DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER FOR ZIGBEE
MODULE
BY
YONG MIN AN

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONS)
COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER
FOR ZIGBEE MODULE

Academic Session: JAN 2020

YONG MIN AN
(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

YONG MIN AN %—d‘

(Author’s signature) (Su@&or’s signature)

Address:
No 2359, Seksyen 2/10 Bandar
Barat, Cambridge, 31900 MOK KAI MING

Kampar, Ipoh Supervisor’s name

Date: 24/4/2020 Date: 24/4/2020

DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER FOR ZIGBEE
MODULE
BY
YONG MIN AN

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONS)
COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Kampar Campus)

JAN 2020

DECLARATION OF ORIGINALITY

I declare that this report entitled “DESIGN AND IMPLEMENTATION OF A SPI
CONTROLLER FOR ZIGBEE MODULE” is my own work except as cited in the
references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : YONG MIN AN
Name : YONG MIN AN
Date : 24/4/2020

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to my project supervisor,
Mr Mok Kai Ming for his constant supervision, constructive suggestions, as well as
invaluable guidance and encouragement in helping me to complete this project. I am
really thankful to him because | came to know and learn a lot of new things during the
project development. Again, thank you for precious your time and patience along the

duration of my project.

Apart from that, 1 would also like to express my special gratitude and thanks to my
beloved family members, especially my parents who have been giving me endless care
and support, both spiritually and financially over the years. Thank you for always

supporting me in all the good and bad times throughout my life.

Last but not least, | would like to extend my sincere thanks to all my friends and seniors
who have willingly helped me out with their abilities, providing necessary and useful
information about the project. All the advises and suggestions had contributed to the

completion of this project. Thank you for all of your generous helps and kindness.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
iii

ABSTRACT

This project is about the 4-wire Serial Peripheral Interface (SPI) controller unit design
and implementation for academic purpose. The development of this project will begin
with the design of the SPI controller unit. The RTL design flow will be used throughout
the project development and the micro-architectural level design will be focused more
as the SPI controller to be designed is in the unit level. The internal blocks of the SPI
controller unit will be modeled by using Verilog HDL before they are integrated into
unit level. The specifications of the SPI controller unit and its internal block will be
functionally verified by writing testbenches in Verilog HDL.

After the SPI controller unit has been functionally verified, it will be integrated into the
existing RISC32 pipelined processor developed in UTAR. This involves the
development of the interface between the SPI controller and the RISC32 based on 1/0
memory mapping technique. Moving on, an Interrupt Service Routine (ISR) will be
specifically developed and implemented on the RISC32 for handling the data received
by the SPI controller. A MIPS test program will also be written to test the correctness

of the ISR functionalities.

Lastly, it will be synthesized on the Field Programmable Gate Array (FPGA)
technology and further interfaced with CC2420 RF transceiver in this project for
wireless data communication. The CC2420 will be configured as the slave device
whereas the SPI controller unit will be used as the master device. Data communication
between the SPI controller unit in the RISC32 pipelined processor and the CC2420 RF
transceiver is performed via a simple 4-wire SPI compatible interface (MOSI, MISO,
SCLK and SS pin). In short, a piece of software, stimulation result and hardware are

expected to be delivered at the end of the project.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE ...t e e e e s i
DECLARATION OF ORIGINALITY Lt i
ACKNOWLEDGEMENTS ... e e i
A B S T R A T e iv
TABLE OF CONTENTS ..ottt e e e \
LIST OF FIGURES. ...ttt a e e e e Xi
LIST OF TABLES ...t e e e XVii
LIST OF ABBREVIATIONSottt XiX
CHAPTER 1: INTRODUCTION ..ottt sirnrnn e e e e 1
1.1 Background INfOrmMationcccooeeiiieiiionie e 1

L L L MU S e —————————— 1

N T PRSP 1

LLLLB ISP et 2

O A T | 1< OSSR 3

1.2 MOTIVATION ..ottt 3

1.3 Problem STateMENTccciiiiiiiie et 5

1.4 PrOJECE SCOPE ...vvieitii ettt site ettt et et e et e e e s e e snte e e snbe e e s ntaeeannee e 5

1.5 PrOJECt ODJECHIVES ...eeeiiiiie ittt e et e e 6

1.6 Impact, Significance, and Contribution.............c.cccccve i 6

1.7 RepOrt OrganiZationcueeiiueeeiiiee e e sie e e e e et e s e e naeesnne e 7
CHAPTER 2: LITERATURE REVIEW........ccooiiiiiiee s 9
2.1 Overview of 4-wire SPI ProtoCol..........ccccocviiiiiiiiiie e 9
2.1.1 Detailed Pin Description in 4-wire SP1 Protocolccccceevvvveeinnnn, 9

2.1.2 Transfer Modes in 4-wire SPI Protocol..........cccocovivveiiienieeiiece, 10

2.1.3 Timing Diagram in 4-wire SP1 Protocol............cccccveevieeeviie e, 11

2.1.4 Working Principal of 4-wire SPI Protocol............c..cccoeveeviieeiiinecennnn. 13

2.2 Overview of 3-wire SPI ProtoCOL..........cccooviiiiiiiiiiiie e 16
2.2.1 Detailed Pin Description of 3-wire SPI Protocolccccccovvveennnen. 16

2.2.2 Transfer Modes of 3-wire SP1 Protocol............ccoocveiiiiiiiiiiiiiieen, 17

2.2.3 Timing Diagram of 3-wire SPI Protocolcccccccovvvveeiiiinicniinn, 18

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.4 Working Principal of 3-wire SPI Protocol...........cccccceviiiniiiiinnnnnn, 18

2.3 SPI CONTIOIIET ...t 20
2.3.1 SPI Controller from Motorola INC.ccoovevviieiiieiiiee e 20
2.3.2 SPI1 Controller Designed by Kiat Wei Pau............ccccocccveeviieeiiiieennnnn. 22

2.4 Memory-mappPed /O ...ttt 23

CHAPTER 3: PROPOSED METHOD/APPROACH..........cccoiiee e 25

3.1 Methodologies and General Work Procedures...........ccceevvveeveeeiieeesinnnn 25
3. LI RTL DESIGN FIOWuviiiiiiiieiiiiesie e 25
3.1.2 Micro-architecture SPecifiCation...........cccoccveriiieriiiiie e 26
3.1.3 RTL Modeling and Verification............ccccooveiiieniiinieiieneeniee e 26
3.1.4 Logic Synthesis fOr FPGAcooiiiieiieee e 27

3.2 DESIGN TOOIS....eeeiiiiie it 27
3.2.1 ModelSim PE Student Edition 10.4a.........ccccccovveiiineeiiine e 28
3.2.2 Xilinx Vivado Design SUITEccoiuiiiiieiie e 28
B.2. 3 PCSPIM .ttt 29

3.3 Technologies INVOIVEMoooiiie et 29
3.3.1 Field Programmable Gate Array (FPGA).......ccoeiviveiiiee e, 29
3.3.2 Zighee RF TranSCEIVENeeeiuveeeciiieeciie e et e e saee e seee e 30

3.4 Implementation Issues and Challengesccccccvveiiive v 30

3D THMEIINE. .. 31
3.5.1 Gantt Chart for Project 1........ccoeeiiieiiiie e 31
3.5.2 Gantt Chart for Project 2........ccvveviieiiiie e 31

CHAPTER 4: SYSTEM SPECIFICATION....cccoiiiiieiie et 32

4.1 System Overview of the RISC32 Pipeline Processorcccocvevvveeiiunnnn, 32
4.1.1 RISC32 Pipeline Processor ArchiteCture..........ccccovvvveevivveeiiiee e i, 32
4.1.2 Functional View of the RISC32 Pipeline Processorcc.cccuue..ne. 33
4.1.3 Memory Map of the RISC32 Pipeline Processor..........cccccceveevivneenne. 34

4.2 Chip Interface of the RISC32 Pipeline ProCessor...........ccccoveeviuveeiiiveesinnnnnn 36

4.3 Input Pin Description of the RISC32 Pipeline Processor.............ccccvvevevnn.nn 36

4.4 Output Pin Description of the RISC32 Pipeline Processorccccccv.... 37

4.5 Input Output Pin Description of the RISC32 Pipeline Processor 37

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
vi

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATIONccoceeiiiieen. 38

5.1 SPI CoNtroller UNit........c.oviiiiieiiie ettt 38
5.1.1 Functionality/Feature of the SPI Controller Unit.............cccccveevinnnnne. 38
5.1.2 Operating Procedure (External Operation)ccccocvevvieriveennenninnn. 39
5.1.3 Unit Interface of the SPI Controller Unitc.ccccovvviiiiviie e, 41
5.1.4 Input Pin Description of the SPI Controller Unit..........ccccccccveevvnennne. 42
5.1.5 Qutput Pin Description of the SPI1 Controller Unitcccceeveene. 43
5.1.6 Input Output Pin Description of the SPI Controller Unit................... 43
5.1.7 Internal Operation of the SPI1 Controller Unit..............ccccceeovveiinnnne. 44
5.1.8 Design Partitioning of the SP1 Controller Unit.............ccccooovveiinnnne. 45
5.1.9 Micro-Architecture of the SPI Controller Unit (Block Level)............ 48

5.2 SPI Transmitter BIOCK..........cuvviiiiiiiie e 50
5.2.1 Functionality/Feature of the SPI Transmitter Block 50
5.2.2 Block Interface of the SPI Transmitter BIoCK..............ccccevvveeiinnnnne. 50
5.2.3 Input Pin Description of the SPI Transmitter Block 50
5.2.4 Qutput Pin Description of the SPI Transmitter Block........................ 52
5.2.5 Finite State Machine of the SPI Transmitter Blockc.c........ 53

5.3 SPI RECEIVEN BIOCKcuviiiiiiiie it 54
5.3.1 Functionality/Feature of the SPI Receiver BlocK................ccceevvernnne. 54
5.3.2 Block Interface of the SPI Receiver BIOCK..........c.ccocceviiiiiiiiieninnne, 54
5.3.3 Input Pin Description of the SPI Receiver BlocK................ccccceveeenne. 54
5.3.4 Output Pin Description of the SPI Receiver BlocKcccccvee.ne. 55
5.3.5 Finite State Machine of the SPI Receiver Block..............cccccovvrinnnene. 56

5.4 SPI Clock Generator BIOCKcooiiiiiiiiiiiieiieenee e 57
5.4.1 Functionality/Feature of the SPI Clock Generator Block................... 57
5.4.2 Block Interface of the SPI Clock Generator BlocKc..cccceeueeene. 57
5.4.3 Input Pin Description of the SPI Clock Generator Block................... 57
5.4.4 Output Pin Description of the SPI Clock Generator Block 58

5.5 16-deep Asynchronous FIFO BIOCKccccvveiiiiiiiicicc e 59
5.5.1 Functionality/Feature of the 16-deep Asynchronous FIFO Block...... 59
5.5.2 Block Interface of the 16-deep Asynchronous FIFO Block............... 59

5.5.3 Input Pin Description of the 16-deep Asynchronous FIFO Block...... 60
5.5.4 Output Pin Description of the 16-deep Asynchronous FIFO Block ... 60
5.5.5 Schematic and Block Diagram of the 16-deep Asynchronous FIFO

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
vii

5.6 2-deep FIFO Synchronizer BIOCKc.cccciiiiiiiiiic 62

5.6.1 Functionality/Feature of the 2-deep FIFO Synchronizer Block.......... 62
5.6.2 Block Interface of the 2-deep FIFO Synchronizer Block................... 62
5.6.3 Input Pin Description of the 2-deep FIFO Synchronizer Block.......... 63

5.6.4 Output Pin Description of the 2-deep FIFO Synchronizer Block....... 63
5.6.5 Schematic and Block Diagram of the 2-deep FIFO Synchronizer Block

... 65
5.7 Register Set of SPI Controller Unit..........ccccooiiveiiiieiiie e 66
5.7.1 SPI Configuration Register (SPICR)........cccceviiieiiii e 66
5.7.2 SPI Status Register (SPISR)ccouvviiiiieiiieeee e 67
5.7.3 SPI Transmitter Data register (SPITDR).......cccccevviveiiiieeiiie e, 69
5.8.4 SPI Receiver Data register (SPIRDR)cccccovvveiiiveiiiie e, 70
CHAPTER 6: FIRMWARE DEVELOPMENTcooiiiiiiieeccieee e 71
6.1 Exception Handler of the RISC32 Pipeline Processorc.cccoovervieninnnn 71
6.2 Interrupt Service Routine (ISR) of the SPI Controller Unit........................ 72
CHAPTER 7: VERIFICATION SPECIFICATION AND STIMULATION
RESULT .ottt 74
7.1 Test Plan for SP1 Controller Unit’s Functional Test..........ccccccevvevivvreinnnnnn 74
7.2 Stimulation Results of the SPI Controller Unit’s Functional Test............... 83
7.2.1 Test Case #1: SYStEM RESEL.......cciviiiiiiiiiiiiiiiiee e 83
7.2.2 Test Case #2: Write Operation on SPISR...........cccoeeviie v, 83
7.2.3 Test Case #3: Write Operation on SPICRcccoovvevve e, 84
7.2.4 Test Case #4: Transmitter Buffer Empty Interrupt Support............... 85
7.2.5 Test Case #5: Push One 8-bit Data into the TX_ bufferl6x8.............. 85
7.2.6 Test Case #6: Mode 0 Serial Data Communicationcccceeuvee. 86
7.2.7 Test Case #7: Receiver Buffer Full Interrupt Support After Receiving
A 1-byte Data (RXFM = 0)...c.ooeeiiiieiiicciee e 87

7.2.8 Test Case #8: Pop 1-byte of Received Data from the RX_buffer16x887
7.2.9 Test Case #9: Receiver Buffer Full Interrupt Support After Receiving

16x1-byte Data (RXFM = 1)..cuiiiiiiiiie e 88
7.2.10 Test Case #10: Pop 16 Number of 1-byte Data from the

RX DUFFEILEX8.....cee e 89

7.2.11 Test Case #11: Mode 1 Serial Data Communication 90

7.2.12 Test Case #12: Mode 2 Serial Data Communication 90

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
viii

7.2.13 Test Case #13: Mode 3 Serial Data Communication 91

7.2.14 Test Case #14: Selectable Transmission Speed (Baud Rate)............ 92
7.2.15 Test Case #15: Mode Fault Error Interrupt Support...........ccceeeeee. 93
7.4 Test Plan for SPI Controller Unit’s Integration Test with RISC32............. 94
7.5 MIPS Test Program for ¢_risc_dut in Integration TeSt...........ccccevvvvveiiinnnnn 99
7.6 MIPS Test Program for c_risc_client in Integration Testcccccvveneee. 102
7.7 Stimulation Results of the SPI Controller Unit’s Integration Test with
S O 7SSOSR 105
7.7.1 Test Case #1: SYStEM RESEL.......ccvviiiiieiiieee e 105
7.7.2 Test Case #2: Transmitter Buffer Empty Interrupt Support............. 105
7.7.3 Test Case #3: Mode 0 Serial Data Communicationccceve... 110
7.7.4 Test Case #4: Receiver Buffer Full Interrupt Support............c.cc..... 112
7.7.5 Test Case #5: Mode 1 Serial Data Communicationc........ 116
7.7.6 Test Case #6: Mode 2 Serial Data Communication......................... 117
7.7.7 Test Case #7: Mode 3 Serial Data Communication 118
7.7.8 Test Case #8: Mode Fault Error Interrupt Supportcccvevveennne. 119
CHAPTER 8: SYNTHESIS AND IMPLEMENTATIONccocoiiiiiiiiiieiien, 122
8.1 FPGA Resources Utilization of the Synthesized SPI Controller Unit....... 122
8.2 TIMING ANAIYSIS....eciiiieiiiie ettt e e e e anaes 123
8.2.1 Timing Analysis of the On-board SPI Controller Unit 123
8.2.2 Timing Analysis of the RISC32 with the SPI Controller Unit.......... 124
8.3 Proposed Hardware Implementation..............cccceovveiiieesiine e 125
8.4 Proposed Software Implementation.............c.ccceevvvveiiine v, 130
8.4.1 Flowchart of the Hardware/Software Behaviors in ¢_risc_dut......... 132

8.4.2 Flowchart of the Hardware/Software Behaviors in c_risc_client..... 134

CHAPTER 9: CONCLUSION AND FUTURE WORKccooiiiiiiiiiiiciee 136
9.1 CONCIUSTON ...t 136
9.2 FULUIE WOTK ...ttt 137
BIBLIOGRAPHY ... 138
APPENDIX A: TIMING DIAGRAMooiiiiiiii e A-1
A.1 Timing diagram of different SPI’s Transfer Modes............ccccccovvivireennee. A-1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX B: TESTBENCH......cooiiiiiiiei e B-1

B.1 Testbench for SPI Controller Unit’s Functional Test............ccccoeuvveeennee. B-1
B.2 Testbench for SPI Controller Unit’s Integration Test with RISC32........ B-10
APPENDIX C: CC2420 ...ttt ettt C-1
C.1 Pin Assignment of the CC2420...........cccooiiiiieiiieiiieee e C-1
C.2 Overview of the External Components Used with the CC2420 C-3
C.3 Bill of Materials for the Application CirCuitS...........ccccevvvienieiiieniieinnn C-3
POSTER .ottt e et e e st e e e s anaee e e D-1
PLAGIARISM CHECK RESULT ...t E-1
CHE CKLIST et e et e e e et e e e e s sntaeeas F-1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure Number

Figure 1.1.1.1
Figure 1.1.2.1
Figure 2.1.3.1
Figure 2.1.3.2
Figure 2.1.3.3

Figure 2.1.3.4

Figure 2.1.4.1

Figure 2.1.4.2

Figure 2.1.4.3

Figure 2.2.3.1

Figure 2.2.4.1

Figure 2.3.1.1
Figure 2.3.2.1

Figure 3.1.1.1

Figure 3.3.1.1

LIST OF FIGURES

Title

Conventional pipeline execution representation.

An overview of various type of buses in the computer system.
Timing diagram for mode O serial data communication in the
4-wire SPI protocol.

Timing diagram for mode 1 serial data communication in the
4-wire SPI protocol.

Timing diagram for mode 2 serial data communication in the
4-wire SPI protocol.

Timing diagram for mode 3 serial data communication in the
4-wire SPI protocol.

An overview of the block diagram connection between a
master device and a slave device in 4-wire SPI protocol.

An overview of the block diagram connection between a
single master and multiple slave devices using independent
slave configuration.

An overview of the block diagram connection between a
single master device and multiple slave devices using Daisy-
chain configuration.

Timing diagram for mode 0, 1, 2, and 3 serial data
communication in the 3-wire SPI protocol.

An overview of the block diagram connection between a
master device and a slave device in the 3-wrire SPI protocol.

An overview on the Motorola Inc’s SPI controller.

An overview of the SPI controller designed by Kiat Wei Pau

The RTL design flow used for developing the SPI controller
unit is provided. The arrows indicate process or work flow
(not data flow).

The top view of the Nexys 4 DDR (XC7A100T)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

11

12

12

13

14

15

15

18

19

20
23

25

29

Xi

Figure 3.3.2.1

Figure 3.5.1.1.

Figure 3.5.2.1
Figure 4.1.1.1

Figure 4.1.2.1
Figure 4.1.3.1
Figure 4.2.1

Figure 5.1.3.1
Figure 5.1.8.1
Figure 5.1.9.1
Figure 5.1.9.3
Figure 5.2.2.1
Figure 5.2.5.1
Figure 5.3.2.1
Figure 5.3.5.1
Figure 5.4.2.1
Figure 5.5.2.1
Figure 5.5.5.1

Figure 5.6.2.1
Figure 5.6.5.1

Figure 5.7.1
Figure 5.8.1.1
Figure 5.8.2.1
Figure 5.8.3.1
Figure 5.8.4.1
Figure 7.1.1

Figure 7.2.1.1

The top view of the CC2420 from the Texas Instruments 30

company.
Gantt chat for Project 1
Gantt chart for Project 2

An overview on the architecture of the RISC32 pipeline

processor.
The functional view of the RISC32 pipeline processor.

Memory map of the RISC32 pipeline processor.
Chip interface of the RISC32 pipeline processor.
SPI controller unit interface.

Block-level partitioning of the SPI controller unit.

Simplified micro-architecture of the SPI controller unit.

Datapath of the SPI controller unit

Block interface of the SPI transmitter block.
Finite state machine of the SPI transmitter block.
Block interface of the SPI receiver block.

Finite state machine of the SPI receiver block.
Block interface of the SPI clock generator block.

Block interface of 16-deep asynchronous FIFO block.

Schematic and block diagram of the 16-deep asynchronous

FIFO design with asynchronous comparisons.

Block interface of 2-deep FIFO synchronizer block

Schematic and block diagram of the 2-deep FIFO

synchronizer block

Address of the special-purpose registers in virtual memory

SPI Configuration Register (SPICR)

SPI Status Register (SPISR)

SPI Transmitter Data Register (SPITDR)
SPI Receiver Data Register (RDR)

The connection mechanism of the DUT_MASTER and the
DUT_SLAVE for SPI controller unit’s functional verification.

Stimulation result for test case #1 using ModelSim stimulator.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

31
31
33

34
35
36
41
46
48
49
50
53
54
56
57
59
61

62
65

66
66
68
69
70
74

83

Xii

Figure 7.2.2.1
Figure 7.2.3.1
Figure 7.2.4.1
Figure 7.25.1
Figure 7.2.6.1
Figure 7.2.7.1
Figure 7.2.8.1
Figure 7.2.9.1
Figure 7.2.9.2

Figure 7.2.10.1

Figure 7.2.11.1
Figure 7.2.12.1
Figure 7.2.13.1
Figure 7.2.14.1

Figure 7.2.14.2

Figure 7.2.14.3

Figure 7.2.15.1

Figure 7.3.1

Figure 7.6.1.1

Figure 7.6.2.1

Figure 7.6.2.2

Stimulation result for test case #2 using ModelSim stimulator.
Stimulation result for test case #3 using ModelSim stimulator.
Stimulation result for test case #4 using ModelSim stimulator.
Stimulation result for test case #5 using ModelSim stimulator.
Stimulation result for test case #6 using ModelSim stimulator.
Stimulation result for test case #7 using ModelSim stimulator.
Stimulation result for test case #8 using ModelSim stimulator.
Stimulation result for test case #9 using ModelSim stimulator.
Stimulation result for test case #9 using ModelSim stimulator
(cont’d).

Stimulation result for test case #10 using ModelSim
stimulator.

Stimulation result for test case #11 using ModelSim stimulator
Stimulation result for test case #12 using ModelSim stimulator
Stimulation result for test case #13 using ModelSim stimulator
Stimulation result for test case #14 with SCLK clock signal is
4 times slower than the 1/O clock of the DUY_MASTER.
Stimulation result for test case #14 with SCLK clock signal is
8 times slower than the 1/O clock of the DUY_MASTER.
Stimulation result for test case #14 with SCLK clock signal is
16 times slower than the 1/O clock of the DUY_MASTER.
Stimulation result for test case #15 using ModelSim
stimulator.

The connection mechanism of the c¢_risc_dut, c_risc_client,
SPI flash dut, and SPI flash client for SPI controller unit’s
integration test with RISC32.

Stimulation result for test case #1 using Vivado stimulator.
Stimulation result of ¢_risc_dut for test case #2 using Vivado
stimulator.

Stimulation result of ¢_risc_dut for test case #2 using Vivado

stimulator (cont’d).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

83
84
85
85
86
87
87
88
88

89

90
90
91
92

92

92

93

94

105

105

106

xiii

Figure 7.6.2.3

Figure 7.6.2.4

Figure 7.6.2.5

Figure 7.6.2.6

Figure 7.6.2.7

Figure 7.6.2.8

Figure 7.6.3.1
Figure 7.6.4.1

Figure 7.6.4.2

Figure 7.6.4.3

Figure 7.6.4.4

Figure 7.6.4.5

Figure 7.6.4.6

Figure 7.6.4.7

Figure 7.6.4.8

Figure 7.6.5.1
Figure 7.6.6.1
Figure 7.6.7.1
Figure 7.6.8.1

Stimulation result of c_risc_dut for test case #2 using Vivado
stimulator (cont’d).

Stimulation result of c_risc_dut for test case #2 using Vivado
stimulator (cont’d).

Stimulation result of c_risc_client for test case #2 using
Vivado stimulator.

Stimulation result of c_risc_client for test case #2 using
Vivado stimulator (cont’d).

Stimulation result of c_risc_client for test case #2 using
Vivado stimulator (cont’d).

Stimulation result of c_risc_client for test case #2 using
Vivado stimulator (cont’d).

Stimulation result for test case #3 using Vivado stimulator.
Stimulation result of c_risc_dut for test case #4 using Vivado
stimulator.

Stimulation result of ¢_risc_dut for test case #4 using Vivado
stimulator (cont’d).

Stimulation result of ¢_risc_dut for test case #4 using Vivado
stimulator (cont’d).

Stimulation result of ¢_risc_dut for test case #4 using Vivado
stimulator.

Stimulation result of c_risc_client for test case #4 using
Vivado stimulator.

Stimulation result of c_risc_client for test case #4 using
Vivado stimulator (cont’d).

Stimulation result of c_risc_client for test case #4 using
Vivado stimulator (cont’d).

Stimulation result of c_risc_client for test case #4 using
Vivado stimulator (cont’d).

Stimulation result for test case #5 using Vivado stimulator.
Stimulation result for test case #6 using Vivado stimulator.
Stimulation result for test case #7 using Vivado stimulator.

Stimulation result for test case #8 using Vivado stimulator.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

106

106

108

108

108

109

110
112

112

112

113

114

114

114

115

116
117
118
119

Xiv

Figure 7.6.8.2

Figure 7.6.8.3

Figure 7.6.8.4

Figure 7.6.8.5

Figure 8.1.1

Figure 8.1.2

Figure 8.2.1.1
Figure 8.2.1.2
Figure 8.2.2.1

Figure 8.2.2.2

Figure 8.3.1

Figure 8.3.2

Figure 8.3.3

Figure 8.4.1

Figure 8.4.1.1

Figure 8.4.1.2

Figure 8.4.2.1

Stimulation result of ¢_risc_dut for test case #8 using Vivado
stimulator.

Stimulation result of c_risc_dut for test case #8 using Vivado
stimulator (cont’d).

Stimulation result of c_risc_dut for test case #8 using Vivado
stimulator (cont’d).

Stimulation result of c_risc_dut for test case #8 using Vivado
stimulator (cont’d).

Resource utilization report of the synthesized SPI controller
unit on the Nexys 4 DDR (XC7A100T) board.

Resource utilization summary of the synthesized SPI
controller unit on the Nexys 4 DDR (XC7A100T) board.
Timing report of the on-board SPI controller unit.

Timing report of the on-board SPI controller unit.

Design timing summary of the entire RISC32 pipeline
processor.

Top 10 paths in the RISC32 pipeline processor that have the
largest total data path delay.

Detailed descriptions about the connection mechanism of the
RISC32 pipeline processor with the CC2420 transceiver by
using only few external components.

Connection mechanism of the c¢_risc_dut with the CC2420
transceiver for wireless communication.

Connection mechanism of the ¢_risc_client with the CC2420
transceiver for wireless communication

Expected wireless communication between the Zigbee end
device and the Zigbee coordinator in this project

Flowchart of hardware/software behaviors in c¢_risc_dut for
on-board testing.

Flowchart of hardware/software behaviors in c¢_risc_dut for
on-board testing (cont’d).

Flowchart of hardware/software behaviors in ¢_risc_client for

on-board testing.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

119

119

120

120

122

122

123
124
125

125

127

128

129

131

132

133

134

Xv

Figure 8.4.2.2 Flowchart of hardware/software behaviors in ¢_risc_client for 135

on-board testing (cont’d).

Figure A.1.1 Timing diagram for mode 0O serial data communication. A-1
Figure A.1.2 Timing diagram for mode 1 serial data communication. A-1
Figure A.1.3 Timing diagram for mode 2 serial data communication. A-1
Figure A.1.4 Timing diagram for mode 3 serial data communication. A-1
Figure C.1.1 Top view of the CC2420 pinout C-1
Figure C.1.2 Pin description of the CC2420. C-1
Figure C.1.3 Pin description of the CC2420 (cont’d). C-2
Figure C.2.1 Description of the external components used with the C-3
CC2420.
Figure C.3.1 List of materials for the application circuit. C-3

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
XVi

Table Number

Table 2.1.1.1

Table 2.1.2.1

Table 2.1.2.2

Table 2.2.1.1
Table 2.3.2.1

Table 2.4.1
Table 3.2.1

Table 4.1.1.1
Table 4.1.3.1
Table 4.3.1
Table 4.4.1
Table 4.5.1
Table 5.1.1.1

Table 5.1.4.1
Table 5.1.5.1
Table 5.1.6.1
Table 5.1.7.1
Table 5.1.7.2
Table 5.1.8.1
Table 5.2.3.1
Table 5.2.4.1

LIST OF TABLES

Title

Functional descriptions pf the standard 4-wire SPI’s external
pins.

Functional descriptions of the Clock Polarity and Clock Phase
parameters based on Motorola Inc.’s SPI Block Guide
\/03.06.

SPI transfer mode information based on Motorola Inc.’s SPI
Block Guide VV03.06.

Functional description of the 3-wire SPI’s external pins.
Normal mode and bidirectional mode in Motorola Inc.’s SPI
controller.

Three general types of special-purpose register used in MMIO
Comparison among 3 different Verilog stimulators.
Specification of the RISC32 pipeline processor.

Memory map description of the RISC32 pipeline processor.
Input pin description of the RISC32 pipeline processor.
Output pin description of the RISC32 pipeline processor.
Input output pin description of the RISC32 pipeline processor.
Pin direction of the SPI standard pins when it is set as a master
or slave device.

Input pin description of the SPI controller unit.

Output pin description of the SPI controller unit.

Input output pin description of the SPI controller unit.
Functional description of the SPI controller’s write operation.
Functional description of the SPI controller’s read operation.
Functional description of each SPI internal block.

Input pin description of the SPI transmitter block.

Output pin description of the SPI transmitter block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

11

17
21

24
27

33

36
37
37
38

42
43
43

44
46
50
52

XVii

Table 5.2.5.1
Table 5.3.3.1
Table 5.3.4.1
Table 5.3.5.1
Table 5.4.3.1
Table 5.4.4.1
Table 5.5.3.1

Table 5.5.4.1

Table 5.6.3.1
Table 5.6.4.1
Table 7.1.1

Table 7.1.2

Table 7.3.1

Table 7.4.1
Table 7.5.1

State description of the SPI transmitter block.

Input pin description of the SPI receiver block.

Output pin description of the SPI receiver block.

State description of the SPI receiver block.

Input pin description of the SPI clock generator block.
Output pin description of the SPI clock generator block.
Input pin description of the 16-deep asynchronous FIFO
block.

Output pin description of the 16-deep asynchronous FIFO
block.

Input pin description of the 2-deep FIFO synchronizer block.
Output pin description of the 2-deep FIFO synchronizer block.
Instance name of each SPI controller unit and its internal
blocks that are being used in the test plans, testbenches,
flowcharts and stimulation.

Test plan for the SPI controller unit’s functional verification.
Test plan for the SPI controller unit’s integration test with
RISC32 pipeline processor.

MIPS test program for ¢_risc_dut in integration test

MIPS test program for c_risc_client in integration test

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

53
54
55
56
57
58
60

60

63
63
75

75
95

99
102

XViii

LIST OF ABBREVIATIONS

ADC Analog-to-digital Converter

CDC Clock Domain Crossing

CISC Complex Instruction Set Computer
CPHA Clock Phase

CPO Coprocessor 0

CPOL Clock Polarity

CPU Central Processing Unit

DAC Digital-to-analog Converter

DMA Direct Memory Access

DSSS Direct Sequence Spread Spectrum
EDA Electronic Design Automation

EX Execute

FPGA Field Programmable Gate Array
FSM Finite State Machine

GPIO General-Purpose Input Output
GPR General-Purpose Register

HDL Hardware Description Language
IC Integrated Circuit

ID Instruction Decode and Operand Fetch
IF Instruction Fetch

ISA Instruction Set Architecture

ISR Interrupt Service Routine

MAC Media Access Control

MCO Movement Control Order

MEM Memory Access

M2M Machine-to-machine

MIPS Microprocessor without Interlocked Pipeline Stages
MOMI Master In Master Out

MOSI Master Out Serial In

MISO Master In Serial Out

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
Xix

PCB Printed Circuit Board

RAM Random Access Board

RAW Read-After-Write

RF Radio Frequency

RISC Reduced Instruction Set Computer
ROM Read Only Memory

RSR Receiver Shift Register

RTL Register Transfer Level

RX Receive

SCLK Serial Clock

SISO Slave In Slave Out

SS Slave Select

SPI Serial Peripheral Interface

SPICR SPI Configuration Register
SPIRDR SPI Receiver Data Register
SPISR SPI Status Register

SPITDR SPI Transmitter Data Register
TSR Transmitter Shift Register

TX Transmit

UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus

VHDL VHSIC Hardware Description Language
VLSI Very Large-Scale Integration

WB Write Back

WNS Worse Negative Slack

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

Chapter 1: Introduction

1.1 Background Information
An overview of the project fields that matter is provided in the following sections to

help identify and understand some facts or knowledge related to this project.

1.1.1 MIPS

MIPS is the abbreviation of Microprocessor without Interlocked Pipeline Stages. Itis a
Reduced Instruction Set Computer (RISC) architecture developed by MIPS
Technologies (UKEssays, 2018). As opposed to the complex instruction set and large
number of addressing modes used in Complex Instruction Set Computer (CISC)
architecture, it uses simplified instruction sets and few addressing modes. As a result,
the hardware becomes less complex, faster, easier to build and test. However, it
executes the instruction in one cycle at the cost of increasing the number of instructions
used per program. To improve the throughput and reduce the average execution time
per instruction, it overlaps multiple instructions in a pipeline fashion as shown in Figure
1.1.1.1. On the other hand, MIPS architecture, after years of development, now supports
64-bit addressing and operation as well as high performance floating point which made
it popular in the embedded systems implementation such as routers, residential

gateways and video game consoles.

Time

| IF IID IEX IMEM I WB |
I IF IID IEx IMEM I WB |
| IF IID IEX IMEM I WB |
| IF IID IEx II\-‘!EM | WB |
| IF I\D IEX IMEM I WB |
Program Flow

|IF IID IEX IMEM IWB I

Figure 1.1.1.1: Conventional pipeline execution representation

1.1.2 Bus
In a computer system, a bus is a transmission path that interconnects various

components such as Central Processing Unit (CPU), Direct Memory Access (DMA)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

controller, memory, I/O devices and so on. Typically, there are three types of buses that

carry information from place to place in the computer system. These buses include:

e address bus that carries a unique address information to a given device in order
to be recognized by the CPU.

e data bus which gets data from or sends data to the device

e control bus which provides read or write signal to the device to indicate whether

the CPU is asking for information or sending it information.

Address bus

CPU

Read/ Data bus

Write

Control bus

Figure 1.1.2.1: An overview of various type of buses in the computer system

1.1.3 SPI

Serial Peripheral Interface (SPI) is one of the communication protocols that provides a
fast-synchronous serial communication between microcontroller and peripherals or
between multiple microcontrollers with on-board peripherals (Anusha, 2017). It was
developed with the intention to replace parallel interface so that the routing of the
parallel bus around PCB can be avoided as well as to provide high speed data transfer
between devices (Choudhury et al., 2014). Motorola Inc. was the first company that
developed SPI to connect its first 68000 based microcontroller unit to other peripherals
in the late 1970 (Choudhury et al., 2014). It has been later adopted by others in the
industry and become a popular communication protocol due to its simplicity of
interfacing and its full duplex characteristics for data communication (Choudhury et.al.,
2014). Over the years, SPI has been used in many kinds of applications and it is suitable
for those applications that involve the transfer of data streams. For instance, it has been
used to communicate with a variety of peripherals such as sensors, analog-to-digital
converter (ADC), digital-to-analog converter (DAC), UART, USB, EEPROM and so
on (Polytechnic Hub, 2017).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

1.1.4 Zigbee

Zigbee is a standard wireless technology that has been developed for low-cost, low-
power consumption wireless machine-to-machine (M2M) and Internet of Things (10T)
network (Linda, 2017). Since the Zigbee do not have any built-in microcontroller or
processor, so they cannot manage the received or sent data (Priya, n.d.). In other words,
they can simply transfer the information that they receive only (Priya, n.d.). However,
they can be interfaced with other microcontrollers or processors such as Arduino,
Raspberry Pi or PC via serial interface in order to manage the received or sent data
(Priya, n.d.).

Furthermore, it works on the IEEE 802.15.4 specification and its WPANS can operate
on 868 MHz, 900 MHz and 2.4 GHz frequencies (Linda, 2017). The IEEE 802.15.4
defines the physical and Media Access Control (MAC) layers for handling the devices
at low rate (Elprocus, n.d.). The major applications of the Zigbee technology focus on
sensor and automatic control area such as industrial automation, home automation,
remote control and monitoring systems (Elprocus, n.d.). Because of the advantages of
the Zigbee technology like low cost, low power consumption, and its topologies, it is
therefore more suitable to be used for those applications mentioned above when
compared to Bluetooth, Wi-Fi, and other short-range communication technologies

(Elprocus, n.d.).

1.2 Motivation

A 32-bit RISC pipeline microprocessor has been developed in the Faculty of
Information and Communication Technology (FICT) of Universiti Tunku Abdul
Rahman (UTAR) by using Verilog Hardware Description Language (HDL). The
project is based on the Reduced Instruction Set Computing (RISC) architecture. The

motivations to initiate the project are due to the following reasons:

e Microprocessors have been designed by Microchip design companies as their
Intellectual Property (IP) for commercial purposes. Generally, these
microprocessor IP encompasses information about the complete design process,
which includes the modeling, the verification and also the physical design of an

integrated circuit. These IPs are qualified as the trade secrets of a company in

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

which they are protected by its holder. So, they are definitely not available in
the market at a user-friendly price or without cost for research purposes.

e Several freely available microprocessor cores could be found over the Internet
and majority of them are available at OpenCores. However, the MIPS
Instruction Set Architecture (ISA) is not implemented entirely on those
processors and they often lack of well-developed documentation. Because of

these issues, it makes them not suitable for reuse and customization.

e The verification specifications for a freely available RISC microprocessor core
are usually incomplete and not well constructed. The lack of well-developed
verification specification can cause the subsequent verification process of a
RISC microprocessor core to be slow-going. Eventually, it might slow down
the overall design process.

e The physical design phase of these microprocessor cores will also be inevitably
affected due to the lack of good verification specifications. In order for the
physical design phase to be carried out smoothly, a design needs to be first
functionally verified. This is in light of the fact that the physical design process

will have to be repeated whenever the front-end design needs to change.

The RISC32 project that has been initiated in UTAR aims to deliver solutions to all of
the issues mentioned above by creating a 32-bit RISC core-based development
environment for assisting the research works in the area of soft-core as well as the
application specific hardware modeling. Up to date, the RISC32 project that was
initiated in UTAR has completed the CPU designs that supports basic instructions
similar to MIPS instructions. The system control coprocessor that is the Coprocessor 0

(CPO0) is also available to interface with I/O devices and handle interrupts.

With the completion of the RISC32 project, a RF transceiver module which is the
Zigbee module will then be added to extend the research into cognitive radio area which
requires modification to the 1/0 controllers and firmware of the RISC32 microprocessor.
In this RISC32 project, several units based on the MIPS architecture have been divided.
This project is one of those units for making wireless communication across the

network possible in the RISC32 processor. With the available microarchitecture design

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

developed in the UTAR FICT, we can easily gain the software or firmware flexibility
advantage without having to rely and wait for third party community to develop for us.

1.3 Problem Statement

As mentioned earlier, the MIPS ISA compatible pipeline processor which includes the
Central Processing Unit (CPU), Coprocessor 0 (CPO0), basic memory, flash controller,
UART controller, SPI controller, GPIO controller and so on has been developed and
functionally verified. However, the existing SPI controller architecture and its Interrupt
Service Routine (ISR) are not fully workable after integrating it into the RISC32
pipeline processor. So, the previously developed SPI controller architecture and its ISR
need to be revised. Further design work on the SPI controller unit needs to be continued
in order for it to function normally with the processor. On top of that, there is also a
lack of comprehensive documentation of the SPI controller unit such as verification
specification, verification methodology, testbench and so on. The lack of well-
developed verification specifications of the SPI controller unit can have the direct effect
on the physical design phase because a design needs to be verified for its complete
functionalities so that the subsequent physical design process can be carried out
smoothly and easily. Otherwise, the physical design process would have to be carried
out repeatedly whenever the front-end design is required to change because of the

serious functionality failure.

1.4 Project Scope
The project scope will mainly focus on designing and integrating the SPI controller unit
into the existing RISC32 pipeline processor. The specifications of the SPI controller

unit and its internal block will be functionally verified by developing testbenches.

In addition, an Interrupt Service Routine (ISR) for handling all the interrupt requests
generated by the SPI controller will be developed and then integrated into the existing
exception handler of the RISC32 pipeline processor. Some MIPS test programs will
also be written to test the SPI controller’s functions after integration as well as to verify

the correctness of the ISR execution.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

Moving on, the developed SPI controller unit will be synthesized on the Field
Programmable Gate Array (FPGA) technology and further interfaced with the Zigbee
module which is the CC2420 RF transceiver in this project for wireless data

communication.

Lastly, a comprehensive documentation on this project will be developed and
maintained. In short, a piece of software, stimulation result and hardware are expected

to be delivered at the end of the project.

1.5 Project Objectives
The objectives of this project are:

e Todevelop a SPI controller. This involves the micro-architecture modelling and
verification of the SPI controller using Verilog language.

e To integrate the SPI controller into the RISC32. This involves the development
of the interface between the SPI controller and the RISC32 based on 1/O
memory mapping technique. An Interrupt Service Routine (ISR) specifically for
the SPI controller unit will also be developed in MIPS assembly language and
integrated into the exception handler.

e On-board testing with Zigbee module. This involves the synthesis of the
RISC32 onto an FPGA board. A Zigbee module will be connected to the SPI
controller ports for final testing to demonstrate the transfer of data between two
FPGA boards via the Zigbee modules.

1.6 Impact, Significance, and Contribution

After this project is done, it can provide a complete RISC microprocessor core-based
development environment and proper interfacing system for connecting the SPI
controller unit to the microprocessor as well as the Zigbee module. The development

environment attributes to the availability of the following:

e A well-developed design documentation of the chip specification, the
architecture specification as well as the micro-architecture specification.

e A fully functional interfacing system between the CPU and the SPI controller
unit in the form of synthesis-ready RTL that is written in Verilog.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

e A proper verification specification of the SPI controller unit. The verification
specification contains the suitable verification methodology, verification
techniques, test plan, testbench architecture and so on.

e A complete physical design in FPGA technology with documented timing and

resources usage information.

This project can contribute to develop an environment that mentioned above by
providing support to the hardware modeling research work. By having well-developed
basic RISC RTL model, the verification environment, as well as the design documents,
researchers will be able to develop their own research specific RTL models as part of
the MIPS environment and can quickly verify the models to obtain results. As a result,
the research works could be done more easily and rapidly.

1.7 Report Organization
This report consists of 9 chapters and the details of the project are shown in the

following chapters.

In Chapter 1, some background information that matters is given, followed by the
motivation of this project, the problem statement, project scope and objective in order

to help readers to understand some facts or knowledge related to this project.

In Chapter 2, a literature review on two types of SPI protocols, the design of various
type of SPI controller unit, and memory-mapped 1/O technique has been highlighted

and compared.

In Chapter 3, the methodologies and general work procedure for modeling, verifying,
and synthesizing the SPI controller unit has been discussed. Moreover, it also discusses
about the appropriate design tools that can help automate the design work, the
technologies involved, the implementation issues and challenges, as well as the timeline

of this project.

In Chapter 4, it discusses about the system overview of the RISC32 pipeline processor
that will be used. The architecture, memory map, chip interface, and pin description of

the processor used are stated in detail in Chapter 4.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

In Chapter 5, it shows the full information about the micro-architecture specification of
the designed SPI controller unit. It also gives an overview about each of the internal
block in the SPI controller unit in terms of their functionality, block interface, pin

description, and so on.

