DESIGN OF A FLOATING POINT UNIT FOR 32-BIT 5 STAGE PIPELINE
PROCESSOR

BY
LOW WAI HAU

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER ENGINEERING (HONS)

Faculty of Information and Communication Technology
(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: Design of A Floating Point Unit for 32-Bit 5 Stage Pipeline

Processor
Academic Session: JAN 2020

LOW WAI HAU
(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

LOW WAI HAU
(Author’s signature) (SIMOI"S signature)

Address:
1059, Jalan Seksyen 1/1,
Bandar Barat, MOK KAI MING

31900 Kampar. Supervisor’s name

Date: 24 April 2020 Date: 24 April 2020

DESIGN OF A FLOATING POINT UNIT FOR 32-BIT 5 STAGE PIPELINE
PROCESSOR

BY
LOW WAI HAU

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER ENGINEERING (HONS)

Faculty of Information and Communication Technology
(Kampar Campus)

JAN 2020

DECLARATION OF ORIGINALITY

I declare that this report entitled “DESIGN OF A FLOATING POINT UNIT FOR 32-BIT 5
STAGE PIPELINE PROCESSOR” is my own work except as cited in the references. The
report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other reward.

Signature : LOW WAI HAU
Name : LOW WAI HAU
Date : 24 APRIL 2020

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

First of all, I would like express deepest gratitude to my supervisor, Mr. Mok Kai Ming who has
been providing me guidance with patience throughout the planning and development of this

project.

| would also like to thank my family members for the support and encouragement throughout my
undergraduate years. Nevertheless, | would like to thank all my fellow course mates and friends
who supported me throughout the entire course of this project. All the supports and helps contribute

to the accomplishment of this project.

iii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project is about the design of a Floating Point Unit (FPU), integrate the FPU into RISC32
processor and synthesize the FPU design on Field Programmable Gate Array (FPGA). The stand-
alone FPU has been modeled by a senior student in Universiti Tunku Abdul Rahman, Liu Hing
Yun. However, there was no integration test made on the FPU to the processor and the aforesaid
FPU can only perform operation on single precision numbers. Hence, this project is required to
develop a FPU which can perform operation on both single and double precision numbers.

The development project will start by studying the algorithm of addition on floating point numbers.
The addition algorithm is then implemented in the FPU so that the FPU can perform addition on
floating point numbers. Also, a dedicated register file is developed for FPU to store 32-bits or 64-
bits of data.

This project will use top down design methodology: system specification, architecture level and
microarchitecture level development. Microarchitecture level will perform unit partitioning of the
system and block partitioning of the units. RTL modelling using Verilog will be performed on
each block following the units and eventually the complete system. Verification will be made to

determine functionality correctness of FPU.

The project will integrate the FPU into the RISC32 pipeline processor and the verification will be
carried out to prove the functionality of FPU. In the end of this project, the FPU will be synthesized
on FPGA.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

0 0 0 N i
DECLARATION OF ORIGINALITY oottt i
ACKNOWLEDGEMENTS ...ttt sttt b e s iii
ABSTRACT ..ottt e s et et s e b e et e e R e b e b e Rt e R e bt e Rttt re et et ne et iv
TABLE OF CONTENTS ..ottt e st e et e e e e e nnne e e v
LIST OF FIGURES ...ttt e et e e e b e e e b e e e nnaeeenaeeannaeeas IX
LIST OF TABLES ...ttt e et e e et e e e nra e e e aaeeaseeeas Xi
LIST OF ABBREVIATIONS ...ttt e e e e s Xii
CHAPTER 1: INTRODUCTION.....ciiii ettt e et e e snae e snaeesnneeas 1
1-1 Background INFOrMAtioNccouiiiiiicie et 1
1-1-1 Floating POINt UNIt.........coiviiiiicieeie sttt 1
1-022 IMHIPS ettt b bR Rttt R bRttt e et nenen 2
1-2 Motivation and Problem Statement ... s 3
I R Y [0 Y=L o] o SRS 3
A e (o] o] (=]] =1 (=] 0 1 | TSSO S 4

R o (0] [=Tot BT olo] o USSP U TP TP PR 5
1-4 PrOJECt ODJECLIVEScoueeiieieiteite ettt bbbttt ettt bbb 5
1-5 Impact, Significance and CoONtribULIONcccviiiiiiiiicc e 5
1-6 REPOIt OrganiZatioN..........ccviiiieiieiieiie ettt e st e et e re e s reeaesaeesreenneenne e 6
CHAPTER 2 LITERATURE REVIEW. ..ottt 7
2-1 Previous Works Done by Other ENgineers/RESEarChers...........ccovcvevveveeiieiieseeie e s 7
2-2 Floating POINt NUMDET ..o 10
2-2-1 Single Precision Floating Point Number Representation............ccccoovovveneiencnennnn 11
2-2-2 Double Precision Floating Point Number Representationcccoeovveneiencnennnn 11

2-3 ROUNGING ...ttt bbb bbbttt b e bt e st et et e b et b sbeere s 12
2-4 Arithmetic on Floating PoINt NUMDEIS........cccooiiiiiiiiccceee e 13
2-4-1 AdITION OPEIALIONvviiiiie ettt b e ae e sree s 13

2-5 Floating PoINt PIPElINE.........ooiiiii ettt 15
CHAPTER 3: PROPOSED METHOD AND APPROACHccccooiiiiiiece e, 17
3-1 DeSign MethOUOIOQYueiiieiieiii ettt be e nree s 17
3-1-1 Micro-Architecture SPECITICATIONcovviviiiiiiiiieeeee e 18

Vv

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

3-1-2 RTL Modeling and VErifiCatioNcccviiueiieiieic e 18

3-2 DSIGN TOOIS ...ttt ettt et re e aenneers 19
321 MOUBISTM ...ttt bbb bbbt nb e bbb 19
KA e O o1 o IR 20
3-2-3 XIHINX VIVAUO.iiiieiiieiece ettt reenaeene e 20

K €= 1 L O o= USROS 20

CHAPTER 4 SYSTEM SPECIFICATION......ooiiii ettt 21

4-1 SYSTEIM FRATUIE .. .citiie ittt e et e e st e e st e e e nbb e e nnb e e e nabe e e nes 21
4-1-1 SyStem FUNCLIONAIITYecviiiieiiicie et 22

4-2 OPErating PrOCEUUIEcviiiieie ettt e ettt te et e e st este e e e s e e te e beaneesraenreenee e 23

4-3 NAMING CONVENTIONecuviiiiiiieeie ettt e et e st e st e e e s re e beesbeaneesreenreenee e 23

4-4 SYSTEM INTEITACE.ttt bbb 24
4-4-1 INPUE PIN DESCIIPTIONvevtitiitiie sttt 24
4-4-2 OULPUL PN DESCIIPLION ...uviviiiitieiieiieiee ettt 25

4-5 MEMOTY AP ..t 26
4-5-1 Memory Map DeSCIPLION.......ccveiiiieceee et 28
4-6-1 General PUMPOSE REJISIETcciiiiiiiiieeie ettt re e 29
4-6-2 Special PUIPOSE REJISIEN.........civieiiciiecie ettt 29
4-6-3 Program CoUNtEr REQISET........c..ciuiiiiieciie ettt 30
4-B-4 CPO REGISTET ...ttt ettt bbbttt e bbb 30
4-B-5 FP REJISTEN ...ttt bbb bbbttt bbb 30

4-7 Instruction Formats and Addressing MOGEScocuriiiiiireiei s 31
4-7-1 BaSiC INSrUCTION FOIMALScoiieiiiiiiiieiecie et 31
A4-7-2 FP INSTFUCTION FOIMALS.....c.uiiieiiieieciiesieee ettt seeeeennee e 31
4-7-3 AAAresSiNG MOGESccveiiiiiiiee ettt et sre e e 32

4-8 SUPPOItEd INSEIUCLIONS SEL......ccviiieiiieie et sre e 36

CHAPTER 5: MICROARCHITECTURE SPECIFICATIONcccoviiiiieeceee e, 39

5-1 Design Hierarchy and Partitioning...........cccoovviiieiieiiie e 39

5-2 Microarchitecture 0f RISC32 PrOCESSONc.uiiiiiieieieie ettt 42
5-2-1 Interface of FP Register File and Extended Pipeline with Datapath Unit 43

5-3 Datapati UNit.......ooviiiiiiiiiieee bbb bbb 44
5-3-1 Datapath Unit INTEITACEcciiiiiiieee s 44

Vi

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-2 FPU RegiSter FIle BIOCKcccviiiiiieiieie st 45

5-3-2-1 FUNCLIONAIILYeeveiiieciiee et e te e nns 45
5-3-2-2 FPU Register File BIOCK INterface..........ccccoveveiieiieiiiie e 45
5-3-2-3 INPUL PiN DESCIIPLION ... 46
5-3-2-4 OUtpUt PiN DESCIIPLION ...cvviviiiiiiitciiesiesee e 47
5-3-3 FP Pre NOrmalize BIOCKcccoouiiiiiieiecie et 48
5-3-3-1 FUNCLIONAIITY ...t 48
5-3-3-2 FP Pre Normalize BIOCK INtEIfacecocviiiiiiiiiie e 48
5-3-3-3 INPUL PiN DESCIIPLION ...cvviivieiiecie et nas 49
5-3-3-4 Output Pin DESCIIPLIONooiiiiiicc et 49
5-3-3-5 FP Pre Normalize Internal BIOCK Diagram...........ccccoceviveieeieiicie e 50
5-3-4 FP AQAEr BIOCK........ceiiieiiiieiieie ettt sre et neennee e 51
5-3-4-1 FUNCLIONAIITY ..ot 51
5-3-4-2 FP Adder BIOCK INTEITACEcceeiieiiiie et 51
5-3-4-3 INPUL PiN DESCIIPLION ...t 52
5-3-4-4 Output Pin DESCIIPLIONooiiieiicie e 52
5-3-4-5 FP Adder Internal BIOCK Diagramcccccvevueiieiieiiesiesecse e 53
5-3-5 FP Post NOrmalize BIOCK..........ccoiiiiiiiiecc e 54
5-3-5-1 FUNCLIONAIILYcviiiieiiicie ettt ras 54
5-3-5-2 FP Post Normalize BIOCk INterface.........ccoovieiieiiiesiesece e 54
5-3-5-3 INPUL PiN DESCIIPLION ...t 55
5-3-5-4 OUtPUL PiN DESCIIPLION ...cvviuiiiiieiei sttt 55
5-3-5-5 FP Post Normalize Internal BIOCK Diagramccocoovevirininieienene e 56
5-3-6 FP ROUNGING BIOCK ...ttt s 57
5-3-6-1 FUNCLIONAIILYcveiiieiiicie ettt nas 57
5-3-6-2 FP Rounding BIOCK INterface...........cccoviieieiiiiie e 57
5-3-6-3 INPUL PN DESCIIPLIONeoiiiiiiciie ittt nneas 58
5-3-6-4 OULPUL PiN DESCIIPLIONvviiiiieiiiiie ettt beenneas 58
5-3-6-5 FP Rounding Block Internal Diagramcccooeieienininineeieenese s 59
5-4 CoNtrolPath UNIToooiiieiiee ettt ns 60
5-4-1 Controlpath Unit INtEIrfaCecccouviii e 60
RO TN (0 1 T o | R 61
vii

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-5-1 ROM UNIE INTEITACE ..ottt e e e e e e e e eeeeeeaaaan 61

5-6 IMEMOTY UNIL......oiiiiiiicic ettt e st et e et e s be e te et e e neenteeneenneenrs 61
5-6-1 Memory UNit INTEITACEcooiviieiie et 61
5-6-2 MemOry UNit MaPPINGooveiiiiiieiieieieeee e bbb 62

CHAPTER 6: VERIFICATION SPECIFICATION ..ottt 63

B-1 TESE PIAN TOF FPUL.....oiiiiiiiiee ettt ettt nneenns 63

6-2 SIMUlation RESUIL FOr FPU ..o 65
6-2-1 TSt CaSE #L: RESEL......eiiieiiiie e 65
6-2-2 Test Case #2: Addition function test on single precision NUMDErS............cccccvevvervenee. 65
6-2-3 Test Case #3: Addition function test on double precision numbersc..cccceeneeee. 66
6-2-4 Test Case #4: Addition function test on all zero NUMDBErS.........ccocevviereiiieiiiee 66
6-2-5 Test Case #5: INFINIty INPUES TESTcvoiviiiiiiice s 67
6-2-6 Test Case #5: NaN INPULS TEST.......oviiiiiiireeeeee s 67

6-3 FP RegiSter File CONTENTScveiiiiieicite e 68

6-4 TeSt BENCN TOr FPU ..ottt 69

6-5 FP Integration With RISC32..........ccoviiiiieie e 72
B-5-1 TEST PrOQIaM ... vviiiiiie ittt ettt e et e e sab e e e nrbe e e nnbe e e nnreean 72
6-5-2 SIMUIALION RESUIL.......oviiiiiieiiceeee e e ens 73

6-5-2-1 Test Case #1: IWCL INSTFUCTIONcceiiiieieieiee e 73
6-5-2-2 Test Case #1: SWCL INSTIUCTIONccveviieiieeieeie e eee e eas 73
6-5-2-3 Test Case #3: MFCL INSIIUCTIONc..oviiiiiiiieieee s 74
6-5-2-4: Test Case #3: MICL INSIIUCTION.c.coueieeie e 75

B-5-3 TESE BENCN ... e 76
CHAPTER 7: CONCLUSION. ...t e e e e nnae e 82
BIBLIOGRAPHY ...ttt bbbttt n et nenre e 83
POSTER ...ttt bbbttt et et b et e st e b et et e be et et e ne ettt nenre e 85

PLAGIARISM CHECK RESULT
CHECK LIST

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

viii

LIST OF FIGURES

Figure 1-1-2-F1: MIPS 5-stage pipeline (Mok, 2008, P.9)......ccccoeiiieiiiieiieie e 2
Figure 1-2-2-F1: RISC32 Microarchitecture (FPU not implemented on datapath unit). 4
Figure 2-1-F1: Carry save adder (Kukati et al. 2013)........ccccceiieiieiiisiese e 9
Figure 2-2-1-F1: Single precision floating point number representation.ccccccoceverenennne 11
Figure 2-2-2-F1: Double precision floating point number representation.cccccoceeererennnne 12
Figure 2-4-1-F1: Algorithm of addition OPeration..............ccccevveieiiieiieie e 14
Figure 2-5-F1: Latencies and initiation intervals for functional unitsccccooeviieiiiicinenns 15
Figure 2-5-F1: Extended PIpeling fOr FP........ccooiiiiiiiiiieee e 15
Figure 3-1-F1: Top-down design methodology. ... 17
Figure 3-3-F1: Grantt Chart OF PrOJECL.cccveiiiiiieciece et 20
Figure 4-4-F1: Block diagram of RISC32 PrOCESSOI.ccuciieiierieiieiireieseeseesieseesreeseesreesseenens 24
FIQUre 4-5-F1: MEMOIY IMADc.viiiitiiiiiiiiieeee ettt 27
Figure 4-7-1-F1: INStrUCtION FOMMAL........cciiiiiiiiieieese e 31
Figure 4-7-2-F1: FP INStruCtion FOIMALcoiiiiiiiciicc e 31
Figure 4-7-3-F1: R-format AdAreSSiNgc.civeieiiieiieieeieseese et ste e sre e 32
Figure 4-7-3-F2: Immediate AdUreSSINGcceiiieieriiiriesieiee et 32
Figure 4-7-3-F3: Based Displacement AdAdreSSing..........cuoeveeirieienenienesiseseeeesee e 33
Figure 4-7-3-F4: Based Displacement Addressing with FP Register File (Used by lwcl, swcl) 33
Figure 4-7-3-F5: PC-Relative AdUreSSINGccviiiiieieiieieeie et sve e sre e e e nne s 34
Figure 4-7-3-F6: Pseudo-Direct AdAreSSING.......c.ooeiiriririiieieieniesie et 34
Figure 4-7-3-F7: Register Addressing for FR format (Used by add.s, add.d)cccccoevrvrnnnnne 35
Figure 4-7-3-F8: Register Addressing for FR format (Used by FP branching instructions)......... 35
Figure 5.1-F1: BIOCK Partitioningccccciuieiieiiieiie sttt 41
Figure 5-2-F1: Microarchitecture of RISC32 PrOCESSOFccueiiriiiiirienieniisieeeeieee e 42
Figure 5-2-1-F1: Interface of FP Register File and Extended Pipeline with Datapath Unit......... 43
Figure 5-3-1-F1: Datapath Unit INterfaceccoooveiiiiiii i 44
Figure 5-3-2-2-F1: Block Interface of FPU Register File ... 45
Figure 5-3-3-2-F1: Block Interface of FP Pre Normalize BIOCKccccooviiiiiiiiiiciicee 48
Figure 5-3-3-5-F1 FP Pre Normalize Internal BIock Diagramccoccoveviiinieinnenenc e 50

IX

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5-3-4-2-F1 Block Interface of FP Adder BIOCKcccoeiiieiieicece e 51

