figure 4.2: Stereo image pair, disparity image and V-disparity image.

(a) Left image. (b) Right Image. (c) Disparity Image. (d)

V-disparity image. 56

Figure 4.3: Ground correlation lines in V-disparity image. The solid

slanted line corresponds to the ground correlation line

xiii

obtained using the static calibration data, while the dashed

slanted lines are the ones expected varying the pitch value.

The solid vertical line indicates the 0 disparity value, the

dashed vertical line indicates the disparity value of points

at infinite distance; they do not overlap due to a slight

convergence of cameras optical axes (Labayrade & Aubert,

2003). 58

Figure 4.4: Sample stereo images, disparity images and its V-disparity

images frame of reference in rainforest terrain. Note: the

ground plane profile and obstacle profiles are hand-labeled. 62

Figure 4.5: 2-dimensional hue-saturation histogram. The distribution

of object colors (ground, tree trunk, vegetation and others)

are illustrated. (a) The scene. (b) 2-dimensional histogram. 66

Figure 4.6: Framework of the developed ground plane detection

module. 72

Figure 4.7: (a) Image of the Scene. (b) V-disparity image. (c)

Candidates for ground correlation line. (d) Extracted

ground correlation line. 74

Figure 4.8: Sample result of ground plane estimation. (a) Sample

scene. (b) Mapped ground pixels in red. (c) Ground

correlation profile in V-disparity image. 75

Figure 4.9: The performance classifier of developed algorithm. The

true classes of the objects are indicated in the column while

the predicted classes are indicated in the row. 77

Figure 4.10: Sample results of detected ground plane in rainforest

terrain for simple unstructured terrain. (a)(i) and (b)(i)

show the sample images and the detected ground planes are

shown in (a)(ii) and (b)(ii) respectively. 79

xiv

Figure 4.11: Average ground plane error versus distance for ground

plane detection in simple unstructured terrain. The number

of samples used is thirty. 80

Figure 4.12: Performance matrix of the ground plane detection module

in simple unstructured terrain. The number of samples used

is thirty (30). 81

Figure 4.13: Sample results of detected ground plane in rainforest

terrain for rainforest terrain. 82

Figure 4.14: Average ground plane error versus distance in rainforest

terrain. The number of samples used is thirty (30). 83

Figure 4.15: Performance matrix of the ground plane detection module

for terrain with moderate complexity. The number of

samples used is thirty (30). 84

Figure 4.16: Sample results of detected ground plane in rainforest

terrain for complex terrain. 86

Figure 4.17: Average ground plane error versus distance in complex

terrain. The number of samples used is thirty (30). 88

Figure 4.18: Performance matrix of the ground plane detection module

in complex terrain. The number of samples used is thirty

(30). 89

Figure 4.19: Average ground plane detection error versus distance. The

number of samples used is ninety (90). 91

Figure 4.20: Overall performance matrix of the ground plane detection

module. The number of samples used is ninety (90). 92

Figure 5.1: Sample image of (a) scene with tree trunks, (b) Disparity

data, (c) Corresponding U-disparity image. 100

xv

Figure 5.2: Disparity accumulation in U-disparity image as a cue to

spot the tree trunks. 101

Figure 5.3: A 3-by-3 kernel for a Sobel derivative; note that the anchor

point is in the center of the kernel. 103

Figure 5.4: Edge detected using Sobel Edge detector. Note that the

vertical and near vertical lines are usually represent the tree

trunks. 104

Figure 5.5: Proposed tree trunk detection module using edges and U-

disparity image. 105

Figure 5.6: The performance classifier of developed algorithm. The

true classes of the objects are indicated in the column while

the predicted classes are indicated in the row. 106

Figure 5.7: Sample scene with tree trunks as obstacles and the detected

tree trunks in magenta. Magenta and blue correspond to

tree trunks and ground region respectively. Green region

indicate region with no disparity information and blue

color represent unclassified region which may be other

types of obstacles. 108

Figure 5.8: Performance matrix of tree trunk detection module based

on samples used in this experiment. 109

Figure 5.9: Performance matrix of tree trunk detection module based

on distance from the stereo camera. 110

Figure 6.1: Camera setup with polarizer place in front of the camera. 118

Figure 6.2: Components of reflection and inter-reflection (Nayar,

Fang, & Boult, 1993). 121

Figure 6.3: Theoretical fraction of incident power that is reflected from

an air/pure water interface as a function of incidence angle.

 and are the Fresnel reflection coefficients for

xvi

light polarized perpendicular to and parallel to the plane of

incidence, respectively. is the Fresnel reflection

coefficient for unpolarized light (Rankin & Matthies,

2010). 124

Figure 6.4: Principle of specular reflection (Xie, Xiang, Pan, & Liu,

2007). 125

Figure 6.5: Sample image on application of polarizer to remove

specular reflection. (a) Original image of a river scene. (b)

Image after polarizer is applied. 130

Figure 6.6: Sample disparity image with different polarization angle

applied to the right side of the stereo camera. The gray

color regions correspond to invalid pixels. 132

Figure 6.7: Average Percentage of Invalid Pixels for Water vs

Polarization Degree (20 samples). 133

Figure 6.8: A sample image of polarization degree and its

corresponding line scan histogram. 134

Figure 6.9: Framework for water bodies detection using multiple

features. 136

Figure 6.10: The performance classifier of developed algorithm. The

true classes of the objects are indicated in the column while

the predicted classes are indicated in the row. 141

Figure 6.11: Sample results of detected ground plane in rainforest

terrain for simple unstructured terrain. 143

Figure 6.12: Average water body detection error versus distance for

running water. The number of samples used is thirty (30). 144

Figure 6.13: Performance matrix of the ground plane detection module

in running water detection. The number of samples used is

thirty (30). 145

xvii

Figure 6.14: Average standing water body detection error versus

distance. The number of samples used is thirty (30). 146

Figure 6.15: Performance matrix of the standing water detection

module. The number of samples used is thirty (30). 147

Figure 6.16: Sample results of the detected standing water using

proposed water body detection. 148

Figure 6.17: Overall performance matrix of the water detection module.

The number of samples used is sixty (60). 151

CHAPTER 1

INTRODUCTION

1.1 Research Motivation

Autonomous vehicle has received wide attention and widespread

relevance during the past few decades. Many projects were launched with the

aim of developing a fully autonomous vehicle that is able to maneuver from a

location to a location without colliding with obstacles. The potential

applications of autonomous vehicle range from daily life to military. It enables

wide-area environment monitoring, mining, disaster recovery, search-and-

rescue activities and planetary exploration.

One of the earliest of autonomous vehicle reported is the conventional

“look and move” where the autonomous vehicle look ahead and driving blindly

for another short distance before taking another view (Nilsson, 1969). The

autonomous robot was built to conduct experiments on the real-time control

system that interact with indoor environment. The robot adopted the “plan and

move” approach which it plans its task before it acts. It utilized several

individual artificial programs as its abilities that are integrated as one system.

There were three basic functions incorporated in this system which were

problem-solving, modeling and perception. The respective functions are task

analysis, learning and extracting features from the scene. Although this project

2

was limited to indoor task, it opened up extensive exploration of artificial

intelligence and machine vision for vehicle guidance.

There are two main tasks for an autonomous vehicle to accomplish in

order for successful navigation which are to avoid collisions with obstacles and

to reach the destination point without any human assistance. The vehicle needs

to determine the obstacles and uncertainties surrounding it by using

information gathered by sensors. Thus, the autonomous navigation is very

dependent on the information extracted from the sensors attached to the

vehicle. There are two types of sensors that are used to gather information

which are proprioceptive sensors and exteroceptive sensors (Adams,

Wijesoma, & Shacklock, 2007). Proprioceptive sensors measure the internal

state of the vehicle such as speed, acceleration and relative displacement by

using motor encoders, IMUs, etc. The interaction between the vehicle and

surrounding environments are made using exteroceptive sensors such as global

positioning system (GPS), cameras, lasers, etc. Successful navigation is very

dependent of the extraction of useful information from exteroceptive sensors,

information of the pose and position of the vehicle and algorithms that can fuse

both information from proprioceptive sensors and exteroceptive sensors

(Adams, Wijesoma, & Shacklock, 2007). The challenges lie in the successful

usage of the information provided by exteroceptive sensors and consequently,

the autonomous vehicle research has focused on the visual sensing technology

and robust sensor interpretation.

3

There are many types of visual sensors available that have been used in

autonomous vehicle for various applications. Passive sensors such as color

camera and stereo camera are general devices used to acquire data from the

environment. It offers large amount of data that can be used in terrain

classification and obstacle detection. In contrast, the active sensors involve

illumination of the scene with radiation and the reflected radiations are

collected and measured. In this project, the focus is mainly on color stereo

camera as it is cheaper and more feasible to be implemented in various

missions. Color stereo camera offers 2-dimensional (2D) and 3-dimensional

(3D) information of the scene in non-invasive way. While active sensors are

more powerful, it is not suitable for military context which active source can be

easily detected by enemy. Active source also poses problems in common

applications where there is more than one autonomous vehicle moving around

as active source from other vehicle will be interference or noise (Broggi,

Fascioli, & Bertozzi, 2000). In addition, heavy usage of active sensors could

lead to unacceptable hazard and pollution (Broggi, Fascioli, & Bertozzi, 2000).

Thus, the use of passive sensors is more practicable in most of the application.

Early researches and developments of autonomous vehicle were

initiated by military organization (Shacklock, Xu, & Wang, 2006) as defense

and surveillance are very much of their concern. Consequently, it opens up the

interest application of autonomous vehicle in unstructured terrain (i.e. forest

terrain, off-road terrain, etc) as the requirements for unstructured terrain

navigation are very much challenging compared to structured and indoor

navigation. To date, the unstructured terrain navigation is not limited to

4

military mission but also planetary exploration (Goldberg, Maimone, &

Matthies, 2002) and search and rescue mission (Kamegawa, et al.). While

natural disasters are very much a concern recently, autonomous vehicle can

play major part in search and rescue mission as it can be deployed to search

and provide initial help to the victims. Autonomous vehicle can be used to

explore the disaster scene initially before the scene is declared safe for human

admission. Similarly, the planetary exploration mission employs autonomous

robot to perform surveillance and initial experiment as well. Therefore, there is

a need of robust guidance system in unstructured terrain as it is the key

enabling technology for unstructured terrain navigation.

In order for autonomous navigation in unstructured terrain to be feasible,

there are many issues need to be resolved. In this thesis, the terrain in

consideration is rainforest terrain which is very highly complicated and

unstructured. The primary challenges for rainforest navigation is to extract

useful features from vision system and to use the extracted information for

terrain classification and obstacle detection (Manduchi, Castano, Talukder, &

Matthies, 2005). Perception ability is very important for the autonomous

vehicle as the vehicle cannot rely on Global Positioning System (GPS) for

localization and obstacle detection. These are due to GPS signal may be

covered by the tree canopies and the resolution of GPS map is too low for

obstacle detection (Manduchi, Castano, Talukder, & Matthies, 2005). The

inertial navigation unit (IMU) is not reliable due to uneven ground surface that

may affect the measurement made by the IMU. Thus, the perception ability by

vision system is essential for the task of efficient vehicle guidance.

5

However, vision system in rainforest terrain does have its own problems

need to be resolved such as illumination problem, color constancy problem and

terrain classification problem (Manduchi, Castano, Talukder, & Matthies,

2005). Contrary to structured terrain, the rainforest terrain is subject to uneven

illumination and shadow effect across the scene. These will contribute to color

constancy problem in the color features and further complication the

segmentation process. A color of an object may appear different at different

spot of the object although it belongs to the same object. Object colors may

also appear differently at different time of the day and consequently

complicates the classification process. The highly unstructured nature of the

rainforest terrain also poses problem to the segmentation process as it is

difficult to get a meaningful or salient region from the scene. For obstacle

detection and terrain classification, an object that appears to be obstacle in

geometric point of view may not be an obstacle (Manduchi, Castano, Talukder,

& Matthies, 2005). For example, tall green grass may be perceived as obstacle

but in fact, it can be driven over by the vehicle. Furthermore, there are color

ambiguities in rainforest terrain where the colors of different objects appear to

be very similar in color. For example, a tree bark may appear brown in color

which is similar to the ground color. The problem of obstacle detection and

terrain classification are widely studied, however there is no efficient and

robust algorithm to solve the problems.

Other challenging situations in rainforest terrain include presence of

negative obstacles (such as ditches) and water bodies (Manduchi, Castano,

Talukder, & Matthies, 2005). It should be noted in rainforest, water patches are

6

very highly anticipated in the scene. Water body may appear in several ways in

color imagery (Rankin, Matthies, & Huertas, 2004). The water may be flowing

such as river, or may be standing such as water patches. However, the

appearance of the water may differ depending on the illumination condition

and angle. The water appears to be bright under direct sunlight and darker in

intensity while under canopy. Water body may also reflect the surrounding

scene or appear to be similar color with the underlying ground. To date, very

few studies are conducted on water body detection and for a successful

navigation in rainforest terrain, successful detection of water body is essential

to determine the traversability of the water body.

1.2 Scope of Research

In this thesis, the research is focused on developing a visual guidance

system for autonomous vehicle in rainforest or tropical terrain based on stereo

camera. An analysis is made on the disparity data and the color co-registered

with the 3D information, emphasizing on the segmentation of the region into

meaningful region. Multiple cues approach is used to achieve salient image

segmentation and accurate terrain classification. The research is also focused in

developing obstacle detection based on stereo vision and polarizer, where

common obstacles such as tree trunks, rocks and water are targeted.

The research questions addressed by this research are:

7

 How to extract the information and features of rainforest terrain

from stereo camera? These information and features are needed to

detect meaningful target to guide the autonomous vehicle to

navigate tropical area.

 How to learn the tropical environment using multiple cues and to

make use of information provided to segment the image into salient

region and subsequently used for terrain classification?

 How to use polarizer to enhance the color features from stereo

vision and to detect water hazard in rainforest terrain?

To produce a complete visual guidance system for rainforest navigation is a

daunting task. There are many challenges remains to be solved and in this

thesis, we are not aiming to solve all the problems but only several with

upmost importance. Based on the literature review in Chapter 2, a few key

challenges were identified. Table 1.2 shows the specific problems targeted by

this work.

This scope of the project will be focused on, which lead to deliverables:

 Obstacle Detection and Terrain Classification using Color

Information.

8

o To use multiple cues from color stereo camera for terrain

segmentation. Features such as colors and textures are

analyzed to determine its appropriateness for detecting

ground region of the image. The features are then used to

classify the terrain type of the scene. The focus is on

segmenting the scene into meaningful region with ground

region and obstacles as the main region of interest.

o The key point is to make use of disparity data in terrain

segmentation where texture and color may fail to

differentiate between object of similar color (e.g. tree trunk

and ground).

 Ground Plane and Obstacle Detection.

o Detecting the ground plane of the scene and obstacles in

geometric point of view. The stereo information is used to

determine the ground plane and to determine any obstacles

protrude out from the ground.

o The obstacles detection will be focusing on general

obstacles such as near vertical tree trunk. Negative obstacles

or hidden obstacles will not be considered in this work.

9

 Water Body Detection

o To differentiate between mud, water patches and streams or

river. It should be noted that water patches can be run over.

o The focus of this thesis is to detect the water patches without

determining the depth of the water.

1.3 Thesis Outline

In chapter 2, we present the literature review and state-of-the-art of visual

guidance system for autonomous vehicle. Most of the discussions are focused

on the challenges and problems present in rainforest terrain, whereby the

justification to solve the problems are explained.

Chapter 3 describes the system architecture of the visual guidance system

and the approach taken in solving the problems existing in rainforest terrain.

The stereo camera and hardware setup are described as well.

Chapter 4 discusses on the developed ground plane detection module.

The disparity and color features used in the developed module are discussed

and analyzed. Then, the performance of the developed method is tested on

various complexity level of rainforest terrain.

10

Task-Specific Processing Descriptions

Ground Plane Estimation Existing methods relied heavily on structured

feature to extract the ground plane but they are

not applicable in rainforest terrain. A method is

proposed to merge existing V-disparity image

with the color clustering estimate the ground

plane.

Tree Hazard Detection Tree trunks are common obstacles that appear in

rainforest terrain. It is necessary to have a

module specifically to detect the trees. In this

thesis, the tree trunk is detected by using range

data and colour information.

Water Body Detection Water bodies may be hazardous to the

autonomous vehicle in operation. We attempted

to detect the presence of water body in the

terrain using polarization effect.

Table 1.1: Summary of image segmentation technique and its limitation on the

application in rain forest terrain.

In Chapter 5, the tree trunk detection module is described. The

characteristic and appearance of tree trunks are discussed. Based on the tree

trunks characteristic, the tree trunk detection module was developed and

presented.

11

Chapter 6 discusses the water hazard detection module where the water

hazard is detected based on intensity difference caused by polarization effect.

Finally, the conclusion of the thesis in presented in Chapter 7. The

implications and experimental results are summarized. Finally, some

suggestions for the extension of current work are presented.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Extensive work has been carried out on autonomous vehicle since 1990s

and the works done in the area are mostly dependent on the vision systems or

3D radars to build up a map, terrain classification and obstacle detection. The

progress made over the years can be grouped into a few categories depending

on the functionality and terrain type of the vehicle. The general category of the

autonomous vehicle is indoor navigation and outdoor navigation where the

latter category can be further subdivided into structured and unstructured

terrain. Since there are huge differences in the approaches for indoor and

outdoor navigation, the review focuses on the outdoor terrain as the rainforest

terrain in this thesis consideration falls into the unstructured terrain.

This section outlines work carried out in the area of autonomous vehicle

and visual guidance, focusing on a selection of range of methods and sensors

used for the vehicle perception. The contributions and limitations of each

approach will be highlighted while the justification of using stereo vision in

this thesis will be reasoned.

13

2.2 Review of Visual Guidance for Outdoor Terrain: Structured

The works on visual guidance system for structured outdoor terrain

usually involve vehicle maneuvering in urban road with specific task such as

obstacles detection (usually cars and pedestrian) and avoidance, landmark

detection (i.e. road sign and traffic light) and road following. Works by

Dickmanns (2002) and DeSouza et al (2002) provide comprehensive review of

machine for road vehicle. Although the terrain in consideration of this thesis is

very much different from navigation in structured road, it is important to

highlight the state-of-the-art in this area as most of the functional systems in

unstructured terrain are derived from structured terrain.

One of the key tasks in structured environment is road detection. The

vehicle will detect the road and perform road-following. The key feature is

road markings on the road and the visual guidance system will detect the lines

on the road that separate the lanes and maintain the vehicle position on the

road. To date, road-following is a relatively mature technology with many

successful implementations such as Navlab projects, ALVINN projects and

ARGO projects.

2.2.1 Methods based on NAVLAB and ALVINN

One of the earliest autonomous outdoor vehicles reported is by the

Carnegie-Mellon University named Carnegie-Mellon Navigation Lab (Navlab)

(Thorpe, Hebert, Kanade, & Shafer, 1988). The vehicle was a testbed which

14

was used to test perception modules and navigation modules. It was an onboard

platform on an actual vehicle for testing in real-world environments. Over the

years, it had gone through various implementations with the later

implementation was called Autonomous Land Vehicle in a Neural Network

(ALVINN) (Pomerleau, 1989) where the focus was on the usage of neural

network to increase the robustness in road detection.

Navlab was equipped with color vision for lane tracking and scanning

laser range finder for obstacle detection and avoidance. The Navlab approaches

include edge detection and image color classification. It attempted to extract

the edge of the road with the assumption the road is well structured and to

classify the road base on the color on road and non-road area. This Navlab also

attempted to fuse the texture cues with color vision features to identity road

edges. The texture feature was used to aid in the road detection with the

assumption that the road region will appear smoother than the non-road region.

Commonly, earlier attempts tend to identify the structured features present in

the road to determine the traversable region. The problem of changes in

illumination was highlighted where the authors tried to solve it by pre-

determining the cluster colors using separate Gaussian clusters.

The ALVINN project was a system equipped in NAVLAB as a neural-

network-based navigation system (Pomerleau, 1989). There were several

prominent works on ALVINN system to improve the performance of the

system which can be found in Batavia et al (1996) and Jochem et al (1995).

Generally, the system approach was to use artificial intelligence in autonomous

15

vehicle to drive automatically. The project had successfully traversed on the

highway with highway speed. It utilized the neural network to learn on-line by

“observing how human drive”. The digitized signal from camera is fed into

neural network module and the output of the training is the steering direction

which is fed to the car steering control.

Both the approaches based on the Navlab and ALVINN were only

limited to structured road with many assumptions which are not applicable or

suitable to rainforest terrain. The learning method used in ALVINN requires a

lot of training scheme where certain scenarios can be expected and many

assumptions need to be made. On the contrary to rainforest terrain, a structured

road cannot be expected to be present and the assumption used on structured

road cannot be applied. However, the approach had triggered the interest in

using artificial intelligence in autonomous vehicle navigation.

2.2.2 Methods based on ARGO

The ARGO (Broggi, 1999) project is one of the most mature lane

detection systems which aim for active safety system and automatic pilot for

road vehicle. The system incorporated only passive sensors such as camera,

proprioceptive sensor and commercial personal computer in its prototype. Two

cameras were mounted at the top corners of the windscreen and a speedometer

were used to detect the velocity of the vehicle. The images acquired from the

stereo cameras and speedometer were fed to computing system located in

vehicle boot. After computation and processing, the output was fed to the

16

actuator of the car. The computing system was able to compute lane geometry

for lane following, detect common obstacle on road and detect lead vehicle.

Recently, much of this area of research is concentrated on more complex road

condition which takes into the consideration the traffic signs, pedestrian and

etc.

Similar to Navlab and ARGO project, the systems cannot be fully

applied to rainforest terrain. However, it is important to highlight that all the

projects discussed previously relied heavily on vision system to detect the road

and obstacles. Evidently, it can be said that the vision system is a key-enabling

technology to autonomous vehicle navigation and obstacle detection.

2.3 Review of Visual Guidance for Outdoor Terrain: Unstructured

During the past decade, the research of autonomous vehicle that can

operate in unstructured terrain and their related issues began to arise. Early

researches and developments of autonomous vehicle were initiated by military

organization (Shacklock, Xu, & Wang, 2006) as defense and surveillance were

very much of their concern. There were intentions to increase the mobility of

the autonomous the vehicle and also the complexity of the missions that can be

completed by the autonomous vehicle of robots. Report by Eiker (2001)

predicted that the functionality of the autonomous vehicle will achieve several

milestones as illustrated in Figure 2.1. It is expected that the vehicle or robot

can perform some combat service support, mission and terrain understanding in

different type of terrains. From the figure, it can be seen the biggest challenge

17

in autonomous vehicle is the situational understanding or terrain understanding

and the complexity is increasing when the terrain is more unstructured.

Figure 2.1: Notional Approach to Top Level Systematics of Ground Mobile

Robot Systems (Eicker, 2001).

As mentioned above, the emphasis on the terrain type that can be

negotiated by an autonomous vehicle is moving toward highly unstructured

terrain. The shift of the focus is mainly caused by the type of the mission that

needed to be completed. Moreover, recent advanced technologies promote

improvement of the hardware devices and these allow faster processing which

cannot be achieved previously (Broggi, Bertozzi, Fascioli, & Conte, 1999).

One of the key tasks in rainforest navigation is terrain classification where the

Iraqi

Desert
NM High
Desert Farmland

NM-like
Mountains

European
Forests

SE Asia
Jungle

Year of High
Likelihood of
Robotic Mission
Capability

Combat Service
Support

Mission X

Situational
Understanding

Terrain
Complexity

2001

2005

2010

2015

18

type of terrain need to be identity before decision of which path to be taken is

decided. Moreover, other key issues, such as system robustness and

uncertainties present in rainforest terrain must be handled well. The following

subsections will discuss on the state-of-the-art that is very much related to

rainforest terrain of interest in this thesis.

2.3.1 Methods by DEMO III

One of the prominent projects is DEMO III by Jet Propulsion

Laboratory (JPL) reported by Shoemaker et al (1998) and Bellutta et al (2000).

The project focus was on autonomous navigation in cross-country using vision-

based perception. Although the terrain type was different from the rainforest

terrain, many of the challenges presented were very much relevant and the

proposed approach could be used in this thesis.

DEMO III attempted to use real-time stereo systems for geometric

representation and obstacle detection. While the stereo systems were able to

detect positive and negative obstacles, it is not able to characterize the terrain

in term of its traversability. The main contribution of DEMO III project is that

it had successfully introduces effective scene description based on geometric

approach. The general problems in unstructured terrain navigation are evident

as the flat-world assumption cannot be applied in this situation. In DEMO III,

the ground in the terrain in consideration is relatively flat where the vehicle and

sensors posed would not be affected dramatically. However, in rainforest

19

terrain, very bumpy road is expected and the vehicle guidance system must be

able to compensate for the change of the vehicle pose from time to time.

While geometric presentation may be good to describe the terrain, the

presence of compressible vegetation where the vehicle can run-over posed

another challenging situation in unstructured terrain navigation. Some of the

vegetation such as grass will be considered as obstacles in geometric point of

view. To overcome the problems, DEMO III program performed the terrain

classification based on color. The presence of compressible obstacles in

DEMO III work was very much similar to the situation rainforest navigation

and can be modified to be applied in rainforest navigation. However, the

limitation of DEMO III is that relatively open ground is expected where most

of the ground is present. In rainforest terrain, the ground terrain may be

minimal and surrounded by compressible vegetation, thus in order for a

successful navigation, these problems need to be solved.

Many similar projects were conducted on similar terrain as in DEMO

III program, the difference of their approaches is the specific task processing

for terrain classification and obstacle detection. The approaches were mainly to

overcome common problems associated with color feature which are the

chromatic problem and uneven illumination.

20

2.3.2 Methods by Darpa PerceptOR

Most of the research for autonomous vehicle is for military application

and it is demonstrated by the prominent project and activities are mainly

funded military agencies. The United States Defense Advanced Research

Project Agency (DARPA) has been actively developing the reconnaissance

capabilities of autonomous robot. For the past decade, DARPA (Krotkov, Fish,

Jackel, McBride, Perschbacher, & Pippine, 2006) has engaged in Tactical

Mobile Robotics program, DARPA PerceptOR and Darpa Grand Challenge

program. While Tactical Mobile Robotics program focused more on urban

environment, the following DARPA PerceptOR and Grand Challenge focus

were off-road terrain. Darpa PerceptOr tried to sense the environment by

creating 3-D model of the scene using stereo and ladar data. The idea was to

create a 2-D map with obstacle identified in the map and to move towards the

target area based on the map created.

The guidance system of PerceptOR was based on multiple sensors with

differing field of view to detect different geometric aspects of obstacles and

terrain. In addition to the sensors attached to the ground vehicle, PerceptOR

was equipped with flying agent for early obstacles detection, mainly the steep

negative obstacles or holes. Two SICK single axis ladars were placed in the

forward direction of the vehicle with one scanning horizontally and another

one scanning vertically. Two additional SICK ladar were also used for special

purposes with one was mechanically rotated continuously to provide 360-

degree view around the vehicle while another ladar looks rearward to provide

21

backup maneuvers. Digital video camera and stereo camera were used to

provide colour information and alternative range data to the ladar.

In this work, the visual guidance system was divided into two sensing

modes which were appearance sensing and geometric sensing. The geometric

sensing module processes the range data to detect geometric hazard (i.e.

extreme slope, tree, etc.) while the appearance processes passive features to

classify the terrain type. Both modules were fused to calculate the traversability

cost and subsequently determining non-rigidity of the terrain. This work

highlighted the importance of certain features to determine the compressibility

and penetrability of sensed terrain. Compressibility is defined to be the object

rigidity which is based on its material composition and penetrability is defined

to be the object density based on the solidity and porosity of the object. This

work also identified the color to be a powerful cue to determine the

compressibility and the authors used neural network to perform the

classification based on colors. The penetrability of an object was determined

using the density points from the scanning ladar. In addition, the authors used

stereo vision with traditional vertical horopter instead of group plane horopter.

It was highlighted that ground plane is not prominent in many complex scenes

and difficult to isolate.

2.3.3 Methods by LAGR

There are many projects which are based on Learning Applied to

Ground Robotics (LAGR) system developed at Carnegie-Mellon. It is a

22

platform for research which is equipped with two pairs of Bumblebee cameras

and on-board GPS antenna for global localization (Happold & Ollis, 2006).

Thus, projects that use this platform only deal with higher level vision

processing and planning algorithm. Alberts et al (2008) and Happold et al

(2006) attempted to use supervised learning in LAGR platform for unstructured

outdoor terrain. It should be highlighted that both authors were using different

algorithms for their LAGR systems. Alberts et al (2008) managed to introduce

fully autonomous and online learning to distinguish between ground plane and

other objects while Happold et el (2006) claimed that their system will be able

to perform safely on forested course based on their test. While LAGR system

has proven to be successful in semi-structured environment, there is very little

deployment of LAGR in unstructured terrain.

2.3.4 Methods by Manduchi et al (2005)

This work (Manduchi, Castano, Talukder, & Matthies, 2005) presented

sensor algorithm that are suitable for cross country algorithm. The approach

used a stereo camera and single-axis ladar for obstacles detection and terrain

classification. The proposed methods were based on stereo range measurement,

color-based classification and ladar data to label the detected obstacles

according to a set of terrain classes.

The author attempts to detect obstacles using the 3-dimensional point

cloud directly. Instead of extracting the reference ground plane, the method

extracted the slope and height of the visible points. Certain objects with height

23

above slope and height threshold will be considered as obstacles, otherwise

traversable region. The impetus of this method was to minimize the effect the

uneven ground that may affect the cameras tilt and roll. The color-based

classification for the terrain typing concentrated mainly on the main obstacles

in the terrain which are soil or rock, green (photosynthetic) vegetation and dry

(non-photosynthetic) vegetation (which includes tree bark). Any terrain which

was not included will be placed into a general group. Any classes with color

ambiguities will be differentiated with the aid of the range data from radar.

This research is one of the pioneers of visual guidance for autonomous

vehicle in complicated terrain and is very similar to the rainforest terrain of

interest. The work did not attempt to solve the all navigation problems at once

but to arbitrary solve important challenges one at a time. This approach worked

very well as different sensors have their advantages in detecting certain

obstacles over other obstacles. There are a few challenges that were highlighted

by this work that require further investigation which are the varying

illumination condition and color shift in atmospheric condition. There is a need

for efficient and robust illumination compensation method for outdoor terrain

as the illumination across the terrain is subject to shadow effect and irregular

illumination. Consequently, it will affect the objects color across the scene.

2.4 Challenges in Rainforest Terrain

The preceding sections have briefly discussed the achievements and

requirements of successful navigation for autonomous vehicle. However,

24

navigation in rain forest terrain represents a highly complex set of problems

that need to be solved before it can be successfully employed. With more

unknowns appear within complex environment, we anticipate more difficulties

in task-specific processing in tropical terrain. Possibly the biggest challenge in

rainforest terrain is to sense the environment and use the information for path

planning. However, the task of sensing the environment is made difficult by

very highly unstructured terrain and contains many uncertainties.

In rain forest terrain, obstacle detection based on distance and height

information is not sufficient to determine whether the obstacles really pose

danger to the vehicle. The following are some possible challenges that are

typical in rain forest terrain:

1. Long grass or soft vegetation will be detected wrongly as obstacles in

geometric point of view as the vehicle could have driven over the grass

easily. In rainforest, the ground is uneven and it may contain slopes, bumps

or negative obstacles.

2. Negative obstacles may pose bigger problem as the depth and size of the

obstacles cannot be accurately determined until the vehicle is very near to

the obstacles, depending on the sensors height and size of the obstacles.