In Chapter 6, the exception handler of the RISC32 pipeline processor is briefly
discussed, followed by the explanation of the Interrupt Service Routine (ISR)
developed for the SPI controller unit.

In Chapter 7, it discusses about how the designed SPI controller unit is functionally
verified, both as a single unit and in a whole system. All of the related verification
specifications, test plans, testbenches, test programs, and stimulation results can be
found in Chapter 7.

In Chapter 8, it analyses the synthesized SPI controller unit in terms of FPGA resource
utilization and timing requirement. In addition, the solution for hardware and software
implementation to achieve data transfer between two FPGA boards via the Zigbee

modules is also proposed here.

In chapter 9, it concludes the overall project development, highlighting what have been
achieved in the project. Furthermore, the future work that can be made to this project is

also discussed here.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

Chapter 2: Literature Review
2.1 Overview of 4-wire SPI Protocol

2.1.1 Detailed Pin Description in 4-wire SPI Protocol

The standard 4-wire SPI1 consists of 4 external pins, typically called Master Out Serial
In (MOSI), Master In Serial Out (MISO), Serial Clock (SCLK), and Slave Select (SS).
A detailed functional description of each pin is provided in Table 2.1.1.1.

Pin Name | Pin Type Functional Description
(Typical)
SCLK Input e It is used to output a clock signal generated by
Output master to all the slave(s).

e It is used for synchronizing the data transfer taking
place across different devices.
e It is only active during a data transfer and is tri-

stated at any other time.

SS Input e It is an active low pin used by a master to select

Output which slave.

e Each slave has its own unique SS pin.

e It must go low before a data transfer begins and must
stay low during the process. Otherwise, the data

transfer will be aborted.

MOSI Input e Itis a unidirectional pin used to transfer serial data

Output from the master to the slave.

e When a device is configured as a master, serial data
is sent through this pin.

e When adevice is configured as a slave, serial data is
received through this pin.

e It is only active during a data transfer and is tri-

stated at any other time.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

MISO Input e |t is a unidirectional pin used to transfer serial data

Output from the slave to the master.

e When a device is configured as a slave and it is
selected (the slave’s SS pin goes low), serial data is
sent through this pin.

e When a device is configured as a slave and it is not
selected, the slave will drive this pin to high
impedance.

e When a device is configured as a master, serial data
Is received through this pin.

e It is only active during a data transfer and is tri-

stated at any other time.

Table 2.1.1.1: Functional descriptions of the standard 4-wire SPI’s external pins

2.1.2 Transfer Modes in 4-wire SP1 Protocol

Normally, a SPI peripheral can support up to 4 transfer modes (mode 0, 1, 2, and 3)
which provide great flexibility in communication between master and slave(s). These
4 transfer modes have four different clocking configurations which is defined by a pair
of parameters called Clock Polarity (CPOL) and Clock Phase (CPHA) (Anusha, 2017).

The definition of the two parameters are given in Table 2.1.2.1.

Parameter Value Functional Description
Clock Polarity | CPOL =0 | Active-low clock is selected. SCLK is high in idle state.
(CPOL) CPOL =1 | Active-high clock is selected. SCLK is low in idle state.

Clock Phase CPHA =0 | Data sampling occurs at odd edges (1, 3, 5, ...,15) of the
(CPHA) SCLK clock.

CPHA =1 | Data sampling occurs at even edges (2, 4, 6, ..., 16) of
the SCLK clock.

Table 2.1.2.1: Functional description of the Clock Polarity and Clock Phase parameters
based on Motorola Inc.’s SPI Block Guide VV03.06.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
10

Chapter 2: Literature Review

As shown in Table 2.1.2.2, each of the available modes has its own definition on the
SCLK signal that determines what is the steady level (that is high or low) when the
clock is not active as well as which SCLK edge is used for toggling the data and
sampling the data (Leens, 2009, pp. 8-13). Therefore, in order for a communication to
be possible, the master/slave pair must use the same set of parameters which include
the SCLK frequency, CPOL and CPHA (Leens, 2009, pp. 8-13).

Mode | CPOL | CPHA SCLK transmission edge SCLK SCLK
sample edge | idle stage

0 0 0 One half clock cycle before the | Rising edge Low
rising edge

1 0 1 Rising edge Falling edge Low

2 1 0 One half clock cycle before the | Falling edge High
falling edge

3 1 1 Falling edge Rising edge High

Table 2.1.2.2: SPI transfer mode information based on Motorola Inc.’s SPI Block Guide
V03.06.

2.1.3 Timing Diagram in 4-wire SP1 Protocol

In any of the transfer mode, the SS signal must go low before a data transfer begins and
must stay low during the process. Otherwise, the data transfer will be aborted. If the 4-
wire SPI device is set to operate in mode 0 (where CPOL = 0 and CPHA = 0), then it
will transmit data (master — MOSI — slave, slave — MISO — master, simultaneously)
one-half cycle before the rising edge and sample data on rising edge of the SCLK signal.
Commonly, it is the mode 0 that is used for SPI bus communication (CORELIS, n.d.).

Refer to Figure 2.1.3.1 to see the timing diagram for mode 0 serial data communication.

ss.n T\ -
MOSI™/MISO® X bit7 X bit6 X bits X bit4 X bit3 X bitz X bitl X bito X
MOSI®/MISO™ sample ¢ A 4 A A A A 2

Note: M = master, S = slave

Figure 2.1.3.1: Timing diagram for mode 0 serial data communication in the 4-wire SPI

protocol.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
11

Chapter 2: Literature Review

On the other hand, if the 4-wire SPI device is set to operate in mode 1 (where CPOL =
0 and CPHA = 1), then it will transmit data (master — MOSI — slave, slave — MISO
— master, simultaneously) on rising edge and sample data on falling edge of the SCLK
signal. Refer to Figure 2.1.3.2 to see the timing diagram for mode 1 serial data

communication.

SsSn—\ I
sclk — / /. ./ /S
MOSI™/MISO® X bit7 X bit6 X _bits X bitd X bit3 X bit2 X_bit1 X bito X
MOSI®/MISO™sample 4 4 * 4 4 4 4 4

Note: m = master, s = slave

Figure 2.1.3.2: Timing diagram for mode 1 serial data communication in the 4-wire SPI
protocol.

Apart from that, if the 4-wire SPI device is set to operate in mode 2 (where CPOL =1
and CPHA = 0), then it will transmit data (master — MOSI — slave, slave — MISO
— master, simultaneously) on one half clock cycle before the falling edge and sample
data on falling edge of the SCLK signal. Refer to Figure 2.1.3.3 to see the timing

diagram for mode 2 serial data communication.

sS N\ —
sckk - ./ ./ ./ /S S S
MOSI™/MISO® X bit7 X bit6 X bits X bitd X bit3 X bit2 X_bit1 X bito X
MOSI®/MISO™sample 4 4 4 4 ¢ 4 4 1)

Note: m = master, s = slave

Figure 2.1.3.3: Timing diagram for mode 2 serial data communication in the 4-wire SPI

protocol.

Lastly, if the 4-wire SPI device is set to operate in mode 3 (where CPOL = 1 and CPHA
= 1), then it will transmit data (master — MOSI — slave, slave — MISO — master,
simultaneously) on falling edge and sample data on rising edge of the SCLK signal.

Refer to Figure 2.1.3.4 to see the timing diagram for mode 3 serial data communication.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
12

Chapter 2: Literature Review

SSnT N
scLk - ./ ./ ./ /S~
MOSI™/MISO® X bit7 X bit6 X bits5 X bitd X bit3 X bit2z X bitl X bit0o X
MOSI®/MISO™sample 4 4 4 1) ¢ 4 4 4

Note: m = master, s = slave

Figure 2.1.3.4: Timing diagram for mode 3 serial data communication in the 4-wire SPI

protocol.

2.1.4 Working Principal of 4-wire SPI Protocol

The working of this 4-wire SPI is based on the contents of an eight-bit serial shift
register in both of the master and the slave. In this SPI protocol, the master is always in
control and initiate the communication. When the master wants to send data to a slave
or request data from it, it will first select the particular slave by pulling the SS pin of
the slave to low and it then activates the clock signal at a clock frequency that is usable
by the master and the slave (Leens, 2009, pp. 8-13). In order for the communication to
be possible, the master and slave must first agree on certain synchronization protocol.
Meaning, they need to synchronize to the same clock and also operate in the same
transfer mode (that is having the same set of CPOL and CPHA value) to ensure a valid
data exchange. If multiple slaves are configured in different transfer modes, then the
master will have to reconfigure itself whenever it wants to communicate with a different
slave (Leens, 2009, pp. 8-13). Once they have set to follow the same synchronization
protocol, the full-duplex data communication between the master and the slave can

begin.

As the clock pulses are generated, the master transfers the data stored in its shift register
serially to the slave via the MOSI pin. Similarly, the data contained in the slave’s shift
register is transferred back serially to the master’s shift register via the MISO pin. For
this case, the contents of the two shift registers get exchanged once a total of eight
pulses of clock signals are generated. At the end, the master will pull the SS pin of the
slave to high to complete the data transaction. An overview of the block diagram
connection between a master device and a slave device in the 4-wire SPI protocol is

provided in Figure 2.1.4.1 for better understanding.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
13

Chapter 2: Literature Review

SCLK

SPI MOSI

Master MISO
S5

SCLK

MOSI SPI
MISO Slave
SS

A A 4

A

A 4

Figure 2.1.4.1: An overview of the block diagram connection between a master and a

slave in the 4-wire SPI protocol.

On the other hand, it is also a single-master communication protocol in which only one
master can exist in the connection at a time to initiate all the communications with
slaves (Anusha, 2017). If more than one master is trying to drive the MOSI and SCLK
simultaneously (with any attempt to pull low the SS pin), a mode fault error will occur
(Motorola Inc, 2013).

Besides setting up to operate with a single master and a single slave (See Figure 2.1.4.1),
SPI can also be set up with multiple slaves controlled by a single master. Commonly,
there are two types of configuration used to connect multiple slaves to the master. They

are independent slave configuration and Daisy-chain configuration.

In independent slave configuration, a master can have (3+N)-wire serial interface where
N is the total number of slaves connected to a single master on the bus. As indicated in
Figure 2.1.4.2, a master needs to allocate an independent SS pin to each of its slave so
that they can be addressed individually. In order to talk to a particular slave, the master
needs to pull the desired slave’s SS pin to low and keep the rest of them high. The
advantage of this configuration is that it allows the connection of SPI devices operating
in different transfer modes and/or baud rate as it controls each of the slaves separately.
However, as the number of slaves increases in the system, the number of the
independent SS pin needed by the master also increases and the board layout of the
system become more complicated (Dhaker, 2018). Therefore, this method is simple to

implement only when there are very few slaves connected to a single master.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
14

Chapter 2: Literature Review

w
(8]
=
~
Y

SCLKE

MOSI| » MOSI SPI
SPI MISO | MISO Slave
Master 551 » 55

552
853 —
—» SCLK
» MOSI SPI
MISO Slave
55

SCLK

MOSI SPI
MISO Slave
55

v

¥ vl

Figure 2.1.4.2: An overview of the block diagram connection between a single master
device and multiple slave devices using independent slave configuration.

In Daisy-chain configuration, a common SS pin of the master is shared among all the
slaves. Only the first slave in the chain receives the input data directly from the master
while the rest of the slaves in the chain receive their input data from the output pin of
the preceding slave. In Figure 2.1.4.3, the data shifted out of the master is connected
directly to the first slave, and then out of the first slave into the second, and so on until
the last slave in the series. In order for this scheme to work successfully, each of the
slave needs to synchronize to the same clock as well as operate in the same transfer
mode. The advantage of using Daisy-chain configuration is that it helps to save the
number of SS pin needed on the master device. However, the speed of data transfer will

be reduced significantly as the number of slave devices increases

SCLK | SCLE
SPI MOSI B MOSI SPL
Master MIE) L ESO Slave
53 » 35
—»{ SCLK
»| MOSI SPL
MISO Slave
| 55
—» SCLE
» MOSI SPL
MISO Slave
T

Figure 2.1.4.3: An overview of the block diagram connection between a single master

device and multiple slave devices using Daisy-chain configuration.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
15

Chapter 2: Literature Review

Additionally, SPI does not use any slave acknowledge mechanism in its communication
protocol to confirm receipt of data as well as offers no flow control (Leens, 2009, pp.
8-13). Furthermore, SPI neither specify any maximum data transfer rate (normally
ranging up to several megabits per second) nor any addressing scheme in the protocol
(Leens, 2009, pp. 8-13).

The 4-wire SPI protocol defined by Motorola Inc. has become a popular communication
protocol and widely de facto in the industry due to its simplicity in interfacing with at
least 4 wires only for data communication purpose between electronic devices. In
addition, it becomes the current practice because it provides a good support for
communication with low-speed devices by having full duplex capability. Meaning, it
can transmit and receive data simultaneously, therefore resulting in a good data transfer
performance and high throughput speed of over 10Mb/s (Leens, 2009, pp. 8-13).
However, according to Tuan et al. (2017), the silicon cost and power consumption of
the 4-wire SPI are the major issues in VLSI technology, such as the package size of IC
and the quality of pad even though numerous transmission wires for data

communication have been simplified.

2.2 Overview of 3-wire SPI Protocol

2.2.1 Detailed Pin Description of 3-wire SP1 Protocol

Besides the standard 4-wire SPI implementation, SPI can also be designed to have 3
external pins only, namely Serial Data Input Output (SDIO), Serial Clock (SCLK), and
Slave Select (SS). The bidirectional MOSI and MISO serial pin are now combined to a
single bidirectional serial pin called SDI/SDO. A detailed functional description of each

pin is provided in Table 2.2.1.1.

Pin Name | Pin Type Functional Description
(Typical)
SCLK Input e Itis used to output a clock signal generated by
Output master to all the slave(s).

e Itis used for synchronizing the data transfer taking

place across different devices.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
16

Chapter 2: Literature Review

e Itis only active during a data transfer and is tri-

stated at any other time.

SS Input e |t is an active low pin used by a master to select
Output which slave to initiate the communication with the
master.

e Each slave has its own unique SS pin.

e When the SS pin of the slave goes low, the
corresponding slave is selected. Otherwise, it is not
selected.

e It must go low before a data transfer begins and must
stay low during the process. Otherwise, the data
transfer will be aborted.

SDIO Input e Itis a unidirectional pin used to transfer serial data

Output from the master to the slave and vice versa.

e When a device is configured as a master, serial data
is sent and receive through this pin.

e When a device is configured as a slave and it is
selected, serial data is sent and receive through this
pin.

e When a device is configured as a slave and it is not
selected, the slave will drive this pin to high
impedance.

e It is only active during a data transfer and is tri-

stated at any other time.

Table 2.2.1.1: Functional descriptions of the 3-wire SPI’s external pins

2.2.2 Transfer Modes of 3-wire SP1 Protocol

The 3-wire SPI can also support up to 4 transfer modes (mode 0, 1, 2, and 3) in fulfilling
different serial communication requirements of the connected peripherals. Similarly,
the SPI transmission mode used can be defined by a pair of parameters called Clock
Polarity (CPOL) and Clock Phase (CPHA) (Anusha, 2017). Refer to Table 2.1.2.1 to

understand the definition of these two parameters. Apart from that, the 3-wire SPI also

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
17

Chapter 2: Literature Review

applies the same SCLK definition on each of the available modes and the SPI transfer
mode information can be found in Table 2.1.2.2.

2.2.3 Timing Diagram of 3-wire SPI Protocol

As mentioned earlier, the 3-wire SPI applies the same SCLK definition as what the 4-
wire SPI uses. Therefore, they are having the same transfer mode information. In any
of the transfer mode, the SS signal must go low before a data transfer begins and must
stay low during the process. Otherwise, the data transfer will be aborted. If the 3-wire
SPI device is set to operate in mode 0 (where CPOL = 0 and CPHA = 0), then it will
transmit data one-half cycle before the rising edge and sample data on rising edge of
the SCLK signal. On the other hand, if mode 1 (where CPOL = 0 and CPHA = 1) is
selected, then it will transmit data on rising edge and sample data on falling edge of the
SCLK signal. Apart from that, if it is set to operate in mode 2 (where CPOL = 1 and
CPHA = 0), then it will transmit data on one half clock cycle before the falling edge
and sample data on falling edge of the SCLK signal. Lastly, if mode 3 (where CPOL =
1 and CPHA = 1) is set, then it will transmit data on falling edge and sample data on
rising edge of the SCLK signal. Refer to Figure 2.2.3.1 below to see the full timing

diagram for serial data communication in all the transfer modes.

_—r CPOL =0 _/__/_'\4’—_/__/__/"__/_\@
ePOL=1[foiff % o A ol e o A
SS [\

CPHA=0[ZX_ 1 X 2 X3 X 4 X 6 X 6 X 7 X 8

SDIO

HAS]

CPHA =1 Z)(XX__1 2 3 3 P X 6 X T X 1§
|

Figure 2.2.3.1: Timing diagfam for r_ndde 0,1, 2 and 3 serial data commuhicatioﬁ in the

3-wire SPI protocol.

2.2.4 Working Principal of 3-wire SPI Protocol
The principle of the 3-wire SPI protocol is very similar to the 4-wire SPI protocol (Tuan
et al, 2017). However, in 3-wire SPI protocol, there is only one serial bidirectional data

line used for both input and output instead of having separate data input and data output

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
18

Chapter 2: Literature Review

pin as shown in the 4-wire SPI type. And this has greatly affected the way SPIs

communicate with each other.

The working of this 3-wire SPI is based on the contents of an eight-bit serial shift
register in both of the master and the slave. In this SPI protocol, the master initiates the
communication by first pulling the SS pin of the particular slave to low and then driving
the clock signal at a clock frequency that is usable by the master and the slave. Once
they have set to follow the same synchronization protocol, a valid data communication
between the master and the slave can then begin.

As the clock pulses are generated, the master will first send a fixed-length command
over the SDIO line. If it is a write command, then the master will continue to transmit
the data stored in its shift register serially to the slave via the SDIO pin. If it is a read
command, then the selected slave will transmit back the data contained in its shift
register serially to the master’s shift register via the SDIO pin as well. At the end, the
SS pin of the slave will be de-asserted by the master in order to complete the data
transaction. An overview of the block diagram connection between a master device and
a slave device in 3-wire SPI protocol is provided in Figure 2.2.4.1 for better

understanding.

SPI SPI
Master o > SDIO Slave
SCLK » SCLK
sS > SS

Figure 2.2.4.1: An overview of the block diagram connection between a master device

and a slave device in the 3-wire SPI protocol.

Since it uses only one bidirectional pin for 1/0, so it can minimize the silicon area and
achieve cost-efficient (Tuan at.al, 2017). However, it can only achieve half-duplex
transmission in which either data transmission or receiving can occur at one time.
Consequently, it will result in a slower throughput speed and lower data transfer

performance.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
19

Chapter 2: Literature Review

2.3 SPI Controller

2.3.1 SPI Controller from Motorola Inc.

Based on the Motorola Inc’s SPI specifications, version V03.06 that were revised on
February 2003, the designs are the general-purpose solutions which offer viable ways
to control SPI bus and highly flexible to suit any particular needs. The SPI controller

designed by the Motorola Inc. has the following distinctive features:

e Have 4-wire SPI interfaces

e Have selectable serial clock frequency/baud rate

e Have 4 transfer modes with programmable clock phase and clock polarity

e Support master mode and slave mode

e Have bidirectional mode

e Have one double-buffered data register

e Have SPIF interrupt flag, SPI transmit empty interrupt flag, mode fault error
interrupt capability

e Provide low power mode options

The SPI controller developed by Motorola Inc. consists of 4 pins, namely MOSI, MISO,
SCLK and SS pin and it can support up to 4 transmission modes (mode 0, 1, 2, and 3).
An overview on the Motorola’s SPI controller architecture which contains the status
register, control register, data register, shifter logic, baud rate generator, master/slave

control logic and port control logic is given in Figure 2.3.1.1 below.

SPI
2
SPI Control Register 1
BIDIROE]
SPI Control Register 2 ;
SPCO
SPI Status Regist
alus Reglster g{'):‘t’reol CPOLrj CPHA Mos|
SPIF MODF SPTEF
Phase +|sckin @
Interrupt Control ‘t Slave Baud Rate Pnlar'ﬂ\r
SPI Contro MISO
Interrupt Master Baud Rale [Phase +|SCK out
Request Eﬂlar'ﬂx Port g
onfrol Control 5CK
Baud Rate Generator Master Logic @
Control
55
. [T |sautree | ~
Bus Clock, 1 | Clock Sefect Shift Sample
Clock Clox
PPRL.3 SPRIL3
Shifter
SPI Baud Rate Registe data in
LSBFE=1 - LSBFE=0--7
8 | |
LSBFE=1
| SPI Data Register | J&, MSB LSB
¢ LSBFE=0
T T
LSBFE=0 -\, LSBFE=1-- data out

Figure 2.3.1.1: An overview on the Motorola Inc's SPI controller.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
20

Chapter 2: Literature Review

This SPI controller provides low power mode options that include run mode, wait mode,
and stop mode. In run mode, the SPI system is in an active state and it operates normally.
In wait mode, the SPI operation is in a configurable low power mode, which can be
controlled by the setting of the SPICR2 register. In stop mode, it is inactive in order to

save the power consumption.

Apart from that, the SPI controller designed by Motorola Inc. does not only have full-
duplex capability, but also support half-duplex serial data communication. As shown in
Table 2.3.1.1, it can have two modes, namely normal mode and bidirectional mode for
interfacing with external devices. In normal mode, the SPI controller utilizes all of its
4 external pins to perform the full-duplex data communication that has been illustrated
earlier. However, in bidirectional mode, only one serial data pin is used to interface
with external devices. So, only half-duplex data communication is performed in this
mode. When configured in bidirectional mode, the MOSI pin acts as the serial data I/O
(MOMI) pin in master device whereas the MISO pin of the slave device becomes the
serial data 1/0 pin (SISO) pin. The MISO pin in master mode and MOSI pin in slave

mode are not used by the SPI controller in this bidirectional mode.

When SPE =1 | Master Mode, MSTR =1 Slave Mode, MSTR =0
Normal MOde Serlal Out MOSI Serial In |- I MOSI
SPCO0=0 SPI SPI

Serial In <—m Serial Out =I MISO

Bidirectional
Serial Out m Serial In |-
Mode ’ - BIDIROE
SPI BIDIROE SPl
SPC0=1 Serial In - Serial Out

Table 2.3.1.1: Normal mode and bidirectional mode in Motorola Inc's SPI controller.

Typically, full-duplex data communication is favorable over half-duplex one because
half-duplex data communication often results in a slower throughput speed and lower
data transfer performance. Although the SPI controller designed by the Motorola Inc.
provides a great flexibility in interfacing with external devices by having two modes, it
actually makes the design more complicated to implement if compared to the one with
a single mode only.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
21

Chapter 2: Literature Review

From Figure 2.3.1.1, it is noticeable that only one 8-bit SPI data register is being shared
in the design. Meaning, it can either be used as a SPI receiver data register for read or
a SPI transmitter data register for write at a given time only. Whenever the data transfer
has completed, a read operation on this SPI data register must be first performed to
release the register before any write operation on it, thus making simultaneous reading
and writing become impossible. Moreover, only one 8-bit data can be buffered
temporarily in it after each data transfer. So, more CPU’s immediate attention may be
required on it in order to release the register from time to time as it cannot hold large
amount of data temporarily with the limited storage capability.

2.3.2 SP1 Controller Designed by Kiat Wei Pau
The SPI controller developed by Kiat Wei Pau is a 4-wire SPI controller that contains
all the MISO, MOSI, SCLK and SS pins in order to interface with external devices
(Kiat, 2018). In short, it has the following features.

e Have 4-wire SPI interfaces

e Apply Wishbone interface connection

e Have 16 selectable serial clock frequency/baud rate

e Have 4 transfer mode with programmable clock phase and clock polarity

e Support master mode only

e Have separate transmitter and receiver data register

e Have receiver buffer full, transmitter buffer empty, and mode fault error

interrupt capability

The discussed SPI controller consists of a clock generator block, input output control
block, receiver block, and transmitter block. On top of that, 4 registers which include
SPI Configuration Register (SPICR), SPI Status Register (SPISR), SPI Receiver Data
Register (SPIRDR), and SPI Transmitter Data Register (SPITDR) are available for user
to access whereas the 2 shift registers, namely Transmitter Shift Register (TSR) and
Receiver Shift Register (RSR) are used for parallel-to-serial and serial-to-parallel data
conversion respectively (Kiat, 2018). The internal connection of the SPI controller that

has been developed is given in Figure 2.3.2.1.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
22

Chapter 2: Literature Review

uspi
i M,
uospiilRQ<—:—,: '\\ H
" / \ I
uospl_wb_ack<—3—\(}\ SPICR }
uispi_wb_sel[3:0] —v—»f | [7:0] |
wo- T sre s coo [s [sen [scn [s |- i
uispi_wb_we — L7)
uispi_wb_stb ‘%—-‘, e «‘J SPISR !
(/
I A1 2 Ny e e o e | ‘ :
uispi_wb_din[7:0] —:—Nﬁ :Z/— K biplO_Ct_I 1]
[s .
I s bspiTX I
X / «l—»{ S|
! \ ﬁ// SN | [7:0] FIFO C | |]
uospi_wb_dout[7:0] { \T 16x1 g_) TSR([7:0] | M%TR <—|—‘—>uiospi7MOS|
I | svie |
i t\\ I " | \'7 I i
R A bspiRX | |
uispi_SPIE ——| NN) o FIFO (]
by £ 4 RSR(7:0] |
! w, BYTE | |
! | MSITR “'-v—" uiospi_MISO
|
q |
i bspiclk_gen | F : !
. |
; | o | ' il
| | | T
uispi_wb_clk ‘}7 : binary counter MSTR | } uiospi_SCLK
| o %
| |
i | | MSTR | |
A | |
i | i
| I MSTR <J—“-’ uiospi_SS_n
|
i | {
L

Figure 2.3.2.1: An overview of the SPI controller designed by Kiat Wei Pau.

When compared to the SPI controller from Motorola Inc., this SPI controller supports
only full-duplex data communication between devices. The design is less complex and
it uses lesser special-purpose registers for configuration and status monitoring.
Moreover, it uses separate data registers to hold the data bytes, thus making
simultaneous reading and writing become possible. To further illustrate on this point,
the transmitter data register (SPITDR) is used to hold the data byte to be transmitted
whereas the receiver data register (SPIRDRD) is used to store the received data byte
from the other side. On top of that, it uses a 16 entries deep FIFO memory as the
read/write buffer. So, by having larger data buffer capacity, less CPU’s immediate
response will be needed and the CPU can focus on executing its core task. However, it
can only operate correctly in master mode and it also does not provide any low power

mode options for power saving.

2.4 Memory-mapped 1/0

Memory-map 1/0 (MMIO) is one of the general methods for assembly language
program to address an 1/O device. It is the 1/0 scheme where portions of address space
are allocated to 1/0 devices, and reads and writes to those addresses are interpreted as
commands to the 1/O device (Patterson & Hennessy, 2005). With MMIO. CPU views

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
23

Chapter 2: Literature Review

an 1/O device as a set of special-purpose registers. Table 2.4.1 discusses the three
general types of the special-purpose registers used in MMIO.

Register Type Description

Status register e Used to provide status information about the 1/0
device.

e Often can be read only.

Configuration/Control e Used to configure and control the 1/O device.
register e Both readable and writable.
Data register e Used to read data from or send data to the 1/0 device.

e Both readable and writable.

Table 2.4.1: Three general types of special-purpose registers used in MMIO.

By using MMIO method, the addresses of the registers in each of the 1/O devices are
assigned in a dedicated portion of the kernel’s virtual address space. Each of the
registers in the 1/O controller must have a fixed and unique memory address within the

mentioned address space in order for the CPU to access the specific register easily.

The benefits of using MMIOQ is that it keeps the instructions set small by adhering the
design principles of MIPS, that is keeping the hardware simple via regularity (Langer,
2016). No new dedicated instructions are required in MMIO to simply read or write
those special addresses because it allows the normal load and store instructions to be
used for referencing, manipulating, and controlling both memory and 1/O devices. The
memory address that is being used will determine which type of device (memory or 1/O

device) to be accessed.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
24

Chapter 3: Proposed Method/Approach

Chapter 3: Proposed Method/Approach

3.1 Methodologies and General Work Procedures

In the design process for digital system, there are 3 types of design methodologies
available, namely top-down design methodology, bottom-up design methodology and
mixed design methodology. In this project, the top-down design methodology will be
used for designing and developing the SPI controller unit. In top-down design
methodology, the top-level representation of a unit is first defined, followed by the
lower-level representations based on several important criteria such as functionality,

speed, silicon area and power consumption.

3.1.1 RTL Design Flow

The RTL design flow provided in Figure 3.1.1.1 below will be used throughout the
project. In the RTL design flow, the micro-architectural level design will be focused
more in this project because the SPI controller to be designed is in the unit level. A SPI
controller that uses the 4-wire industry-standard SPI protocol will be designed for the
Zigbee module in this project as it has better data transfer performance and higher

throughput speed.

‘ Written Specifications J
l Arch Level
C‘ Executable Specification

!

uArch Specification
(Partitioning)

—

C Unit Level Spec, Modeling
and Verification

* - -
Block Level Spec, — Micro-architecture
C Modeling and Verification Level Design

PR
.

O Logic Synthesis for FF'GAJ
I l

O Physical Design |

Figure 3.1.1.1: The RTL design flow used for developing the SPI controller unit is

provided. The arrows indicate process or work flow (not data flow).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
25

Chapter 3: Proposed Method/Approach

3.1.2 Micro-architecture Specification

Micro-architecture specification will describe the internal design of the SPI controller
unit. The internal design of the SPI controller unit will be described with detailed and
design-specific technical information in order for RTL coding to begin. In this project,
the unit level of the SPI controller will include the following information:

e Functionality/feature description
e Interfaces and 1/O pin description
e Functional partitioning into blocks and inter-blocks signaling
- If the blocks are too complex to be coded, then further partition them
into sub-blocks

e Test plan (focus on functional test)
Meanwhile, the block level of the SPI controller will have the following details:

e Functionality/feature description

e Interface and I/O pin description

e Internal operation: function table, FSM, and etc.
e Schematic and block diagram

e Test plan (focus on functional test)

3.1.3 RTL Modeling and Verification

With the development of the micro-architecture specification, the RTL coding on the
SPI controller can begin. After coding, the RTL models are verified for functional
correctness at each level. To further illustrate on this point, each block (RTL model)
are verified before they are integrated into unit level. During the development of the
project, if the design of the SPI controller unit does not meet all of the specified
functional requirements, then the design flow would need to be repeated. After all the
RTL models have successfully met the specified functional requirements, then logic
synthesis will be carried out on the targeted technology which is the FPGA technology

in this project.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
26

Chapter 3: Proposed Method/Approach

3.1.4 Logic Synthesis for FPGA

After the SPI controller unit has been functionally verified, the model is said to be ready
for logic synthesis. Logic synthesis is the process of converting RTL codes into an
optimized gate level representation (a netlist). Based on the logic synthesis result, the
gate level netlist is verified again for functional correctness. If it can successfully meet
all the necessary specifications, the gate level netlist is now ready for physical design.
However, if it cannot meet the required specifications, depending on the severity,
corrections need to be made accordingly to the gate level netlist, the RTL models or the
architecture.

3.2 Design Tools

Each stage of the design jobs requires the use of appropriate design tools to help
automate the design work. Hence, there exist Electronic Design Automation (EDA)
tools for design work at each particular level of abstraction. Since the RTL model of
the SPI controller unit is designed by using Verilog hardware description language
(HDL), thus a Verilog simulator is definitely needed to emulate the Verilog HDL. Some
of the simulators are as shown in Table 3.2.1 below and several comparisons have been

made among all of them.

Simulator Incwg;ﬁqﬁ;;irrp“se ModelSim VCS
comay |cadence gMSARE | Synopsys
ruphIG Predictable Success
Language e VHDL-2002 e VHDL-2002 * VHDL-2002
Supported e V2001 e V2001 e V2001
e SV2005 e SV2005 e SV2005
Platform e Sun-solaris ° Windc_)ws :
Supported . Linux XP/VlSta/7 Linux
e Linux
Availability for X v X
free? (SE edition only)

Table 3.2.1: Comparison among 3 different Verilog simulators

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
27

Chapter 3: Proposed Method/Approach

Based on the comparison above, it is clear that the ModelSim from Mentor Graphic is
the best choice among others to be used as the design tool for this project as they offer
a free license for Student Edition version. Even though there is certain degree of
limitations on the ModelSim Student Edition version, it is adequate to be used for this
project. In addition, it supports Microsoft Windows platform as well. Although the
other two simulators can also offer great features for Verilog stimulation, the price are
too expensive ($25,000 - $100,000) and certainly not affordable to be used in this

project.

As for the synthesis tools, there are a lot of logic synthesis tools targeting FPGA. Those
logic synthesis tools include Quartus by Altera, Synplify by Synopsys, Vivado Design
Suite by Xilinx, Encounter RTL Compiler by Cadence Design System, and so on.
Among all the available logic synthesis tools, the Xilinx Vivado Design Suite is
selected for this project as it is able to support the FPGA that we have in UTAR and it
is already freely available in UTAR.

3.2.1 ModelSim PE Student Edition 10.4a

ModelSim from Mentor Graphic is the industry-leading simulation and debugging
environment for HDL-based design in which its license can be obtained freely. The
student version of the ModelSim is used for Verilog design stimulation instead of the
full version because the features provided in the student edition are already adequate to
be used for this project. Furthermore, both the Verilog and VHDL languages are
supported by this ModelSim stimulator. This stimulator can also provide syntax error
checking and waveform simulation which play an important part in developing the
project. The timing diagrams and the waveforms are very useful in verifying the model

functionalities after writing a program called testbench.

3.2.2 Xilinx Vivado Design Suite

Vivado Design Suite is a software suite designed by Xilinx. This software is designed
for synthesis and analysis of HDL designs which enables developers to synthesize their
designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction
to different stimuli, and configure the target device with the programmer easily. On top
of that, it is a good design environment for FPGA products from Xilinx but it cannot be

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
28

Chapter 3: Proposed Method/Approach

used with those FPGA products from other vendors. The FPGA products that are
supported by Xilinx Vivado Design Suite include Spartan FPGA, Virtex FPGA,
Coolrunner, XC9500 Series CPLD and so on.

3.2.3 PCSpim

PCSpim is the Window version of spim. It is a software stimulator that loads and
executes assembly language program for the MIPS RISC architecture. Besides, it also
provides a simple assembler, debugger and a simple set of operating services. Hence, it
is used in this project for developing the MIPS test program in order to verify the
functional correctness of the ISR.

3.3 Technologies Involved

3.3.1 Field Programmable Gate Array (FPGA)

As mentioned earlier, the logic synthesis of the SPI controller unit will be eventually
carried out on the FPGA technology. The FPGA technology is actually an integrated
circuit (IC) that is programmable in the field after manufacture. FPGAs have been used
widely by engineers in the design of specialized integrated circuits that can be later
produced hard-wired in large qualities for distribution to computer manufacturers and
end users. It is selected for prototype development in this project due to its benefits of
cost efficiency, high flexibility and good scalability when compared to the other
technologies. In this project, the FPGA development board used is the Xilinx Artix-7
XC7A100T FPGA chip on Digilent Nexys 4 DDR board and it is shown in Figure
3.3.1.1.

Figure 3.3.1.1: The top view of the Nexys 4 DDR (XC7A100T)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
29

Chapter 3: Proposed Method/Approach

3.3.2 Zigbee RF Transceiver

Using the Zigbee communication system is less costly and simpler when compared to
other short-range wireless sensor nodes like Bluetooth and Wi-Fi (Elprocus, n.d.). As
presented in Figure 3.3.2.1, the Zigbee module used in this project would be the
CC2420 transceiver product from the Texas Instruments company. The CC2420
transceiver is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver that
is designed for low power and low voltage wireless application (Texas Instrument,
2013). It is a low-cost and highly integrated solution for robust wireless communication
in the 2.4 GHz unlicensed ISM band. Besides, it has a digital direct sequence spread
spectrum baseband modem that can provide a spreading gain of 9 dB and an effective
data rate of 250 kbps (Texas Instrument, 2013). Most importantly, the configuration
interface and transmit/receive FIFOs of the CC2420 can be accessed via a 4-wire SPI
interface with serial clock. Typically, only reference crystal and a minimized number
of passives are needed for the operation of the CC2420. So, it can be used together with

a microcontroller and very few external passive components.

-ss%

Figure 3.3.2.1: The top view of CC2420 from the Texas Instruments company.

3.4 Implementation Issues and Challenges

Multiple asynchronous clock domains have been employed in the RISC32 system. For
instance, the designed SPI controller unit uses an 1/0 clock frequency of 10 MHz that
is much slower than the 50 MHz CPU clock frequency for its internal operation. Since
the clock signals of different clock domain are independent in general, passing signal
and data safely from the fast clock domain into the slow clock domain can be a
challenging task. This is on account of the fact that if the transition of the CDC signal
happens too near to the active edge of the receiving clock, it may lead to setup or hold
time violation of the flip flop, causing the output of this flip flop to be at an unknown
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
30

Chapter 3: Proposed Method/Approach

logic value for some duration of time. The undesired metastability problem is said to
be occurred in the receiving system. Apart from that, a signal or data sending from the
fast clock domain might change values twice or more times before it can be sampled
by the receiving system that is running on a slower clock frequency. In short, serious
design failures can happen due to the clock domain crossing error. Hence, proper
synchronization is necessary when passing signals and data between clock domains and

when receiving asynchronous inputs.

3.5 Timeline

3.5.1 Gantt Chart for Project 1

Narﬁe | Begin date | End date L fre = AL
@ Study SPI controller architecture 52in9 53119 2 =
o RTL modeling and verification of SPI clock generator block — 6/7/19 6719 I
© RTL modeling and verification of asynchronous FIFO block — 6/14/19 61819 [
o RTL modeling and verification of SP| transmitter block 621119 6/28/19 —
© RTL modeling and verification of SPI receiver block /519 /819 O
@ RTL modeling and verification of SPI input output control block 7/12/19 e I
o RTL modeling and verification of 1-deep/2-register FIFO block 7/15/19 16019 O
@ |ntegration of all blocks into the SPI controller unit 11919 19519 I
o 5Pl contraller's functionality test 1726119 8219 0
@ Documentatin of FYP1 8519 81519 O
Figure 3.5.1.1: Gantt chart for Project 1
3.5.2 Gantt Chart for Project 2
F 1 |
Name Begin date End date feniary Fearuay Hrch

o Study RISCI architecture 113720 1/24/20 O t
@ Develop an ISR for 5Pl controller 12720 131720 O
@ 5Pl controller and RISC32 integration 2/6/20 49720 0
© Develop a MIPS test program for Pl controller - 2/13/20 216/20 0
o 5Pl controller's on-chip functionality test 20/20 2/28/20]
© Synthesis 5Pl controllerand RISC32on FPGA - 3/2/20 36720 |:|
@ On-board testing with Zighee module 3920 Ny (I
o Documentation of FYP2 316/20 32920]

Figure 3.5.2.1: Gantt chart for Project 2

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
31

Chapter 4: System Specification

Chapter 4: System Specification

4.1 System Overview of the RISC32 Pipeline Processor

Since the selected CC2420 transceiver does not have any built-in microcontroller or
processor with them, hence, it is proposed to interface the Zigbee module with the serial
interface of the existing RISC32 pipeline processor which is the SPI in this project
because of its convenience connection mechanism and full duplex capabilities. It is the
RISC32 pipeline processor developed in the UTAR FICT that is being used because it
can provide the software or firmware flexibility advantage for the SPI controller front-
end design (modeling and verification).

4.1.1 RISC32 Pipeline Processor Architecture

The developed RISC32 pipeline processor is a 32-bit pipeline processor that consists
of 3 major components that include Central Processing Unit (CPU), memory system
and 1/0 system (Kiat, 2018). The developed CPU is said to be compatible to the 5-stage
32-bit MIPS Instruction Set Architecture (ISA) and it can support up to 49 instructions,
covering arithmetic, logical, data transfer, program control, and system instruction
classes. In addition, the memory system developed in this processor has a 2-level
memory hierarchy with the first level consists of cache, Boot ROM as well as Data and
Stack RAM whereas the second level contains a Flash memory. On the other hand, the
I/0O system of this processor contains GP10 controller, SPI controller, UART controller,
Priority Interrupt controller and General-Purpose Register (GPR) unit. In addition, it
also has a branch predictor that helps to improve the performance of the RISC32
processor in running program in terms of the number of clock cycle spent. An
architectural overview on the RISC32 pipeline processor that has been developed is
shown in Figure 4.1.1.1. On the other hand, the detailed specification of the RISC32

pipeline processor is also provided in Table 4.1.1.1.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
32

Chapter 4: System Specification

LEDs,
ZigBee EEPROM Sensors

Controller| |Controller Controller|

I Stack Priority

I-CACHE | |ID-CACHE| | RAM RAM interrupt

1 1 controller
oo bt

Controller

Flash
Memory

Figure 4.1.1.1: An overview on the architecture of the RISC32 pipeline processor.

Pipeline
Frequency (MHz) 50
Instruction’s cycle 5, overlapping
Branch predictor 64 entries 4 ways associative
Memory 4kBytes boot ROM, 128kBytes user access flash, 8kBytes

RAM (Data & Stack), 1kBytes i-cache, 32Bytes d-cache,
512Bytes Memory Mapped 1/O Register

Communication UART, SPI, 32 GPIO pins
interface

Common features
(Static Region)

Partial Bitstream start address | 0x00A8 0000

Bitstream size 1,404,992 bits / 43906 words
FPGA board Nexys 4 DDR (XC7A100T)
2 LUT 8266
& — | LUTRAM 315
2T | FF 5643
i & | BRAM 3.50
2 ~ |10 46
o BUFG 1

Table 4.1.1.1: Specification of the RISC32 pipeline processor

4.1.2 Functional View of the RISC32 Pipeline Processor

The RISC32 pipeline processor that has been developed consists of 5 hardware stages
which include Instruction Fetch (IF), Instruction Decode and Operand Fetch (ID),
Execution (EX), Memory Access (MEM), and Write Back (WB) stages. Different

hardware components are allocated in each of these pipeline stages. Therefore, every

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
33

Chapter 4: System Specification

instruction will need 5 clock cycles to run through all the 5 stages in order to complete
its execution. Since the data hazard issue due to the Read-After-Write (RAW) data
dependencies always exist in a pipeline processor, additional circuitries such as the
forwarding and interlock block are built for solving the data hazards during the program
execution (Kiat, 2018). The functional view of the 5-stage RISC32 pipeline processor

is shown in Figure 4.1.2.1.

IF ID EX ; MEM { wB
: F ding Control : : :
Next PC i ‘ S L ‘ : Multiplier | Multiplier | Multiplier HI_reg Write
> - v i Stage 1 Register Stage 2 LO_reg Write
Branch Branch H Ctrl >
Predictor Predictor GPIO
RegIStE;FHE > > AL Address 5 ll'l SPI .. E
P> ICache 3 Rea g Decoder b UART 2
2 HI_reg Read 2 o &
L LO_reg Read g o -_. o -
o o 2 £ Register
[p| Boot < £ >3 ¥ S > File
ROM 2 & = Stack and ‘a Write
= s il |Data RAM o
i = 2 2
e cPO > & » &
= > = = z
L PC > » =
Ctrl Ctrl ctrl ctrl
Main A f f $
"™ Control !- ALU Control F===%» r-=-=--l---c--oooooooo P e — o] » ---
| =
x : A

4 PR
Interlock Control Control Interlock Control

Figure 4.1.2.1: The functional view of the RISC32 pipeline processor.