Figure 5-3-4-5-F1 FP Adder Internal BIOCK Diagramcccccveveiieiieieiiese e e esee e 53
Figure 5-3-5-2-F1: Block Interface of FP Post Normalize BIOCK.............cccovviiiiiiiienincicie, 54
Figure 5-3-5-5-F1 FP Post Normalize Internal Block Diagramc.ccocvviivieinieienciesee 56
Figure 5-3-6-2-F1: Block Interface of FP Rounding BIOCK.............cccccveviiiieiicii e 57
Figure 5-3-6-5-F1 FP Rounding Internal BIOCK Diagramccccocevveieiieenieie e 59
Figure 5-4-1-F1: Controlpath Unit INtErfaceccooiiiiiiiiiei e 60
Figure 5-5-1-F1: ROmM UNit INtErface.........oooviiiiiiiiisereeeee e 61
Figure 5-6-1-F1: Memory Unit INTerface.........cccvoveiiiiiie e 61
Figure 6-2-1-F1: Simulation result for teSt Case #1.cocvviieiieiie i 65
Figure 6-2-2-F1: Simulation result for teSt Case #2.cccvieiriiieiei e 65
Figure 6-2-3-F1: Simulation result for teSt Case #3.cooviiiriiieie e 66
Figure 6-2-4-F1: Simulation result for teSt CasSe #4.coeieeieiie i 66
Figure 6-2-5-F1: Simulation result for teSt Case #5.coviiieiieiie i 67
Figure 6-2-6-F1: Simulation result for teSt Case #6.cccoveiriiiiniie e 67
Figure 6-3-F1: FP register file CONTENTSoooiiiiiiieiseeee e 68
Figure 6-5-2-1-F1: Simulation result of test case #L(IWCL).........ccccoveiieieiiieiieie e 73
Figure 6-5-2-2-F1: Simulation result of test case #L(SWCL). ...cccceveeiieiiiieieere e 74
Figure 6-5-2-3-F1: Simulation result of test case #3(MTCL). ..o 74
Figure 6-5-2-4-F1: Simulation result of test case #3(MCL)........cccovviiiiriiniiiieeee e 75

X

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table 2-1-T1: Number of clock cycles for each arithmetic operation (Al-Eryani 2006). 8
Table 2-1-T2: Number of clock cycles for each arithmetic operation.............cccccvvveviveieiieiiennns 8
Table 3-2-1-T1: Comparison between simulation toolS.cccecvveiiiieiiecce e 19
Table 4-1-F1 RISC32 FRALUIESccueeieeieeiiee e eiie sttt sttt ste et e e e ae s e sbeeaesneesaeenennee e 21
Table 4-3-T1: NamiNg CONVENTION.ciiiiiiieieieie ettt b e b b 23
Table 4-4-1-T1: Input pin description of RISC32 Chip.cooveiiiiiiie e 25
Table 4-4-2-T1: Output pin description of RISC32 Chip.......cccccveviiiiiie e 25
Table 4-5-T1: MEMOTY IVcuveiiieiieiiieee et bbbttt b e 26
Table 4-5.1-T1: Memory Map DeSCIIPLIONccueiiiiiiiiiiiiieieeee e 28
Table 4-6-1-T1: General PUrPOSE REJISIENScivveiieiieiie ittt 29
Table 4-6-2-T1: Special PUrPOSE REQISIENcveiuieiieiie et 29
Table 4-6-4-T1: CPO REGISTENoiuiitiitiitiiiiei ettt 30
Table 4-6-5-T1: FP REGISIENcueiiiiiieiieietee ettt 30
Table 4-7-1-T1: Instruction Format Definition............ccooeiiiiiiiiiiie s 31
Table 4-8-T1: Supported INSTFUCLION SELccveiiiiecie e 38
Table 5-1-T1: Design Hierarchy of RISC32 Processor with FP Register File, FP Pre-Normalize,
FP Adder, FP Post-Normalize and FP ROUNAING.........cccuoiiiieiiie e 40
Table 5-3-2-3-T1: Input Pin Description of FPU Register File............ccccooveiiiieieciiieceece e, 46
Table 5-3-2-4-T1: Output Pin Description of FPU Register Fileccccoeviiieiicce i, 47
Table 5-3-3-3-T1: Input Pin Description of FP Pre Norm BIOCKccocoviviniiiiiiiiiiee 49
Table 5-3-3-4-T1: Output Pin Description of FP Pre Norm BIocKccocoviiiiniiiiiii 49
Table 5-3-4-2-T1: Input Pin Description of FP Adder BIOCK...........cccooeiiieiiiiiiice e, 52
Table 5-3-4-4-T1: Output Pin Description of FP Adder BIOCKccccovviiiiiiieiieiccc e, 52
Table 5-3-5-3-T1: Input Pin Description of FP Post Norm BlocK............c.ccooviiiiiiiiii 55
Table 5-3-5-4-T1: Output Pin Description of FP Post Norm Block ..o, 55
Table 5-3-6-3-T1: Input Pin Description of FP Rounding BlocK...........c.ccccooviiieiiiiiiiice, 58
Table 5-3-6-4-T1: Output Pin Description of FP Rounding BIOCKcccoeviviiiiiiiiiiiie, 58
Table 5-6-2-T1: Memory Unit mapping and its content description...........ccceceviveresiereesennenn. 62
Table 6-1-T1: TeSt PIan Of FPU........coviiiiieiecc et 64
X1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ALU

FPU

CPU

MIPS

VHDL

RISC

VHDL

FPGA

LIST OF ABBREVIATIONS

Arithmetic Logic Unit

Floating Point Unit

Central Processing Unit

Microprocessor without Interlocked Pipelined Stages
VHSIC Hardware Description Language

Reduced Instruction Set Computer

VHSIC Hardware Description Language

Field Programmable Gate Array

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xii

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION
1-1 Background Information
1-1-1 Floating Point Unit

Floating point unit (FPU) was a part of a computer system dedicated to carry out operations
on floating point numbers. It could be defined as a specialized coprocessor that could manipulate
numbers quicker than the basic microprocessor (CPU) itself. The typical operations on floating
point numbers were addition, subtraction, multiplication, division, square root and bit shifting. An
ALU was designed to handle the operations on the fixed point numbers such as integers. The
operations on fixed point numbers were similar to the operations on floating point numbers. ALU
could also carry out the operations on floating point numbers. However, the difference between
the ALU and the FPU was their speed on carrying out the operations on floating point numbers.
ALU performed the operation on floating point numbers in such a slow way. Therefore, this was
the reason for the existence of the FPU coprocessor in the market or integrated with the CPU.

Early years back, personal computing was common in IBM PC or compatible
microcomputers for the FPU to be entirely separate from the CPU, and sold as an optional add-on.
The FPU could be purchased if the user wished to enhance the processor’s speed to achieve math-
intensive computation especially on floating point numbers. Starting with the Intel Pentium and
Motorola 68000 series in the late 1990s, the FPU became a physical part of the microprocessor

chip.

When a CPU was executing a program that called for a floating-point operation, there were
three ways to carry it out: Floating-point unit emulator, Add-on FPU and Integrated FPU. FPU
could support the following arithmetic operations that is addition, subtraction, multiplication,
division and square root. The supported rounding modes for each operation are round to nearest

even, round to zero, round up and round down.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: INTRODUCTION

1-1-2 MIPS

MIPS also known as Microprocessor without Interlocked Pipelined Stage, which based on
the Reduced Instruction Set Computer (RISC) architecture was developed by a team led by John
L. Hennessy and David A. Patterson. MIPS Technologies, formerly known as MIPS Computer
System Inc. was co-founded at 1984 by John L. Hennessy. The MIPS architecture could be found
in the book called Computer Organization and Design: The Hardware/ Software Interface
(Patterson and Hennessy, 2005). This book showed the architecture of MIPS, the instruction sets,
pinelined stages, just to name a few and how to build a microprocessor. MIPS processors operated
by breaking instruction execution into multiple small independent “stages” and since the stages
were independent, multiple instructions could be in varying stages of completion at any one time

(Integrated Device Technology. Inc, 1994, p.1-2).

Time

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF 1D EX MEM WB

IF D EX MEM WB

Program Flow

IF ID EX MEM WB

Figure 1-1-2-F1: MIPS 5-stage pipeline (Mok, 2008, p.9).

The instruction execution cycle was divided to 5 stages, IF (“Instruction Fetch”), ID (“Instruction
Decode and Registers Fetch”), EX (“Execute”), MEM (“Memory”’) and WB (“Write Back”).

e IF: Instruction Fetch and update PC.

e ID: Decodes the instruction and fetches the contents of any CPU registers it uses.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: INTRODUCTION

EX: Execute R-type, calculate memory address.
MEM: Read/write the data from/to the Data Memory.
WB: Write the result data into the register file.

1-2 Motivation and Problem Statement

1-2-1 Motivation

A 32-bit pipelined RISC microprocessor has been developed in Faculty of Information and

Communication Technology, Universiti Tunku Abdul Rahman (UTAR) using Verilog which is a

hardware description language (HDL). The project is based on the Reduced Instruction Set

Computing (RISC) architecture. The motivations to initiate the project are due to following

reasons.

Microchip design companies designed microprocessor as Intellectual Property or IP for
commercial purpose. The microprocessor IP contains information on the entire design
process for the front-end (modeling and verification) to back-end (physical design)
integrated circuit (1C) design. These are trade secrets of a company and certainly not made

available in the market at an affordable price for research purpose.

Several freely available microprocessor cores can be found in internet, most of them can

be found at OpenCores (http://www.opencores.org/). Unfortunately, these processors do

not implement the entire MIPS Instruction Set Architecture (ISA) and lack of

comprehensive documentation which is hard to be understand.

The verification specification for a freely available RISC microprocessor core that is
available on the Internet is not well developed and it is incomplete. Thus design process

will be slowed down without a complete verification specification.

The lack of well-developed verification specifications for these microprocessor cores will
affect the physical design phase. A design needs to be functionally proven before the
physical design phase can proceed smoothly. Otherwise, if the front-end design has to be

changed, the physical design process has to be redone.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

http://www.opencores.org/

CHAPTER 1: INTRODUCTION

1-2-2 Problem Statement

So far, there is MIPS-compatible ISA which includes the Central Processing Unit (CPU),
PS/2 mouse system, PS/2 keyboard system, basic memory, coprocessor 0 (CP0), and Universal
Asynchronous Receiver/Transmitter (UART). However, Floating Point Unit (FPU) has not been
designed and integrated in RISC32 yet. In general, although ALU could perform operations on
floating point numbers, it was considered slow to meet the expectation. Hence, this project is

initiated to design a floating point unit and then integrate it into RISC32 processor.

IF : ID : EX 5 MEM i _WB

< > < > P < P a—
— i | Fomardir:g Fonuol | : Multiplier Multihlier Multiplier LHI_reg Write
> - ¥ i Stage 1 Register Stage 2 LLO_reg Write
Branch Branch ctrl N
Predictor Predictor
| Register File » » -
P Address 5 o]
1 ICache B fiEad z ALY Decoder | | & @
5 HI_reg Read 5 y !’l
- I 0]
;| LO_reg Read =t = E Register
Boot = £ » T 2> File
™l rom 2 2 8 al | write
3 5 2"1 E|
a CPO i % s
= > e \ 2 g
L PC > » & 2
crl ctrl cerl ctrl
] e e e e R
2: Control : A >1_ b |
4 L PR
Interlock Control Control Interlock Control
FPU is not implemented yet

Figure 1-2-2-F1: RISC32 Microarchitecture (FPU not implemented on datapath unit).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: INTRODUCTION

1-3 Project Scope

This project is to design a FPU model with Verilog for RISC32 processor. The
specifications of FPU and its internal blocks will be developed. The functionality of the FPU will
be verified by using test bench. The FPU will be integrated into existing available RISC32
processor and verification will be done to ensure it is working. Lastly, the FPU will be synthesis
on FPGA.

1-4 Project Objectives

Here are the objectives of the project:

e To design and develop the RTL model of FPU which include microarchitecture
specification and testbench.
e To integrate the FPU into RISC32 processor.

e To synthesis the FPU module on FPGA with completes documented timing and resource

usage information.

1-5 Impact, Significance and Contribution

In short, there is lacking of well-developed FPU based development environment out there.

The development environment referred to the availability of the following:

e A well-developed design documentation of chip specification, architecture specification
and micro-architecture specification from top level to bottom level.

e A fully functional well-developed FPU integrated into RISC32 processor in the form of
synthesis-ready RTL written in Verilog.

e A well-developed verification specification of the FPU. The verification specification
should contain complete verification methodology and its techniques as well as test plan,

test bench architecture etc.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: INTRODUCTION

e A complete physical design in FPGA with documented timing and resources usage

information.

This project is to develop an environment that mentioned above: to integrate the RISC32 processor
core-based platform with the FPU which could support hardware modeling research work.

1-6 Report Organization

This report contains 7 chapters. The chapters are Chapter 1 Introduction, Chapter 2 Literature
Review, Chapter 3 Methodology, Chapter 4 System Specification, Chapter 5 Microarchitecture

Specification, Chapter 6 Verification Specification, Chapter 7 Conclusion.

Chapter 1 Introduction states the motivation for the project, following by problem statement,

project scope and objective and the background information of FPU and MIPS.

Chapter 2 Literature Review explains about the information related to FPU such as floating point
number and format, single and double precision as well as arithmetic of floating point number. In

this chapter, a previously developed FPU is also reviewed regarding its design.

Chapter 3 Methodology discuss about the flow of how the project is conducted. Proposed solution
is also documented at this chapter.

Chapter 4 System design gives the overview of the system on the top level and the naming

convention used within the system

Chapter 5 Microarchitecture Specification contains the units or components involved in the system
design. This chapter identifies each unit involved in the system and gives an overview about each
unit. Also contains the detailed discussion and design for each unit.

Chapter 6 Verification Specification shows the test written to verify the integration of the system.

Result of the verification test is also documented here.

Chapter 7 Conclusion concludes the overall project development.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW
2-1 Previous Works Done by Other Engineers/Researchers

Since ALU performed floating point operations slower in term of speed, FPU came to
existence to speed up the mathematical operations of floating point numbers. FPU this project had
been done by a couple of engineers before. For instance, according to Al-Eryani (2006), he used
VHDL language to model the 32-bit floating point unit which complies fully with the IEEE 754
Standard.

From his project, the proposed FPU was able to support some arithmetic operations such
as addition, subtraction, multiplication, division and square root. All arithmetic operations had

these three stages:

1. Pre-normalize: The operands were transformed into formats that makes them easy and
efficient to handle internally.

2. Arithmetic core: The basic arithmetic operations were done here.

3. Post-normalize: The result would be normalized if possible (leading bit before decimal
point is 1, if possible) and then transformed into the format specified by the IEEE standard (Al-
Eryani 2006).

Besides, the FPU also able to perform four rounding modes which were rounding to nearest
even, to zero, rounding up and down. The FPU was tested with test cases created using SoftFloat
which was a software implementation of floating-point that conforms to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic. Moreover, the FPU was tested in ModelSim with 100,000
test cases for each arithmetic operation and for each rounding mode. As a result, an FPU with

features of 100 MHz operating frequency, few clock cycles and logic elements was implemented.

However, the FPU that done by him could only support single precision format floating
point numbers. In addition, in order for the FPU to achieve high frequency, the FPU had to trade
off its clock cycles in which it required more pipelining. The number of clock cycles that the FPU

needs for each arithmetic operation was listed below:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

Operation Number of clock cycles
Addition 7

Subtraction 7

Multiplication 12

Division 35

Square-root 35

Table 2-1-T1: Number of clock cycles for each arithmetic operation (Al-Eryani 2006).

On the other hand, Lundgren (2014) also used VHDL to model double precision floating
point core. By using double precision format, it could represented a wider range of numeric values.
This core was designed to meet the IEEE 754 standard for double precision floating point
arithmetic. This unit had been extensively simulated, covering all four operations (add, subtract,
multiply, divide), rounding modes, exceptions like underflow and overflow, and even the obscure
corner cases, like when overflowing from denormalized to normalized, and vice-versa. The
floating point unit supports denormalized numbers, 4 operations, and 4 rounding modes (nearest,
zero, + infinity, - infinity). The unit was synthesized with an estimated frequency of 185 MHz,

for a Virtex5 target device.

Operation Number of clock cycles
Addition 20
Subtraction 21
Multiplication 24
Division 71

Table 2-1-T2: Number of clock cycles for each arithmetic operation.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

The floating point unit he developed supported denormalized numbers which required
more signals and logic levels to accommodate gradual underflow. The supported clock speed of
185 MHz makes up for the large number of clock cycles required for each operation to complete
which led to longer latency as it required more logic levels.

Apart from that, floating point numbers required costly processing hardware or lengthy
software implementations as it had larger range of values. Therefore, powerful computations and
techniques which reduced hardware and improved the performance like power, area and timing
was required. This concern led Kukati et al. (2013) designed a 32-bit floating point arithmetic unit
with faster carry save adders and clock gating techniques to reduce power dissipation. The low
power optimizing technique ‘Multi Threshold Voltage’ is used for reducing the power

consumption of the arithmetic unit. Below was their proposed hardware:

e] W] 5d In,|]

[

\\i“" P ——(01) 010
SOy

3 3

Expdifference | Shift right |

|1 !
@ﬁD-—(Eﬁm%} { ALU l

-

11 ¥
01y 01
{_\-‘_
I Increment n?r decrement | I Shift left oy right]
|
* |
[Rounding hardware |
T -
| sr | Er! M |

Figure 2-1-F1: Carry save adder (Kukati et al. 2013).

Figure 2-1-F1 shows the data flow of the computation of two floating point numbers. The

arithmetic operation flow will be discussed later in this chapter.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

2-2 Floating Point Number

There were several ways to represent real numbers on computer system. Fixed point places
a radix point somewhere in the middle of the digits, and was equivalent to using integers that
represent portions of some unit. For instance, a fixed-point number with 3 digits after the decimal
point could be used to represent numbers such as: 1.005, 3.209, 28.000, etc. Another approach was

to use rational, and represent every number as the ratio of two integers.

