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ABSTRACT 

NEAR-RANGE WATER BODY DETECTION AND OBSTACLE 

DETECTION FOR AUTONOMOUS VEHICLE IN 

RAINFOREST/TROPICAL TERRAIN 

 

 

Teoh Chee Way 

 

 

 

 

 

 

The needs to use autonomous vehicle for rainforest terrain is increasing day by 

day. Many projects were launched with the aim of developing a fully 

autonomous vehicle that is able to maneuver from a location to a location 

without colliding with obstacle. However, the applications of these vehicles are 

limited due to limitation of sensors used and the knowledge on how to make 

use of the information provided by the sensors. Vision sensors are commonly 

used in vehicle guidance as they provide more information compared to other 

type of sensors. The interpretation of the visual information is very important, 

therefore it is necessary to carry out research to make use of the information for 

terrain classification and obstacle detection. 

 In this thesis, disparity and color feature from stereo camera have been 

studied closely to provide solution for visual guidance in rainforest terrain. 

New methodologies have been proposed utilizing polarizing effect on the 

stereo camera to solve prevalent challenges that appear in rainforest terrain. 

Particularly, the proposed methodologies are used to solve ground truth 

determination, tree trunks detection and water body detection. 
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The V-disparity image is used together with color information to 

determine the ground region that may be travelled by the autonomous vehicle. 

The main contribution of this ground detection module is that it is very robust 

to vehicle orientation and tilt. In addition, the proposed of using K-means color 

clustering method in ground profile determination is effective even when there 

is no distinct feature that may represent the ground region.  

 Using the proposed ground plane detection algorithm, two task-specific 

modules are introduced to deal with tree trunks and water body that may 

present in the rainforest scene. Tree trunks and water body are typical hazards 

that can be found in rainforest terrain. Sobel edge detection and U-disparity 

image is used to extract the tree trunks from the scene with the assumption that 

the tree trunks are vertical or near vertical. This method can detect most of the 

tree trunks present as tree trunks in rainforest terrain are usually vertical and 

tall. The proposed U-disparity scheme shows effective results for near vertical 

tree trunks obstacles. 

 The water body detection module utilized multiple features in texture, 

disparity and partial polarization. Stereo camera with different polarization 

angles are applied on each side of the stereo camera. Based on experiments 

conducted, it is shown that water body has significant changes in brightness 

and disparity when different polarization angles are applied. Based on the 

difference and coupled with low-texture characteristic and sky reflection 

detection, most of the water region can be detected using the proposed 

polarization technique.    
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CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation 

Autonomous vehicle has received wide attention and widespread 

relevance during the past few decades. Many projects were launched with the 

aim of developing a fully autonomous vehicle that is able to maneuver from a 

location to a location without colliding with obstacles. The potential 

applications of autonomous vehicle range from daily life to military. It enables 

wide-area environment monitoring, mining, disaster recovery, search-and-

rescue activities and planetary exploration.  

One of the earliest of autonomous vehicle reported is the conventional 

“look and move” where the autonomous vehicle look ahead and driving blindly 

for another short distance before taking another view (Nilsson, 1969). The 

autonomous robot was built to conduct experiments on the real-time control 

system that interact with indoor environment. The robot adopted the “plan and 

move” approach which it plans its task before it acts. It utilized several 

individual artificial programs as its abilities that are integrated as one system. 

There were three basic functions incorporated in this system which were 

problem-solving, modeling and perception. The respective functions are task 

analysis, learning and extracting features from the scene. Although this project 
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was limited to indoor task, it opened up extensive exploration of artificial 

intelligence and machine vision for vehicle guidance. 

There are two main tasks for an autonomous vehicle to accomplish in 

order for successful navigation which are to avoid collisions with obstacles and 

to reach the destination point without any human assistance. The vehicle needs 

to determine the obstacles and uncertainties surrounding it by using 

information gathered by sensors. Thus, the autonomous navigation is very 

dependent on the information extracted from the sensors attached to the 

vehicle. There are two types of sensors that are used to gather information 

which are proprioceptive sensors and exteroceptive sensors (Adams, 

Wijesoma, & Shacklock, 2007). Proprioceptive sensors measure the internal 

state of the vehicle such as speed, acceleration and relative displacement by 

using motor encoders, IMUs, etc. The interaction between the vehicle and 

surrounding environments are made using exteroceptive sensors such as global 

positioning system (GPS), cameras, lasers, etc. Successful navigation is very 

dependent of the extraction of useful information from exteroceptive sensors, 

information of the pose and position of the vehicle and algorithms that can fuse 

both information from proprioceptive sensors and exteroceptive sensors 

(Adams, Wijesoma, & Shacklock, 2007). The challenges lie in the successful 

usage of the information provided by exteroceptive sensors and consequently, 

the autonomous vehicle research has focused on the visual sensing technology 

and robust sensor interpretation. 
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There are many types of visual sensors available that have been used in 

autonomous vehicle for various applications. Passive sensors such as color 

camera and stereo camera are general devices used to acquire data from the 

environment. It offers large amount of data that can be used in terrain 

classification and obstacle detection. In contrast, the active sensors involve 

illumination of the scene with radiation and the reflected radiations are 

collected and measured. In this project, the focus is mainly on color stereo 

camera as it is cheaper and more feasible to be implemented in various 

missions. Color stereo camera offers 2-dimensional (2D) and 3-dimensional 

(3D) information of the scene in non-invasive way. While active sensors are 

more powerful, it is not suitable for military context which active source can be 

easily detected by enemy. Active source also poses problems in common 

applications where there is more than one autonomous vehicle moving around 

as active source from other vehicle will be interference or noise (Broggi, 

Fascioli, & Bertozzi, 2000). In addition, heavy usage of active sensors could 

lead to unacceptable hazard and pollution (Broggi, Fascioli, & Bertozzi, 2000). 

Thus, the use of passive sensors is more practicable in most of the application. 

Early researches and developments of autonomous vehicle were 

initiated by military organization (Shacklock, Xu, & Wang, 2006) as defense 

and surveillance are very much of their concern. Consequently, it opens up the 

interest application of autonomous vehicle in unstructured terrain (i.e. forest 

terrain, off-road terrain, etc) as the requirements for unstructured terrain 

navigation are very much challenging compared to structured and indoor 

navigation. To date, the unstructured terrain navigation is not limited to 
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military mission but also planetary exploration (Goldberg, Maimone, & 

Matthies, 2002) and search and rescue mission (Kamegawa, et al.). While 

natural disasters are very much a concern recently, autonomous vehicle can 

play major part in search and rescue mission as it can be deployed to search 

and provide initial help to the victims. Autonomous vehicle can be used to 

explore the disaster scene initially before the scene is declared safe for human 

admission. Similarly, the planetary exploration mission employs autonomous 

robot to perform surveillance and initial experiment as well. Therefore, there is 

a need of robust guidance system in unstructured terrain as it is the key 

enabling technology for unstructured terrain navigation. 

In order for autonomous navigation in unstructured terrain to be feasible, 

there are many issues need to be resolved. In this thesis, the terrain in 

consideration is rainforest terrain which is very highly complicated and 

unstructured.  The primary challenges for rainforest navigation is to extract 

useful features from vision system and to use the extracted information for 

terrain classification and obstacle detection (Manduchi, Castano, Talukder, & 

Matthies, 2005). Perception ability is very important for the autonomous 

vehicle as the vehicle cannot rely on Global Positioning System (GPS) for 

localization and obstacle detection. These are due to GPS signal may be 

covered by the tree canopies and the resolution of GPS map is too low for 

obstacle detection (Manduchi, Castano, Talukder, & Matthies, 2005). The 

inertial navigation unit (IMU) is not reliable due to uneven ground surface that 

may affect the measurement made by the IMU. Thus, the perception ability by 

vision system is essential for the task of efficient vehicle guidance.  
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However, vision system in rainforest terrain does have its own problems 

need to be resolved such as illumination problem, color constancy problem and 

terrain classification problem (Manduchi, Castano, Talukder, & Matthies, 

2005). Contrary to structured terrain, the rainforest terrain is subject to uneven 

illumination and shadow effect across the scene. These will contribute to color 

constancy problem in the color features and further complication the 

segmentation process. A color of an object may appear different at different 

spot of the object although it belongs to the same object. Object colors may 

also appear differently at different time of the day and consequently 

complicates the classification process. The highly unstructured nature of the 

rainforest terrain also poses problem to the segmentation process as it is 

difficult to get a meaningful or salient region from the scene. For obstacle 

detection and terrain classification, an object that appears to be obstacle in 

geometric point of view may not be an obstacle (Manduchi, Castano, Talukder, 

& Matthies, 2005). For example, tall green grass may be perceived as obstacle 

but in fact, it can be driven over by the vehicle. Furthermore, there are color 

ambiguities in rainforest terrain where the colors of different objects appear to 

be very similar in color. For example, a tree bark may appear brown in color 

which is similar to the ground color. The problem of obstacle detection and 

terrain classification are widely studied, however there is no efficient and 

robust algorithm to solve the problems. 

Other challenging situations in rainforest terrain include presence of 

negative obstacles (such as ditches) and water bodies (Manduchi, Castano, 

Talukder, & Matthies, 2005). It should be noted in rainforest, water patches are 
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very highly anticipated in the scene. Water body may appear in several ways in 

color imagery (Rankin, Matthies, & Huertas, 2004). The water may be flowing 

such as river, or may be standing such as water patches. However, the 

appearance of the water may differ depending on the illumination condition 

and angle. The water appears to be bright under direct sunlight and darker in 

intensity while under canopy. Water body may also reflect the surrounding 

scene or appear to be similar color with the underlying ground. To date, very 

few studies are conducted on water body detection and for a successful 

navigation in rainforest terrain, successful detection of water body is essential 

to determine the traversability of the water body.  

1.2 Scope of Research 

In this thesis, the research is focused on developing a visual guidance 

system for autonomous vehicle in rainforest or tropical terrain based on stereo 

camera. An analysis is made on the disparity data and the color co-registered 

with the 3D information, emphasizing on the segmentation of the region into 

meaningful region. Multiple cues approach is used to achieve salient image 

segmentation and accurate terrain classification. The research is also focused in 

developing obstacle detection based on stereo vision and polarizer, where 

common obstacles such as tree trunks, rocks and water are targeted. 

The research questions addressed by this research are: 
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 How to extract the information and features of rainforest terrain 

from stereo camera? These information and features are needed to 

detect meaningful target to guide the autonomous vehicle to 

navigate tropical area. 

 

 How to learn the tropical environment using multiple cues and to 

make use of information provided to segment the image into salient 

region and subsequently used for terrain classification? 

 

 How to use polarizer to enhance the color features from stereo 

vision and to detect water hazard in rainforest terrain? 

To produce a complete visual guidance system for rainforest navigation is a 

daunting task. There are many challenges remains to be solved and in this 

thesis, we are not aiming to solve all the problems but only several with 

upmost importance. Based on the literature review in Chapter 2, a few key 

challenges were identified. Table 1.2 shows the specific problems targeted by 

this work. 

This scope of the project will be focused on, which lead to deliverables: 

 Obstacle Detection and Terrain Classification using Color 

Information. 
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o To use multiple cues from color stereo camera for terrain 

segmentation. Features such as colors and textures are 

analyzed to determine its appropriateness for detecting 

ground region of the image. The features are then used to 

classify the terrain type of the scene. The focus is on 

segmenting the scene into meaningful region with ground 

region and obstacles as the main region of interest. 

 

o The key point is to make use of disparity data in terrain 

segmentation where texture and color may fail to 

differentiate between object of similar color (e.g. tree trunk 

and ground). 

 

 Ground Plane and Obstacle Detection. 

 

o Detecting the ground plane of the scene and obstacles in 

geometric point of view. The stereo information is used to 

determine the ground plane and to determine any obstacles 

protrude out from the ground. 

 

o The obstacles detection will be focusing on general 

obstacles such as near vertical tree trunk. Negative obstacles 

or hidden obstacles will not be considered in this work.   
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 Water Body Detection  

 

o To differentiate between mud, water patches and streams or 

river. It should be noted that water patches can be run over. 

 

o The focus of this thesis is to detect the water patches without 

determining the depth of the water. 

1.3 Thesis Outline 

In chapter 2, we present the literature review and state-of-the-art of visual 

guidance system for autonomous vehicle. Most of the discussions are focused 

on the challenges and problems present in rainforest terrain, whereby the 

justification to solve the problems are explained. 

Chapter 3 describes the system architecture of the visual guidance system 

and the approach taken in solving the problems existing in rainforest terrain. 

The stereo camera and hardware setup are described as well. 

Chapter 4 discusses on the developed ground plane detection module. 

The disparity and color features used in the developed module are discussed 

and analyzed. Then, the performance of the developed method is tested on 

various complexity level of rainforest terrain. 
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Task-Specific Processing Descriptions 

Ground Plane Estimation Existing methods relied heavily on structured 

feature to extract the ground plane but they are 

not applicable in rainforest terrain. A method is 

proposed to merge existing V-disparity image 

with the color clustering estimate the ground 

plane. 

Tree Hazard Detection Tree trunks are common obstacles that appear in 

rainforest terrain. It is necessary to have a 

module specifically to detect the trees. In this 

thesis, the tree trunk is detected by using range 

data and colour information. 

Water Body Detection Water bodies may be hazardous to the 

autonomous vehicle in operation. We attempted 

to detect the presence of water body in the 

terrain using polarization effect. 

 

Table 1.1: Summary of image segmentation technique and its limitation on the 

application in rain forest terrain. 

 

In Chapter 5, the tree trunk detection module is described. The 

characteristic and appearance of tree trunks are discussed. Based on the tree 

trunks characteristic, the tree trunk detection module was developed and 

presented.  
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Chapter 6 discusses the water hazard detection module where the water 

hazard is detected based on intensity difference caused by polarization effect.  

Finally, the conclusion of the thesis in presented in Chapter 7. The 

implications and experimental results are summarized. Finally, some 

suggestions for the extension of current work are presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

Extensive work has been carried out on autonomous vehicle since 1990s 

and the works done in the area are mostly dependent on the vision systems or 

3D radars to build up a map, terrain classification and obstacle detection. The 

progress made over the years can be grouped into a few categories depending 

on the functionality and terrain type of the vehicle. The general category of the 

autonomous vehicle is indoor navigation and outdoor navigation where the 

latter category can be further subdivided into structured and unstructured 

terrain. Since there are huge differences in the approaches for indoor and 

outdoor navigation, the review focuses on the outdoor terrain as the rainforest 

terrain in this thesis consideration falls into the unstructured terrain.  

This section outlines work carried out in the area of autonomous vehicle 

and visual guidance, focusing on a selection of range of methods and sensors 

used for the vehicle perception. The contributions and limitations of each 

approach will be highlighted while the justification of using stereo vision in 

this thesis will be reasoned. 
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2.2 Review of Visual Guidance for Outdoor Terrain: Structured 

The works on visual guidance system for structured outdoor terrain 

usually involve vehicle maneuvering in urban road with specific task such as 

obstacles detection (usually cars and pedestrian) and avoidance, landmark 

detection (i.e. road sign and traffic light) and road following. Works by 

Dickmanns (2002) and DeSouza et al (2002) provide comprehensive review of 

machine for road vehicle. Although the terrain in consideration of this thesis is 

very much different from navigation in structured road, it is important to 

highlight the state-of-the-art in this area as most of the functional systems in 

unstructured terrain are derived from structured terrain.  

One of the key tasks in structured environment is road detection. The 

vehicle will detect the road and perform road-following. The key feature is 

road markings on the road and the visual guidance system will detect the lines 

on the road that separate the lanes and maintain the vehicle position on the 

road. To date, road-following is a relatively mature technology with many 

successful implementations such as Navlab projects, ALVINN projects and 

ARGO projects.  

2.2.1 Methods based on NAVLAB and ALVINN 

One of the earliest autonomous outdoor vehicles reported is by the 

Carnegie-Mellon University named Carnegie-Mellon Navigation Lab (Navlab) 

(Thorpe, Hebert, Kanade, & Shafer, 1988).  The vehicle was a testbed which 
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was used to test perception modules and navigation modules. It was an onboard 

platform on an actual vehicle for testing in real-world environments. Over the 

years, it had gone through various implementations with the later 

implementation was called Autonomous Land Vehicle in a Neural Network 

(ALVINN) (Pomerleau, 1989) where the focus was on the usage of neural 

network to increase the robustness in road detection. 

Navlab was equipped with color vision for lane tracking and scanning 

laser range finder for obstacle detection and avoidance. The Navlab approaches 

include edge detection and image color classification. It attempted to extract 

the edge of the road with the assumption the road is well structured and  to 

classify the road base on the color on road and non-road area. This Navlab also 

attempted to fuse the texture cues with color vision features to identity road 

edges. The texture feature was used to aid in the road detection with the 

assumption that the road region will appear smoother than the non-road region. 

Commonly, earlier attempts tend to identify the structured features present in 

the road to determine the traversable region. The problem of changes in 

illumination was highlighted where the authors tried to solve it by pre-

determining the cluster colors using separate Gaussian clusters. 

The ALVINN project was a system equipped in NAVLAB as a neural-

network-based navigation system (Pomerleau, 1989). There were several 

prominent works on ALVINN system to improve the performance of the 

system which can be found in Batavia et al (1996) and Jochem et al (1995). 

Generally, the system approach was to use artificial intelligence in autonomous 
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vehicle to drive automatically. The project had successfully traversed on the 

highway with highway speed. It utilized the neural network to learn on-line by 

“observing how human drive”. The digitized signal from camera is fed into 

neural network module and the output of the training is the steering direction 

which is fed to the car steering control.  

Both the approaches based on the Navlab and ALVINN were only 

limited to structured road with many assumptions which are not applicable or 

suitable to rainforest terrain. The learning method used in ALVINN requires a 

lot of training scheme where certain scenarios can be expected and many 

assumptions need to be made. On the contrary to rainforest terrain, a structured 

road cannot be expected to be present and the assumption used on structured 

road cannot be applied. However, the approach had triggered the interest in 

using artificial intelligence in autonomous vehicle navigation.  

2.2.2 Methods based on ARGO 

The ARGO (Broggi, 1999) project is one of the most mature lane 

detection systems which aim for active safety system and automatic pilot for 

road vehicle. The system incorporated only passive sensors such as camera, 

proprioceptive sensor and commercial personal computer in its prototype. Two 

cameras were mounted at the top corners of the windscreen and a speedometer 

were used to detect the velocity of the vehicle. The images acquired from the 

stereo cameras and speedometer were fed to computing system located in 

vehicle boot. After computation and processing, the output was fed to the 
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actuator of the car. The computing system was able to compute lane geometry 

for lane following, detect common obstacle on road and detect lead vehicle. 

Recently, much of this area of research is concentrated on more complex road 

condition which takes into the consideration the traffic signs, pedestrian and 

etc. 

Similar to Navlab and ARGO project, the systems cannot be fully 

applied to rainforest terrain. However, it is important to highlight that all the 

projects discussed previously relied heavily on vision system to detect the road 

and obstacles. Evidently, it can be said that the vision system is a key-enabling 

technology to autonomous vehicle navigation and obstacle detection. 

2.3 Review of Visual Guidance for Outdoor Terrain: Unstructured 

During the past decade, the research of autonomous vehicle that can 

operate in unstructured terrain and their related issues began to arise. Early 

researches and developments of autonomous vehicle were initiated by military 

organization (Shacklock, Xu, & Wang, 2006) as defense and surveillance were 

very much of their concern. There were intentions to increase the mobility of 

the autonomous the vehicle and also the complexity of the missions that can be 

completed by the autonomous vehicle of robots. Report by Eiker (2001) 

predicted that the functionality of the autonomous vehicle will achieve several 

milestones as illustrated in Figure 2.1. It is expected that the vehicle or robot 

can perform some combat service support, mission and terrain understanding in 

different type of terrains. From the figure, it can be seen the biggest challenge 
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in autonomous vehicle is the situational understanding or terrain understanding 

and the complexity is increasing when the terrain is more unstructured. 

 

Figure 2.1: Notional Approach to Top Level Systematics of Ground Mobile 

Robot Systems (Eicker, 2001).  

As mentioned above, the emphasis on the terrain type that can be 

negotiated by an autonomous vehicle is moving toward highly unstructured 

terrain. The shift of the focus is mainly caused by the type of the mission that 

needed to be completed. Moreover, recent advanced technologies promote 

improvement of the hardware devices and these allow faster processing which 

cannot be achieved previously (Broggi, Bertozzi, Fascioli, & Conte, 1999). 

One of the key tasks in rainforest navigation is terrain classification where the 
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type of terrain need to be identity before decision of which path to be taken is 

decided. Moreover, other key issues, such as system robustness and 

uncertainties present in rainforest terrain must be handled well. The following 

subsections will discuss on the state-of-the-art that is very much related to 

rainforest terrain of interest in this thesis. 

2.3.1 Methods by DEMO III 

One of the prominent projects is DEMO III by Jet Propulsion 

Laboratory (JPL) reported by Shoemaker et al (1998) and Bellutta et al (2000). 

The project focus was on autonomous navigation in cross-country using vision-

based perception. Although the terrain type was different from the rainforest 

terrain, many of the challenges presented were very much relevant and the 

proposed approach could be used in this thesis.  

DEMO III attempted to use real-time stereo systems for geometric 

representation and obstacle detection. While the stereo systems were able to 

detect positive and negative obstacles, it is not able to characterize the terrain 

in term of its traversability. The main contribution of DEMO III project is that 

it had successfully introduces effective scene description based on geometric 

approach. The general problems in unstructured terrain navigation are evident 

as the flat-world assumption cannot be applied in this situation. In DEMO III, 

the ground in the terrain in consideration is relatively flat where the vehicle and 

sensors posed would not be affected dramatically. However, in rainforest 
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terrain, very bumpy road is expected and the vehicle guidance system must be 

able to compensate for the change of the vehicle pose from time to time. 

While geometric presentation may be good to describe the terrain, the 

presence of compressible vegetation where the vehicle can run-over posed 

another challenging situation in unstructured terrain navigation. Some of the 

vegetation such as grass will be considered as obstacles in geometric point of 

view. To overcome the problems, DEMO III program performed the terrain 

classification based on color. The presence of compressible obstacles in 

DEMO III work was very much similar to the situation rainforest navigation 

and can be modified to be applied in rainforest navigation. However, the 

limitation of DEMO III is that relatively open ground is expected where most 

of the ground is present. In rainforest terrain, the ground terrain may be 

minimal and surrounded by compressible vegetation, thus in order for a 

successful navigation, these problems need to be solved. 

Many similar projects were conducted on similar terrain as in DEMO 

III program, the difference of their approaches is the specific task processing 

for terrain classification and obstacle detection. The approaches were mainly to 

overcome common problems associated with color feature which are the 

chromatic problem and uneven illumination.  
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2.3.2 Methods by Darpa PerceptOR 

Most of the research for autonomous vehicle is for military application 

and it is demonstrated by the prominent project and activities are mainly 

funded military agencies. The United States Defense Advanced Research 

Project Agency (DARPA) has been actively developing the reconnaissance 

capabilities of autonomous robot. For the past decade, DARPA (Krotkov, Fish, 

Jackel, McBride, Perschbacher, & Pippine, 2006) has engaged in Tactical 

Mobile Robotics program, DARPA PerceptOR and Darpa Grand Challenge 

program. While Tactical Mobile Robotics program focused more on urban 

environment, the following DARPA PerceptOR and Grand Challenge focus 

were off-road terrain. Darpa PerceptOr tried to sense the environment by 

creating 3-D model of the scene using stereo and ladar data. The idea was to 

create a 2-D map with obstacle identified in the map and to move towards the 

target area based on the map created.  

The guidance system of PerceptOR was based on multiple sensors with 

differing field of view to detect different geometric aspects of obstacles and 

terrain. In addition to the sensors attached to the ground vehicle, PerceptOR 

was equipped with flying agent for early obstacles detection, mainly the steep 

negative obstacles or holes. Two SICK single axis ladars were placed in the 

forward direction of the vehicle with one scanning horizontally and another 

one scanning vertically.  Two additional SICK ladar were also used for special 

purposes with one was mechanically rotated continuously to provide 360-

degree view around the vehicle while another ladar looks rearward to provide 
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backup maneuvers. Digital video camera and stereo camera were used to 

provide colour information and alternative range data to the ladar.  

In this work, the visual guidance system was divided into two sensing 

modes which were appearance sensing and geometric sensing. The geometric 

sensing module processes the range data to detect geometric hazard (i.e. 

extreme slope, tree, etc.) while the appearance processes passive features to 

classify the terrain type. Both modules were fused to calculate the traversability 

cost and subsequently determining non-rigidity of the terrain. This work 

highlighted the importance of certain features to determine the compressibility 

and penetrability of sensed terrain.  Compressibility is defined to be the object 

rigidity which is based on its material composition and penetrability is defined 

to be the object density based on the solidity and porosity of the object. This 

work also identified the color to be a powerful cue to determine the 

compressibility and the authors used neural network to perform the 

classification based on colors. The penetrability of an object was determined 

using the density points from the scanning ladar. In addition, the authors used 

stereo vision with traditional vertical horopter instead of group plane horopter. 

It was highlighted that ground plane is not prominent in many complex scenes 

and difficult to isolate.  

2.3.3 Methods by LAGR 

There are many projects which are based on Learning Applied to 

Ground Robotics (LAGR) system developed at Carnegie-Mellon. It is a 
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platform for research which is equipped with two pairs of Bumblebee cameras 

and on-board GPS antenna for global localization (Happold & Ollis, 2006). 

Thus, projects that use this platform only deal with higher level vision 

processing and planning algorithm.  Alberts et al (2008) and Happold et al 

(2006) attempted to use supervised learning in LAGR platform for unstructured 

outdoor terrain. It should be highlighted that both authors were using different 

algorithms for their LAGR systems. Alberts et al (2008) managed to introduce 

fully autonomous and online learning to distinguish between ground plane and 

other objects while Happold et el (2006) claimed that their system will be able 

to perform safely on forested course based on their test. While LAGR system 

has proven to be successful in semi-structured environment, there is very little 

deployment of LAGR in unstructured terrain.  

2.3.4 Methods by Manduchi et al (2005) 

This work (Manduchi, Castano, Talukder, & Matthies, 2005) presented 

sensor algorithm that are suitable for cross country algorithm. The approach 

used a stereo camera and single-axis ladar for obstacles detection and terrain 

classification. The proposed methods were based on stereo range measurement, 

color-based classification and ladar data to label the detected obstacles 

according to a set of terrain classes.  

The author attempts to detect obstacles using the 3-dimensional point 

cloud directly. Instead of extracting the reference ground plane, the method 

extracted the slope and height of the visible points. Certain objects with height 
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above slope and height threshold will be considered as obstacles, otherwise 

traversable region. The impetus of this method was to minimize the effect the 

uneven ground that may affect the cameras tilt and roll. The color-based 

classification for the terrain typing concentrated mainly on the main obstacles 

in the terrain which are soil or rock, green (photosynthetic) vegetation and dry 

(non-photosynthetic) vegetation (which includes tree bark). Any terrain which 

was not included will be placed into a general group. Any classes with color 

ambiguities will be differentiated with the aid of the range data from radar. 

This research is one of the pioneers of visual guidance for autonomous 

vehicle in complicated terrain and is very similar to the rainforest terrain of 

interest. The work did not attempt to solve the all navigation problems at once 

but to arbitrary solve important challenges one at a time. This approach worked 

very well as different sensors have their advantages in detecting certain 

obstacles over other obstacles. There are a few challenges that were highlighted 

by this work that require further investigation which are the varying 

illumination condition and color shift in atmospheric condition. There is a need 

for efficient and robust illumination compensation method for outdoor terrain 

as the illumination across the terrain is subject to shadow effect and irregular 

illumination. Consequently, it will affect the objects color across the scene.  

2.4 Challenges in Rainforest Terrain 

The preceding sections have briefly discussed the achievements and 

requirements of successful navigation for autonomous vehicle. However, 
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navigation in rain forest terrain represents a highly complex set of problems 

that need to be solved before it can be successfully employed. With more 

unknowns appear within complex environment, we anticipate more difficulties 

in task-specific processing in tropical terrain. Possibly the biggest challenge in 

rainforest terrain is to sense the environment and use the information for path 

planning. However, the task of sensing the environment is made difficult by 

very highly unstructured terrain and contains many uncertainties.   

In rain forest terrain, obstacle detection based on distance and height 

information is not sufficient to determine whether the obstacles really pose 

danger to the vehicle. The following are some possible challenges that are 

typical in rain forest terrain: 

1. Long grass or soft vegetation will be detected wrongly as obstacles in 

geometric point of view as the vehicle could have driven over the grass 

easily. In rainforest, the ground is uneven and it may contain slopes, bumps 

or negative obstacles.  

 

2. Negative obstacles may pose bigger problem as the depth and size of the 

obstacles cannot be accurately determined until the vehicle is very near to 

the obstacles, depending on the sensors height and size of the obstacles. 

The condition can be made worse if the some of the obstacles (negative and 

positive) are hidden behind soft vegetation.  
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3. The illumination is uneven across the rain forest as most of the terrains are 

covered by thick forest canopy. There are direct, indirect sunlight and 

shadow effect which affect the colors of the object. The color distribution 

of an object appears to be broadened depending on the amount of light 

illumination. Pixels may be over-saturated if the object is heavily 

illuminated, and therefore affecting the color information contained in 

pixels.  Consequently, it will affect the segmentation and feature extraction 

based on color features from color camera.  

 

4. Terrain classification plays an important part in determining traversable 

region and non-traversable region. By classifying and determining the 

traversable area, the optimal path for the vehicle can be chosen. However, 

it is difficult to segment the scene into salient or meaningful region.  Thus 

the focus on recent approaches are on minimizing or compensating the 

effect of uneven illumination. 

 

5. Another concern in tropical terrain is color ambiguity of different objects. 

Some of the objects appear to be similar in color and hard to be 

differentiated based on color alone. For example, there are difficulties to 

differentiate between objects such as tree trunk, dry vegetation and soil. 

The color distributions of these objects are very close together and 

overlapping in feature-space, thus making segmentation process harder to 

achieve. It is difficult to form a clear cluster to represent certain object as 

some of the cluster center may appear to be close together and differ in 

size. The results of the segmentation depend on the number of clusters that 
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is set prior segmentation process. Different number of cluster will yield 

different results and in unknown environment it is difficult to assume the 

number of cluster beforehand.  

 

6. The wet nature of rain forest means that the scenario may have water 

bodies and muddy patches around. The vehicle guidance system needs to 

be able to differentiate between deep water and shallow water region to 

avoid damage to the vehicle itself. To our knowledge, there is no work 

done to determine the depth of the water bodies present in rainforest 

terrain. In addition to that, the color of certain material changes due to wet 

condition and atmosphere effect. The reflection spectrum of a material may 

varies due to moisture content. For example, the color of soil may appear to 

darker in drenched condition compared to dry condition. This makes color-

based classification rather difficult and it represents a major problem. 

 

7. The uneven ground plane is one of the major problems in rainforest 

navigation. The uneven ground will affect the tilt and roll of the vehicle and 

sensors which make difficult to detect and estimate the ground plane. In 

addition, the ground plane may appear to be less prominent in rainforest. 

2.5 Summary 

Based on the literature review, we have identified several key areas that 

are essential for a visual guidance system for rainforest navigation. We aimed 

at specific problems that are generally present in the terrain of interest and may 
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improve existing visual guidance system functionality and reducing their 

limitations. The following are the challenges taken into consideration: 

 Ground Plane Estimation 

o The ground plane plays an important part in navigation. The 

load bearing surface need to determined beforehand and act 

as the reference plane in the terrain and obstacle map. 