4.1.3 Memory Map of the RISC32 Pipeline Processor

This RISC32 pipeline processor implements the MIPS memory space in two ways, that
is by having virtual and physical addresses (Kiat, 2018). The virtual addresses are
mainly used to access program instruction and data whereas the physical addresses are
used to allocate physical memory such as Flash memory, Data and Stack RAM, boot
ROM and 1/O registers. The memory map used in the RISC32 pipeline processor is
presented in Figure 4.1.3.1 and the purposes of various memory allocation are discussed

in Table 4.1.3.1.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
34

Chapter 4: System Specification

Virtual Memory

Physical Memory

0xC000_0000

OXBFFF_FEOO 1/0 peripherals register [f* (:;(lei?:?::iggg 1/O peripherals register | “4*
0xBFCO_1000
OXBFCO_0000 Boot code 0xLFCO_1000
- Boot code
0x1FCO_0000
KSEG1
0xA002_2000 + FSEGR
FLASH
0xA002_1000 A heap RAM
0xA002_0800
0xA002_0000
KSEGO/
0xA000_0000 KSEG1
0x0002_2000 Sk
0x0002_1000 + -heap
KSEGO 0x0002_0800 azstz
0x8001_FFFF 0x0002_0000 “data
- .data 0x0001_F800 .
- Exception handler Exception handler
0x8001_B400 0x0001_B400
User program code User program code
0x8000_0000 v 0x0000_0000 g
Figure 4.1.3.1: Memory map of the RISC32 pipeline processor.

Memory Usage Description Memory Size
I/0O peripheral Used as the memory-mapped registers for | 512 bytes
register I/0O peripheral controllers.

Boot code Used to store bootloader program code for | 4k bytes
initial system configuration when powered
on.

Stack Used by procedure during execution to store | 8k bytes
register values.

Heap Used to hold variables declared dynamically.

Exception handler | Used to store the exception handler codes. 16k bytes

User program code | Used to store user program codes 128k bytes

Table 4.1.3.1: Memory map description of the RISC32 pipeline processor.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

35

Chapter 4: System Specification

4.2 Chip Interface of the RISC32 Pipeline Processor

crisc

—> uirisc_clk_100mhz urisc_GPI0O[31:0] «—>
——» uirisc_rst o] .
uiorisc_spi_mosi <«—>
uiorisc_spi_miso <«—>
uiorisc_spi_sclk «—»
uiorisc_spi_ss_n <«—>

—» uirisc_ua_rx_data uorisc_ua_tx_data ——»
— uirisc_fc_MISO1 _ uorisc_fc_sclk —>
— uirisc_fc_MISO2 uiorisc_fc_MOS| «<—>
—» uirisc_fc_MISO3 uorisc_fc_ss —»

Figure 4.2.1: Chip interface of the RISC32 pipeline processor.

4.3 Input Pin Description of the RISC32 Pipeline Processor

Pin name: uirisc_clk_100mhz Pin class: Global

Source — Destination: External — crisc

Pin function: To provide a reference signal to synchronize all other signals in a
system

Pin name: uirisc_rst Pin class: Global

Source — Destination: External — crisc

Pin function: To reset the whole MIPS ISA compatible pipeline processor
Pin name: uirisc_ua_rx_data Pin class: Data

Source — Destination: External device’s UART unit — crisc

Pin function: UART standard pin — Receive Serial Data

Pin name: uirisc_fc_MISO1 Pin class: Data

Source — Destination: Flash memory — crisc

Pin function: SPI protocol serial input pin

Pin name: uirisc_fc_MISO2 Pin class: Data

Source — Destination: Flash memory — crisc

Pin function: SPI protocol serial input pin

Pin name: uirisc_fc_MISO3 Pin class: Data

Source — Destination: Flash memory — crisc

Pin function: SPI protocol serial input pin

Table 4.3.1: Input pin description of the RISC32 pipeline processor.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
36

Chapter 4: System Specification

4.4 Output Pin Description of the RISC32 Pipeline Processor

Pin name: uorisc_ua_tx_data Pin class: Data
Source — Destination: crisc — External device’s UART unit

Pin function: UART standard pin — Transmit Serial Data

Pin name: uorisc_fc_sclk Pin class: Data
Source — Destination: crisc — Flash memory

Pin function: SPI protocol Serial Clock signal

Pin name: uorisc_fc_ss Pin class: Control
Source — Destination: crisc — Flash memory

Pin function: SPI protocol Slave Select

Table 4.4.1: Output pin description of the RISC32 pipeline processor.

4.5 Input Output Pin Description of the RISC32 Pipeline Processor

Pin name: urisc_GPIO[31:0] Pin class: Data

Source — Destination: crisc «» External device (LEDs, switch, etc)

Pin function: 32 GPIO pins

Pin name: uiorisc_spi_mosi Pin class: Data

Source — Destination: crisc «» External device’s SPI unit

Pin function: SPI standard pin — Master out Serial In (MOSI)

If the crisc is configured as a master, then uiorisc_spi_mosi will become an output,
else otherwise.

Pin name: uiorisc_spi_miso Pin class: Data

Source — Destination: crisc «» External device’s SPI unit

Pin function: SPI standard pin — Master In Serial Out (MISO)

If the crisc is configured as a master, then uiorisc_spi_miso will become an input,
else otherwise.

Pin name: uiorisc_spi_sclk Pin class: Control

Source — Destination: crisc «» External device’s SPI unit

Pin function: SPI standard pin — SPI Serial Clock signal for data synchronization
across devices.

If the crisc is configured as a master, then uiorisc_spi_clk will become an output, else
otherwise.

Pin name: uiorisc_spi_ss_n Pin class: Control

Source — Destination: crisc «» External device’s SPI unit

Pin function: SPI standard pin — SPI Slave Select control signal.

If the crisc is configured as a master, then uiorisc_spi_ss_n will become an output,
else otherwise.

Pin name: uiorisc_fc_MOSI Pin class: Data

Source — Destination: crisc <> Flash memory

Pin function: SPI protocol serial input output pin

Table 4.5.1: Input output pin description of the RISC32 pipeline processor.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
37

Chapter 5: Micro-Architecture Specification

Chapter 5: Micro-Architecture Specification
5.1 SPI Controller Unit

5.1.1 Functionality/Feature of the SPI Controller Unit

The SPI controller is a controller unit that uses the 4-wire industry-standard SPI
protocol to handle the data exchange between two SPI-interface devices. The details of
the standard 4-wire SPI protocol have been fully discussed in Section 2.1. Currently,
this SPI controller is mainly used to provide fast synchronous serial communication
between a master device and a slave device. Additional address decoder will need to be
added if it wants to communicate with multiple slaves in future. The designed SPI
controller unit can transmit and receive 8-bit data simultaneously and correctly between
the master device and the slave device in 4 different transfer modes as shown in
Appendix A. This SPI controller can operate as a master or a slave device at a given
time and Table 5.1.1.1 will describe the direction of the SPI standard pins (MOSI,
MISO, SCLK, an SS pin) in each of the operation modes.

SPI standard pin Master SPI Slave SPI
MOSI Output Input
MISO Input Output
SCLK Output Input

SS Output Input

Table 5.1.1.1: Pin direction of the SPI standard pins when it is set as a master or slave
device.

In short, a summary of the designed SPI controller unit’s features is given in below.

e Have easy configuration interface

o 4-wire SPI interfaces, which include MISO, MOSI, SCLK and SS pin.
e Have 16 selectable serial clock frequency/baud rate
e Have 4 transfer modes with programmable clock phase and clock polarity

o Mode 0 (CPOL =0, CPHA =0)

o Mode 1 (CPOL =0,CPHA=1)

o Mode 2 (CPOL =1, CPHA =0)

o Mode 3 (CPOL =1, CPHA=1)

e Have 2 operation modes

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
38

Chapter 5: Micro-Architecture Specification

o Master mode
o Slave mode
e Have separate transmitter and receiver data register (16x1-byte FIFO)
o Each of the transmitter FIFO element is a SP1 Transmitter Data Register.
o Each of the receiver FIFO element is a SPI Receiver Data Register
e Support full-duplex synchronous serial data transfer
o Serial data transmission and receiving can take place simultaneously.
o 8 SCLK pulses are required when transmitting and receiving an 8-bit
data.
e Provide 3 types of interrupts
o Receiver buffer full interrupt
o Transmitter buffer empty interrupt

o Mode fault error interrupt

5.1.2 Operating Procedure (External Operation)
The details of the procedure for CPU to operate the designed SPI controller is provided

in below.

1. CPU supplies a global clock signal to the SPI controller for clock reference.

2. CPU resets the SPI controller in order to initialize all of its registers from an
unknown value to the initialized value, reset all of its FIFOs’ pointers, as well
as reset all of its FSMs to the idle state.

3. CPU stores one or more 8-bit data that is/are to be transmitted into the SPI
Transmitter Data Register (SPITDR) by using the Oxbfff _fe26 address value.
Writing to the SPITDR is actually writing to the 16-deep transmitter FIFO.

4. CPU configures the setting of the SPISR accordingly for status monitoring,
interrupt enable controlling, and FSM stall controlling by using the Oxbfff fe25
address value (Refer to Section 5.8 for SPISR’s full information).

5. CPU configures the setting of the SPICR accordingly for activating the SPI
controller, selecting the desired operation mode (master or slave), selecting the
transfer mode (mode 0, 1, 2 or 3), and selecting the suitable baud rate by using
the Oxbfff_fe24 address value (Refer to Section 5.8 for SPICR’s full

information).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
39

Chapter 5: Micro-Architecture Specification

a.

Once the settings on the SPISR and the SPICR have been configured
correctly, the SPI controller is said to be ready to perform the full-duplex
data communication with another SPI-compatible device.

The SPI controller starts to go through the respective FSMs to transmit
and receive data simultaneously from the other side until all the pending
transfers have completed.

6. Depending on the SPISR configuration for the application, CPU will serve the

SPI controller in different ways.

a.

If interrupt is disabled, CPU will need to use the polling method to
determine when it is ready to read the received data from the SPIRDR,
load new data into the SPITDR or disable the SPI controller. The SPI
controller simply puts the information in the SPISR, and the CPU must
come dan get the information. The status flag(s) such as RXDF, TXEF
and MODF flag in the SPISR will have to be checked periodically by
using instructions. When the status flag(s) is/are asserted, the CPU
performs the service accordingly. The status flag(s) of the SPISR will
be cleared automatically once the CPU finished the service. After that,
the CPU can move on to perform other tasks.

If interrupt is enabled, the CPU can perform its normal tasks until it is
being noticed. No extra instructions are needed to monitor the status
flags in the SPISR. Whenever the SPI controller needs the CPU’s
immediate attention, it will notify the CPU by sending it an interrupt
signal. Depending on the types of the interrupt requests generated by the
SPI controller, the CPU will take the appropriate actions as defined in
the SPI’s Interrupt Service Routine (ISR), that is to read the received
data from the SPIRDR or disable the SPI controller. Reading from the
SPIRDR is actually reading from the 16-deep receiver FIFO. After
finishing the ISR, the CPU returns to the place where it was interrupted
and resumes the normal program execution. The status flag(s) of the

SPISR will be cleared automatically once the CPU finished the service.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

40

Chapter 5: Micro-Architecture Specification

If the CPU wants to reconfigure the setting(s) after going through step 1 to 6, it is
advisable to first de-activate the SPI controller to ensure a smooth configuration and
operation. Do not perform the reconfiguration while the SPI controller is performing

data transfer with other devices in both operation modes.

a. Firstly, reset the SPE control bit in the SPICR to de-activate the SPI
controller as well as to reset all of its FSMs to the initial state.
b. Perform new setting on the SPI controller.
i. Repeat step 4 to 6 if only want to reconfigure the setting of the
SPISR.
ii. Repeat step 5 to 6 if only want to reconfigure the setting of the
SPICR (for new operation mode, new transfer mode and/or new
SPI baud rate).
ili. Repeat step 4 to 6 if want to reconfigure the settings of both
SPISR and SPICR.

5.1.3 Unit Interface of the SPI Controller Unit

uspi

——{ uispi_SPIE

—> uispi_pipe_stall uiospi_ MOSI«—>

uiospi_MISO «<—>
uiospi_SCLK «—>

— uispi_wb_w_din[7:0] Uiospi_ SS_n

— uispi_wb_w_sel[3:0]
— uispi_wb_w_we
— uispi_wb_w_stb
—> uispi_whb_r_sel[3:0]
—» uispi_wb_r_we
— uispi_wb_r_stb
—> uispi_wb_clk
— uispi_whb_rst

uospi_IRQ —»
uospi_wb_r_dout[31:0] ——>»
uospi_wb_w_ack —>»
uospi_wb_r_ack—>

Figure 5.1.3.1: SPI controller unit interface.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
41

Chapter 5: Micro-Architecture Specification

5.1.4 Input Pin Description of the SP1 Controller Unit

Pin name: uispi_SPIE Pin class: Data

Source — Destination: Priority interrupt controller unit — SPI controller unit
Pin function: To allow the SPI to interrupt

1: enable SPI global interrupt

0: disable SPI global interrupt

Pin name: uispi_pipe_stall Pin class: Control

Source — Destination: Priority interrupt controller unit — SPI controller unit
Pin function: To stall the SPI controller unit

1: stall the SPI controller unit

0: do not stall the SPI controller unit

Pin name: uispi_wb_w_din[7:0] Pin class: Data

Source — Destination: Datapath unit — SPI controller unit

Pin function: Wishbone standard data input bus (for write operation)

Pin name: uispi_wb_w_sel[3:0] Pin class: Control

Source — Destination: Address decoder block — SPI controller unit

Pin function: Wishbone standard byte select signal (for write operation)

Pin name: uispi_wb_w_we Pin class: Control

Source — Destination: Address decoder block — SPI controller unit

Pin function: Wishbone standard write enable signal — indicate current bus cycle for
write

1: write cycle — write to SPI controller

Pin name: uispi_wb_w_stb Pin class: Control

Source — Destination: Address decoder block — SPI controller unit

Pin function: Wishbone standard strobe signal (for write operation) — indicate valid
data transfer cycle

1: activate SPI controller for write access

0: de-activate SPI controller for write access

Pin name: uispi_wb_r_sel[3:0] Pin class: Control

Source — Destination: Address decoder block — SPI controller unit

Pin function: Wishbone standard byte select signal — data granularity control
1111: word select

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uispi_wb_r_we Pin class: Control

Source — Destination: Address decoder block — SPI controller unit

Pin function: Wishbone standard read enable signal — indicate current bus cycle for
read

0: read cycle — read from SPI controller

Pin name: uispi_wb _r_stb Pin class: Control

Source — Destination: Address decoder block — SPI controller unit

Pin function: Wishbone standard strobe signal (for read operation) — indicate valid
data transfer cycle

1: activate SPI controller for read access

0: de-activate SPI controller for read access

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
42

Chapter 5: Micro-Architecture Specification

Pin name: uispi_wb_clk Pin class: Global
Source — Destination: Global clock — SPI controller unit
Pin function: Global clock

Pin name: uispi_wb_rst Pin class: Global
Source — Destination: Global reset — SPI controller unit
Pin function: Global reset

1: reset

0: no reset is required

Table 5.1.4.1: Input pin description of the SPI controller unit

5.1.5 Output Pin Description of the SP1 Controller Unit

Pin name: uospi_IRQ Pin class: Control

Source — Destination: SPI controller unit — CPO block & Priority interrupt
controller unit

Pin function: To request an interrupt

(The uispi_SPIE must be pulled high before an interrupt can be sent)

1: request to interrupt

0: no interrupt request

Pin name: uospi_wb_r_dout[31:0] Pin class: Data

Source — Destination: SPI controller unit — Datapath unit

Pin function: Wishbone standard data output bus

Pin name: uospi_wb_w_ack Pin class: Status

Source — Destination: SPI controller unit — Datapath unit

Pin function: Wishbone standard acknowledge signal (for write operation)
1: normal bus cycle termination

0: no bus cycle termination

Pin name: uospi_wb_r_ack Pin class: Status

Source — Destination: SPI controller unit — Datapath unit

Pin function: Wishbone standard acknowledge signal (for read operation)
1: normal bus cycle termination

0: no bus cycle termination

Table 5.1.5.1: Output pin description of the SPI controller unit.

5.1.6 Input Output Pin Description of the SP1 Controller Unit

Pin name: uiospi_MOSI Pin class: Data

Source — Destination: SPI controller unit «<» External device’s SPI unit

Pin function: SPI standard pin — Master Out Serial In

If the SPI controller unit is configured as a master, then uiospi_MOSI will become
an output, else otherwise.

Pin name: uiospi_MISO Pin class: Data

Source — Destination: SPI controller unit «<» External device’s SPI unit

Pin function: SPI standard pin — Master In Serial Out

If the SPI controller unit is configured as a master, then uiospi_MISO will become
an input, else otherwise.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
43

Chapter 5: Micro-Architecture Specification

Pin name: uiospi_SCLK Pin class: Control

Source — Destination: SPI controller unit < External device’s SPI unit

Pin function: SPI standard pin — Serial Clock

It is the clock signal for data synchronization across devices. If the SPI controller unit
is configured as a master, then uiospi_ SCLK will become an output, else otherwise.

Pin name: uiospi_SS n Pin class: Control

Source — Destination: SPI controller unit «» External device’s SPI unit

Pin function: SPI standard pin — Slave Select

If the SPI controller unit is configured as a master, then uiospi_SS_n will become an

output, else otherwise.

Table 5.1.6.1: Input output pin description of the SPI controller unit.

5.1.7 Internal Operation of the SPI Controller Unit

uspi_wb_w_stb | uispi_wb_w_we | uspi_stall_reg | uispi_wb_w _sel | Function
[3:0]

1 1 0 0001 Enable write
operation to
SPICR

1 1 0 0010 Enable write
operation to
SPISR

1 1 0 0100 Enable write
operation to
SPITDR

Table 5.1.7.1: Functional description of the SPI controller’s write operation.

uspi_wb_r_stb | uispi_wb_r_we | uispi_wb_r_sel Function
[3:0]
1 0 0001 Enable read operation to SPICR
1 0 0010 Enable read operation to SPISR
1 0 1000 Enable read operation to
SPIRDR
1 0 0011 Enable read operation to SPISR
and SPICR

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

44

Chapter 5: Micro-Architecture Specification

1 0 1100 Enable read operation to
SPIRDR

1 0 1111 Enable read operation on
SPIRDR, SPISR, and SPICR.

Table 5.1.7.2: Functional description of the SPI controller’s read operation.

5.1.8 Design Partitioning of the SPI Controller Unit

The SPI controller unit developed in this project consists of several internal blocks that
work together so that the data communication between two SPI-interface devices can
be performed correctly when using the SPI protocol. This SPI controller unit consists
of one SPI transmitter block, one SPI receiver block, one SPICR FIFO block, one
SPISR FIFO block, and one SPI clock generator block. In addition, it also consists of 4
special-purpose registers for users to access (read or write). These special registers are
the SPI Configuration Register (SPICR) for configuration setting, the SPI Status
Register (SPISR) for status monitoring purpose, the SPI Transmitter Data Register
(SPITDR) for holding the data to be transmitted, and the SPI Receiver Data Register
(SPIRDR) for holding the received data. Writing to the SPITDR is actually writing to
a 16x1-byte transmitter FIFO block whereas reading from the SPIRDR is actually
reading from the 16x1-byte receiver FIFO block. All of these 1/0 peripheral registers
are memory-mapped and have their own addresses so that the CPU can read or write
the specific registers easily. The details of these 4 memory-mapped 1/O peripheral
registers are discussed in Section 5.7 respectively. An overview of the block-level
partitioning of the SPI controller unit is provided in Figure 5.1.8.1 whereas the details

of its internal blocks are discussed in Table 5.1.8.1.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
45

Chapter 5: Micro-Architecture Specification

SPI controller unit

SPl transmitter
block

SPI receiver block

SPI Transmitter
Data Register

SPI Receiver Data
Register

SPICR FIFO block

SPISR FIFO block

SPI clock generator

block

Figure 5.1.8.1: Block-level partitioning of the SPI controller unit.

Internal Block

Function

SPI transmitter block

To handle the serial data transmission of the

SPI controller unit.

SPI receiver block

To handle the serial data receiving of the SPI

controller.

SPI Transmitter Data Register e To hold the data that will be
(a 16-deep asynchronous FIFO transmitted to another SPI-
block) compatible device.

e To pass multiple data bits safely

across CDC boundaries.

SPI Receiver Data Register e To hold the data received from
(a 16-deep asynchronous FIFO another SPI-compatible device.

block)

e To pass multiple data bits safely

across CDC boundaries.

SPICR FIFO block
(a 2-deep FIFO synchronizer block)

To safely handle the passing of multi-bit
control signal from one clock domain to a

new clock domain.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

Chapter 5: Micro-Architecture Specification

SPISR FIFO block
(a 2-deep FIFO synchronizer block)

To safely handle the passing of multi-bit
control signal from one clock domain to a

new clock domain.

SPI clock generator block

e To generate the 1/O clock frequency
for SPI internal operation.

e To generate 16 transmission speed /
baud rates.

Table 5.1.8.1: Functional description of each SPI internal block

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

47

Chapter 5: Micro-Architecture Specification

5.1.9 Micro-Architecture of the SPI Controller Unit (Block Level)

SPI clock generator block
,f—l SP11/0 clock
uispi_wb_clk rzgyjnw
= = ivider
16 baud rate
clock select SPI transmitter block
SCR
master
uispi_SPIE @baud—mte clock phase and SCK out
- 4 olarity control
uispi_pipe_stall polartty 1 Shift clock
ispi in[7: fi on i 2
uispi_wb_w_din[7:0] SPICR FIFO block SPI C s 8 IL MSTR Control FSM
uispi_wb_w_sel[3:0] J : : SS out
slave select
SPI Status Register
icni SPISR FIFO block
e Tosahi
uispi_wb_r_sel[3:0!
piwb_r_sel[3:0] RXDF | TXEF | MODF transmitter shift register data out
o ve > Lrarsmiter it it
interrupt control SSin
.
uospi_IRQ 1
uospi_wb_r_dout(7:0] k SPI receiver block
master e Control FSM
8, | sPiTransmitter Data Register | 8 baud rate clock phase and
(SPITDR) | polarity control | sample
clock
l Load/Shift
8 S DD RS 8 I receiver data re, ister|<—§‘—| receiver shift re i>Ler| data in
(SPIRDR) | 8 gister]

Note: The shaded areas indicate the internal blocks of the designed SPI controller

Figure 5.1.9.1: Simplified micro-architecture of the SPI controller unit.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

SPI
input
output
control

S

8

Chapter 5: Micro-Architecture Specification

{uspi_RXFIFO_dout, 8'b0000_0000, SPISR, SPICR} 1111

—
{{16{1'b0}}, uspi_RXFIFO_dout, 8'b000_0000} —> 1100
—

0011
> uospi_wh_r_dout[31:0]

{{24{1'b0}}, uspi_RXFIFO_dout} —» 1000

{{16{1'b0}}, SPISR, SPICR}

[———= = === — — —
| SPISR FIFO block | e 1250 —| o100
bFIFO_sync | sesnzol— 0 @40}, SPIR) —] 0010
| - us')i_SRFIFO_duut[To] RXDF[TXEF[MODF[RXFM [RXFIE[TXEIE[RXBHE[TXCHE l
j—> biFIFO_sync_rget boFIFO_sync_dout{7:0] '
uispi_wb_w_din[7:0] > biFIFO_sync_din[7:0] boFIFO_sync_rrdy > {{24{1'b0}}, SPICR} —> 0001

boFIFO_sync_wrdy ——> 32'bz —>»| Else

j:: biFIFO_sync_wput
biFIFO_sync_rclk |
<I—> biFIFO_sync_rrst |

——»{ biFIFO_sync_wclk
—f—) biFIFO_sync_wrst
—

_________ . I Bl om e Il _——,—— e ———— —
-
| SPICR FIFO block | I SPI receiver block SPIRDR block |
SPICR :
bFIFO_sync | e bspi_RX bFIFO

| Sy usgi_CRFIFO_dout([7:0] SPE I MSTR[CPDL[CPHAISCR I SCR I SCR I SCR l uep R i | bispiRX_din bospiRX_dout[7:0] biFIFO_din(7:0] brieq dout(7:0]

T biFIFO_sync_rget boFIFO_sync_dout[7:0] —4>{ bispiRX_cpol bospiRX_RSRF —>| biFIFO_pop BoFIFO,_rempty
biFIFO_sync_din[7:0] boFIFO_sync_rrdy — | bispiRX_cpha - biFIFO_push boFIFO, w?ull I:
j:: biFIFO_sync_wput boFIFO_sync_wrdy —‘—b bispiRX_SPE | :t: biFIFO_rclk - I
biFIFO_sync_rclk bispiRX_sclk biFIFO_wclk

‘t—> biFIFO_sync_rrst l :E: bispiRX_ss_n I —I—b biFIFO_rst |
——>! biFIFO_sync_welk | bispiRX_spi_clk |
! biFIFO_sync_wrst | mm——————— :t: bispiRX_rst | A J

L - ———————_ | | SPI transmitter block | L——————

TR 1 bspiTX ‘

SPITDR bIOCk —l—b bispiTX_FIFO_empty bospiTX_dout PSP"TXJDM
| bFIFO |] bispm_cpol bospITX_sclk [——»
} biFIFO_din(7:0] uspiITXFIFO_dout70] T | MSPTLEPR bospDC > 7
OB bobFIFF(IJF ,goutmt)v] —+ :!spgi,gg;[ro] hospzx_F\TFo_pop —I—>—>
8 ! 0|)_rempty f— iSPITX_S 0SpiTX_ss_n 0
l biFIFO_push boFIFO_wfull —» | —>1 bispiTx_TxcHE
| — b!HFOJC\k | bispiTX_fsm_stall l 1
——>{bifIFO_wekk I it |
| ——|bifFo rst | -7 bispiTX_MSTR uiospi_MISO ‘
el bispiTX_baud_clk | !\&
:t: bispiTX_spi_clk V
bispiTX_rst | MSTR

Note: The shaded areas indicate the internal blocks of the designed SPI controller

Figure 5.1.9.2: Datapath of the SPI controller unit.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: Micro-Architecture Specification

5.2 SPI Transmitter Block

5.2.1 Functionality/Feature of the SPI Transmitter Block

The SPI transmitter block is used to handle the serial data transmission of the SPI
controller unit. It uses an 8-bit transmitter shift register (TSR) to store data loaded from
the SPITDR block. As the baud clock pulses are generated, it transmits the data stored
in the transmitter shift register (TSR) serially to another SPI device via one of the SPI
standard pins, namely MISO or MOSI. The designed SPI transmitter block can perform
the serial data transmission between SPI devices as shown in Appendix A correctly in
all of the 4 transfer modes (mode 0, 1, 2, 3) regardless of whether it is configured as a

master or a slave.

5.2.2 Block Interface of the SPI Transmitter Block

bspiTX
—» bispiTX_FIFO_empty bospiTX_dout —»
— bispiTX_cpol bospi TX_sclk —>
— bispiTX_cpha bospiTX_TXC —>»
— bispiTX_din[7:0] bospiTX_FIFO_pop —>
— bispiTX_SPE bospiTX_ss_n |

— bispiTX_TXCHE
—» bispiTX_fsm_stall
— bispiTX_ss_n
— bispiTX_MSTR
— bispiTX_baud_clk
— bispiTX spi_clk
— bispiTX_rst

Figure 5.2.2.1: Block interface of the SPI transmitter block.

5.2.3 Input Pin Description of the SPI Transmitter Block

Pin name: bispiTX_FIFO_empty Pin class: Status
Source — Destination: SPITDR block— SPI transmitter block
Pin function:

1: SPITDR block is empty

0: SPITDR block is not empty

Pin name: bispiTX_cpol Pin class: Control
Source — Destination: SPICR — SPI transmitter block

Pin function: Clock polarity

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
50

Chapter 5: Micro-Architecture Specification

Pin name: bispiTX_cpha Pin class: Control
Source — Destination: SPICR — SPI transmitter block
Pin function: Clock phase

Pin name: bispiTX_din[7:0] Pin class: Data
Source — Destination: SPICR — SPI transmitter block
Pin function: 8-bit data input bus

Pin name: bispiTX_SPE Pin class: Control
Source — Destination: SPICR — SPI transmitter block

Pin function: SPI controller enable control signal

1: enable SPI transmitter block

0: disable SPI transmitter block

Pin name: bispiTX_TXCHE Pin class: Control
Source — Destination: SPISR — SPI transmitter block

Pin function: Transmit complete halt enable signal

1: halt SPI transmitter’s FSM state when complete transmission

0: continue SPI transmitter’s FSM state when complete transmission

Pin name: bispiTX_fsm_stall Pin class: Control
Source — Destination: SPI controller unit — SPI transmitter block
Pin function: SPI transmitter stall control signal

1: stall SPI transmitter’s FSM state

0: SPI transmitter’s FSM state run normally

Pin name: bispiTX_ss_n Pin class: Control

Source — Destination: SPI controller unit — SPI transmitter block

Pin function: Slave select input signal

1: selected by master to communicate with

0: not selected by master to communicate with/when it is configured as master

Pin name: bispiTX_MSTR Pin class: Control
Source — Destination: SPICR — SPI transmitter block

Pin function: Master/Slave mode

1: SPI is in master mode

0: SPI is in slave mode

Pin name: bispiTX_baud_clk Pin class: Control
Source — Destination: SPI clock generator block — SPI transmitter block
Pin function: Data synchronization clock source

Pin name: bispiTX_spi_clk Pin class: Control
Source — Destination: SPI clock generator block — SPI transmitter block
Pin function: SPI 1/O clock

Pin name: bispiTX_rst Pin class: Global
Source — Destination: Global reset — SPI transmitter block
Pin function: Global reset

1: reset

0: no reset is required

Table 5.2.3.1: Input pin description of the SPI transmitter block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

Chapter 5: Micro-Architecture Specification

5.2.4 Output Pin Description of the SPI Transmitter Block

Pin name: bospiTX_dout Pin class: Data
Source — Destination: SPI transmitter block — SPI controller unit
Pin function: Serial data output

Pin name: bospiTX_sclk Pin class: Control
Source — Destination: SPI transmitter block — SPI controller unit
Pin function: Data synchronization clock source

Pin name: bospiTX_TXC Pin class: Status
Source — Destination: SPI transmitter block — SPI controller unit
Pin function:

1: complete transmission of one data byte

0: transmission of one data byte is not complete

Pin name: bospiTX_FIFO_pop Pin class: Control
Source — Destination: SPI transmitter block — SPITDR
Pin function: To pop one byte of data from the SPITDR block

Pin name: bospiTX_ss_n Pin class: Control
Source — Destination: SPI transmitter block — SPI controller unit
Pin function: Serial data valid control

1: disable serial data communication

0: enable serial data communication

Table 5.2.4.1: Output pin description of the SPI transmitter block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: Micro-Architecture Specification

5.2.5 Finite State Machine of the SPI Transmitter Block

The SPI transmitter block that has been developed has a built-in FSM that is used to
switched between different states. The change of state can be done based on the internal
events. The details of the SPI transmitter’s FSM are illustrated in Figure 5.2.6.1.

bspiTX_LOAD

bspiTX_BYTE_
COMPLETE

Figure 5.2.5.1: Finite State Machine of the SPI transmitter block.

State Name Description
bspiTX_IDLE No operation
bspiTX_WAIT Wait state when FSM halt
bspiTX_LOAD Load data to transmitter shift register (TSR)
bspiTX_SYNC SCLK synchronizing
bspiTX_TX Data transmission is in progress
bspiTX_BYTE_COMPLETE | One-byte data transmission is complete

Table 5.2.5.1: State description of the SPI transmitter block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
53

Chapter 5: Micro-Architecture Specification

5.3 SPI Receiver Block

5.3.1 Functionality/Feature of the SPI Receiver Block

The SPI receiver block is responsible to handle the serial data receiving of the SPI
controller. It uses an 8-bit receiver shift register (RSR) to receive each bit serially from
another SPI device. After 8 baud clock cycles are generated by the master, the process
of data exchange between the master and the slave is said to be completed. Thus, the
receiver shift register (RSR) will contain the 8-bit received data. The data on the shift
register (RSR) is transferred to the receiver data register (RDR) before it is later pushed
into the SPIRDR block. The designed SPI receiver block can perform the serial data
receiving between SPI devices in all of the 4 transfer modes (mode 0, 1, 2 and 3) as
shown in Appendix A correctly regardless of whether it is configured as a master or a

slave.

5.3.2 Block Interface of the SPI Receiver Block

bspi_RX
— bispiRX_din bospiRX_dout[7:0] ——>»
—> bispiRX_cpol bospiRX_RSRF—

— bispiRX_cpha
— bispiRX_SPE
— bispiRX_sclk
—> bispiRX_ss n
— bispiRX_spi_clk
—> bispiRX_rst

Figure 5.3.2.1: Block interface of the SPI receiver block.

5.3.3 Input Pin Description of the SPI Receiver Block

Pin name: bispiRX_din Pin class: Data
Source — Destination: SPI controller unit — SPI receiver block
Pin function: Serial data input

Pin name: bispiRX_cpol Pin class: Control
Source — Destination: SPICR — SPI receiver block

Pin function: Clock polarity

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
54

Chapter 5: Micro-Architecture Specification

Pin name: bispiRX_cpha Pin class: Control
Source — Destination: SPICR — SPI receiver block
Pin function: Clock phase

Pin name: bispiRX_SPE Pin class: Control
Source — Destination: SPICR — SPI receiver block

Pin function: SPI controller enable control signal

1: enable SPI receiver

0: disable SPI receiver

Pin name: bispiRX_sclk Pin class: Control
Source — Destination: SPI controller unit — SPI receiver block
Pin function: Data synchronization clock source

Pin name: bispiRX_ss_n Pin class: Control
Source — Destination: SPI controller unit — SPI receiver block
Pin function: Serial data valid control

1: disable serial data communication

0: enable serial data communication

Pin name: bispiRX_spi_clk Pin class: Control
Source — Destination: SPI clock generator block — SPI receiver block
Pin function: SPI 1/O clock

Pin name: bispiRX_rst Pin class: Global
Source — Destination: Global reset — SPI receiver block

Pin function: Global reset

1: reset

0: no reset is required

Table 5.3.3.1: Input pin description of the SPI receiver block.

5.3.4 Output Pin Description of the SP1 Receiver Block

Pin name: bospiRX_dout[7:0] Pin class: Data
Source — Destination: SPI receiver block — SPIRDR block
Pin function: 8-bit data output bus

Pin name: bospi_RSRF Pin class: Status
Source — Destination: SPI receiver block — SPIRDR block
Pin function:

1: RSR is full

0: RSR is not full

Table 5.3.4.1: Output pin description of the SPI receiver block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

Chapter 5: Micro-Architecture Specification

5.3.5 Finite State Machine of the SPI Receiver Block

The SPI receiver block that has been developed has a built-in FSM that is used to
switched between different states. The change of state can be done based on the internal
events. The details of the SPI receiver’s FSM are illustrated in Figure 5.3.6.1.

bspiRX_IDLE

bspiRX_RX) O

Figure 5.3.5.1: Finite State Machine of the SPI receiver block.

bspiRX_FINISH

State Name Description
bspiRX_IDLE No operation
bspiRX_RX Data receiving is in progress
bspiRX_FINISH Data receiving is complete

Table 5.3.5.1: State description of the SPI receiver block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
56

Chapter 5: Micro-Architecture Specification

5.4 SPI Clock Generator Block
5.4.1 Functionality/Feature of the SPI Clock Generator Block

The SPI clock generator block is used to generate the 10 MHz SP1 1/O clock frequency

for SPI internal operation. Besides, it is also a user-configurable clock divider. It is able

to generate 16 transmission speed (or baud rate), ranging from 152 Hz to 5 MHz. Only

the baud rate generated by the master device will be used for synchronizing the serial

data transfer taking place across different SPI-compatible devices. The last four bits in
the SPICR (which is the SPICR[3:0]) will control the divisor to the SPI I/O clock and
determine the baud rate generation. The baud rate can be calculated by using the

equation provided in below.

SPI11/0 clock(Hz)
2 x 2SPICR[3:0]

baud rate (Hz) =

5.4.2 Block Interface of the SPI Clock Generator Block

bspiclk_gen

— bispiclk_gen_sel[3:0] bospiclk_gen_baud_clk —>
— bispiclk_gen_sysclk bospiclk_gen_spi_clk—»
— Dbispiclk_gen_rst

Figure 5.4.2.1: Block interface of the SPI clock generator block.

5.4.3 Input Pin Description of the SPI Clock Generator Block

Pin name: bispiclk_gen_sel[3:0] Pin class: Control
Source — Destination: SPI controller unit — SPI clock generator block
Pin function: To select 1 out of 16 transmission speed or baud rate

Pin name: bispiclk_gen_sysclk Pin class: Global
Source — Destination: Global — SPI clock generator block
Pin function: Global clock

Pin name: bispiclk_gen_rst Pin class: Global
Source — Destination: Global reset — SPI clock generator block
Pin function: Global reset

1: reset

0: no reset is required

Table 5.4.3.1: Input pin description of the SPI clock generator block.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

Chapter 5: Micro-Architecture Specification

5.4.4 Output Pin Description of the SPI Clock Generator Block

Pin name: bospiclk_gen_baud_clk Pin class: Control
Source — Destination: SPI clock generator block — SPI transmitter block
Pin function: To output the selected baud rate

Pin name: bospiclk_gen_spi_clk Pin class: Control
Source — Destination: SPI clock generator block — All SPI blocks and registers

Pin function: To output the generated SPI 1/0 clock

Table 5.4.4.1: Output pin description of the SPI clock generator block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

Chapter 5: Micro-Architecture Specification

5.5 16-deep Asynchronous FIFO Block

5.5.1 Functionality/Feature of the 16-deep Asynchronous FIFO Block

One of the FIFO designs used in this project is the asynchronous FIFO design with
asynchronous pointer comparisons. An asynchronous FIFO refers to a FIFO design
where data values are written sequentially into a FIFO buffer using one clock domain,
and the data values are sequentially read from the same FIFO buffer using another clock
domain, where the two clock domains are asynchronous to each other (Cummings &
Alfke, 2002). Basically, it is used to safely handle the passing of multi-bit data
(randomly changing signals) from one clock domain to a new clock domain as the use
of synchronizer to handle the passing of these type of data is generally unacceptable.
The FIFO used in this project is a 16 entries deep FIFO memory with each data entry
is of 8-bit size. It uses circular memory with two pointers to stimulate the infinite big
memory needed. As a result, multiple data bytes can be stored sequentially in it as long
as the total number of data bytes does not exceed 16, which greatly reduces the CPU’s
workload to move the data and allow continuous data transfer in the background. Apart
from that, it has implemented full-removal and empty-removal using a “pessimistic”
method. Meaning, the “full” and “empty” statuses are both asserted exactly on time but

removed late. In this project, it is used as the SPITDR and SPIRDR respectively.

5.5.2 Block Interface of the 16-deep Asynchronous FIFO Block

bFIFO

— > DIFIFO_Ain[7:0] or1Fo doutf7:0]——>
bIFIFO_pop boFIFO_rempty —»

| bIFIFO_push boFIFO_wfull —»
— hiFIFO rclk -

—» biFIFO_weclk
— biFIFO rst

Figure 5.5.2.1: Block interface of the 16-deep asynchronous FIFO block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
59

Chapter 5: Micro-Architecture Specification

5.5.3 Input Pin Description of the 16-deep Asynchronous FIFO Block

Pin name: biFIFO_din[7:0] Pin class: Data

Source — Destination: SPI controller unit — Asynchronous FIFO block
SPI receiver block — Asynchronous FIFO block

Pin function: 8-bit input data bus

Pin name: biFIFO_pop Pin class: Control

Source — Destination: SPI controller unit — Asynchronous FIFO block
SPI transmitter block — Asynchronous FIFO block

Pin function: To pop one data byte from the asynchronous FIFO block

1: pop one data byte from the FIFO

0: no popping of one data byte from the FIFO

Pin name: biFIFO_push Pin class: Control

Source — Destination: SPI controller unit — Asynchronous FIFO block
SPI receiver block — Asynchronous FIFO block

Pin function: To push one data byte into the asynchronous FIFO block

1: push one data byte into the FIFO

0: no pushing of one data byte into the FIFO

Pin name: biFIFO _rclk Pin class: Control
Source — Destination: SPI controller unit — Asynchronous FIFO block

SPI clock generator block — Asynchronous FIFO block
Pin function: Read clock signal

Pin name: biFIFO_wclk Pin class: Control
Source — Destination: SPI controller unit — Asynchronous FIFO block

SPI clock generator block — Asynchronous FIFO block
Pin function: Write clock signal

Pin name: biFIFO _rst Pin class: Global
Source — Destination: Global reset — Asynchronous FIFO block
Pin function: Global reset

Table 5.5.3.1: Input pin description of the 16-deep asynchronous FIFO block.

5.5.4 Output Pin Description of the 16-deep Asynchronous FIFO Block

Pin name: boFIFO_dout[7:0] Pin class: Data

Source — Destination: Asynchronous FIFO block — SPI transmitter block
Asynchronous FIFO block — SPI controller unit

Pin function: 8-bit output data bus

Pin name: boFIFO_rempty Pin class: Status

Source — Destination: Asynchronous FIFO block — SPI transmitter block
Asynchronous FIFO block — SPI controller unit

Pin function:

1: the FIFO is empty

0: the FIFO is not empty

Pin name: boFIFO_wfull Pin class: Status

Source — Destination: Asynchronous FIFO block — SPI controller unit
Pin function:

1: the FIFO is full

0: the FIFO is not full

Table 5.5.4.1: Output pin description of the asynchronous FIFO block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

Chapter 5: Micro-Architecture Specification

5.5.5 Schematic and Block Diagram of the 16-deep Asynchronous FIFO block

biFIFO_din([7:0]

biFIFO_push

Binary

to Gray
logic

wdata([7:0] rdata[7:0]

bFIFO_FIFOmem
(16x1-byte dual port RAM)

welken

waddr(3:0] rptr[3:0]

bFIFO_wptr{3:0]
Q

arst

bFIFO_wptr[3]
bFIFO_rptr([2]

bFIFO_wptr[2]
bFIFO_rptr(3]

| bFIFO_rptr([3:0]
] D Q

—

| bFIFO_aempty_n

Binary

to Gray
logic

Synchronizer]

biFIFO_pop

[—

Synchronizer

’ biFIFO_wclk

’ biFIFO_rst

’ boFIFO_wfull <

Figure 5.5.5.1: Schematic and block diagram of the 16-deep asynchronous FIFO design with asynchronous pointer comparisons

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

boFIFO_dout[7:0]

> boFIFO_r_empty

biFIFO_r_clk ‘

61

Chapter 5: Micro-Architecture Specification

5.6 2-deep FIFO Synchronizer Block

5.6.1 Functionality/Feature of the 2-deep FIFO Synchronizer Block

The 2-deep FIFO synchronizer block is another variation on passing multiple control
and data bits safely across CDC boundaries. It allows the CPU to buffer the multi-bit
control signal at its own speed, thus reducing the timing requirement. It is a 2-deep dual
port FIFO memory as it is built by using only two registers. Each data entry is of 8-bit
size. Similarly, it also uses circular memory with two pointers to stimulate the infinite
big memory needed. On the other hand, an inverted not-full condition is used in this
FIFO design to indicate that the FIFO is ready to receive a control byte. On the other
hand, in order to indicate that the FIFO has a data or control byte that is ready to be
read, an inverted not empty condition is applied. In this project, it is used as the SPICR
FIFO and SPISR FIFO block.

