

DESIGN OF A FLOATING POINT UNIT FOR 32-BIT 5 STAGE PIPELINE

PROCESSOR

BY

LOW WAI HAU

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER ENGINEERING (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: Design of A Floating Point Unit for 32-Bit 5 Stage Pipeline

 Processor

Academic Session: JAN 2020

 I __________ LOW WAI HAU______________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 ______LOW WAI HAU_______ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 1059, Jalan Seksyen 1/1,_______

 Bandar Barat,_______________ ___MOK KAI MING________

 31900 Kampar._______________ Supervisor’s name

 Date: __24 April 2020_________ Date: ___24 April 2020______

DESIGN OF A FLOATING POINT UNIT FOR 32-BIT 5 STAGE PIPELINE

PROCESSOR

BY

LOW WAI HAU

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER ENGINEERING (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

ii

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “DESIGN OF A FLOATING POINT UNIT FOR 32-BIT 5

STAGE PIPELINE PROCESSOR” is my own work except as cited in the references. The

report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other reward.

Signature : LOW WAI HAU

Name : LOW WAI HAU

Date : 24 APRIL 2020

iii

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

First of all, I would like express deepest gratitude to my supervisor, Mr. Mok Kai Ming who has

been providing me guidance with patience throughout the planning and development of this

project.

I would also like to thank my family members for the support and encouragement throughout my

undergraduate years. Nevertheless, I would like to thank all my fellow course mates and friends

who supported me throughout the entire course of this project. All the supports and helps contribute

to the accomplishment of this project.

iv

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

This project is about the design of a Floating Point Unit (FPU), integrate the FPU into RISC32

processor and synthesize the FPU design on Field Programmable Gate Array (FPGA). The stand-

alone FPU has been modeled by a senior student in Universiti Tunku Abdul Rahman, Liu Hing

Yun. However, there was no integration test made on the FPU to the processor and the aforesaid

FPU can only perform operation on single precision numbers. Hence, this project is required to

develop a FPU which can perform operation on both single and double precision numbers.

The development project will start by studying the algorithm of addition on floating point numbers.

The addition algorithm is then implemented in the FPU so that the FPU can perform addition on

floating point numbers. Also, a dedicated register file is developed for FPU to store 32-bits or 64-

bits of data.

This project will use top down design methodology: system specification, architecture level and

microarchitecture level development. Microarchitecture level will perform unit partitioning of the

system and block partitioning of the units. RTL modelling using Verilog will be performed on

each block following the units and eventually the complete system. Verification will be made to

determine functionality correctness of FPU.

The project will integrate the FPU into the RISC32 pipeline processor and the verification will be

carried out to prove the functionality of FPU. In the end of this project, the FPU will be synthesized

on FPGA.

v

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE ………………………………………………………………………......……….. i

DECLARATION OF ORIGINALITY ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ABBREVIATIONS .. xii

CHAPTER 1: INTRODUCTION .. 1

1-1 Background Information ... 1

1-1-1 Floating Point Unit ... 1

1-1-2 MIPS .. 2

1-2 Motivation and Problem Statement .. 3

1-2-1 Motivation .. 3

1-2-2 Problem Statement ... 4

1-3 Project Scope .. 5

1-4 Project Objectives ... 5

1-5 Impact, Significance and Contribution ... 5

1-6 Report Organization .. 6

CHAPTER 2 LITERATURE REVIEW ... 7

2-1 Previous Works Done by Other Engineers/Researchers ... 7

2-2 Floating Point Number .. 10

2-2-1 Single Precision Floating Point Number Representation... 11

2-2-2 Double Precision Floating Point Number Representation ... 11

2-3 Rounding ... 12

2-4 Arithmetic on Floating Point Numbers ... 13

2-4-1 Addition operation ... 13

2-5 Floating Point Pipeline .. 15

CHAPTER 3: PROPOSED METHOD AND APPROACH ... 17

3-1 Design Methodology ... 17

3-1-1 Micro-Architecture Specification .. 18

vi

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3-1-2 RTL Modeling and Verification .. 18

3-2 Design Tools ... 19

3-2-1 ModelSim ... 19

3-2-2 PC Spim ... 20

3-2-3 Xilinx Vivado... 20

3-3 Grantt Chart .. 20

CHAPTER 4 SYSTEM SPECIFICATION .. 21

4-1 System Feature .. 21

4-1-1 System Functionality ... 22

4-2 Operating Procedure ... 23

4-3 Naming Convention .. 23

4-4 System Interface.. 24

4-4-1 Input Pin Description ... 24

4-4-2 Output Pin Description .. 25

4-5 Memory Map .. 26

4-5-1 Memory Map Description .. 28

4-6-1 General Purpose Register ... 29

4-6-2 Special Purpose Register .. 29

4-6-3 Program Counter Register .. 30

4-6-4 CP0 Register .. 30

4-6-5 FP Register ... 30

4-7 Instruction Formats and Addressing Modes ... 31

4-7-1 Basic Instruction Formats .. 31

4-7-2 FP Instruction Formats ... 31

4-7-3 Addressing Modes ... 32

4-8 Supported Instructions Set .. 36

CHAPTER 5: MICROARCHITECTURE SPECIFICATION .. 39

5-1 Design Hierarchy and Partitioning.. 39

5-2 Microarchitecture of RISC32 processor ... 42

5-2-1 Interface of FP Register File and Extended Pipeline with Datapath Unit 43

5-3 Datapath Unit .. 44

5-3-1 Datapath Unit Interface .. 44

vii

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-2 FPU Register File Block .. 45

5-3-2-1 Functionality ... 45

5-3-2-2 FPU Register File Block Interface .. 45

5-3-2-3 Input Pin Description .. 46

5-3-2-4 Output Pin Description ... 47

5-3-3 FP Pre Normalize Block .. 48

5-3-3-1 Functionality ... 48

5-3-3-2 FP Pre Normalize Block Interface .. 48

5-3-3-3 Input Pin Description .. 49

5-3-3-4 Output Pin Description ... 49

5-3-3-5 FP Pre Normalize Internal Block Diagram ... 50

5-3-4 FP Adder Block.. 51

5-3-4-1 Functionality ... 51

5-3-4-2 FP Adder Block Interface ... 51

5-3-4-3 Input Pin Description .. 52

5-3-4-4 Output Pin Description ... 52

5-3-4-5 FP Adder Internal Block Diagram .. 53

5-3-5 FP Post Normalize Block ... 54

5-3-5-1 Functionality ... 54

5-3-5-2 FP Post Normalize Block Interface... 54

5-3-5-3 Input Pin Description .. 55

5-3-5-4 Output Pin Description ... 55

5-3-5-5 FP Post Normalize Internal Block Diagram ... 56

5-3-6 FP Rounding Block .. 57

5-3-6-1 Functionality ... 57

5-3-6-2 FP Rounding Block Interface.. 57

5-3-6-3 Input Pin Description .. 58

5-3-6-4 Output Pin Description ... 58

5-3-6-5 FP Rounding Block Internal Diagram .. 59

5-4 Controlpath Unit ... 60

5-4-1 Controlpath Unit Interface ... 60

5-5 Rom Unit ... 61

viii

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-5-1 Rom Unit Interface .. 61

5-6 Memory Unit ... 61

5-6-1 Memory Unit Interface .. 61

5-6-2 Memory Unit Mapping .. 62

CHAPTER 6: VERIFICATION SPECIFICATION ... 63

6-1 Test Plan for FPU.. 63

6-2 Simulation Result for FPU .. 65

6-2-1 Test Case #1: Reset .. 65

6-2-2 Test Case #2: Addition function test on single precision numbers 65

6-2-3 Test Case #3: Addition function test on double precision numbers 66

6-2-4 Test Case #4: Addition function test on all zero numbers ... 66

6-2-5 Test Case #5: Infinity inputs test ... 67

6-2-6 Test Case #5: NaN inputs test .. 67

6-3 FP Register File Contents ... 68

6-4 Test Bench for FPU .. 69

6-5 FP Integration with RISC32.. 72

6-5-1 Test Program .. 72

6-5-2 Simulation Result ... 73

6-5-2-1 Test Case #1: lwc1 instruction .. 73

6-5-2-2 Test Case #1: swc1 instruction ... 73

6-5-2-3 Test Case #3: mfc1 instruction ... 74

6-5-2-4: Test Case #3: mtc1 instruction... 75

6-5-3 Test Bench ... 76

CHAPTER 7: CONCLUSION... 82

BIBLIOGRAPHY ... 83

POSTER... 85

PLAGIARISM CHECK RESULT

CHECK LIST

ix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure 1-1-2-F1: MIPS 5-stage pipeline (Mok, 2008, p.9). .. 2

Figure 1-2-2-F1: RISC32 Microarchitecture (FPU not implemented on datapath unit). 4

Figure 2-1-F1: Carry save adder (Kukati et al. 2013). ... 9

Figure 2-2-1-F1: Single precision floating point number representation. 11

Figure 2-2-2-F1: Double precision floating point number representation. 12

Figure 2-4-1-F1: Algorithm of addition operation.. 14

Figure 2-5-F1: Latencies and initiation intervals for functional units .. 15

Figure 2-5-F1: Extended Pipeline for FP .. 15

Figure 3-1-F1: Top-down design methodology. ... 17

Figure 3-3-F1: Grantt Chart of Project. .. 20

Figure 4-4-F1: Block diagram of RISC32 processor. ... 24

Figure 4-5-F1: Memory Map .. 27

Figure 4-7-1-F1: Instruction Format ... 31

Figure 4-7-2-F1: FP Instruction Format ... 31

Figure 4-7-3-F1: R-format Addressing ... 32

Figure 4-7-3-F2: Immediate Addressing .. 32

Figure 4-7-3-F3: Based Displacement Addressing ... 33

Figure 4-7-3-F4: Based Displacement Addressing with FP Register File (Used by lwc1, swc1) 33

Figure 4-7-3-F5: PC-Relative Addressing .. 34

Figure 4-7-3-F6: Pseudo-Direct Addressing ... 34

Figure 4-7-3-F7: Register Addressing for FR format (Used by add.s, add.d) 35

Figure 4-7-3-F8: Register Addressing for FR format (Used by FP branching instructions) 35

Figure 5.1-F1: Block Partitioning ... 41

Figure 5-2-F1: Microarchitecture of RISC32 processor ... 42

Figure 5-2-1-F1: Interface of FP Register File and Extended Pipeline with Datapath Unit 43

Figure 5-3-1-F1: Datapath Unit Interface ... 44

Figure 5-3-2-2-F1: Block Interface of FPU Register File .. 45

Figure 5-3-3-2-F1: Block Interface of FP Pre Normalize Block .. 48

Figure 5-3-3-5-F1 FP Pre Normalize Internal Block Diagram ... 50

x

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5-3-4-2-F1 Block Interface of FP Adder Block .. 51