 

 Tree Trunk Detection 

o In rainforest terrain, the tree trunk is very common in the 

scene. The trunk will appear in most of the scene and it is 

important to have task-specific processing specifically to 

detect this obstacle. 

 

 Water Hazard Detection 

o There is very little work done this water body detection. It is 

important to detect the water bodies as it may be hazardous 

to the autonomous vehicle. 
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Title/Author 
Terrain 

Type 

Visual 

Sensors 
Sensors 

Task-Specific 

Processing 
Contributions Remarks/ Limitations 
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a
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d
 

C
a

m
er

a
 

L
A

D
A

R
 

R
A

D
A

R
 

G
P

S
 

O
th
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s 

(Nilsson, 1969) Indoor x     x     x Used line as their main 

feature to detect the 

obstacles and ground 

plane. 

Introduces vision as perception of vehicle to 

detect the empty ground. 

Not versatile. Visual sensors are 

not used to detect obstacle. 

(Gennery, 1977) Indoor   x           Correlation and 

matching of stereo 

images 

Proposed the usage of stereo vision to detect 

ground plane and obstacles.  

Priori model of the obstacles are 

needed 

N
A

V
L

A
B

  (Thorpe, Hebert, 

Kanade, & Shafer, 

1988) 

Outdoor 

 (On-road) 

x     x       Road-following and 

obstacle detection. 

Color classification and road modeling. Failure occurs when there is 

drastic change of illumination and 

shadowing. 

A
L

V
IN

N
 

(Pomerleau, 1989) Outdoor 

 (On-road) 

x     x       Neural Network for road-following Long algorithm development and 

parameter tuning (months). 

Require large training samples. 

(Jochem, Pomerleau, & 

Thorpe, 1995) 

Outdoor  

(On-road) 

x     x       Improvement from previous ALVINN 

projects, where road junctions’ challenges 

were concentrated. The concept of virtual 

camera was introduced. 

Flat world assumption and 

requires careful alignment and 

calibration.  

 (Batavia, Pomerleau, & 

Thope, 1996) 

Outdoor 

 (On-road) 

x     x       Improved robustness and faster training time 

compared to previous neural network 

approach. 

Priori knowledge on the road is 

required. 

A
R

G
O

 

(Broggi, Bertozzi, 

Fascioli, & Conte, 1999) 

Outdoor 

 (On-road) 

  x           Road-following and 

obstacle detection. 

Lane and obstacle detection based on 

model-based approach. Full vision-based 

system on the road with vehicle detection 

and vehicle overtaking module. One of the 

most matured autonomous road vehicle. 

Relies on the road marking on the 

road. Susceptible to shadowing 

and changing illumination 
(Broggi, 1999) Outdoor 

 (On-road) 

  x           

(Broggi, Fascioli, & 

Bertozzi, 2000) 

Outdoor 

 (On-road) 

  x           

Table 2.1: Summary of visual guidance system approaches in indoor and semi-structured outdoor terrain. 
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Title/Author 
Terrain 

Type 

Visual 

Sensors 
Sensors 

Task-Specific 

Processing 
Contributions Remarks/ Limitations 
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JP
L

 D
E

M
O

 I
II

 (Shoemaker & 

Bornstein, 1998) 

Outdoor 

(Off-road) 

  x x x x   x Geometric cover 

representation, terrain 

classification based on 

color, negative 

obstacles detection. 

Successfully maneuver based on the 

elevation and obstacle map generated 

from geometric information. The 

terrain classification to determine the 

traversability of certain cover was 

performed based on color feature. 

From the literature, the test bed 

seems to be tested on a relatively 

flat ground with certain sensors 

pose assumed.  No work was 

performed on water body detection. 

(Bellutta, Manduchi, 

Matthies, Owens, & 

Rankin, 2000) 

Outdoor 

(Off-road) 

  x x x x   x 

JP
L

 P
er

ce
p

tO
R

 

(Stentz, et al., 2003) Outdoor 

(Off-road) 

x x   x 

  

x x Geometric cover 

representation, terrain 

classification based on 

color and range data, 

negative obstacles 

detection. 

Reliable detection of non-geometric 

objects, but more work are needed. 

Successfully traverse in dessert 

terrain. 

The use of unmanned aerial vehicle 

is not applicable in rainforest 

terrain where canopies are present 

as constraint. 

(Kelly, et al., 2004) Outdoor 

(Off-road) 

x x x x   x x Pose-estimation based on multiple 

sensors available. Traversibility 

determination based on 3D volumetric 

density mapping.  

Level of adaptability of perception 

algorithms is still unsatisfied in 

varying terrain.  

(Huertas, Matthies, & 

Rankin, 2005) 

Outdoor 

(Off-road) 

  x           Traversibility determination based on 

diameter of tree. 

Assume all tree barks are vertical 

or almost vertical. 

(Rankin, et al, 2005) Outdoor 

(Off-road) 

x x x         Performance of passive sensors in 

complicated terrain. 

The resolution of the sensors is 

fairly low which result in low range 

accuracy. 

 (Krotkov, Fish, 

Jackel, McBride, 

Perschbacher, & 

Pippine, 2006) 

Outdoor 

(Off-road) 

x x x x x x x Evaluation experiment of various 

sensors in various unstructured terrain. 

Detailed investigation in unstructured 

terrain challenges. 

 Comprehensive tests on the  

unstructured terrain navigation. 

JP
L

 

(Manduchi, Castano, 

Talukder, & 

Matthies, 2005) 

Outdoor 

(Off-road) 

x x x x x x x Terrain classification 

based on color, 

negative obstacles 

detection. 

Detailed investigation in unstructured 

terrain challenges. Covers majority of 

essential items needed in unstructured 

terrain navigation. 

 Comprehensive work on 

unstructured terrain navigation. 

Highlighted the importance of 

water body detection and 

illumination compensation. 

Table 2.2: Summary of visual guidance system approaches in unstructured outdoor terrain. 



 
30 

CHAPTER 3 

SYSTEM ARCHITECTURE 

3.1 Overview 

Based on the previous literature review, a task-specific visual guidance 

system is developed in this thesis for autonomous vehicle navigation. The 

proposed ground plane detection and water body detection solve some of the 

critical requirements for autonomous vehicle navigation in rainforest terrain. 

The problems are solved independently as task-specific module. By examining 

the reports and publications, it is clear that the key enabling for this 

autonomous vehicle is the visual guidance system (VGS) of vehicle. In order 

for this autonomous vehicle to be feasible, the visual and perception 

information of view must be fully utilized for scene understanding and control. 

Essentially, the role of visual guidance system is to capture the raw sensory 

data and convert the data into meaningful information for model 

representations of the terrain (Shacklock, Xu, & Wang, 2006). 

In this work, a visual guidance system has been developed based on 

stereo camera to achieve our target missions. There are many visual features 

available from the image pair, such as color, texture, motion, disparity and so 

on. It is necessary to extract the suitable and useful features from the obtained 

image pairs. Color features will be used together with the disparities features 

since it is co-registered with the stereo images provided with the stereo camera. 
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First compared with other visual guidance systems, this system is 

designed with the following three solutions for navigation in rainforest terrain: 

1. Robust and simple ground plane detection for rough ground terrain where 

the load-bearing surface is uneven. 

 

2. Obstacle detection in particular vertical tree trunks using disparity data. 

 

3. Water patches detection using two polarizers with different polarization 

angle on stereo camera.  

In other words, this thesis intends to solve the problems mentioned 

specifically above. The missions are achieved by modifying and improving 

existing algorithm and by using additional hardware setup. 

In the next section, the proposed visual guidance system and 

methodology are discussed. The approach to solve the challenges in rainforest 

terrain by problem-based model is explained. Next, the features from stereo 

image pair and polarization effect are described. This includes the analysis of 

the features in rainforest terrain.   

3.2 Visual Guidance System 

Figure 3.1 shows the general framework for a visual guidance system 

where the modules are sensors, modeling and calibration, task-specific 
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processing, sensor fusion and world mapping. The sensors are grouped together 

under one module. The main function of this module is to perceive the scene in 

front of the vehicle and its features is further processed for terrain 

classification, localization, mapping and path planning. This module may 

consist of multiple sensors which include color camera, stereo camera, laser 

range finder and other vision sensors. The modeling and calibration modules 

are used to model the sensors used and to calibrate the sensors accordingly if 

they are going to be used as measured devices. The raw data acquired will be 

converted into features and modeled into projective representation of the scene. 

 

Figure 3.1: General modules of visual guidance system (VGS). 

The task-specific processing module includes the function to process 

the information acquired from the sensors. Each data stream from different 

type of sensors may has different type of features that may be used to perform 

different functions. Essentially, its role is to extract raw sensor data and extract 

useful features that may be used for specific function. For example, a camera 
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has texture features that are useful for terrain classification while stereo camera 

contains additional depth information that is useful for obstacle detection. 

While having more features may increase the likelihood of correct 

classification and detection, it comes with higher cost and higher processing 

load. 

The sensor fusion module function is to merge all the processed 

features to increase the chances of correct classification and detection. As 

mentioned earlier, each feature from different type of sensors may detect 

different obstacles more effectively with certain confidence level. Associating 

those features together may increase the confidence level and improve the 

probability of correct detection. The output of feature fusions will be fed to 

world mapping module which further map the classification and obstacle 

detection result into real world.  

3.2.1 Proposed System Architecture 

The proposed visual guidance system has the ability to determine the 

ground plane of the scene and detecting obstacles and water hazard. The 

approach taken in this thesis is module-based system where each module 

developed is aimed to perform specific task. It is task-oriented module and the 

modules are formulated based on the challenges discussed in section 2.4. A 

general visual guidance system is developed with three main modules which 

perform the task specific processing of interest in this thesis. The earlier 
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overview of this chapter specified the three challenges that we intend to solve 

in this work. 

 

Figure 3.2: Architecture of the visual guidance system. 

Figure 3.2 shows the architecture of the visual guidance system 

developed in this thesis. The features are obtained from polarized stereo 

camera which are colors, disparity, and polarization feature. The color 

classifier is used to process the features available before being used to perform 

certain detection tasks. The three task-specific processing modules are ground 
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plane detection, tree hazard detection and water hazard detection. Each module 

will perform the specific task and the outputs will be fused to generate a terrain 

classification and obstacle map. 

In short, this thesis proposes a feature-based visual guidance system 

with task specific modules to solve the problems highlighted mentioned in 

mentioned earlier. 

Initially, stereo image pairs are grabbed from the calibrated stereo 

camera. Both side of the lens are polarized with different polarization angle 

where the difference of the polarization angle is    . 

Then, the color information and disparity feature are extracted from the 

image pair. Several pre-processing procedures are done on the features before 

each cue are fed to task-specific processing. 

 Next, the color feature, polarized-color feature and range feature are 

used for task-specific module. Color segmentation and ground plane 

estimation are performed earlier as the information is needed by 

other modules. 

 

 The color classifier module is used mainly for terrain segmentation 

and classification. The primary function of this module is to 

segment the scene into few regions that may pose as obstacles 

without determining the compressibility. The tree and water hazard 
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detection modules are used to detect the tree barks and water 

patches present in the scene. 

 

 Finally, the outputs from each module from each module are fused 

to produce the terrain classification map that can be used for 

navigation. 

3.3 Sensor Description 

This section describes the stereo camera used in this thesis to gather 

sample test images and to perform the experiment. This includes the computer 

vision library used to grab images from the camera and perform general image 

processing. Generally, it consists of a stereo camera, central processing unit 

(laptop), two circular polarizers and the relevant mounting accessories. The 

stereo image pair of the scene is captured using stereo camera with the 

polarizer in front of the lenses and passed on to laptop to process the frame. 

3.3.1 Bumblebee 2 Stereo Vision System 

The stereo camera (Bumblebee 2) is from Point Grey Research, Inc 

(Point Grey Research Inc, 2003). As shown in Figure 3.3, the stereo camera is 

designed to incorporate two Sony 1/3” progressive scan CCD. The stereo 

camera is pre-calibrated for lens distortion and camera misalignments where 



 
37 

the left and right images are aligned to within 0.05 pixel RMS error. The stereo 

camera specifications are listed in Table 3.1. 

 

Figure 3.3: Bumblebee 2 stereo vision system. 

For this project, the low-resolution mode is used where the resolution is 

set to         with the frame rates of      . Most of the researches used 

lower resolution image in real-time application. However for this thesis, all the 

initial tests and analysis are based on higher resolution before it is scaled down 

for real-time application. The frame transmission to the processing unit is done 

via standard 6-pin IEEE-1394 connector and the synchronization of the frames 

is incorporated internally.  
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Specification Low-Res(640x480) High-Res(1024x768) 

Imaging Sensor 

Two Sony 1/3” progressive scan CCD 

ICX424(648x488 max pixels) ICX204(1024x768 max pixels) 

7.4    square pixels 4.65    square pixels 

Baseline 12cm 

Lens Focal Length 3.8mm with     HFOV or 6mm with     HFOV or 

A/D Converter Analog Devices 12.bit analog-to-digital converter 

Video Data Output 8, 16 and 24-bits digital data 

Frame Rates 48, 30, 15, 7.5, 3.75, 1.875 FPS 18, 15, 7.5, 3.75, 1.875 FPS 

Interfaces 

6-pin IEEE-1394 for camera control and video data transmission, 

4 general-purpose digital input/output(GPIO) pins 

Voltage Requirements 8-32V 

Power Consumption Less than 3W 

Gain Automatic/Manual/One-push Gain modes(0dB t0 24dB) 

Shutter 

Automatic/ Manual/ One-Push Shutter modes 

0.01ms t0 66.63ms @15FPS 

Extended Shutter modes 

0.01ms to 7900ms @ 15FPS 0.01ms to 5200ms @ 15FPS 

Gamma 0.50 to 4.00 

Trigger Modes DCAM v1.31 Trigger Modes 0, 1, 3, and 4 

Signal To Noise Ratio Greater than 60dB at 0dB gain 

Dimensions 157mm x 36mm x 47.4mm 

Mass 343grams 

Camera Specification IIDC 1394-based Digital Camera Specification v1.31 

Emissions Compliance Complies with CE rules and Part 15 Class A of FCC Rules 

Operation Temperature Commercial grade electronics rated from     to     

Storage Temperature       to     

Table 3.1: Bumblebee 2 stereo camera specifications. 
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The Bumblebee 2 stereo camera comes with automatic gain control 

where it control the image brightness correspond to lighting condition. It 

automatically increases the gain of the camera in the event that the scene is low 

in illumination. This feature is heavily used in the project as the polarizers 

affect the light going into the CCD sensors.  

3.3.2 Triclops Stereo Vision SDK (PGR Software Development Kit) 

The Triclops Stereo Vision Software Development Kit (Triclops 

Library) is provided by Point Grey Research (PGR) Incorporation to configure 

and grab stereo images from Bumblebee 2 Stereo Vision camera. The goal of 

the Triclops Library is to provide the Bumblebee 2 Stereo Vision with accurate 

and fast depth map generation. 

The Triclops library system allows user to specify and process all 

characteristics of stereo image such as image resolution, disparity range, etc. 

The library is developed to produce efficient stereo processing and depth image 

generation and the software system allows the specification of multiple stereo 

processing that may occur on a single set of images. Thus, the stereo image 

pair sequence in this project are grabbed from the camera using this library and 

subsequently, the disparity image is produced before being passed processed 

by Intel OpenCV library function.  
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3.3.3 Intel OpenCV Library 

OpenCV is an open source (see http://opensource.org) computer vision 

library available from http://SourceForge.net/projects/opencvlibrary. The 

library is written in C and C++ and runs under Linux, Windows and Mac OS 

X. It was designed for computational efficiency and with strong focus on real-

time applications. OpenCV is written in optimized C and can take advantage of 

multicore processors. One of OpenCV’s goals is to provide a simple-to-use 

computer vision infrastructure that helps people build fairly sophisticated 

vision applications quickly (Bradski & Kaehler, Learning OpenCV, 2008). The 

OpenCV library contains over 500 functions that span many areas in vision and 

machine learning.  

In this project, the images grabbed by Triclops Library will be 

processed using Intel OpenCV Library to fully utilize Intel microprocessor 

architecture, thus speeding up the runtime of basic image processing. The 

application of OpenCV in this project includes the pre-processing of color 

images and machine learning function for terrain classification. Although the 

machine learning function provided is relatively general and basic, it is 

sufficient to perform the needed functionality. 

3.3.4 Hardware Setup 

From the Figure 3.4, the experimental setup is hooked on camera tripod 

which enables the yaw, pitch and roll angle to be adjusted. The Bumbleblee 2 
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stereo camera is enclosed in the metal casing with two circular polarizers 

mounted in front of the stereo camera.  The basic setup for the actual visual 

guidance system is very similar to this setup except it is not mounted on an 

autonomous vehicle.   

 

Figure 3.4: Bumblebee 2 stereo vision system and polarizer assembly mounted 

in front.  

The stereo camera is mounted 1.3 meter from ground level. At this 

height, it is sufficient for the camera to have higher range of view. The camera 

pitch is set to be      from the negative x-axis. From autonomous vehicle 

operation point of view, the pitch angle of the camera will oscillate as it is 

susceptible to vibration due to the uneven ground level. It is not feasible to 

assume the pitch angle of the camera is the same during the operation time. 

Thus, there is a need to have a robust system that is independent of pitch angle 
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or able to detect the pitch angle real-time. In this thesis, we tried to solve the 

problem by using V-disparity image with additional color clustering process.  

 

Figure 3.5: Experiment setup with the pitch angle set at     from 

the negative x-axis. 

3.4 Overview of Stereo Vision Principles 

Stereo vision is an approach to perform range measurement from two 

images taken from two different viewpoints (Hartley & Zisserman, 2003). The 

aim is to extract three-dimensional (3D) information from its image pair where 

the disparities map or depth map are generated. In the image pair, if the image 

points correspond to the same physical point in real-world-space can be 

determined, the 3-dimensional location of the physical point can be 
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determined. The primary problems to be solved to obtain three-dimensional 

information are calibration, correspondence, and reconstruction (Brown, 

Burschka, & Hager, 2003). Calibration is the process of relating camera system 

internal geometry (focal length, optical centers and lens distortion) and external 

geometry (the relative positions and orientations of each camera). However, the 

problem of calibrating the camera is well-understood and there are fairly many 

methods available to solve this problem. The correspondence problem is the 

process of determining the locations in each image in the image pair that are 

the projection of the same physical point in real-world-space. No general 

solution to the correspondence problem exists, due to ambiguous matches (e.g., 

due to occlusion, specularities, or lack of texture). To make the correspondence 

between two images possible, there are variety of assumptions and constraints 

made, depending on the problem of interest. Table 3.2 shows the available 

methods to solving stereo correspondence problems. All these methods 

attempted to match pixels in an image with the corresponding pixels in its pair 

with different constraint such as epipolar geometry and assumptions. 
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Approach Brief Description 

Local Methods 

Block Matching 

Search for maximum match score or minimum error over 

small region, typically using variant of cross-correlation 

or robust rank metrics. 

Gradient-Based 

Optimization 

Minimize a functional typically the sum of squared 

differences, over a small region. 

Feature Matching 
Match dependable features rather than intensities 

themselves. 

Global Methods 

Dynamic 

Programming 

Determine the disparity surface for a scanline as the best 

path between two sequences of ordered primitives. 

Typically, order is defines by the epipolar ordering 

constraint. 

Intrinsic Curves 

Map epipolar scanlines to intrinsic curve space to 

convert the search problem to a nearest-neighbors lookup 

problem. Ambiguities are resolved using dynamic 

programming. 

Graph Cuts 
Determine the disparity surface as the minimum cut of 

the maximum flow in a graph. 

Nonlinear 

Diffusion 
Aggregate support by applying a local diffusion process. 

Belief Propagation 
Solve for disparities via message passing in a belief 

network. 

Correspondenceless 

Methods 

Deform a model of the scene based on an objective 

function. 

Table 3.2: Stereo correspondence approach. (Brown, Burschka, & Hager, 

2003). 

The reconstruction problem is the process of determining three-

dimensional structure from a disparity map, based on known camera geometry 

(Brown, Burschka, & Hager, 2003). The depth of a point in real-world-space 
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can be determined by performing triangulation on the ray and camera 

geometry. Figure 3.6 shows two camera arrangement with the image planes are 

coplanar to each other, the optical axes are exactly parallel with a distance   

apart, and with equal focal lengths     . The principle points (  
  and  

 ) 

which are the intersections of the principal ray projected from the center of 

projections (   and  ) are assumed to be at the center of the image plane. 

 

Figure 3.6: Frontal parallel arrangement of two cameras. (Bradski & Kaehler, 

2008). 

The image planes are assumed to be row aligned and that every pixels 

row of one camera aligns exactly with the corresponding row in the other 

camera, thus making the search of the correspondence to be just horizontal. A 

point   in the real world can be viewed in both image planes as    and    

where the respective coordinates are        ) and       . 
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The disparity is defined as  

        3.1 

The depth    is the distance of the object from the camera and can be 

determined using triangulation. Referring to Figure 3.6, we have 

         

   
 
 

 
 

  
  

     
 
  

 
 

 

 

3.2 

It is assumed that the stereo image provided in Figure 3.6 is perfectly 

undistorted, aligned and measured. The assumptions are made to simplify the 

description of stereo vision operation. However in practice, it is difficult to 

build systems with a frontal parallel arrangement of two cameras. Instead, the 

images from two cameras need to be mathematically rectified into a frontal 

parallel arrangement.  

3.4.1 Visual Depth using Bumblebee 2 Stereo Vision System 

In this thesis, the three-dimensional depth information is obtained from 

the disparity image. The stereo camera (Point Grey Research (PGR) 
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Bumblebee 2 Stereo Vision System) used is factory pre-calibrated and stereo 

computation are performed using Triclops library (PGR Software development 

kit). The process of computational stereo performed is divided into two blocks 

where the first processing block is the image pre-processing block that applies 

a low-pass filter, rectifies the images and performs edge detection. The second 

processing block does stereo matching, validation of results and subpixel 

interpolation. 

 

Figure 3.7: Triclops general computational stereo process (Point 

Grey Research Inc, 2003). 

The pre-processing block of the Triclops library prepares the raw image 

pair from the stereo camera for stereo processing. The low-pass filtering step is 

done to reduce the aliasing effects. The rectification step is performed to 

remove the lens distortion and to make the image pair be row aligned. The 

edge detection allows matching on the changes in the brightness rather than the 

absolute values of the pixels in the images. This feature is useful because the 

cameras in the Triclops camera module have auto gain control. If the auto gains 
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in the cameras do not change identically, the absolute brightness between 

images may not be the same. While absolute brightness is not the same, the 

change in the intensity stays constant. Therefore, using edge detection will help 

in environments where the lighting conditions change significantly (Point Grey 

Research Inc, 2003). 

The stereo processing block performs the computational stereo process 

where the correspondence of image pair is determined. Block matching is used 

to find the correspondence between the image pair. This method perform 

matching by searching for matching pixels in its corresponding image pair over 

a small number of pixels surrounding the pixels of interest. An image in the 

image pair is selected as a reference image and a neighborhood of a given 

block in other image is selected. The block act as a correlation window and its 

function is to search for the possible matching pixel. The matching pixel is 

chosen from the correlation window based on correlation measure.  For 

discussion of block matching methods see work by Brown et al (2003) as it is 

beyond the scope of this thesis to discuss it. 

In this thesis, the Sum of Absolute Difference (SAD) is employed as a 

measure to correlate the pixels between the image pair. This method is popular 

for its computational efficiency as it only matches the image pair within a 

region of interest instead of whole image and the computational time is reduced 

(Brown, Burschka, & Hager, 2003). The SAD is performed using the following 

equation: 
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       3.3 

where     ,     ,  ,        and      are the minimum disparities, maximum 

disparities, mask size, intensity value of right image and intensity value of left 

image respectively. 

 

Figure 3.8: Sample stereo image pair and disparity image. (a) Left 

image. (b) Right Image. (c) Disparity Image. 

The validation process is to ensure the stereo matching is correct. In 

some cases where occlusion occurs or the scene is lack of texture, it is not 

possible to perform stereo matching and the correspondence cannot be found. 

In order to avoid incorrect measurement, the Triclops library introduced two 

validation method using texture and uniqueness. Texture validation determines 

whether disparity values are valid based on levels of texture in the correlation 

mask (Point Grey Research Inc, 2003).  Uniqueness validation determines 

whether the best match for a particular pixel is significantly better than other 

matches within the correlation mask. Even if the correlation mask has enough 

(a) (b) (c) 
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texture, the correct match may not exist due to an occlusion. If the correlation 

result is not strong enough, the pixel will be declared invalid. 

The Triclops library allows matching between images to subpixel 

accuracy. The library takes advantage of the matching results of the 

neighboring pixels of the resulting disparity to determine an approximation that 

is within a fraction of a pixel. Accurate calibration between cameras allows an 

accuracy of 0.2 of a pixel.  However, this function marginally increases the 

computation time. 

3.5 Summary 

This chapter describes the stereo camera-based visual guidance system 

setup in this project. The framework of the whole system is designed based on 

the problems formulated from investigation on literature review and rainforest 

scene.  

The stereo camera with circular polarizers is mounted in front collect all 

sensor data on the scene and the depth image is produced using the Triclops 

library. This library is used as it is specifically designed to grab images from 

stereo camera.  Further basic pre-processing is done using Intel OpenCV. Then, 

each of the images will be passed to respective task-specific modules. 

It is clear that each module will have its own task-specific mission and 

the module will solve the problem assigned to each module. The reason of 
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adopting this module-based architecture is because it will provide room for 

functionality expansion in future. In this thesis, each module represents a 

problem of interest in the rainforest terrain.  
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CHAPTER 4 

GROUND PLANE DETECTION 

4.1 Introduction 

As mentioned in Chapter 3, this thesis intends to solve several problems 

that are critical for visual guidance for autonomous vehicle in rainforest terrain. 

Visual guidance system is essential to detect the vehicle and classify the 

according to its classes. The obstacles detected and classified terrain will be 

mapped into a map for path planning to guide the vehicle to its destination. The 

approach taken is module-based where each module will be performing the 

task to solve the problem of interest.  

In this thesis, ground plane detection is presented as first step for the 

visual guidance system. There are several methodology approaches to detect 

the obstacles. An approach is to detect the obstacles directly from the features 

such as images, 3D-point cloud etc. Another approach is to use a reference 

plane and maps the obstacles according to the reference plane. The developed 

method is based on V-disparity image and is modified for guidance in visual 

guidance system. There are two main features used in this method, mainly V-

disparity and color feature. The V-disparity image is obtained from the 

disparity feature. The method by Labayrade et al (2002) is improved by using 

additional color feature to improve the robustness of the developed algorithm. 
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Section 4.2 reviews the state-of-the-art of the ground plane detection 

used in autonomous navigation. Section 4.3 presents the characteristic of the 

ground plane in rainforest scene where necessary feature can be utilized to 

detect the ground plane.  Section 4.5 discusses the ground plane detection 

based on modified V-disparity image. Section 4.6 presents the results of the 

developed method and finally the summary is presented in Section 4.7. 

4.2 Overview of Ground Plane Detection  

In this section, the state-of-the-art for estimation of the ground plane 

using stereo vision is presented. Ground plane estimation plays an important 

part in stereo vision-based visual guidance. In order to detect the obstacle, the 

ground plane need to be extracted and base on the ground plane as foundation, 

possible obstacles can be detected.   

Murray et al (2000) approach is to calibrate camera rig where the 

position of the camera to the ground is normally fixed. With the setup arrange, 

the disparity of the ground can be determined during calibration stage. 

However, this approach is not suitable for outdoor or complicated terrain as the 

ground plane is uneven and the position of the camera relative to the ground is 

always changing. Nedevschi et al (2004) tried to obtain the camera position by 

using four sensors mounted on the chassis and wheels where pitch angle is 

acquired real-time. However, the method added complication in calibration and 

is not cost effective. Yu et al (2005) used RANSAC Plane Fitting method to 

find the disparity of the ground pixel. Similarly, Li et al (2004) developed a 
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plane fitting algorithm utilizing road features to detect road. These methods are 

not robust in outdoor terrain and only suitable when the ground is visibly 

present in large part of the image.  

 Recently, V-disparity image introduced by Labayrade et al (2003) has 

become popular for ground plane estimation. This method allows the camera 

pitch angle to be obtained at the time of image acquisition. By acquiring the 

camera pitch angle real-time, the ground plane can be estimated robustly and it 

is suitable to be applied to uneven ground terrain. It utilized the disparity data 

of stereo camera mapped into vertical image and the resulting ground plane can 

be estimated by extracting the ground correlation line.  

4.2.1 Methods using V-Disparity by Labayrade et al (2002) 

After the extraction of disparity image from the stereo image pair, the 

primary task is to extract features available from the disparity image. One of 

the famous features is the V-disparity concept introduced by Labayrade et al 

(2002). Usually, it is used to determine the ground truth of a scene and also to 

isolate obstacles based on the disparity data.  

V-disparity image is based on disparity map    ) obtained from the 

stereo camera. The V-disparity image is a three-dimensional image which 

contains the abscissa-axis, ordinates-axis and intensity-axis. The abscissa-axis 

( )   plots the disparities which the correlation has been computed. The 

ordinates-axis ( ) plots the image row number and the intensity-axis set to be 
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proportional to measured correlation. Figure 4.1 shows a stereo image and its 

corresponding V-disparity image where the abscissa-axis ( )   is built by 

accumulation the pixels of the same disparity from disparity map    ) along 

the ordinates-axis ( ). In other words, V-disparity image is the disparity-based 

histogram where the accumulation of disparity of the same value projected 

onto ordinates-axis ( ). 

 

Figure 4.1: Sample stereo image and its V-disparity image frame of 

reference (Labayrade, Aubert, & Tarel, 2002). (a) Stereo image (left). (b) 

Stereo image (right).  (c) V-disparity image. (d) V-disparity image with ground 

correlation line (blue line) and obstacle profile (white line). 

Detecting objects and obstacles is a question of extraction of features 

corresponds to the objects in the scene in V-disparity. Usually, the objects and 

obstacles in the scene are represented by vertical straight lines in the V-

disparity image. Figure 4.1(d) shows the V-disparity image for sample image 

pair. The blue line corresponds to decreasing disparity where it represents the 

ground. Assuming that the ground plane is flat, the disparity will be lesser 

when it is further away from the stereo camera. The vertical white line 

(a) (b) (c) (d) 
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represents the human (obstacle) as the disparity pixels for the human are of the 

same value over the v-plane. Next sub-chapter will discuss on how the ground 

plane profile and obstacles profiles appear in rainforest scene. 

 

 

Figure 4.2:  Stereo image pair, disparity image and V-disparity 

image. (a) Left image. (b) Right Image. (c) Disparity Image. (d) V-disparity 

image. 

Figure 4.2 shows an example of image pair, disparity image and its 

corresponding V-disparity. It can be seen that the trees in the images are 

represented by vertical segment in the center of the V-disparity image. The tree 

surface has almost similar distance from the camera, thus the tree has constant 

disparity. The ground in the image pair is represented by the slanted segment in 

the V-disparity image. This is due to the linear change of disparity along the 

ground plane. The further the ground plane, the lesser the disparity.  