A number in scientific notation that has no leading Os was called a normalized number,
which was the usual way to write it. For example, 1.0 x 10° was in normalized scientific notation,
but 0.1ten X 108 was not (Patterson & Hennesy 2014).

Binary numbers in scientific notation:
1.0two x 27

Computer arithmetic that supported such numbers was called floating point because it

represents numbers in which the binary point was not fixed, as it was for integers.

Floating point solved a number of representation problems. Fixed point had a fixed window
of representation, which limited it from representing very large or very small numbers. Also, fixed-
point was prone to a loss of precision when two large numbers were divided. Floating point, on
the other hand, employed a sort of "sliding window™" of precision appropriate to the scale of the
number. This allowed it to represent numbers from 1,000,000,000,000 to 0.0000000000000001

with ease.

A standard scientific notation for reals in normalized form offers three advantages. It not
only simplifies exchange of data that includes floating-point numbers, it also simplified the
floating-point arithmetic algorithms to know that numbers would always be in this form as well as
increasing the accuracy of the numbers that could be stored in a word, since the unnecessary

leading Os were replaced by real digits to the right of the binary point (Patterson & Hennesy 2014).

10
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

2-2-1 Single Precision Floating Point Number Representation

Bit
31 2423 1615 87 0
S|E|E|E|E|E|E|E[E|MM M M| MMM MMM 8 RIM NN W (W
Exponent Mantissa
Sign

Figure 2-2-1-F1: Single precision floating point number representation.

S represents 1 sign bit.

E represents 8 exponent bits.

M represents 23 Mantissa or fraction (f) bits.

Floating point notation: (-1)*2° x 1.f (normalized)
f = (b2 +b22 2+ bi" +...+bo?%) where bi"=1 or 0
s = sign (0 was positive; 1 was negative)
e = unbiased exponent; e = E — 127 (bias)

Emax= 255, Emin=0. E=255 and E=0 were used to represent special values.

2-2-2 Double Precision Floating Point Number Representation

One way to reduce chances of underflow or overflow was to offer another format that had
a larger exponent. In C, this number was called double and operations on doubles were called
double precision floating-point arithmetic.

The double precision format was a method of storing approximations to real numbers in a
binary format. The term double came from the full name, double precision floating-point numbers.
Originally, a 4-byte floating-point number was used, (float), however, it was found that this was
not precise enough for most scientific and engineering calculations, so it was decided to double
the amount of memory allocated, hence the abbreviation double. The word ‘double’ here meant 64
bits.

11
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

The representation of a double precision floating-point number took two MIPS words,
where s is still the sign of the number, exponent is the value of the 11-bit exponent field, and

fraction is the 52-bit number in the fraction field.

31|30 29| 28| 27| 26| 25| 24|23 (22| 21| 201918 17| 16| 15| 141312\ 11 (10} 9 | 8 | 7|6 |5 |4 |3 |2|1 |0

g exponent fraction

1 bit 11 bits 20 bits

fraction (continued)

32 bits

Figure 2-2-2-F1: Double precision floating point number representation.

Although double precision did increase the exponent range, its primary advantage was its greater
precision because of the much larger fraction. Since 0 had no leading 1, it was given the reserved
exponent value 0 so that the hardware would not attach a leading 1 to it. The exponent was stored
by adding a bias of 011111111112 to the actual exponent. Thus, this was all the information we

need to interpret a double precision floating point number in binary form.

2-3 Rounding

Although there were infinitely many integers, in most programs the result of integer
computations could be stored in 32 bits. In contrast, given any fixed number of bits, most
calculations with real numbers would produce quantities that could not be exactly represented
using that many bits. Hence, the result of a floating-point calculation must often be rounded in
order to fit back into its finite representation. The resulting rounding error is the characteristic

feature of floating point computation (Goldberg 1991).

12
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

2-4 Arithmetic on Floating Point Numbers
2-4-1 Addition operation

Based on the report from Singh and Bhole (2014), they had implemented arithmetic unit
that are specially designed to carry out operations on floating point numbers. Floating point
addition and subtraction algorithms consisted of five stages

e Firstly, difference between exponent was to be calculated, difference d =el — 2. If el <

e2thend=¢e2 —el.

e Insecond stage pre-alignment of mantissas was achieved by shifting smaller mantissa right
by d bits.

e In third stage addition of mantissa was done to get tentative result for mantissa.

e Then normalization is done. If there were leading-zeros in tentative result, result was
shifted to left and exponent is decreased by number of leading zeros. If overflows, then

result was shifted right and exponent increased by 1 bit.

e Last stage was rounding and produce final output.

13
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

Figure below explains the data flow on how the floating point arithmetic operation work.

Sign

Exponent

Fraction

Sign

Exponent

Fraction

Y Y

Newine”
Small ALU

Y

Exponent
difference

Shift right

Y

J—b G

N
Big ALU

Y

Increment or
decrement

Y
L——»(0

1

Shift left or right

I_+

-

»| Rounding hardware

Y \

Y

Sign

Exponent

Fraction

Figure 2-4-1-F1: Algorithm of addition operation.

Compare
exponents

Shift smaller

number right

Add

Normalize

Round

Since multiplication and division were far more complicated, so they would not be discussed here.

In this project, only addition operation is being focused and the above algorithm is being

implemented.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

14

CHAPTER 2 LITERATURE REVIEW

2-5 Floating Point Pipeline

Due to FP operations required larger amount of logics to handle which arise some
performance issue for the original 5-stage MIPS pipeline. This is because it is impractical to
complete FP operations in 1 clock cycle as it will increase the latency for operations. The solution

comes to extending the MIPS Pipeline for FP operations.

Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3 1
FP multiply (also integer multiply) 6 1

o
=

FP divide (also integer divide) 25

Figure 2-5-F1: Latencies and initiation intervals for functional units

Pipeline latency is equal to 1 cycle less than the depth of the execution pipeline, which is the
number of stages from the EX stage to the stage that produces the result. Therefore, based on the
figure above, the number of stages in an FP add unit is four.

Integer unit
EX I
FP/integer multiply

MsI M4I MsI MsI
A1I A2I A3I A4

FP/integer divider

Figure 2-5-F1: Extended Pipeline for FP

15
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

In this project, only FP adder is being focused. Based on the figure above, the EX stage of the
original pipeline is extended to 4 stages, Al to A4 for FP adder. However, this only applies to
floating point instruction such as add.s and add.d. The other instructions follow the original 5-

stage pipeline for one complete execution.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

16

CHAPTER 3 PROPOSED METHOD AND APPROACH

CHAPTER 3: PROPOSED METHOD AND APPROACH
3-1 Design Methodology

There were two types of design methodology were available, Top-down design
methodology and Bottom-up design methodology. In top-down design methodology, the top level
representation of a chip was first defined then partitioned into lower level representations. For
bottom-up design methodology, the leaf nodes were first defined. The leaf nodes were then
integrated to form a higher level model of the chip. This process was repeated until the top level
of the chip was reached. Since digital system often uses the abstraction concepts to simplify the

design process, thus top-down design methodology was used in this project.

Top-down design methodology process flow was shown in Figure 4.1. This methodology
would keep on repeating until the system design met the requirement on functionality. If the design
did not meet the requirement, the design flow had to be repeated. This project focused on micro-
architecture level design.

Written Specifications

I System Level Design
(Chip Specifications)

Executable Specification

Architecture Specification

! > Architecture Level Design
C Architecture Leve! Modeling and

Verification

I

Micro-Architecture Specification

—
RTL Modeling and Verification > Micro-Architecture Level
] Design
C Logic Synthesis for FPGA)
e el | E——

Physical Design

Figure 3-1-F1: Top-down design methodology.

17
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 PROPOSED METHOD AND APPROACH

3-1-1 Micro-Architecture Specification

Micro-architecture specification described the internal design of a unit. The internal design
was described with design-specific technical information for RTL coding to begin. For this project,
the information included for each internal block of FPU were:

e FPU functionality description

e FPU operating procedures

e FPU interfaces and I/O pin description
e FPU internal operation

e FPU functional partitioning into blocks

e For each blocks,

Block interfaces and 1/O pin description
- Block functionality

- Block internal operation

- Finite-state machine (FSM)

- Block test plan

3-1-2 RTL Modeling and Verification

With the micro-architecture specification developed, the RTL coding on FPU internal block
could begin. The functional correctness of the model was verified at two levels:

e Micro-architecture level: Internal blocks of FPU were individually verified before they

were integrated into the architecture level.

e Architecture level: The individual blocks of FPU were integrated into a unit. Verification
was performed on the FPU.

18
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 PROPOSED METHOD AND APPROACH

3-2 Design Tools
3-2-1 ModelSim

Since this design would be using Verilog, it was crucial to discuss commonly used design

software that could support Verilog. There would be 3 design software discussed here:

L

Simulator VCS ModelSim Quartug| IT
ST synopsys' | gMepier
YNOPSYS' | Graphics | /AVOTERYA,

Language VHDL-2002 VHDL-2002 VHDL
Supported _

V2001 V2002 Verilog HDL

SV2005 SV2005
Platform Linux -Windows -Windows XP/7/8
Supported XP/Vista/7/8 _

-Limux
-Linux

Availability for | No YES (SE Edition No
free only)

Table 3-2-1-T1: Comparison between simulation tools.

Since all of the design tools mentioned above were licensed product, ModelSim would be chose

since free license was provided for student edition.

19
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 PROPOSED METHOD AND APPROACH

3-2-2 PC Spim

PC Spim was a simulator that provides a MIPS environment to simulate MIPS assembly

language. It would be used to develop test program to verify the functionality of the design.

3-2-3 Xilinx Vivado

The Vivado development software was designed by Xilinx. This software was designed

for synthesis and analysis of Verilog designs, enabling the developer to synthesize their designs,

perform timing analysis, examine RTL diagrams, simulate a design’s reaction to different stimuli,

and configure the target device with the programmer.

3-3 Grantt Chart

Narme ‘ Begin date ‘ End date ‘ Dumtion |less wets s s mm v s wen ws anm s
Study research paner related to FPU 672119 71118 7 O
Study algatithm of addition e e 4 [
Design FPU Slngle Precision Block 7712419 7113119 { |:|
Design FPU Double Predision Block 723419 7128019 3 [
Design FPU Register File W 720 1 0
Integration of all FRU blocks A B ! O
FPU Yerffication Test Bno 8313 5]
Documentation of Fyp! B919 81519 3 [
_] Wk ek T ek 70 ek 15 Wed 10 ek 17 W
Name Begindate | Enddate | |uu L] st el 44 413 e 4
* Study available risc32 related block 3/17/20 4/3/20 |]
* Integration of FP Regfile B0 470 —
* Integration of PP add into pipeline 4/7/20 4/14/20 |
¢ Synthesis of risc32 with FPU 41420 416/20 —
* Documentation of report 416020 42420 e
Figure 3-3-F1: Grantt Chart of Project.
20

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

CHAPTER 4 SYSTEM SPECIFICATION

4-1 System Feature

RISC32 with FPU
Dummy Instruction Cache (KB) 16
Dummy Data Cache (KB) 16
Data width (bits) 32
Instruction width (bits) 32
General Purpose Register 32
Special Purpose Register HILO, PC
Co-Processor Register 32
Floating Point Register 32
Pipelined Stage 5
Data Hazard Handling Yes
Control Hazard Handling Yes
Interlock Handling Yes
Exception Handling Yes (4)
Data Dependency Forwarding Yes
Branch Prediction Dynamic — 2bits scheme
Multiplication (size of multiplier yes — 32 bits
and multiplicand)
Branch Delay Slot Not supported
Instruction supported 44

Table 4-1-F1 RISC32 Features

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-1-1 System Functionality

1. Divide execution of instruction into 5 stages:

-IF(Instruction Fetch) Instruction fetch and update PC

-ID(Instruction Decode) Decode instruction and fetch operand

-EX(Execute) Execute instruction
-MEM(Memory) Read/write data from/ memory
-WB(Write Back) Write back the result to the register file

2. Resolve data hazard by data forwarding.

3. Resolve load-use instructions problem using stalling.

4. Resolve structural hazards using separating data and instruction cache
5. Resolve control hazards by branch prediction.

6. Resolve exception interrupt with exception handler.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

22

CHAPTER 4 SYSTEM SPECIFICATION

4-2 Operating Procedure

1. Start the system.

2. Porting sequence of instruction into instruction cache.

3. Reset the system for at least 2 clocks.

4. After the reset, the system will automatically fetch and run the program inside instruction
cache.

5. Observe the waveform from development tools (Modelsim).

4-3 Naming Convention

Module - [Ivl][mod. name]
Instantiation - [Ivl][abbr. mod. name]
Pin - [IvI][type][abbr. mod. name]_[pin name]
- [IvI][type][abbr. mod. name]_[stage] [pin name]

- [IvI][type][abbr. mod. name]_[abbr. mod. name]_[pin hame]

Description Case Auvailable Remark
¢ : Chip
u : Unit
vl Level Lower b - Block
sb : sub-block
mod. name Module name Lower all Any
abbr. mod. Abbreviated Maximum 3
Lower all Any
name module name characters
. o : output
type Pin type Lower i - input
stage Stage name Lower all g’bld S, Heln,
Several word
pin name Pin name Lower all Any separated by

Table 4-3-T1: Naming convention.

23
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-4 System Interface

Crisc

——» uirisc_clk uorisc_ua_tx_data —— »
—— uirisc_rst uorisc_ua_rts ——»
uirisc_ua_rx_data 4——

uirisc_ua_cts 4—

Figure 4-4-F1: Block diagram of RISC32 processor.

4-4-1 Input Pin Description

Pin Name: Source -> Destination: Active:
uirisc_ua_rx_data, | DCE -> crisc High
Receive data

Pin Function:

Serial data to be received from DCE to DTE. When no data is transfer, this port is held
at logic "1".

**DCE - Data Communication Equipment (External Modem)

**DTE - Data Terminal Equipment (UART)

Pin Name: Source -> Destination: Active:
uirisc_ua_cts, DCE -= crisc High
Clear-To-Send

Pin Function:
To inform DTE that it can start transmit at uorisc_ua tx data port.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

Pin Name: Source -> Destination: Active:
uirisc_clk, External source -> crisc High
System Clock

Pin Function:
System clock for the integration of UART and RISC32 processor.

Pin Name: Source -= Destination: Active:
uirisc_rst, External source -> crisc High
Reset

Pin Function:
System reset for the full chip. It is synchronous to the system clock.

Table 4-4-1-T1: Input pin description of RISC32 chip.

4-4-2 Output Pin Description

Pin Name: Source -> Destination: Active:
uorisc_ua_tx_data, | crisc->DCE High
Transmit Data
Pin Function:

Serial data to be sent from DTE to DCE. DTE shall hold this line at logic ‘1* when no
data is transfer.

Pin Name: Source -> Destination: Active:
uorisc_ua_rts, crisc -= DCE High
Request-To-Send

Pin Function:

Transmission circuit will be enabled by this signal. Together with Clear-To-Send
signal, data transmission between DTE and DCE will be coordinated. Request-To-Send
shall be asserted by UART when UART has data in transmission buffer. Can be de
asserted any time after START bit is sent.

Table 4-4-2-T1: Output pin description of RISC32 chip.

25
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-5 Memory Map

Purpose start address Direction | Segment
Kernel module 0xC000 0000 Up Kseg2
Boot Rom Up Kseol
I/O register(if below 512MB) 0xA000 0000 Up &
Direct view of memory to 512MB linux U

kernel code and data P Kseg0
Exception Entry point 0x8000 0180 Up

Stack 0x7FFF FFFC Down

Program heap 0x1000 8000 Up

Dynamic library code and data 0x1000 0000 Up Kuseg
Main program 0x0040 0000 Up

Reserved 0x0000 0000 Up

Table 4-5-T1: Memory Map

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

Memory Map

kseg2
(1GB)

ksegl
(512MB)

ksegl
(512MB)

stack

i

Dynamic Data(heap)

Static Data

Program Code

Reserved

However, due to the limitation of modelsim student edition version which only support up to 8k
memory, the cache size will set text segment from 32°h0040 0000 to 32°h0040 1FFC, data
segment from 32°h1000 0000 to 32°h1000 1FFC, stack segment from 32 h7fff e000 to
32°h7fff fffc, kernel text segment from 32°h8000 0000 to 32°h8000 1FFC and kernel data

32'hFFFF FFEC

32'hC000 0000
32’hBFFF FFFC

32'hA000 0000
32'h9FFF FFFC

32’h8000 0180
32'h7FFF FFFC

Stack Segment

Exception entry point

32'h1000 8000 Data Segment

32'h1000 0000

Text Segment
32'h0040 0000

32'h0000 0000

Figure 4-5-F1: Memory Map

segment from 32°h9000_0000 to 32°h9000_OFFC.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-5-1 Memory Map Description

Purpose Description

Kernel Module Accessible by kernel™*

Boot Rom Start-up ROM which keep the system
configuration®

I/O registers(if below(512MB) External IO device registers®

Direct view of memory to 512MB linux | Memory Allocation to view linux kernel

kernel code and data code and data™

Exception Entry point Software exception handling®

Stack Use for argument passing

Program heap Dynamic memory allocation such as
malloc()

Dynamic library code and data Data segment which is access by variable

Main program Text segment which contain the main
program

Table 4-5.1-T1: Memory Map Description

Note *: required CPO

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-6 System Register

4-6-1 General Purpose Register

Width : 32-bits
Size : 32 units

Retrieving method

: 5-bits address as index

Name Address | Use Preserved Across A Call?
Szero 0 Constant Value 0 (hardwired) N.A.
Sat 1 Assembler Temporary No
Value for Function Results and
$v0 - $vl 2-3 No
Expression Evaluation
$a0 - $a3 4-7 Arguments No
$t0 - $t7 815 Temporaries No
$s0 - $s7 16-23 Saved temporaries Yes
$t8 - $t9 24 — 25 Temporaries No
$kO - Skl 26 -27 Reserved for OS kernel No
$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$tp 30 Frame Pointer Yes
$ra 31 Return Address Yes

Table 4-6-1-T1: General Purpose Registers

4-6-2 Special Purpose Register

Width

Size

: 32-bits

: 2 units

Retrieving method : Via instructions: MFHI, MTHI, MFLO, MTLO, MULT or MULTU

Name definition location in double [64:0]
HI Most Significant Word Double [63:32]
LO Least Significant Word Double [31:0]

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4-6-2-T1: Special Purpose Register

29

CHAPTER 4 SYSTEM SPECIFICATION

4-6-3 Program Counter Register

Width : 32-bits

Size : 1 unit

Retrieving method : Control by instruction address generator control.