5.6.2 Block Interface of the 2-deep FIFO Synchronizer Block

bFIFO_sync
— biFIFO_sync_rget boFIFO_sync_dout[7:0] —>
— biFIFO_sync_din[7:0] boFIFO_sync_rrdy —
— biFIFO_sync_wput boFIFO_sync_wrdy —>»

— biFIFO _sync_rclk
—» biFIFO _sync_rrst
— biFIFO _sync_wclk
—» biFIFO_sync_wrst

Figure 5.6.2.1: Block interface of the 2-deep FIFO synchronizer block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
62

Chapter 5: Micro-Architecture Specification

5.6.3 Input Pin Description of the 2-deep FIFO Synchronizer Block

Pin name: biFIFO_sync_rget Pin class: Control

Source — Destination: 2-deep FIFO synchronizer block — 2-deep FIFO
synchronizer block

Pin function: To get one data byte from the FIFO block

1: pop one data byte from the FIFO

0: no popping of one data byte from the FIFO

Pin name: biFIFO_sync_din[7:0] Pin class: Data

Source — Destination: SPI controller unit — 2-deep FIFO synchronizer block
Pin function: 8-bit input data bus

Pin name: biFIFO_sync_wput Pin class: Control

Source — Destination: SPI controller unit — 2-deep FIFO synchronizer block
Pin function: To push one data byte into the FIFO block

1: push one data byte into the FIFO

0: no pushing of one data byte into the FIFO

Pin name: biFIFO_sync_rclk Pin class: Control

Source — Destination: SPI clock generator block — 2-deep FIFO synchronizer
block

Pin function: Read clock signal

Pin name: biFIFO_sync_rrst Pin class: Global

Source — Destination: Global reset — 2-deep FIFO synchronizer block

Pin function: Global reset

1: reset

0: no reset is required

Pin name: biFIFO_sync_wclk Pin class: Global

Source — Destination: Global clock — 2-deep FIFO synchronizer block

Pin function: Global clock

Pin name: biFIFO_sync_wrst Pin class: Global

Source — Destination: Global reset — 2-deep FIFO synchronizer block

Pin function: Global reset

1: reset

0: no reset is required

Table 5.6.3.1: Input pin description of the 2-deep FIFO synchronizer block

5.6.4 Output Pin Description of the 2-deep FIFO Synchronizer Block

Pin name: biFIFO_sync_dout[7:0] Pin class: Data

Source — Destination: 2-deep FIFO synchronizer block — SPICR
2-deep FIFO synchronizer block — SPISR

Pin function: 8-bit output data bus

Pin name: biFIFO_sync_rrdy Pin class: Status

Source — Destination: 2-deep FIFO synchronizer block — 2-deep FIFO

synchronizer block

Pin function:

1: the data in the FIFO is ready to be read

0: the data in the FIFO is not ready to be read

Pin name: biFIFO sync wrdy Pin class: Status

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
63

Chapter 5: Micro-Architecture Specification

Source — Destination: 2-deep FIFO synchronizer block — SPI controller unit
Pin function:

1: FIFO is ready to receive a data

0: FIFO is not ready to receive a data

Table 5.6.4.1: Output pin description of the 2-deep FIFO synchronizer block.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

Chapter 5: Micro-Architecture Specification

5.6.5 Schematic and Block Diagram of the 2-deep FIFO Synchronizer Block

biFIFO_sync_din[7:0]

wetrl logic

hiFIFO_sync_wput |)

D Q

arst

boFIFO_sync_wrdy < | *

]

bFIFO_sync_wq2_rptr

wdata[7:0] rdata(7:0]
bFIFO_mem
(2x1-byte Dual Port RAM)
» welken —
waddr raddr [€ |
|
|
Synchronlzer | Synchronizer |
D Q D

biFIFO_sync_wrst

hiFIFO_sync_wclk

arst arst |

arst

bFIFO_sync_rq2_wptr

> hoFIFO_sync_dout[7:0]

e

rctrl logic

hiFIFO_sync_rget

> boFIFO_sync_rrdy

’—< biFIFO_sync_rrst

Figure 5.6.5.1: Schematic and block diagram of the 2-deep FIFO synchronizer block

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

hiFIFO_sync_rclk

65

Chapter 5: Micro-Architecture Specification

5.7 Register Set of SPI Controller Unit

Four special-purpose registers are used to allow data communication between the CPU

and the SPI controller unit. All these special registers are memory-mapped and user-

accessible by using the normal load and store instructions.

Virtual Memory

OxC000_oooo
DxBEFFF_FEOD
OxBFC0_1000
OxBFCD 0000

OxAD02 2000

OxA002_ 1000
O A0 0800
OxAQ0Z D000

Dxanon_ooco

Ox3001_FFFF
CoB00L FE00
CxE00L_F400

OxEQD1_B400

D200 Conn

/0 peripherals registe

N

data

rodata

Exception hamdler

Lisar pragram coda

KSEGL

K3EGOD

SPIRDR

SPITDR

SPISR

SPICR

Oxbfff fe27

Oxbfff_fe26

Oxbfff_fe25

Oxbfff fe24

FLASH

RAM

BOOT ROM

Figure 5.7.1: Address of the special-purpose registers in virtual memory.

5.7.1 SPI Configuration Register (SPICR)
Type: read/write

Width: 8 bits

Address: Oxbfff fe24

Function: To configure the setting of the SPI controller unit.

SPE

MSTR

CPOL

CPHA

SCR

SCR

SCR

SCR

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

Figure 5.7.1.1: SPI Configuration Register (SPICR)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

Chapter 5: Micro-Architecture Specification

a)

b)

d)

SPE - SPI enable control
It is used to deactivate the SPI controller when it is not in use. To have better
control on power consumption, the SPI controller is recommended to be
deactivated when it is not in use.

e SPE =0: Deactivate SPI controller.

e SPE =1: Activate SPI controller.
MSTR - Master/Slave device

e MSTR = 0: Set as slave device.

e MSTR = 1: Set as master device.

CPOL - Clock Polarity
e CPOL = 0: Active-high clock is selected. SCLK is low in idle state.
e CPOL = 1: Active-low clock is selected. SCLK is high in idle state.
CPHA - Clock Phase
e CPHA = 0: Data sampling occurs at odd edges (1, 3, 5, ..., 15) of the
SCLK clock.
e (CPHA = 1: Data sampling occurs at even edges (2, 4, 6, ..., 16) of the
SCLK clock.

SCR [3:0] - SPI Baud Rate (Given the SPI 1/O clock speed is 10 MHz)
e 0000: 5 MHz
0001: 2.5 MHz

1110: 305 Hz
1111: 152 Hz

5.7.2 SPI Status Register (SPISR)
Type: read/write

Width: 8 bits

Address: Oxbfff_fe25

Function: To configure the setting of the SPI controller unit and for status monitoring

purpose.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

Chapter 5: Micro-Architecture Specification

RXDF

TXEF

MODF

RXFM

RXFIE

TXEIE

RXBHE

TXCHE

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

Figure 5.7.2.1: SPI Status Register (SPISR)

a)

b)

d)

f)

RXDF: Receive Done Flag
When this bit is set by the SPI controller unit, it indicates that 1-byte or 16-byte
of data have been completely received. It is used in conjunction with the RXFM
bit in the SPISR to determine if the received data is 1-byte (when RXFM = 0)
or 16-byte (when RXFM = 1) when the FIFO is full.
TXEF: Transmit FIFO Empty flag

e TXEF =0: SPI Transmitter FIFO block is not empty.

e TXEF = 1: SPI Transmitter FIFO block is empty.
MODF: Mode fault error
When the SPI controller unit is configured as a master device, the uiospi_SS n
pin must be pulled high by the master device. If there exist two or more master
devices in the same connection, any attempt to pull low the uiospi_SS _n pin
will trigger the mode fault error. This is to avoid damage to the hardware.

e MODF = 0: No mode fault error occurs.

e MODF = 1: Mode fault error occurs.
RXFM: Receive FIFO Full Mode.
It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes
of SPICR.

e RXFM = 0: 1-byte of data is expected to be read by CPU.

e RXFM = 1: 16-byte of data (FIFO full) is expected to be read by CPU.
RXFIE: Receive Complete Interrupt enable
It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes
of SPICR. It can only be used if and only if the SPIE bit (the SPI global interrupt
enable pin) is set to high. This bit is used for interrupt enable control (to select
interrupt method instead of polling) after data has been completely received (as
indicated by the RXDF bit in SPISR).

e RXFIE = 0: Disable Receive Complete Interrupt.

e RXFIE = 1: Enable Receive Complete Interrupt.
TXEIE: Transmit FIFO Empty Interrupt Enable

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

Chapter 5: Micro-Architecture Specification

9)

h)

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes
of SPICR. It can only be used if and only if the SPIE bit (SPI global interrupt
enable bit) is set to high. This bit is used for interrupt enable control (to select
interrupt method instead of polling) when the SPI transmitter FIFO is empty (as
indicated by the TXEF bit in SPISR).
e TXEIE = 0: Disable Transmit Enable Interrupt.
e TXEIE = 1: Enable Transmit Enable Interrupt.
RXBHE: Receive Byte Halt enable
It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes
of SPICR.
e RXBHE = 0: Disable SPI transmitter’s FSM stall.
e RXBHE = 1: Enable SPI transmitter’s FSM stall when one byte of data
is received.
TXCHE: Transmit FIFO Complete Halt enable
It is part of SPICR and it is placed in SPISR to avoid creating longer bytes of
SPICR.
e TXCHE = 0: Continue SPI transmitter’s FSM state when complete
transmission.
e TXCHE =

transmission.

1: Halt SPI transmitter’s FSM state when complete

5.7.3 SPI Transmitter Data register (SPITDR)

Type: read/write

Width: 8 bits

Address: Oxbfff_fe26

Function: To hold the data that will be transmitted to another SP1-compatible device.

Z

Z

Z

Z

Z

Z

Z

Z

bit 7

bit 6

bit 5

bit 4

bat 3

bt 2

bit 1

bit 0

Figure 5.8.3.1: SPI Transmitter Data Register (SPITDR)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

69

Chapter 5: Micro-Architecture Specification

5.8.4 SPI Receiver Data register (SPIRDR)

Type: read/write

Width: 8 bits

Address: Oxbfff_fe27

Function: To hold the data received from another SPI-compatible device.

Z

Z

Z

Z

Z

Z

Z

bit 7

bit 6

bit 5

bit 4

bat 3

bt 2

bit 1

bit 0

Figure 5.7.4.1: SPI Receiver Data Register (SPIRDR)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

70

Chapter 6: Firmware Development

Chapter 6: Firmware Development

6.1 Exception Handler of the RISC32 Pipeline Processor

Exception is the unexpected or unscheduled event (internally or externally caused) that
can change the normal flow of the instruction execution. In order to handle the
unexpected events within the processor, an exception handler has already been created.
The exception handler is able to handle unexpected events such as interrupt, address
error trap on data load or instruction fetch, address error trap on data store, bus error on
data load or store, bus error on instruction fetch, Syscall trap, breakpoint trap, undefined
instruction trap, and arithmetic overflow trap. Upon detecting an exception signal, the
CPU suspends its current program execution, saves the address of the next instruction
(PC) for return purpose, and then jumps to the exception handler at 0x8000_b400 for
handling the exception. After performing whatever actions that are required because of
the exception, the CPU returns to the place where it was interrupted and resumes the
normal program execution. A pseudocode that describes the existing exception handler
of the RISC32 pipeline processor is given in below for better understanding.

BEGIN
Push the current state of the user program to stack
Push the current CPO’s status register value to stack
Push the current CPO’s cause register value to stack
Clear the exception level in the CP0’s status register
Decode the exception code in the CPO’s cause register
CASEOF exception code
: Branch to the exception routine of Interrupt
: Branch to the exception routine of Address Error Trap LOAD
: Branch to the exception routine of Address Error Tap STORE
: Branch to the exception routine of Bus Error on IF Trap
: Branch to the exception routine of Bus Error on LOAD/STORE Tap
: Branch to the exception routine of Syscall
: Branch to the exception routine of Breakpoint Trap
10: Branch to the exception routine of Reserved/Undefined Instruction
12: Branch to the exception routine of Arithmetic Overflow
ENDCASE
Set the exception level in the CP0’s status register
Pop the previous state of user program from stack
Clear the exception code in the CPO’s cause register
Clear the interrupt priority level in the CPO’s cause register
Return to user program based on the address value in the CP0’s EPC register

©O© oo ~NOo O O

END

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
71

Chapter 6: Firmware Development

6.2 Interrupt Service Routine (ISR) of the SPI Controller Unit

An interrupt is an external event that interrupts the CPU to inform it that a device needs
its service. In this project, the device that interrupts the CPU will be the SPI controller
unit. Since interrupt is asynchronous to the program execution, the CPU will simply
suspend the normal instruction execution and then resume to the place where it was
interrupted after finishing the execution of the corresponding Interrupt Service Routine
(ISR).

In this project, an ISR specifically for the SPI controller unit is developed by using
MIPS assembly language and subsequently integrated into the existing exception
handler. This ISR will be invoked by the CPU to handle different types of interrupt
requests generated by the SPI controller unit. The generated interrupt request(s) could
be mode fault error interrupt, transmitter buffer empty interrupt and/or receiver buffer
full interrupt. Table 6.2.1 describes the actions that the CPU performs when the

corresponding SPI controller’s interrupt request is generated.

Types of interrupt Actions to be taken

Mode fault error | The CPU will deactivate the SPI controller unit and force it
interrupt into the idle state. The transmission will be aborted if a

transmission is in progress when the mode fault error occurs.

Transmitter buffer | When there are no more data bytes to be transmitted, the CPU
empty interrupt will deactivate the SPI controller unit to reduce power
consumption. Eventually, the SPI controller is forced into the

idle state.

Receiver buffer full | The CPU will load the received data bytes from the receiver

interrupt buffer to process.

Below shows the pseudocode of the developed ISR for handling different types of

interrupt requests from the SPI controller unit.

BEGIN
Load the SPISR value
Check the mode fault error (MODF) interrupt status from the SPISR
Check the transmitter buffer empty (TXEF) interrupt status from the SPISR
IF the MODF or the TXEF interrupt occurs THEN
Deactivate the SPI controller

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
72

Chapter 6: Firmware Development

END

ENDIF
Check the receiver buffer full (RXDF) interrupt status from the SPISR
IF the RXDF interrupt does not occur THEN

Return to the main exception handler

ELSE
BEGIN
Load the received data bytes from the receiver buffer
Return to the main exception handler
END

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

73

Chapter 7: Verification Specification and Stimulation Result

Chapter 7: Verification Specification and Stimulation Result

The test cycle in this project consists of two stages. During the first stage, the SPI
controller unit is tested and verified individually for functional correctness before any
integration. Once it has passed the individual test, it will be tested again as a whole in

the second stage for its complete functionality.

7.1 Test Plan for SPI Controller Unit’s Functional Test

Before the designed SPI controller unit can be integrated into the RISC32 pipeline
processor, it is important to first verify the functional behaviors of the SPI controller
unit. Thus, a test plan detailing the functional testing objective, scope, approach,
expected output, and final test status is constructed and presented in Table 7.1.2. A
testbench based on the test plan is written in Verilog HDL and can be found in Appendix
B.1.

As shown in Figure 7.1.1, the DUT_MASTER used in this verification test represents
the master device whereas the DUT_SLAVE used represents the slave device. Same
type of SPI controller unit is used throughout the verification process but with different
operation modes (master mode or slave mode) to prove that the designed SPI controller

unit can function correctly in both operation modes.

uspi uspi
——>{ uispi_SPIE Lo — uispi_SPIE «——
At uiospi_MOSI uiospi_MOSI AR of
—>{ uispi_pipe_stall uiospi_MISO uiospi_MISO uispi_pipe_stall ——
— 5| uispi_wb_w_din[7:0] uiospi_SCLK uiospi_SCLK uispi_wh_w,_din[7:0] le——
Fernf o) oo ¢ . uiospi_SS_n uiospi_SS_n PRl :
——>{ uispi_wb_w_sel[3:0] uispi_wb_w_sel[3:0] je——
ey o uospiIRQ—> | vospiiRe ipoww b
> uispiiwbir §e|[3'0] uospi_wb_r_dout[31:0] —> <«— uospi_wb_r_dout[31:0] uispi o o s;I[E'O] ¢
—> uispi_wb_r_we . UOSPi_—Wh—W—aCk uosp!_wb_w_ack Eispi_vT/b r We [—
—>{ uispi_wb_r_stb uospi_wb_r_ack ——> | uospi_wb_r_ack uispi_wb_r_sth ——
uispi_wb_clk uispi_wb_clk
—>{ uispi_wb_rst uispi_wb_rst ——
50Mhz clock
frequency
N

il

Clock Waveform
Generator

Figure 7.1.1: The connection mechanism of the DUT_MASTER and the DUT_SLAVE

for SPI controller unit’s functional verification.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
74

Chapter 7: Verification Specification and Stimulation Result

Unit/Block Used in Stimulation

Instance Name Used in Stimulation

SPI controller unit (configured as master) DUT_MASTER
SPI controller unit (configured as slave) DUT_SLAVE
SPI transmitter block bspiTX

SPI receiver block bspiRX

SPI Transmitter Data Register

TX_buffer16x8

SPI Receiver Data Register

RX_buffer16x8

SPICR FIFO block

SPICR_buffer2x8

SPISR FIFO block

SPISR_buffer2x8

SPI clock generator block

bspiclk_gen

Table 7.1.1 Instance name of each SPI controller unit and its internal blocks that are

being used in the test plans, testbenches, flowcharts and stimulation.

Test

Expected Output

Status

Test Case #1:
System Reset

Function to be tested
e Able to reset the whole SPI
controller unit
Procedure
1. Reset both devices.

tb w uiospi SS n=1’bz
tb w_uiospi SCLK = 1’bz
tb w_uiospi MOSI = 1’bz
tb w_uiospi MISO = 1’bz
tb_w_uospi_IRQ_master =
1’b0
tb_w_uospi_wb_w_ack_m
aster = 1°b0
tb_w_uospi_wb_r_ack_ma
ster = 1’b0
tb_w_uospi_wb_r_dout_m
aster = 32°hz

SPICR of DUT_MASTER
= 8’b0000_0000

SPISR of DUT_MASTER
=8’b0100_0000
tb_w_uospi_IRQ _slave =
1’b0
tb_w_uospi_wb_w_ack_sl
ave = 1’b0
tb_w_uospi_wb_r_ack sla
ve = 1’b0
tb_w_uospi_wb_r_dout_sl
ave =32’hz

SPICR of DUT_SLAVE =
8’b0000 0000

Pass

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

75

Chapter 7: Verification Specification and Stimulation Result

SPISR of DUT_SLAVE =
8’b0100_0000

Test Case #2:
Write operation on SPISR

Function to be tested
e Write operation on SPISR in both
master mode and slave mode
Procedure
1. Enable write access on both
devices.
2. Enable write operation on both
SPISR.
3. Configure both SPISR with
8°b0000_1111.
4. Disable write operation on both
SPISR.

SPISR of DUT_MASTER
=8°b0100_1111

SPISR of DUT_SLAVE =
8°b0100_ 1111

Pass

Test case #3:
Write operation on SPICR

Function to be tested
e Write operation on SPICR in both
master mode and slave mode
Procedure
1. Enable write operation on both
SPICR.
2. Configure DUT MASTER’s
SPICR with 8’b1100_0000.
3. Configure DUT SLAVE’s
SPICR with 8’b1000 0000.
4. Disable write operation on both
SPICR.
5. Enable read operation on both
SPISR and SPICR of the devices.

SPICR of DUT_MASTER
=8&b1100_0000

SPICR of DUT_SLAVE =
8’b1000_0000

Pass

Test Case #4:
Transmitter buffer empty interrupt
support

Function to be tested
e Transmitter buffer empty
interrupt support in both master
mode and slave mode
Procedure
1. Hold for 20 clock cycles
2. Disable read operation on both
SPISR and SPICR of the devices.

SPISR of DUT_MASTER
=8’b0100 1111
tb_w_uospi_IRQ_master =
1’bl
tb_w_uospi_wb_r dout_ m
aster = 32°h0000_4fc0
SPISR of DUT_SLAVE =
8’b0100 1111
tb_w_uospi_IRQ _slave =
1’bl
tb_w_uospi_wb_r_dout_sl
ave = 32°h0000_4f80

Pass

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

76

Chapter 7: Verification Specification and Stimulation Result

Mode 0 serial data communication

Function to be tested

e Able to transmit and receive data
simultaneously in both master
mode and slave mode when mode
0 is used.

Procedure

1. Enable write operation on both
TX_buffer16x8.

2. Store 8’1010 1010 to
DUT _MASTER’s
TX_buffer16x8.

3. Store 8’b0101_0101 to
DUT SLAVE’s TX buffer16x8.

4. Disable write operation on both
TX_bufferl6x8.

5. Hold for 100 clock cycles.

8 baud clock cycles should
appear on the
tb_w_uiospi_SCLK
There should be only one
bit of data on the
tb_w_uiospi_MOSI for
every baud clock cycles.
The expected sequence of
data to be transmitted on
this pin is 8’b1010 1010
There should be only one
bit of data on the
tb_w_uiospi_MISO for
every baud clock cycles.
The expected sequence of
data to be transmitted on
this pin is 8’b0101_0101
Each of these data bit is
transmitted serially at one
half clock cycle before the
rising edge of the
tb_w_uiospi_SCLK clock.
tb_w_uospi_IRQ_master =
1’bl

Test Case #5: bFIFO_FIFOmem[0] of Pass
Push one 8-bit data into the DUT_MASTER =
TX_buffer16x8 8’1010 1010
SPISR of DUT_MASTER
Function to be tested = 8’0000 1111
e Able to load data into the th_w_uospi_IRQ_master =
TX bufferl6x8 in both master 1°b0
mode and slave bFIFO_FIFOmem[0] of
Procedure DUT SLAVE =
1. Enable write operation on both 8’0101 0101
TX_buffer16xs. SPISR of DUT_SLAVE =
2. Load 8’b1010 1010 to 8°b0000 1111
DUT_MASTER’s th_w_uospi_IRQ_slave =
TX_buffer16x8. 1’00
3. Store 8’b0101_0101 to
DUT_SLAVE’s TX buffer16x8.
4. Disable write operation on both
TX_buffer16x8.
5. Enable read operation on both
SPISR.
6. Hold for 20 clock cycles.
7. Disable read operation on both
SPISR.
Test case #6: tb_ w_uiospi_SS n=1’b0 Pass

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

77

Chapter 7: Verification Specification and Stimulation Result

tb_w_uospi_IRQ_slave =
I’bl

Test case 7: SPISR of DUT_MASTER Pass
Receiver buffer full interrupt support =8’b1000_1111
after receiving a 1-byte data tb_w_uospi_IRQ_master =
(RXFM = 0) 1’bl
SPISR of DUT_SLAVE =
Function to be tested 81000 1111
e Receiver buffer full interrupt tb_w_uogpi_IRQ_sIave =
support in both master mode and 1’bl
slave mode when RXFM =0
Procedure
1. Hold for 15 clock cycles.
Test case 8: tb_w_uospi_wb r dout m | Pass
Pop 1-byte of received data from the aster = 32’h00000055
RX_buffer16x8 SPISR of DUT_MASTER
=8’b0000 1111
Function to be tested tb_w_uospi_IRQ_master =
e Pop 1-byte of received data from 1°b0
the RX bufferl6x8 in both th w UOSpi wb r dout sl
master mode and slave mode ave = 32°h000000aa
Procedure SPISR of DUT_SLAVE =
1. Enable read operation on both 8°b0000 1111
RX_buffer16x8. _ tb_w_uospi_IRQ_slave =
2. Disable read operation on 1"50
RX_buffer16x8
3. Enable read operation on both
SPISR and SPICR of the devices.
4. Hold for 5 clock cycles.
5. Disable read operation on both
SPISR and SPICR of the devices.
Test case #9: SPISR of DUT_MASTER | Pass

Receiver buffer full interrupt support
after receiving 16x1-byte data
(RXFM =1)

Function to be tested
e Receiver buffer full interrupt
support in both master mode and
slave mode when RXFM =1
Procedure
1. Enable write operation on both
SPICR.
2. Configure DUT MASTER’s
SPICR with 8’b0100_0000.
3. Configure DUT SLAVE’s
SPICR with 8’b0000_0000.
4. Disable write operation on both
SPICR and enable write
operation on both SPISR.

=8’b1000_1111
tb_w_uospi_IRQ_master =
1’bl

SPISR of DUT_SLAVE =
8’b1000_1111
tb_w_uospi_IRQ _slave =
1’bl

All the received data
should be stored correctly
on the RX_buffer16x8 of
both devices.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

78

Chapter 7: Verification Specification and Stimulation Result

5. Configure both SPISR with
8’b0001 1111.

6. Disable write operation on both
SPISR and enable write operation
on both TX buffer16x8.

7. Store 16-lbyte data into both
TX_buffer16x8.

8. Disable write operation on
TX_bufferl6x8 and enable write
operation on SPICR.

9. Configure DUT_MASTER’s
SPICR with 8’b1100_0000.

10. Configure DUT SLAVE’s
SPICR with 8’b1000_0000.

11. Disable write operation on both
SPICR.

12. Enable read operation on SPISR
and SPICR of the devices.

13. Hold for 1640 clock cycles.

14. Enable write operation on both
TX_buffer16x8.

15. Store one 8-bit data into both
TX_buffer16x8.

16. Disable write operation on both
TX bufferl6x8.

Test case 10: tb_w_uospi_IRQ_master = Pass
Pop 16 number of 1-byte data from the 1’b0
RX_buffer16x8 SPISR of DUT_MASTER
=8b0001 1111
Function to be tested tb_w_uospi_IRQ_slave =
e Able to pop data from the '’
RX_bufferl6x8 in both master SPISR of DUT SLAVE =
mode and slave mode 8°b0001 1111
Procedure All the received data
1. Enable the read operation on both should be loaded correctly
RX_buffer16x8. on the
2. Hold for 18 clock cycles. th_ w_uospi_wb_r_dout_m
3. Disable the read operation on aster and the
both RX_buffer16x8. tb_w_uospi_wb_r_dout_sl
ave.
Test case 11: tb w_uiospi_ SS n=1"b0 Pass

Mode 1 serial data communication

Function to be tested
e Able to transmit and receive data
simultaneously in both master
mode and slave mode when mode
1 is used.

8 baud clock cycles should
appear on the
tb_w_uiospi_SCLK.
There should be only one
bit of data on the
tb_w_uiospi_MOSI for
every baud clock cycles.
The expected sequence of

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

79

Chapter 7: Verification Specification and Stimulation Result

Procedure

1.

Enable write operation on both
SPICR.

data to be transmitted on
this pin is 8’b1010_1010.
There should be only one

2. Configure DUT _MASTER’s bit of data on the
SPICR with 8’60101 _0000. tb_w_uiospi_MISO for

3. Configure DUT SLAVE’s every baud clock cycles.
SPICR with 8’b0001_0000. The expected sequence of

4. Disable write operation on data to be transmitted on
SPICR and enable write this pin is 8’b0101_0101.
operation on SPISR. Each of these data bit is

5. Configure both SPISR with transmitted serially at the
8'b0000_1111. rising edge of the

6. Disable write operation on bpth th_w_uiospi_SCLK clock.
SPISR and enable write operation th_w_uospi_IRQ_master =
on both TX buffer16x8. Bl - =

7. Store 16x1-byte data into both .
TX_buffer16x8, tb,_w_uospl_IRQ_sIave =

8. Disable write operation on both I’bl
TX_bufferl6x8 and enable write
operation on both SPICR.

9. Configure DUT_MASTER’s
SPICR with 8’b1101_0000.

10. Configure DUT SLAVE’s
SPICR with 8’b1001_0000.

11. Disable write operation on both
SPICR.

12. Enable read operation on SPISR
and SPICR of the devices.

13. Hold for 140 clock cycles

14. Disable the read operation on
SPISR and SPICR of the devices.

Test case #12: tb w_uiospi_SS n=1"b0 Pass

Mode 2 serial data communication

Function to be tested

Able to transmit and receive data
simultaneously in both master
mode and slave mode when mode
2 is used.

Procedure

1.

2.

3.

4.

5.

Enable write operation on both
SPICR.

Configure DUT MASTER’s
SPICR with 8’b1110_0000.
Configure DUT SLAVE’s
SPICR with 8’b1010_0000.
Disable the write operation on
both SPICR.

Enable the read operation on both
RX_buffer16x8.

8 baud clock cycles should
appear on the
tb_w_uiospi_SCLK.
There should be only one
bit of data on the
tb_w_uiospi_MOSI for
every baud clock cycles.
The expected sequence of
data to be transmitted on
this pin is 8’b0101_0101.
There should be only one
bit of data on the
tb_w_uiospi_MISO for
every baud clock cycles.
The expected sequence of
data to be transmitted on
this pin is 8’b1010_1010.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

80

Chapter 7: Verification Specification and Stimulation Result

6. Disable the read operation on

both RX buffer16x8 and enable

the read operation on the SPISR

and SPICR.

Hold for 100 clock cycles

8. Disable the read operation on
SPISR and SPICR of the devices.

~

Each of these data bit is
transmitted serially at one
half clock cycle before the
falling edge of the
tb_w_uiospi_SCLK clock.
tb_w_uospi_IRQ_master =
1’bl
tb_w_uospi_IRQ_slave =
1’bl

Test case #13: tb w_uiospi SS n=1"b0 Pass
Mode 3 serial data communication 8 baud clock cycles should
appear on the
Function to be tested tb_w_uiospi_SCLK.
e Able to transmit and receive data There should be only one
simultaneously in both master bit of data on the
mode and slave mode when mode th_w_uiospi_MOSI for
3 is used. every baud clock cycles.
Procedure The expected sequence of
1. Enable write operation on both data to be transmitted on
SPICR. this pin is 8’b1010_1010.
2. Configure ~ DUT_MASTER’s There should be only one
SPICR with 8’b1111_0000. bit of data on the
3. Configure DUT SLAVE’s tb_w_uiospi_MISO for
SPICR with 8’b1011_0000. every baud clock cycles.
4. Disable the write operation on The expected sequence of
both SPICR. data to be transmitted on
5. Enable the read operation on both this pin is 8°b0101_0101.
RX_buffer16x8. _ Each of these data bit is
6. E'fsb;{extge ffrea1d6 %pera(ljtlon t;)ln transmitted serially at the
0 ufferl6x8 and enable :
the read operation on the SPISR fglllng e.:dge.of the lock
and SPICR. t _W_U|osp|_SCLK clock.
7. Hold for 110 clock cycles. ttz_w_uospl_IRQ_master -
8. Disable the read operation on I’bl)
SPISR and SPICR of the devices, tltfg‘f’_uosp'-'RQ—s'ave =
Test case #14: Selectable transmission Firstly, the uiospi_SCLK is | Pass

speed (baud rate)

Function to be tested
e Support selectable transmission
speed (baud rate)

Procedure
1. Enable write operation on both
SPICR.
2. Configure DUT MASTER’s

SPICR with 8’b1111_0001.
3. Configure DUT SLAVE’s
SPICR with 8’b1011_0001.

expected to be 4 times
slower than the
bospi_gen_spi_clk of
DUT_MASTER.

Next, the uiospi_SCLK is
expected to be 8 times
slower than the
bospi_gen_spi_clk of
DUT_MASTER.

Lastly, the uiospi_SCLK is
expected to be 16 times
slower than the

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

81

Chapter 7: Verification Specification and Stimulation Result

~

10.

11.

12.

13.

Disable the write operation on
both SPICR.

Enable the read operation on both
RX_buffer16x8.

Disable the read operation on
both RX buffer16x8 and enable
the read operation on the SPISR
and SPICR.

Hold for 220 clock cycles.
Disable the read operation on
SPISR and SPICR of the devices.
Repeat step 1 to 8 by replacing
some values in the above steps.
That is, assign 8’b1111 0010 to
the DUT_MASTER’s SPICR in
step 2 and 8’b1011 0010 to the
DUT_SLAVE’s SPICR in step 3,
and hold 450 clock cycles in step
7.

Enable write operation in both
SPISR.

Configure both SPISR with
8’b0000 0011.

Repeat step 1 to 8 by replacing
some values in the above steps.
That is, assign 8’bl1111 0011 to
the DUT_MASTER’s SPICR in
step 2 and 8’b1011 0011 to the
DUT_SLAVE’s SPICR in step 3,
and hold 660 clock cycles in step
7.

Enable read operation on SPISR
and SPICR of the devices.

bospi_gen_spi_clk of
DUT_MASTER.

Test case #15:
Mode Fault Error Interrupt Support

Function to be tested

1.

Mode fault error support in
master mode

Procedure

Enable write operation on
DUT_SLAVE’s SPICR.

tb_w_uospi_IRQ_master =
1’bl

SPISR of DUT_MASTER
=8’b1010 0011
tb_w_uospi_IRQ _slave =
1’b0

SPISR of DUT_SLAVE =
8’b0000 0011

Pass

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Configure DUT SLAVE’s
SPICR with 8’b1111_0011.
3. Disable write operation on
DUT_SLAVE’s SPICR.
4. Enable read operation on
DUT _SLAVE’s RX buffer16x8.
5. Hold for 120 clock cycles.
Table 7.1.2: Test plan for the SPI controller unit’s functional verification

82

Chapter 7: Verification Specification and Stimulation Result

7.2 Stimulation Results of the SP1 Controller Unit’s Functional Test

7.2.1 Test Case #1: System Reset

Q ftb_uspi_v2ftb_w_uiospi_S5_n 1hz

~gr [th_uspi_v2th_w_uiospi_SCLK 1hz

~r ftb_uspi_v2ftb_w_uiospi_MOSI 1hz

~r ftb_uspi_v2ftb_w_uiospi_MISO 1hz

Q ftb_uspi_v2ftb_w_uospi_IRQ_slave 1'h0 1

\> ftb_uspi_v2ftb_w_uospi_IRQ_master 1'ho

\> ftb_uspi_v2/tb_w_uospi_wb_w_ack_master Thi L T
\> ftb_uspi_vZftb_w_uospi_wb_r_ack_master 1'ho |

\> ftb_uspi_v2/tb_w_uospi_wb_w_ack_slave Thi L T
\> ftb_uspi_vZftb_w_uospi_wb_r_acdk_slave 1'ho |

\> Stb_uspi_vZftb_w_uospi_wb_r_dout_master 32'hzzzzzzzz

~gr [/th_uspi_v2/DUT_MASTER /SPICF. 8'b00000000 Eb00000000 p

~g» [th_uspi_v2/DUT_SLAVE/SPICR 8'b00000000 Eb00000000 =

\> Stb_uspi_v2/DUT_MASTER./SPISR g'b00001111 2'h00000000 | 8'h0 1000000
\> Stb_uspi_v2/DUT_SLAVE/SPISR 3 g'b00001111 2'h000m0000_§ F'ha0 IDDDIDD |
~ [tb_uspi_v2/tb r_sys_dk 1ho i

\> ftb_uspi_v2ftb r_sys rst \ 1'h0) | 2 B

Figure 7.2.1.1: Stimulation result for test case #1 using ModelSim stimulator.

1. Before the reset signal is asserted, most of the signals have an unknown value.

2. The reset signal is asserted in order to initialize all the system registers, FSM
state, and read/write pointers.

3. All of the output signals and registers are set to their respective default value.

4. The bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and the
DUT_SLAVE is set to 1 by itself respectively when the reset signal is de-
asserted as the TX buffer16x8 block of each device is initially empty. At the
end, both SPISRs hold the value of 8’b0100_0000 (0x40) respectively.

7.2.2 Test Case #2: Write Operation on SPISR

\> Jtb_uspi_v2/DUT_MASTER /SPISR. gbo1001111 3bi IDDDﬂIJDD #baoootiit [ghdi01iil
4 [tb_uspi_v2/OLIT_SLAVE/SPISR 8bo1001111 #h01000000 8bdoo01111 81001111
\> Jtb_uspi_v2tb_r_uispi_wb_w_din_master £b11000000 ghdooo1111 ~) 811000000 2 A
\> Jtb_uspi_v2tb_r_uispi_ wb_w_ssl_master 4hi 4h 4ht = ~
\> Jtb_uspi_v2/th_r_vispi wh_w_we_master 1ho 1 |

\> fth_uspi_v2{th_r_uispi_wh_w_sth_master 1ht)

\> fth_uspi_v2{th_r_uispi_wh_w_din_slave #h10000000 3h00001111 3b10000000

\> ftb_uspi_v2{th_r_uispi_wh_w_sel_slave 4h1 4h 4h1

~ [tb_uspi_v2/th_r_uispi_wb_w_we slave tho 2 1

\) Jtb_uspi_v2{tb_r_uispi_wb_w_stb_slave Thi

\b Jtb_uspi_v2/DUT_MASTER bspick_gen/baspick_gen_spi_dk 1ho | T [[[

\b Jtb_uspi_v2/DUT_SLAVE bspick_gen/bospick_gen_spi_ck 1ho [[[[[

Figure 7.2.2.1 Stimulation result for test case #2 using ModelSim stimulator.

1. Write operation on the SPISR of the DUT_MASTER s activated and an input
data of 8’60000 1111 (0xOf) is sent to it.
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
83

Chapter 7: Verification Specification and Stimulation Result

2. Write operation on the SPISR of the DUT_SLAVE is activated and an input

data of 8’60000 1111 (0OxOf) is sent to it.

. The SPISR in both of the DUT_MASTER and the DUT_SLAVE is configured
with the value of 8’60000 1111 (0xO0f) respectively.

. The bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and the
DUT_SLAVE is set to 1 by itself respectively as the TX buffer16x8 of each
device is initially empty. At the end, both SPISRs hold the value of
8’b0100_1111 (Ox4f) respectively.

7.2.3 Test Case #3: Write Operation on SPICR

~J Jtb_uspi_v2/DUT_MASTER /SPICR 8b11000000 F000000000 2511000000

\> Jtb_uspi_v2/DUT_SLAVE/SPICR. 8'b10000000 8'b00000000 8'h 10000000

\> ftb_uspi_v2/tb_r_uispi_wb_w_din_master 2b11000000 - 3B00001111 3'b11000000 ~

~ [tb_uspi_v2/tb_r_uispi_wb_w_sel_master 4h1 4Rz 4ht e

~ [tb_uspi_v2/tb_r_uispi_wb_w_we_master 1ho I 1

~ [tb_uspi_v2/th _r_vispi_wb_w_stb_master 1hi] \

\> ftb_uspi_v2/tb_r_uispi_wb_w_din_slave &b10000000 - 3B00001111 3510000000 | Y

\> Jtb_uspi_v2/th_r_uispi_wb_w_sel_slave 4hi - 4h2 4h1

~ [tb_uspi_v2/tb_r_uispi_wb_w_we_slave 1ho I 1

\> fth_uspi_v2{tb_r_uispi_wb_w_stb_slave 1hi il

~% [th_uspi_v2/DUT_MASTER bspick_gen/bospick_gen_spi_dk 1ho I]] ™]
% [tb_uspi_v2/DUT_SLAVE bspick_gen/bospick_gen_spi_dk 1ho I] [] []

Figure 7.2.3.1: Stimulation result for test case #3 using ModelSim stimulator.

1. Write operation on the SPICR of the DUT_MASTER is activated and an input
data of 8’b1100 0000 (0xc0) is sent to it.
2. Write operation on the SPICR of the DUT_SLAVE is activated and an input
data of 8’b1000 0000 (0x80) is sent to it.
3. The SPICR of the DUT_MASTER is configured with the value of
8’b1100_0000 (0xc0) whereas the SPICR of the DUT SLAVE is configured
with the value of 8’b1000 0000 (0x80) now.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

84

Chapter 7: Verification Specification and Stimulation Result

7.2.4 Test Case #4: Transmitter Buffer Empty Interrupt Support

\> fth_uspi_vw2fth_w_uospi_wb_r_dout_master 32h00004fc0 ﬁhEDDD-ﬂJD@ 132 hIZIDDIZE rIBZhDDDIM ED‘
\> fth_uspi_v2fth_w_uospi_wb_r_dout_slave 32h00004f30 32hdo00400d) 32hooooofod) 32hoooo4fs0
\> fth_uspi_v2fth_w_uospi_IRQ_master 1h1 [

\> fth_uspi_v2/tb_w_uospi_[RQ_slave 1hi [

~ (tb_uspi_v2/DUT_MASTERSPISR 8b01001111 gb01000000] {8hooooi1fi] {Fh010011i1
\> ftb_uspi_vw2/DUT_SLAVE,SPISR 8'b01001111 &'b0 1000000 [&'booooidfi] JeH01001111
\> ftb_uspi_w2/DUT_MASTER /SPICR 8'b11000000 &'b00000000 JEL IIDDDDI}ID
 [tb_uspi_v2/DUT_SLAVE/SPTICR 8b10000000 'h00000000 | (8510000060

1 2

Figure 7.2.4.1: Stimulation result for test case #4 using ModelSim stimulator.

1. Even though the bit 7 (TXEF) of both SPISR is asserted respectively (which
means the TX_bufferl6x8 is now empty), no interrupt request is being
generated from both of the DUT_MASTER and the DUT_SLAVE. This is
because both of the SPI controllers are initially de-activated (because SPE = 0)
and their transmitter buffer empty interrupts are not enabled (because TXEIE =
0).

2. When all the conditions are met (TXEF = 1, SPE = 1, TXEIE = 1), both of the
DUT_MASTER and the DUT_SLAVE will generate an interrupt request to
notify the CPU for service.

7.2.5 Test Case #5: Push One 8-bit Data into the TX buffer16x8

\> Jtb_uspi_v2/tb_w_uospi_IRQ_master Tho] | 5
~ [tb_uspi_v2/th_w_uospi_IRQ_slave 1ho | \

\> Jtb_uspi_v2/DUT_MASTER /SPISR 8b00001111 JgBooo01111 JeB01001111 | 8h00001111
& [tb_uspi_v2/DUT_SLAVE/SPISR #h00001111 VEH00001111 | 5H01001111 [EH00001111
\> Jtb_uspi_v2/DUT_MASTER/SPICR &b11000000 8b0gooooog 18511000000 A
\> ftb_uspi_v2/DUT_SLAVE/SPICR 8'b10000000 #h07000000 1 8H10000000 =
< Itb_uspi_v2/DUT_MASTER/TY_buffer 16x8/bFIFO_FIFOmem[s] 8510101010 3 [Eb10101010

& tb_uspi_v2/DUT_SLAVE/TX_buffer 16x8/bFIFO_FIFOmem[o] #b01010101 Bb01010101

\) ftb_uspi_v2ftb_r_uispi_wb_w_din_master 8b10101010 8b 11000000 /1 &8b10101010

\> Jth_uspi_v2fth_r_uispi_wh_w_sel_master 4h4 4hi 14h4

o Jtb_uspi_v2/tb_r_uispi_wb_w_we_master 1ho] 1

\> Jtb_uspi_v2/tb_r_uispi_wh_w_stb_master Tht ()

\) Jtb_uspi_v2/tb_r_uispi_wb_w_din_slave 8b01010101 3b 10000000 /1 8b01010101)

\> Jtb_uspi_v2ftb_r_uispi_wb_w_sel_slave 4h4 4h1 14h4

~ [tb_uspi_v2/th _r_uispi_wb_w_we_slave 1ho] 2

\> Jtb_uspi_v2/tb_r_uispi_wb_w_stb_slave Thi . J

3 [tb_uspi_v2/DUT_MASTER jbspick_gen/bospick_gen_spi_dk 1hl Bl [[]]

< Jtb_uspi_v2/DUT_SLAVE/bspidk_gen/bospick_gen_spi_ck 1hi Bl]]]]]

Figure 7.2.5.1: Stimulation result for test case #5 using ModelSim stimulator.

1. Write operation on the TX_buffer16x8 of the DUT_MASTER is activated and
an input data of 8’b1010_1010 (Oxaa) is sent to it.

2. Write operation on the SPITDR of the DUT_SLAVE is activated and an input
data of 8’60101 0101 (0x55) is sent to it.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
85

Chapter 7: Verification Specification and Stimulation Result

3. The data value of 8b1010 1010 (Oxaa) is stored into the
TX_buffer16x8.bFIFO_FIFOmem[0] of the DUT_MASTER whereas the data
value of 8’b0101_0101 (0x55) IS stored into the
TX_buffer16x8.bFIFO_FIFOmem[0] of the DUT_SLAVE.

4. Bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and DUT_SLAVE
is initially one. However, it changed to zero after the corresponding input data
is successfully stored into the TX_ bufferl6x8 of the DUT_MASTER and
DUT_SLAVE respectively. At the end, both SPISRs hold the value of
8’b0000_1111 (0xOf) respectively.

5. No interrupt request is generated from the DUT_MASTER and also the
DUT_SLAVE as the TX_buffer16x8 of each device has been filled with one 8-

bit data and is not empty now.

7.2.6 Test Case #6: Mode 0 Serial Data Communication

\> ftb_uspi_v2ftb_w_uiospi_S5_n 1hi | |

~ [tb_uspi_v2/th_w_uiospi_SCLK Tho 1 " I |

~ ftb_uspi_v2/tb_w_uiospi_MOSI Thz ! | | | | | | | I

\> ftb_uspi_v2ftb_w_uiospi_MISO 1hz 1 [| [| [| [

\> ftb_uspi_v2tb_w_uospi_IRQ_master 1hi r|

~ [tb_uspi_v2/tb_w_uospi_IRQ_slave thi [

~ [th_uspi_v2/DUT_MASTER/(SPISR 8b10001111 'B00001111 {iEb 10000111
~ [th_uspi_v2/DUT_SLAVE/(SPISR 8b10001111 'B00001111 {1Eb 10004111
~ [th_uspi_v2/DUT_MASTER/SPICR 8b11010000 b 11000000

~ [th_uspi_v2/DUT_SLAVE/SPICR 8b10010000 'h 10000000

~ [th_uspi_v2/DUT_MASTER fbspiRX/bspiRX_RSR 8h55 'hod J8ho1 Jgho2 {BR05 {Bhoa JEhis [Bhaa {Bhss .