Figure 5-3-4-5-F1 FP Adder Internal Block Diagram .. 53

Figure 5-3-5-2-F1: Block Interface of FP Post Normalize Block... 54

Figure 5-3-5-5-F1 FP Post Normalize Internal Block Diagram ... 56

Figure 5-3-6-2-F1: Block Interface of FP Rounding Block.. 57

Figure 5-3-6-5-F1 FP Rounding Internal Block Diagram .. 59

Figure 5-4-1-F1: Controlpath Unit Interface .. 60

Figure 5-5-1-F1: Rom Unit Interface .. 61

Figure 5-6-1-F1: Memory Unit Interface .. 61

Figure 6-2-1-F1: Simulation result for test case #1. ... 65

Figure 6-2-2-F1: Simulation result for test case #2. ... 65

Figure 6-2-3-F1: Simulation result for test case #3. ... 66

Figure 6-2-4-F1: Simulation result for test case #4. ... 66

Figure 6-2-5-F1: Simulation result for test case #5. ... 67

Figure 6-2-6-F1: Simulation result for test case #6. ... 67

Figure 6-3-F1: FP register file contents .. 68

Figure 6-5-2-1-F1: Simulation result of test case #1(lwc1). ... 73

Figure 6-5-2-2-F1: Simulation result of test case #1(swc1). .. 74

Figure 6-5-2-3-F1: Simulation result of test case #3(mfc1). .. 74

Figure 6-5-2-4-F1: Simulation result of test case #3(mtc1).. 75

xi

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table 2-1-T1: Number of clock cycles for each arithmetic operation (Al-Eryani 2006). 8

Table 2-1-T2: Number of clock cycles for each arithmetic operation. ... 8

Table 3-2-1-T1: Comparison between simulation tools. .. 19

Table 4-1-F1 RISC32 Features ... 21

Table 4-3-T1: Naming convention.. 23

Table 4-4-1-T1: Input pin description of RISC32 chip. ... 25

Table 4-4-2-T1: Output pin description of RISC32 chip. ... 25

Table 4-5-T1: Memory Map ... 26

Table 4-5.1-T1: Memory Map Description .. 28

Table 4-6-1-T1: General Purpose Registers ... 29

Table 4-6-2-T1: Special Purpose Register .. 29

Table 4-6-4-T1: CP0 Register ... 30

Table 4-6-5-T1: FP Register ... 30

Table 4-7-1-T1: Instruction Format Definition... 31

Table 4-8-T1: Supported Instruction Set .. 38

Table 5-1-T1: Design Hierarchy of RISC32 Processor with FP Register File, FP Pre-Normalize,

FP Adder, FP Post-Normalize and FP Rounding.. 40

Table 5-3-2-3-T1: Input Pin Description of FPU Register File .. 46

Table 5-3-2-4-T1: Output Pin Description of FPU Register File ... 47

Table 5-3-3-3-T1: Input Pin Description of FP Pre Norm Block ... 49

Table 5-3-3-4-T1: Output Pin Description of FP Pre Norm Block .. 49

Table 5-3-4-2-T1: Input Pin Description of FP Adder Block ... 52

Table 5-3-4-4-T1: Output Pin Description of FP Adder Block .. 52

Table 5-3-5-3-T1: Input Pin Description of FP Post Norm Block.. 55

Table 5-3-5-4-T1: Output Pin Description of FP Post Norm Block ... 55

Table 5-3-6-3-T1: Input Pin Description of FP Rounding Block ... 58

Table 5-3-6-4-T1: Output Pin Description of FP Rounding Block .. 58

Table 5-6-2-T1: Memory Unit mapping and its content description .. 62

Table 6-1-T1: Test Plan of FPU.. 64

xii

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

FPU Floating Point Unit

CPU Central Processing Unit

MIPS Microprocessor without Interlocked Pipelined Stages

VHDL VHSIC Hardware Description Language

RISC Reduced Instruction Set Computer

VHDL VHSIC Hardware Description Language

FPGA Field Programmable Gate Array

CHAPTER 1: INTRODUCTION

1

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: INTRODUCTION

1-1 Background Information

1-1-1 Floating Point Unit

Floating point unit (FPU) was a part of a computer system dedicated to carry out operations

on floating point numbers. It could be defined as a specialized coprocessor that could manipulate

numbers quicker than the basic microprocessor (CPU) itself. The typical operations on floating

point numbers were addition, subtraction, multiplication, division, square root and bit shifting. An

ALU was designed to handle the operations on the fixed point numbers such as integers. The

operations on fixed point numbers were similar to the operations on floating point numbers. ALU

could also carry out the operations on floating point numbers. However, the difference between

the ALU and the FPU was their speed on carrying out the operations on floating point numbers.

ALU performed the operation on floating point numbers in such a slow way. Therefore, this was

the reason for the existence of the FPU coprocessor in the market or integrated with the CPU.

Early years back, personal computing was common in IBM PC or compatible

microcomputers for the FPU to be entirely separate from the CPU, and sold as an optional add-on.

The FPU could be purchased if the user wished to enhance the processor’s speed to achieve math-

intensive computation especially on floating point numbers. Starting with the Intel Pentium and

Motorola 68000 series in the late 1990s, the FPU became a physical part of the microprocessor

chip.

When a CPU was executing a program that called for a floating-point operation, there were

three ways to carry it out: Floating-point unit emulator, Add-on FPU and Integrated FPU. FPU

could support the following arithmetic operations that is addition, subtraction, multiplication,

division and square root. The supported rounding modes for each operation are round to nearest

even, round to zero, round up and round down.

CHAPTER 1: INTRODUCTION

2

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1-1-2 MIPS

MIPS also known as Microprocessor without Interlocked Pipelined Stage, which based on

the Reduced Instruction Set Computer (RISC) architecture was developed by a team led by John

L. Hennessy and David A. Patterson. MIPS Technologies, formerly known as MIPS Computer

System Inc. was co-founded at 1984 by John L. Hennessy. The MIPS architecture could be found

in the book called Computer Organization and Design: The Hardware/ Software Interface

(Patterson and Hennessy, 2005). This book showed the architecture of MIPS, the instruction sets,

pinelined stages, just to name a few and how to build a microprocessor. MIPS processors operated

by breaking instruction execution into multiple small independent “stages” and since the stages

were independent, multiple instructions could be in varying stages of completion at any one time

(Integrated Device Technology. Inc, 1994, p.1-2).

Figure 1-1-2-F1: MIPS 5-stage pipeline (Mok, 2008, p.9).

The instruction execution cycle was divided to 5 stages, IF (“Instruction Fetch”), ID (“Instruction

Decode and Registers Fetch”), EX (“Execute”), MEM (“Memory”) and WB (“Write Back”).

 IF: Instruction Fetch and update PC.

 ID: Decodes the instruction and fetches the contents of any CPU registers it uses.

CHAPTER 1: INTRODUCTION

3

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 EX: Execute R-type, calculate memory address.

 MEM: Read/write the data from/to the Data Memory.

 WB: Write the result data into the register file.

1-2 Motivation and Problem Statement

1-2-1 Motivation

A 32-bit pipelined RISC microprocessor has been developed in Faculty of Information and

Communication Technology, Universiti Tunku Abdul Rahman (UTAR) using Verilog which is a

hardware description language (HDL). The project is based on the Reduced Instruction Set

Computing (RISC) architecture. The motivations to initiate the project are due to following

reasons:

 Microchip design companies designed microprocessor as Intellectual Property or IP for

commercial purpose. The microprocessor IP contains information on the entire design

process for the front-end (modeling and verification) to back-end (physical design)

integrated circuit (IC) design. These are trade secrets of a company and certainly not made

available in the market at an affordable price for research purpose.

 Several freely available microprocessor cores can be found in internet, most of them can

be found at OpenCores (http://www.opencores.org/). Unfortunately, these processors do

not implement the entire MIPS Instruction Set Architecture (ISA) and lack of

comprehensive documentation which is hard to be understand.

 The verification specification for a freely available RISC microprocessor core that is

available on the Internet is not well developed and it is incomplete. Thus design process

will be slowed down without a complete verification specification.

 The lack of well-developed verification specifications for these microprocessor cores will

affect the physical design phase. A design needs to be functionally proven before the

physical design phase can proceed smoothly. Otherwise, if the front-end design has to be

changed, the physical design process has to be redone.

http://www.opencores.org/

CHAPTER 1: INTRODUCTION

4

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1-2-2 Problem Statement

So far, there is MIPS-compatible ISA which includes the Central Processing Unit (CPU),

PS/2 mouse system, PS/2 keyboard system, basic memory, coprocessor 0 (CP0), and Universal

Asynchronous Receiver/Transmitter (UART). However, Floating Point Unit (FPU) has not been

designed and integrated in RISC32 yet. In general, although ALU could perform operations on

floating point numbers, it was considered slow to meet the expectation. Hence, this project is

initiated to design a floating point unit and then integrate it into RISC32 processor.

Figure 1-2-2-F1: RISC32 Microarchitecture (FPU not implemented on datapath unit).

CHAPTER 1: INTRODUCTION

5

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1-3 Project Scope

This project is to design a FPU model with Verilog for RISC32 processor. The

specifications of FPU and its internal blocks will be developed. The functionality of the FPU will

be verified by using test bench. The FPU will be integrated into existing available RISC32

processor and verification will be done to ensure it is working. Lastly, the FPU will be synthesis

on FPGA.

1-4 Project Objectives

Here are the objectives of the project:

 To design and develop the RTL model of FPU which include microarchitecture

specification and testbench.

 To integrate the FPU into RISC32 processor.

 To synthesis the FPU module on FPGA with completes documented timing and resource

usage information.

1-5 Impact, Significance and Contribution

In short, there is lacking of well-developed FPU based development environment out there.

The development environment referred to the availability of the following:

 A well-developed design documentation of chip specification, architecture specification

and micro-architecture specification from top level to bottom level.

 A fully functional well-developed FPU integrated into RISC32 processor in the form of

synthesis-ready RTL written in Verilog.

 A well-developed verification specification of the FPU. The verification specification

should contain complete verification methodology and its techniques as well as test plan,

test bench architecture etc.

CHAPTER 1: INTRODUCTION

6

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 A complete physical design in FPGA with documented timing and resources usage

information.

This project is to develop an environment that mentioned above: to integrate the RISC32 processor

core-based platform with the FPU which could support hardware modeling research work.

1-6 Report Organization

This report contains 7 chapters. The chapters are Chapter 1 Introduction, Chapter 2 Literature

Review, Chapter 3 Methodology, Chapter 4 System Specification, Chapter 5 Microarchitecture

Specification, Chapter 6 Verification Specification, Chapter 7 Conclusion.

Chapter 1 Introduction states the motivation for the project, following by problem statement,

project scope and objective and the background information of FPU and MIPS.

Chapter 2 Literature Review explains about the information related to FPU such as floating point

number and format, single and double precision as well as arithmetic of floating point number. In

this chapter, a previously developed FPU is also reviewed regarding its design.

Chapter 3 Methodology discuss about the flow of how the project is conducted. Proposed solution

is also documented at this chapter.

Chapter 4 System design gives the overview of the system on the top level and the naming

convention used within the system

Chapter 5 Microarchitecture Specification contains the units or components involved in the system

design. This chapter identifies each unit involved in the system and gives an overview about each

unit. Also contains the detailed discussion and design for each unit.

Chapter 6 Verification Specification shows the test written to verify the integration of the system.

Result of the verification test is also documented here.

Chapter 7 Conclusion concludes the overall project development.

CHAPTER 2 LITERATURE REVIEW

7

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

2-1 Previous Works Done by Other Engineers/Researchers

Since ALU performed floating point operations slower in term of speed, FPU came to

existence to speed up the mathematical operations of floating point numbers. FPU this project had

been done by a couple of engineers before. For instance, according to Al-Eryani (2006), he used

VHDL language to model the 32-bit floating point unit which complies fully with the IEEE 754

Standard.

From his project, the proposed FPU was able to support some arithmetic operations such

as addition, subtraction, multiplication, division and square root. All arithmetic operations had

these three stages:

1. Pre-normalize: The operands were transformed into formats that makes them easy and

efficient to handle internally.