The condition can be made worse if the some of the obstacles (negative and

positive) are hidden behind soft vegetation.

25

3. The illumination is uneven across the rain forest as most of the terrains are

covered by thick forest canopy. There are direct, indirect sunlight and

shadow effect which affect the colors of the object. The color distribution

of an object appears to be broadened depending on the amount of light

illumination. Pixels may be over-saturated if the object is heavily

illuminated, and therefore affecting the color information contained in

pixels. Consequently, it will affect the segmentation and feature extraction

based on color features from color camera.

4. Terrain classification plays an important part in determining traversable

region and non-traversable region. By classifying and determining the

traversable area, the optimal path for the vehicle can be chosen. However,

it is difficult to segment the scene into salient or meaningful region. Thus

the focus on recent approaches are on minimizing or compensating the

effect of uneven illumination.

5. Another concern in tropical terrain is color ambiguity of different objects.

Some of the objects appear to be similar in color and hard to be

differentiated based on color alone. For example, there are difficulties to

differentiate between objects such as tree trunk, dry vegetation and soil.

The color distributions of these objects are very close together and

overlapping in feature-space, thus making segmentation process harder to

achieve. It is difficult to form a clear cluster to represent certain object as

some of the cluster center may appear to be close together and differ in

size. The results of the segmentation depend on the number of clusters that

26

is set prior segmentation process. Different number of cluster will yield

different results and in unknown environment it is difficult to assume the

number of cluster beforehand.

6. The wet nature of rain forest means that the scenario may have water

bodies and muddy patches around. The vehicle guidance system needs to

be able to differentiate between deep water and shallow water region to

avoid damage to the vehicle itself. To our knowledge, there is no work

done to determine the depth of the water bodies present in rainforest

terrain. In addition to that, the color of certain material changes due to wet

condition and atmosphere effect. The reflection spectrum of a material may

varies due to moisture content. For example, the color of soil may appear to

darker in drenched condition compared to dry condition. This makes color-

based classification rather difficult and it represents a major problem.

7. The uneven ground plane is one of the major problems in rainforest

navigation. The uneven ground will affect the tilt and roll of the vehicle and

sensors which make difficult to detect and estimate the ground plane. In

addition, the ground plane may appear to be less prominent in rainforest.

2.5 Summary

Based on the literature review, we have identified several key areas that

are essential for a visual guidance system for rainforest navigation. We aimed

at specific problems that are generally present in the terrain of interest and may

27

improve existing visual guidance system functionality and reducing their

limitations. The following are the challenges taken into consideration:

 Ground Plane Estimation

o The ground plane plays an important part in navigation. The

load bearing surface need to determined beforehand and act

as the reference plane in the terrain and obstacle map.

 Tree Trunk Detection

o In rainforest terrain, the tree trunk is very common in the

scene. The trunk will appear in most of the scene and it is

important to have task-specific processing specifically to

detect this obstacle.

 Water Hazard Detection

o There is very little work done this water body detection. It is

important to detect the water bodies as it may be hazardous

to the autonomous vehicle.

28

Title/Author
Terrain

Type

Visual

Sensors
Sensors

Task-Specific

Processing
Contributions Remarks/ Limitations

C
a

m
er

a

S
te

re
o

C
a

m
er

a

In
fr

a
re

d

C
a

m
er

a

L
A

D
A

R

R
A

D
A

R

G
P

S

O
th

er
s

(Nilsson, 1969) Indoor x x x Used line as their main

feature to detect the

obstacles and ground

plane.

Introduces vision as perception of vehicle to

detect the empty ground.

Not versatile. Visual sensors are

not used to detect obstacle.

(Gennery, 1977) Indoor x Correlation and

matching of stereo

images

Proposed the usage of stereo vision to detect

ground plane and obstacles.

Priori model of the obstacles are

needed

N
A

V
L

A
B

 (Thorpe, Hebert,

Kanade, & Shafer,

1988)

Outdoor

 (On-road)

x x Road-following and

obstacle detection.

Color classification and road modeling. Failure occurs when there is

drastic change of illumination and

shadowing.

A
L

V
IN

N

(Pomerleau, 1989) Outdoor

 (On-road)

x x Neural Network for road-following Long algorithm development and

parameter tuning (months).

Require large training samples.

(Jochem, Pomerleau, &

Thorpe, 1995)

Outdoor

(On-road)

x x Improvement from previous ALVINN

projects, where road junctions’ challenges

were concentrated. The concept of virtual

camera was introduced.

Flat world assumption and

requires careful alignment and

calibration.

 (Batavia, Pomerleau, &

Thope, 1996)

Outdoor

 (On-road)

x x Improved robustness and faster training time

compared to previous neural network

approach.

Priori knowledge on the road is

required.

A
R

G
O

(Broggi, Bertozzi,

Fascioli, & Conte, 1999)

Outdoor

 (On-road)

 x Road-following and

obstacle detection.

Lane and obstacle detection based on

model-based approach. Full vision-based

system on the road with vehicle detection

and vehicle overtaking module. One of the

most matured autonomous road vehicle.

Relies on the road marking on the

road. Susceptible to shadowing

and changing illumination
(Broggi, 1999) Outdoor

 (On-road)

 x

(Broggi, Fascioli, &

Bertozzi, 2000)

Outdoor

 (On-road)

 x

Table 2.1: Summary of visual guidance system approaches in indoor and semi-structured outdoor terrain.

29

Title/Author
Terrain

Type

Visual

Sensors
Sensors

Task-Specific

Processing
Contributions Remarks/ Limitations

C
a

m
er

a

S
te

re
o

C
a

m
er

a

In
fr

a
re

d

C
a

m
er

a

L
A

D
A

R

R
A

D
A

R

G
P

S

O
th

er
s

JP
L

 D
E

M
O

 I
II

 (Shoemaker &

Bornstein, 1998)

Outdoor

(Off-road)

 x x x x x Geometric cover

representation, terrain

classification based on

color, negative

obstacles detection.

Successfully maneuver based on the

elevation and obstacle map generated

from geometric information. The

terrain classification to determine the

traversability of certain cover was

performed based on color feature.

From the literature, the test bed

seems to be tested on a relatively

flat ground with certain sensors

pose assumed. No work was

performed on water body detection.

(Bellutta, Manduchi,

Matthies, Owens, &

Rankin, 2000)

Outdoor

(Off-road)

 x x x x x

JP
L

 P
er

ce
p

tO
R

(Stentz, et al., 2003) Outdoor

(Off-road)

x x x

x x Geometric cover

representation, terrain

classification based on

color and range data,

negative obstacles

detection.

Reliable detection of non-geometric

objects, but more work are needed.

Successfully traverse in dessert

terrain.

The use of unmanned aerial vehicle

is not applicable in rainforest

terrain where canopies are present

as constraint.

(Kelly, et al., 2004) Outdoor

(Off-road)

x x x x x x Pose-estimation based on multiple

sensors available. Traversibility

determination based on 3D volumetric

density mapping.

Level of adaptability of perception

algorithms is still unsatisfied in

varying terrain.

(Huertas, Matthies, &

Rankin, 2005)

Outdoor

(Off-road)

 x Traversibility determination based on

diameter of tree.

Assume all tree barks are vertical

or almost vertical.

(Rankin, et al, 2005) Outdoor

(Off-road)

x x x Performance of passive sensors in

complicated terrain.

The resolution of the sensors is

fairly low which result in low range

accuracy.

 (Krotkov, Fish,

Jackel, McBride,

Perschbacher, &

Pippine, 2006)

Outdoor

(Off-road)

x x x x x x x Evaluation experiment of various

sensors in various unstructured terrain.

Detailed investigation in unstructured

terrain challenges.

 Comprehensive tests on the

unstructured terrain navigation.

JP
L

(Manduchi, Castano,

Talukder, &

Matthies, 2005)

Outdoor

(Off-road)

x x x x x x x Terrain classification

based on color,

negative obstacles

detection.

Detailed investigation in unstructured

terrain challenges. Covers majority of

essential items needed in unstructured

terrain navigation.

 Comprehensive work on

unstructured terrain navigation.

Highlighted the importance of

water body detection and

illumination compensation.

Table 2.2: Summary of visual guidance system approaches in unstructured outdoor terrain.

30

CHAPTER 3

SYSTEM ARCHITECTURE

3.1 Overview

Based on the previous literature review, a task-specific visual guidance

system is developed in this thesis for autonomous vehicle navigation. The

proposed ground plane detection and water body detection solve some of the

critical requirements for autonomous vehicle navigation in rainforest terrain.

The problems are solved independently as task-specific module. By examining

the reports and publications, it is clear that the key enabling for this

autonomous vehicle is the visual guidance system (VGS) of vehicle. In order

for this autonomous vehicle to be feasible, the visual and perception

information of view must be fully utilized for scene understanding and control.

Essentially, the role of visual guidance system is to capture the raw sensory

data and convert the data into meaningful information for model

representations of the terrain (Shacklock, Xu, & Wang, 2006).

In this work, a visual guidance system has been developed based on

stereo camera to achieve our target missions. There are many visual features

available from the image pair, such as color, texture, motion, disparity and so

on. It is necessary to extract the suitable and useful features from the obtained

image pairs. Color features will be used together with the disparities features

since it is co-registered with the stereo images provided with the stereo camera.

31

First compared with other visual guidance systems, this system is

designed with the following three solutions for navigation in rainforest terrain:

1. Robust and simple ground plane detection for rough ground terrain where

the load-bearing surface is uneven.

2. Obstacle detection in particular vertical tree trunks using disparity data.

3. Water patches detection using two polarizers with different polarization

angle on stereo camera.

In other words, this thesis intends to solve the problems mentioned

specifically above. The missions are achieved by modifying and improving

existing algorithm and by using additional hardware setup.

In the next section, the proposed visual guidance system and

methodology are discussed. The approach to solve the challenges in rainforest

terrain by problem-based model is explained. Next, the features from stereo

image pair and polarization effect are described. This includes the analysis of

the features in rainforest terrain.

3.2 Visual Guidance System

Figure 3.1 shows the general framework for a visual guidance system

where the modules are sensors, modeling and calibration, task-specific

32

processing, sensor fusion and world mapping. The sensors are grouped together

under one module. The main function of this module is to perceive the scene in

front of the vehicle and its features is further processed for terrain

classification, localization, mapping and path planning. This module may

consist of multiple sensors which include color camera, stereo camera, laser

range finder and other vision sensors. The modeling and calibration modules

are used to model the sensors used and to calibrate the sensors accordingly if

they are going to be used as measured devices. The raw data acquired will be

converted into features and modeled into projective representation of the scene.

Figure 3.1: General modules of visual guidance system (VGS).

The task-specific processing module includes the function to process

the information acquired from the sensors. Each data stream from different

type of sensors may has different type of features that may be used to perform

different functions. Essentially, its role is to extract raw sensor data and extract

useful features that may be used for specific function. For example, a camera

Sensors

Modeling and Calibration

Task-Specific Processing

Sensor Fusion

World Mapping

33

has texture features that are useful for terrain classification while stereo camera

contains additional depth information that is useful for obstacle detection.

While having more features may increase the likelihood of correct

classification and detection, it comes with higher cost and higher processing

load.

The sensor fusion module function is to merge all the processed

features to increase the chances of correct classification and detection. As

mentioned earlier, each feature from different type of sensors may detect

different obstacles more effectively with certain confidence level. Associating

those features together may increase the confidence level and improve the

probability of correct detection. The output of feature fusions will be fed to

world mapping module which further map the classification and obstacle

detection result into real world.

3.2.1 Proposed System Architecture

The proposed visual guidance system has the ability to determine the

ground plane of the scene and detecting obstacles and water hazard. The

approach taken in this thesis is module-based system where each module

developed is aimed to perform specific task. It is task-oriented module and the

modules are formulated based on the challenges discussed in section 2.4. A

general visual guidance system is developed with three main modules which

perform the task specific processing of interest in this thesis. The earlier

34

overview of this chapter specified the three challenges that we intend to solve

in this work.

Figure 3.2: Architecture of the visual guidance system.

Figure 3.2 shows the architecture of the visual guidance system

developed in this thesis. The features are obtained from polarized stereo

camera which are colors, disparity, and polarization feature. The color

classifier is used to process the features available before being used to perform

certain detection tasks. The three task-specific processing modules are ground

Stereo Camera

Color features Stereo Disparity features

Color Classifier Range

Ground Plane

Detection

Tree Hazard

Detection

Water Hazard

Detection

Polarization

Features

Terrain Classification Map

35

plane detection, tree hazard detection and water hazard detection. Each module

will perform the specific task and the outputs will be fused to generate a terrain

classification and obstacle map.

In short, this thesis proposes a feature-based visual guidance system

with task specific modules to solve the problems highlighted mentioned in

mentioned earlier.

Initially, stereo image pairs are grabbed from the calibrated stereo

camera. Both side of the lens are polarized with different polarization angle

where the difference of the polarization angle is .

Then, the color information and disparity feature are extracted from the

image pair. Several pre-processing procedures are done on the features before

each cue are fed to task-specific processing.

 Next, the color feature, polarized-color feature and range feature are

used for task-specific module. Color segmentation and ground plane

estimation are performed earlier as the information is needed by

other modules.

 The color classifier module is used mainly for terrain segmentation

and classification. The primary function of this module is to

segment the scene into few regions that may pose as obstacles

without determining the compressibility. The tree and water hazard

36

detection modules are used to detect the tree barks and water

patches present in the scene.

 Finally, the outputs from each module from each module are fused

to produce the terrain classification map that can be used for

navigation.

3.3 Sensor Description

This section describes the stereo camera used in this thesis to gather

sample test images and to perform the experiment. This includes the computer

vision library used to grab images from the camera and perform general image

processing. Generally, it consists of a stereo camera, central processing unit

(laptop), two circular polarizers and the relevant mounting accessories. The

stereo image pair of the scene is captured using stereo camera with the

polarizer in front of the lenses and passed on to laptop to process the frame.

3.3.1 Bumblebee 2 Stereo Vision System

The stereo camera (Bumblebee 2) is from Point Grey Research, Inc

(Point Grey Research Inc, 2003). As shown in Figure 3.3, the stereo camera is

designed to incorporate two Sony 1/3” progressive scan CCD. The stereo

camera is pre-calibrated for lens distortion and camera misalignments where

37

the left and right images are aligned to within 0.05 pixel RMS error. The stereo

camera specifications are listed in Table 3.1.

Figure 3.3: Bumblebee 2 stereo vision system.

For this project, the low-resolution mode is used where the resolution is

set to with the frame rates of . Most of the researches used

lower resolution image in real-time application. However for this thesis, all the

initial tests and analysis are based on higher resolution before it is scaled down

for real-time application. The frame transmission to the processing unit is done

via standard 6-pin IEEE-1394 connector and the synchronization of the frames

is incorporated internally.

38

Specification Low-Res(640x480) High-Res(1024x768)

Imaging Sensor

Two Sony 1/3” progressive scan CCD

ICX424(648x488 max pixels) ICX204(1024x768 max pixels)

7.4 square pixels 4.65 square pixels

Baseline 12cm

Lens Focal Length 3.8mm with HFOV or 6mm with HFOV or

A/D Converter Analog Devices 12.bit analog-to-digital converter

Video Data Output 8, 16 and 24-bits digital data

Frame Rates 48, 30, 15, 7.5, 3.75, 1.875 FPS 18, 15, 7.5, 3.75, 1.875 FPS

Interfaces

6-pin IEEE-1394 for camera control and video data transmission,

4 general-purpose digital input/output(GPIO) pins

Voltage Requirements 8-32V

Power Consumption Less than 3W

Gain Automatic/Manual/One-push Gain modes(0dB t0 24dB)

Shutter

Automatic/ Manual/ One-Push Shutter modes

0.01ms t0 66.63ms @15FPS

Extended Shutter modes

0.01ms to 7900ms @ 15FPS 0.01ms to 5200ms @ 15FPS

Gamma 0.50 to 4.00

Trigger Modes DCAM v1.31 Trigger Modes 0, 1, 3, and 4

Signal To Noise Ratio Greater than 60dB at 0dB gain

Dimensions 157mm x 36mm x 47.4mm

Mass 343grams

Camera Specification IIDC 1394-based Digital Camera Specification v1.31

Emissions Compliance Complies with CE rules and Part 15 Class A of FCC Rules

Operation Temperature Commercial grade electronics rated from to

Storage Temperature to

Table 3.1: Bumblebee 2 stereo camera specifications.

39

The Bumblebee 2 stereo camera comes with automatic gain control

where it control the image brightness correspond to lighting condition. It

automatically increases the gain of the camera in the event that the scene is low

in illumination. This feature is heavily used in the project as the polarizers

affect the light going into the CCD sensors.

3.3.2 Triclops Stereo Vision SDK (PGR Software Development Kit)

The Triclops Stereo Vision Software Development Kit (Triclops

Library) is provided by Point Grey Research (PGR) Incorporation to configure

and grab stereo images from Bumblebee 2 Stereo Vision camera. The goal of

the Triclops Library is to provide the Bumblebee 2 Stereo Vision with accurate

and fast depth map generation.

The Triclops library system allows user to specify and process all

characteristics of stereo image such as image resolution, disparity range, etc.

The library is developed to produce efficient stereo processing and depth image

generation and the software system allows the specification of multiple stereo

processing that may occur on a single set of images. Thus, the stereo image

pair sequence in this project are grabbed from the camera using this library and

subsequently, the disparity image is produced before being passed processed

by Intel OpenCV library function.

40

3.3.3 Intel OpenCV Library

OpenCV is an open source (see http://opensource.org) computer vision

library available from http://SourceForge.net/projects/opencvlibrary. The

library is written in C and C++ and runs under Linux, Windows and Mac OS

X. It was designed for computational efficiency and with strong focus on real-

time applications. OpenCV is written in optimized C and can take advantage of

multicore processors. One of OpenCV’s goals is to provide a simple-to-use

computer vision infrastructure that helps people build fairly sophisticated

vision applications quickly (Bradski & Kaehler, Learning OpenCV, 2008). The

OpenCV library contains over 500 functions that span many areas in vision and

machine learning.

In this project, the images grabbed by Triclops Library will be

processed using Intel OpenCV Library to fully utilize Intel microprocessor

architecture, thus speeding up the runtime of basic image processing. The

application of OpenCV in this project includes the pre-processing of color

images and machine learning function for terrain classification. Although the

machine learning function provided is relatively general and basic, it is

sufficient to perform the needed functionality.

3.3.4 Hardware Setup

From the Figure 3.4, the experimental setup is hooked on camera tripod

which enables the yaw, pitch and roll angle to be adjusted. The Bumbleblee 2

41

stereo camera is enclosed in the metal casing with two circular polarizers

mounted in front of the stereo camera. The basic setup for the actual visual

guidance system is very similar to this setup except it is not mounted on an

autonomous vehicle.

Figure 3.4: Bumblebee 2 stereo vision system and polarizer assembly mounted

in front.

The stereo camera is mounted 1.3 meter from ground level. At this

height, it is sufficient for the camera to have higher range of view. The camera

pitch is set to be from the negative x-axis. From autonomous vehicle

operation point of view, the pitch angle of the camera will oscillate as it is

susceptible to vibration due to the uneven ground level. It is not feasible to

assume the pitch angle of the camera is the same during the operation time.

Thus, there is a need to have a robust system that is independent of pitch angle

Circular

Polarizer.

Casing

enclosing stereo

camera and

batteries.

Tripod with

adjustable yaw,

pitch and roll.

42

or able to detect the pitch angle real-time. In this thesis, we tried to solve the

problem by using V-disparity image with additional color clustering process.

Figure 3.5: Experiment setup with the pitch angle set at from

the negative x-axis.

3.4 Overview of Stereo Vision Principles

Stereo vision is an approach to perform range measurement from two

images taken from two different viewpoints (Hartley & Zisserman, 2003). The

aim is to extract three-dimensional (3D) information from its image pair where

the disparities map or depth map are generated. In the image pair, if the image

points correspond to the same physical point in real-world-space can be

determined, the 3-dimensional location of the physical point can be

z

y

x

yaw

pitch

roll

43

determined. The primary problems to be solved to obtain three-dimensional

information are calibration, correspondence, and reconstruction (Brown,

Burschka, & Hager, 2003). Calibration is the process of relating camera system

internal geometry (focal length, optical centers and lens distortion) and external

geometry (the relative positions and orientations of each camera). However, the

problem of calibrating the camera is well-understood and there are fairly many

methods available to solve this problem. The correspondence problem is the

process of determining the locations in each image in the image pair that are

the projection of the same physical point in real-world-space. No general

solution to the correspondence problem exists, due to ambiguous matches (e.g.,

due to occlusion, specularities, or lack of texture). To make the correspondence

between two images possible, there are variety of assumptions and constraints

made, depending on the problem of interest. Table 3.2 shows the available

methods to solving stereo correspondence problems. All these methods

attempted to match pixels in an image with the corresponding pixels in its pair

with different constraint such as epipolar geometry and assumptions.

44

Approach Brief Description

Local Methods

Block Matching

Search for maximum match score or minimum error over

small region, typically using variant of cross-correlation

or robust rank metrics.

Gradient-Based

Optimization

Minimize a functional typically the sum of squared

differences, over a small region.

Feature Matching
Match dependable features rather than intensities

themselves.

Global Methods

Dynamic

Programming

Determine the disparity surface for a scanline as the best

path between two sequences of ordered primitives.

Typically, order is defines by the epipolar ordering

constraint.

Intrinsic Curves

Map epipolar scanlines to intrinsic curve space to

convert the search problem to a nearest-neighbors lookup

problem. Ambiguities are resolved using dynamic

programming.

Graph Cuts
Determine the disparity surface as the minimum cut of

the maximum flow in a graph.

Nonlinear

Diffusion
Aggregate support by applying a local diffusion process.

Belief Propagation
Solve for disparities via message passing in a belief

network.

Correspondenceless

Methods

Deform a model of the scene based on an objective

function.

Table 3.2: Stereo correspondence approach. (Brown, Burschka, & Hager,

2003).

The reconstruction problem is the process of determining three-

dimensional structure from a disparity map, based on known camera geometry

(Brown, Burschka, & Hager, 2003). The depth of a point in real-world-space

45

can be determined by performing triangulation on the ray and camera

geometry. Figure 3.6 shows two camera arrangement with the image planes are

coplanar to each other, the optical axes are exactly parallel with a distance

apart, and with equal focal lengths . The principle points (
 and

)

which are the intersections of the principal ray projected from the center of

projections (and) are assumed to be at the center of the image plane.

Figure 3.6: Frontal parallel arrangement of two cameras. (Bradski & Kaehler,

2008).

The image planes are assumed to be row aligned and that every pixels

row of one camera aligns exactly with the corresponding row in the other

camera, thus making the search of the correspondence to be just horizontal. A

point in the real world can be viewed in both image planes as and

where the respective coordinates are) and .

46

The disparity is defined as

 3.1

The depth is the distance of the object from the camera and can be

determined using triangulation. Referring to Figure 3.6, we have

3.2

It is assumed that the stereo image provided in Figure 3.6 is perfectly

undistorted, aligned and measured. The assumptions are made to simplify the

description of stereo vision operation. However in practice, it is difficult to

build systems with a frontal parallel arrangement of two cameras. Instead, the

images from two cameras need to be mathematically rectified into a frontal

parallel arrangement.

3.4.1 Visual Depth using Bumblebee 2 Stereo Vision System

In this thesis, the three-dimensional depth information is obtained from

the disparity image. The stereo camera (Point Grey Research (PGR)

47

Bumblebee 2 Stereo Vision System) used is factory pre-calibrated and stereo

computation are performed using Triclops library (PGR Software development

kit). The process of computational stereo performed is divided into two blocks

where the first processing block is the image pre-processing block that applies

a low-pass filter, rectifies the images and performs edge detection. The second

processing block does stereo matching, validation of results and subpixel

interpolation.

Figure 3.7: Triclops general computational stereo process (Point

Grey Research Inc, 2003).

The pre-processing block of the Triclops library prepares the raw image

pair from the stereo camera for stereo processing. The low-pass filtering step is

done to reduce the aliasing effects. The rectification step is performed to

remove the lens distortion and to make the image pair be row aligned. The

edge detection allows matching on the changes in the brightness rather than the

absolute values of the pixels in the images. This feature is useful because the

cameras in the Triclops camera module have auto gain control. If the auto gains

Pre-processing

Low-pass filtering

Rectification

Edge Detection

Stereo Processing

Stereo Matching

Validation

Subpixel Interpolation

Pre-

processed Image

Raw input images Depth images

48

in the cameras do not change identically, the absolute brightness between

images may not be the same. While absolute brightness is not the same, the

change in the intensity stays constant. Therefore, using edge detection will help

in environments where the lighting conditions change significantly (Point Grey

Research Inc, 2003).

The stereo processing block performs the computational stereo process

where the correspondence of image pair is determined. Block matching is used

to find the correspondence between the image pair. This method perform

matching by searching for matching pixels in its corresponding image pair over

a small number of pixels surrounding the pixels of interest. An image in the

image pair is selected as a reference image and a neighborhood of a given

block in other image is selected. The block act as a correlation window and its

function is to search for the possible matching pixel. The matching pixel is

chosen from the correlation window based on correlation measure. For

discussion of block matching methods see work by Brown et al (2003) as it is

beyond the scope of this thesis to discuss it.

In this thesis, the Sum of Absolute Difference (SAD) is employed as a

measure to correlate the pixels between the image pair. This method is popular

for its computational efficiency as it only matches the image pair within a

region of interest instead of whole image and the computational time is reduced

(Brown, Burschka, & Hager, 2003). The SAD is performed using the following

equation:

49

 3.3

where , , , and are the minimum disparities, maximum

disparities, mask size, intensity value of right image and intensity value of left

image respectively.

Figure 3.8: Sample stereo image pair and disparity image. (a) Left

image. (b) Right Image. (c) Disparity Image.

The validation process is to ensure the stereo matching is correct. In

some cases where occlusion occurs or the scene is lack of texture, it is not

possible to perform stereo matching and the correspondence cannot be found.

In order to avoid incorrect measurement, the Triclops library introduced two

validation method using texture and uniqueness. Texture validation determines

whether disparity values are valid based on levels of texture in the correlation

mask (Point Grey Research Inc, 2003). Uniqueness validation determines

whether the best match for a particular pixel is significantly better than other

matches within the correlation mask. Even if the correlation mask has enough

(a) (b) (c)

50

texture, the correct match may not exist due to an occlusion. If the correlation

result is not strong enough, the pixel will be declared invalid.

The Triclops library allows matching between images to subpixel

accuracy. The library takes advantage of the matching results of the

neighboring pixels of the resulting disparity to determine an approximation that

is within a fraction of a pixel. Accurate calibration between cameras allows an

accuracy of 0.2 of a pixel. However, this function marginally increases the

computation time.

3.5 Summary

This chapter describes the stereo camera-based visual guidance system

setup in this project. The framework of the whole system is designed based on

the problems formulated from investigation on literature review and rainforest

scene.

The stereo camera with circular polarizers is mounted in front collect all

sensor data on the scene and the depth image is produced using the Triclops

library. This library is used as it is specifically designed to grab images from

stereo camera. Further basic pre-processing is done using Intel OpenCV. Then,

each of the images will be passed to respective task-specific modules.

It is clear that each module will have its own task-specific mission and

the module will solve the problem assigned to each module. The reason of

51

adopting this module-based architecture is because it will provide room for

functionality expansion in future. In this thesis, each module represents a

problem of interest in the rainforest terrain.

52

CHAPTER 4

GROUND PLANE DETECTION

4.1 Introduction

As mentioned in Chapter 3, this thesis intends to solve several problems

that are critical for visual guidance for autonomous vehicle in rainforest terrain.

Visual guidance system is essential to detect the vehicle and classify the

according to its classes. The obstacles detected and classified terrain will be

mapped into a map for path planning to guide the vehicle to its destination. The

approach taken is module-based where each module will be performing the

task to solve the problem of interest.

In this thesis, ground plane detection is presented as first step for the

visual guidance system. There are several methodology approaches to detect

the obstacles. An approach is to detect the obstacles directly from the features

such as images, 3D-point cloud etc. Another approach is to use a reference

plane and maps the obstacles according to the reference plane. The developed

method is based on V-disparity image and is modified for guidance in visual

guidance system. There are two main features used in this method, mainly V-

disparity and color feature. The V-disparity image is obtained from the

disparity feature. The method by Labayrade et al (2002) is improved by using

additional color feature to improve the robustness of the developed algorithm.

53

Section 4.2 reviews the state-of-the-art of the ground plane detection

used in autonomous navigation. Section 4.3 presents the characteristic of the

ground plane in rainforest scene where necessary feature can be utilized to

detect the ground plane. Section 4.5 discusses the ground plane detection

based on modified V-disparity image. Section 4.6 presents the results of the

developed method and finally the summary is presented in Section 4.7.

4.2 Overview of Ground Plane Detection

In this section, the state-of-the-art for estimation of the ground plane

using stereo vision is presented. Ground plane estimation plays an important

part in stereo vision-based visual guidance. In order to detect the obstacle, the

ground plane need to be extracted and base on the ground plane as foundation,

possible obstacles can be detected.

Murray et al (2000) approach is to calibrate camera rig where the

position of the camera to the ground is normally fixed. With the setup arrange,

the disparity of the ground can be determined during calibration stage.

However, this approach is not suitable for outdoor or complicated terrain as the

ground plane is uneven and the position of the camera relative to the ground is

always changing. Nedevschi et al (2004) tried to obtain the camera position by

using four sensors mounted on the chassis and wheels where pitch angle is

acquired real-time. However, the method added complication in calibration and

is not cost effective. Yu et al (2005) used RANSAC Plane Fitting method to

find the disparity of the ground pixel. Similarly, Li et al (2004) developed a

54

plane fitting algorithm utilizing road features to detect road. These methods are

not robust in outdoor terrain and only suitable when the ground is visibly

present in large part of the image.

 Recently, V-disparity image introduced by Labayrade et al (2003) has

become popular for ground plane estimation. This method allows the camera

pitch angle to be obtained at the time of image acquisition. By acquiring the

camera pitch angle real-time, the ground plane can be estimated robustly and it

is suitable to be applied to uneven ground terrain. It utilized the disparity data

of stereo camera mapped into vertical image and the resulting ground plane can

be estimated by extracting the ground correlation line.

4.2.1 Methods using V-Disparity by Labayrade et al (2002)

After the extraction of disparity image from the stereo image pair, the

primary task is to extract features available from the disparity image. One of

the famous features is the V-disparity concept introduced by Labayrade et al

(2002). Usually, it is used to determine the ground truth of a scene and also to

isolate obstacles based on the disparity data.

V-disparity image is based on disparity map) obtained from the

stereo camera. The V-disparity image is a three-dimensional image which

contains the abscissa-axis, ordinates-axis and intensity-axis. The abscissa-axis

() plots the disparities which the correlation has been computed. The

ordinates-axis () plots the image row number and the intensity-axis set to be

55

proportional to measured correlation. Figure 4.1 shows a stereo image and its

corresponding V-disparity image where the abscissa-axis () is built by

accumulation the pixels of the same disparity from disparity map) along

the ordinates-axis (). In other words, V-disparity image is the disparity-based

histogram where the accumulation of disparity of the same value projected

onto ordinates-axis ().

Figure 4.1: Sample stereo image and its V-disparity image frame of

reference (Labayrade, Aubert, & Tarel, 2002). (a) Stereo image (left). (b)

Stereo image (right). (c) V-disparity image. (d) V-disparity image with ground

correlation line (blue line) and obstacle profile (white line).