The ground correlation line contains information of the ground plane and 

also the stereo camera pitch angle at the time of acquisition. The ground plane 

can be determined from the V-disparity image if the ground correlation line can 

be extracted. Various methods were used to extract the correlation with the 

methods differing depending on the features available. 
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4.2.1.1 Property of V-disparity Image 

The extracted ground correlation profile has the same slope regardless of 

the pitch variation. The ground correlation line will only shift parallel to its 

own line. Broggi et al (2005) had experimentally proved that the behavior of 

the ground correlation line during a pitch variation is to oscillate, parallel to 

itself like in Figure 4.3. In work by Zhao et al (2007), the characteristic was 

mathematically proven to be valid. With this characteristic, the ground plane 

correlation line can be extracted as the camera pitch variation negligible effect. 

In addition, the ground correlation profile will have the lower slope 

compared to obstacle profile. This is due to the linearly changing of disparity 

of the ground plane. Most of the obstacles will have similar value of disparity 

with respect to the distance from the camera. This characteristic can be used to 

determine the ground correlation line when there are multiple profiles found in 

the V-disparity image. 
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Figure 4.3: Ground correlation lines in V-disparity image. The solid 

slanted line corresponds to the ground correlation line obtained using the static 

calibration data, while the dashed slanted lines are the ones expected varying 

the pitch value. The solid vertical line indicates the 0 disparity value, the 

dashed vertical line indicates the disparity value of points at infinite distance; 

they do not overlap due to a slight convergence of cameras optical axes 

(Labayrade & Aubert, 2003). 

4.2.1.2 Ground Profile Extraction from V-Disparity Image 

Over the years, there are plenty approaches using V-disparity image 

(Broggi et al., 2005; Toulminet et al., 2006; Zhao et al., 2007) but with 

different method of extracting the ground lines. Broggi et al (2005) applied V-

disparity image in their work with the intention of extracting road out of the 

stereo image. Their work is limited to conventional road as they assume the 

road to be straight line. Zhao et al (2007) applied global correlation method and 
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Labayrade (2002, 2003) uses Hough transform to extract the ground correlation 

line. Most of the work are concentrated on-road or semi-structured terrain and 

in this thesis, the V-disparity image to estimate the ground plane with different 

kind of constrained. The following sub-section will discusses on the challenges 

in detection of ground plane in rainforest terrain. 

4.2.1.3 Challenges of Ground Plane Estimation in Rainforest Terrain 

The application of V-disparity image found in literature is rather limited 

to on-road or off-road with clear path. The approaches in Section 4.2.1.2 rely 

heavily on distinct road feature such as lane marking and clear road path. The 

assumption made on the road profile in V-disparity image is that a straight line 

correlation can be found. Zhao et al (2007) method of using global correlation 

method can achieved better result with the assumption that the road near the 

obstacle is clear of obstacles. In rainforest terrain, V-disparity method holds a 

great advantage in such a way that the camera position can ground plane can be 

estimated during the time the image is acquired. However, the assumptions 

made in previous approaches in estimating the ground correlation line are not 

suitable to estimate the plane in rainforest terrain. 

 Previous approaches (as described in Section 4.2.1.2) assume that the 

ground plane occupies large portion of the image. This scenario is not 

applicable to rainforest terrain as the route for the vehicle to traverse may be  a 

small area. Thus, in the case of where the ground plane occupies just a small 

part or multiple parts of the image, there is no sufficient ground pixels to 
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extract the ground correlation line. Zhao et al (2007) method used higher 

correlation window cannot be applied in tropical terrain as the assumption 

made is that the ground plane near the vehicle is clear of obstacles. The 

assumption made is not applicable to rainforest terrain as obstacles may be 

present near the vehicle. By using higher correlation window, it also assumed 

that depth is equal for all pixels in the correlation window which is not the case 

in our terrain consideration as the depth may contain discontinuities. The 

discontinuities may be a major hazard as it can be a negative obstacle that the 

stereo camera cannot detect. Based on the problem statements, it is necessary 

to devise one more features that can be used to determine the ground plane in 

tropical terrain. 

4.3 Feature Extraction 

In this section, the V-disparity image and color feature of the rainforest 

terrain are examined. The characteristics and cues representing the ground 

plane and obstacles in the V-disparity image and color feature are described. 

4.3.1 Analysis on Disparity Image and V-Disparity Image of Rainforest 

Terrain. 

The V-disparity image is obtained from disparity image produced by the 

image pair. Since our proposed method will utilize V-disparity image to detect 

the ground plane, it is important to highlight the difficulties in using V-

disparity as a feature. In this section, the behaviors of ground plane and 



 
61 

obstacles profiles in V-disparity image are presented. The motivation is to 

study the characteristic of the features in order to determine suitable feature to 

be used in task specific processing.  

Figure 4.4 shows a few sample images of outdoor scene with different 

complexity where the complexity level is easier in the first image pair and 

increases in the subsequent sample image pair. The considered scenario in this 

figures include the obstacles and the appearance of the ground plane. Note that 

the ground and obstacle profile of this sample image is hand-labeled, and the 

question posed is how to extract this line profile automatically. However, this 

demonstrates that V-disparity image can be used to extract the ground plane 

and obstacles.  

Figure 4.4 (a) shows an outdoor image where the ground plane dominates 

the whole image. The correspondence V-disparity image illustrates strong 

profile of the ground plane and clear obstacles profile.  

Figure 4.4 (b) shows more complicated scene where the ground plane 

appears in large portion of the image but with closer obstacles to the camera. It 

can be observed in the V-disparity image that the ground profile is fairly 

apparent. Typical scene in rainforest terrain will appear similar to the sample 

provided. The obstacles are mainly tree trunk and vertical in nature. Thus, the 

obstacles can be easily isolated when the ground profile is successfully 

extracted.  
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V-Disparity 
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c      

Figure 4.4: Sample stereo images, disparity images and its V-

disparity images frame of reference in rainforest terrain. Note: the ground plane 

profile and obstacle profiles are hand-labeled. 

Figure 4.4 (c) shows a highly complex scene where the ground plane 

only appears in small part of the image and the scene is populated by obstacles. 

The V-disparity image does not exhibit ground profile due to the low number 

of ground surface in the scene.  

4.4 Color Feature from Stereo Imaging 

In this section, the color feature of a rainforest scene is presented. Color 

feature is a very fundamental feature available to machine vision and it is 
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usually considered at the same time with three-dimensional information. This 

feature can be used to perform color segmentation or clustering and 

subsequently, terrain classification. To date, the vast information contained in 

two-dimensional color images is yet to be exploited (Shacklock, Xu, & Wang, 

2006). The major problem is to find alternative way to extract the knowledge 

from the color images and use the information within the algorithm.  

In RGB color space, the color appears in primary spectral components 

of red, green and blue (Gonzalez & Woods, 2010). RGB color space is based 

on the human eye which consist millions of cones that responsible for color 

vision. The cones are very sensitive to these three primary colors where 

approximately 65% of all cones are sensitive to red, 33% are sensitive to green 

and only 2% are sensitive to blue. Due to these absorption characteristic of the 

human eye, colors are seen to be variable combinations of the primary colors of 

red, green and blue. By using this three primary color, most of the colors in the 

color spectrum can be regenerated. 

Although the RGB color space matches with the fact human eyes are 

strongly sensitive to red, green and blue, it is not practical for human 

interpretation (Gonzalez & Woods, 2010). For example, one does not refer to 

the color of an object by referring to the percentage of each primary color 

representing its color. In term of image processing, the colors will be 

represented in image planes. Thus modifying one of the color planes will alter 

the color information in the pixels. In color image processing, one does not 

wish to alter the color information as it is an important feature to represent an 
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object. Thus, it can be said RGB color space is only suitable to store and 

regenerate image but the usage as color description is rather limited (Gonzalez 

& Woods, 2010). 

A human perception distinguishes colors from others based on hue, 

saturation and brightness information (Gonzalez & Woods, 2010). Hue is an 

attribute associate with the dominant wavelength in the mixture of light wave 

where it contains pure color information. Saturation gives the purity of color or 

the measure of pure color diluted with white light. The combination of both 

hue and saturation will give the chromaticity. Brightness describes the 

achromatic attributes which is the intensity. Thus, a color may be characterized 

by its chromaticity and brightness. 

A HSI (hue, saturation, intensity) color model is a model that represents 

colors in a natural and more intuitive way to human. This model is also 

commonly known as HSV (hue, saturation, value) color model. As described 

above, each hue, saturation and intensity (or value) component in the color 

model represents the hue, saturation and brightness information respectively. 

This color space decouples the intensity component from the color components 

in a color image (Gonzalez & Woods, 2010) and the advantage of this 

separation is that it enables image processing based on color information alone. 
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4.4.1 Colour Distribution of Rainforest Scene 

An initial analysis on the image from camera reveals that that it is 

difficult to differentiate different classes of obstacles and terrain using color 

feature alone. The similarity of color made it difficult to differentiate between 

two different clusters that are closed together. Figure 4.5(a) and Figure 4.5 (b) 

shows a test image of a rain forest terrain in consideration and its 2D-histogram 

in hue and saturation. Few fragments of tree trunks, green leaves and ground 

were extracted and their distributions are viewed in hue-saturation feature 

space.  

The inlet image in Figure 4.5 (b) shows the histogram for the whole 

image. The color distribution for each region is overlaid on top of the overall 

histogram. It can be observed that the color distribution of tree trunk and 

ground are close and overlapping whereas the green vegetation can be easily 

separated. The appearance of an object is dependent on various factors such as 

illuminant, the reflectance of the object, illumination geometry and also the 

sensor parameters (Kamegawa, et al.). Figure 4.5 (b) shows the variation of 

saturation of objects where the saturation are distributed even it belongs to the 

same object. The variation may be greater when the conditions of the scene 

change. 

 

 



 
66 

 

Figure 4.5: 2-dimensional hue-saturation histogram. The distribution of object 

colors (ground, tree trunk, vegetation and others) are illustrated. (a) The scene. 

(b) 2-dimensional histogram. 

Different type of grounds and trees will have different appearances 

depending on the illumination, types and texture of soil and tree barks. 

Generally, both ground and tree barks appear to be similar in color. Thus, there 

is a need to use multiple cues to differentiate between these two classes. In this 

project, the disparity feature is used to detect ground plane and any obstacles 

above the ground plane. It is anticipated that any brown-in-color object or 

terrain appearing on the ground correlation profile of V-disparity is ground 

plane. Thus, the ground can be segregated from the tree trunk. 
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4.4.2 K-means Clustering 

Image segmentation is the process of dividing an image of a scene into 

constituent part and extracting these parts of interest. As our approach in 

ground plane detection employs segmentation technique as supplement to the 

V-disparity feature, it is necessary to describe the functionality of the 

segmentation method used. 

In this thesis, K-means clustering is used to cluster the image according 

to the colors. While there are many techniques that are available, K-means 

clustering is employed because of its simplicity. The only parameter that needs 

to be pre-determined is the number of cluster. Due to uncertainty that present in 

rainforest terrain, it is necessary to have low pre-determined parameter to avoid 

over-fitting or bias in the clustering process.  

To describe the algorithm flow of K-means clustering, let    denote the 

pixel of an image  

                   4.1 

where  ,   are the pixel location and  ,  ,   are the intensities of the color 

components at that point.  

The K-means clustering method aims to classify the terrain according to 

the performance index 
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       4.2 

where   
   

 denotes the set of samples assigned to the cluster   after the  th 

iteration, and    denotes the mean of the  th cluster. This index measures the 

sum of the distances of each sample from their respective cluster means. 

The algorithm runs as follow: 

1. Randomly assign the cluster center location. 

  
   
   

   
      

   
    4.3 

2. At the  th iteration assign each pixel,    to one of the K clusters 

according to relation 

     
   

 if        
          

    4.4 

For all           ,    , where   
   

 denotes the set of samples 

whose cluster center is   
 . 

3. The cluster center mean,   
    is updated where   is the cluster 

number. 

4. If   
   =   

  for all  , the algorithm has converged and the algorithm 

is terminated. Else, go to step 2. 
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The K-means clustering algorithm requires the number of clusters to be 

known beforehand. The choice of the number of clusters for this thesis is 

determined based on a few assumptions and validated with experimental data. 

Next in this chapter, the developed ground plane detection ground plane 

detection algorithm is described. 

4.4.3 K-means Clustering: Number of Cluster Determination 

The major setting in this method is to determine the number of cluster 

required in order for the proposed method to be working well in rainforest 

terrain. The motivation of using K-means clustering method is to segment the 

lower half of the image to possible different regions. However, we do not 

anticipate over segment or under segment the images.  

Ideally, there should be only two classes which are obstacles and non-

obstacles. However, due to color ambiguity of different object, the regions in 

the image cannot be group into just two groups. Thus, it is necessary to 

determine a universal parameter (number of cluster) that can work in majority 

of the conditions in rainforest terrain.  

The following are the assumption that we employed in determining the 

number of regions: 
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1. The image contains the scene which can be divided into two major 

classes, traversable ground region and obstacle region. Thus the 

minimum region expected in the image is two.  

 

2. The major colors in rainforest terrain are green, brown and black. 

Each class may be any of the colors. Assuming that every object 

color is constant (no color constancy problem), the ideal number of 

region is six (two major classes multiply by three major color 

appearance). 

However, there may be multiple objects of an object class appearing in 

the scene; therefore there may be multiple region of an object class.  Thus, it is 

expected the suitable number of region lay around six regions. 

                  No. of region 

No. of Clusters 

 

<5 

 

5-8 

 

>8 

2 1.00 0 0 

3 1.00 0 0 

4 0.30 0.60 0.10 

5 0 0.64 0.36 

6 0 0.44 0.56 

7 0 0.16 0.84 

8 0 0 1.00 

Table 4.1: The number of regions resulted from the number of cluster settings. 

The percentages of the regions are based on 30 samples. 
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 Table 4.1 shows the number of regions in the image using different 

number of clusters. The percentage shown is based on 30 sample images. 

Regions with less than 100 pixels are omitted. The number of region 

anticipated is approximately six, thus  it can be seen that the highest percentage 

of six regions generated when number of clusters is set to five. 

4.5 Developed Ground Plane Detection Algorithm 

In this thesis, the approach taken to find suitable ground feature is to 

segment the image into a few salient regions before the V-disparity image is 

considered. Since the disparity data are associated with color information, the 

color feature can be used to divide the stereo image into a few region of 

interest. Each of the regions will generate different V-disparity image and 

different correlation line. The correlation lines with high gradient will be 

discarded while the correlation line with lowest gradient will be taken into 

consideration as ground consideration line. The assumption made is that the 

ground plane is usually associates with the correlation line with lowest 

gradient. 

Figure 4.6 shows the framework of developed ground plane detection 

algorithm. Color image pair was obtained from stereo camera. The image pair 

was then rectified before disparity data was obtained. The colour image was 

converted to HSI color space where the hue and saturation channel are used 

together with disparity data for clustering. The value channel is not considered 

to minimize the effect of uneven brightness across the scene.  
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Figure 4.6: Framework of the developed ground plane detection module. 

Then, three-dimensional feature consist of hue, saturation and disparity 

was used to divide the scene into a few regions. Only the bottom half of the 

image was considered as it is assumed the ground plane will always appear at 

the distance nearer to the camera. However, once the ground correlation profile 

is estimated, it will be applied to the whole image to extract the ground plane. 

 In this work, K-means clustering was used to cluster the bottom half of 

the image into five (5) clusters. The number of clusters was chosen based on 

extensive testing as describe in Section 4.4.3 and it was found that five (5) 

clusters were sufficient to generate suitable candidate lines. 

Each of the clusters point was mapped to the V-disparity image and 

each cluster will generate a candidate ground correlation line. Five color 

clusters will generate five candidate ground correlation lines. To generate lines 

corresponding to each of the cluster, a simple linear line regression was used. 
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The best fit line associate with the   points                         has the 

form of  

           4.5 

where   and   correspond to row of the V-disparity image and disparity 

accumulation. The slope,  and v-intercept,   are given as 

  
             

            
    4.6 

and 

  
      

 
      4.7 

Each of the regions will generate different V-disparity image and 

different correlation line. The correlation lines with high gradient will be 

discarded while the correlation line with lowest gradient will be taken into 

consideration as ground consideration line. The choice is made based on the V-

disparity property discussed in Section 4.2.1.1, where ground plane usually 

associates with the correlation line with lowest gradient. 

The selected ground correlation profile was then applied to the V-

disparity image of the whole image to extract the ground pixels. Figure 4.7 (c) 

shows the selected ground correlation line mapped onto the V-disparity image. 
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The disparity that appears above line and 10 pixels below the ground 

correlation will be considered as ground pixel.  

 

Figure 4.7: (a) Image of the Scene. (b) V-disparity image. (c) 

Candidates for ground correlation line. (d) Extracted ground correlation line. 

Figure 4.7(a) shows an example of scene in the consideration. The V-

disparity image is illustrated in Figure 4.7(b). The K-Mean clustering algorithm 

is implemented to segment into several regions. The feature used in the 

clustering is hue, saturation and disparity. The K-means clustering algorithm is 

very sensate to brightness or the image, thus the brightness feature is not used 

and replaced with disparity feature. The motivation of using disparity as a 

feature in K-means clustering is to differentiate between two different objects 

with similar color. This clustering step is applied only on the lower part of the 

image. After the color clustering, the candidate lines were generated as 

illustrated in Figure 4.7(c).  

 

w (a)                                               (b)               (c)               (d) 

d 

V 

d 

V 

d 

V (

a) 
(

b) 
(

c) 
(

d) 

u 

w 



 
75 

  

 

Figure 4.8: Sample result of ground plane estimation. (a) Sample 

scene. (b) Mapped ground pixels in red. (c) Ground correlation profile in V-

disparity image. 

The correlation lines with high gradient will be discarded while the 

correlation line with lowest gradient is chosen to be ground correlation line 

(Figure 4.7(d)). The ground correlation profile is visualized in red. From the 

ground correlation profile, the disparity points correspond to the ground plane 

can be mapped. 
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4.6 Experimental Results and Discussions 

Now after the V-disparity image, K-means Clustering and proposed 

ground detection algorithm were described above; the experimental results of 

the developed method are done in this section.  

The algorithm is tested with 90 samples of rainforest terrain. The test 

images cover usual simple unstructured scene, rainforest scene with moderate 

complexity and complex scene. Thirty (30) samples are used for each type of 

scene. The image size is        . 

The performance of our ground plane detection algorithm is quantified 

by discrete classifier model. In this thesis, there are true class and hypothesized 

classes which represent the actual situation of the scene and predicted situation 

by developed algorithm respectively.  

Figure 4.9 illustrates the performance classifier used. The true classes of 

interest in this developed module is ground and not ground. Given that there 

are two true classes, there are four possible outcomes. If the object is ground 

and its predicted class is YES, it is classified as true positive (TP). If the 

predicted class is NO, it is classified as false negative (FN). Similarly, if the 

object is not ground and its predicted class is NO, it is classified as true 

negative (TN). False positive (FP) occurs when the true class is not ground and 

the predicted class is ground (YES). 



 
77 

 

Figure 4.9: The performance classifier of developed algorithm. The true 

classes of the objects are indicated in the column while the predicted classes 

are indicated in the row. 

Based on Figure 4.9, it can be seen that the performance of developed 

module is good when the true positive and true negative result is high as they 

represent the correct results. Both false negative and false positive are not 

desirable as it represent wrong classification of the scene.  

However, in this module, the false positive result holds higher 

significance as it represents wrong classification that will harm the autonomous 

vehicle. If the true class of the object is not ground, it may be an obstacle that 

can lead to collision.  Thus, it is necessary for the false positive classification to 

be kept as low as possible. 

 The following subsections discuss the result of the developed ground 

detection module applied in unstructured terrain.  
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4.6.1 Simple Unstructured Terrain Experiment 

First, the ground detection algorithm is tested on the simple 

unstructured terrain image sequence. We define simple unstructured terrain as 

a relatively flat ground and little obstacles around the obstacles. 

As discussed in Section 4.3.1, for the scene where ground plane occupy 

majority of the image, the ground correlation line in V-disparity image is 

relatively clear. The ground correlation line is fairly straight and it is easier to 

extract as the disparity data in V-disparity image mostly represent the ground 

plane. Low presence of obstacles disparity data in the V-disparity image space 

directly contributed to lower noise, thus making the ground correlation profile 

extraction less affected by noise. 

Figure 4.10(a)(i) and Figure 4.10(b)(i) depict two sample images of 

simple unstructured terrain. It can be seen in the images that there is no drastic 

change of ground slope and the obstacles are relatively scarce. There are a lot 

of areas that could be traversed by the autonomous vehicle. Figure 4.10(a)(ii) 

and Figure 4.10 (b)(ii) show the ground plane detected using developed 

module. It can be observed that developed module managed to identify the 

ground region in the scene. 
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Figure 4.10: Sample results of detected ground plane in rainforest terrain for 

simple unstructured terrain. (a)(i) and (b)(i) show the sample images and the 

detected ground planes are shown in (a)(ii) and (b)(ii) respectively. 

Figure 4.11 shows the average error of detected ground plane versus the 

distance from the camera. The error is calculated based on comparison between 

detected ground pixel and hand labeled ground pixel. It can be seen that the 

errors are below 7 percent for the first eight meters. The errors start to increase 

after 8 meters. This is due to the stereo camera minimum disparity setting 

which limit the distance of object detectable by the stereo camera. At further 

distance, disparity data for objects obtained from the stereo camera is low in 

              (b)(i)       (b)(ii) 

              (a)(i)       (a)(ii) 
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resolution, thus making it difficult to distinguish between objects. There errors 

occurred at the boundary of objects.  

 

Figure 4.11: Average ground plane error versus distance for ground plane 

detection in simple unstructured terrain. The number of samples used is thirty. 

Figure 4.12 shows the performance of developed module in details. The 

true positive and true negative outcomes are maintained above 90 percent 

within the first 10 meters. The false positive and false negative and false 

negative outcomes are below 10 percent.  

The false negative occurs when our developed algorithm wrongly 

classify a region as non-traversable area when the region is a traversable 

region. This type of error does not bring hazard to the vehicle as the error will 

not lead the vehicle to the obstacles.  
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Figure 4.12: Performance matrix of the ground plane detection module in 

simple unstructured terrain. The number of samples used is thirty (30). 

The false positive outcome is not desirable as it directly affect the 

safety of the vehicle itself. This wrong classification will bring hazard to the 

vehicle as it will mislead the vehicle. In our developed module, the false 

positive outcome is kept low throughout the 10 meters range from the camera.  

The error usually occurs at the edge of detected ground region which is near 

the boundary of ground plane and obstacles.  

4.6.2 Moderate Terrain Experiment 

Next, the ground plane detection algorithm is tested on typical 

rainforest scene with moderate complexity. As discussed in Section 4.3.1, the 
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ground correlation profile for rainforest scene is fairly apparent in the V-

disparity image. The obstacles are mainly tree trunk and vertical in nature. 

Thus, the obstacles can be easily isolated when the ground profile is 

successfully extracted.  

 

Figure 4.13: Sample results of detected ground plane in rainforest terrain for 

rainforest terrain. 

Figure 4.13(a)(i) and Figure 4.13(b)(i) depict two sample images of 

typical rainforest scene. The ground plane is relatively flat throughout of the 

scene. There is no drastic change to the ground slope. In rainforest terrain, 

              (a)(i)       (a)(ii) 

              (b)(i)       (b)(ii) 
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there are few green vegetation and compressible vegetation. The obstacles are 

mainly tree trunks which are tall, straight and vertical. The lack of green 

vegetation on the ground is due to the canopies which prevent sun light from 

reaching the ground. There are a lot of areas that could be traversed by the 

autonomous vehicle. Figure 4.13(a)(ii) and Figure 4.13(b)(ii) show the ground 

plane detected using developed module. It can be observed that developed 

module managed to identify the ground region in the scene. 

 

Figure 4.14: Average ground plane error versus distance in rainforest terrain. 

The number of samples used is thirty (30). 

Figure 4.14 shows the average error of detected ground plane versus the 

distance from the camera. It can be seen that the errors are below 10 percent for 

the first eight meters. The errors start to increase after 8 meters. The cause of 

error is similar to application in simple unstructured terrain where it is due to 
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the stereo camera minimum disparity setting. The stereo camera minimum 

disparity setting limits the distance of object detectable by the stereo camera. 

These errors occurred at the boundary of objects.  

The errors also caused by the environment itself where in rainforest 

terrain, the environment is usually low in brightness. This is because the scene 

is covered by the canopies which prevent the sunlight from illuminating the 

scene. Under this circumstance, image with low contrast will be obtained. This 

will contribute to difficulties to differentiate between two regions. Figure 

4.13(a)(i) depicts this scenario where the darker regions does not show clear 

boundaries between the ground plane and the tree trunks.  

 

Figure 4.15: Performance matrix of the ground plane detection module for 

terrain with moderate complexity. The number of samples used is thirty (30). 
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Figure 4.15 shows the performance of developed module in rainforest 

terrain in details. The true positive and true negative outcomes are maintained 

above 90 percent within the first 10 meters. The false positive and false 

negative and false negative outcomes are below 10 percent. The performance 

of the developed module in rainforest terrain is similar to the performance in 

simple unstructured terrain where the false negative and false positive results 

are kept low at acceptable level. 

4.6.3 Complex Terrain Experiment 

After the developed algorithm was tested in rainforest terrain, it is 

tested in more complicated terrain. Although this terrain is not common in 

rainforest terrain, it is interesting to experiment the algorithm is complex 

terrain.  

In this thesis, we define complex terrain as terrain with minimal ground 

region, presence of compressible vegetation and large number of obstacles in 

the scene. Note that in our experiment, it is not in the consideration to classify 

whether a possible obstacles to be compressible or non-compressible. It is our 

interest to detect possible traversable region by the vehicle.  

In Section 4.3.1, it was mentioned that the ground correlation profile for 

complex terrain is not prominent in the V-disparity image. This is due to 

minimal appearance of the ground plane in the image. Thus, the disparity data 

representing the ground plane in the V-disparity image is minimal compared to 
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other object. The low count in the V-disparity image makes it hard to extract 

accurate ground correlation profile. 

 

Figure 4.16: Sample results of detected ground plane in rainforest terrain for 

complex terrain. 

Figure 4.16(a)(i) and Figure 4.16 (b)(i) depict two sample images of 

complex terrain used in the experiment. The ground plane appearance is minor 

while the obstacles are very close to the camera. The ground slope is not 

constant throughout the scene. In Figure 4.16 (a)(i), it can be seen that the 

              (a)(i)       (a)(ii) 

              (b)(i)       (b)(ii) 
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ground plane is relatively flat in the scene. However, the ground plane is not 

the major object in the image and there are obstacles close to the camera. The 

detected ground plane in Figure 4.16 (a)(ii) shows some error in lower left of 

the image where some of the green vegetation are classified as ground plane. 

This is due to the green vegetation height is below the threshold set by 

developed algorithm. However, the region may be traversed as it is low in 

height. 

In Figure 4.16 (b)(i), the ground plane is uneven throughout the scene, 

where the ground plane is going downhill. The developed algorithm fails to 

recognize the ground plane (at the center of the image) as the ground profile 

cannot be represented in a straight ground profile. When the ground is going 

downhill, the ground region profile deviates from the detected ground profile. 

In this thesis, the region will not be considered as ground plane and it is 

classified as undefined region. However, the algorithm managed to detect the 

region as the camera moved closer. 
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Figure 4.17: Average ground plane error versus distance in complex terrain. 

The number of samples used is thirty (30). 

Figure 4.17 shows the average error of detected ground plane versus the 

distance from the camera. It can be seen the error occurred in complex terrain 

is higher compared to simple unstructured terrain and rainforest terrain. The 

error is due to presence of various obstacles which are low in height such as 

compressible green vegetation. Since the developed algorithm does not use 

machine learning to classify the type of obstacles, any object appear between 

the ground plane profile tolerance will be considered as ground plane. Thus, 

the average error for the application in complex terrain is higher. However, we 

manage to maintain the error to be below 15 percent for near range ground 

plane detection. Similarly to previous experiment, the errors occurred at the 

boundary of detected ground plane. 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

1 2 3 4 5 6 7 8 9 10 

A
ve

ra
ge

 E
rr

o
r 

(x
1

0
0

%
) 

Distance from camera(m) 

Average Error versus Distance 



 
89 

 

Figure 4.18: Performance matrix of the ground plane detection module in 

complex terrain. The number of samples used is thirty (30). 

Figure 4.18 shows the performance of developed module applied in 

complex terrain in details. The true positive and true negative outcomes are 

maintained above 85 percent within the first 10 meters. The true positive 

outcome drops sharply due to the samples used in this experiment are mainly 

sloppy terrain. The developed algorithm is not able to detect ground plane with 

non-straight line ground profile. However, this error can be eliminated once the 

camera is moved closer to the region. 

The false positive and false negative outcomes are below 20 percent. 

The false positive outcomes are mainly caused by tree trunk roots and 
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compressible vegetation. In rainforest terrain, the tree root may appear on top 

of the ground and may be considered obstacles if the height of the root is above 

threshold. However, in the hand-labeled ground plane, all the tree roots are 

considered as obstacles which include the roots that can be run over. This 

contributes to the high false positive outcome in this experiment. 

4.7 Summary 

The algorithm produced good results in the condition in most of the 

rainforest terrain condition. It was able to determine the ground plane of the 

scene and mapped the corresponding ground pixels to the image. 

Based on results of three experiments performed in simple unstructured 

terrain, rainforest terrain and complex terrain, the average result is presented in 

Figure 4.19 and Figure 4.20. Based on the results, the average error over 90 

samples is less than 10 percent within 8 meter from the camera. 

We managed to maintain the average accuracy of 90 percent over the 

three tests. The false positive outcome is very critical as this condition is 

hazardous to the vehicle. In this thesis, the developed algorithm managed to 

maintain the false positive alarm below 10 percent for most of the conditions.  
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Figure 4.19: Average ground plane detection error versus distance. The 

number of samples used is ninety (90). 

Based on observation on the detected ground plane, the false positive 

alarm usually occurs at the edge of the ground plane. The boundary of the 

ground region and obstacles are not clear due to similarities of color between 

some of the obstacles and ground plane. In rainforest terrain, the ground region 

may be similar to the color of the tree trunks. The color similarities made the 

ground plane to be inseparable using color cue. However, the ground region 

and obstacles can be distinguished using disparity data. The error occurs at the 

boundary as there is continuity of disparity data of ground plane into the 

disparity data at edge of the obstacles before the disparity data of the obstacles 

become constant.  
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Figure 4.20: Overall performance matrix of the ground plane detection 

module. The number of samples used is ninety (90). 

 The unstructured natures of the terrain make the classification of 

the terrain harder. It is difficult to segment the region with clear boundary 

separation. However, our developed module can be used together with vehicle 

path planner with the confidence level at the edge detected ground plane set to 

be lower compared to the middle of the detected region. With the confidence 

level, the decision can be made to traverse through the ground region with 

higher confidence level. Consequently, the risk of false positive outcome can 

be minimized. 
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In the case of ground region with downhill profile, the developed 

algorithm fail to detect the region until the camera is closer to the region. This 

is due to the fact in complicated terrain; there are multiple ground profiles to 

describe the ground region. However, this error can be corrected once the 

stereo camera is closer to the region where the pose of the camera is aligned to 

the ground plane. 

This algorithm can be used in real time application as it is not 

computationally heavy. On a processing system (Intel Core 2 Duo CPU 2.2 

Ghz processor and 2 Gb of RAM), a total computational time of ~60ms was 

obtained on         pixels images. This permits the algorithm to be devised 

and used together with other obstacle detection algorithm. 
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CHAPTER 5 

TREE TRUNK DETECTION 

5.1 Introduction 

This section discusses about tree trunk detection module based on 

disparity feature, edge feature and tree verticality cue. The detection of tree 

trunk in the rainforest scene is an important task due to high occurrence of 

these obstacles and it may causes damage to the autonomous vehicle. The task 

is accomplished by utilizing multiple features from the stereo camera and tree 

characteristic cues of the tree trunk in the rainforest terrain. 