2. Arithmetic core: The basic arithmetic operations were done here.

3. Post-normalize: The result would be normalized if possible (leading bit before decimal

point is 1, if possible) and then transformed into the format specified by the IEEE standard (Al-

Eryani 2006).

Besides, the FPU also able to perform four rounding modes which were rounding to nearest

even, to zero, rounding up and down. The FPU was tested with test cases created using SoftFloat

which was a software implementation of floating-point that conforms to the IEC/IEEE Standard

for Binary Floating-Point Arithmetic. Moreover, the FPU was tested in ModelSim with 100,000

test cases for each arithmetic operation and for each rounding mode. As a result, an FPU with

features of 100 MHz operating frequency, few clock cycles and logic elements was implemented.

However, the FPU that done by him could only support single precision format floating

point numbers. In addition, in order for the FPU to achieve high frequency, the FPU had to trade

off its clock cycles in which it required more pipelining. The number of clock cycles that the FPU

needs for each arithmetic operation was listed below:

CHAPTER 2 LITERATURE REVIEW

8

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Operation Number of clock cycles

Addition 7

Subtraction 7

Multiplication 12

Division 35

Square-root 35

Table 2-1-T1: Number of clock cycles for each arithmetic operation (Al-Eryani 2006).

On the other hand, Lundgren (2014) also used VHDL to model double precision floating

point core. By using double precision format, it could represented a wider range of numeric values.

This core was designed to meet the IEEE 754 standard for double precision floating point

arithmetic. This unit had been extensively simulated, covering all four operations (add, subtract,

multiply, divide), rounding modes, exceptions like underflow and overflow, and even the obscure

corner cases, like when overflowing from denormalized to normalized, and vice-versa. The

floating point unit supports denormalized numbers, 4 operations, and 4 rounding modes (nearest,

zero, + infinity, - infinity). The unit was synthesized with an estimated frequency of 185 MHz,

for a Virtex5 target device.

Operation Number of clock cycles

Addition 20

Subtraction 21

Multiplication 24

Division 71

Table 2-1-T2: Number of clock cycles for each arithmetic operation.

CHAPTER 2 LITERATURE REVIEW

9

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The floating point unit he developed supported denormalized numbers which required

more signals and logic levels to accommodate gradual underflow. The supported clock speed of

185 MHz makes up for the large number of clock cycles required for each operation to complete

which led to longer latency as it required more logic levels.

Apart from that, floating point numbers required costly processing hardware or lengthy

software implementations as it had larger range of values. Therefore, powerful computations and

techniques which reduced hardware and improved the performance like power, area and timing

was required. This concern led Kukati et al. (2013) designed a 32-bit floating point arithmetic unit

with faster carry save adders and clock gating techniques to reduce power dissipation. The low

power optimizing technique ‘Multi Threshold Voltage’ is used for reducing the power

consumption of the arithmetic unit. Below was their proposed hardware:

Figure 2-1-F1: Carry save adder (Kukati et al. 2013).

Figure 2-1-F1 shows the data flow of the computation of two floating point numbers. The

arithmetic operation flow will be discussed later in this chapter.

CHAPTER 2 LITERATURE REVIEW

10

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2-2 Floating Point Number

There were several ways to represent real numbers on computer system. Fixed point places

a radix point somewhere in the middle of the digits, and was equivalent to using integers that

represent portions of some unit. For instance, a fixed-point number with 3 digits after the decimal

point could be used to represent numbers such as: 1.005, 3.209, 28.000, etc. Another approach was

to use rational, and represent every number as the ratio of two integers.

A number in scientific notation that has no leading 0s was called a normalized number,

which was the usual way to write it. For example, 1.0 x 10-9 was in normalized scientific notation,

but 0.1ten x 10-8 was not (Patterson & Hennesy 2014).

Binary numbers in scientific notation:

1.0two x 2-1

Computer arithmetic that supported such numbers was called floating point because it

represents numbers in which the binary point was not fixed, as it was for integers.

Floating point solved a number of representation problems. Fixed point had a fixed window

of representation, which limited it from representing very large or very small numbers. Also, fixed-

point was prone to a loss of precision when two large numbers were divided. Floating point, on

the other hand, employed a sort of "sliding window" of precision appropriate to the scale of the

number. This allowed it to represent numbers from 1,000,000,000,000 to 0.0000000000000001

with ease.

A standard scientific notation for reals in normalized form offers three advantages. It not

only simplifies exchange of data that includes floating-point numbers, it also simplified the

floating-point arithmetic algorithms to know that numbers would always be in this form as well as

increasing the accuracy of the numbers that could be stored in a word, since the unnecessary

leading 0s were replaced by real digits to the right of the binary point (Patterson & Hennesy 2014).

CHAPTER 2 LITERATURE REVIEW

11

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2-2-1 Single Precision Floating Point Number Representation

Figure 2-2-1-F1: Single precision floating point number representation.

S represents 1 sign bit.

E represents 8 exponent bits.

M represents 23 Mantissa or fraction (f) bits.

Floating point notation: (-1)s 2e × 1.f (normalized)

 f = (b23
-1+b22

-2+ bi
n +…+b0

-23) where bi
n =1 or 0

s = sign (0 was positive; 1 was negative)

 e = unbiased exponent; e = E – 127 (bias)

Emax= 255, Emin=0. E=255 and E=0 were used to represent special values.

2-2-2 Double Precision Floating Point Number Representation

One way to reduce chances of underflow or overflow was to offer another format that had

a larger exponent. In C, this number was called double and operations on doubles were called

double precision floating-point arithmetic.

The double precision format was a method of storing approximations to real numbers in a

binary format. The term double came from the full name, double precision floating-point numbers.

Originally, a 4-byte floating-point number was used, (float), however, it was found that this was

not precise enough for most scientific and engineering calculations, so it was decided to double

the amount of memory allocated, hence the abbreviation double. The word ‘double’ here meant 64

bits.

CHAPTER 2 LITERATURE REVIEW

12

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The representation of a double precision floating-point number took two MIPS words,

where s is still the sign of the number, exponent is the value of the 11-bit exponent field, and

fraction is the 52-bit number in the fraction field.

Figure 2-2-2-F1: Double precision floating point number representation.

Although double precision did increase the exponent range, its primary advantage was its greater

precision because of the much larger fraction. Since 0 had no leading 1, it was given the reserved

exponent value 0 so that the hardware would not attach a leading 1 to it. The exponent was stored

by adding a bias of 011111111112 to the actual exponent. Thus, this was all the information we

need to interpret a double precision floating point number in binary form.

2-3 Rounding

Although there were infinitely many integers, in most programs the result of integer

computations could be stored in 32 bits. In contrast, given any fixed number of bits, most

calculations with real numbers would produce quantities that could not be exactly represented

using that many bits. Hence, the result of a floating-point calculation must often be rounded in

order to fit back into its finite representation. The resulting rounding error is the characteristic

feature of floating point computation (Goldberg 1991).

CHAPTER 2 LITERATURE REVIEW

13

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2-4 Arithmetic on Floating Point Numbers

2-4-1 Addition operation

 Based on the report from Singh and Bhole (2014), they had implemented arithmetic unit

that are specially designed to carry out operations on floating point numbers. Floating point

addition and subtraction algorithms consisted of five stages

 Firstly, difference between exponent was to be calculated, difference d = e1 − e2. If e1 <

e2 then d = e2 − e1.

 In second stage pre-alignment of mantissas was achieved by shifting smaller mantissa right

by d bits.

 In third stage addition of mantissa was done to get tentative result for mantissa.

 Then normalization is done. If there were leading-zeros in tentative result, result was

shifted to left and exponent is decreased by number of leading zeros. If overflows, then

result was shifted right and exponent increased by 1 bit.

 Last stage was rounding and produce final output.

CHAPTER 2 LITERATURE REVIEW

14

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure below explains the data flow on how the floating point arithmetic operation work.

Figure 2-4-1-F1: Algorithm of addition operation.

Since multiplication and division were far more complicated, so they would not be discussed here.

In this project, only addition operation is being focused and the above algorithm is being

implemented.

CHAPTER 2 LITERATURE REVIEW

15

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2-5 Floating Point Pipeline

Due to FP operations required larger amount of logics to handle which arise some

performance issue for the original 5-stage MIPS pipeline. This is because it is impractical to

complete FP operations in 1 clock cycle as it will increase the latency for operations. The solution

comes to extending the MIPS Pipeline for FP operations.

Figure 2-5-F1: Latencies and initiation intervals for functional units

Pipeline latency is equal to 1 cycle less than the depth of the execution pipeline, which is the

number of stages from the EX stage to the stage that produces the result. Therefore, based on the

figure above, the number of stages in an FP add unit is four.

Figure 2-5-F1: Extended Pipeline for FP

CHAPTER 2 LITERATURE REVIEW

16

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In this project, only FP adder is being focused. Based on the figure above, the EX stage of the

original pipeline is extended to 4 stages, A1 to A4 for FP adder. However, this only applies to

floating point instruction such as add.s and add.d. The other instructions follow the original 5-

stage pipeline for one complete execution.

CHAPTER 3 PROPOSED METHOD AND APPROACH

17

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3: PROPOSED METHOD AND APPROACH

3-1 Design Methodology

There were two types of design methodology were available, Top-down design

methodology and Bottom-up design methodology. In top-down design methodology, the top level

representation of a chip was first defined then partitioned into lower level representations. For

bottom-up design methodology, the leaf nodes were first defined. The leaf nodes were then

integrated to form a higher level model of the chip. This process was repeated until the top level

of the chip was reached. Since digital system often uses the abstraction concepts to simplify the

design process, thus top-down design methodology was used in this project.

Top-down design methodology process flow was shown in Figure 4.1. This methodology

would keep on repeating until the system design met the requirement on functionality. If the design

did not meet the requirement, the design flow had to be repeated. This project focused on micro-

architecture level design.

Figure 3-1-F1: Top-down design methodology.

CHAPTER 3 PROPOSED METHOD AND APPROACH

18

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3-1-1 Micro-Architecture Specification

Micro-architecture specification described the internal design of a unit. The internal design

was described with design-specific technical information for RTL coding to begin. For this project,

the information included for each internal block of FPU were:

 FPU functionality description

 FPU operating procedures

 FPU interfaces and I/O pin description

 FPU internal operation

 FPU functional partitioning into blocks

 For each blocks,

- Block interfaces and I/O pin description

- Block functionality

- Block internal operation

- Finite-state machine (FSM)

- Block test plan

3-1-2 RTL Modeling and Verification

With the micro-architecture specification developed, the RTL coding on FPU internal block

could begin. The functional correctness of the model was verified at two levels:

 Micro-architecture level: Internal blocks of FPU were individually verified before they

were integrated into the architecture level.

 Architecture level: The individual blocks of FPU were integrated into a unit. Verification

was performed on the FPU.

CHAPTER 3 PROPOSED METHOD AND APPROACH

19

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3-2 Design Tools

3-2-1 ModelSim

Since this design would be using Verilog, it was crucial to discuss commonly used design

software that could support Verilog. There would be 3 design software discussed here:

Table 3-2-1-T1: Comparison between simulation tools.

Since all of the design tools mentioned above were licensed product, ModelSim would be chose

since free license was provided for student edition.

CHAPTER 3 PROPOSED METHOD AND APPROACH

20

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3-2-2 PC Spim

PC Spim was a simulator that provides a MIPS environment to simulate MIPS assembly

language. It would be used to develop test program to verify the functionality of the design.

