

DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER FOR ZIGBEE

MODULE

BY

YONG MIN AN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER

 FOR ZIGBEE MODULE

 __

Academic Session: JAN 2020

 I YONG MIN AN

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 YONG MIN AN _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 No 2359, Seksyen 2/10 Bandar

 Barat, Cambridge, 31900 MOK KAI MING

 Kampar, Ipoh Supervisor’s name

 Date: ____24/4/2020_________ Date: ___24/4/2020_________

DESIGN AND IMPLEMENTATION OF A SPI CONTROLLER FOR ZIGBEE

MODULE

BY

YONG MIN AN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “DESIGN AND IMPLEMENTATION OF A SPI

CONTROLLER FOR ZIGBEE MODULE” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : YONG MIN AN

Name : YONG MIN AN

Date : 24/4/2020

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
iii

 ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to my project supervisor,

Mr Mok Kai Ming for his constant supervision, constructive suggestions, as well as

invaluable guidance and encouragement in helping me to complete this project. I am

really thankful to him because I came to know and learn a lot of new things during the

project development. Again, thank you for precious your time and patience along the

duration of my project.

Apart from that, I would also like to express my special gratitude and thanks to my

beloved family members, especially my parents who have been giving me endless care

and support, both spiritually and financially over the years. Thank you for always

supporting me in all the good and bad times throughout my life.

Last but not least, I would like to extend my sincere thanks to all my friends and seniors

who have willingly helped me out with their abilities, providing necessary and useful

information about the project. All the advises and suggestions had contributed to the

completion of this project. Thank you for all of your generous helps and kindness.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
iv

ABSTRACT

This project is about the 4-wire Serial Peripheral Interface (SPI) controller unit design

and implementation for academic purpose. The development of this project will begin

with the design of the SPI controller unit. The RTL design flow will be used throughout

the project development and the micro-architectural level design will be focused more

as the SPI controller to be designed is in the unit level. The internal blocks of the SPI

controller unit will be modeled by using Verilog HDL before they are integrated into

unit level. The specifications of the SPI controller unit and its internal block will be

functionally verified by writing testbenches in Verilog HDL.

After the SPI controller unit has been functionally verified, it will be integrated into the

existing RISC32 pipelined processor developed in UTAR. This involves the

development of the interface between the SPI controller and the RISC32 based on I/O

memory mapping technique. Moving on, an Interrupt Service Routine (ISR) will be

specifically developed and implemented on the RISC32 for handling the data received

by the SPI controller. A MIPS test program will also be written to test the correctness

of the ISR functionalities.

Lastly, it will be synthesized on the Field Programmable Gate Array (FPGA)

technology and further interfaced with CC2420 RF transceiver in this project for

wireless data communication. The CC2420 will be configured as the slave device

whereas the SPI controller unit will be used as the master device. Data communication

between the SPI controller unit in the RISC32 pipelined processor and the CC2420 RF

transceiver is performed via a simple 4-wire SPI compatible interface (MOSI, MISO,

SCLK and SS pin). In short, a piece of software, stimulation result and hardware are

expected to be delivered at the end of the project.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
v

TABLE OF CONTENTS

TITLE PAGE .. i

DECLARATION OF ORIGINALITY ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. xi

LIST OF TABLES ... xvii

LIST OF ABBREVIATIONS ... xix

CHAPTER 1: INTRODUCTION ... 1

1.1 Background Information ... 1

1.1.1 MIPS .. 1

1.1.2 Bus ... 1

1.1.3 SPI ... 2

1.1.4 Zigbee .. 3

1.2 Motivation .. 3

1.3 Problem Statement .. 5

1.4 Project Scope .. 5

1.5 Project Objectives ... 6

1.6 Impact, Significance, and Contribution.. 6

1.7 Report Organization .. 7

CHAPTER 2: LITERATURE REVIEW .. 9

2.1 Overview of 4-wire SPI Protocol ... 9

2.1.1 Detailed Pin Description in 4-wire SPI Protocol 9

2.1.2 Transfer Modes in 4-wire SPI Protocol ... 10

2.1.3 Timing Diagram in 4-wire SPI Protocol .. 11

2.1.4 Working Principal of 4-wire SPI Protocol ... 13

2.2 Overview of 3-wire SPI Protocol ... 16

2.2.1 Detailed Pin Description of 3-wire SPI Protocol 16

2.2.2 Transfer Modes of 3-wire SPI Protocol ... 17

2.2.3 Timing Diagram of 3-wire SPI Protocol ... 18

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
vi

2.2.4 Working Principal of 3-wire SPI Protocol ... 18

2.3 SPI Controller ... 20

2.3.1 SPI Controller from Motorola Inc. .. 20

2.3.2 SPI Controller Designed by Kiat Wei Pau... 22

2.4 Memory-mapped I/O ... 23

CHAPTER 3: PROPOSED METHOD/APPROACH .. 25

3.1 Methodologies and General Work Procedures ... 25

3.1.1 RTL Design Flow ... 25

3.1.2 Micro-architecture Specification ... 26

3.1.3 RTL Modeling and Verification .. 26

3.1.4 Logic Synthesis for FPGA .. 27

3.2 Design Tools ... 27

3.2.1 ModelSim PE Student Edition 10.4a ... 28

3.2.2 Xilinx Vivado Design Suite .. 28

3.2.3 PCSpim .. 29

3.3 Technologies Involved .. 29

3.3.1 Field Programmable Gate Array (FPGA) .. 29

3.3.2 Zigbee RF Transceiver ... 30

3.4 Implementation Issues and Challenges .. 30

3.5 Timeline .. 31

3.5.1 Gantt Chart for Project 1 ... 31

3.5.2 Gantt Chart for Project 2 ... 31

CHAPTER 4: SYSTEM SPECIFICATION ... 32

4.1 System Overview of the RISC32 Pipeline Processor 32

4.1.1 RISC32 Pipeline Processor Architecture ... 32

4.1.2 Functional View of the RISC32 Pipeline Processor 33

4.1.3 Memory Map of the RISC32 Pipeline Processor 34

4.2 Chip Interface of the RISC32 Pipeline Processor 36

4.3 Input Pin Description of the RISC32 Pipeline Processor 36

4.4 Output Pin Description of the RISC32 Pipeline Processor 37

4.5 Input Output Pin Description of the RISC32 Pipeline Processor 37

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
vii

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATION 38

5.1 SPI Controller Unit ... 38

5.1.1 Functionality/Feature of the SPI Controller Unit 38

5.1.2 Operating Procedure (External Operation) .. 39

5.1.3 Unit Interface of the SPI Controller Unit .. 41

5.1.4 Input Pin Description of the SPI Controller Unit 42

5.1.5 Output Pin Description of the SPI Controller Unit 43

5.1.6 Input Output Pin Description of the SPI Controller Unit 43

5.1.7 Internal Operation of the SPI Controller Unit 44

5.1.8 Design Partitioning of the SPI Controller Unit 45

5.1.9 Micro-Architecture of the SPI Controller Unit (Block Level) 48

5.2 SPI Transmitter Block ... 50

5.2.1 Functionality/Feature of the SPI Transmitter Block 50

5.2.2 Block Interface of the SPI Transmitter Block 50

5.2.3 Input Pin Description of the SPI Transmitter Block 50

5.2.4 Output Pin Description of the SPI Transmitter Block 52

5.2.5 Finite State Machine of the SPI Transmitter Block 53

5.3 SPI Receiver Block ... 54

5.3.1 Functionality/Feature of the SPI Receiver Block 54

5.3.2 Block Interface of the SPI Receiver Block .. 54

5.3.3 Input Pin Description of the SPI Receiver Block 54

5.3.4 Output Pin Description of the SPI Receiver Block 55

5.3.5 Finite State Machine of the SPI Receiver Block 56

5.4 SPI Clock Generator Block ... 57

5.4.1 Functionality/Feature of the SPI Clock Generator Block 57

5.4.2 Block Interface of the SPI Clock Generator Block 57

5.4.3 Input Pin Description of the SPI Clock Generator Block 57

5.4.4 Output Pin Description of the SPI Clock Generator Block 58

5.5 16-deep Asynchronous FIFO Block .. 59

5.5.1 Functionality/Feature of the 16-deep Asynchronous FIFO Block 59

5.5.2 Block Interface of the 16-deep Asynchronous FIFO Block 59

5.5.3 Input Pin Description of the 16-deep Asynchronous FIFO Block 60

5.5.4 Output Pin Description of the 16-deep Asynchronous FIFO Block ... 60

5.5.5 Schematic and Block Diagram of the 16-deep Asynchronous FIFO

block .. 61

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
viii

5.6 2-deep FIFO Synchronizer Block .. 62

5.6.1 Functionality/Feature of the 2-deep FIFO Synchronizer Block.......... 62

5.6.2 Block Interface of the 2-deep FIFO Synchronizer Block 62

5.6.3 Input Pin Description of the 2-deep FIFO Synchronizer Block.......... 63

5.6.4 Output Pin Description of the 2-deep FIFO Synchronizer Block 63

5.6.5 Schematic and Block Diagram of the 2-deep FIFO Synchronizer Block

 ... 65

5.7 Register Set of SPI Controller Unit.. 66

5.7.1 SPI Configuration Register (SPICR) ... 66

5.7.2 SPI Status Register (SPISR) ... 67

5.7.3 SPI Transmitter Data register (SPITDR) ... 69

5.8.4 SPI Receiver Data register (SPIRDR) ... 70

CHAPTER 6: FIRMWARE DEVELOPMENT ... 71

6.1 Exception Handler of the RISC32 Pipeline Processor 71

6.2 Interrupt Service Routine (ISR) of the SPI Controller Unit 72

CHAPTER 7: VERIFICATION SPECIFICATION AND STIMULATION

RESULT ... 74

7.1 Test Plan for SPI Controller Unit’s Functional Test 74

7.2 Stimulation Results of the SPI Controller Unit’s Functional Test 83

7.2.1 Test Case #1: System Reset .. 83

7.2.2 Test Case #2: Write Operation on SPISR .. 83

7.2.3 Test Case #3: Write Operation on SPICR ... 84

7.2.4 Test Case #4: Transmitter Buffer Empty Interrupt Support 85

7.2.5 Test Case #5: Push One 8-bit Data into the TX_buffer16x8 85

7.2.6 Test Case #6: Mode 0 Serial Data Communication 86

7.2.7 Test Case #7: Receiver Buffer Full Interrupt Support After Receiving

A 1-byte Data (RXFM = 0) ... 87

7.2.8 Test Case #8: Pop 1-byte of Received Data from the RX_buffer16x8 87

7.2.9 Test Case #9: Receiver Buffer Full Interrupt Support After Receiving

16x1-byte Data (RXFM = 1) ... 88

7.2.10 Test Case #10: Pop 16 Number of 1-byte Data from the

RX_buffer16x8.. 89

7.2.11 Test Case #11: Mode 1 Serial Data Communication 90

7.2.12 Test Case #12: Mode 2 Serial Data Communication 90

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
ix

7.2.13 Test Case #13: Mode 3 Serial Data Communication 91

7.2.14 Test Case #14: Selectable Transmission Speed (Baud Rate)............ 92

7.2.15 Test Case #15: Mode Fault Error Interrupt Support 93

7.4 Test Plan for SPI Controller Unit’s Integration Test with RISC32 94

7.5 MIPS Test Program for c_risc_dut in Integration Test 99

7.6 MIPS Test Program for c_risc_client in Integration Test 102

7.7 Stimulation Results of the SPI Controller Unit’s Integration Test with

RISC32 ... 105

7.7.1 Test Case #1: System Reset .. 105

7.7.2 Test Case #2: Transmitter Buffer Empty Interrupt Support 105

7.7.3 Test Case #3: Mode 0 Serial Data Communication 110

7.7.4 Test Case #4: Receiver Buffer Full Interrupt Support...................... 112

7.7.5 Test Case #5: Mode 1 Serial Data Communication 116

7.7.6 Test Case #6: Mode 2 Serial Data Communication 117

7.7.7 Test Case #7: Mode 3 Serial Data Communication 118

7.7.8 Test Case #8: Mode Fault Error Interrupt Support 119

CHAPTER 8: SYNTHESIS AND IMPLEMENTATION 122

8.1 FPGA Resources Utilization of the Synthesized SPI Controller Unit 122

8.2 Timing Analysis .. 123

8.2.1 Timing Analysis of the On-board SPI Controller Unit 123

8.2.2 Timing Analysis of the RISC32 with the SPI Controller Unit 124

8.3 Proposed Hardware Implementation .. 125

8.4 Proposed Software Implementation ... 130

8.4.1 Flowchart of the Hardware/Software Behaviors in c_risc_dut 132

8.4.2 Flowchart of the Hardware/Software Behaviors in c_risc_client 134

CHAPTER 9: CONCLUSION AND FUTURE WORK 136

9.1 Conclusion .. 136

9.2 Future Work .. 137

BIBLIOGRAPHY .. 138

APPENDIX A: TIMING DIAGRAM ... A-1

A.1 Timing diagram of different SPI’s Transfer Modes A-1

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
x

APPENDIX B: TESTBENCH ... B-1

B.1 Testbench for SPI Controller Unit’s Functional Test B-1

B.2 Testbench for SPI Controller Unit’s Integration Test with RISC32 B-10

APPENDIX C: CC2420 ... C-1

C.1 Pin Assignment of the CC2420 ... C-1

C.2 Overview of the External Components Used with the CC2420 C-3

C.3 Bill of Materials for the Application Circuits .. C-3

POSTER .. D-1

PLAGIARISM CHECK RESULT.. E-1

CHECKLIST ..F-1

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xi

LIST OF FIGURES

Figure Number Title Page

Figure 1.1.1.1 Conventional pipeline execution representation. 1

Figure 1.1.2.1 An overview of various type of buses in the computer system. 2

Figure 2.1.3.1 Timing diagram for mode 0 serial data communication in the

4-wire SPI protocol.

11

Figure 2.1.3.2 Timing diagram for mode 1 serial data communication in the

4-wire SPI protocol.

12

Figure 2.1.3.3 Timing diagram for mode 2 serial data communication in the

4-wire SPI protocol.

12

Figure 2.1.3.4 Timing diagram for mode 3 serial data communication in the

4-wire SPI protocol.

13

Figure 2.1.4.1 An overview of the block diagram connection between a

master device and a slave device in 4-wire SPI protocol.

14

Figure 2.1.4.2 An overview of the block diagram connection between a

single master and multiple slave devices using independent

slave configuration.

15

Figure 2.1.4.3 An overview of the block diagram connection between a

single master device and multiple slave devices using Daisy-

chain configuration.

15

Figure 2.2.3.1 Timing diagram for mode 0, 1, 2, and 3 serial data

communication in the 3-wire SPI protocol.

18

Figure 2.2.4.1 An overview of the block diagram connection between a

master device and a slave device in the 3-wrire SPI protocol.

19

Figure 2.3.1.1 An overview on the Motorola Inc’s SPI controller. 20

Figure 2.3.2.1 An overview of the SPI controller designed by Kiat Wei Pau 23

Figure 3.1.1.1 The RTL design flow used for developing the SPI controller

unit is provided. The arrows indicate process or work flow

(not data flow).

25

Figure 3.3.1.1 The top view of the Nexys 4 DDR (XC7A100T) 29

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xii

Figure 3.3.2.1 The top view of the CC2420 from the Texas Instruments

company.
30

Figure 3.5.1.1. Gantt chat for Project 1 31

Figure 3.5.2.1 Gantt chart for Project 2 31

Figure 4.1.1.1 An overview on the architecture of the RISC32 pipeline

processor.

33

Figure 4.1.2.1 The functional view of the RISC32 pipeline processor. 34

Figure 4.1.3.1 Memory map of the RISC32 pipeline processor. 35

Figure 4.2.1 Chip interface of the RISC32 pipeline processor. 36

Figure 5.1.3.1 SPI controller unit interface. 41

Figure 5.1.8.1 Block-level partitioning of the SPI controller unit. 46

Figure 5.1.9.1 Simplified micro-architecture of the SPI controller unit. 48

Figure 5.1.9.3 Datapath of the SPI controller unit 49

Figure 5.2.2.1 Block interface of the SPI transmitter block. 50

Figure 5.2.5.1 Finite state machine of the SPI transmitter block. 53

Figure 5.3.2.1 Block interface of the SPI receiver block. 54

Figure 5.3.5.1 Finite state machine of the SPI receiver block. 56

Figure 5.4.2.1 Block interface of the SPI clock generator block. 57

Figure 5.5.2.1 Block interface of 16-deep asynchronous FIFO block. 59

Figure 5.5.5.1 Schematic and block diagram of the 16-deep asynchronous

FIFO design with asynchronous comparisons.

61

Figure 5.6.2.1 Block interface of 2-deep FIFO synchronizer block 62

Figure 5.6.5.1 Schematic and block diagram of the 2-deep FIFO

synchronizer block

65

Figure 5.7.1 Address of the special-purpose registers in virtual memory 66

Figure 5.8.1.1 SPI Configuration Register (SPICR) 66

Figure 5.8.2.1 SPI Status Register (SPISR) 68

Figure 5.8.3.1 SPI Transmitter Data Register (SPITDR) 69

Figure 5.8.4.1 SPI Receiver Data Register (RDR) 70

Figure 7.1.1 The connection mechanism of the DUT_MASTER and the

DUT_SLAVE for SPI controller unit’s functional verification.

74

Figure 7.2.1.1 Stimulation result for test case #1 using ModelSim stimulator. 83

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xiii

Figure 7.2.2.1 Stimulation result for test case #2 using ModelSim stimulator. 83

Figure 7.2.3.1 Stimulation result for test case #3 using ModelSim stimulator. 84

Figure 7.2.4.1 Stimulation result for test case #4 using ModelSim stimulator. 85

Figure 7.2.5.1 Stimulation result for test case #5 using ModelSim stimulator. 85

Figure 7.2.6.1 Stimulation result for test case #6 using ModelSim stimulator. 86

Figure 7.2.7.1 Stimulation result for test case #7 using ModelSim stimulator. 87

Figure 7.2.8.1 Stimulation result for test case #8 using ModelSim stimulator. 87

Figure 7.2.9.1 Stimulation result for test case #9 using ModelSim stimulator. 88

Figure 7.2.9.2 Stimulation result for test case #9 using ModelSim stimulator

(cont’d).

88

Figure 7.2.10.1 Stimulation result for test case #10 using ModelSim

stimulator.

89

Figure 7.2.11.1 Stimulation result for test case #11 using ModelSim stimulator 90

Figure 7.2.12.1 Stimulation result for test case #12 using ModelSim stimulator 90

Figure 7.2.13.1 Stimulation result for test case #13 using ModelSim stimulator 91

Figure 7.2.14.1 Stimulation result for test case #14 with SCLK clock signal is

4 times slower than the I/O clock of the DUY_MASTER.

92

Figure 7.2.14.2 Stimulation result for test case #14 with SCLK clock signal is

8 times slower than the I/O clock of the DUY_MASTER.

92

Figure 7.2.14.3 Stimulation result for test case #14 with SCLK clock signal is

16 times slower than the I/O clock of the DUY_MASTER.

92

Figure 7.2.15.1 Stimulation result for test case #15 using ModelSim

stimulator.

93

Figure 7.3.1 The connection mechanism of the c_risc_dut, c_risc_client,

SPI_flash_dut, and SPI_flash_client for SPI controller unit’s

integration test with RISC32.

94

Figure 7.6.1.1 Stimulation result for test case #1 using Vivado stimulator. 105

Figure 7.6.2.1 Stimulation result of c_risc_dut for test case #2 using Vivado

stimulator.

105

Figure 7.6.2.2 Stimulation result of c_risc_dut for test case #2 using Vivado

stimulator (cont’d).

106

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xiv

Figure 7.6.2.3 Stimulation result of c_risc_dut for test case #2 using Vivado

stimulator (cont’d).

106

Figure 7.6.2.4 Stimulation result of c_risc_dut for test case #2 using Vivado

stimulator (cont’d).

106

Figure 7.6.2.5 Stimulation result of c_risc_client for test case #2 using

Vivado stimulator.

108

Figure 7.6.2.6 Stimulation result of c_risc_client for test case #2 using

Vivado stimulator (cont’d).

108

Figure 7.6.2.7 Stimulation result of c_risc_client for test case #2 using

Vivado stimulator (cont’d).

108

Figure 7.6.2.8 Stimulation result of c_risc_client for test case #2 using

Vivado stimulator (cont’d).

109

Figure 7.6.3.1 Stimulation result for test case #3 using Vivado stimulator. 110

Figure 7.6.4.1 Stimulation result of c_risc_dut for test case #4 using Vivado

stimulator.

112

Figure 7.6.4.2 Stimulation result of c_risc_dut for test case #4 using Vivado

stimulator (cont’d).

112

Figure 7.6.4.3 Stimulation result of c_risc_dut for test case #4 using Vivado

stimulator (cont’d).

112

Figure 7.6.4.4 Stimulation result of c_risc_dut for test case #4 using Vivado

stimulator.

113

Figure 7.6.4.5 Stimulation result of c_risc_client for test case #4 using

Vivado stimulator.

114

Figure 7.6.4.6 Stimulation result of c_risc_client for test case #4 using

Vivado stimulator (cont’d).

114

Figure 7.6.4.7 Stimulation result of c_risc_client for test case #4 using

Vivado stimulator (cont’d).

114

Figure 7.6.4.8 Stimulation result of c_risc_client for test case #4 using

Vivado stimulator (cont’d).

115

Figure 7.6.5.1 Stimulation result for test case #5 using Vivado stimulator. 116

Figure 7.6.6.1 Stimulation result for test case #6 using Vivado stimulator. 117

Figure 7.6.7.1 Stimulation result for test case #7 using Vivado stimulator. 118

Figure 7.6.8.1 Stimulation result for test case #8 using Vivado stimulator. 119

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xv

Figure 7.6.8.2 Stimulation result of c_risc_dut for test case #8 using Vivado

stimulator.

119

Figure 7.6.8.3 Stimulation result of c_risc_dut for test case #8 using Vivado

stimulator (cont’d).

119

Figure 7.6.8.4 Stimulation result of c_risc_dut for test case #8 using Vivado

stimulator (cont’d).

120

Figure 7.6.8.5 Stimulation result of c_risc_dut for test case #8 using Vivado

stimulator (cont’d).

120

Figure 8.1.1 Resource utilization report of the synthesized SPI controller

unit on the Nexys 4 DDR (XC7A100T) board.

122

Figure 8.1.2 Resource utilization summary of the synthesized SPI

controller unit on the Nexys 4 DDR (XC7A100T) board.

122

Figure 8.2.1.1 Timing report of the on-board SPI controller unit. 123

Figure 8.2.1.2 Timing report of the on-board SPI controller unit. 124

Figure 8.2.2.1 Design timing summary of the entire RISC32 pipeline

processor.

125

Figure 8.2.2.2 Top 10 paths in the RISC32 pipeline processor that have the

largest total data path delay.

125

Figure 8.3.1 Detailed descriptions about the connection mechanism of the

RISC32 pipeline processor with the CC2420 transceiver by

using only few external components.

127

Figure 8.3.2 Connection mechanism of the c_risc_dut with the CC2420

transceiver for wireless communication.

128

Figure 8.3.3 Connection mechanism of the c_risc_client with the CC2420

transceiver for wireless communication

129

Figure 8.4.1 Expected wireless communication between the Zigbee end

device and the Zigbee coordinator in this project

131

Figure 8.4.1.1 Flowchart of hardware/software behaviors in c_risc_dut for

on-board testing.

132

Figure 8.4.1.2 Flowchart of hardware/software behaviors in c_risc_dut for

on-board testing (cont’d).

133

Figure 8.4.2.1 Flowchart of hardware/software behaviors in c_risc_client for

on-board testing.

134

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xvi

Figure 8.4.2.2 Flowchart of hardware/software behaviors in c_risc_client for

on-board testing (cont’d).

135

Figure A.1.1 Timing diagram for mode 0 serial data communication. A-1

Figure A.1.2 Timing diagram for mode 1 serial data communication. A-1

Figure A.1.3 Timing diagram for mode 2 serial data communication. A-1

Figure A.1.4 Timing diagram for mode 3 serial data communication. A-1

Figure C.1.1 Top view of the CC2420 pinout C-1

Figure C.1.2 Pin description of the CC2420. C-1

Figure C.1.3 Pin description of the CC2420 (cont’d). C-2

Figure C.2.1 Description of the external components used with the

CC2420.

C-3

Figure C.3.1 List of materials for the application circuit. C-3

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xvii

LIST OF TABLES

Table Number Title Page

Table 2.1.1.1 Functional descriptions pf the standard 4-wire SPI’s external

pins.

9

Table 2.1.2.1 Functional descriptions of the Clock Polarity and Clock Phase

parameters based on Motorola Inc.’s SPI Block Guide

V03.06.

10

Table 2.1.2.2 SPI transfer mode information based on Motorola Inc.’s SPI

Block Guide V03.06.

11

Table 2.2.1.1 Functional description of the 3-wire SPI’s external pins. 17

Table 2.3.2.1 Normal mode and bidirectional mode in Motorola Inc.’s SPI

controller.

21

Table 2.4.1 Three general types of special-purpose register used in MMIO 24

Table 3.2.1 Comparison among 3 different Verilog stimulators. 27

Table 4.1.1.1 Specification of the RISC32 pipeline processor. 33

Table 4.1.3.1 Memory map description of the RISC32 pipeline processor. 35

Table 4.3.1 Input pin description of the RISC32 pipeline processor. 36

Table 4.4.1 Output pin description of the RISC32 pipeline processor. 37

Table 4.5.1 Input output pin description of the RISC32 pipeline processor. 37

Table 5.1.1.1 Pin direction of the SPI standard pins when it is set as a master

or slave device.

38

Table 5.1.4.1 Input pin description of the SPI controller unit. 42

Table 5.1.5.1 Output pin description of the SPI controller unit. 43

Table 5.1.6.1 Input output pin description of the SPI controller unit. 43

Table 5.1.7.1 Functional description of the SPI controller’s write operation. 44

Table 5.1.7.2 Functional description of the SPI controller’s read operation. 44

Table 5.1.8.1 Functional description of each SPI internal block. 46

Table 5.2.3.1 Input pin description of the SPI transmitter block. 50

Table 5.2.4.1 Output pin description of the SPI transmitter block. 52

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xviii

Table 5.2.5.1 State description of the SPI transmitter block. 53

Table 5.3.3.1 Input pin description of the SPI receiver block. 54

Table 5.3.4.1 Output pin description of the SPI receiver block. 55

Table 5.3.5.1 State description of the SPI receiver block. 56

Table 5.4.3.1 Input pin description of the SPI clock generator block. 57

Table 5.4.4.1 Output pin description of the SPI clock generator block. 58

Table 5.5.3.1 Input pin description of the 16-deep asynchronous FIFO

block.

60

Table 5.5.4.1 Output pin description of the 16-deep asynchronous FIFO

block.

60

Table 5.6.3.1 Input pin description of the 2-deep FIFO synchronizer block. 63

Table 5.6.4.1 Output pin description of the 2-deep FIFO synchronizer block. 63

Table 7.1.1 Instance name of each SPI controller unit and its internal

blocks that are being used in the test plans, testbenches,

flowcharts and stimulation.

75

Table 7.1.2 Test plan for the SPI controller unit’s functional verification. 75

Table 7.3.1 Test plan for the SPI controller unit’s integration test with

RISC32 pipeline processor.

95

Table 7.4.1 MIPS test program for c_risc_dut in integration test 99

Table 7.5.1 MIPS test program for c_risc_client in integration test 102

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xix

LIST OF ABBREVIATIONS

ADC Analog-to-digital Converter

CDC Clock Domain Crossing

CISC Complex Instruction Set Computer

CPHA Clock Phase

CP0 Coprocessor 0

CPOL Clock Polarity

CPU Central Processing Unit

DAC Digital-to-analog Converter

DMA Direct Memory Access

DSSS Direct Sequence Spread Spectrum

EDA Electronic Design Automation

EX Execute

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPIO General-Purpose Input Output

GPR General-Purpose Register

HDL Hardware Description Language

IC Integrated Circuit

ID Instruction Decode and Operand Fetch

IF Instruction Fetch

ISA Instruction Set Architecture

ISR Interrupt Service Routine

MAC Media Access Control

MCO Movement Control Order

MEM Memory Access

M2M Machine-to-machine

MIPS Microprocessor without Interlocked Pipeline Stages

MOMI Master In Master Out

MOSI Master Out Serial In

MISO Master In Serial Out

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
xx

PCB Printed Circuit Board

RAM Random Access Board

RAW Read-After-Write

RF Radio Frequency

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RSR Receiver Shift Register

RTL Register Transfer Level

RX Receive

SCLK Serial Clock

SISO Slave In Slave Out

SS Slave Select

SPI Serial Peripheral Interface

SPICR SPI Configuration Register

SPIRDR SPI Receiver Data Register

SPISR SPI Status Register

SPITDR SPI Transmitter Data Register

TSR Transmitter Shift Register

TX Transmit

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VLSI Very Large-Scale Integration

WB Write Back

WNS Worse Negative Slack

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
1

Chapter 1: Introduction

1.1 Background Information

An overview of the project fields that matter is provided in the following sections to

help identify and understand some facts or knowledge related to this project.

1.1.1 MIPS

MIPS is the abbreviation of Microprocessor without Interlocked Pipeline Stages. It is a

Reduced Instruction Set Computer (RISC) architecture developed by MIPS

Technologies (UKEssays, 2018). As opposed to the complex instruction set and large

number of addressing modes used in Complex Instruction Set Computer (CISC)

architecture, it uses simplified instruction sets and few addressing modes. As a result,

the hardware becomes less complex, faster, easier to build and test. However, it

executes the instruction in one cycle at the cost of increasing the number of instructions

used per program. To improve the throughput and reduce the average execution time

per instruction, it overlaps multiple instructions in a pipeline fashion as shown in Figure

1.1.1.1. On the other hand, MIPS architecture, after years of development, now supports

64-bit addressing and operation as well as high performance floating point which made

it popular in the embedded systems implementation such as routers, residential

gateways and video game consoles.

Figure 1.1.1.1: Conventional pipeline execution representation

1.1.2 Bus

In a computer system, a bus is a transmission path that interconnects various

components such as Central Processing Unit (CPU), Direct Memory Access (DMA)

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
2

controller, memory, I/O devices and so on. Typically, there are three types of buses that

carry information from place to place in the computer system. These buses include:

• address bus that carries a unique address information to a given device in order

to be recognized by the CPU.

• data bus which gets data from or sends data to the device

• control bus which provides read or write signal to the device to indicate whether

the CPU is asking for information or sending it information.

Figure 1.1.2.1: An overview of various type of buses in the computer system

1.1.3 SPI

Serial Peripheral Interface (SPI) is one of the communication protocols that provides a

fast-synchronous serial communication between microcontroller and peripherals or

between multiple microcontrollers with on-board peripherals (Anusha, 2017). It was

developed with the intention to replace parallel interface so that the routing of the

parallel bus around PCB can be avoided as well as to provide high speed data transfer

between devices (Choudhury et al., 2014). Motorola Inc. was the first company that

developed SPI to connect its first 68000 based microcontroller unit to other peripherals

in the late 1970 (Choudhury et al., 2014). It has been later adopted by others in the

industry and become a popular communication protocol due to its simplicity of

interfacing and its full duplex characteristics for data communication (Choudhury et.al.,

2014). Over the years, SPI has been used in many kinds of applications and it is suitable

for those applications that involve the transfer of data streams. For instance, it has been

used to communicate with a variety of peripherals such as sensors, analog-to-digital

converter (ADC), digital-to-analog converter (DAC), UART, USB, EEPROM and so

on (Polytechnic Hub, 2017).