Detecting objects and obstacles is a question of extraction of features

corresponds to the objects in the scene in V-disparity. Usually, the objects and

obstacles in the scene are represented by vertical straight lines in the V-

disparity image. Figure 4.1(d) shows the V-disparity image for sample image

pair. The blue line corresponds to decreasing disparity where it represents the

ground. Assuming that the ground plane is flat, the disparity will be lesser

when it is further away from the stereo camera. The vertical white line

(a) (b) (c) (d)

56

represents the human (obstacle) as the disparity pixels for the human are of the

same value over the v-plane. Next sub-chapter will discuss on how the ground

plane profile and obstacles profiles appear in rainforest scene.

Figure 4.2: Stereo image pair, disparity image and V-disparity

image. (a) Left image. (b) Right Image. (c) Disparity Image. (d) V-disparity

image.

Figure 4.2 shows an example of image pair, disparity image and its

corresponding V-disparity. It can be seen that the trees in the images are

represented by vertical segment in the center of the V-disparity image. The tree

surface has almost similar distance from the camera, thus the tree has constant

disparity. The ground in the image pair is represented by the slanted segment in

the V-disparity image. This is due to the linear change of disparity along the

ground plane. The further the ground plane, the lesser the disparity.

The ground correlation line contains information of the ground plane and

also the stereo camera pitch angle at the time of acquisition. The ground plane

can be determined from the V-disparity image if the ground correlation line can

be extracted. Various methods were used to extract the correlation with the

methods differing depending on the features available.

v

d u

v
(

a)
(

b)

(

c)
(

d)

57

4.2.1.1 Property of V-disparity Image

The extracted ground correlation profile has the same slope regardless of

the pitch variation. The ground correlation line will only shift parallel to its

own line. Broggi et al (2005) had experimentally proved that the behavior of

the ground correlation line during a pitch variation is to oscillate, parallel to

itself like in Figure 4.3. In work by Zhao et al (2007), the characteristic was

mathematically proven to be valid. With this characteristic, the ground plane

correlation line can be extracted as the camera pitch variation negligible effect.

In addition, the ground correlation profile will have the lower slope

compared to obstacle profile. This is due to the linearly changing of disparity

of the ground plane. Most of the obstacles will have similar value of disparity

with respect to the distance from the camera. This characteristic can be used to

determine the ground correlation line when there are multiple profiles found in

the V-disparity image.

58

Figure 4.3: Ground correlation lines in V-disparity image. The solid

slanted line corresponds to the ground correlation line obtained using the static

calibration data, while the dashed slanted lines are the ones expected varying

the pitch value. The solid vertical line indicates the 0 disparity value, the

dashed vertical line indicates the disparity value of points at infinite distance;

they do not overlap due to a slight convergence of cameras optical axes

(Labayrade & Aubert, 2003).

4.2.1.2 Ground Profile Extraction from V-Disparity Image

Over the years, there are plenty approaches using V-disparity image

(Broggi et al., 2005; Toulminet et al., 2006; Zhao et al., 2007) but with

different method of extracting the ground lines. Broggi et al (2005) applied V-

disparity image in their work with the intention of extracting road out of the

stereo image. Their work is limited to conventional road as they assume the

road to be straight line. Zhao et al (2007) applied global correlation method and

d

v

59

Labayrade (2002, 2003) uses Hough transform to extract the ground correlation

line. Most of the work are concentrated on-road or semi-structured terrain and

in this thesis, the V-disparity image to estimate the ground plane with different

kind of constrained. The following sub-section will discusses on the challenges

in detection of ground plane in rainforest terrain.

4.2.1.3 Challenges of Ground Plane Estimation in Rainforest Terrain

The application of V-disparity image found in literature is rather limited

to on-road or off-road with clear path. The approaches in Section 4.2.1.2 rely

heavily on distinct road feature such as lane marking and clear road path. The

assumption made on the road profile in V-disparity image is that a straight line

correlation can be found. Zhao et al (2007) method of using global correlation

method can achieved better result with the assumption that the road near the

obstacle is clear of obstacles. In rainforest terrain, V-disparity method holds a

great advantage in such a way that the camera position can ground plane can be

estimated during the time the image is acquired. However, the assumptions

made in previous approaches in estimating the ground correlation line are not

suitable to estimate the plane in rainforest terrain.

 Previous approaches (as described in Section 4.2.1.2) assume that the

ground plane occupies large portion of the image. This scenario is not

applicable to rainforest terrain as the route for the vehicle to traverse may be a

small area. Thus, in the case of where the ground plane occupies just a small

part or multiple parts of the image, there is no sufficient ground pixels to

60

extract the ground correlation line. Zhao et al (2007) method used higher

correlation window cannot be applied in tropical terrain as the assumption

made is that the ground plane near the vehicle is clear of obstacles. The

assumption made is not applicable to rainforest terrain as obstacles may be

present near the vehicle. By using higher correlation window, it also assumed

that depth is equal for all pixels in the correlation window which is not the case

in our terrain consideration as the depth may contain discontinuities. The

discontinuities may be a major hazard as it can be a negative obstacle that the

stereo camera cannot detect. Based on the problem statements, it is necessary

to devise one more features that can be used to determine the ground plane in

tropical terrain.

4.3 Feature Extraction

In this section, the V-disparity image and color feature of the rainforest

terrain are examined. The characteristics and cues representing the ground

plane and obstacles in the V-disparity image and color feature are described.

4.3.1 Analysis on Disparity Image and V-Disparity Image of Rainforest

Terrain.

The V-disparity image is obtained from disparity image produced by the

image pair. Since our proposed method will utilize V-disparity image to detect

the ground plane, it is important to highlight the difficulties in using V-

disparity as a feature. In this section, the behaviors of ground plane and

61

obstacles profiles in V-disparity image are presented. The motivation is to

study the characteristic of the features in order to determine suitable feature to

be used in task specific processing.

Figure 4.4 shows a few sample images of outdoor scene with different

complexity where the complexity level is easier in the first image pair and

increases in the subsequent sample image pair. The considered scenario in this

figures include the obstacles and the appearance of the ground plane. Note that

the ground and obstacle profile of this sample image is hand-labeled, and the

question posed is how to extract this line profile automatically. However, this

demonstrates that V-disparity image can be used to extract the ground plane

and obstacles.

Figure 4.4 (a) shows an outdoor image where the ground plane dominates

the whole image. The correspondence V-disparity image illustrates strong

profile of the ground plane and clear obstacles profile.

Figure 4.4 (b) shows more complicated scene where the ground plane

appears in large portion of the image but with closer obstacles to the camera. It

can be observed in the V-disparity image that the ground profile is fairly

apparent. Typical scene in rainforest terrain will appear similar to the sample

provided. The obstacles are mainly tree trunk and vertical in nature. Thus, the

obstacles can be easily isolated when the ground profile is successfully

extracted.

62

Stereo Image Pair

Disparity Image

V-Disparity

 Left Image Right Image Original

Ground

Profile

a

b

c

Figure 4.4: Sample stereo images, disparity images and its V-

disparity images frame of reference in rainforest terrain. Note: the ground plane

profile and obstacle profiles are hand-labeled.

Figure 4.4 (c) shows a highly complex scene where the ground plane

only appears in small part of the image and the scene is populated by obstacles.

The V-disparity image does not exhibit ground profile due to the low number

of ground surface in the scene.

4.4 Color Feature from Stereo Imaging

In this section, the color feature of a rainforest scene is presented. Color

feature is a very fundamental feature available to machine vision and it is

63

usually considered at the same time with three-dimensional information. This

feature can be used to perform color segmentation or clustering and

subsequently, terrain classification. To date, the vast information contained in

two-dimensional color images is yet to be exploited (Shacklock, Xu, & Wang,

2006). The major problem is to find alternative way to extract the knowledge

from the color images and use the information within the algorithm.

In RGB color space, the color appears in primary spectral components

of red, green and blue (Gonzalez & Woods, 2010). RGB color space is based

on the human eye which consist millions of cones that responsible for color

vision. The cones are very sensitive to these three primary colors where

approximately 65% of all cones are sensitive to red, 33% are sensitive to green

and only 2% are sensitive to blue. Due to these absorption characteristic of the

human eye, colors are seen to be variable combinations of the primary colors of

red, green and blue. By using this three primary color, most of the colors in the

color spectrum can be regenerated.

Although the RGB color space matches with the fact human eyes are

strongly sensitive to red, green and blue, it is not practical for human

interpretation (Gonzalez & Woods, 2010). For example, one does not refer to

the color of an object by referring to the percentage of each primary color

representing its color. In term of image processing, the colors will be

represented in image planes. Thus modifying one of the color planes will alter

the color information in the pixels. In color image processing, one does not

wish to alter the color information as it is an important feature to represent an

64

object. Thus, it can be said RGB color space is only suitable to store and

regenerate image but the usage as color description is rather limited (Gonzalez

& Woods, 2010).

A human perception distinguishes colors from others based on hue,

saturation and brightness information (Gonzalez & Woods, 2010). Hue is an

attribute associate with the dominant wavelength in the mixture of light wave

where it contains pure color information. Saturation gives the purity of color or

the measure of pure color diluted with white light. The combination of both

hue and saturation will give the chromaticity. Brightness describes the

achromatic attributes which is the intensity. Thus, a color may be characterized

by its chromaticity and brightness.

A HSI (hue, saturation, intensity) color model is a model that represents

colors in a natural and more intuitive way to human. This model is also

commonly known as HSV (hue, saturation, value) color model. As described

above, each hue, saturation and intensity (or value) component in the color

model represents the hue, saturation and brightness information respectively.

This color space decouples the intensity component from the color components

in a color image (Gonzalez & Woods, 2010) and the advantage of this

separation is that it enables image processing based on color information alone.

65

4.4.1 Colour Distribution of Rainforest Scene

An initial analysis on the image from camera reveals that that it is

difficult to differentiate different classes of obstacles and terrain using color

feature alone. The similarity of color made it difficult to differentiate between

two different clusters that are closed together. Figure 4.5(a) and Figure 4.5 (b)

shows a test image of a rain forest terrain in consideration and its 2D-histogram

in hue and saturation. Few fragments of tree trunks, green leaves and ground

were extracted and their distributions are viewed in hue-saturation feature

space.

The inlet image in Figure 4.5 (b) shows the histogram for the whole

image. The color distribution for each region is overlaid on top of the overall

histogram. It can be observed that the color distribution of tree trunk and

ground are close and overlapping whereas the green vegetation can be easily

separated. The appearance of an object is dependent on various factors such as

illuminant, the reflectance of the object, illumination geometry and also the

sensor parameters (Kamegawa, et al.). Figure 4.5 (b) shows the variation of

saturation of objects where the saturation are distributed even it belongs to the

same object. The variation may be greater when the conditions of the scene

change.

66

Figure 4.5: 2-dimensional hue-saturation histogram. The distribution of object

colors (ground, tree trunk, vegetation and others) are illustrated. (a) The scene.

(b) 2-dimensional histogram.

Different type of grounds and trees will have different appearances

depending on the illumination, types and texture of soil and tree barks.

Generally, both ground and tree barks appear to be similar in color. Thus, there

is a need to use multiple cues to differentiate between these two classes. In this

project, the disparity feature is used to detect ground plane and any obstacles

above the ground plane. It is anticipated that any brown-in-color object or

terrain appearing on the ground correlation profile of V-disparity is ground

plane. Thus, the ground can be segregated from the tree trunk.

Green

Vegetation

Tree

Trunk

Ground

Saturation

G

round

Gre

en Vegetation

Others

Tree Trunk

Green

Vegetation

Hue

(a) (b)

67

4.4.2 K-means Clustering

Image segmentation is the process of dividing an image of a scene into

constituent part and extracting these parts of interest. As our approach in

ground plane detection employs segmentation technique as supplement to the

V-disparity feature, it is necessary to describe the functionality of the

segmentation method used.

In this thesis, K-means clustering is used to cluster the image according

to the colors. While there are many techniques that are available, K-means

clustering is employed because of its simplicity. The only parameter that needs

to be pre-determined is the number of cluster. Due to uncertainty that present in

rainforest terrain, it is necessary to have low pre-determined parameter to avoid

over-fitting or bias in the clustering process.

To describe the algorithm flow of K-means clustering, let denote the

pixel of an image

 4.1

where , are the pixel location and , , are the intensities of the color

components at that point.

The K-means clustering method aims to classify the terrain according to

the performance index

68

 4.2

where

 denotes the set of samples assigned to the cluster after the th

iteration, and denotes the mean of the th cluster. This index measures the

sum of the distances of each sample from their respective cluster means.

The algorithm runs as follow:

1. Randomly assign the cluster center location.

 4.3

2. At the th iteration assign each pixel, to one of the K clusters

according to relation

 if

 4.4

For all , , where

 denotes the set of samples

whose cluster center is
 .

3. The cluster center mean,
 is updated where is the cluster

number.

4. If
 =

 for all , the algorithm has converged and the algorithm

is terminated. Else, go to step 2.

69

The K-means clustering algorithm requires the number of clusters to be

known beforehand. The choice of the number of clusters for this thesis is

determined based on a few assumptions and validated with experimental data.

Next in this chapter, the developed ground plane detection ground plane

detection algorithm is described.

4.4.3 K-means Clustering: Number of Cluster Determination

The major setting in this method is to determine the number of cluster

required in order for the proposed method to be working well in rainforest

terrain. The motivation of using K-means clustering method is to segment the

lower half of the image to possible different regions. However, we do not

anticipate over segment or under segment the images.

Ideally, there should be only two classes which are obstacles and non-

obstacles. However, due to color ambiguity of different object, the regions in

the image cannot be group into just two groups. Thus, it is necessary to

determine a universal parameter (number of cluster) that can work in majority

of the conditions in rainforest terrain.

The following are the assumption that we employed in determining the

number of regions:

70

1. The image contains the scene which can be divided into two major

classes, traversable ground region and obstacle region. Thus the

minimum region expected in the image is two.

2. The major colors in rainforest terrain are green, brown and black.

Each class may be any of the colors. Assuming that every object

color is constant (no color constancy problem), the ideal number of

region is six (two major classes multiply by three major color

appearance).

However, there may be multiple objects of an object class appearing in

the scene; therefore there may be multiple region of an object class. Thus, it is

expected the suitable number of region lay around six regions.

 No. of region

No. of Clusters

<5

5-8

>8

2 1.00 0 0

3 1.00 0 0

4 0.30 0.60 0.10

5 0 0.64 0.36

6 0 0.44 0.56

7 0 0.16 0.84

8 0 0 1.00

Table 4.1: The number of regions resulted from the number of cluster settings.

The percentages of the regions are based on 30 samples.

71

 Table 4.1 shows the number of regions in the image using different

number of clusters. The percentage shown is based on 30 sample images.

Regions with less than 100 pixels are omitted. The number of region

anticipated is approximately six, thus it can be seen that the highest percentage

of six regions generated when number of clusters is set to five.

4.5 Developed Ground Plane Detection Algorithm

In this thesis, the approach taken to find suitable ground feature is to

segment the image into a few salient regions before the V-disparity image is

considered. Since the disparity data are associated with color information, the

color feature can be used to divide the stereo image into a few region of

interest. Each of the regions will generate different V-disparity image and

different correlation line. The correlation lines with high gradient will be

discarded while the correlation line with lowest gradient will be taken into

consideration as ground consideration line. The assumption made is that the

ground plane is usually associates with the correlation line with lowest

gradient.

Figure 4.6 shows the framework of developed ground plane detection

algorithm. Color image pair was obtained from stereo camera. The image pair

was then rectified before disparity data was obtained. The colour image was

converted to HSI color space where the hue and saturation channel are used

together with disparity data for clustering. The value channel is not considered

to minimize the effect of uneven brightness across the scene.

72

Figure 4.6: Framework of the developed ground plane detection module.

Then, three-dimensional feature consist of hue, saturation and disparity

was used to divide the scene into a few regions. Only the bottom half of the

image was considered as it is assumed the ground plane will always appear at

the distance nearer to the camera. However, once the ground correlation profile

is estimated, it will be applied to the whole image to extract the ground plane.

 In this work, K-means clustering was used to cluster the bottom half of

the image into five (5) clusters. The number of clusters was chosen based on

extensive testing as describe in Section 4.4.3 and it was found that five (5)

clusters were sufficient to generate suitable candidate lines.

Each of the clusters point was mapped to the V-disparity image and

each cluster will generate a candidate ground correlation line. Five color

clusters will generate five candidate ground correlation lines. To generate lines

corresponding to each of the cluster, a simple linear line regression was used.

Input Stereo

Images

Convert images to

HSV Colour Space

(bottom half of the

image)

Image Clustering

(Hue, Saturation &

Disparity)

Obtain V-Disparity

image for each

cluster

Linear Line

Regression

Ground Profile

Extraction

Ground Plane

Extraction

73

The best fit line associate with the points has the

form of

 4.5

where and correspond to row of the V-disparity image and disparity

accumulation. The slope, and v-intercept, are given as

 4.6

and

 4.7

Each of the regions will generate different V-disparity image and

different correlation line. The correlation lines with high gradient will be

discarded while the correlation line with lowest gradient will be taken into

consideration as ground consideration line. The choice is made based on the V-

disparity property discussed in Section 4.2.1.1, where ground plane usually

associates with the correlation line with lowest gradient.

The selected ground correlation profile was then applied to the V-

disparity image of the whole image to extract the ground pixels. Figure 4.7 (c)

shows the selected ground correlation line mapped onto the V-disparity image.

74

The disparity that appears above line and 10 pixels below the ground

correlation will be considered as ground pixel.

Figure 4.7: (a) Image of the Scene. (b) V-disparity image. (c)

Candidates for ground correlation line. (d) Extracted ground correlation line.

Figure 4.7(a) shows an example of scene in the consideration. The V-

disparity image is illustrated in Figure 4.7(b). The K-Mean clustering algorithm

is implemented to segment into several regions. The feature used in the

clustering is hue, saturation and disparity. The K-means clustering algorithm is

very sensate to brightness or the image, thus the brightness feature is not used

and replaced with disparity feature. The motivation of using disparity as a

feature in K-means clustering is to differentiate between two different objects

with similar color. This clustering step is applied only on the lower part of the

image. After the color clustering, the candidate lines were generated as

illustrated in Figure 4.7(c).

w (a) (b) (c) (d)

d

V

d

V

d

V (

a)
(

b)
(

c)
(

d)

u

w

75

Figure 4.8: Sample result of ground plane estimation. (a) Sample

scene. (b) Mapped ground pixels in red. (c) Ground correlation profile in V-

disparity image.

The correlation lines with high gradient will be discarded while the

correlation line with lowest gradient is chosen to be ground correlation line

(Figure 4.7(d)). The ground correlation profile is visualized in red. From the

ground correlation profile, the disparity points correspond to the ground plane

can be mapped.

(

b)(ii)

(

a)(ii)

(

b)(ii)

(a)(iii)

(

b)(iii)

 (a)(i) (b)(i) (c)(i)

 (a)(ii) (b)(ii) (c)(ii)

76

4.6 Experimental Results and Discussions

Now after the V-disparity image, K-means Clustering and proposed

ground detection algorithm were described above; the experimental results of

the developed method are done in this section.

The algorithm is tested with 90 samples of rainforest terrain. The test

images cover usual simple unstructured scene, rainforest scene with moderate

complexity and complex scene. Thirty (30) samples are used for each type of

scene. The image size is .

The performance of our ground plane detection algorithm is quantified

by discrete classifier model. In this thesis, there are true class and hypothesized

classes which represent the actual situation of the scene and predicted situation

by developed algorithm respectively.

Figure 4.9 illustrates the performance classifier used. The true classes of

interest in this developed module is ground and not ground. Given that there

are two true classes, there are four possible outcomes. If the object is ground

and its predicted class is YES, it is classified as true positive (TP). If the

predicted class is NO, it is classified as false negative (FN). Similarly, if the

object is not ground and its predicted class is NO, it is classified as true

negative (TN). False positive (FP) occurs when the true class is not ground and

the predicted class is ground (YES).

77

Figure 4.9: The performance classifier of developed algorithm. The true

classes of the objects are indicated in the column while the predicted classes

are indicated in the row.

Based on Figure 4.9, it can be seen that the performance of developed

module is good when the true positive and true negative result is high as they

represent the correct results. Both false negative and false positive are not

desirable as it represent wrong classification of the scene.

However, in this module, the false positive result holds higher

significance as it represents wrong classification that will harm the autonomous

vehicle. If the true class of the object is not ground, it may be an obstacle that

can lead to collision. Thus, it is necessary for the false positive classification to

be kept as low as possible.

 The following subsections discuss the result of the developed ground

detection module applied in unstructured terrain.

78

4.6.1 Simple Unstructured Terrain Experiment

First, the ground detection algorithm is tested on the simple

unstructured terrain image sequence. We define simple unstructured terrain as

a relatively flat ground and little obstacles around the obstacles.

As discussed in Section 4.3.1, for the scene where ground plane occupy

majority of the image, the ground correlation line in V-disparity image is

relatively clear. The ground correlation line is fairly straight and it is easier to

extract as the disparity data in V-disparity image mostly represent the ground

plane. Low presence of obstacles disparity data in the V-disparity image space

directly contributed to lower noise, thus making the ground correlation profile

extraction less affected by noise.

Figure 4.10(a)(i) and Figure 4.10(b)(i) depict two sample images of

simple unstructured terrain. It can be seen in the images that there is no drastic

change of ground slope and the obstacles are relatively scarce. There are a lot

of areas that could be traversed by the autonomous vehicle. Figure 4.10(a)(ii)

and Figure 4.10 (b)(ii) show the ground plane detected using developed

module. It can be observed that developed module managed to identify the

ground region in the scene.

79

Figure 4.10: Sample results of detected ground plane in rainforest terrain for

simple unstructured terrain. (a)(i) and (b)(i) show the sample images and the

detected ground planes are shown in (a)(ii) and (b)(ii) respectively.

Figure 4.11 shows the average error of detected ground plane versus the

distance from the camera. The error is calculated based on comparison between

detected ground pixel and hand labeled ground pixel. It can be seen that the

errors are below 7 percent for the first eight meters. The errors start to increase

after 8 meters. This is due to the stereo camera minimum disparity setting

which limit the distance of object detectable by the stereo camera. At further

distance, disparity data for objects obtained from the stereo camera is low in

 (b)(i) (b)(ii)

 (a)(i) (a)(ii)

80

resolution, thus making it difficult to distinguish between objects. There errors

occurred at the boundary of objects.

Figure 4.11: Average ground plane error versus distance for ground plane

detection in simple unstructured terrain. The number of samples used is thirty.

Figure 4.12 shows the performance of developed module in details. The

true positive and true negative outcomes are maintained above 90 percent

within the first 10 meters. The false positive and false negative and false

negative outcomes are below 10 percent.

The false negative occurs when our developed algorithm wrongly

classify a region as non-traversable area when the region is a traversable

region. This type of error does not bring hazard to the vehicle as the error will

not lead the vehicle to the obstacles.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

o
r

(x
1

0
0

%
)

Distance from camera(m)

Average Error versus Distance

81

Figure 4.12: Performance matrix of the ground plane detection module in

simple unstructured terrain. The number of samples used is thirty (30).

The false positive outcome is not desirable as it directly affect the

safety of the vehicle itself. This wrong classification will bring hazard to the

vehicle as it will mislead the vehicle. In our developed module, the false

positive outcome is kept low throughout the 10 meters range from the camera.

The error usually occurs at the edge of detected ground region which is near

the boundary of ground plane and obstacles.

4.6.2 Moderate Terrain Experiment

Next, the ground plane detection algorithm is tested on typical

rainforest scene with moderate complexity. As discussed in Section 4.3.1, the

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Performance Matrix of Ground Plane
Detection (Simple Terrain)

True Positive

False Postive

False Negative

True Negative

Accuracy

82

ground correlation profile for rainforest scene is fairly apparent in the V-

disparity image. The obstacles are mainly tree trunk and vertical in nature.

Thus, the obstacles can be easily isolated when the ground profile is

successfully extracted.

Figure 4.13: Sample results of detected ground plane in rainforest terrain for

rainforest terrain.

Figure 4.13(a)(i) and Figure 4.13(b)(i) depict two sample images of

typical rainforest scene. The ground plane is relatively flat throughout of the

scene. There is no drastic change to the ground slope. In rainforest terrain,

 (a)(i) (a)(ii)

 (b)(i) (b)(ii)

83

there are few green vegetation and compressible vegetation. The obstacles are

mainly tree trunks which are tall, straight and vertical. The lack of green

vegetation on the ground is due to the canopies which prevent sun light from

reaching the ground. There are a lot of areas that could be traversed by the

autonomous vehicle. Figure 4.13(a)(ii) and Figure 4.13(b)(ii) show the ground

plane detected using developed module. It can be observed that developed

module managed to identify the ground region in the scene.

Figure 4.14: Average ground plane error versus distance in rainforest terrain.

The number of samples used is thirty (30).

Figure 4.14 shows the average error of detected ground plane versus the

distance from the camera. It can be seen that the errors are below 10 percent for

the first eight meters. The errors start to increase after 8 meters. The cause of

error is similar to application in simple unstructured terrain where it is due to

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

o
r

(x
1

0
0

%
)

Distance from camera(m)

Average Error versus Distance

84

the stereo camera minimum disparity setting. The stereo camera minimum

disparity setting limits the distance of object detectable by the stereo camera.

These errors occurred at the boundary of objects.

The errors also caused by the environment itself where in rainforest

terrain, the environment is usually low in brightness. This is because the scene

is covered by the canopies which prevent the sunlight from illuminating the

scene. Under this circumstance, image with low contrast will be obtained. This

will contribute to difficulties to differentiate between two regions. Figure

4.13(a)(i) depicts this scenario where the darker regions does not show clear

boundaries between the ground plane and the tree trunks.

Figure 4.15: Performance matrix of the ground plane detection module for

terrain with moderate complexity. The number of samples used is thirty (30).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Performance Matrix for Ground Plane
Detection (Moderate Complexity)

True Positive

False Postive

False Negative

True Negative

Accuracy

85

Figure 4.15 shows the performance of developed module in rainforest

terrain in details. The true positive and true negative outcomes are maintained

above 90 percent within the first 10 meters. The false positive and false

negative and false negative outcomes are below 10 percent. The performance

of the developed module in rainforest terrain is similar to the performance in

simple unstructured terrain where the false negative and false positive results

are kept low at acceptable level.

4.6.3 Complex Terrain Experiment

After the developed algorithm was tested in rainforest terrain, it is

tested in more complicated terrain. Although this terrain is not common in

rainforest terrain, it is interesting to experiment the algorithm is complex

terrain.

In this thesis, we define complex terrain as terrain with minimal ground

region, presence of compressible vegetation and large number of obstacles in

the scene. Note that in our experiment, it is not in the consideration to classify

whether a possible obstacles to be compressible or non-compressible. It is our

interest to detect possible traversable region by the vehicle.

In Section 4.3.1, it was mentioned that the ground correlation profile for

complex terrain is not prominent in the V-disparity image. This is due to

minimal appearance of the ground plane in the image. Thus, the disparity data

representing the ground plane in the V-disparity image is minimal compared to

86

other object. The low count in the V-disparity image makes it hard to extract

accurate ground correlation profile.

Figure 4.16: Sample results of detected ground plane in rainforest terrain for

complex terrain.

Figure 4.16(a)(i) and Figure 4.16 (b)(i) depict two sample images of

complex terrain used in the experiment. The ground plane appearance is minor

while the obstacles are very close to the camera. The ground slope is not

constant throughout the scene. In Figure 4.16 (a)(i), it can be seen that the

 (a)(i) (a)(ii)

 (b)(i) (b)(ii)

87

ground plane is relatively flat in the scene. However, the ground plane is not

the major object in the image and there are obstacles close to the camera. The

detected ground plane in Figure 4.16 (a)(ii) shows some error in lower left of

the image where some of the green vegetation are classified as ground plane.

This is due to the green vegetation height is below the threshold set by

developed algorithm. However, the region may be traversed as it is low in

height.

In Figure 4.16 (b)(i), the ground plane is uneven throughout the scene,

where the ground plane is going downhill. The developed algorithm fails to

recognize the ground plane (at the center of the image) as the ground profile

cannot be represented in a straight ground profile. When the ground is going

downhill, the ground region profile deviates from the detected ground profile.

In this thesis, the region will not be considered as ground plane and it is

classified as undefined region. However, the algorithm managed to detect the

region as the camera moved closer.

88

Figure 4.17: Average ground plane error versus distance in complex terrain.

The number of samples used is thirty (30).

Figure 4.17 shows the average error of detected ground plane versus the

distance from the camera. It can be seen the error occurred in complex terrain

is higher compared to simple unstructured terrain and rainforest terrain. The

error is due to presence of various obstacles which are low in height such as

compressible green vegetation. Since the developed algorithm does not use

machine learning to classify the type of obstacles, any object appear between

the ground plane profile tolerance will be considered as ground plane. Thus,

the average error for the application in complex terrain is higher. However, we

manage to maintain the error to be below 15 percent for near range ground

plane detection. Similarly to previous experiment, the errors occurred at the

boundary of detected ground plane.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

o
r

(x
1

0
0

%
)

Distance from camera(m)

Average Error versus Distance

89

Figure 4.18: Performance matrix of the ground plane detection module in

complex terrain. The number of samples used is thirty (30).

Figure 4.18 shows the performance of developed module applied in

complex terrain in details. The true positive and true negative outcomes are

maintained above 85 percent within the first 10 meters. The true positive

outcome drops sharply due to the samples used in this experiment are mainly

sloppy terrain. The developed algorithm is not able to detect ground plane with

non-straight line ground profile. However, this error can be eliminated once the

camera is moved closer to the region.

The false positive and false negative outcomes are below 20 percent.

The false positive outcomes are mainly caused by tree trunk roots and

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Performance Matrix for Ground Plane
Detection (Complex Terrain)

True Positive

False Postive

False Negative

True Negative

Accuracy

90

compressible vegetation. In rainforest terrain, the tree root may appear on top

of the ground and may be considered obstacles if the height of the root is above

threshold. However, in the hand-labeled ground plane, all the tree roots are

considered as obstacles which include the roots that can be run over. This

contributes to the high false positive outcome in this experiment.

4.7 Summary

The algorithm produced good results in the condition in most of the

rainforest terrain condition. It was able to determine the ground plane of the

scene and mapped the corresponding ground pixels to the image.

Based on results of three experiments performed in simple unstructured

terrain, rainforest terrain and complex terrain, the average result is presented in

Figure 4.19 and Figure 4.20. Based on the results, the average error over 90

samples is less than 10 percent within 8 meter from the camera.

We managed to maintain the average accuracy of 90 percent over the

three tests. The false positive outcome is very critical as this condition is

hazardous to the vehicle. In this thesis, the developed algorithm managed to

maintain the false positive alarm below 10 percent for most of the conditions.

91

Figure 4.19: Average ground plane detection error versus distance. The

number of samples used is ninety (90).

Based on observation on the detected ground plane, the false positive

alarm usually occurs at the edge of the ground plane. The boundary of the

ground region and obstacles are not clear due to similarities of color between

some of the obstacles and ground plane. In rainforest terrain, the ground region

may be similar to the color of the tree trunks. The color similarities made the

ground plane to be inseparable using color cue. However, the ground region

and obstacles can be distinguished using disparity data. The error occurs at the

boundary as there is continuity of disparity data of ground plane into the

disparity data at edge of the obstacles before the disparity data of the obstacles

become constant.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

o
r

(x
1

0
0

%
)

Distance from camera(m)

Average Error versus Distance

92

Figure 4.20: Overall performance matrix of the ground plane detection

module. The number of samples used is ninety (90).