3-2-3 Xilinx Vivado

The Vivado development software was designed by Xilinx. This software was designed

for synthesis and analysis of Verilog designs, enabling the developer to synthesize their designs,

perform timing analysis, examine RTL diagrams, simulate a design’s reaction to different stimuli,

and configure the target device with the programmer.

3-3 Grantt Chart

Figure 3-3-F1: Grantt Chart of Project.

CHAPTER 4 SYSTEM SPECIFICATION

21

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

4-1 System Feature

 RISC32 with FPU

Dummy Instruction Cache (KB) 16

Dummy Data Cache (KB) 16

Data width (bits) 32

Instruction width (bits) 32

General Purpose Register 32

Special Purpose Register HILO, PC

Co-Processor Register 32

Floating Point Register 32

Pipelined Stage 5

Data Hazard Handling Yes

Control Hazard Handling Yes

Interlock Handling Yes

Exception Handling Yes (4)

Data Dependency Forwarding Yes

Branch Prediction Dynamic – 2bits scheme

Multiplication (size of multiplier

and multiplicand)

yes – 32 bits

Branch Delay Slot Not supported

Instruction supported 44

Table 4-1-F1 RISC32 Features

CHAPTER 4 SYSTEM SPECIFICATION

22

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-1-1 System Functionality

1. Divide execution of instruction into 5 stages:

-IF(Instruction Fetch) Instruction fetch and update PC

-ID(Instruction Decode) Decode instruction and fetch operand

-EX(Execute) Execute instruction

-MEM(Memory) Read/write data from/ memory

-WB(Write Back) Write back the result to the register file

2. Resolve data hazard by data forwarding.

3. Resolve load-use instructions problem using stalling.

4. Resolve structural hazards using separating data and instruction cache

5. Resolve control hazards by branch prediction.

6. Resolve exception interrupt with exception handler.

CHAPTER 4 SYSTEM SPECIFICATION

23

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-2 Operating Procedure

1. Start the system.

2. Porting sequence of instruction into instruction cache.

3. Reset the system for at least 2 clocks.

4. After the reset, the system will automatically fetch and run the program inside instruction

cache.

5. Observe the waveform from development tools (Modelsim).

4-3 Naming Convention

Module - [lvl][mod. name]

Instantiation - [lvl][abbr. mod. name]

Pin - [lvl][type][abbr. mod. name]_[pin name]

 - [lvl][type][abbr. mod. name]_[stage]_[pin name]

 - [lvl][type][abbr. mod. name]_[abbr. mod. name]_[pin name]

Table 4-3-T1: Naming convention.

CHAPTER 4 SYSTEM SPECIFICATION

24

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-4 System Interface

Figure 4-4-F1: Block diagram of RISC32 processor.

4-4-1 Input Pin Description

CHAPTER 4 SYSTEM SPECIFICATION

25

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4-4-1-T1: Input pin description of RISC32 chip.

4-4-2 Output Pin Description

Table 4-4-2-T1: Output pin description of RISC32 chip.

CHAPTER 4 SYSTEM SPECIFICATION

26

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-5 Memory Map

Table 4-5-T1: Memory Map

CHAPTER 4 SYSTEM SPECIFICATION

27

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4-5-F1: Memory Map

However, due to the limitation of modelsim student edition version which only support up to 8k

memory, the cache size will set text segment from 32’h0040_0000 to 32’h0040_1FFC, data

segment from 32’h1000_0000 to 32’h1000_1FFC, stack segment from 32’h7fff_e000 to

32’h7fff_fffc, kernel text segment from 32’h8000_0000 to 32’h8000_1FFC and kernel data

segment from 32’h9000_0000 to 32’h9000_0FFC.

32’h8000 0180

CHAPTER 4 SYSTEM SPECIFICATION

28

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-5-1 Memory Map Description

Table 4-5.1-T1: Memory Map Description

Note *: required CP0

CHAPTER 4 SYSTEM SPECIFICATION

29

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-6 System Register

4-6-1 General Purpose Register

Width : 32-bits

Size : 32 units

Retrieving method : 5-bits address as index

Table 4-6-1-T1: General Purpose Registers

4-6-2 Special Purpose Register

Width : 32-bits

Size : 2 units

Retrieving method : Via instructions: MFHI, MTHI, MFLO, MTLO, MULT or MULTU

Name definition location in double [64:0]

HI Most Significant Word Double [63:32]

LO Least Significant Word Double [31:0]

Table 4-6-2-T1: Special Purpose Register

CHAPTER 4 SYSTEM SPECIFICATION

30

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-6-3 Program Counter Register

Width : 32-bits

Size : 1 unit

Retrieving method : Control by instruction address generator control.

4-6-4 CP0 Register

Name Address Use

$bcp0_stat 12
Interrupt mask, enable bits and status when exception

occurred

$bcp0_cause 13 Exception type and pending interrupt

$bcp0_epc 14 Address of instruction that caused exception

Table 4-6-4-T1: CP0 Register

4-6-5 FP Register

Width : 32 bits

Size : 32 units

Retrieving method : 5-bits address as index

Table 4-6-5-T1: FP Register

CHAPTER 4 SYSTEM SPECIFICATION

31

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-7 Instruction Formats and Addressing Modes

4-7-1 Basic Instruction Formats

Figure 4-7-1-F1: Instruction Format

Abbreviation Definitiion Width

op Operation code 6

rs Source register 5

rt Target register 5

rd Destination register 5

shamt Shift amount 5

funct Function field 6

immediate Immediate 16

data address offset Data address offset 16

branch address offset Branch address offset 16

jump address Jump address 26

Table 4-7-1-T1: Instruction Format Definition

4-7-2 FP Instruction Formats

Figure 4-7-2-F1: FP Instruction Format

CHAPTER 4 SYSTEM SPECIFICATION

32

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-7-3 Addressing Modes

a) R-format

Register addressing: Perform operation on source and target register and store the result into

destination register

Figure 4-7-3-F1: R-format Addressing

b) I-format

i. Immediate addressing: Perform operation on source register and immediate and store the result

into target register

Figure 4-7-3-F2: Immediate Addressing

ii. Based displacement addressing: Perform operation on source register and immediate, the result

is then uses as address to access the data memory to load/store data to/from target register

CHAPTER 4 SYSTEM SPECIFICATION

33

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4-7-3-F3: Based Displacement Addressing

Figure 4-7-3-F4: Based Displacement Addressing with FP Register File (Used by lwc1, swc1)

CHAPTER 4 SYSTEM SPECIFICATION

34

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

iii. PC-relative addressing: Perform operation on source and target register to determine next PC

condition, the immediate is uses as address offset for next PC

Figure 4-7-3-F5: PC-Relative Addressing

c) J-format

Pseudo-direct addressing: Perform operation by concatenating the upper bits of PC with the jump

address

Figure 4-7-3-F6: Pseudo-Direct Addressing

CHAPTER 4 SYSTEM SPECIFICATION

35

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

d) FR-format

Register addressing: Perform operation on source and target register and store the result into

destination register

Figure 4-7-3-F7: Register Addressing for FR format (Used by add.s, add.d)

e) FI-format

PC-relative addressing: Perform operation on source and target register to determine next PC

condition, the immediate is uses as address offset for next PC

Figure 4-7-3-F8: Register Addressing for FR format (Used by FP branching instructions)

CHAPTER 4 SYSTEM SPECIFICATION

36

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4-8 Supported Instructions Set

CHAPTER 4 SYSTEM SPECIFICATION

37

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM SPECIFICATION

38

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4-8-T1: Supported Instruction Set

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

39

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5: MICROARCHITECTURE SPECIFICATION

5-1 Design Hierarchy and Partitioning

Chip

Partitioning

(Top Level) at

Architecture

Level

Unit

Partitioning at

Micro-

Architecture

Level

Block and Functional Block

Partitioning at RTL (Micro-

Architecture Level)

Sub-Block

RISC32

Pipeline

Processor

(crisc)

Datapath

(udata_path)

Branch Predictor

(bbp_4way)

Register File (brf)

Interlock Control (bitl_ctrl)

Forward Control (bfw_ctrl)

32-bit Multiplier (bmult32) add_lvl1_lastrow

adder_lvl1

adder_lvl1_firstrow

adder_lvl2

adder_lvl2_lastrow

adder_lvl3

adder_lvl4

adder_lvl5

sub_lvl1_lastrow

ALB (balb)

Coprocessor0(bcp0)

FP Register File(bfp_rf)

FP Pre-Normalize

(bfp_pre_norm)

FP Adder (bfp_adder)

FP Post-Normalize

(bfp_post_norm)

FP Rounding

(bfp_rounding)

Controlpath

(uctrl_path)

Main Control (bmain_ctrl)

ALB Control (balb_ctrl)

Cache

(ucache)

IO Bus

(uiobusarbiter)

PS/2

Controller

(ups2)

PS/2 Receiver (bps2rx)

PS/2 Transmitter (bps2tx)

PS/2 Address Decoder

(bps2addr_decoder)

UART

Controller

UART Address Decoder

(bua_decoder)

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

40

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(uuart) UART CPU Interface

(bcpuif)

UART Receiver

(brx)

UART Receiver

Controller

(sbrx_ctr)

UART Transmitter

(btx)

UART Transmitter

Controller

(sbtx_ctr)

UART Baud Rate Generator

(bbaud)

Table 5-1-T1: Design Hierarchy of RISC32 Processor with FP Register File, FP Pre-Normalize,

FP Adder, FP Post-Normalize and FP Rounding

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

41

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

crisc

uctrl_path

bmain_ctrl balb_ctrl

udata_path

balb brf bmult32 bitl_ctrl

bbp bfw_ctrl bcp0

ucache ucache ucache ucache

uuart

bua_decoder btx brx bbaud

ups2

bps2addr_decoder bps2rx bps2tx

Figure 5.1-F1: Block Partitioning

bfp_rf

bfp_pre_norm bfp_adder bfp_post_norm bfp_rounding

uiobusarbiter

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

42

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-2 Microarchitecture of RISC32 processor

Figure 5-2-F1: Microarchitecture of RISC32 processor

Figure above is the microarchitecture of RISC32 processor with 5 stages pipeline. The register file

and the FP blocks will be implemented as shown in microarchitecture view above. The more

detailed microarchitecture view will be shown in next page.

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

43

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-2-1 Interface of FP Register File and Extended Pipeline with Datapath Unit

The figure below shows the interface between FP register file and extended pipeline with datapath

Unit. Only related signal of Datapath Unit is shown.

Figure 5-2-1-F1: Interface of FP Register File and Extended Pipeline with Datapath Unit

Based on microarchitecture above, FP register file is integrated into ID stage with is same as the

general register file. The second circle shows the extended FP pipeline which has to 4 stages of

A1, A2, A3 and A4. The extended pipeline only meant for the FP instruction such as addition. The

four stages consist of FP Pre Normalize block, FP adder block, FP Post Normalize block and FP

Rounding block. Therefore, for FP arithmetic operation likes addition, it will take total of 8 stages

to complete the instruction. The ALU and address decoder that in the EX stage will not be affected

as these functional blocks still follow the original 5-stage pipeline.