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
3

1.1.4 Zigbee

Zigbee is a standard wireless technology that has been developed for low-cost, low-

power consumption wireless machine-to-machine (M2M) and Internet of Things (IoT)

network (Linda, 2017). Since the Zigbee do not have any built-in microcontroller or

processor, so they cannot manage the received or sent data (Priya, n.d.). In other words,

they can simply transfer the information that they receive only (Priya, n.d.). However,

they can be interfaced with other microcontrollers or processors such as Arduino,

Raspberry Pi or PC via serial interface in order to manage the received or sent data

(Priya, n.d.).

Furthermore, it works on the IEEE 802.15.4 specification and its WPANS can operate

on 868 MHz, 900 MHz and 2.4 GHz frequencies (Linda, 2017). The IEEE 802.15.4

defines the physical and Media Access Control (MAC) layers for handling the devices

at low rate (Elprocus, n.d.). The major applications of the Zigbee technology focus on

sensor and automatic control area such as industrial automation, home automation,

remote control and monitoring systems (Elprocus, n.d.). Because of the advantages of

the Zigbee technology like low cost, low power consumption, and its topologies, it is

therefore more suitable to be used for those applications mentioned above when

compared to Bluetooth, Wi-Fi, and other short-range communication technologies

(Elprocus, n.d.).

1.2 Motivation

A 32-bit RISC pipeline microprocessor has been developed in the Faculty of

Information and Communication Technology (FICT) of Universiti Tunku Abdul

Rahman (UTAR) by using Verilog Hardware Description Language (HDL). The

project is based on the Reduced Instruction Set Computing (RISC) architecture. The

motivations to initiate the project are due to the following reasons:

• Microprocessors have been designed by Microchip design companies as their

Intellectual Property (IP) for commercial purposes. Generally, these

microprocessor IP encompasses information about the complete design process,

which includes the modeling, the verification and also the physical design of an

integrated circuit. These IPs are qualified as the trade secrets of a company in

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
4

which they are protected by its holder. So, they are definitely not available in

the market at a user-friendly price or without cost for research purposes.

• Several freely available microprocessor cores could be found over the Internet

and majority of them are available at OpenCores. However, the MIPS

Instruction Set Architecture (ISA) is not implemented entirely on those

processors and they often lack of well-developed documentation. Because of

these issues, it makes them not suitable for reuse and customization.

• The verification specifications for a freely available RISC microprocessor core

are usually incomplete and not well constructed. The lack of well-developed

verification specification can cause the subsequent verification process of a

RISC microprocessor core to be slow-going. Eventually, it might slow down

the overall design process.

• The physical design phase of these microprocessor cores will also be inevitably

affected due to the lack of good verification specifications. In order for the

physical design phase to be carried out smoothly, a design needs to be first

functionally verified. This is in light of the fact that the physical design process

will have to be repeated whenever the front-end design needs to change.

The RISC32 project that has been initiated in UTAR aims to deliver solutions to all of

the issues mentioned above by creating a 32-bit RISC core-based development

environment for assisting the research works in the area of soft-core as well as the

application specific hardware modeling. Up to date, the RISC32 project that was

initiated in UTAR has completed the CPU designs that supports basic instructions

similar to MIPS instructions. The system control coprocessor that is the Coprocessor 0

(CP0) is also available to interface with I/O devices and handle interrupts.

With the completion of the RISC32 project, a RF transceiver module which is the

Zigbee module will then be added to extend the research into cognitive radio area which

requires modification to the I/O controllers and firmware of the RISC32 microprocessor.

In this RISC32 project, several units based on the MIPS architecture have been divided.

This project is one of those units for making wireless communication across the

network possible in the RISC32 processor. With the available microarchitecture design

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
5

developed in the UTAR FICT, we can easily gain the software or firmware flexibility

advantage without having to rely and wait for third party community to develop for us.

1.3 Problem Statement

As mentioned earlier, the MIPS ISA compatible pipeline processor which includes the

Central Processing Unit (CPU), Coprocessor 0 (CP0), basic memory, flash controller,

UART controller, SPI controller, GPIO controller and so on has been developed and

functionally verified. However, the existing SPI controller architecture and its Interrupt

Service Routine (ISR) are not fully workable after integrating it into the RISC32

pipeline processor. So, the previously developed SPI controller architecture and its ISR

need to be revised. Further design work on the SPI controller unit needs to be continued

in order for it to function normally with the processor. On top of that, there is also a

lack of comprehensive documentation of the SPI controller unit such as verification

specification, verification methodology, testbench and so on. The lack of well-

developed verification specifications of the SPI controller unit can have the direct effect

on the physical design phase because a design needs to be verified for its complete

functionalities so that the subsequent physical design process can be carried out

smoothly and easily. Otherwise, the physical design process would have to be carried

out repeatedly whenever the front-end design is required to change because of the

serious functionality failure.

1.4 Project Scope

The project scope will mainly focus on designing and integrating the SPI controller unit

into the existing RISC32 pipeline processor. The specifications of the SPI controller

unit and its internal block will be functionally verified by developing testbenches.

In addition, an Interrupt Service Routine (ISR) for handling all the interrupt requests

generated by the SPI controller will be developed and then integrated into the existing

exception handler of the RISC32 pipeline processor. Some MIPS test programs will

also be written to test the SPI controller’s functions after integration as well as to verify

the correctness of the ISR execution.

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
6

Moving on, the developed SPI controller unit will be synthesized on the Field

Programmable Gate Array (FPGA) technology and further interfaced with the Zigbee

module which is the CC2420 RF transceiver in this project for wireless data

communication.

Lastly, a comprehensive documentation on this project will be developed and

maintained. In short, a piece of software, stimulation result and hardware are expected

to be delivered at the end of the project.

1.5 Project Objectives

The objectives of this project are:

• To develop a SPI controller. This involves the micro-architecture modelling and

verification of the SPI controller using Verilog language.

• To integrate the SPI controller into the RISC32. This involves the development

of the interface between the SPI controller and the RISC32 based on I/O

memory mapping technique. An Interrupt Service Routine (ISR) specifically for

the SPI controller unit will also be developed in MIPS assembly language and

integrated into the exception handler.

• On-board testing with Zigbee module. This involves the synthesis of the

RISC32 onto an FPGA board. A Zigbee module will be connected to the SPI

controller ports for final testing to demonstrate the transfer of data between two

FPGA boards via the Zigbee modules.

1.6 Impact, Significance, and Contribution

After this project is done, it can provide a complete RISC microprocessor core-based

development environment and proper interfacing system for connecting the SPI

controller unit to the microprocessor as well as the Zigbee module. The development

environment attributes to the availability of the following:

• A well-developed design documentation of the chip specification, the

architecture specification as well as the micro-architecture specification.

• A fully functional interfacing system between the CPU and the SPI controller

unit in the form of synthesis-ready RTL that is written in Verilog.

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
7

• A proper verification specification of the SPI controller unit. The verification

specification contains the suitable verification methodology, verification

techniques, test plan, testbench architecture and so on.

• A complete physical design in FPGA technology with documented timing and

resources usage information.

This project can contribute to develop an environment that mentioned above by

providing support to the hardware modeling research work. By having well-developed

basic RISC RTL model, the verification environment, as well as the design documents,

researchers will be able to develop their own research specific RTL models as part of

the MIPS environment and can quickly verify the models to obtain results. As a result,

the research works could be done more easily and rapidly.

1.7 Report Organization

This report consists of 9 chapters and the details of the project are shown in the

following chapters.

In Chapter 1, some background information that matters is given, followed by the

motivation of this project, the problem statement, project scope and objective in order

to help readers to understand some facts or knowledge related to this project.

In Chapter 2, a literature review on two types of SPI protocols, the design of various

type of SPI controller unit, and memory-mapped I/O technique has been highlighted

and compared.

In Chapter 3, the methodologies and general work procedure for modeling, verifying,

and synthesizing the SPI controller unit has been discussed. Moreover, it also discusses

about the appropriate design tools that can help automate the design work, the

technologies involved, the implementation issues and challenges, as well as the timeline

of this project.

In Chapter 4, it discusses about the system overview of the RISC32 pipeline processor

that will be used. The architecture, memory map, chip interface, and pin description of

the processor used are stated in detail in Chapter 4.

Chapter 1: Introduction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
8

In Chapter 5, it shows the full information about the micro-architecture specification of

the designed SPI controller unit. It also gives an overview about each of the internal

block in the SPI controller unit in terms of their functionality, block interface, pin

description, and so on.

In Chapter 6, the exception handler of the RISC32 pipeline processor is briefly

discussed, followed by the explanation of the Interrupt Service Routine (ISR)

developed for the SPI controller unit.

In Chapter 7, it discusses about how the designed SPI controller unit is functionally

verified, both as a single unit and in a whole system. All of the related verification

specifications, test plans, testbenches, test programs, and stimulation results can be

found in Chapter 7.

In Chapter 8, it analyses the synthesized SPI controller unit in terms of FPGA resource

utilization and timing requirement. In addition, the solution for hardware and software

implementation to achieve data transfer between two FPGA boards via the Zigbee

modules is also proposed here.

In chapter 9, it concludes the overall project development, highlighting what have been

achieved in the project. Furthermore, the future work that can be made to this project is

also discussed here.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
9

Chapter 2: Literature Review

2.1 Overview of 4-wire SPI Protocol

2.1.1 Detailed Pin Description in 4-wire SPI Protocol

The standard 4-wire SPI consists of 4 external pins, typically called Master Out Serial

In (MOSI), Master In Serial Out (MISO), Serial Clock (SCLK), and Slave Select (SS).

A detailed functional description of each pin is provided in Table 2.1.1.1.

Pin Name

(Typical)

Pin Type Functional Description

SCLK Input

Output

• It is used to output a clock signal generated by

master to all the slave(s).

• It is used for synchronizing the data transfer taking

place across different devices.

• It is only active during a data transfer and is tri-

stated at any other time.

SS Input

Output

• It is an active low pin used by a master to select

which slave.

• Each slave has its own unique SS pin.

• It must go low before a data transfer begins and must

stay low during the process. Otherwise, the data

transfer will be aborted.

MOSI Input

Output

• It is a unidirectional pin used to transfer serial data

from the master to the slave.

• When a device is configured as a master, serial data

is sent through this pin.

• When a device is configured as a slave, serial data is

received through this pin.

• It is only active during a data transfer and is tri-

stated at any other time.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
10

MISO Input

Output

• It is a unidirectional pin used to transfer serial data

from the slave to the master.

• When a device is configured as a slave and it is

selected (the slave’s SS pin goes low), serial data is

sent through this pin.

• When a device is configured as a slave and it is not

selected, the slave will drive this pin to high

impedance.

• When a device is configured as a master, serial data

is received through this pin.

• It is only active during a data transfer and is tri-

stated at any other time.

Table 2.1.1.1: Functional descriptions of the standard 4-wire SPI’s external pins

2.1.2 Transfer Modes in 4-wire SPI Protocol

Normally, a SPI peripheral can support up to 4 transfer modes (mode 0, 1, 2, and 3)

which provide great flexibility in communication between master and slave(s). These

4 transfer modes have four different clocking configurations which is defined by a pair

of parameters called Clock Polarity (CPOL) and Clock Phase (CPHA) (Anusha, 2017).

The definition of the two parameters are given in Table 2.1.2.1.

Parameter Value Functional Description

Clock Polarity

(CPOL)

CPOL = 0 Active-low clock is selected. SCLK is high in idle state.

CPOL = 1 Active-high clock is selected. SCLK is low in idle state.

Clock Phase

(CPHA)

CPHA = 0 Data sampling occurs at odd edges (1, 3, 5, …,15) of the

SCLK clock.

CPHA = 1 Data sampling occurs at even edges (2, 4, 6, …, 16) of

the SCLK clock.

Table 2.1.2.1: Functional description of the Clock Polarity and Clock Phase parameters

based on Motorola Inc.’s SPI Block Guide V03.06.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
11

As shown in Table 2.1.2.2, each of the available modes has its own definition on the

SCLK signal that determines what is the steady level (that is high or low) when the

clock is not active as well as which SCLK edge is used for toggling the data and

sampling the data (Leens, 2009, pp. 8-13). Therefore, in order for a communication to

be possible, the master/slave pair must use the same set of parameters which include

the SCLK frequency, CPOL and CPHA (Leens, 2009, pp. 8-13).

Mode CPOL CPHA SCLK transmission edge SCLK

sample edge

SCLK

idle stage

0 0 0 One half clock cycle before the

rising edge

Rising edge Low

1 0 1 Rising edge Falling edge Low

2 1 0 One half clock cycle before the

falling edge

Falling edge High

3 1 1 Falling edge Rising edge High

Table 2.1.2.2: SPI transfer mode information based on Motorola Inc.’s SPI Block Guide

V03.06.

2.1.3 Timing Diagram in 4-wire SPI Protocol

In any of the transfer mode, the SS signal must go low before a data transfer begins and

must stay low during the process. Otherwise, the data transfer will be aborted. If the 4-

wire SPI device is set to operate in mode 0 (where CPOL = 0 and CPHA = 0), then it

will transmit data (master → MOSI → slave, slave → MISO → master, simultaneously)

one-half cycle before the rising edge and sample data on rising edge of the SCLK signal.

Commonly, it is the mode 0 that is used for SPI bus communication (CORELIS, n.d.).

Refer to Figure 2.1.3.1 to see the timing diagram for mode 0 serial data communication.

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)
sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: M = master, S = slave

Figure 2.1.3.1: Timing diagram for mode 0 serial data communication in the 4-wire SPI

protocol.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
12

On the other hand, if the 4-wire SPI device is set to operate in mode 1 (where CPOL =

0 and CPHA = 1), then it will transmit data (master → MOSI → slave, slave → MISO

→ master, simultaneously) on rising edge and sample data on falling edge of the SCLK

signal. Refer to Figure 2.1.3.2 to see the timing diagram for mode 1 serial data

communication.

Note: m = master, s = slave

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Figure 2.1.3.2: Timing diagram for mode 1 serial data communication in the 4-wire SPI

protocol.

Apart from that, if the 4-wire SPI device is set to operate in mode 2 (where CPOL = 1

and CPHA = 0), then it will transmit data (master → MOSI → slave, slave → MISO

→ master, simultaneously) on one half clock cycle before the falling edge and sample

data on falling edge of the SCLK signal. Refer to Figure 2.1.3.3 to see the timing

diagram for mode 2 serial data communication.

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: m = master, s = slave

Figure 2.1.3.3: Timing diagram for mode 2 serial data communication in the 4-wire SPI

protocol.

Lastly, if the 4-wire SPI device is set to operate in mode 3 (where CPOL = 1 and CPHA

= 1), then it will transmit data (master → MOSI → slave, slave → MISO → master,

simultaneously) on falling edge and sample data on rising edge of the SCLK signal.

Refer to Figure 2.1.3.4 to see the timing diagram for mode 3 serial data communication.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
13

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: m = master, s = slave

Figure 2.1.3.4: Timing diagram for mode 3 serial data communication in the 4-wire SPI

protocol.

2.1.4 Working Principal of 4-wire SPI Protocol

The working of this 4-wire SPI is based on the contents of an eight-bit serial shift

register in both of the master and the slave. In this SPI protocol, the master is always in

control and initiate the communication. When the master wants to send data to a slave

or request data from it, it will first select the particular slave by pulling the SS pin of

the slave to low and it then activates the clock signal at a clock frequency that is usable

by the master and the slave (Leens, 2009, pp. 8-13). In order for the communication to

be possible, the master and slave must first agree on certain synchronization protocol.

Meaning, they need to synchronize to the same clock and also operate in the same

transfer mode (that is having the same set of CPOL and CPHA value) to ensure a valid

data exchange. If multiple slaves are configured in different transfer modes, then the

master will have to reconfigure itself whenever it wants to communicate with a different

slave (Leens, 2009, pp. 8-13). Once they have set to follow the same synchronization

protocol, the full-duplex data communication between the master and the slave can

begin.

As the clock pulses are generated, the master transfers the data stored in its shift register

serially to the slave via the MOSI pin. Similarly, the data contained in the slave’s shift

register is transferred back serially to the master’s shift register via the MISO pin. For

this case, the contents of the two shift registers get exchanged once a total of eight

pulses of clock signals are generated. At the end, the master will pull the SS pin of the

slave to high to complete the data transaction. An overview of the block diagram

connection between a master device and a slave device in the 4-wire SPI protocol is

provided in Figure 2.1.4.1 for better understanding.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
14

Figure 2.1.4.1: An overview of the block diagram connection between a master and a

slave in the 4-wire SPI protocol.

On the other hand, it is also a single-master communication protocol in which only one

master can exist in the connection at a time to initiate all the communications with

slaves (Anusha, 2017). If more than one master is trying to drive the MOSI and SCLK

simultaneously (with any attempt to pull low the SS pin), a mode fault error will occur

(Motorola Inc, 2013).

Besides setting up to operate with a single master and a single slave (See Figure 2.1.4.1),

SPI can also be set up with multiple slaves controlled by a single master. Commonly,

there are two types of configuration used to connect multiple slaves to the master. They

are independent slave configuration and Daisy-chain configuration.

In independent slave configuration, a master can have (3+N)-wire serial interface where

N is the total number of slaves connected to a single master on the bus. As indicated in

Figure 2.1.4.2, a master needs to allocate an independent SS pin to each of its slave so

that they can be addressed individually. In order to talk to a particular slave, the master

needs to pull the desired slave’s SS pin to low and keep the rest of them high. The

advantage of this configuration is that it allows the connection of SPI devices operating

in different transfer modes and/or baud rate as it controls each of the slaves separately.

However, as the number of slaves increases in the system, the number of the

independent SS pin needed by the master also increases and the board layout of the

system become more complicated (Dhaker, 2018). Therefore, this method is simple to

implement only when there are very few slaves connected to a single master.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
15

Figure 2.1.4.2: An overview of the block diagram connection between a single master

device and multiple slave devices using independent slave configuration.

In Daisy-chain configuration, a common SS pin of the master is shared among all the

slaves. Only the first slave in the chain receives the input data directly from the master

while the rest of the slaves in the chain receive their input data from the output pin of

the preceding slave. In Figure 2.1.4.3, the data shifted out of the master is connected

directly to the first slave, and then out of the first slave into the second, and so on until

the last slave in the series. In order for this scheme to work successfully, each of the

slave needs to synchronize to the same clock as well as operate in the same transfer

mode. The advantage of using Daisy-chain configuration is that it helps to save the

number of SS pin needed on the master device. However, the speed of data transfer will

be reduced significantly as the number of slave devices increases

Figure 2.1.4.3: An overview of the block diagram connection between a single master

device and multiple slave devices using Daisy-chain configuration.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
16

Additionally, SPI does not use any slave acknowledge mechanism in its communication

protocol to confirm receipt of data as well as offers no flow control (Leens, 2009, pp.

8-13). Furthermore, SPI neither specify any maximum data transfer rate (normally

ranging up to several megabits per second) nor any addressing scheme in the protocol

(Leens, 2009, pp. 8-13).

The 4-wire SPI protocol defined by Motorola Inc. has become a popular communication

protocol and widely de facto in the industry due to its simplicity in interfacing with at

least 4 wires only for data communication purpose between electronic devices. In

addition, it becomes the current practice because it provides a good support for

communication with low-speed devices by having full duplex capability. Meaning, it

can transmit and receive data simultaneously, therefore resulting in a good data transfer

performance and high throughput speed of over 10Mb/s (Leens, 2009, pp. 8-13).

However, according to Tuan et al. (2017), the silicon cost and power consumption of

the 4-wire SPI are the major issues in VLSI technology, such as the package size of IC

and the quality of pad even though numerous transmission wires for data

communication have been simplified.

2.2 Overview of 3-wire SPI Protocol

2.2.1 Detailed Pin Description of 3-wire SPI Protocol

Besides the standard 4-wire SPI implementation, SPI can also be designed to have 3

external pins only, namely Serial Data Input Output (SDIO), Serial Clock (SCLK), and

Slave Select (SS). The bidirectional MOSI and MISO serial pin are now combined to a

single bidirectional serial pin called SDI/SDO. A detailed functional description of each

pin is provided in Table 2.2.1.1.

Pin Name

(Typical)

Pin Type Functional Description

SCLK Input

Output

• It is used to output a clock signal generated by

master to all the slave(s).

• It is used for synchronizing the data transfer taking

place across different devices.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
17

• It is only active during a data transfer and is tri-

stated at any other time.

SS Input

Output

• It is an active low pin used by a master to select

which slave to initiate the communication with the

master.

• Each slave has its own unique SS pin.

• When the SS pin of the slave goes low, the

corresponding slave is selected. Otherwise, it is not

selected.

• It must go low before a data transfer begins and must

stay low during the process. Otherwise, the data

transfer will be aborted.

SDIO Input

Output

• It is a unidirectional pin used to transfer serial data

from the master to the slave and vice versa.

• When a device is configured as a master, serial data

is sent and receive through this pin.

• When a device is configured as a slave and it is

selected, serial data is sent and receive through this

pin.

• When a device is configured as a slave and it is not

selected, the slave will drive this pin to high

impedance.

• It is only active during a data transfer and is tri-

stated at any other time.

Table 2.2.1.1: Functional descriptions of the 3-wire SPI’s external pins

2.2.2 Transfer Modes of 3-wire SPI Protocol

The 3-wire SPI can also support up to 4 transfer modes (mode 0, 1, 2, and 3) in fulfilling

different serial communication requirements of the connected peripherals. Similarly,

the SPI transmission mode used can be defined by a pair of parameters called Clock

Polarity (CPOL) and Clock Phase (CPHA) (Anusha, 2017). Refer to Table 2.1.2.1 to

understand the definition of these two parameters. Apart from that, the 3-wire SPI also

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
18

applies the same SCLK definition on each of the available modes and the SPI transfer

mode information can be found in Table 2.1.2.2.

2.2.3 Timing Diagram of 3-wire SPI Protocol

As mentioned earlier, the 3-wire SPI applies the same SCLK definition as what the 4-

wire SPI uses. Therefore, they are having the same transfer mode information. In any

of the transfer mode, the SS signal must go low before a data transfer begins and must

stay low during the process. Otherwise, the data transfer will be aborted. If the 3-wire

SPI device is set to operate in mode 0 (where CPOL = 0 and CPHA = 0), then it will

transmit data one-half cycle before the rising edge and sample data on rising edge of

the SCLK signal. On the other hand, if mode 1 (where CPOL = 0 and CPHA = 1) is

selected, then it will transmit data on rising edge and sample data on falling edge of the

SCLK signal. Apart from that, if it is set to operate in mode 2 (where CPOL = 1 and

CPHA = 0), then it will transmit data on one half clock cycle before the falling edge

and sample data on falling edge of the SCLK signal. Lastly, if mode 3 (where CPOL =

1 and CPHA = 1) is set, then it will transmit data on falling edge and sample data on

rising edge of the SCLK signal. Refer to Figure 2.2.3.1 below to see the full timing

diagram for serial data communication in all the transfer modes.

Figure 2.2.3.1: Timing diagram for mode 0, 1, 2 and 3 serial data communication in the

3-wire SPI protocol.

2.2.4 Working Principal of 3-wire SPI Protocol

The principle of the 3-wire SPI protocol is very similar to the 4-wire SPI protocol (Tuan

et al, 2017). However, in 3-wire SPI protocol, there is only one serial bidirectional data

line used for both input and output instead of having separate data input and data output

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
19

pin as shown in the 4-wire SPI type. And this has greatly affected the way SPIs

communicate with each other.

The working of this 3-wire SPI is based on the contents of an eight-bit serial shift

register in both of the master and the slave. In this SPI protocol, the master initiates the

communication by first pulling the SS pin of the particular slave to low and then driving

the clock signal at a clock frequency that is usable by the master and the slave. Once

they have set to follow the same synchronization protocol, a valid data communication

between the master and the slave can then begin.

As the clock pulses are generated, the master will first send a fixed-length command

over the SDIO line. If it is a write command, then the master will continue to transmit

the data stored in its shift register serially to the slave via the SDIO pin. If it is a read

command, then the selected slave will transmit back the data contained in its shift

register serially to the master’s shift register via the SDIO pin as well. At the end, the

SS pin of the slave will be de-asserted by the master in order to complete the data

transaction. An overview of the block diagram connection between a master device and

a slave device in 3-wire SPI protocol is provided in Figure 2.2.4.1 for better

understanding.

SPI

Master

SPI

Slave
SDIO

SS

SCLK

SDIO

SCLK

SS

Figure 2.2.4.1: An overview of the block diagram connection between a master device

and a slave device in the 3-wire SPI protocol.

Since it uses only one bidirectional pin for I/O, so it can minimize the silicon area and

achieve cost-efficient (Tuan at.al, 2017). However, it can only achieve half-duplex

transmission in which either data transmission or receiving can occur at one time.

Consequently, it will result in a slower throughput speed and lower data transfer

performance.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
20

2.3 SPI Controller

2.3.1 SPI Controller from Motorola Inc.

Based on the Motorola Inc’s SPI specifications, version V03.06 that were revised on

February 2003, the designs are the general-purpose solutions which offer viable ways

to control SPI bus and highly flexible to suit any particular needs. The SPI controller

designed by the Motorola Inc. has the following distinctive features:

• Have 4-wire SPI interfaces

• Have selectable serial clock frequency/baud rate

• Have 4 transfer modes with programmable clock phase and clock polarity

• Support master mode and slave mode

• Have bidirectional mode

• Have one double-buffered data register

• Have SPIF interrupt flag, SPI transmit empty interrupt flag, mode fault error

interrupt capability

• Provide low power mode options

The SPI controller developed by Motorola Inc. consists of 4 pins, namely MOSI, MISO,

SCLK and SS pin and it can support up to 4 transmission modes (mode 0, 1, 2, and 3).

An overview on the Motorola’s SPI controller architecture which contains the status

register, control register, data register, shifter logic, baud rate generator, master/slave

control logic and port control logic is given in Figure 2.3.1.1 below.

Figure 2.3.1.1: An overview on the Motorola Inc's SPI controller.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
21

This SPI controller provides low power mode options that include run mode, wait mode,

and stop mode. In run mode, the SPI system is in an active state and it operates normally.

In wait mode, the SPI operation is in a configurable low power mode, which can be

controlled by the setting of the SPICR2 register. In stop mode, it is inactive in order to

save the power consumption.

Apart from that, the SPI controller designed by Motorola Inc. does not only have full-

duplex capability, but also support half-duplex serial data communication. As shown in

Table 2.3.1.1, it can have two modes, namely normal mode and bidirectional mode for

interfacing with external devices. In normal mode, the SPI controller utilizes all of its

4 external pins to perform the full-duplex data communication that has been illustrated

earlier. However, in bidirectional mode, only one serial data pin is used to interface

with external devices. So, only half-duplex data communication is performed in this

mode. When configured in bidirectional mode, the MOSI pin acts as the serial data I/O

(MOMI) pin in master device whereas the MISO pin of the slave device becomes the

serial data I/O pin (SISO) pin. The MISO pin in master mode and MOSI pin in slave

mode are not used by the SPI controller in this bidirectional mode.

When SPE = 1 Master Mode, MSTR = 1 Slave Mode, MSTR = 0

Normal Mode

SPC0 = 0

Bidirectional

Mode

SPC0 = 1

Table 2.3.1.1: Normal mode and bidirectional mode in Motorola Inc's SPI controller.

Typically, full-duplex data communication is favorable over half-duplex one because

half-duplex data communication often results in a slower throughput speed and lower

data transfer performance. Although the SPI controller designed by the Motorola Inc.

provides a great flexibility in interfacing with external devices by having two modes, it

actually makes the design more complicated to implement if compared to the one with

a single mode only.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
22

From Figure 2.3.1.1, it is noticeable that only one 8-bit SPI data register is being shared

in the design. Meaning, it can either be used as a SPI receiver data register for read or

a SPI transmitter data register for write at a given time only. Whenever the data transfer

has completed, a read operation on this SPI data register must be first performed to

release the register before any write operation on it, thus making simultaneous reading

and writing become impossible. Moreover, only one 8-bit data can be buffered

temporarily in it after each data transfer. So, more CPU’s immediate attention may be

required on it in order to release the register from time to time as it cannot hold large

amount of data temporarily with the limited storage capability.

2.3.2 SPI Controller Designed by Kiat Wei Pau

The SPI controller developed by Kiat Wei Pau is a 4-wire SPI controller that contains

all the MISO, MOSI, SCLK and SS pins in order to interface with external devices

(Kiat, 2018). In short, it has the following features.

• Have 4-wire SPI interfaces

• Apply Wishbone interface connection

• Have 16 selectable serial clock frequency/baud rate

• Have 4 transfer mode with programmable clock phase and clock polarity

• Support master mode only

• Have separate transmitter and receiver data register

• Have receiver buffer full, transmitter buffer empty, and mode fault error

interrupt capability

The discussed SPI controller consists of a clock generator block, input output control

block, receiver block, and transmitter block. On top of that, 4 registers which include

SPI Configuration Register (SPICR), SPI Status Register (SPISR), SPI Receiver Data

Register (SPIRDR), and SPI Transmitter Data Register (SPITDR) are available for user

to access whereas the 2 shift registers, namely Transmitter Shift Register (TSR) and

Receiver Shift Register (RSR) are used for parallel-to-serial and serial-to-parallel data

conversion respectively (Kiat, 2018). The internal connection of the SPI controller that

has been developed is given in Figure 2.3.2.1.

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
23

TSR[7:0]

uiospi_MISO

uiospi_MOSI

uiospi_SCLK

RSR[7:0]

binary counteruispi_wb_clk CPOL MSTR

MSTR

MSTR

SPICR

RXFF TXEF MODF RXFIM RXFIE TXEIE RXFHE TXEHE

SPISR

uispi_wb_din[7:0]

uospi_IRQ

MSTR

uspi

SPE MSTR CPOL CPHA SCR SCR SCR SCR

bspiclk_gen

bspiIO_ctrl

uiospi_SS_nMSTR

uospi_wb_ack

uispi_wb_sel[3:0]
uispi_wb_we

uispi_wb_stb

uospi_wb_dout[7:0]

uispi_SPIE

[7:0]

[7:0]

FIFO
16 x 1
BYTE

FIFO
16 x 1
BYTE

[7:0]

[7:0]

bspiTX

bspiRX

Figure 2.3.2.1: An overview of the SPI controller designed by Kiat Wei Pau.

When compared to the SPI controller from Motorola Inc., this SPI controller supports

only full-duplex data communication between devices. The design is less complex and

it uses lesser special-purpose registers for configuration and status monitoring.

Moreover, it uses separate data registers to hold the data bytes, thus making

simultaneous reading and writing become possible. To further illustrate on this point,

the transmitter data register (SPITDR) is used to hold the data byte to be transmitted

whereas the receiver data register (SPIRDRD) is used to store the received data byte

from the other side. On top of that, it uses a 16 entries deep FIFO memory as the

read/write buffer. So, by having larger data buffer capacity, less CPU’s immediate

response will be needed and the CPU can focus on executing its core task. However, it

can only operate correctly in master mode and it also does not provide any low power

mode options for power saving.

2.4 Memory-mapped I/O

Memory-map I/O (MMIO) is one of the general methods for assembly language

program to address an I/O device. It is the I/O scheme where portions of address space

are allocated to I/O devices, and reads and writes to those addresses are interpreted as

commands to the I/O device (Patterson & Hennessy, 2005). With MMIO. CPU views

Chapter 2: Literature Review

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
24

an I/O device as a set of special-purpose registers. Table 2.4.1 discusses the three

general types of the special-purpose registers used in MMIO.

Register Type Description

Status register • Used to provide status information about the I/O

device.

• Often can be read only.