To begin, several characteristics of tree trunk that can be used to isolate 

the tree trunk from the rainforest scene are listed. The following are the typical 

appearance of tree trunks in rainforest terrain: 

1. Verticality – Tree trunks are usually tall and vertical covered by canopy at 

the top. Therefore, the edges of the tree trunks are usually vertical or near 

vertical.  The disparity information of the tree trunks will have large 

continuities across the rows of the image. 

 

2. Tree bark geometric appearance – Typically, the background of tree trunks 

in rainforest scene is rather bare due to the presence of the canopy limiting 
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the growth of smaller vegetation. Thus, the change of disparity information 

at the edge of the tree trunks and background is rather abrupt.  

Using these characteristics, the tree trunk detection module is 

formulated to detect the vertical and near vertical tree trunks. The state-of-the-

art of obstacle detection is discussed before going into details of tree trunk 

detection. Then, detailed descriptions of the proposed method and results are 

presented. 

Section 5.2 discusses on the current approach of the obstacle detection in 

general. Most of the works done are mainly on wide-ranging obstacles which 

are present in rainforest terrain. However, it is necessary to discuss the work 

done as tree trunks is a category of obstacles. Section 5.3 describes the 

situation under our consideration. Section 5.4 describes the operators or 

methods used in the developed algorithm. Section 5.5 present the algorithm 

and steps to detect the tree trunks based on stereo disparity and edges. Section 

5.6 presents the results of the developed method and finally the summary is 

presented in Section 5.7. 

5.2 Overview of Obstacle Detection 

One of the earliest obstacle detection algorithms was done by Talukder 

(2003). The authors used 3-D obstacle detection algorithm to locate and 

segment obstacles in the scene for autonomous terrain vehicle navigation. The 

scene is segmented into clusters, where each cluster identifies an isolated 
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obstacle in 3D space. Then, rule-based classification using 3D geometrical 

measures derived for each segmented obstacle is then used to reject obstacles 

that are small in volume or lower than threshold height.  The work used solely 

geometrical data to detect obstacles that is higher than certain slope and height 

threshold. While the developed method managed to detect most of the possible 

obstacle in place, it does not provide any information regarding the 

traversability. 

Approach by Hebert (2003) tried to segment the scene using the point 

clouds acquired from LADAR. The work focused primarily on segmentation of 

point clouds into classes of points corresponding to surfaces and group similar 

points into consensus regions corresponding to large pieces of surfaces. The 

terrain types include vegetation, rocks, wires, and small-diameter objects. The 

challenges associated with this approach are the computational cost and the 

resolution of the sensor. The computational cost is relatively higher compared 

to other vision techniques. The resolution of the sensor of the LADAR sensor 

is not sufficient to capture the terrain and obstacle shape in a single run. 

Manduchi et al (2005) approach to detect obstacles is based on multiple 

sensors. The elevation map is generated directly from stereo camera and 

LADAR sensor information. Analysis of one-dimensional profiles 

corresponding to range values is analyzed. These measurements sample the 

trace left by the visible surface on the slicing planes defined by each pixel 

column and the focal point of the camera in each pixel column in the image 
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plane. The slope of the one-dimensional range profile with respect to the 

horizontal plane can be used to detect obstacles. 

5.2.1 Method by Huertas et al (2005)  

This paper describes a stereo-based tree traversability algorithm 

implemented and tested on a robotic vehicle under the DARPA PerceptOR 

program. Edge detection is applied to the left view of the stereo pair to extract 

long and vertical edge contours. A search step matches anti-parallel line pairs 

that correspond to the boundaries of individual trees. Stereo ranging is 

performed and the range data within trunk fragments are averaged. The 

diameters of each tree is then estimated, based on the average range to the tree, 

the focal length of the camera, and the distance in pixels between matched 

contour lines. 

The ability to detect and estimate the diameters of trees depends on the 

ability of the edge detector to resolve the tree boundaries, and the ability of the 

stereo algorithm to produce range information. Under some illumination 

conditions, part of the same tree trunk appears bright and part appears dark. 

This affects the performance of the edge detector where some of the edges in 

the bright regions may be missed out. 

The approach is based on the special characteristics of the tree trunks 

given that the tree trunks are expected to be vertical or near vertical in off-road 

terrain. While the approach is only constrained to a class of obstacle, it is of 
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particular important as tree trunk is a class of obstacles that is one of the most 

hazardous to the autonomous vehicle. 

5.3 Scene Consideration 

In this section, we describe the appearance of the tree trunks in the 

environment. The tree trunks can appear in various forms and it is not feasible 

to have a module that can fit to the entire situation. We will consider the 

common appearance of tree trunks with certain exceptions and assumptions. 

Generally, the rainforest terrain is under the tree canopies and the 

illumination condition is normally low in intensity. The scene is under the 

shadow of the tree canopies regularly with some occurrence of direct sunlight. 

In order for the passive stereo camera to be functional, it is expected that the 

scene will be sufficiently bright to be functional. Without considerable 

brightness, the stereo camera will not be able to capture good quality images. 

The illumination source must not be in front of the camera to avoid the pixels 

of the images to be over-saturated. When the pixels are over-saturated, the 

color information of the images will be lost. 

There are various appearances of tree trunks in the rainforest scene. 

Majority of the tree trunks are vertical or near vertical. This module is intended 

to detect the common presence of the tree trunks which is the straight near 

vertical tree trunks. Tree trunks that are collapsed horizontally on the ground 

will be considerate part of the ground plane. If the collapsed tree trunk is lower 
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than certain threshold and slope, it will be treated as part of ground plane and 

classified as traversable. Otherwise, it will be placed as non-ground area before 

further classification. 

5.4 Feature Extraction 

In this section, the U-disparity image and Sobel edge detector are 

described. Both V-disparity image and Sobel edge detector are used to extract 

meaningful cues that can be used to detect tree trunks. The characteristics and 

cues representing the tree trunks are presented. 

5.4.1 U-disparity Image 

Similar to V-disparity image, U-disparity image is based on disparity 

map    ) obtained from the stereo camera. The difference between U-disparity 

image and V-disparity image is that the accumulation of the same value is 

projected onto abscissa-axis instead of ordinates-axis. 

The U-disparity image contains three-axis which are the abscissa-axis, 

ordinates-axis and intensity-axis. The ordinates-axis ( ) plots the disparities 

which the correlation has been computed. The abscissa-axis ( ) plots the 

image column number and the intensity-axis set to be proportional to measured 

correlation. Figure 5.1 shows a stereo image and its corresponding U-disparity 

image where the abscissa-axis ( )   is built by accumulation the pixels of the 
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same disparity from disparity map    ) along the ordinates-axis ( ). Figure 

5.1(c) shows U-disparity image is the disparity-based histogram where the 

accumulation of disparity of the same value projected onto ordinates-axis ( ). 

To detect obstacles in the scene, the features that may represent the obstacles 

must be extracted. 

 

Figure 5.1: Sample image of (a) scene with tree trunks, (b) Disparity data, (c) 

Corresponding U-disparity image. 

In the developed algorithm, we utilized the disparity accumulation (the 

intensity of the U-disparity image) to detect the presence of obstacles. The 

corresponding U-disparity is shown below the disparity image. The ground 

plane disparity is changing across the image, thus intensity representing the 

disparity accumulation is low. However, for an obstacle with certain height, 

there will be similar disparity information across the surface of the obstacles. 

(a) (b) 

(c) 
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Thus, high intensity in U-disparity image corresponds to region that does not 

belong to the ground plane. 

 

Figure 5.2: Disparity accumulation in U-disparity image as a cue to spot the 

tree trunks.  

Figure 5.2 shows enlarge disparity data and U-disparity image. In the 

image, the tree trunks are identified and hand labeled (in black box). In 

rainforest terrain, the tree trunks are typically tall and near vertical. As 

mentioned before, the surrounding background in the rainforest scene is 

considerably spacious due to the presence of the canopy limiting the growth of 

smaller vegetation. Consequently, the high intensity in U-disparity image 
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usually represents tree trunks. This feature in the U-disparity image is used as 

one of the cue to detect the tree trunks. 

5.4.2 Sobel Edge Detector 

Edge detection is one of the most commonly used operations in image 

analysis. Edges are boundaries between objects and background, and it may 

represent the outline for objects. Edge based method are based on the 

assumption that the pixel values change rapidly at the edge between two 

regions. The edge detection is based on the change of gray level at the 

boundaries of two regions. In this thesis, we used gradient method namely 

Sobel edge operator to detect the edges. 

Sobel edge detector detects the edges by searching for maximum and 

minimum and minimum of the first derivative of the image. The edge detection 

is done by applying Sobel convolution kernel across the image. If we define the 

image to be I(x, y), the kernel to be        (where          and 

        ), and the center point(anchor point) to be located at         in 

the coordinates of the kernel, then the convolution         is defined by the 

following expression: 
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5.1 

The value of convolution of a particular pixel is computed by 

convoluting with a convolution kernel. Figure 5.3 depicts a 3-by-3 convolution 

kernel with the anchor located at the center of the array. For each kernel point, 

the value for the kernel at that point and a value for the image at the 

corresponding image point are multiplied together and summed. The result is 

then placed in the resulting image at the location corresponding to the location 

of the anchor in the input image. This process is repeated for every point in the 

image by scanning the kernel over the entire image. 

 

Figure 5.3: A 3-by-3 kernel for a Sobel derivative; note that the 

anchor point is in the center of the kernel. 
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Figure 5.4: Edge detected using Sobel Edge detector. Note that the vertical and 

near vertical lines are usually represent the tree trunks. 

5.5 Tree Trunk Detection Algorithm 

The developed algorithm has two main parts which are edge detector and 

disparity threshold. Both parts are specifically used to detect the tree trunks 

characteristics. The work flow of the proposed module is shown in Figure 5.5. 

Once the scene frames are captured. The ground plane detection 

algorithm describe in Chapter 4 are employed to detect the ground plane of the 

scene. Based on the detected ground plane, we anticipate that any region that is 

not classified as ground region will be potential obstacle region. The search for 

tree trunk will be done in non-ground region. 

The first part of tree trunk detection module detects the tree trunk based on the 

edge of the tree trunk. It is expected that the tree trunk is vertical or near 
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vertical. The edge contours are extracted using Sobel edge detector as 

described in Section 5.4.2. The Sobel edge detector produces contours that 

represent portions of tree trunks. Based on the Sobel edge detection cue alone, 

there are various contours produced by other objects as well. The contours that 

represent the tree trunks are extracted if they match the vertical profile 

produced by U-disparity cue. 

 

Figure 5.5: Proposed tree trunk detection module using edges and U-disparity 

image. 

The U-disparity image is employed to group object with similar disparity 

value along the image column (x-axis) as described in Section 5.4.1. Since it is 

expected that the tree trunks are tall and straight, the accumulation of disparity 

will be higher compared to other object.  
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Once the parts of the trunk are detected, region growing is applied to 

detect the whole portion of the tree trunks. Combining features from detected 

edges and U-disparity enable effective detection of tree trunks. The following 

section depicts the experimental results of the tree detection module. 

5.6 Experimental Results and Discussions 

The experimental results of the tree detection algorithm are discussed in 

this section. The results are evaluated based on the error of samples used and 

distances from the camera. The algorithm is tested with 15 different samples of 

typical rainforest terrain. The image size is        . 

 

Figure 5.6: The performance classifier of developed algorithm. The true 

classes of the objects are indicated in the column while the predicted classes 

are indicated in the row. 

Similar to ground plane detection, the performance of our ground plane 

detection algorithm is quantified by discrete classifier model. Figure 5.6 
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illustrates the performance classifier used. The true class of interest in this 

developed module is tree trunk and not tree trunk. Given that there are two true 

classes, there are four possible outcomes. If the object is tree trunk and its 

predicted class is YES, it is classified as true positive (TP), else if the predicted 

class is NO, it is classified as false negative (FN). Similarly, if the object is not 

tree trunks and its predicted class is NO, it is classified as true negative (TN). 

False positive (FP) occurs when the true class is not tree trunk and the 

predicted class is tree trunk (YES). 

Based on Figure 5.6, it can be seen that both false negative and false 

positive are not desirable as it represent wrong detection. However, in this 

module, the false negative result holds higher significance as it represents 

missing tree trunk detection that will harm the autonomous vehicle. If there is 

tree trunk and there is no detection, it may lead to damage to them autonomous 

vehicle. Thus it is essential to keep the false negative classification.  

Figure 5.7 shows sample images of forest scene with tree trunks and the 

classified region by developed algorithm. In the first image, the scene has very 

little tree trunks and the algorithm managed to detect tree trunks. Note that the 

algorithm does not detect the horizontal tree branches. In the second image, 

there are many tree trunks in the image. The tree detection algorithm performs 

well in detecting the tree trunks that are near to the camera. However, there are 

misses of tree trunks that are very far away from the camera. The third sample 

image shows the detection in complicated terrain. It can be seen that the 

algorithm managed to detect the tree trunk even it is partially hidden behind 
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other obstacles. The green vegetation in front of the tree trunks are labeled as 

unclassified since it is not in the interest of this thesis. 

 

Figure 5.7: Sample scene with tree trunks as obstacles and the detected tree 

trunks in magenta. Magenta and blue correspond to tree trunks and ground 

region respectively. Green region indicate region with no disparity information 
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and blue color represent unclassified region which may be other types of 

obstacles. 

When an object is very far away from the stereo camera, the disparity 

contrast between regions is very low. Consequently it is harder to distinguish 

between two different regions when the contrast is low. The tree detection 

module fails to identify the tree trunks when the tree trunks are very far away. 

However, as the stereo camera approaching the tree trunks, the correct 

detections are achieved. 

 

Figure 5.8: Performance matrix of tree trunk detection module based on 

samples used in this experiment. 

Figure 5.8 shows the performance of the tree trunk detection based on 

15 samples of different scene in rainforest scene. The accuracy of the algorithm 
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for each case is around 90% while maintaining low false negative in most of 

the cases. The false positive is usually caused by other obstacles which is very 

tall in height. While the false positive is undesirable, it usually represents 

obstacles that cannot be run over due to the object height which includes 

compressible vegetation. The true positive rate is maintained at above 80%. 

This true positive rate is directly affected by the false negative result as the 

false negative increases, the true positive rate decreases. 

 

Figure 5.9: Performance matrix of tree trunk detection module based on 

distance from the stereo camera. 

Figure 5.9 shows the performance of the detected module based on the 

distance from the stereo camera. The tree detection module managed to 
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maintain good true positive and false negative rate at the distance less than 7 

meter from the stereo camera. The developed algorithm fails to register the 

disparity data due to the low contrast of disparity data at far distance. Objects 

at far distance will have smaller disparity values and the disparity variances 

between two pixels are low. In addition, tree trunks at far distance appear to be 

smaller, thus disparity count in the U-disparity image will fall below the 

threshold set to detect the tree trunks. The false negative which is hazardous to 

the vehicle happened at the distance which is relatively far from the vehicle 

and tree detection module will be able to detect the tree trunks when it is nearer 

to the tree trunks. The false positive curve in this graph does not represent any 

significant finding as it can happened anywhere when there are obstacles which 

are relatively tall. 

5.7 Summary 

The algorithm produced good results in the condition in most of the 

rainforest terrain condition. It was able to determine the tree trunks of the scene 

and mapped the corresponding tree trunks pixels to the image. 

We managed to maintain the average accuracy of 90 percent over the 

experiments. The false negative outcome is very critical as this condition is 

hazardous to the vehicle. In this thesis, the developed algorithm managed to 

maintain the false negative alarm below 10 percent for most of the conditions.  
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There are conditions that proposed algorithm may not perform 

effectively. First, in darker scene where the image contrast is low, the tree will 

appear to be part of the background scene. The stereo correspondence cannot 

be found and it may fail to detect the tree trunks at a distance. However, the 

proposed will be able to detect the tree trunks when it is closer to the tree 

trunks.  

Another condition which it may fail is when the scene is very 

complicated where there are other obstacles which are of medium height. Since 

the proposed algorithm is based on height and verticality, it may produce high 

false positive alarm under this condition.  

At this stage, the proposed tree trunk detection algorithm can only be 

used in rainforest terrain. In secondary forest where compressible vegetation is 

dominant, the performance of tree trunks detection is very limited. 

Nevertheless, it is still possible to improve the performance of this tree trunks 

detection module by reducing the false positive alarm through addition module 

to detect other types of obstacles. This will involve another work scope and 

will be considered for future research. 
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CHAPTER 6 

WATER BODY DETECTION 

6.1 Introduction 

Water body detection such as water patches and river are one of the most 

challenging obstacles commonly found in rainforest terrain. Traversing through 

a water body may damage the autonomous vehicle electronic component. Also, 

the autonomous vehicle may be trapped in the water patches if the water level 

is too deep. Thus there is a need to detect the water body for the vehicle control 

to steer away from the hazard. However, detecting water in rainforest terrain is 

complicated due to different appearances of the water body. The water body is 

different from common obstacles as it does not have geometric appearance that 

can be tracked. In addition, the color of the water body may be of the 

environment reflection, sky reflection, background color and etc.  

Due to the different appearances of the water body, it is not possible to 

use a single feature to detect all the appearances of the water body. There are 

several attempts to use color, texture, disparity feature and polarization camera 

to detect the water body found in the literature. Most of the proposed methods 

are able to extract the water body from the scene in unstructured outdoor 

terrain. In this thesis, we extended the water body detection to rainforest terrain 

utilizing the polarization filter on the stereo camera. 
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A detailed description of the state-of-the-art along complication in the 

water body detection is presented in next section. Then, the basic principles of 

our method are explained. Finally, the results of our proposed method are 

presented. 

6.2 Overview of Water Body Detection 

A review on the work done revealed that only a limited number of 

works done on the detection of water body detection. Manduchi et al (2005) in 

their works that water body detection remains a problem to be solved. Rankin 

et al (2010) provides a comprehensive review on water body detection system 

and evaluation of the performance of water detection algorithm. As mentioned 

previously, there are several works done utilizing multiple features to detect 

water body. In this section, we will highlight the state-of-the-art of the water 

body detection 

6.2.1 Method by The Jet Propulsion Laboratory (JPL) 

Under the Robotics Collaborative Technology Alliances (RCTA), there 

are several researchers developed methods for water detection using vision 

technology. The Jet Propulsion Laboratory (JPL) participated in this program, 

with the focus on analyzing the features for water that can be exploited from a 

color stereo camera mounted in front of the autonomous vehicle. 
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Rankin (2004) in the early of program developed a rule-based algorithm 

to combine water cues from color, texture and stereo camera information.  

Each of the detectors is designed to target specific water appearances. The 

rules for fusing the water cues are designed to maximized water body detection 

while minimizing false detection. This work reveals the appearance of sky in 

the scene and also reflection of sky from the water body can be segregated 

using the color cue. Reflection of sky and actual sky cover are clustered in high 

brightness and low saturation region. The approach is to detect the presence of 

sky on top of the image. Then, the lower part of the image is searched if the 

sky is present. However, this color-based method is susceptible to false 

detection where the intensity image is saturated. 

Texture cue is used to detect region that is low in texture. Variance 

filter is scanned throughout the saturation channel and green channel of the 

image to detect low texture region.  The water cue from texture is susceptible 

to false detections on dirt roads having low texture, in the sky, in vegetation, 

and where the image is overexposed. The initial work also shows that stereo 

ranging outputs a range image that can be used to detect reflections. 

Reflections of surrounding extend from the trailing edge of a water body and 

can span a portion or all of the water body, depending upon the reflected 

objects’ height and distance from the water. The range to a reflection roughly 

matches the range to the reflected object. However, the reflection plots lower 

than the true ground elevation. In addition, zero disparity pixels can also 

provide evidence of a reflection. Zero disparity occurs when the stereo 

correlator matches the same column in rectified left and right images. When 
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zero disparity pixels occur in the lower half of the disparity image, it is likely 

caused by reflections of ground cover that is far away. Thus, zero disparity 

pixels can be a reflection-based water cue. 

Rankin et al (2006) further improved their work by using ground 

detection algorithm to estimate the elevation of detected water bodies and 

locate them within instantaneous and world terrain maps. Temporal filtering in 

a world map suppresses false detections and relocates detected water as water 

body elevation estimates improve. The water detection regions from a single 

cue are connected prior to multi-cue fusion. This modification to the algorithm 

has improved the detection of water bodies that are narrow in image space. In 

addition, a ground detector is designed to detect the ground plane to improve 

the positive detection of the water body. The elevation of a water body is 

estimated by averaging the elevation of the detected ground surface around the 

perimeter of the fused water detection region. This work managed to detect 

small puddles starting at the distance 7 meters from camera and large water 

body from the range 13 meters. 

Ranking et al (2010) explored the possibility of developing a water 

detector based on the observation that the color of a water body tends to 

gradually change from the leading edge to the trailing edge, when other 

naturally occurring terrain types typically do not. Moving from higher to lower 

incidence angles, water body saturation and brightness move in opposite 

directions, with saturation increasing at a much higher rate than brightness 

decreases. This work utilized frame sequences of the scene to detect the water 
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body as the slope magnitude tends to be higher for water than other naturally 

occurring terrain, such as soil and vegetation  

The works by JPL provide a detailed characteristic of water body and 

cues that can be utilized to detect different appearances of the water body. The 

works outlined that water body can be detected by using brightness cue, low-

texture characteristic and disparity unusual characteristics. 

6.2.2 Method using Polarization-Based Camera 

In this section, we present a brief overview of a method to remove the 

highlights caused by specular reflection using polarization filter (polarizer). 

Over the years, there are various approaches to use polarization methods along 

with machine vision. Polarization methods were first introduced by Koshikawa 

(1979) for shape interpretation and recognition of glossy objects.  Linear 

polarization was also used for highlight removal and material classification 

(Wolff & Boult, 1991). More recently, Nayar examined the use of color and 

polarization to remove the specularities component from reflected light (Nayar, 

Fang, & Boult, 1993). Most of the research done was concentrated on the 

detection of the polarization angle of the light. The details of polarization 

theory are beyond this thesis and a comprehensive can be found in work by 

Wolff (1997). 
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Figure 6.1: Camera setup with polarizer place in front of the camera.  

All of the above approaches focused solely on detecting the 

specularlities and the polarization state of the image. Since our application 

intends to detect the highlights and the specular reflection as a feature for 

image segmentation, there is no need to determine the polarization state of the 

scene. Our approach follows closely the approaches found in literature except 

for the polarization state determination. Figure 6.1 illustrates the general 

approach to grab an image using a colour camera. A polarizer is placed in front 

of the sensor while the scene is illuminated by a source. The scene of interest in 

this thesis is rainforest scene and the illumination source will be the sunlight 

and also specular light reflection from surrounding.  

Partially linearly polarized light from surrounding that projected onto 

the transmission axis of the polarizer will become linearly polarized according 

to the transmission axis. The magnitude of the transmitted radiance through the 

polarizer is the component of the polarization along the transmission axis. 

(a) (b) 
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Light component that is unpolarized will be attenuated (usually half) regardless 

of its orientation. 

Xie et al (2007) attempted to detect the water body in outdoor scene by 

using polarization filter with three different polarization degree. A single 

camera with a mechanically rotating linear polarizing filter placed in front of 

the camera lens. Three polarization images with the polarizing filter setting to 

0, 45, 90 degrees, respectively. It is based on the physical principle that the 

light reflected from water surface is partial linearly polarized and the 

polarization phases of them are more similar than those from the scenes 

around. Water hazards can be detected by comparison of polarization degree 

and similarity of the polarization phases. This method worked well to detect 

water region that reflect vegetation and sky. The advantage of this method is 

there is no need for the vehicle to stop to acquire multiple frames of different 

polarization angle of a scene. However, missing detections occur where ripple 

when water exists. 

6.3 Mathematical Description for Appearance of Water Body 

This section describes the characteristic of the water in mathematical 

form. From the model and conducted experiments, the features that may 

represent the water are identified. 
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6.3.1 Water Reflectance Model 

In this thesis, we have been dealing with color image which is the result 

of sensing of light reflected from scene using camera. Any interaction of light 

with matter whose optical properties are asymmetrical along directions 

transverse to the propagation vector provides a means of polarizing light 

(Pedrotti, Pedrotti, & Pedrotti, 2007). All natural occurring light outdoors and 

underwater, scattered and reflected, as well as light in most indoor environment 

is partially linear polarized (Waterman, 1981). This is due to the reflected from 

surfaces may undergo diffusion or specular reflection or both (Nayar, Fang, & 

Boult, 1993). The diffusion occurs from light rays penetrating the surface, 

undergoing multiple reflection and refractions, and reemerging on the surface. 

This diffusion component will be distributed in a wide range of directions 

around the surface normal. The specular reflection occurs on the surface of 

reflection such that light incident on the surface will be reflected at the angle of 

incident.  

Figure 6.2 describes the reflection and inter-reflection mechanism that 

happens in a scene. Two points (A and B) in the scene are in consideration. 

Reflection from point A contains diffuse and specular component where the 

diffuse component arises from scattering of light rays that enter the surface and 

undergo multiple reflection and refractions. The specular component is a 

surface phenomenon and resulted from single reflection of light incident ray. 

Assuming that the surface is rough, its specular component will appear to be 
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spread in specular direction. The width of the distribution will depend on the 

roughness of the surface (Nayar, Fang, & Boult, 1993). 

 

Figure 6.2: Components of reflection and inter-reflection (Nayar, Fang, & 

Boult, 1993). 

The above illustration considers only the light from the light source. 

However, in a scene, the surface does not only receive light from the light 

source but also from other reflected light of other scene points. Thus the 

resulting reflected light can be combination of four possible inter-reflection 

components: diffuse-diffuse, specular-diffuse, diffuse-specular and specular-

specular (Nayar, Fang, & Boult, 1993). When specular reflection is present, 

even for marginally rough surfaces, the concentration of energy reflected will 

cause strong highlights in the brightness of the scene. In most of the cases, the 

color information in the pixel will be lost due to over-saturation. 
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Rankin et al (2010) developed a partial model of the reflection 

coefficients from their experimental data. The total reflection coefficient 

      from a water body to a camera is the sum of the reflection coefficients 

for energy reflected from water body is given as 

                    6.1 

where   is the energy reflected off the water surface,    is the energy scattered 

by water molecules,    is energy reflected or scattered by materials suspended 

in the water and      is energy reflected off the bottom of the water to the 

camera. 

The fraction of the incident power that is reflected from an air/water 

interface is given by Fresnel equations for light polarized perpendicular to,      

and parallel to,      the plane of incidence,  
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6.3 

where    is the refractive index of air,    is the refractive index of water, and   

is the angle of incidence. The refractive index of air and pure water is 1.03 and 

1.33, respectively. The most significant factors that can affect the refractive 

index of water are the wavelength of the light entering it and its salinity. 

However, these factors only alter the refractive index of water by as much as 

1%.  

Figure 6.3 shows the experimental result by Rankin et al (2010) where 

the energy reflected off the surface of water bodies increases with increasing 

incidence angle. Unpolarized incident light would be present on overcast days 

where the fraction of the incident power that is reflected from an air-water 

interface is the average of the polarized reflection coefficients, 

       
               

 
 

6.4 
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Figure 6.3: Theoretical fraction of incident power that is reflected from an 

air/pure water interface as a function of incidence angle.      and      are the 

Fresnel reflection coefficients for light polarized perpendicular to and parallel 

to the plane of incidence, respectively.    is the Fresnel reflection coefficient 

for unpolarized light (Rankin & Matthies, 2010). 

The intensity values of water pixels are related to the total reflection 

coefficient by 

          6.5 

where   is an illumination factor. Substituting       into the equation yield 

                             6.6 
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6.3.2 Partial Linear Polarization 

Light is fundamentally a transverse electromagnetic wave possessing a 

state of polarization characterizing the vibrational orientations of the electric 

field,  . After reflection from flat surfaces of certain materials at oblique angle 

of incidence   the   field is partially polarized (see Figure 6.4).  

 

Figure 6.4: Principle of specular reflection (Xie, Xiang, Pan, & Liu, 2007). 

Partial linear polarization can be described by three polarization 

parameters of interest which are the light intensity, degree of polarization and 

the angle of polarization. The partial linear polarization can be measured at a 

pixel level by the transmitted radiance through a polarization filter. The 

radiance varies sinusoidal with filter orientation. Wolff (1997) presented that a 

sinusoid can be uniquely characterized using three points, thus three 

transmitted radiance measurements can be taken between 0° and 180° to 

determine partial linear polarization. In his work, measurements were taken at 
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0°, 45° and 90°, and the intensity for respective angle is represented  as   ,     

and    . The parameters for partial linear polarization is given as 
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6.9 

The application presented in this thesis is dealing with partially linearly 

polarized reflected light, thus we do not require as comprehensive a 

description. In particular, we do not require the analysis of the phase of the 

mutually orthogonal reflected polarization components. From Equation 6.9, it 

can be observed that the optimum polarization angle difference between two 

polarizers is    . The ratio of the difference and sum between the two images 

taken with     is the best measure to represent the polarization information in 

the present case of a stereo vision set up. Thus, the measure of the proportion 

of how much initially unpolarized light becomes partially polarized is given by 

Equation 6.10. 
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6.10 

The parameter    and   correspond to maximum and minimum 

transmitted intensity through the polarizer. The partial polarization measure 

varies from 0 to 1 which represents the proportion of the magnitude of the 

reflected light that is polarized. At partial polarization = 0, reflected light is 

unpolarized whereas for partial polarization = 1, reflected light is completely 

polarized. 

6.4 Feature Extraction 

The overview of work done on water detection and mathematical 

description of water body were briefed in previous section. In this thesis, 

different polarization angles effect on the stereo images are to be experimented 

in this section. 

In our approach, two polarizers are mounted on stereo camera. One side 

of the experiment setup is set as reference point at   . The other polarizer is a 

variable with reference of the first polarizer. In previous section, it is shown 

computationally that the optimum difference between two polarizers is    . 

However, it is necessary to investigate whether the value set is suitable to 

detect the water body of our interest. Figure 3.4 shows the experimental setup 

where one side of the polarizer is set at    while the other polarizer angle is 
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varied for the investigation. In this work, the angle in assessment is   ,    , 

   , and    .  

As our approach involves two images extracted from the stereo camera, 

the brightness of the image of each image will be affected by the camera auto 

gain control (AGC). When the polarization angle is varied, the light reflected 

from the scene into the camera will be affected. The camera auto gain control 

will increase and decrease the gain accordingly, thus there will be difference in 

image brightness of the image pair. Subsequently, the partial polarization 

parameter will be affected as well. Equation 6.10 for the partial parameter is 

altered and is given by 

                     
          
          

 
6.11 

where   is the auto gain control parameter of the camera. 

Light passing through the polarizers will be polarized parallel to the 

orientation of the polarizer. Since both polarizers used differ in the angle of the 

polarization, the image pair produced by the stereo vision will differ in term of 

brightness and color information. The difference produced multiple features 

that can be used as water cue to detect the water body. The following 

subsection illustrates the water cue that can be obtained from the variation of 

polarizer’s angle.  
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6.4.1 Water Cue from Partial Polarization Feature 

Several observations can be made on the image pair of the stereo 

camera once there is polarization angle difference between each side of the 

stereo camera. The obvious difference is the intensity of the each image and the 

difference of intensity is further amplified by the auto gain control of the 

camera. This is due to specular light is minimized when the polarization is 

applied. The image will appear darker and the stereo camera will increase the 

gain to produce brighter image. The image pair brightness will be increased 

with the same gain, producing an image with higher brightness compared to 

another image. Figure 6.5 shows a sample image pair of rainforest scene to 

illustrate the outcome of polarization filter applied fitted in front of the camera. 