4-6-4 CPO Register

Name Address Use
Interrupt mask, enable bits and status when exception
$bcp0_stat 12
occurred
$bcp0_cause | 13 Exception type and pending interrupt
$bcp0_epc 14 Address of instruction that caused exception
Table 4-6-4-T1: CPO Register
4-6-5 FP Register
Width : 32 bits
Size : 32 units

Retrieving method : 5-bits address as index

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Name Usage
$10 - $£3 Floating point return values
$f4 - $£10 Temporary registers. Not preserved across procedure calls
$f12 - $f14 First two arguments to subprograms, not preserved by
subprograms
$fl6 - $f18 More temporary registers, not preserved by subprograms
$£20 - $131 Saved registers, preserved by subprograms
Table 4-6-5-T1: FP Register

30

CHAPTER 4 SYSTEM SPECIFICATION

4-7 Instruction Formats and Addressing Modes

4-7-1 Basic Instruction Formats

I R-format

I |-format (Immediate Instructions)

] |-format (Data Transfer Instructions)

| |-format (Branch Instructions)

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
| op | rs | | rd | shamt | funct
[op [rs [nt | immediate (16-bit)
| op | rs | rt] data address offset
| op | rs | nt | branchaddress offset
| op | jump address (26-bit)

I J-format

Figure 4-7-1-F1: Instruction Format

Abbreviation Definitiion Width
op Operation code 6
rs Source register 5
rt Target register 5
rd Destination register 5
shamt Shift amount 5
funct Function field 6
immediate Immediate 16
data address offset Data address offset 16
branch address offset Branch address offset 16
jump address Jump address 26

Table 4-7-1-T1: Instruction Format Definition

4-7-2 FP Instruction Formats

Gbits Shits Shits Shits Shils 6bils
op fimt ft fs fd | funct
op fmt ft immediate (16-bit)

Figure 4-7-2-F1: FP Instruction Format

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

FR-format

FI-format

31

CHAPTER 4 SYSTEM SPECIFICATION
4-7-3 Addressing Modes
a) R-format

Register addressing: Perform operation on source and target register and store the result into

destination register

| op | rs | 1t | rd] | funct | Register File
»| Destination reg |
> word operand 2 || Operator J
»[word operand 1 || (ALU)

Figure 4-7-3-F1: R-format Addressing

b) I-format

i. Immediate addressing: Perform operation on source register and immediate and store the result

into target register

Data value — the 16-bit is sign-extended/zero-
extended to 32-bit before adding to source reg

[op [rs |t | datavalue |/
r L~

’)l“ ~.
£
Register File 2

| Destinationreg |+

———| wordoperand 1 |

Figure 4-7-3-F2: Immediate Addressing

ii. Based displacement addressing: Perform operation on source register and immediate, the result

is then uses as address to access the data memory to load/store data to/from target register

32
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

Byte address - the 16-bit is sign-extended
to 32-bit before adding to base addr

| op | rs | rt | dataaddr offset V' Data Memory
' @—\—4 word or byte operand |
| base address | | 3

|Operand's memory address |

Register File \

Contain an address or pointer
acting as a base address.

Figure 4-7-3-F3: Based Displacement Addressing

Byte address - the 16-D1 is signextendes
10 32-01 Dadore a0ding 10 base 80

[op [[] cmaerote Data Memory
I O B T T
(base address

Operand's memory address | FP Register File

Register File
- — —
Contan an address o pointer
{octing as abase address |

Figure 4-7-3-F4: Based Displacement Addressing with FP Register File (Used by lwcl, swcl)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33

CHAPTER 4 SYSTEM SPECIFICATION

iii. PC-relative addressing: Perform operation on source and target register to determine next PC
condition, the immediate is uses as address offset for next PC

Word address — the 16-bit is sign-extended,
then left-shifted 2 bits (to convert word addr to
byte addr) before adding to PC+4

f

| op | rs | rt | branch addr offset |/ Instr Memory

rt +>+| branch target instruction

| PC + 4 (byte address)

S

The address is pointing to the
next instruction (PC+4)

Figure 4-7-3-F5: PC-Relative Addressing

c) J-format

Pseudo-direct addressing: Perform operation by concatenating the upper bits of PC with the jump
address

Word address — the 26-bit is left-shifted 2
bits (to convert word addr to byte addr)
before concatenating to (PC+4)[31:28]

Lop | jump addlress offset | Instr Memory

fllj}—-{ jump destination instruction
| 4-bit | PC (byte address) J\‘

The next instruction
address (PC+4)

Figure 4-7-3-F6: Pseudo-Direct Addressing

34
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

d) FR-format

Register addressing: Perform operation on source and target register and store the result into
destination register

| op Iﬁnt[ft I fs J fd ‘funct] FPU Register File
|

Destination reg |

|

|

» word operand 2 [Operator J
| wordoperand 1 [+ (FPU)

Figure 4-7-3-F7: Register Addressing for FR format (Used by add.s, add.d)

e) FI-format

PC-relative addressing: Perform operation on source and target register to determine next PC
condition, the immediate is uses as address offset for next PC

Word address — the 16-bit is sign-extended,
then left-shifted 2 bits (to convert word addr to
byte addr) before adding to PC+4

)

| op [fmt | ft | branch addr offset I/,""‘ Instr Memory

r A+,-{ branch target instruction |
[PC + 4 (byte address) 5

.

The address is pointing to the
next instruction (PC+4)

Figure 4-7-3-F8: Register Addressing for FR format (Used by FP branching instructions)

35
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-8 Supported Instructions Set

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Instructio | Format | Addr. Mode | Machine Language Register Transfer Notation Assembly Format | Over
n OpC | Rs Rt | Rd | Sham | Func flow
ode t
sll R Register 0x00 [0 Srt | Srd [n 0x01 | R[rd]=R[rs] <<n sll $rd, $rt. n no
srl R Register 0x00 |0 $rt | $rd | n 0x03 | R[rd] =R[rs] >>n srl $rd, $rt, n no
sra R Register 0x00 |0 $rt | $rd | n 0x04 | R[rd] =R[rs] =>>n sra $rd, $rt, n no
jr R Register 0x00 | $rs 0 0 0 0x0 | PC=R]rs] jr 8rs no
A
jalr R Register 0x00 | $rs 0 0 0 0x0 |PC=R[rs],R[31]=PC+4 jalr $rs no
B
mfhi R Register 0x00 | 0 0 [Sud|O 0x10 | R[rd] =HI mfhi $rd no
mthi R Register 0x00 | $rs 0 0 0 0xll | HI=RJ[rs] mthi $rs no
mflo R Register 0x00 |0 0 [Sud|O 0x12 | R[rd]=LO mflo $rd no
mtlo R Register 0x00 |[Srs | O 0 0 0x13 | LO=RJrs] mtlo $rs no
mult R Register 0x00 | $rs $rt | O 0 0x24 | HILO = R[rs] * R[rt] mult $rs, $rt no
multu R Register 0x00 | $rs $rt | O 0 0x24 | HILO = U(R[rs]) * U(R[rt]) multu $rs, $rt no
add R Register 0x00 [Srs | $rt |$rd [O 0x20 | R[rd] = R[rs] + R[rt] add Srd, $rs, $rt yes
addu R Register 0x00 | $rs $rt | $rd | O 0x21 | R[rd] = U(R][rs]) + U(R][rt]) addu $rd. $rs, Srt no
sub R Register 0x00 | Srs | Srt | $rd | O 0x22 | R[rd] =R]rs] - R[rt] sub $rd, $rs, Srt yes
subu R Register 0x00 [Srs | %t |$id [O 0x23 | R[rd] = U(R][rs]) - U(R[rt]) subu $rd, $rs, Srt no
and R Register 0x00 | $rs $rt | $rd [O 0x24 | Rrd] = R]rs] & R]rt] and Srd, $rs, Srt no
or R Register 0x00 | $rs $rt | $rd [O 0x25 | R[rd] =R[rs] | R[rt] or $rd, Srs, $rt no
xor R Register 0x00 | $rs $rt | $rd [O 0x26 | R{rd] = R[rs] " R[rt] xor $rd, Srs, $rt no
nor R Register 0x00 | $rs $rt | $id [O 0x27 | R[rd] = ~(R[rs] | R[xt]) nor $rd, $rs, $rt no
slt R Register 0x00 | $rs $rt | $rd [O 0x2 | R[rd]=(R[rs]<R[rt])?1:0 | slt $rd, $rs, $rt no
A
sltu R Register 0x00 | $rs $rt | $ed | O 0x2 | R[rd] = (U(R[rs]) <U(R[rt])) ? | sltu Srd, $rs, $rt no
B 1:0
] J Pseudo- 0x02 | JumpAddr (Label) PC = {(PC+4) [31:28],]] label no
Direct JumpAddr, 2°b00}
36

CHAPTER 4 SYSTEM SPECIFICATION

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

beq I PC-Relative | 0x04 | $rs | Srt | BranchAddr PC = (R[rs] = RJrt]) ? | beq $rs, Srt, label no
(Label) (PC + 4 +
(SE(BranchAddr)<<2))
(PC +4)
bne I PC-Relative | 0x05 | $rs | Srt | BranchAddr PC = (R[rs] !'= R[rt]) ? | bne $rs, Srt, label no
(Label) (PC + 4 +
(SE(BranchAddr)<<2))
(PC +4)
blez I PC-Relative | 0x06 | $rs 0 BranchAddr PC = (R[rs] <==0) ?| blezSrs, $rt, label no
(Label) (PC + 4 +
(SE(BranchAddr)<<2))
(PC+4)
bgtz I PC-Relative | 0x07 | $rs 0 BranchAddr PC = ([R[rs] = 0) ?| bgtz $rs, Srt, label no
(Label) (PC + 4 +
(SE(BranchAddr)<<2))
(PC+4)
addi I Immediate | 0x08 | $rs $rt | Imm R[rt] = R[rs] + SE(Imm) addi $rt, $rs, imm ves
addiu I Immediate | 0x09 | $rs $rt | Imm R[rt] = U(R[rs]) + | addiu $rt, $rs, imm | no
U(ZE{Imm)
slti I Immediate 0x0A | Srs $rt | Imm R[rt] = (R[rs] < SE(Imm)) ? 1 : | slti $rt, $rs, imm no
0
sltiu I Immediate | 0xOB | $rs | $rt | Imm Rrt] = (U(R[rs]) sltiu $rt, $rs, imm no
U(SE(Imm)))?1:0
andi I Immediate 0x0C | S8rs $rt | Imm R[rt] = R[rs] & ZE(Imm) andi $rt, $rs, imm no
ori I Immediate | 0x0D | $rs | $rt | Imm R[rt] = R[rs] | ZE(Imm) ori $rt, $rs, imm no
xori I Immediate | 0x0E | $rs | Srt | Imm R[rt] = R[rs] » ZE(Imm) xori 3rt, $rs,imm | no
lui I Immediate | 0x0F | $rs $rt | Imm R[rt] =Imm << 16 lui $rt, imm no
lw I Based- 0x23 | $rs $rt | Imm Rrt] = MEM[R[rs] + | Iw Srt, imm($rs) no
Displaceme SE(Imm)]
nt
SW I Based- 0x2B | $rs $rt | Imm MEM][Rrs] + SE(Imm)]| = | sw $rt, imm($rs) no
Displaceme R]rt]
nt
37

CHAPTER 4 SYSTEM SPECIFICATION

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

mfec0 Register 0x10 | 0x00 | $rt | $rd | Ox0O | O0x00 | R[rt] = R[rd] (from CPO) mfe0 $rt, $rd no
0
mte0 Register 0x10 | 0x04 | $rt | $rd | O0x0 | 0x00 | R[rd] (from CPO) = R]rt] mte0 $rt, Srd no
0
eret Register 0x10 | 0x10 | O0x | Ox0 | O0x0 | 0x18 | PC =R[epc] (from CP0) eret no
00 |0 0
add.s FR Register 0x11 | 0x10 | Sft | Sfs Sfd | 0x00 | F[fd] = F[fs] + F[ft] add.s Sfd, $fs, $ft yes
add.d FR Register 0x11 | Ox11 | Sft | Sfs | Sfd | 0x00 | {F[fd], F[fd+1]} = {F|[fs], | add.d $fd, Sfs, $ft | ves
F[fs+1]} + {F[ft], F[ft+1]}
Iwel 1 Based- 0x31 | Srs Srt | Imm F[rt] = MEM][R[rs] + | lwel Srt, imm(Srs) | no
Displaceme SE(Imm) |
nt
swel 1 Based- 0x39 | Srs Srt | Imm MEM] R[rs] + SE(Imm)] = | swcl Srt, imm(Srs) | no
Displaceme F[rt]
nt
mfcl R Register 0x11 | 0x00 | Srt | Srd | 0x0 | 0x00 | R[rt] = F[rd] mfel Srt, $rd no
0
micl R Register 0x11 | 0x04 | Srt | Srd | 0x0 | 0x00 | F[rd] = R|rt] mtel $rt, $rd no
0
Table 4-8-T1: Supported Instruction Set
38

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

CHAPTER 5: MICROARCHITECTURE SPECIFICATION

5-1 Design Hierarchy and Partitioning

Chip
Partitioning
(Top Level) at
Architecture
Level

Unit
Partitioning at
Micro-
Architecture
Level

Block and Functional Block
Partitioning at RTL (Micro-
Architecture Level)

Sub-Block

RISC32
Pipeline
Processor
(crisc)

Datapath
(udata_path)

Branch Predictor

(bbp_4way)

Register File (brf)

Interlock Control (bitl_ctrl)

Forward Control (bfw_ctrl)

32-bit Multiplier (bmult32)

add_Ivll lastrow

adder_Ivll

adder_IvI1 firstrow

adder_IvI2

adder_IvI2_lastrow

adder_IvI3

adder_Ivl4

adder_IvI5

sub_Ivl1 lastrow

ALB (balb)

Coprocessor0(bcp0)

FP Register File(bfp rf)

FP Pre-Normalize
(bfp_pre_norm)

FP Adder (bfp_adder)

FP Post-Normalize
(bfp_post_norm)

FP Rounding
(bfp_rounding)

Controlpath
(uctrl_path)

Main Control (bmain_ctrl)

ALB Control (balb_ctrl)

Cache
(ucache)

10 Bus
(uiobusarbiter)

PS/2 PS/2 Receiver (bps2rx)
Controller PS/2 Transmitter (bps2tx)
(ups2) PS/2 Address Decoder

(bps2addr_decoder)
UART UART Address Decoder
Controller (bua_decoder)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

39

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

(uuart)

UART CPU Interface

(bcpuif)
UART Receiver UART Receiver
(brx) Controller

(sbrx_ctr)
UART Transmitter UART Transmitter
(btx) Controller

(shtx_ctr)

UART Baud Rate Generator
(bbaud)

Table 5-1-T1: Design Hierarchy of RISC32 Processor with FP Register File, FP Pre-Normalize,
FP Adder, FP Post-Normalize and FP Rounding

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

crisc
uctrl_path
bmain_ctrl balb_ctrl
udata_path
balb brf bmult32 bitl_ctrl
bbp bfw_ctrl bcpO bfp_rf
bfp_pre_norm bfp_adder bfp_post_norm bfp_rounding
ucache ucache ucache ucache
uuart
bua_decoder btx brx bbaud
ups2
bps2rx bps2addr_decoder bps2tx
uiobusarbiter

Figure 5.1-F1: Block Partitioning

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-2 Microarchitecture of RISC32 processor

IF ID : EX MEM . WB
E > > P < b —r
R : | i rdir:g rol | Multiplier | Multiplier LHI_reg Write
@+ » Stage 1 Register .LO_reg Write
- Branch Branch J
Predictor Predictor
L5 RegisterdFile e N s
= ICache B fia E Decoder B =
iml’ HI_reg Read B [gl
FP) =
;l LO. reg Read Register - = g Register
|,| Boot £ File £ T (R[> File
ROM 3 !. Extended 'E_l Ei Write
'EI = pipeline for FP s E
o CPO | > s
= » a)
PC | » o B S
< ctrl ctrl ctrl ctrl
®) [p Main L W ALU Control F---pfih----- - N > -2
Control | r
>1_ p % - L
4 ! PR
Interlock Control Control Interlock Control

Figure 5-2-F1: Microarchitecture of RISC32 processor

Figure above is the microarchitecture of RISC32 processor with 5 stages pipeline. The register file
and the FP blocks will be implemented as shown in microarchitecture view above. The more

detailed microarchitecture view will be shown in next page.