Configuration/Control

register

• Used to configure and control the I/O device.

• Both readable and writable.

Data register • Used to read data from or send data to the I/O device.

• Both readable and writable.

Table 2.4.1: Three general types of special-purpose registers used in MMIO.

By using MMIO method, the addresses of the registers in each of the I/O devices are

assigned in a dedicated portion of the kernel’s virtual address space. Each of the

registers in the I/O controller must have a fixed and unique memory address within the

mentioned address space in order for the CPU to access the specific register easily.

The benefits of using MMIO is that it keeps the instructions set small by adhering the

design principles of MIPS, that is keeping the hardware simple via regularity (Langer,

2016). No new dedicated instructions are required in MMIO to simply read or write

those special addresses because it allows the normal load and store instructions to be

used for referencing, manipulating, and controlling both memory and I/O devices. The

memory address that is being used will determine which type of device (memory or I/O

device) to be accessed.

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
25

Chapter 3: Proposed Method/Approach

3.1 Methodologies and General Work Procedures

In the design process for digital system, there are 3 types of design methodologies

available, namely top-down design methodology, bottom-up design methodology and

mixed design methodology. In this project, the top-down design methodology will be

used for designing and developing the SPI controller unit. In top-down design

methodology, the top-level representation of a unit is first defined, followed by the

lower-level representations based on several important criteria such as functionality,

speed, silicon area and power consumption.

3.1.1 RTL Design Flow

The RTL design flow provided in Figure 3.1.1.1 below will be used throughout the

project. In the RTL design flow, the micro-architectural level design will be focused

more in this project because the SPI controller to be designed is in the unit level. A SPI

controller that uses the 4-wire industry-standard SPI protocol will be designed for the

Zigbee module in this project as it has better data transfer performance and higher

throughput speed.

Figure 3.1.1.1: The RTL design flow used for developing the SPI controller unit is

provided. The arrows indicate process or work flow (not data flow).

Micro-architecture

Level Design

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
26

3.1.2 Micro-architecture Specification

Micro-architecture specification will describe the internal design of the SPI controller

unit. The internal design of the SPI controller unit will be described with detailed and

design-specific technical information in order for RTL coding to begin. In this project,

the unit level of the SPI controller will include the following information:

• Functionality/feature description

• Interfaces and I/O pin description

• Functional partitioning into blocks and inter-blocks signaling

- If the blocks are too complex to be coded, then further partition them

into sub-blocks

• Test plan (focus on functional test)

Meanwhile, the block level of the SPI controller will have the following details:

• Functionality/feature description

• Interface and I/O pin description

• Internal operation: function table, FSM, and etc.

• Schematic and block diagram

• Test plan (focus on functional test)

3.1.3 RTL Modeling and Verification

With the development of the micro-architecture specification, the RTL coding on the

SPI controller can begin. After coding, the RTL models are verified for functional

correctness at each level. To further illustrate on this point, each block (RTL model)

are verified before they are integrated into unit level. During the development of the

project, if the design of the SPI controller unit does not meet all of the specified

functional requirements, then the design flow would need to be repeated. After all the

RTL models have successfully met the specified functional requirements, then logic

synthesis will be carried out on the targeted technology which is the FPGA technology

in this project.

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
27

3.1.4 Logic Synthesis for FPGA

After the SPI controller unit has been functionally verified, the model is said to be ready

for logic synthesis. Logic synthesis is the process of converting RTL codes into an

optimized gate level representation (a netlist). Based on the logic synthesis result, the

gate level netlist is verified again for functional correctness. If it can successfully meet

all the necessary specifications, the gate level netlist is now ready for physical design.

However, if it cannot meet the required specifications, depending on the severity,

corrections need to be made accordingly to the gate level netlist, the RTL models or the

architecture.

3.2 Design Tools

Each stage of the design jobs requires the use of appropriate design tools to help

automate the design work. Hence, there exist Electronic Design Automation (EDA)

tools for design work at each particular level of abstraction. Since the RTL model of

the SPI controller unit is designed by using Verilog hardware description language

(HDL), thus a Verilog simulator is definitely needed to emulate the Verilog HDL. Some

of the simulators are as shown in Table 3.2.1 below and several comparisons have been

made among all of them.

Simulator
Incisive Enterprise

Simulator
ModelSim VCS

Company

Language

Supported

• VHDL-2002

• V2001

• SV2005

• VHDL-2002

• V2001

• SV2005

• VHDL-2002

• V2001

• SV2005

Platform

supported
• Sun-solaris

• Linux

• Windows

XP/Vista/7

• Linux

Linux

Availability for

free?

(SE edition only)

Table 3.2.1: Comparison among 3 different Verilog simulators

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
28

Based on the comparison above, it is clear that the ModelSim from Mentor Graphic is

the best choice among others to be used as the design tool for this project as they offer

a free license for Student Edition version. Even though there is certain degree of

limitations on the ModelSim Student Edition version, it is adequate to be used for this

project. In addition, it supports Microsoft Windows platform as well. Although the

other two simulators can also offer great features for Verilog stimulation, the price are

too expensive ($25,000 - $100,000) and certainly not affordable to be used in this

project.

As for the synthesis tools, there are a lot of logic synthesis tools targeting FPGA. Those

logic synthesis tools include Quartus by Altera, Synplify by Synopsys, Vivado Design

Suite by Xilinx, Encounter RTL Compiler by Cadence Design System, and so on.

Among all the available logic synthesis tools, the Xilinx Vivado Design Suite is

selected for this project as it is able to support the FPGA that we have in UTAR and it

is already freely available in UTAR.

3.2.1 ModelSim PE Student Edition 10.4a

ModelSim from Mentor Graphic is the industry-leading simulation and debugging

environment for HDL-based design in which its license can be obtained freely. The

student version of the ModelSim is used for Verilog design stimulation instead of the

full version because the features provided in the student edition are already adequate to

be used for this project. Furthermore, both the Verilog and VHDL languages are

supported by this ModelSim stimulator. This stimulator can also provide syntax error

checking and waveform simulation which play an important part in developing the

project. The timing diagrams and the waveforms are very useful in verifying the model

functionalities after writing a program called testbench.

3.2.2 Xilinx Vivado Design Suite

Vivado Design Suite is a software suite designed by Xilinx. This software is designed

for synthesis and analysis of HDL designs which enables developers to synthesize their

designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction

to different stimuli, and configure the target device with the programmer easily. On top

of that, it is a good design environment for FPGA products from Xilinx but it cannot be

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
29

used with those FPGA products from other vendors. The FPGA products that are

supported by Xilinx Vivado Design Suite include Spartan FPGA, Virtex FPGA,

Coolrunner, XC9500 Series CPLD and so on.

3.2.3 PCSpim

PCSpim is the Window version of spim. It is a software stimulator that loads and

executes assembly language program for the MIPS RISC architecture. Besides, it also

provides a simple assembler, debugger and a simple set of operating services. Hence, it

is used in this project for developing the MIPS test program in order to verify the

functional correctness of the ISR.

3.3 Technologies Involved

3.3.1 Field Programmable Gate Array (FPGA)

As mentioned earlier, the logic synthesis of the SPI controller unit will be eventually

carried out on the FPGA technology. The FPGA technology is actually an integrated

circuit (IC) that is programmable in the field after manufacture. FPGAs have been used

widely by engineers in the design of specialized integrated circuits that can be later

produced hard-wired in large qualities for distribution to computer manufacturers and

end users. It is selected for prototype development in this project due to its benefits of

cost efficiency, high flexibility and good scalability when compared to the other

technologies. In this project, the FPGA development board used is the Xilinx Artix-7

XC7A100T FPGA chip on Digilent Nexys 4 DDR board and it is shown in Figure

3.3.1.1.

Figure 3.3.1.1: The top view of the Nexys 4 DDR (XC7A100T)

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
30

3.3.2 Zigbee RF Transceiver

Using the Zigbee communication system is less costly and simpler when compared to

other short-range wireless sensor nodes like Bluetooth and Wi-Fi (Elprocus, n.d.). As

presented in Figure 3.3.2.1, the Zigbee module used in this project would be the

CC2420 transceiver product from the Texas Instruments company. The CC2420

transceiver is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver that

is designed for low power and low voltage wireless application (Texas Instrument,

2013). It is a low-cost and highly integrated solution for robust wireless communication

in the 2.4 GHz unlicensed ISM band. Besides, it has a digital direct sequence spread

spectrum baseband modem that can provide a spreading gain of 9 dB and an effective

data rate of 250 kbps (Texas Instrument, 2013). Most importantly, the configuration

interface and transmit/receive FIFOs of the CC2420 can be accessed via a 4-wire SPI

interface with serial clock. Typically, only reference crystal and a minimized number

of passives are needed for the operation of the CC2420. So, it can be used together with

a microcontroller and very few external passive components.

Figure 3.3.2.1: The top view of CC2420 from the Texas Instruments company.

3.4 Implementation Issues and Challenges

Multiple asynchronous clock domains have been employed in the RISC32 system. For

instance, the designed SPI controller unit uses an I/O clock frequency of 10 MHz that

is much slower than the 50 MHz CPU clock frequency for its internal operation. Since

the clock signals of different clock domain are independent in general, passing signal

and data safely from the fast clock domain into the slow clock domain can be a

challenging task. This is on account of the fact that if the transition of the CDC signal

happens too near to the active edge of the receiving clock, it may lead to setup or hold

time violation of the flip flop, causing the output of this flip flop to be at an unknown

Chapter 3: Proposed Method/Approach

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
31

logic value for some duration of time. The undesired metastability problem is said to

be occurred in the receiving system. Apart from that, a signal or data sending from the

fast clock domain might change values twice or more times before it can be sampled

by the receiving system that is running on a slower clock frequency. In short, serious

design failures can happen due to the clock domain crossing error. Hence, proper

synchronization is necessary when passing signals and data between clock domains and

when receiving asynchronous inputs.

3.5 Timeline

3.5.1 Gantt Chart for Project 1

Figure 3.5.1.1: Gantt chart for Project 1

3.5.2 Gantt Chart for Project 2

Figure 3.5.2.1: Gantt chart for Project 2

Chapter 4: System Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
32

Chapter 4: System Specification

4.1 System Overview of the RISC32 Pipeline Processor

Since the selected CC2420 transceiver does not have any built-in microcontroller or

processor with them, hence, it is proposed to interface the Zigbee module with the serial

interface of the existing RISC32 pipeline processor which is the SPI in this project

because of its convenience connection mechanism and full duplex capabilities. It is the

RISC32 pipeline processor developed in the UTAR FICT that is being used because it

can provide the software or firmware flexibility advantage for the SPI controller front-

end design (modeling and verification).

4.1.1 RISC32 Pipeline Processor Architecture

The developed RISC32 pipeline processor is a 32-bit pipeline processor that consists

of 3 major components that include Central Processing Unit (CPU), memory system

and I/O system (Kiat, 2018). The developed CPU is said to be compatible to the 5-stage

32-bit MIPS Instruction Set Architecture (ISA) and it can support up to 49 instructions,

covering arithmetic, logical, data transfer, program control, and system instruction

classes. In addition, the memory system developed in this processor has a 2-level

memory hierarchy with the first level consists of cache, Boot ROM as well as Data and

Stack RAM whereas the second level contains a Flash memory. On the other hand, the

I/O system of this processor contains GPIO controller, SPI controller, UART controller,

Priority Interrupt controller and General-Purpose Register (GPR) unit. In addition, it

also has a branch predictor that helps to improve the performance of the RISC32

processor in running program in terms of the number of clock cycle spent. An

architectural overview on the RISC32 pipeline processor that has been developed is

shown in Figure 4.1.1.1. On the other hand, the detailed specification of the RISC32

pipeline processor is also provided in Table 4.1.1.1.

Chapter 4: System Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
33

D-CACHE

Memory arbiter Flash
Controller

SPI
Controller

UART
Controller

GPIO
Controller

Sy
st

em
 B

u
s

Stack
RAM

Data
RAM

Priority
interrupt
controller

Flash
Memory

I-CACHE

ZigBee EEPROM
LEDs,

Sensors

CPU

Figure 4.1.1.1: An overview on the architecture of the RISC32 pipeline processor.

 Pipeline

Frequency (MHz) 50

Instruction’s cycle 5, overlapping

Branch predictor 64 entries 4 ways associative

C
o

m
m

o
n

 f
ea

tu
re

s

(S
ta

ti
c

R
eg

io
n
)

Memory 4kBytes boot ROM, 128kBytes user access flash, 8kBytes

RAM (Data & Stack), 1kBytes i-cache, 32Bytes d-cache,

512Bytes Memory Mapped I/O Register

Communication

interface

UART, SPI, 32 GPIO pins

Partial Bitstream start address 0x00A8_0000

Bitstream size 1,404,992 bits / 43906 words

FPGA board Nexys 4 DDR (XC7A100T)

F
P

G
A

 R
es

o
u

rc
es

(O
v

er
al

l)

LUT 8266

LUTRAM 315

FF 5643

BRAM 3.50

IO 46

BUFG 1

Table 4.1.1.1: Specification of the RISC32 pipeline processor

4.1.2 Functional View of the RISC32 Pipeline Processor

The RISC32 pipeline processor that has been developed consists of 5 hardware stages

which include Instruction Fetch (IF), Instruction Decode and Operand Fetch (ID),

Execution (EX), Memory Access (MEM), and Write Back (WB) stages. Different

hardware components are allocated in each of these pipeline stages. Therefore, every

Chapter 4: System Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
34

instruction will need 5 clock cycles to run through all the 5 stages in order to complete

its execution. Since the data hazard issue due to the Read-After-Write (RAW) data

dependencies always exist in a pipeline processor, additional circuitries such as the

forwarding and interlock block are built for solving the data hazards during the program

execution (Kiat, 2018). The functional view of the 5-stage RISC32 pipeline processor

is shown in Figure 4.1.2.1.

Forwarding Control

Interlock Control

IF
ID

_
p

ip
el

in
e_

re
gi

st
e

r

Main
Control

ALU Control

CP0

PR
Control

ID
EX

_
p

ip
el

in
e

_
re

gi
st

e
r

Register File
Read ALU

Address
Decoder

Branch
Predictor

Branch
Predictor

E
XM

EM
_p

ip
e

lin
e

_r
e

gi
st

er

M
E

M
W

B
_

p
ip

e
lin

e
_r

eg
is

te
r

Multiplier
Stage 1

Multiplier
Stage 2

Multiplier
Register

GPIO

SPI

UART

PIC

DCache

Stack and
Data RAM

Register
File

Write

HI_reg Write

LO_reg Write

IF ID EX MEM WB

Interlock Control

Ctrl

HI_reg Read

LO_reg Read

ICache

Boot
ROM

PC
CtrlCtrlCtrl

Ctrl

+

4

Next PC

Figure 4.1.2.1: The functional view of the RISC32 pipeline processor.

4.1.3 Memory Map of the RISC32 Pipeline Processor

This RISC32 pipeline processor implements the MIPS memory space in two ways, that

is by having virtual and physical addresses (Kiat, 2018). The virtual addresses are

mainly used to access program instruction and data whereas the physical addresses are

used to allocate physical memory such as Flash memory, Data and Stack RAM, boot

ROM and I/O registers. The memory map used in the RISC32 pipeline processor is

presented in Figure 4.1.3.1 and the purposes of various memory allocation are discussed

in Table 4.1.3.1.

Chapter 4: System Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
35

I/O peripherals register

Boot code

Exception handler

User program code

.rodata

.bss

FLASH

RAM

Physical Memory

KSEG1

KSEG0

Virtual Memory

0xA000_0000

0x8000_0000

0xC000_0000

0x8001_B400

0x8001_F400

0xA002_0800

.stack

.heap0xA002_1000

0xA002_2000

0x8001_FFFF

0xBFFF_FE00

0xBFC0_0000

0xBFC0_1000

.data

.data

0xA002_0000

0x8001_F800

KSEG0/
KSEG1

0x0000_0000

0x2000_0000

User program code

.rodata
.data

0x0001_B400

0x0001_F400
0x0001_F800

.bss0x0002_0800

.stack

.heap0x0002_1000

0x0002_2000

.data0x0002_0000

Exception handler

I/O peripherals register

Boot code

0x1FFF_FE00

0x1FC0_0000

0x1FC0_1000

BOOT ROM

Exception handler

User program code

.rodata
.data

User program code

.rodata
.data

Exception handler

Figure 4.1.3.1: Memory map of the RISC32 pipeline processor.

Memory Usage Description Memory Size

I/O peripheral

register

Used as the memory-mapped registers for

I/O peripheral controllers.

512 bytes

Boot code Used to store bootloader program code for

initial system configuration when powered

on.

4k bytes

Stack Used by procedure during execution to store

register values.

8k bytes

Heap Used to hold variables declared dynamically.

Exception handler Used to store the exception handler codes. 16k bytes

User program code Used to store user program codes 128k bytes

Table 4.1.3.1: Memory map description of the RISC32 pipeline processor.

Chapter 4: System Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
36

4.2 Chip Interface of the RISC32 Pipeline Processor

crisc

urisc_GPIO[31:0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

uorisc_ua_tx_data

uorisc_fc_sclk

uiorisc_fc_MOSI

uorisc_fc_ss

uirisc_clk_100mhz

uirisc_rst

uirisc_ua_rx_data

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

Figure 4.2.1: Chip interface of the RISC32 pipeline processor.

4.3 Input Pin Description of the RISC32 Pipeline Processor

Pin name: uirisc_clk_100mhz Pin class: Global

Source → Destination: External → crisc

Pin function: To provide a reference signal to synchronize all other signals in a

system

Pin name: uirisc_rst Pin class: Global

Source → Destination: External → crisc

Pin function: To reset the whole MIPS ISA compatible pipeline processor

Pin name: uirisc_ua_rx_data Pin class: Data

Source → Destination: External device’s UART unit → crisc

Pin function: UART standard pin – Receive Serial Data

Pin name: uirisc_fc_MISO1 Pin class: Data

Source → Destination: Flash memory → crisc

Pin function: SPI protocol serial input pin

Pin name: uirisc_fc_MISO2 Pin class: Data

Source → Destination: Flash memory → crisc

Pin function: SPI protocol serial input pin

Pin name: uirisc_fc_MISO3 Pin class: Data

Source → Destination: Flash memory → crisc

Pin function: SPI protocol serial input pin

Table 4.3.1: Input pin description of the RISC32 pipeline processor.

Chapter 4: System Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
37

4.4 Output Pin Description of the RISC32 Pipeline Processor

Pin name: uorisc_ua_tx_data Pin class: Data

Source → Destination: crisc → External device’s UART unit

Pin function: UART standard pin – Transmit Serial Data

Pin name: uorisc_fc_sclk Pin class: Data

Source → Destination: crisc → Flash memory

Pin function: SPI protocol Serial Clock signal

Pin name: uorisc_fc_ss Pin class: Control

Source → Destination: crisc → Flash memory

Pin function: SPI protocol Slave Select

Table 4.4.1: Output pin description of the RISC32 pipeline processor.

4.5 Input Output Pin Description of the RISC32 Pipeline Processor

Pin name: urisc_GPIO[31:0] Pin class: Data

Source → Destination: crisc ↔ External device (LEDs, switch, etc)

Pin function: 32 GPIO pins

Pin name: uiorisc_spi_mosi Pin class: Data

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – Master out Serial In (MOSI)

If the crisc is configured as a master, then uiorisc_spi_mosi will become an output,

else otherwise.

Pin name: uiorisc_spi_miso Pin class: Data

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – Master In Serial Out (MISO)

If the crisc is configured as a master, then uiorisc_spi_miso will become an input,

else otherwise.

Pin name: uiorisc_spi_sclk Pin class: Control

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – SPI Serial Clock signal for data synchronization

across devices.

If the crisc is configured as a master, then uiorisc_spi_clk will become an output, else

otherwise.

Pin name: uiorisc_spi_ss_n Pin class: Control

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – SPI Slave Select control signal.

If the crisc is configured as a master, then uiorisc_spi_ss_n will become an output,

else otherwise.

Pin name: uiorisc_fc_MOSI Pin class: Data

Source → Destination: crisc ↔ Flash memory

Pin function: SPI protocol serial input output pin

Table 4.5.1: Input output pin description of the RISC32 pipeline processor.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
38

Chapter 5: Micro-Architecture Specification

5.1 SPI Controller Unit

5.1.1 Functionality/Feature of the SPI Controller Unit

The SPI controller is a controller unit that uses the 4-wire industry-standard SPI

protocol to handle the data exchange between two SPI-interface devices. The details of

the standard 4-wire SPI protocol have been fully discussed in Section 2.1. Currently,

this SPI controller is mainly used to provide fast synchronous serial communication

between a master device and a slave device. Additional address decoder will need to be

added if it wants to communicate with multiple slaves in future. The designed SPI

controller unit can transmit and receive 8-bit data simultaneously and correctly between

the master device and the slave device in 4 different transfer modes as shown in

Appendix A. This SPI controller can operate as a master or a slave device at a given

time and Table 5.1.1.1 will describe the direction of the SPI standard pins (MOSI,

MISO, SCLK, an SS pin) in each of the operation modes.

SPI standard pin Master SPI Slave SPI

MOSI Output Input

MISO Input Output

SCLK Output Input

SS Output Input

Table 5.1.1.1: Pin direction of the SPI standard pins when it is set as a master or slave

device.

In short, a summary of the designed SPI controller unit’s features is given in below.

• Have easy configuration interface

o 4-wire SPI interfaces, which include MISO, MOSI, SCLK and SS pin.

• Have 16 selectable serial clock frequency/baud rate

• Have 4 transfer modes with programmable clock phase and clock polarity

o Mode 0 (CPOL = 0, CPHA = 0)

o Mode 1 (CPOL = 0, CPHA = 1)

o Mode 2 (CPOL = 1, CPHA = 0)

o Mode 3 (CPOL = 1, CPHA = 1)

• Have 2 operation modes

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
39

o Master mode

o Slave mode

• Have separate transmitter and receiver data register (16x1-byte FIFO)

o Each of the transmitter FIFO element is a SPI Transmitter Data Register.

o Each of the receiver FIFO element is a SPI Receiver Data Register

• Support full-duplex synchronous serial data transfer

o Serial data transmission and receiving can take place simultaneously.

o 8 SCLK pulses are required when transmitting and receiving an 8-bit

data.

• Provide 3 types of interrupts

o Receiver buffer full interrupt

o Transmitter buffer empty interrupt

o Mode fault error interrupt

5.1.2 Operating Procedure (External Operation)

The details of the procedure for CPU to operate the designed SPI controller is provided

in below.

1. CPU supplies a global clock signal to the SPI controller for clock reference.

2. CPU resets the SPI controller in order to initialize all of its registers from an

unknown value to the initialized value, reset all of its FIFOs’ pointers, as well

as reset all of its FSMs to the idle state.

3. CPU stores one or more 8-bit data that is/are to be transmitted into the SPI

Transmitter Data Register (SPITDR) by using the 0xbfff_fe26 address value.

Writing to the SPITDR is actually writing to the 16-deep transmitter FIFO.

4. CPU configures the setting of the SPISR accordingly for status monitoring,

interrupt enable controlling, and FSM stall controlling by using the 0xbfff_fe25

address value (Refer to Section 5.8 for SPISR’s full information).

5. CPU configures the setting of the SPICR accordingly for activating the SPI

controller, selecting the desired operation mode (master or slave), selecting the

transfer mode (mode 0, 1, 2 or 3), and selecting the suitable baud rate by using

the 0xbfff_fe24 address value (Refer to Section 5.8 for SPICR’s full

information).

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
40

a. Once the settings on the SPISR and the SPICR have been configured

correctly, the SPI controller is said to be ready to perform the full-duplex

data communication with another SPI-compatible device.

b. The SPI controller starts to go through the respective FSMs to transmit

and receive data simultaneously from the other side until all the pending

transfers have completed.

6. Depending on the SPISR configuration for the application, CPU will serve the

SPI controller in different ways.

a. If interrupt is disabled, CPU will need to use the polling method to

determine when it is ready to read the received data from the SPIRDR,

load new data into the SPITDR or disable the SPI controller. The SPI

controller simply puts the information in the SPISR, and the CPU must

come dan get the information. The status flag(s) such as RXDF, TXEF

and MODF flag in the SPISR will have to be checked periodically by

using instructions. When the status flag(s) is/are asserted, the CPU

performs the service accordingly. The status flag(s) of the SPISR will

be cleared automatically once the CPU finished the service. After that,

the CPU can move on to perform other tasks.

b. If interrupt is enabled, the CPU can perform its normal tasks until it is

being noticed. No extra instructions are needed to monitor the status

flags in the SPISR. Whenever the SPI controller needs the CPU’s

immediate attention, it will notify the CPU by sending it an interrupt

signal. Depending on the types of the interrupt requests generated by the

SPI controller, the CPU will take the appropriate actions as defined in

the SPI’s Interrupt Service Routine (ISR), that is to read the received

data from the SPIRDR or disable the SPI controller. Reading from the

SPIRDR is actually reading from the 16-deep receiver FIFO. After

finishing the ISR, the CPU returns to the place where it was interrupted

and resumes the normal program execution. The status flag(s) of the

SPISR will be cleared automatically once the CPU finished the service.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
41

If the CPU wants to reconfigure the setting(s) after going through step 1 to 6, it is

advisable to first de-activate the SPI controller to ensure a smooth configuration and

operation. Do not perform the reconfiguration while the SPI controller is performing

data transfer with other devices in both operation modes.

a. Firstly, reset the SPE control bit in the SPICR to de-activate the SPI

controller as well as to reset all of its FSMs to the initial state.

b. Perform new setting on the SPI controller.

i. Repeat step 4 to 6 if only want to reconfigure the setting of the

SPISR.

ii. Repeat step 5 to 6 if only want to reconfigure the setting of the

SPICR (for new operation mode, new transfer mode and/or new

SPI baud rate).

iii. Repeat step 4 to 6 if want to reconfigure the settings of both

SPISR and SPICR.

5.1.3 Unit Interface of the SPI Controller Unit

uspi

uispi_SPIE

uispi_pipe_stall

uispi_wb_w_din[7:0]

uispi_wb_w_sel[3:0]

uispi_wb_w_we

uispi_wb_w_stb

uispi_wb_r_sel[3:0]

uispi_wb_r_we

uispi_wb_r_stb

uispi_wb_clk

uispi_wb_rst

uiospi_MOSI

uiospi_MISO

uiospi_SCLK

uiospi_SS_n

uospi_IRQ

uospi_wb_r_dout[31:0]

uospi_wb_w_ack

uospi_wb_r_ack

Figure 5.1.3.1: SPI controller unit interface.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
42

5.1.4 Input Pin Description of the SPI Controller Unit

Pin name: uispi_SPIE Pin class: Data

Source → Destination: Priority interrupt controller unit → SPI controller unit

Pin function: To allow the SPI to interrupt

1: enable SPI global interrupt

0: disable SPI global interrupt

Pin name: uispi_pipe_stall Pin class: Control

Source → Destination: Priority interrupt controller unit → SPI controller unit

Pin function: To stall the SPI controller unit

1: stall the SPI controller unit

0: do not stall the SPI controller unit

Pin name: uispi_wb_w_din[7:0] Pin class: Data

Source → Destination: Datapath unit → SPI controller unit

Pin function: Wishbone standard data input bus (for write operation)

Pin name: uispi_wb_w_sel[3:0] Pin class: Control

Source → Destination: Address decoder block → SPI controller unit

Pin function: Wishbone standard byte select signal (for write operation)

Pin name: uispi_wb_w_we Pin class: Control

Source → Destination: Address decoder block → SPI controller unit

Pin function: Wishbone standard write enable signal – indicate current bus cycle for

write

1: write cycle – write to SPI controller

Pin name: uispi_wb_w_stb Pin class: Control

Source → Destination: Address decoder block → SPI controller unit

Pin function: Wishbone standard strobe signal (for write operation) – indicate valid

data transfer cycle

1: activate SPI controller for write access

0: de-activate SPI controller for write access

Pin name: uispi_wb_r_sel[3:0] Pin class: Control

Source → Destination: Address decoder block → SPI controller unit

Pin function: Wishbone standard byte select signal – data granularity control

1111: word select

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uispi_wb_r_we Pin class: Control

Source → Destination: Address decoder block → SPI controller unit

Pin function: Wishbone standard read enable signal – indicate current bus cycle for

read

0: read cycle – read from SPI controller

Pin name: uispi_wb_r_stb Pin class: Control

Source → Destination: Address decoder block → SPI controller unit

Pin function: Wishbone standard strobe signal (for read operation) – indicate valid

data transfer cycle

1: activate SPI controller for read access

0: de-activate SPI controller for read access

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
43

Pin name: uispi_wb_clk Pin class: Global

Source → Destination: Global clock → SPI controller unit

Pin function: Global clock

Pin name: uispi_wb_rst Pin class: Global

Source → Destination: Global reset → SPI controller unit

Pin function: Global reset

1: reset

0: no reset is required

Table 5.1.4.1: Input pin description of the SPI controller unit

5.1.5 Output Pin Description of the SPI Controller Unit

Pin name: uospi_IRQ Pin class: Control

Source → Destination: SPI controller unit → CP0 block & Priority interrupt

controller unit

Pin function: To request an interrupt

(The uispi_SPIE must be pulled high before an interrupt can be sent)

1: request to interrupt

0: no interrupt request

Pin name: uospi_wb_r_dout[31:0] Pin class: Data

Source → Destination: SPI controller unit → Datapath unit

Pin function: Wishbone standard data output bus

Pin name: uospi_wb_w_ack Pin class: Status

Source → Destination: SPI controller unit → Datapath unit

Pin function: Wishbone standard acknowledge signal (for write operation)

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uospi_wb_r_ack Pin class: Status

Source → Destination: SPI controller unit → Datapath unit

Pin function: Wishbone standard acknowledge signal (for read operation)

1: normal bus cycle termination

0: no bus cycle termination

Table 5.1.5.1: Output pin description of the SPI controller unit.

5.1.6 Input Output Pin Description of the SPI Controller Unit

Pin name: uiospi_MOSI Pin class: Data

Source → Destination: SPI controller unit ↔ External device’s SPI unit

Pin function: SPI standard pin – Master Out Serial In

If the SPI controller unit is configured as a master, then uiospi_MOSI will become

an output, else otherwise.

Pin name: uiospi_MISO Pin class: Data

Source → Destination: SPI controller unit ↔ External device’s SPI unit

Pin function: SPI standard pin – Master In Serial Out

If the SPI controller unit is configured as a master, then uiospi_MISO will become

an input, else otherwise.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
44

Pin name: uiospi_SCLK Pin class: Control

Source → Destination: SPI controller unit ↔ External device’s SPI unit

Pin function: SPI standard pin – Serial Clock

It is the clock signal for data synchronization across devices. If the SPI controller unit

is configured as a master, then uiospi_SCLK will become an output, else otherwise.

Pin name: uiospi_SS_n Pin class: Control

Source → Destination: SPI controller unit ↔ External device’s SPI unit

Pin function: SPI standard pin – Slave Select

If the SPI controller unit is configured as a master, then uiospi_SS_n will become an

output, else otherwise.

Table 5.1.6.1: Input output pin description of the SPI controller unit.

5.1.7 Internal Operation of the SPI Controller Unit

uspi_wb_w_stb uispi_wb_w_we uspi_stall_reg uispi_wb_w_sel

[3:0]

Function

1 1 0 0001 Enable write

operation to

SPICR

1 1 0 0010 Enable write

operation to

SPISR

1 1 0 0100 Enable write

operation to

SPITDR

Table 5.1.7.1: Functional description of the SPI controller’s write operation.

uspi_wb_r_stb uispi_wb_r_we uispi_wb_r_sel

[3:0]

Function

1 0 0001 Enable read operation to SPICR

1 0 0010 Enable read operation to SPISR

1 0 1000 Enable read operation to

SPIRDR

1 0 0011 Enable read operation to SPISR

and SPICR

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
45

1 0 1100 Enable read operation to

SPIRDR

1 0 1111 Enable read operation on

SPIRDR, SPISR, and SPICR.