We describe the changes in the brightness of the image pair using partial 

polarization formula in Equation 6.11. The reference image set at polarization 

angle    exhibit high brightness and is described as     . Another image with 

different polarization angle is fixed as     . Comparing the image pair, we 

examine the changes occurred in common objects in rainforest terrain.  

 
(b) (a) 
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Figure 6.5: Sample image on application of polarizer to remove specular 

reflection. (a) Original image of a river scene. (b) Image after polarizer is 

applied. 

Material/ Object 

Magnitude of Partial Polarization 

            

Tree Bark 0.01 0.01 0.03 

Green Vegetation 0.10 0.10 0.11 

Ground/Sand 0.12 0.12 0.15 

Water Body 0.30 0.30 0.33 

 

Table 6.1: Average partial polarization for different objects and terrain 

(average of 20 samples).  

Table 6.1 shows the average results of partial polarization of 20 

samples in rainforest terrain. Different polarization angles are examined to 

verify the suitability and effectiveness of the polarization angle setup. The 

water body exhibit partial polarization changes compared to other objects. This 

is due to the fact that water body reflects specular light.  

Example in Figure 6.5 shows that the brightness of the two images 

differs especially at the water region. This is due to the specular reflection on 

the river is filtered by the polarizer. Other objects in the scene do not exhibit 

many changes in term of image brightness and this in turn provides a feature to 

detect part of the water body. 
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6.4.2 Water Cue from Stereo Disparity Feature 

There are a few features in stereo disparity data that can provide water 

body cue. As the water body may reflect the object or surrounding in the scene, 

there will be some deviations of stereo disparity data. Normally, the stereo 

disparity data is decreasing with object distance increasing from the camera. 

However, the water reflection may contain disparity that deviates such as zero 

disparity pixels, dramatic change of disparity pixels and invalid pixels. 

Zero disparity pixels provide evidence of a reflection. When zero 

disparity pixels occur in the lower half of the disparity image, it is likely 

caused by reflections of objects that are far away (Rankin & Matthies, 2006). 

Zero disparity pixels imply that the stereo co-relator matches the same column 

in rectified left and right images. These zero disparity pixels usually occur 

when the object is very far away from the camera. By comparing each of the 

zero disparity pixels to the ground plane disparity pixels, it can be determined 

whether the zero disparity pixels belong to object that is far away or reflection 

from object that is far away. Usually, zero disparity pixels caused by reflection 

from object far away are not consistent with the ground plane profile and can 

be isolated.  

Another appearance of the stereo disparity data is the dramatic change 

of disparity pixels. This feature of stereo disparity is very similar to zero 

disparity pixels except it is caused by reflection of objects very close to the 

water body. Instead of causing zero disparity pixels, there are range data 
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reflected in the water body. There is sudden change of range profile where the 

disparity data deviates away from the range profile. 

Invalid stereo disparity occurs when the correlation cannot be found in 

rectified left and right images. By using two polarizers with different 

polarization angle, it is expected that the two image produced by the stereo 

camera will differ in term of color and brightness. Section 6.4.1 demonstrates 

that the differences between the image pair are greater on the water body. 

Thus, it is predictable that majority of the water body pixels will be invalid.  

 

Figure 6.6: Sample disparity image with different polarization angle applied 

to the right side of the stereo camera. The gray color regions correspond to 

invalid pixels. 

Right Image 

(   ) 
       

Left Image (  )          



 
133 

Figure 6.6 shows the disparity data correspond to different polarization 

angle. It can be observed that the invalid pixels for water body differs when the 

polarization angle degree changes. The invalid pixels region is increasing with 

the polarization degree until    . Note that there are some invalid pixels occur 

at the green vegetation in the scene. This may cause false detection if only a 

single feature is used to detect the water body. However, this false detection 

can be filtered out by comparing the position of the pixels to the ground plane. 

The false detection usually fall on higher elevation area and can be removed. 

 

Figure 6.7: Average Percentage of Invalid Pixels for Water vs Polarization 

Degree (20 samples). 

Figure 6.7 shows the percentage of invalid pixels region in water body 

over 20 samples of different type of scene. The highest average if 

approximately 65% at the polarization angle of    . Thus, it is justifiable to fix 

set the polarization angle to     for the water body detection. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 30 45 60 90 120 

x1
0

0
%

 

Polarization Degree 



 
134 

6.4.3 Water Cue from Texture Feature 

In images, texture quantifies grayscale intensity differences (contrast), a 

defined area over which differences occur, and directionality, or lack of it. 

Water body may appear in many types of appearances. One of the 

considerations is water body under the influence of the shadow of surrounding. 

From observation, water bodies usually appear low in texture, especially the 

region where the specular light is not dominant. When the texture is low, there 

is low variation of brightness across the region.  

 

Figure 6.8: A sample image of     polarization degree and its corresponding 

line scan histogram. 

 

Figure 6.8 shows a sample image of a scene where the water body is 

under the influence of canopy. The line-scan histogram across the image row 

highlighted by dotted line is shown in green. It can be observed that under the 

influence of the shadow, the texture of the water body is low as there is lesser 
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variation of brightness. Another region with sky reflection possesses high 

variation due to specular reflection. The ground and grass region can be easily 

differentiated from water body as they possess high variance in the image 

brightness. Note that the sample image used in Figure 6.8 is     polarized and 

majority of the specular reflection is removed. This indirectly aids to increase 

the region detectable by low-texture characteristics. 

6.5 Algorithm: Fusing Water Cue 

Water bodies may appear in different kind of appearances thus is not 

expected that no single features can be used to detect the entire water body. In 

this thesis, multiple-feature approach is taken to enhance the detection of water 

bodies with multiple cues. Previous sections discusses features that can be used 

to target specific water attribute in the while minimizing the false detection. 

Figure 6.9 shows the framework of water detection module in this thesis.  

The input images are polarized stereo camera image with    difference 

polarization angle between the image pair. Stereo processing is performed on 

the image pair to produce disparity data. Note the detected ground plane is also 

fed into this module to reduce the false detection of the water bodies. Any 

detection of water region above the ground plane will be filtered as water 

bodies presence will only occurs on the ground plane. 

There are four sub-modules which target different type of water 

attributes. The sub-modules are sky-reflection detection based on color and 
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brightness information, low-texture region detection, invalid disparity detection 

and object reflection detection. Once the sub-modules detect the water body 

region of interest, the region is refined by post-processing. The following 

sections discuss in details the operation of each sub-module. 

 

Figure 6.9: Framework for water bodies detection using multiple features. 

6.5.1 Sky Reflection Detection Module 

The RGB images selected from our archive for processing were 

converted to hue, saturation, and value (HSV) color space. There are several 

factors that contribute to the surface color of water bodies. Among them 

include the depth of the water, the amount and type of sediment in the water, 
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the color of the sky reflecting on the water, the color of background material 

casting a shadow on the water, and whether or not the water is moving. As 

these factors have great variation, it is difficult to predict the hue of water 

(Rankin, Matthies, & Huertas, 2004). Note that the reflection of the sky in 

water has low saturation values and high brightness values. 

In this sub-module, we follow closely the work by Rankin et al (2004). 

The following are the rules imposed in this work: 

    

                  

                     

                                    

6.12 

where,   is saturation,   is brightness and    is hue. Rule 1 and rule 2 targets 

the sky reflection characteristics where it has low saturation and high 

brightness value.  Rule 3 is lower brightness thresholds are applied only if the 

sky is detected in the imagery. Rule 4 is the only one that uses hue. It targets 

deep bodies of water, which tend to have a blue hue. 

Note that in his approach, the sky detection is done the top ten rows of 

the image.  Rule 3 and rule 4 are only activated if the sky is detected. However 

in this thesis, the sky detection is not performed as the search for water bodies 

in the scene is constrained to the region below the horizon. This is due to the 
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nature of water body to be on the ground plane rather than areas of higher 

elevation. Thus, false detection such as sky as water bodies can be eliminated.  

6.5.2 Low-Texture Detection Module 

Texture is an important approach for region description. Although no 

formal definition of texture exists, intuitively this descriptor provides measure 

of properties such as smoothness, coarseness and regularity. We use one of the 

simplest approaches to describe texture which is variance. Variance can be 

used in texture description as it is a measure of intensity contrast and is give as 

    
 

 
   

 

   

   

   
 

 
   

   

   

   

6.13 

where   is the number of samples and   is the intensity of the pixel.  It can be 

used to establish descriptors of relative smoothness using the following 

       
 

       
 

6.14 

A 3x3 intensity variance filter is passed over grayscale image. At each 

pixel, the window variance and relative smoothness is calculated. Then the 

water body region with relative smoothness less that threshold set will be 

selected.Table 6.2 shows the values of the relative smoothness of water bodies 

and other objects. Water bodies appear to be smoother compared to other 
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objects where the relative smoothness is rather coarser. Based on the average 

values, we formulate the threshold that will be used to detect water bodies cue 

and differentiate it from other objects. 

Objects Average R(normalized) Threshold Set for R  

Water Bodies ~0.001 R < 0.001 

Other Objects ~0.079 R > 0.01 

Table 6.2: Average relative smoothness for 20 samples for water bodies and 

other objects in rainforest scene. 

6.5.3 Object Reflection and Invalid Disparity Pixel Detection Module. 

In this module, the partial polarization feature is used to remove the 

specular reflection in one of the stereo image. In Section 6.4.1, we have shown 

that water bodies will reflect more light compared to other objects. Using these 

characteristics, we will be able to distinguish water body from other regions. 

In this thesis, partial polarization of      is used since the magnitude of 

partial polarization for water is highest at this angle. When different 

polarization angle is applied to the stereo camera, the image pair appears to be 

different. Therefore, the stereo correspondence cannot be found. Consequently, 

there will be no disparity data for the water region.   
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6.6 Experimental Results and Discussions 

The experiments were done in various scenes in rainforest terrain. In the 

rainforest, it is anticipated that water body present in two types of category, 

mainly standing water and running water. Standing water represents stationary 

water body such as water patches while running water represent moving water 

such as stream or river. Various water body cues were used to identity different 

appearance of the water. In this section, we present the experiment results 

using developed algorithm in the scenes describe above. The error caused by 

back-lighting are also discussed. 

The algorithm is tested with 70 samples of water body in rainforest 

terrain. The test images cover both standing water and running water scene. 

Thirty (30) samples are used for each type of scene while ten (10) samples are 

used for error explanation. The image size is        . The image size is 

sufficient to detect wider Field of View (FOV) in our applications. 

The performance of our water body detection algorithm is quantified by 

discrete classifier model. Figure 6.10 illustrates the performance classifier 

used. The true classes of interest in this developed module are water and not 

water. Given that there are two true classes, there are four possible outcomes. If 

the object is water and its predicted class is YES, it is classified as true positive 

(TP). If the predicted class is NO, it is classified as false negative (FN). 

Similarly, if the object is not water and its predicted class is NO, it is classified 
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as true negative (TN). False positive (FP) occurs when the true class is not 

water and the predicted class is water (YES). 

 

Figure 6.10: The performance classifier of developed algorithm. The true 

classes of the objects are indicated in the column while the predicted classes 

are indicated in the row. 

Based on Figure 6.10, it can be seen that the performance of developed 

module is good when the true positive and true negative result is high as they 

represent the correct results. Both false negative and false positive are not 

desirable as it represent wrong classification of the scene.  

However, in this module, the false negative result holds higher 

significance as it represents wrong classification that will harm the autonomous 

vehicle. If the true class of the object is water and it is wrongly classified as not 

water, it may lead to damage to the autonomous vehicle.  Thus, it is necessary 

for the false negative classification to be kept as low as possible. 
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 The following subsections discuss the result of the developed water body 

detection module applied in unstructured terrain.  

6.6.1 Running Water Detection 

The developed water detection algorithm is tested on running water 

image sequence. We define running water as water stream such as river. Such 

water body appearance usually has water ripple associate with it. Figure 6.11 

show a few sample images of the running water body used in the experiment.  

The detection of water body is an application extension based on 

ground plane detection discussed in Chapter 4. Once the ground plane is 

detected, the plane is searched for presence of water body. The detection is 

done on ground plane only as it is based on the assumption water body will 

only appear on the ground plane. 

Figure 6.11 (a)(i) and Figure 4.10(b)(i) depict two sample images of a 

stream. It can be observed that running water exhibit specular reflection in 

majority of the water body region. This is due to the reflection caused by the 

ripple while the water is flowing. Reflection from the surrounding is very 

minimal in running water.  

Figure 6.11 (a)(ii) and Figure 6.11 (b)(ii) show the detected water 

region using developed module. It can be observed that developed module 

managed to identify the water region in the scene effectively. 
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Figure 6.11: Sample results of detected ground plane in rainforest terrain for 

simple unstructured terrain. 

Figure 6.12 shows the average error of detected water region versus the 

distance from the camera. Similarly to the ground plane detection, the error is 

calculated based on comparison between detected water region and hand 

labeled water pixel. It can be seen that the errors are below 10 percent for the 

first eight meters. The errors start to increase after 7 meters. This is due to the 

ground plane detection limit (discussed in Section 4.6.1). 
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Figure 6.12: Average water body detection error versus distance for running 

water. The number of samples used is thirty (30). 

Figure 6.13 shows the performance of the developed module in detect 

the running water detection. Similarly to tree trunk detection, the false negative 

which indicates no water region while there is water region is unwanted result. 

The developed module is able to effectively detect the water regions within 7 

meters from the stereo camera. The accuracy within 7 meters is more than 90 

percent while the false negative is kept below 5 percent.  

The false negative detection is increasing after 7 meters due to the 

restriction by our developed ground plane detection. The detection of water 

region is based on the detected ground plane where this water detection module 

will only search for water region on the detected ground plane. It is based on 

the assumption that water will only present on ground plane.  
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Figure 6.13: Performance matrix of the ground plane detection module in 

running water detection. The number of samples used is thirty (30). 

The basis of searching the water region on the detected ground plane is 

due to the fact that one of the feature used in this module are the high 

brightness caused by sky reflection. As mentioned, one of the appearances of 

water body is sky reflection where higher brightness is expected. If the search 

for water region is done in other region other than ground region, it may 

contribute to false positive as the sky may be present in the scene. Thus, in 

order to reduce false positive detection, the search for water region is done only 

in detected ground region. 
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6.6.2 Standing Water Body Detection 

Next, the developed water body detected is tested to detect standing 

water. Figure 6.14 shows the average error of detected water region versus the 

distance from the camera. Similar to running water detection, the average 

errors are below 10 percent for the first 7 meters. 

 

Figure 6.14: Average standing water body detection error versus distance. The 

number of samples used is thirty (30). 

Similar to running water scene, developed algorithm managed to keep 

false detection to be lower than 10%. In standing water detection, the scene is 

more susceptible to reflection of the environment surrounding the water body. 

The low-texture cue plays important part in detecting standing water as the 
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reflection usually are lower in texture. Figure 6.15 shows the overall 

performance of the proposed algorithm in detecting standing water region. 

 

Figure 6.15: Performance matrix of the standing water detection module. The 

number of samples used is thirty (30). 

Figure 6.17 shows samples results of the water body detection 

algorithm. The blue region corresponds to the water region while the red region 

corresponds to ground region. Note that the search of water region is 

considered only in detected ground region as it is assumed that water region 

only present on the ground. By considering only the ground region, the 

algorithm will not include the sky region in the result as sky region usually 

appear similar to sky reflection on water region. 
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Figure 6.16: Sample results of the detected standing water using proposed 

water body detection. 

6.6.3 Back-Lighting Error 

This section address the problem of pixel over-saturated for the 

developed ground plane detection and water body detection algorithms. Pixel 

saturation is the event where incident light at a pixel causes the color channels 

of the camera sensor to respond at its maximum value. The frames pixels lose 

color information of the scene when the scene is illuminated with high intensity 

of light. While it is not in the scope of this thesis to solve this problem, it is 
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important to highlight this error to see how it affects the results of our 

developed algorithm.  

This problem is likely to occur when the illuminant has a strong 

intensity and it is a problem associate with digital imaging. In outdoor terrain, 

this problem can occur in circumstances where the illuminant is in front of the 

camera. Saturation of pixels is particularly noticeable as the pixels appear to be 

achromatic or very bright (close to white) under direct illumination. The auto 

gain control (AGC) of the stereo camera will automatically adjust the gain of 

the sensors, resulting in darkening of regions not directly under the illuminant. 

The regions under canopy or shadow will appear to be very dim (close to 

black), consequently affecting the color information as well. 

When saturation happens, it affects the clustering component in our 

developed algorithm. The color information is affected since the image frames 

are captured in RGB color space. The brighter region will appear to be very 

bright and the darker region will appear to be very dark as the regions suffer 

from narrow brightness ranges at low and high range. Consequently, the color 

distribution of the image will be very close and hard to be segregated during 

clustering step. 
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6.7 Summary 

The algorithm produced good results in the condition in most of the 

rainforest terrain condition. It was able to detect the water region in the scene 

and mapped the corresponding ground pixels to the image. 

Based on results of three experiments performed in simple unstructured 

terrain, rainforest terrain and complex terrain, the average result is presented in 

Figure 6.17. Based on the results, the average error over 90 samples is less than 

10 percent within 8 meters from the camera. 

We managed to maintain the average accuracy of 90 percent over the 

standing water and running water tests. The false positive outcome is very 

critical as this condition is hazardous to the vehicle. In this thesis, the 

developed algorithm managed to maintain the false positive alarm below 10 

percent for most of the conditions. While the water body detection module can 

detect the presence of the water body, it cannot detect the depth of the water 

body. Until this point, all detected water regions are deemed to be non-

traversable. 

The proposed algorithm can detect most of the water appearances 

provided the condition is suitable for the stereo camera to be operational. To be 

effective, the scene needs to be sufficiently illuminated. The scene must not be 

neither too dark nor heavily illuminated with the source (sun in this case) not 

directly shining towards the camera. The color information will be lost when 
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the scene is dark, resulting in poor contrast and subsequently affecting the 

stereo correspondence. If the source of illumination is too bright and in front of 

the stereo camera, the image pixels will be oversaturated. Thus it can be said 

the performance of the proposed algorithm is limited by the sensor of the stereo 

camera. 

 

Figure 6.17: Overall performance matrix of the water detection module. The 

number of samples used is sixty (60). 

The utilization of polarizer with stereo camera shows promising results 

that yet to be fully utilized. In this thesis, two different polarization angles are 

used to detect the water body. The degrees (   and    ) are chosen based on 

the maximum disparity changes when the polarizer is applied. However, 
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different polarization angles may be used to represent different reflection on 

the water body. Therefore, more usage of polarization angles can be considered 

in future research scopes. 
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CHAPTER 7 

CONCLUSIONS 

The work described in this thesis proposes near-range visual guidance 

method for rainforest terrain. The entire scheme is designed to detect ground 

detection, tree trunks detection and water body detection based on stereo 

camera. 

In this chapter, the contributions of this thesis are summarized, followed 

by conclusions and lastly future works to be done. 

7.1 Contributions 

In general, the objectives of this scope are to solve the problem 

pertaining in visual guidance system in rainforest terrain. In particular, we 

identified that the essential components are the ground plane detection, tree 

trunks detection and water body detection. In order to successfully identify 

ground plane and water body detection, two methods based on stereo image 

processing are developed in this thesis. 

 In Chapter 4, color feature and stereo disparity data are used 

together for the ground plane extraction from the image with 

rainforest scene. Using the K-means clustering, the color feature is 

used to segregate the image into few possible regions. The K-means 
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clustering method is used as it is easy to implement and fast in 

computational time which are a requirement in real-time 

implementation. Although K-means clustering is less accurate, it is 

sufficient for the developed module as we need only the initial 

estimate of the segmentation. The clusters produced from the K-

means clustering method are used to generate multiple V-disparity 

images. Then, multiple correlation profiles are generated. The 

profile with the lowest gradient is chosen to be ground correlation 

profile. The ground correlation profile is used to determine the 

ground region in the frame. The ease of determining the ground 

correlation profile without any distinct man-made feature made the 

developed method suitable for rainforest guidance. This method 

overcomes the limitation of having to detect the man-made feature 

in V-disparity method. 

 

 In Chapter 5, the near vertical tree detection module follows closely 

method by Huetas et al (2005) with additional U-disparity data to 

detect the tree trunks. The assumptions made are the tree trunks are 

tall and vertical or near vertical. The complex terrain in this project 

cannot be analyzed in a single stage of stereo vision research works. 

It is suggested to be scope down this works focus on the near 

vertical tree trunks obstacles. Based on the assumption, the edges of 

the tree trunks are extracted using Sobel edge detector. The U-

disparity is used to accumulate the disparity with similar value as 

each region in a scene usually appears to be similar in disparity 
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value if it belongs to the same object. The detected edges are 

combined with the disparity information from U-disparity to extract 

the tree trunk fragment. This method is suitable to extract the tree 

trunks as in rainforest terrain; the tree trunks are tall, resulting in 

high accumulation of disparity. Consequently, the tree trunks can be 

extracted by using high disparity threshold. 

 

 After the ground plane is successfully detected, Chapter 6 presents 

the water body detection algorithm. The developed method utilized 

multiple features in texture, disparity and partial polarization. Stereo 

camera with different polarization angles are applied on each side of 

the stereo camera. The intention of using polarizer is to remove 

specular reflection from the water body on one side of the camera 

and create two dissimilar appearance of the water body. Based on 

experiment conducted, it is shown that water body has big changes 

in brightness when different polarization angles are applied. Based 

on the difference, we can determine the water region due to failure 

to correlate between the two images. Coupled with low-texture 

characteristic and sky reflection detection, most of the water region 

can be detected.  Through experimental results, the algorithm is 

demonstrated to be able to detect standing and running water in 

most condition except while the illumination source is in front of 

the camera. 
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7.2 Conclusion Remarks 

In conclusion, it can be stated that the proposed short range visual 

guidance scheme is suitable to determine the ground plane, detect the tree trunk 

and spot the water body. 

In this thesis, the proposed methods show satisfactory offline results 

through experimental testing under different situations. However, there are also 

limitations encountered in these methods: 

 Due to hardware settings issue, the experiment is limited to single 

frame testing of the scene. There are no optimization to reduce the 

computational load due to frames processing (each frames are 

processed separately and treat independently). 

 

 The algorithms do not solve the illumination problem which may 

affect the camera performance. The algorithm may fail mainly due 

to the image condition caused by excessive illumination in front of 

the camera. 

 

 The ground plane detection module does not take into account 

negative obstacles. It may fail to detect the negative obstacle if the 

negative obstacles are not large enough or when the camera pitch 

angle low (with reference from negative-x axis). 
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 The compressible vegetation is not considered in this thesis. The 

compressible vegetation is deemed non-traversable if the height is 

above certain threshold. 

 

 The water body detection module focuses in detecting the water 

region without considering the depth of the water body. Water body 

with very shallow depth is treated the same with deep water body. 

7.3 Future works 

As for future work, each part of the module of this visual guidance 

system should be improved to be able to work as complete visual guidance 

system as this thesis focuses on solving specific challenges in rainforest terrain. 

 High level of artificial intelligence scheme can be developed to 

supply to make this work more accurate and robust. A system with 

prior knowledge of the scene will help the scene to classify the 

terrain better. The artificial intelligent scheme will be able to act as 

additional cue to increase the confidence level of the results. In 

addition, the artificial intelligent scheme can be used as a classifier 

to classify whether the terrain is traversable or not. 

 

 In order to achieve more accurate result and robust, the illumination 

compensation has to be improved. Until this point, this thesis does 

not include any compensation algorithm except using HSI color 
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space to minimize the uneven illumination. With the illumination 

compensation, the color constancy problem can be minimized, 

enabling more accurate region boundaries of the terrain. 

 

 The ground plane profile detected in this thesis assumes that the 

ground profile is linear (or single profile). Thus the ground 

correlation profiles in this thesis only true for near-range. It is not 

able to track the ground plane at far range if the slope of the ground 

plane is going downhill (relatively high down-slope) until it is near 

to the slope. In addition, a ground region with higher slope may be 

missed due to different slope profile. Thus, there is need to detect 

non-linear ground profile. 

 

 The tree trunk detection module is able to detect vertical and near 

vertical tree trunks in the rainforest terrain. The assumption is that 

all tree trunks are not traversable regardless of the size or diameter 

of the tree trunks (the logical deduction is we usually do not run-

over very tall object even it is compressible). However, the diameter 

estimation can be addition to determine the traversability. In 

addition, the algorithm needs to be improved to be able to detect 

tree trunks that are slanted and not near vertical. 

 

 Generally, there are occlusion problems caused by partial or 

complete overlap of multiple objects in the scene. In tree trunk 

detection, tree trunks fragment with are assumed to be of the same 
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tree trunks if it belong to the same column of the image and has 

similar disparity value. However, this assumption cannot be used at 

the condition where there other fragment is complete hidden 

(particularly hazardous if it is at the base of the tree). We isolate this 

problem to certain extends by labeling this region as not-classified. 

However, there is a need to solve the occlusion problems for an 

effective visual guidance system. 

 

 The current water detection algorithm can only detect the water 

region. In fact, whether a water body is hazardous to the 

autonomous vehicle or not depend on the size of the water body and 

also the depth of the water body. Hence, it is essential to further 

investigate the polarization method to see whether it will be able to 

determine the depth of the water body. 

 

 The range of the visual guidance system should be extended in 

order for vehicle path planning to be feasible. In this thesis, stereo 

camera with fixed baseline is used, limiting the detection range. We 

propose the use of multiple stereo cameras with different baseline or 

stereo camera with real-time adjustable base line to detect different 

range of the terrain. 

 

 The near-range visual guidance system is developed for the 

autonomous vehicle navigation in rainforest terrain. The developed 

algorithm is tested only on image frames from rainforest terrain. 
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Thus, the system needs to be implemented and tested in real-time 

autonomous vehicle. 
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APPENDIX A 

 

Appendix A.1: Proposed system architecture image acquisition and feature 

extraction. 
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Appendix A.2: Proposed system architecture for ground plane detection. 
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Appendix A.3: Proposed system architecture for tree trunk detection. 
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Appendix A.4: Proposed system architecture for water body detection. 
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APPENDIX B 

#include "StdAfx.h" 

#include "classBumbleContext.h" 

 

 

#pragma region Constructor and Destructor 

classBumbleContext::classBumbleContext() 

{ // constructor  

} 

classBumbleContext::~classBumbleContext(void) 

{ // destructor 

} 

#pragma endregion 

 

#pragma region Load Calibration File 

void classBumbleContext::load_calibrationFile(char* fileName) 

{ 

 triclopsGetDefaultContextFromFile( &triclopsContext, 

fileName); 

 //return triclopsContext; 

} 

 

void classBumbleContext::load_calibrationFile_default() 

{ 

 triclopsGetDefaultContextFromFile( &triclopsContext, 

"input.cal" ); 

 //return triclopsContext; 

} 

#pragma endregion 

#pragma region GRAB PPM 

void classBumbleContext::grab_ppmImage(char* fileName) 

{ 

 ppmReadToTriclopsInput( fileName, &m_tiStereo ); 

 pgmReadToTriclopsInput( fileName, &m_tiStereoRGB ); 

 

 // ------------------------------------------------------

----- 

 // Generationg RAW Stereo, Left & Right OpenCV Image ----

-----  

 IplImage* img_ipl_RGBU = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,4); 

 img_ipl_RGBx = cvCreateImage(cvSize(m_tiStereo.ncols, 

m_tiStereo.nrows),8,3); 

 

 IplImage* img_ipl_red = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1); 

 IplImage* img_ipl_green = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1); 

 IplImage* img_ipl_blue = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows),8,1); 

 IplImage* img_ipl_test = 

cvCreateImage(cvSize(m_tiStereo.ncols, 

m_tiStereo.nrows),8,1);////// 

 

 img_ipl_RGBU->imageData = 

(char*)m_tiStereo.u.rgb32BitPacked.data; 
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 cvSplit(img_ipl_RGBU, img_ipl_blue, img_ipl_green, 

img_ipl_red, img_ipl_test);////// 

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL, 

img_ipl_RGBx); 

 

 m_tiStereo.ncols = m_tiStereo.ncols/2; 

 m_tiStereo.timeStamp.sec = 0; 

 m_tiStereo.timeStamp.u_sec = 0; 

 

 // ------------------------------------------------------

----- 

 // Build triclops input: m_tiRawColorImages[4] 

 img_ipl_raw_colour_left = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,3); 

    img_ipl_raw_colour_right = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,3); 

 

 for( int y=0; y<(img_ipl_RGBx->height); y++ )  

 {   //To split RAW into LEFT and RIGHT RAW 

  uchar* ptr_oriRight = (uchar*) (img_ipl_RGBx-

>imageData + y * img_ipl_RGBx->widthStep );  

  uchar* ptr_oriLeft = (uchar*) (img_ipl_RGBx-

>imageData + img_ipl_RGBx->widthStep/2 + y * img_ipl_RGBx-

>widthStep );  

 

  uchar* ptrRight = (uchar*) 

(img_ipl_raw_colour_right->imageData + y* img_ipl_RGBx-

>widthStep/2); 

  uchar* ptrLeft = (uchar*) (img_ipl_raw_colour_left-

>imageData + y* img_ipl_RGBx->widthStep/2); 

 

  for( int x=0; x<(img_ipl_RGBx->width); x++ )  

  { 

    ptrLeft[3*x]  = ptr_oriLeft[3*x];  

    ptrLeft[3*x+1] = ptr_oriLeft[3*x+1];  

    ptrLeft[3*x+2] = ptr_oriLeft[3*x+2];  

 

    ptrRight[3*x]  = ptr_oriRight[3*x];  

    ptrRight[3*x+1] = ptr_oriRight[3*x+1];  

    ptrRight[3*x+2] = ptr_oriRight[3*x+2];  

  } 

 } 

 

 // ------------------------------------------------------

----- 

 // Build triclops input: m_tiRawColorImages[4] 

  

 //[0] = right 

 m_tiRawColorImages[0].ncols = m_tiStereo.ncols; // 1024 

 m_tiRawColorImages[0].nrows = m_tiStereo.nrows; // 768 

 m_tiRawColorImages[0].rowinc = m_tiStereo.rowinc/2; // 

4096 

 m_tiRawColorImages[0].inputType = 

TriInp_RGB_32BIT_PACKED;  

 

 //[2] = left  

 m_tiRawColorImages[2].ncols = m_tiStereo.ncols; // 2048 

 m_tiRawColorImages[2].nrows = m_tiStereo.nrows; // 768 

 m_tiRawColorImages[2].rowinc = m_tiStereo.rowinc/2; // 

4096 



 
173 

 m_tiRawColorImages[2].inputType = 

TriInp_RGB_32BIT_PACKED;  

 

 m_tiRawColorImages[0].u.rgb32BitPacked.data = new 

unsigned 

char[m_tiRawColorImages[0].ncols*m_tiRawColorImages[0].nrows 

*4]; 

 m_tiRawColorImages[2].u.rgb32BitPacked.data = new 

unsigned 

char[m_tiRawColorImages[2].ncols*m_tiRawColorImages[2].nrows 

*4]; 

  

 uchar* ptrTri_right = 

(uchar*)m_tiRawColorImages[0].u.rgb32BitPacked.data; 

 uchar* ptrTri_left = 

(uchar*)m_tiRawColorImages[2].u.rgb32BitPacked.data; 

  

 for( int y=0; y<(img_ipl_RGBx->height); y++ )  