~ [th_uspi_v2/DUT_SLAVE /bspiR¥/bspiRX_RSR 8haa 'hod {Eho1 {Bho2 {Ehos {Ehoa {Ehis [Eh2a JjBhS5 {Bhaa JI £

Figure 7.2.6.1: Stimulation result for test case #6 using ModelSim stimulator

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8°’b1010_1010 (Oxaa) can be successfully transmitted by the DUT_MASTER
via its MOSI pin. Similarly, the data value of 8°b0101_0101 (0x55) can also be
successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these
data bit is transmitted serially at one half clock cycle before the rising edge of
the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8°b0101_0101 (0x55) is stored into the receiver shift register
(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (Oxaa)
is stored into receiver shift register (RSR) of the DUT_SLAVE.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
86

Chapter 7: Verification Specification and Stimulation Result

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE
is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

7.2.7 Test Case #7: Receiver Buffer Full Interrupt Support After Receiving A 1-
byte Data (RXFM = 0)

\> fth_uspi_v2fth_w_uiospi_S5_n 1hi |
9 fth_uspi_v2fth_w_uiospi_SCLK 1'ho L LT 1
\> fth_uspi_v2/tb_w_uiospi_MQSI 1hz T
9 fth_uspi_v2fth_w_uiospi_MISO I'hz L 1
\> fth_uspi_v2ftb_w_uospi_IRQ_master 1hi 1 (I
~ (th_uspi_v2fth_w_uospi_IRQ_slave 1h1 [
\> ftb_uspi_v2/DUT_MASTER/SPISR g'b10001111 ghomn0iiil JEbiooniiid
4 {th_uspi_v2/DUT_SLAVE/SPISR #b10001111 FbO0001111 [Eb1o001ii1
~ fth_uspi_v2/DUT_MASTER /bspiRX /bspiRX_RSR g'hs5 JBhis f{EhZa JBhS55
~ ftb_uspi_v2/DUT_SLAVE/bspiRX/bspiRX_RSR &'haa 1B'h2a iBh55 | Bhaa
s - - - ' 1 . T

Figure 7.2.7.1: Stimulation result of test case #7 using ModelSim stimulator.

1. Since the bit 4 (RXFM) of the SPISR is set to 0 in both of the DUT_MASTER
and DUT_SLAVE, it indicates that only 1-byte of data is expected to be read
by CPU. Hence, the interrupt request from both of the DUT_MASTER and
DUT_SLAVE is asserted when the bit 7 (RXDF) of the SPISR become 1
(indicates that the 1-byte of data has been completely received). At the end, both
SPISRs hold the value of 8’b1000 1111 (0x8f) respectively.

7.2.8 Test Case #8: Pop 1-byte of Received Data from the RX_buffer16x8

\> Jth_uspi_v2/tb_w_uospi_IRQ_master 1ho 5

\> Jtb_uspi_v2ftb_w_uospi_IRQ_slave 1ho

\) Jtb_uspi_v2/DUT_MASTER,/SPISR. &b00001111 8'b10001111 4 b00001111 |
~ [th_uspi_v2/DUT_SLAVE/SPISR 8b00001111 §b10001111 = {[gbooodiiir [
~ /tb_uspi_v2/DUT_MASTER/SPICR #b11000000 Fb11000000

~ [to_Uspi_v2/DUT_SLAVE/SPICR b 10000000 3510000000

\> Jtb_uspi_v2/tb_w_uospi_wb_r_dout_master 32h00000fc) 3200000055) 37h000Dafcd 3Zh00000fc0

\> Jtb_uspi_v2{tb_w_uospi_wb_r_dout_slave 32'h00000F603 32h000D002a §32h000DafR0 3Zh00000fa0

~ [tb_uspi_v2/DUT_MASTER /RX_buffer 16x8/bFIFO_FIFOmem[0] &hss Fhss

\> Jtb_uspi_v2/DUT_SLAVE/RX_buffer 16x8/bFIFO_FIFOmem[0] ghaa 3'haa

\> Jtb_uspi_v2/tb_r_uispi_wb_r_sel_master 4h3 4h2 ?4'h8 h3

\> Jtb_uspi_v2ftb_r_uispi_wb_r_we_master 1ho 1

\> Jtb_uspi_v2ftb_r_uispi_wb_r_stb_master 1ht)

\> Jtb_uspi_v2/tb_r_uispi_wb_r_sel_slave 4h3 4h2 4h& h3

\> Jtb_uspi_v2ftb_r_uispi_wb_r_we_slave 1ho

\> Jtb_uspi_v2/tb_r_uispi_wb_r_stb_slave 1ht 2

\\' Jtb_uspi_v2/DUT_MASTER /bspick_gen bospidk_gen_spi_dk 1hd [L
\\' Jth_uspi_v2/DUT_SLAVE bspick_gen/bospidk_gen_spi_dk 1ho [L

Figure 7.2.8.1: Stimulation result for test case #8 using ModelSim stimulator.

1. Read operation on the RX_buffer16x8 of the DUT_MASTER is activated.
2. Read operation on the RX_buffer16x8 of the DUT_SLAVE is activated.
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
87

Chapter 7: Verification Specification and Stimulation Result

3. The data value of 32’h0000 0055 (0x0000_0055) stored in the

RX_buffer16x8.FIFOmem[0] can be read by the DUT_MASTER. On the other
hand, the DUT_SLAVE can also read the received data whose value is
32°h0000_000aa (0x0000_000aa) from its RX_buffer16x8.FIFOmem][0].

. The bit 7 (RXDF) of the SPISR for both of the DUT_MASTER and the

DUT_SLAVE is set to 0 respectively because the 1-byte of received data has
been read from the RX_buffer16x8. At the end, both SPISRs hold the value of
8’b0001 1111 (0x1f) respectively.

. The de-assertion of bit 7 in SPISR causes the interrupt request in both of the

devices to be de-activated.

7.2.9 Test Case #9: Receiver Buffer Full Interrupt Support After Receiving 16x1-

~ [tb_uspi_v2/th_w_uospi_RQ_master 1hi (|

\) Jtb_uspi v2ftb w_uospi_IRQ slave 1hi |
\>I’d)_u5pi_v2fDUT_MA5TERf5PISR gb1i011111 1 [S'bDDDI 111 18001011111 18h11011114
QIﬂJ_uspi_vZfDUT_SLWEfSPISR gb11011111 gb00011111 - Jaho01i111 JEbii0iiiid
\) Jth_uspi v2/DUT_MASTER/SPICR 8h11000000 2h11000000

o [th_uspi_v2/DUT_SLAVE/SPICR 810000000 810000000

byte Data (RXFM = 1)

Figure 7.2.9.1: Stimulation result for test case #9 using ModelSim stimulator.

~ ftb_uspi_v2/tb_w_uospi_IRQ_master 1hi 3

~ ftb_uspi_v2/tb_w_uospi_IRQ_slave 1hi

< [th_uspi_v2/DUT_MASTER/SPISR gb10011111 Ab 11011111 [EhI0011111
0 ftb_uspi_v2/DUT_SLAVE/SPISR ab10011111 ab11011111 Igbi0011111
\) ftb_uspi_v2/DUT_MASTER,/SPICR. #'b11000000 #h 11000000

\> ftb_uspi_v2/DUT_SLAVE/SPICR #'b10000000 &b 10000000

Figure 7.2.9.2: Stimulation result for test case #9 using ModelSim stimulator (cont’d).

1. Since the bit 4 (RXFM) of the SPISR is set to 1 in both of the DUT_MASTER

and the DUT_SLAVE, it indicates that 16 number of 8-bit data are expected to
be read by the CPU. Moreover, both of the transmit buffer empty and received

buffer full interrupt have also been enabled.

. So, there are two reasons why the interrupt requests from both of the devices

happen here:
a. Their TX bufferl6x8 become empty (TXEF = 1) after sending 16

number of 8-bit data (See test case 4).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

88

2

Chapter 7: Verification Specification and Stimulation Result

3.

b. Their RX_bufferl6x8 become full (RXDF = 1) after receiving 16
number of 8-bit data.
A new data is then inserted into their TX buffer16x8 to disable the transmitter
buffer empty interrupt. At the end, the interrupt requests from both of the
DUT_MASTER and the DUT_SLAVE remain asserted, indicating that the SPI
controller can issue an interrupt to alert the CPU after receiving 16 number of
1-bit data.

7.2.10 Test Case #10: Pop 16 Number of 1-byte Data from the RX_buffer16x8

\v> Jth_uspifth_w_uospi_IRQ_master 1ho L

\> [t _uspifth_w_uospi_IRQ slave 1ho
+ +p [tb_uspi/th_w_uospi_nb r_dout_master 32h00000055 37ho000dicd] 32h00003f0 EEEEEREEEE
1.\>ﬁi:_uspifﬁ:_w_uospi_wb_r_dout_slave 32100000055 37R0000df30) 32h00003fa0
4] \> Jth_uspifth_r_uispi_wh_r_sel_master 4h8 4h3 4ha

\> ftb_uspifth_r_uispi_wb_r_we_master 1ho

~ [tb_uspifth_r_Lispi_wb_r_sth_master thi
+ \> Jtb_uspifth_r_uispi_wb_r_sel_slave 4ha8 4hB 4ha

\) [tb_uspifth_r_uispi_wb_r_we_slave 1ho 1

\> Jtb_uspifth_r_uispi_wb_r_stb_slave 1hl
+]~ [tb_uspi[DLT_MASTER /SPISR gb00011111 | gbA1011111 §BBI0011111 [3500011111
1.\>fﬁa_uspi;'DUT_SLWE!SPISR 8b00011111 | gbi0i1111 JEH10011141 #hoo011111
S M Bk e T MACTER IRt o'hi1Anannn | AL Eanmnmnn 3

Figure 7.2.10.1: Stimulation result for test case #10 using ModelSim stimulator.

1.

Read operation on the RX bufferl6x8 of the DUT_MASTER and the
DUT_SLAVE is activated respectively.

The 16 number of 1-byte data that were stored in the RX_buffer16x8 of the
DUT_MASTER and the DUT_SLAVE can be successfully read by them.

The bit 7 (RXDF) of the SPISR for both of the DUT_MASTER and the
DUT_SLAVE is set to 0 respectively because the RX_buffer16x8s in both
devices are no longer full with data. At the end, both SPISRs hold the value of
8’b0001_ 1111 (Ox1f) respectively.

The de-assertion of bit 7 in SPISR causes the interrupt request in both of the

devices to be de-activated.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

89

Chapter 7: Verification Specification and Stimulation Result

7.2.11 Test Case #11: Mode 1 Serial Data Communication

\> Jtb_uspi_v2/tb_w_uiospi_S5_n 1hi 1 | [
 [to_uspi_v2fth_w_viospi_SCLK 1ho Ry 1 1 L1

< [th_uspi_v2/th_w_uiospi_MOSI thz | 11 11 T 1 T

4 [th_uspi_vajth_w_uiospi_MISO thz | | | | | | | T
\>fﬂ)_uspi_vZfﬂ)_w_uosu_IRQ_masher 1h1 J r|

Q ftb_uspi_v2th_w_uospi_IRQ_slave 1h1 |

~ [th_uspi_v2/DUT_MASTER SPISR #b10001111 :a"_boonnnn 18b1o00iil
~ [th_uspi_v2/DUT_SLAVE/SPISR #b10001111 _8b00001111 {&bi000111
< [tb_uspi_v2/DUT_MASTER,(SPICR #b11010000 8b 11010000

4 [th_uspi_v2/DUT_SLAVE/SPICR #b10010000 b0 10000

4 [th_uspi_v2/DUT_MASTER bspiRX /bspiRX_RSR &hss haa [ghst [8hah {8hs2 [8has {8h4a [8hds [has [{5hss
\?fﬂ)_uspi_vZfDUT_SLA\FEﬂ:spiRX!bspiRX_RSR ghaa h55 T8hab Is‘hs!s T 8'had IB'hE!a 1.8'hb5 [s'h_sp T8'hd5 f{&hal

Figure 7.2.11.1: Stimulation result for test case #11 using ModelSim stimulator.

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b1010 1010 (Oxaa) can be successfully transmitted by the DUT_MASTER
via its MOSI pin. Similarly, the data value of 8’60101 _0101 (0x55) can also be
successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these
data bit is transmitted serially at the rising edge of the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8’b0101 0101 (0x55) is stored into the receiver shift register
(RSR) of the DUT_MASTER whereas the data value of 8’b1010 1010 (Oxaa)
is stored into receiver shift register (RSR) of the DUT_SLAVE.

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE
is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

7.2.12 Test Case #12: Mode 2 Serial Data Communication

« [tb_uspi_v2/th_w_uiospi_55_n 1hi | [
~ [tb_uspi_v2{tb_w_uiospi_SCLK thi 1 L r i re e ru
« [tb_uspi_v2/th_w_uiospi MOSL thz) 1 T 1 T 1 [Tt
« [tb_uspi_v2/th_w_uiospi MISO thz 1 I T T h
\> Jtb_uspi_v2fth_w_uospi_IRQ_master 1hi | ~ r|
« [tb_uspi_v2/th_w_uospi_IRQ slave 1hi T [3
9 [th_uspi_v2/DUT_MASTER [5PISR 8b10001111 gbl.. {Fbo000iill ebl0o111
« [th_uspi_v3/DUT_SLAVE/SPISR 8b10001111 gbl.. {Fbo00oiiil [8bi000iiil)
« [tb_uspi_v2/DUT_MASTER/SPICR #h11100000 811100000
\) Jtb_uspi_v2/DUT_SLAVE/SPICR #b10100000 3lb 10100000 |
 [t_uspi_v2/DUT_MASTER /bspiRX/bspiRX_RSR 8haa _ghss {8hab {8056 [shad [8hsa Jahhs [shea f8hds lghaa
\?fﬁ:_uspi_vZ,’DUT_SLAVE;’bspiRX,bspiRX_RSR 8hs5 _al@ Is'hs!4 IS'hQF [s'hs!z):B'th [8hda Is‘hglls I&'h2a |[8hss

2

Figure 7.2.12.1: Stimulation result for test case #12 using ModelSim stimulator.

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b0101_0101 (0x55) can be successfully transmitted by the DUT_MASTER
via its MOSI pin. Similarly, the data value of 8’b1010_1010 (Oxaa) can also be

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
90

Chapter 7: Verification Specification and Stimulation Result

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these
data bit is transmitted serially at one half clock cycle before the falling edge of
the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8°’b1010_1010 (Oxaa) is stored into the receiver shift register
(RSR) of the DUT_MASTER whereas the data value of 8’b0101_0101 (0x55)
is stored into receiver shift register (RSR) of the DUT_SLAVE.

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE
is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

7.2.13 Test Case #13: Mode 3 Serial Data Communication

\> ftb_uspi_v2fth_w_uiospi_55_n 1h1 | |

~ [tb_uspi_v2th_w_uiospi_SCLK thi T Sy Sy

~r [tb_uspi_v2/th_w_uiospi_MOSI 1hz ™ 1 1 1 h

3 th_uspi_v2/th_w_Liospi_ MISO the . T 1 1 T 1 [

\> Jtb_uspi_v2/th_w_uospi_IRQ_master 1ht 1 | ~)
~ [tb_uspi_v2{tb_w_uospi_IRQ_slave 1hi] | 3
|~ ftb_uspi_v2/DUT_MASTER /SPISR 8b10001111 ... J8b0000E111 [Bb10008111
|~ [to_uspi_v2/DUT_SLAVE/SPISR gb10001111 §.. JEbO000IIIT {BD 10001111
|~ [tb_uspi_v2/DUT_MASTER/SPICR &b11110000 11130000

|~ [tb_uspi_v2/DUT_SLAVE/SPICR &b10110000 #h 10110000

|~ [th_uspi_v2/DUT_MASTER /bspiR/bspiRX_RSR &hs5 Fhaa {Bhs4 {Bhag JBhs2 {Bhas [Bhda fBRS Bhaa [BhSS

|~ [t_uspi_v2/DUT_SLAVE/bspiRX /bspiRX_RSR 8haa 8hs5 [lghab fj3h56 Yjghad ffFh5a [EhbS Jjhéa {8hds |[Bhaa

Figure 7.2.13.1: Stimulation result for test case #13 using ModelSim stimulator.

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b1010 1010 (Oxaa) can be successfully transmitted by the DUT_MASTER
via its MOSI pin. Similarly, the data value of 8°b0101 0101 (0x55) can also be
successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these
data bit is transmitted serially at the falling edge of the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register
(RSR) of the DUT_MASTER whereas the data value of 8°b1010_1010 (Oxaa)
is stored into receiver shift register (RSR) of the DUT_SLAVE.

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE
is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
91

Chapter 7: Verification Specification and Stimulation Result

7.2.14 Test Case #14: Selectable Transmission Speed (Baud Rate)

o b usifh v Liospi 55 tht T |

0 b usify g Sk £ I O)
 I_usif v ioss NS e — [[| [| | T
o _usifh 1 Liospi_MISO the — | | | 1 i —
\Eﬂb | Uspi/DUT_MASTER bspick_gen/bospick_cen s dk 1hi] JULM [| T
& o usaDuT_SLAVEsick genjbospick gen sk thi 1 L] 08

Figure 7.2.14.1: Stimulation result for test case #14 with SCLK clock signal is 4 times
slower than the 1/0 clock of the DUT_MASTER.

1. The SCLK clock signal can be configured to be 4 times slower than the 1/0
clock of the DUT_MASTER.

~ [tb_uspifth_w_uiospi_55_n 1hi B

< tb_uspifth_w_uiospi_SCLK thi L | |
~ [tb_uspi/th_w_uiospi_MOSI 1hz — | [
~ [tb_uspi/th_w_uiospi_MISO thz _ 1 | L
2 [tb_uspi/DUT_MASTER bspick_gen/bospick_gen_spi_ck hod (LI LA A
0 [tb_uspi/DUT_SLAVE bspick_gen/bospick_gen_spi_ck 1ho T

Figure 7.2.14.2: Stimulation result for test case #14 with SCLK clock signal is 8 times
slower than the 1/0O clock of the DUT_MASTER.

1. The SCLK clock signal can be configured to be 8 times slower than the 1/O
clock of the DUT_MASTER.

~ [tb_uspifth_w_uiospi_55_n 1hi T |

J [tb_uspifth_w_uiospi_SCLK tht T — i
~ [tb_uspifth_w_uiospi_MOSI thz . B
o [tb_uspifth_w_uiospi_MISO 1he ' |
\\; {th_uspi/DUT_MASTER hapiclk_gen/baspick_aen_spi_dk 1ho LIS B
\:"-: /tb_uspi/DUT_SLAVE bspick_gen/bospick_gen_spi_dk ~ 1hD Ll OO

Figure 7.2.14.3: Stimulation result for test case #14 with SCLK clock signal is 16 times
slower than the 1/0 clock of the DUT_MASTER.

1. The SCLK clock signal can be configured to be 16 times slower than the 1/O
clock of the DUT_MASTER.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
92

Chapter 7: Verification Specification and Stimulation Result

7.2.15 Test Case #15: Mode Fault Error Interrupt Support

~ [tb_uspi_v3/th_w_uiospi_MOSI 1hi - I
~ [tb_uspi_v3/th_w_uiospi_MISO 1hz 1]

~ [tb_uspi_v3fth_w_iospi_SCLK 1h N p—

~ [tb_uspi_v3/th_w_Liospi_5S_n 1ho [) | 4

- /tb_uspi_v3/DUT_SLAVE/bspilO_ctrl/bispil0_ctrl_TX_S5_n 1ho . [i

- /tb_uspi_v3/DUT_MASTER/bspil0_ctrl/bispil0_ctrl_TX_55_n thi] l|

~ [tb_uspi_v3/th_w_uospi_IRQ_master 1hi I [|6

~ [tb_uspi_v3/th_w_uospi_IRQ_slave 1ho

~ tb_uspi_v3/DUT_MASTER/SPICR gb11110011 §b11110011

~ [tb_uspi_v3/DUT_SLAVE/SPICR 8b11110011 3 Fb10110011 8bi1110011]] .
~ [th_uspi_v3/DUT_MASTER/SPISR 8b10100011 8.1, |[8b10000017 | [(8bi0100D1L | [
~ /tb_uspi_v3/DUT_SLAVE/SPISR 00000011 8.12[b10000011 {8boo0000:

< [tb_uspi_v3/DUT_MASTER bspiT/bispiTX_spi_ck 1ho LU AR fn g
\}ﬁb_uspi_v3!DUT_SLAVEstpidk_qenfnospidk_qen_spi_dk 1ho LU R AT

Figure 7.2.15.1: Stimulation result for test case #15 using ModelSim stimulator.

1.

The contents of the two shift registers get exchanged once a total of eight pulses
of clock signals are generated. When the data transaction is completed, the
DUT_MASTER will de-activate the SCLK signal and pull its SS pin to high.
The DUT MASTER’s transmit buffer empty and received full interrupt
supports are both disabled for this test case, leaving the mode fault error
interrupt support being activated only. Meaning, the interrupt request from the
DUT_MASTER will be generated if and only if a mode fault error is detected.
The DUT_ SLAVE is reconfigured to act as a master. Since there are two master
devices in the same connection, any attempt to pull the SS pin to low will trigger
the mode fault error.

The newly configured master device attempts to initiate the communication
with the DUT_MASTER by pulling the SS pin to low.

Once the mode fault error is successfully detected, the bit 5 (MODF) of the
DUT_MASTER’s SPISR will be set to 1.

An interrupt request corresponding to the mode fault error detection is
immediately issued by the DUT_MASTER in order to alert the CPU to take

action.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

93

Chapter 7: Verification Specification and Stimulation Result

7.3 Test Plan for SPI Controller Unit’s Integration Test with RISC32

Once the developed SPI controller has met its functional specifications, it is then ready
to be integrated into the existing RISC32. In order to do this, the interface connection
between the SPI controller unit and the RISC32 is developed based on the 1/0 memory
mapping technique as this technique keeps the instructions set small. After that, a test
plan is created for verifying the behaviors of the integrated SPI controller unit and the
RISC32.

As indicated in Figure 7.3.1. it is the RISC32 discussed in Chapter 4 that is being used
as the c_risc_dut and the c_risc_client respectively during the verification process. On
the other hand, each of the RISC32s has its own flash memory (a non-volatile memory)
where it can get its program codes to execute upon reset. For your information, all the
written programs such as the MIPS test programs and the exception handler programs
are first stored into the flash memory before the verification test starts.

In this test, the SPI controller unit that has been integrated into the c_risc_dut is
configured as a master device whereas the SPI controller unit which is integrated in the
c_risc_client is set as a slave device. Same type of SPI controller unit is used throughout
the verification process but with different operation modes (master mode or slave mode)
to prove that the designed SPI controller unit can function correctly in both operation
modes. In this test phase, a testbench has been specifically developed based on the
constructed test plan and Appendix B.2 provides the full information about this

testbench.

100Mhz clock
frequency
N

Clock Waveform

Generator

crisc crisc
uirisc_clk_100mhz urisc_GPIO[31:0] f«—> <«—>| urisc_GPIO[31:0] uirisc_clk_100mhz
3] uirisc_rst uirisc_rst le——
SPI_flash_dut R ETEIE) i 5 SP1_flash_client
uiorist sc ui cl
s25f1128s $25f1128s
tx_data isc_ua_rx_data

uorisc_ua_tx_¢ uorisc_ua_rx_
cae S uiorisc_fc_MOSI uirisc_ua_rx_data uirisc_ua_tx_data uiorisc_fc_MOSI S| ScK
CSNeg S0 f———————»fuirisc _fc_MISO1 uirisc_fc_MISO1 SO CSNeg
RSTNeg WPNeg uirisc_fc_MISO2 uirisc_fc_MISO2 [¢«—————————————— WPNeg RSTNeg
HOLDNeg uirisc_fc_MISO3 uirisc_fc_MISO3 HOLDNeg
uorisc_fc_sclk uorisc_fc_sclk
’7 uorisc_fc_ss uorisc_fc_ss <—‘

Figure 7.3.1: The connection mechanism of the ¢_risc_dut, ¢_risc_client, SP1_flash_dut,

and SPI1_flash_client for SPI controller unit’s integration test with RISC32.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
94

Chapter 7: Verification Specification and Stimulation Result

Test Expected Output Status
Test Case #1: e uiospi MOSI of ¢_risc_dut=1"b0 Pass
System Reset e uiospi MISO of ¢ _risc_dut=1’bl
) e uiospi_ SCLK of ¢ risc_dut = 1’b0
Function to be tested e uiospi_SS nofc risc_dut=1"bl
o Reset the whole e uospi IRQ of ¢ risc_dut=1’b0
RISC32 ('”C'UC}"”Q e uospi_ wb r doutof ¢ risc_dut=32"hz
SPI controller unit) e SPICR of ¢ risc_dut = 8’h00
Pr%d;re h devi e SPISR of ¢ risc_dut = 8’h00
- Reset both devices. e uodp_if_pseudo_pc of c_risc_dut =
8”hbfc0 0000
e uiospi MOSI of ¢ _risc_client = 1’b0
e uiospi_MISO of ¢ _risc_client = 1°bl
e uiospi_ SCLK of ¢ risc client = 1’b0
e uiospi_SS nofc risc client=1’bl
e uospi IRQ of ¢ risc_client = 1’b0
e uospi_wb_r_dout of c_risc_client =
32’hz
e SPICR of ¢ risc_client = 8’h00
e SPISR of ¢ risc client = 8’h00
e uodp_if_pseudo_pc of c_risc_client =
8”hbfc0 0000
Test Case #2: e PICMASK of ¢_risc_dut = 8h08 Pass
Transmitter buffer empty e PICSTAT of ¢_risc_dut = 8’h03
interrupt support e SPISR of ¢ _risc_dut = 8’h45
) e SPICR of ¢ risc_dut = 8"hc0
Function to be. tested e uospi IRQ of ¢ risc_dut=1"bl
e Transmitter . buffer e uodp_if pcof c_risc_dut =
empty . Interrupt 8’h8001 b400 (Jump to the exception
support in both handler address in the next clock cycle)
;T:\itee:nodnemde and e bcpo_cause[6:2] of ¢_risc_dut =
Procedure for ¢ risc_dut o gcl;)(())(igg(c)oo(:‘ c_risc_dut = bicp0_if pc
1 f;topr IeCaI\XZIgeKOf 0x08 of c_risc_dut
2. fg%rgtﬁ \é:;IIuSeF;)f 0x05 e PICMASK of c__risc_c_lient = 8’h08
3. Store a value of 0xcO e PICSTAT of c_risc_client = 8’h03
to SPICR. e SPISR of c_risc_client = 8’h45
Procedure for ¢ _risc_client e SPICR of c_risc_client = 8°h80
1. Store a value of 0x08 e uospi_IRQ of c_risc_client = 1°bl
e uodp_if pcof c_risc_client =

to PICMASK.

2. Store a value of 0x05
to both SPISR

3. Store a value of 0x80
to SPICR.

8’h8001 b400 (Jump to the exception
handler address in the next clock cycle)
bcpo_cause[6:2] of ¢_risc_client =
6’b00_0000

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

95

Chapter 7: Verification Specification and Stimulation Result

bcpo_epc of ¢_risc_client =
bicpO_if pc of ¢ risc_client

Test Case #3: e uiospi_SS n=1’b0 Pass
Mode 0 Serial Data e 8 baud clock cycles should appear on
Communication the uiospi_SCLK.
e There should be only one bit of data on
Function to be tested the uiospi_MOSI for every baud clock
e Able to transmit and cycles. The expected sequence of data
receive data to be transmitted on this pin is
simultaneously in 8°b1010 1010.
both master mode e There should be only one bit of data on
and slave mode when the uiospi_MISO for every baud clock
mode 0 is used. cycles. The expected sequence of data
Procedure for ¢ risc dut to be transmitted on this pin is
1. Store Oxaa to 20101 0101.
SPITDR. e Each of these data bit is transmitted
2. Store Ox0b to SPISR serially at one half clock cycle before
3. Store O0xc0 to SPICR the rising edge of the uiospi_SCLK
Procedure for ¢ risc _client clock.
1. Store O0x35 to e uospi_IRQ of ¢_risc_dut=1"bl
SPITDR. e uospi IRQ of ¢_risc_client = 1°b1
2. Store 0x0b to SPISR - -
3. Store 0x81 to SPICR
Test Case #4: e PICMASK of ¢ risc_dut=8"h08 Pass

Receiver buffer full interrupt
support

Function to be tested
e Receiver buffer full
interrupt support in
both master mode

and slave mode.

PICSTAT of ¢ risc_dut = 8h03
SPISR of ¢ risc_dut = 8’hcb

SPICR of ¢_risc_dut = 8’hc0
uospi_IRQ of ¢ risc dut=1’bl
uodp_if pc of c_risc_dut =

8’h8001 b400 (Jump to the exception
handler address in the next clock cycle)
bcpo_cause[6:2] of ¢_risc_dut =
6’b00 0000

bcpo_epc of ¢_risc_dut = bicp0_if _pc
of c_risc_dut

PICMASK of ¢ risc_client = 8’h08
PICSTAT of ¢ _risc_client = 8’h03
SPISR of ¢ risc_client = 8’hcb
SPICR of c_risc_client = 8’h81
uospi_IRQ of ¢_risc_client = 1"bl
uodp_if pc of c_risc_client =
8’h8001 b400 (Jump to the exception
handler address in the next clock cycle)
bcpo_cause[6:2] of ¢_risc_client =
6’b00_0000

bcpo_epc of ¢_risc_client =
bicpO_if pc of c_risc_client

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

96

Chapter 7: Verification Specification and Stimulation Result

Test Case #5:
Mode 1 Serial Data
Communication

Function to be tested
e Able to transmit and
receive data
simultaneously in
both master mode
and slave mode when
mode 1 is used.
Procedure for ¢_risc_dut
1. Store 0x55 to
SPITDR.
2. Store 0x0f to SPISR
3. Store Oxd1 to SPICR
Procedure for c_risc_client
1. Store Oxaa to
SPITDR.
2. Store 0x0f to SPISR
3. Store 0x91 to SPICR

uiospi_ SS n=1’b0

8 baud clock cycles should appear on
the uiospi_SCLK.

There should be only one bit of data on
the uiospi_MOSI for every baud clock
cycles. The expected sequence of data
to be transmitted on this pin is
8’b0101_0101.

There should be only one bit of data on
the uiospi_MISO for every baud clock
cycles. The expected sequence of data
to be transmitted on this pin is
8’b1010_1010.

Each of these data bit is transmitted
serially at the rising edge of the
uiospi_SCLK clock.

uospi_IRQ of ¢_risc_dut=1’bl
uospi_IRQ of ¢ _risc_client = 1’b1

Pass

Test Case #6:
Mode 2 Serial Data
Communication

Function to be tested
e Able to transmit and
receive data
simultaneously in
both master mode
and slave mode when
mode 2 is used.
Procedure for ¢_risc_dut
1. Store Oxaa to
SPITDR.
2. Store 0x0f to SPISR
3. Store 0xe2 to SPICR
Procedure for c_risc_client
1. Store Oxaa to
SPITDR.
2. Store 0x0f to SPISR
3. Store Oxal to SPICR

uiospi_SS n=1"b0

8 baud clock cycles should appear on
the uiospi_SCLK.

There should be only one bit of data on
the uiospi_MOSI for every baud clock
cycles. The expected sequence of data
to be transmitted on this pin is
8’b1010 1010.

There should be only one bit of data on
the uiospi_MISO for every baud clock
cycles. The expected sequence of data
to be transmitted on this pin is

8’b0101 0101.

Each of these data bit is transmitted
serially at one half clock cycle before
the falling edge of the uiospi_SCLK
clock.

uospi_IRQ of ¢_risc_dut=1’bl
uospi_IRQ of ¢ _risc_client = 1’b1

Pass

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

97

Chapter 7: Verification Specification and Stimulation Result

Mode fault error interrupt
support

Function to be tested
e Mode fault error
interrupt in master
mode
Procedure for c_risc_client
1. Store 0x55 to
SPITDR.
2. Store 0xfl1 to SPICR

PICSTAT of ¢ risc_dut = 8h03
SPISR of ¢ _risc_dut = 8’h6b

SPICR of ¢_risc_dut = 8’hf3
uospi_IRQ of ¢ risc dut=1’bl
uodp_if _pc of c_risc_dut =

8’h8001 b400 (Jump to the exception
handler address in the next clock cycle)
bcpo_cause[6:2] of ¢_risc_dut =
6’b00 0000

bcpo_epc of ¢_risc_dut = bicp0_if _pc
of c_risc_dut

Test Case #7: uiospi_SS n=1"b0 Pass
Mode 3 Serial Data 8 baud clock cycles should appear on
Communication the uiospi_SCLK.
Function to be tested Ther(_e shguld be only one bit of data on
. the uiospi_MOSI for every baud clock
e Able to transmit and
. cycles. The expected sequence of data
receive data b e his pin i
simultaneously in tcz e transmitted on this pin is
both master mode 8’60101_0101.)
and slave mode when There should be only one bit of data on
mode 3 is used. the uiospi_MISO for every baud clock
Procedure for ¢ risc_dut cycles. The expected sequence of data
1. Store Ox55 to to be transmitted on this pin is
SPITDR. 8°b1010_1010.
2. Store 0x0b to SPISR Each of these data bit is transmitted
; 3. dStor]‘f 0xf3 to SP:.CRt serially at the falling edge of the
rocedure for ¢ _risc clien uiospi_SCLK clock.
1. Store Oxaa to i 1RO of ¢ risc dut = 1’bI
SPITDR. uospi_IRQ of ¢_risc_dut =
2 Store OxOf to SPISR uospi _IRQ of ¢ _risc_client = 1°b1
3. Store 0xbl to SPICR
Test Case #8: PICMASK of ¢_risc_dut = 8’h08 Pass

Table 7.3.1: Test plan for the SPI controller unit’s integration test with RISC32

pipeline processor.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

98

Chapter 7: Verification Specification and Stimulation Result

7.4 MIPS Test Program for ¢_risc_dut in Integration Test

Oxaa

Label Instruction Comment
setting: lui $s0, Oxbfff
ori $s0, $s0, | $s0 = Oxbfff _fe00 (I/O peripheral address)
Oxfe00
addi $t0, $zero, | $t0[7:0] = 8’b0000_1000
0x08
sb $t0, 34($s0) PICMASK = 0x08 => enable SPI controller’s
interrupt. Interrupt method instead of the polling
method will be used throughout this test program
for testing the ISR execution of the SPI
controller unit.
Test Case #2
TXEF_int: addi $t0, $zero, | $t0[7:0] =8’b0000 0101
0x05
sb $t0, 37($s0) SPISR = 0x05 => enable transmitter buffer
empty interrupt, disable receiver full buffer
interrupt, halt TX FSM when TX_buffer16x8 is
empty
addi $t0, $zero, | $t0[7:0] = 8’b1100_0000
0xc0
sh$t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, set
as master, use mode 0, use baud rate = (SPI i/o
clock)/2
jal program_code | Whenever the transmitter buffer is detected to be
empty (TXEF bit = 1), the SPI controller unit
will interrupt the CPU for service even though
the CPU is busy executing its normal task.
Test Case #3 and #4
mode_0: addi $t0, $zero, | $t0[7:0] =8’b1010 1010

sh $t0, 38($s0)

TX_buffer16x8.bFIFO_FIFOmem[0] = Oxaa

addi $t0, $zero,
0x0b

$t0[7:0] = 8’60000 1011

sb $t0, 37($s0)

SPISR = 0x0b => disable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8 is
empty or when one byte of data is received

addi $t0, $zero,
0OxcO

$t0[7:0] = 8°b1100_0000

sh $t0, 36($s0)

SPICR = 0xc0 => activate the SPI controller, set
as master, use mode 0, use baud rate = (SPI i/o
clock)/2

jal program_code

Whenever the receiver buffer is detected to be
full (RXDF bit = 1), the SPI controller unit will
interrupt the CPU for service even though the
CPU is busy executing its normal task.

Test Case #5

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

99

Chapter 7: Verification Specification and Stimulation Result

mode_1: addi $t0, $zero, | $t0[7:0] =8’b0101_0101
0x55
sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[1] = 0x55
addi $t0, $zerO, | $t0[7:0] = 8’0000 1111
OxOf
sb $t0, 37($s0) SPISR = 0xO0f => enable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8 is
empty or when one byte of data is received
addi $t0, $zero, | $t0[7:0] =8’b1101_0001
Oxd1
sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, set
as master, use mode 1, use baud rate = (SPI i/o
clock)/4
jal program_code | Whenever the transmitter buffer is empty (TXEF
=1) or the receiver buffer is full (RXDF = 1), the
SPI controller unit will interrupt the CPU for
service even though the CPU is busy executing
its normal task.
Test Case #6
mode_2 addi $t0, $zero, | $t0[7:0] =8’b1010_1010
Oxaa
sbh $t0, 38($s0) TX buffer16x8.bFIFO_FIFOmem[3] = Oxaa
addi $t0, $zer0, | $t0[7:0] = 8’50000 1111
OxOf
sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8 is
empty or when one byte of data is received
addi $t0, $zero, | $t0[7:0] =8’b1110_0010
Oxe2
sb $t0, 36($s0) SPICR = 0xe2 => activate the SPI controller, set
as master, use mode 2, use baud rate = (SPI i/o
clock)/8
jal program_code | Whenever the transmitter buffer is empty (TXEF
=1) or the receiver buffer is full (RXDF = 1), the
SPI controller unit will interrupt the CPU for
service even though the CPU is busy executing
its normal task.
Test Case #7/
mode_3: addi $t0, $zero, | $t0[7:0] =8’b0101 0101

0x55

sh $t0, 38($s0)

TX bufferl6x8.bFIFO FIFOmem[2] = 0x55

addi $t0, $zerO,
0x0b

$t0[7:0] = 8°b0000_1011

sb $t0, 37($s0)

SPISR = Ox0f => disable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8 is
empty or when one byte of data is received

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

100

Chapter 7: Verification Specification and Stimulation Result

addi
0xf3

$t0, $zero,

$t0[7:0] =8°b1111_0011

sb $10, 36($s0)

SPICR = 0xd1 => activate the SPI controller, set
as master, use mode 3, use baud rate = (SPI i/o
clock)/16

jal program_code

Whenever the receiver buffer is full (RXDF = 1),
the SPI controller unit will interrupt the CPU for
service even though the CPU is busy executing
its normal task.

Test Case #8

MODF_int:

jal program_code

Only one master can exist in the connection at a
time to initiate all the communications with
slaves. Since there are two master devices in the
same connection, any attempt from a master
device to pull the SS pin to low will trigger the
mode fault (MODF) error in other master device.
Whenever the MODF error is detected, the SPI
controller unit will interrupt the CPU for service
even though the CPU is busy executing its
normal task.

J exit
Function
program_code: | addi $t1, $zero, | $t1 =300
300
loop 1 addi $t1, $t1, -1 $t1=$t1-1
slt $t2, $t1, $zero | $t2=1if $t1 <0, $t2=0if $t1 >=0
beq $t2, $zero, | branch to loop_1 if $t2=0
loop 1
jr $ra This program_code function represents a simple
user program which is just a loop to decrease the
value from 300 to 0. It will be executed
whenever it is called in order to test if the
integrated SPI controller is able to interrupt the
CPU for service while the CPU is executing its
normal task.
exit: nop

Table 7.4.1: MIPS test program for ¢_risc_dut in integration test.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

101

Chapter 7: Verification Specification and Stimulation Result

7.5 MIPS Test Program for c_risc_client in Integration Test

Label Instruction Comment
setting: lui $s0, Oxbfff
ori $s0, $s0, 0xfe00 $s0 = Oxbfff fe00 (1/0O peripheral address)
addi $t0, $zero, 0x08 | $t0[7:0] = 8’b0000 1000
sb $t0, 34($s0) PICMASK = 0x08 => enable SPI controller’s
interrupt. Interrupt method instead of the
polling method will be used throughout this
test program for testing the ISR execution of
the SPI controller unit.
Test case #2
TXEF int: addi $t0, $zer0, 0x05 | $t0[7:0] = 8’b0000 0101
sb $t0, 37($s0) SPISR = 0x05 => enable transmitter buffer
empty interrupt, disable receiver full buffer
interrupt, halt TX FSM when TX_buffer16x8
is empty
addi $t0, $zero, 0x80 | $t0[7:0] = 8’b1000 0000
sh$t0, 36($s0) SPICR = 0xc0 => activate the SPI controller,
set as slave, use mode 0, use baud rate = (SPI
i/o clock)/2
jal program_code Whenever the transmitter buffer is detected to
be empty (TXEF bit = 1), the SPI controller
unit will interrupt the CPU for service even
though the CPU is busy executing its normal
task.
Test case #3 and #4
mode O: addi $t0, $zero, 0x55 | $t0[7:0] =8’b0101 0101
sh $t0, 38($s0) TX _buffer16x8.bFIFO_FIFOmem][0] = 0x55
addi $t0, $zero, O0xOb | $t0[7:0] = 8°b0000 1011
sh $t0, 37($s0) SPISR = 0x0b => disable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8
is empty or when one byte of data is received
addi $t0, $zero, 0x81 | $t0[7:0] =8’b1000_0001
sb $t0, 36($s0) SPICR = 0xc0 => activate the SPI controller,
set as slave, use mode 0, use baud rate = (SPI
i/o clock)/4
jal check_RXDF Whenever the receiver buffer is detected to be
empty (RXDF bit = 1), the SPI controller unit
will interrupt the CPU for service.
Test case #5
mode 1: addi $t0, $zero, Oxaa | $t0[7:0] =8’b1010_1010

sh $t0, 38($s0)

TX bufferl6x8.bFIFO FIFOmem[1] = Oxaa

addi $t0, $zer0, OxOf

$t0[7:0] = 8’60000 1111

sb $t0, 37($s0)

SPISR = 0x0f => enable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8
is empty or when one byte of data is received

addi $t0, $zero, 0x91

$t0[7:0] = 8’51001 0001

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

102

Chapter 7: Verification Specification and Stimulation Result

sb $10, 36($s0)

SPICR = 0xd1 => activate the SPI controller,
set as slave, use mode 1, use baud rate = (SPI
i/0 clock)/4

jal check_RXDF

Whenever the transmitter buffer is empty
(TXEF = 1) or the receiver buffer is full
(RXDF = 1), the SPI controller unit will
interrupt the CPU for service even though the
CPU is busy executing its normal task.

Test case #6

mode 2

addi $t0, $zero, 0x55

$t0[7:0] = 8’60101 0101

sh $10, 38($s0)

TX_buffer16x8.bFIFO_FIFOmem([3] = 0x55

addi $t0, $zer0, OxOf

$t0[7:0] = 8°b0000 1111

sb $t0, 37($s0)

SPISR = 0x0f => enable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8
is empty or when one byte of data is received

addi $t0, $zero, Oxal

$t0[7:0] = 8’1010 0001

sb $t0, 36($s0)

SPICR = Oxe2 => activate the SPI controller,
set as slave, use mode 2, use baud rate = (SPI
i/o clock)/4

jal check_RXDF

Whenever the transmitter buffer is empty
(TXEF = 1) or the receiver buffer is full
(RXDF = 1), the SPI controller unit will
interrupt the CPU for service even though the
CPU is busy executing its normal task.

Test case #7

mode 3:

addi $t0, $zero, Oxaa

$t0[7:0] =8°b1010 1010

sbh $t0, 38($s0)

TX bufferl6x8.bFIFO_FIFOmem[2] = 0x55

addi $t0, $zer0, OxOf

$t0[7:0] = 8’60000 1111

sb $t0, 37($s0)

SPISR = 0xO0f => enable transmitter buffer
empty interrupt, enable receiver buffer full
interrupt, halt TX FSM when TX_buffer16x8
is empty or when one byte of data is received

addi $t0, $zero, Oxb1

$t0[7:0] =8°b1011 0001

sh $t0, 36($s0)

SPICR = 0xd1 => activate the SPI controller,
set as slave, use mode 3, use baud rate = (SPI
i/o clock)/4

jal check_RXDF

Whenever the transmitter buffer is empty
(TXEF = 1) or the receiver buffer is full
(RXDF = 1), the SPI controller unit will
interrupt the CPU for service even though the
CPU is busy executing its normal task.