42

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-2-1 Interface of FP Register File and Extended Pipeline with Datapath Unit

The figure below shows the interface between FP register file and extended pipeline with datapath
Unit. Only related signal of Datapath Unit is shown.

d i ;.4 L L | EX i MEM L‘JWH .
< Ll LBl > < ros »

Next PC O o Multiplier | Multiplier [Multiplier HI_reg Write
L ; Stage 2 1LO_reg Write

Stage 1 Register

M _
Branch Branch Ctrl N
Predictor | | Predictor
Register File » Address 5
L Read Bl z 4
¥ ICache g & Decoder | | W
% HI_reg Read % B ¥
b ¥ = 1
;I LO_reg Read 5 - E Register
|| Boot £ = > g g File
ROM H g 5 B L W
. : z g
o CPO s g s
= a = W
o =

i
E

=
cel ctrl curl ctl
O e e e B
Control| | 1 f
T LR L)

k Con “?| Control Interlock Control

4

Interlocl trol

[FP Register File | FP Pre Normalize FP Adder

— FP Post Normalize [® [~ FP Rounding

IF/D AL ATA2 A2A3 ATA4

Figure 5-2-1-F1: Interface of FP Register File and Extended Pipeline with Datapath Unit

Based on microarchitecture above, FP register file is integrated into ID stage with is same as the
general register file. The second circle shows the extended FP pipeline which has to 4 stages of
Al, A2, A3 and A4. The extended pipeline only meant for the FP instruction such as addition. The
four stages consist of FP Pre Normalize block, FP adder block, FP Post Normalize block and FP
Rounding block. Therefore, for FP arithmetic operation likes addition, it will take total of 8 stages
to complete the instruction. The ALU and address decoder that in the EX stage will not be affected

as these functional blocks still follow the original 5-stage pipeline.

43

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3 Datapath Unit

5-3-1 Datapath Unit Interface

— 5.0
— [5:01—»

—131:01-9
—[31:0]-
—

udata_path
uidp_alb_src uodp_opcode
uidp_rd_src ar
uidp_mult_en uodp_&‘unct
uidp_sign_mult uodp_rs
uidp_rf_wr
uidp_mdata_or_alb
uodp_if_pc

uidp_sw
uidp_Iw
uidp_sh uodp_dm_addr
uidp_lh uodp_dm_store
uidp_lhu
uidp_sb
uidp_Ib
uidp_Ibu uodp_sw
uidp_load_sign_ext uodp_sh
uidp_sign_ext uodp_sb
uidp_hi_wr uodp_Iw
uidp_lo—wr -
uidp_hi"to_rf uodp_lh
_ uodp_Ib
uidp_alb_to_rf
uidp_hilo_acc

uodp_intr_mask
uidp_beq P
uidp_bne uodp_io_intr
uidp_blez
uidp_bgtz
uidp_id__jump
uidp_id_jr
uidp_id_jalr
uidp_id_jal
uidp_alb_ctrl
uidp_alb_rtype

uidp_cac_instr
uidp_mdata
uidp_mem_stall

uidp_iodata

uidp_rom_instr

uidp_intr_vector
uidp_cp0_mfcO
uidp_cp0_mtcO
uidp_cp0_eret
uidp_cp0_syscall
uidp_cpO_undef_inst

uidp_clk

uidp_rst

—15:0]—»
——[5:0]—»
——[4:0]—»

——[31:0]

——[31:0]-
——[31:0]-»

——[5:0]—»
—15:0]—»

Figure 5-3-1-F1: Datapath Unit Interface

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-2 FPU Register File Block
5-3-2-1 Functionality

e Act as temporary storage of FPU to hold data and address.

e Able to read and write data.

5-3-2-2 FPU Register File Block Interface

bfp_rf

—— bifp_rf _fs[4:0] bofp_rf fs64 [63:0]
—— | bifp_rf_ft [4:0] bofp_rf_ft64 [63:0]
—| bifp_rf_wr_addr [4:0]

——>| bifp_rf_wr_data [63:0]

— bifp_rf_wr

— bifp_rf sp_en

—— » bifp_rf_clock

——> Dbifp_rf_reset

Figure 5-3-2-2-F1: Block Interface of FPU Register File

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

v

45

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-2-3 Input Pin Description

Pin Name: Source -> Destination: Pin Class:
bifp_rf fs[4:0] udata_path -> bfp_rf Data

Pin Function:

5 bits fs address to indicate FPU register file location.

Pin Name: Source -> Destination: Pin Class:
bifp_rf ft[4:0] udata_path -> bfp_rf Data

Pin Function:

5 bits ft address to indicate FPU register file location.

Pin Name: Source -> Destination: Pin Class:
bifp_rf wr addr[4:0] | udata path -> bfp_rf Data

Pin Function:

5 bits destination address to indicate FPU register file location.

Pin Name: Source -> Destination: Pin Class:
bifp_rf _wr_data[63:0] | udata_path -> bfp_rf Data

Pin Function:

64 bits data to be written in FPU register file.

Pin Name: Source -> Destination: Pin Class:
bifp_rf wr udata_path -> bfp rf Control
Pin Function:

Use as enable signal to write data to FPU register file.

Pin Name: Source -> Destination: Pin Class:
bifp_rf sp en udata_path -> bfp rf Control
Pin Function:

Use as control signal to indicate single precision when asserted and double precision when de-
asserted.

Pin Name: Source -> Destination: Pin Class:
bifp_rf clock udata_path -> bfp_rf Global
Pin Function:

Clock signal for FPU register file.

Pin Name: Source -> Destination: Pin Class:
bifp_rf reset udata_path -> bfp_rf Global
Pin Function:

Reset signal for FPU register file.

Table 5-3-2-3-T1: Input Pin Description of FPU Register File

46

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-2-4 Output Pin Description

Pin Name: Source -> Destination: Pin Class:
bofp rf fs64 [63:0] bfp_rf -> udata_path Data

Pin Function:

64 bits data output is read out to perform operation.

Pin Name: Source -> Destination: Pin Class:
bofp rf ft64 [63:0] bfp_rf -> udata_path Data

Pin Function:

64 bits data output is read out to perform operation.

Table 5-3-2-4-T1: Output Pin Description of FPU Register File

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-3 FP Pre Normalize Block
5-3-3-1 Functionality
e To find the difference of exponent and normalize input for operation

5-3-3-2 FP Pre Normalize Block Interface

bfp_pre_norm

—— bifp_data_a [63:0] bofp_frac_a [56:0] p————>
— Dbifp_data_b [63:0] bofp_frac_b [56:0] b——
—— bifp_add_en bofp_expo [10:0] |—————»
———» bifp_sp_en bofp_sign |———

Figure 5-3-3-2-F1: Block Interface of FP Pre Normalize Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

bofp_cin |——m——ov-—

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-3-3 Input Pin Description

asserted.

Pin Name: Source -> Destination: Pin Class:
bifp_data_a [63:0] bfp_rf ->bfp _pre norm Data

Pin Function:

64 bits input data from FP register file to perform operation.

Pin Name: Source -> Destination: Pin Class:
bifp_data b [63:0] bfp_rf ->bfp _pre norm Data

Pin Function:

64 bits input data from FP register file to perform operation.

Pin Name: Source -> Destination: Pin Class:
bifp_add_en bfp_rf -> bfp_pre norm Control
Pin Function:

Use as control signal to enable addition operation when asserted.

Pin Name: Source -> Destination: Pin Class:
bifp_sp_en bfp_rf -> bfp_pre_norm Control
Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-

Table 5-3-3-3-T1: Input Pin Description of FP Pre Norm Block

5-3-3-4 Output Pin Description

1 bit of cin data is fetch to next stage for operation.

Pin Name: Source -> Destination: Pin Class:
bofp frac a [56:0] bfp_pre _norm -> udata_path Data

Pin Function:

57 bits of fraction part data is fetch to next stage for operation.

Pin Name: Source -> Destination: Pin Class:
bofp frac b [56:0] bfp_pre _norm -> udata_path Data

Pin Function:

57 bits of fraction part data is fetch to next stage for operation.

Pin Name: Source -> Destination: Pin Class:
bofp_expo [10:0] bfp_pre_norm -> udata_path Data

Pin Function:

11 bits of exponent part data is fetch to next stage for operation.

Pin Name: Source -> Destination: Pin Class:
bofp_sign bfp_pre_norm -> udata_path Data

Pin Function:

1 bit of sign data is fetch to next stage for operation.

Pin Name: Source -> Destination: Pin Class:
bofp_cin bfp_pre_norm -> udata_path Data

Pin Function:

Table 5-3-3-4-T1: Output Pin Description of FP Pre Norm Block

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-3-5 FP Pre Normalize Internal Block Diagram

> Exponent > bofp_expo[10:0]
Difference
r
bifp_data_a [63:0] VO Y
e Shift Right
bifp_data_b [63:0] >

bifp sp en
» bofp_frac_a[56:0]
——» bofp_frac b[56:0]
|y bofp cin
bifp add en » »

\-'_/J » bofp sign

Figure 5-3-3-5-F1 FP Pre Normalize Internal Block Diagram

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-4 FP Adder Block
5-3-4-1 Functionality
e To perform addition operations on floating point data.

5-3-4-2 FP Adder Block Interface

bfp_adder

——» bifp_frac_a [56:0] bofp_out[56:0]
— Dbifp_frac_b [56:0]

——» bhifp_cin

——» bifp_sp_en

bifp_add_en

Figure 5-3-4-2-F1 Block Interface of FP Adder Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-4-3 Input Pin Description

Pin Name: Source -> Destination: Pin Class:
bifp_frac_a [56:0] udata_path -> bfp_adder Data

Pin Function:

57 bits input fraction part data for addition operation.

Pin Name: Source -> Destination: Pin Class:
bifp_frac b [56:0] udata_path -> bfp_adder Data

Pin Function:

57 bits input fraction part data for addition operation.

Pin Name: Source -> Destination: Pin Class:
bifp_cin udata_path -> bfp_adder Data

Pin Function:

1 bit input cin data for addition operation.

Pin Name: Source -> Destination: Pin Class:
bifp_sp _en udata_path -> bfp_adder Control
Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-
asserted.

Pin Name: Source -> Destination: Pin Class:
bifp_add en udata_path -> bfp_adder Control
Pin Function:

Use as control signal to enable addition operation when asserted.

Table 5-3-4-2-T1: Input Pin Description of FP Adder Block

5-3-4-4 Output Pin Description

Pin Name: Source -> Destination: Pin Class:
bofp _out[56:0] bfp_adder -> udata_path Data
Pin Function:

57 bits result from addition of fraction part of two input data.

Table 5-3-4-4-T1: Output Pin Description of FP Adder Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-4-5 FP Adder Internal Block Diagram

bifp_cin l

bifp frac a[56:0]

Y

bifp frac a[27:0] >

»bofp_out[56:0]

bifp frac b[56:0]

Y

Y

bifp frac b[27:0]

bifp sp en

bifp_add en

Figure 5-3-4-5-F1 FP Adder Internal Block Diagram

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-5 FP Post Normalize Block
5-3-5-1 Functionality
e To normalize the output from FP Adder

5-3-5-2 FP Post Normalize Block Interface

bfp_post_norm

——» bifp_frac_result [56:0] bofp_frac_sh [56:0] F——>

— bifp_expo [10:0] bofp_expo_sh [11:0] ——>

—— bifp_sp_en

Figure 5-3-5-2-F1: Block Interface of FP Post Normalize Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-5-3 Input Pin Description

Pin Name: Source -> Destination: Pin Class:
bifp_frac_result udata_path -> bfp_post_norm Data
[56:0]

Pin Function:

57 bits input data of fraction result to be shifted and normalized.

Pin Name: Source -> Destination: Pin Class:
bifp_expo [10:0] udata_path -> bfp_post norm Data

Pin Function:

11 bits input data of exponent data to be shifted and normalized.

Pin Name: Source -> Destination: Pin Class:
bifp_sp en udata_path -> bfp_post norm Control
Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-
asserted.

Table 5-3-5-3-T1: Input Pin Description of FP Post Norm Block

5-3-5-4 Output Pin Description

Pin Name: Source -> Destination: Pin Class:
bofp frac sh [56:0] bfp_pre_norm -> udata_path Data

Pin Function:

57 bits of shifted fraction part data is fetch to next stage for rounding and produce final output.
Pin Name: Source -> Destination: Pin Class:
bofp_expo_sh [11:0] bfp_pre_norm -> udata_path Data

Pin Function:

12 bits of shifted exponent part data is fetch to next stage for rounding and produce final
output.

Table 5-3-5-4-T1: Output Pin Description of FP Post Norm Block

55

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-5-5 FP Post Normalize Internal Block Diagram

bifp_sp_en

bifp frac result[56:0]

bifp frac_result[27:0]

bifp_expo[10:0]

bifp_expo[7:0]

Shift Left or
Right

———» bofp_frac_sh[56:0]

Increment or
Decrement

[bofp_expo_sh[11:0]

Figure 5-3-5-5-F1 FP Post Normalize Internal Block Diagram

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-6 FP Rounding Block
5-3-6-1 Functionality
e To round off and produce final output.

5-3-6-2 FP Rounding Block Interface

bfp_rounding

—» bifp_frac_sh [56:0] bofp_final_out [63:0] P—>

— > bifp_expo_sh [11:0]
——» hifp_sp_en

— bifp_sign

Figure 5-3-6-2-F1: Block Interface of FP Rounding Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-6-3 Input Pin Description

Pin Name: Source -> Destination: Pin Class:
bifp_frac_sh [56:0] udata_path -> bfp_rounding Data

Pin Function:

57 bits of shifted fraction result to be rounded off and combined for final output.

Pin Name: Source -> Destination: Pin Class:
bifp_expo sh [11:0] | udata_path -> bfp_rounding Data

Pin Function:

12 bits of shifted exponent data to be rounded off and combined for final output.

Pin Name: Source -> Destination: Pin Class:
bifp_sign udata_path -> bfp_rounding Data

Pin Function:

1 bit of sign data to be combined for final output.

Pin Name: Source -> Destination: Pin Class:
bifp_sp _en udata_path -> bfp_rounding Control
Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-
asserted.

Table 5-3-6-3-T1: Input Pin Description of FP Rounding Block

5-3-6-4 Output Pin Description

Pin Name: Source -> Destination: Pin Class:
bofp final out [63:0] | bfp _pre norm -> udata path Data
Pin Function:

64 bits of final out is produced after completion of addition operation.

Table 5-3-6-4-T1: Output Pin Description of FP Rounding Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-3-6-5 FP Rounding Block Internal Diagram

bifp_sp_en

bifp_sign

bifp_frac_sh[56:0] -

N
12'p1

bifp_expo sh[11:0] ‘ » Concatenate '—'

bifp_expo_sh[8:0]

bofp_final out[63:0]

—

Figure 5-3-6-5-F1 FP Rounding Internal Block Diagram

bl

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-4 Controlpath Unit

5-4-1 Controlpath Unit Interface

—[5:0]® uicp_opcode

—I[5:01 uicp_funct

—[4:0]m= UiCp_Is

uctrl_path

uocp_alb_src
uocp_rd_src

uocp_mult_en
uocp_sign_mult

uocp_rf_wr

uocp_cp_sw
uocp_cp_lw

uocp_cp_sh
uocp_cp_Ih
uocp_cp_lhu

uocp_cp_sb
uocp_cp_Ib
uocp_cp_Tbu

uocp_load_sign_ext
uocp_sign_ext
uocp_hilo_acc

uocp_hi_to_rf
uocp_mem_to rf

uocp_hi_wr
uocp_lo_wr
uocp_alb_to_wr

uocp_jump
uocp_jr
uocp_jal
uocp_jalr

uocp_beq
uocp_bne
uocp_blez
uocp_bgtz

uocp_mfcO
uocp_mtcO
uocp_eret
uocp_syscall
uocp_undef_inst

uocp_alb_ctrl
uocp_alb_rtype

—[5:0]m
—[5:0]m

Figure 5-4-1-F1: Controlpath Unit Interface

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-5 Rom Unit

The rom unit stores boot loader code to initialize RISC32 processor. Program Counter directly

points to the first line of address in here upon boot up.

5-5-1 Rom Unit Interface

—[11:0]— i_addr

5-6 Memory Unit

rom_4k 32

o_data —[31:0]—

Figure 5-5-1-F1: Rom Unit Interface

The memory unit stores machine instruction or program data. Range of address determines what

to be stored inside each memory unit.

5-6-1 Memory Unit Interface

[31:01
[31:01%
N

o
B
.
o

u_cache

ui_cm_addr
ui_cm_wr_data
ui_cm_wr

ui_cm_slw

ui_cm_slh

ui_cm_slb

ui_cm_clk

uo_cm_rd data

[31:0]»>

Figure 5-6-1-F1: Memory Unit Interface

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

5-6-2 Memory Unit Mapping

Module name Address range

[Max Bound: Min Bound]

Memory content

description

u_internal register kseg0 [32°hbf00 0040:32°hbf00 0030]

Mapped to internal
registers such as T/O

registers.

u_kdata_kseg0 [32°h9000 0ffc:32°h9000 0000]

Kernel data segment in

kernel segment 0.

u_ktext kseg0 [32’h8000 1ffc:32°h8000_0000]

Kernel text segment in
kernel segment 0. Stores
kernel codes such as

exception handler code.

u_stack segment [32°h7fff fffc:32°h7fff e000]

Stack segment for user

space. Stores program data

u_data_segment [32°h1000_1{fc:32°h1000_0000]

Data segment for user

space. Stores program data

u_text_segment [32°h0040 1{fc:32°h0040_0000]

Text segment for wuser
space. Stores machine

instruction

Table 5-6-2-T1: Memory Unit mapping and its content description

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

CHAPTER 6 VERIFICATION SPECIFICATION

CHAPTER 6: VERIFICATION SPECIFICATION

6-1 Test Plan for FPU

Test

Function to be
Tested

Expected Output

Test Case #1: Reset
e Set the reset pin to high.
e Hold for 3 clock cycle.

e Set the reset pin to low.