 The unstructured natures of the terrain make the classification of

the terrain harder. It is difficult to segment the region with clear boundary

separation. However, our developed module can be used together with vehicle

path planner with the confidence level at the edge detected ground plane set to

be lower compared to the middle of the detected region. With the confidence

level, the decision can be made to traverse through the ground region with

higher confidence level. Consequently, the risk of false positive outcome can

be minimized.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Overall Performance Matrix of Ground
Plane Detection

True Positive

False Postive

False Negative

True Negative

Accuracy

93

In the case of ground region with downhill profile, the developed

algorithm fail to detect the region until the camera is closer to the region. This

is due to the fact in complicated terrain; there are multiple ground profiles to

describe the ground region. However, this error can be corrected once the

stereo camera is closer to the region where the pose of the camera is aligned to

the ground plane.

This algorithm can be used in real time application as it is not

computationally heavy. On a processing system (Intel Core 2 Duo CPU 2.2

Ghz processor and 2 Gb of RAM), a total computational time of ~60ms was

obtained on pixels images. This permits the algorithm to be devised

and used together with other obstacle detection algorithm.

94

CHAPTER 5

TREE TRUNK DETECTION

5.1 Introduction

This section discusses about tree trunk detection module based on

disparity feature, edge feature and tree verticality cue. The detection of tree

trunk in the rainforest scene is an important task due to high occurrence of

these obstacles and it may causes damage to the autonomous vehicle. The task

is accomplished by utilizing multiple features from the stereo camera and tree

characteristic cues of the tree trunk in the rainforest terrain.

To begin, several characteristics of tree trunk that can be used to isolate

the tree trunk from the rainforest scene are listed. The following are the typical

appearance of tree trunks in rainforest terrain:

1. Verticality – Tree trunks are usually tall and vertical covered by canopy at

the top. Therefore, the edges of the tree trunks are usually vertical or near

vertical. The disparity information of the tree trunks will have large

continuities across the rows of the image.

2. Tree bark geometric appearance – Typically, the background of tree trunks

in rainforest scene is rather bare due to the presence of the canopy limiting

95

the growth of smaller vegetation. Thus, the change of disparity information

at the edge of the tree trunks and background is rather abrupt.

Using these characteristics, the tree trunk detection module is

formulated to detect the vertical and near vertical tree trunks. The state-of-the-

art of obstacle detection is discussed before going into details of tree trunk

detection. Then, detailed descriptions of the proposed method and results are

presented.

Section 5.2 discusses on the current approach of the obstacle detection in

general. Most of the works done are mainly on wide-ranging obstacles which

are present in rainforest terrain. However, it is necessary to discuss the work

done as tree trunks is a category of obstacles. Section 5.3 describes the

situation under our consideration. Section 5.4 describes the operators or

methods used in the developed algorithm. Section 5.5 present the algorithm

and steps to detect the tree trunks based on stereo disparity and edges. Section

5.6 presents the results of the developed method and finally the summary is

presented in Section 5.7.

5.2 Overview of Obstacle Detection

One of the earliest obstacle detection algorithms was done by Talukder

(2003). The authors used 3-D obstacle detection algorithm to locate and

segment obstacles in the scene for autonomous terrain vehicle navigation. The

scene is segmented into clusters, where each cluster identifies an isolated

96

obstacle in 3D space. Then, rule-based classification using 3D geometrical

measures derived for each segmented obstacle is then used to reject obstacles

that are small in volume or lower than threshold height. The work used solely

geometrical data to detect obstacles that is higher than certain slope and height

threshold. While the developed method managed to detect most of the possible

obstacle in place, it does not provide any information regarding the

traversability.

Approach by Hebert (2003) tried to segment the scene using the point

clouds acquired from LADAR. The work focused primarily on segmentation of

point clouds into classes of points corresponding to surfaces and group similar

points into consensus regions corresponding to large pieces of surfaces. The

terrain types include vegetation, rocks, wires, and small-diameter objects. The

challenges associated with this approach are the computational cost and the

resolution of the sensor. The computational cost is relatively higher compared

to other vision techniques. The resolution of the sensor of the LADAR sensor

is not sufficient to capture the terrain and obstacle shape in a single run.

Manduchi et al (2005) approach to detect obstacles is based on multiple

sensors. The elevation map is generated directly from stereo camera and

LADAR sensor information. Analysis of one-dimensional profiles

corresponding to range values is analyzed. These measurements sample the

trace left by the visible surface on the slicing planes defined by each pixel

column and the focal point of the camera in each pixel column in the image

97

plane. The slope of the one-dimensional range profile with respect to the

horizontal plane can be used to detect obstacles.

5.2.1 Method by Huertas et al (2005)

This paper describes a stereo-based tree traversability algorithm

implemented and tested on a robotic vehicle under the DARPA PerceptOR

program. Edge detection is applied to the left view of the stereo pair to extract

long and vertical edge contours. A search step matches anti-parallel line pairs

that correspond to the boundaries of individual trees. Stereo ranging is

performed and the range data within trunk fragments are averaged. The

diameters of each tree is then estimated, based on the average range to the tree,

the focal length of the camera, and the distance in pixels between matched

contour lines.

The ability to detect and estimate the diameters of trees depends on the

ability of the edge detector to resolve the tree boundaries, and the ability of the

stereo algorithm to produce range information. Under some illumination

conditions, part of the same tree trunk appears bright and part appears dark.

This affects the performance of the edge detector where some of the edges in

the bright regions may be missed out.

The approach is based on the special characteristics of the tree trunks

given that the tree trunks are expected to be vertical or near vertical in off-road

terrain. While the approach is only constrained to a class of obstacle, it is of

98

particular important as tree trunk is a class of obstacles that is one of the most

hazardous to the autonomous vehicle.

5.3 Scene Consideration

In this section, we describe the appearance of the tree trunks in the

environment. The tree trunks can appear in various forms and it is not feasible

to have a module that can fit to the entire situation. We will consider the

common appearance of tree trunks with certain exceptions and assumptions.

Generally, the rainforest terrain is under the tree canopies and the

illumination condition is normally low in intensity. The scene is under the

shadow of the tree canopies regularly with some occurrence of direct sunlight.

In order for the passive stereo camera to be functional, it is expected that the

scene will be sufficiently bright to be functional. Without considerable

brightness, the stereo camera will not be able to capture good quality images.

The illumination source must not be in front of the camera to avoid the pixels

of the images to be over-saturated. When the pixels are over-saturated, the

color information of the images will be lost.

There are various appearances of tree trunks in the rainforest scene.

Majority of the tree trunks are vertical or near vertical. This module is intended

to detect the common presence of the tree trunks which is the straight near

vertical tree trunks. Tree trunks that are collapsed horizontally on the ground

will be considerate part of the ground plane. If the collapsed tree trunk is lower

99

than certain threshold and slope, it will be treated as part of ground plane and

classified as traversable. Otherwise, it will be placed as non-ground area before

further classification.

5.4 Feature Extraction

In this section, the U-disparity image and Sobel edge detector are

described. Both V-disparity image and Sobel edge detector are used to extract

meaningful cues that can be used to detect tree trunks. The characteristics and

cues representing the tree trunks are presented.

5.4.1 U-disparity Image

Similar to V-disparity image, U-disparity image is based on disparity

map) obtained from the stereo camera. The difference between U-disparity

image and V-disparity image is that the accumulation of the same value is

projected onto abscissa-axis instead of ordinates-axis.

The U-disparity image contains three-axis which are the abscissa-axis,

ordinates-axis and intensity-axis. The ordinates-axis () plots the disparities

which the correlation has been computed. The abscissa-axis () plots the

image column number and the intensity-axis set to be proportional to measured

correlation. Figure 5.1 shows a stereo image and its corresponding U-disparity

image where the abscissa-axis () is built by accumulation the pixels of the

100

same disparity from disparity map) along the ordinates-axis (). Figure

5.1(c) shows U-disparity image is the disparity-based histogram where the

accumulation of disparity of the same value projected onto ordinates-axis ().

To detect obstacles in the scene, the features that may represent the obstacles

must be extracted.

Figure 5.1: Sample image of (a) scene with tree trunks, (b) Disparity data, (c)

Corresponding U-disparity image.

In the developed algorithm, we utilized the disparity accumulation (the

intensity of the U-disparity image) to detect the presence of obstacles. The

corresponding U-disparity is shown below the disparity image. The ground

plane disparity is changing across the image, thus intensity representing the

disparity accumulation is low. However, for an obstacle with certain height,

there will be similar disparity information across the surface of the obstacles.

(a) (b)

(c)

101

Thus, high intensity in U-disparity image corresponds to region that does not

belong to the ground plane.

Figure 5.2: Disparity accumulation in U-disparity image as a cue to spot the

tree trunks.

Figure 5.2 shows enlarge disparity data and U-disparity image. In the

image, the tree trunks are identified and hand labeled (in black box). In

rainforest terrain, the tree trunks are typically tall and near vertical. As

mentioned before, the surrounding background in the rainforest scene is

considerably spacious due to the presence of the canopy limiting the growth of

smaller vegetation. Consequently, the high intensity in U-disparity image

102

usually represents tree trunks. This feature in the U-disparity image is used as

one of the cue to detect the tree trunks.

5.4.2 Sobel Edge Detector

Edge detection is one of the most commonly used operations in image

analysis. Edges are boundaries between objects and background, and it may

represent the outline for objects. Edge based method are based on the

assumption that the pixel values change rapidly at the edge between two

regions. The edge detection is based on the change of gray level at the

boundaries of two regions. In this thesis, we used gradient method namely

Sobel edge operator to detect the edges.

Sobel edge detector detects the edges by searching for maximum and

minimum and minimum of the first derivative of the image. The edge detection

is done by applying Sobel convolution kernel across the image. If we define the

image to be I(x, y), the kernel to be (where and

), and the center point(anchor point) to be located at in

the coordinates of the kernel, then the convolution is defined by the

following expression:

103

5.1

The value of convolution of a particular pixel is computed by

convoluting with a convolution kernel. Figure 5.3 depicts a 3-by-3 convolution

kernel with the anchor located at the center of the array. For each kernel point,

the value for the kernel at that point and a value for the image at the

corresponding image point are multiplied together and summed. The result is

then placed in the resulting image at the location corresponding to the location

of the anchor in the input image. This process is repeated for every point in the

image by scanning the kernel over the entire image.

Figure 5.3: A 3-by-3 kernel for a Sobel derivative; note that the

anchor point is in the center of the kernel.

104

Figure 5.4: Edge detected using Sobel Edge detector. Note that the vertical and

near vertical lines are usually represent the tree trunks.

5.5 Tree Trunk Detection Algorithm

The developed algorithm has two main parts which are edge detector and

disparity threshold. Both parts are specifically used to detect the tree trunks

characteristics. The work flow of the proposed module is shown in Figure 5.5.

Once the scene frames are captured. The ground plane detection

algorithm describe in Chapter 4 are employed to detect the ground plane of the

scene. Based on the detected ground plane, we anticipate that any region that is

not classified as ground region will be potential obstacle region. The search for

tree trunk will be done in non-ground region.

The first part of tree trunk detection module detects the tree trunk based on the

edge of the tree trunk. It is expected that the tree trunk is vertical or near

105

vertical. The edge contours are extracted using Sobel edge detector as

described in Section 5.4.2. The Sobel edge detector produces contours that

represent portions of tree trunks. Based on the Sobel edge detection cue alone,

there are various contours produced by other objects as well. The contours that

represent the tree trunks are extracted if they match the vertical profile

produced by U-disparity cue.

Figure 5.5: Proposed tree trunk detection module using edges and U-disparity

image.

The U-disparity image is employed to group object with similar disparity

value along the image column (x-axis) as described in Section 5.4.1. Since it is

expected that the tree trunks are tall and straight, the accumulation of disparity

will be higher compared to other object.

Input Stereo Image

Vertical Line

Extraction

U-Disparity Image

Region Growing

U-Disparity

Threshold

Tree Labeling

Ground Plane Detection

Sobel Edge Detector

106

Once the parts of the trunk are detected, region growing is applied to

detect the whole portion of the tree trunks. Combining features from detected

edges and U-disparity enable effective detection of tree trunks. The following

section depicts the experimental results of the tree detection module.

5.6 Experimental Results and Discussions

The experimental results of the tree detection algorithm are discussed in

this section. The results are evaluated based on the error of samples used and

distances from the camera. The algorithm is tested with 15 different samples of

typical rainforest terrain. The image size is .

Figure 5.6: The performance classifier of developed algorithm. The true

classes of the objects are indicated in the column while the predicted classes

are indicated in the row.

Similar to ground plane detection, the performance of our ground plane

detection algorithm is quantified by discrete classifier model. Figure 5.6

107

illustrates the performance classifier used. The true class of interest in this

developed module is tree trunk and not tree trunk. Given that there are two true

classes, there are four possible outcomes. If the object is tree trunk and its

predicted class is YES, it is classified as true positive (TP), else if the predicted

class is NO, it is classified as false negative (FN). Similarly, if the object is not

tree trunks and its predicted class is NO, it is classified as true negative (TN).

False positive (FP) occurs when the true class is not tree trunk and the

predicted class is tree trunk (YES).

Based on Figure 5.6, it can be seen that both false negative and false

positive are not desirable as it represent wrong detection. However, in this

module, the false negative result holds higher significance as it represents

missing tree trunk detection that will harm the autonomous vehicle. If there is

tree trunk and there is no detection, it may lead to damage to them autonomous

vehicle. Thus it is essential to keep the false negative classification.

Figure 5.7 shows sample images of forest scene with tree trunks and the

classified region by developed algorithm. In the first image, the scene has very

little tree trunks and the algorithm managed to detect tree trunks. Note that the

algorithm does not detect the horizontal tree branches. In the second image,

there are many tree trunks in the image. The tree detection algorithm performs

well in detecting the tree trunks that are near to the camera. However, there are

misses of tree trunks that are very far away from the camera. The third sample

image shows the detection in complicated terrain. It can be seen that the

algorithm managed to detect the tree trunk even it is partially hidden behind

108

other obstacles. The green vegetation in front of the tree trunks are labeled as

unclassified since it is not in the interest of this thesis.

Figure 5.7: Sample scene with tree trunks as obstacles and the detected tree

trunks in magenta. Magenta and blue correspond to tree trunks and ground

region respectively. Green region indicate region with no disparity information

109

and blue color represent unclassified region which may be other types of

obstacles.

When an object is very far away from the stereo camera, the disparity

contrast between regions is very low. Consequently it is harder to distinguish

between two different regions when the contrast is low. The tree detection

module fails to identify the tree trunks when the tree trunks are very far away.

However, as the stereo camera approaching the tree trunks, the correct

detections are achieved.

Figure 5.8: Performance matrix of tree trunk detection module based on

samples used in this experiment.

Figure 5.8 shows the performance of the tree trunk detection based on

15 samples of different scene in rainforest scene. The accuracy of the algorithm

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 (
x1

0
0

%
)

Sample

Performance Matrix of Tree Trunks
Detection (on each sample)

True Positive

False Positive

False Negative

True Negative

Accuracy

110

for each case is around 90% while maintaining low false negative in most of

the cases. The false positive is usually caused by other obstacles which is very

tall in height. While the false positive is undesirable, it usually represents

obstacles that cannot be run over due to the object height which includes

compressible vegetation. The true positive rate is maintained at above 80%.

This true positive rate is directly affected by the false negative result as the

false negative increases, the true positive rate decreases.

Figure 5.9: Performance matrix of tree trunk detection module based on

distance from the stereo camera.

Figure 5.9 shows the performance of the detected module based on the

distance from the stereo camera. The tree detection module managed to

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Performance Matrix of Tree Detection
Module (Distance)

True Positive

False Postive

False Negative

True Negative

Accuracy

111

maintain good true positive and false negative rate at the distance less than 7

meter from the stereo camera. The developed algorithm fails to register the

disparity data due to the low contrast of disparity data at far distance. Objects

at far distance will have smaller disparity values and the disparity variances

between two pixels are low. In addition, tree trunks at far distance appear to be

smaller, thus disparity count in the U-disparity image will fall below the

threshold set to detect the tree trunks. The false negative which is hazardous to

the vehicle happened at the distance which is relatively far from the vehicle

and tree detection module will be able to detect the tree trunks when it is nearer

to the tree trunks. The false positive curve in this graph does not represent any

significant finding as it can happened anywhere when there are obstacles which

are relatively tall.

5.7 Summary

The algorithm produced good results in the condition in most of the

rainforest terrain condition. It was able to determine the tree trunks of the scene

and mapped the corresponding tree trunks pixels to the image.

We managed to maintain the average accuracy of 90 percent over the

experiments. The false negative outcome is very critical as this condition is

hazardous to the vehicle. In this thesis, the developed algorithm managed to

maintain the false negative alarm below 10 percent for most of the conditions.

112

There are conditions that proposed algorithm may not perform

effectively. First, in darker scene where the image contrast is low, the tree will

appear to be part of the background scene. The stereo correspondence cannot

be found and it may fail to detect the tree trunks at a distance. However, the

proposed will be able to detect the tree trunks when it is closer to the tree

trunks.

Another condition which it may fail is when the scene is very

complicated where there are other obstacles which are of medium height. Since

the proposed algorithm is based on height and verticality, it may produce high

false positive alarm under this condition.

At this stage, the proposed tree trunk detection algorithm can only be

used in rainforest terrain. In secondary forest where compressible vegetation is

dominant, the performance of tree trunks detection is very limited.

Nevertheless, it is still possible to improve the performance of this tree trunks

detection module by reducing the false positive alarm through addition module

to detect other types of obstacles. This will involve another work scope and

will be considered for future research.

113

CHAPTER 6

WATER BODY DETECTION

6.1 Introduction

Water body detection such as water patches and river are one of the most

challenging obstacles commonly found in rainforest terrain. Traversing through

a water body may damage the autonomous vehicle electronic component. Also,

the autonomous vehicle may be trapped in the water patches if the water level

is too deep. Thus there is a need to detect the water body for the vehicle control

to steer away from the hazard. However, detecting water in rainforest terrain is

complicated due to different appearances of the water body. The water body is

different from common obstacles as it does not have geometric appearance that

can be tracked. In addition, the color of the water body may be of the

environment reflection, sky reflection, background color and etc.

Due to the different appearances of the water body, it is not possible to

use a single feature to detect all the appearances of the water body. There are

several attempts to use color, texture, disparity feature and polarization camera

to detect the water body found in the literature. Most of the proposed methods

are able to extract the water body from the scene in unstructured outdoor

terrain. In this thesis, we extended the water body detection to rainforest terrain

utilizing the polarization filter on the stereo camera.

114

A detailed description of the state-of-the-art along complication in the

water body detection is presented in next section. Then, the basic principles of

our method are explained. Finally, the results of our proposed method are

presented.

6.2 Overview of Water Body Detection

A review on the work done revealed that only a limited number of

works done on the detection of water body detection. Manduchi et al (2005) in

their works that water body detection remains a problem to be solved. Rankin

et al (2010) provides a comprehensive review on water body detection system

and evaluation of the performance of water detection algorithm. As mentioned

previously, there are several works done utilizing multiple features to detect

water body. In this section, we will highlight the state-of-the-art of the water

body detection

6.2.1 Method by The Jet Propulsion Laboratory (JPL)

Under the Robotics Collaborative Technology Alliances (RCTA), there

are several researchers developed methods for water detection using vision

technology. The Jet Propulsion Laboratory (JPL) participated in this program,

with the focus on analyzing the features for water that can be exploited from a

color stereo camera mounted in front of the autonomous vehicle.

115

Rankin (2004) in the early of program developed a rule-based algorithm

to combine water cues from color, texture and stereo camera information.

Each of the detectors is designed to target specific water appearances. The

rules for fusing the water cues are designed to maximized water body detection

while minimizing false detection. This work reveals the appearance of sky in

the scene and also reflection of sky from the water body can be segregated

using the color cue. Reflection of sky and actual sky cover are clustered in high

brightness and low saturation region. The approach is to detect the presence of

sky on top of the image. Then, the lower part of the image is searched if the

sky is present. However, this color-based method is susceptible to false

detection where the intensity image is saturated.

Texture cue is used to detect region that is low in texture. Variance

filter is scanned throughout the saturation channel and green channel of the

image to detect low texture region. The water cue from texture is susceptible

to false detections on dirt roads having low texture, in the sky, in vegetation,

and where the image is overexposed. The initial work also shows that stereo

ranging outputs a range image that can be used to detect reflections.

Reflections of surrounding extend from the trailing edge of a water body and

can span a portion or all of the water body, depending upon the reflected

objects’ height and distance from the water. The range to a reflection roughly

matches the range to the reflected object. However, the reflection plots lower

than the true ground elevation. In addition, zero disparity pixels can also

provide evidence of a reflection. Zero disparity occurs when the stereo

correlator matches the same column in rectified left and right images. When

116

zero disparity pixels occur in the lower half of the disparity image, it is likely

caused by reflections of ground cover that is far away. Thus, zero disparity

pixels can be a reflection-based water cue.

Rankin et al (2006) further improved their work by using ground

detection algorithm to estimate the elevation of detected water bodies and

locate them within instantaneous and world terrain maps. Temporal filtering in

a world map suppresses false detections and relocates detected water as water

body elevation estimates improve. The water detection regions from a single

cue are connected prior to multi-cue fusion. This modification to the algorithm

has improved the detection of water bodies that are narrow in image space. In

addition, a ground detector is designed to detect the ground plane to improve

the positive detection of the water body. The elevation of a water body is

estimated by averaging the elevation of the detected ground surface around the

perimeter of the fused water detection region. This work managed to detect

small puddles starting at the distance 7 meters from camera and large water

body from the range 13 meters.

Ranking et al (2010) explored the possibility of developing a water

detector based on the observation that the color of a water body tends to

gradually change from the leading edge to the trailing edge, when other

naturally occurring terrain types typically do not. Moving from higher to lower

incidence angles, water body saturation and brightness move in opposite

directions, with saturation increasing at a much higher rate than brightness

decreases. This work utilized frame sequences of the scene to detect the water

117

body as the slope magnitude tends to be higher for water than other naturally

occurring terrain, such as soil and vegetation

The works by JPL provide a detailed characteristic of water body and

cues that can be utilized to detect different appearances of the water body. The

works outlined that water body can be detected by using brightness cue, low-

texture characteristic and disparity unusual characteristics.

6.2.2 Method using Polarization-Based Camera

In this section, we present a brief overview of a method to remove the

highlights caused by specular reflection using polarization filter (polarizer).

Over the years, there are various approaches to use polarization methods along

with machine vision. Polarization methods were first introduced by Koshikawa

(1979) for shape interpretation and recognition of glossy objects. Linear

polarization was also used for highlight removal and material classification

(Wolff & Boult, 1991). More recently, Nayar examined the use of color and

polarization to remove the specularities component from reflected light (Nayar,

Fang, & Boult, 1993). Most of the research done was concentrated on the

detection of the polarization angle of the light. The details of polarization

theory are beyond this thesis and a comprehensive can be found in work by

Wolff (1997).

118

Figure 6.1: Camera setup with polarizer place in front of the camera.

All of the above approaches focused solely on detecting the

specularlities and the polarization state of the image. Since our application

intends to detect the highlights and the specular reflection as a feature for

image segmentation, there is no need to determine the polarization state of the

scene. Our approach follows closely the approaches found in literature except

for the polarization state determination. Figure 6.1 illustrates the general

approach to grab an image using a colour camera. A polarizer is placed in front

of the sensor while the scene is illuminated by a source. The scene of interest in

this thesis is rainforest scene and the illumination source will be the sunlight

and also specular light reflection from surrounding.

Partially linearly polarized light from surrounding that projected onto

the transmission axis of the polarizer will become linearly polarized according

to the transmission axis. The magnitude of the transmitted radiance through the

polarizer is the component of the polarization along the transmission axis.

(a) (b)

119

Light component that is unpolarized will be attenuated (usually half) regardless

of its orientation.

Xie et al (2007) attempted to detect the water body in outdoor scene by

using polarization filter with three different polarization degree. A single

camera with a mechanically rotating linear polarizing filter placed in front of

the camera lens. Three polarization images with the polarizing filter setting to

0, 45, 90 degrees, respectively. It is based on the physical principle that the

light reflected from water surface is partial linearly polarized and the

polarization phases of them are more similar than those from the scenes

around. Water hazards can be detected by comparison of polarization degree

and similarity of the polarization phases. This method worked well to detect

water region that reflect vegetation and sky. The advantage of this method is

there is no need for the vehicle to stop to acquire multiple frames of different

polarization angle of a scene. However, missing detections occur where ripple

when water exists.

6.3 Mathematical Description for Appearance of Water Body

This section describes the characteristic of the water in mathematical

form. From the model and conducted experiments, the features that may

represent the water are identified.

120

6.3.1 Water Reflectance Model

In this thesis, we have been dealing with color image which is the result

of sensing of light reflected from scene using camera. Any interaction of light

with matter whose optical properties are asymmetrical along directions

transverse to the propagation vector provides a means of polarizing light

(Pedrotti, Pedrotti, & Pedrotti, 2007). All natural occurring light outdoors and

underwater, scattered and reflected, as well as light in most indoor environment

is partially linear polarized (Waterman, 1981). This is due to the reflected from

surfaces may undergo diffusion or specular reflection or both (Nayar, Fang, &

Boult, 1993). The diffusion occurs from light rays penetrating the surface,

undergoing multiple reflection and refractions, and reemerging on the surface.

This diffusion component will be distributed in a wide range of directions

around the surface normal. The specular reflection occurs on the surface of

reflection such that light incident on the surface will be reflected at the angle of

incident.

Figure 6.2 describes the reflection and inter-reflection mechanism that

happens in a scene. Two points (A and B) in the scene are in consideration.

Reflection from point A contains diffuse and specular component where the

diffuse component arises from scattering of light rays that enter the surface and

undergo multiple reflection and refractions. The specular component is a

surface phenomenon and resulted from single reflection of light incident ray.

Assuming that the surface is rough, its specular component will appear to be

121

spread in specular direction. The width of the distribution will depend on the

roughness of the surface (Nayar, Fang, & Boult, 1993).

Figure 6.2: Components of reflection and inter-reflection (Nayar, Fang, &

Boult, 1993).

The above illustration considers only the light from the light source.

However, in a scene, the surface does not only receive light from the light

source but also from other reflected light of other scene points. Thus the

resulting reflected light can be combination of four possible inter-reflection

components: diffuse-diffuse, specular-diffuse, diffuse-specular and specular-

specular (Nayar, Fang, & Boult, 1993). When specular reflection is present,

even for marginally rough surfaces, the concentration of energy reflected will

cause strong highlights in the brightness of the scene. In most of the cases, the

color information in the pixel will be lost due to over-saturation.

122

Rankin et al (2010) developed a partial model of the reflection

coefficients from their experimental data. The total reflection coefficient

 from a water body to a camera is the sum of the reflection coefficients

for energy reflected from water body is given as

 6.1

where is the energy reflected off the water surface, is the energy scattered

by water molecules, is energy reflected or scattered by materials suspended

in the water and is energy reflected off the bottom of the water to the

camera.

The fraction of the incident power that is reflected from an air/water

interface is given by Fresnel equations for light polarized perpendicular to,

and parallel to, the plane of incidence,

6.2

123

6.3

where is the refractive index of air, is the refractive index of water, and

is the angle of incidence. The refractive index of air and pure water is 1.03 and

1.33, respectively. The most significant factors that can affect the refractive

index of water are the wavelength of the light entering it and its salinity.

However, these factors only alter the refractive index of water by as much as

1%.

Figure 6.3 shows the experimental result by Rankin et al (2010) where

the energy reflected off the surface of water bodies increases with increasing

incidence angle. Unpolarized incident light would be present on overcast days

where the fraction of the incident power that is reflected from an air-water

interface is the average of the polarized reflection coefficients,

6.4

124

Figure 6.3: Theoretical fraction of incident power that is reflected from an

air/pure water interface as a function of incidence angle. and are the

Fresnel reflection coefficients for light polarized perpendicular to and parallel

to the plane of incidence, respectively. is the Fresnel reflection coefficient

for unpolarized light (Rankin & Matthies, 2010).

The intensity values of water pixels are related to the total reflection

coefficient by

 6.5

where is an illumination factor. Substituting into the equation yield

 6.6

125

6.3.2 Partial Linear Polarization

Light is fundamentally a transverse electromagnetic wave possessing a

state of polarization characterizing the vibrational orientations of the electric

field, . After reflection from flat surfaces of certain materials at oblique angle

of incidence the field is partially polarized (see Figure 6.4).

Figure 6.4: Principle of specular reflection (Xie, Xiang, Pan, & Liu, 2007).

Partial linear polarization can be described by three polarization

parameters of interest which are the light intensity, degree of polarization and

the angle of polarization. The partial linear polarization can be measured at a

pixel level by the transmitted radiance through a polarization filter. The

radiance varies sinusoidal with filter orientation. Wolff (1997) presented that a

sinusoid can be uniquely characterized using three points, thus three

transmitted radiance measurements can be taken between 0° and 180° to

determine partial linear polarization. In his work, measurements were taken at

126

0°, 45° and 90°, and the intensity for respective angle is represented as ,

and . The parameters for partial linear polarization is given as

6.7

 6.8

6.9

The application presented in this thesis is dealing with partially linearly

polarized reflected light, thus we do not require as comprehensive a

description. In particular, we do not require the analysis of the phase of the

mutually orthogonal reflected polarization components. From Equation 6.9, it

can be observed that the optimum polarization angle difference between two

polarizers is . The ratio of the difference and sum between the two images

taken with is the best measure to represent the polarization information in

the present case of a stereo vision set up. Thus, the measure of the proportion

of how much initially unpolarized light becomes partially polarized is given by

Equation 6.10.

127

6.10

The parameter and correspond to maximum and minimum

transmitted intensity through the polarizer. The partial polarization measure

varies from 0 to 1 which represents the proportion of the magnitude of the

reflected light that is polarized. At partial polarization = 0, reflected light is

unpolarized whereas for partial polarization = 1, reflected light is completely

polarized.

6.4 Feature Extraction

The overview of work done on water detection and mathematical

description of water body were briefed in previous section. In this thesis,

different polarization angles effect on the stereo images are to be experimented

in this section.

In our approach, two polarizers are mounted on stereo camera. One side

of the experiment setup is set as reference point at . The other polarizer is a

variable with reference of the first polarizer. In previous section, it is shown

computationally that the optimum difference between two polarizers is .

However, it is necessary to investigate whether the value set is suitable to

detect the water body of our interest. Figure 3.4 shows the experimental setup

where one side of the polarizer is set at while the other polarizer angle is

128

varied for the investigation. In this work, the angle in assessment is , ,

 , and .

As our approach involves two images extracted from the stereo camera,

the brightness of the image of each image will be affected by the camera auto

gain control (AGC). When the polarization angle is varied, the light reflected

from the scene into the camera will be affected. The camera auto gain control

will increase and decrease the gain accordingly, thus there will be difference in

image brightness of the image pair. Subsequently, the partial polarization

parameter will be affected as well. Equation 6.10 for the partial parameter is

altered and is given by

6.11

where is the auto gain control parameter of the camera.

Light passing through the polarizers will be polarized parallel to the

orientation of the polarizer. Since both polarizers used differ in the angle of the

polarization, the image pair produced by the stereo vision will differ in term of

brightness and color information. The difference produced multiple features

that can be used as water cue to detect the water body. The following

subsection illustrates the water cue that can be obtained from the variation of

polarizer’s angle.