Test case #8

MODF int:

addi $t0, $zero, 0x55

$t0[7:0] = 8°b0101 0101

sh $t0, 38($s0)

TX bufferl6x8.bFIFO FIFOmem[6] = 0x55

addi $t0, $zero, 0xf1

$t0[7:0] =8°b1111 0001

sb $t0, 36($s0)

SPICR = 0Oxfl1 => activate the SPI controller,
set as master, use mode 3, use baud rate = (SPI
i/0 clock)/4

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

103

Chapter 7: Verification Specification and Stimulation Result

jal_program_code

In test case 8, this SPI controller unit is
reconfigured to act as a master device instead
of the slave device. It will then initiate a
communication to another master device in the
c_risc_dut by pulling the shared SS line to low.

] exit
Function #1
program_code: | addi $t1, $zero, 100 | $t1 =100
loop_1 addi $t1, $t1, -1 $t1=$t1-1

sit $t2, $t1, $zero

$t2=1if$t1 <0, $t2=0if $t1 >=0

beq $t2, $zero, loop 1

branch to loop 1 if $t2=0

jr $ra

This program_code function represents a
simple user program which is just a loop to
decrease the value from 100 to 0. A smaller
value is used here to make sure the slave is
ready before the master initiate a
communication with it in test case #3 and #4.
It will be executed whenever it is called in
order to test if the integrated SPI controller is
able to interrupt the CPU for service while the
CPU is executing its normal task.

Function #2
check RXDF: | lbu $t1, 37($s0) $t1 = SPISR
srl $t1, $t1, 7 $t1 = SPISR[7] = RXDF
beq $t1, $zero, branch to check RXDF if $t1 =0
check RXDF
exit: nop Before a new transfer mode can be used, need

to make sure that the SPI controller has used
the current transfer mode to perform the data
transmission and sampling. So, this
check_ RXDF function will do this job by
constantly checking the RXDF bit in the
SPISR. When a data transfer occurs and a data
byte has been successfully received, the RXDF
will be asserted. After successfully testing the
current mode for data transfer, the program can
then continue to test a new transfer mode.

Table 7.5.1: MIPS test program for ¢_risc_client in integration test

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

104

Chapter 7: Verification Specification and Stimulation Result

7.6 Stimulation Results of the SP1 Controller Unit’s Integration Test with RISC32
7.6.1 Test Case #1: System Reset 2

» tb_r32_pipelinefto_u_rst 0
\tb_r32_pipeline/c_risc_dut/SPI_controller/uiospi_MOSI 0
Itb_r32_pipelinelc_risc_dut’SPI_controlleruios pi_MISO 1
itb_r32_pipelinelc_risc_dut/SPI_controller/uiospi_SCLK 0
itb_r32_pipeline/c_risc_dut/SPI_controller/uiospi_SS_n 1

% ftb_r32_pipeline/c_risc_dut/SP1_controlleriuospi_IRQ 0
<4 fb_r32_pipeline/c_risc_dut/SPI_controlleruospi_wb_r_dout{31:0] ZEF77777
<5 ftb_r32_pipeline/c_risc_dut/SPI_controller/SPICR[7:0] 00000000
| ftb_r32_pipeline/c_risc_dut/SPI_controller/SPISR[7:0] 00000000
45 ftb_r32_pipeline/c_risc_dut/u_datapathfuodp_if_pseudo_pc[31:0] bfc00000
itb_r32_pipeline/c_risc_client/SPI_controlleriuiospi_MOS! 0
\tb_r32_pipeline/c_risc_client’SPI_controllerfuiospi_MISO 3
\tb_r32_pipeline/c_risc_client’SPI_controllerfuiospi_SCLK
\th_r32_pipeline/c_risc_client’SPI_controller/uiospi_SS_n

4 ftb_r32_pipelineic_risc_client!3PI_contrallerfuospi_IRQ
45 ftb_r32_pipeline/c_risc_client’SPI_controllerfuospi_wb_r_dout{31:0] || ZZ777777|
|5 fb_r32_pipelinel/c_risc_clientSPIl_controller'SPICR[7:0] 00000000
|5 fb_r32_pipeline/c_risc_clientSPI1_controller/SPISR[7:0] 00000000
45 ftb_r32_pipelinefc_risc_clientu_datapathiuodp_if_pseudo_pc{31:0] bfc00000)

1
0
1
]

Figure 7.6.1.1: Stimulation result for test case #1 using Vivado stimulator.

1. Before the reset signal is asserted, most of the signals have an unknown value.

2. The reset signal is asserted in order to initialize all the system registers, FSM
state, read/write pointer, program counter (PC) and etc.

3. All of the output signals and registers are set to their respective default values.
The program counter of both RISC32s is set to point at the memory address of
OxbfcO_000 (which is the beginning address of the boot ROM) for executing

the bootloader program.

7.6.2 Test Case #2: Transmitter Buffer Empty Interrupt Support

Stimulation Result of ¢_risc_dut:

% b_r32_pipelinelc_risc_dutiurisc_inst31:0] 7777

% to_r32_pipeline/c_risc_dutiurisc_pseudo_pcf31:0] 80000020

% R0_r32_pipeling/c_risc_dutlurisc_next_pe[31:0] 80010400

1 H_r32_pipelinelc_risc_dubSPI_controlleruospi_IRQ 1 L |

4 I_132_pipelinelc_fisc_dutSPI_controllerSPICRIT] 11000000 o) T i
) Rb_r32_pipeline/c_risc_dubSPI_controller/SPISR[T:0] 01000101 :

5 1 _132_pipelinelc_risc_dutiprogrammable_interupt_controllerPICMASK]T-0] 03

5 10_r32_pipelinglc_risc._dutiprogrammable_interrupt controllenPICSTAT[T:0] 03

Figure 7.6.2.1: Stimulation result of ¢_risc_dut for test case #2 using Vivado stimulator.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
105

Chapter 7: Verification Specification and Stimulation Result

< itb_r32_pipeline/c_risc_dutlurisc_pseudo_pcl31:0] 80010400

< tb_r32_pipeline/c_risc_dut/urisc_next_pcf31:0] 80010400

I #tb_r32_pipelinelc_risc_dut/u_datapath/b_cp0/bicp0_irg 0 _-
15 tb_r32_pipelinglc_risc_dut/u_datapath/b_cpO/bocp0_exc flag 0 _-
15 ftb_r32_pipelinelc_risc_dut/u_datapath/b_cpO/bocp0_flush_id 0 _-
I3 itb_r32_pipelinelc_risc_dut/u_datapath/b_cp0/bocp0_flush_ex 0

5 itb_r32_pipelinelc_risc_dut/u_datapath/b_cp0/bocp0_flush_mem 0

& ftb_r32_pipeline/c_risc_dut/u_datapath/b_cp0/bcpl_stat[31:0] 00000013

4 ftb_r32_pipeline/c_risc_dut/u_datapath/b_cpl/bcp0_cause[31:0] 40000000

% ito_r32_pipelinelc_risc_dutu_datapatn/o_cpO/bicp0_if_pcja1:0] 80010400

< itb_r32_pipeline/c_risc_dut/u_datapath/b_cp0/bicp0_id_pc[31:0] 00000000

< itb_r32_pipelinelc_risc_dut/u_datapath/b_cp0/bicp0_ex_pc[31:0] 8000009c

4 tb_r32_pipelinelc_risc_dutiu_datapath/b_cp0/bcp0_epcl31:0] 80000020

Figure 7.6.2.2: Stimulation result of ¢_risc_dut for test case #2 using Vivado stimulator

(cont’d).
< fi_r32_pipeline/c_risc_duiurisc_instr{31:0] 77777
5 fib_r32_pipeline/c_risc_dutiurisc_pseudo_pc[31:0] 8001068 8
5 b_r32_pipelineic_risc_dutiurisc_next_pc{31:0] 8001b68c
& fb_r32_pipeline/c_risc_dutiSPI_controlleriuospi_IRQ 1
% fo_r32_pipeline/c_risc_dut’SPI_controller'SPICRIT:0] 11000000
<5 tb_r32_pipelineic_risc_dut/SPI_controller’SPISR[7:0] 01000101
< ftb_r32_pipelineic_risc_dutiprogrammable_interrupt_controller/PICMASK]7:0] 03
% fio_r32_pipeline/c_risc_dutiprogrammable_interrupt_controller/PICSTAT[7.0] 03

Figure 7.6.2.3: Stimulation result of ¢_risc_dut for test case #2 using Vivado stimulator

(cont’d).

<% b_r32_pipeline/c_risc_dutiurisc_instr[31:0] LITI77E
<4 b_r32_pipeline/c_risc_dutiurisc_pseudo_pcf31:0] 800000a0
<4 ftb_r32_pipelinelc_risc_dutlurisc_nexd_pcf31:0] 8000000
% Rb_r32_pipeline/c_risc_dut/y_datapath/o_cp0ibcp0_epcf31:0] 80000030
1 ftb_r32_pipelinelc_risc_dutiu_datapathib_cp0ibicp0_eret 0

<5 ftb_r32_pipeline/c_risc_duthy_datapath/b_cpO/bocp0_eret_addr31:0] 8000000
4 Ro_r32_pipelinelc_risc_duty_datapath/b_cpOibcp0_cause[31:0] 00000000
& ftb_r32_pipeline/c_risc_dutlu_datapath/b_cp0ibcp0_stat[31:0] 00000011

Figure 7.6.2.4: Stimulation result of ¢_risc_dut for test case #2 using Vivado stimulator
(cont’d).

1. With the value of 0x08 being set in the PICMASK, the SPI I/O interrupt in
c_risc_dut is enabled.

2. Initially, the TX_buffer16x8 of the SPI controller is empty. Upon activation, the
on-board SPI controller is configured to enable the transmitter buffer empty
interrupt only (by setting SPISR[2] = 1). Thus, when the bit 6 (TXEF) of the
SPISR goes high, the SPI controller will initiate an interrupt request (IRQ) to
notify the CPU for service. As a result, the uospi_IRQ status flag goes high.

3. Whenever an 1/O interrupt is detected, the PICSTAT of the c_risc_dut will be
updated with a value corresponding to the IRQ source. The value for SPI’s IRQ
is 0x03. The exception handler will then compare this PICSTAT value to

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
106

Chapter 7: Verification Specification and Stimulation Result

10.

11.

12.

identify which 1/0 to serve and which Interrupt Service Routine (ISR) to jump
to.

When the SPT’s IRQ occurs, the CPO hardware will raise the bocp0_exc flag
and set to flush the IF/ID pipeline register.

The bcp0_stat[1] (which is the CPQ’s status register) is set to 1 in order to
disable further exception from occurring whereas the bcp0_cause[6:2] (which
is the CPO0’s cause register) remain unchanged because the exception code for
I/O interrupt is O.

The CPO will also load the bicpQ_if _pc (which is the IF stage’s PC) into the
bcpO_epc (which is the CP0O’s EPC register) for return purpose after executing
the exception handler program.

The c_risc_dut will then jump to the exception handler address of 0x8001_b400
in the next clock cycle and start servicing the SPI controller request.

After decoding the PICSTAT value to figure out which ISR to jump to, the
c_risc_dut will then branch to the ISR of the respective interrupt source and
execute the ISR. For SPI, the starting address of its ISR is 0x8001_h68c.

For handling the transmitter buffer empty interrupt, the SPI controller will need
to be disabled. At the end, the SPICR holds the value of 8’b0100 0000 (0x40).
After the c_risc_dut successfully disables the SPI controller, the uospi_IRQ
from the SPI controller is also removed and no more interrupt request is
triggered from the SPI controller.

When the interrupt request is successfully handled, the PICSTAT value that
stores the /O interrupt source information will be changed from 0x03 to 0x00
value.

After completing the SPI’s ISR, the c_risc_dut will branch to the address of
0x8001_b4bc and pop all the saved contents from stack before returning to the
user program. When the last instruction which is the eret instruction is being
executed (bicpO_eret = 1), it will load the saved return address value from
bep0_epc (which is the CP0’s EPC register) to the bocpQ_eret_addr for jumping
back to the user program in the next clock cycle.

Upon completing the last instruction in the exception handler program, the
c_risc_dut returns to the place where it was interrupted and starts to execute

from that address.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

107

Chapter 7: Verification Specification and Stimulation Result

13. The bep0 stat[1] (which is the CPO’s status register) is reset to 0 in order to
allow further exception from occurring whereas the bcp0_cause (which is the
CPO0’s cause register) is cleared in order to remove the exception code stored in
it.

Stimulation Result of ¢_risc_client:

<% Rb_r32_pipelinelc_risc_clientiurisc_instr[31:0] 21249
<% tb_r32_pipelinelc_risc_clientiurisc_pseudo_pc[31:0] 80000000
<% Rb_r32_pipelinelc_risc_clientiurisc_next_pc[31:0] 3001400
3 tb_r32_pipeline/c_risc_client'SPI_controlleruos pi_IRQ 1

<5 fb_r32_pipelinelc_risc_client/SPI_controller/SPICR[7:0] 10000000
<) fb_r32_pipelinelc_risc_client/SPI_controller/SPISR[T.0] 01000101
&5 tb_r32_pipelinelc_risc_clientiprogrammable_interrupt_controllerPICMASK]T:0] 03

&5 ftb_r32_pipelinelc_risc_clientiprogrammable_interrupt_controllerPICSTAT[T:0] 03

Figure 7.6.2.5: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator.
<% fth_r32_pipelinefe_risc_clienturisc_instr[31:0] 17777777
<4 tb_r32_pipeline/c_risc_client/urisc_pseudo_pc31:0] 80010400
<% fto_r32_pipeline/c_risc_client/urisc_next_pc[31:0] 80010400
3 o_r32_pipelinefc_risc_clientiu_datapathib_cp0lbicp0_irg]
5 fb_ra2_pipelinelc_risc_clientiu_datapath/b_cpO/bocp0_exc_flag 0
5 ftb_r32_pipelinelc_risc_clientiu_datapath/b_cp0/bocp0_flush_id]
5 to_r32_pipelinelc_risc_clientiu_datapath/b_cp0/bocp0_flush_ex 0
5 Hb_r32_pipelinelc_risc_clientiu_datapathib_cp0/bocp0_flush_mem 0
<5 fb_r32_pipelinefc_risc_clientiu_datapathib_cp0/bcp0_stat[31:0] 00000013
<) fb_r32_pipeline/c_risc_client/u_datapath/b_cp0/bcp0_cause[31:0] 40000000
<4 tb_r32_pipeline/c_risc_client/u_datapath/b_cp0/bicp0_if_pc[31:0] 80010400
<41 tb_r32_pipeline/c_risc_client/u_datapath/b_cp0/bicp0_id_pc[31:.0] 00000000
<4 to_r32_pipelinelc_risc_client/u_datapath/b_cpO/bicp0_ex_pcf31:0] 800000ac
<5 fb_r32_pipelinefc_risc_clientu_datapathib_cp0/bcp0_epc31:.0] 80000000

Figure 7.6.2.6: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator (cont’d).

5 b_r32_pipeline/c_risc_clientiurisc_instr31:0] 17777777
% ftb_r32_pipelinelc_risc_clientiurisc_pseudo_pcf31:0] 8001bdc0
% tb_r32_pipeline/c_risc_clientiurisc_next_pc[31:0] 3001b4c0
5 tb_r32_pipeline/c_risc_client'SPI_controlleruospi_IRQ 0

& ftb_r32_pipelinelc_risc_client/'SPI_controller/SPICR[T:0] 00000000
4 b_r32_pipeline/c_risc_client/'SPI_controller/SPISR[7:0] 01000101
%) Ro_r32_pipeline/c_risc_clientiprogrammable_interrupt_controller/PICMASK[T:0] 08

& ftb_r32_pipeline/c_risc_clientiprogrammable_interrupt_controller/PICSTAT[7:0] 00

Figure 7.6.2.7: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator (cont’d).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
108

Chapter 7: Verification Specification and Stimulation Result

4 1tb_r32_pipeline/c_risc_clientiurisc_instr[31:0] ZI7TTTIT
4 1tb_r32_pipelinelc_risc_clientiurisc_pseuda_pcl31:0] 80000000
4 1tb_r32_pipeline/c_risc_clientiurisc_next_pc[31:0] 80000000
I ftb_ra2_pipelinelc_risc_client/SP1_cantrolleruospi_IRQ 0
% ftb_r32_pipelinefc_risc_clientiu_datapathib_cp0/bcp0_epc[31:0] 50000060
I #tb_ra2_pipelinelc_risc_clientiu_datapathin_cpOlbicp0_erat]

4 ftb_r32_pipelinelc_risc_clientiu_datapath/b_cp0/bocp0_eret_addr[21:0] 30000060
< tb_r32_pipelinelc_risc_clientiu_datapath/b_cp0/bcp0_cause[31:0] 00000000
< tb_r32_pipelinelc_risc_client/u_datapath/b_cp0/bcp0_stat[31:0] 00000011

Figure 7.6.2.8: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator (cont’d).

1. With the value of 0x08 being set in the PICMASK, the SPI 1/O interrupt in
c_risc_client is enabled.

2. Initially, the TX_buffer16x8 of the SPI controller is empty. Upon activation, the
on-board SPI controller is configured to enable the transmitter buffer empty
interrupt (by setting SPISR[2] = 1) only. Thus, when the bit 6 (TXEF) of the
SPISR goes high, the SPI controller will initiate an interrupt request (IRQ) to
notify the CPU for service. As a result, the uospi_IRQ status flag goes high.

3. Whenever an I/O interrupt is detected, the PICSTAT of the c¢_risc_client will be
updated with a value corresponding to the IRQ source. The value for SPI’s IRQ
is 0x03. The exception handler will then compare this PICSTAT value to
identify which 1/0O to serve and which Interrupt Service Routine (ISR) to jump.

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocp0 exc_flag
and set to flush the IF/ID pipeline register.

5. The bepO stat[1] (which is the CPO’s status register) is set to 1 in order to
disable further exception from occurring whereas the bcp0_cause[6:2] (which
is the CPO’s cause register) remain unchanged because the exception code for
I/0 interrupt is 0.

6. The CPO will also load the bicp0_if pc (which is the IF stage’s PC) into the
bep0_epc (which is the CPO’s EPC register) for return purpose after executing
the exception handler program.

7. The c_risc_client will then jump to the exception handler address of
0x8001_b400 in the next clock cycle and start servicing the SPI controller
request.

8. After decoding the PICSTAT value to figure out which ISR to jump to, the
c_risc_client will then branch to the ISR of the respective interrupt source and
execute the ISR. For SPI, the starting address of its ISR is 0x8001_b68c.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
109

Chapter 7: Verification Specification and Stimulation Result

9. For handling the transmitter buffer empty interrupt, the SPI controller will need
to be disabled. At the end, the SPICR holds the value of 8’b0100_ 0000 (0x40).
After the c_risc_client successfully disables the SPI controller, the uospi_IRQ
from the SPI controller is also removed and no more interrupt request is
triggered from the SPI controller.

10. When the interrupt request is successfully handled, the PICSTAT value that
stores the 1/O interrupt source information will be changed from 0x03 to 0x00
value.

11. After completing the SPI’s ISR, the c_risc_client will branch to the address of
0x8001_bh4bc and pop all the saved contents from stack before returning to the
user program. When the last instruction which is the eret instruction is being
executed (bicpO_eret = 1), it will load the saved return address value from
bep0_epc (which is the CP0’s EPC register) to the bocp0_eret addr for jumping
back to the user program in the next clock cycle.

12. Upon completing the last instruction in the exception handler program, the
c_risc_dut returns to the place where it was interrupted and starts to execute
from that address.

13. The bcp0 stat[1] (which is the CP0’s status register) is reset to 0 in order to
allow further exception from occurring whereas the bcp0_cause (which is the
CPO0’s cause register) is cleared in order to remove the exception code stored in
it.

7.6.3 Test Case #3: Mode 0 Serial Data Communication

IAb_r32_pipelinefc_risc_dut/SPI_contralleriuiospi_SS_n
10_r32_pipelinelc_risc_dut/SPI_controlleriuiospi_SCLK
I10_r32_pipelinelc_risc_dut/SPI_controlleriuiospi_MOSI
IAb_r32_pipelinefc_risc_dut/SPI_contralleriuiospi_MISO
& Rb_r32_pipelineic_risc_dutSPI_controlleriuospi_IRQ

[T —

& tb_r32_pipelineic_risc_clientSPI_controllerfuospi_IRQ 1

- kb_r32_pipelinelc_risc_dut’SPI_controllerTX_buffer16x8/bFIFO_FIFOmem[0][7:0] 10101010
) tb_r32_pipeline/c_risc_client/SPI_contrallerTX_buffer16x8/bFIFO_FIFOmem[0][7:0] 01010101
| Ab_r32_pipelineic_risc_dut’SP1_controller/SPICR[7:0] 11000000
5 Ab_r32_pipelinelc_risc_client’SPI_controller/SPICR[7:0] 10000001
| tb_r32_pipelineic_risc_dutiSPI_controller’SPISR]7:0] 11001011
| Ab_r32_pipelineic_risc_client’SPI_controller/SPISR7.0] 11001011
) Ab_r32_pipelineic_risc_dutiSPI_controller/RX_buffer16x8/oFIFO_FIFOmem[0][7:0] 01010101

1

) tb_r32_pipelineic_risc_client/SPI_controller/RX_buffer16x8/bFIFO_FIFOmem[0][7:0] 10101010

Figure 7.6.3.1: Stimulation result for test case #3 using Vivado stimulator.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

110

Chapter 7: Verification Specification and Stimulation Result

1. Before the data exchange begins, the c_risc_dut has the data value of
8’b1010_1010 (0Oxaa) in its TX_buffer16x8.bFIFO_FIFOmem[0] whereas the
TX_bufferl6x8.bFIFO_FIFOmem[0] of the c_risc_client holds the data value
of 8°b0101_0101 (0x55).

2. Same transfer mode, which is mode 0 has been set by both devices for
communication.

3. Initially, both of them have disabled the transmitter buffer empty interrupt and
enabled the received buffer full interrupt only (for test case #4).

4. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b1010_1010 (Oxaa) can be successfully transmitted by the ¢_risc_dut via its
MOSI pin. Similarly, the data value of 8’b0101 0101 (0x55) can also be
successfully transmitted by the c_risc_client via its MISO pin. Each of these
data bit is transmitted serially at one half clock cycle before the rising edge of
the SCLK clock.

5. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8’b0101 0101 (0x55) is stored into the
RX_buffer16x8.bFIFO_FIFOmem[0] of the c_risc_dut whereas the data value
of 8’61010 1010 (Oxaa) is stored into RX_buffer16x8.bFIFO_FIFOmem][0] of
the DUT_SLAVE.

6. Both of the devices generate an interrupt request upon completing the data

transaction (See test case #4).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
111

Chapter 7: Verification Specification and Stimulation Result

7.6.4 Test Case #4: Receiver Buffer Full Interrupt Support
Stimulation Result of ¢_risc_dut:

<6 ib_r32_pipelinelc_risc_dutiurisc_inst{31:0] afbb0000
<6 ib_r32_pipelinelc_risc_dutiurisc_pseudo_pc[31:0] 80010408
5 ftb_r32_pipelinelc_risc_duturisc_next_pe[31:0] 8001b40c
& ith_r32_pipelinelc_risc_dutiSPI_controlleriuospi_IRQ 1
<) Rb_r32_pipelinelc_risc_dut'3PI_controllerSPICRIT:0] 11000000
& fio_r32_pipelinelc_risc_dut'SPI_controller'SPISRET:0] tooon 1
%) tb_r32_pipelinelc_risc_dutiprogrammable_interrupt_controllerPICMASKIT.0] 08
<) Rb_r32_pipelinelc_risc_dutprogrammable_interrupt_controllePICSTAT]Z:0] 03
i tb_r32_pipelinelc_risc_dutiu_datapathib_cpOfhicp0_irg 0
5 o_r32_pipslingfc_risc_dutlu_datapathio_cp0ibocpd_exc flag 0
& ith_r32_pipelinelc_risc_duti_datapath/b_cpOfbocp0_flush_id 0
5 fib_r32_pipelinelc_risc_dutiu_datapathib_cp0ibocp0_flush_ex 0
5 fio_r32_pipelinelc_risc_dutiu_datapathib_cp0ibocp0_flush_mem 0
< fb_r32_pipelinefc_risc_dutiu_datapathio_cp0ibcp0_stalj31:0] (0000013
<) Rb_r32_pipelinelc_risc_dutiu_datapat
i tb_r32_pipelinelc_risc_dutiu_datapath/b_cpOfhicpd_BD 0
<1 ib_r32_pipelinelc_risc_dutlu_datapathi_cpOibicp0_if_pcf31:0] 30010408
<1 t0_r32_pipelinelc_risc_dutu_datapathib_cp0ibicp0_id_pc[31:.0] 80010404
/i apathib_cpibicp0_ex_pc[31:.0] 80010400
i apathib_cp0ibcpd_epcf31:0] 30000028

ib_cpli
ib_cpli
ib_cpli
ib_cpli
ib_cpli
apathib_cp0ibcp0_cause[31:0] 00000000
ib_cpli
ib_cpli
ib_cpli
< tb_r32_pipelinelc_risc_dutlu_datapathib_cp0/
ib_cpli

% to_r32_pipelinelc_risc_dutlu_da

< tb_r32_pipelinefc_risc_dutfurisc_instr[31:0] 000428c2
<% ftb_r32_pipelinefc_risc_dut/urisc_pseudo_pc[31:0] 8001b694
< fth_r32_pipelinefc_risc_dut/urisc_nex_pcl31:0] 80010694
5 tb_r32_pipelinelc_risc_dut'SPI_controllerluospi_IRQ 1

Figure 7.6.4.2: Stimulation result of ¢_risc_dut for test case #4 using Vivado stimulator

(cont’d).

45 [tb_r32_pipeline/c_risc_dutlurisc_instrf31:0] 8fbal000
45 [tb_r32_pipeline/c_risc_dutlurisc_pseuda_pc[31:0] 8001b4d4
4% [th_r32_pipelinefc_risc_dut/urisc_next_pc[31:0] 8001b4d3
U5 ftb_r32_pipelinelc_risc_dut/SPI_controlleriuospi_IRQ 0

<5 tb_r32_pipelinelc_risc_dutiu_datapathib_rfibrf_reg_ram[3][31.0] 00000055
5 fb_r32_pipelinelc_risc_dut’SPI_controller/SPICR[7:0] 11000000
5 tb_r32_pipelinelc_risc_dut’SPI_controller/SPISR[T.0] 01001011
<5 tb_r32_pipelinefc_risc_dut’programmable_interrupt_controller/PICSTAT[7:0] 00

<5 fb_r32_pipelinefc_risc_dut’programmable_interrupt_controller/PICMASK]7:0] 08

Figure 7.6.4.3: Stimulation result of ¢_risc_dut for test case #4 using Vivado stimulator
(cont’d).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
112

Chapter 7: Verification Specification and Stimulation Result

145 #b_r32_pipelina/c_risc_dutiurisc_instr31:0] 17777777
|4 #tb_r32_pipeline/c_risc_dutiurisc_pseudo_pc[31:0] 800000a8
45 ftb_r32_pipeline/c_risc_dutiurisc_next_pcf31:0] 200000a8
I ftb_r32_pipeline/c_risc_dutiu_datapath/b_cp0/bcp0_epcf31:0] 80000028
5 ftb_r32_pipelinefc_risc_dutiu_datapathio_cpO/bicp0_eret 0

145 fto_r32_pipeline/c_risc_dutiu_datapath/b_cp0/bocp0_eret_addr[31:0] 80000028
I ftb_r32_pipelinelc_risc_dutu_datapath/o_cp0/ocp0_causel31:0] 00000000
5 tb_r32_pipeline/c_risc_dutiu_datapath/b_cpQ/bcpl0_stat{31:0] 00000011

Figure 7.6.4.4: Stimulation result of ¢_risc_dut for test case #4 using Vivado stimulator
(cont’d).

1. Since the bit 4 (RXFM) of the SPISR is set to 0, it indicates that only 1-byte of
data is expected to be read by CPU.

2. The interrupt request is asserted when the bit 7 (RXDF) of the SPISR become
1 (indicates that the 1-byte of data has been completely received). At the end,
the SPISR holds the value of 8°b1100 1011 (0Oxcb).

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocp0_exc_flag.
Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed
because the exception occurs at the branch delay slot.

6. Since the exception occurs at the branch delay slot, the CPO loads the
bicp0_id pc (which is the ID stage’s PC) into the becp0O_epc (which is the CP0’s
EPC register) for return purpose after executing the exception handler program.

9. In response to the receiver buffer full interrupt request, the c_risc_dut will
handle it by loading the received data into the $v1 register. After the c_risc_dut
successfully loads the data from the RX_buffer16x8 into the $v1 register, the
uospi_IRQ from the SPI controller is then removed and no more interrupt
request is triggered by the SPI controller. At the end, the $v1 will hold the

received 8-bit data whose value is 0x55.

For the remaining numbers, refer to the stimulation results part of the ¢_risc_dut in

test case 2.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
113

Chapter 7: Verification Specification and Stimulation Result

Stimulation Result of ¢_risc_client:

44 fib_r32_pipelineic_risc_clientiurisc_inst]31:0]
<6 fth_r32_pipelinelc_risc_clienturisc_pseudo_pc[31:0]
<3 1tb_r32_pipelinefc_risc_clienturisc_next_pc[31:0]

I ftb_r32_pipelinefc_risc_client'SPI_controllerfuospi_IRQ

% ftb_r32_pipelinelc_risc_client/SPI_controllerSPICR]T.0]

% tb_ra2_pipelinelc_risc_client’SPI_controller'SPISRI7:0]

% ftb_r32_pipelinelc_risc_client/programmable_interrupt_controllerPICMASK]7:0]
% ftb_r32_pipelinefc_risc_clientiprogrammable_interrupt_controllerPICSTATI7:0]
[#b_r32_pipelinelc_risc_clientiu_datapath/b_cpOlbicpd_irg

3 fb_r32_pipelinefc_risc_clientu_datapathib_cp0/bocp0_exc_flag
[#b_r32_pipelinelc_risc_clientiu_datapath/b_cpO/bocpd_flush_id
1 fto_r32_pipelinefc_risc_clienti_datapathib_cp0lbocp0_flush_ex
I #b_r32_pipelinelc_risc_clientiu_datapath/o_cp0/bocp0_flush_mem
% fio_r32_pipelinelc_risc_clientu_datapath/o_cp0/bcp0_stat31:0]
% ftb_r32_pipelinelc_risc_clientiu_datapath/o_cp0/bcpl_cause[31:0]
1 fto_r32_pipelinglc_risc_clienthy_datapatho_cpO/bicp0_BD
41 tb_r32_pipelinefc_risc_clientu_datapath/b_cpQ/bicp0_if_pc[31.0]
1 fin_r32_pipelinelc_risc_clientu_datapath/o_cp0/bicp0_id_pc{31:0]
il tb_r32_pipelinefc_risc_clientu_datapath/b_cp0lbicp0_ex_pcl31.0]
% fio_r32_pipelinelc_risc_clientu_datapathio_cp0/bcp0_epe31:0]

23dffc

B001b40c
8001b410
1
10000001
11001011

0
0
0
0
0

00000013
00000000
0
8001bd0c
8001b408
8001b404
800000c8

Figure 7.6.4.5: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator.

<% b_r32_pipelinelc_risc_clientiurisc_instr{31.0]

<% tb_r32_pipelinelc_risc_clienturisc_pseudo_pc[31:0]
<3 ftb_r32_pipelinelc_risc_clientiurisc_next_pc[31:0]

3 ftb_r32_pipelinelc_risc_client’SPI_controllerfuospi_IRQ

000428c2
8001b694
8001b694
1

Figure 7.6.4.6: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator (cont’d).

% Rb_r32_pipelinelc_risc_clientiurisc_inatr[31:0]

<% tb_r32_pipeline/c_risc_clientiurisc_pseudo_pc{31:0]

<4 tb_r32_pipeline/c_risc_clientiurisc_next_pcl31.0]

5 tb_r32_pipelinelc_risc_client/SPI_contraller/uospi_IRQ

&5 Rb_ra2_pipelinelc_risc_clientiu_datapath/b_rifbrf_reg_ram[3][31:0]
< ftb_r32_pipelinelc_risc_client/SPI_controller/SPICR[7:0]

< fb_r32_pipeline/c_risc_client/SPI_controller/SPISR[T:0]

% Rb_r32_pipeline/c_risc_clientipragrammable_interrupt_controllenPICMASKI7:0]
2 Rb_r32_pipeline/c_risc_clientipragrammable_interrupt_controllerPICSTAT]7:0]

yrrrrreri
8001bdcD
B001b4ch
0
000000aa
10000001
01001011
08

00

Figure 7.6.4.7: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator (cont’d).

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

114

Chapter 7: Verification Specification and Stimulation Result

< ib_r32_pipeline/c_risc_clientiurisc_instri31:0] LITTT7TY
<& tb_r32_pipeline/c_risc_clientiurisc_pseuda_pcf31:0] 800000c8
<& tb_r32_pipeline/c_risc_clientiurisc_next_pe[31:0] 800000c8
I th_r32_pipeline/c_risc_client'3PI_controllerfuospi_IRQ 0

< tb_r32_pipeline/c_risc_clientiu_datapath/b_cp0/bcp0_epc(31:0] 800000c8
U Ah_r32_pipeline/c_risc_clientiu_datapath/b_cp0/bicp0_erat 0

4 ib_r32_pipeline/c_risc_client/u_datapath/o_cp0/bocp0_eret_addr[31:0] 800000c8
< tb_r32_pipeline/c_risc_clientiu_datapath/b_cp0ibcp0_cause[31:0] 00000000
< kb_r32_pipeline/c_risc_clientu_datapath/o_cp0/bcp0_sta[31:0] 00000011

Figure 7.6.4.8: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator (cont’d).

1. Since the bit 4 (RXFM) of the SPISR is set to 0, it indicates that only 1-byte of
data is expected to be read by CPU.

2. The interrupt request is asserted when the bit 7 (RXDF) of the SPISR become
1 (indicates that the 1-byte of data has been completely received). At the end,
the SPISR holds the value of 8°b1100 1011 (0xcb).

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocpO_exc_flag.
Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed
because the exception occurs at the branch delay slot.

6. Since the exception occurs at the branch delay slot, the CPO loads the
bicp0_id pc (which is the ID stage’s PC) into the becp0O_epc (which is the CPO’s
EPC register) for return purpose after executing the exception handler program.

9. In response to the receiver buffer full interrupt request, the c_risc_client will
handle it by loading the received data into the $v1 register. After the
c_risc_client successfully loads the data from the RX_bufferl6x8 into the
$vlregister, the uospi_IRQ from the SPI controller is then removed and no more
interrupt request is triggered by the SPI controller. At the end, the $v1 will hold

the received 8-bit data whose value is Oxaa.

For the remaining numbers, refer to the stimulation results part of the

c_risc_client in test case 2.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
115

Chapter 7: Verification Specification and Stimulation Result

7.6.5 Test Case #5: Mode 1 Serial Data Communication

ith_r32_pipelinelc_risc_dut’SPI_controller/uiospi_SS_n 1
itb_r32_pipelinelc_risc_dut’SPI_controlleruiospi_SCLK 0
ith_r32_pipelinelc_risc_dut/SPI_controller/uiospi_MOSI 0
itb_r32_pipelinelc_risc_dut’SPI_controlleruiospi_MISO 1
I ftb_ra2_pipelinelc_risc_dub'SPI_controllerfuospi_IRQ) 1
Uiy ith_r32_pipelinelc_risc_client/SPI_contralleriuospi_IRQ 1
5 1tb_r32_pipelinelc_risc_dut/SPI_controllenTX_buffer16x8/oFIFO_FIFOmem(1)[7.0] 01010101
< 1tb_ra2_pipelinelc_risc_client/SPI_controllenTX_buffer16x8/oFIFO_FIFOmem(1)[7:0] 10101010
5 1tb_r32_pipeline/c_risc_dut/SPI_controller'SPICR[7:0] 11010001
<5 ftb_r32_pipelinelc_risc_client/SPI_controller/SPICR7:0] 10010001
5 1tb_r32_pipelinelc_risc_dut/SPI_controllerSPISRIT:0] 11001111
<5 ftb_r32_pipelinelc_risc_client/SPI_controller/SPISR[7:0] 100111
5 tb_r32_pipeline/c_risc_dut’SPI_controllenRX_buffer16x8/bFIFO_FIFOmem[1][7:0] 10101010
5 ftb_r32_pipelinelc_risc_client/SPI_controller/RX_buffer16x8/FIFO_FIFOmem[1][7:0] i01010101

Figure 7.6.5.1: Stimulation result for test case #5 using Vivado stimulator.

1. Before the data exchange begins, the c_risc_dut has the data value of
8’b0101_0101 (0x55) in its TX_ bufferl6x8.bFIFO_FIFOmem[1] whereas the
TX_bufferl6x8.bFIFO_FIFOmem[1] of the c_risc_client holds the data value
of 8’b1010_1010 (Oxaa).

2. Same transfer mode, which is mode 1 has been set by both devices for
communication.

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b0101_0101 (0x55) can be successfully transmitted by the c_risc_dut via its
MOSI pin. Similarly, the data value of 8’b1010_1010 (Oxaa) can also be
successfully transmitted by the c_risc_client via its MISO pin. Each of these
data bit is transmitted serially at the rising edge of the SCLK clock.

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8bl010 1010 (Oxaa) is stored into the
RX_buffer16x8.bFIFO_FIFOmem[1] of the c_risc_dut whereas the data value
of 8’b0101_0101 (0x55) is stored into RX_buffer16x8.bFIFO_FIFOmem[1] of
the DUT_SLAVE.

5. Both of the devices generate an interrupt request upon completing the data

transaction.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
116

Chapter 7: Verification Specification and Stimulation Result

7.6.6 Test Case #6: Mode 2 Serial Data Communication

10 132 pipelinelc_risc_dutiSPI_controllerfuiospi_S5_n 1 -
ib_r32_pipelinelc_risc_dutiSPI_controllerfuiospi_SCLK 1
tb_r32_pipeline/c_risc_dutiSPI_controllerfuiospi_MOSI 0 -
th_r32_pipelinelc_risc_dutiSPI_controlleriuiospi_MISO 1 -
5 R0 r32_pipelinelc_risc_dutSPI_contrallerfuaspi IRQ 1 -
% Rb_r32_pipelinelc_risc_clientSPI_contralleriuospi_IRQ 1 -
to_r32_pipelinelc_rise,_dulSPI_contrallenX_bufer1Ge8IbFIFO_FIFOmem[370] 10101010 10101010 I
| t0_r32_pipeline/c_risc_client/SPI_controllerTX_bufier1Ex8/bFIFO_FIFOmem[3][7.0] 01010101 01010101]
5 b _r32_pipelinelc_risc_duSPI_controllanSPICRIT:0] 11100010 | L]
) fb_r32_pipelinelc_risc_client'SPI_controller/SPICR[T.0] 10100001 10100001 _
) tb_r32_pipelinelc_risc_duiSPI_controllzr/SPISRIT:0] 1001111 o | edoonuir | MX | Ll00LLLL |
2 b_132_pipelinelc_fisc_client!SP_controleriSPISRIT.(] o011 m—@:—
4 fb_r32_pipelinelt risc_duiSPI_controllerRY_buffert6xBiFIFD_FIFOmem[3J7:0] 01010104 1 -;
2 Mb_132_pipelinelc_risc._clientiSP_controleriR_bufler1B@iFIFO_FFOmem3 7]} 10101010 S

Figure 7.6.6.1: Stimulation result for test case #6 using Vivado stimulator.

1. Before the data exchange begins, the c_risc_dut has the data value of
8’b1010_1010 (Oxaa) in its TX_buffer16x8.bFIFO_FIFOmem[3] whereas the
TX_buffer1l6x8.bFIFO_FIFOmem[3] of the c_risc_client holds the data value
of 8’b0101_0101 (0x55).

2. Same transfer mode, which is mode 2 has been set by both devices for
communication.

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b1010_1010 (Oxaa) can be successfully transmitted by the c_risc_dut via its
MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be
successfully transmitted by the c_risc_client via its MISO pin. Each of these
data bit is transmitted serially at one half clock cycle before the falling edge of
the SCLK clock.

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8’b0101 0101 (0x55) is stored into the
RX_buffer16x8.bFIFO_FIFOmem[3] of the c_risc_dut whereas the data value
of 8’b1010_1010 (0xaa) is stored into RX_buffer16x8.bFIFO_FIFOmem[3] of
the DUT_SLAVE.

5. Both of the devices generate an interrupt request upon completing the data

transaction.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
117

Chapter 7: Verification Specification and Stimulation Result

7.6.7 Test Case #7: Mode 3 Serial Data Communication

ib_r32_pipelinelc_risc_dutiSPI_controllerfuiospi_S5_n 1
fth_r32_pipelinglc_risc_dutiSPI_controllerfuiospi_SCLK 1
to_r32_pipelinelc_risc_dutSP)_controllerfuiospi MOSI 0
ith_r32_pipelinefc_risc_dut'SPI_controllerfuiospi_MISO 1
% fio_r32_pipelinelc_risc_dutiSPI_controlleriuospi_IRQ 0
& Rb_r32_pipelineic_risc_clientSPI_controlleruospi_RQ 0

l
4 Ro_r32_pipelinelc_risc_dutiSPI_controllerTX_buffer16x8/bFIFO_FIFOmem[2][7:0] 01010101
4 Rb_r32_pipeline/c_risc_clientSPI_controller/TX_buffer16x8/bFIFQ_FIFOmem[2][7:0] 10101010
) ftb_r32_pipeline/c_risc_dutiSPI_controller'SPICR[7.0] 11110011 0 -
2 f_r32_pipelinedc_risc_clientSPI_controller/SPICRI7.(] 00110001 puoon | | --
4 ftb_r32_pipeline/c_risc_dut/SPI_controller/SPISR[7:0] 01001011 [ilT] -_| _-
& tb_r32_pipelinefc_risc_client'SPI_contrallen'SPISRIT:0] 01001114 111 _I.--E
/i
I

) tb_r32_pipelinelc_risc_dut/SPI_controllerRX_buffer16x8/bFIFO_FIFOmem[2][7-0] 10101010
) ftb_r32_pipeline/c_risc_client'SPI_controllerRX_buffert6x8/bFIFD_FIFOmem[2][7:0] 01010101

Figure 7.6.7.1: Stimulation result for test case #7 using Vivado stimulator.

1. Before the data exchange begins, the c_risc_dut has the data value of
8°b0101_0101 (0x55) in its TX_bufferl6x8.bFIFO_FIFOmem[2] whereas the
TX_bufferl6x8.bFIFO_FIFOmem[2] of the c_risc_client holds the data value
of 8’b1010_1010 (0xaa).

2. Same transfer mode, which is mode 3 has been set by both devices for
communication.

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of
8’b0101 0101 (0x55) can be successfully transmitted by the ¢ risc_dut via its
MOSI pin. Similarly, the data value of 8’b1010 1010 (Oxaa) can also be
successfully transmitted by the c_risc_client via its MISO pin. Each of these
data bit is transmitted serially at the falling edge of the SCLK clock.

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.
The data value of 8b1010 1010 (Oxaa) 1is stored into the
RX_buffer16x8.bFIFO_FIFOmem[2] of the c_risc_dut whereas the data value
of 8b0101_0101 (0x55) is stored into RX buffer16x8.bFIFO_FIFOmem][2] of
the DUT_SLAVE.

5. Both of the devices generate an interrupt request upon completing the data

transaction.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
118

Chapter 7: Verification Specification and Stimulation Result

7.6.8 Test Case #8: Mode Fault Error Interrupt Support

1tb_r32_pipelinefc_risc_dut'SPI_controlleruiospi_S5_n 1

1t_r32_pipelinefc_risc_dut/SPI_controlleriuiospi_SCLK 1

tb_r32_pipelinelc_risc_dut/SPI_controlleriuiospi_MOSI 0

1t_r32_pipelinefc_risc_dut/SPI_controlleruiospi_MISO 1

15 Rb_r32_pipelinefc_risc_dut/SP|_controllerfuospi_IRQ 0

15 b_r32_pipelinelc_risc_clientSPI_controlleriuospi_IRQ 1

4 ib_r32_pipelinelc_tisc_dut/SPI_contraller/SPICRET-0] 01410011 _—.
J Rb_r32_pipelinelc_tisc_clientSPI_controllerSPICRI7:0) 11110001 _—l
) Rb_r32_pipelinelc_risc_duySPI_controllerSPISRIT.0] 01001011 —l
j ib_r32_pipelinelc_risc_client'SPI_controller/SPISR[T:0] 1001111 _—_—_N

Figure 7.6.8.1: Stimulation result for test case #8 using Vivado stimulator.