Reset the whole
FPU.

All outputs result in
0.

Test Case #2: Addition function test on single
precision numbers

e Setui fpu fs=5"b00010.

e Setui fpu ft=5"b00100.

e Setui fpu sp=1bl.

e Setui fpu add=1’bl.

e Setui fpu wr=1’bl.

e Setui fpu wr addr=5’b00011.

e Hold for 4 clock cycle.

Test the addition
function on single
precision floating

point numbers.

uo_fpu _result =
32'b0_1000_0000_
1100_0000_0000_0
000_0000_000
(“3.57).

The result is saved
in register file
address 4’b00011.

Test Case #3: Addition function test on double
precision numbers

e Setui fpu fs=5"b00110.

e Setui fpu ft=5b01000.

e Setui fpu sp=1’b0.

e Setui fpu add=1’bl.

e Setui fpu wr=1’bl.

e Setui fpu wr addr=5"b01010.

e Hold for 4 clock cycle.

Test the addition
function on single
precision floating

point numbers.

uo_fpu result =
64'b0_1000_0000_
010_0010_0111 00
10_00101101_0000
~ 1110 _0101_0110_
0000_0100_0001_1
000 (“9.223”).

The result is saved
in register file
address 4’b01010
and 4°b01011.

BIT (Hons) Computer Engineering

63

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

Test Case #4: Addition function test on all zero
numbers

e Setui fpu fs=5"00000.

e Setui fpu ft=5’b00001.

e Setui fpu sp=1’bl.

e Setui fpu add=1’bl.

e Setui fpu wr=1’bl.

e Setui fpu wr addr=5"b01110.

e Hold for 4 clock cycle.

Test the addition
function on single
precision floating

point numbers.

uo_fpu _result =
32'b0_0000_0000_
0000_0000_0000_0
000_0000_000.
The result is saved
in register file
address 4’b01110.

Test Case #5: Infinity inputs test
e Setui fpu fs=5b00000.
e Setui fpu ft=5"b00001.
e Setui fpu sp=1bl.
e Setui fpu add = 1’bO0.
e Setui fpu wr=1’b0.
e Hold for 3 clock cycle.

Check the validity
of inputs whether
inputs are

infinity.

uo_fpu _inf _ais

asserted.

Test Case #6: NaN inputs test
e Setui fpu fs=15"b10000.
e Setui fpu ft=25b10010.
e Setui fpu sp=1b0.
e Setui fpu add = 1’bO0.
e Setui fpu wr=1’b0.
e Hold for 3 clock cycle.

Check the validity
of inputs whether
inputs are “Not a

Number”.

uo_fpu _nan bis

asserted.

Table 6-1-T1: Test Plan of FPU

BIT (Hons) Computer Engineering

64

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VER

IFICATION SPECIFICATION

6-2 Simulation Result for FPU

6-2-1 Test Case #1: Reset

Jtb_u_fpu,

Jtb_u_fpu,
Jtb_u_fpufth_uo_fpu_nan_b
Jtb_u_fpusth_uo_fpu_inf_a
Jtb_u_fpuftb_uo_fpu_inf_b
Jtb_u_fpuftb _ui_fpu_fs
Jrb_u_fpufth_ui_fpu_ft
f
f
f
f
f
f
f

th_uo_Fpu_result
tb_uo_fpu_nan_a

f
f

tb_u_Fpufth_ui_fpu_wr_addr
th_u_fpuftb_ui_fpu_wr_data
th_u_fpuftb_ui_fpu_wr
th_u_fpufth_ui_fpu_sp
th_u_fpuftb_ui_fpu_add
tb_u_Fpufth_ui_fpu_clack

¢4 444444444 eeé

th_u_fpuftb_ui_fpu_reset

& Jtb_u_Fpuitb_uo_Fpu_result
\> Jrb U fpuith_uo_fpu_nan_a
« Itb_u_Fpuftb_uo_Fpu_nan_b
« Jtb_u_fputb_uo_fpu_inf_a

\> Jrb U fputh_uo_fpu_inf_b

« Jtb_u_Fputb_ui_fpu_fs

& Jtb_u_Fputb_ui_fpu_wr_addr
& Jtb_u_Fputb_ui_fpu_wr_data
\> Jeb U Fpurth_ui_fpu _wr

& Jtb_u_Fputb_ui_fpu_sp

\> Jrb_u_Fpufth_ui_fpu_add

\> Jrb U fpurth_ui_fpu_clock,

00

. b,y
{000000000000000000000043000000000000§0000000000

000000000C

00000 {00000
00000 {00000
00000 {00000
00 |[000000000003000000000000000000000004000000000008000000000C
a L
a L
0 L /] .-.\
! ’_I_F_TI L
° —/ —
Figure 6-2-1-F1: Simulation result for test case #1.

1. After reset signal is asserted, all output signals are set to default state.

6-2-2 Test Case #2: Addition function test on single precision numbers
(0000000000000000000000000080000000100000001 IDDDDDDDDDDDDDDDDDDDD__Dj' D[iJDUDDDDDDDDDli]DDUDDDDD. . DUDDDDDDDDEUDDDDDDDDDD&E
Sk0
Sk0
St0
Sk0
anaio 0010
00100 0100
onatl 0011
DDEIDDEIDDIJDDDDDDDDDDDDDDDDDDDDDDDDIDDDDDDD1IDDDDDDDDDDDDDDDDDD_DDEl 0000000000000000000000,.,, J000000000000000000000000C
0 L
1 —

1 -
. . |
a

f
f
f
f
f
f
\> Jrb U Fpurth_ui_fpu_ft
f
f
f
f
f
f
f

« Jtb_u_Fputb_ui_fpu_reset

Figure 6-2-2-F1: Simulation result for test case #2.

1. Control signal ui_fpu_sp is asserted indicates that the two data from register file is in

single preci

sion.

2. The result of addition of the two single precision numbers is computed.

3. Control signal ui_fpu_wr is asserted to enable the result is written back to location 00011

in register f

ile.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

CHAPTER 6 VERIFICATION SPECIFICATION

6-2-3 Test Case #3: Addition function test on double precision numbers

th_u_fpu/tb_uo_fpu_result

10000000010001001110010001011010000111001010110000001000001 1001

11111101001

111131001, J010000000010

0010011100100010110100¢

tb_u_Fpu/tb_uo_fpu_nan_a
th_u_fpu/tb_uo_fpu_nan_b
tb_u_Fpu/tb_uo_fpu_inf_a
th_u_fpuftb_uo_fpu_inf_b
th_u_Fputh_ui_fpu_fs
th_u_fpu/tb_ui_fpu_ft

th_u_fpuftb_ui_fpu_wr_data

th_u_fpu/tb_ui_fpu_wr
th_u_Fpuftb_ui_fpu_sp
th_u_fpu/tb_ui_fpu_add
tb_u_Fpu/tb_ui_fpu_clock

f f

f f

f f

f f

f f

I I

f f
Jtb_u_fpujth_ui_fpu_wr_addr
f f

f f

f f

f f

f f
Jtb_u_fpujth_ui_fpu_reset

ettt as s o2 2l

00110 0110 |

01000 T

1010
00000010001001110010001011010000111001010110000001000001 11111101000113111001 ... {010000000010001001 11001000101 10100

0

: u

1

0 | L] L] [L] [

]

Figure 6-2-3-F1: Simulation result for test case #3.

1. Control signal ui_fpu_sp is de-asserted indicates that the two data from register file is in

double precision.

2. The result of addition of the two double precision numbers is computed.

3. Control signal ui_fpu_wr is asserted to enable the result is written back to location 01010

and 01011

in register file.

6-2-4 Test Case #4: Addition function test on all zero numbers

 Jtb_u_fpufth_ua_fpu_result
\> b u_fpuftb_uo_fpu_nan_a
« Jtb_u_fpultb_ua_fpu_nan_b
\> b u_fpuftb_uo_fpu_inf_a
& Jtb_u_fpuftb_ua_fpu_inf_b
\> fb_u_fpuftb_ui_fpu_fs

< Jth_u_fpuftb_ui_fpu_ft

\> b u_fpuftb_ui_fpu_wr_addr
& Jtb_u_fpufth_ui_fpu_wr_data
\> b u_fpuftb_ui_fpu_wr

& Jtb_u_fpuftb_ui_fpu_sp

\> b u_fpuftb_ui_fpu_add

& Jth_u_fpuftb_ui_fpu_clack
\> b u_fpuftb_ui_fpu_reset

00080000000
StD
Skd
StD
Skd
0nooag
00001

]

1
1
i
0

0000000000a000

000000000

Il Il
000000000 .. J0000000000030000000000000

0000

0001

1110

000000000

000000000, ., 00000000000

0000000000300

Figure 6-2-4-F1: Simulation result for test case #4.

1. The two all zero inputs are fetched to single precision block to perform addition.

2. Control signal ui_fpu_wr is asserted to enable the result is written back to location 01110

in register file.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

CHAPTER 6 VERIFI

6-2-5 Test Case #5: |

\> feb_u_Fpufth_uo_fpu_result
« Ith_u_fpufth_uo_Fpu_nan_s
« ftb_u_fpujtb_uo_fpu_nan_b
\> feb_u_fpufth_uo_fpu_inf_a

\> feb_u_Fpufth_uo_fpu_inf_b

~ ftb_u_fpujtb_ui_fpu_fs

\> feb_u_Fpufth_ui_fpu_ft

\> feb_u_Fpufth_ui_fpu_wr_addr
~ ftb_u_fpultb_ui_fpu_wr_data
Q feb_u_Fpufth_ui Fpo_wr

\> feb_u_Fpufth_ui_fpu_sp

@ Ith_u_fpujth_ui_fpu_add

~ ftb_u_fpuftb_ui_fpu_clock

\> feb_u_Fpufth_ui_fpu_reset

\> Jeb_u_Fpu/DUT 2 bi_fpu_sp_a
~ ftb_u_fpufDUTiUZ/bi Fou_sp_b
\> ftb u_ Fpuf/DUT IS b fpu_dp_a
~§ ftb_u_fpufDUT S bI_fpu_dp_b

CATION SPECIFICATION

nfinity inputs test

00
5k0

5k0

Skl

Sk

01100

01101

01110
0000000000000000000000000000300000000000000000000000000000000000

o o O = O

Eilll11111DDDDDDDDDDDDDDDDDDDDDD@:}
00111111100000000000000000000000
0000000000000000000000000000000001111111100000000000000000000000
0000000000000000000000000000000000111111100000000000000000000000

0000000000000000000000000030030000
™
e

1100
1101
1110

00000000000000000000000

DO0O00a0000

| |
00000000... J0111111110000000000000¢
00000000,,, J0011111110000000000000¢
00000000, ., J00000000000000000000000
00000000, .. J0000000000000000000000¢

Figure 6-2-5-F1: Simulation result for test case #5.

1. The input operand a is an infinity floating point value.

2. The output signal uo_fpu_inf a is asserted to indicate it’s an infinity value.

6-2-6 Test Case #5: NaN inputs test

& Itb_u_fpujth_uo_fpu_result
@ Itb_u_fputh_ua_fpu_nan_a
\'} Jtb_u_Fpuftb_uo_fpu_nan_b
\> Jeb_u_Fpuftb_uo_fpu_inf_a

\> Jrb_u_Fpufth_uo_Fpu_inf_b

\> Jrb_u_Fpufth_ui_Fpu_fs

\> Jeb_u_Fpufth i Fpo_fE

@ Ith_u_fpujth_ui_fpu_wr_addr
@ Itb_u_fputh_ui_fpu_wr_data
& Ith_u_fputh _ui_fpu_wr

\> Jeb_u_Fpuftb_ui_fpu_sp

\> Jib_u_Fpuftb_ui Fpu_add

\> Jrb_u_Fpufth_ui_Fpu_clock

\> Jeb_u_Fpufth i Fpu_reset

\> Jtb_u_FpufDUT/U2/bi_fpu_sp_a
@ Itb_u_fpu/DUTiUz/hi_fou_sp_b
@ Itb_u_fpu/DUT/U3/bi_Fpu_dp_a
& Itb_u_fpu/DUT/US/bi_Fpu_dp b

00 | 000000000000000000000000000000000000000
St

.
Sto T]

St

10000 10000

10010 10010

01110 01110
00 | 000000000000000000000000000000000000000
0

0 —

0

1] l | |

0

00000000000000000000000000000000 011111111000, .. J00000000000000000000000C
00000000000000000000000000000000 001111111000... J00000000000000000000000C
10111111111100 | DOOD00000000. .. 410111111111 100000000000¢
@1111111uon0uonuunouonuunnuonounnuonouonuunouonuunnuonuunnu 000000000000, ., J0111111111 1110000000000

Figure 6-2-6-F1: Simulation result for test case #6.

1. The input operand b is a “Not a Number” in floating point format.

2. The output signal uo_fpu nan_b is asserted to indicate it’s a NaN.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

CHAPTER 6 VERIFICATION SPECIFICATION

6-3 FP Register File Contents

31
29
27
25
23
21
19
17
15
13
11

Test Case #2

| SR B |

R R R R R R R M M R M M M
R R R R R R R M M R M M M
R R R R R R R M M R M M M
R R R R R R R R M M M M
NN N N N N B N N B B B M B M N M NN
R R B B B B B B B B B B M M M M
Ol111111122220000000000000000000
10111111111100000000000000000000

R M e [000 00000000000000000000000000000)

00111111100000000000000000000000

HE S e B R SRR R S E
HE S e B R SRR R S E
HE S e B R SRR R S E
X X X X X K
N N N B B B M MM MM M M M M M M M MMM
N B N B X B MM MM MM MM MM MM MM MM
aoooooooooa000000000000000000000
a0000000000000000000000000000000

01111111100000000000000000000000

01000000001000100111001000101101 00001110010101100000010000011000

01000000000000100110011001100110
01000000000110111011000100100110
N R B R N B NN M M NN NN NN M M M N M NN

01100110011001100110011001100110
11101001011110001101010011111110
01000000000100110011001100110011

DlDDDDDDDllDDDDDDDDDDDDDDDDDDD@E}DDlllllllDDllDDllDDllDDllDDllDlD

00000000000000000000000000000000

oooo0000000000000000000000000000

Figure 6-3-F1: FP register file contents

Test Case #4
Test Case #3

The FPU register file stores the result from test case #2, #3 and #4. The FPU register file can

store single and double precision floating numbers. For double precision floating point numbers,

two registers are required to store the value.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 6 VERIFICATION SPECIFICATION

6-4 Test Bench for FPU

[
/*

Project/Module : tb_u_fpu

File name : tb_u_fpu.v

Version : Altera 6.5b

Author : Low Wai Hau

Code type :

Description : Testbench for FPU

*/

| R R R T R R R R R

module tb_u_fpu();

wire [63:0] tb_uo_fpu_result;
wiretb_uo_fpu_nan_a, tb_uo_fpu_nan_b, tb_uo_fpu_inf a, tb_uo fpu_inf _b;

reg [4:0] tb_ui_fpu_fs, tb_ui_fpu_ft, tb_ui_fpu_wr_addr;
reg [63:0] tb_ui_fpu_wr_data;
reg tb_ui_fpu_ wr, tb_ui_fpu_sp, tb_ui_fpu_add, tb_ui_fpu_clock, tb_ui_fpu_reset;

//**

// Module instantiation

u_fpu

DUT
(.uo_fpu_result(tb_uo_fpu_result),
.uo_fpu_nan_a(tb_uo_fpu_nan_a),
.uo_fpu_nan_b(tb_uo_fpu_nan_b),
.uo_fpu_inf_a(tb_uo_fpu_inf_a),
.uo_fpu_inf_b(tb_uo_fpu_inf_b),
ui_fpu_fs(tb_ui_fpu_fs),
ui_fpu_ft(tb_ui_fpu_ft),
ui_fpu_wr_addr(tb_ui_fpu_wr_addr),
ui_fpu_wr_data(tb_ui_fpu_wr_data),
ui_fpu_wr(tb_ui_fpu_wr),
ui_fpu_sp(tb_ui_fpu_sp),
.ui_fpu_add(tb_ui_fpu_add),
.ui_fpu_clock(tb_ui_fpu_clock),
ui_fpu_reset(tb_ui_fpu_reset));

initial tb_ui_fpu_clock = 1;
always #10 tb_ui_fpu_clock = ~tb_ui_fpu_clock;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

CHAPTER 6 VERIFICATION SPECIFICATION

always @(*) begin
tb_ui_fpu_wr_data =th_uo_fpu_result;
end

//**

//Signals initialization

initial begin
tb_ui_fpu_reset = 1'b0;
tb_ui_fpu_fs =5'00;
tb_ui_fpu_ft = 5'b0;
tb_ui_fpu_wr_addr = 5'b0;
tb_ui_fpu_wr_data = 64'b0;
tb_ui_fpu_wr =1'b0;
tb_ui_fpu_sp = 1'b0;
tb_ui_fpu_add = 1'b0;

/ITest Case #1: Reset

@(posedge th_ui_fpu_clock);
tb_ui_fpu_reset =1,

repeat(3) @(posedge th_ui_fpu_clock);
tb_ui_fpu_reset = 0;