Table 5.1.7.2: Functional description of the SPI controller’s read operation.

5.1.8 Design Partitioning of the SPI Controller Unit

The SPI controller unit developed in this project consists of several internal blocks that

work together so that the data communication between two SPI-interface devices can

be performed correctly when using the SPI protocol. This SPI controller unit consists

of one SPI transmitter block, one SPI receiver block, one SPICR FIFO block, one

SPISR FIFO block, and one SPI clock generator block. In addition, it also consists of 4

special-purpose registers for users to access (read or write). These special registers are

the SPI Configuration Register (SPICR) for configuration setting, the SPI Status

Register (SPISR) for status monitoring purpose, the SPI Transmitter Data Register

(SPITDR) for holding the data to be transmitted, and the SPI Receiver Data Register

(SPIRDR) for holding the received data. Writing to the SPITDR is actually writing to

a 16x1-byte transmitter FIFO block whereas reading from the SPIRDR is actually

reading from the 16x1-byte receiver FIFO block. All of these I/O peripheral registers

are memory-mapped and have their own addresses so that the CPU can read or write

the specific registers easily. The details of these 4 memory-mapped I/O peripheral

registers are discussed in Section 5.7 respectively. An overview of the block-level

partitioning of the SPI controller unit is provided in Figure 5.1.8.1 whereas the details

of its internal blocks are discussed in Table 5.1.8.1.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
46

SPI transmitter
block

SPI receiver block

SPI Transmitter
Data Register

SPICR FIFO block

SPI Receiver Data
Register

SPISR FIFO block

SPI clock generator
block

SPI controller unit

Figure 5.1.8.1: Block-level partitioning of the SPI controller unit.

Internal Block Function

SPI transmitter block To handle the serial data transmission of the

SPI controller unit.

SPI receiver block To handle the serial data receiving of the SPI

controller.

SPI Transmitter Data Register

(a 16-deep asynchronous FIFO

block)

• To hold the data that will be

transmitted to another SPI-

compatible device.

• To pass multiple data bits safely

across CDC boundaries.

SPI Receiver Data Register

(a 16-deep asynchronous FIFO

block)

• To hold the data received from

another SPI-compatible device.

• To pass multiple data bits safely

across CDC boundaries.

SPICR FIFO block

(a 2-deep FIFO synchronizer block)

To safely handle the passing of multi-bit

control signal from one clock domain to a

new clock domain.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
47

SPISR FIFO block

(a 2-deep FIFO synchronizer block)

To safely handle the passing of multi-bit

control signal from one clock domain to a

new clock domain.

SPI clock generator block

• To generate the I/O clock frequency

for SPI internal operation.

• To generate 16 transmission speed /

baud rates.

Table 5.1.8.1: Functional description of each SPI internal block

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

48

5.1.9 Micro-Architecture of the SPI Controller Unit (Block Level)

8

SPI transmitter block

SPI Configuration Register
(SPICR)

SPI
input

output
control

SPICR FIFO block
8

transmitter shift register

clock phase and
polarity control

receiver shift registerreceiver data register
8

Sample
clock

Shift clock

clock phase and
polarity control

SPI receiver block

SCK out
master

baud rate

data out

master
baud rate

data in

Load/Shift

SS out
Control FSM

SPI Transmitter Data Register
(SPITDR)

Control FSM

8

Load/Shift

SPI Receiver Data Register
(SPIRDR)

8

slave select

SCK in

SS in

CPOL CPHA

CPOL CPHA

MSTR

8

2

SPI Status Register
(SPISR)

8
SPISR FIFO block

8

baud rate

SPI clock generator block

counter
16

clock select

frequency
divider

SPI I/O clock

4

SCR

RXDF TXEF MODF

8

interrupt control
uiospi_MISO

uiospi_SCLK

uiospi_ss_n

uiospi_MOSI

uispi_pipe_stall

uispi_SPIE

uispi_wb_w_din[7:0]

uispi_wb_w_sel[3:0]

uospi_wb_r_dout[7:0]

uispi_wb_w_we

uispi_wb_w_stb

uispi_wb_r_sel[3:0]

uispi_wb_r_we

uispi_wb_r_stb

uispi_wb_rst

uospi_wb_w_ack

uospi_wb_r_ack

uospi_IRQ

uispi_wb_clk

Note: The shaded areas indicate the internal blocks of the designed SPI controller

Figure 5.1.9.1: Simplified micro-architecture of the SPI controller unit.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

bFIFO
biFIFO_din[7:0]
biFIFO_pop
biFIFO_push
biFIFO_rclk
biFIFO_wclk
biFIFO_rst

boFIFO_dout[7:0]
boFIFO_rempty

boFIFO_wfull

bFIFO
biFIFO_din[7:0]
biFIFO_pop
biFIFO_push
biFIFO_rclk
biFIFO_wclk
biFIFO_rst

boFIFO_dout[7:0]
boFIFO_rempty

boFIFO_wfull

bspiTX
bispiTX_FIFO_empty
bispiTX_cpol
bispiTX_cpha
bispiTX_din[7:0]
bispiTX_SPE
bispiTX_TXCHE
bispiTX_fsm_stall
bispiTX_ss_n
bispiTX_MSTR
bispiTX_baud_clk
bispiTX_spi_clk
bispiTX_rst

bospiTX_dout
bospiTX_sclk
bospiTX_TXC

bospiTX_FIFO_pop
bospiTX_ss_n

bFIFO_sync
biFIFO_sync_rget
biFIFO_sync_din[7:0]
biFIFO_sync_wput
biFIFO_sync_rclk
biFIFO_sync_rrst
biFIFO_sync_wclk
biFIFO_sync_wrst

boFIFO_sync_dout[7:0]
boFIFO_sync_rrdy

boFIFO_sync_wrdy

bFIFO_sync
biFIFO_sync_rget
biFIFO_sync_din[7:0]
biFIFO_sync_wput
biFIFO_sync_rclk
biFIFO_sync_rrst
biFIFO_sync_wclk
biFIFO_sync_wrst

boFIFO_sync_dout[7:0]
boFIFO_sync_rrdy

boFIFO_sync_wrdy

RXFIERXDF TXEF MODF RXFM TXEIE RXBHE TXCHE

SPISR

uspi_TXFIFO_dout[7:0]

0

1
uspi_CRFIFO_dout[7:0]

uispi_wb_w_din[7:0]

0

1
uspi_SRFIFO_dout[7:0]

SPISR[7:0]

uspi_TX_dout

uspi_RXFIFO_dout[7:0]SCRSPE MSTR CPOL CPHA SCR SCR SCR

SPICR

uspi_RX_dout[7:0]

SPISR FIFO block

SPICR FIFO block

SPITDR block

SPIRDR blockSPI receiver block

SPI transmitter block

Note: The shaded areas indicate the internal blocks of the designed SPI controller

SPICR[7:0] bspi_RX
bispiRX_din
bispiRX_cpol
bispiRX_cpha
bispiRX_SPE
bispiRX_sclk
bispiRX_ss_n
bispiRX_spi_clk
bispiRX_rst

bospiRX_dout[7:0]
bospiRX_RSRF

0

1

MSTR

uiospi_MOSI

uiospi_MISO

uospi_wb_r_dout[31:0]

1111

1100

0011

1000

0100

0010

0001

Else

{uspi_RXFIFO_dout, 8'b0000_0000, SPISR, SPICR}

{{16{1'b0}}, uspi_RXFIFO_dout, 8'b000_0000}

{{16{1'b0}}, SPISR, SPICR}

{{24{1'b0}}, uspi_RXFIFO_dout}

32'b0

{{24{1'b0}}, SPISR}

{{24{1'b0}}, SPICR}

32'bz

uspi_RX_din

Figure 5.1.9.2: Datapath of the SPI controller unit.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
50

5.2 SPI Transmitter Block

5.2.1 Functionality/Feature of the SPI Transmitter Block

The SPI transmitter block is used to handle the serial data transmission of the SPI

controller unit. It uses an 8-bit transmitter shift register (TSR) to store data loaded from

the SPITDR block. As the baud clock pulses are generated, it transmits the data stored

in the transmitter shift register (TSR) serially to another SPI device via one of the SPI

standard pins, namely MISO or MOSI. The designed SPI transmitter block can perform

the serial data transmission between SPI devices as shown in Appendix A correctly in

all of the 4 transfer modes (mode 0, 1, 2, 3) regardless of whether it is configured as a

master or a slave.

5.2.2 Block Interface of the SPI Transmitter Block

Figure 5.2.2.1: Block interface of the SPI transmitter block.

5.2.3 Input Pin Description of the SPI Transmitter Block

Pin name: bispiTX_FIFO_empty Pin class: Status

Source → Destination: SPITDR block→ SPI transmitter block

Pin function:

1: SPITDR block is empty

0: SPITDR block is not empty

Pin name: bispiTX_cpol Pin class: Control

Source → Destination: SPICR → SPI transmitter block

Pin function: Clock polarity

bspiTX

bispiTX_FIFO_empty

bispiTX_cpol

bispiTX_cpha

bispiTX_din[7:0]

bispiTX_SPE

bispiTX_TXCHE

bispiTX_fsm_stall

bispiTX_ss_n

bispiTX_MSTR

bispiTX_baud_clk

bispiTX_spi_clk

bispiTX_rst

bospiTX_dout

bospiTX_sclk

bospiTX_TXC

bospiTX_FIFO_pop

bospiTX_ss_n

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
51

Pin name: bispiTX_cpha Pin class: Control

Source → Destination: SPICR → SPI transmitter block

Pin function: Clock phase

Pin name: bispiTX_din[7:0] Pin class: Data

Source → Destination: SPICR → SPI transmitter block

Pin function: 8-bit data input bus

Pin name: bispiTX_SPE Pin class: Control

Source → Destination: SPICR → SPI transmitter block

Pin function: SPI controller enable control signal

1: enable SPI transmitter block

0: disable SPI transmitter block

Pin name: bispiTX_TXCHE Pin class: Control

Source → Destination: SPISR → SPI transmitter block

Pin function: Transmit complete halt enable signal

1: halt SPI transmitter’s FSM state when complete transmission

0: continue SPI transmitter’s FSM state when complete transmission

Pin name: bispiTX_fsm_stall Pin class: Control

Source → Destination: SPI controller unit → SPI transmitter block

Pin function: SPI transmitter stall control signal

1: stall SPI transmitter’s FSM state

0: SPI transmitter’s FSM state run normally

Pin name: bispiTX_ss_n Pin class: Control

Source → Destination: SPI controller unit → SPI transmitter block

Pin function: Slave select input signal

1: selected by master to communicate with

0: not selected by master to communicate with/when it is configured as master

Pin name: bispiTX_MSTR Pin class: Control

Source → Destination: SPICR → SPI transmitter block

Pin function: Master/Slave mode

1: SPI is in master mode

0: SPI is in slave mode

Pin name: bispiTX_baud_clk Pin class: Control

Source → Destination: SPI clock generator block → SPI transmitter block

Pin function: Data synchronization clock source

Pin name: bispiTX_spi_clk Pin class: Control

Source → Destination: SPI clock generator block → SPI transmitter block

Pin function: SPI I/O clock

Pin name: bispiTX_rst Pin class: Global

Source → Destination: Global reset → SPI transmitter block

Pin function: Global reset

1: reset

0: no reset is required

Table 5.2.3.1: Input pin description of the SPI transmitter block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
52

5.2.4 Output Pin Description of the SPI Transmitter Block

Pin name: bospiTX_dout Pin class: Data

Source → Destination: SPI transmitter block → SPI controller unit

Pin function: Serial data output

Pin name: bospiTX_sclk Pin class: Control

Source → Destination: SPI transmitter block → SPI controller unit

Pin function: Data synchronization clock source

Pin name: bospiTX_TXC Pin class: Status

Source → Destination: SPI transmitter block → SPI controller unit

Pin function:

1: complete transmission of one data byte

0: transmission of one data byte is not complete

Pin name: bospiTX_FIFO_pop Pin class: Control

Source → Destination: SPI transmitter block → SPITDR

Pin function: To pop one byte of data from the SPITDR block

Pin name: bospiTX_ss_n Pin class: Control

Source → Destination: SPI transmitter block → SPI controller unit

Pin function: Serial data valid control

1: disable serial data communication

0: enable serial data communication

Table 5.2.4.1: Output pin description of the SPI transmitter block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
53

5.2.5 Finite State Machine of the SPI Transmitter Block

The SPI transmitter block that has been developed has a built-in FSM that is used to

switched between different states. The change of state can be done based on the internal

events. The details of the SPI transmitter’s FSM are illustrated in Figure 5.2.6.1.

bspiTX_IDLE

bspiTX_WAIT

bspiTX_LOAD

bspiTX_SYNCbspiTX_TX

bspiTX_BYTE_
COMPLETE

Figure 5.2.5.1: Finite State Machine of the SPI transmitter block.

State Name Description

bspiTX_IDLE No operation

bspiTX_WAIT Wait state when FSM halt

bspiTX_LOAD Load data to transmitter shift register (TSR)

bspiTX_SYNC SCLK synchronizing

bspiTX_TX Data transmission is in progress

bspiTX_BYTE_COMPLETE One-byte data transmission is complete

Table 5.2.5.1: State description of the SPI transmitter block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
54

5.3 SPI Receiver Block

5.3.1 Functionality/Feature of the SPI Receiver Block

The SPI receiver block is responsible to handle the serial data receiving of the SPI

controller. It uses an 8-bit receiver shift register (RSR) to receive each bit serially from

another SPI device. After 8 baud clock cycles are generated by the master, the process

of data exchange between the master and the slave is said to be completed. Thus, the

receiver shift register (RSR) will contain the 8-bit received data. The data on the shift

register (RSR) is transferred to the receiver data register (RDR) before it is later pushed

into the SPIRDR block. The designed SPI receiver block can perform the serial data

receiving between SPI devices in all of the 4 transfer modes (mode 0, 1, 2 and 3) as

shown in Appendix A correctly regardless of whether it is configured as a master or a

slave.

5.3.2 Block Interface of the SPI Receiver Block

Figure 5.3.2.1: Block interface of the SPI receiver block.

5.3.3 Input Pin Description of the SPI Receiver Block

Pin name: bispiRX_din Pin class: Data

Source → Destination: SPI controller unit → SPI receiver block

Pin function: Serial data input

Pin name: bispiRX_cpol Pin class: Control

Source → Destination: SPICR → SPI receiver block

Pin function: Clock polarity

bspi_RX

bispiRX_din

bispiRX_cpol

bispiRX_cpha

bispiRX_SPE

bispiRX_sclk

bispiRX_ss_n

bispiRX_spi_clk

bispiRX_rst

bospiRX_dout[7:0]

bospiRX_RSRF

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
55

Pin name: bispiRX_cpha Pin class: Control

Source → Destination: SPICR → SPI receiver block

Pin function: Clock phase

Pin name: bispiRX_SPE Pin class: Control

Source → Destination: SPICR → SPI receiver block

Pin function: SPI controller enable control signal

1: enable SPI receiver

0: disable SPI receiver

Pin name: bispiRX_sclk Pin class: Control

Source → Destination: SPI controller unit → SPI receiver block

Pin function: Data synchronization clock source

Pin name: bispiRX_ss_n Pin class: Control

Source → Destination: SPI controller unit → SPI receiver block

Pin function: Serial data valid control

1: disable serial data communication

0: enable serial data communication

Pin name: bispiRX_spi_clk Pin class: Control

Source → Destination: SPI clock generator block → SPI receiver block

Pin function: SPI I/O clock

Pin name: bispiRX_rst Pin class: Global

Source → Destination: Global reset → SPI receiver block

Pin function: Global reset

1: reset

0: no reset is required

Table 5.3.3.1: Input pin description of the SPI receiver block.

5.3.4 Output Pin Description of the SPI Receiver Block

Pin name: bospiRX_dout[7:0] Pin class: Data

Source → Destination: SPI receiver block → SPIRDR block

Pin function: 8-bit data output bus

Pin name: bospi_RSRF Pin class: Status

Source → Destination: SPI receiver block → SPIRDR block

Pin function:

1: RSR is full

0: RSR is not full

Table 5.3.4.1: Output pin description of the SPI receiver block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
56

5.3.5 Finite State Machine of the SPI Receiver Block

The SPI receiver block that has been developed has a built-in FSM that is used to

switched between different states. The change of state can be done based on the internal

events. The details of the SPI receiver’s FSM are illustrated in Figure 5.3.6.1.

bspiRX_IDLE

bspiRX_RXbspiRX_FINISH

Figure 5.3.5.1: Finite State Machine of the SPI receiver block.

State Name Description

bspiRX_IDLE No operation

bspiRX_RX Data receiving is in progress

bspiRX_FINISH Data receiving is complete

Table 5.3.5.1: State description of the SPI receiver block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
57

5.4 SPI Clock Generator Block

5.4.1 Functionality/Feature of the SPI Clock Generator Block

The SPI clock generator block is used to generate the 10 MHz SPI I/O clock frequency

for SPI internal operation. Besides, it is also a user-configurable clock divider. It is able

to generate 16 transmission speed (or baud rate), ranging from 152 Hz to 5 MHz. Only

the baud rate generated by the master device will be used for synchronizing the serial

data transfer taking place across different SPI-compatible devices. The last four bits in

the SPICR (which is the SPICR[3:0]) will control the divisor to the SPI I/O clock and

determine the baud rate generation. The baud rate can be calculated by using the

equation provided in below.

𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 (𝐻𝑧) =
𝑆𝑃𝐼 𝐼/𝑂 𝑐𝑙𝑜𝑐𝑘(𝐻𝑧)

2 𝑥 2𝑆𝑃𝐼𝐶𝑅[3:0]

5.4.2 Block Interface of the SPI Clock Generator Block

bspiclk_gen

bispiclk_gen_sel[3:0]

bispiclk_gen_sysclk

bispiclk_gen_rst

bospiclk_gen_baud_clk

bospiclk_gen_spi_clk

Figure 5.4.2.1: Block interface of the SPI clock generator block.

5.4.3 Input Pin Description of the SPI Clock Generator Block

Pin name: bispiclk_gen_sel[3:0] Pin class: Control

Source → Destination: SPI controller unit → SPI clock generator block

Pin function: To select 1 out of 16 transmission speed or baud rate

Pin name: bispiclk_gen_sysclk Pin class: Global

Source → Destination: Global → SPI clock generator block

Pin function: Global clock

Pin name: bispiclk_gen_rst Pin class: Global

Source → Destination: Global reset → SPI clock generator block

Pin function: Global reset

1: reset

0: no reset is required

Table 5.4.3.1: Input pin description of the SPI clock generator block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
58

5.4.4 Output Pin Description of the SPI Clock Generator Block

Pin name: bospiclk_gen_baud_clk Pin class: Control

Source → Destination: SPI clock generator block → SPI transmitter block

Pin function: To output the selected baud rate

Pin name: bospiclk_gen_spi_clk Pin class: Control

Source → Destination: SPI clock generator block → All SPI blocks and registers

Pin function: To output the generated SPI I/O clock
Table 5.4.4.1: Output pin description of the SPI clock generator block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
59

5.5 16-deep Asynchronous FIFO Block

5.5.1 Functionality/Feature of the 16-deep Asynchronous FIFO Block

One of the FIFO designs used in this project is the asynchronous FIFO design with

asynchronous pointer comparisons. An asynchronous FIFO refers to a FIFO design

where data values are written sequentially into a FIFO buffer using one clock domain,

and the data values are sequentially read from the same FIFO buffer using another clock

domain, where the two clock domains are asynchronous to each other (Cummings &

Alfke, 2002). Basically, it is used to safely handle the passing of multi-bit data

(randomly changing signals) from one clock domain to a new clock domain as the use

of synchronizer to handle the passing of these type of data is generally unacceptable.

The FIFO used in this project is a 16 entries deep FIFO memory with each data entry

is of 8-bit size. It uses circular memory with two pointers to stimulate the infinite big

memory needed. As a result, multiple data bytes can be stored sequentially in it as long

as the total number of data bytes does not exceed 16, which greatly reduces the CPU’s

workload to move the data and allow continuous data transfer in the background. Apart

from that, it has implemented full-removal and empty-removal using a “pessimistic”

method. Meaning, the “full” and “empty” statuses are both asserted exactly on time but

removed late. In this project, it is used as the SPITDR and SPIRDR respectively.

5.5.2 Block Interface of the 16-deep Asynchronous FIFO Block

bFIFO

biFIFO_din[7:0]

biFIFO_pop

biFIFO_push

biFIFO_rclk

biFIFO_wclk

biFIFO_rst

boFIFO_dout[7:0]

boFIFO_rempty

boFIFO_wfull

Figure 5.5.2.1: Block interface of the 16-deep asynchronous FIFO block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
60

5.5.3 Input Pin Description of the 16-deep Asynchronous FIFO Block

Pin name: biFIFO_din[7:0] Pin class: Data

Source → Destination: SPI controller unit → Asynchronous FIFO block

 SPI receiver block → Asynchronous FIFO block

Pin function: 8-bit input data bus

Pin name: biFIFO_pop Pin class: Control

Source → Destination: SPI controller unit → Asynchronous FIFO block

 SPI transmitter block → Asynchronous FIFO block

Pin function: To pop one data byte from the asynchronous FIFO block

1: pop one data byte from the FIFO

0: no popping of one data byte from the FIFO

Pin name: biFIFO_push Pin class: Control

Source → Destination: SPI controller unit → Asynchronous FIFO block

 SPI receiver block → Asynchronous FIFO block

Pin function: To push one data byte into the asynchronous FIFO block

1: push one data byte into the FIFO

0: no pushing of one data byte into the FIFO

Pin name: biFIFO_rclk Pin class: Control

Source → Destination: SPI controller unit → Asynchronous FIFO block

 SPI clock generator block → Asynchronous FIFO block

Pin function: Read clock signal

Pin name: biFIFO_wclk Pin class: Control

Source → Destination: SPI controller unit → Asynchronous FIFO block

 SPI clock generator block → Asynchronous FIFO block

Pin function: Write clock signal

Pin name: biFIFO_rst Pin class: Global

Source → Destination: Global reset → Asynchronous FIFO block

Pin function: Global reset

Table 5.5.3.1: Input pin description of the 16-deep asynchronous FIFO block.

5.5.4 Output Pin Description of the 16-deep Asynchronous FIFO Block

Pin name: boFIFO_dout[7:0] Pin class: Data

Source → Destination: Asynchronous FIFO block → SPI transmitter block

 Asynchronous FIFO block → SPI controller unit

Pin function: 8-bit output data bus

Pin name: boFIFO_rempty Pin class: Status

Source → Destination: Asynchronous FIFO block → SPI transmitter block

 Asynchronous FIFO block → SPI controller unit

Pin function:

1: the FIFO is empty

0: the FIFO is not empty

Pin name: boFIFO_wfull Pin class: Status

Source → Destination: Asynchronous FIFO block → SPI controller unit

Pin function:

1: the FIFO is full

0: the FIFO is not full

Table 5.5.4.1: Output pin description of the asynchronous FIFO block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

5.5.5 Schematic and Block Diagram of the 16-deep Asynchronous FIFO block

+
biFIFO_push

Binary
to Gray

logic

bFIFO_wptr[3:0]

wptr logic
bFIFO_FIFOmem

(16x1-byte dual port RAM)

wdata[7:0] rdata[7:0]

wclken

waddr[3:0] rptr[3:0]

biFIFO_din[7:0]

+D Q

arst

Binary
to Gray

logic
D Q

arst

rptr logic

CMP

=
bFIFO_wptr[3]

bFIFO_rptr[2]

bFIFO_wptr[2]

bFIFO_rptr[3]

D Q

arst

aset

Asynchronous full & empty comparison logic

D Q

arst

bFIFO_aempty_n

bFIFO_afull_n
D Q

arst

Synchronizer

biFIFO_wclk

biFIFO_rst

boFIFO_wfull

bFIFO_rptr[3:0]

Synchronizer

boFIFO_dout[7:0]

boFIFO_r_empty

biFIFO_r_clk

biFIFO_pop

D Q

arst

D Q

arst

D Q

arst

D Q

arst

Figure 5.5.5.1: Schematic and block diagram of the 16-deep asynchronous FIFO design with asynchronous pointer comparisons

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
62

5.6 2-deep FIFO Synchronizer Block

5.6.1 Functionality/Feature of the 2-deep FIFO Synchronizer Block

The 2-deep FIFO synchronizer block is another variation on passing multiple control

and data bits safely across CDC boundaries. It allows the CPU to buffer the multi-bit

control signal at its own speed, thus reducing the timing requirement. It is a 2-deep dual

port FIFO memory as it is built by using only two registers. Each data entry is of 8-bit

size. Similarly, it also uses circular memory with two pointers to stimulate the infinite

big memory needed. On the other hand, an inverted not-full condition is used in this

FIFO design to indicate that the FIFO is ready to receive a control byte. On the other

hand, in order to indicate that the FIFO has a data or control byte that is ready to be

read, an inverted not empty condition is applied. In this project, it is used as the SPICR

FIFO and SPISR FIFO block.

5.6.2 Block Interface of the 2-deep FIFO Synchronizer Block

bFIFO_sync

biFIFO_sync_rget

biFIFO_sync_din[7:0]

biFIFO_sync_wput

biFIFO_sync_rclk

biFIFO_sync_rrst

biFIFO_sync_wclk

biFIFO_sync_wrst

boFIFO_sync_dout[7:0]

boFIFO_sync_rrdy

boFIFO_sync_wrdy

Figure 5.6.2.1: Block interface of the 2-deep FIFO synchronizer block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
63

5.6.3 Input Pin Description of the 2-deep FIFO Synchronizer Block

Pin name: biFIFO_sync_rget Pin class: Control

Source → Destination: 2-deep FIFO synchronizer block → 2-deep FIFO

synchronizer block

Pin function: To get one data byte from the FIFO block

1: pop one data byte from the FIFO

0: no popping of one data byte from the FIFO

Pin name: biFIFO_sync_din[7:0] Pin class: Data

Source → Destination: SPI controller unit → 2-deep FIFO synchronizer block

Pin function: 8-bit input data bus

Pin name: biFIFO_sync_wput Pin class: Control

Source → Destination: SPI controller unit → 2-deep FIFO synchronizer block

Pin function: To push one data byte into the FIFO block

1: push one data byte into the FIFO

0: no pushing of one data byte into the FIFO

Pin name: biFIFO_sync_rclk Pin class: Control

Source → Destination: SPI clock generator block → 2-deep FIFO synchronizer

block

Pin function: Read clock signal

Pin name: biFIFO_sync_rrst Pin class: Global

Source → Destination: Global reset → 2-deep FIFO synchronizer block

Pin function: Global reset

1: reset

0: no reset is required

Pin name: biFIFO_sync_wclk Pin class: Global

Source → Destination: Global clock → 2-deep FIFO synchronizer block

Pin function: Global clock

Pin name: biFIFO_sync_wrst Pin class: Global

Source → Destination: Global reset → 2-deep FIFO synchronizer block

Pin function: Global reset

1: reset

0: no reset is required

Table 5.6.3.1: Input pin description of the 2-deep FIFO synchronizer block

5.6.4 Output Pin Description of the 2-deep FIFO Synchronizer Block

Pin name: biFIFO_sync_dout[7:0] Pin class: Data

Source → Destination: 2-deep FIFO synchronizer block → SPICR

 2-deep FIFO synchronizer block → SPISR

Pin function: 8-bit output data bus

Pin name: biFIFO_sync_rrdy Pin class: Status

Source → Destination: 2-deep FIFO synchronizer block → 2-deep FIFO

synchronizer block

Pin function:

1: the data in the FIFO is ready to be read

0: the data in the FIFO is not ready to be read

Pin name: biFIFO_sync_wrdy Pin class: Status

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
64

Source → Destination: 2-deep FIFO synchronizer block → SPI controller unit

Pin function:

1: FIFO is ready to receive a data

0: FIFO is not ready to receive a data

Table 5.6.4.1: Output pin description of the 2-deep FIFO synchronizer block.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

5.6.5 Schematic and Block Diagram of the 2-deep FIFO Synchronizer Block

wdata[7:0] rdata[7:0]

wclken

bFIFO_mem
(2x1-byte Dual Port RAM)

waddr raddr

D Q

arst

DQ

arst

DQ

arst

bFIFO_sync_wq2_rptr

wctrl logic

D Q

arst

D Q

arst

Synchronizer Synchronizer

DQ

arst

bFIFO_sync_rq2_wptr

rctrl logic

boFIFO_sync_dout[7:0]

biFIFO_sync_rget

boFIFO_sync_rrdy

biFIFO_sync_rrst

biFIFO_sync_rclk

biFIFO_sync_din[7:0]

biFIFO_sync_wput

boFIFO_sync_wrdy

biFIFO_sync_wrst

biFIFO_sync_wclk

Figure 5.6.5.1: Schematic and block diagram of the 2-deep FIFO synchronizer block

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
66

5.7 Register Set of SPI Controller Unit

Four special-purpose registers are used to allow data communication between the CPU

and the SPI controller unit. All these special registers are memory-mapped and user-

accessible by using the normal load and store instructions.

SPICRSPISRSPITDRSPIRDR

0xbfff_fe240xbfff_fe250xbfff_fe260xbfff_fe27

Figure 5.7.1: Address of the special-purpose registers in virtual memory.

5.7.1 SPI Configuration Register (SPICR)

Type: read/write

Width: 8 bits

Address: 0xbfff_fe24

Function: To configure the setting of the SPI controller unit.

Figure 5.7.1.1: SPI Configuration Register (SPICR)

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
67

a) SPE - SPI enable control

It is used to deactivate the SPI controller when it is not in use. To have better

control on power consumption, the SPI controller is recommended to be

deactivated when it is not in use.

• SPE = 0: Deactivate SPI controller.

• SPE = 1: Activate SPI controller.

b) MSTR - Master/Slave device

• MSTR = 0: Set as slave device.

• MSTR = 1: Set as master device.

c) CPOL - Clock Polarity

• CPOL = 0: Active-high clock is selected. SCLK is low in idle state.

• CPOL = 1: Active-low clock is selected. SCLK is high in idle state.

d) CPHA - Clock Phase

• CPHA = 0: Data sampling occurs at odd edges (1, 3, 5, …, 15) of the

SCLK clock.

• CPHA = 1: Data sampling occurs at even edges (2, 4, 6, …, 16) of the

SCLK clock.

e) SCR [3:0] - SPI Baud Rate (Given the SPI I/O clock speed is 10 MHz)

• 0000: 5 MHz

• 0001: 2.5 MHz

• …

• 1110: 305 Hz

• 1111: 152 Hz

5.7.2 SPI Status Register (SPISR)

Type: read/write

Width: 8 bits

Address: 0xbfff_fe25

Function: To configure the setting of the SPI controller unit and for status monitoring

purpose.

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
68

Figure 5.7.2.1: SPI Status Register (SPISR)

a) RXDF: Receive Done Flag

When this bit is set by the SPI controller unit, it indicates that 1-byte or 16-byte

of data have been completely received. It is used in conjunction with the RXFM

bit in the SPISR to determine if the received data is 1-byte (when RXFM = 0)

or 16-byte (when RXFM = 1) when the FIFO is full.

b) TXEF: Transmit FIFO Empty flag

• TXEF = 0: SPI Transmitter FIFO block is not empty.