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

44

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

udata_path

uidp_alb_src
uidp_rd_src
uidp_mult_en
uidp_sign_mult
uidp_rf_wr
uidp_mdata_or_alb

uidp_sw
uidp_lw
uidp_sh
uidp_lh
uidp_lhu
uidp_sb
uidp_lb
uidp_lbu
uidp_load_sign_ext

uidp_sign_ext
uidp_hi_wr
uidp_lo_wr
uidp_hi_to_rf

uidp_alb_to_rf
uidp_hilo_acc

uidp_iodata

uidp_rom_instr

uidp_clk

uidp_rst

uidp_beq
uidp_bne
uidp_blez
uidp_bgtz
uidp_id_jump
uidp_id_jr
uidp_id_jalr
uidp_id_jal

uidp_alb_ctrl
uidp_alb_rtype

uidp_cac_instr
uidp_mdata
uidp_mem_stall

uidp_intr_vector
uidp_cp0_mfc0
uidp_cp0_mtc0
uidp_cp0_eret
uidp_cp0_syscall
uidp_cp0_undef_inst

uodp_intr_mask

uodp_io_intr

uodp_if_pc

uodp_opcode
uodp_funct

uodp_rs

uodp_sw

uodp_sh

uodp_sb

uodp_lw

uodp_lh

uodp_lb

uodp_dm_addr
uodp_dm_store

[5:0]
[5:0]

[31:0]
[31:0]

[31:0]

[31:0]

[5:0]

[5:0]

[5:0]

[4:0]

[31:0]

[31:0]

[31:0]

[5:0]

[5:0]

5-3 Datapath Unit

5-3-1 Datapath Unit Interface

Figure 5-3-1-F1: Datapath Unit Interface

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

45

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-2 FPU Register File Block

5-3-2-1 Functionality

 Act as temporary storage of FPU to hold data and address.

 Able to read and write data.

5-3-2-2 FPU Register File Block Interface

Figure 5-3-2-2-F1: Block Interface of FPU Register File

bfp_rf

bifp_rf_fs [4:0] bofp_rf_fs64 [63:0]

bifp_rf_ft [4:0] bofp_rf_ft64 [63:0]

bifp_rf_wr_addr [4:0]

bifp_rf_wr_data [63:0]

bifp_rf_wr

bifp_rf_sp_en

bifp_rf_clock

bifp_rf_reset

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

46

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-2-3 Input Pin Description

Pin Name:

bifp_rf_fs[4:0]

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Data

Pin Function:

5 bits fs address to indicate FPU register file location.

Pin Name:

bifp_rf_ft[4:0]

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Data

Pin Function:

5 bits ft address to indicate FPU register file location.

Pin Name:

bifp_rf_wr_addr[4:0]

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Data

Pin Function:

5 bits destination address to indicate FPU register file location.

Pin Name:

bifp_rf_wr_data[63:0]

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Data

Pin Function:

64 bits data to be written in FPU register file.

Pin Name:

bifp_rf_wr

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Control

Pin Function:

Use as enable signal to write data to FPU register file.

Pin Name:

bifp_rf_sp_en

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Control

Pin Function:

Use as control signal to indicate single precision when asserted and double precision when de-

asserted.

Pin Name:

bifp_rf_clock

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Global

Pin Function:

Clock signal for FPU register file.

Pin Name:

bifp_rf_reset

Source -> Destination:

udata_path -> bfp_rf

Pin Class:

Global

Pin Function:

Reset signal for FPU register file.

Table 5-3-2-3-T1: Input Pin Description of FPU Register File

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

47

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-2-4 Output Pin Description

Pin Name:

bofp_rf_fs64 [63:0]

Source -> Destination:

bfp_rf -> udata_path

Pin Class:

Data

Pin Function:

64 bits data output is read out to perform operation.

Pin Name:

bofp_rf_ft64 [63:0]

Source -> Destination:

bfp_rf -> udata_path

Pin Class:

Data

Pin Function:

64 bits data output is read out to perform operation.

Table 5-3-2-4-T1: Output Pin Description of FPU Register File

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

48

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-3 FP Pre Normalize Block

5-3-3-1 Functionality

 To find the difference of exponent and normalize input for operation

5-3-3-2 FP Pre Normalize Block Interface

Figure 5-3-3-2-F1: Block Interface of FP Pre Normalize Block

bfp_pre_norm

bifp_data_a [63:0] bofp_frac_a [56:0]

bifp_data_b [63:0] bofp_frac_b [56:0]

bifp_add_en bofp_expo [10:0]

bifp_sp_en bofp_sign

 bofp_cin

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

49

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-3-3 Input Pin Description

Pin Name:

bifp_data_a [63:0]

Source -> Destination:

bfp_rf -> bfp_pre_norm

Pin Class:

Data

Pin Function:

64 bits input data from FP register file to perform operation.

Pin Name:

bifp_data_b [63:0]

Source -> Destination:

bfp_rf -> bfp_pre_norm

Pin Class:

Data

Pin Function:

64 bits input data from FP register file to perform operation.

Pin Name:

bifp_add_en

Source -> Destination:

bfp_rf -> bfp_pre_norm

Pin Class:

Control

Pin Function:

Use as control signal to enable addition operation when asserted.

Pin Name:

bifp_sp_en

Source -> Destination:

bfp_rf -> bfp_pre_norm

Pin Class:

Control

Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-

asserted.

Table 5-3-3-3-T1: Input Pin Description of FP Pre Norm Block

5-3-3-4 Output Pin Description

Pin Name:

bofp_frac_a [56:0]

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

57 bits of fraction part data is fetch to next stage for operation.

Pin Name:

bofp_frac_b [56:0]

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

57 bits of fraction part data is fetch to next stage for operation.

Pin Name:

bofp_expo [10:0]

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

11 bits of exponent part data is fetch to next stage for operation.

Pin Name:

bofp_sign

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

1 bit of sign data is fetch to next stage for operation.

Pin Name:

bofp_cin

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

1 bit of cin data is fetch to next stage for operation.

Table 5-3-3-4-T1: Output Pin Description of FP Pre Norm Block

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

50

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-3-5 FP Pre Normalize Internal Block Diagram

Figure 5-3-3-5-F1 FP Pre Normalize Internal Block Diagram

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

51

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-4 FP Adder Block

5-3-4-1 Functionality

 To perform addition operations on floating point data.

5-3-4-2 FP Adder Block Interface

Figure 5-3-4-2-F1 Block Interface of FP Adder Block

bfp_adder

bifp_frac_a [56:0] bofp_out[56:0]

bifp_frac_b [56:0]

bifp_cin

bifp_sp_en

bifp_add_en

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

52

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-4-3 Input Pin Description

Pin Name:

bifp_frac_a [56:0]

Source -> Destination:

udata_path -> bfp_adder

Pin Class:

Data

Pin Function:

57 bits input fraction part data for addition operation.

Pin Name:

bifp_frac_b [56:0]

Source -> Destination:

udata_path -> bfp_adder

Pin Class:

Data

Pin Function:

57 bits input fraction part data for addition operation.

Pin Name:

bifp_cin

Source -> Destination:

udata_path -> bfp_adder

Pin Class:

Data

Pin Function:

1 bit input cin data for addition operation.

Pin Name:

bifp_sp_en

Source -> Destination:

udata_path -> bfp_adder

Pin Class:

Control

Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-

asserted.

Pin Name:

bifp_add_en

Source -> Destination:

udata_path -> bfp_adder

Pin Class:

Control

Pin Function:

Use as control signal to enable addition operation when asserted.

Table 5-3-4-2-T1: Input Pin Description of FP Adder Block

5-3-4-4 Output Pin Description

Pin Name:

bofp_out[56:0]

Source -> Destination:

bfp_adder -> udata_path

Pin Class:

Data

Pin Function:

57 bits result from addition of fraction part of two input data.

Table 5-3-4-4-T1: Output Pin Description of FP Adder Block

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

53

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-4-5 FP Adder Internal Block Diagram

Figure 5-3-4-5-F1 FP Adder Internal Block Diagram

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

54

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-5 FP Post Normalize Block

5-3-5-1 Functionality

 To normalize the output from FP Adder

5-3-5-2 FP Post Normalize Block Interface

Figure 5-3-5-2-F1: Block Interface of FP Post Normalize Block

bfp_post_norm

bifp_frac_result [56:0] bofp_frac_sh [56:0]

bifp_expo [10:0] bofp_expo_sh [11:0]

bifp_sp_en

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

55

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-5-3 Input Pin Description

Pin Name:

bifp_frac_result

[56:0]

Source -> Destination:

udata_path -> bfp_post_norm

Pin Class:

Data

Pin Function:

57 bits input data of fraction result to be shifted and normalized.

Pin Name:

bifp_expo [10:0]

Source -> Destination:

udata_path -> bfp_post_norm

Pin Class:

Data

Pin Function:

11 bits input data of exponent data to be shifted and normalized.

Pin Name:

bifp_sp_en

Source -> Destination:

udata_path -> bfp_post_norm

Pin Class:

Control

Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-

asserted.

Table 5-3-5-3-T1: Input Pin Description of FP Post Norm Block

5-3-5-4 Output Pin Description

Pin Name:

bofp_frac_sh [56:0]

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

57 bits of shifted fraction part data is fetch to next stage for rounding and produce final output.

Pin Name:

bofp_expo_sh [11:0]

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

12 bits of shifted exponent part data is fetch to next stage for rounding and produce final

output.

Table 5-3-5-4-T1: Output Pin Description of FP Post Norm Block

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

56

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-5-5 FP Post Normalize Internal Block Diagram

Figure 5-3-5-5-F1 FP Post Normalize Internal Block Diagram

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

57

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-6 FP Rounding Block

5-3-6-1 Functionality

 To round off and produce final output.

5-3-6-2 FP Rounding Block Interface

Figure 5-3-6-2-F1: Block Interface of FP Rounding Block

bfp_rounding

bifp_frac_sh [56:0] bofp_final_out [63:0]

bifp_expo_sh [11:0]

bifp_sp_en

bifp_sign

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

58

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-6-3 Input Pin Description

Pin Name:

bifp_frac_sh [56:0]

Source -> Destination:

udata_path -> bfp_rounding

Pin Class:

Data

Pin Function:

57 bits of shifted fraction result to be rounded off and combined for final output.

Pin Name:

bifp_expo_sh [11:0]

Source -> Destination:

udata_path -> bfp_rounding

Pin Class:

Data

Pin Function:

12 bits of shifted exponent data to be rounded off and combined for final output.

Pin Name:

bifp_sign

Source -> Destination:

udata_path -> bfp_rounding

Pin Class:

Data

Pin Function:

1 bit of sign data to be combined for final output.

Pin Name:

bifp_sp_en

Source -> Destination:

udata_path -> bfp_rounding

Pin Class:

Control

Pin Function:

Use as control signal to enable single precision when asserted and double precision when de-

asserted.

Table 5-3-6-3-T1: Input Pin Description of FP Rounding Block

5-3-6-4 Output Pin Description

Pin Name:

bofp_final_out [63:0]

Source -> Destination:

bfp_pre_norm -> udata_path

Pin Class:

Data

Pin Function:

64 bits of final out is produced after completion of addition operation.