 { 

  uchar* ptr_right = (uchar*) 

(img_ipl_raw_colour_right->imageData + y * 

img_ipl_raw_colour_right->widthStep ); 

  uchar* ptr_left = (uchar*) 

(img_ipl_raw_colour_left->imageData + y * 

img_ipl_raw_colour_left->widthStep ); 

 

  uchar* ptrTriclopsInput_right = (uchar*) 

(ptrTri_right + y*m_tiRawColorImages[0].rowinc ); 

  uchar* ptrTriclopsInput_left = (uchar*) 

(ptrTri_left + y*m_tiRawColorImages[2].rowinc ); 

 

  for( int x=0; x<(img_ipl_RGBx->width/2); x++ )  

  { 

    ptrTriclopsInput_right[4*x]  = ptr_right[3*x];  

    ptrTriclopsInput_right[4*x+1]  = 

ptr_right[3*x+1];  

    ptrTriclopsInput_right[4*x+2]  = 

ptr_right[3*x+2];  

 

    ptrTriclopsInput_left[4*x]  = ptr_left[3*x];  

    ptrTriclopsInput_left[4*x+1]  = 

ptr_left[3*x+1];  

    ptrTriclopsInput_left[4*x+2]  = 

ptr_left[3*x+2];  

  } 

 }  

 

} 

#pragma endregion 

#pragma region GRAB JPEG 

void classBumbleContext::grab_jpeg(char* fileName) 

{ 

 // ------------------------------------------------------

----- // Generationg RAW Stereo, Left & Right OpenCV Image ----

-----  

 img_ipl_RGBx = cvLoadImage(fileName); 

  

 IplImage* img_ipl_RGBU = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,4); 
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 IplImage* img_ipl_red = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1); 

 IplImage* img_ipl_green = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1); 

 IplImage* img_ipl_blue = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1); 

 

 cvSplit(img_ipl_RGBx, img_ipl_blue, img_ipl_green, 

img_ipl_red, NULL); 

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL, 

img_ipl_RGBU); 

 

 //-------------------------------------------------------

----- 

 // Allocate memory for m_tiStereo 

 ppmReadToTriclopsInput( "dummyImage.ppm", &m_tiStereo ); 

 pgmReadToTriclopsInput( "dummyImage.ppm", 

&m_tiStereoRGB); 

  

 m_tiStereo.u.rgb32BitPacked.data = img_ipl_RGBU-

>imageData; 

 m_tiStereo.u.rgb.red =   img_ipl_RGBU->imageData; 

 m_tiStereo.u.rgb.green = img_ipl_RGBU->imageData; 

 m_tiStereo.u.rgb.blue = img_ipl_RGBU->imageData; 

 //-------------------------------------------------------

----- 

 

 m_tiStereo.ncols = img_ipl_RGBU->width/2; 

 m_tiStereo.nrows = img_ipl_RGBU->height; 

 //m_tiStereo.rowinc = img_ipl_RGBU->widthStep/4; 

 m_tiStereo.timeStamp.sec = 0; 

 m_tiStereo.timeStamp.u_sec = 0; 

 //m_tiStereo.inputType = TriInp_RGB; 

 

 

 //// ----------------------------------------------------

----- 

 //// Build triclops input: m_tiRawColorImages[4] 

 img_ipl_raw_colour_left = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,3); 

    img_ipl_raw_colour_right = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,3); 

 

 IplImage* img_ipl_raw_colour_left_m_tiStereoRGB = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,1); 

    IplImage*img_ipl_raw_colour_right_m_tiStereoRGB = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,1); 

 

 for( int y=0; y<(img_ipl_RGBx->height); y++ )  

 {   //To split RAW into LEFT and RIGHT RAW 

  uchar* ptr_oriRight = (uchar*) (img_ipl_RGBx-

>imageData + y * img_ipl_RGBx->widthStep );  

  uchar* ptr_oriLeft = (uchar*) (img_ipl_RGBx-

>imageData + img_ipl_RGBx->widthStep/2 + y * img_ipl_RGBx-

>widthStep );  
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  uchar* ptrRight = (uchar*) 

(img_ipl_raw_colour_right->imageData + y* img_ipl_RGBx-

>widthStep/2); 

  uchar* ptrLeft = (uchar*) (img_ipl_raw_colour_left-

>imageData + y* img_ipl_RGBx->widthStep/2); 

 

  uchar* ptrRight_RGB = (uchar*) 

(img_ipl_raw_colour_right_m_tiStereoRGB->imageData + y* 

img_ipl_RGBx->widthStep/2); 

  uchar* ptrLeft_RGB = (uchar*) 

(img_ipl_raw_colour_left_m_tiStereoRGB->imageData + y* 

img_ipl_RGBx->widthStep/2); 

 

  for( int x=0; x<(img_ipl_RGBx->width); x++ )  

  { 

    ptrLeft[3*x]  = ptr_oriLeft[3*x];  

    ptrLeft[3*x+1] = ptr_oriLeft[3*x+1];  

    ptrLeft[3*x+2] = ptr_oriLeft[3*x+2];  

 

    ptrRight[3*x]  = ptr_oriRight[3*x];  

    ptrRight[3*x+1] = ptr_oriRight[3*x+1];  

    ptrRight[3*x+2] = ptr_oriRight[3*x+2];  

 

    ptrLeft_RGB[1*x]  = ptr_oriLeft[3*x]; 

    ptrRight_RGB[x];//  = ptr_oriRight[3*x];  

  } 

 } 

 

 // ------------------------------------------------------

----- 

 // Build triclops input: m_tiRawColorImages[4] 

 //[0] = right 

 m_tiRawColorImages[0].ncols = m_tiStereo.ncols; // 1024 

 m_tiRawColorImages[0].nrows = m_tiStereo.nrows; // 768 

 m_tiRawColorImages[0].rowinc = m_tiStereo.rowinc/2; // 

4096 

 m_tiRawColorImages[0].inputType = 

TriInp_RGB_32BIT_PACKED;  

 //[1] = center  

 //m_tiRawColorImages[1].ncols = imageCols; // 2048 

 //m_tiRawColorImages[1].nrows = imageRows; // 768 

 //m_tiRawColorImages[1].rowinc = imageRowInc*2; // 8192 

 //m_tiRawColorImages[1].inputType = 

TriInp_RGB_32BIT_PACKED;  

 //[2] = left  

 m_tiRawColorImages[2].ncols = m_tiStereo.ncols; // 2048 

 m_tiRawColorImages[2].nrows = m_tiStereo.nrows; // 768 

 m_tiRawColorImages[2].rowinc = m_tiStereo.rowinc/2; // 

4096 

 m_tiRawColorImages[2].inputType = 

TriInp_RGB_32BIT_PACKED;  

 //[3] = both 

 //m_tiRawColorImages[3].ncols = imageCols*2; // 2048 

 //m_tiRawColorImages[3].nrows = imageRows; // 768 

 //m_tiRawColorImages[3].rowinc = imageRowInc*4; // 8192 

 //m_tiRawColorImages[3].inputType = 

TriInp_RGB_32BIT_PACKED;  

 

 m_tiRawColorImages[0].u.rgb32BitPacked.data = new 

unsigned 
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char[m_tiRawColorImages[0].ncols*m_tiRawColorImages[0].nrows 

*4]; 

 m_tiRawColorImages[2].u.rgb32BitPacked.data = new 

unsigned 

char[m_tiRawColorImages[2].ncols*m_tiRawColorImages[2].nrows 

*4]; 

  

 uchar* ptrTri_right = 

(uchar*)m_tiRawColorImages[0].u.rgb32BitPacked.data; 

 uchar* ptrTri_left = 

(uchar*)m_tiRawColorImages[2].u.rgb32BitPacked.data; 

  

 for( int y=0; y<(img_ipl_RGBx->height); y++ )  

 { 

  uchar* ptr_right = (uchar*) 

(img_ipl_raw_colour_right->imageData + y * 

img_ipl_raw_colour_right->widthStep ); 

  uchar* ptr_left = (uchar*) 

(img_ipl_raw_colour_left->imageData + y * 

img_ipl_raw_colour_left->widthStep ); 

 

  uchar* ptrTriclopsInput_right = (uchar*) 

(ptrTri_right + y*m_tiRawColorImages[0].rowinc ); 

  uchar* ptrTriclopsInput_left = (uchar*) 

(ptrTri_left + y*m_tiRawColorImages[2].rowinc ); 

 

  for( int x=0; x<(img_ipl_RGBx->width/2); x++ )  

  { 

    ptrTriclopsInput_right[4*x]  = ptr_right[3*x];  

    ptrTriclopsInput_right[4*x+1]  = 

ptr_right[3*x+1];  

    ptrTriclopsInput_right[4*x+2]  = 

ptr_right[3*x+2];  

 

    ptrTriclopsInput_left[4*x]  = ptr_left[3*x];  

    ptrTriclopsInput_left[4*x+1]  = 

ptr_left[3*x+1];  

    ptrTriclopsInput_left[4*x+2]  = 

ptr_left[3*x+2];  

  } 

 }  

 m_tiStereoRGB.u.rgb.blue = 

img_ipl_raw_colour_right_m_tiStereoRGB->imageData ; 

 m_tiStereoRGB.u.rgb.green = 

img_ipl_raw_colour_left_m_tiStereoRGB->imageData; 

 m_tiStereoRGB.u.rgb.red = 

img_ipl_raw_colour_right_m_tiStereoRGB->imageData; 

} 

#pragma endregion 

#pragma region AVI Video 

void classBumbleContext::load_avi(char* fileName) 

{ 

 //cvNamedWindow( "Example2", CV_WINDOW_AUTOSIZE ); 

 CvCapture* capture = cvCreateFileCapture( fileName ); 

 IplImage* frame; 

 while(1)  

 { 

  frame = cvQueryFrame( capture ); 

  if( !frame ) break; 

  grab_frame(frame); 

 } 
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} 

#pragma endregion 

 

#pragma region GRAB FRAME 

void classBumbleContext::grab_frame(IplImage* frame) 

{ 

 // ------------------------------------------------------

----- 

 // Generationg RAW Stereo, Left & Right OpenCV Image ----

-----  

 img_ipl_RGBx = frame; 

 IplImage* img_ipl_RGBU = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,4); 

 

 IplImage* img_ipl_red = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1); 

 IplImage* img_ipl_green = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1); 

 IplImage* img_ipl_blue = 

cvCreateImage(cvSize(img_ipl_RGBx->width, img_ipl_RGBx-

>height),8,1); 

 

 cvSplit(img_ipl_RGBx, img_ipl_blue, img_ipl_green, 

img_ipl_red, NULL); 

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL, 

img_ipl_RGBU); 

 

 

 //-------------------------------------------------------

----- 

 // Allocate memory for m_tiStereo 

 m_tiStereo.u.rgb32BitPacked.data = new unsigned 

char[img_ipl_RGBx->width*img_ipl_RGBx->height*4]; 

 //-------------------------------------------------------

----- 

 m_tiStereo.ncols = img_ipl_RGBx->width/2; 

 m_tiStereo.nrows = img_ipl_RGBx->height; 

 m_tiStereo.rowinc = (4/3)*img_ipl_RGBx->widthStep; 

 m_tiStereo.timeStamp.sec = 0; 

 m_tiStereo.timeStamp.u_sec = 0; 

 m_tiStereo.inputType = TriInp_RGB; 

 

 m_tiStereo.u.rgb32BitPacked.data = img_ipl_RGBU-

>imageData; 

 

 //// ----------------------------------------------------

----- 

 //// Build triclops input: m_tiRawColorImages[4] 

 img_ipl_raw_colour_left = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,3); 

    img_ipl_raw_colour_right = 

cvCreateImage(cvSize(m_tiStereo.ncols, m_tiStereo.nrows ),8,3); 

 

 for( int y=0; y<(img_ipl_RGBx->height); y++ )  

 {   //To split RAW into LEFT and RIGHT RAW 

  uchar* ptr_oriRight = (uchar*) (img_ipl_RGBx-

>imageData + y * img_ipl_RGBx->widthStep );  
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  uchar* ptr_oriLeft = (uchar*) (img_ipl_RGBx-

>imageData + img_ipl_RGBx->widthStep/2 + y * img_ipl_RGBx-

>widthStep );  

 

  uchar* ptrRight = (uchar*) 

(img_ipl_raw_colour_right->imageData + y* img_ipl_RGBx-

>widthStep/2); 

  uchar* ptrLeft = (uchar*) (img_ipl_raw_colour_left-

>imageData + y* img_ipl_RGBx->widthStep/2); 

 

  for( int x=0; x<(img_ipl_RGBx->width); x++ )  

  { 

    ptrLeft[3*x]  = ptr_oriLeft[3*x];  

    ptrLeft[3*x+1] = ptr_oriLeft[3*x+1];  

    ptrLeft[3*x+2] = ptr_oriLeft[3*x+2];  

 

    ptrRight[3*x]  = ptr_oriRight[3*x];  

    ptrRight[3*x+1] = ptr_oriRight[3*x+1];  

    ptrRight[3*x+2] = ptr_oriRight[3*x+2];  

  } 

 } 

 

 cvNamedWindow("Rectify GRAY: RGBx", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Rectify GRAY: RGBx", 

img_ipl_raw_colour_left ); 

 cvNamedWindow("Rectify GRAY: RGBU", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Rectify GRAY: RGBU", 

img_ipl_raw_colour_right ); 

 

 // ------------------------------------------------------

----- 

 // Build triclops input: m_tiRawColorImages[4] 

 //[0] = right 

 m_tiRawColorImages[0].ncols = m_tiStereo.ncols; // 1024 

 m_tiRawColorImages[0].nrows = m_tiStereo.nrows; // 768 

 m_tiRawColorImages[0].rowinc = m_tiStereo.rowinc/2; // 

4096 

 m_tiRawColorImages[0].inputType = 

TriInp_RGB_32BIT_PACKED;  

 //[1] = center  

 //m_tiRawColorImages[1].ncols = imageCols; // 2048 

 //m_tiRawColorImages[1].nrows = imageRows; // 768 

 //m_tiRawColorImages[1].rowinc = imageRowInc*2; // 8192 

 //m_tiRawColorImages[1].inputType = 

TriInp_RGB_32BIT_PACKED;  

 //[2] = left  

 m_tiRawColorImages[2].ncols = m_tiStereo.ncols; // 2048 

 m_tiRawColorImages[2].nrows = m_tiStereo.nrows; // 768 

 m_tiRawColorImages[2].rowinc = m_tiStereo.rowinc/2; // 

4096 

 m_tiRawColorImages[2].inputType = 

TriInp_RGB_32BIT_PACKED;  

 //[3] = both 

 //m_tiRawColorImages[3].ncols = imageCols*2; // 2048 

 //m_tiRawColorImages[3].nrows = imageRows; // 768 

 //m_tiRawColorImages[3].rowinc = imageRowInc*4; // 8192 

 //m_tiRawColorImages[3].inputType = 

TriInp_RGB_32BIT_PACKED;  

 

 m_tiRawColorImages[0].u.rgb32BitPacked.data = new 

unsigned 
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char[m_tiRawColorImages[0].ncols*m_tiRawColorImages[0].nrows 

*4]; 

 m_tiRawColorImages[2].u.rgb32BitPacked.data = new 

unsigned 

char[m_tiRawColorImages[2].ncols*m_tiRawColorImages[2].nrows 

*4]; 

  

 uchar* ptrTri_right = 

(uchar*)m_tiRawColorImages[0].u.rgb32BitPacked.data; 

 uchar* ptrTri_left = 

(uchar*)m_tiRawColorImages[2].u.rgb32BitPacked.data; 

  

 for( int y=0; y<(img_ipl_RGBx->height); y++ )  

 { 

  uchar* ptr_right = (uchar*) 

(img_ipl_raw_colour_right->imageData + y * 

img_ipl_raw_colour_right->widthStep ); 

  uchar* ptr_left = (uchar*) 

(img_ipl_raw_colour_left->imageData + y * 

img_ipl_raw_colour_left->widthStep ); 

 

  uchar* ptrTriclopsInput_right = (uchar*) 

(ptrTri_right + y*m_tiRawColorImages[0].rowinc ); 

  uchar* ptrTriclopsInput_left = (uchar*) 

(ptrTri_left + y*m_tiRawColorImages[2].rowinc ); 

 

  for( int x=0; x<(img_ipl_RGBx->width/2); x++ )  

  { 

    ptrTriclopsInput_right[4*x]  = ptr_right[3*x];  

    ptrTriclopsInput_right[4*x+1]  = 

ptr_right[3*x+1];  

    ptrTriclopsInput_right[4*x+2]  = 

ptr_right[3*x+2];  

 

    ptrTriclopsInput_left[4*x]  = ptr_left[3*x];  

    ptrTriclopsInput_left[4*x+1]  = 

ptr_left[3*x+1];  

    ptrTriclopsInput_left[4*x+2]  = 

ptr_left[3*x+2];  

  } 

 }  

} 

#pragma endregion // Grabbing stereo image and frames 

#pragma region GRAB RECTIFIED, DISPARITY, EDGE 

void classBumbleContext::grab_grayscale(int 

image_type_triclops, int image_triclops_leftRight, int 

image_resolution_width, int image_resolution_height) 

{ // image_type_triclops; // 0 = Disparity, 1 = RAW, 2 = 

Rectified, 3 = Edge 

 triclops_preprocess_3D(image_resolution_width, 

image_resolution_height); 

 if (image_type_triclops == 0) 

 { // Grab disparity Image 

  triclopsGetImage( triclopsContext, 

TriImg_DISPARITY, TriCam_REFERENCE, &img_triclops_disparity ); 

  IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_disparity); 

  cvNamedWindow("Rectify GRAY: LEFT", 

CV_WINDOW_AUTOSIZE ); 

  cvShowImage( "Rectify GRAY: LEFT", testing); 

 } 
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 else if (image_type_triclops == 1) 

 { // Grab RAW Image 

  if (image_triclops_leftRight == 3) 

  { // left 

   triclopsGetImage( triclopsContext, 

TriImg_RAW, TriCam_LEFT, &img_triclops_gray_RAW ); 

   IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_gray_RAW); 

   cvNamedWindow("RAW: LEFT", CV_WINDOW_AUTOSIZE 

); 

   cvShowImage( "RAW: LEFT", testing); 

  } 

  else if (image_triclops_leftRight == 1) 

  { // right 

   triclopsGetImage( triclopsContext, 

TriImg_RAW, TriCam_RIGHT, &img_triclops_gray_RAW ); 

   IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_gray_RAW); 

   cvNamedWindow("RAW: RIGHT", 

CV_WINDOW_AUTOSIZE ); 

   cvShowImage( "RAW: RIGHT", testing); 

  } 

 } 

 else if (image_type_triclops == 3) 

 { // Grab EDGE Image 

 

  if (image_triclops_leftRight == 3) 

  { // left 

   triclopsGetImage( triclopsContext, 

TriImg_EDGE, TriCam_LEFT, &img_triclops_edge_left ); 

   IplImage* testing =

 convert_Triclops2Ipl_1D(img_triclops_edge_left); 

   cvNamedWindow("EDGE: LEFT", 

CV_WINDOW_AUTOSIZE ); 

   cvShowImage( "EDGE: LEFT", testing); 

  } 

  else if (image_triclops_leftRight == 1) 

  { // right 

   triclopsGetImage( triclopsContext, 

TriImg_EDGE, TriCam_RIGHT, &img_triclops_edge_right ); 

   IplImage* testing2 =

 convert_Triclops2Ipl_1D(img_triclops_edge_right); 

   cvNamedWindow("EDGE: RIGHT", 

CV_WINDOW_AUTOSIZE ); 

   cvShowImage( "EDGE: RIGHT", testing2); 

  } 

 } 

 

} 

 

void classBumbleContext::grab_color(int image_type_triclops, 

int image_triclops_leftRight, int image_resolution_width, int 

image_resolution_height) 

{  

 triclops_preprocess_3D(image_resolution_width, 

image_resolution_height); 

 if (image_type_triclops == 4) 

 { 

  if (image_triclops_leftRight == 3) 

  { 
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   triclopsRectifyColorImage(triclopsContext, 

TriCam_LEFT, &m_tiRawColorImages[2], 

&img_triclops_rectified_colour_left); 

   IplImage* img_ipl= 

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols, 

img_triclops_rectified_colour_left.nrows),8,3); 

   IplImage* img_ipl_red= 

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols, 

img_triclops_rectified_colour_left.nrows),8,1); 

   IplImage* img_ipl_green= 

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols, 

img_triclops_rectified_colour_left.nrows),8,1); 

   IplImage* img_ipl_blue= 

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols, 

img_triclops_rectified_colour_left.nrows),8,1); 

   img_ipl_rectified_colour_left = 

cvCreateImage(cvSize(img_triclops_rectified_colour_left.ncols, 

img_triclops_rectified_colour_left.nrows),8,3); 

 

   unsigned char* ptr_triclops_red = (unsigned 

char*) img_triclops_rectified_colour_left.red; 

   unsigned char* ptr_triclops_green = (unsigned 

char*) img_triclops_rectified_colour_left.green; 

   unsigned char* ptr_triclops_blue = (unsigned 

char*) img_triclops_rectified_colour_left.blue; 

 

   img_ipl_red->imageData = 

(char*)ptr_triclops_red; 

   img_ipl_green->imageData = 

(char*)ptr_triclops_green; 

   img_ipl_blue->imageData = 

(char*)ptr_triclops_blue; 

   cvMerge(img_ipl_blue, img_ipl_green, 

img_ipl_red, NULL, img_ipl_rectified_colour_left); 

 

   cvNamedWindow("Rectify Color: LEFT", 

CV_WINDOW_AUTOSIZE ); 

   cvShowImage( "Rectify Color: LEFT", 

img_ipl_rectified_colour_left ); 

  } 

  else if (image_triclops_leftRight == 1) 

  { 

   triclopsRectifyColorImage(triclopsContext, 

TriCam_RIGHT, &m_tiRawColorImages[0], 

&img_triclops_rectified_colour_right); 

   IplImage* img_ipl= 

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols, 

img_triclops_rectified_colour_right.nrows),8,3); 

   IplImage* img_ipl_red= 

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols, 

img_triclops_rectified_colour_right.nrows),8,1); 

   IplImage* img_ipl_green= 

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols, 

img_triclops_rectified_colour_right.nrows),8,1); 

   IplImage* img_ipl_blue= 

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols, 

img_triclops_rectified_colour_right.nrows),8,1); 

   img_ipl_rectified_colour_right = 

cvCreateImage(cvSize(img_triclops_rectified_colour_right.ncols, 

img_triclops_rectified_colour_right.nrows),8,3); 
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   unsigned char* ptr_triclops_red = (unsigned 

char*) img_triclops_rectified_colour_right.red; 

   unsigned char* ptr_triclops_green = (unsigned 

char*) img_triclops_rectified_colour_right.green; 

   unsigned char* ptr_triclops_blue = (unsigned 

char*) img_triclops_rectified_colour_right.blue; 

 

   img_ipl_red->imageData = 

(char*)ptr_triclops_red; 

   img_ipl_green->imageData = 

(char*)ptr_triclops_green; 

   img_ipl_blue->imageData = 

(char*)ptr_triclops_blue; 

   cvMerge(img_ipl_blue, img_ipl_green, 

img_ipl_red, NULL, img_ipl_rectified_colour_right); 

 

   cvNamedWindow("Rectify Color: RIGHT", 

CV_WINDOW_AUTOSIZE ); 

   cvShowImage( "Rectify Color: RIGHT", 

img_ipl_rectified_colour_right ); 

  } 

 } 

} 

 

#pragma endregion 

 

 

#pragma region DEPTH 

void classBumbleContext::grab_disparity_map(int 

nStereo_disparity_min, int nStereo_disparity_max, int 

nStereo_maskSize, int bGenerateLUTbefore) 

{  

 triclopsSetDisparityMappingOn( triclopsContext, false ); 

 triclopsSetDisparity(triclopsContext, 

nStereo_disparity_min, nStereo_disparity_max); 

 triclopsSetStereoMask(triclopsContext, nStereo_maskSize); 

 triclopsSetEdgeCorrelation(triclopsContext, 1); 

 triclopsSetEdgeMask(triclopsContext, 11); 

 

 triclopsSetSurfaceValidation( triclopsContext, 1 ); 

 triclopsSetSurfaceValidationSize( triclopsContext, 200 ); 

 triclopsSetSurfaceValidationDifference( triclopsContext, 

1.0 ); 

 

 triclopsSetTextureValidation( triclopsContext, 1 ); 

 triclopsSetTextureValidationThreshold( triclopsContext, 

0.2 ); 

 

 triclopsSetUniquenessValidation( triclopsContext, 0 ); 

 

 triclopsPreprocess( triclopsContext, &m_tiStereoRGB  ); 

 triclopsRectify(triclopsContext, &m_tiStereoRGB ); 

 triclopsStereo( triclopsContext ); 

 

 triclopsGetImage( triclopsContext, TriImg_DISPARITY, 

TriCam_REFERENCE, &img_triclops_disparity); 

 

 // GENERATING LUT ---------------------------------------

----- 

 int nMinDisparity; // value in context 

 int nMaxDisparity; // value in context 
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 int nDisparityOffset; // value in context 

 triclopsGetDisparity( triclopsContext, &nMinDisparity, 

&nMaxDisparity ); 

 triclopsGetDisparityOffset( triclopsContext, 

&nDisparityOffset ); 

 

  if(bGenerateLUTbefore == 0 || nMinDisparity-

nDisparityOffset != nStereo_disparity_min || 

nStereo_disparity_max-nDisparityOffset != 

nStereo_disparity_max) 

  { 

   bGenerateLUTbefore = 1; 

   nStereo_disparity_min = nMinDisparity-

nDisparityOffset; // yesterday stop here 

   nStereo_disparity_max = nMaxDisparity-

nDisparityOffset; 

   generate_LUT( nStereo_disparity_min, 

nStereo_disparity_max);     

  } 

 //-------------------------------------------------------

----- 

 

 unsigned char* pRow = img_triclops_disparity.data; 

 int iPixelInc= img_triclops_disparity.rowinc; 

 img_ipl_disparity_colourReMap = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

img_triclops_disparity.nrows),8,3); 

  

 img_ipl_disparity= 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

img_triclops_disparity.nrows),8,1); //disparity_gray 

 

 for ( int y = 0; y < img_triclops_disparity.nrows; y++ ) 

 { 

  uchar* ptr_ipl = (uchar*) 

(img_ipl_disparity_colourReMap->imageData + y * 

img_ipl_disparity_colourReMap->widthStep );  

  uchar* ptr_ipl_disparity = (uchar*) 

(img_ipl_disparity->imageData + y * img_ipl_disparity-

>widthStep ); //disparity_gray 

 

  for ( int x = 0; x < img_triclops_disparity.ncols; 

x++ ) 

  { 

   if (pRow[x] > 239) 

   { // invalid pixel 

    int index = pRow[x]; 

    ptr_ipl[ 3*x ] = 

ucInvalidDisparityMapLUT[index][0]; // red 

    ptr_ipl[ 3*x+1] = 

ucInvalidDisparityMapLUT[index][1]; // green 

    ptr_ipl[ 3*x+2] = 

ucInvalidDisparityMapLUT[index][2]; // blue 

    ptr_ipl_disparity[x] = index; 

//disparity_gray 

    

   } 

   else 

   { // valid pixel 

    int index = pRow[x] << (8 - 

DISPARITY_LUT_SHIFT_BITS); 
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    ptr_ipl[3*x]  = 

ucValidDisparityMapLUT[index][0]; // red 

    ptr_ipl[3*x+1]  = 

ucValidDisparityMapLUT[index][1]; // green 

    ptr_ipl[3*x+2]  = 

ucValidDisparityMapLUT[index][2]; // blue 

    ptr_ipl_disparity[x] = index; 

//disparity_gray 

 

   } 

  } 

  pRow   += iPixelInc; 

 } 

 cvNamedWindow("DISPARITY: COLOUR", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "DISPARITY: COLOUR", 

img_ipl_disparity_colourReMap); 

 

} 

 

 

//GENERATE LUT 

//-------------------------------------------------------------

-- 

// inline function 

inline void disparityToTemperature(TriclopsContext,   // may 

want to use this in the future... 

         unsigned int uiDisp16Bit,  

         double dMinDisp, 

         double dMaxDisp, 

         double *pdRed, 

         double *pdGreen, 

         double *pdBlue ) 

{ 

   // note: context not used now but maybe later 

   double dDisp = (double) uiDisp16Bit/256.0; 

 

   if ( dDisp < dMinDisp ) 

   { 

      dDisp = dMinDisp; 

   } 

   if ( dDisp > dMaxDisp ) 

   { 

      dDisp = dMaxDisp; 

   } 

 

   double dRange = dMaxDisp - dMinDisp; 

 

 

   // This code is a little more complicated than it should be, 

but it 

   // does allow one to easily tweak the sizes of the different 

color 

   // zones. 