• TXEF = 1: SPI Transmitter FIFO block is empty.

c) MODF: Mode fault error

When the SPI controller unit is configured as a master device, the uiospi_SS_n

pin must be pulled high by the master device. If there exist two or more master

devices in the same connection, any attempt to pull low the uiospi_SS_n pin

will trigger the mode fault error. This is to avoid damage to the hardware.

• MODF = 0: No mode fault error occurs.

• MODF = 1: Mode fault error occurs.

d) RXFM: Receive FIFO Full Mode.

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes

of SPICR.

• RXFM = 0: 1-byte of data is expected to be read by CPU.

• RXFM = 1: 16-byte of data (FIFO full) is expected to be read by CPU.

e) RXFIE: Receive Complete Interrupt enable

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes

of SPICR. It can only be used if and only if the SPIE bit (the SPI global interrupt

enable pin) is set to high. This bit is used for interrupt enable control (to select

interrupt method instead of polling) after data has been completely received (as

indicated by the RXDF bit in SPISR).

• RXFIE = 0: Disable Receive Complete Interrupt.

• RXFIE = 1: Enable Receive Complete Interrupt.

f) TXEIE: Transmit FIFO Empty Interrupt Enable

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
69

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes

of SPICR. It can only be used if and only if the SPIE bit (SPI global interrupt

enable bit) is set to high. This bit is used for interrupt enable control (to select

interrupt method instead of polling) when the SPI transmitter FIFO is empty (as

indicated by the TXEF bit in SPISR).

• TXEIE = 0: Disable Transmit Enable Interrupt.

• TXEIE = 1: Enable Transmit Enable Interrupt.

g) RXBHE: Receive Byte Halt enable

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes

of SPICR.

• RXBHE = 0: Disable SPI transmitter’s FSM stall.

• RXBHE = 1: Enable SPI transmitter’s FSM stall when one byte of data

is received.

h) TXCHE: Transmit FIFO Complete Halt enable

It is part of SPICR and it is placed in SPISR to avoid creating longer bytes of

SPICR.

• TXCHE = 0: Continue SPI transmitter’s FSM state when complete

transmission.

• TXCHE = 1: Halt SPI transmitter’s FSM state when complete

transmission.

5.7.3 SPI Transmitter Data register (SPITDR)

Type: read/write

Width: 8 bits

Address: 0xbfff_fe26

Function: To hold the data that will be transmitted to another SPI-compatible device.

Figure 5.8.3.1: SPI Transmitter Data Register (SPITDR)

Chapter 5: Micro-Architecture Specification

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
70

5.8.4 SPI Receiver Data register (SPIRDR)

Type: read/write

Width: 8 bits

Address: 0xbfff_fe27

Function: To hold the data received from another SPI-compatible device.

Figure 5.7.4.1: SPI Receiver Data Register (SPIRDR)

Chapter 6: Firmware Development

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
71

Chapter 6: Firmware Development

6.1 Exception Handler of the RISC32 Pipeline Processor

Exception is the unexpected or unscheduled event (internally or externally caused) that

can change the normal flow of the instruction execution. In order to handle the

unexpected events within the processor, an exception handler has already been created.

The exception handler is able to handle unexpected events such as interrupt, address

error trap on data load or instruction fetch, address error trap on data store, bus error on

data load or store, bus error on instruction fetch, Syscall trap, breakpoint trap, undefined

instruction trap, and arithmetic overflow trap. Upon detecting an exception signal, the

CPU suspends its current program execution, saves the address of the next instruction

(PC) for return purpose, and then jumps to the exception handler at 0x8000_b400 for

handling the exception. After performing whatever actions that are required because of

the exception, the CPU returns to the place where it was interrupted and resumes the

normal program execution. A pseudocode that describes the existing exception handler

of the RISC32 pipeline processor is given in below for better understanding.

BEGIN

 Push the current state of the user program to stack

 Push the current CP0’s status register value to stack

 Push the current CP0’s cause register value to stack

 Clear the exception level in the CP0’s status register

 Decode the exception code in the CP0’s cause register

 CASEOF exception code

 0: Branch to the exception routine of Interrupt

 4: Branch to the exception routine of Address Error Trap LOAD

 5: Branch to the exception routine of Address Error Tap STORE

 6: Branch to the exception routine of Bus Error on IF Trap

 7: Branch to the exception routine of Bus Error on LOAD/STORE Tap

 8: Branch to the exception routine of Syscall

 9: Branch to the exception routine of Breakpoint Trap

 10: Branch to the exception routine of Reserved/Undefined Instruction

 12: Branch to the exception routine of Arithmetic Overflow

 ENDCASE

Set the exception level in the CP0’s status register

Pop the previous state of user program from stack

 Clear the exception code in the CP0’s cause register

 Clear the interrupt priority level in the CP0’s cause register

 Return to user program based on the address value in the CP0’s EPC register

END

Chapter 6: Firmware Development

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
72

6.2 Interrupt Service Routine (ISR) of the SPI Controller Unit

An interrupt is an external event that interrupts the CPU to inform it that a device needs

its service. In this project, the device that interrupts the CPU will be the SPI controller

unit. Since interrupt is asynchronous to the program execution, the CPU will simply

suspend the normal instruction execution and then resume to the place where it was

interrupted after finishing the execution of the corresponding Interrupt Service Routine

(ISR).

In this project, an ISR specifically for the SPI controller unit is developed by using

MIPS assembly language and subsequently integrated into the existing exception

handler. This ISR will be invoked by the CPU to handle different types of interrupt

requests generated by the SPI controller unit. The generated interrupt request(s) could

be mode fault error interrupt, transmitter buffer empty interrupt and/or receiver buffer

full interrupt. Table 6.2.1 describes the actions that the CPU performs when the

corresponding SPI controller’s interrupt request is generated.

Types of interrupt Actions to be taken

Mode fault error

interrupt

The CPU will deactivate the SPI controller unit and force it

into the idle state. The transmission will be aborted if a

transmission is in progress when the mode fault error occurs.

Transmitter buffer

empty interrupt

When there are no more data bytes to be transmitted, the CPU

will deactivate the SPI controller unit to reduce power

consumption. Eventually, the SPI controller is forced into the

idle state.

Receiver buffer full

interrupt

The CPU will load the received data bytes from the receiver

buffer to process.

Below shows the pseudocode of the developed ISR for handling different types of

interrupt requests from the SPI controller unit.

BEGIN

 Load the SPISR value

Check the mode fault error (MODF) interrupt status from the SPISR

 Check the transmitter buffer empty (TXEF) interrupt status from the SPISR

 IF the MODF or the TXEF interrupt occurs THEN

 Deactivate the SPI controller

Chapter 6: Firmware Development

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
73

 ENDIF

 Check the receiver buffer full (RXDF) interrupt status from the SPISR

 IF the RXDF interrupt does not occur THEN

 Return to the main exception handler

 ELSE

 BEGIN

 Load the received data bytes from the receiver buffer

 Return to the main exception handler

 END

END

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
74

Chapter 7: Verification Specification and Stimulation Result

The test cycle in this project consists of two stages. During the first stage, the SPI

controller unit is tested and verified individually for functional correctness before any

integration. Once it has passed the individual test, it will be tested again as a whole in

the second stage for its complete functionality.

7.1 Test Plan for SPI Controller Unit’s Functional Test

Before the designed SPI controller unit can be integrated into the RISC32 pipeline

processor, it is important to first verify the functional behaviors of the SPI controller

unit. Thus, a test plan detailing the functional testing objective, scope, approach,

expected output, and final test status is constructed and presented in Table 7.1.2. A

testbench based on the test plan is written in Verilog HDL and can be found in Appendix

B.1.

As shown in Figure 7.1.1, the DUT_MASTER used in this verification test represents

the master device whereas the DUT_SLAVE used represents the slave device. Same

type of SPI controller unit is used throughout the verification process but with different

operation modes (master mode or slave mode) to prove that the designed SPI controller

unit can function correctly in both operation modes.

uspi

uispi_SPIE

uispi_pipe_stall

uispi_wb_w_din[7:0]

uispi_wb_w_sel[3:0]

uispi_wb_w_we

uispi_wb_w_stb

uispi_wb_r_sel[3:0]

uispi_wb_r_we

uispi_wb_r_stb

uispi_wb_clk

uispi_wb_rst

uiospi_MOSI

uiospi_MISO

uiospi_SCLK

uiospi_SS_n

uospi_IRQ

uospi_wb_r_dout[31:0]

uospi_wb_w_ack

uospi_wb_r_ack

uspi

uiospi_MOSI

uiospi_MISO

uiospi_SCLK

uiospi_SS_n

uospi_IRQ

uospi_wb_r_dout[31:0]

uospi_wb_w_ack

uospi_wb_r_ack

uispi_SPIE

uispi_pipe_stall

uispi_wb_w_din[7:0]

uispi_wb_w_sel[3:0]

uispi_wb_w_we

uispi_wb_w_stb

uispi_wb_r_sel[3:0]

uispi_wb_r_we

uispi_wb_r_stb

uispi_wb_clk

uispi_wb_rst

Clock Waveform

Generator

50Mhz clock

frequency

DUT_MASTER DUT_SLAVE

Figure 7.1.1: The connection mechanism of the DUT_MASTER and the DUT_SLAVE

for SPI controller unit’s functional verification.

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
75

Unit/Block Used in Stimulation Instance Name Used in Stimulation

SPI controller unit (configured as master) DUT_MASTER

SPI controller unit (configured as slave) DUT_SLAVE

SPI transmitter block bspiTX

SPI receiver block bspiRX

SPI Transmitter Data Register TX_buffer16x8

SPI Receiver Data Register RX_buffer16x8

SPICR FIFO block SPICR_buffer2x8

SPISR FIFO block SPISR_buffer2x8

SPI clock generator block bspiclk_gen

Table 7.1.1 Instance name of each SPI controller unit and its internal blocks that are

being used in the test plans, testbenches, flowcharts and stimulation.

Test Expected Output Status

Test Case #1:

System Reset

Function to be tested

• Able to reset the whole SPI

controller unit

Procedure

1. Reset both devices.

• tb_w_uiospi_SS_n = 1’bz

• tb_w_uiospi_SCLK = 1’bz

• tb_w_uiospi_MOSI = 1’bz

• tb_w_uiospi_MISO = 1’bz

• tb_w_uospi_IRQ_master =

1’b0

• tb_w_uospi_wb_w_ack_m

aster = 1’b0

• tb_w_uospi_wb_r_ack_ma

ster = 1’b0

• tb_w_uospi_wb_r_dout_m

aster = 32’hz

• SPICR of DUT_MASTER

= 8’b0000_0000

• SPISR of DUT_MASTER

= 8’b0100_0000

• tb_w_uospi_IRQ_slave =

1’b0

• tb_w_uospi_wb_w_ack_sl

ave = 1’b0

• tb_w_uospi_wb_r_ack_sla

ve = 1’b0

• tb_w_uospi_wb_r_dout_sl

ave = 32’hz

• SPICR of DUT_SLAVE =

8’b0000_0000

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
76

• SPISR of DUT_SLAVE =

8’b0100_0000

Test Case #2:

Write operation on SPISR

Function to be tested

• Write operation on SPISR in both

master mode and slave mode

Procedure

1. Enable write access on both

devices.

2. Enable write operation on both

SPISR.

3. Configure both SPISR with

8’b0000_1111.

4. Disable write operation on both

SPISR.

• SPISR of DUT_MASTER

= 8’b0100_1111

• SPISR of DUT_SLAVE =

8’b0100_1111

Pass

Test case #3:

Write operation on SPICR

Function to be tested

• Write operation on SPICR in both

master mode and slave mode

Procedure

1. Enable write operation on both

SPICR.

2. Configure DUT_MASTER’s

SPICR with 8’b1100_0000.

3. Configure DUT_SLAVE’s

SPICR with 8’b1000_0000.

4. Disable write operation on both

SPICR.

5. Enable read operation on both

SPISR and SPICR of the devices.

• SPICR of DUT_MASTER

= 8’b1100_0000

• SPICR of DUT_SLAVE =

8’b1000_0000

Pass

Test Case #4:

Transmitter buffer empty interrupt

support

Function to be tested

• Transmitter buffer empty

interrupt support in both master

mode and slave mode

Procedure

1. Hold for 20 clock cycles

2. Disable read operation on both

SPISR and SPICR of the devices.

• SPISR of DUT_MASTER

= 8’b0100_1111

• tb_w_uospi_IRQ_master =

1’b1

• tb_w_uospi_wb_r_dout_m

aster = 32’h0000_4fc0

• SPISR of DUT_SLAVE =

8’b0100_1111

• tb_w_uospi_IRQ_slave =

1’b1

• tb_w_uospi_wb_r_dout_sl

ave = 32’h0000_4f80

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
77

Test Case #5:

Push one 8-bit data into the

TX_buffer16x8

Function to be tested

• Able to load data into the

TX_buffer16x8 in both master

mode and slave

Procedure

1. Enable write operation on both

TX_buffer16x8.

2. Load 8’b1010_1010 to

DUT_MASTER’s

TX_buffer16x8.

3. Store 8’b0101_0101 to

DUT_SLAVE’s TX_buffer16x8.

4. Disable write operation on both

TX_buffer16x8.

5. Enable read operation on both

SPISR.

6. Hold for 20 clock cycles.

7. Disable read operation on both

SPISR.

• bFIFO_FIFOmem[0] of

DUT_MASTER =

8’b1010_1010

• SPISR of DUT_MASTER

= 8’b0000_1111

• tb_w_uospi_IRQ_master =

1’b0

• bFIFO_FIFOmem[0] of

DUT_SLAVE =

8’b0101_0101

• SPISR of DUT_SLAVE =

8’b0000_1111

• tb_w_uospi_IRQ_slave =

1’b0

Pass

Test case #6:

Mode 0 serial data communication

Function to be tested

• Able to transmit and receive data

simultaneously in both master

mode and slave mode when mode

0 is used.

Procedure

1. Enable write operation on both

TX_buffer16x8.

2. Store 8’b1010_1010 to

DUT_MASTER’s

TX_buffer16x8.

3. Store 8’b0101_0101 to

DUT_SLAVE’s TX_buffer16x8.

4. Disable write operation on both

TX_buffer16x8.

5. Hold for 100 clock cycles.

• tb_w_uiospi_SS_n = 1’b0

• 8 baud clock cycles should

appear on the

tb_w_uiospi_SCLK

• There should be only one

bit of data on the

tb_w_uiospi_MOSI for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b1010_1010

• There should be only one

bit of data on the

tb_w_uiospi_MISO for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b0101_0101

• Each of these data bit is

transmitted serially at one

half clock cycle before the

rising edge of the

tb_w_uiospi_SCLK clock.

• tb_w_uospi_IRQ_master =

1’b1

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
78

• tb_w_uospi_IRQ_slave =

1’b1

Test case 7:

Receiver buffer full interrupt support

after receiving a 1-byte data

(RXFM = 0)

Function to be tested

• Receiver buffer full interrupt

support in both master mode and

slave mode when RXFM = 0

Procedure

1. Hold for 15 clock cycles.

• SPISR of DUT_MASTER

= 8’b1000_1111

• tb_w_uospi_IRQ_master =

1’b1

• SPISR of DUT_SLAVE =

8’b1000_1111

• tb_w_uospi_IRQ_slave =

1’b1

Pass

Test case 8:

Pop 1-byte of received data from the

RX_buffer16x8

Function to be tested

• Pop 1-byte of received data from

the RX_buffer16x8 in both

master mode and slave mode

Procedure

1. Enable read operation on both

RX_buffer16x8.

2. Disable read operation on

RX_buffer16x8

3. Enable read operation on both

SPISR and SPICR of the devices.

4. Hold for 5 clock cycles.

5. Disable read operation on both

SPISR and SPICR of the devices.

• tb_w_uospi_wb_r_dout_m

aster = 32’h00000055

• SPISR of DUT_MASTER

= 8’b0000_1111

• tb_w_uospi_IRQ_master =

1’b0

• tb_w_uospi_wb_r_dout_sl

ave = 32’h000000aa

• SPISR of DUT_SLAVE =

8’b0000_1111

• tb_w_uospi_IRQ_slave =

1’b0

Pass

Test case #9:

Receiver buffer full interrupt support

after receiving 16x1-byte data

(RXFM = 1)

Function to be tested

• Receiver buffer full interrupt

support in both master mode and

slave mode when RXFM = 1

Procedure

1. Enable write operation on both

SPICR.

2. Configure DUT_MASTER’s

SPICR with 8’b0100_0000.

3. Configure DUT_SLAVE’s

SPICR with 8’b0000_0000.

4. Disable write operation on both

SPICR and enable write

operation on both SPISR.

• SPISR of DUT_MASTER

= 8’b1000_1111

• tb_w_uospi_IRQ_master =

1’b1

• SPISR of DUT_SLAVE =

8’b1000_1111

• tb_w_uospi_IRQ_slave =

1’b1

• All the received data

should be stored correctly

on the RX_buffer16x8 of

both devices.

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
79

5. Configure both SPISR with

8’b0001_1111.

6. Disable write operation on both

SPISR and enable write operation

on both TX_buffer16x8.

7. Store 16-1byte data into both

TX_buffer16x8.

8. Disable write operation on

TX_buffer16x8 and enable write

operation on SPICR.

9. Configure DUT_MASTER’s

SPICR with 8’b1100_0000.

10. Configure DUT_SLAVE’s

SPICR with 8’b1000_0000.

11. Disable write operation on both

SPICR.

12. Enable read operation on SPISR

and SPICR of the devices.

13. Hold for 1640 clock cycles.

14. Enable write operation on both

TX_buffer16x8.

15. Store one 8-bit data into both

TX_buffer16x8.

16. Disable write operation on both

TX_buffer16x8.

Test case 10:

Pop 16 number of 1-byte data from the

RX_buffer16x8

Function to be tested

• Able to pop data from the

RX_buffer16x8 in both master

mode and slave mode

Procedure

1. Enable the read operation on both

RX_buffer16x8.

2. Hold for 18 clock cycles.

3. Disable the read operation on

both RX_buffer16x8.

• tb_w_uospi_IRQ_master =

1’b0

• SPISR of DUT_MASTER

= 8’b0001_1111

• tb_w_uospi_IRQ_slave =

1’b0

• SPISR of DUT_SLAVE =

8’b0001_1111

• All the received data

should be loaded correctly

on the

tb_w_uospi_wb_r_dout_m

aster and the

tb_w_uospi_wb_r_dout_sl

ave.

Pass

Test case 11:

Mode 1 serial data communication

Function to be tested

• Able to transmit and receive data

simultaneously in both master

mode and slave mode when mode

1 is used.

• tb_w_uiospi_SS_n = 1’b0

• 8 baud clock cycles should

appear on the

tb_w_uiospi_SCLK.

• There should be only one

bit of data on the

tb_w_uiospi_MOSI for

every baud clock cycles.

The expected sequence of

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
80

Procedure

1. Enable write operation on both

SPICR.

2. Configure DUT_MASTER’s

SPICR with 8’b0101_0000.

3. Configure DUT_SLAVE’s

SPICR with 8’b0001_0000.

4. Disable write operation on

SPICR and enable write

operation on SPISR.

5. Configure both SPISR with

8’b0000_1111.

6. Disable write operation on both

SPISR and enable write operation

on both TX_buffer16x8.

7. Store 16x1-byte data into both

TX_buffer16x8.

8. Disable write operation on both

TX_buffer16x8 and enable write

operation on both SPICR.

9. Configure DUT_MASTER’s

SPICR with 8’b1101_0000.

10. Configure DUT_SLAVE’s

SPICR with 8’b1001_0000.

11. Disable write operation on both

SPICR.

12. Enable read operation on SPISR

and SPICR of the devices.

13. Hold for 140 clock cycles

14. Disable the read operation on

SPISR and SPICR of the devices.

data to be transmitted on

this pin is 8’b1010_1010.

• There should be only one

bit of data on the

tb_w_uiospi_MISO for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b0101_0101.

• Each of these data bit is

transmitted serially at the

rising edge of the

tb_w_uiospi_SCLK clock.

• tb_w_uospi_IRQ_master =

1’b1

• tb_w_uospi_IRQ_slave =

1’b1

Test case #12:

Mode 2 serial data communication

Function to be tested

• Able to transmit and receive data

simultaneously in both master

mode and slave mode when mode

2 is used.

Procedure

1. Enable write operation on both

SPICR.

2. Configure DUT_MASTER’s

SPICR with 8’b1110_0000.

3. Configure DUT_SLAVE’s

SPICR with 8’b1010_0000.

4. Disable the write operation on

both SPICR.

5. Enable the read operation on both

RX_buffer16x8.

• tb_w_uiospi_SS_n = 1’b0

• 8 baud clock cycles should

appear on the

tb_w_uiospi_SCLK.

• There should be only one

bit of data on the

tb_w_uiospi_MOSI for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b0101_0101.

• There should be only one

bit of data on the

tb_w_uiospi_MISO for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b1010_1010.

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
81

6. Disable the read operation on

both RX_buffer16x8 and enable

the read operation on the SPISR

and SPICR.

7. Hold for 100 clock cycles

8. Disable the read operation on

SPISR and SPICR of the devices.

• Each of these data bit is

transmitted serially at one

half clock cycle before the

falling edge of the

tb_w_uiospi_SCLK clock.

• tb_w_uospi_IRQ_master =

1’b1

• tb_w_uospi_IRQ_slave =

1’b1

Test case #13:

Mode 3 serial data communication

Function to be tested

• Able to transmit and receive data

simultaneously in both master

mode and slave mode when mode

3 is used.

Procedure

1. Enable write operation on both

SPICR.

2. Configure DUT_MASTER’s

SPICR with 8’b1111_0000.

3. Configure DUT_SLAVE’s

SPICR with 8’b1011_0000.

4. Disable the write operation on

both SPICR.

5. Enable the read operation on both

RX_buffer16x8.

6. Disable the read operation on

both RX_buffer16x8 and enable

the read operation on the SPISR

and SPICR.

7. Hold for 110 clock cycles.

8. Disable the read operation on

SPISR and SPICR of the devices.

• tb_w_uiospi_SS_n = 1’b0

• 8 baud clock cycles should

appear on the

tb_w_uiospi_SCLK.

• There should be only one

bit of data on the

tb_w_uiospi_MOSI for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b1010_1010.

• There should be only one

bit of data on the

tb_w_uiospi_MISO for

every baud clock cycles.

The expected sequence of

data to be transmitted on

this pin is 8’b0101_0101.

• Each of these data bit is

transmitted serially at the

falling edge of the

tb_w_uiospi_SCLK clock.

• tb_w_uospi_IRQ_master =

1’b1

• tb_w_uospi_IRQ_slave =

1’b1

Pass

Test case #14: Selectable transmission

speed (baud rate)

Function to be tested

• Support selectable transmission

speed (baud rate)

Procedure

1. Enable write operation on both

SPICR.

2. Configure DUT_MASTER’s

SPICR with 8’b1111_0001.

3. Configure DUT_SLAVE’s

SPICR with 8’b1011_0001.

• Firstly, the uiospi_SCLK is

expected to be 4 times

slower than the

bospi_gen_spi_clk of

DUT_MASTER.

• Next, the uiospi_SCLK is

expected to be 8 times

slower than the

bospi_gen_spi_clk of

DUT_MASTER.

• Lastly, the uiospi_SCLK is

expected to be 16 times

slower than the

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
82

4. Disable the write operation on

both SPICR.

5. Enable the read operation on both

RX_buffer16x8.

6. Disable the read operation on

both RX_buffer16x8 and enable

the read operation on the SPISR

and SPICR.

7. Hold for 220 clock cycles.

8. Disable the read operation on

SPISR and SPICR of the devices.

9. Repeat step 1 to 8 by replacing

some values in the above steps.

That is, assign 8’b1111_0010 to

the DUT_MASTER’s SPICR in

step 2 and 8’b1011_0010 to the

DUT_SLAVE’s SPICR in step 3,

and hold 450 clock cycles in step

7.

10. Enable write operation in both

SPISR.

11. Configure both SPISR with

8’b0000_0011.

12. Repeat step 1 to 8 by replacing

some values in the above steps.

That is, assign 8’b1111_0011 to

the DUT_MASTER’s SPICR in

step 2 and 8’b1011_0011 to the

DUT_SLAVE’s SPICR in step 3,

and hold 660 clock cycles in step

7.

13. Enable read operation on SPISR

and SPICR of the devices.

bospi_gen_spi_clk of

DUT_MASTER.

Test case #15:

Mode Fault Error Interrupt Support

Function to be tested

• Mode fault error support in

master mode

Procedure

1. Enable write operation on

DUT_SLAVE’s SPICR.

2. Configure DUT_SLAVE’s

SPICR with 8’b1111_0011.

3. Disable write operation on

DUT_SLAVE’s SPICR.

4. Enable read operation on

DUT_SLAVE’s RX_buffer16x8.

5. Hold for 120 clock cycles.

• tb_w_uospi_IRQ_master =

1’b1

• SPISR of DUT_MASTER

= 8’b1010_0011

• tb_w_uospi_IRQ_slave =

1’b0

• SPISR of DUT_SLAVE =

8’b0000_0011

Pass

Table 7.1.2: Test plan for the SPI controller unit’s functional verification

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
83

7.2 Stimulation Results of the SPI Controller Unit’s Functional Test

7.2.1 Test Case #1: System Reset

Figure 7.2.1.1: Stimulation result for test case #1 using ModelSim stimulator.

1. Before the reset signal is asserted, most of the signals have an unknown value.

2. The reset signal is asserted in order to initialize all the system registers, FSM

state, and read/write pointers.

3. All of the output signals and registers are set to their respective default value.

4. The bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and the

DUT_SLAVE is set to 1 by itself respectively when the reset signal is de-

asserted as the TX_buffer16x8 block of each device is initially empty. At the

end, both SPISRs hold the value of 8’b0100_0000 (0x40) respectively.

7.2.2 Test Case #2: Write Operation on SPISR

Figure 7.2.2.1 Stimulation result for test case #2 using ModelSim stimulator.

1. Write operation on the SPISR of the DUT_MASTER is activated and an input

data of 8’b0000_1111 (0x0f) is sent to it.

2

1

3

4

1

2

3 4

4

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
84

2. Write operation on the SPISR of the DUT_SLAVE is activated and an input

data of 8’b0000_1111 (0x0f) is sent to it.

3. The SPISR in both of the DUT_MASTER and the DUT_SLAVE is configured

with the value of 8’b0000_1111 (0x0f) respectively.

4. The bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and the

DUT_SLAVE is set to 1 by itself respectively as the TX_buffer16x8 of each

device is initially empty. At the end, both SPISRs hold the value of

8’b0100_1111 (0x4f) respectively.

7.2.3 Test Case #3: Write Operation on SPICR

Figure 7.2.3.1: Stimulation result for test case #3 using ModelSim stimulator.

1. Write operation on the SPICR of the DUT_MASTER is activated and an input

data of 8’b1100_0000 (0xc0) is sent to it.

2. Write operation on the SPICR of the DUT_SLAVE is activated and an input

data of 8’b1000_0000 (0x80) is sent to it.

3. The SPICR of the DUT_MASTER is configured with the value of

8’b1100_0000 (0xc0) whereas the SPICR of the DUT_SLAVE is configured

with the value of 8’b1000_0000 (0x80) now.

1

2

3

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
85

7.2.4 Test Case #4: Transmitter Buffer Empty Interrupt Support

Figure 7.2.4.1: Stimulation result for test case #4 using ModelSim stimulator.

1. Even though the bit 7 (TXEF) of both SPISR is asserted respectively (which

means the TX_buffer16x8 is now empty), no interrupt request is being

generated from both of the DUT_MASTER and the DUT_SLAVE. This is

because both of the SPI controllers are initially de-activated (because SPE = 0)

and their transmitter buffer empty interrupts are not enabled (because TXEIE =

0).

2. When all the conditions are met (TXEF = 1, SPE = 1, TXEIE = 1), both of the

DUT_MASTER and the DUT_SLAVE will generate an interrupt request to

notify the CPU for service.

7.2.5 Test Case #5: Push One 8-bit Data into the TX_buffer16x8

Figure 7.2.5.1: Stimulation result for test case #5 using ModelSim stimulator.

1. Write operation on the TX_buffer16x8 of the DUT_MASTER is activated and

an input data of 8’b1010_1010 (0xaa) is sent to it.

2. Write operation on the SPITDR of the DUT_SLAVE is activated and an input

data of 8’b0101_0101 (0x55) is sent to it.

1 2

1

2

3

4

5

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
86

3. The data value of 8’b1010_1010 (0xaa) is stored into the

TX_buffer16x8.bFIFO_FIFOmem[0] of the DUT_MASTER whereas the data

value of 8’b0101_0101 (0x55) is stored into the

TX_buffer16x8.bFIFO_FIFOmem[0] of the DUT_SLAVE.

4. Bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and DUT_SLAVE

is initially one. However, it changed to zero after the corresponding input data

is successfully stored into the TX_buffer16x8 of the DUT_MASTER and

DUT_SLAVE respectively. At the end, both SPISRs hold the value of

8’b0000_1111 (0x0f) respectively.

5. No interrupt request is generated from the DUT_MASTER and also the

DUT_SLAVE as the TX_buffer16x8 of each device has been filled with one 8-

bit data and is not empty now.

7.2.6 Test Case #6: Mode 0 Serial Data Communication

Figure 7.2.6.1: Stimulation result for test case #6 using ModelSim stimulator

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b1010_1010 (0xaa) can be successfully transmitted by the DUT_MASTER

via its MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these

data bit is transmitted serially at one half clock cycle before the rising edge of

the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register

(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (0xaa)

is stored into receiver shift register (RSR) of the DUT_SLAVE.

1

2

3 3

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
87

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE

is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

7.2.7 Test Case #7: Receiver Buffer Full Interrupt Support After Receiving A 1-

byte Data (RXFM = 0)

Figure 7.2.7.1: Stimulation result of test case #7 using ModelSim stimulator.

1. Since the bit 4 (RXFM) of the SPISR is set to 0 in both of the DUT_MASTER

and DUT_SLAVE, it indicates that only 1-byte of data is expected to be read

by CPU. Hence, the interrupt request from both of the DUT_MASTER and

DUT_SLAVE is asserted when the bit 7 (RXDF) of the SPISR become 1

(indicates that the 1-byte of data has been completely received). At the end, both

SPISRs hold the value of 8’b1000_1111 (0x8f) respectively.

7.2.8 Test Case #8: Pop 1-byte of Received Data from the RX_buffer16x8

Figure 7.2.8.1: Stimulation result for test case #8 using ModelSim stimulator.

1. Read operation on the RX_buffer16x8 of the DUT_MASTER is activated.

2. Read operation on the RX_buffer16x8 of the DUT_SLAVE is activated.

1

1

2

3

4

5

1

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
88

3. The data value of 32’h0000_0055 (0x0000_0055) stored in the

RX_buffer16x8.FIFOmem[0] can be read by the DUT_MASTER. On the other

hand, the DUT_SLAVE can also read the received data whose value is

32’h0000_000aa (0x0000_000aa) from its RX_buffer16x8.FIFOmem[0].

4. The bit 7 (RXDF) of the SPISR for both of the DUT_MASTER and the

DUT_SLAVE is set to 0 respectively because the 1-byte of received data has

been read from the RX_buffer16x8. At the end, both SPISRs hold the value of

8’b0001_1111 (0x1f) respectively.

5. The de-assertion of bit 7 in SPISR causes the interrupt request in both of the

devices to be de-activated.

7.2.9 Test Case #9: Receiver Buffer Full Interrupt Support After Receiving 16x1-

byte Data (RXFM = 1)

Figure 7.2.9.1: Stimulation result for test case #9 using ModelSim stimulator.

Figure 7.2.9.2: Stimulation result for test case #9 using ModelSim stimulator (cont’d).