Table 5-3-6-4-T1: Output Pin Description of FP Rounding Block

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

59

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-3-6-5 FP Rounding Block Internal Diagram

Figure 5-3-6-5-F1 FP Rounding Internal Block Diagram

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

60

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

uctrl_path

uicp_opcode

uicp_funct

uicp_rs

uocp_load_sign_ext

uocp_rf_wr

uocp_sign_ext

uocp_hilo_acc

uocp_alb_src
uocp_rd_src

uocp_sign_mult
uocp_mult_en

uocp_cp_lw
uocp_cp_sw

uocp_cp_lh
uocp_cp_sh

uocp_cp_lhu

uocp_cp_sb
uocp_cp_lb

uocp_cp_lbu

uocp_hi_wr
uocp_lo_wr

uocp_alb_to_wr

uocp_hi_to_rf
uocp_mem_to_rf

uocp_jump
uocp_jr

uocp_jal
uocp_jalr

uocp_beq
uocp_bne
uocp_blez
uocp_bgtz

uocp_mfc0
uocp_mtc0

uocp_eret
uocp_syscall

uocp_undef_inst

uocp_alb_ctrl
uocp_alb_rtype

[5:0]

[5:0]

[4:0]

[5:0]

[5:0]

5-4 Controlpath Unit

5-4-1 Controlpath Unit Interface

Figure 5-4-1-F1: Controlpath Unit Interface

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

61

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

rom_4k_32

[11:0] [31:0]i_addr o_data

u_cache
ui_cm_addr
ui_cm_wr_data
ui_cm_wr
ui_cm_slw
ui_cm_slh
ui_cm_slb
ui_cm_clk

uo_cm_rd_data

[31:0]

[31:0]

[31:0]

5-5 Rom Unit

The rom unit stores boot loader code to initialize RISC32 processor. Program Counter directly

points to the first line of address in here upon boot up.

5-5-1 Rom Unit Interface

Figure 5-5-1-F1: Rom Unit Interface

5-6 Memory Unit

The memory unit stores machine instruction or program data. Range of address determines what

to be stored inside each memory unit.

5-6-1 Memory Unit Interface

Figure 5-6-1-F1: Memory Unit Interface

CHAPTER 5 MICROARCHITECTURE SPECIFICATION

62

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5-6-2 Memory Unit Mapping

Table 5-6-2-T1: Memory Unit mapping and its content description

CHAPTER 6 VERIFICATION SPECIFICATION

63

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6: VERIFICATION SPECIFICATION

6-1 Test Plan for FPU

Test Function to be

Tested

Expected Output

Test Case #1: Reset

 Set the reset pin to high.

 Hold for 3 clock cycle.

 Set the reset pin to low.

Reset the whole

FPU.

All outputs result in

0.

Test Case #2: Addition function test on single

precision numbers

 Set ui_fpu_fs = 5’b00010.

 Set ui_fpu_ft = 5’b00100.

 Set ui_fpu_sp = 1’b1.

 Set ui_fpu_add = 1’b1.

 Set ui_fpu_wr = 1’b1.

 Set ui_fpu_wr_addr = 5’b00011.

 Hold for 4 clock cycle.

Test the addition

function on single

precision floating

point numbers.

uo_fpu _result =

32'b0_1000_0000_

1100_0000_0000_0

000_0000_000

(“3.5”).

The result is saved

in register file

address 4’b00011.

Test Case #3: Addition function test on double

precision numbers

 Set ui_fpu_fs = 5’b00110.

 Set ui_fpu_ft = 5’b01000.

 Set ui_fpu_sp = 1’b0.

 Set ui_fpu_add = 1’b1.

 Set ui_fpu_wr = 1’b1.

 Set ui_fpu_wr_addr = 5’b01010.

 Hold for 4 clock cycle.

Test the addition

function on single

precision floating

point numbers.

uo_fpu _result =

64'b0_1000_0000_

010_0010_0111_00

10_00101101_0000

_1110_0101_0110_

0000_0100_0001_1

000 (“9.223”).

The result is saved

in register file

address 4’b01010

and 4’b01011.

CHAPTER 6 VERIFICATION SPECIFICATION

64

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Test Case #4: Addition function test on all zero

numbers

 Set ui_fpu_fs = 5’b00000.

 Set ui_fpu_ft = 5’b00001.

 Set ui_fpu_sp = 1’b1.

 Set ui_fpu_add = 1’b1.

 Set ui_fpu_wr = 1’b1.

 Set ui_fpu_wr_addr = 5’b01110.

 Hold for 4 clock cycle.

Test the addition

function on single

precision floating

point numbers.

uo_fpu _result =

32'b0_0000_0000_

0000_0000_0000_0

000_0000_000.

The result is saved

in register file

address 4’b01110.

Test Case #5: Infinity inputs test

 Set ui_fpu_fs = 5’b00000.

 Set ui_fpu_ft = 5’b00001.

 Set ui_fpu_sp = 1’b1.

 Set ui_fpu_add = 1’b0.

 Set ui_fpu_wr = 1’b0.

 Hold for 3 clock cycle.

Check the validity

of inputs whether

inputs are

infinity.

uo_fpu _inf_a is

asserted.

Test Case #6: NaN inputs test

 Set ui_fpu_fs = 5’b10000.

 Set ui_fpu_ft = 5’b10010.

 Set ui_fpu_sp = 1’b0.

 Set ui_fpu_add = 1’b0.

 Set ui_fpu_wr = 1’b0.

 Hold for 3 clock cycle.

Check the validity

of inputs whether

inputs are “Not a

Number”.

uo_fpu _nan_b is

asserted.

Table 6-1-T1: Test Plan of FPU

CHAPTER 6 VERIFICATION SPECIFICATION

65

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-2 Simulation Result for FPU

6-2-1 Test Case #1: Reset

Figure 6-2-1-F1: Simulation result for test case #1.

1. After reset signal is asserted, all output signals are set to default state.

6-2-2 Test Case #2: Addition function test on single precision numbers

Figure 6-2-2-F1: Simulation result for test case #2.

1. Control signal ui_fpu_sp is asserted indicates that the two data from register file is in

single precision.

2. The result of addition of the two single precision numbers is computed.

3. Control signal ui_fpu_wr is asserted to enable the result is written back to location 00011

in register file.

CHAPTER 6 VERIFICATION SPECIFICATION

66

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-2-3 Test Case #3: Addition function test on double precision numbers

Figure 6-2-3-F1: Simulation result for test case #3.

1. Control signal ui_fpu_sp is de-asserted indicates that the two data from register file is in

double precision.

2. The result of addition of the two double precision numbers is computed.

3. Control signal ui_fpu_wr is asserted to enable the result is written back to location 01010

and 01011 in register file.

6-2-4 Test Case #4: Addition function test on all zero numbers

Figure 6-2-4-F1: Simulation result for test case #4.

1. The two all zero inputs are fetched to single precision block to perform addition.

2. Control signal ui_fpu_wr is asserted to enable the result is written back to location 01110

in register file.

CHAPTER 6 VERIFICATION SPECIFICATION

67

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-2-5 Test Case #5: Infinity inputs test

Figure 6-2-5-F1: Simulation result for test case #5.

1. The input operand a is an infinity floating point value.

2. The output signal uo_fpu_inf_a is asserted to indicate it’s an infinity value.

6-2-6 Test Case #5: NaN inputs test

Figure 6-2-6-F1: Simulation result for test case #6.

1. The input operand b is a “Not a Number” in floating point format.

2. The output signal uo_fpu_nan_b is asserted to indicate it’s a NaN.

CHAPTER 6 VERIFICATION SPECIFICATION

68

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-3 FP Register File Contents

Figure 6-3-F1: FP register file contents

The FPU register file stores the result from test case #2, #3 and #4. The FPU register file can

store single and double precision floating numbers. For double precision floating point numbers,

two registers are required to store the value.

CHAPTER 6 VERIFICATION SPECIFICATION

69

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-4 Test Bench for FPU

//##

/*

Project/Module : tb_u_fpu

File name : tb_u_fpu.v

Version : Altera 6.5b

Author : Low Wai Hau

Code type :

Description : Testbench for FPU

*/

//##

module tb_u_fpu();

 wire [63:0] tb_uo_fpu_result;

 wire tb_uo_fpu_nan_a, tb_uo_fpu_nan_b, tb_uo_fpu_inf_a, tb_uo_fpu_inf_b;

 reg [4:0] tb_ui_fpu_fs, tb_ui_fpu_ft, tb_ui_fpu_wr_addr;

 reg [63:0] tb_ui_fpu_wr_data;

 reg tb_ui_fpu_wr, tb_ui_fpu_sp, tb_ui_fpu_add, tb_ui_fpu_clock, tb_ui_fpu_reset;

 //**

 // Module instantiation

 u_fpu

 DUT

 (.uo_fpu_result(tb_uo_fpu_result),

 .uo_fpu_nan_a(tb_uo_fpu_nan_a),

 .uo_fpu_nan_b(tb_uo_fpu_nan_b),

 .uo_fpu_inf_a(tb_uo_fpu_inf_a),

 .uo_fpu_inf_b(tb_uo_fpu_inf_b),

 .ui_fpu_fs(tb_ui_fpu_fs),

 .ui_fpu_ft(tb_ui_fpu_ft),

 .ui_fpu_wr_addr(tb_ui_fpu_wr_addr),

 .ui_fpu_wr_data(tb_ui_fpu_wr_data),

 .ui_fpu_wr(tb_ui_fpu_wr),

 .ui_fpu_sp(tb_ui_fpu_sp),

 .ui_fpu_add(tb_ui_fpu_add),

 .ui_fpu_clock(tb_ui_fpu_clock),

 .ui_fpu_reset(tb_ui_fpu_reset));

 initial tb_ui_fpu_clock = 1;

 always #10 tb_ui_fpu_clock = ~tb_ui_fpu_clock;

CHAPTER 6 VERIFICATION SPECIFICATION

70

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 always @(*) begin

 tb_ui_fpu_wr_data = tb_uo_fpu_result;

 end

 //**

 //Signals initialization

 initial begin

 tb_ui_fpu_reset = 1'b0;

 tb_ui_fpu_fs = 5'b0;

 tb_ui_fpu_ft = 5'b0;

 tb_ui_fpu_wr_addr = 5'b0;

 tb_ui_fpu_wr_data = 64'b0;

 tb_ui_fpu_wr = 1'b0;

 tb_ui_fpu_sp = 1'b0;

 tb_ui_fpu_add = 1'b0;

 //Test Case #1: Reset

 @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_reset = 1;

 repeat(3) @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_reset = 0;

 //Test Case #2: Addition on single precision numbers

 repeat(3) @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_fs = 5'b00010;

 tb_ui_fpu_ft = 5'b00100;

 tb_ui_fpu_wr_addr = 5'b00011;

 tb_ui_fpu_sp = 1'b1;

 tb_ui_fpu_add = 1'b1;

 repeat(3) @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_wr = 1'b1;

 @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_wr = 1'b0;

 //Test Case #3: Addition on double precision numbers

 @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_fs = 5'b00110;

 tb_ui_fpu_ft = 5'b01000;

 tb_ui_fpu_wr_addr = 5'b01010;

 tb_ui_fpu_sp = 1'b0;

 tb_ui_fpu_add = 1'b1;

 repeat(3) @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_wr = 1'b1;

 @(posedge tb_ui_fpu_clock);

CHAPTER 6 VERIFICATION SPECIFICATION

71

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 tb_ui_fpu_wr = 1'b0;

 //Test Case #4: Addition on all zero numbers

 @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_fs = 5'b00000;

 tb_ui_fpu_ft = 5'b00001;

 tb_ui_fpu_wr_addr = 5'b01110;

 tb_ui_fpu_sp = 1'b1;

 tb_ui_fpu_add = 1'b1;

 repeat(3) @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_wr = 1'b1;

 @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_wr = 1'b0;

 //Test Case #5: Infinity floating point numbers

 @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_fs = 5'b01100;

 tb_ui_fpu_ft = 5'b01101;

 tb_ui_fpu_sp = 1'b1;

 tb_ui_fpu_add = 1'b0;