/ITest Case #2: Addition on single precision numbers
repeat(3) @(posedge th_ui_fpu_clock);

tb_ui_fpu_fs = 5'b00010;

tb_ui_fpu_ft = 5'b00100;

tb_ui_fpu_wr_addr = 5'b00011;

tb_ui_fpu_sp =1'b1;

tb_ui_fpu_add = 1'b1;

repeat(3) @(posedge th_ui_fpu_clock);
tb_ui_fpu_wr =1'b1;

@(posedge tb_ui_fpu_clock);
tb_ui_fpu_wr =1'b0;

/ITest Case #3: Addition on double precision numbers
@(posedge tb_ui_fpu_clock);

tb_ui_fpu_fs =5'000110;

tb_ui_fpu_ft = 5'b01000;

tb_ui_fpu_wr_addr = 5'b01010;

tb_ui_fpu_sp = 1'b0;

tb_ui_fpu_add = 1'b1;

repeat(3) @(posedge th_ui_fpu_clock);
tb_ui_fpu_wr = 1'b1;
@(posedge th_ui_fpu_clock);

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

tb_ui_fpu_wr =1'b0;

/ITest Case #4: Addition on all zero numbers
@(posedge th_ui_fpu_clock);

tb_ui_fpu_fs = 5'b00000;

tb_ui_fpu_ft = 5'b00001;
tb_ui_fpu_wr_addr = 5'b01110;
tb_ui_fpu_sp =1'b1;

tb_ui_fpu_add =1'b1;

repeat(3) @(posedge th_ui_fpu_clock);
tb_ui_fpu_wr =1'b1;

@(posedge th_ui_fpu_clock);
tb_ui_fpu_wr =1'b0;

/[Test Case #5: Infinity floating point numbers
@(posedge tb_ui_fpu_clock);

tb_ui_fpu_fs =5'001100;

tb_ui_fpu ft =5'b01101;

tb_ui_fpu_sp =1'b1;

tb_ui_fpu_add = 1'b0;

//Test Case #6: NaN floating point numbers
repeat(3) @(posedge th_ui_fpu_clock);
tb_ui_fpu_fs =5'10000;
tb_ui_fpu_ft = 5'b10010;
tb_ui_fpu_sp = 1'b0;
tb_ui_fpu_add = 1'b0;
repeat(5) @(posedge th_ui_fpu_clock);
$stop;

end

endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

71

CHAPTER 6 VERIFICATION SPECIFICATION

6-5 FP Integration with RISC32

6-5-1 Test Program

.text 0x00400000
.globl main
main: addi $t0, $zero, 0x0

addi $t1, $zero, OxfF7Fffff
addi $t2, $zero, Oxff7fffff
addi $t3, $zero, Oxaaaaaaaa
addi $t4, $zero, 0x55555555
addi $t5, $zero, 0x1

addi $t6, $zero, 0xfOfOfOf0
addi $t7, $zero, 0x0fOfOfOf

swW $t0, 0($gp)
swW $t1, 4($gp)
swW $t2, 8($ap)
swW $t3, 12($gp)
swW $t4, 16($gp)
swW $t5, 20($gp)
swW $t6, 24($gp)
swW $t7, 28($gp)

nop

#test case #1: Test lwcl and swcl
lwcl $f4, 0($gp)
swcl $f4, 0($gp)
lwcl $f5, 4($gp)
swcl $f5, 28($gp)
lwcl $f6, 8($gp)
lwcl $f7,12($gp)
lwcl $f8, 16($Sgp)
Ilwcl $f9, 20($gp)
nop

#test case #2: Test add.s and add.d
add.s $f10, $f4, $f5
add.s $f16, $f10, $f9
add.s $f17, $f7, $f6
add.s $f18, $f6, $f5

#largest floating point number
#smallest floating point number
#$t0=101...101

#$t0 = 010...010

#$t0=1111_0000...1111_0000
#$t0=0000_1111...0000_1111

#store to data memory to test lwcl

#load data to FP reg file
#store data to data memory

#$f10 = OxfF7fffff + 0

#$f16 = OXFF7fFfff + 1

#$f17 = 0x55555555 + Oxaaaaaaaa
#$f17 = max fp number + min fp number

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

72

CHAPTER 6 VERIFICATION SPECIFICATION

add.d $f18, $f4, $f6
add.d $f10, $f18, $f6
nop

#test case #3: Test mfcl and mtcl

mfcl $s6, $f10 #move data between registers
mtcl $t1, $f10 #move data between registers
nop

6-5-2 Simulation Result

6-5-2-1 Test Case #1: lwcl instruction

n bifp_ri_clk

fEEEEE£8

Figure 6-5-2-1-F1: Simulation result of test case #1(lwc1l).

1. Control signal lwcl is asserted in ID stage indicate that it is lwcl instruction and FP
register file write is enabled so the data can be written to FP register file.
2. Atthe WB stage, the data (Oxfffffff8) from data memory is written to FP register file.

6-5-2-2 Test Case #1: swcl instruction

73
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

IF D EX MEM WB

b urisc_clk 1
" uodp_mem_dm_addr31:0] 00000008
™ uodp_mem_dm_store[31:0] 00002500

w Lidp_sp
™ uidp_alb_cir[5:0]
n vidp_rtype
» Lidp_itype
M uidp_instr31:0] 7910004 { z00pplll
0
63 0000000
™ udp_id_fi64[63: 00000001
™ udp_id_fs5[4.0] z
™ udp_id_ft5[4:0] 0a
™ udp_id_fd5[4.0] 00
N udp_rf_id_rt32_temp(31:0] 00000000

Figure 6-5-2-2-F1: Simulation result of test case #1(swcl).

1. The data is fetched out from general register file at ID stage.

2. The data is then written into data memory at MEM stage.

6-5-2-3 Test Case #3: mfcl instruction

n Lidp_fp_mfc1
n uidp_fp_mic1
" uidp_alb_ctr[5:0]
n Uidp_rtype 0
n Uidp_itype 1
n birf_wr_en1 1
1
]

n birf_clk
n birf_sreset
N bri_reg_ram[1:31][31:0) 00000000,00000000,

20} 00000002
3 00000003
N [20310) 00000000

Figure 6-5-2-3-F1: Simulation result of test case #3(mfcl).

1. Control signal udp_fp_mfcl is enabled at 1D stage to indicate that its mfcl instruction.

2. The data is fetched out from FP register file at ID stage.
3. At WB stage, the data is written to general register file.

74
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

6-5-2-4: Test Case #3: mtcl instruction

w uidp_fp_rf_wr 0
n uidp_sp 1
uidp_fp_mict 0
s Uidp_fp_mitc1 0
*d uidp_alb_ctri[5:0] 20
uidp_riype 1
s uidp_itype 0
M brf_reg_ram[1:31][31:0] 00000000,00000000,§ oo0C
31:0] 00000000

00000000

00000000

00000000

00000000

00000000
00400000
00000008

o [8]31:0
™ (9310
o [10[31:0]

& bifp_rf_wr

]
]
|
]
] 00000000
]
|
|

31:0)31:0]
N [17)21:0]
i [16]31:0) 00000011

Figure 6-5-2-4-F1: Simulation result of test case #3(mtc1l).

1. Control signal udp_fp_mtcl is enabled at ID stage to indicate that its mtc1 instruction.
2. The data in the general register file is fetched out.

3. The control signal bfp_rf_wr is enabled so that the data is written to the FP register file.

75
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

6-5-3 Test Bench

“timescale 1ns/ 1ps

“default_nettype none

“define FULL_INSTR_TEST 1

/I"define demo001_GPIO 1

/I"define demo002_GPIO 1

/I"define demo003_UART 1

/I"define demo004_UART 1

/I"define demo005_SPI 1

/I"define demo006_DUT _client_model 1
/I"define demol115_loT_MM64bytes

“ifdef MODEL_TECH
“ifdef FULL_INSTR_TEST
“define TEST_CODE_PATH_DUT "tb/fpu_instr_test.txt"
“define EXC_HANDLER _DUT "tb/demo/demo000_base test 03exc_handler.txt"
“define TEST_CODE_PATH_CLIENT "tb/demo/demo000_base_test_02program.txt"
“define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"
“endif
“ifdef demo001_GPIO
“define TEST_CODE_PATH_DUT "tb/demo/demo001_GPIO_mem_02program.txt"
“define EXC_HANDLER_DUT "th/demo/demo001_GPIO_mem_03exc_handler.txt"
“define TEST_CODE_PATH_CLIENT
"th/demo/demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"
“endif
“ifdef demo002_GPIO
“define TEST_CODE_PATH_DUT "tb/demo/demo002_GPIO_mem_02program.txt"
“define EXC_HANDLER_DUT "tb/demo/demo002_GPIO_mem_03exc_handler.txt"
“define TEST_CODE_PATH_CLIENT
"th/demo/demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"
“endif
“ifdef demo003_UART
“define TEST_CODE_PATH_DUT "tb/demo/demo003_UART_mem_02program.txt"
“define EXC_HANDLER_DUT "tb/demo/demo003_UART_mem_03exc_handler.txt"
“define TEST_CODE_PATH_CLIENT
"tb/demo/demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"
“endif
“ifdef demo004_UART
“define TEST_CODE_PATH_DUT "tb/demo/demo004_UART_mem_02program.txt"
“define EXC_HANDLER_DUT "tb/demo/demo004_UART_mem_03exc_handler.txt"

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

CHAPTER 6 VERIFICATION SPECIFICATION

“define TEST_CODE_PATH_CLIENT
"th/demo/demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "th/new_exc_handler_dut.txt"
“endif
“ifdef demo006_DUT client_model

“define TEST_CODE_PATH_DUT "tb/demo/demo006_pending_for_int_mem_02program.txt"

“define EXC_HANDLER_DUT "tb/new_exc_handler_dut.txt"

“define TEST_CODE_PATH_CLIENT "tb/demo/demo006_all_10s_send_mem_02program.txt"

“define EXC_HANDLER_CLIENT "tb/new_exc_handler_client.txt"
“endif
“ifdef demol115_loT_MM®64bytes

“define TEST_CODE_PATH_DUT "tb/demo/demo115 loT_MM64bytes 10MHz_02program.txt"

“define EXC_HANDLER_DUT "tb/new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"th/demo/demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"
“endif
“else
“ifdef FULL_INSTR_TEST
“define TEST_CODE_PATH_DUT "fpu_instr_test.txt"
“define EXC_HANDLER_DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT "full_instr_test.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"
“endif
“ifdef demo001_GPIO
“define TEST_CODE_PATH_DUT "demo001_GPIO_mem_02program.txt"
“define EXC_HANDLER _DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"
“endif
“ifdef demo002_GPIO
“define TEST_CODE_PATH_DUT "demo002_GPIO_mem_02program.txt"
“define EXC_HANDLER_DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"
“endif
“ifdef demo003_UART

“define TEST_CODE_PATH_DUT "demo003_UART_mem_02program.txt"

“define EXC_HANDLER_DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

CHAPTER 6 VERIFICATION SPECIFICATION

“endif
“ifdef demo004_UART
“define TEST_CODE_PATH_DUT "demo004_UART_mem_02program.txt"
“define EXC_HANDLER _DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"
“endif
“ifdef demo005_SPI
“define TEST_CODE_PATH_DUT "demo005_SPIl_mem_02program.txt"
“define EXC_HANDLER_DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"
“endif
“ifdef demo006_DUT client_model
“define TEST_CODE_PATH_DUT "demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT "demo006_all 10s_send_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_client.txt"
“endif
“ifdef demol115_loT_MM64bytes
“define TEST_CODE_PATH_DUT "demol115_loT_MM64bytes 10MHz_02program.txt"
“define EXC_HANDLER_DUT "new_exc_handler_dut.txt"
“define TEST_CODE_PATH_CLIENT
"demo006_pending_for_int_mem_02program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"
“endif
“endif

module th_r32_pipeline();
/Ideclaration

//System signal
reg tb_u clk;
reg th_u rst;
Il
wire th_u_spi_mosi_dut;
wire tb_u_spi_miso_dut;
wire th_u_spi_sclk_dut;

wire tb_u_spi_ss n_dut;

/lwire tb_u fc_sclk_dut;
/lwire tb_u fc_ss_dut;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

CHAPTER 6 VERIFICATION SPECIFICATION

/lwire tb_u_fc_MOSI_dut;

/lwire tb_u_fc_ MISOL dut;
/lwire th_u_fc_MISO2_dut;
/lwire tb_u_fc_MISO3_dut;

wire th_ua_tx_rx_dut;
wire tb_ua RTS dut,tb ua CTS dut;
wire[31:0] tb_u_GPIO_dut;

Il
wire tb_u_spi_mosi_client;
wire tbh_u_spi_miso_client;
wire th_u_spi_sclk_client;

wire th_u spi_ss n_client;

/lwire tb_u fc_sclk client;
/lwire tb_u_fc_ss client;
/lwire tb_u fc_MOSI_client;
/lwire tb_u fc MISO1 client;
/lwire tb_u_fc_ MISO2_client;
/lwire tb_u fc_MISO3 client;

wire tb_ua tx_rx_client;
wire tb_ua RTS client,tb ua CTS_client;
wire[31:0] tb_u_GPIO_client;

crisc ¢_risc_dut(
//*********** INSTANTIATION *hkkkhkkkhkkkhkkkikik

.urisc_GPIO(tb_u_GPIO_dut),

//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi_dut),
.uiorisc_spi_miso(tb_u_spi_miso_dut),
.uiorisc_spi_sclk(tb_u_spi_sclk_dut),
.uiorisc_spi_ss_n(tb_u_spi_ss_n_dut),

/IUART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_dut),
.uorisc_ua_rts(tb_ua_RTS_dut),
.uirisc_ua_rx_data(tb_ua_tx_rx_client),
.uirisc_ua_cts(tb_ua_CTS_dut),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

/[FLASH controller
/l.uorisc_fc_sclk(tb_u_fc_sclk_dut),
/l.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),
/l.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),
/l.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),
/l.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),
/l.uorisc_fc_ss(tb_u_fc_ss_dut),

/I System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

crisc ¢_risc_client(
//*********** INSTANTIATION *hkkhkkhkkikkikkhkkhkkikkikk

.urisc_GPIO(tb_u_GPIO_client),

//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi_client),
.uiorisc_spi_miso(tb_u_spi_miso_client),
.uiorisc_spi_sclk(tb_u_spi_sclk_client),
.uiorisc_spi_ss n(tb_u_spi_ss_n_client),

/IUART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_client),
.uorisc_ua_rts(tb_ua_RTS_client),
.uirisc_ua_rx_data(tb_ua_tx_rx_dut),
.uirisc_ua_cts(tbh_ua_CTS_client),

/I System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

“ifdef demo006_DUT _client_model
assign tb_u_spi_mosi_dut =th_u_spi_maosi_client;
assign tb_u_spi_miso_dut =th_u_spi_miso_client;
assigntb_u_spi_ss_n_dut=tb_u_spi_ss_n_client;
assign th_u_spi_sclk_dut =tb_u_spi_sclk_client;
“else

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 VERIFICATION SPECIFICATION

assign tb_u_spi_mosi_client =tb_u_spi_mosi_dut;

assign tb_u_spi_miso_client =tb_u_spi_miso_dut;

assign tb_u_spi_ss_n_client =tb_u_spi_ss_n_dut;

assign tb_u_spi_sclk_client=tb_u_spi_sclk_dut;
“endif

assigntb_ua CTS dut=tb ua RTS client;
assigntb_ua_CTS_client =th_ua_RTS_dut;
//**********************C|ock************************
initial tb_u_clk = 1'b1;

always #5 tb_u_clk =~tb_u_clk;

initial begin
$readmemh("TEST_CODE_PATH_DUT/*"demo0200_Test SDRAM_Write_02program.txt™*/,
tb_r32_pipeline.c_risc_dut.sdram.Bankl);
$readmemh("EXC_HANDLER_DUT, tb_r32_pipeline.c_risc_dut.sdram.Bank1);
$readmemh("TEST_CODE_PATH_CLIENT, tb_r32_pipeline.c_risc_client.sdram.Bank1);
$readmemh("EXC_HANDLER_CLIENT, tb_r32_pipeline.c_risc_client.sdram.Bank1);
tb_u rst=1'bl;
repeat(1)@(posedge tb_u_clk);
tb_u_rst =1'b0;
repeat(30000)@(posedge th_u_clk);
tb_u_rst=1bl;
repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk);
end
endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

CHAPTER 7 CONCLUSION

CHAPTER 7: CONCLUSION

A FPU module and FP Register File has been successfully modeled and integrated into
RISC32 microprocessor. All the behavior has been verified. The FPU module able to perform
addition operation on single and double precision numbers as well as load and store to FP

Register File. The flow of addition operation is being mentioned in Chapter 2 of this project.

The integration of FPU module and FP Register File into RISC32 architecture has been
accomplished, as shown in previous chapters. The FPU is modeled using Verilog HDL. The
design is implemented with top-down design methodology approach. The top level of FPU is
first determined and then followed by specifications of block level inside FPU. The data can be
load or store to FP register file. FPU is verified with test plan and test bench and the functionality

of FPU is proven to be working well.

For future improvement, other FP instruction can be implemented to the FPU module
such as subtraction, multiplication and division. Also, can implement exception handling for

overflow output.

82
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY

Al-Eryani J 2006, ‘IEEE Standard 754 for Binary Floating-Point Arithmetic’, Floating Point
Unit, pp. 3-9. Available from: [01 April 2019].