129

6.4.1 Water Cue from Partial Polarization Feature

Several observations can be made on the image pair of the stereo

camera once there is polarization angle difference between each side of the

stereo camera. The obvious difference is the intensity of the each image and the

difference of intensity is further amplified by the auto gain control of the

camera. This is due to specular light is minimized when the polarization is

applied. The image will appear darker and the stereo camera will increase the

gain to produce brighter image. The image pair brightness will be increased

with the same gain, producing an image with higher brightness compared to

another image. Figure 6.5 shows a sample image pair of rainforest scene to

illustrate the outcome of polarization filter applied fitted in front of the camera.

We describe the changes in the brightness of the image pair using partial

polarization formula in Equation 6.11. The reference image set at polarization

angle exhibit high brightness and is described as . Another image with

different polarization angle is fixed as . Comparing the image pair, we

examine the changes occurred in common objects in rainforest terrain.

(b) (a)

130

Figure 6.5: Sample image on application of polarizer to remove specular

reflection. (a) Original image of a river scene. (b) Image after polarizer is

applied.

Material/ Object

Magnitude of Partial Polarization

Tree Bark 0.01 0.01 0.03

Green Vegetation 0.10 0.10 0.11

Ground/Sand 0.12 0.12 0.15

Water Body 0.30 0.30 0.33

Table 6.1: Average partial polarization for different objects and terrain

(average of 20 samples).

Table 6.1 shows the average results of partial polarization of 20

samples in rainforest terrain. Different polarization angles are examined to

verify the suitability and effectiveness of the polarization angle setup. The

water body exhibit partial polarization changes compared to other objects. This

is due to the fact that water body reflects specular light.

Example in Figure 6.5 shows that the brightness of the two images

differs especially at the water region. This is due to the specular reflection on

the river is filtered by the polarizer. Other objects in the scene do not exhibit

many changes in term of image brightness and this in turn provides a feature to

detect part of the water body.

131

6.4.2 Water Cue from Stereo Disparity Feature

There are a few features in stereo disparity data that can provide water

body cue. As the water body may reflect the object or surrounding in the scene,

there will be some deviations of stereo disparity data. Normally, the stereo

disparity data is decreasing with object distance increasing from the camera.

However, the water reflection may contain disparity that deviates such as zero

disparity pixels, dramatic change of disparity pixels and invalid pixels.

Zero disparity pixels provide evidence of a reflection. When zero

disparity pixels occur in the lower half of the disparity image, it is likely

caused by reflections of objects that are far away (Rankin & Matthies, 2006).

Zero disparity pixels imply that the stereo co-relator matches the same column

in rectified left and right images. These zero disparity pixels usually occur

when the object is very far away from the camera. By comparing each of the

zero disparity pixels to the ground plane disparity pixels, it can be determined

whether the zero disparity pixels belong to object that is far away or reflection

from object that is far away. Usually, zero disparity pixels caused by reflection

from object far away are not consistent with the ground plane profile and can

be isolated.

Another appearance of the stereo disparity data is the dramatic change

of disparity pixels. This feature of stereo disparity is very similar to zero

disparity pixels except it is caused by reflection of objects very close to the

water body. Instead of causing zero disparity pixels, there are range data

132

reflected in the water body. There is sudden change of range profile where the

disparity data deviates away from the range profile.

Invalid stereo disparity occurs when the correlation cannot be found in

rectified left and right images. By using two polarizers with different

polarization angle, it is expected that the two image produced by the stereo

camera will differ in term of color and brightness. Section 6.4.1 demonstrates

that the differences between the image pair are greater on the water body.

Thus, it is predictable that majority of the water body pixels will be invalid.

Figure 6.6: Sample disparity image with different polarization angle applied

to the right side of the stereo camera. The gray color regions correspond to

invalid pixels.

Right Image

()

Left Image ()

133

Figure 6.6 shows the disparity data correspond to different polarization

angle. It can be observed that the invalid pixels for water body differs when the

polarization angle degree changes. The invalid pixels region is increasing with

the polarization degree until . Note that there are some invalid pixels occur

at the green vegetation in the scene. This may cause false detection if only a

single feature is used to detect the water body. However, this false detection

can be filtered out by comparing the position of the pixels to the ground plane.

The false detection usually fall on higher elevation area and can be removed.

Figure 6.7: Average Percentage of Invalid Pixels for Water vs Polarization

Degree (20 samples).

Figure 6.7 shows the percentage of invalid pixels region in water body

over 20 samples of different type of scene. The highest average if

approximately 65% at the polarization angle of . Thus, it is justifiable to fix

set the polarization angle to for the water body detection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 30 45 60 90 120

x1
0

0
%

Polarization Degree

134

6.4.3 Water Cue from Texture Feature

In images, texture quantifies grayscale intensity differences (contrast), a

defined area over which differences occur, and directionality, or lack of it.

Water body may appear in many types of appearances. One of the

considerations is water body under the influence of the shadow of surrounding.

From observation, water bodies usually appear low in texture, especially the

region where the specular light is not dominant. When the texture is low, there

is low variation of brightness across the region.

Figure 6.8: A sample image of polarization degree and its corresponding

line scan histogram.

Figure 6.8 shows a sample image of a scene where the water body is

under the influence of canopy. The line-scan histogram across the image row

highlighted by dotted line is shown in green. It can be observed that under the

influence of the shadow, the texture of the water body is low as there is lesser

135

variation of brightness. Another region with sky reflection possesses high

variation due to specular reflection. The ground and grass region can be easily

differentiated from water body as they possess high variance in the image

brightness. Note that the sample image used in Figure 6.8 is polarized and

majority of the specular reflection is removed. This indirectly aids to increase

the region detectable by low-texture characteristics.

6.5 Algorithm: Fusing Water Cue

Water bodies may appear in different kind of appearances thus is not

expected that no single features can be used to detect the entire water body. In

this thesis, multiple-feature approach is taken to enhance the detection of water

bodies with multiple cues. Previous sections discusses features that can be used

to target specific water attribute in the while minimizing the false detection.

Figure 6.9 shows the framework of water detection module in this thesis.

The input images are polarized stereo camera image with difference

polarization angle between the image pair. Stereo processing is performed on

the image pair to produce disparity data. Note the detected ground plane is also

fed into this module to reduce the false detection of the water bodies. Any

detection of water region above the ground plane will be filtered as water

bodies presence will only occurs on the ground plane.

There are four sub-modules which target different type of water

attributes. The sub-modules are sky-reflection detection based on color and

136

brightness information, low-texture region detection, invalid disparity detection

and object reflection detection. Once the sub-modules detect the water body

region of interest, the region is refined by post-processing. The following

sections discuss in details the operation of each sub-module.

Figure 6.9: Framework for water bodies detection using multiple features.

6.5.1 Sky Reflection Detection Module

The RGB images selected from our archive for processing were

converted to hue, saturation, and value (HSV) color space. There are several

factors that contribute to the surface color of water bodies. Among them

include the depth of the water, the amount and type of sediment in the water,

Input Polarized -
Stereo Image

Left Polarized -
Stereo Image

Right Polarized -
Stereo Image

Disparity Image

Sky Reflection
Detection

Low- Texture
Detection

Invalid Disparity
Pixel Detection

Water Region

Estimated
Ground Plane

Object Reflection
Detection

Update Estimated
Ground Plane

Post- Processing - Region Growing and Connected Component

137

the color of the sky reflecting on the water, the color of background material

casting a shadow on the water, and whether or not the water is moving. As

these factors have great variation, it is difficult to predict the hue of water

(Rankin, Matthies, & Huertas, 2004). Note that the reflection of the sky in

water has low saturation values and high brightness values.

In this sub-module, we follow closely the work by Rankin et al (2004).

The following are the rules imposed in this work:

6.12

where, is saturation, is brightness and is hue. Rule 1 and rule 2 targets

the sky reflection characteristics where it has low saturation and high

brightness value. Rule 3 is lower brightness thresholds are applied only if the

sky is detected in the imagery. Rule 4 is the only one that uses hue. It targets

deep bodies of water, which tend to have a blue hue.

Note that in his approach, the sky detection is done the top ten rows of

the image. Rule 3 and rule 4 are only activated if the sky is detected. However

in this thesis, the sky detection is not performed as the search for water bodies

in the scene is constrained to the region below the horizon. This is due to the

138

nature of water body to be on the ground plane rather than areas of higher

elevation. Thus, false detection such as sky as water bodies can be eliminated.

6.5.2 Low-Texture Detection Module

Texture is an important approach for region description. Although no

formal definition of texture exists, intuitively this descriptor provides measure

of properties such as smoothness, coarseness and regularity. We use one of the

simplest approaches to describe texture which is variance. Variance can be

used in texture description as it is a measure of intensity contrast and is give as

6.13

where is the number of samples and is the intensity of the pixel. It can be

used to establish descriptors of relative smoothness using the following

6.14

A 3x3 intensity variance filter is passed over grayscale image. At each

pixel, the window variance and relative smoothness is calculated. Then the

water body region with relative smoothness less that threshold set will be

selected.Table 6.2 shows the values of the relative smoothness of water bodies

and other objects. Water bodies appear to be smoother compared to other

139

objects where the relative smoothness is rather coarser. Based on the average

values, we formulate the threshold that will be used to detect water bodies cue

and differentiate it from other objects.

Objects Average R(normalized) Threshold Set for R

Water Bodies ~0.001 R < 0.001

Other Objects ~0.079 R > 0.01

Table 6.2: Average relative smoothness for 20 samples for water bodies and

other objects in rainforest scene.

6.5.3 Object Reflection and Invalid Disparity Pixel Detection Module.

In this module, the partial polarization feature is used to remove the

specular reflection in one of the stereo image. In Section 6.4.1, we have shown

that water bodies will reflect more light compared to other objects. Using these

characteristics, we will be able to distinguish water body from other regions.

In this thesis, partial polarization of is used since the magnitude of

partial polarization for water is highest at this angle. When different

polarization angle is applied to the stereo camera, the image pair appears to be

different. Therefore, the stereo correspondence cannot be found. Consequently,

there will be no disparity data for the water region.

140

6.6 Experimental Results and Discussions

The experiments were done in various scenes in rainforest terrain. In the

rainforest, it is anticipated that water body present in two types of category,

mainly standing water and running water. Standing water represents stationary

water body such as water patches while running water represent moving water

such as stream or river. Various water body cues were used to identity different

appearance of the water. In this section, we present the experiment results

using developed algorithm in the scenes describe above. The error caused by

back-lighting are also discussed.

The algorithm is tested with 70 samples of water body in rainforest

terrain. The test images cover both standing water and running water scene.

Thirty (30) samples are used for each type of scene while ten (10) samples are

used for error explanation. The image size is . The image size is

sufficient to detect wider Field of View (FOV) in our applications.

The performance of our water body detection algorithm is quantified by

discrete classifier model. Figure 6.10 illustrates the performance classifier

used. The true classes of interest in this developed module are water and not

water. Given that there are two true classes, there are four possible outcomes. If

the object is water and its predicted class is YES, it is classified as true positive

(TP). If the predicted class is NO, it is classified as false negative (FN).

Similarly, if the object is not water and its predicted class is NO, it is classified

141

as true negative (TN). False positive (FP) occurs when the true class is not

water and the predicted class is water (YES).

Figure 6.10: The performance classifier of developed algorithm. The true

classes of the objects are indicated in the column while the predicted classes

are indicated in the row.

Based on Figure 6.10, it can be seen that the performance of developed

module is good when the true positive and true negative result is high as they

represent the correct results. Both false negative and false positive are not

desirable as it represent wrong classification of the scene.

However, in this module, the false negative result holds higher

significance as it represents wrong classification that will harm the autonomous

vehicle. If the true class of the object is water and it is wrongly classified as not

water, it may lead to damage to the autonomous vehicle. Thus, it is necessary

for the false negative classification to be kept as low as possible.

142

 The following subsections discuss the result of the developed water body

detection module applied in unstructured terrain.

6.6.1 Running Water Detection

The developed water detection algorithm is tested on running water

image sequence. We define running water as water stream such as river. Such

water body appearance usually has water ripple associate with it. Figure 6.11

show a few sample images of the running water body used in the experiment.

The detection of water body is an application extension based on

ground plane detection discussed in Chapter 4. Once the ground plane is

detected, the plane is searched for presence of water body. The detection is

done on ground plane only as it is based on the assumption water body will

only appear on the ground plane.

Figure 6.11 (a)(i) and Figure 4.10(b)(i) depict two sample images of a

stream. It can be observed that running water exhibit specular reflection in

majority of the water body region. This is due to the reflection caused by the

ripple while the water is flowing. Reflection from the surrounding is very

minimal in running water.

Figure 6.11 (a)(ii) and Figure 6.11 (b)(ii) show the detected water

region using developed module. It can be observed that developed module

managed to identify the water region in the scene effectively.

143

Figure 6.11: Sample results of detected ground plane in rainforest terrain for

simple unstructured terrain.

Figure 6.12 shows the average error of detected water region versus the

distance from the camera. Similarly to the ground plane detection, the error is

calculated based on comparison between detected water region and hand

labeled water pixel. It can be seen that the errors are below 10 percent for the

first eight meters. The errors start to increase after 7 meters. This is due to the

ground plane detection limit (discussed in Section 4.6.1).

144

Figure 6.12: Average water body detection error versus distance for running

water. The number of samples used is thirty (30).

Figure 6.13 shows the performance of the developed module in detect

the running water detection. Similarly to tree trunk detection, the false negative

which indicates no water region while there is water region is unwanted result.

The developed module is able to effectively detect the water regions within 7

meters from the stereo camera. The accuracy within 7 meters is more than 90

percent while the false negative is kept below 5 percent.

The false negative detection is increasing after 7 meters due to the

restriction by our developed ground plane detection. The detection of water

region is based on the detected ground plane where this water detection module

will only search for water region on the detected ground plane. It is based on

the assumption that water will only present on ground plane.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

o
r

(x
1

0
0

%
)

Distance from camera(m)

Average Error versus Distance

145

Figure 6.13: Performance matrix of the ground plane detection module in

running water detection. The number of samples used is thirty (30).

The basis of searching the water region on the detected ground plane is

due to the fact that one of the feature used in this module are the high

brightness caused by sky reflection. As mentioned, one of the appearances of

water body is sky reflection where higher brightness is expected. If the search

for water region is done in other region other than ground region, it may

contribute to false positive as the sky may be present in the scene. Thus, in

order to reduce false positive detection, the search for water region is done only

in detected ground region.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

ROC Analysis on Running Water Detection

True Positive

False Postive

False Negative

True Negative

Accuracy

146

6.6.2 Standing Water Body Detection

Next, the developed water body detected is tested to detect standing

water. Figure 6.14 shows the average error of detected water region versus the

distance from the camera. Similar to running water detection, the average

errors are below 10 percent for the first 7 meters.

Figure 6.14: Average standing water body detection error versus distance. The

number of samples used is thirty (30).

Similar to running water scene, developed algorithm managed to keep

false detection to be lower than 10%. In standing water detection, the scene is

more susceptible to reflection of the environment surrounding the water body.

The low-texture cue plays important part in detecting standing water as the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

o
r

(x
1

0
0

%
)

Distance from camera(m)

Average Error versus Distance

147

reflection usually are lower in texture. Figure 6.15 shows the overall

performance of the proposed algorithm in detecting standing water region.

Figure 6.15: Performance matrix of the standing water detection module. The

number of samples used is thirty (30).

Figure 6.17 shows samples results of the water body detection

algorithm. The blue region corresponds to the water region while the red region

corresponds to ground region. Note that the search of water region is

considered only in detected ground region as it is assumed that water region

only present on the ground. By considering only the ground region, the

algorithm will not include the sky region in the result as sky region usually

appear similar to sky reflection on water region.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Performanace Matrix of Standing Water
Detection

True Positive

False Postive

False Negative

True Negative

Accuracy

148

Figure 6.16: Sample results of the detected standing water using proposed

water body detection.

6.6.3 Back-Lighting Error

This section address the problem of pixel over-saturated for the

developed ground plane detection and water body detection algorithms. Pixel

saturation is the event where incident light at a pixel causes the color channels

of the camera sensor to respond at its maximum value. The frames pixels lose

color information of the scene when the scene is illuminated with high intensity

of light. While it is not in the scope of this thesis to solve this problem, it is

149

important to highlight this error to see how it affects the results of our

developed algorithm.

This problem is likely to occur when the illuminant has a strong

intensity and it is a problem associate with digital imaging. In outdoor terrain,

this problem can occur in circumstances where the illuminant is in front of the

camera. Saturation of pixels is particularly noticeable as the pixels appear to be

achromatic or very bright (close to white) under direct illumination. The auto

gain control (AGC) of the stereo camera will automatically adjust the gain of

the sensors, resulting in darkening of regions not directly under the illuminant.

The regions under canopy or shadow will appear to be very dim (close to

black), consequently affecting the color information as well.

When saturation happens, it affects the clustering component in our

developed algorithm. The color information is affected since the image frames

are captured in RGB color space. The brighter region will appear to be very

bright and the darker region will appear to be very dark as the regions suffer

from narrow brightness ranges at low and high range. Consequently, the color

distribution of the image will be very close and hard to be segregated during

clustering step.

150

6.7 Summary

The algorithm produced good results in the condition in most of the

rainforest terrain condition. It was able to detect the water region in the scene

and mapped the corresponding ground pixels to the image.

Based on results of three experiments performed in simple unstructured

terrain, rainforest terrain and complex terrain, the average result is presented in

Figure 6.17. Based on the results, the average error over 90 samples is less than

10 percent within 8 meters from the camera.

We managed to maintain the average accuracy of 90 percent over the

standing water and running water tests. The false positive outcome is very

critical as this condition is hazardous to the vehicle. In this thesis, the

developed algorithm managed to maintain the false positive alarm below 10

percent for most of the conditions. While the water body detection module can

detect the presence of the water body, it cannot detect the depth of the water

body. Until this point, all detected water regions are deemed to be non-

traversable.

The proposed algorithm can detect most of the water appearances

provided the condition is suitable for the stereo camera to be operational. To be

effective, the scene needs to be sufficiently illuminated. The scene must not be

neither too dark nor heavily illuminated with the source (sun in this case) not

directly shining towards the camera. The color information will be lost when

151

the scene is dark, resulting in poor contrast and subsequently affecting the

stereo correspondence. If the source of illumination is too bright and in front of

the stereo camera, the image pixels will be oversaturated. Thus it can be said

the performance of the proposed algorithm is limited by the sensor of the stereo

camera.

Figure 6.17: Overall performance matrix of the water detection module. The

number of samples used is sixty (60).

The utilization of polarizer with stereo camera shows promising results

that yet to be fully utilized. In this thesis, two different polarization angles are

used to detect the water body. The degrees (and) are chosen based on

the maximum disparity changes when the polarizer is applied. However,

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 (
x1

0
0

%
)

Distance from Camera (m)

Overall Performance of Water Body
Detection Module

True Positive

False Positive

False Negative

True Negative

Accuracy

152

different polarization angles may be used to represent different reflection on

the water body. Therefore, more usage of polarization angles can be considered

in future research scopes.

153

CHAPTER 7

CONCLUSIONS

The work described in this thesis proposes near-range visual guidance

method for rainforest terrain. The entire scheme is designed to detect ground

detection, tree trunks detection and water body detection based on stereo

camera.

In this chapter, the contributions of this thesis are summarized, followed

by conclusions and lastly future works to be done.

7.1 Contributions

In general, the objectives of this scope are to solve the problem

pertaining in visual guidance system in rainforest terrain. In particular, we

identified that the essential components are the ground plane detection, tree

trunks detection and water body detection. In order to successfully identify

ground plane and water body detection, two methods based on stereo image

processing are developed in this thesis.

 In Chapter 4, color feature and stereo disparity data are used

together for the ground plane extraction from the image with

rainforest scene. Using the K-means clustering, the color feature is

used to segregate the image into few possible regions. The K-means

154

clustering method is used as it is easy to implement and fast in

computational time which are a requirement in real-time

implementation. Although K-means clustering is less accurate, it is

sufficient for the developed module as we need only the initial

estimate of the segmentation. The clusters produced from the K-

means clustering method are used to generate multiple V-disparity

images. Then, multiple correlation profiles are generated. The

profile with the lowest gradient is chosen to be ground correlation

profile. The ground correlation profile is used to determine the

ground region in the frame. The ease of determining the ground

correlation profile without any distinct man-made feature made the

developed method suitable for rainforest guidance. This method

overcomes the limitation of having to detect the man-made feature

in V-disparity method.

 In Chapter 5, the near vertical tree detection module follows closely

method by Huetas et al (2005) with additional U-disparity data to

detect the tree trunks. The assumptions made are the tree trunks are

tall and vertical or near vertical. The complex terrain in this project

cannot be analyzed in a single stage of stereo vision research works.

It is suggested to be scope down this works focus on the near

vertical tree trunks obstacles. Based on the assumption, the edges of

the tree trunks are extracted using Sobel edge detector. The U-

disparity is used to accumulate the disparity with similar value as

each region in a scene usually appears to be similar in disparity

155

value if it belongs to the same object. The detected edges are

combined with the disparity information from U-disparity to extract

the tree trunk fragment. This method is suitable to extract the tree

trunks as in rainforest terrain; the tree trunks are tall, resulting in

high accumulation of disparity. Consequently, the tree trunks can be

extracted by using high disparity threshold.

 After the ground plane is successfully detected, Chapter 6 presents

the water body detection algorithm. The developed method utilized

multiple features in texture, disparity and partial polarization. Stereo

camera with different polarization angles are applied on each side of

the stereo camera. The intention of using polarizer is to remove

specular reflection from the water body on one side of the camera

and create two dissimilar appearance of the water body. Based on

experiment conducted, it is shown that water body has big changes

in brightness when different polarization angles are applied. Based

on the difference, we can determine the water region due to failure

to correlate between the two images. Coupled with low-texture

characteristic and sky reflection detection, most of the water region

can be detected. Through experimental results, the algorithm is

demonstrated to be able to detect standing and running water in

most condition except while the illumination source is in front of

the camera.

156

7.2 Conclusion Remarks

In conclusion, it can be stated that the proposed short range visual

guidance scheme is suitable to determine the ground plane, detect the tree trunk

and spot the water body.

In this thesis, the proposed methods show satisfactory offline results

through experimental testing under different situations. However, there are also

limitations encountered in these methods:

 Due to hardware settings issue, the experiment is limited to single

frame testing of the scene. There are no optimization to reduce the

computational load due to frames processing (each frames are

processed separately and treat independently).

 The algorithms do not solve the illumination problem which may

affect the camera performance. The algorithm may fail mainly due

to the image condition caused by excessive illumination in front of

the camera.

 The ground plane detection module does not take into account

negative obstacles. It may fail to detect the negative obstacle if the

negative obstacles are not large enough or when the camera pitch

angle low (with reference from negative-x axis).

157

 The compressible vegetation is not considered in this thesis. The

compressible vegetation is deemed non-traversable if the height is

above certain threshold.

 The water body detection module focuses in detecting the water

region without considering the depth of the water body. Water body

with very shallow depth is treated the same with deep water body.

7.3 Future works

As for future work, each part of the module of this visual guidance

system should be improved to be able to work as complete visual guidance

system as this thesis focuses on solving specific challenges in rainforest terrain.

 High level of artificial intelligence scheme can be developed to

supply to make this work more accurate and robust. A system with

prior knowledge of the scene will help the scene to classify the

terrain better. The artificial intelligent scheme will be able to act as

additional cue to increase the confidence level of the results. In

addition, the artificial intelligent scheme can be used as a classifier

to classify whether the terrain is traversable or not.

 In order to achieve more accurate result and robust, the illumination

compensation has to be improved. Until this point, this thesis does

not include any compensation algorithm except using HSI color

158

space to minimize the uneven illumination. With the illumination

compensation, the color constancy problem can be minimized,

enabling more accurate region boundaries of the terrain.

 The ground plane profile detected in this thesis assumes that the

ground profile is linear (or single profile). Thus the ground

correlation profiles in this thesis only true for near-range. It is not

able to track the ground plane at far range if the slope of the ground

plane is going downhill (relatively high down-slope) until it is near

to the slope. In addition, a ground region with higher slope may be

missed due to different slope profile. Thus, there is need to detect

non-linear ground profile.

 The tree trunk detection module is able to detect vertical and near

vertical tree trunks in the rainforest terrain. The assumption is that

all tree trunks are not traversable regardless of the size or diameter

of the tree trunks (the logical deduction is we usually do not run-

over very tall object even it is compressible). However, the diameter

estimation can be addition to determine the traversability. In

addition, the algorithm needs to be improved to be able to detect

tree trunks that are slanted and not near vertical.

 Generally, there are occlusion problems caused by partial or

complete overlap of multiple objects in the scene. In tree trunk

detection, tree trunks fragment with are assumed to be of the same

159

tree trunks if it belong to the same column of the image and has

similar disparity value. However, this assumption cannot be used at

the condition where there other fragment is complete hidden

(particularly hazardous if it is at the base of the tree). We isolate this

problem to certain extends by labeling this region as not-classified.

However, there is a need to solve the occlusion problems for an

effective visual guidance system.

 The current water detection algorithm can only detect the water

region. In fact, whether a water body is hazardous to the

autonomous vehicle or not depend on the size of the water body and

also the depth of the water body. Hence, it is essential to further

investigate the polarization method to see whether it will be able to

determine the depth of the water body.

 The range of the visual guidance system should be extended in

order for vehicle path planning to be feasible. In this thesis, stereo

camera with fixed baseline is used, limiting the detection range. We

propose the use of multiple stereo cameras with different baseline or

stereo camera with real-time adjustable base line to detect different

range of the terrain.

 The near-range visual guidance system is developed for the

autonomous vehicle navigation in rainforest terrain. The developed

algorithm is tested only on image frames from rainforest terrain.

160

Thus, the system needs to be implemented and tested in real-time

autonomous vehicle.

161

AUTHOR’S PUBLICATION

1. CheeWay Teoh, ChingSeong Tan and Yong Chai Tan. (2010),

“Preliminary Study on Visual Guidance System for Autonomous Vehicle in

Rainforest Terrain”, IEEE Conference on Robotics Automation and

Mechatronics (RAM), 28-30 June 2010, page(s): 403-408 .

2. CheeWay Teoh, ChingSeong Tan and Yong Chai Tan. (2010), “Ground

plane detection for autonomous vehicle in rainforest terrain”, 2010 IEEE

Conference Sustainable Utilization and Development in Engineering and

Technology (STUDENT 2010), 20-21 Nov. 2010, page(s): 7 - 12.

162

REFERENCES

Adams, M., Wijesoma, S. W., & Shacklock, A. (2007). Autonomous

Navigation: Achievements in Complex Environment. IEEE

Instrumentation & Measurement Magazine, (pp. 15-22).

Alberts, J., Edwards, D., Soule, T., Anderson, M., & O'Rourke, M. (2008).

Autonomous Navigation of an Unmanned Ground Vehicle in

Unstructured Forest Terrain. ECSIS Symposium on Learning and

Adaptive Behaviors for Robotic Systems, (pp. 103-109).

Batavia, P. H., Pomerleau, D. A., & Thope, C. E. (1996). Applying Advanced

Learning Algorithms to ALVINN. Carnegie Mellon University:

Technical Report CMU-RI-TR-96-31, Robotics Institute.

Bellutta, P., Manduchi, R., Matthies, L., Owens, K., & Rankin, A. (2000).

Terrain Perception for DEMO III. Proceedings of the 2000 Intelligent

Vehicles Conference, (pp. 326-331).

Bradski, G., & Kaehler, A. (2008). Learning OpenCV. USA: O’Reilly Media.

Broggi, A. (1999). The ARGO Autonomous Vehicle's Vision and Control

Systems. International Journal of Intelligent Control Systems, 409-441.

Broggi, A., Bertozzi, M., Fascioli, A., & Conte, G. (1999). Automatic Vehicle

Guidance: The Experience of the ARGO Autonomous Vehicle. London:

World Scientific.

Broggi, A., Fascioli, A., & Bertozzi, M. (2000). Architectural Issues on Vision-

Based Automatic Vehicle Guidance: The Experience of the ARGO

Project. Real-Time Imaging, 313-324.

Brown, M. Z., Burschka, D., & Hager, G. D. (2003). Advances in

Computational Stereo. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 993-1008.

163

DeSouza, G. N., & Kak, A. C. (2002). Vision for Mobile Robot Navigation: A

Survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 237-267.

Dickmanns, E. D. (2002). The Development of Machine Vision for Road

Vehicles in the Last Decade. Proceedings of IEEE Intelligent Vehicle

Symposium, (pp. 268-281). Verailles, France.

Eicker, P. J. (2001). The Embudito Mission: A Case Study of the Systematics of

Autonomous Ground Mobile Robots. United States of America: Sandia

National Laboratories.

Gennery, D. B. (1977). A Stereo Vision System for an Autonomous Vehicle.

International Joint Conference On Artificial Intelligence.

Goldberg, S. B., Maimone, M. W., & Matthies, L. (2002). Stereo Vision and

Rover Navigation Software for Planetary Exploration. IEEE Aerospace

Conference Proceedings.

Goldberg, S. B., Maimone, M. W., & Matthies, L. (2002). Stereo Vision and

Rover Navigation Software for Planetary Exploration. IEEE Aerospace

Conference Proceedings.

Gonzalez, R. C., & Woods, R. E. (2010). Digital Image Processing, 3rd

Edition. New Jersey: Pearson Education Inc.

Happold, M., & Ollis, M. (2006). Autonomous Learning of Terrain

Classification within Imagery for Robot Navigation. 2006 IEEE

International Conference on Systems, Man, and Cybernetics, (pp. 260-

266). Taipei.

Hartley, R., & Zisserman, A. (2003). Multiple View Geometry in Computer

Vision. United Kingdom: Cambridge University Press.

Huertas, A., Matthies, L., & Rankin, A. (2005). Stereo-Based Tree

Traversability Analysis for Autonomous Off-Road Navigation. Proc.

IEEE Work-shop on Applications of Computer Vision. Breckenridge.

164

Jochem, T. M. (1994). Using Visual Active Vision Tools to Improve

Autonomous Driving Task. Carnegie Mellon University: Technical

Report CMU-RI-TR-94-39.

Jochem, T. M., Pomerleau, D. A., & Thorpe, C. E. (1995). Vision-Based

Neural Network Road and Intersection Detection and Traversal.

International Conference on Intelligent Robots and Systems-Volume 3,

(pp. 344-349).

Kelly, A., Amidi, O., Happold, M., Herman, H., Pilarski, T., Rander, P., et al.

(2004). Toward Reliable Off Road Autonomous Vehicles Operating in

Challenging Environments. International Symposium on Experimental

Robotics. Singapore.

Koshikawa, K. (1979). A polametric approach to shape understanding.

Proceeding IJCAI, (pp. 493-495).

Krotkov, E., Fish, S., Jackel, L., McBride, B., Perschbacher, M., & Pippine, J.

(2006). The DARPA PerceptOR Evaluation Experiments. Auton Robot,

19-35.

Labayrade, R., Aubert, D., & Tarel, J. P. (2002). Real Time Obstacle Detection

in Stereo Vision on Non Flat Road Geometry Through "V-disparity".

IEEE Intelligent Vehicle Symposium.

Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle

Detection and Terrain Classification for Autonomous Off-Road

Navigation. Autonomous Robots 18, Autonomous Robots 18.

Nayar, S. K., Fang, X.-S., & Boult, T. (1993). Removal of Specularities Using

Color and Polarization. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, (pp. 583-590).

Nilsson, J. N. (1969). A Mobius Automaton: An Application of Artificial

Intelligence. International Joint Conference on Artificial Intelligent.

Washington.

Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2007). Introduction to Optics,

3rd Edition. New Jersey: Pearson Education Inc.

165

Point Grey Research Inc. (2003). Triclops StereoVision System Manual

Version 3.1.