1. Since the bit 4 (RXFM) of the SPISR is set to 1 in both of the DUT_MASTER

and the DUT_SLAVE, it indicates that 16 number of 8-bit data are expected to

be read by the CPU. Moreover, both of the transmit buffer empty and received

buffer full interrupt have also been enabled.

2. So, there are two reasons why the interrupt requests from both of the devices

happen here:

a. Their TX_buffer16x8 become empty (TXEF = 1) after sending 16

number of 8-bit data (See test case 4).

1

2

3

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
89

b. Their RX_buffer16x8 become full (RXDF = 1) after receiving 16

number of 8-bit data.

3. A new data is then inserted into their TX_buffer16x8 to disable the transmitter

buffer empty interrupt. At the end, the interrupt requests from both of the

DUT_MASTER and the DUT_SLAVE remain asserted, indicating that the SPI

controller can issue an interrupt to alert the CPU after receiving 16 number of

1-bit data.

7.2.10 Test Case #10: Pop 16 Number of 1-byte Data from the RX_buffer16x8

Figure 7.2.10.1: Stimulation result for test case #10 using ModelSim stimulator.

1. Read operation on the RX_buffer16x8 of the DUT_MASTER and the

DUT_SLAVE is activated respectively.

2. The 16 number of 1-byte data that were stored in the RX_buffer16x8 of the

DUT_MASTER and the DUT_SLAVE can be successfully read by them.

3. The bit 7 (RXDF) of the SPISR for both of the DUT_MASTER and the

DUT_SLAVE is set to 0 respectively because the RX_buffer16x8s in both

devices are no longer full with data. At the end, both SPISRs hold the value of

8’b0001_1111 (0x1f) respectively.

4. The de-assertion of bit 7 in SPISR causes the interrupt request in both of the

devices to be de-activated.

2

3

4

1

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
90

7.2.11 Test Case #11: Mode 1 Serial Data Communication

Figure 7.2.11.1: Stimulation result for test case #11 using ModelSim stimulator.

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b1010_1010 (0xaa) can be successfully transmitted by the DUT_MASTER

via its MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these

data bit is transmitted serially at the rising edge of the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register

(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (0xaa)

is stored into receiver shift register (RSR) of the DUT_SLAVE.

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE

is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

7.2.12 Test Case #12: Mode 2 Serial Data Communication

Figure 7.2.12.1: Stimulation result for test case #12 using ModelSim stimulator.

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b0101_0101 (0x55) can be successfully transmitted by the DUT_MASTER

via its MOSI pin. Similarly, the data value of 8’b1010_1010 (0xaa) can also be

1

2

1

2

3

3

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
91

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these

data bit is transmitted serially at one half clock cycle before the falling edge of

the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b1010_1010 (0xaa) is stored into the receiver shift register

(RSR) of the DUT_MASTER whereas the data value of 8’b0101_0101 (0x55)

is stored into receiver shift register (RSR) of the DUT_SLAVE.

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE

is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

7.2.13 Test Case #13: Mode 3 Serial Data Communication

Figure 7.2.13.1: Stimulation result for test case #13 using ModelSim stimulator.

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b1010_1010 (0xaa) can be successfully transmitted by the DUT_MASTER

via its MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these

data bit is transmitted serially at the falling edge of the SCLK clock.

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register

(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (0xaa)

is stored into receiver shift register (RSR) of the DUT_SLAVE.

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE

is asserted respectively after they have received one 8-bit data from each other

(See test case 7).

1

2

3

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
92

7.2.14 Test Case #14: Selectable Transmission Speed (Baud Rate)

Figure 7.2.14.1: Stimulation result for test case #14 with SCLK clock signal is 4 times

slower than the I/O clock of the DUT_MASTER.

1. The SCLK clock signal can be configured to be 4 times slower than the I/O

clock of the DUT_MASTER.

Figure 7.2.14.2: Stimulation result for test case #14 with SCLK clock signal is 8 times

slower than the I/O clock of the DUT_MASTER.

1. The SCLK clock signal can be configured to be 8 times slower than the I/O

clock of the DUT_MASTER.

Figure 7.2.14.3: Stimulation result for test case #14 with SCLK clock signal is 16 times

slower than the I/O clock of the DUT_MASTER.

1. The SCLK clock signal can be configured to be 16 times slower than the I/O

clock of the DUT_MASTER.

1

1

1

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
93

7.2.15 Test Case #15: Mode Fault Error Interrupt Support

Figure 7.2.15.1: Stimulation result for test case #15 using ModelSim stimulator.

1. The contents of the two shift registers get exchanged once a total of eight pulses

of clock signals are generated. When the data transaction is completed, the

DUT_MASTER will de-activate the SCLK signal and pull its SS pin to high.

2. The DUT_MASTER’s transmit buffer empty and received full interrupt

supports are both disabled for this test case, leaving the mode fault error

interrupt support being activated only. Meaning, the interrupt request from the

DUT_MASTER will be generated if and only if a mode fault error is detected.

3. The DUT_ SLAVE is reconfigured to act as a master. Since there are two master

devices in the same connection, any attempt to pull the SS pin to low will trigger

the mode fault error.

4. The newly configured master device attempts to initiate the communication

with the DUT_MASTER by pulling the SS pin to low.

5. Once the mode fault error is successfully detected, the bit 5 (MODF) of the

DUT_MASTER’s SPISR will be set to 1.

6. An interrupt request corresponding to the mode fault error detection is

immediately issued by the DUT_MASTER in order to alert the CPU to take

action.

1

2

1

3

4

5

6

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
94

7.3 Test Plan for SPI Controller Unit’s Integration Test with RISC32

Once the developed SPI controller has met its functional specifications, it is then ready

to be integrated into the existing RISC32. In order to do this, the interface connection

between the SPI controller unit and the RISC32 is developed based on the I/O memory

mapping technique as this technique keeps the instructions set small. After that, a test

plan is created for verifying the behaviors of the integrated SPI controller unit and the

RISC32.

As indicated in Figure 7.3.1. it is the RISC32 discussed in Chapter 4 that is being used

as the c_risc_dut and the c_risc_client respectively during the verification process. On

the other hand, each of the RISC32s has its own flash memory (a non-volatile memory)

where it can get its program codes to execute upon reset. For your information, all the

written programs such as the MIPS test programs and the exception handler programs

are first stored into the flash memory before the verification test starts.

In this test, the SPI controller unit that has been integrated into the c_risc_dut is

configured as a master device whereas the SPI controller unit which is integrated in the

c_risc_client is set as a slave device. Same type of SPI controller unit is used throughout

the verification process but with different operation modes (master mode or slave mode)

to prove that the designed SPI controller unit can function correctly in both operation

modes. In this test phase, a testbench has been specifically developed based on the

constructed test plan and Appendix B.2 provides the full information about this

testbench.

urisc_GPIO[31:0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

uorisc_ua_rx_data

uirisc_ua_tx_data

uirisc_clk_100mhz

uirisc_rst

uiorisc_fc_MOSI

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

uorisc_fc_sclk

uorisc_fc_ss

crisc

SI

SO

WPNeg

HOLDNeg

SCK

CSNeg

RSTNeg

s25fl128s

SI

SO

WPNeg

HOLDNeg

SCK

CSNeg

RSTNeg

s25fl128s

urisc_GPIO[31:0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

uorisc_ua_tx_data

uirisc_ua_rx_data

uirisc_clk_100mhz

uirisc_rst

uiorisc_fc_MOSI

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

uorisc_fc_sclk

uorisc_fc_ss

crisc

Clock Waveform

Generator

100Mhz clock

frequency

c_risc_dut c_risc_client

SPI_flash_dut SPI_flash_client

Figure 7.3.1: The connection mechanism of the c_risc_dut, c_risc_client, SPI_flash_dut,

and SPI_flash_client for SPI controller unit’s integration test with RISC32.

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
95

Test Expected Output Status

Test Case #1:

System Reset

Function to be tested

• Reset the whole

RISC32 (including

SPI controller unit)

Procedure

1. Reset both devices.

• uiospi_MOSI of c_risc_dut = 1’b0

• uiospi_MISO of c_risc_dut = 1’b1

• uiospi_SCLK of c_risc_dut = 1’b0

• uiospi_SS_n of c_risc_dut = 1’b1

• uospi_IRQ of c_risc_dut = 1’b0

• uospi_wb_r_dout of c_risc_dut = 32’hz

• SPICR of c_risc_dut = 8’h00

• SPISR of c_risc_dut = 8’h00

• uodp_if_pseudo_pc of c_risc_dut =

8’hbfc0_0000

• uiospi_MOSI of c_risc_client = 1’b0

• uiospi_MISO of c_risc_client = 1’b1

• uiospi_SCLK of c_risc_client = 1’b0

• uiospi_SS_n of c_risc_client = 1’b1

• uospi_IRQ of c_risc_client = 1’b0

• uospi_wb_r_dout of c_risc_client =

32’hz

• SPICR of c_risc_client = 8’h00

• SPISR of c_risc_client = 8’h00

• uodp_if_pseudo_pc of c_risc_client =

8’hbfc0_0000

Pass

Test Case #2:

Transmitter buffer empty

interrupt support

Function to be tested

• Transmitter buffer

empty interrupt

support in both

master mode and

slave mode

Procedure for c_risc_dut

1. Store a value of 0x08

to PICMASK.

2. Store a value of 0x05

to both SPISR

3. Store a value of 0xc0

to SPICR.

Procedure for c_risc_client

1. Store a value of 0x08

to PICMASK.

2. Store a value of 0x05

to both SPISR

3. Store a value of 0x80

to SPICR.

• PICMASK of c_risc_dut = 8’h08

• PICSTAT of c_risc_dut = 8’h03

• SPISR of c_risc_dut = 8’h45

• SPICR of c_risc_dut = 8’hc0

• uospi_IRQ of c_risc_dut = 1’b1

• uodp_if_pc of c_risc_dut =

8’h8001_b400 (Jump to the exception

handler address in the next clock cycle)

• bcpo_cause[6:2] of c_risc_dut =

6’b00_0000

• bcpo_epc of c_risc_dut = bicp0_if_pc

of c_risc_dut

• PICMASK of c_risc_client = 8’h08

• PICSTAT of c_risc_client = 8’h03

• SPISR of c_risc_client = 8’h45

• SPICR of c_risc_client = 8’h80

• uospi_IRQ of c_risc_client = 1’b1

• uodp_if_pc of c_risc_client =

8’h8001_b400 (Jump to the exception

handler address in the next clock cycle)

• bcpo_cause[6:2] of c_risc_client =

6’b00_0000

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
96

• bcpo_epc of c_risc_client =

bicp0_if_pc of c_risc_client

Test Case #3:

Mode 0 Serial Data

Communication

Function to be tested

• Able to transmit and

receive data

simultaneously in

both master mode

and slave mode when

mode 0 is used.

Procedure for c_risc_dut

1. Store 0xaa to

SPITDR.

2. Store 0x0b to SPISR

3. Store 0xc0 to SPICR

Procedure for c_risc_client

1. Store 0x55 to

SPITDR.

2. Store 0x0b to SPISR

3. Store 0x81 to SPICR

• uiospi_SS_n = 1’b0

• 8 baud clock cycles should appear on

the uiospi_SCLK.

• There should be only one bit of data on

the uiospi_MOSI for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b1010_1010.

• There should be only one bit of data on

the uiospi_MISO for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b0101_0101.

• Each of these data bit is transmitted

serially at one half clock cycle before

the rising edge of the uiospi_SCLK

clock.

• uospi_IRQ of c_risc_dut = 1’b1

• uospi_IRQ of c_risc_client = 1’b1

Pass

Test Case #4:

Receiver buffer full interrupt

support

Function to be tested

• Receiver buffer full

interrupt support in

both master mode

and slave mode.

• PICMASK of c_risc_dut = 8’h08

• PICSTAT of c_risc_dut = 8’h03

• SPISR of c_risc_dut = 8’hcb

• SPICR of c_risc_dut = 8’hc0

• uospi_IRQ of c_risc_dut = 1’b1

• uodp_if_pc of c_risc_dut =

8’h8001_b400 (Jump to the exception

handler address in the next clock cycle)

• bcpo_cause[6:2] of c_risc_dut =

6’b00_0000

• bcpo_epc of c_risc_dut = bicp0_if_pc

of c_risc_dut

• PICMASK of c_risc_client = 8’h08

• PICSTAT of c_risc_client = 8’h03

• SPISR of c_risc_client = 8’hcb

• SPICR of c_risc_client = 8’h81

• uospi_IRQ of c_risc_client = 1’b1

• uodp_if_pc of c_risc_client =

8’h8001_b400 (Jump to the exception

handler address in the next clock cycle)

• bcpo_cause[6:2] of c_risc_client =

6’b00_0000

• bcpo_epc of c_risc_client =

bicp0_if_pc of c_risc_client

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
97

Test Case #5:

Mode 1 Serial Data

Communication

Function to be tested

• Able to transmit and

receive data

simultaneously in

both master mode

and slave mode when

mode 1 is used.

Procedure for c_risc_dut

1. Store 0x55 to

SPITDR.

2. Store 0x0f to SPISR

3. Store 0xd1 to SPICR

Procedure for c_risc_client

1. Store 0xaa to

SPITDR.

2. Store 0x0f to SPISR

3. Store 0x91 to SPICR

• uiospi_SS_n = 1’b0

• 8 baud clock cycles should appear on

the uiospi_SCLK.

• There should be only one bit of data on

the uiospi_MOSI for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b0101_0101.

• There should be only one bit of data on

the uiospi_MISO for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b1010_1010.

• Each of these data bit is transmitted

serially at the rising edge of the

uiospi_SCLK clock.

• uospi_IRQ of c_risc_dut = 1’b1

• uospi_IRQ of c_risc_client = 1’b1

Pass

Test Case #6:

Mode 2 Serial Data

Communication

Function to be tested

• Able to transmit and

receive data

simultaneously in

both master mode

and slave mode when

mode 2 is used.

Procedure for c_risc_dut

1. Store 0xaa to

SPITDR.

2. Store 0x0f to SPISR

3. Store 0xe2 to SPICR

Procedure for c_risc_client

1. Store 0xaa to

SPITDR.

2. Store 0x0f to SPISR

3. Store 0xa1 to SPICR

• uiospi_SS_n = 1’b0

• 8 baud clock cycles should appear on

the uiospi_SCLK.

• There should be only one bit of data on

the uiospi_MOSI for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b1010_1010.

• There should be only one bit of data on

the uiospi_MISO for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b0101_0101.

• Each of these data bit is transmitted

serially at one half clock cycle before

the falling edge of the uiospi_SCLK

clock.

• uospi_IRQ of c_risc_dut = 1’b1

• uospi_IRQ of c_risc_client = 1’b1

Pass

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
98

Test Case #7:

Mode 3 Serial Data

Communication

Function to be tested

• Able to transmit and

receive data

simultaneously in

both master mode

and slave mode when

mode 3 is used.

Procedure for c_risc_dut

1. Store 0x55 to

SPITDR.

2. Store 0x0b to SPISR

3. Store 0xf3 to SPICR

Procedure for c_risc_client

1. Store 0xaa to

SPITDR.

2. Store 0x0f to SPISR

3. Store 0xb1 to SPICR

• uiospi_SS_n = 1’b0

• 8 baud clock cycles should appear on

the uiospi_SCLK.

• There should be only one bit of data on

the uiospi_MOSI for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b0101_0101.

• There should be only one bit of data on

the uiospi_MISO for every baud clock

cycles. The expected sequence of data

to be transmitted on this pin is

8’b1010_1010.

• Each of these data bit is transmitted

serially at the falling edge of the

uiospi_SCLK clock.

• uospi_IRQ of c_risc_dut = 1’b1

• uospi_IRQ of c_risc_client = 1’b1

Pass

Test Case #8:

Mode fault error interrupt

support

Function to be tested

• Mode fault error

interrupt in master

mode

Procedure for c_risc_client

1. Store 0x55 to

SPITDR.

2. Store 0xf1 to SPICR

• PICMASK of c_risc_dut = 8’h08

• PICSTAT of c_risc_dut = 8’h03

• SPISR of c_risc_dut = 8’h6b

• SPICR of c_risc_dut = 8’hf3

• uospi_IRQ of c_risc_dut = 1’b1

• uodp_if_pc of c_risc_dut =

8’h8001_b400 (Jump to the exception

handler address in the next clock cycle)

• bcpo_cause[6:2] of c_risc_dut =

6’b00_0000

• bcpo_epc of c_risc_dut = bicp0_if_pc

of c_risc_dut

Pass

Table 7.3.1: Test plan for the SPI controller unit’s integration test with RISC32

pipeline processor.

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
99

7.4 MIPS Test Program for c_risc_dut in Integration Test

Label Instruction Comment

setting: lui $s0, 0xbfff

 ori $s0, $s0,

0xfe00

$s0 = 0xbfff_fe00 (I/O peripheral address)

 addi $t0, $zero,

0x08

$t0[7:0] = 8’b0000_1000

 sb $t0, 34($s0) PICMASK = 0x08 => enable SPI controller’s

interrupt. Interrupt method instead of the polling

method will be used throughout this test program

for testing the ISR execution of the SPI

controller unit.

Test Case #2

TXEF_int: addi $t0, $zero,

0x05

$t0[7:0] = 8’b0000_0101

 sb $t0, 37($s0) SPISR = 0x05 => enable transmitter buffer

empty interrupt, disable receiver full buffer

interrupt, halt TX FSM when TX_buffer16x8 is

empty

 addi $t0, $zero,

0xc0

$t0[7:0] = 8’b1100_0000

 sb$t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, set

as master, use mode 0, use baud rate = (SPI i/o

clock)/2

 jal program_code Whenever the transmitter buffer is detected to be

empty (TXEF bit = 1), the SPI controller unit

will interrupt the CPU for service even though

the CPU is busy executing its normal task.

Test Case #3 and #4

mode_0: addi $t0, $zero,

0xaa

$t0[7:0] = 8’b1010_1010

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[0] = 0xaa

 addi $t0, $zero,

0x0b

$t0[7:0] = 8’b0000_1011

 sb $t0, 37($s0) SPISR = 0x0b => disable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8 is

empty or when one byte of data is received

 addi $t0, $zero,

0xc0

$t0[7:0] = 8’b1100_0000

 sb $t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, set

as master, use mode 0, use baud rate = (SPI i/o

clock)/2

 jal program_code Whenever the receiver buffer is detected to be

full (RXDF bit = 1), the SPI controller unit will

interrupt the CPU for service even though the

CPU is busy executing its normal task.

Test Case #5

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
100

mode_1: addi $t0, $zero,

0x55

$t0[7:0] = 8’b0101_0101

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[1] = 0x55

 addi $t0, $zer0,

0x0f

$t0[7:0] = 8’b0000_1111

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8 is

empty or when one byte of data is received

 addi $t0, $zero,

0xd1

$t0[7:0] = 8’b1101_0001

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, set

as master, use mode 1, use baud rate = (SPI i/o

clock)/4

 jal program_code Whenever the transmitter buffer is empty (TXEF

= 1) or the receiver buffer is full (RXDF = 1), the

SPI controller unit will interrupt the CPU for

service even though the CPU is busy executing

its normal task.

Test Case #6

mode_2 addi $t0, $zero,

0xaa

$t0[7:0] = 8’b1010_1010

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[3] = 0xaa

 addi $t0, $zer0,

0x0f

$t0[7:0] = 8’b0000_1111

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8 is

empty or when one byte of data is received

 addi $t0, $zero,

0xe2

$t0[7:0] = 8’b1110_0010

 sb $t0, 36($s0) SPICR = 0xe2 => activate the SPI controller, set

as master, use mode 2, use baud rate = (SPI i/o

clock)/8

 jal program_code Whenever the transmitter buffer is empty (TXEF

= 1) or the receiver buffer is full (RXDF = 1), the

SPI controller unit will interrupt the CPU for

service even though the CPU is busy executing

its normal task.

Test Case #7

mode_3: addi $t0, $zero,

0x55

$t0[7:0] = 8’b0101_0101

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[2] = 0x55

 addi $t0, $zer0,

0x0b

$t0[7:0] = 8’b0000_1011

 sb $t0, 37($s0) SPISR = 0x0f => disable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8 is

empty or when one byte of data is received

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
101

 addi $t0, $zero,

0xf3

$t0[7:0] = 8’b1111_0011

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, set

as master, use mode 3, use baud rate = (SPI i/o

clock)/16

 jal program_code Whenever the receiver buffer is full (RXDF = 1),

the SPI controller unit will interrupt the CPU for

service even though the CPU is busy executing

its normal task.

Test Case #8

MODF_int: jal program_code Only one master can exist in the connection at a

time to initiate all the communications with

slaves. Since there are two master devices in the

same connection, any attempt from a master

device to pull the SS pin to low will trigger the

mode fault (MODF) error in other master device.

Whenever the MODF error is detected, the SPI

controller unit will interrupt the CPU for service

even though the CPU is busy executing its

normal task.

 j exit

Function

program_code: addi $t1, $zero,

300

$t1 = 300

loop_1 addi $t1, $t1, -1 $t1 = $t1 -1

 slt $t2, $t1, $zero $t2 = 1 if $t1 < 0, $t2 = 0 if $t1 >= 0

 beq $t2, $zero,

loop_1

branch to loop_1 if $t2=0

 jr $ra This program_code function represents a simple

user program which is just a loop to decrease the

value from 300 to 0. It will be executed

whenever it is called in order to test if the

integrated SPI controller is able to interrupt the

CPU for service while the CPU is executing its

normal task.

exit: nop

Table 7.4.1: MIPS test program for c_risc_dut in integration test.

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
102

7.5 MIPS Test Program for c_risc_client in Integration Test

Label Instruction Comment

setting: lui $s0, 0xbfff

 ori $s0, $s0, 0xfe00 $s0 = 0xbfff_fe00 (I/O peripheral address)

 addi $t0, $zero, 0x08 $t0[7:0] = 8’b0000_1000

 sb $t0, 34($s0) PICMASK = 0x08 => enable SPI controller’s

interrupt. Interrupt method instead of the

polling method will be used throughout this

test program for testing the ISR execution of

the SPI controller unit.

Test case #2

TXEF_int: addi $t0, $zer0, 0x05 $t0[7:0] = 8’b0000_0101

 sb $t0, 37($s0) SPISR = 0x05 => enable transmitter buffer

empty interrupt, disable receiver full buffer

interrupt, halt TX FSM when TX_buffer16x8

is empty

 addi $t0, $zero, 0x80 $t0[7:0] = 8’b1000_0000

 sb$t0, 36($s0) SPICR = 0xc0 => activate the SPI controller,

set as slave, use mode 0, use baud rate = (SPI

i/o clock)/2

 jal program_code Whenever the transmitter buffer is detected to

be empty (TXEF bit = 1), the SPI controller

unit will interrupt the CPU for service even

though the CPU is busy executing its normal

task.

Test case #3 and #4

mode_0: addi $t0, $zero, 0x55 $t0[7:0] = 8’b0101_0101

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[0] = 0x55

 addi $t0, $zero, 0x0b $t0[7:0] = 8’b0000_1011

 sb $t0, 37($s0) SPISR = 0x0b => disable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8

is empty or when one byte of data is received

 addi $t0, $zero, 0x81 $t0[7:0] = 8’b1000_0001

 sb $t0, 36($s0) SPICR = 0xc0 => activate the SPI controller,

set as slave, use mode 0, use baud rate = (SPI

i/o clock)/4

 jal check_RXDF Whenever the receiver buffer is detected to be

empty (RXDF bit = 1), the SPI controller unit

will interrupt the CPU for service.

Test case #5

mode_1: addi $t0, $zero, 0xaa $t0[7:0] = 8’b1010_1010

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[1] = 0xaa

 addi $t0, $zer0, 0x0f $t0[7:0] = 8’b0000_1111

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8

is empty or when one byte of data is received

 addi $t0, $zero, 0x91 $t0[7:0] = 8’b1001_0001

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
103

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller,

set as slave, use mode 1, use baud rate = (SPI

i/o clock)/4

 jal check_RXDF Whenever the transmitter buffer is empty

(TXEF = 1) or the receiver buffer is full

(RXDF = 1), the SPI controller unit will

interrupt the CPU for service even though the

CPU is busy executing its normal task.

Test case #6

mode_2 addi $t0, $zero, 0x55 $t0[7:0] = 8’b0101_0101

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[3] = 0x55

 addi $t0, $zer0, 0x0f $t0[7:0] = 8’b0000_1111

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8

is empty or when one byte of data is received

 addi $t0, $zero, 0xa1 $t0[7:0] = 8’b1010_0001

 sb $t0, 36($s0) SPICR = 0xe2 => activate the SPI controller,

set as slave, use mode 2, use baud rate = (SPI

i/o clock)/4

 jal check_RXDF Whenever the transmitter buffer is empty

(TXEF = 1) or the receiver buffer is full

(RXDF = 1), the SPI controller unit will

interrupt the CPU for service even though the

CPU is busy executing its normal task.

Test case #7

mode_3: addi $t0, $zero, 0xaa $t0[7:0] = 8’b1010_1010

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[2] = 0x55

 addi $t0, $zer0, 0x0f $t0[7:0] = 8’b0000_1111

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer

empty interrupt, enable receiver buffer full

interrupt, halt TX FSM when TX_buffer16x8

is empty or when one byte of data is received

 addi $t0, $zero, 0xb1 $t0[7:0] = 8’b1011_0001

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller,

set as slave, use mode 3, use baud rate = (SPI

i/o clock)/4

 jal check_RXDF Whenever the transmitter buffer is empty

(TXEF = 1) or the receiver buffer is full

(RXDF = 1), the SPI controller unit will

interrupt the CPU for service even though the

CPU is busy executing its normal task.

Test case #8

MODF_int: addi $t0, $zero, 0x55 $t0[7:0] = 8’b0101_0101

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[6] = 0x55

 addi $t0, $zero, 0xf1 $t0[7:0] = 8’b1111_0001

 sb $t0, 36($s0) SPICR = 0xf1 => activate the SPI controller,

set as master, use mode 3, use baud rate = (SPI

i/o clock)/4

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
104

 jal_program_code In test case 8, this SPI controller unit is

reconfigured to act as a master device instead

of the slave device. It will then initiate a

communication to another master device in the

c_risc_dut by pulling the shared SS line to low.

 j exit

Function #1

program_code: addi $t1, $zero, 100 $t1 = 100

loop_1 addi $t1, $t1, -1 $t1 = $t1 -1

 slt $t2, $t1, $zero $t2 = 1 if $t1 < 0, $t2 = 0 if $t1 >= 0

 beq $t2, $zero, loop_1 branch to loop_1 if $t2=0

 jr $ra This program_code function represents a

simple user program which is just a loop to

decrease the value from 100 to 0. A smaller

value is used here to make sure the slave is

ready before the master initiate a

communication with it in test case #3 and #4.

It will be executed whenever it is called in

order to test if the integrated SPI controller is

able to interrupt the CPU for service while the

CPU is executing its normal task.

Function #2

check_RXDF: lbu $t1, 37($s0) $t1 = SPISR

 srl $t1, $t1, 7 $t1 = SPISR[7] = RXDF

 beq $t1, $zero,

check_RXDF

branch to check_RXDF if $t1 = 0

exit: nop Before a new transfer mode can be used, need

to make sure that the SPI controller has used

the current transfer mode to perform the data

transmission and sampling. So, this

check_RXDF function will do this job by

constantly checking the RXDF bit in the

SPISR. When a data transfer occurs and a data

byte has been successfully received, the RXDF

will be asserted. After successfully testing the

current mode for data transfer, the program can

then continue to test a new transfer mode.

Table 7.5.1: MIPS test program for c_risc_client in integration test

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
105

7.6 Stimulation Results of the SPI Controller Unit’s Integration Test with RISC32

7.6.1 Test Case #1: System Reset

Figure 7.6.1.1: Stimulation result for test case #1 using Vivado stimulator.

1. Before the reset signal is asserted, most of the signals have an unknown value.

2. The reset signal is asserted in order to initialize all the system registers, FSM

state, read/write pointer, program counter (PC) and etc.

3. All of the output signals and registers are set to their respective default values.

The program counter of both RISC32s is set to point at the memory address of

0xbfc0_000 (which is the beginning address of the boot ROM) for executing

the bootloader program.

7.6.2 Test Case #2: Transmitter Buffer Empty Interrupt Support

Stimulation Result of c_risc_dut:

Figure 7.6.2.1: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator.

2

1 3

2

1
3

7

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
106

Figure 7.6.2.2: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator

(cont’d).

Figure 7.6.2.3: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator

(cont’d).

Figure 7.6.2.4: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator

(cont’d).

1. With the value of 0x08 being set in the PICMASK, the SPI I/O interrupt in

c_risc_dut is enabled.

2. Initially, the TX_buffer16x8 of the SPI controller is empty. Upon activation, the

on-board SPI controller is configured to enable the transmitter buffer empty

interrupt only (by setting SPISR[2] = 1). Thus, when the bit 6 (TXEF) of the

SPISR goes high, the SPI controller will initiate an interrupt request (IRQ) to

notify the CPU for service. As a result, the uospi_IRQ status flag goes high.

3. Whenever an I/O interrupt is detected, the PICSTAT of the c_risc_dut will be

updated with a value corresponding to the IRQ source. The value for SPI’s IRQ

is 0x03. The exception handler will then compare this PICSTAT value to

4

5

6
6

7

8
9

0

10

9

11

12

13

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
107

identify which I/O to serve and which Interrupt Service Routine (ISR) to jump

to.

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocp0_exc_flag

and set to flush the IF/ID pipeline register.

5. The bcp0_stat[1] (which is the CP0’s status register) is set to 1 in order to

disable further exception from occurring whereas the bcp0_cause[6:2] (which

is the CP0’s cause register) remain unchanged because the exception code for

I/O interrupt is 0.

6. The CP0 will also load the bicp0_if_pc (which is the IF stage’s PC) into the

bcp0_epc (which is the CP0’s EPC register) for return purpose after executing

the exception handler program.

7. The c_risc_dut will then jump to the exception handler address of 0x8001_b400

in the next clock cycle and start servicing the SPI controller request.

8. After decoding the PICSTAT value to figure out which ISR to jump to, the

c_risc_dut will then branch to the ISR of the respective interrupt source and

execute the ISR. For SPI, the starting address of its ISR is 0x8001_b68c.

9. For handling the transmitter buffer empty interrupt, the SPI controller will need

to be disabled. At the end, the SPICR holds the value of 8’b0100_0000 (0x40).

After the c_risc_dut successfully disables the SPI controller, the uospi_IRQ

from the SPI controller is also removed and no more interrupt request is

triggered from the SPI controller.

10. When the interrupt request is successfully handled, the PICSTAT value that

stores the I/O interrupt source information will be changed from 0x03 to 0x00

value.

11. After completing the SPI’s ISR, the c_risc_dut will branch to the address of

0x8001_b4bc and pop all the saved contents from stack before returning to the

user program. When the last instruction which is the eret instruction is being

executed (bicp0_eret = 1), it will load the saved return address value from

bcp0_epc (which is the CP0’s EPC register) to the bocp0_eret_addr for jumping

back to the user program in the next clock cycle.

12. Upon completing the last instruction in the exception handler program, the

c_risc_dut returns to the place where it was interrupted and starts to execute

from that address.

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
108

13. The bcp0_stat[1] (which is the CP0’s status register) is reset to 0 in order to

allow further exception from occurring whereas the bcp0_cause (which is the

CP0’s cause register) is cleared in order to remove the exception code stored in

it.

Stimulation Result of c_risc_client:

Figure 7.6.2.5: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator.

Figure 7.6.2.6: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator (cont’d).