Goldberg D 1991, What Every Computer Scientist Should Know About Floating-Point
Arithmetic. Available from: <
https://www.itu.dk/~sestoft/bachelor/IEEE754 _article.pdf>. [01 April 2019].

Integrated Device Technology, Inc. 1994, IDT R30xx Family Software Reference Manual.

Kukati S, Sujana DV, Udaykumar S, Jayakrishnan P & Dhanabal R 2013, Design and
Implementation of Low Power Floating Point Arithmetic Unit. Available from:
< https://ieeexplore-ieee-

org.libezp2.utar.edu.my/stamp/stamp.jsp?tp=&arnumber=6823429>. [01 April 2019].

Lundgren D 2014, Double Precision Floating Point Core VHDL, pp. 1-8. Available from:
<https://opencores.org/projects/fpu_double>. [01 April 2019].

Mok K.M 2018, Digital System Design, lecture notes distributed in Faculty of Information

and Communication Technology at University of Tunku Abdul Rahman.

Mok K.M 2019, Computer Organization and Architecture, lecture notes distributed in Faculty
of Information and Communication Technology at University of Tunku Abdul

Rahman.

Patterson DA and Hennesy JL 2005, Computer Organization and Design: The
Hardware/Software Interface, 3rd ed. San Francisco, CA: Morgan Kaufmann. [01
April 2019].

Patterson DA and Hennesy JL 2014, Computer Organization and Design: The
Hardware/Software Interface, 5th ed. San Francisco, CA: Morgan Kaufmann. [01
April 2019].

Singh P and Bhole K 2014, ‘Optimized floating point arithmetic unit’, 2014 Annual IEEE

India Conference (INDICON), Pune, pp. 1-4. Available from: < https://ieeexplore-ieee-

83
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

org.libezp2.utar.edu.my/stamp/stamp.jsp?tp=&arnumber=7030552&isnumber=7030354>. [01

April 2019].

84
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

" Operand, sign, ke, & Frec,

gy
bacnb,
s,

Operand, = s Be, & far,

Cutamigs boa, B,

by fpuikth _ul_fpu_sdd
& b ipuatb i chock,
At fpiith o _reset

85
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

—] X
@ Turmnitin X +
&« c @ turnitin.com/newreport.asp?eq="18&eb=18&esm=2080id=1160402103&m=08svr=45&r=55.19301683101534&lang=en_us&bypass c... ¥r [+)
P preq 9 yP:

preferences
tu rnitin.@ Processed on: 27-Apr-2020 11:07 +08 Design of A Floating similarity by Source

ID: 1160402103 L
Originality Report Word Count: 6545 Point Unit for 32-Bit Similarity Index Intemet Sources: 14%

Submitted: 8 1 (y Publications: 5%

5—“ 5 (] Student Papers: N/A

Document Viewer By Low Wai Hau
include quoted include bibliography excluding matches < 20 words made: show highest matches together ¥ ‘ Change mode a B

3% match (Internet from 22-Apr-2020)
http://eprints.utar.edu.my

CHAPTER 1: INTRODUCTION 1-1 Background Information 1-1-1

2% match (Internet from 26-Oct-2017)
http://staff.ustc.edu.cn

Floating Point Unit Floating point unit (FPU) was a part of a computer system dedicated to
perform operations on floating point numbers. It could be defined as a specialized

coprocessor that could manipulate numbers guicker than the basic microprocessor (CPU) 29 match (Internet from 14-Nov-2019)

https://zombiedoc.com/32-bit-memory-

itself. The typical operations on floating point numbers were addition, subtraction,

multiplication, division, square root and bit shifting. An ALU was designed to handle the system-design-design-of-memory.htm|
operations on the fixed point numbers such as integers. The operations on fixed point

numbers were similar to the operations on floating point numbers. ALU could also carry El 1% match (Internet from 06-Jun-2008)
out the operations on floating point numbers. However, the difference between the ALU

http://www.opencores.org
and the FPU was their speed on carrying out the operations on floating point numbers.

ALU performed the operation on floating point numbers in such a slow way. Therefore, 1% match (Internet from 15-Apr-2016)

http://eprints.utaredu.my

this was the reason for the existence of the FPU coprocessor in the market or integrated
with the CPU. Early years back, personal computing

EI 1% match (publications)

was common in IBM PC or compatible microcomputers for the FPU Shilpa Kukati, D.V Sujana, Shruthi
to be entirely separate from the CPU, and sold as an optional add- Udaykumar, P. Jayakrishnan, R. Dhanabal.

on. The FPU could be purchased if the user wished to "Des_iq" an_d imp\emen_tatiop“of low power
floating_point arithmetic unit", 2013
International Conference on Green
enhance the processor’s speed to achieve math- intensive computation especially on MMQ;%CBUUH&HU

floating point numbers. In the late 1990s, the FPU became a physical part of the Conservation of Energy (ICGCE), 2013

microprocessor chip. There were

1% match (Internet from 12-Oct-2012)
http://www.ijmse.org

three ways to carry out floating-point operation on a CPU: Floating-
point unit emulator, Add-on FPU and Integrated FPU.

1% match (Internet from 23-0ct-2018)
https://propertibazar.com/article/hennessy-

‘ @ Turnitin X + - o %

i
< C' & turnitincom/newreport.asp?eq=18eb=18esm=208&0id=1160402103&m=0&svr=45&r=55.19301683101534&lang=en_us&bypass_c... ¥¢ e (4] ‘
preferences ‘

tu roitin @ Processed on: 27-Apr-2020 11:07 +08 Design of A Floating simlartty by Souree

ID: 1160402103

Similarity Index

Originality Report Word Count: 6546 Point Unit for 32—B1t Internet Sources: 14%
Submitted: 8 1 (y Publications: 5%
5-... 57 Student Papers: /A
Document Viewer By Low Wai Hau
include quoted include bibliography excluding matches < 20 words mode:| show highest matches together ¥ ‘ Change mode B J}

1% match (Internet from 23-0Oct-2018)

i https://propertibazar.com/article/hennessy-
CHAPTER 1: INTRODUCTION 1-1 Background Information 1-1-1 II' and-patterson-

vir 5a40c104d64ab2444a1e8dcl.html

Floating Point Unit Floating point unit (FPU) was a part of a computer system dedicated to
perform operations on floating point numbers. It could be defined as a specialized @
coprocessor that could manipulate numbers quicker than the basic microprocessor (CPU)

itself. The typical operations on floating point numbers were addition, subtraction,

multiplication, division, square root and bit shifting. An ALU was designed to handle the
operations on the fixed point numbers such as integers. The operations on fixed point

numbers were similar to the operations on floating point numbers. ALU could also carry

1% match (Internet from 17-Dec-2007)
http://www-ug.eecg.toronto.edu

1% match (Internet from 06-Apr-2018)
https://en.wikipedia.org/wiki/Floating-
point _unit

out the operations on floating point numbers. However, the difference between the ALU
and the FPU was their speed on carrying out the operations on floating point numbers.
ALU performed the operation on floating point numbers in such a slow way. Therefore,
this was the reason for the existence of the FPU coprocessor in the market or integrated
with the CPU. Early years back, personal computing

< 1% match (Internet from 30-Jan-2020)
https://www.kiot.ac.in/courses/pg/vlsi-

design/laboratory/

< 1% match (Internet from 04-Sep-2016)
https://ece.uwaterloo.ca/~dwharder/Numeric

‘was common in IBM PC or compatible microcomputers for the FPU
to be entirely separate from the CPU, and sold as an optional add-
on. The FPU could be purchased if the user wished to

< 1% match (publications)
Hugo Miguel Teixeira Fernandes.
"Implementacdo em Verilog do algoritmo de

enhance the processor’s speed to achieve math- intensive computation especially on cifra AES-CTR para aplicaces HDML 2.0°,
g P P 3 g Repositério Aberto da Universidade do Porto,

floating point numbers. In the late 1990s, the FPU became a physical part of the 2014.
microprocessor chip. There were

< 1% match (publications)

Singh, Prateek, and Kalyani Bhole.
"Optimized floating_point arithmetic unit"
2014 Annual IEEE India Conference
(INDICON), 2014.

three ways to carry out floating-point operation on a CPU: Floating-
point unit emulator, Add-on FPU and Integrated FPU.

@ Turnitin X +
< C' @ turnitin.com/newreport.asp?eq="18teb=18esm=208.0id=11604021038m=08svr=458r=55.193016831015348&lang=en_us&bypass_c...
preferences

tu rnitin‘@ Processed on: 27-Apr-2020 11:07 +08 Design of A Floating

ID: 1160402103

Originality Report Word Count: 6546 POlnt Unlt fOI‘ 32'B1t
Submitted: 8 5
Document Viewer By Low Wai Hau

]

X

* 60

Similarity by Source

Similarity Index

Internet Sources: 14%
o, Publications: 5%
15 % Student Papers: N/A

include quoted include bibliography excluding matches < 20 words

mode:| show highest matches logether ¥ ‘ Change mode B J}

CHAPTER 1: INTRODUCTION 1-1 Background Information 1-1-1 II'

Floating Point Unit Floating point unit (FPU) was a part of a computer system dedicated to
perform operations on floating point numbers. It could be defined as a specialized
coprocessor that could manipulate numbers quicker than the basic microprocessor (CPU)
itself. The typical operations on floating point numbers were addition, subtraction,
multiplication, division, square root and bit shifting. An ALU was designed to handle the
operations on the fixed point numbers such as integers. The operations on fixed point
numbers were similar to the operations on floating point numbers. ALU could also carry
out the operations on floating point numbers. However, the difference between the ALU
and the FPU was their speed on carrying out the operations on floating point numbers.
ALU performed the operation on floating point numbers in such a slow way. Therefore,
this was the reason for the existence of the FPU coprocessor in the market or integrated
with the CPU. Early years back, personal computing

‘was common in IBM PC or compatible microcomputers for the FPU
to be entirely separate from the CPU, and sold as an optional add-
on. The FPU could be purchased if the user wished to

enhance the processor’s speed to achieve math- intensive computation especially on
floating point numbers. In the late 1990s, the FPU became a physical part of the
microprocessor chip. There were

three ways to carry out floating-point operation on a CPU: Floating-
point unit emulator, Add-on FPU and Integrated FPU.

< 1% match (publications)

Singh, Prateek, and Kalyani Bhole.
"Optimized floating point arithmetic unit"
2014 Annual IEEE India Conference
(INDICON), 2014.

< 1% match (Internet from 14-Mar-2016)
https://www.coursehero.com/file/p1rsoat/Dat
Representation-21-Double-Precision-Floating-
Point-Representation-g-Double/

< 1% match (Internet from 24-Sep-2010)
http://hkn.eecs.berkeley.edu

< 1% match (Internet from 16-Jan-2020)
http://www.vlsifacts.com

< 1% match (Internet from 18-Mar-2020)
https://www.scribd.com/document/35236174
of-32-bit-Floating-Point-Unit-for-Advanced-
Processors

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-1AD-005 | RevNo.: 0 [Effective Date: 01/10/2013 | Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Full Name(s) of LOW WAI HAU

Candidate(s)

ID Number(s) 16ACB05712

Programme / Course CT

Title of Final Year Project Design of A Floating Point Unit For 32-Bits 5 Stage Pipeline Processor
Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds the
limits approved by UTAR)

Overall similarity index:___15 %

Similarity by source

Internet Sources: 14 %
Publications: 5 %
Student Papers: N/A %

Number of individual sources listed of more
than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(if) Matching of individual sources listed must be less than 3% each, and
(iif) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to
Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the Final Year
Project Report submitted by my student(s) as named above.

gl

Signaturef Supervisor Signature of Co-Supervisor

Name: MOK KAI MING Name:

Date: 24-04-2020 Date:

;\x =

UT

UNIVERSITI TUNKU ABDUL RAHMAN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY (KAMPAR

CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION
Student Id 16ACB05712
Student Name LOW WAI HAU

Supervisor Name | MR. MOK KAI MING

TICK (V)

DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

Front Cover

Signed Report Status Declaration Form

Title Page

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

<2 |2 <2 L2222]2]|2]

All references in bibliography are cited in the thesis, especially in the chapter of
literature review

Appendices (if applicable)

\/

Poster

\/

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-1AD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

l, the author, have checked and confirmed all | Supervisor verification. Report with incorrect
the items listed in the table are included in format can get 5 mark (1 grade) reduction.

my report.

LOW WAI HAU &/'A/

(Signature of Student) (Signaﬁeg)f Supervisor)
Date: 24-04-2020 Date: 24-04-2020

	DECLARATION OF ORIGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1-1 Background Information
	1-1-1 Floating Point Unit

	1-1-2 MIPS
	1-2 Motivation and Problem Statement
	1-2-1 Motivation
	1-2-2 Problem Statement

	1-3 Project Scope
	1-4 Project Objectives
	1-5 Impact, Significance and Contribution
	1-6 Report Organization

	CHAPTER 2 LITERATURE REVIEW
	2-1 Previous Works Done by Other Engineers/Researchers
	2-2 Floating Point Number
	2-2-1 Single Precision Floating Point Number Representation
	2-2-2 Double Precision Floating Point Number Representation

	2-3 Rounding
	2-4 Arithmetic on Floating Point Numbers
	2-4-1 Addition operation

	2-5 Floating Point Pipeline

	CHAPTER 3: PROPOSED METHOD AND APPROACH
	3-1 Design Methodology
	3-1-1 Micro-Architecture Specification
	3-1-2 RTL Modeling and Verification

	3-2 Design Tools
	3-2-1 ModelSim
	3-2-2 PC Spim
	3-2-3 Xilinx Vivado

	3-3 Grantt Chart

	CHAPTER 4 SYSTEM SPECIFICATION
	4-1 System Feature
	4-1-1 System Functionality

	4-2 Operating Procedure
	4-3 Naming Convention
	4-4 System Interface
	4-4-1 Input Pin Description
	4-4-2 Output Pin Description

	4-5 Memory Map
	4-5-1 Memory Map Description
	4-6-1 General Purpose Register
	4-6-2 Special Purpose Register
	4-6-3 Program Counter Register
	4-6-4 CP0 Register
	4-6-5 FP Register

	4-7 Instruction Formats and Addressing Modes
	4-7-1 Basic Instruction Formats
	4-7-2 FP Instruction Formats
	4-7-3 Addressing Modes
	e) FI-format
	PC-relative addressing: Perform operation on source and target register to determine next PC condition, the immediate is uses as address offset for next PC

	4-8 Supported Instructions Set

	CHAPTER 5: MICROARCHITECTURE SPECIFICATION
	5-1 Design Hierarchy and Partitioning
	5-2 Microarchitecture of RISC32 processor
	Figure above is the microarchitecture of RISC32 processor with 5 stages pipeline. The register file and the FP blocks will be implemented as shown in microarchitecture view above. The more detailed microarchitecture view will be shown in next page.
	5-2-1 Interface of FP Register File and Extended Pipeline with Datapath Unit

	5-3 Datapath Unit
	5-3-2 FPU Register File Block
	5-3-2-1 Functionality
	5-3-2-2 FPU Register File Block Interface
	5-3-2-3 Input Pin Description
	5-3-2-4 Output Pin Description

	5-3-3 FP Pre Normalize Block
	5-3-3-1 Functionality
	5-3-3-2 FP Pre Normalize Block Interface
	5-3-3-3 Input Pin Description
	5-3-3-4 Output Pin Description
	5-3-3-5 FP Pre Normalize Internal Block Diagram

	5-3-4 FP Adder Block
	5-3-4-1 Functionality
	5-3-4-2 FP Adder Block Interface
	5-3-4-3 Input Pin Description
	5-3-4-4 Output Pin Description
	5-3-4-5 FP Adder Internal Block Diagram

	5-3-5 FP Post Normalize Block
	5-3-5-1 Functionality
	5-3-5-2 FP Post Normalize Block Interface
	5-3-5-3 Input Pin Description
	5-3-5-4 Output Pin Description
	5-3-5-5 FP Post Normalize Internal Block Diagram

	5-3-6 FP Rounding Block
	5-3-6-1 Functionality
	5-3-6-2 FP Rounding Block Interface
	5-3-6-3 Input Pin Description
	5-3-6-4 Output Pin Description
	5-3-6-5 FP Rounding Block Internal Diagram

	5-4 Controlpath Unit
	5-4-1 Controlpath Unit Interface

	5-5 Rom Unit
	5-5-1 Rom Unit Interface

	5-6 Memory Unit
	5-6-1 Memory Unit Interface
	5-6-2 Memory Unit Mapping

	CHAPTER 6: VERIFICATION SPECIFICATION
	6-1 Test Plan for FPU
	6-2 Simulation Result for FPU
	6-2-1 Test Case #1: Reset
	6-2-2 Test Case #2: Addition function test on single precision numbers
	6-2-3 Test Case #3: Addition function test on double precision numbers
	6-2-4 Test Case #4: Addition function test on all zero numbers
	6-2-5 Test Case #5: Infinity inputs test
	6-2-6 Test Case #5: NaN inputs test

	6-3 FP Register File Contents
	6-4 Test Bench for FPU
	6-5 FP Integration with RISC32
	6-5-1 Test Program
	6-5-2 Simulation Result
	6-5-2-1 Test Case #1: lwc1 instruction
	6-5-2-2 Test Case #1: swc1 instruction
	6-5-2-3 Test Case #3: mfc1 instruction
	6-5-2-4: Test Case #3: mtc1 instruction

	6-5-3 Test Bench

	CHAPTER 7: CONCLUSION
	BIBLIOGRAPHY
	POSTER