Pomerleau, D. A. (1989). ALVINN: An Autonomous Land Vehicle In a Neural

Network. Carnegie Mellon University.

Rankin, A. L., Bergh, C. F., Goldberg, S. B., Bellutta, P., Huertas, A., &

Matthies, L. H. (2005). Passive Perception System for Day/Night

Autonomous Off-Road Navigation. SPIE Defense and Security

Symposium: Unmanned Ground Vehicle Technology VI Conference,

(pp. 343-353). Orlando.

Shacklock, A., Xu, J., & Wang, H. (2006). Visual Guidance for Autonomous

Vehicles: Capability and Challenges. In S. Sam Ge, & F. L. Lewis,

Autonomous Mobile Robot: Sensing, Control, Decision Making and

Applications (pp. 5-40). USA: CRC Press.

Shoemaker, C. M., & Bornstein, J. A. (1998). The Demo III UGV Program: A

Testbed for Autonomous Navigation Research. Proceedings of the 1998

IEEE ISIC/CIRA/ISAS Joint Conference, (pp. 644-651). Gaithersburg.

Stentz, A., Kelly, A., Rander, P., Herman, H., Amidi, O., Mandelbaum, R., et

al. (2003). Real-Time, Multi-Perspective Perception for Unmanned

Ground Vehicles. Proceeding Association for Unmanned Vehicle

Systems International. Baltimore.

Thorpe, C., Hebert, M. H., Kanade, T., & Shafer, S. A. (1988). Vision and

Navigation for the Carnegie-Mellon Navlab. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 10, 362-373.

Waterman, T. H. (1981). Polarization Sensitivity. In H. J. Altrum, Handbook of

Sensory Physiology, Vol. 7. Berlin: Springer Verlag.

Wolff, L. B. (1997). Polarization Vision: a new sensory approach to image

understanding. Image and Vision Computing Vol. 15, (pp. 81-93).

Wolff, L. B., & Boult, T. (1991). Constraining Object Features using

Polarization Reflectance Model. IEEE Transaction on Pattern

Recognition and Machine Intelligence, Vol 13, No. 7, (pp. 635-657).

166

APPENDICES

167

APPENDIX A

Appendix A.1: Proposed system architecture image acquisition and feature

extraction.

Input Polarized -
Stereo Image

Left Polarized -
Stereo Image

Right Polarized -
Stereo Image

Disparity Image

U-Disparity Image V-Disparity Image

Task Specific
Processing
Modules

HSV Image

168

Appendix A.2: Proposed system architecture for ground plane detection.

Input
U-Disparity Image V-Disparity Image HSV Image

Pre-processing

K-Mean Clustering

n <5

V-disparity for each
cluster

Cluster number
 n =0

yes

no

Linear line
regression

Slope calculation, m

m < mL(lowest slope)

yes

mL = m

no

Ground correlation
profile = mL

Ground plane
detection

Output ground
plane

Input to tree trunk detection
and water detection module

169

Appendix A.3: Proposed system architecture for tree trunk detection.

Input
U-Disparity Image V-Disparity Image HSV Image

Pre-processing

Sobel Edge Detector

Tree trunk
region growing

Detected ground
plane

Non-ground
region

Exclude ground
region disparity

data

U-Disparity of
none ground

region

Feature matching
and ANDing

Output tree
trunks region

170

Appendix A.4: Proposed system architecture for water body detection.

Left Polarized -
Stereo Image

Right Polarized -
Stereo Image

Disparity Image

Sky Reflection
Detection

Low- Texture
Detection

Invalid Disparity
Pixel Detection

Water Region

Estimated
Ground Plane

Object Reflection
Detection

Update Estimated
Ground Plane

Post- Processing - Region Growing and Connected Component

Pre-processing

 Input

Feature matching and ANDing.

171

APPENDIX B

#include "StdAfx.h"

#include "classBumbleContext.h"

#pragma region Constructor and Destructor

classBumbleContext::classBumbleContext()

{ // constructor

}

classBumbleContext::~classBumbleContext(void)

{ // destructor

}

#pragma endregion

#pragma region Load Calibration File

void classBumbleContext::load_calibrationFile(char* fileName)

{

 triclopsGetDefaultContextFromFile(&triclopsContext,

fileName);

 //return triclopsContext;

}

void classBumbleContext::load_calibrationFile_default()

{

 triclopsGetDefaultContextFromFile(&triclopsContext,

"input.cal");

 //return triclopsContext;

}

#pragma endregion

#pragma region GRAB PPM

void classBumbleContext::grab_ppmImage(char* fileName)

{

 ppmReadToTriclopsInput(fileName, &m_tiStereo);

 pgmReadToTriclopsInput(fileName, &m_tiStereoRGB);

 // --

 // Generationg RAW Stereo, Left & Right OpenCV Image ----

 IplImage* img_ipl_RGBU =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,4);

 img_ipl_RGBx = cvCreateImage(cvSize(m_tiStereo.ncols,

m_tiStereo.nrows),8,3);

 IplImage* img_ipl_red =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1);

 IplImage* img_ipl_green =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1);

 IplImage* img_ipl_blue =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1);

 IplImage* img_ipl_test =

cvCreateImage(cvSize(m_tiStereo.ncols,

m_tiStereo.nrows),8,1);//////

 img_ipl_RGBU->imageData =

(char*)m_tiStereo.u.rgb32BitPacked.data;

172

 cvSplit(img_ipl_RGBU, img_ipl_blue, img_ipl_green,

img_ipl_red, img_ipl_test);//////

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL,

img_ipl_RGBx);

 m_tiStereo.ncols = m_tiStereo.ncols/2;

 m_tiStereo.timeStamp.sec = 0;

 m_tiStereo.timeStamp.u_sec = 0;

 // --

 // Build triclops input: m_tiRawColorImages[4]

 img_ipl_raw_colour_left =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,3);

 img_ipl_raw_colour_right =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,3);

 for(int y=0; y<(img_ipl_RGBx->height); y++)

 { //To split RAW into LEFT and RIGHT RAW

 uchar* ptr_oriRight = (uchar*) (img_ipl_RGBx-

>imageData + y * img_ipl_RGBx->widthStep);

 uchar* ptr_oriLeft = (uchar*) (img_ipl_RGBx-

>imageData + img_ipl_RGBx->widthStep/2 + y * img_ipl_RGBx-

>widthStep);

 uchar* ptrRight = (uchar*)

(img_ipl_raw_colour_right->imageData + y* img_ipl_RGBx-

>widthStep/2);

 uchar* ptrLeft = (uchar*) (img_ipl_raw_colour_left-

>imageData + y* img_ipl_RGBx->widthStep/2);

 for(int x=0; x<(img_ipl_RGBx->width); x++)

 {

 ptrLeft[3*x] = ptr_oriLeft[3*x];

 ptrLeft[3*x+1] = ptr_oriLeft[3*x+1];

 ptrLeft[3*x+2] = ptr_oriLeft[3*x+2];

 ptrRight[3*x] = ptr_oriRight[3*x];

 ptrRight[3*x+1] = ptr_oriRight[3*x+1];

 ptrRight[3*x+2] = ptr_oriRight[3*x+2];

 }

 }

 // --

 // Build triclops input: m_tiRawColorImages[4]

 //[0] = right

 m_tiRawColorImages[0].ncols = m_tiStereo.ncols; // 1024

 m_tiRawColorImages[0].nrows = m_tiStereo.nrows; // 768

 m_tiRawColorImages[0].rowinc = m_tiStereo.rowinc/2; //

4096

 m_tiRawColorImages[0].inputType =

TriInp_RGB_32BIT_PACKED;

 //[2] = left

 m_tiRawColorImages[2].ncols = m_tiStereo.ncols; // 2048

 m_tiRawColorImages[2].nrows = m_tiStereo.nrows; // 768

 m_tiRawColorImages[2].rowinc = m_tiStereo.rowinc/2; //

4096

173

 m_tiRawColorImages[2].inputType =

TriInp_RGB_32BIT_PACKED;

 m_tiRawColorImages[0].u.rgb32BitPacked.data = new

unsigned

char[m_tiRawColorImages[0].ncols*m_tiRawColorImages[0].nrows

*4];

 m_tiRawColorImages[2].u.rgb32BitPacked.data = new

unsigned

char[m_tiRawColorImages[2].ncols*m_tiRawColorImages[2].nrows

*4];

 uchar* ptrTri_right =

(uchar*)m_tiRawColorImages[0].u.rgb32BitPacked.data;

 uchar* ptrTri_left =

(uchar*)m_tiRawColorImages[2].u.rgb32BitPacked.data;

 for(int y=0; y<(img_ipl_RGBx->height); y++)

 {

 uchar* ptr_right = (uchar*)

(img_ipl_raw_colour_right->imageData + y *

img_ipl_raw_colour_right->widthStep);

 uchar* ptr_left = (uchar*)

(img_ipl_raw_colour_left->imageData + y *

img_ipl_raw_colour_left->widthStep);

 uchar* ptrTriclopsInput_right = (uchar*)

(ptrTri_right + y*m_tiRawColorImages[0].rowinc);

 uchar* ptrTriclopsInput_left = (uchar*)

(ptrTri_left + y*m_tiRawColorImages[2].rowinc);

 for(int x=0; x<(img_ipl_RGBx->width/2); x++)

 {

 ptrTriclopsInput_right[4*x] = ptr_right[3*x];

 ptrTriclopsInput_right[4*x+1] =

ptr_right[3*x+1];

 ptrTriclopsInput_right[4*x+2] =

ptr_right[3*x+2];

 ptrTriclopsInput_left[4*x] = ptr_left[3*x];

 ptrTriclopsInput_left[4*x+1] =

ptr_left[3*x+1];

 ptrTriclopsInput_left[4*x+2] =

ptr_left[3*x+2];

 }

 }

}

#pragma endregion

#pragma region GRAB JPEG

void classBumbleContext::grab_jpeg(char* fileName)

{

 // --

----- // Generationg RAW Stereo, Left & Right OpenCV Image ----

 img_ipl_RGBx = cvLoadImage(fileName);

 IplImage* img_ipl_RGBU =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,4);

174

 IplImage* img_ipl_red =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1);

 IplImage* img_ipl_green =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1);

 IplImage* img_ipl_blue =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1);

 cvSplit(img_ipl_RGBx, img_ipl_blue, img_ipl_green,

img_ipl_red, NULL);

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL,

img_ipl_RGBU);

 //---

 // Allocate memory for m_tiStereo

 ppmReadToTriclopsInput("dummyImage.ppm", &m_tiStereo);

 pgmReadToTriclopsInput("dummyImage.ppm",

&m_tiStereoRGB);

 m_tiStereo.u.rgb32BitPacked.data = img_ipl_RGBU-

>imageData;

 m_tiStereo.u.rgb.red = img_ipl_RGBU->imageData;

 m_tiStereo.u.rgb.green = img_ipl_RGBU->imageData;

 m_tiStereo.u.rgb.blue = img_ipl_RGBU->imageData;

 //---

 m_tiStereo.ncols = img_ipl_RGBU->width/2;

 m_tiStereo.nrows = img_ipl_RGBU->height;

 //m_tiStereo.rowinc = img_ipl_RGBU->widthStep/4;

 m_tiStereo.timeStamp.sec = 0;

 m_tiStereo.timeStamp.u_sec = 0;

 //m_tiStereo.inputType = TriInp_RGB;

 //// --

 //// Build triclops input: m_tiRawColorImages[4]

 img_ipl_raw_colour_left =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,3);

 img_ipl_raw_colour_right =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,3);

 IplImage* img_ipl_raw_colour_left_m_tiStereoRGB =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1);

 IplImage*img_ipl_raw_colour_right_m_tiStereoRGB =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1);

 for(int y=0; y<(img_ipl_RGBx->height); y++)

 { //To split RAW into LEFT and RIGHT RAW

 uchar* ptr_oriRight = (uchar*) (img_ipl_RGBx-

>imageData + y * img_ipl_RGBx->widthStep);

 uchar* ptr_oriLeft = (uchar*) (img_ipl_RGBx-

>imageData + img_ipl_RGBx->widthStep/2 + y * img_ipl_RGBx-

>widthStep);

175

 uchar* ptrRight = (uchar*)

(img_ipl_raw_colour_right->imageData + y* img_ipl_RGBx-

>widthStep/2);

 uchar* ptrLeft = (uchar*) (img_ipl_raw_colour_left-

>imageData + y* img_ipl_RGBx->widthStep/2);

 uchar* ptrRight_RGB = (uchar*)

(img_ipl_raw_colour_right_m_tiStereoRGB->imageData + y*

img_ipl_RGBx->widthStep/2);

 uchar* ptrLeft_RGB = (uchar*)

(img_ipl_raw_colour_left_m_tiStereoRGB->imageData + y*

img_ipl_RGBx->widthStep/2);

 for(int x=0; x<(img_ipl_RGBx->width); x++)

 {

 ptrLeft[3*x] = ptr_oriLeft[3*x];

 ptrLeft[3*x+1] = ptr_oriLeft[3*x+1];

 ptrLeft[3*x+2] = ptr_oriLeft[3*x+2];

 ptrRight[3*x] = ptr_oriRight[3*x];

 ptrRight[3*x+1] = ptr_oriRight[3*x+1];

 ptrRight[3*x+2] = ptr_oriRight[3*x+2];

 ptrLeft_RGB[1*x] = ptr_oriLeft[3*x];

 ptrRight_RGB[x];// = ptr_oriRight[3*x];

 }

 }

 // --

 // Build triclops input: m_tiRawColorImages[4]

 //[0] = right

 m_tiRawColorImages[0].ncols = m_tiStereo.ncols; // 1024

 m_tiRawColorImages[0].nrows = m_tiStereo.nrows; // 768

 m_tiRawColorImages[0].rowinc = m_tiStereo.rowinc/2; //

4096

 m_tiRawColorImages[0].inputType =

TriInp_RGB_32BIT_PACKED;

 //[1] = center

 //m_tiRawColorImages[1].ncols = imageCols; // 2048

 //m_tiRawColorImages[1].nrows = imageRows; // 768

 //m_tiRawColorImages[1].rowinc = imageRowInc*2; // 8192

 //m_tiRawColorImages[1].inputType =

TriInp_RGB_32BIT_PACKED;

 //[2] = left

 m_tiRawColorImages[2].ncols = m_tiStereo.ncols; // 2048

 m_tiRawColorImages[2].nrows = m_tiStereo.nrows; // 768

 m_tiRawColorImages[2].rowinc = m_tiStereo.rowinc/2; //

4096

 m_tiRawColorImages[2].inputType =

TriInp_RGB_32BIT_PACKED;

 //[3] = both

 //m_tiRawColorImages[3].ncols = imageCols*2; // 2048

 //m_tiRawColorImages[3].nrows = imageRows; // 768

 //m_tiRawColorImages[3].rowinc = imageRowInc*4; // 8192

 //m_tiRawColorImages[3].inputType =

TriInp_RGB_32BIT_PACKED;

 m_tiRawColorImages[0].u.rgb32BitPacked.data = new

unsigned

176

char[m_tiRawColorImages[0].ncols*m_tiRawColorImages[0].nrows

*4];

 m_tiRawColorImages[2].u.rgb32BitPacked.data = new

unsigned

char[m_tiRawColorImages[2].ncols*m_tiRawColorImages[2].nrows

*4];

 uchar* ptrTri_right =

(uchar*)m_tiRawColorImages[0].u.rgb32BitPacked.data;

 uchar* ptrTri_left =

(uchar*)m_tiRawColorImages[2].u.rgb32BitPacked.data;

 for(int y=0; y<(img_ipl_RGBx->height); y++)

 {

 uchar* ptr_right = (uchar*)

(img_ipl_raw_colour_right->imageData + y *

img_ipl_raw_colour_right->widthStep);

 uchar* ptr_left = (uchar*)

(img_ipl_raw_colour_left->imageData + y *

img_ipl_raw_colour_left->widthStep);

 uchar* ptrTriclopsInput_right = (uchar*)

(ptrTri_right + y*m_tiRawColorImages[0].rowinc);

 uchar* ptrTriclopsInput_left = (uchar*)

(ptrTri_left + y*m_tiRawColorImages[2].rowinc);

 for(int x=0; x<(img_ipl_RGBx->width/2); x++)

 {

 ptrTriclopsInput_right[4*x] = ptr_right[3*x];

 ptrTriclopsInput_right[4*x+1] =

ptr_right[3*x+1];

 ptrTriclopsInput_right[4*x+2] =

ptr_right[3*x+2];

 ptrTriclopsInput_left[4*x] = ptr_left[3*x];

 ptrTriclopsInput_left[4*x+1] =

ptr_left[3*x+1];

 ptrTriclopsInput_left[4*x+2] =

ptr_left[3*x+2];

 }

 }

 m_tiStereoRGB.u.rgb.blue =

img_ipl_raw_colour_right_m_tiStereoRGB->imageData ;

 m_tiStereoRGB.u.rgb.green =

img_ipl_raw_colour_left_m_tiStereoRGB->imageData;

 m_tiStereoRGB.u.rgb.red =

img_ipl_raw_colour_right_m_tiStereoRGB->imageData;

}

#pragma endregion

#pragma region AVI Video

void classBumbleContext::load_avi(char* fileName)

{

 //cvNamedWindow("Example2", CV_WINDOW_AUTOSIZE);

 CvCapture* capture = cvCreateFileCapture(fileName);

 IplImage* frame;

 while(1)

 {

 frame = cvQueryFrame(capture);

 if(!frame) break;

 grab_frame(frame);

 }

177

}

#pragma endregion

#pragma region GRAB FRAME

void classBumbleContext::grab_frame(IplImage* frame)

{

 // --

 // Generationg RAW Stereo, Left & Right OpenCV Image ----

 img_ipl_RGBx = frame;

 IplImage* img_ipl_RGBU =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,4);

 IplImage* img_ipl_red =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1);

 IplImage* img_ipl_green =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1);

 IplImage* img_ipl_blue =

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1);

 cvSplit(img_ipl_RGBx, img_ipl_blue, img_ipl_green,

img_ipl_red, NULL);

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL,

img_ipl_RGBU);

 //---

 // Allocate memory for m_tiStereo

 m_tiStereo.u.rgb32BitPacked.data = new unsigned

char[img_ipl_RGBx->width*img_ipl_RGBx->height*4];

 //---

 m_tiStereo.ncols = img_ipl_RGBx->width/2;

 m_tiStereo.nrows = img_ipl_RGBx->height;

 m_tiStereo.rowinc = (4/3)*img_ipl_RGBx->widthStep;

 m_tiStereo.timeStamp.sec = 0;

 m_tiStereo.timeStamp.u_sec = 0;

 m_tiStereo.inputType = TriInp_RGB;

 m_tiStereo.u.rgb32BitPacked.data = img_ipl_RGBU-

>imageData;

 //// --

 //// Build triclops input: m_tiRawColorImages[4]

 img_ipl_raw_colour_left =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,3);

 img_ipl_raw_colour_right =

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,3);

 for(int y=0; y<(img_ipl_RGBx->height); y++)

 { //To split RAW into LEFT and RIGHT RAW

 uchar* ptr_oriRight = (uchar*) (img_ipl_RGBx-

>imageData + y * img_ipl_RGBx->widthStep);

178

 uchar* ptr_oriLeft = (uchar*) (img_ipl_RGBx-

>imageData + img_ipl_RGBx->widthStep/2 + y * img_ipl_RGBx-

>widthStep);

 uchar* ptrRight = (uchar*)

(img_ipl_raw_colour_right->imageData + y* img_ipl_RGBx-

>widthStep/2);

 uchar* ptrLeft = (uchar*) (img_ipl_raw_colour_left-

>imageData + y* img_ipl_RGBx->widthStep/2);

 for(int x=0; x<(img_ipl_RGBx->width); x++)

 {

 ptrLeft[3*x] = ptr_oriLeft[3*x];

 ptrLeft[3*x+1] = ptr_oriLeft[3*x+1];

 ptrLeft[3*x+2] = ptr_oriLeft[3*x+2];

 ptrRight[3*x] = ptr_oriRight[3*x];

 ptrRight[3*x+1] = ptr_oriRight[3*x+1];

 ptrRight[3*x+2] = ptr_oriRight[3*x+2];

 }

 }

 cvNamedWindow("Rectify GRAY: RGBx", CV_WINDOW_AUTOSIZE);

 cvShowImage("Rectify GRAY: RGBx",

img_ipl_raw_colour_left);

 cvNamedWindow("Rectify GRAY: RGBU", CV_WINDOW_AUTOSIZE);

 cvShowImage("Rectify GRAY: RGBU",

img_ipl_raw_colour_right);

 // --

 // Build triclops input: m_tiRawColorImages[4]

 //[0] = right

 m_tiRawColorImages[0].ncols = m_tiStereo.ncols; // 1024

 m_tiRawColorImages[0].nrows = m_tiStereo.nrows; // 768

 m_tiRawColorImages[0].rowinc = m_tiStereo.rowinc/2; //

4096

 m_tiRawColorImages[0].inputType =

TriInp_RGB_32BIT_PACKED;

 //[1] = center

 //m_tiRawColorImages[1].ncols = imageCols; // 2048

 //m_tiRawColorImages[1].nrows = imageRows; // 768

 //m_tiRawColorImages[1].rowinc = imageRowInc*2; // 8192

 //m_tiRawColorImages[1].inputType =

TriInp_RGB_32BIT_PACKED;

 //[2] = left

 m_tiRawColorImages[2].ncols = m_tiStereo.ncols; // 2048

 m_tiRawColorImages[2].nrows = m_tiStereo.nrows; // 768

 m_tiRawColorImages[2].rowinc = m_tiStereo.rowinc/2; //

4096

 m_tiRawColorImages[2].inputType =

TriInp_RGB_32BIT_PACKED;

 //[3] = both

 //m_tiRawColorImages[3].ncols = imageCols*2; // 2048

 //m_tiRawColorImages[3].nrows = imageRows; // 768

 //m_tiRawColorImages[3].rowinc = imageRowInc*4; // 8192

 //m_tiRawColorImages[3].inputType =

TriInp_RGB_32BIT_PACKED;

 m_tiRawColorImages[0].u.rgb32BitPacked.data = new

unsigned

179

char[m_tiRawColorImages[0].ncols*m_tiRawColorImages[0].nrows

*4];

 m_tiRawColorImages[2].u.rgb32BitPacked.data = new

unsigned

char[m_tiRawColorImages[2].ncols*m_tiRawColorImages[2].nrows

*4];

 uchar* ptrTri_right =

(uchar*)m_tiRawColorImages[0].u.rgb32BitPacked.data;

 uchar* ptrTri_left =

(uchar*)m_tiRawColorImages[2].u.rgb32BitPacked.data;

 for(int y=0; y<(img_ipl_RGBx->height); y++)

 {

 uchar* ptr_right = (uchar*)

(img_ipl_raw_colour_right->imageData + y *

img_ipl_raw_colour_right->widthStep);

 uchar* ptr_left = (uchar*)

(img_ipl_raw_colour_left->imageData + y *

img_ipl_raw_colour_left->widthStep);

 uchar* ptrTriclopsInput_right = (uchar*)

(ptrTri_right + y*m_tiRawColorImages[0].rowinc);

 uchar* ptrTriclopsInput_left = (uchar*)

(ptrTri_left + y*m_tiRawColorImages[2].rowinc);

 for(int x=0; x<(img_ipl_RGBx->width/2); x++)

 {

 ptrTriclopsInput_right[4*x] = ptr_right[3*x];

 ptrTriclopsInput_right[4*x+1] =

ptr_right[3*x+1];

 ptrTriclopsInput_right[4*x+2] =

ptr_right[3*x+2];

 ptrTriclopsInput_left[4*x] = ptr_left[3*x];

 ptrTriclopsInput_left[4*x+1] =

ptr_left[3*x+1];

 ptrTriclopsInput_left[4*x+2] =

ptr_left[3*x+2];

 }

 }

}

#pragma endregion // Grabbing stereo image and frames

#pragma region GRAB RECTIFIED, DISPARITY, EDGE

void classBumbleContext::grab_grayscale(int

image_type_triclops, int image_triclops_leftRight, int

image_resolution_width, int image_resolution_height)

{ // image_type_triclops; // 0 = Disparity, 1 = RAW, 2 =

Rectified, 3 = Edge

 triclops_preprocess_3D(image_resolution_width,

image_resolution_height);

 if (image_type_triclops == 0)

 { // Grab disparity Image

 triclopsGetImage(triclopsContext,

TriImg_DISPARITY, TriCam_REFERENCE, &img_triclops_disparity);

 IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_disparity);

 cvNamedWindow("Rectify GRAY: LEFT",

CV_WINDOW_AUTOSIZE);

 cvShowImage("Rectify GRAY: LEFT", testing);

 }

180

 else if (image_type_triclops == 1)

 { // Grab RAW Image

 if (image_triclops_leftRight == 3)

 { // left

 triclopsGetImage(triclopsContext,

TriImg_RAW, TriCam_LEFT, &img_triclops_gray_RAW);

 IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_gray_RAW);

 cvNamedWindow("RAW: LEFT", CV_WINDOW_AUTOSIZE

);

 cvShowImage("RAW: LEFT", testing);

 }

 else if (image_triclops_leftRight == 1)

 { // right

 triclopsGetImage(triclopsContext,

TriImg_RAW, TriCam_RIGHT, &img_triclops_gray_RAW);

 IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_gray_RAW);

 cvNamedWindow("RAW: RIGHT",

CV_WINDOW_AUTOSIZE);

 cvShowImage("RAW: RIGHT", testing);

 }

 }

 else if (image_type_triclops == 3)

 { // Grab EDGE Image

 if (image_triclops_leftRight == 3)

 { // left

 triclopsGetImage(triclopsContext,

TriImg_EDGE, TriCam_LEFT, &img_triclops_edge_left);

 IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_edge_left);

 cvNamedWindow("EDGE: LEFT",

CV_WINDOW_AUTOSIZE);

 cvShowImage("EDGE: LEFT", testing);

 }

 else if (image_triclops_leftRight == 1)

 { // right

 triclopsGetImage(triclopsContext,

TriImg_EDGE, TriCam_RIGHT, &img_triclops_edge_right);

 IplImage* testing2 =

 convert_Triclops2Ipl_1D(img_triclops_edge_right);

 cvNamedWindow("EDGE: RIGHT",

CV_WINDOW_AUTOSIZE);

 cvShowImage("EDGE: RIGHT", testing2);

 }

 }

}

void classBumbleContext::grab_color(int image_type_triclops,

int image_triclops_leftRight, int image_resolution_width, int

image_resolution_height)

{

 triclops_preprocess_3D(image_resolution_width,

image_resolution_height);

 if (image_type_triclops == 4)

 {

 if (image_triclops_leftRight == 3)

 {

181

 triclopsRectifyColorImage(triclopsContext,

TriCam_LEFT, &m_tiRawColorImages[2],

&img_triclops_rectified_colour_left);

 IplImage* img_ipl=

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols,

img_triclops_rectified_colour_left.nrows),8,3);

 IplImage* img_ipl_red=

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols,

img_triclops_rectified_colour_left.nrows),8,1);

 IplImage* img_ipl_green=

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols,

img_triclops_rectified_colour_left.nrows),8,1);

 IplImage* img_ipl_blue=

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols,

img_triclops_rectified_colour_left.nrows),8,1);

 img_ipl_rectified_colour_left =

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols,

img_triclops_rectified_colour_left.nrows),8,3);

 unsigned char* ptr_triclops_red = (unsigned

char*) img_triclops_rectified_colour_left.red;

 unsigned char* ptr_triclops_green = (unsigned

char*) img_triclops_rectified_colour_left.green;

 unsigned char* ptr_triclops_blue = (unsigned

char*) img_triclops_rectified_colour_left.blue;

 img_ipl_red->imageData =

(char*)ptr_triclops_red;

 img_ipl_green->imageData =

(char*)ptr_triclops_green;

 img_ipl_blue->imageData =

(char*)ptr_triclops_blue;

 cvMerge(img_ipl_blue, img_ipl_green,

img_ipl_red, NULL, img_ipl_rectified_colour_left);

 cvNamedWindow("Rectify Color: LEFT",

CV_WINDOW_AUTOSIZE);

 cvShowImage("Rectify Color: LEFT",

img_ipl_rectified_colour_left);

 }

 else if (image_triclops_leftRight == 1)

 {

 triclopsRectifyColorImage(triclopsContext,

TriCam_RIGHT, &m_tiRawColorImages[0],

&img_triclops_rectified_colour_right);

 IplImage* img_ipl=

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols,

img_triclops_rectified_colour_right.nrows),8,3);

 IplImage* img_ipl_red=

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols,

img_triclops_rectified_colour_right.nrows),8,1);

 IplImage* img_ipl_green=

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols,

img_triclops_rectified_colour_right.nrows),8,1);

 IplImage* img_ipl_blue=

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols,

img_triclops_rectified_colour_right.nrows),8,1);

 img_ipl_rectified_colour_right =

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols,

img_triclops_rectified_colour_right.nrows),8,3);

182

 unsigned char* ptr_triclops_red = (unsigned

char*) img_triclops_rectified_colour_right.red;

 unsigned char* ptr_triclops_green = (unsigned

char*) img_triclops_rectified_colour_right.green;

 unsigned char* ptr_triclops_blue = (unsigned

char*) img_triclops_rectified_colour_right.blue;

 img_ipl_red->imageData =

(char*)ptr_triclops_red;

 img_ipl_green->imageData =

(char*)ptr_triclops_green;

 img_ipl_blue->imageData =

(char*)ptr_triclops_blue;

 cvMerge(img_ipl_blue, img_ipl_green,

img_ipl_red, NULL, img_ipl_rectified_colour_right);

 cvNamedWindow("Rectify Color: RIGHT",

CV_WINDOW_AUTOSIZE);

 cvShowImage("Rectify Color: RIGHT",

img_ipl_rectified_colour_right);

 }

 }

}

#pragma endregion

#pragma region DEPTH

void classBumbleContext::grab_disparity_map(int

nStereo_disparity_min, int nStereo_disparity_max, int

nStereo_maskSize, int bGenerateLUTbefore)

{

 triclopsSetDisparityMappingOn(triclopsContext, false);

 triclopsSetDisparity(triclopsContext,

nStereo_disparity_min, nStereo_disparity_max);

 triclopsSetStereoMask(triclopsContext, nStereo_maskSize);

 triclopsSetEdgeCorrelation(triclopsContext, 1);

 triclopsSetEdgeMask(triclopsContext, 11);

 triclopsSetSurfaceValidation(triclopsContext, 1);

 triclopsSetSurfaceValidationSize(triclopsContext, 200);

 triclopsSetSurfaceValidationDifference(triclopsContext,

1.0);

 triclopsSetTextureValidation(triclopsContext, 1);

 triclopsSetTextureValidationThreshold(triclopsContext,

0.2);

 triclopsSetUniquenessValidation(triclopsContext, 0);

 triclopsPreprocess(triclopsContext, &m_tiStereoRGB);

 triclopsRectify(triclopsContext, &m_tiStereoRGB);

 triclopsStereo(triclopsContext);

 triclopsGetImage(triclopsContext, TriImg_DISPARITY,

TriCam_REFERENCE, &img_triclops_disparity);

 // GENERATING LUT ---------------------------------------

 int nMinDisparity; // value in context

 int nMaxDisparity; // value in context

183

 int nDisparityOffset; // value in context

 triclopsGetDisparity(triclopsContext, &nMinDisparity,

&nMaxDisparity);

 triclopsGetDisparityOffset(triclopsContext,

&nDisparityOffset);

 if(bGenerateLUTbefore == 0 || nMinDisparity-

nDisparityOffset != nStereo_disparity_min ||

nStereo_disparity_max-nDisparityOffset !=

nStereo_disparity_max)

 {

 bGenerateLUTbefore = 1;

 nStereo_disparity_min = nMinDisparity-

nDisparityOffset; // yesterday stop here

 nStereo_disparity_max = nMaxDisparity-

nDisparityOffset;

 generate_LUT(nStereo_disparity_min,

nStereo_disparity_max);

 }

 //---

 unsigned char* pRow = img_triclops_disparity.data;

 int iPixelInc= img_triclops_disparity.rowinc;

 img_ipl_disparity_colourReMap =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

img_triclops_disparity.nrows),8,3);

 img_ipl_disparity=

cvCreateImage(cvSize(img_triclops_disparity.ncols,

img_triclops_disparity.nrows),8,1); //disparity_gray

 for (int y = 0; y < img_triclops_disparity.nrows; y++)

 {

 uchar* ptr_ipl = (uchar*)

(img_ipl_disparity_colourReMap->imageData + y *

img_ipl_disparity_colourReMap->widthStep);

 uchar* ptr_ipl_disparity = (uchar*)

(img_ipl_disparity->imageData + y * img_ipl_disparity-

>widthStep); //disparity_gray

 for (int x = 0; x < img_triclops_disparity.ncols;

x++)

 {

 if (pRow[x] > 239)

 { // invalid pixel

 int index = pRow[x];

 ptr_ipl[3*x] =

ucInvalidDisparityMapLUT[index][0]; // red

 ptr_ipl[3*x+1] =

ucInvalidDisparityMapLUT[index][1]; // green

 ptr_ipl[3*x+2] =

ucInvalidDisparityMapLUT[index][2]; // blue

 ptr_ipl_disparity[x] = index;

//disparity_gray

 }

 else

 { // valid pixel

 int index = pRow[x] << (8 -

DISPARITY_LUT_SHIFT_BITS);

184

 ptr_ipl[3*x] =

ucValidDisparityMapLUT[index][0]; // red

 ptr_ipl[3*x+1] =

ucValidDisparityMapLUT[index][1]; // green

 ptr_ipl[3*x+2] =

ucValidDisparityMapLUT[index][2]; // blue

 ptr_ipl_disparity[x] = index;

//disparity_gray

 }

 }

 pRow += iPixelInc;

 }

 cvNamedWindow("DISPARITY: COLOUR", CV_WINDOW_AUTOSIZE);

 cvShowImage("DISPARITY: COLOUR",

img_ipl_disparity_colourReMap);

}

//GENERATE LUT

//---

--

// inline function

inline void disparityToTemperature(TriclopsContext, // may

want to use this in the future...

 unsigned int uiDisp16Bit,

 double dMinDisp,

 double dMaxDisp,

 double *pdRed,

 double *pdGreen,

 double *pdBlue)

{

 // note: context not used now but maybe later

 double dDisp = (double) uiDisp16Bit/256.0;

 if (dDisp < dMinDisp)

 {

 dDisp = dMinDisp;

 }

 if (dDisp > dMaxDisp)

 {

 dDisp = dMaxDisp;

 }

 double dRange = dMaxDisp - dMinDisp;

 // This code is a little more complicated than it should be,

but it

 // does allow one to easily tweak the sizes of the different

color

 // zones.