 //Test Case #6: NaN floating point numbers

 repeat(3) @(posedge tb_ui_fpu_clock);

 tb_ui_fpu_fs = 5'b10000;

 tb_ui_fpu_ft = 5'b10010;

 tb_ui_fpu_sp = 1'b0;

 tb_ui_fpu_add = 1'b0;

 repeat(5) @(posedge tb_ui_fpu_clock);

 $stop;

 end

endmodule

CHAPTER 6 VERIFICATION SPECIFICATION

72

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-5 FP Integration with RISC32

6-5-1 Test Program

 .text 0x00400000

 .globl main

main: addi $t0, $zero, 0x0

 addi $t1, $zero, 0xff7fffff #largest floating point number

 addi $t2, $zero, 0xff7fffff #smallest floating point number

 addi $t3, $zero, 0xaaaaaaaa #$t0 = 101…101

 addi $t4, $zero, 0x55555555 #$t0 = 010…010

 addi $t5, $zero, 0x1

 addi $t6, $zero, 0xf0f0f0f0 #$t0 = 1111_0000…1111_0000

 addi $t7, $zero, 0x0f0f0f0f #$t0 = 0000_1111…0000_1111

 sw $t0, 0($gp) #store to data memory to test lwc1

 sw $t1, 4($gp)

 sw $t2, 8($gp)

 sw $t3, 12($gp)

 sw $t4, 16($gp)

 sw $t5, 20($gp)

 sw $t6, 24($gp)

 sw $t7, 28($gp)

 nop

#test case #1: Test lwc1 and swc1

 lwc1 $f4, 0($gp) #load data to FP reg file

 swc1 $f4, 0($gp) #store data to data memory

 lwc1 $f5, 4($gp)

 swc1 $f5, 28($gp)

 lwc1 $f6, 8($gp)

 lwc1 $f7,12($gp)

 lwc1 $f8, 16($gp)

 lwc1 $f9, 20($gp)

 nop

#test case #2: Test add.s and add.d

 add.s $f10, $f4, $f5 #$f10 = 0xff7fffff + 0

 add.s $f16, $f10, $f9 #$f16 = 0xff7fffff + 1

 add.s $f17, $f7, $f6 #$f17 = 0x55555555 + 0xaaaaaaaa

 add.s $f18, $f6, $f5 #$f17 = max fp number + min fp number

CHAPTER 6 VERIFICATION SPECIFICATION

73

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 add.d $f18, $f4, $f6

 add.d $f10, $f18, $f6

 nop

#test case #3: Test mfc1 and mtc1

 mfc1 $s6, $f10 #move data between registers

 mtc1 $t1, $f10 #move data between registers

 nop

6-5-2 Simulation Result

6-5-2-1 Test Case #1: lwc1 instruction

Figure 6-5-2-1-F1: Simulation result of test case #1(lwc1).

1. Control signal lwcl is asserted in ID stage indicate that it is lwc1 instruction and FP

register file write is enabled so the data can be written to FP register file.

2. At the WB stage, the data (0xfffffff8) from data memory is written to FP register file.

6-5-2-2 Test Case #1: swc1 instruction

CHAPTER 6 VERIFICATION SPECIFICATION

74

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6-5-2-2-F1: Simulation result of test case #1(swc1).

1. The data is fetched out from general register file at ID stage.

2. The data is then written into data memory at MEM stage.

6-5-2-3 Test Case #3: mfc1 instruction

Figure 6-5-2-3-F1: Simulation result of test case #3(mfc1).

1. Control signal udp_fp_mfc1 is enabled at ID stage to indicate that its mfc1 instruction.

2. The data is fetched out from FP register file at ID stage.

3. At WB stage, the data is written to general register file.

CHAPTER 6 VERIFICATION SPECIFICATION

75

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-5-2-4: Test Case #3: mtc1 instruction

Figure 6-5-2-4-F1: Simulation result of test case #3(mtc1).

1. Control signal udp_fp_mtc1 is enabled at ID stage to indicate that its mtc1 instruction.

2. The data in the general register file is fetched out.

3. The control signal bfp_rf_wr is enabled so that the data is written to the FP register file.

CHAPTER 6 VERIFICATION SPECIFICATION

76

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6-5-3 Test Bench

`timescale 1ns / 1ps

`default_nettype none

`define FULL_INSTR_TEST 1

//`define demo001_GPIO 1

//`define demo002_GPIO 1

//`define demo003_UART 1

//`define demo004_UART 1

//`define demo005_SPI 1

//`define demo006_DUT_client_model 1

//`define demo115_IoT_MM64bytes

`ifdef MODEL_TECH

 `ifdef FULL_INSTR_TEST

 `define TEST_CODE_PATH_DUT "tb/fpu_instr_test.txt"

 `define EXC_HANDLER_DUT "tb/demo/demo000_base_test_03exc_handler.txt"

 `define TEST_CODE_PATH_CLIENT "tb/demo/demo000_base_test_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"

 `endif

 `ifdef demo001_GPIO

 `define TEST_CODE_PATH_DUT "tb/demo/demo001_GPIO_mem_02program.txt"

 `define EXC_HANDLER_DUT "tb/demo/demo001_GPIO_mem_03exc_handler.txt"

 `define TEST_CODE_PATH_CLIENT

"tb/demo/demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"

 `endif

 `ifdef demo002_GPIO

 `define TEST_CODE_PATH_DUT "tb/demo/demo002_GPIO_mem_02program.txt"

 `define EXC_HANDLER_DUT "tb/demo/demo002_GPIO_mem_03exc_handler.txt"

 `define TEST_CODE_PATH_CLIENT

"tb/demo/demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"

 `endif

 `ifdef demo003_UART

 `define TEST_CODE_PATH_DUT "tb/demo/demo003_UART_mem_02program.txt"

 `define EXC_HANDLER_DUT "tb/demo/demo003_UART_mem_03exc_handler.txt"

 `define TEST_CODE_PATH_CLIENT

"tb/demo/demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"

 `endif

 `ifdef demo004_UART

 `define TEST_CODE_PATH_DUT "tb/demo/demo004_UART_mem_02program.txt"

 `define EXC_HANDLER_DUT "tb/demo/demo004_UART_mem_03exc_handler.txt"

CHAPTER 6 VERIFICATION SPECIFICATION

77

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 `define TEST_CODE_PATH_CLIENT

"tb/demo/demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"

 `endif

 `ifdef demo006_DUT_client_model

 `define TEST_CODE_PATH_DUT "tb/demo/demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_DUT "tb/new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT "tb/demo/demo006_all_IOs_send_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_client.txt"

 `endif

 `ifdef demo115_IoT_MM64bytes

 `define TEST_CODE_PATH_DUT "tb/demo/demo115_IoT_MM64bytes_10MHz_02program.txt"

 `define EXC_HANDLER_DUT "tb/new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"tb/demo/demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "tb/new_exc_handler_dut.txt"

 `endif

`else

 `ifdef FULL_INSTR_TEST

 `define TEST_CODE_PATH_DUT "fpu_instr_test.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT "full_instr_test.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

 `endif

 `ifdef demo001_GPIO

 `define TEST_CODE_PATH_DUT "demo001_GPIO_mem_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

 `endif

 `ifdef demo002_GPIO

 `define TEST_CODE_PATH_DUT "demo002_GPIO_mem_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

 `endif

 `ifdef demo003_UART

 `define TEST_CODE_PATH_DUT "demo003_UART_mem_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

CHAPTER 6 VERIFICATION SPECIFICATION

78

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 `endif

 `ifdef demo004_UART

 `define TEST_CODE_PATH_DUT "demo004_UART_mem_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

 `endif

 `ifdef demo005_SPI

 `define TEST_CODE_PATH_DUT "demo005_SPI_mem_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

 `endif

 `ifdef demo006_DUT_client_model

 `define TEST_CODE_PATH_DUT "demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT "demo006_all_IOs_send_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_client.txt"

 `endif

 `ifdef demo115_IoT_MM64bytes

 `define TEST_CODE_PATH_DUT "demo115_IoT_MM64bytes_10MHz_02program.txt"

 `define EXC_HANDLER_DUT "new_exc_handler_dut.txt"

 `define TEST_CODE_PATH_CLIENT

"demo006_pending_for_int_mem_02program.txt"

 `define EXC_HANDLER_CLIENT "new_exc_handler_dut.txt"

 `endif

`endif

module tb_r32_pipeline();

//declaration

//===== INPUT =====

//System signal

reg tb_u_clk;

reg tb_u_rst;

//~~~~~~~~~~~~~~~~~~

wire tb_u_spi_mosi_dut;

wire tb_u_spi_miso_dut;

wire tb_u_spi_sclk_dut;

wire tb_u_spi_ss_n_dut;

//wire tb_u_fc_sclk_dut;

//wire tb_u_fc_ss_dut;

CHAPTER 6 VERIFICATION SPECIFICATION

79

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

//wire tb_u_fc_MOSI_dut;

//wire tb_u_fc_MISO1_dut;

//wire tb_u_fc_MISO2_dut;

//wire tb_u_fc_MISO3_dut;

wire tb_ua_tx_rx_dut;

wire tb_ua_RTS_dut, tb_ua_CTS_dut;

wire[31:0] tb_u_GPIO_dut;

//~~~~~~~~~~~~~~~~~~

wire tb_u_spi_mosi_client;

wire tb_u_spi_miso_client;

wire tb_u_spi_sclk_client;

wire tb_u_spi_ss_n_client;

//wire tb_u_fc_sclk_client;

//wire tb_u_fc_ss_client;

//wire tb_u_fc_MOSI_client;

//wire tb_u_fc_MISO1_client;

//wire tb_u_fc_MISO2_client;

//wire tb_u_fc_MISO3_client;

wire tb_ua_tx_rx_client;

wire tb_ua_RTS_client, tb_ua_CTS_client;

wire[31:0] tb_u_GPIO_client;

crisc c_risc_dut(

//*********** INSTANTIATION *************

//======= INPUT =======

//GPIO

.urisc_GPIO(tb_u_GPIO_dut),

//SPI controller

.uiorisc_spi_mosi(tb_u_spi_mosi_dut),

.uiorisc_spi_miso(tb_u_spi_miso_dut),

.uiorisc_spi_sclk(tb_u_spi_sclk_dut),

.uiorisc_spi_ss_n(tb_u_spi_ss_n_dut),

//UART controller

.uorisc_ua_tx_data(tb_ua_tx_rx_dut),

.uorisc_ua_rts(tb_ua_RTS_dut),

.uirisc_ua_rx_data(tb_ua_tx_rx_client),

.uirisc_ua_cts(tb_ua_CTS_dut),

CHAPTER 6 VERIFICATION SPECIFICATION

80

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

//FLASH controller

//.uorisc_fc_sclk(tb_u_fc_sclk_dut),

//.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),

//.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),

//.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),

//.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),

//.uorisc_fc_ss(tb_u_fc_ss_dut),

// System signal

.uirisc_clk_100mhz(tb_u_clk),

.uirisc_rst(tb_u_rst));

//==

==============

crisc c_risc_client(

//*********** INSTANTIATION *************

//======= INPUT =======

//GPIO

.urisc_GPIO(tb_u_GPIO_client),

//SPI controller

.uiorisc_spi_mosi(tb_u_spi_mosi_client),

.uiorisc_spi_miso(tb_u_spi_miso_client),

.uiorisc_spi_sclk(tb_u_spi_sclk_client),

.uiorisc_spi_ss_n(tb_u_spi_ss_n_client),

//UART controller

.uorisc_ua_tx_data(tb_ua_tx_rx_client),

.uorisc_ua_rts(tb_ua_RTS_client),

.uirisc_ua_rx_data(tb_ua_tx_rx_dut),

.uirisc_ua_cts(tb_ua_CTS_client),

// System signal

.uirisc_clk_100mhz(tb_u_clk),

.uirisc_rst(tb_u_rst));