Figure 7.6.2.7: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator (cont’d).

1
3

2

4

5

6 6

7

9

9

8

10

7

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
109

Figure 7.6.2.8: Stimulation result of c_risc_client for test case #2 using Vivado

stimulator (cont’d).

1. With the value of 0x08 being set in the PICMASK, the SPI I/O interrupt in

c_risc_client is enabled.

2. Initially, the TX_buffer16x8 of the SPI controller is empty. Upon activation, the

on-board SPI controller is configured to enable the transmitter buffer empty

interrupt (by setting SPISR[2] = 1) only. Thus, when the bit 6 (TXEF) of the

SPISR goes high, the SPI controller will initiate an interrupt request (IRQ) to

notify the CPU for service. As a result, the uospi_IRQ status flag goes high.

3. Whenever an I/O interrupt is detected, the PICSTAT of the c_risc_client will be

updated with a value corresponding to the IRQ source. The value for SPI’s IRQ

is 0x03. The exception handler will then compare this PICSTAT value to

identify which I/O to serve and which Interrupt Service Routine (ISR) to jump.

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocp0_exc_flag

and set to flush the IF/ID pipeline register.

5. The bcp0_stat[1] (which is the CP0’s status register) is set to 1 in order to

disable further exception from occurring whereas the bcp0_cause[6:2] (which

is the CP0’s cause register) remain unchanged because the exception code for

I/O interrupt is 0.

6. The CP0 will also load the bicp0_if_pc (which is the IF stage’s PC) into the

bcp0_epc (which is the CP0’s EPC register) for return purpose after executing

the exception handler program.

7. The c_risc_client will then jump to the exception handler address of

0x8001_b400 in the next clock cycle and start servicing the SPI controller

request.

8. After decoding the PICSTAT value to figure out which ISR to jump to, the

c_risc_client will then branch to the ISR of the respective interrupt source and

execute the ISR. For SPI, the starting address of its ISR is 0x8001_b68c.

11

12

13

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
110

9. For handling the transmitter buffer empty interrupt, the SPI controller will need

to be disabled. At the end, the SPICR holds the value of 8’b0100_0000 (0x40).

After the c_risc_client successfully disables the SPI controller, the uospi_IRQ

from the SPI controller is also removed and no more interrupt request is

triggered from the SPI controller.

10. When the interrupt request is successfully handled, the PICSTAT value that

stores the I/O interrupt source information will be changed from 0x03 to 0x00

value.

11. After completing the SPI’s ISR, the c_risc_client will branch to the address of

0x8001_b4bc and pop all the saved contents from stack before returning to the

user program. When the last instruction which is the eret instruction is being

executed (bicp0_eret = 1), it will load the saved return address value from

bcp0_epc (which is the CP0’s EPC register) to the bocp0_eret_addr for jumping

back to the user program in the next clock cycle.

12. Upon completing the last instruction in the exception handler program, the

c_risc_dut returns to the place where it was interrupted and starts to execute

from that address.

13. The bcp0_stat[1] (which is the CP0’s status register) is reset to 0 in order to

allow further exception from occurring whereas the bcp0_cause (which is the

CP0’s cause register) is cleared in order to remove the exception code stored in

it.

7.6.3 Test Case #3: Mode 0 Serial Data Communication

Figure 7.6.3.1: Stimulation result for test case #3 using Vivado stimulator.

1

2

3

4

5

6

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
111

1. Before the data exchange begins, the c_risc_dut has the data value of

8’b1010_1010 (0xaa) in its TX_buffer16x8.bFIFO_FIFOmem[0] whereas the

TX_buffer16x8.bFIFO_FIFOmem[0] of the c_risc_client holds the data value

of 8’b0101_0101 (0x55).

2. Same transfer mode, which is mode 0 has been set by both devices for

communication.

3. Initially, both of them have disabled the transmitter buffer empty interrupt and

enabled the received buffer full interrupt only (for test case #4).

4. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b1010_1010 (0xaa) can be successfully transmitted by the c_risc_dut via its

MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be

successfully transmitted by the c_risc_client via its MISO pin. Each of these

data bit is transmitted serially at one half clock cycle before the rising edge of

the SCLK clock.

5. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b0101_0101 (0x55) is stored into the

RX_buffer16x8.bFIFO_FIFOmem[0] of the c_risc_dut whereas the data value

of 8’b1010_1010 (0xaa) is stored into RX_buffer16x8.bFIFO_FIFOmem[0] of

the DUT_SLAVE.

6. Both of the devices generate an interrupt request upon completing the data

transaction (See test case #4).

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
112

7.6.4 Test Case #4: Receiver Buffer Full Interrupt Support

Stimulation Result of c_risc_dut:

Figure 7.6.4.1: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator.

Figure 7.6.4.2: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator

(cont’d).

Figure 7.6.4.3: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator

(cont’d).

2

2
1

3

4

5

6 6

7

8

9

10

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
113

Figure 7.6.4.4: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator

(cont’d).

1. Since the bit 4 (RXFM) of the SPISR is set to 0, it indicates that only 1-byte of

data is expected to be read by CPU.

2. The interrupt request is asserted when the bit 7 (RXDF) of the SPISR become

1 (indicates that the 1-byte of data has been completely received). At the end,

the SPISR holds the value of 8’b1100_1011 (0xcb).

4. When the SPI’s IRQ occurs, the CP0 hardware will raise the bocp0_exc_flag.

Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed

because the exception occurs at the branch delay slot.

6. Since the exception occurs at the branch delay slot, the CP0 loads the

bicp0_id_pc (which is the ID stage’s PC) into the bcp0_epc (which is the CP0’s

EPC register) for return purpose after executing the exception handler program.

9. In response to the receiver buffer full interrupt request, the c_risc_dut will

handle it by loading the received data into the $v1 register. After the c_risc_dut

successfully loads the data from the RX_buffer16x8 into the $v1 register, the

uospi_IRQ from the SPI controller is then removed and no more interrupt

request is triggered by the SPI controller. At the end, the $v1 will hold the

received 8-bit data whose value is 0x55.

For the remaining numbers, refer to the stimulation results part of the c_risc_dut in

test case 2.

11

13

12

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
114

Stimulation Result of c_risc_client:

Figure 7.6.4.5: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator.

Figure 7.6.4.6: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator (cont’d).

Figure 7.6.4.7: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator (cont’d).

7

2

1 2

3

4

6 6

5

8

9

10

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
115

Figure 7.6.4.8: Stimulation result of c_risc_client for test case #4 using Vivado

stimulator (cont’d).

1. Since the bit 4 (RXFM) of the SPISR is set to 0, it indicates that only 1-byte of

data is expected to be read by CPU.

2. The interrupt request is asserted when the bit 7 (RXDF) of the SPISR become

1 (indicates that the 1-byte of data has been completely received). At the end,

the SPISR holds the value of 8’b1100_1011 (0xcb).

4. When the SPI’s IRQ occurs, the CP0 hardware will raise the bocp0_exc_flag.

Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed

because the exception occurs at the branch delay slot.

6. Since the exception occurs at the branch delay slot, the CP0 loads the

bicp0_id_pc (which is the ID stage’s PC) into the bcp0_epc (which is the CP0’s

EPC register) for return purpose after executing the exception handler program.

9. In response to the receiver buffer full interrupt request, the c_risc_client will

handle it by loading the received data into the $v1 register. After the

c_risc_client successfully loads the data from the RX_buffer16x8 into the

$v1register, the uospi_IRQ from the SPI controller is then removed and no more

interrupt request is triggered by the SPI controller. At the end, the $v1 will hold

the received 8-bit data whose value is 0xaa.

For the remaining numbers, refer to the stimulation results part of the

c_risc_client in test case 2.

12

13

11

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
116

7.6.5 Test Case #5: Mode 1 Serial Data Communication

Figure 7.6.5.1: Stimulation result for test case #5 using Vivado stimulator.

1. Before the data exchange begins, the c_risc_dut has the data value of

8’b0101_0101 (0x55) in its TX_buffer16x8.bFIFO_FIFOmem[1] whereas the

TX_buffer16x8.bFIFO_FIFOmem[1] of the c_risc_client holds the data value

of 8’b1010_1010 (0xaa).

2. Same transfer mode, which is mode 1 has been set by both devices for

communication.

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b0101_0101 (0x55) can be successfully transmitted by the c_risc_dut via its

MOSI pin. Similarly, the data value of 8’b1010_1010 (0xaa) can also be

successfully transmitted by the c_risc_client via its MISO pin. Each of these

data bit is transmitted serially at the rising edge of the SCLK clock.

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b1010_1010 (0xaa) is stored into the

RX_buffer16x8.bFIFO_FIFOmem[1] of the c_risc_dut whereas the data value

of 8’b0101_0101 (0x55) is stored into RX_buffer16x8.bFIFO_FIFOmem[1] of

the DUT_SLAVE.

5. Both of the devices generate an interrupt request upon completing the data

transaction.

1

 2

3

4

5

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
117

7.6.6 Test Case #6: Mode 2 Serial Data Communication

Figure 7.6.6.1: Stimulation result for test case #6 using Vivado stimulator.

1. Before the data exchange begins, the c_risc_dut has the data value of

8’b1010_1010 (0xaa) in its TX_buffer16x8.bFIFO_FIFOmem[3] whereas the

TX_buffer16x8.bFIFO_FIFOmem[3] of the c_risc_client holds the data value

of 8’b0101_0101 (0x55).

2. Same transfer mode, which is mode 2 has been set by both devices for

communication.

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b1010_1010 (0xaa) can be successfully transmitted by the c_risc_dut via its

MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be

successfully transmitted by the c_risc_client via its MISO pin. Each of these

data bit is transmitted serially at one half clock cycle before the falling edge of

the SCLK clock.

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b0101_0101 (0x55) is stored into the

RX_buffer16x8.bFIFO_FIFOmem[3] of the c_risc_dut whereas the data value

of 8’b1010_1010 (0xaa) is stored into RX_buffer16x8.bFIFO_FIFOmem[3] of

the DUT_SLAVE.

5. Both of the devices generate an interrupt request upon completing the data

transaction.

1

2

3

4

5

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
118

7.6.7 Test Case #7: Mode 3 Serial Data Communication

Figure 7.6.7.1: Stimulation result for test case #7 using Vivado stimulator.

1. Before the data exchange begins, the c_risc_dut has the data value of

8’b0101_0101 (0x55) in its TX_buffer16x8.bFIFO_FIFOmem[2] whereas the

TX_buffer16x8.bFIFO_FIFOmem[2] of the c_risc_client holds the data value

of 8’b1010_1010 (0xaa).

2. Same transfer mode, which is mode 3 has been set by both devices for

communication.

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of

8’b0101_0101 (0x55) can be successfully transmitted by the c_risc_dut via its

MOSI pin. Similarly, the data value of 8’b1010_1010 (0xaa) can also be

successfully transmitted by the c_risc_client via its MISO pin. Each of these

data bit is transmitted serially at the falling edge of the SCLK clock.

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles.

The data value of 8’b1010_1010 (0xaa) is stored into the

RX_buffer16x8.bFIFO_FIFOmem[2] of the c_risc_dut whereas the data value

of 8’b0101_0101 (0x55) is stored into RX_buffer16x8.bFIFO_FIFOmem[2] of

the DUT_SLAVE.

5. Both of the devices generate an interrupt request upon completing the data

transaction.

1

2

3

4

5

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
119

7.6.8 Test Case #8: Mode Fault Error Interrupt Support

Figure 7.6.8.1: Stimulation result for test case #8 using Vivado stimulator.

Stimulation Result of c_risc_dut:

Figure 7.6.8.2: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator.

Figure 7.6.8.3: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator

(cont’d)

2

3

4

5

6 6

8

7

1

2

2

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
120

Figure 7.6.8.4: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator

(cont’d).

Figure 7.6.8.5: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator

(cont’d).

1. In this case, the c_risc_client is reconfigured to act as a master. Since there are

two master devices in the same connection, any attempt to pull the SS pin to

low will trigger the mode fault error.

2. The newly configured master device, namely c_risc_client attempts to initiate

the communication with the c_risc_dut by pulling the SS pin to low. Once the

mode fault error is successfully detected, the bit 5 (MODF) of the c_risc_dut’s

SPISR will be set to 1. An interrupt request corresponding to the mode fault

error detection is immediately issued by the SPI controller in order to alert the

c_risc_dut to take action.

4. When the SPI’s IRQ occurs, the CP0 hardware will raise the bocp0_exc_flag.

Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed

because the exception occurs at the branch delay slot.

6. Since the exception occurs at the branch delay slot, the CP0 loads the

bicp0_id_pc (which is the ID stage’s PC) into the bcp0_epc (which is the CP0’s

EPC register) for return purpose after executing the exception handler program.

9. In response to the mode fault error interrupt request, the c_risc_dut will handle

it by disabling the SPI controller. At the end, the SPICR holds the value of

8’b0111_0011 (0x73). After the c_risc_dut successfully disables the SPI

9

10

11

12

13

Chapter 7: Verification Specification and Stimulation Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
121

controller, the uospi_IRQ from the SPI controller is also removed and no more

interrupt request is triggered from the SPI controller.

For the remaining numbers, refer to the stimulation results part of the c_risc_dut

in test case 2.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
122

Chapter 8: Synthesis and Implementation

8.1 FPGA Resources Utilization of the Synthesized SPI Controller Unit

After the successful behavioral stimulation of the SPI controller unit, it is then ready

for logic synthesis and implementation. The FPGA development board used in this

project is the Xilinx Artix-7 XC7A100T FPGA chip on Digilent Nexys 4 DDR board.

The resources utilization information of the synthesized SPI controller unit on the

selected FPGA board is shown in below.

Figure 8.1.1: Resource utilization report of the synthesized SPI controller unit on the

Nexys 4 DDR (XC7A100T) board.

Figure 8.1.2: Resource utilization summary of the synthesized SPI controller unit on

the Nexys 4 DDR (XC7A100T) board.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
123

8.2 Timing Analysis

8.2.1 Timing Analysis of the On-board SPI Controller Unit

Since the SPI controller unit is operating at 10Mhz clock frequency, so it is important

to make sure that the largest data path delay within it must not exceed
1

10𝑀ℎ𝑧
= 100𝑛𝑠

clock period. In order to obtain its maximum data path delay, static timing analysis is

performed on the on-board SPI controller unit after it had been successfully

implemented on the selected FPGA board. During the timing analysis, a timing

constraint/requirement of 20ns clock period with 50% duty cycle is used because the

RISC32 pipeline processor is running at 50Mhz clock frequency. At the end, the

maximum data path delay found within the SPI controller unit is about 12.607ns, which

is below the 100ns clock period. This indicates that the designed SPI controller unit can

operate safely when the 10Mhz clock frequency is used in it. A timing report describing

the largest data path delay together with the source and destination of the path is

provided in below.

Figure 8.2.1.1: Timing report of the on-board SPI controller unit.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
124

Figure 8.2.1.2: Timing report of the on-board SPI controller unit (cont’d).

8.2.2 Timing Analysis of the RISC32 with the SPI Controller Unit

As mentioned previously, the RISC32 pipeline processor is currently running at 50Mhz

clock frequency. Thus, it is crucial to ensure that the RISC32 can still operating at the

same clock frequency even after the SPI controller unit has been integrated into it. To

check this, static timing analysis is conducted on the entire RISC32 to obtain the

maximum data path delay. Same period constraint of 20ns is applied here.

From Figure 8.2.2.1, the worst negative slack (WNS) is calculated to be 2.056ns (> 0)

which shows that it has spare time after meeting the timing requirement. WNS =

2.056ns indicates that it takes only approximate 17.944ns (20ns-2.056ns, where 20ns is

the time period of 1 clock cycle for 50Mhz clock frequency that is specified in the

constraints file) to complete the execution. Therefore, the maximum possible frequency

that can be used is
1

17.944𝑛𝑠
≈ 55𝑀ℎ𝑧. In other words, the RISC32 with the on-board

SPI controller unit can still run at 50Mhz in terms of implementation. This is further

supported with the result shown in Figure 8.2.2.2. As we can observe from Figure

8.2.2.2, the largest data path delay of the RISC32 is only about 17.731ns, which does

not exceed the 20ns clock period. In short, the integrated SPI controller unit has

minimum impact on the RISC32 pipeline processor in terms of timing requirement.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
125

Figure 8.2.2.1: Design timing summary of the entire RISC32 pipeline processor.

Figure 8.2.2.2: Top 10 paths in the RISC32 pipeline processor that have the largest total

data path delay.

8.3 Proposed Hardware Implementation

Only a few external components are required to build up the typical transceiver circuit

for wireless communication in this project and they are the antenna, bias resistors,

decoupling capacitors, inductors and reference crystal. The overview of the external

components used can be found in Appendix C.2 and C.3 respectively. Proper power

supply must be used for the error-free performance of the CC2420 transceiver. Thus, a

suggested power supply of 3.3 V is used as its voltage regulator power supply input in

the circuit. In addition, it is also connected directly to the RISC32 pipeline processor

via the SPI bus and several GPIO pins. The transceiver circuit is designed and followed

closely based on the reference circuit provided in its datasheet in order to obtain the

optimum performance of the Zigbee module. Figure 8.3.1. gives the full information

about how to interface the CC2420 transceiver with the RISC32 pipeline processor.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
126

In this project, there will be only one SPI master and one SPI slave in one node. At the

end, there will be two nodes used in this project because a single Zigbee module is

meaningless and a pair of Zigbee modules are always required in order to communicate

with each other wirelessly. In each node, the RISC32 pipeline processor acts as the SPI

master, providing the serial clock to initiate communication with the CC2420

transceiver that acts as the SPI slave. The Zigbee module is eventually monitored,

controlled and programmed by the RISC32 pipeline processor via the high-speed SPI

bus and the connected GPIO pins. The S25FL128S SPI serial flash memory is also

available in the connection for program storage purpose. Moreover, a simple active-

high LED circuit that consist of LED1, LED2, LED3 and LED4 is setup and driven by

the RISC32 pipeline processor for debugging purpose. Upon requested, data received

by the CC2420 module can be read by the RISC32 pipeline processor via the SPI bus.

After that, the data can be displayed on a PC by using the UART serial communication.

In order to do this, the RISC32 pipeline processor needs to be connected to the UART

interface of a PC that has the PuTTY software.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

127

RISC32 pipeline processor

GPIO[0](output)

uiorisc_spi_miso

uiorisc_spi_mosi

uiorisc_spi_sclk

GPIO[1](output)

GPIO[2](input)

GPIO[3](input)

GPIO[4](input)

GPIO[5](input)

GPIO[6](output)

uiospi_MISO

uiospi_MOSI

uiospi_SCLK

uspi
R1

R2 R3

Vcc

27pF 27pF

16Mhz

10uF

The C42 is required for

the stability of the voltage

regulator.

45kOhm

0.5pF

5.6pF

7.5nH

5.6nH
5.6pF

7.5nH

0.5pF An external pull-down resistor is used to set

a defined value to prevent the SI input from

floating.

An external crsytal with two loading

capacitors (C381 and C391) is used

for providing reference frequency

for synthesizer.

The bias resistor R451 is

used to set an accurate

bias current.

Discrete balun for

single-ended operation.

SPI serial

communication SPI master

SPI slave

An external pull-up resistor is used at SO to

prevent floating input at RISC32.

When mode 0 is set, an external pull-down

resistor is used to ensure a default logic state.

Figure 8.3.1: Detailed descriptions about the connection mechanism of the RISC32 pipeline processor with the CC2420 transceiver by

using only few external components.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

128

SI

SO

WPNeg

HOLDNeg

SCK

CSNeg

RSTNeg

s25fl128s

urisc_GPIO[31:8]

GPIO[0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

GPIO[1]

GPIO[2]

GPIO[3]

GPIO[4]

GPIO[5]

GPIO[6]

uorisc_ua_tx_data

uirisc_ua_rx_data

uirisc_clk_100mhz

uirisc_rst

uiorisc_fc_MOSI

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

uorisc_fc_sclk

uorisc_fc_ss

crisc
Clock Oscillator

VREG_EN

SO

SI

SCLK

CSn

FIFO

FIFOP

CCA

SFD

RESETn

CC2420

100Mhz clock

frequency

c_risc_dut

SPI_flash_dut

Only the pins that are

connected directly to the

RISC32 are shown here.

See Figure 8.3.1 for

connection details.

Zigbee coordinator

(receiver)

GPIO[7]

330Ohm

GPIO[8]

GPIO[9]

330Ohm

330Ohm

GPIO[10]

330Ohm

LED1

LED2

LED3

LED4

SPI serial

communication
Wireless

communicationAntenna

For debugging purpose

Figure 8.3.2: Connection mechanism of the c_risc_dut with the CC2420 transceiver for wireless communication.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR

129

SI

SO

WPNeg

HOLDNeg

SCK

CSNeg

RSTNeg

s25fl128s

urisc_GPIO[31:8]

GPIO[0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

GPIO[1]

GPIO[2]

GPIO[3]

GPIO[4]

GPIO[5]

GPIO[6]

uorisc_ua_tx_data

uirisc_ua_rx_data

uirisc_clk_100mhz

uirisc_rst

uiorisc_fc_MOSI

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

uorisc_fc_sclk

uorisc_fc_ss

crisc
Clock Oscillator

VREG_EN

SO

SI

SCLK

CSn

FIFO

FIFOP

CCA

SFD

RESETn

CC2420

GPIO[7]

330Ohm

GPIO[8]

GPIO[9]

330Ohm

330Ohm

GPIO[10]

330Ohm

LED1

LED2

LED3

LED4

100Mhz clock

frequency

c_risc_client

SPI_flash_client

Only the pins that are

connected directly to the

RISC32 are shown here.

See Figure 8.3.1 for

connection details.

Zigbee end device

(transmitter)

SPI serial

communication

Wireless

communication

Antenna

For debugging purpose

Figure 8.3.3: Connection mechanism of the c_risc_client with the CC2420 transceiver for wireless communication.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
130

8.4 Proposed Software Implementation

After setting up the necessary connections and circuits, the CC2420 transceiver is first

initialized by using the connected SPI bus and GPIO pins. By using SPI serial

communication, the RISC32 pipeline processor can send and read data from the

CC2420 transceiver simultaneously through the SPI interface.

First of all, activate the CC2420’s voltage regulator for 1.8V power supply and wait

around 1ms before proceeding to ensure the voltage regulator has powered up. Upon

activated, reset the CC2420 transceiver and then issue the SXOSCON command strobe

for activating its crystal oscillator. Once the crystal oscillator of the CC2420 transceiver

is running, all of its FIFO/RAM can be accessed. Finally, configure both CC2420

transceivers by programming their configuration registers and FIFO/RAM respectively.

As stated in the Zigbee protocol, in a network, one device needs to act as the coordinator

and the rest can be either routers or end devices. Therefore, one of the C2420 transceiver

is configured as the coordinator whereas the other is used as the end device. Point-to-

point network is used as both Zigbee modules will transmit and receive data wirelessly

from each other only. In order for data to transmit and receive from one CC2420

transceiver to another, they need to be properly configured on the same network and

using the same frequency channel. In this project, the PAN id is manually programmed

to be 1 and both Zigbee modules are set to operate in channel 12.

After completing the initialization, both CC2420 transceivers are ready to be used.

Besides configurating the C2420 transceiver, the RISC32 pipeline processor also

performs the frame-transfer operations. The processor of the Zigbee end device

transmits data frame serially to the Zigbee end device through the SPI bus. The Zigbee

end device will first check its CCA signal for congestion avoidance and do not transmit

unless the channel is clear. Once the CCA signal goes high, it will then transmit the

data wirelessly to the Zigbee coordinator and wait for acknowledgement.

On the other hand, the Zigbee coordinator continuously looks for any wireless radio

message sent to it. It will only receive the data frame if and only if the address

recognition is successful. After that, it will pass the received data frame serially to the

processor interfaced to it and automatically issue an acknowledgement of the data frame

back to the Zigbee end device, confirming the successful frame reception. Figure 8.4.1

depicts the expected wireless communication between both CC2420 transceivers. In

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
131

addition, Section 8.4.1 and 8.4.2 provide the full descriptions of the MIPS program for

c_risc_dut (interfaced with the Zigbee coordinator) and c_risc_client (interfaced with

the Zigbee end device) in terms of flowchart.

Zigbee end device Zigbee coordinator

When CCA = 0

Time Time

When CCA = 1

12 symbol periods = 192us

Successful address recognition

Figure 8.4.1: Expected wireless communication between the Zigbee end device and the

Zigbee coordinator in this project.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
132

8.4.1 Flowchart of the Hardware/Software Behaviors in c_risc_dut

A MIPS program for c_risc_dut in terms of hardware implementation has been

developed and the flowchart below provides the full information about the

hardware/software behaviors in c_risc_dut for on-board testing.

Start

Enable SPI controller s interrupt

Configure GPIO

Activate the CC2420's voltage
regulator for 1.8V power supply
inputs

Wait around 1ms until the
voltage regulator has powered
up

Reset the CC2420

Wait around 10ms

Turn on the 16MHz crystal
oscillator of the CC2420

Wait until the 16MHz crystal
oscillator is running

Configure MDMCTRL0 register
to enable automatic
transmission of acknowledge
frame

If register write
operation fails?

Yes No

If register write
operation fails?

Yes No

If register write
operation fails?

Yes No

Configure SECCTRL0 register to
disable RXFIFO protection since
the MAC level security is not
used to achieve the optimum
use of the CC2420's RX FIFO

Light up LED1 to indicate the
failure of register write
operation

Light up LED1 to indicate the
failure of register write
operation

Light up LED1 to indicate the
failure of register write
operation

B

B

B

Configure the RXCTRL1 register
to use the 3uA reference bias
current (Recommended setting)

Assign PAN id to 0x0001

If ram write
operation fails?

Yes No

Light up LED2 to indicate the
failure of ram write operation

B

Configure FSCTRL register to
operate in channel 12

If register write
operation fails?

Yes No

Light up LED1 to indicate the
failure of register write
operation

B

A

Figure 8.4.1.1: Flowchart of the hardware/software behaviors in c_risc_dut for on-

board testing.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
133

B

Turn off the crystal oscillator
and RF

Reset the CC2420

Wait around 10ms

De-activate the CC2420's
voltage regulator for 1.8V power
supply inputs

End

A

If ram write
operation fails?

Yes No

Assign short address to 0x5678

Light up LED2 to indicate the
failure of ram write operation

B Enable CC2420's
receive mode

Get the Start of Frame
Delimiter (SFD) signal to check
if the SFD field has been
completely received

If SFD == 0?
Yes No

If address recognition
failure occurs

Light up LED4 to indicate the
failure of address recognition

Yes No

Get the Start of Frame
Delimiter (SFD) signal to check
if the complete MPDU field
has been received or address
recognition has failed

If SFD == 1?
Yes No

Read from the RX FIFO of the
CC2420

Display the received data

Wait around 250us

Light up LED3 to indicate the
success of address recognition

Get the FIFOP signal to check if
address recognition has failed

Figure 8.4.1.2: Flowchart of the hardware/software behaviors in c_risc_dut for on-

board testing. (cont’d).

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
134

8.4.2 Flowchart of the Hardware/Software Behaviors in c_risc_client

A MIPS program for c_risc_client in terms of hardware implementation has been

developed and the flowchart below provides the full information about the hardware

and software behaviors in for on-board testing.

Start

Enable SPI controller s interrupt

Configure GPIO

Activate the CC2420's voltage
regulator for 1.8V power supply
inputs

Wait around 1ms until the
voltage regulator has powered
up

Reset the CC2420

Wait around 10ms

Turn on the 16MHz crystal
oscillator of the CC2420

Wait until the 16MHz crystal
oscillator is running

Configure MDMCTRL0 register
to enable automatic
transmission of acknowledge
frame

If register write
operation fails?

Yes No

If register write
operation fails?

Yes No

If register write
operation fails?

Yes No

Configure SECCTRL0 register to
disable RXFIFO protection since
the MAC level security is not
used to achieve the optimum
use of the CC2420's RX FIFO

Light up LED1 to indicate the
failure of register write
operation

Light up LED1 to indicate the
failure of register write
operation

Light up LED1 to indicate the
failure of register write
operation

B

B

B

Configure the RXCTRL1 register
to use the 3uA reference bias
current (Recommended setting)

Assign PAN id to 0x0001

If ram write
operation fails?

Yes No

Assign short address to 0x1234

Light up LED2 to indicate the
failure of ram write operation

B

Configure FSCTRL register to
operate in channel 12

If register write
operation fails?

Yes No

Light up LED1 to indicate the
failure of register write
operation

B

A

Figure 8.4.2.1: Flowchart of the hardware/software behaviors in c_risc_client for on-

board testing.

Chapter 8: Synthesis and Implementation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
135

Turn off the crystal oscillator
and RF

Reset the CC2420

Wait around 10ms

De-activate the CC2420's
voltage regulator for 1.8V power
supply inputs

End

Receive the correct
acknowledge frame?

Yes

Light up LED3 and LED4 to
indicate successful packet
transmission and reception of
the correct acknowledge
frame (successful)

No

Light up LED1, LED2 and LED3
to indicate complete
transmission but fail to receive
the correct acknowledge
frame (not successful)

Enable CC2420's
receive mode

If ram write
operation fails?

Yes No

Configure the data frame to be
transmitted and write the data
frame to the TX FIFO of the
CC2420

Light up LED2 to indicate the
failure of ram write operation

B

A

Perform packet transmission
when the respective channel is
available and not busy by
enabling CC2420's transmit
mode

If SFD == 0?
Yes No

Get the Start of Frame
Delimiter (SFD) signal to check
if the SFD field has been
completely transmitted

Get the Start of Frame
Delimiter (SFD) signal to check
if the complete MPDU field
has been transmitted

If SFD == 1?
Yes No

Light up LED3 to indicate
complete transmission

If CCA == 0

Get the Clear Channel
Assessment (CCA) signal for
collision avoidance

Yes No

Wait around 128us

Wait around 250ms

Read from the RX FIFO of the
CC2420

B

Figure 8.4.2.2: Flowchart of the hardware/software behaviors in c_risc_client for on-

board testing (cont’d).

Chapter 9: Conclusion and Future Work

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
136

Chapter 9: Conclusion and Future Work

9.1 Conclusion

The first two objectives of this project have been achieved. The previously developed

SPI controller unit has been revised and further enhanced. It can now perform full-

duplex data communication correctly with another SPI-interface device in all of the 4

transfer modes (mode 0, 1, 2, 3) in both master and slave operations. The micro-

architecture specification of the designed SPI controller unit and its internal blocks have

been presented and they can be found in Chapter 5. With the availability of well-

developed designed documents, the research works can now be done easier and speed

up significantly as a SPI controller that meet the standard SPI protocol can now be built

easily.

Besides, it has also been successfully integrated into the RISC32 pipeline processor by

using the I/O memory mapping technique. It can function well with the RISC32

pipeline processor and vice versa across the CDC boundaries regardless of interrupt or

polling method is being used. Chapter 6 provides the full information about the

Interrupt Service Routine (ISR) that is developed specifically for the SPI controller unit.

In addition, the designed SPI controller has been functionally proven and is able to meet

all of the specified functional requirements, either as a single unit or in a whole system.

A comprehensive documentation about the verification specifications, test plans, test

programs and testbenches of the SPI controller unit has been well-developed and

maintained. All of the stimulation results can be found in Chapter 7.

However, in response to the COVID-19 pandemic in the country, the university campus

is closed temporarily during the implementation of MCO. As a result, the third objective

of this project is only partially completed as the physical design (which is the on-board

testing with Zigbee module) cannot be completed due to the inaccessibility of the

required lab hardware resources and equipment. By using the Vivado Design Suite tools,

the RISC32 pipeline processor can be stimulated and synthesized into the Digilent

Nexys 4 DDR (XC7A100T) board. At the end, the designed SPI controller unit is fully

synthesizable and can operate safely at its 10Mhz I/O clock. Moreover, it has minimum

impact on the integrated RISC32 pipeline processor in terms of timing requirement.