 // you can change the width of the red zone, blue zone and

green zone

 // by tweaking the dRed, dGreen and dBlue values

 double dRed = 1;

 double dGreen = 1;

 double dBlue = 1;

 double dTotal = dRed + dGreen + dBlue;

 double dNormDisp = (dDisp-dMinDisp)/dRange;

185

 double dBGThresh = dBlue/dTotal;

 double dGRThresh = (dBlue+dGreen)/dTotal;

 if (dNormDisp < dBGThresh)

 {

 double dInBand = dNormDisp/dBGThresh;

 *pdRed = 0;

 *pdGreen = 255*dInBand;

 *pdBlue = 255;

 }

 else if (dNormDisp < dGRThresh)

 {

 double dInBand = (dNormDisp-dBGThresh)/(dGRThresh-

dBGThresh);

 *pdRed = 255*dInBand;

 *pdGreen = 255;

 pdBlue = 255(1-dInBand);

 }

 else

 {

 double dInBand = (dNormDisp-dGRThresh)/(1-dGRThresh);

 *pdRed = 255;

 pdGreen = 255(1-dInBand);

 *pdBlue = 0;

 }

 return;

}

void classBumbleContext::generate_LUT(int

nStereo_disparity_min, int nStereo_disparity_max)

{

 // get the invalid pixel mappings

 unsigned char ucInvalidTexture;

 unsigned char ucInvalidUniqueness;

 unsigned char ucInvalidSurface;

 unsigned char ucInvalidBackForth;

 unsigned char ucInvalidSubpixel;

 triclopsGetTextureValidationMapping(triclopsContext ,

&ucInvalidTexture);

 triclopsGetUniquenessValidationMapping(triclopsContext ,

&ucInvalidUniqueness);

 triclopsGetSurfaceValidationMapping(triclopsContext ,

&ucInvalidSurface);

 triclopsGetSubpixelValidationMapping(triclopsContext ,

&ucInvalidSubpixel);

 triclopsGetBackForthValidationMapping(triclopsContext ,

&ucInvalidBackForth);

 //---

 // WITHOUT SUBPIXEL INTERPOLATION

 for(int i = 0; i < DISPARITY_VALID_LUT_ENTRIES; i++)

 { // generate VALID LUT

 unsigned int uiDisp16Bit = i <<

DISPARITY_LUT_SHIFT_BITS;

 if(uiDisp16Bit <= 0xFF00)

 {

 double dRed, dGreen, dBlue;

 disparityToTemperature(triclopsContext,

 uiDisp16Bit,

186

 (double)

nStereo_disparity_min,

 (double)

nStereo_disparity_max,

 &dRed,

 &dGreen,

 &dBlue);

 ucValidDisparityMapLUT[i][2] = (unsigned

char) dRed;

 ucValidDisparityMapLUT[i][1] = (unsigned

char) dGreen;

 ucValidDisparityMapLUT[i][0] = (unsigned

char) dBlue;

 }

 }

 for (int i = 0; i < DISPARITY_INVALID_LUT_ENTRIES; i++)

 { // generate INVALID LUT // make them all grey

 ucInvalidDisparityMapLUT[i][0] = 127;

 ucInvalidDisparityMapLUT[i][1] = 127;

 ucInvalidDisparityMapLUT[i][2] = 127;

 }

}

#pragma endregion // generate disparity and LUT

void classBumbleContext::generate_VDisparity(int

nStereo_disparity_max)

{

 int xn=0;

 int yn=0;

 int xn2 = 0;

 long long int sum_xy = 0;

 long long int sum_x = 0;

 long long int sum_y = 0;

 long long int sum_x2 = 0;

 long long int sum2_x = 0;

 long long int n = 0;

 long long int slope_m = 0;

 long long int intercept_c = 0;

 int index_max;

 img_ipl_vdisparity =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,1);

 IplImage* img_ipl_vdisparity_min_y =

cvCreateImage(cvSize(nStereo_disparity_max, 1),8,1);

 IplImage* img_ipl_vdisparity_min =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,1);

 cvZero(img_ipl_vdisparity_min_y);

 cvZero(img_ipl_vdisparity_min);

 cvZero(img_ipl_vdisparity);

 index_max = 0;

 unsigned char* pRow = img_triclops_disparity.data;

 int iPixelInc= img_triclops_disparity.rowinc;

 for (int y = 0; y < img_triclops_disparity.nrows; y++)

 {

187

 uchar* ptr_ipl_vdisparity = (uchar*)

(img_ipl_vdisparity->imageData + y * img_ipl_vdisparity-

>widthStep);

 uchar* ptr_ipl_vdisparity_min_y = (uchar*)

(img_ipl_vdisparity_min_y->imageData);

 for (int x = 0; x < img_triclops_disparity.ncols;

x++)

 {

 if (pRow[x] < 239)

 {

 int index = pRow[x] << (8 -

DISPARITY_LUT_SHIFT_BITS);

 // ------------------------------------

 // calculating v-disparity

 ptr_ipl_vdisparity[pRow[x]]=

ptr_ipl_vdisparity[pRow[x]]+1; //test

 if(ptr_ipl_vdisparity[pRow[x]] >

index_max)

 {

 index_max =

ptr_ipl_vdisparity[pRow[x]];

 }

 if(y >=

ptr_ipl_vdisparity_min_y[pRow[x]])

 {

 ptr_ipl_vdisparity_min_y[pRow[x]]

= y;

 }

 // preparation to calculating ground

plane -

 n = n+1;

 sum_xy = sum_xy + (y*pRow[x]);

 sum_x = sum_x + pRow[x];

 sum_y = sum_y + y;

 xn2 = pRow[x]*pRow[x];

 sum_x2 = sum_x2 + xn2;

 //-------------------------------------

 }

 }

 pRow += iPixelInc;

 }

 cvNamedWindow("min", CV_WINDOW_AUTOSIZE);

 cvShowImage("min", img_ipl_vdisparity_min_y);

 //---

 // estimating ground plane and horizon

 slope_m = ((n*sum_xy)-(sum_x*sum_y))/((n*sum_x2)-

sum_x*sum_x); // 8.94x13

 intercept_c = (sum_y-(slope_m*sum_x))/n;

 for (int y = 0; y < img_ipl_vdisparity->height; y++)

 {

 uchar* ptr_ipl_vdisparity = (uchar*)

(img_ipl_vdisparity->imageData + y * img_ipl_vdisparity-

>widthStep); //test

188

 uchar* ptr_ipl_vdisparity_min_y = (uchar*)

(img_ipl_vdisparity_min_y->imageData);

 uchar* ptr_ipl_vdisparity_min = (uchar*)

(img_ipl_vdisparity_min->imageData + y *

img_ipl_vdisparity_min->widthStep); //test

 for (int x = 0; x < img_ipl_vdisparity-

>width; x++)

 {

 ptr_ipl_vdisparity[x] =

ptr_ipl_vdisparity[x]*255/index_max;

 if (ptr_ipl_vdisparity_min_y[x] == y)

 {

 ptr_ipl_vdisparity_min[x] = 255;

 }

 }

 }

 cvNamedWindow("V-Disparity", CV_WINDOW_AUTOSIZE);

 cvShowImage("V-Disparity", img_ipl_vdisparity);

 cvNamedWindow("V-Disparity - min", CV_WINDOW_AUTOSIZE);

 cvShowImage("V-Disparity - min",

img_ipl_vdisparity_min);

}

void classBumbleContext::ground_detection(int

nStereo_disparity_max)

{

 #pragma region U-Disparity

 IplImage* img_ipl_udisparity =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

nStereo_disparity_max),8,1);

 cvZero(img_ipl_udisparity);

 IplImage* img_ipl_udisparity_thresh =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

nStereo_disparity_max),8,1);

 cvZero(img_ipl_udisparity_thresh);

 IplImage* img_ipl_disparity_thresh =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

img_triclops_disparity.nrows),8,1);

 cvCopy(img_ipl_disparity, img_ipl_disparity_thresh);

 for (int y=0; y<img_triclops_disparity.nrows; y++)

 { // Generate U-Disparity

 unsigned char* pRow = img_triclops_disparity.data +

y*img_triclops_disparity.rowinc;

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 unsigned char* ptr_ipl_udisparity =

(uchar*)(img_ipl_udisparity->imageData +

pRow[x]*img_ipl_udisparity->widthStep);

 if (pRow[x] < 239)

 {

189

 ptr_ipl_udisparity[x] =

ptr_ipl_udisparity[x]+1;

 }

 }

 }

 cvNamedWindow("U-Disparity", CV_WINDOW_AUTOSIZE);

 cvShowImage("U-Disparity", img_ipl_udisparity);

 #pragma endregion // U-Disparity

#pragma region world xyz

 IplImage* img_ipl_depth =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

img_triclops_disparity.nrows),8,3);

 float u, v, z;

 int disparity;

 float u_max = 0;

 float v_max = 0;

 float z_max = 0;

 float u_min = 0;

 float v_min = 0;

 float z_min = 0;

 float centerCols;

 float centerRows;

 float focalLength;

 float baseline;

 triclopsGetImageCenter(triclopsContext, ¢erRows,

¢erCols);

 triclopsGetFocalLength(triclopsContext, &focalLength);

 triclopsGetBaseline(triclopsContext, &baseline);

 float distance;

 float real_u;

 float real_v;

 int depth_x, depth_y , depth_z;

 for (int y = 0; y < img_triclops_disparity.nrows; y++)

 { // to get the maximum distance of sensed

 uchar* ptr_ipl_depth = (uchar*) (img_ipl_depth-

>imageData + y * img_ipl_depth->widthStep);

 unsigned char* pRow = img_triclops_disparity.data +

y*img_triclops_disparity.rowinc;

 for (int x = 0; x < img_triclops_disparity.ncols;

x++)

 {

 if (pRow[x] < 239)

 {

 disparity = pRow[x];

 triclopsRCD8ToXYZ(triclopsContext, x,

y, disparity, &u, &v, &z);

 if ((u)>u_max)

 {

 u_max = u;

190

 }

 if ((v)>v_max)

 {

 v_max = v;

 }

 if (z>z_max)

 {

 z_max = z;

 }

 if ((u)<u_min)

 {

 u_min = u;

 }

 if ((v)<v_min)

 {

 v_min = v;

 }

 if (z<z_min)

 {

 z_min = z;

 }

 }

 }

 }

#pragma endregion

 #pragma region Image preparation

 img_ipl_HS_disparity_half =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

(img_ipl_rectified_colour_left->height)/2),8,3);

 for(int y=0; y<img_ipl_HS_disparity_half->height; y++)

 { // splitting the HSD image into half / taking just

the lower half into consideration

 uchar* ptr_1 = (uchar*) (img_ipl_HS_disparity_half-

>imageData + y * img_ipl_HS_disparity_half->widthStep);

 uchar* ptr_2 = (uchar*) (img_ipl_HSV_left-

>imageData + (y+192)* img_ipl_HSV_left->widthStep);

 uchar* ptr_3 = (uchar*) (img_ipl_disparity_thresh-

>imageData + (y+191)* img_ipl_disparity_thresh->widthStep);

 for(int x=0; x<img_ipl_HS_disparity_half->width;

x++)

 {

 ptr_1[3*x] = ptr_2[3*x];

 ptr_1[3*x+1] = ptr_2[3*x+1];

 ptr_1[3*x+2] = ptr_3[x];

//ptr_2[3*x+2]; //<-------------------------dont take disparity

into consideration

 }

 }

 // --

 // removing POTENTIAL obstacle area from HS-Disparity

Image

 // taking into consideration just the POTENTIAL ground

plane

 for (int y=0; y< img_ipl_udisparity->height; y++)

191

 { // setting threshold to isolate the obstacle from

ground

 uchar* ptr1 = (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep);

 for(int x=0; x< img_ipl_udisparity->width; x++)

 {

 if (ptr1[x] > 20)

 { // if there is 20 pixels with the same

value in the column, then it is more likely to be obstacles

 int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value

 for (int h=0; h<

img_ipl_HS_disparity_half->height; h++)

 { // browsing through the column of

the disparity image

 uchar* ptr3 = (uchar*)

(img_ipl_HS_disparity_half->imageData +

h*img_ipl_HS_disparity_half->widthStep);

 unsigned char* pRow =

img_triclops_disparity.data +

(h+191)*img_triclops_disparity.rowinc;

 if (pRow[x] == disparity_value &&

pRow[x] < 239)

 { // REMOVING THE POTENTIAL

OBSTACLE AREA

 ptr3[3*x] = 0;

 ptr3[3*x+1] = 0;

 ptr3[3*x+2] = 0;

 }

 }

 }

 }

 }

 // --

 //Split Image

 IplImage* plane1 =

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1);

 IplImage* plane2 =

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1);

 IplImage* plane3 =

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1);

 cvSplit(img_ipl_HS_disparity_half, plane1, plane2,

plane3, NULL);

 #pragma endregion //preparing HS_disparity image

 // INITIALIZATION FOR K-MEAN

 int numOfCluster= 5; // Number of Cluster

 int iVector=0; // counter for each input plane / size of

EACH input plane into kmean

 #pragma region kmean: colour assignment

 // colour assignment to each colour

 int colour_Tab[5][3];

 colour_Tab[0][0]=255;

 colour_Tab[0][1]=0;

 colour_Tab[0][2]=0;

 colour_Tab[1][0]=0;

 colour_Tab[1][1]=255;

 colour_Tab[1][2]=0;

192

 colour_Tab[2][0]=0;

 colour_Tab[2][1]=0;

 colour_Tab[2][2]=255;

 colour_Tab[3][0]=255;

 colour_Tab[3][1]=0;

 colour_Tab[3][2]=255;

 colour_Tab[4][0]=0;

 colour_Tab[4][1]=255;

 colour_Tab[4][2]=255;

 # pragma endregion // colour for each cluster

 #pragma region kmean: preparation of input plane vector

 // MEMORY ALLOCATION

 // piCluster = output cluster ID

 int* piCluster=(int*)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(int));

 // planeVector = array plane vector for input

 CvVect32f

planeVector=(CvVect32f)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(CvVect32f));

 // converting IplImage into array vector

 unsigned char pixelPointer[3]; // array pointer

 for(int i=0; i<plane1->height; i++)

 {

 for(int x=0; x<plane1->width; x++)

 {

 pixelPointer[0] = *(plane1-

>imageData+i*plane1->width +x);

 pixelPointer[1] = *(plane2-

>imageData+i*plane2->width +x);

 pixelPointer[2] = *(plane3-

>imageData+i*plane3->width +x); //

 planeVector[iVector]=(CvVect32f)malloc(3*sizeof(unsigned

char)); // allocation memory for each plane vector

 planeVector[iVector][0]=(unsigned

char)pixelPointer[0];

 planeVector[iVector][1]=(unsigned

char)pixelPointer[1];

 planeVector[iVector][2]=(unsigned

char)pixelPointer[2];

 iVector++;

 }

 }

 # pragma endregion // preparation of input plane vector

for kmean

 #pragma region k-mean clustering

 // cvKMeans(no of cluster, input vector, size of input

vector, no of vectors, clustering criteria, output cluster ID)

 cvKMeans (numOfCluster,

planeVector,(img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height),

 3,cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,

10, 1.0), piCluster);

 #pragma endregion //K-mean Function

193

 IplImage* img_ipl_vdisparity_3c =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,3);

 IplImage* img_ipl_dummy =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,1);

 cvZero(img_ipl_dummy);

 cvMerge(img_ipl_dummy, img_ipl_vdisparity,img_ipl_dummy,

NULL, img_ipl_vdisparity_3c);

 IplImage* img_ipl_vdisparity_3c_iter2 =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,3);

 cvCopy(img_ipl_vdisparity_3c,

img_ipl_vdisparity_3c_iter2);

 #pragma region calculating v-disparity and displaying

clusters

 // Memory allocation for output cluster

 IplImage *img_ipl_outputClusterImage =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

(img_ipl_rectified_colour_left->height)),8,3);

 IplImage *clusterImage[5];

 for (int i=0; i<5; i++)

 {

 clusterImage[i] =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

(img_ipl_rectified_colour_left->height)),8,3);

 }

 // variables for curve fitting

 int index[5] = {0};

 int index_max[5] = {0}; //test

 int xn[5] = {0};

 int yn[5] = {0};

 int xn2[5] = {0};

 long long int sum_xy[5] = {0};

 long long int sum_x[5] = {0};

 long long int sum_y[5] = {0};

 long long int sum_x2[5] = {0};

 long long int sum2_x[5] = {0};

 long long int n[5] = {0};

 long long int slope_m[5] = {0};

 long long int intercept_c[5] = {0};

 int clusterNumber;

 iVector = 0;

 int disparity_count_max = 0;

 IplImage* img_ipl_vdisparity_histogram =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,1); // test

 cvZero(img_ipl_vdisparity_histogram);

 for (int y=192; y< img_triclops_disparity.nrows; y++)

 {

 uchar* pRow = (uchar*) (img_triclops_disparity.data

+ y * img_triclops_disparity.rowinc);

194

 //uchar* ptr_VDhist = (uchar*)

(img_ipl_vdisparity_histogram->imageData + y *

img_ipl_vdisparity_histogram->widthStep);

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 clusterNumber = piCluster[iVector];

 if (pRow[x] < 239)

 {

 // collecting data for curve fitting

formula

 n[clusterNumber] = n[clusterNumber]+1;

 sum_xy[clusterNumber] =

sum_xy[clusterNumber] + (y*pRow[x]);

 sum_x[clusterNumber] =

sum_x[clusterNumber] + pRow[x];

 sum_y[clusterNumber] =

sum_y[clusterNumber] + y;

 xn2[clusterNumber] = pRow[x]*pRow[x];

 sum_x2[clusterNumber] =

sum_x2[clusterNumber] + xn2[clusterNumber];

 }

 iVector++;

 }

 }

 //---

 // curve fitting

 slope_m_best = 0;

 intercept_c_best = 0;

 for(int i=0; i<numOfCluster; i++)

 {

 slope_m[i] = ((n[i]*sum_xy[i])-

(sum_x[i]*sum_y[i]))/((n[i]*sum_x2[i])-sum_x[i]*sum_x[i]);

 intercept_c[i] = (sum_y[i]-

(slope_m[i]*sum_x[i]))/n[i];

 if(slope_m[i]>slope_m_best)

 { // choosing the best v-disparity line

 slope_m_best = slope_m[i];

 intercept_c_best = intercept_c[i];

 horizon_y = intercept_c_best;

 }

 }

 //---

 IplImage* img_ipl_best_line =

cvCreateImage(cvSize(img_ipl_vdisparity->width,

img_ipl_vdisparity->height),8,3); // test

 cvZero(img_ipl_best_line);

 for (int y = 0; y < img_ipl_vdisparity->height; y++)

 {

 uchar* ptr_ipl_best_line = (uchar*)

(img_ipl_best_line->imageData + y * img_ipl_best_line-

>widthStep);

 uchar* ptr_ipl_best_line_3c = (uchar*)

(img_ipl_vdisparity_3c->imageData + y * img_ipl_vdisparity_3c-

>widthStep);

195

 for (int x = 0; x < img_ipl_vdisparity-

>width; x++)

 {

 for(int i=0; i<numOfCluster; i++)

 {

 if(y-

(slope_m[i]*x)==intercept_c[i])

 {

 ptr_ipl_best_line[3*x] =

colour_Tab[i][0];

 ptr_ipl_best_line[3*x+1] =

colour_Tab[i][1];

 ptr_ipl_best_line[3*x+2] =

colour_Tab[i][2];

 ptr_ipl_best_line_3c[3*x]

= 0;

 ptr_ipl_best_line_3c[3*x+1]

= 0;

 ptr_ipl_best_line_3c[3*x+2]

= 255;

 }

 }

 if(y-

(slope_m_best*x)==intercept_c_best)

 {

 ptr_ipl_best_line_3c[3*x] = 255;

 ptr_ipl_best_line_3c[3*x+1] =

255;

 ptr_ipl_best_line_3c[3*x+2] =

255;

 }

 }

 }

 img_ipl_groundPlane =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_groundPlane);

 IplImage *img_ipl_markers =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvZero(img_ipl_markers);

 //---

 // Prepraring POTENTIAL OBSTACLE AREAS for Obstacle

Detection

 IplImage* img_ipl_obstacles_initial =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_obstacles_initial);

 for(int y=0; y<img_ipl_obstacles_initial->height; y++)

 { //HS_DISPARITY FULL

196

 uchar* ptr_1 = (uchar*) (img_ipl_obstacles_initial-

>imageData + y * img_ipl_obstacles_initial->widthStep);

 uchar* ptr_2 = (uchar*) (img_ipl_HSV_right-

>imageData + y* img_ipl_HSV_right->widthStep);

 uchar* ptr_3 = (uchar*) (img_ipl_disparity-

>imageData + y* img_ipl_disparity->widthStep);

 for(int x=0; x<img_ipl_rectified_colour_right-

>width; x++)

 {

 ptr_1[3*x] = ptr_2[3*x];

 ptr_1[3*x+1] = ptr_2[3*x+1];

 //ptr_1[3*x+2] = 0; //ptr_3[x];

 ptr_1[3*x+1] = ptr_3[x];

 }

 }

 IplImage* img_ipl_water_testing =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 img_ipl_markers_brightness_littleChanges =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 img_ipl_markers_brightness_largeChanges =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvZero(img_ipl_markers_brightness_littleChanges);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_water_testing);

 // Duplicating original image for markers

 IplImage* img_ipl_markers_clone =

cvCloneImage(img_ipl_rectified_colour_right);

 //output Image

 IplImage* img_ipl_watershedOutput =

cvCloneImage(img_ipl_rectified_colour_right);

 //---

 for (int y=0; y< img_triclops_disparity.nrows; y++)

 { // marking the ground plane

 uchar* pRow = (uchar*) (img_triclops_disparity.data

+ y * img_triclops_disparity.rowinc);

 uchar* ptr = (uchar*) (img_ipl_groundPlane-

>imageData + y * img_ipl_groundPlane->widthStep);

 uchar* ptr_markers = (uchar*) (img_ipl_markers-

>imageData + y * img_ipl_markers->widthStep);

 uchar* ptr_obstacles_initial =

(uchar*)(img_ipl_obstacles_initial->imageData + y *

img_ipl_obstacles_initial->widthStep);

 uchar* ptr_HSV_left = (uchar*)(img_ipl_HSV_left-

>imageData + y * img_ipl_HSV_left->widthStep);

 uchar* ptr_HSV_right = (uchar*)(img_ipl_HSV_right-

>imageData + y * img_ipl_HSV_right->widthStep);

 uchar* ptr_testing =

(uchar*)(img_ipl_water_testing->imageData + y *

img_ipl_water_testing->widthStep);

 uchar* ptr_changes =

(uchar*)(img_ipl_markers_brightness_littleChanges->imageData +

y * img_ipl_markers_brightness_littleChanges->widthStep);

197

 uchar* ptr_large_changes =

(uchar*)(img_ipl_markers_brightness_largeChanges->imageData + y

* img_ipl_markers_brightness_largeChanges->widthStep);

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 if (pRow[x] < 239 && y

>=(slope_m_best*pRow[x] + intercept_c_best - 10)) //-10

 {

 ptr[3*x] = 0;

 ptr[3*x+1] = 0;

 ptr[3*x+2] = 255; //255

 ptr_markers[x] = 255;

 int ref = x + pRow[x];

 int diff_v = (ptr_HSV_right[3*x+2] -

ptr_HSV_left[3*ref+2]);

 if (diff_v > -20)

 {

 ptr_testing[3*ref] = 255;

 ptr_testing[3*ref+1] = 255;

 ptr_changes[x] = 255;

 }

 if (diff_v < -20)

 {

 ptr_large_changes[x] = 255;

 }

 }

 }

 }

 cvNamedWindow("Ground Plane", CV_WINDOW_AUTOSIZE);

 cvShowImage("Ground Plane", img_ipl_groundPlane);

 cvNamedWindow("testing", CV_WINDOW_AUTOSIZE);

 cvShowImage("testing",

img_ipl_markers_brightness_littleChanges);

 cvNamedWindow("V-disparity: ground profile",

CV_WINDOW_AUTOSIZE);

 cvShowImage("V-disparity: ground profile",

img_ipl_vdisparity_3c);

 IplImage* img_ipl_rangeLimit =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_rangeLimit);

 for (int y=0; y< img_ipl_udisparity->height; y++)

 { // removing area that has little disparity

information

 uchar* ptr1 = (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep);

 uchar* ptr_rangeLimit = (uchar*)

(img_ipl_rangeLimit->imageData + y*img_ipl_rangeLimit-

>widthStep);

198

 for(int x=0; x< img_ipl_udisparity->width; x++)

 {

 if (ptr1[x] > 1 && ptr1[x] < 239) // >100

original

 { // if there is 20 pixels with the same

value in the column, then it is more likely to be obstacles

 int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value

 for (int h=0; h<

img_ipl_obstacles_initial->height; h++)

 { // browsing through the column of

the disparity image

 uchar* ptr_markers = (uchar*)

(img_ipl_markers->imageData + h * img_ipl_markers->widthStep);

 uchar* ptr2 = (uchar*)

(img_ipl_obstacles_initial->imageData +

h*img_ipl_obstacles_initial->widthStep);

 unsigned char* pRow =

img_triclops_disparity.data + h*img_triclops_disparity.rowinc;

 disparity = pRow[x];

 triclopsRCD8ToXYZ(

triclopsContext, x, y, disparity, &u, &v, &z);

 if(z>5)

 {

 ptr_rangeLimit[3*x] = 0;

 ptr_rangeLimit[3*x+1] = 0;

 ptr_rangeLimit[3*x+2] = 0;

 }

 if (pRow[x] == disparity_value &&

pRow[x] < 239)

 { // marking the potential

obstacle

 ptr2[3*x] = (z/z_max)*255;

 ptr2[3*x+1] =

(z/z_max)*255;

 ptr2[3*x+2] =

(z/z_max)*255; // making it invalid pixels

 ptr_markers[x] =

(z/z_max)*255;

 }

 }

 }

 }

 }

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0,

CV_MOP_OPEN, 1);

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0,

CV_MOP_CLOSE, 1);

 cvNamedWindow("Markers", CV_WINDOW_AUTOSIZE);

 cvShowImage("Markers", img_ipl_markers);

 cvNamedWindow("Range Limit", CV_WINDOW_AUTOSIZE);

 cvShowImage("Range Limit", img_ipl_rangeLimit);

#pragma endregion

199

}

void classBumbleContext::water_detection(int

nStereo_disparity_max)

{

 IplImage* img_ipl_water =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvZero(img_ipl_water);

 #pragma region Polarization Cue

 // Image to mark the water area

 IplImage* img_ipl_water_polarization =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 IplImage* img_ipl_markers_polarization =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_water_polarization);

 for (int y = horizon_y; y <

img_triclops_disparity.nrows; y++)

 { // marking the water region based on POLARIZATION

 unsigned char* pRow = img_triclops_disparity.data +

y*img_triclops_disparity.rowinc;

 uchar* ptr_ipl_water = (uchar*)

(img_ipl_water_polarization->imageData + y *

img_ipl_water_polarization->widthStep);

 uchar* ptr_ipl_marker = (uchar*)

(img_ipl_markers_polarization->imageData + y *

img_ipl_markers_polarization->widthStep);

 uchar* ptr_ipl_marker2 = (uchar*) (img_ipl_water-

>imageData + y * img_ipl_water->widthStep);

 for (int x = 0; x < img_triclops_disparity.ncols;

x++)

 {

 if (pRow[x] > 239)

 {

 ptr_ipl_water[3*x] = 255;

 ptr_ipl_water[3*x+1] = 0;

 ptr_ipl_water[3*x+2] = 0;

 ptr_ipl_marker[x] = 255;

 ptr_ipl_marker2[x] = 255;

 }

 }

 }

 #pragma endregion

 #pragma region Texture Cue

 IplImage *img_ipl_grayscale_right =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

200

 cvCvtColor(img_ipl_rectified_colour_right,

img_ipl_grayscale_right, CV_BGR2GRAY);

 cvSplit(img_ipl_rectified_colour_right,

img_ipl_grayscale_right, NULL, NULL, NULL);

 IplImage *img_ipl_low_texture =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvZero(img_ipl_low_texture);

 float variance_sq_x1;

 float variance_mean_sq_x;

 float variance_mean;

 float variance_sq_mean;

 float variance;

 float variance_normalized;

 float relative_smoothness;

 float element_1_1;

 float element_1_2;

 float element_1_3;

 float element_2_1;

 float element_2_2;

 float element_2_3;

 float element_3_1;

 float element_3_2;

 float element_3_3;