`ifdef demo006_DUT_client_model

 assign tb_u_spi_mosi_dut = tb_u_spi_mosi_client;

 assign tb_u_spi_miso_dut = tb_u_spi_miso_client;

 assign tb_u_spi_ss_n_dut = tb_u_spi_ss_n_client;

 assign tb_u_spi_sclk_dut = tb_u_spi_sclk_client;

`else

CHAPTER 6 VERIFICATION SPECIFICATION

81

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 assign tb_u_spi_mosi_client = tb_u_spi_mosi_dut;

 assign tb_u_spi_miso_client = tb_u_spi_miso_dut;

 assign tb_u_spi_ss_n_client = tb_u_spi_ss_n_dut;

 assign tb_u_spi_sclk_client = tb_u_spi_sclk_dut;

`endif

assign tb_ua_CTS_dut = tb_ua_RTS_client;

assign tb_ua_CTS_client = tb_ua_RTS_dut;

//**********************Clock************************

initial tb_u_clk = 1'b1;

always #5 tb_u_clk =~ tb_u_clk;

initial begin

 $readmemh(`TEST_CODE_PATH_DUT/*"demo200_Test_SDRAM_Write_02program.txt"*/,

tb_r32_pipeline.c_risc_dut.sdram.Bank1);

 $readmemh(`EXC_HANDLER_DUT, tb_r32_pipeline.c_risc_dut.sdram.Bank1);

 $readmemh(`TEST_CODE_PATH_CLIENT, tb_r32_pipeline.c_risc_client.sdram.Bank1);

 $readmemh(`EXC_HANDLER_CLIENT, tb_r32_pipeline.c_risc_client.sdram.Bank1);

 tb_u_rst = 1'b1;

 repeat(1)@(posedge tb_u_clk);

 tb_u_rst = 1'b0;

 repeat(30000)@(posedge tb_u_clk);

 tb_u_rst = 1'b1;

 repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk);

end

endmodule

CHAPTER 7 CONCLUSION

82

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7: CONCLUSION

A FPU module and FP Register File has been successfully modeled and integrated into

RISC32 microprocessor. All the behavior has been verified. The FPU module able to perform

addition operation on single and double precision numbers as well as load and store to FP

Register File. The flow of addition operation is being mentioned in Chapter 2 of this project.

The integration of FPU module and FP Register File into RISC32 architecture has been

accomplished, as shown in previous chapters. The FPU is modeled using Verilog HDL. The

design is implemented with top-down design methodology approach. The top level of FPU is

first determined and then followed by specifications of block level inside FPU. The data can be

load or store to FP register file. FPU is verified with test plan and test bench and the functionality

of FPU is proven to be working well.

For future improvement, other FP instruction can be implemented to the FPU module

such as subtraction, multiplication and division. Also, can implement exception handling for

overflow output.

83

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY

Al-Eryani J 2006, ‘IEEE Standard 754 for Binary Floating-Point Arithmetic’, Floating Point

Unit, pp. 3-9. Available from: [01 April 2019].

Goldberg D 1991, What Every Computer Scientist Should Know About Floating-Point

Arithmetic. Available from: <

https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf>. [01 April 2019].

Integrated Device Technology, Inc. 1994, IDT R30xx Family Software Reference Manual.

Kukati S, Sujana DV, Udaykumar S, Jayakrishnan P & Dhanabal R 2013, Design and

Implementation of Low Power Floating Point Arithmetic Unit. Available from:

< https://ieeexplore-ieee-

org.libezp2.utar.edu.my/stamp/stamp.jsp?tp=&arnumber=6823429>. [01 April 2019].

Lundgren D 2014, Double Precision Floating Point Core VHDL, pp. 1-8. Available from:

<https://opencores.org/projects/fpu_double>. [01 April 2019].

Mok K.M 2018, Digital System Design, lecture notes distributed in Faculty of Information

and Communication Technology at University of Tunku Abdul Rahman.

Mok K.M 2019, Computer Organization and Architecture, lecture notes distributed in Faculty

of Information and Communication Technology at University of Tunku Abdul

Rahman.

Patterson DA and Hennesy JL 2005, Computer Organization and Design: The

Hardware/Software Interface, 3rd ed. San Francisco, CA: Morgan Kaufmann. [01

April 2019].

Patterson DA and Hennesy JL 2014, Computer Organization and Design: The

Hardware/Software Interface, 5th ed. San Francisco, CA: Morgan Kaufmann. [01

April 2019].

Singh P and Bhole K 2014, ‘Optimized floating point arithmetic unit’, 2014 Annual IEEE

India Conference (INDICON), Pune, pp. 1-4. Available from: < https://ieeexplore-ieee-

84

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

org.libezp2.utar.edu.my/stamp/stamp.jsp?tp=&arnumber=7030552&isnumber=7030354>. [01

April 2019].

85

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

PLAGIARISM CHECK RESULT

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Full Name(s) of

Candidate(s)

 LOW WAI HAU

ID Number(s)

16ACB05712

Programme / Course CT

Title of Final Year Project Design of A Floating Point Unit For 32-Bits 5 Stage Pipeline Processor

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds the

limits approved by UTAR)

Overall similarity index: _15 %

Similarity by source

Internet Sources: _______14______%

Publications: 5 %

Student Papers: N/A %

Number of individual sources listed of more

than 3% similarity: ________0__________

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and

(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to

Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final Year

Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor Signature of Co-Supervisor

Name: __MOK KAI MING_________

 Name: __________________________

Date: ___24-04-2020____________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY (KAMPAR

CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB05712

Student Name LOW WAI HAU

Supervisor Name MR. MOK KAI MING

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.
√ Front Cover

√ Signed Report Status Declaration Form

√ Title Page

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

 List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of

literature review

 Appendices (if applicable)

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all
the items listed in the table are included in
my report.

___LOW WAI HAU____
(Signature of Student)
Date: 24-04-2020

Supervisor verification. Report with incorrect

format can get 5 mark (1 grade) reduction.

(Signature of Supervisor)
Date: 24-04-2020

	DECLARATION OF ORIGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1-1 Background Information
	1-1-1 Floating Point Unit

	1-1-2 MIPS
	1-2 Motivation and Problem Statement
	1-2-1 Motivation
	1-2-2 Problem Statement

	1-3 Project Scope
	1-4 Project Objectives
	1-5 Impact, Significance and Contribution
	1-6 Report Organization

	CHAPTER 2 LITERATURE REVIEW
	2-1 Previous Works Done by Other Engineers/Researchers
	2-2 Floating Point Number
	2-2-1 Single Precision Floating Point Number Representation
	2-2-2 Double Precision Floating Point Number Representation

	2-3 Rounding
	2-4 Arithmetic on Floating Point Numbers
	2-4-1 Addition operation

	2-5 Floating Point Pipeline

	CHAPTER 3: PROPOSED METHOD AND APPROACH
	3-1 Design Methodology
	3-1-1 Micro-Architecture Specification
	3-1-2 RTL Modeling and Verification

	3-2 Design Tools
	3-2-1 ModelSim
	3-2-2 PC Spim
	3-2-3 Xilinx Vivado

	3-3 Grantt Chart

	CHAPTER 4 SYSTEM SPECIFICATION
	4-1 System Feature
	4-1-1 System Functionality

	4-2 Operating Procedure
	4-3 Naming Convention
	4-4 System Interface
	4-4-1 Input Pin Description
	4-4-2 Output Pin Description

	4-5 Memory Map
	4-5-1 Memory Map Description
	4-6-1 General Purpose Register
	4-6-2 Special Purpose Register
	4-6-3 Program Counter Register
	4-6-4 CP0 Register
	4-6-5 FP Register

	4-7 Instruction Formats and Addressing Modes
	4-7-1 Basic Instruction Formats
	4-7-2 FP Instruction Formats
	4-7-3 Addressing Modes
	e) FI-format
	PC-relative addressing: Perform operation on source and target register to determine next PC condition, the immediate is uses as address offset for next PC

	4-8 Supported Instructions Set

	CHAPTER 5: MICROARCHITECTURE SPECIFICATION
	5-1 Design Hierarchy and Partitioning
	5-2 Microarchitecture of RISC32 processor
	Figure above is the microarchitecture of RISC32 processor with 5 stages pipeline. The register file and the FP blocks will be implemented as shown in microarchitecture view above. The more detailed microarchitecture view will be shown in next page.
	5-2-1 Interface of FP Register File and Extended Pipeline with Datapath Unit

	5-3 Datapath Unit
	5-3-2 FPU Register File Block
	5-3-2-1 Functionality
	5-3-2-2 FPU Register File Block Interface
	5-3-2-3 Input Pin Description
	5-3-2-4 Output Pin Description

	5-3-3 FP Pre Normalize Block
	5-3-3-1 Functionality
	5-3-3-2 FP Pre Normalize Block Interface
	5-3-3-3 Input Pin Description
	5-3-3-4 Output Pin Description
	5-3-3-5 FP Pre Normalize Internal Block Diagram

	5-3-4 FP Adder Block
	5-3-4-1 Functionality
	5-3-4-2 FP Adder Block Interface
	5-3-4-3 Input Pin Description
	5-3-4-4 Output Pin Description
	5-3-4-5 FP Adder Internal Block Diagram

	5-3-5 FP Post Normalize Block
	5-3-5-1 Functionality
	5-3-5-2 FP Post Normalize Block Interface
	5-3-5-3 Input Pin Description
	5-3-5-4 Output Pin Description
	5-3-5-5 FP Post Normalize Internal Block Diagram

	5-3-6 FP Rounding Block
	5-3-6-1 Functionality
	5-3-6-2 FP Rounding Block Interface
	5-3-6-3 Input Pin Description
	5-3-6-4 Output Pin Description
	5-3-6-5 FP Rounding Block Internal Diagram

	5-4 Controlpath Unit
	5-4-1 Controlpath Unit Interface

	5-5 Rom Unit
	5-5-1 Rom Unit Interface

	5-6 Memory Unit
	5-6-1 Memory Unit Interface
	5-6-2 Memory Unit Mapping

	CHAPTER 6: VERIFICATION SPECIFICATION
	6-1 Test Plan for FPU
	6-2 Simulation Result for FPU
	6-2-1 Test Case #1: Reset
	6-2-2 Test Case #2: Addition function test on single precision numbers
	6-2-3 Test Case #3: Addition function test on double precision numbers
	6-2-4 Test Case #4: Addition function test on all zero numbers
	6-2-5 Test Case #5: Infinity inputs test
	6-2-6 Test Case #5: NaN inputs test

	6-3 FP Register File Contents
	6-4 Test Bench for FPU
	6-5 FP Integration with RISC32
	6-5-1 Test Program
	6-5-2 Simulation Result
	6-5-2-1 Test Case #1: lwc1 instruction
	6-5-2-2 Test Case #1: swc1 instruction
	6-5-2-3 Test Case #3: mfc1 instruction
	6-5-2-4: Test Case #3: mtc1 instruction

	6-5-3 Test Bench

	CHAPTER 7: CONCLUSION
	BIBLIOGRAPHY
	POSTER