The information about FPGA resource utilization and timing requirement are available

in Chapter 8.

Chapter 9: Conclusion and Future Work

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
137

9.2 Future Work

In future, the on-board testing with Zigbee module may need to be carried out. By using

the proposed solutions for hardware and software implementation presented in Chapter

8, a final testing can be performed easily for demonstrating the transfer of data between

two FPGA boards via the CC2420 transceivers.

Moreover, the designed SPI controller unit can also be further enhanced by having two

modes, namely normal mode and bidirectional mode so that it can communicate with

3-wire and 4-wire SPI devices in future. Four external pins will be used in the normal

mode to perform the full-duplex data communication whereas three external pins will

be used in the bidirectional mode for half-duplex data communication. This special

feature could allow the SPI-equipped processor to interface more flexibly with all types

of SPI devices in the market.

Bibliography

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
138

Bibliography

Anusha 2017, Basics of Serial Peripheral Interface (SPI). Available from:

<https://www.electronicshub.org/basics-serial-peripheral-interface-spi/>.

[Accessed on 10th March 2019].

Choudhury, S, Singh, GK, & Mehra, RM 2014, Design and Verification Serial

Peripheral Interface (SPI) Protocol for Low Power Applications. Available from:

<http://www.rroij.com/open-access/design-and-verification-serial-

peripheralinterface-spi-protocol-for-low-powerapplications.pdf >. [Accessed on

1st April 2019].

Cummings, CE 2002, Stimulation and Synthesis Techniques for Asynchronous FIFO

Design. <http://www.sunburst-

design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf>. [Accessed on 10th

March 2019].

Cummings, CE 2008, Clock Domain Crossing (CDC) Design & Verification Technique

Using System Verilog. <http://www.sunburst-

design.com/papers/CummingsSNUG2008Boston_CDC.pdf> [Accessed on 14th

March 2019].

Cummings, CE, & Alfke, P 2002, Stimulation and Synthesis Techniques for

Asynchronous FIFO Design with Asynchronous Pointer Comparisons.

<http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf>.

[Accessed on 10th March 2019].

CORELIS n.d., SPI Tutorial. Available from:

<https://www.corelis.com/education/tutorials/spi-tutorial/ >. [Accessed on 20th

February 2020].

Patterson, DA & Hennessy, JL 2005, Computer Organization and Design: The

Hardware/Software Interface (3th edition). San Francisco: Morgan Kaufmann

Pulishers.

De la Piedra, A, Braeken, A, & Touhafi, A 2012, ‘Sensor Systems Based on FPGAs

and Their Applications’, A Survey. Sensors.12(9), pp.12235-12264. Available

from: <https://doi.org/10.3390/s120912235>. [Accessed on 31st March 2019].

https://www.electronicshub.org/basics-serial-peripheral-interface-spi/
http://www.rroij.com/open-access/design-and-verification-serial-peripheralinterface-spi-protocol-for-low-powerapplications.pdf
http://www.rroij.com/open-access/design-and-verification-serial-peripheralinterface-spi-protocol-for-low-powerapplications.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO2.pdf
https://www.corelis.com/education/tutorials/spi-tutorial/
https://doi.org/10.3390/s120912235

Bibliography

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
139

Dhaker, P 2018, Introduction to SPI Interface. Available from

<https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-

interface.html>. [Accessed on 20th February 2020].

Elprocus n.d., Zigbee Wireless Technology Architecture and Applications. Available

from: <https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its

applications/>. [Accessed on 10 March 2019].

Goh, JS 2019, The development of an exception scheme for 5-stage pipeline RISC

processor. Available from

<http://eprints.utar.edu.my/3434/1/fyp_CT_2019_GJS_1503470.pdf>. [Accessed

on 1st January 2020].

Kiat, WP 2018, The Design of an FPGA-based Processor with Reconfigurable

Processor Execution Structure for Internet of Things (IoT) applications.

Available from: <http://eprints.utar.edu.my/3146/> [Accessed on 31st March

2019].

Leens, F 2009, ‘An introduction to I2C and SPI protocols’, IEEE Instrumentation

&Measurement Magazine, 12(1), pp.8-13. Available from:

<https://ieeexplore.ieee.org/document/4762946>. [Accessed on 31st March

2019].

Linda, R 2017, Zigbee. Available from:

<https://internetofthingsagenda.techtarget.com/definition/ZigBee>. [Accessed on

10th March 2019].

Kaneria, D 2014, Serial Peripheral Interface (SPI). Available from:

<https://www.slideshare.net/DhavalKaneria/serial-peripheral-interfacespi>.

[Accessed on 20th February 2020].

Laner, M 2016, Memory Mapped I/O, Polling, DMA. Available from

<http://www.cim.mcgill.ca/~langer/273/20-notes.pdf >. [Accessed from 25th

March 2020].

Larson, S 2019, SPI 3-Wire master (VHDL). Available from

<https://www.digikey.com/eewiki/pages/viewpage.action?pageId=27754638#SPI

3-WireMaster(VHDL)-Clocking>. [Accessed form 20th February 2020].

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-applications/
https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-applications/
http://eprints.utar.edu.my/3434/1/fyp_CT_2019_GJS_1503470.pdf
http://eprints.utar.edu.my/3146/
https://ieeexplore.ieee.org/document/4762946
https://internetofthingsagenda.techtarget.com/definition/ZigBee
https://www.slideshare.net/DhavalKaneria/serial-peripheral-interfacespi
http://www.cim.mcgill.ca/~langer/273/20-notes.pdf
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=27754638#SPI3-WireMaster(VHDL)-Clocking
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=27754638#SPI3-WireMaster(VHDL)-Clocking

Bibliography

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
140

Mok, KM 2015, Digital Systems Designs, lecture notes distributed in Faculty of

Information and Communication Technology at Universiti Tunku Abdul

Rahman.

Mok, KM 2015, Computer Organization and Architecture, lecture notes distributed in

Faculty of Information and Communication Technology at Universiti Tunku

Abdul Rahman.

Motorola Inc. 2003, SPI Block Guide V03.06. Available from :

<http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manual

s/S12SPIV3.pdf>. [Accessed on 10th March 2019].

Oudhida, AK, Berrabdo, ML, Liacha, R, Tiar, K & Alhoumays, YN 2010, ‘Design

and Test of General-Purpose SPI Master/Slave IPs on OPB Bus’, 2010 7th

International Multi-Conference on Systems, Signals and Devices, pp. 1-6.

Available from: <https://ieeexplore.ieee.org/document/5585592 >. [Accessed on

3rd April 2019].

Polytechnic Hub 2017, Application of serial peripheral interface (SPI). Available

from: <https://www.polytechnichub.com/applications-serial-peripheral-interface-

spi/>. [Accessed on 1st April 2019].

Priya n.d., IoT Communication between two devices over Zigbee Protocol: IOT Part

37. Available from: <https://www.engineersgarage.com/Contribution/D2D-IoT-

Communication-Zigbee-Protocol>. [Accessed on 12th March 2019].

Sporre, K 2018, IoT Development with Wireless Communications: Getting Started.

Available from: <https://www.digi.com/blog/iot-development-and-wireless-

communication/>. [Accessed on 3rd April 2019].

Texas Instrument 2013, 2.4 GHz IEEE 802.15.4 / Zigbee-ready RF Transceiver.

Available from: <https://www.ti.com/lit/ds/symlink/cc2420.pdf>. [Accessed on

3rd April 2019]

Tuan, MC, Chen, SL, Lai, YK, Chen, CC, & Lee, HY 2017, A 3-wire SPI Protocol

Chip Design with Application-Specific Integrated Circuit (ASIC) and FPGA

Verification. Available from:

http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manuals/S12SPIV3.pdf
http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manuals/S12SPIV3.pdf
https://ieeexplore.ieee.org/document/5585592
https://www.polytechnichub.com/applications-serial-peripheral-interface-spi/
https://www.polytechnichub.com/applications-serial-peripheral-interface-spi/
https://www.engineersgarage.com/Contribution/D2D-IoT-Communication-Zigbee-Protocol
https://www.engineersgarage.com/Contribution/D2D-IoT-Communication-Zigbee-Protocol
https://www.digi.com/blog/iot-development-and-wireless-communication/
https://www.digi.com/blog/iot-development-and-wireless-communication/
https://www.ti.com/lit/ds/symlink/cc2420.pdf

Bibliography

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
141

<https://avestia.com/EECSS2017_Proceedings/files/paper/EEE/EEE_110.pdf>.

[Accessed on 1st April 2019].

UKEssays 2018, Microprocessor Without Interlocked Pipeline Stages Computer

Science Essay. Available from: <https://www.ukessays.com/essays/computer-

science/microprocessor-without-interlocked-pipeline-stages-computer-science-

essay.php?vref=1>. [Accessed on 9th March 2019].

https://avestia.com/EECSS2017_Proceedings/files/paper/EEE/EEE_110.pdf
https://www.ukessays.com/essays/computer-science/microprocessor-without-interlocked-pipeline-stages-computer-science-essay.php?vref=1
https://www.ukessays.com/essays/computer-science/microprocessor-without-interlocked-pipeline-stages-computer-science-essay.php?vref=1
https://www.ukessays.com/essays/computer-science/microprocessor-without-interlocked-pipeline-stages-computer-science-essay.php?vref=1

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
A-1

Appendix A: Timing Diagram

A.1 Timing diagram of different SPI’s Transfer Modes

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)
sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: M = master, S = slave

Figure A.1.1: Timing diagram for mode 0 serial data communication.

Note: m = master, s = slave

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Figure A.1.2: Timing diagram for mode 1 serial data communication.

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: m = master, s = slave

Figure A.1.3: Timing diagram for mode 2 serial data communication.

SS_n

SCLK

MOSI(m)/MISO(s)

MOSI(s)/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: m = master, s = slave

Figure A.1.4: Timing diagram for mode 3 serial data communication.

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-1

Appendix B: Testbench

B.1 Testbench for SPI Controller Unit’s Functional Test

`default_nettype none//to catch typing errors due to misspelled of signal names

`ifdef MODEL_TECH

 `include "../util/macro.v"

`else

 `include "../../util/macro.v"

`endif

//`define WORD_NB 32 (defined in macro.v)

//`define BYTE_NB 8 (defined in macro.v)

module tb_uspi_v3

();

//Declarations of the connections to the DUT_MASTER outputs

wire tb_w_uiospi_MOSI;

wire tb_w_uiospi_MISO;

wire tb_w_uiospi_SCLK;

wire tb_w_uiospi_SS_n;

wire tb_w_uospi_IRQ_master;

wire [`WORD_NB - 1 : 0] tb_w_uospi_wb_r_dout_master;

wire tb_w_uospi_wb_w_ack_master;

wire tb_w_uospi_wb_r_ack_master;

//Declarations of the drivers to the DUT_MASTER inputs

reg tb_r_uispi_SPIE_master;

reg tb_r_uispi_pipe_stall_master;

reg [`BYTE_NB - 1 : 0] tb_r_uispi_wb_w_din_master;

reg [3:0] tb_r_uispi_wb_w_sel_master;

reg tb_r_uispi_wb_w_we_master;

reg tb_r_uispi_wb_w_stb_master;

reg [3:0] tb_r_uispi_wb_r_sel_master;

reg tb_r_uispi_wb_r_we_master;

reg tb_r_uispi_wb_r_stb_master;

//Declarations of the connections to the DUT_SLAVE outputs

wire tb_w_uospi_IRQ_slave;

wire [`WORD_NB - 1 : 0] tb_w_uospi_wb_r_dout_slave;

wire tb_w_uospi_wb_w_ack_slave;

wire tb_w_uospi_wb_r_ack_slave;

//Declarations of the drivers to the DUT_SLAVE inputs

reg tb_r_uispi_SPIE_slave;

reg tb_r_uispi_pipe_stall_slave;

reg [`BYTE_NB - 1 : 0] tb_r_uispi_wb_w_din_slave;

reg [3:0] tb_r_uispi_wb_w_sel_slave;

reg tb_r_uispi_wb_w_we_slave;

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-2

reg tb_r_uispi_wb_w_stb_slave;

reg [3:0] tb_r_uispi_wb_r_sel_slave;

reg tb_r_uispi_wb_r_we_slave;

reg tb_r_uispi_wb_r_stb_slave;

//Declaration of the drivers to the sys and rst of both modules

reg tb_r_sys_clk;

reg tb_r_sys_rst;

//Module instantiation

uspi_v2

DUT_MASTER

(.uiospi_MOSI(tb_w_uiospi_MOSI),

 .uiospi_MISO(tb_w_uiospi_MISO),

 .uiospi_SCLK(tb_w_uiospi_SCLK),

 .uiospi_SS_n(tb_w_uiospi_SS_n),

 .uospi_IRQ(tb_w_uospi_IRQ_master),

 .uospi_wb_r_dout(tb_w_uospi_wb_r_dout_master),

 .uospi_wb_w_ack(tb_w_uospi_wb_w_ack_master),

 .uospi_wb_r_ack(tb_w_uospi_wb_r_ack_master),

 .uispi_SPIE(tb_r_uispi_SPIE_master),

 .uispi_pipe_stall(tb_r_uispi_pipe_stall_master),

 .uispi_wb_w_din(tb_r_uispi_wb_w_din_master),

 .uispi_wb_w_sel(tb_r_uispi_wb_w_sel_master),

 .uispi_wb_w_we(tb_r_uispi_wb_w_we_master),

 .uispi_wb_w_stb(tb_r_uispi_wb_w_stb_master),

 .uispi_wb_r_sel(tb_r_uispi_wb_r_sel_master),

 .uispi_wb_r_we(tb_r_uispi_wb_r_we_master),

 .uispi_wb_r_stb(tb_r_uispi_wb_r_stb_master),

 .uispi_wb_clk(tb_r_sys_clk),

 .uispi_wb_rst(tb_r_sys_rst));

uspi_v2

DUT_SLAVE

(.uiospi_MOSI(tb_w_uiospi_MOSI),

 .uiospi_MISO(tb_w_uiospi_MISO),

 .uiospi_SCLK(tb_w_uiospi_SCLK),

 .uiospi_SS_n(tb_w_uiospi_SS_n),

 .uospi_IRQ(tb_w_uospi_IRQ_slave),

 .uospi_wb_r_dout(tb_w_uospi_wb_r_dout_slave),

 .uospi_wb_w_ack(tb_w_uospi_wb_w_ack_slave),

 .uospi_wb_r_ack(tb_w_uospi_wb_r_ack_slave),

 .uispi_SPIE(tb_r_uispi_SPIE_slave),

 .uispi_pipe_stall(tb_r_uispi_pipe_stall_slave),

 .uispi_wb_w_din(tb_r_uispi_wb_w_din_slave),

 .uispi_wb_w_sel(tb_r_uispi_wb_w_sel_slave),

 .uispi_wb_w_we(tb_r_uispi_wb_w_we_slave),

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-3

 .uispi_wb_w_stb(tb_r_uispi_wb_w_stb_slave),

 .uispi_wb_r_sel(tb_r_uispi_wb_r_sel_slave),

 .uispi_wb_r_we(tb_r_uispi_wb_r_we_slave),

 .uispi_wb_r_stb(tb_r_uispi_wb_r_stb_slave),

 .uispi_wb_clk(tb_r_sys_clk),

 .uispi_wb_rst(tb_r_sys_rst));

//Clock waveform generation for DUT_MASTER

initial tb_r_sys_clk <= 1'b1;

always #10 tb_r_sys_clk = ~tb_r_sys_clk;

//Test pattern generation

initial begin

 //Sim time = 0

 //Signals initialization for DUT_MASTER

 tb_r_uispi_SPIE_master <= 1'b1;//enable global interrupt

 tb_r_uispi_pipe_stall_master <= 1'b0;//do not stall the master

 tb_r_uispi_wb_w_stb_master <= 1'b0;//disable the write access on master

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_r_stb_master <= 1'b0;//disable the read access on master

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 //Signals initialization for DUT_SLAVE

 tb_r_uispi_SPIE_slave <= 1'b1;//enable global interrupt

 tb_r_uispi_pipe_stall_slave <= 1'b0;//do not stall the slave

 tb_r_uispi_wb_w_stb_slave <= 1'b0;//disable the write access on slave

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 tb_r_uispi_wb_r_stb_slave <= 1'b0;//disable the read access on slave

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

//##

//Test case 1: System reset

 repeat(5)@(posedge tb_r_sys_clk) tb_r_sys_rst <= 1'b0;

 repeat(5)@(posedge tb_r_sys_clk) tb_r_sys_rst <= 1'b1;

 repeat(10)@(posedge tb_r_sys_clk) tb_r_sys_rst <= 1'b0;

//##

//Test case 2: Write operation on SPISR

 tb_r_uispi_wb_w_stb_master <= 1'b1;//enable the write access on master

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on SPI master

 tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable write operation on SPISR

 tb_r_uispi_wb_w_din_master <= 8'b0000_1111;//8'h0F

 tb_r_uispi_wb_w_stb_slave <= 1'b1;//enable write access on slave

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable write operation on SPISR

 tb_r_uispi_wb_w_din_slave <= 8'b0000_1111;//8'h0F

 @(posedge tb_r_sys_clk);

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-4

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 repeat(5)@(posedge tb_r_sys_clk);

 //##

//Test case 3: Write operation on SPICR

 //Mode 0 is selected

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1100_0000;//8'hC0

 //Mode 0 is selected

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1000_0000;//8'h80

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_stb_master <= 1'b1;//enable the read access on master

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_stb_slave <= 1'b1;//enable the read access on slave

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

//##

//Test case 4: Transmitter buffer empty interrupt support

 repeat(20)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

//##

//Test case 5: Push one 8-bit data into the bFIFO_FIFOreg of the TX_buffer16x8

 //Load data 8'b1010_1010 into the TX_buffer16x8 of the DUT_MASTER (master)

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_master <= 8'b1010_1010;//8'hAA

 //Load data 8'b0101_0101 into the TX_buffer16x8 of the DUT_SLAVE (slave)

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;//8'h55

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-5

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b0010;//read SPISR content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation slave

 tb_r_uispi_wb_r_sel_slave <= 4'b0010;//read SPISR content

 repeat(20)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on master

//##

//Test case 6: Mode 0 serial data communication

 //Load data 8'b1010_1010 into bFIFO TX_buffer16x8 of the DUT_MASTER

(master)

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_master <= 8'b1010_1010;//8'hAA

 //Load data 8'b0101_0101 into bFIFO TX_buffer16x8 of the DUT_SLAVE (slave)

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;//8'h55

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 repeat(100)@(posedge tb_r_sys_clk);

//##

//Test case 7: Received buffer full interrupt support after receiving a 1-byte data

//(RXFM = 0)

 repeat(15)@(posedge tb_r_sys_clk);

//##

//Test case 8: Pop 1-byte of received data from the RX_buffer16x8

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//pop 1-byte of data from the

 //RX_buffer16x8

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//pop 1-byte of data from the RX_buffer16x8

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-6

 repeat(5)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

//##

//Test case 9: Received buffer full interrupt support after receiving 16 x 1-byte data

//(RXFM = 1)

 //Configure the SPICR first to de-activate/stop the data communication

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b0100_0000;//8'h40

 //Configure the SPICR first to de-activate/stop the data communication

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b0000_0000;//8'h00

 @(posedge tb_r_sys_clk);

 //Configure the SPISR

 tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable the write operation on SPISR

 tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR

 tb_r_uispi_wb_w_din_master <= 8'b0001_1111;//8'h1F

 tb_r_uispi_wb_w_din_slave <= 8'b0001_1111;//8'h1F

 //Load 16x1-byte data into bFIFO TX_buffer16x8 of the DUT_MASTER (master) for

 //serial 1-byte data transmission

 //to another SPI device (slave)

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_din_master <= 8'b1010_1010;//8'hAA

 tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;//8'h55

 tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on

TX_buffer16x8

 repeat(16) begin

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_din_master <= ~tb_r_uispi_wb_w_din_master;

 tb_r_uispi_wb_w_din_slave <= ~tb_r_uispi_wb_w_din_slave;

 end

 @(posedge tb_r_sys_clk);

 //Configure the SPICR again to activate the master and the slave

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1100_0000;//8'hC0

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1000_0000;//8'h80

 @(posedge tb_r_sys_clk);

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-7

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave begins

 //transmit 16x1-byte of data

 //receive 16x1-byte of data

 repeat(1640)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_master <= 8'b1001_1010;//8'h9A

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write the operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_slave <= 8'b1010_1001;//8'hA9

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 repeat(20)@(posedge tb_r_sys_clk);

//##

//Test case 10: Pop 16 number of 1-byte data from the RX_buffer16x8

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

 repeat(18)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

//##

//Test case 11: Mode 1 serial data communication

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 //Configure the SPICR first to de-activate/stop the data communication

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on master

 tb_r_uispi_wb_w_din_master <= 8'b0101_0000;//8'h50

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on slave

 tb_r_uispi_wb_w_din_slave <= 8'b0001_0000;//8'h10

 @(posedge tb_r_sys_clk);

 //Configure the SPISR

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-8

 tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable the write operation on SPISR

 tb_r_uispi_wb_w_din_master <= 8'b0000_1111;

 tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR

 tb_r_uispi_wb_w_din_slave <= 8'b0000_1111;

 //Load 16x1-byte data into bFIFO TX_buffer16x8 of the DUT_MASTER (master)

 // for serial 1-byte data transmission

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_master <= 8'b1010_1010;

 tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on

 //TX_buffer16x8

 tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;

 repeat(16) begin

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_din_master <= ~tb_r_uispi_wb_w_din_master;

 tb_r_uispi_wb_w_din_slave <= ~tb_r_uispi_wb_w_din_slave;

 end

 @(posedge tb_r_sys_clk);

 //Configure the SPICR again to activate the master and slave

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1101_0000;

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1001_0000;

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave begins

 //transmit 1-byte of data

 //receive 1-byte of data

 repeat(140)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

//##

//Test case 12: Mode 2 serial data communication

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1110_0000;

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1010_0000;

 repeat(20)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave are happening

 //transmit 1-byte of data

 //receive 1-byte of data

 repeat(100)@(posedge tb_r_sys_clk);

//##

//Test case 13: Mode 3 serial data communication

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1111_0000;

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1011_0000;

 //Pop 1-byte of data from the RX_buffer16x8

 repeat(20)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave are happening

 //transmit 1-byte of data

 //receive 1-byte of data

 repeat(110)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

//##

 //Test case 14: Selectable transmission speed (baud rate)

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1111_0001;

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1011_0001;

 //Pop 1-byte of data from the RX_buffer16x8

 repeat(20)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the write operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the write operation on master

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave are happening

 //transmit 1-byte of data

 //receive 1-byte of data

 repeat(220)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master

 tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1111_0010;

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1011_0010;

 //Pop 1-byte of data from the RX_buffer16x8

 repeat(30)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave are happening

 //transmit 1-byte of data

 //receive 1-byte of data

 repeat(450)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b1;//de-activate the read enable signal

 tb_r_uispi_wb_r_we_slave <= 1'b1;//de-activate the read enable signal

 tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 //To disable the transmit buffer empty and received buffer full interrupt

 tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable the write operation on SPISR

 tb_r_uispi_wb_w_din_master <= 8'b0000_0011;

 tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR

 tb_r_uispi_wb_w_din_slave <= 8'b0000_0011;

 repeat(5)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_master <= 8'b1111_0011;

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1011_0011;

 // Pop 1-byte of data from the RX_buffer16x8

 repeat(30)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master

 tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-9

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 //data communication between the master and the slave are happening

 //transmit 1-byte of data

 //receive 1-byte of data

 repeat(660)@(posedge tb_r_sys_clk);

 @(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master

 tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave

 tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content

 repeat(15)@(posedge tb_r_sys_clk);

 //##

 //Test case 15: Mode fault error interrupt

 //Mode fault error occurs when more than one master are trying to drive the shared

 //line

 //Firstly, reconfigure the slave device to act as a master

 tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave

 tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR

 tb_r_uispi_wb_w_din_slave <= 8'b1111_0011;

 repeat(10)@(posedge tb_r_sys_clk);

 tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on the newly

 //configured master

 tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read the RX_buffer16x8 content

 repeat(120)@(posedge tb_r_sys_clk);

 //Give output some time to settle down

 repeat(120)@(posedge tb_r_sys_clk);

 //To stop stimulation

 $stop;

end

endmodule

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-10

B.2 Testbench for SPI Controller Unit’s Integration Test with RISC32

`timescale 1ns / 1ps

`default_nettype none

`define demo005_SPI 1

`ifdef demo005_SPI

`define TEST_CODE_PATH_DUT "demo005_SPI_mem_03program.txt"

`define EXC_HANDLER_DUT "new_exc_handler_dut_2.txt"

`define TEST_CODE_PATH_CLIENT

"demo101_pending_for_int_mem_03program.txt"

`define EXC_HANDLER_CLIENT "new_exc_handler_dut_2.txt"

`endif

module tb_r32_pipeline();

reg tb_u_clk;

reg tb_u_rst;

wire tb_u_spi_mosi;

wire tb_u_spi_miso;

wire tb_u_spi_sclk;

wire tb_u_spi_ss_n;

wire tb_u_fc_sclk_dut;

wire tb_u_fc_ss_dut;

wire tb_u_fc_MOSI_dut;

wire tb_u_fc_MISO1_dut;

wire tb_u_fc_MISO2_dut;

wire tb_u_fc_MISO3_dut;

wire tb_ua_tx_rx_dut;

wire tb_ua_RTS_dut, tb_ua_CTS_dut;

wire [31:0] tb_u_GPIO_dut;

wire tb_u_fc_sclk_client;

wire tb_u_fc_ss_client;

wire tb_u_fc_MOSI_client;

wire tb_u_fc_MISO1_client;

wire tb_u_fc_MISO2_client;

wire tb_u_fc_MISO3_client;

wire tb_ua_tx_rx_client;

wire tb_ua_RTS_client, tb_ua_CTS_client;

wire [31:0] tb_u_GPIO_client;

//*********** INSTANTIATION *************

crisc c_risc_dut(

//======= INPUT =======

//GPIO

.urisc_GPIO(tb_u_GPIO_dut),

//SPI controller

.uiorisc_spi_mosi(tb_u_spi_mosi),

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-11

.uiorisc_spi_miso(tb_u_spi_miso),

.uiorisc_spi_sclk(tb_u_spi_sclk),

.uiorisc_spi_ss_n(tb_u_spi_ss_n),

//UART controller

.uorisc_ua_tx_data(tb_ua_tx_rx_dut),

.uirisc_ua_rx_data(tb_ua_tx_rx_client),

//FLASH controller

.uorisc_fc_sclk(tb_u_fc_sclk_dut),

.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),

.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),

.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),

.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),

.uorisc_fc_ss(tb_u_fc_ss_dut),

// System signal

.uirisc_clk_100mhz(tb_u_clk),

.uirisc_rst(tb_u_rst));

s25fl128s SPI_flash_dut(

.SI(tb_u_fc_MOSI_dut), //IO0

.SO(tb_u_fc_MISO1_dut), //IO1

.SCK(tb_u_fc_sclk_dut),

.CSNeg(tb_u_fc_ss_dut),

.RSTNeg(tb_u_rst),

.WPNeg(tb_u_fc_MISO2_dut), //IO2

.HOLDNeg(tb_u_fc_MISO3_dut));

crisc c_risc_client(

//======= INPUT =======

//GPIO

.urisc_GPIO(tb_u_GPIO_client),

//SPI controller

.uiorisc_spi_mosi(tb_u_spi_mosi),

.uiorisc_spi_miso(tb_u_spi_miso),

.uiorisc_spi_sclk(tb_u_spi_sclk),

.uiorisc_spi_ss_n(tb_u_spi_ss_n),

//UART controller

.uorisc_ua_tx_data(tb_ua_tx_rx_client),

.uirisc_ua_rx_data(tb_ua_tx_rx_dut),

//FLASH controller

.uorisc_fc_sclk(tb_u_fc_sclk_client),

.uiorisc_fc_MOSI(tb_u_fc_MOSI_client),

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
B-12

.uirisc_fc_MISO1(tb_u_fc_MISO1_client),

.uirisc_fc_MISO2(tb_u_fc_MISO2_client),

.uirisc_fc_MISO3(tb_u_fc_MISO3_client),

.uorisc_fc_ss(tb_u_fc_ss_client),

// System signal

.uirisc_clk_100mhz(tb_u_clk),

.uirisc_rst(tb_u_rst));

s25fl128s SPI_flash_client(

.SI(tb_u_fc_MOSI_client), //IO0

.SO(tb_u_fc_MISO1_client), //IO1

.SCK(tb_u_fc_sclk_client),

.CSNeg(tb_u_fc_ss_client),

.RSTNeg(tb_u_rst),

.WPNeg(tb_u_fc_MISO2_client), //IO2

.HOLDNeg(tb_u_fc_MISO3_client));

assign tb_ua_CTS_dut = tb_ua_RTS_client;

assign tb_ua_CTS_client = tb_ua_RTS_dut;

//**********************Clock************************

initial tb_u_clk = 1'b1;

always #5 tb_u_clk =~ tb_u_clk;

initial begin

$readmemh(`EXC_HANDLER_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

$readmemh(`TEST_CODE_PATH_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

$readmemh(`EXC_HANDLER_DUT, tb_r32_pipeline.SPI_flash_dut.Mem);

$readmemh(`TEST_CODE_PATH_DUT, tb_r32_pipeline.SPI_flash_dut.Mem);

tb_u_rst = 1'b1;

repeat(1)@(posedge tb_u_clk);

tb_u_rst = 1'b0;

repeat(30000)@(posedge tb_u_clk);

tb_u_rst = 1'b1;

repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk);

end

endmodule

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
C-1

Appendix C: CC2420

C.1 Pin Assignment of the CC2420

Figure C.1.1: Top view of the CC2420 pinout

Figure C.1.2: Pin description of the CC2420.

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
C-2

Figure C.1.3: Pin description of the CC2420 (cont’d).

Note: The exposed die attach pad must be connected to a solid ground plane as this

is the main ground connection for the chip.

Appendix

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
C-3

C.2 Overview of the External Components Used with the CC2420

Figure C.2.1: Description of the external components used with the CC2420.

C.3 List of Materials for the Application Circuits

Figure C.3.1: List of materials for the application circuit.

Poster

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
D-1

Poster

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-1

Plagiarism Check Result

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-2

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-3

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-4

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-5

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-6

Plagiarism Check Result

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
E-7

 FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

Yong Min An

ID Number(s)

16ACB01733

Programme / Course Bachelor of Information Technology (Honours) Computer Engineering

Title of Final Year Project Design and Implementation of a SPI Controller for Zigbee Module

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 7 %

Similarity by source
Internet Sources: 6 %
Publications: 3 %
Student Papers: 0 %

 Overall similarity is within range.

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: _______MOK KAI MING ____

 Name: __________________________

Date: ________24/4/2020___________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Checklist

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
F-1

Checklist

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB01733

Student Name Yong Min An

Supervisor Name Mok Kai Ming

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Front Cover

√ Signed Report Status Declaration Form

√ Title Page

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

 List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of
literature review

√ Appendices (if applicable)

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and
confirmed all the items listed in the
table are included in my report.

__YONG MIN AN__________
(Signature of Student)
Date: 24/4/2020

Supervisor verification. Report with
incorrect format can get 5 mark (1
grade) reduction.

(Signature of Supervisor)
Date: 24/4/2020