 CvScalar mean;

 CvScalar std_dev;

 double element;

 for (int y=1; y<(img_ipl_rectified_colour_right->height -

1); y++)

 { // Detecting the low texture region in WHOLE image

 unsigned char* ptr_gray_top =

(uchar*)(img_ipl_grayscale_right->imageData + (y-

1)*img_ipl_grayscale_right->widthStep);

 unsigned char* ptr_gray_mid =

(uchar*)(img_ipl_grayscale_right->imageData +

y*img_ipl_grayscale_right->widthStep);

 unsigned char* ptr_gray_bottom =

(uchar*)(img_ipl_grayscale_right->imageData +

(y+1)*img_ipl_grayscale_right->widthStep);

 unsigned char* ptr_low_text =

(uchar*)(img_ipl_low_texture->imageData +

y*img_ipl_low_texture->widthStep);

 for(int x=1; x<(img_ipl_rectified_colour_right-

>width - 1); x++)

 {

 element_1_1 = ptr_gray_top[x-1];

 element_1_2 = ptr_gray_top[x];

 element_1_3 = ptr_gray_top[x+1];

 element_2_1 = ptr_gray_mid[x-1];

 element_2_2 = ptr_gray_mid[x];

 element_2_3 = ptr_gray_mid[x+1];

 element_3_1 = ptr_gray_bottom[x-1];

 element_3_2 = ptr_gray_bottom[x];

 element_3_3 = ptr_gray_bottom[x+1];

201

 variance_sq_x1 = (element_1_1*element_1_1) +

(element_1_2*element_1_2) + (element_1_3*element_1_3) +

(element_2_1*element_2_1) + (element_2_2*element_2_2) +

(element_2_3*element_2_3) +

(element_3_1*element_3_1) + (element_3_2*element_3_2) +

(element_3_3*element_3_3);

 variance_mean_sq_x = variance_sq_x1/9;

 variance_mean = ((element_1_1) +

(element_1_2) + (element_1_3) +

 (element_2_1) +

(element_2_2) + (element_2_3) +

 (element_3_1) +

(element_3_2) + (element_3_3))/9;

 variance_sq_mean =

variance_mean*variance_mean;

 variance = (variance_mean_sq_x -

variance_sq_mean);

 variance_normalized = variance/(255*255);

 relative_smoothness = 1 -

(1/(1+variance_normalized));

 if (relative_smoothness < 0.01)

 {

 ptr_low_text[x] = 255;

 }

 }

 }

 IplImage *img_ipl_texture =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 for (int y = horizon_y; y <

img_triclops_disparity.nrows; y++)

 { // Marking the water region detected by texture and

brightness cue

 uchar* ptr_ipl_water = (uchar*)

(img_ipl_water_polarization ->imageData + y *

img_ipl_water_polarization ->widthStep);

 uchar* ptr_ipl_texture = (uchar*)

(img_ipl_low_texture->imageData + y * img_ipl_low_texture-

>widthStep);

 uchar* ptr_ipl_texture1 = (uchar*)

(img_ipl_texture->imageData + y * img_ipl_texture->widthStep);

 uchar* ptr_ipl_ground = (uchar*)

(img_ipl_markers_brightness_littleChanges->imageData + y *

img_ipl_markers_brightness_littleChanges->widthStep);

 uchar* ptr_ipl_largeChanges= (uchar*)

(img_ipl_markers_brightness_largeChanges->imageData + y *

img_ipl_markers_brightness_largeChanges->widthStep);

202

 uchar* ptr_ipl_marker2 = (uchar*) (img_ipl_water-

>imageData + y * img_ipl_water->widthStep);

 unsigned char* pRow = img_triclops_disparity.data +

y*img_triclops_disparity.rowinc;

 for (int x = 0; x < img_triclops_disparity.ncols;

x++)

 {

 if (pRow[x] < 239 && y

>=(slope_m_best*pRow[x] + intercept_c_best - 10)) //-10

 {

 if (ptr_ipl_texture[x] == 255 &&

ptr_ipl_ground[x] == 0)

 {

 ptr_ipl_texture1[x] = 255;

 ptr_ipl_water[3*x+1] = 255;

 ptr_ipl_marker2[x] = 255;

 }

 if(ptr_ipl_largeChanges[x] == 255)

 {

 ptr_ipl_water[3*x+2] = 255;

 ptr_ipl_marker2[x] = 255;

 }

 }

 }

 }

 IplImage* img_ipl_water2 =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvZero(img_ipl_water2);

 cvMorphologyEx(img_ipl_water, img_ipl_water, 0, 0,

CV_MOP_OPEN, 1);

 cvMorphologyEx(img_ipl_water, img_ipl_water, 0, 0,

CV_MOP_CLOSE, 1);

 unsigned char* pRow;

 unsigned char* pRow_p;

 uchar* ptr_ipl_water;

 uchar* ptr_ipl_water_p;

 uchar* ptr_ipl_water_n;

 uchar* ptr_ipl_water2;

 int bStartInflection = 0;

 int bEndInflection = 0;

 int startInflection_y;

 int endInflection_y;

 for (int x = 0; x < img_triclops_disparity.ncols; x++)

 {

 for (int y = img_triclops_disparity.nrows - 10; y

> horizon_y; y--)

203

 {

 ptr_ipl_water = (uchar*) (img_ipl_water -

>imageData + y * img_ipl_water ->widthStep);

 ptr_ipl_water_p = (uchar*) (img_ipl_water -

>imageData + (y+1)* img_ipl_water ->widthStep);

 ptr_ipl_water_n = (uchar*) (img_ipl_water -

>imageData + (y-1)* img_ipl_water ->widthStep);

 ptr_ipl_water2 = (uchar*) (img_ipl_water2 -

>imageData + y * img_ipl_water2 ->widthStep);

 pRow = img_triclops_disparity.data +

y*img_triclops_disparity.rowinc;

 pRow_p = img_triclops_disparity.data +

(y+1)*img_triclops_disparity.rowinc;

 if(ptr_ipl_water[x] == 0 &&

ptr_ipl_water_p[x] == 255)

 { // then start of inflection point

 bStartInflection = 1;

 startInflection_y = y;

 }

 if(ptr_ipl_water[x] == 0 &&

ptr_ipl_water_n[x] == 255)

 { // end of inflection point

 bEndInflection = 1;

 endInflection_y = y;

 }

 if(bStartInflection == 1 && bEndInflection ==

1)

 { // water region

 for(int h = endInflection_y; h <=

startInflection_y; h++)

 {

 uchar* ptr_r = (uchar*)

(img_ipl_water->imageData + h * img_ipl_water->widthStep);

 ptr_r[x] = 255;

 }

 bStartInflection = 0; // found a

region, restart

 bEndInflection = 0;

 }

 }

 bStartInflection = 0; // column end, restart

 bEndInflection = 0; // column end, restart

 }

 for (int y = horizon_y; y <

img_triclops_disparity.nrows; y++)

 { // Marking the water region detected by texture and

brightness cue

 uchar* ptr_ipl_water = (uchar*)

(img_ipl_groundPlane ->imageData + y * img_ipl_groundPlane -

>widthStep);

204

 uchar* ptr_ipl_mark = (uchar*) (img_ipl_water-

>imageData + y * img_ipl_water ->widthStep);

 for (int x = 0; x < img_triclops_disparity.ncols;

x++)

 {

 if (ptr_ipl_mark[x] == 255)

 {

 ptr_ipl_water[3*x] = 255;

 ptr_ipl_water[3*x+1] = 0;

 ptr_ipl_water[3*x+2] = 0;

 }

 }

 }

 cvNamedWindow("Water", CV_WINDOW_AUTOSIZE);

 cvShowImage("Water", img_ipl_water_polarization);

 cvNamedWindow("Water: marker2", CV_WINDOW_AUTOSIZE);

 cvShowImage("Water: marker2", img_ipl_groundPlane);

 #pragma endregion

}

void classBumbleContext::convert_RGB2HSV(IplImage*

img_ipl_rectified_colour_left, IplImage*

img_ipl_rectified_colour_right)

{

 img_ipl_HSV_left =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

img_ipl_rectified_colour_left->height),8,3);

 img_ipl_HSV_right =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 cvCvtColor(img_ipl_rectified_colour_left,

img_ipl_HSV_left, CV_BGR2HSV);

 cvCvtColor(img_ipl_rectified_colour_right,

img_ipl_HSV_right, CV_BGR2HSV);

}

void classBumbleContext::triclops_preprocess_3D(int

image_resolution_width, int image_resolution_height)

{

 triclopsSetResolution(triclopsContext,

image_resolution_height, image_resolution_width);

 triclopsPreprocess(triclopsContext, &m_tiStereoRGB);

 triclopsRectify(triclopsContext, &m_tiStereoRGB);

 triclopsStereo(triclopsContext);

}

IplImage*

classBumbleContext::convert_Triclops2Ipl_1D(TriclopsImage

img_convertTriclops)

{

205

 IplImage* img_ipl =

cvCreateImage(cvSize(img_convertTriclops.ncols,

img_convertTriclops.nrows),8,1);

 for(int y=0; y<(img_convertTriclops.nrows); y++)

 {

 uchar* ptr_ipl = (uchar*) (img_ipl->imageData + y *

img_ipl->widthStep);

 uchar* ptr_triclops = (uchar*)

(img_convertTriclops.data + y*img_convertTriclops.rowinc);

 for(int x=0; x<(img_convertTriclops.ncols); x++)

 {

 ptr_ipl[x] = ptr_triclops[x];

 }

 }

 return img_ipl;

}

IplImage*

classBumbleContext::convert_Triclops2Ipl_3D(TriclopsColorImage

img_triclops)

{

 IplImage* img_ipl=

cvCreateImage(cvSize(img_triclops.ncols,

img_triclops.nrows),8,3);

 IplImage* img_ipl_red=

cvCreateImage(cvSize(img_triclops.ncols,

img_triclops.nrows),8,1);

 IplImage* img_ipl_green=

cvCreateImage(cvSize(img_triclops.ncols,

img_triclops.nrows),8,1);

 IplImage* img_ipl_blue=

cvCreateImage(cvSize(img_triclops.ncols,

img_triclops.nrows),8,1);

 unsigned char* ptr_triclops_red = (unsigned char*)

img_triclops.red;

 unsigned char* ptr_triclops_green = (unsigned char*)

img_triclops.green;

 unsigned char* ptr_triclops_blue = (unsigned char*)

img_triclops.blue;

 img_ipl_red->imageData = (char*)ptr_triclops_red;

 img_ipl_green->imageData = (char*)ptr_triclops_green;

 img_ipl_blue->imageData = (char*)ptr_triclops_blue;

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL,

img_ipl);

 return img_ipl;

}

206

void classBumbleContext::ground_testing(int

nStereo_disparity_max)

{

 #pragma region U-Disparity

 IplImage* img_ipl_udisparity =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

nStereo_disparity_max),8,1);

 cvZero(img_ipl_udisparity);

 IplImage* img_ipl_udisparity_thresh =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

nStereo_disparity_max),8,1);

 cvZero(img_ipl_udisparity_thresh);

 IplImage* img_ipl_disparity_thresh =

cvCreateImage(cvSize(img_triclops_disparity.ncols,

img_triclops_disparity.nrows),8,1);

 cvCopy(img_ipl_disparity, img_ipl_disparity_thresh);

 for (int y=0; y<img_triclops_disparity.nrows; y++)

 { // Generate U-Disparity

 unsigned char* pRow = img_triclops_disparity.data +

y*img_triclops_disparity.rowinc;

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 unsigned char* ptr_ipl_udisparity =

(uchar*)(img_ipl_udisparity->imageData +

pRow[x]*img_ipl_udisparity->widthStep);

 if (pRow[x] < 239)

 {

 ptr_ipl_udisparity[x] =

ptr_ipl_udisparity[x]+1;

 }

 }

 }

 cvNamedWindow("U-Disparity", CV_WINDOW_AUTOSIZE);

 cvShowImage("U-Disparity", img_ipl_udisparity);

 #pragma endregion // U-Disparity

 #pragma region Image preparation

 img_ipl_HS_disparity_half =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

(img_ipl_rectified_colour_left->height)/2),8,3);

 for(int y=0; y<img_ipl_HS_disparity_half->height; y++)

 { // splitting the HSD image into half / taking just

the lower half into consideration

 uchar* ptr_1 = (uchar*) (img_ipl_HS_disparity_half-

>imageData + y * img_ipl_HS_disparity_half->widthStep);

 uchar* ptr_2 = (uchar*) (img_ipl_HSV_left-

>imageData + (y+192)* img_ipl_HSV_left->widthStep);

 uchar* ptr_3 = (uchar*) (img_ipl_disparity_thresh-

>imageData + (y+191)* img_ipl_disparity_thresh->widthStep);

 for(int x=0; x<img_ipl_HS_disparity_half->width;

x++)

 {

 ptr_1[3*x] = ptr_2[3*x];

 ptr_1[3*x+1] = ptr_2[3*x+1];

207

 ptr_1[3*x+2] = 0;//ptr_3[x];

//ptr_2[3*x+2]; //<-------------------------dont take disparity

into consideration

 }

 }

 // --

 // removing POTENTIAL obstacle area from HS-Disparity

Image

 // taking into consideration just the POTENTIAL ground

plane

 for (int y=0; y< img_ipl_udisparity->height; y++)

 { // setting threshold to isolate the obstacle from

ground

 uchar* ptr1 = (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep);

 for(int x=0; x< img_ipl_udisparity->width; x++)

 {

 if (ptr1[x] > 20)

 { // if there is 20 pixels with the same

value in the column, then it is more likely to be obstacles

 int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value

 for (int h=0; h<

img_ipl_HS_disparity_half->height; h++)

 { // browsing through the column of

the disparity image

 uchar* ptr3 = (uchar*)

(img_ipl_HS_disparity_half->imageData +

h*img_ipl_HS_disparity_half->widthStep);

 unsigned char* pRow =

img_triclops_disparity.data +

(h+191)*img_triclops_disparity.rowinc;

 if (pRow[x] == disparity_value &&

pRow[x] < 239)

 { // REMOVING THE POTENTIAL

OBSTACLE AREA

 ptr3[3*x] = 0;

 ptr3[3*x+1] = 0;

 ptr3[3*x+2] = 0;

 }

 }

 }

 }

 }

 // --

 //Split Image

 IplImage* plane1 =

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1);

 IplImage* plane2 =

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1);

 IplImage* plane3 =

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1);

 cvSplit(img_ipl_HS_disparity_half, plane1, plane2,

plane3, NULL);

 #pragma endregion //preparing HS_disparity image

 // INITIALIZATION FOR K-MEAN

 int numOfCluster= 5; // Number of Cluster

208

 int iVector=0; // counter for each input plane / size of

EACH input plane into kmean

 #pragma region kmean: colour assignment

 // colour assignment to each colour

 int colour_Tab[5][3];

 colour_Tab[0][0]=255;

 colour_Tab[0][1]=0;

 colour_Tab[0][2]=0;

 colour_Tab[1][0]=0;

 colour_Tab[1][1]=255;

 colour_Tab[1][2]=0;

 colour_Tab[2][0]=0;

 colour_Tab[2][1]=0;

 colour_Tab[2][2]=255;

 colour_Tab[3][0]=255;

 colour_Tab[3][1]=0;

 colour_Tab[3][2]=255;

 colour_Tab[4][0]=0;

 colour_Tab[4][1]=255;

 colour_Tab[4][2]=255;

 # pragma endregion // colour for each cluster

 #pragma region kmean: preparation of input plane vector

 // MEMORY ALLOCATION

 // piCluster = output cluster ID

 int* piCluster=(int*)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(int));

 // planeVector = array plane vector for input

 CvVect32f

planeVector=(CvVect32f)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(CvVect32f));

 // converting IplImage into array vector

 unsigned char pixelPointer[3]; // array pointer

 for(int i=0; i<plane1->height; i++)

 {

 for(int x=0; x<plane1->width; x++)

 {

 pixelPointer[0] = *(plane1-

>imageData+i*plane1->width +x);

 pixelPointer[1] = *(plane2-

>imageData+i*plane2->width +x);

 pixelPointer[2] = *(plane3-

>imageData+i*plane3->width +x); //

 planeVector[iVector]=(CvVect32f)malloc(3*sizeof(unsigned

char)); // allocation memory for each plane vector

 planeVector[iVector][0]=(unsigned

char)pixelPointer[0];

 planeVector[iVector][1]=(unsigned

char)pixelPointer[1];

 planeVector[iVector][2]=(unsigned

char)pixelPointer[2];

 iVector++;

 }

209

 }

 # pragma endregion // preparation of input plane vector

for kmean

 #pragma region k-mean clustering

 // cvKMeans(no of cluster, input vector, size of input

vector, no of vectors, clustering criteria, output cluster ID)

 cvKMeans (numOfCluster,

planeVector,(img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height),

 3,cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,

10, 1.0), piCluster);

 #pragma endregion //K-mean Function

 IplImage* img_ipl_vdisparity_3c =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,3);

 IplImage* img_ipl_vdisparity_3c2 =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,3);

 IplImage* img_ipl_dummy =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,1);

 cvZero(img_ipl_dummy);

 cvMerge(img_ipl_dummy, img_ipl_vdisparity,img_ipl_dummy,

NULL, img_ipl_vdisparity_3c);

 cvMerge(img_ipl_dummy, img_ipl_vdisparity,img_ipl_dummy,

NULL, img_ipl_vdisparity_3c2);

 #pragma region calculating v-disparity and displaying

clusters

 // Memory allocation for output cluster

 IplImage *img_ipl_outputClusterImage =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

(img_ipl_rectified_colour_left->height)),8,3);

 IplImage *clusterImage[5];

 for (int i=0; i<5; i++)

 {

 clusterImage[i] =

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width,

(img_ipl_rectified_colour_left->height)),8,3);

 }

 // variables for curve fitting

 int index[5] = {0};

 int index_max[5] = {0}; //test

 int xn[5] = {0};

 int yn[5] = {0};

 int xn2[5] = {0};

 long long int sum_xy[5] = {0};

 long long int sum_x[5] = {0};

 long long int sum_y[5] = {0};

 long long int sum_x2[5] = {0};

 long long int sum2_x[5] = {0};

 long long int n[5] = {0};

 long long int slope_m[5] = {0};

 long long int intercept_c[5] = {0};

 int clusterNumber;

210

 iVector = 0;

 int disparity_count_max = 0;

 IplImage* img_ipl_vdisparity_histogram =

cvCreateImage(cvSize(nStereo_disparity_max,

img_triclops_disparity.nrows),8,1); // test

 cvZero(img_ipl_vdisparity_histogram);

 for (int y=192; y< img_triclops_disparity.nrows; y++)

 {

 // collecting data for curve fitting

formula

 n[clusterNumber] = n[clusterNumber]+1;

 sum_xy[clusterNumber] =

sum_xy[clusterNumber] + (y*pRow[x]);

 sum_x[clusterNumber] =

sum_x[clusterNumber] + pRow[x];

 sum_y[clusterNumber] =

sum_y[clusterNumber] + y;

 xn2[clusterNumber] = pRow[x]*pRow[x];

 sum_x2[clusterNumber] =

sum_x2[clusterNumber] + xn2[clusterNumber];

 }

 iVector++;

 }

 }

 //---

 // curve fitting

 int slope_m_best = 0;

 int intercept_c_best = 0;

 for(int i=0; i<numOfCluster; i++)

 {

 slope_m[i] = ((n[i]*sum_xy[i])-

(sum_x[i]*sum_y[i]))/((n[i]*sum_x2[i])-sum_x[i]*sum_x[i]);

 intercept_c[i] = (sum_y[i]-

(slope_m[i]*sum_x[i]))/n[i];

 if(slope_m[i]>slope_m_best)

 { // choosing the best v-disparity line

 slope_m_best = slope_m[i];

 intercept_c_best = intercept_c[i];

 }

 }

 //---

 IplImage* img_ipl_best_line =

cvCreateImage(cvSize(img_ipl_vdisparity->width,

img_ipl_vdisparity->height),8,3); // test

 cvZero(img_ipl_best_line);

 for (int y = 0; y < img_ipl_vdisparity->height; y++)

 {

 //uchar* ptr_VDhist = (uchar*)

(img_ipl_vdisparity_histogram->imageData + y *

img_ipl_vdisparity_histogram->widthStep); //test

 uchar* ptr_ipl_best_line = (uchar*)

(img_ipl_best_line->imageData + y * img_ipl_best_line-

>widthStep);

 uchar* ptr_ipl_best_line_3c = (uchar*)

(img_ipl_vdisparity_3c->imageData + y * img_ipl_vdisparity_3c-

>widthStep);

211

 for (int x = 0; x < img_ipl_vdisparity-

>width; x++)

 {

 for(int i=0; i<numOfCluster; i++)

 {

 //ptr_VDhist[x] =

ptr_VDhist[x]*255/disparity_count_max;

 if(y-

(slope_m[i]*x)==intercept_c[i])

 {

 ptr_ipl_best_line[3*x] =

colour_Tab[i][0];

 ptr_ipl_best_line[3*x+1] =

colour_Tab[i][1];

 ptr_ipl_best_line[3*x+2] =

colour_Tab[i][2];

 }

 }

 if(y-

(slope_m_best*x)==intercept_c_best)

 {

 ptr_ipl_best_line_3c[3*x] = 255;

 ptr_ipl_best_line_3c[3*x+1] =

255;

 ptr_ipl_best_line_3c[3*x+2] =

255;

 }

 }

 }

 IplImage *img_ipl_groundPlane =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_groundPlane);

 IplImage *img_ipl_markers =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvZero(img_ipl_markers);

 //---

 // Prepraring POTENTIAL OBSTACLE AREAS for Obstacle

Detection

 IplImage* img_ipl_obstacles_initial =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 cvCopy(img_ipl_rectified_colour_right,

img_ipl_obstacles_initial);

 for(int y=0; y<img_ipl_obstacles_initial->height; y++)

 { //HS_DISPARITY FULL

 uchar* ptr_1 = (uchar*) (img_ipl_obstacles_initial-

>imageData + y * img_ipl_obstacles_initial->widthStep);

 uchar* ptr_2 = (uchar*) (img_ipl_HSV_left-

>imageData + y* img_ipl_HSV_left->widthStep);

212

 uchar* ptr_3 = (uchar*) (img_ipl_disparity-

>imageData + y* img_ipl_disparity->widthStep);

 for(int x=0; x<img_ipl_rectified_colour_right-

>width; x++)

 {

 ptr_1[3*x] = ptr_2[3*x];

 ptr_1[3*x+1] = ptr_2[3*x+1];

 ptr_1[3*x+2] = 0; //ptr_3[x];

 //ptr_1[3*x+2] = 0;

 }

 }

 cvPyrMeanShiftFiltering(img_ipl_obstacles_initial,

img_ipl_obstacles_initial, 20, 40, 2);

 cvNamedWindow("testing", CV_WINDOW_AUTOSIZE);

 cvShowImage("testing", img_ipl_obstacles_initial);

 //---

 for (int y=0; y< img_triclops_disparity.nrows; y++)

 { // marking the ground plane

 uchar* pRow = (uchar*) (img_triclops_disparity.data

+ y * img_triclops_disparity.rowinc);

 uchar* ptr = (uchar*) (img_ipl_groundPlane-

>imageData + y * img_ipl_groundPlane->widthStep);

 uchar* ptr_markers = (uchar*) (img_ipl_markers-

>imageData + y * img_ipl_markers->widthStep);

 uchar* ptr_obstacles_initial =

(uchar*)(img_ipl_obstacles_initial->imageData + y *

img_ipl_obstacles_initial->widthStep);

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 if (pRow[x] < 239 && y>=(slope_m_best*pRow[x]

+ intercept_c_best-10))

 {

 ptr[3*x] = 0;

 ptr[3*x+1] = 0;

 ptr[3*x+2] = 255; //255

 ptr_markers[x] = 255;

 //ptr_obstacles_initial[3*x] = 0;

 //ptr_obstacles_initial[3*x+1] = 0;

 //ptr_obstacles_initial[3*x+2] = 255;

// >239 =invalid pixels

 }

 }

 }

 cvNamedWindow("Ground Plane", CV_WINDOW_AUTOSIZE);

 cvShowImage("Ground Plane", img_ipl_groundPlane);

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0,

CV_MOP_OPEN, 1);

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0,

CV_MOP_CLOSE, 1);

 cvNamedWindow("V-disparity: ground profile",

CV_WINDOW_AUTOSIZE);

213

 cvShowImage("V-disparity: ground profile",

img_ipl_vdisparity_3c);

 for (int y=0; y< img_ipl_udisparity->height; y++)

 { // removing area that has little disparity

information

 uchar* ptr1 = (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep);

 for(int x=0; x< img_ipl_udisparity->width; x++)

 {

 if (ptr1[x] > 100 && ptr1[x] < 239)

 { // if there is 20 pixels with the same

value in the column, then it is more likely to be obstacles

 int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value

 for (int h=0; h<

img_ipl_obstacles_initial->height; h++)

 { // browsing through the column of

the disparity image

 uchar* ptr_markers = (uchar*)

(img_ipl_markers->imageData + h * img_ipl_markers->widthStep);

 uchar* ptr2 = (uchar*)

(img_ipl_obstacles_initial->imageData +

h*img_ipl_obstacles_initial->widthStep);

 unsigned char* pRow =

img_triclops_disparity.data + h*img_triclops_disparity.rowinc;

 if (pRow[x] == disparity_value &&

pRow[x] < 239)

 { // marking the potential

obstacle

 ptr2[3*x] = 100;

 ptr2[3*x+1] = 100;

 ptr2[3*x+2] = 100; //

making it invalid pixels

 ptr_markers[x] = 100;

 }

 }

 }

 }

 }

 //Split Image

 IplImage* planeH =

cvCreateImage(cvGetSize(img_ipl_obstacles_initial),8,1);

 IplImage* planeS =

cvCreateImage(cvGetSize(img_ipl_obstacles_initial),8,1);

 IplImage* planeD =

cvCreateImage(cvGetSize(img_ipl_obstacles_initial),8,1);

 cvSplit(img_ipl_obstacles_initial, planeH, planeS,

planeD, NULL);

 // INITIALIZATION FOR K-MEAN

 numOfCluster= 3; // Number of Cluster

 iVector = 0; // counter for each input plane / size of

EACH input plane into kmean

 #pragma region kmean: preparation of input plane vector

 // MEMORY ALLOCATION

 // piCluster = output cluster ID

214

 int* piCluster2=(int*)malloc((img_ipl_obstacles_initial-

>width)*(img_ipl_obstacles_initial->height)*sizeof(int));

 // planeVector = array plane vector for input

 CvVect32f

planeVector2=(CvVect32f)malloc((img_ipl_obstacles_initial-

>width)*(img_ipl_obstacles_initial->height)*sizeof(CvVect32f));

 // converting IplImage into array vector

 unsigned char pixelPointer2[3]; // array pointer

 for(int i=0; i<planeH->height; i++)

 {

 for(int x=0; x<planeH->width; x++)

 {

 pixelPointer2[0] = *(planeH-

>imageData+i*planeH->width +x);

 pixelPointer2[1] = *(planeS-

>imageData+i*planeS->width +x);

 pixelPointer2[2] = *(planeD-

>imageData+i*planeD->width +x); //

 planeVector2[iVector]=(CvVect32f)malloc(3*sizeof(unsigned

char)); // allocation memory for each plane vector

 planeVector2[iVector][0]=(unsigned

char)pixelPointer2[0];

 planeVector2[iVector][1]=(unsigned

char)pixelPointer2[1];

 planeVector2[iVector][2]=(unsigned

char)pixelPointer2[2];

 iVector++;

 }

 }

 # pragma endregion // preparation of input plane vector

for kmean

 // cvKMeans(no of cluster, input vector, size of input

vector, no of vectors, clustering criteria, output cluster ID)

 cvKMeans (numOfCluster,

planeVector2,(img_ipl_obstacles_initial-

>width)*(img_ipl_obstacles_initial->height),

 3,cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,

10, 1.0), piCluster2);

 iVector = 0;

 IplImage* img_ipl_outputClusterImage2 =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,3);

 for (int y=0; y< img_ipl_obstacles_initial->height; y++)

 {

 uchar* ptr = (uchar*) (img_ipl_outputClusterImage2-

>imageData + y * img_ipl_outputClusterImage2->widthStep);

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 clusterNumber = piCluster2[iVector];

 {

 // Output Cluster Image

 ptr[3*x] =

colour_Tab[clusterNumber][0];

 ptr[3*x+1] =

colour_Tab[clusterNumber][1];

215

 ptr[3*x+2] =

colour_Tab[clusterNumber][2];

 }

 iVector++;

 }

 }

 for (int y=0; y< img_triclops_disparity.nrows; y++)

 { // marking the ground plane

 uchar* pRow = (uchar*) (img_triclops_disparity.data

+ y * img_triclops_disparity.rowinc);

 uchar* ptr_outputClusterImage2 =

(uchar*)(img_ipl_outputClusterImage2->imageData + y *

img_ipl_outputClusterImage2->widthStep);

 for(int x=0; x<img_triclops_disparity.ncols; x++)

 {

 if (pRow[x] < 239 && y>=(slope_m_best*pRow[x]

+ intercept_c_best-10))

 {

 ptr_outputClusterImage2[3*x] = 0;

 ptr_outputClusterImage2[3*x+1] = 255;

 ptr_outputClusterImage2[3*x+2] = 255;

// >239 =invalid pixels

 }

 }

 }

 for (int y=0; y< img_ipl_udisparity->height; y++)

 { // removing area that has little disparity

information

 uchar* ptr1 = (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep);

 CvPoint pt1;

 CvPoint pt2;

 int bFirstTime;

 for(int x=0; x< img_ipl_udisparity->width; x++)

 {

 if (ptr1[x] > 100 && ptr1[x] < 239)

 { // if there is 20 pixels with the same

value in the column, then it is more likely to be obstacles

 int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value

 bFirstTime = 0;

 for (int h=0; h<

img_ipl_obstacles_initial->height; h++)

 { // browsing through the column of

the disparity image

 uchar* ptr_outputClusterImage2 =

(uchar*)(img_ipl_outputClusterImage2->imageData + h *

img_ipl_outputClusterImage2->widthStep);

 unsigned char* pRow =

img_triclops_disparity.data + h*img_triclops_disparity.rowinc;

 if (pRow[x] == disparity_value &&

pRow[x] < 239)

 { // marking the potential

obstacle

216

 ptr_outputClusterImage2[3*x] = 255;

 ptr_outputClusterImage2[3*x+1] = 0;

 ptr_outputClusterImage2[3*x+2] = 255; // >239 =invalid

pixels

 pt1.x = x;

 pt2.x = x;

 if (bFirstTime == 0)

 {

 pt1.y = h;

 bFirstTime = 1;

 }

 else

 {

 pt2.y = h;

 }

 }

 }

 cvLine(img_ipl_outputClusterImage2,

pt1, pt2, CV_RGB(255,0,255), 3, 8, 0);

 }

 }

 }

 cvNamedWindow("final", CV_WINDOW_AUTOSIZE);

 cvShowImage("final", img_ipl_outputClusterImage2);

 IplImage *img_ipl_outputGray =

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width,

img_ipl_rectified_colour_right->height),8,1);

 cvCvtColor(img_ipl_outputClusterImage2,

img_ipl_outputGray, CV_BGR2GRAY);

 cvCanny(img_ipl_outputGray, img_ipl_markers, 50, 150,

3);

 cvNamedWindow("line", CV_WINDOW_AUTOSIZE);

 cvShowImage("line", img_ipl_markers);

#pragma endregion

}