Stimulation Result of ¢_risc_dut:

19 1b_r32_pipelinefc_risc_duturisc_instri31:0] 23paffic
I 1tb_r32_pipelinefc_risc_duturisc_pseuda_pcf31:0] 8001b40¢c
1< tb_r32_pipelinelc_risc_dutiurisc_next_pc[31.0] 80010410
5 t_r32_pipelingfc_risc_dutiSPI_controllerfuspi_IRQ 1

4 Rb_r32_pipelinefc_risc_dut’SPI_controller/SPICR[7:0] 11110011
% to_132_pipelinefc,_risc_dutiSP_controllsrSPISRIT-O] 01101011
<) fb_r32_pipelineic_risc_dutiprogrammable_interrupt_controllerPICMASK]T:0] 08

< Rb_r32_pipelinefc_risc_dutiprogrammable_interrupt_controllerPICSTAT[7.0] 03

5 b_r32_pipelinelc_risc_duthu_datapatn/b_cp0/bicp0_irg 0

5 t_r32_pipelinefc_risc_duthy_datapath/b_cp0lbocp0_exc_flag 0

5 H_r32_pipelingfc_risc_duthy_datapath/b_cp0lbocp0_flush_id 0

5 to_r32_pipelinalc_risc_duthy_datapath/b_cp0lbacp0_flush_ex 0

& b_r32_pipelinelc_risc_dutiu_datapath/b_cpO/bocp0_flush_mem 0

<) fb_r32_pipelineic_risc_dutiu_datapath/b_cp0lbep0_statf31:0] 00000013
< Rb_r32_pipelinefc_risc_duthu_datapath/b_cp0/bep0_cause[31.0] 00000000
5 b_r32_pipelinelc_risc_dutiu_datapatn/b_cpO/bicpd_BD 0

140 tb_r32_pipelinefc_risc_dutu_datapath/o_cp0licp0_if_pcf31:0] 8001640¢c
10 tb_r32_pipelinefc_risc_dutu_datapath/o_cp0licp0_id_pc[31:0] 80010408
1% o 132 pipelinelc,_risc_dutlu_datapath/o_cpOlicp0_ex_pei31:0] 80010404

I tapath/b_cp0/

<) Rb_r32_pipelineic_risc_dutiu_datapath/b_cp0lbcp0_epcf31:0] 80000023

<4 Ab_r32_pipelinefc_risc_dubiurise_instr31:0] 000428c2
<% Ab_r32_pipeline/c_risc_dutiurisc_pseudo_pc[31:0] 80010694
<% Ab_r32_pipeline/c_risc_dutiurisc_next_pc31:0] 80010694
{5 Ab_ra2_pipelinelc_risc_dutiSPI_controlleruospi_IRQ 1

Figure 7.6.8.3: Stimulation result of ¢_risc_dut for test case #8 using Vivado stimulator
(cont’d)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
119

Chapter 7: Verification Specification and Stimulation Result

4 ftb_r32_pipelinelc_risc_dutiurisc_instr31:0] 27777777
I ftb_r32_pipeline/c_risc_dutiurisc_pseudo_pc[31:0] 8001bdbc
13 fth_r32_pipeline/c_risc_dutiurisc_next_pc[31:0] 8001b4bc
s n_r32_pipelinelc_risc_dut'SPI_controller/uospi_IRQ 0

45 fto_r32_pipelinelc_risc_dut/SPI_controllernSPICR[7:0] 01110011
45 ftb_r32_pipeline/c_risc_dut’SPI_controllen/SPISR[7:0] 01001011
| Ab_r32_pipelinelc_risc_dut/programmable_interrupt_controllerPICSTATI7:0] 00

I+ ftbo_r32_pipelinelc_risc_dutiprogrammable_interrupt_controllerPICMASK]7:0] 08

Figure 7.6.8.4: Stimulation result of ¢_risc_dut for test case #8 using Vivado stimulator

(cont’d).

4 fo_r32_pipeline/c_risc_duturisc_instri31:0] 2777777
|3 fib_r32_pipelinelc_risc_dutiurisc_pseudo_pcf31:0] 80000028
5 fib_r32_pipeline/c_risc_dutiurisc_nex_pc[31:0] 80000028
5 fib_r32_pipelinelc_risc_dut/u_datapath/o_cp0ibcp0_epci31:0] 80000028
{h fto_r32_pipeline/c_risc_dut/u_datapath/o_cp0i/bicp0_eret 0

5 tb_r32_pipeline/c_risc_dutlu_datapath/b_cp0/bocp0_eret_addr31:0] 800000a8
) tb_r32_pipeline/c_risc_dutiu_datapath/b_cp0ibcp0_cause[31:0] 00000000
) b_r32_pipeline/c_risc_dutlu_datapath/b_cp0/bcp0_stat[31:0] 00000011

Figure 7.6.8.5: Stimulation result of ¢_risc_dut for test case #8 using Vivado stimulator
(cont’d).

1. In this case, the c_risc_client is reconfigured to act as a master. Since there are
two master devices in the same connection, any attempt to pull the SS pin to
low will trigger the mode fault error.

2. The newly configured master device, namely c_risc_client attempts to initiate
the communication with the c¢_risc_dut by pulling the SS pin to low. Once the
mode fault error is successfully detected, the bit 5 (MODF) of the ¢_risc_dut’s
SPISR will be set to 1. An interrupt request corresponding to the mode fault
error detection is immediately issued by the SPI controller in order to alert the
c_risc_dut to take action.

4. When the SPI’s IRQ occurs, the CP0O hardware will raise the bocp0_exc flag.
Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed
because the exception occurs at the branch delay slot.

6. Since the exception occurs at the branch delay slot, the CPO loads the
bicp0_id pc (which is the ID stage’s PC) into the bcp0O_epc (which is the CP0’s
EPC register) for return purpose after executing the exception handler program.

9. Inresponse to the mode fault error interrupt request, the ¢_risc_dut will handle
it by disabling the SPI controller. At the end, the SPICR holds the value of
8’b0111_0011 (0x73). After the c_risc_dut successfully disables the SPI

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
120

Chapter 7: Verification Specification and Stimulation Result

controller, the uospi_IRQ from the SPI controller is also removed and no more
interrupt request is triggered from the SPI controller.

For the remaining numbers, refer to the stimulation results part of the ¢_risc_dut
in test case 2.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
121

Chapter 8: Synthesis and Implementation

Chapter 8: Synthesis and Implementation

8.1 FPGA Resources Utilization of the Synthesized SPI Controller Unit

After the successful behavioral stimulation of the SPI controller unit, it is then ready
for logic synthesis and implementation. The FPGA development board used in this
project is the Xilinx Artix-7 XC7A100T FPGA chip on Digilent Nexys 4 DDR board.
The resources utilization information of the synthesized SPI controller unit on the
selected FPGA board is shown in below.

Name At Slice LUTs Slice Reqgisters rv‘;:es I'v1L’|:xaes Bonded IOB BUFGCTRL
(63400) (126800) (31700) (15850) (210) (32)

~ [uspi_v2 183 137 2 1 63 2
bspiclk_gen (bspiclk_gen 23 19 2 1 0 0
bspiRX (b=piRX] 23 0 0 0 0

[T bspiTX (hspiTx 42 15 o o V] o
RX_buffer16x8 (bFIFO_v2 52 21 0 0 0 0
SPICR_buffer2xs (bFIF0_sync 14 6 0 0 i 0
SPISR_buffer2xd (bFIF0_sync 0 14 6 0 0 i 0
TA_buffer16x8 (bFIFO_v2_1 26 21 0 0 o 0

Figure 8.1.1: Resource utilization report of the synthesized SPI controller unit on the
Nexys 4 DDR (XC7A100T) board.

Resource Utilization Available Utilization %
LuT 183 63400 0.29
LUTRAM 32 19000 017
FF 137 126800 0.11
10 63 210 30.00
LUT 1%

LUTRAM 1%

FFq 1%

10 30%

0 25 50 75 100
Utilization (%)

Figure 8.1.2: Resource utilization summary of the synthesized SPI controller unit on
the Nexys 4 DDR (XC7A100T) board.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
122

Chapter 8: Synthesis and Implementation

8.2 Timing Analysis
8.2.1 Timing Analysis of the On-board SPI Controller Unit
Since the SPI controller unit is operating at 10Mhz clock frequency, so it is important

1 _— 100ns
10Mhz

to make sure that the largest data path delay within it must not exceed

clock period. In order to obtain its maximum data path delay, static timing analysis is
performed on the on-board SPI controller unit after it had been successfully
implemented on the selected FPGA board. During the timing analysis, a timing
constraint/requirement of 20ns clock period with 50% duty cycle is used because the
RISC32 pipeline processor is running at 50Mhz clock frequency. At the end, the
maximum data path delay found within the SPI controller unit is about 12.607ns, which
is below the 100ns clock period. This indicates that the designed SPI controller unit can
operate safely when the 10Mhz clock frequency is used in it. A timing report describing
the largest data path delay together with the source and destination of the path is

provided in below.

Timing Report

Slack (MET) : 7.136ns (required time - arrival time)
Source: SPI_controller/RX_bufferléx8/bFIFO_rptr_reg[@]/C
(rising edge-triggered cell FDCE clocked by clk BUFR_BUFG {rise@®.@8@ns fall@18.06@8ns period=20.800ns})
Destination: SPI_controller/TX_buffer16x8/bFIFO_FIFOmem_reg @ _15_8_5/RAMB/T
(rising edge-triggered cell RAMD32 clocked by clk BUFR BUFG {rise@@.0@@ns fall@1@.80@ns period=2@.08@ns})
Path Group: clk_BUFR_BUFG
Path Tvpe: Setup (Max at Slow Process Corner)

[Requirement: 20.80@ns clk_BUFR_BUFG rise@20.008ns - clk_BUFR_BUFG rise@d.00@ns)
Data Path Delay: 12_607ns J (Togt 210ns (17.530%) route 16.397ns (82.476%))
Logic Levels: 11 (LUT2=1 LUT3=3 LUTS= T6=5 RAMD32=1)
Clock Path Skew: -0.843ns (DCD - SCD + CPR) .
Destination Clock Delay (DCD): 7.814ns = (27.814 - 20.008 Requirement: 26.800ns
Source Clock Delay (5CD): 8.683ns Data Path Delay: 12.687ns
Clock Pessimism Removal (CPR): @.826ns
Clock Uncertainty: ©9.035ns ((TSI~2 + TI1~2)~1/2 + D) / 2 + PE
Total System Jitter (7153): 8.071ns
Total Input Jitter (T13) 8.008ns
Discrete Jitter (D3): 9.008ns
Phase Error (PE): ©.000ns
Location Delay type Incr(ns) Path(ns) Netlist Resource(s)
(clock clk_BUFR_BUFG rise edge)
0.000 8.000 r
E3 0.000 ©.000 r uirisc_clk_108mhz (IN)
net (fo=0) 0.000 2.000 uirisc_clk_1@@mhz
E3 r uirisc_clk_18@mhz_IBUF_inst/I
E3 IBUF (Prop_ibuf_I_0) 1.482 1.482 r uirisc_clk_10@mhz_IBUF_inst/0
net (fo=1, routed) 3.785 5.187 uirisc_clk_188mhz_IBUF
BUFR_X@Y7 r BUFR_inst/I
BUFR_XeY7 BUFR (Prop_bufr_I_0) 9.982 6.169 r BUFRiinSt/D(
net (fo=1, routed) 0.797 6.966 clk_BUFR_BUFG
BUFGCTRL_X@Ye r BUFG_inst/I
BUFGCTRL_X8Y@ BUFG (Prop_bufg_I_0) 0.9896 7.862 r BUFG_inst/O
net (fo=3528, routed) 1.621 8.683 SPI_controller/RX_bufferléx8/urisc_clk
SLICE_X15Y118 FDCE r SPI_controller/RX_bufferléx8/bFIF0_rptr_reg[8]/C
SLICE_X15Y118 FDCE (Prop_fdce_C_Q) 0.419 9.102 r SPI_controller/RX_bufferléx8/bFIFO_rptr_reg[0]/Q
net (fo=13, routed) 1.162 10.264 SPI_controller/RX_buffer16x8/bFIFO_FIFOmem reg @_15_8_S/ADDRBO
SLICE_X14Y118 r SPI_controller/RX_buffer16x8/bFIFO_FIFOmem_reg ©_15_8_S/RAMB/RADR®
SLICE_X14Y118 RAMD32 (Prop_ramd32_RADRO_0)
0.327 10.591 r SPI_controller/RX_buffer16x8/bFIFO_FIFOmem reg @_15_8_S/RAMB/O
net (fo=3, routed) 9.698 11.289 u_datapath/b_rf/boFIFO_dout[2]
SLICE_X15Y115 r u_datapath/b_rf/brf_reg_ram_reg_rl_6_31_24 29_i 95/I@
SLICE_X15Y115 LUT3 (Prop_lut3_Ie_0) 0.348 11.637 r u_datapath/b_rf/brf_reg ram_reg rl 8 31 24 29 i_95/0
net (fo=1, routed) 1.893 12.730 u_datapath/b_rf/brf_reg_ram_reg_rl 6 31 24 29 i 95 n_2
SLICE_X&Y113 r u_datapath/b_rf/brf_reg_ram_reg_rl_6_31_24 29 i _55/I4
SLICE_X6Y113 LUT6 (Prop_lut6_I4_0) 9.124 12.854 r u_datapath/b_rf/brf_reg_ram_reg rl_© 31 24 29 i 55/0

net (fo=1, routed) u:datapath/b:r‘f/brfir‘egir‘amir“egirﬂiBiBl 24 29 i 55 n_2
SLICE_X4Y118 r u_datapath/b_rf/brf_reg_ram_reg_rl_6_31_24_29_i,

©
w
&
-
-
W
)
0
v

33/11

SLICE_X4Y11® LUT3 (Prop_lut3_I1_0) 9.124 13.919 r u_datapath/b_rf/brf_reg_ram_reg rl_© 31 24 29 i 33/0
net (fo=1, routed) 0.433 14.353 u_datapath/b_rf/brf_reg_ram_reg_rl_©_31_24 29 i 33 _n_2

SLICE_XAY110 r u_datapath/b_rf/brf_reg_ram_reg rl @ 31 24 29 i 20/I8

SLICE_X4Y11® LUT2 (Prop_lut2_Ie_0) 9.124 14.477 r u_datapath/b_rf/brf_reg_ram_reg rl_© 31 24 29 i_28/0
net (fo=4, routed) 9.917 15.393 u_datapath/b_rf/urisc_loaded_data[26]

SLICE_X6Y1@6 r u_datapath/b_rf/brf_reg_ram_reg rl @ 31 6_11_i_28/IS

Figure 8.2.1.1: Timing report of the on-board SPI controller unit.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
123

Chapter 8: Synthesis and Implementation

SLICE_X6Y106 LUT6 (Prop_luté_IS_0) 0.124 15.517 r u_datapath/b_rf/brf_reg_ram reg rl 8 31 _6_11_i_28/0
net (fo=1, routed) 9.528 16.046 u_datapath/b_rf/datal_8[18]
SLICE_X8Y106 r u_datapath/b_rf/brf_reg_ram_reg rl 6 31 6 11 i 206/I2
SLICE_X8Y106 LUTé (Prop_luté_I2_0) 9.124 16.170 r u_datapath/b_rf/brf_reg_ram_reg_rl_0_31_6_11 i 20/0
net (fo=1, routed) 0.407 16.577 u_datapath/b_rf/brf_reg_ram_reg_rl_6_31_6_11 i_20_n_2
SLICE X11Y165 r u_datapath/b_rf/brf_reg_ram_reg rl_6 31_6 11 _i_11/I4
SLICE X11Y1@5 LUT6 (Prop_lut6_I4_ D) 0.124 16.701 r u_datapath/b_rf/brf_reg_ram reg rl @ 31_6_11_i_11/0
net (fo=4, routed) 09.931 17.632 u_datapath/datad[10]
SLICE_X3@eY1e3 r u_datapath/udp_fw_data_mem_rt32[10]_i_1/I0
SLICE_X30Y183 LUT3 (Prop_lut3_T6_0) 0.124 17.756 r u_datapath/udp_fw_data_mem rt32[18]_i_1/0
net (fo=3, routed) 1.268 19.824 u_datapath/udp_fw_data_ex_rt32[18]
SLICE_X5Y101 r u_datapath/bFIFO_mem reg @ 1 @ 5 i 19/13
SLICE X5Y101 LUT6 (Prop_luté I3 0) 0.124 19.148 r u_datapath/bFIFO mem reg © 1 8 5 i 19/0
net (fo=1, routed) @.545 19.693 u_datapath/bFIFO_mem_reg_6_1 @_5_i_19_n_2
SLICE_X5Y103 r u_datapath/bFIFO_mem reg 8 1 8 5 i_5/10
SLICE_X5Y103 LUTS (Prop_lut5_I6 0) 0.124 19.817 r u_datapath/bFIFO_mem reg @ 1 @ 5 i 5/0
net (fo=29, routed) 1.473 21.290 SPI_controller/TX_bufferl6x8/bFIFO_FIFOmem_reg_© 15 @ 5/DIBe
SLICE_X34Y115 RAMD32 r SPI_controller/TX_bufferl6x8/bFIFO_FIFOmem_reg_8_15_0_5/RAMB/I

(clock clk_BUFR_BUFG rise edge)
20.000 20.000 r

E3 0.000 20.000 r uirisc_clk_10@mhz (IN)
net (fo=8) 0.080 20.880 uirisc_clk_180mhz
E3 r uirisc_clk_1@@mhz_IBUF_inst/I
E3 IBUF (Prop_ibuf_I_0) 1.411 21.411 r uirisc_clk_1@emhz_IBUF_inst/0
net (fo=1, routed) 3.143 24.554 uirisc_clk_l@@mhz_IBUF
BUFR_X@Y7 r BUFR_inst/I
BUFR_X8Y7 BUFR (Prop_bufr_I_0) ©.918 25.472 r BUFR_inst/0
net (fo=1, routed) 0.751 26.223 clk_BUFR_BUFG
BUFGCTRL_X@Ye r BUFG_inst/I
BUFGCTRL_XOY® BUFG (Prop_bufg_I_0) 2.091 26.314 r BUFG_inst/0
net (fo=3528, routed) 1.58@ 27.814 SPI_controller/TX_buffer16x8/bFIFO_FIFOmem_reg_0_15_8_5/WCLK|
SLICE_X34Y115 RAMD32 » SPI_controller/TX_buffer16x8/bFIFO_FIFOmem_reg @ 15_8_5/RAMB/CLK
clock pessimism 8.826 28.648
clock uncertainty -9.835 28.604
SLICE X34Y115 RAMD32 (Setup ramd32 CLK I)

-.185 28.419 SPI_controller/TX_buffer16x8/bFIFO_FIFOmem_reg_8_15_8_5/RAMB

required time 28.419
arrival time -21.290
slack 7.138

Figure 8.2.1.2: Timing report of the on-board SPI controller unit (cont’d).

8.2.2 Timing Analysis of the RISC32 with the SPI Controller Unit

As mentioned previously, the RISC32 pipeline processor is currently running at 50Mhz
clock frequency. Thus, it is crucial to ensure that the RISC32 can still operating at the
same clock frequency even after the SPI controller unit has been integrated into it. To
check this, static timing analysis is conducted on the entire RISC32 to obtain the

maximum data path delay. Same period constraint of 20ns is applied here.

From Figure 8.2.2.1, the worst negative slack (WNS) is calculated to be 2.056ns (> 0)
which shows that it has spare time after meeting the timing requirement. WNS =
2.056ns indicates that it takes only approximate 17.944ns (20ns-2.056ns, where 20ns is
the time period of 1 clock cycle for 50Mhz clock frequency that is specified in the

constraints file) to complete the execution. Therefore, the maximum possible frequency

that can be used is ——~— ~ 55Mhz. In other words, the RISC32 with the on-board

17.944ns

SPI controller unit can still run at 50Mhz in terms of implementation. This is further
supported with the result shown in Figure 8.2.2.2. As we can observe from Figure
8.2.2.2, the largest data path delay of the RISC32 is only about 17.731ns, which does
not exceed the 20ns clock period. In short, the integrated SPI controller unit has
minimum impact on the RISC32 pipeline processor in terms of timing requirement.
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
124

Chapter 8: Synthesis and Implementation

Design Timing Summary

Setup Hold Pulse Width
[Worst Megative Slack (WNS): 2056 ns] ‘Worst Hold Slack (WHS): 0.026 ns ‘Worst Pulse Width Slack (WPWS): 8.334dns
Total Megative Slack (THNS): 0.000ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Megative Slack (TPWS): 0.000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
Total Mumber of Endpoints: 9419 Total Mumber of Endpoints: 9419 Total Mumber of Endpoints: 3530

[AII user specified timing constraints are met.]

Figure 8.2.2.1: Design timing summary of the entire RISC32 pipeline processor.

IMPLEMENTED DESIGN - xc7a100tcsg324-1 (active)

TclConsole | Messages | Log |Reports | DesignRuns | Power | DRC | Methodology | Timing X ? —

Q T 2 Cc W ToQ | u Intra-Clock Paths - clk_BUFR_BUFG - Setup
General Information MName Slack ~ ' Levels HighFanout From To Total Delay
Timer Settings Path 1 2.056 17 79 u_datapathiudp_mem_alb_out_reg[5)/C ADCIUADC_CREG_reg[1][28)/D 17731
Design Timing Summary Path 2 2057 17 79 u_datapathiudp_mem_alb_out_reg[SYC ADC/UADC_CREG_reg|2][26)D 17.710
Clock Summary (2 Path 3 2138 18 79 u_datapathiudp_mem_alb_out_reg[5)C data_ramiuram_...reg_0/DIADI[1] 17533
> la Check Timing (4661 Path 4 2194 17 79 u_datapathiudp_mem_alb_out_reg[SYC ADC/UADC_CREG_regl4I[26/D 17.613
~ = Intra-Clock Paths Path 5 2219 17 79 u_datapathiudp_mem_alb_out_reg[SVC ADC/UADC_CREG_reg[1][241/D 17.562
» 1 uirisc_clk_100mhz Path 6 2235 17 79 u_datapathiudp_mem_alb_out_regl5VC ADC/UADC_CREG_reg|3J[26)D 17.558
¥+ ok BUFR_BUFG Path 7 2249 17 79 u_datapathiudp_mem_alb_oul reg[SJC ADC/UADC_CREG_reg[5|[28)D 17.557
Path 8 2276 16 79 u_datapathiudp_mem_alb_out_reg[5)/C dcacheicache_ce..._reg/DIADI[12] 17.452
Hold 0.025 ns (10 Path 9 2320 17 79 u_datapathiudp_mem_alb_out reglSVC ADC/UADC_CREG_reg|2][241/D 17.464
Pulse Widih 8.750 na (30 Path 10 2352 17 79 u_datapathiudp_mem_alb_out_reg[S)C ADCIUADC_CREG_reg[1][31)D 17.418

Inter-Clock Paths

b Other Path Groups
UserIgnored Paths

» = Unconstrained Paths

Figure 8.2.2.2: Top 10 paths in the RISC32 pipeline processor that have the largest total
data path delay.

8.3 Proposed Hardware Implementation

Only a few external components are required to build up the typical transceiver circuit
for wireless communication in this project and they are the antenna, bias resistors,
decoupling capacitors, inductors and reference crystal. The overview of the external
components used can be found in Appendix C.2 and C.3 respectively. Proper power
supply must be used for the error-free performance of the CC2420 transceiver. Thus, a
suggested power supply of 3.3 V is used as its voltage regulator power supply input in
the circuit. In addition, it is also connected directly to the RISC32 pipeline processor
via the SPI bus and several GPIO pins. The transceiver circuit is designed and followed
closely based on the reference circuit provided in its datasheet in order to obtain the
optimum performance of the Zigbee module. Figure 8.3.1. gives the full information

about how to interface the CC2420 transceiver with the RISC32 pipeline processor.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
125

Chapter 8: Synthesis and Implementation

In this project, there will be only one SPI master and one SPI slave in one node. At the
end, there will be two nodes used in this project because a single Zigbee module is
meaningless and a pair of Zigbee modules are always required in order to communicate
with each other wirelessly. In each node, the RISC32 pipeline processor acts as the SPI
master, providing the serial clock to initiate communication with the CC2420
transceiver that acts as the SPI slave. The Zigbee module is eventually monitored,
controlled and programmed by the RISC32 pipeline processor via the high-speed SPI
bus and the connected GPIO pins. The S25FL128S SPI serial flash memory is also
available in the connection for program storage purpose. Moreover, a simple active-
high LED circuit that consist of LED1, LED2, LED3 and LED4 is setup and driven by
the RISC32 pipeline processor for debugging purpose. Upon requested, data received
by the CC2420 module can be read by the RISC32 pipeline processor via the SPI bus.
After that, the data can be displayed on a PC by using the UART serial communication.
In order to do this, the RISC32 pipeline processor needs to be connected to the UART
interface of a PC that has the PUTTY software.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
126

Chapter 8: Synthesis and Implementation

The C42 is required for
the stability of the voltage

An external crsytal with two loading

regulator. N .
capacitors (C381 and C391) is used
The bias resistor R451 is 33V for providing reference frequency
Power . - :
used to set an accurate supply = = for synthesizer.
bias current. -—r L7pF_-|__27pF
45kOhm T Ca91 " [C3s1
Rdsﬂ [1ouF D
|2 XTAL |16Mhz .
RISC32 pipeline processor
o GPIO[0](output)
i An external pull-up resistor is used at SO to
i prevent floating input at RISC32.
SPI serial Vee
communication uspi SPI master |
T R1
i bal f Antenna A uiorisc_spi_miso uiospi_MISO
sDi:1sclre e';eh ded : Lé?ationor (50 Ohm) : uiorisc_spi_mosi uiospi_MOSI
k P ' uiorisc_spi_sclk uiospi_SCLK
5.6pF

RF \—{ GPIO[1](output) RZE R3

GPIO[2](input)
GPIO[3](input) When mode 0 is set, an external pull-down
GPIO[4](input) resistor is used to ensure a default logic state.
GPIO[5](input)

€62 |_

An external pull-down resistor is used to set
a defined value to prevent the Sl input from
floating.

" pigith infertare ||

GPIO[6](output)

Figure 8.3.1: Detailed descriptions about the connection mechanism of the RISC32 pipeline processor with the CC2420 transceiver by

using only few external components.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
127

Chapter 8: Synthesis and Implementation

100Mhz clock k
frequency
N e dut SPI se_rlal_ Wireless
_I— c_risc_au communication communication
| | /

Crisc ~ See Figure 8.3.1 for
Clock Oscillator »{ uirisc_clk_100mhz urisc_GPIO[31:8] [¢«—> I CC2420 connection details.
—pf uirisc_rst - - — I
GPIO[0] Y| VREGEN "\ |
SPI1_flash_dut uiorisc_spi_mosi [« » SO Zigbee coordinator
N | uiorisc_spi_miso |« > Sl (receiver)
uiorisc_spi_sclk » SCLK T
525ﬂ1288 | uiorisc_spi_ss_nle—>» |
GPIO[1] 7> CSn |
| sl | uiorisc_fc_MOSI | GPIO[2] |« FIFO ,
» CSNeg SO »{ uirisc_fc_MISO1 I [« Alrelp Only the pins that are
> RSTNeg WPNeg > 3:::zg—;g—m:§8§ I gEIgIg} f ggg‘ connected directly to the
HOLDNeg e = RISC32 are shown here.
uorisc_fc_sclk | GPIO[6] RESETn / :
uorisc_fc_ss I |
e |
uorisc_ua_tx_data

uirisc_ua_rx_data [«

I |
I LEDL f, 3300hm |
I GPIO[T7] |
A4 3300hm
: GPIO[8] LED2 g , :
| LED3 ff 3300hm |
I GPIO[9] |
I Leps A 3300hm
| GPIO[10] 4>D|——=——o | .
For debugging purpose
[
; I
I A
- - |

Figure 8.3.2: Connection mechanism of the ¢_risc_dut with the CC2420 transceiver for wireless communication.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

128

Chapter 8: Synthesis and Implementation

Wireless
communication 100Mhz clock
frequency
SP1 serial - - /
communication c_risc_client
: n
See Figure 8.3.1 for - Crisc
connection details. CC2420 RN urisc_GPIO[31:8] uirisc_clk_100mhz [« Clock Oscillator
| —_————— — T uirisc_rst fe——
| / VREG_EN [« Y GPIO[0]
Zigbee end device SO [« »| uiorisc_spi_mosi | SPI_flash_client
(transmitter) Sl |« »| uiorisc_spi_miso | %
T SCLK |« uiorisc_spi_sclk |
| <«—»] uiorisc_spi_ss_n | 825ﬂ1288
| CSnje— GPIO[1]
: FIFO » GPIO[2] | uiorisc_fc_MOSI |« 5 s P
: FIFOP » GPIO[3] I uirisc_fc_MISO1 L <
Only th that e < SO CSNe
cor:lrxllecteed g:rr]esctlyato 3:2 %Eg > gi:g%g} | uIrIsc_Ic_m:ggg < WPNeg RSTNeg <
> ulrisc_ic_| HOLDNe
RISC32 alre shown here. \ RESETn e GPIO[6] | vorise._fc_ solk g
| | uorisc_fc_ss
- 1 -
<«—— uorisc_ua_tx_data
—>{ uirisc_ua_rx_data
- - T T -
I 3300hm KR | epp |
I GPIO[7] I
3300hm Kk
LED2
: < GPIO[8] :
| 3300hm KR | £ps |
| »__=—|<]<7 GPIO9] |
— 3300hm kk LED4 |
For debugging purpose | | "—‘=—|<‘7 GPIO[10] |
I I
| _L I

Figure 8.3.3: Connection mechanism of the c_risc_client with the CC2420 transceiver for wireless communication.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
129

Chapter 8: Synthesis and Implementation

8.4 Proposed Software Implementation

After setting up the necessary connections and circuits, the CC2420 transceiver is first
initialized by using the connected SPI bus and GPIO pins. By using SPI serial
communication, the RISC32 pipeline processor can send and read data from the
CC2420 transceiver simultaneously through the SPI interface.

First of all, activate the CC2420’s voltage regulator for 1.8V power supply and wait
around 1ms before proceeding to ensure the voltage regulator has powered up. Upon
activated, reset the CC2420 transceiver and then issue the SXOSCON command strobe
for activating its crystal oscillator. Once the crystal oscillator of the CC2420 transceiver
is running, all of its FIFO/RAM can be accessed. Finally, configure both CC2420
transceivers by programming their configuration registers and FIFO/RAM respectively.

As stated in the Zigbee protocol, in a network, one device needs to act as the coordinator
and the rest can be either routers or end devices. Therefore, one of the C2420 transceiver
is configured as the coordinator whereas the other is used as the end device. Point-to-
point network is used as both Zigbee modules will transmit and receive data wirelessly
from each other only. In order for data to transmit and receive from one CC2420
transceiver to another, they need to be properly configured on the same network and
using the same frequency channel. In this project, the PAN id is manually programmed

to be 1 and both Zigbee modules are set to operate in channel 12.

After completing the initialization, both CC2420 transceivers are ready to be used.
Besides configurating the C2420 transceiver, the RISC32 pipeline processor also
performs the frame-transfer operations. The processor of the Zigbee end device
transmits data frame serially to the Zigbee end device through the SPI bus. The Zigbee
end device will first check its CCA signal for congestion avoidance and do not transmit
unless the channel is clear. Once the CCA signal goes high, it will then transmit the

data wirelessly to the Zigbee coordinator and wait for acknowledgement.

On the other hand, the Zigbee coordinator continuously looks for any wireless radio
message sent to it. It will only receive the data frame if and only if the address
recognition is successful. After that, it will pass the received data frame serially to the
processor interfaced to it and automatically issue an acknowledgement of the data frame
back to the Zigbee end device, confirming the successful frame reception. Figure 8.4.1
depicts the expected wireless communication between both CC2420 transceivers. In
BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
130

Chapter 8: Synthesis and Implementation

addition, Section 8.4.1 and 8.4.2 provide the full descriptions of the MIPS program for
c_risc_dut (interfaced with the Zigbee coordinator) and c_risc_client (interfaced with
the Zigbee end device) in terms of flowchart.

Zigbee end device Zigbee coordinator

When CCA =0 —:
|
When CCA=1 —
Data

Successful address recognition

12 symbol periods = 192us

I
|
|
|
|
I
I
I
: pCK
|
|
I
I

A\ v

Time Time

Figure 8.4.1: Expected wireless communication between the Zigbee end device and the

Zigbee coordinator in this project.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
131

Chapter 8: Synthesis and Implementation

8.4.1 Flowchart of the Hardware/Software Behaviors in ¢_risc_dut
A MIPS program for c_risc_dut in terms of hardware implementation has been
developed and the flowchart below provides the full information about the

hardware/software behaviors in ¢_risc_dut for on-board testing.

Enable SPI controller’s interrupt

If register write

7 operation fails?
Configure GPIO Lght up LED1 to .|nd|cate the
failure of register write
operation
Activate the CC2420's voltage v
regulator for 1.8V power supply - -
inputs B Configure FSCTRL register to
¢ operate in channel 12

Wait around 1ms until the
voltage regulator has powered

If register write

up ¢ operation fails?
Light up LED1 to indicate the
Reset the CC2420 failure of register write
¢ operation
Wait around 10ms
B é) Configure SECCTRLO register to
disable RXFIFO protection since
Turn on the 16MHz crystal the MAC level security is not
oscillator of the CC2420 used to achieve the optimum
¢ use of the CC2420's RX FIFO

Wait until the 16MHz crystal
oscillator is running

If register write

¢ operation fails?
Configure MDMCTRLO register
to enable automatic Y
transmission of acknowledge Light up LED1 to indicate the

failure of register write
operation

frame

e

Assign PAN id to 0x0001

If register write
operation fails2

v
Light up LED1 to indicate the
failure of register write
operation

If ram write
qQperation fail

B é) Light up LED2 to indicate the
failure of ram write operation

Y

Configure the RXCTRL1 register
to use the 3uA reference bias B
current (Recommended setting)

I

Figure 8.4.1.1: Flowchart of the hardware/software behaviors in c¢_risc_dut for on-

board testing.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
132

Chapter 8: Synthesis and Implementation

QA

Assign short address to 0x5678

address recognitio
failure occurs

Y

Light up LED4 to indicate the
failure of address recognition

If ram write
Qperation fails?

Light up LED2 to indicate the

failure of ram write operation v
Read from the RX FIFO of the
é ; CC2420
B Enable CC2420's
receive mode l
> / Display the received data /
A 4
Get the Start of Frame l
Delimiter (SFD) signal to check Wait around 250us
if the SFD field has been
completely received l
Light up LED3 to indicate the
success of address recognition
Yes No
> B
Turn off the crystal oscillator
y and RF
Get the Start of Frame l
Delimiter (SFD) signal to check
if the complete MPDU field Reset the CC2420
has been received or address l
recognition has failed
Wait around 10ms

'

De-activate the CC2420's
voltage regulator for 1.8V power
supply inputs

' ()
Get the FIFOP signal to check if

address recognition has failed

Yes No

Figure 8.4.1.2: Flowchart of the hardware/software behaviors in ¢_risc_dut for on-

board testing. (cont’d).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
133

Chapter 8: Synthesis and Implementation

8.4.2 Flowchart of the Hardware/Software Behaviors in c_risc_client

A MIPS program for c_risc_client in terms of hardware implementation has been
developed and the flowchart below provides the full information about the hardware
and software behaviors in for on-board testing.

Enable SPI controller’s interrupt

v

Configure GPIO

If register write
operation fails?

Light up LED1 to indicate the
failure of register write

¢ operation
Activate the CC2420's voltage
B

regulator for 1.8V power supply Configure FSCTRL register to

inputs
¢ operate in channel 12

Wait around 1ms until the
voltage regulator has powered

If register write

up ¢ operation fails2
Light up LED1 to indicate the
Reset the CC2420 failure of register write
¢ operation
Wait d 10
artaroun ms B é Configure SECCTRLO register to
¢ disable RXFIFO protection since
Turn on the 16MHz crystal the MAC level security is not
oscillator of the CC2420 used to achieve the optimum
¢ use of the CC2420's RX FIFO

Wait until the 16MHz crystal
oscillator is running

If register write

¢ operation fails2
Configure MDMCTRLO register
to enable automatic Y
transmission of acknowledge Light up LED1 to indicate the
frame failure of register write
operation

If register write
operation fails2

B é T

Assign PAN id to 0x0001

v
Light up LED1 to indicate the
failure of register write

operation If ram write
qQperation fail
B é) Light up LED2 to indicate the
, failure of ram write operation
Configure the RXCTRL1 register é) ;
to use the 3uA reference .bias B Assign short address to 0x1234
current (Recommended setting)

| oy

Figure 8.4.2.1: Flowchart of the hardware/software behaviors in ¢_risc_client for on-

board testing.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
134

Chapter 8: Synthesis and Implementation

If ram write
Qperation fails

Light up LED2 to indicate the
failure of ram write operation

O

—

Configure the data frame to be
transmitted and write the data
frame to the TX FIFO of the
CC2420

¥

Enable CC2420's
receive mode

N|
Get the Clear Channel

Assessment (CCA) signal for
collision avoidance

 —

Perform packet transmission
when the respective channel is
available and not busy by

Wait around 128us

A

enabling CC2420's transmit
mode
Get the Start of Frame

Delimiter (SFD) signal to check
if the SFD field has been
completely transmitted

A

Get the Start of Frame
Delimiter (SFD) signal to check
if the complete MPDU field
has been transmitted

Light up LED3 to
complete transmission

indicate

|

| Wait around 250ms

v

Read from the RX FIFO of the
CC2420

eceive the correct
acknowledge frame2

\ 4

Light up LED3 and LED4 to
indicate successful packet
transmission and reception of
the correct acknowledge
frame (successful)

I

v
Light up LED1, LED2 and LED3
to indicate complete
transmission but fail to receive
the correct acknowledge
frame (not successful)

Turn off the crystal oscillator
and RF

Reset the CC2420

Wait around 10ms

De-activate the CC2420's
voltage regulator for 1.8V power
supply inputs

Figure 8.4.2.2: Flowchart of the hardware/software behaviors in ¢_risc_client for on-

board testing (cont’d).

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

135

Chapter 9: Conclusion and Future Work

Chapter 9: Conclusion and Future Work

9.1 Conclusion

The first two objectives of this project have been achieved. The previously developed
SPI controller unit has been revised and further enhanced. It can now perform full-
duplex data communication correctly with another SPI-interface device in all of the 4
transfer modes (mode 0, 1, 2, 3) in both master and slave operations. The micro-
architecture specification of the designed SPI controller unit and its internal blocks have
been presented and they can be found in Chapter 5. With the availability of well-
developed designed documents, the research works can now be done easier and speed
up significantly as a SPI controller that meet the standard SPI protocol can now be built
easily.

Besides, it has also been successfully integrated into the RISC32 pipeline processor by
using the I/O memory mapping technique. It can function well with the RISC32
pipeline processor and vice versa across the CDC boundaries regardless of interrupt or
polling method is being used. Chapter 6 provides the full information about the
Interrupt Service Routine (ISR) that is developed specifically for the SPI controller unit.
In addition, the designed SPI controller has been functionally proven and is able to meet
all of the specified functional requirements, either as a single unit or in a whole system.
A comprehensive documentation about the verification specifications, test plans, test
programs and testbenches of the SPI controller unit has been well-developed and

maintained. All of the stimulation results can be found in Chapter 7.

However, in response to the COVID-19 pandemic in the country, the university campus
is closed temporarily during the implementation of MCO. As a result, the third objective
of this project is only partially completed as the physical design (which is the on-board
testing with Zigbee module) cannot be completed due to the inaccessibility of the
required lab hardware resources and equipment. By using the Vivado Design Suite tools,
the RISC32 pipeline processor can be stimulated and synthesized into the Digilent
Nexys 4 DDR (XC7A100T) board. At the end, the designed SPI controller unit is fully
synthesizable and can operate safely at its 10Mhz /O clock. Moreover, it has minimum
impact on the integrated RISC32 pipeline processor in terms of timing requirement.
The information about FPGA resource utilization and timing requirement are available
in Chapter 8.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
136

Chapter 9: Conclusion and Future Work

9.2 Future Work

In future, the on-board testing with Zigbee module may need to be carried out. By using
the proposed solutions for hardware and software implementation presented in Chapter
8, afinal testing can be performed easily for demonstrating the transfer of data between
two FPGA boards via the CC2420 transceivers.

Moreover, the designed SPI controller unit can also be further enhanced by having two
modes, namely normal mode and bidirectional mode so that it can communicate with
3-wire and 4-wire SPI devices in future. Four external pins will be used in the normal
mode to perform the full-duplex data communication whereas three external pins will
be used in the bidirectional mode for half-duplex data communication. This special
feature could allow the SP1-equipped processor to interface more flexibly with all types
of SPI devices in the market.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
137

Bibliography

Bibliography
Anusha 2017, Basics of Serial Peripheral Interface (SPI). Available from:
<https://www.electronicshub.org/basics-serial-peripheral-interface-spi/>.
[Accessed on 10" March 2019].

Choudhury, S, Singh, GK, & Mehra, RM 2014, Design and Verification Serial
Peripheral Interface (SPI) Protocol for Low Power Applications. Available from:
<http://www.rroij.com/open-access/design-and-verification-serial-
peripheralinterface-spi-protocol-for-low-powerapplications.pdf >. [Accessed on
1%t April 2019].

Cummings, CE 2002, Stimulation and Synthesis Techniques for Asynchronous FIFO
Design. <http://www.sunburst-
design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf>. [Accessed on 10"
March 2019].

Cummings, CE 2008, Clock Domain Crossing (CDC) Design & Verification Technique
Using System Verilog. <http://www.sunburst-
design.com/papers/CummingsSNUG2008Boston_CDC.pdf> [Accessed on 14"
March 2019].

Cummings, CE, & Alfke, P 2002, Stimulation and Synthesis Techniques for
Asynchronous FIFO Design with Asynchronous Pointer Comparisons.
<http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf>.
[Accessed on 10" March 2019].

CORELIS n.d., SPI Tutorial. Available from:
<https://www.corelis.com/education/tutorials/spi-tutorial/ >. [Accessed on 20"
February 2020].

Patterson, DA & Hennessy, JL 2005, Computer Organization and Design: The
Hardware/Software Interface (3th edition). San Francisco: Morgan Kaufmann

Pulishers.

De la Piedra, A, Braeken, A, & Touhafi, A 2012, ‘Sensor Systems Based on FPGAs
and Their Applications’, A Survey. Sensors.12(9), pp.12235-12264. Available
from: <https://doi.org/10.3390/s120912235>. [Accessed on 31% March 2019].

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
138

https://www.electronicshub.org/basics-serial-peripheral-interface-spi/
http://www.rroij.com/open-access/design-and-verification-serial-peripheralinterface-spi-protocol-for-low-powerapplications.pdf
http://www.rroij.com/open-access/design-and-verification-serial-peripheralinterface-spi-protocol-for-low-powerapplications.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf
https://www.corelis.com/education/tutorials/spi-tutorial/
https://doi.org/10.3390/s120912235

Bibliography

Dhaker, P 2018, Introduction to SPI Interface. Available from
<https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-
interface.html>. [Accessed on 20" February 2020].

Elprocus n.d., Zighee Wireless Technology Architecture and Applications. Available
from: <https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its
applications/>. [Accessed on 10 March 2019].

Goh, JS 2019, The development of an exception scheme for 5-stage pipeline RISC
processor. Available from
<http://eprints.utar.edu.my/3434/1/fyp_CT_2019 GJS_1503470.pdf>. [Accessed
on 1% January 2020].

Kiat, WP 2018, The Design of an FPGA-based Processor with Reconfigurable
Processor Execution Structure for Internet of Things (1oT) applications.
Available from: <http://eprints.utar.edu.my/3146/> [Accessed on 31% March
2019].