   // you can change the width of the red zone, blue zone and 

green zone  

   // by tweaking the dRed, dGreen and dBlue values 

   double dRed      = 1; 

   double dGreen     = 1; 

   double dBlue      = 1; 

   double dTotal     = dRed + dGreen + dBlue; 

   double dNormDisp  = (dDisp-dMinDisp)/dRange; 
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   double dBGThresh  = dBlue/dTotal; 

   double dGRThresh  = (dBlue+dGreen)/dTotal; 

 

   if ( dNormDisp < dBGThresh  ) 

   { 

      double dInBand = dNormDisp/dBGThresh; 

      *pdRed   = 0; 

      *pdGreen = 255*dInBand; 

      *pdBlue  = 255; 

   } 

   else if ( dNormDisp < dGRThresh ) 

   { 

      double dInBand = (dNormDisp-dBGThresh)/(dGRThresh-

dBGThresh); 

      *pdRed   = 255*dInBand; 

      *pdGreen = 255; 

      *pdBlue  = 255*(1-dInBand); 

   } 

   else 

   { 

      double dInBand = (dNormDisp-dGRThresh)/(1-dGRThresh); 

      *pdRed   = 255; 

      *pdGreen = 255*(1-dInBand); 

      *pdBlue  = 0; 

   } 

 

   return; 

} 

void classBumbleContext::generate_LUT(int 

nStereo_disparity_min, int nStereo_disparity_max) 

{ 

 // get the invalid pixel mappings 

    unsigned char ucInvalidTexture; 

    unsigned char ucInvalidUniqueness; 

 unsigned char ucInvalidSurface; 

 unsigned char ucInvalidBackForth; 

 unsigned char ucInvalidSubpixel; 

    

 triclopsGetTextureValidationMapping(    triclopsContext , 

&ucInvalidTexture ); 

 triclopsGetUniquenessValidationMapping( triclopsContext , 

&ucInvalidUniqueness ); 

 triclopsGetSurfaceValidationMapping(    triclopsContext , 

&ucInvalidSurface ); 

 triclopsGetSubpixelValidationMapping(   triclopsContext , 

&ucInvalidSubpixel ); 

 triclopsGetBackForthValidationMapping(  triclopsContext , 

&ucInvalidBackForth ); 

 

 //-------------------------------------------------------

----- 

 // WITHOUT SUBPIXEL INTERPOLATION 

 for( int i = 0; i < DISPARITY_VALID_LUT_ENTRIES; i++ ) 

    { // generate VALID LUT 

  unsigned int uiDisp16Bit = i << 

DISPARITY_LUT_SHIFT_BITS; 

  if( uiDisp16Bit <= 0xFF00 ) 

  { 

   double dRed, dGreen, dBlue; 

   disparityToTemperature( triclopsContext,  

      uiDisp16Bit,  
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      (double) 

nStereo_disparity_min, 

      (double) 

nStereo_disparity_max, 

      &dRed,  

      &dGreen,  

      &dBlue ); 

   ucValidDisparityMapLUT[i][2] = (unsigned 

char) dRed; 

   ucValidDisparityMapLUT[i][1] = (unsigned 

char) dGreen; 

   ucValidDisparityMapLUT[i][0] = (unsigned 

char) dBlue; 

  } 

    } 

 for (int i = 0; i < DISPARITY_INVALID_LUT_ENTRIES; i++) 

 { // generate INVALID LUT // make them all grey 

     ucInvalidDisparityMapLUT[i][0] = 127; 

     ucInvalidDisparityMapLUT[i][1] = 127; 

     ucInvalidDisparityMapLUT[i][2] = 127; 

 } 

} 

#pragma endregion // generate disparity and LUT 

 

void classBumbleContext::generate_VDisparity(int 

nStereo_disparity_max) 

{ 

 int xn=0; 

 int yn=0; 

 int xn2 = 0; 

 long long int sum_xy = 0; 

 long long int sum_x = 0; 

 long long int sum_y = 0; 

 long long int sum_x2 = 0; 

 long long int sum2_x = 0; 

 long long int n = 0; 

 long long int slope_m = 0; 

 long long int intercept_c = 0; 

 int index_max; 

 

 img_ipl_vdisparity = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,1); 

 

 IplImage* img_ipl_vdisparity_min_y = 

cvCreateImage(cvSize(nStereo_disparity_max, 1),8,1); 

 IplImage* img_ipl_vdisparity_min = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,1); 

 cvZero(img_ipl_vdisparity_min_y); 

 cvZero(img_ipl_vdisparity_min); 

 

 cvZero(img_ipl_vdisparity);  

 index_max = 0; 

 

 unsigned char* pRow = img_triclops_disparity.data; 

 int iPixelInc= img_triclops_disparity.rowinc; 

 

 for ( int y = 0; y < img_triclops_disparity.nrows; y++ ) 

 { 
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  uchar* ptr_ipl_vdisparity = (uchar*) 

(img_ipl_vdisparity->imageData + y * img_ipl_vdisparity-

>widthStep ); 

  uchar* ptr_ipl_vdisparity_min_y = (uchar*) 

(img_ipl_vdisparity_min_y->imageData); 

 

 

  for ( int x = 0; x < img_triclops_disparity.ncols; 

x++ ) 

  { 

   if (pRow[x] < 239) 

   { 

    int index = pRow[x] << (8 - 

DISPARITY_LUT_SHIFT_BITS); 

    // ------------------------------------

----- 

    // calculating v-disparity 

    ptr_ipl_vdisparity[pRow[x]]= 

ptr_ipl_vdisparity[pRow[x]]+1; //test 

    if(ptr_ipl_vdisparity[pRow[x]] > 

index_max) 

    { 

     index_max = 

ptr_ipl_vdisparity[pRow[x]];  

    } 

    if(y >= 

ptr_ipl_vdisparity_min_y[pRow[x]]) 

    { 

     ptr_ipl_vdisparity_min_y[pRow[x]] 

= y; 

    } 

    // preparation to calculating ground 

plane - 

    n = n+1; 

    sum_xy = sum_xy + (y*pRow[x]); 

    sum_x = sum_x + pRow[x]; 

    sum_y = sum_y + y; 

    xn2 = pRow[x]*pRow[x]; 

    sum_x2 = sum_x2 + xn2; 

    //-------------------------------------

----- 

   } 

  } 

  pRow   += iPixelInc; 

 } 

 

 cvNamedWindow("min", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "min", img_ipl_vdisparity_min_y); 

  

 //-------------------------------------------------------

----- 

 // estimating ground plane and horizon 

 slope_m = ((n*sum_xy)-(sum_x*sum_y))/((n*sum_x2)-

sum_x*sum_x); // 8.94x13 

 intercept_c = (sum_y-(slope_m*sum_x))/n; 

  

 for ( int y = 0; y < img_ipl_vdisparity->height; y++ ) 

 { 

   uchar* ptr_ipl_vdisparity = (uchar*) 

(img_ipl_vdisparity->imageData + y * img_ipl_vdisparity-

>widthStep); //test 
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   uchar* ptr_ipl_vdisparity_min_y = (uchar*) 

(img_ipl_vdisparity_min_y->imageData); 

   uchar* ptr_ipl_vdisparity_min = (uchar*) 

(img_ipl_vdisparity_min->imageData + y * 

img_ipl_vdisparity_min->widthStep); //test 

 

 

   for ( int x = 0; x < img_ipl_vdisparity-

>width; x++ ) 

   { 

    ptr_ipl_vdisparity[x] = 

ptr_ipl_vdisparity[x]*255/index_max; 

 

    if (ptr_ipl_vdisparity_min_y[x] == y) 

    { 

     ptr_ipl_vdisparity_min[x] = 255; 

    } 

 

   } 

 } 

 cvNamedWindow("V-Disparity", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "V-Disparity", img_ipl_vdisparity); 

 

 cvNamedWindow("V-Disparity - min", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "V-Disparity - min", 

img_ipl_vdisparity_min); 

} 

 

void classBumbleContext::ground_detection(int 

nStereo_disparity_max) 

{  

  

 

 

 #pragma region U-Disparity  

 IplImage* img_ipl_udisparity = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

nStereo_disparity_max),8,1); 

 cvZero(img_ipl_udisparity); 

 

 IplImage* img_ipl_udisparity_thresh = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

nStereo_disparity_max),8,1); 

 cvZero(img_ipl_udisparity_thresh); 

 

 IplImage* img_ipl_disparity_thresh = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

img_triclops_disparity.nrows),8,1); 

 cvCopy(img_ipl_disparity, img_ipl_disparity_thresh); 

  

 for (int y=0; y<img_triclops_disparity.nrows; y++ ) 

 { // Generate U-Disparity 

  unsigned char* pRow = img_triclops_disparity.data + 

y*img_triclops_disparity.rowinc; 

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  {  

   unsigned char* ptr_ipl_udisparity = 

(uchar*)(img_ipl_udisparity->imageData + 

pRow[x]*img_ipl_udisparity->widthStep); 

   if (pRow[x] < 239) 

   { 



 
189 

    ptr_ipl_udisparity[x] = 

ptr_ipl_udisparity[x]+1; 

   } 

  } 

 } 

 

 cvNamedWindow("U-Disparity", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "U-Disparity", img_ipl_udisparity); 

 #pragma endregion // U-Disparity 

 

#pragma region world xyz 

 

 IplImage* img_ipl_depth = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

img_triclops_disparity.nrows),8,3); 

 

 float u, v, z; 

 

 int disparity; 

 float u_max = 0; 

 float v_max = 0; 

 float z_max = 0; 

 

 float u_min = 0; 

 float v_min = 0; 

 float z_min = 0; 

 

 float centerCols; 

 float centerRows; 

 float focalLength; 

 float baseline; 

  

 triclopsGetImageCenter(triclopsContext, &centerRows, 

&centerCols); 

 triclopsGetFocalLength(triclopsContext, &focalLength); 

 triclopsGetBaseline( triclopsContext, &baseline); 

 

 float distance; 

 float real_u; 

 float real_v; 

 

 int depth_x, depth_y , depth_z; 

 for ( int y = 0; y < img_triclops_disparity.nrows; y++ ) 

 { // to get the maximum distance of sensed 

  uchar* ptr_ipl_depth = (uchar*) (img_ipl_depth-

>imageData + y * img_ipl_depth->widthStep ); 

  unsigned char* pRow = img_triclops_disparity.data + 

y*img_triclops_disparity.rowinc; 

   

  for ( int x = 0; x < img_triclops_disparity.ncols; 

x++ ) 

  { 

   if (pRow[x] < 239) 

   { 

    disparity = pRow[x]; 

    triclopsRCD8ToXYZ( triclopsContext, x, 

y, disparity, &u, &v, &z ); 

 

    if ((u)>u_max) 

    { 

     u_max = u; 
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    } 

    if ((v)>v_max) 

    { 

     v_max = v; 

    } 

    if (z>z_max) 

    { 

     z_max = z; 

    } 

 

    if ((u)<u_min) 

    { 

     u_min = u; 

    } 

    if ((v)<v_min) 

    { 

     v_min = v; 

    } 

    if (z<z_min) 

    { 

     z_min = z; 

    } 

   } 

  } 

 } 

#pragma endregion 

 

 

 #pragma region Image preparation 

 img_ipl_HS_disparity_half = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

(img_ipl_rectified_colour_left->height)/2),8,3); 

 for(int y=0; y<img_ipl_HS_disparity_half->height; y++) 

 { // splitting the HSD image into half / taking just 

the lower half into consideration 

  uchar* ptr_1 = (uchar*) (img_ipl_HS_disparity_half-

>imageData + y * img_ipl_HS_disparity_half->widthStep ); 

  uchar* ptr_2 = (uchar*) (img_ipl_HSV_left-

>imageData + (y+192)* img_ipl_HSV_left->widthStep); 

  uchar* ptr_3 = (uchar*) (img_ipl_disparity_thresh-

>imageData + (y+191)* img_ipl_disparity_thresh->widthStep); 

  for( int x=0; x<img_ipl_HS_disparity_half->width; 

x++) 

  { 

 

    ptr_1[3*x] = ptr_2[3*x]; 

    ptr_1[3*x+1] = ptr_2[3*x+1]; 

    ptr_1[3*x+2] = ptr_3[x]; 

//ptr_2[3*x+2]; //<-------------------------dont take disparity 

into consideration 

  } 

 } 

 

 // ------------------------------------------------------

----- 

 // removing POTENTIAL obstacle area from HS-Disparity 

Image 

 // taking into consideration just the POTENTIAL ground 

plane 

 for (int y=0; y< img_ipl_udisparity->height; y++ ) 
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 { // setting threshold to isolate the obstacle from 

ground 

  uchar* ptr1 =  (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep); 

  for(int x=0; x< img_ipl_udisparity->width; x++) 

  { 

   if (ptr1[x] > 20)  

   { // if there is 20 pixels with the same 

value in the column, then it is more likely to be obstacles 

    int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value 

    for (int h=0; h< 

img_ipl_HS_disparity_half->height; h++ ) 

    { // browsing through the column of 

the disparity image 

     uchar* ptr3 =  (uchar*) 

(img_ipl_HS_disparity_half->imageData + 

h*img_ipl_HS_disparity_half->widthStep); 

     unsigned char* pRow = 

img_triclops_disparity.data + 

(h+191)*img_triclops_disparity.rowinc; 

     if (pRow[x] == disparity_value && 

pRow[x] < 239 ) 

     { // REMOVING THE POTENTIAL 

OBSTACLE AREA 

      ptr3[3*x] = 0; 

      ptr3[3*x+1] = 0; 

      ptr3[3*x+2] = 0; 

     } 

    } 

   } 

  } 

 } 

 // ------------------------------------------------------

----- 

 //Split Image 

 IplImage* plane1 = 

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1); 

 IplImage* plane2 = 

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1); 

 IplImage* plane3 = 

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1); 

 cvSplit(img_ipl_HS_disparity_half, plane1, plane2, 

plane3, NULL); 

 #pragma endregion //preparing HS_disparity image 

 

 // INITIALIZATION FOR K-MEAN 

 int numOfCluster= 5; // Number of Cluster 

 int iVector=0; // counter for each input plane / size of 

EACH input plane into kmean 

 

 #pragma region kmean: colour assignment  

 // colour assignment to each colour 

 int colour_Tab[5][3]; 

 colour_Tab[0][0]=255; 

 colour_Tab[0][1]=0; 

 colour_Tab[0][2]=0; 

  

 colour_Tab[1][0]=0; 

 colour_Tab[1][1]=255; 

 colour_Tab[1][2]=0; 
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 colour_Tab[2][0]=0; 

 colour_Tab[2][1]=0; 

 colour_Tab[2][2]=255; 

 

 colour_Tab[3][0]=255; 

 colour_Tab[3][1]=0; 

 colour_Tab[3][2]=255; 

 

 colour_Tab[4][0]=0; 

 colour_Tab[4][1]=255; 

 colour_Tab[4][2]=255; 

 # pragma endregion // colour for each cluster 

 

 #pragma region kmean: preparation of input plane vector 

 // MEMORY ALLOCATION  

    // piCluster = output cluster ID 

 int* piCluster=(int*)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(int)); 

 // planeVector = array plane vector for input 

 CvVect32f 

*planeVector=(CvVect32f*)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(CvVect32f)); 

  

 // converting IplImage into array vector 

 unsigned char pixelPointer[3]; // array pointer 

 for(int i=0; i<plane1->height; i++) 

 { 

  for( int x=0; x<plane1->width; x++) 

  { 

   pixelPointer[0] = *(plane1-

>imageData+i*plane1->width +x); 

   pixelPointer[1] = *(plane2-

>imageData+i*plane2->width +x); 

   pixelPointer[2] = *(plane3-

>imageData+i*plane3->width +x); // 

 

  

 planeVector[iVector]=(CvVect32f)malloc(3*sizeof(unsigned 

char)); // allocation memory for each plane vector 

   planeVector[iVector][0]=(unsigned 

char)pixelPointer[0]; 

   planeVector[iVector][1]=(unsigned 

char)pixelPointer[1]; 

   planeVector[iVector][2]=(unsigned 

char)pixelPointer[2]; 

   iVector++; 

  } 

 } 

 # pragma endregion // preparation of input plane vector 

for kmean  

 

 #pragma region k-mean clustering 

 // cvKMeans(no of cluster, input vector, size of input 

vector, no of vectors, clustering criteria, output cluster ID ) 

 cvKMeans (numOfCluster, 

planeVector,(img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height),  

  3,cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 

10, 1.0 ), piCluster); 

 #pragma endregion //K-mean Function 
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 IplImage* img_ipl_vdisparity_3c = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,3); 

 

 IplImage* img_ipl_dummy = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,1); 

 cvZero(img_ipl_dummy); 

 cvMerge(img_ipl_dummy, img_ipl_vdisparity,img_ipl_dummy, 

NULL, img_ipl_vdisparity_3c); 

 

 IplImage* img_ipl_vdisparity_3c_iter2 = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,3); 

 cvCopy( img_ipl_vdisparity_3c, 

img_ipl_vdisparity_3c_iter2); 

 

 

 #pragma region calculating v-disparity and displaying 

clusters 

 // Memory allocation for output cluster 

 IplImage *img_ipl_outputClusterImage = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

(img_ipl_rectified_colour_left->height)),8,3); 

 

 IplImage *clusterImage[5]; 

 for (int i=0; i<5; i++) 

 { 

  clusterImage[i] = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

(img_ipl_rectified_colour_left->height)),8,3); 

 } 

 

 // variables for curve fitting 

 int index[5] = {0}; 

 int index_max[5] = {0}; //test 

 int xn[5] = {0}; 

 int yn[5] = {0}; 

 int xn2[5] = {0}; 

 long long int sum_xy[5] = {0}; 

 long long int sum_x[5] = {0}; 

 long long int sum_y[5] = {0}; 

 long long int sum_x2[5] = {0}; 

 long long int sum2_x[5] = {0}; 

 long long int n[5] = {0}; 

 long long int slope_m[5] = {0}; 

 long long int intercept_c[5] = {0}; 

 

 int clusterNumber; 

 iVector = 0; 

 int disparity_count_max = 0; 

 IplImage* img_ipl_vdisparity_histogram = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,1); // test 

 cvZero(img_ipl_vdisparity_histogram); 

 

 for (int y=192; y< img_triclops_disparity.nrows; y++ ) 

 {  

  uchar* pRow = (uchar*) (img_triclops_disparity.data 

+ y * img_triclops_disparity.rowinc); 
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  //uchar* ptr_VDhist = (uchar*) 

(img_ipl_vdisparity_histogram->imageData + y * 

img_ipl_vdisparity_histogram->widthStep ); 

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  { 

   clusterNumber = piCluster[iVector]; 

   if (pRow[x] < 239) 

   { 

    // collecting data for curve fitting 

formula 

    n[clusterNumber] = n[clusterNumber]+1; 

    sum_xy[clusterNumber] = 

sum_xy[clusterNumber] + (y*pRow[x]); 

    sum_x[clusterNumber] = 

sum_x[clusterNumber] + pRow[x]; 

    sum_y[clusterNumber] = 

sum_y[clusterNumber] + y; 

    xn2[clusterNumber] = pRow[x]*pRow[x]; 

    sum_x2[clusterNumber] = 

sum_x2[clusterNumber] + xn2[clusterNumber]; 

   } 

   iVector++; 

  } 

 } 

 //-------------------------------------------------------

----- 

 //  curve fitting  

 slope_m_best = 0; 

 intercept_c_best = 0; 

 

 for(int i=0; i<numOfCluster; i++) 

 { 

  slope_m[i] = ((n[i]*sum_xy[i])-

(sum_x[i]*sum_y[i]))/((n[i]*sum_x2[i])-sum_x[i]*sum_x[i]); 

  intercept_c[i] = (sum_y[i]-

(slope_m[i]*sum_x[i]))/n[i]; 

 

  if(slope_m[i]>slope_m_best) 

  { // choosing the best v-disparity line 

   slope_m_best = slope_m[i]; 

   intercept_c_best = intercept_c[i]; 

   horizon_y = intercept_c_best;  

  

  } 

 } 

 

 //-------------------------------------------------------

----- 

 

 IplImage* img_ipl_best_line = 

cvCreateImage(cvSize(img_ipl_vdisparity->width, 

img_ipl_vdisparity->height),8,3); // test 

 cvZero(img_ipl_best_line); 

 for ( int y = 0; y < img_ipl_vdisparity->height; y++ ) 

 { 

   uchar* ptr_ipl_best_line = (uchar*) 

(img_ipl_best_line->imageData + y * img_ipl_best_line-

>widthStep); 

   uchar* ptr_ipl_best_line_3c = (uchar*) 

(img_ipl_vdisparity_3c->imageData + y * img_ipl_vdisparity_3c-

>widthStep); 
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   for ( int x = 0; x < img_ipl_vdisparity-

>width; x++ ) 

   { 

    for(int i=0; i<numOfCluster; i++) 

    { 

     if(y-

(slope_m[i]*x)==intercept_c[i]) 

     { 

      ptr_ipl_best_line[3*x] = 

colour_Tab[i][0]; 

      ptr_ipl_best_line[3*x+1] = 

colour_Tab[i][1]; 

      ptr_ipl_best_line[3*x+2] = 

colour_Tab[i][2]; 

 

      ptr_ipl_best_line_3c[3*x]  

= 0; 

      ptr_ipl_best_line_3c[3*x+1]  

= 0; 

      ptr_ipl_best_line_3c[3*x+2]  

= 255; 

     } 

    } 

    if(y-

(slope_m_best*x)==intercept_c_best) 

    { 

     ptr_ipl_best_line_3c[3*x]  = 255; 

     ptr_ipl_best_line_3c[3*x+1]  = 

255; 

     ptr_ipl_best_line_3c[3*x+2]  = 

255; 

    } 

   } 

 } 

 

 img_ipl_groundPlane = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_groundPlane); 

 

 IplImage *img_ipl_markers = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvZero(img_ipl_markers); 

 

 

 

 //-------------------------------------------------------

----- 

 // Prepraring POTENTIAL OBSTACLE AREAS for Obstacle 

Detection 

 IplImage* img_ipl_obstacles_initial = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_obstacles_initial); 

 

 for(int y=0; y<img_ipl_obstacles_initial->height; y++) 

 { //HS_DISPARITY FULL 
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  uchar* ptr_1 = (uchar*) (img_ipl_obstacles_initial-

>imageData + y * img_ipl_obstacles_initial->widthStep ); 

  uchar* ptr_2 = (uchar*) (img_ipl_HSV_right-

>imageData + y* img_ipl_HSV_right->widthStep); 

  uchar* ptr_3 = (uchar*) (img_ipl_disparity-

>imageData + y* img_ipl_disparity->widthStep); 

  for( int x=0; x<img_ipl_rectified_colour_right-

>width; x++) 

  { 

    ptr_1[3*x] = ptr_2[3*x]; 

    ptr_1[3*x+1] = ptr_2[3*x+1]; 

    //ptr_1[3*x+2] = 0; //ptr_3[x]; 

    ptr_1[3*x+1] = ptr_3[x]; 

  } 

 } 

 

 IplImage* img_ipl_water_testing = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 img_ipl_markers_brightness_littleChanges = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 img_ipl_markers_brightness_largeChanges = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvZero(img_ipl_markers_brightness_littleChanges); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_water_testing); 

 

 // Duplicating original image for markers 

    IplImage* img_ipl_markers_clone = 

cvCloneImage(img_ipl_rectified_colour_right ); 

 

 //output Image 

    IplImage* img_ipl_watershedOutput = 

cvCloneImage(img_ipl_rectified_colour_right ); 

 //-------------------------------------------------------

----- 

 for (int y=0; y< img_triclops_disparity.nrows; y++ ) 

 { // marking the ground plane 

  uchar* pRow = (uchar*) (img_triclops_disparity.data 

+ y * img_triclops_disparity.rowinc); 

  uchar* ptr = (uchar*) (img_ipl_groundPlane-

>imageData + y * img_ipl_groundPlane->widthStep ); 

  uchar* ptr_markers = (uchar*) (img_ipl_markers-

>imageData + y * img_ipl_markers->widthStep ); 

  uchar* ptr_obstacles_initial = 

(uchar*)(img_ipl_obstacles_initial->imageData + y * 

img_ipl_obstacles_initial->widthStep); 

   

  uchar* ptr_HSV_left = (uchar*)(img_ipl_HSV_left-

>imageData + y * img_ipl_HSV_left->widthStep); 

  uchar* ptr_HSV_right = (uchar*)(img_ipl_HSV_right-

>imageData + y * img_ipl_HSV_right->widthStep); 

 

  uchar* ptr_testing = 

(uchar*)(img_ipl_water_testing->imageData + y * 

img_ipl_water_testing->widthStep); 

  uchar* ptr_changes = 

(uchar*)(img_ipl_markers_brightness_littleChanges->imageData + 

y * img_ipl_markers_brightness_littleChanges->widthStep); 
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  uchar* ptr_large_changes = 

(uchar*)(img_ipl_markers_brightness_largeChanges->imageData + y 

* img_ipl_markers_brightness_largeChanges->widthStep); 

   

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  { 

   if (pRow[x] < 239 && y 

>=(slope_m_best*pRow[x] + intercept_c_best - 10)) //-10 

   { 

    ptr[3*x]   = 0; 

    ptr[3*x+1] = 0; 

    ptr[3*x+2] = 255; //255 

     

    ptr_markers[x] = 255; 

 

    int ref = x + pRow[x]; 

    int diff_v = (ptr_HSV_right[3*x+2] - 

ptr_HSV_left[3*ref+2]); 

     if ( diff_v > -20 ) 

     { 

      ptr_testing[3*ref] = 255; 

      ptr_testing[3*ref+1] = 255; 

      ptr_changes[x] = 255; 

     } 

     if ( diff_v < -20 ) 

     { 

      ptr_large_changes[x] = 255; 

     } 

   } 

 

  } 

 } 

 

 

 cvNamedWindow("Ground Plane", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Ground Plane", img_ipl_groundPlane); 

 

 cvNamedWindow("testing", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "testing", 

img_ipl_markers_brightness_littleChanges ); 

 

 cvNamedWindow("V-disparity: ground profile", 

CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "V-disparity: ground profile", 

img_ipl_vdisparity_3c); 

 

 IplImage* img_ipl_rangeLimit = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_rangeLimit); 

 

 

 for (int y=0; y< img_ipl_udisparity->height; y++ ) 

 { // removing area that has little disparity 

information 

  uchar* ptr1 =  (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep); 

  uchar* ptr_rangeLimit =  (uchar*) 

(img_ipl_rangeLimit->imageData + y*img_ipl_rangeLimit-

>widthStep); 
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  for(int x=0; x< img_ipl_udisparity->width; x++) 

  { 

   if (ptr1[x] > 1 &&  ptr1[x] < 239)  // >100 

original 

   { // if there is 20 pixels with the same 

value in the column, then it is more likely to be obstacles 

    int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value 

    for (int h=0; h< 

img_ipl_obstacles_initial->height; h++ ) 

    { // browsing through the column of 

the disparity image 

     uchar* ptr_markers = (uchar*) 

(img_ipl_markers->imageData + h * img_ipl_markers->widthStep ); 

     uchar* ptr2 =  (uchar*) 

(img_ipl_obstacles_initial->imageData + 

h*img_ipl_obstacles_initial->widthStep); 

     unsigned char* pRow = 

img_triclops_disparity.data + h*img_triclops_disparity.rowinc; 

 

     disparity = pRow[x]; 

     triclopsRCD8ToXYZ( 

triclopsContext, x, y, disparity, &u, &v, &z ); 

 

     if(z>5) 

     { 

      ptr_rangeLimit[3*x] = 0; 

      ptr_rangeLimit[3*x+1] = 0; 

      ptr_rangeLimit[3*x+2] = 0; 

 

     } 

     if (pRow[x] == disparity_value && 

pRow[x] < 239 ) 

     { // marking the potential 

obstacle 

      ptr2[3*x] = (z/z_max)*255; 

      ptr2[3*x+1] = 

(z/z_max)*255; 

      ptr2[3*x+2] = 

(z/z_max)*255; // making it invalid pixels 

 

      ptr_markers[x] = 

(z/z_max)*255; 

     } 

    } 

   } 

  } 

 } 

  

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0, 

CV_MOP_OPEN, 1 ); 

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0, 

CV_MOP_CLOSE, 1 ); 

 

 cvNamedWindow("Markers", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Markers", img_ipl_markers); 

 

 cvNamedWindow("Range Limit", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Range Limit", img_ipl_rangeLimit); 

 

#pragma endregion 
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} 

 

 

 

void classBumbleContext::water_detection(int 

nStereo_disparity_max) 

{ 

 IplImage* img_ipl_water = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvZero(img_ipl_water); 

 

 #pragma region Polarization Cue 

 // Image to mark the water area 

 IplImage* img_ipl_water_polarization = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 IplImage* img_ipl_markers_polarization = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_water_polarization); 

  

 for ( int y = horizon_y; y < 

img_triclops_disparity.nrows; y++ ) 

 { // marking the water region based on POLARIZATION 

  unsigned char* pRow = img_triclops_disparity.data + 

y*img_triclops_disparity.rowinc; 

  uchar* ptr_ipl_water = (uchar*) 

(img_ipl_water_polarization->imageData + y * 

img_ipl_water_polarization->widthStep ); 

  uchar* ptr_ipl_marker = (uchar*) 

(img_ipl_markers_polarization->imageData + y * 

img_ipl_markers_polarization->widthStep ); 

  uchar* ptr_ipl_marker2 = (uchar*) (img_ipl_water-

>imageData + y * img_ipl_water->widthStep ); 

   

  for ( int x = 0; x < img_triclops_disparity.ncols; 

x++ ) 

  { 

   if (pRow[x] > 239 ) 

   { 

    ptr_ipl_water[3*x] = 255; 

    ptr_ipl_water[3*x+1] = 0; 

    ptr_ipl_water[3*x+2] = 0; 

    ptr_ipl_marker[x] = 255; 

 

    ptr_ipl_marker2[x] = 255; 

     

   } 

  } 

 } 

  

 #pragma endregion  

 

 #pragma region Texture Cue 

 IplImage *img_ipl_grayscale_right = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 
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 cvCvtColor(img_ipl_rectified_colour_right, 

img_ipl_grayscale_right, CV_BGR2GRAY); 

 cvSplit(img_ipl_rectified_colour_right, 

img_ipl_grayscale_right, NULL, NULL, NULL); 

 

 IplImage *img_ipl_low_texture = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvZero(img_ipl_low_texture); 

 

 float variance_sq_x1; 

 float variance_mean_sq_x; 

 float variance_mean; 

 float variance_sq_mean; 

 float variance; 

 float variance_normalized; 

 float relative_smoothness; 

 

 float element_1_1; 

 float element_1_2; 

 float element_1_3; 

 float element_2_1; 

 float element_2_2; 

 float element_2_3; 

 float element_3_1; 

 float element_3_2; 

 float element_3_3; 

 

 CvScalar mean; 

 CvScalar std_dev; 

 

 double element; 

 

 for (int y=1; y<(img_ipl_rectified_colour_right->height - 

1); y++ ) 

 { // Detecting the low texture region in WHOLE image 

  unsigned char* ptr_gray_top = 

(uchar*)(img_ipl_grayscale_right->imageData + (y-

1)*img_ipl_grayscale_right->widthStep); 

  unsigned char* ptr_gray_mid = 

(uchar*)(img_ipl_grayscale_right->imageData + 

y*img_ipl_grayscale_right->widthStep); 

  unsigned char* ptr_gray_bottom = 

(uchar*)(img_ipl_grayscale_right->imageData + 

(y+1)*img_ipl_grayscale_right->widthStep); 

  unsigned char* ptr_low_text = 

(uchar*)(img_ipl_low_texture->imageData + 

y*img_ipl_low_texture->widthStep); 

 

  for(int x=1; x<(img_ipl_rectified_colour_right-

>width - 1); x++) 

  {  

   element_1_1 = ptr_gray_top[x-1]; 

   element_1_2 = ptr_gray_top[x]; 

   element_1_3 = ptr_gray_top[x+1]; 

   element_2_1 = ptr_gray_mid[x-1]; 

   element_2_2 = ptr_gray_mid[x]; 

   element_2_3 = ptr_gray_mid[x+1]; 

   element_3_1 = ptr_gray_bottom[x-1]; 

   element_3_2 = ptr_gray_bottom[x]; 

   element_3_3 = ptr_gray_bottom[x+1]; 
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   variance_sq_x1 = (element_1_1*element_1_1) +  

(element_1_2*element_1_2) +  (element_1_3*element_1_3) + 

        

(element_2_1*element_2_1) +  (element_2_2*element_2_2) +  

(element_2_3*element_2_3) + 

        

(element_3_1*element_3_1) +  (element_3_2*element_3_2) +  

(element_3_3*element_3_3); 

 

   variance_mean_sq_x = variance_sq_x1/9; 

 

   variance_mean = ((element_1_1) +  

(element_1_2) +  (element_1_3) + 

        (element_2_1) +  

(element_2_2) +  (element_2_3) + 

        (element_3_1) +  

(element_3_2) +  (element_3_3))/9; 

 

   variance_sq_mean = 

variance_mean*variance_mean; 

 

   variance = (variance_mean_sq_x - 

variance_sq_mean); 

   variance_normalized = variance/(255*255); 

 

   relative_smoothness = 1 - 

(1/(1+variance_normalized)); 

 

   if (relative_smoothness < 0.01) 

   { 

    ptr_low_text[x] = 255; 

     

   } 

  } 

 } 

 

 

 IplImage *img_ipl_texture = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 

 for ( int y = horizon_y; y < 

img_triclops_disparity.nrows; y++ ) 

 { // Marking the water region detected by texture and 

brightness cue 

  uchar* ptr_ipl_water = (uchar*) 

(img_ipl_water_polarization ->imageData + y * 

img_ipl_water_polarization ->widthStep ); 

 

  uchar* ptr_ipl_texture = (uchar*) 

(img_ipl_low_texture->imageData + y * img_ipl_low_texture-

>widthStep ); 

  uchar* ptr_ipl_texture1 = (uchar*) 

(img_ipl_texture->imageData + y * img_ipl_texture->widthStep ); 

  uchar* ptr_ipl_ground = (uchar*) 