Leens, F 2009, ‘An introduction to I2C and SPI protocols’, IEEE Instrumentation
&Measurement Magazine, 12(1), pp.8-13. Available from:
<https://ieeexplore.ieee.org/document/4762946>. [Accessed on 31 March
2019].

Linda, R 2017, Zigbee. Available from:
<https://internetofthingsagenda.techtarget.com/definition/ZigBee>. [Accessed on
10" March 2019].

Kaneria, D 2014, Serial Peripheral Interface (SPI). Available from:
<https://www.slideshare.net/DhavalKaneria/serial-peripheral-interfacespi>.
[Accessed on 20" February 2020].

Laner, M 2016, Memory Mapped 1/0, Polling, DMA. Available from
<http://www.cim.mcgill.ca/~langer/273/20-notes.pdf >. [Accessed from 25™
March 2020].

Larson, S 2019, SPI 3-Wire master (VHDL). Available from
<https://www.digikey.com/eewiki/pages/viewpage.action?pageld=27754638#SPI
3-WireMaster(VHDL)-Clocking>. [Accessed form 20" February 2020].

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
139

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-applications/
https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-applications/
http://eprints.utar.edu.my/3434/1/fyp_CT_2019_GJS_1503470.pdf
http://eprints.utar.edu.my/3146/
https://ieeexplore.ieee.org/document/4762946
https://internetofthingsagenda.techtarget.com/definition/ZigBee
https://www.slideshare.net/DhavalKaneria/serial-peripheral-interfacespi
http://www.cim.mcgill.ca/~langer/273/20-notes.pdf
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=27754638#SPI3-WireMaster(VHDL)-Clocking
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=27754638#SPI3-WireMaster(VHDL)-Clocking

Bibliography

Mok, KM 2015, Digital Systems Designs, lecture notes distributed in Faculty of
Information and Communication Technology at Universiti Tunku Abdul

Rahman.

Mok, KM 2015, Computer Organization and Architecture, lecture notes distributed in
Faculty of Information and Communication Technology at Universiti Tunku
Abdul Rahman.

Motorola Inc. 2003, SPI Block Guide V03.06. Available from
<http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manual
s/S12SPIV3.pdf>. [Accessed on 10" March 2019].

Oudhida, AK, Berrabdo, ML, Liacha, R, Tiar, K & Alhoumays, YN 2010, ‘Design
and Test of General-Purpose SPI Master/Slave IPs on OPB Bus’, 2010 7"
International Multi-Conference on Systems, Signals and Devices, pp. 1-6.
Available from: <https://ieeexplore.ieee.org/document/5585592 >. [Accessed on
3" April 2019].

Polytechnic Hub 2017, Application of serial peripheral interface (SPI). Available
from: <https://www.polytechnichub.com/applications-serial-peripheral-interface-
spi/>. [Accessed on 1% April 2019].

Priya n.d., loT Communication between two devices over Zigbee Protocol: 10T Part
37. Available from: <https://www.engineersgarage.com/Contribution/D2D-l0T-

Communication-Zigbee-Protocol>. [Accessed on 12" March 2019].

Sporre, K 2018, 10T Development with Wireless Communications: Getting Started.
Available from: <https://www.digi.com/blog/iot-development-and-wireless-

communication/>. [Accessed on 3" April 2019].

Texas Instrument 2013, 2.4 GHz IEEE 802.15.4 / Zigbee-ready RF Transceiver.
Available from: <https://www.ti.com/lit/ds/symlink/cc2420.pdf>. [Accessed on
3" April 2019]

Tuan, MC, Chen, SL, Lai, YK, Chen, CC, & Lee, HY 2017, A 3-wire SPI Protocol
Chip Design with Application-Specific Integrated Circuit (ASIC) and FPGA

Verification. Available from:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
140

http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manuals/S12SPIV3.pdf
http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manuals/S12SPIV3.pdf
https://ieeexplore.ieee.org/document/5585592
https://www.polytechnichub.com/applications-serial-peripheral-interface-spi/
https://www.polytechnichub.com/applications-serial-peripheral-interface-spi/
https://www.engineersgarage.com/Contribution/D2D-IoT-Communication-Zigbee-Protocol
https://www.engineersgarage.com/Contribution/D2D-IoT-Communication-Zigbee-Protocol
https://www.digi.com/blog/iot-development-and-wireless-communication/
https://www.digi.com/blog/iot-development-and-wireless-communication/
https://www.ti.com/lit/ds/symlink/cc2420.pdf

Bibliography

<https://avestia.com/EECSS2017_Proceedings/files/paper/EEE/EEE_110.pdf>.
[Accessed on 1% April 2019].

UKEssays 2018, Microprocessor Without Interlocked Pipeline Stages Computer
Science Essay. Available from: <https://www.ukessays.com/essays/computer-
science/microprocessor-without-interlocked-pipeline-stages-computer-science-
essay.php?vref=1>. [Accessed on 9" March 2019].

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
141

https://avestia.com/EECSS2017_Proceedings/files/paper/EEE/EEE_110.pdf
https://www.ukessays.com/essays/computer-science/microprocessor-without-interlocked-pipeline-stages-computer-science-essay.php?vref=1
https://www.ukessays.com/essays/computer-science/microprocessor-without-interlocked-pipeline-stages-computer-science-essay.php?vref=1
https://www.ukessays.com/essays/computer-science/microprocessor-without-interlocked-pipeline-stages-computer-science-essay.php?vref=1

Appendix

Appendix A: Timing Diagram
A.1 Timing diagram of different SPI’s Transfer Modes

SSnT\ o
sclk /N / ./ /S
MOSI™/MISO® X bit7 X _bite X bits X bit4 X bit3 X_bit2 X bitl X bit0 X
MOSI®/MISO™ sample 4 A A A A A 4 A

Note: M = master, S = slave

Figure A.1.1: Timing diagram for mode O serial data communication.

SsSn—\ I
sclk /7 / ./ ./ /S
MOSI™/MISO® X bit7 X bit6 X bits X bitd X bit3 X bit2 X_bit1 X bito X
MOSI®/MISO™sample 4 4 t t 4 4 ¢ 4

Note: m = master, s = slave

Figure A.1.2: Timing diagram for mode 1 serial data communication.

SSn—\ S
sckk - ./ ./ ./ /S S S
MOSI™/MISO® X bit7 X bit6 X bits X bitd X bit3 X bit2 X_bit1 X bito X
MOSI®/MISO™sample 4 4 4 t ¢ 4 4 4

Note: m = master, s = slave

Figure A.1.3: Timing diagram for mode 2 serial data communication.

SSnT N
scLk - ./ ./ ./ /S~
MOSI™/MISO® X bit7 X bit6 X bits5 X bitd X bit3 X bit2z X bitl X bit0 X
MOSI®/MISO™sample 4 4 4 1) t 1) 1) 4

Note: m = master, s = slave

Figure A.1.4: Timing diagram for mode 3 serial data communication.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
A-1

Appendix

Appendix B: Testbench
B.1 Testbench for SPI Controller Unit’s Functional Test

“default_nettype none//to catch typing errors due to misspelled of signal names

“ifdef MODEL_TECH

“include "../util/macro.v"
“else

“include "../../util/macro.v"
“endif

/I"define WORD_NB 32 (defined in macro.v)
/I"define BYTE_NB 8 (defined in macro.v)

module tb_uspi_v3

0;

/[Declarations of the connections to the DUT_MASTER outputs
wire tb_w_uiospi_MOSI;

wire tb_w_uiospi_MISO;

wire tb_w_uiospi_SCLK;

wire tb_w_uiospi_SS n;

wire tb_w_uospi_IRQ_master;

wire [WORD_NB -1:0]th_w_uospi_wb_r_dout_master;
wire tb_w_uospi_wb_w_ack_master;

wire tb_w_uospi_wb_r_ack master;
/[Declarations of the drivers to the DUT_MASTER inputs
reg tb_r_uispi_SPIE_master;

reg tb_r_uispi_pipe_stall_master;

reg [BYTE_NB-1:0]th r uispi_wb w_din_master;

reg [3:0] tb_r_uispi_wb_w_sel master;

reg tb_r_uispi_wb_w_we_master;

reg tb_r_uispi_wb_w_stb_master;

reg [3:0] tb_r_uispi_wb_r_sel master;

reg tb_r_uispi_wb_r_we_master;

reg tb_r_uispi_wb_r_stb_master;

/IDeclarations of the connections to the DUT_SLAVE outputs

wire tb_w_uospi_IRQ _slave;

wire [WORD_NB -1:0]th_w_uospi_wb_r_dout slave;
wire tb_w_uospi_wb_w_ack_slave;
wire tb_w_uospi_wb_r_ack_slave;
/[Declarations of the drivers to the DUT_SLAVE inputs
reg tb_r_uispi_SPIE_slave;

reg tb_r_uispi_pipe_stall_slave;

reg [BYTE_NB-1:0]tb r uispi_wb w_din_slave;

reg [3:0] tb_r_uispi_wb_w_sel slave;

reg tb_r_uispi_wb_w_we_slave;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-1

Appendix

reg tb_r_uispi_wb_w_stb_slave;
reg [3:0] tb_r_uispi_wb_r_sel_slave;
reg tb_r_uispi_wb_r_we_slave;
reg tb_r_uispi_wb_r_stb_slave;

/[Declaration of the drivers to the sys and rst of both modules
reg tb_r_sys clk;
reg tb_r_sys rst;

//Module instantiation

uspi_v2

DUT_MASTER
(.uiospi_MOSI(tb_w_uiospi_MOSI),
.uiospi_MISO(tb_w_uiospi_MISO),
.uiospi_SCLK(th_w_uiospi_SCLK),
.uiospi_SS_n(tb_w_uiospi_SS_n),
.uospi_IRQ(tb_w_uospi_IRQ_master),
.uospi_whb_r_dout(tb_w_uospi_wb_r_dout_master),
.uospi_wb_w_ack(tb_w_uospi_wb_w_ack_master),
.uospi_wb_r_ack(tb_w_uospi_wb_r_ack_master),
.uispi_SPIE(tb_r_uispi_SPIE_master),
.uispi_pipe_stall(tb_r_uispi_pipe_stall_master),
.uispi_wb_w_din(th_r_uispi_wb_w_din_master),
.uispi_wb_w_sel(tb_r_uispi_wb_w_sel_master),
.uispi_wb_w_we(tb_r_uispi_wb_w_we_master),
.uispi_wb_w_stb(tb_r_uispi_wb_w_stb_master),
.uispi_wb_r_sel(tb_r_uispi_wb_r_sel_master),
.uispi_wb_r_we(tb_r_uispi_wb_r_we_master),
.uispi_wb_r_stb(tb_r_uispi_wb_r_stb_master),
.uispi_wb_clk(tb_r_sys_clk),
.uispi_wb_rst(tb_r_sys_rst));

uspi_v2

DUT_SLAVE

(.uiospi_MOSI(tb_w_uiospi_MOSI),
.uiospi_MISO(tb_w_uiospi_MIS0O),
.uiospi_SCLK(th_w_uiospi_SCLK),
.uiospi_SS_n(tb_w_uiospi_SS_n),
.uospi_IRQ(th_w_uospi_IRQ_slave),
.uospi_wb_r_dout(tb_w_uospi_wb_r_dout_slave),
.uospi_wb_w_ack(tb_w_uospi_wb_w_ack_slave),
.uospi_whb _r_ack(tb_w_uospi_wb_r_ack_slave),
.uispi_SPIE(tb_r_uispi_SPIE_slave),
.uispi_pipe_stall(tb_r_uispi_pipe_stall_slave),
.uispi_wb_w_din(tb_r_uispi_wb_w_din_slave),
.uispi_wb_w_sel(tb_r_uispi_wb_w_sel_slave),
.uispi_wb_w_we(th_r_uispi_wb_w_we_slave),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

B-2

Appendix

.uispi_wb_w_stb(tb_r_uispi_wb_w_stb_slave),
.uispi_wb_r_sel(tb_r_uispi_wb_r_sel_slave),
.uispi_wb_r_we(tb_r_uispi_wb_r_we_slave),
.uispi_wb_r_stb(tb_r_uispi_wb_r_stb_slave),
.uispi_wb_clk(tb_r_sys_clk),
.uispi_wb_rst(tb_r_sys_rst));

/[Clock waveform generation for DUT_MASTER
initial tb_r_sys_clk <=1'b1;
always #10 tb_r_sys _clk = ~tb_r_sys clk;

/[Test pattern generation

initial begin
//Sim time =0
/[Signals initialization for DUT_MASTER
tb_r_uispi_SPIE_master <= 1'b1;//enable global interrupt
tb_r_uispi_pipe_stall_master <= 1'b0;//do not stall the master
tb_r_uispi_wb_w_stb_master <= 1'b0;//disable the write access on master
tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_r_stb_master <= 1'b0;//disable the read access on master
tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

/[Signals initialization for DUT_SLAVE

tb_r_uispi_SPIE_slave <= 1'b1;//enable global interrupt
tb_r_uispi_pipe_stall_slave <= 1'b0;//do not stall the slave
tb_r_uispi_wb_w_stb_slave <= 1'b0;//disable the write access on slave
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave
tb_r_uispi_wb_r_stb_slave <= 1'b0;//disable the read access on slave
tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

[R R
/[Test case 1: System reset

repeat(5)@(posedge tb_r_sys clk) tb_r_sys rst <= 1'b0;

repeat(5)@(posedge th_r_sys clk) tb_r_sys rst <= 1'bl;

repeat(10)@(posedge tb_r_sys clk) tb_r_sys rst <= 1'b0;

[]
/[Test case 2: Write operation on SPISR
tb_r_uispi_wb_w_stb_master <= 1'b1;//enable the write access on master
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on SPI master
tb_r_uispi_wb_w_sel _master <= 4'b0010;//enable write operation on SPISR
tb_r_uispi_wb_w_din_master <= 8'h0000_1111;//8'hOF
tb_r_uispi_wb_w_stb_slave <= 1'b1;//enable write access on slave
tb_r_uispi_wb_w_we_slave <= 1'b1;//enable write operation on slave
tb_r_uispi_wb_w_sel slave <= 4'b0010;//enable write operation on SPISR
tb_r_uispi_wb_w_din_slave <= 8'h0000 _1111;//8'hOF

@(posedge th_r_sys clk);

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave
repeat(5)@(posedge th_r_sys_clk);

B
/[Test case 3: Write operation on SPICR
/IMode 0 is selected
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master
tb_r_uispi_wb_w_sel_master <= 4'h0001;//enable write operation on SPICR
tb_r_uispi_wb_w_din_master <= 8'h1100_0000;//8'hCO0

/IMode 0 is selected

tb_r_uispi_wb_w_we_slave <= 1'b1;//enable write operation on slave
tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable write operation on SPICR
tb_r_uispi_wb_w_din_slave <= 8'h1000_0000;//8'h80

@(posedge th_r_sys_clk);
tb_r_uispi_wb_w_we_master <= 1'b0;//disable write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable write operation on slave

@(posedge th_r_sys_clk);

tb_r_uispi_wb_r_stb_master <= 1'b1;//enable the read access on master
tb_r_uispi_wb_r we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content
tb_r_uispi_wb_r_stb_slave <= 1'b1;//enable the read access on slave
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel_slave <= 4'h0011;//read SPISR and SPICR content

[R
/[Test case 4: Transmitter buffer empty interrupt support
repeat(20)@(posedge tb_r_sys clk);
tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master
tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

[
/[Test case 5: Push one 8-bit data into the bFIFO_FIFOreg of the TX buffer16x8
//Load data 8'b1010 1010 into the TX buffer16x8 of the DUT_MASTER (master)
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master
tb_r_uispi_wb_w_sel _master <= 4'b0100;//enable the write operation on
/ITX_buffer16x8
tb_r_uispi_wb_w_din_master <= 8'h1010_1010;//8'hAA

//Load data 8'b0101 0101 into the TX buffer16x8 of the DUT_SLAVE (slave)
tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave
tb_r_uispi_wb_w_sel slave <= 4'b0100;//enable the write operation on
/ITX_bufferl6x8
tb_r_uispi_wb_w_din_slave <= 8'h0101_0101;//8'h55

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

@(posedge th_r_sys_clk);
tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

@(posedge th_r_sys_clk);

tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'n0010;//read SPISR content
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation slave
tb_r_uispi_wb_r_sel_slave <= 4'h0010;//read SPISR content

repeat(20)@(posedge tb_r_sys clk);
tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master
tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on master

|
/[Test case 6: Mode 0 serial data communication
//Load data 8'1010 1010 into bFIFO TX_buffer16x8 of the DUT_MASTER
(master)
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master
tb_r_uispi_wb_w_sel_master <= 4'n0100;//enable the write operation on
IITX_buffer16x8
tb_r_uispi_wb_w_din_master <= 8'h1010_1010;//8'hAA
//Load data 8'b0101_0101 into bFIFO TX_buffer16x8 of the DUT_SLAVE (slave)
tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave
tb_r_uispi_wb_w_sel _slave <= 4'b0100;//enable the write operation on
/ITX_buffer16x8
tb_r_uispi_wb_w_din_slave <= 8'h0101_0101;//8'h55
@(posedge th_r_sys_clk);
tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave
repeat(100)@(posedge th_r_sys_clk);

[R R R]
/[Test case 7: Received buffer full interrupt support after receiving a 1-byte data
I/(RXFM = 0)

repeat(15)@(posedge tb_r_sys clk);

e e S S e
/[Test case 8: Pop 1-byte of received data from the RX_buffer16x8
tb_r_uispi_wb_r we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel _master <= 4'b1000;//pop 1-byte of data from the
IIRX_buffer16x8
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel slave <= 4'b1000;//pop 1-byte of data from the RX_buffer16x8
@(posedge th_r_sys_clk);
tb_r_uispi_wb_r_sel _master <= 4'b0011;//read SPISR and SPICR content
tb_r_uispi_wb_r_sel slave <= 4'b0011;//read SPISR and SPICR content

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

repeat(5)@(posedge th_r_sys_clk);
tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master
tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

|
/[Test case 9: Received buffer full interrupt support after receiving 16 x 1-byte data
I/(RXFM = 1)
/[Configure the SPICR first to de-activate/stop the data communication
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master
tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_master <= 8'n0100_0000;//8'h40
/[Configure the SPICR first to de-activate/stop the data communication
tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on master
tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_slave <= 8'h0000_0000;//8'h00

@(posedge tb_r_sys_clk);

/[Configure the SPISR

tb_r_uispi_wb_w_sel_master <= 4'h0010;//enable the write operation on SPISR
tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR
tb_r_uispi_wb_w_din_master <= 8'h0001_1111;//8'h1F
tb_r_uispi_wb_w_din_slave <= 8'h0001_1111;//8'h1F

/[Load 16x1-byte data into bFIFO TX_buffer16x8 of the DUT_MASTER (master) for
/Iserial 1-byte data transmission
/lto another SPI device (slave)
@(posedge tb_r_sys_clk);
tb_r_uispi_wb_w_din_master <= 8'h1010_1010;//8'hAA
tb_r_uispi_wb_w_sel _master <= 4'b0100;//enable the write operation on
/ITX_buffer16x8
tb_r_uispi_wb_w _din_slave <= 8'h0101_0101;//8'h55
tb_r_uispi_wb_w_sel slave <= 4'b0100;//enable the write operation on
TX_buffer16x8

repeat(16) begin

@(posedge tb_r_sys_clk);

tb_r uispi_wb_w_din_master <= ~tb_r_uispi_wh_w_din_master;

tb_r uispi_wb_w_din_slave <= ~th_r_uispi_wb_w_din_slave;
end

@(posedge tb_r_sys_clk);

/[Configure the SPICR again to activate the master and the slave
tb_r_uispi_wb_w_sel _master <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_master <= 8'1100_0000;//8'hCO
tb_r_uispi_wb_w_sel slave <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_slave <= 8'h1000_0000;//8'h80

@(posedge th_r_sys clk);

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

@(posedge th_r_sys_clk);

tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel_slave <= 4'h0011;//read SPISR and SPICR content

//data communication between the master and the slave begins

[ltransmit 16x1-byte of data

IIreceive 16x1-byte of data

repeat(1640)@(posedge tb_r_sys clk);

tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

tb_r_uispi_wb_w_sel_master <= 4'h0100;//enable the write operation on

IITX_buffer16x8

tb_r_uispi_wb_w_din_master <= 8'h1001_1010;//8'h9A

tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write the operation on
IITX buffer16x8

tb_r_uispi_wb_w_din_slave <= 8'h1010_1001;//8'hA9

@(posedge th_r_sys_clk);

tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

repeat(20)@(posedge tb_r_sys clk);

/[Test case 10: Pop 16 number of 1-byte data from the RX_buffer16x8
tb_r_uispi_wb_r we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content
repeat(18)@(posedge tb_r_sys clk);
tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master
tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

/[Test case 11: Mode 1 serial data communication
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master
/[Configure the SPICR first to de-activate/stop the data communication
tb_r_uispi_wb_w_sel _master <= 4'b0001;//enable the write operation on master
tb_r_uispi_wb_w_din_master <= 8'n0101_0000;//8'h50
tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave
tb_r_uispi_wb_w_sel slave <= 4'b0001;//enable the write operation on slave
tb_r_uispi_wb_w_din_slave <= 8'h0001_0000;//8'h10

@(posedge th_r_sys clk);
/[Configure the SPISR

| R R

| R R R R

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

repeat(30)@(posedge tb_r_sys_clk);

tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave
@(posedge th_r_sys_clk);

tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

@(posedge th_r_sys_clk);
tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content
tb_r_uispi_wb_r_sel_slave <= 4'h0011;//read SPISR and SPICR content

//data communication between the master and the slave are happening
[[transmit 1-byte of data

IIreceive 1-byte of data

repeat(450)@(posedge th_r_sys_clk);

tb_r_uispi_wb_r_we_master <= 1'b1;//de-activate the read enable signal
tb_r_uispi_wb_r_we_slave <= 1'b1;//de-activate the read enable signal
tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

/[To disable the transmit buffer empty and received buffer full interrupt
tb_r_uispi_wb_w_sel _master <= 4'b0010;//enable the write operation on SPISR
tb_r_uispi_wb_w_din_master <= 8'h0000_0011;

tb_r_uispi_wb_w_sel slave <= 4'b0010;//enable the write operation on SPISR
tb_r_uispi_wb_w_din_slave <= 8'b0000_0011;

repeat(5)@(posedge th_r_sys_clk);

tb_r_uispi_wb_w_sel _master <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_master <= 8'b1111 0011;

tb_r_uispi_wb_w_sel slave <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_slave <= 8'b1011 0011;

/I Pop 1-byte of data from the RX_buffer16x8

repeat(30)@(posedge tb_r_sys clk);

tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master
tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

@(posedge tb_r_sys_clk);

tb_r_uispi_wb_r we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel slave <= 4'b1000;//read RX_buffer16x8 content

@(posedge th_r_sys_clk);
tb_r_uispi_wb_r_sel _master <= 4'b0011;//read SPISR and SPICR content

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

tb_r_uispi_wb_r_sel_slave <= 4'h0011;//read SPISR and SPICR content
//data communication between the master and the slave are happening
[ltransmit 1-byte of data

IIreceive 1-byte of data

repeat(660)@(posedge th_r_sys_clk);

@(posedge th_r_sys_clk);

tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master
tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content
tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave
tb_r_uispi_wb_r_sel_slave <= 4'h0011;//read SPISR and SPICR content
repeat(15)@(posedge tb_r_sys clk);

[R R R T A
/[Test case 15: Mode fault error interrupt

//Mode fault error occurs when more than one master are trying to drive the shared
IMine

/[Firstly, reconfigure the slave device to act as a master

tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave
tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR
tb_r_uispi_wb_w_din_slave <=8b1111 0011;

repeat(10)@(posedge tb_r_sys clk);

tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on the newly
/lconfigured master

tb_r_uispi_wb_r_sel_slave <= 4'h1000;//read the RX_buffer16x8 content

repeat(120)@(posedge th_r_sys_clk);

/IGive output some time to settle down
repeat(120)@(posedge th_r_sys_clk);
/[To stop stimulation
$stop;

end

endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

B.2 Testbench for SPI Controller Unit’s Integration Test with RISC32

“timescale 1ns / 1ps
“default_nettype none
“define demo005_SPI 1
“ifdef demo005_SPI
“define TEST_CODE_PATH_DUT "demo005_SPI_mem_03program.txt"
“define EXC_HANDLER_DUT "new_exc_handler_dut_2.txt"
“define TEST_CODE_PATH_CLIENT
"demo101_pending_for_int_mem_03program.txt"
“define EXC_HANDLER_CLIENT "new_exc_handler_dut_2.txt"
“endif

module tb_r32_pipeline();

reg tb_u_clk;

reg tb_u_rst;

wire tb_u_spi_mosi;

wire tb_u_spi_miso;

wire tb_u_spi_sclk;

wire tb_u_spi_ss n;

wire tb_u_fc_sclk dut;

wire tb_u fc_ss dut;

wire tb u_fc_MOSI_dut;
wire tb u_fc_ MISO1 dut;
wire tb_u_fc_MISO2_dut;
wire tb_u_fc_MISO3 dut;
wire tb_ua_tx_rx_dut;

wire tb ua RTS dut,tb ua CTS dut;
wire [31:0] tb_u_GPIO_dut;

wire tb_u_fc_sclk client;
wire tb_u fc_ss client;

wire tb_u_fc_MOSI_client;
wire tb_u_fc_MISO1_client;
wire tb_u_fc_MISO2_client;
wire tb_u_fc_MISO3_client;
wire tb_ua_tx_rx_client;
wire tb_ua RTS client, tb_ua CTS_client;

wire [31:0] tb_u_GPIO_client;

[[FFrFxFxxxxE INSTANTIATION Fx*xFdkdkkkrskkx
crisc ¢_risc_dut(
[|[======= INPUT =======

.urisc_GPIO(tb_u_GPIO_dut),
//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-10

Appendix

.uiorisc_spi_miso(tb_u_spi_miso),
.uiorisc_spi_sclk(tb_u_spi_sclk),
.uiorisc_spi_ss_n(tb_u_spi_ss_n),

[IUART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_dut),
.uirisc_ua_rx_data(tb_ua_tx_rx_client),

/[FLASH controller
.uorisc_fc_sclk(tb_u_fc_sclk_dut),
.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),
.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),
.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),
.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),
.uorisc_fc_ss(tb_u_fc_ss_dut),

/I System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

s25f1128s SPI_flash_dut(
Sl(tb_u_fc_MOSI_dut), //100
.SO(tb_u_fc_MISO1_dut), /101
.SCK(tb_u_fc_sclk_dut),
.CSNeg(tb_u_fc_ss_dut),
.RSTNeg(tb_u_rst),
\WPNeg(tb_u_fc_MISO2_dut), /102

.HOLDNeg(tb_u_fc_MISO3_dut));

crisc ¢_risc_client(
[|[======= INPUT =======

.urisc_GPIO(tb_u_GPIO_client),
//SPI controller
.uiorisc_spi_mosi(tb_u_spi_maosi),
.uiorisc_spi_miso(tb_u_spi_miso),
.uiorisc_spi_sclk(tb_u_spi_sclk),
.uiorisc_spi_ss_n(tb_u_spi_ss_n),

//[UART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_client),
.uirisc_ua_rx_data(tb_ua_tx_rx_dut),

/[FLASH controller
.uorisc_fc_sclk(tb_u_fc_sclk_client),

.uiorisc_fc_MOSI(tb_u_fc_MOSI_client),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-11

Appendix

.uirisc_fc_MISO1(tb_u_fc_MISO1_client),

.uirisc_fc_MISO2(th_u_fc_MISO2_client),

.uirisc_fc_MISO3(th_u_fc_MISO3_client),
.uorisc_fc_ss(tb_u_fc_ss_client),

Il System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

s25f1128s SP1_flash_client(
Sl(tb_u_fc_MOSI_client), //100
.SO(tb_u_fc_MISO1_client), /101
SCK(tb_u_fc_sclk_client),
.CSNeg(tb_u_fc_ss_client),
.RSTNeg(tb_u_rst),
\WPNeg(th_u_fc_MISO2_client), //102

.HOLDNeg(tb_u_fc_MISO3_client));

assigntb_ua CTS_dut=tb _ua RTS_client;
assign tb_ua_ CTS_client =tb_ua RTS_dut;

//**********************C I oc k************************

initial tb_u_clk =1'b1;

always #5 tb_u_clk =~ tb_u_clk;

initial begin

$readmemh(CEXC_HANDLER_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);
$readmemh(CTEST_CODE_PATH_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);
$readmemh(CEXC_HANDLER_DUT, th_r32_pipeline.SPI_flash_dut.Mem);
$readmemh("TEST_CODE_PATH_DUT, tb_r32_pipeline.SPI_flash_dut.Mem);
tb_u rst=1'bl;

repeat(1)@(posedge tb_u_clk);

tb_u_rst=1'b0;

repeat(30000)@(posedge tb_u_clk);

tb_u rst=1'b1;

repeat(12000000) @ (posedge tb_r32_pipeline.c_risc_dut.urisc_clk);

end

endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-12

Appendix

C.1 Pin Assignment of the CC2420

Appendix C: CC2420

ATEST2

=
o
L)
<
N

45 | R_BlAS

IF1

A

VREG_OUT

X0sC18_a1
5| xoscis_az

AVDO_XQSC18

t3] WVREG IN

WEO_GUARD MG
AVDDO_VCO DVOO_RAM
AVDD_PRE 50
AVDO_RF 8l
GHD SCLK
RF_P CSn
TXRX_SWITCH FIFD
RF_N FIFOP
aND CCA
AVDD_SW SFO
NG ovOD1.8
MNC OWVDD3.3
g = = Z ®] [] '
|§ |§ |g |g g g EE g IE lg Ex:ﬁ:‘gﬂil
® 3 ﬁ § g . § § attach pad
O m
Figure C.1.1: Top view of the CC2420 pinout
Pin Pin Name Pin type Pin Description
- AGND Ground (analog) Exposed die attach pad. Must be connected to solid ground
plane
1 WCO_GUARD Fower (analog) Connection of guard ring for VCO (to AVDD) shielding
F] AVDD_Veo Power (analog) 1.8 V Power supply for VCO
3 AVDD FRE Fower (analog) 1.8 V Power supply for Prescaler
4 AVOD RF1 Power (analog) 1.8 V Power supply for RF front-end
5 GND Ground {analog) Grounded pin for RF shielding
G RE_F RF 11O Fositive RF inputioutput signal to LNA/rom FA in
receive/transmit mode
7 THRX_SWITCH Power (analog) Commeon supply connection for integrated RF front-end. Must
be connected to RF_F and RE_1 externally through a DC
path
] RE_N RF I'0 Negative RF input/output signal to LNA/from PA in
receive/transmit mode
9 GHD Ground (analog) Grounded pin for RF shielding
10 AVDD_SW Power (analog) 1.8 V Power supply for LNA | PA switch
11 NC - Not Connected
12 HC - Not Connected
13 HC - Not Connected
14 AVDD_REFZ Power (analog) 1.8 V Power supply for receive and transmit mixers

Figure C.1.2: Pin description of the CC2420.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix

Pin Pin Name Pin type Pin Description

15 EVDD IFZ Power (analog) 1.8V Power supply for transmit / receive IF chain

16 e - Not Connected

17 AVDD_ALDC Power (analog) 1.8 V Power supply for analog parts of ADCs and DACs

18 DVDD_ADC Power (digital) 1.8 V Power supply for digital parts of receive ADCs

19 DGHD_GURRD Ground (digital) Ground connection for digital noise isolation

20 DGUARD Power (digital) 1.8 V Power supply connection for digital noise isolation

21 RESETn Digital Input Asynchronous, active low digital reset

22 DEHD Ground (digital) Ground connection for digital core and pads

23 DSUE_PLDS Ground (digital) Substrate connection for digital pads

24 DEUE_CCRE Ground (digital) Substrate connection for digital modules

25 DVDD3. 3 Power (digital) 3.3V Power supply for digital I/'0s

26 OVDD1.5 Power (digital) 1.8 V Power supply for digital core

27 SED Digital output SFD (Start of Frame Delimiter] / digital mux output

28 CCL Digital output CCA (Clear Channel Assessment) / digital mux output

29 FIFGE Digital output Active when number of bytes in FIFO exceeds threshold /
serial RF clock output in test mode

30 FIFQ Digital VQ Active when data in FIFO /
serial RF data input / output in test mode

31 c5n Digital input SPI Chip select, active low

32 SCLK Digital input SPI Clock input, up to 10 MHz

33 51 Digital input SPI Slave Input. Sampled on the positive edge of SCLE

34 50 Digital output 5P| Slave Quiput. Updated on the negative edge of SCLE.

(fristate) Tristate when C3n high.

35 DVDD_RAM Power (digital) 1.8\ Power supply for digital RAM

36 HC - Not Connected

37 AVDD_ XO5Cle Power (analog) 1.8 V crystal oscillator power supply

38 HO5C1e Q2 Analog 'O 16 MHz Crystal oscillator pin 2

30 205C1e_01 Analog VO 16 MHz Crystal oscillator pin 1 or external clock input

40 HC - Not Connected

41 VREG_EN Digital input Voltage regulator enable, active high, held at VRES_IN
voltage level when active. Note that VREEG_EN is relative
VREG_IN, not DVDD3.3.

42 WVREG_OTT Power output Voltage regulator 1.8 V power supply output

43 VEREG_TIN Power (analog) Voltage regulator 2.1 to 3.6 V power supply input

44 BVDD IF1 Power (analog) 1.8 V Power supply for transmit / receive IF chain

45 E_BILS Analog output External precision resistor 43 k0 £1%

46 ATESTZ Analog VO Analog test WO for prototype and production testing

47 ATEST1 Analog 'O Analog test /O for prototype and production testing

48 BVDD_CHE Power (analog) 1.8 V Power supply for phase detector and charge pump

Figure C.1.3: Pin description of the CC2420 (cont’d).

Note: The exposed die attach pad must be connected to a solid ground plane as this

is the main ground connection for the chip.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-2

Appendix

C.2 Overview of the External Components Used with the CC2420

Ref Description

C4a2 Voltage regulator load capacitance

CB1 Balun and match

ciB2 DC block to antenna and match

C71 Front-end bias decoupling and match

Ca1 Balun and match

C381 16MHz crysial load capacitor, see page 53
C391 16MHz crystal load capacitor, see page 53
L&1 DC bias and match

L&2 DC bias and match

L7 DC bias and match

L&1 Balun and match

R451 Precision resistor for current reference generator
XTAL 16MHz crystal, see page 53

Figure C.2.1: Description of the external components used with the CC2420.

C.3 List of Materials for the Application Circuits

Item Single ended output, | Single ended output, | Differential antenna
transmission line balun discrete balun

C42 10 uF, 050 = ESR = 50 10 pF, 0.50 = ESR = 50 10 pF, 0.5 =ESR = 50

Ccé1 Mot uzed 0.5 pF, +/- 0.25pF, NP0, 0402 | Not used

Ca2 Mot uzed 5.6 pF, +- 0.25pF, NP0, 0402 | Not used

ci Mot used 5.6 pF, 10%, X5R, 0402 Mot used

ca1 5.6 pF, +/- 0.25pF, NP0, 0402 | 0.5 pF, +- 0.25pF, NP0, 0402 | Not used

Cc3a 27 pF, 5%, NP0, 0402 27 pF, 5%, NP0, 0402 27 pF, 5%, NP0, 0402

C3m 27 pF, 5%, NP0, 0402 27 pF, 5%, NP0, 0402 27 pF, 5%, NP0, 0402

L&1 8.2 nH, 5%, 7.5 nH, 5%, 27 nH, 5%, Monolithic/mulilayer,
Monolithic/muliilayer, 0402 Monolithic/multilayer, 0402 0402

LG2 Mot used 5.6 nH, 5%, Mot used

Monolithic/multilayer, 0402

L71 22 nH, 5%, Mot used 12 nH, 5%, Monaolithic/mufilayer,
NMonolithic/muliilayer, 0402 0402

L&t 1.8 nH, +/- 0.3nH, 7.5 nH, 5%, Mot used
NMonolithic/muliilayer, 0402 Monolithic/multilayer, 0402

R451 43 ko, 1%, 0402 43 ko, 1%, 0402 43 k0, 1%, 0402

XTAL 16 MHz crystal, 16 pF load 18 MHz crystal, 16 pF load 16 MHz crystal, 16 pF load (C.),
(Cuh, (Cul, ESR=600
ESR < G0 0 ESR =60 0

Figure C.3.1: List of materials for the application circuit.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

C-3

Poster

Poster

UNIVERSITI TUNKU ABDUL RAHMAN
' FACULTY Or InrormaTiON AND CoMmmunicaTiON TECHNOLOGY

Prepared by Yong Min An

/In recent vears, the wireless semsor networks |
(WSNs) have grown considerably and they have a
potential in different applications, including
health, environment, military and so on. Zighee
module is one of the most widely used transceiver
for wireless communication because of its
advantages such as low cost, low power
consumption, and low data rate. In this project,
the design and implementation of the 4-wire SPI
controller unit for Zighee module are presented by
using Verilog HDL as using full-duplex SPI is

suitable for those applications that involve the
transfer of data stream. /

) 5D (TS 5 TR 1 @78 6018 T
] MOST*/MISO™sampie 4 & ¢ 4§ 8

No&: m=mastr, =gl

Mode 3
$a7\ ¥ T
SCLK
MOST*MEOY b X hae [T8 &7ED i7F T
MOSTYAISO™ sempie (N N S A S .

Nooz = mesir, s=elme

BIT (Hons) Computer Engineering

Supervised by Mr Mok Kai Ming

— —

METHOD

Top-down design methodology is used in
the design process for digital system.

wArch Specification (Partitioning)

Unit/Block Level Spec, Modeling,
& Verification

Logic Synthesis im FPGA

Physical Design &
Implementation

Features:

* Support full-duplex synchronous serial
data transfer in all 4 transfer modes.

* Provide 16 selectable serial clock
frequency/baud rate.

* Have separate 16-deep FIFOs to
reduce CPU’s workload to move data.

* Provide 3 types of interrupts (RXEF,
TXEF, and MODF).

* Fully synthesizable in
technology.

FPGA

The SPI controller unit’s design has
been revised, functionally verified and
further enhanced.

* It can work well with the integrated
RISC32 pipeline processor across the
CDC houndaries.

* It is synthesizable and has minimum

timing impact on the integrated

processor. /

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plagiarism Check Result

Plagiarism Check Result

DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER
FOR ZIGBEE MODULE

ORIGMALITY REPORT

7% 0 34 %

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS
PRIMARY SOURCES
eprints.utar.edu.my
n [ntemet Source 3%
users.ece.utexas.edu
[Pl Source {: 1 %
Dwaraka N Oruganti, Siva S Yellampalli. {1 o

"Design of a power efficient SPI interface", 2014
International Conference on Advances in
Electronics Computers and Communications,

2014

Fublization
e com <1
oo <
Anand N, , George Joseph, Suwin Sam {1 %

Oommen, and R Dhanabal. "Design and
implementation of a high speed Serial
Peripheral Interface”, 2014 International

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

E-1

Plagiarism Check Result

Conference on Advances in Electrical
Engineering (ICAEE), 2014,

Publication
sites.qoogle.com
[niemet ;!nuE I';""‘II‘I %
www.farnell.com
E [ntemet Source ‘:1 %
cache.freescale.com
[MEmel Source {1 %
p cegt201.bradley.edu
Irl1ur§¢1 Soure :f {1 %
A avestia.com
[niamat Source {1 %
mwww.ti.com
12 [niemet Source {1 %
Wei-Pau Kiat, Kai-Ming Mok, Wai-Kong Lee, {1 "
Hock-Guan Goh, Ramachandra Achar. "An
energy efficient FPGA partial reconfiguration
based micro-architectural technique for loT
applications", Microprocessors and
Microsystems, 2020
Publication
www flexhdr.o
|iEmel Soure rg {:1 c}"ﬂ

Bertozzi, Davide, Alessandro Strano, Daniele

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

E-2

Plagiarism Check Result

Ludovici, Vasileios Pavlidis, Federico Angiolini,
and Milos Krstic. "The Synchronization
Challenge”, Chapman & Hall/CRC
Computational Science, 2010,

Fublieatian

Zhaoxiang Zong. "Pin multiplexing optimization
in FPGA prototyping system", 2017 4th
International Conference on Systems and
Informatics (ICSAI), 2017

Publication

www.ijert.org

[Emel Sourcea

pl.scribd.com

[mmel Sourca

fongelectronics blogspot.com

[mmmad Sourca

"Microcontrollers in Practice”, Springer Science
and Business Media LLC, 2005

Publication

www .ember.net

[Emel Sourca

www slideshare.net

[mmal Sourca

P. Rajashekar Reddy, P. Sreekanth, K. Arun
Kumar. "Serial Peripheral Interface-Master

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

*‘-’-1%

<14
<1y
<1y

<1y

<y

E-3

Plagiarism Check Result

Universal Verification Component using UVM",
International Journal of Advanced Scientific
Technologies in Engineering and Management
Sciences, 2017

Publication

Heiser, Jay, Steve Stanek, Sasan Hamidi, Ben
Rothke, Paul Lambert, Ralph Spencer Poore,
James Tiller, Ronald Gove, and Mark Edmead.
"Methods of Attacking and Defending
Cryptosystems", Information Security
Management Handbook on CD-ROM 2006
Edition, 2006.

Publication

D
8 |

harttle.land

Iafmel Sourca

]
B

www.bartleby.com

el Sourca

ot]

www.elprocus.com

IMemet Sourca

P
B

W. J. Buchanan. "The Handbook of Data
Communications and Networks", Springer
Nature, 2004

Publication

ST

xplorestaging.ieee.org

Intemat Sourca

30

"|[EEE-ICDCS conference proceeding”, 2012

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

E-4

Plagiarism Check Result

International Conference on Devices Circuits
and Systems (ICDCS), 03/2012

Publication

<1%

www.embedded.com

Invtemet Source

<1%

www.eecs.berkeley.edu

Intemet Source

<1%

Oudjida, A.K., M.L. Berrandijia, A. Liacha, R.
Tiar, K. Tahraoui, and Y.N. Alhoumays. "Design
and test of general-purpose SPI Master/Slave
IPs on OPB bus", 2010 7th International Multi-
Conference on Systems Signals and Devices,
2010.

Publication

<1%

docplayer.net
Intemet Source

<1%

Zhaoging Wang, Harry H. Cheng, Stephen S.
Nestinger, Benjamin D. Shaw, Joe Palen. "Real-
Time Architecture for an Electro-Mech-Optical
System for Detection of Vehicles on Highway",
Volume 4: 24th Computers and Information in
Engineering Conference, 2004

Publication

<1%

Jiayi Qiang, Yong Gu, Guochu Chen. "FPGA
Implementation of SPI Bus Communication
Based on State Machine Method", Journal of

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

<1%

E-5

Plagiarism Check Result

Physics: Conference Series, 2020

Publicatian
link.springer.com 1
et Sounce { %

ExiclLihe: quoles Exciude malchas

Exclude bibliography

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plagiarism Check Result

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 [Effective Date: 01/10/2013 | Page No.: 10f 1

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY
Full Name(s) of Yong Min An
Candidate(s)
ID Number(s) 16ACB01733
Programme / Course Bachelor of Information Technology (Honours) Computer Engineering
Title of Final Year Project Design and Implementation of a SP1 Controller for Zigbee Module
Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)
Overall similarity is within range.
Overall similarity index:__ 7 %

Similarity by source
Internet Sources:
Publications:
Student Papers:

%
%
%

O lw|o

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(i) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

e

Signature of Sppervisor Signature of Co-Supervisor
Name: MOK KAI MING Name:
Date: 24/4/2020 Date:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-7

Checklist

UT.R

UNIVERSITI TUNKU ABDUL RAHMAN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION
TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB01733
Student Name Yong Min An
Supervisor Name Mok Kai Ming

TICK ()

DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

Front Cover

Signed Report Status Declaration Form

Title Page

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

LS LS LS SESE S NSRS

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

< L)L (<

literature review

All references in bibliography are cited in the thesis, especially in the chapter of

\' Appendices (if applicable)

v Poster

' Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and
confirmed all the items listed in the
table are included in my report.

YONG MIN AN
(Signature of Student)
Date: 24/4/2020

Supervisor verification. Report with
incorrect format can get 5 mark (1
grade) reduction.

e

(Signath Supervisor)
Date: 24/4/2020

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

F-1