(img_ipl_markers_brightness_littleChanges->imageData + y * 

img_ipl_markers_brightness_littleChanges->widthStep ); 

  uchar* ptr_ipl_largeChanges= (uchar*) 

(img_ipl_markers_brightness_largeChanges->imageData + y * 

img_ipl_markers_brightness_largeChanges->widthStep ); 
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  uchar* ptr_ipl_marker2 = (uchar*) (img_ipl_water-

>imageData + y * img_ipl_water->widthStep ); 

 

 

  unsigned char* pRow = img_triclops_disparity.data + 

y*img_triclops_disparity.rowinc; 

 

  for ( int x = 0; x < img_triclops_disparity.ncols; 

x++ ) 

  { 

   if (pRow[x] < 239 && y 

>=(slope_m_best*pRow[x] + intercept_c_best - 10)) //-10 

   { 

    if (ptr_ipl_texture[x] == 255 && 

ptr_ipl_ground[x] == 0) 

    { 

     ptr_ipl_texture1[x] = 255; 

     ptr_ipl_water[3*x+1] = 255; 

     ptr_ipl_marker2[x] = 255; 

    } 

    if(ptr_ipl_largeChanges[x] == 255) 

    { 

     ptr_ipl_water[3*x+2] = 255; 

     ptr_ipl_marker2[x] = 255; 

    } 

   } 

  } 

 } 

 

 

 

 IplImage* img_ipl_water2 = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvZero(img_ipl_water2); 

 

 cvMorphologyEx(img_ipl_water, img_ipl_water, 0, 0, 

CV_MOP_OPEN, 1 ); 

 cvMorphologyEx(img_ipl_water, img_ipl_water, 0, 0, 

CV_MOP_CLOSE, 1 ); 

 

 unsigned char* pRow; 

 unsigned char* pRow_p; 

 uchar* ptr_ipl_water; 

 uchar* ptr_ipl_water_p; 

 uchar* ptr_ipl_water_n; 

 

 uchar* ptr_ipl_water2; 

 

 

 int bStartInflection = 0; 

 int bEndInflection = 0; 

 

 int startInflection_y; 

 int endInflection_y; 

 

 for ( int x = 0; x < img_triclops_disparity.ncols; x++ ) 

 { 

  for ( int y = img_triclops_disparity.nrows - 10; y 

> horizon_y; y-- ) 
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  { 

   ptr_ipl_water = (uchar*) (img_ipl_water -

>imageData + y * img_ipl_water ->widthStep ); 

   ptr_ipl_water_p = (uchar*) (img_ipl_water -

>imageData + (y+1)* img_ipl_water ->widthStep ); 

   ptr_ipl_water_n = (uchar*) (img_ipl_water -

>imageData + (y-1)* img_ipl_water ->widthStep ); 

 

    

    

 

   ptr_ipl_water2 = (uchar*) (img_ipl_water2 -

>imageData + y * img_ipl_water2 ->widthStep ); 

 

   pRow = img_triclops_disparity.data + 

y*img_triclops_disparity.rowinc; 

   pRow_p = img_triclops_disparity.data + 

(y+1)*img_triclops_disparity.rowinc; 

    

    if(ptr_ipl_water[x] == 0 && 

ptr_ipl_water_p[x] == 255)  

    { // then start of inflection point 

     bStartInflection = 1; 

     startInflection_y = y; 

    } 

    if(ptr_ipl_water[x] == 0 && 

ptr_ipl_water_n[x] == 255) 

    { // end of inflection point 

     bEndInflection = 1; 

     endInflection_y = y; 

    } 

 

   if(bStartInflection == 1 && bEndInflection == 

1) 

   { // water region 

    for(int h = endInflection_y; h <= 

startInflection_y; h++ ) 

    { 

     uchar* ptr_r = (uchar*) 

(img_ipl_water->imageData + h * img_ipl_water->widthStep ); 

     ptr_r[x] = 255; 

      

    } 

    bStartInflection = 0; // found a 

region, restart  

    bEndInflection = 0;  

   } 

 

  } 

  bStartInflection = 0; // column end, restart  

  bEndInflection = 0; // column end, restart  

  

 } 

 

 for ( int y = horizon_y; y < 

img_triclops_disparity.nrows; y++ ) 

 { // Marking the water region detected by texture and 

brightness cue 

  uchar* ptr_ipl_water = (uchar*) 

(img_ipl_groundPlane ->imageData + y * img_ipl_groundPlane -

>widthStep ); 
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  uchar* ptr_ipl_mark = (uchar*) ( img_ipl_water-

>imageData + y * img_ipl_water ->widthStep ); 

 

  for ( int x = 0; x < img_triclops_disparity.ncols; 

x++ ) 

  { 

   if (ptr_ipl_mark[x] == 255)  

   { 

    ptr_ipl_water[3*x] = 255; 

    ptr_ipl_water[3*x+1] = 0; 

    ptr_ipl_water[3*x+2] = 0; 

 

   } 

  } 

 } 

 

 cvNamedWindow("Water", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Water", img_ipl_water_polarization); 

 

 cvNamedWindow("Water: marker2", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Water: marker2", img_ipl_groundPlane); 

 

 #pragma endregion 

 

} 

 

 

 

 

 

void classBumbleContext::convert_RGB2HSV(IplImage* 

img_ipl_rectified_colour_left, IplImage* 

img_ipl_rectified_colour_right) 

{ 

 img_ipl_HSV_left = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

img_ipl_rectified_colour_left->height),8,3); 

 img_ipl_HSV_right = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

  

 cvCvtColor(img_ipl_rectified_colour_left, 

img_ipl_HSV_left, CV_BGR2HSV); 

 cvCvtColor(img_ipl_rectified_colour_right, 

img_ipl_HSV_right, CV_BGR2HSV); 

 

} 

void classBumbleContext::triclops_preprocess_3D(int 

image_resolution_width, int image_resolution_height) 

{ 

 triclopsSetResolution( triclopsContext, 

image_resolution_height, image_resolution_width ); 

 

 triclopsPreprocess( triclopsContext, &m_tiStereoRGB ); 

 triclopsRectify(triclopsContext, &m_tiStereoRGB ); 

 triclopsStereo( triclopsContext ); 

} 

IplImage* 

classBumbleContext::convert_Triclops2Ipl_1D(TriclopsImage 

img_convertTriclops) 

{ 
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 IplImage* img_ipl = 

cvCreateImage(cvSize(img_convertTriclops.ncols, 

img_convertTriclops.nrows),8,1); 

 

 for( int y=0; y<(img_convertTriclops.nrows); y++ )  

 { 

  uchar* ptr_ipl = (uchar*) (img_ipl->imageData + y * 

img_ipl->widthStep );  

 

  uchar* ptr_triclops = (uchar*) 

(img_convertTriclops.data + y*img_convertTriclops.rowinc );  

   

  for( int x=0; x<(img_convertTriclops.ncols); x++ )  

  { 

    ptr_ipl[x] = ptr_triclops[x];   

  } 

 } 

 

 return img_ipl; 

} 

 

IplImage* 

classBumbleContext::convert_Triclops2Ipl_3D(TriclopsColorImage 

img_triclops) 

{ 

 IplImage* img_ipl= 

cvCreateImage(cvSize(img_triclops.ncols, 

img_triclops.nrows),8,3); 

 IplImage* img_ipl_red= 

cvCreateImage(cvSize(img_triclops.ncols, 

img_triclops.nrows),8,1); 

 IplImage* img_ipl_green= 

cvCreateImage(cvSize(img_triclops.ncols, 

img_triclops.nrows),8,1); 

 IplImage* img_ipl_blue= 

cvCreateImage(cvSize(img_triclops.ncols, 

img_triclops.nrows),8,1); 

 

 unsigned char* ptr_triclops_red = (unsigned char*) 

img_triclops.red; 

 unsigned char* ptr_triclops_green = (unsigned char*) 

img_triclops.green; 

 unsigned char* ptr_triclops_blue = (unsigned char*) 

img_triclops.blue; 

 

 img_ipl_red->imageData = (char*)ptr_triclops_red; 

 img_ipl_green->imageData = (char*)ptr_triclops_green; 

 img_ipl_blue->imageData = (char*)ptr_triclops_blue; 

 

 cvMerge(img_ipl_blue, img_ipl_green, img_ipl_red, NULL, 

img_ipl); 

 

 return img_ipl; 

} 
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void classBumbleContext::ground_testing(int 

nStereo_disparity_max) 

{   

 #pragma region U-Disparity  

 IplImage* img_ipl_udisparity = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

nStereo_disparity_max),8,1); 

 cvZero(img_ipl_udisparity); 

 

 IplImage* img_ipl_udisparity_thresh = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

nStereo_disparity_max),8,1); 

 cvZero(img_ipl_udisparity_thresh); 

 

 IplImage* img_ipl_disparity_thresh = 

cvCreateImage(cvSize(img_triclops_disparity.ncols, 

img_triclops_disparity.nrows),8,1); 

 cvCopy(img_ipl_disparity, img_ipl_disparity_thresh); 

  

 for (int y=0; y<img_triclops_disparity.nrows; y++ ) 

 { // Generate U-Disparity 

  unsigned char* pRow = img_triclops_disparity.data + 

y*img_triclops_disparity.rowinc; 

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  {  

   unsigned char* ptr_ipl_udisparity = 

(uchar*)(img_ipl_udisparity->imageData + 

pRow[x]*img_ipl_udisparity->widthStep); 

   if (pRow[x] < 239) 

   { 

    ptr_ipl_udisparity[x] = 

ptr_ipl_udisparity[x]+1; 

   } 

  } 

 } 

 

 cvNamedWindow("U-Disparity", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "U-Disparity", img_ipl_udisparity); 

 #pragma endregion // U-Disparity 

 

 #pragma region Image preparation 

 img_ipl_HS_disparity_half = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

(img_ipl_rectified_colour_left->height)/2),8,3); 

 for(int y=0; y<img_ipl_HS_disparity_half->height; y++) 

 { // splitting the HSD image into half / taking just 

the lower half into consideration 

  uchar* ptr_1 = (uchar*) (img_ipl_HS_disparity_half-

>imageData + y * img_ipl_HS_disparity_half->widthStep ); 

  uchar* ptr_2 = (uchar*) (img_ipl_HSV_left-

>imageData + (y+192)* img_ipl_HSV_left->widthStep); 

  uchar* ptr_3 = (uchar*) (img_ipl_disparity_thresh-

>imageData + (y+191)* img_ipl_disparity_thresh->widthStep); 

  for( int x=0; x<img_ipl_HS_disparity_half->width; 

x++) 

  { 

 

    ptr_1[3*x] = ptr_2[3*x]; 

    ptr_1[3*x+1] = ptr_2[3*x+1]; 
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    ptr_1[3*x+2] = 0;//ptr_3[x]; 

//ptr_2[3*x+2]; //<-------------------------dont take disparity 

into consideration 

  } 

 } 

 

 // ------------------------------------------------------

----- 

 // removing POTENTIAL obstacle area from HS-Disparity 

Image 

 // taking into consideration just the POTENTIAL ground 

plane 

 for (int y=0; y< img_ipl_udisparity->height; y++ ) 

 { // setting threshold to isolate the obstacle from 

ground 

  uchar* ptr1 =  (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep); 

  for(int x=0; x< img_ipl_udisparity->width; x++) 

  { 

   if (ptr1[x] > 20)  

   { // if there is 20 pixels with the same 

value in the column, then it is more likely to be obstacles 

    int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value 

    for (int h=0; h< 

img_ipl_HS_disparity_half->height; h++ ) 

    { // browsing through the column of 

the disparity image 

     uchar* ptr3 =  (uchar*) 

(img_ipl_HS_disparity_half->imageData + 

h*img_ipl_HS_disparity_half->widthStep); 

     unsigned char* pRow = 

img_triclops_disparity.data + 

(h+191)*img_triclops_disparity.rowinc; 

     if (pRow[x] == disparity_value && 

pRow[x] < 239 ) 

     { // REMOVING THE POTENTIAL 

OBSTACLE AREA 

      ptr3[3*x] = 0; 

      ptr3[3*x+1] = 0; 

      ptr3[3*x+2] = 0; 

     } 

    } 

   } 

  } 

 } 

 // ------------------------------------------------------

----- 

 //Split Image 

 IplImage* plane1 = 

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1); 

 IplImage* plane2 = 

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1); 

 IplImage* plane3 = 

cvCreateImage(cvGetSize(img_ipl_HS_disparity_half),8,1); 

 cvSplit(img_ipl_HS_disparity_half, plane1, plane2, 

plane3, NULL); 

 #pragma endregion //preparing HS_disparity image 

 

 // INITIALIZATION FOR K-MEAN 

 int numOfCluster= 5; // Number of Cluster 
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 int iVector=0; // counter for each input plane / size of 

EACH input plane into kmean 

 

 #pragma region kmean: colour assignment  

 // colour assignment to each colour 

 int colour_Tab[5][3]; 

 colour_Tab[0][0]=255; 

 colour_Tab[0][1]=0; 

 colour_Tab[0][2]=0; 

  

 colour_Tab[1][0]=0; 

 colour_Tab[1][1]=255; 

 colour_Tab[1][2]=0; 

 

 colour_Tab[2][0]=0; 

 colour_Tab[2][1]=0; 

 colour_Tab[2][2]=255; 

 

 colour_Tab[3][0]=255; 

 colour_Tab[3][1]=0; 

 colour_Tab[3][2]=255; 

 

 colour_Tab[4][0]=0; 

 colour_Tab[4][1]=255; 

 colour_Tab[4][2]=255; 

 # pragma endregion // colour for each cluster 

 

 #pragma region kmean: preparation of input plane vector 

 // MEMORY ALLOCATION  

    // piCluster = output cluster ID 

 int* piCluster=(int*)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(int)); 

 // planeVector = array plane vector for input 

 CvVect32f 

*planeVector=(CvVect32f*)malloc((img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height)*sizeof(CvVect32f)); 

  

 // converting IplImage into array vector 

 unsigned char pixelPointer[3]; // array pointer 

 for(int i=0; i<plane1->height; i++) 

 { 

  for( int x=0; x<plane1->width; x++) 

  { 

   pixelPointer[0] = *(plane1-

>imageData+i*plane1->width +x); 

   pixelPointer[1] = *(plane2-

>imageData+i*plane2->width +x); 

   pixelPointer[2] = *(plane3-

>imageData+i*plane3->width +x); // 

 

  

 planeVector[iVector]=(CvVect32f)malloc(3*sizeof(unsigned 

char)); // allocation memory for each plane vector 

   planeVector[iVector][0]=(unsigned 

char)pixelPointer[0]; 

   planeVector[iVector][1]=(unsigned 

char)pixelPointer[1]; 

   planeVector[iVector][2]=(unsigned 

char)pixelPointer[2]; 

   iVector++; 

  } 
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 } 

 # pragma endregion // preparation of input plane vector 

for kmean  

 

 #pragma region k-mean clustering 

 // cvKMeans(no of cluster, input vector, size of input 

vector, no of vectors, clustering criteria, output cluster ID ) 

 cvKMeans (numOfCluster, 

planeVector,(img_ipl_HS_disparity_half-

>width)*(img_ipl_HS_disparity_half->height),  

  3,cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 

10, 1.0 ), piCluster); 

 #pragma endregion //K-mean Function 

 

 IplImage* img_ipl_vdisparity_3c = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,3); 

 IplImage* img_ipl_vdisparity_3c2 = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,3); 

 

 IplImage* img_ipl_dummy = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,1); 

 cvZero(img_ipl_dummy); 

 cvMerge(img_ipl_dummy, img_ipl_vdisparity,img_ipl_dummy, 

NULL, img_ipl_vdisparity_3c); 

 cvMerge(img_ipl_dummy, img_ipl_vdisparity,img_ipl_dummy, 

NULL, img_ipl_vdisparity_3c2); 

 

 #pragma region calculating v-disparity and displaying 

clusters 

 // Memory allocation for output cluster 

 IplImage *img_ipl_outputClusterImage = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

(img_ipl_rectified_colour_left->height)),8,3); 

 

 IplImage *clusterImage[5]; 

 for (int i=0; i<5; i++) 

 { 

  clusterImage[i] = 

cvCreateImage(cvSize(img_ipl_rectified_colour_left->width, 

(img_ipl_rectified_colour_left->height)),8,3); 

 } 

 

 // variables for curve fitting 

 int index[5] = {0}; 

 int index_max[5] = {0}; //test 

 int xn[5] = {0}; 

 int yn[5] = {0}; 

 int xn2[5] = {0}; 

 long long int sum_xy[5] = {0}; 

 long long int sum_x[5] = {0}; 

 long long int sum_y[5] = {0}; 

 long long int sum_x2[5] = {0}; 

 long long int sum2_x[5] = {0}; 

 long long int n[5] = {0}; 

 long long int slope_m[5] = {0}; 

 long long int intercept_c[5] = {0}; 

 

 int clusterNumber; 
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 iVector = 0; 

 int disparity_count_max = 0; 

 IplImage* img_ipl_vdisparity_histogram = 

cvCreateImage(cvSize(nStereo_disparity_max, 

img_triclops_disparity.nrows),8,1); // test 

 cvZero(img_ipl_vdisparity_histogram); 

 

 for (int y=192; y< img_triclops_disparity.nrows; y++ ) 

 {  

    // collecting data for curve fitting 

formula 

    n[clusterNumber] = n[clusterNumber]+1; 

    sum_xy[clusterNumber] = 

sum_xy[clusterNumber] + (y*pRow[x]); 

    sum_x[clusterNumber] = 

sum_x[clusterNumber] + pRow[x]; 

    sum_y[clusterNumber] = 

sum_y[clusterNumber] + y; 

    xn2[clusterNumber] = pRow[x]*pRow[x]; 

    sum_x2[clusterNumber] = 

sum_x2[clusterNumber] + xn2[clusterNumber]; 

   } 

   iVector++; 

  } 

 } 

 //-------------------------------------------------------

----- 

 //  curve fitting  

 int slope_m_best = 0; 

 int intercept_c_best = 0; 

 for(int i=0; i<numOfCluster; i++) 

 { 

  slope_m[i] = ((n[i]*sum_xy[i])-

(sum_x[i]*sum_y[i]))/((n[i]*sum_x2[i])-sum_x[i]*sum_x[i]); 

  intercept_c[i] = (sum_y[i]-

(slope_m[i]*sum_x[i]))/n[i]; 

 

  if(slope_m[i]>slope_m_best) 

  { // choosing the best v-disparity line 

   slope_m_best = slope_m[i]; 

   intercept_c_best = intercept_c[i]; 

  } 

 } 

 //-------------------------------------------------------

----- 

 

 IplImage* img_ipl_best_line = 

cvCreateImage(cvSize(img_ipl_vdisparity->width, 

img_ipl_vdisparity->height),8,3); // test 

 cvZero(img_ipl_best_line); 

 for ( int y = 0; y < img_ipl_vdisparity->height; y++ ) 

 { 

   //uchar* ptr_VDhist = (uchar*) 

(img_ipl_vdisparity_histogram->imageData + y * 

img_ipl_vdisparity_histogram->widthStep ); //test 

   uchar* ptr_ipl_best_line = (uchar*) 

(img_ipl_best_line->imageData + y * img_ipl_best_line-

>widthStep); 

   uchar* ptr_ipl_best_line_3c = (uchar*) 

(img_ipl_vdisparity_3c->imageData + y * img_ipl_vdisparity_3c-

>widthStep); 
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   for ( int x = 0; x < img_ipl_vdisparity-

>width; x++ ) 

   { 

    for(int i=0; i<numOfCluster; i++) 

    { 

     //ptr_VDhist[x] = 

ptr_VDhist[x]*255/disparity_count_max; 

     if(y-

(slope_m[i]*x)==intercept_c[i]) 

     { 

      ptr_ipl_best_line[3*x] = 

colour_Tab[i][0]; 

      ptr_ipl_best_line[3*x+1] = 

colour_Tab[i][1]; 

      ptr_ipl_best_line[3*x+2] = 

colour_Tab[i][2]; 

     } 

    } 

    if(y-

(slope_m_best*x)==intercept_c_best) 

    { 

     ptr_ipl_best_line_3c[3*x]  = 255; 

     ptr_ipl_best_line_3c[3*x+1]  = 

255; 

     ptr_ipl_best_line_3c[3*x+2]  = 

255; 

    } 

   } 

 } 

 

 IplImage *img_ipl_groundPlane = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_groundPlane); 

 

 IplImage *img_ipl_markers = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

 cvZero(img_ipl_markers); 

 

 

 

 //-------------------------------------------------------

----- 

 // Prepraring POTENTIAL OBSTACLE AREAS for Obstacle 

Detection 

 IplImage* img_ipl_obstacles_initial = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 cvCopy(img_ipl_rectified_colour_right, 

img_ipl_obstacles_initial); 

 

 for(int y=0; y<img_ipl_obstacles_initial->height; y++) 

 { //HS_DISPARITY FULL 

  uchar* ptr_1 = (uchar*) (img_ipl_obstacles_initial-

>imageData + y * img_ipl_obstacles_initial->widthStep ); 

  uchar* ptr_2 = (uchar*) (img_ipl_HSV_left-

>imageData + y* img_ipl_HSV_left->widthStep); 
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  uchar* ptr_3 = (uchar*) (img_ipl_disparity-

>imageData + y* img_ipl_disparity->widthStep); 

  for( int x=0; x<img_ipl_rectified_colour_right-

>width; x++) 

  { 

    ptr_1[3*x] = ptr_2[3*x]; 

    ptr_1[3*x+1] = ptr_2[3*x+1]; 

    ptr_1[3*x+2] = 0; //ptr_3[x]; 

 

    //ptr_1[3*x+2] = 0; 

  } 

 } 

 

 cvPyrMeanShiftFiltering( img_ipl_obstacles_initial, 

img_ipl_obstacles_initial, 20, 40, 2); 

 

 

  

 cvNamedWindow("testing", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "testing", img_ipl_obstacles_initial); 

 //-------------------------------------------------------

----- 

 for (int y=0; y< img_triclops_disparity.nrows; y++ ) 

 { // marking the ground plane 

  uchar* pRow = (uchar*) (img_triclops_disparity.data 

+ y * img_triclops_disparity.rowinc); 

  uchar* ptr = (uchar*) (img_ipl_groundPlane-

>imageData + y * img_ipl_groundPlane->widthStep ); 

  uchar* ptr_markers = (uchar*) (img_ipl_markers-

>imageData + y * img_ipl_markers->widthStep ); 

  uchar* ptr_obstacles_initial = 

(uchar*)(img_ipl_obstacles_initial->imageData + y * 

img_ipl_obstacles_initial->widthStep); 

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  { 

   if (pRow[x] < 239 && y>=(slope_m_best*pRow[x] 

+ intercept_c_best-10)) 

   { 

    ptr[3*x]   = 0; 

    ptr[3*x+1] = 0; 

    ptr[3*x+2] = 255; //255 

     

    ptr_markers[x] = 255; 

 

    //ptr_obstacles_initial[3*x]   = 0; 

    //ptr_obstacles_initial[3*x+1] = 0; 

    //ptr_obstacles_initial[3*x+2] = 255; 

// >239 =invalid pixels 

   } 

  } 

 } 

 cvNamedWindow("Ground Plane", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "Ground Plane", img_ipl_groundPlane); 

 

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0, 

CV_MOP_OPEN, 1 ); 

 cvMorphologyEx(img_ipl_markers, img_ipl_markers, 0, 0, 

CV_MOP_CLOSE, 1 ); 

 

 cvNamedWindow("V-disparity: ground profile", 

CV_WINDOW_AUTOSIZE ); 
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 cvShowImage( "V-disparity: ground profile", 

img_ipl_vdisparity_3c); 

 

 for (int y=0; y< img_ipl_udisparity->height; y++ ) 

 { // removing area that has little disparity 

information 

  uchar* ptr1 =  (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep); 

  for(int x=0; x< img_ipl_udisparity->width; x++) 

  { 

   if (ptr1[x] > 100 &&  ptr1[x] < 239)  

   { // if there is 20 pixels with the same 

value in the column, then it is more likely to be obstacles 

    int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value 

    for (int h=0; h< 

img_ipl_obstacles_initial->height; h++ ) 

    { // browsing through the column of 

the disparity image 

     uchar* ptr_markers = (uchar*) 

(img_ipl_markers->imageData + h * img_ipl_markers->widthStep ); 

     uchar* ptr2 =  (uchar*) 

(img_ipl_obstacles_initial->imageData + 

h*img_ipl_obstacles_initial->widthStep); 

     unsigned char* pRow = 

img_triclops_disparity.data + h*img_triclops_disparity.rowinc; 

     if (pRow[x] == disparity_value && 

pRow[x] < 239 ) 

     { // marking the potential 

obstacle 

      ptr2[3*x] = 100; 

      ptr2[3*x+1] = 100; 

      ptr2[3*x+2] = 100; // 

making it invalid pixels 

 

      ptr_markers[x] = 100; 

     } 

    } 

   } 

  } 

 } 

   

 //Split Image 

 IplImage* planeH = 

cvCreateImage(cvGetSize(img_ipl_obstacles_initial),8,1); 

 IplImage* planeS = 

cvCreateImage(cvGetSize(img_ipl_obstacles_initial),8,1); 

 IplImage* planeD = 

cvCreateImage(cvGetSize(img_ipl_obstacles_initial),8,1); 

 cvSplit(img_ipl_obstacles_initial, planeH, planeS, 

planeD, NULL); 

 

 // INITIALIZATION FOR K-MEAN 

 numOfCluster= 3; // Number of Cluster 

 iVector = 0; // counter for each input plane / size of 

EACH input plane into kmean 

 

 #pragma region kmean: preparation of input plane vector 

 // MEMORY ALLOCATION  

    // piCluster = output cluster ID 
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 int* piCluster2=(int*)malloc((img_ipl_obstacles_initial-

>width)*(img_ipl_obstacles_initial->height)*sizeof(int)); 

 // planeVector = array plane vector for input 

 CvVect32f 

*planeVector2=(CvVect32f*)malloc((img_ipl_obstacles_initial-

>width)*(img_ipl_obstacles_initial->height)*sizeof(CvVect32f)); 

  

 // converting IplImage into array vector 

 unsigned char pixelPointer2[3]; // array pointer 

 for(int i=0; i<planeH->height; i++) 

 { 

  for( int x=0; x<planeH->width; x++) 

  { 

   pixelPointer2[0] = *(planeH-

>imageData+i*planeH->width +x); 

   pixelPointer2[1] = *(planeS-

>imageData+i*planeS->width +x); 

   pixelPointer2[2] = *(planeD-

>imageData+i*planeD->width +x); // 

 

  

 planeVector2[iVector]=(CvVect32f)malloc(3*sizeof(unsigned 

char)); // allocation memory for each plane vector 

   planeVector2[iVector][0]=(unsigned 

char)pixelPointer2[0]; 

   planeVector2[iVector][1]=(unsigned 

char)pixelPointer2[1]; 

   planeVector2[iVector][2]=(unsigned 

char)pixelPointer2[2]; 

   iVector++; 

  } 

 } 

 # pragma endregion // preparation of input plane vector 

for kmean  

 

 // cvKMeans(no of cluster, input vector, size of input 

vector, no of vectors, clustering criteria, output cluster ID ) 

 cvKMeans (numOfCluster, 

planeVector2,(img_ipl_obstacles_initial-

>width)*(img_ipl_obstacles_initial->height),  

  3,cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 

10, 1.0 ), piCluster2); 

 

 iVector = 0; 

 IplImage* img_ipl_outputClusterImage2 =  

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,3); 

 for (int y=0; y< img_ipl_obstacles_initial->height; y++ ) 

 {  

  uchar* ptr = (uchar*) (img_ipl_outputClusterImage2-

>imageData + y * img_ipl_outputClusterImage2->widthStep ); 

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  { 

   clusterNumber = piCluster2[iVector]; 

   {  

    // Output Cluster Image 

    ptr[3*x]   = 

colour_Tab[clusterNumber][0]; 

    ptr[3*x+1] = 

colour_Tab[clusterNumber][1]; 
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    ptr[3*x+2] = 

colour_Tab[clusterNumber][2]; 

   } 

   iVector++; 

  } 

 } 

  

 

 for (int y=0; y< img_triclops_disparity.nrows; y++ ) 

 { // marking the ground plane 

  uchar* pRow = (uchar*) (img_triclops_disparity.data 

+ y * img_triclops_disparity.rowinc); 

  uchar* ptr_outputClusterImage2 = 

(uchar*)(img_ipl_outputClusterImage2->imageData + y * 

img_ipl_outputClusterImage2->widthStep); 

  for(int x=0; x<img_triclops_disparity.ncols; x++) 

  { 

   if (pRow[x] < 239 && y>=(slope_m_best*pRow[x] 

+ intercept_c_best-10)) 

   { 

    ptr_outputClusterImage2[3*x]   = 0; 

    ptr_outputClusterImage2[3*x+1] = 255; 

    ptr_outputClusterImage2[3*x+2] = 255; 

// >239 =invalid pixels 

   } 

  } 

 } 

 

 for (int y=0; y< img_ipl_udisparity->height; y++ ) 

 { // removing area that has little disparity 

information 

  uchar* ptr1 =  (uchar*) (img_ipl_udisparity-

>imageData + y*img_ipl_udisparity->widthStep); 

   

  CvPoint pt1; 

  CvPoint pt2; 

  int bFirstTime; 

   

  for(int x=0; x< img_ipl_udisparity->width; x++) 

  { 

   if (ptr1[x] > 100 && ptr1[x] < 239)  

   { // if there is 20 pixels with the same 

value in the column, then it is more likely to be obstacles 

    int disparity_value = y; // in u-

disparity image, the row/height/y is the disparity value 

    

    bFirstTime = 0; 

    

    for (int h=0; h< 

img_ipl_obstacles_initial->height; h++ ) 

    { // browsing through the column of 

the disparity image 

     uchar* ptr_outputClusterImage2 = 

(uchar*)(img_ipl_outputClusterImage2->imageData + h * 

img_ipl_outputClusterImage2->widthStep); 

     unsigned char* pRow = 

img_triclops_disparity.data + h*img_triclops_disparity.rowinc; 

     if (pRow[x] == disparity_value && 

pRow[x] < 239 ) 

     { // marking the potential 

obstacle 
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 ptr_outputClusterImage2[3*x]   = 255; 

     

 ptr_outputClusterImage2[3*x+1] = 0; 

     

 ptr_outputClusterImage2[3*x+2] = 255; // >239 =invalid 

pixels 

 

      pt1.x = x; 

      pt2.x = x; 

      if (bFirstTime == 0) 

      { 

       pt1.y = h; 

       bFirstTime = 1; 

      } 

      else 

      { 

       pt2.y = h; 

      } 

     } 

    } 

    cvLine( img_ipl_outputClusterImage2, 

pt1, pt2, CV_RGB(255,0,255), 3, 8, 0 ); 

   } 

  } 

 } 

 

 

 cvNamedWindow("final", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "final", img_ipl_outputClusterImage2); 

 

 IplImage *img_ipl_outputGray = 

cvCreateImage(cvSize(img_ipl_rectified_colour_right->width, 

img_ipl_rectified_colour_right->height),8,1); 

  

 cvCvtColor( img_ipl_outputClusterImage2, 

img_ipl_outputGray, CV_BGR2GRAY); 

 cvCanny( img_ipl_outputGray, img_ipl_markers, 50, 150, 

3); 

 

 

 cvNamedWindow("line", CV_WINDOW_AUTOSIZE ); 

 cvShowImage( "line", img_ipl_markers); 

 

#pragma endregion 

 

} 

 

 

 

 


