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ABSTRACT 

 

This project is about the 4-wire Serial Peripheral Interface (SPI) controller unit design 

and implementation for academic purpose. The development of this project will begin 

with the design of the SPI controller unit. The RTL design flow will be used throughout 

the project development and the micro-architectural level design will be focused more 

as the SPI controller to be designed is in the unit level. The internal blocks of the SPI 

controller unit will be modeled by using Verilog HDL before they are integrated into 

unit level. The specifications of the SPI controller unit and its internal block will be 

functionally verified by writing testbenches in Verilog HDL.  

After the SPI controller unit has been functionally verified, it will be integrated into the 

existing RISC32 pipelined processor developed in UTAR. This involves the 

development of the interface between the SPI controller and the RISC32 based on I/O 

memory mapping technique. Moving on, an Interrupt Service Routine (ISR) will be 

specifically developed and implemented on the RISC32 for handling the data received 

by the SPI controller. A MIPS test program will also be written to test the correctness 

of the ISR functionalities. 

Lastly, it will be synthesized on the Field Programmable Gate Array (FPGA) 

technology and further interfaced with CC2420 RF transceiver in this project for 

wireless data communication. The CC2420 will be configured as the slave device 

whereas the SPI controller unit will be used as the master device. Data communication 

between the SPI controller unit in the RISC32 pipelined processor and the CC2420 RF 

transceiver is performed via a simple 4-wire SPI compatible interface (MOSI, MISO, 

SCLK and SS pin). In short, a piece of software, stimulation result and hardware are 

expected to be delivered at the end of the project. 
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Chapter 1: Introduction 

1.1 Background Information 

An overview of the project fields that matter is provided in the following sections to 

help identify and understand some facts or knowledge related to this project. 

 

1.1.1 MIPS 

MIPS is the abbreviation of Microprocessor without Interlocked Pipeline Stages. It is a 

Reduced Instruction Set Computer (RISC) architecture developed by MIPS 

Technologies (UKEssays, 2018). As opposed to the complex instruction set and large 

number of addressing modes used in Complex Instruction Set Computer (CISC) 

architecture, it uses simplified instruction sets and few addressing modes. As a result, 

the hardware becomes less complex, faster, easier to build and test. However, it 

executes the instruction in one cycle at the cost of increasing the number of instructions 

used per program. To improve the throughput and reduce the average execution time 

per instruction, it overlaps multiple instructions in a pipeline fashion as shown in Figure 

1.1.1.1. On the other hand, MIPS architecture, after years of development, now supports 

64-bit addressing and operation as well as high performance floating point which made 

it popular in the embedded systems implementation such as routers, residential 

gateways and video game consoles. 

 

Figure 1.1.1.1: Conventional pipeline execution representation 

 

1.1.2 Bus 

In a computer system, a bus is a transmission path that interconnects various 

components such as Central Processing Unit (CPU), Direct Memory Access (DMA) 
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controller, memory, I/O devices and so on. Typically, there are three types of buses that 

carry information from place to place in the computer system. These buses include: 

• address bus that carries a unique address information to a given device in order 

to be recognized by the CPU. 

• data bus which gets data from or sends data to the device 

• control bus which provides read or write signal to the device to indicate whether 

the CPU is asking for information or sending it information. 

 

Figure 1.1.2.1: An overview of various type of buses in the computer system 

 

1.1.3 SPI 

Serial Peripheral Interface (SPI) is one of the communication protocols that provides a 

fast-synchronous serial communication between microcontroller and peripherals or 

between multiple microcontrollers with on-board peripherals (Anusha, 2017). It was 

developed with the intention to replace parallel interface so that the routing of the 

parallel bus around PCB can be avoided as well as to provide high speed data transfer 

between devices (Choudhury et al., 2014). Motorola Inc. was the first company that 

developed SPI to connect its first 68000 based microcontroller unit to other peripherals 

in the late 1970 (Choudhury et al., 2014). It has been later adopted by others in the 

industry and become a popular communication protocol due to its simplicity of 

interfacing and its full duplex characteristics for data communication (Choudhury et.al., 

2014). Over the years, SPI has been used in many kinds of applications and it is suitable 

for those applications that involve the transfer of data streams. For instance, it has been 

used to communicate with a variety of peripherals such as sensors, analog-to-digital 

converter (ADC), digital-to-analog converter (DAC), UART, USB, EEPROM and so 

on (Polytechnic Hub, 2017). 
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1.1.4 Zigbee 

Zigbee is a standard wireless technology that has been developed for low-cost, low-

power consumption wireless machine-to-machine (M2M) and Internet of Things (IoT) 

network (Linda, 2017). Since the Zigbee do not have any built-in microcontroller or 

processor, so they cannot manage the received or sent data (Priya, n.d.). In other words, 

they can simply transfer the information that they receive only (Priya, n.d.). However, 

they can be interfaced with other microcontrollers or processors such as Arduino, 

Raspberry Pi or PC via serial interface in order to manage the received or sent data 

(Priya, n.d.).  

Furthermore, it works on the IEEE 802.15.4 specification and its WPANS can operate 

on 868 MHz, 900 MHz and 2.4 GHz frequencies (Linda, 2017). The IEEE 802.15.4 

defines the physical and Media Access Control (MAC) layers for handling the devices 

at low rate (Elprocus, n.d.). The major applications of the Zigbee technology focus on 

sensor and automatic control area such as industrial automation, home automation, 

remote control and monitoring systems (Elprocus, n.d.). Because of the advantages of 

the Zigbee technology like low cost, low power consumption, and its topologies, it is 

therefore more suitable to be used for those applications mentioned above when 

compared to Bluetooth, Wi-Fi, and other short-range communication technologies 

(Elprocus, n.d.). 

 

1.2 Motivation 

A 32-bit RISC pipeline microprocessor has been developed in the Faculty of 

Information and Communication Technology (FICT) of Universiti Tunku Abdul 

Rahman (UTAR) by using Verilog Hardware Description Language (HDL). The 

project is based on the Reduced Instruction Set Computing (RISC) architecture. The 

motivations to initiate the project are due to the following reasons: 

• Microprocessors have been designed by Microchip design companies as their 

Intellectual Property (IP) for commercial purposes. Generally, these 

microprocessor IP encompasses information about the complete design process, 

which includes the modeling, the verification and also the physical design of an 

integrated circuit. These IPs are qualified as the trade secrets of a company in 
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which they are protected by its holder. So, they are definitely not available in 

the market at a user-friendly price or without cost for research purposes. 

• Several freely available microprocessor cores could be found over the Internet 

and majority of them are available at OpenCores. However, the MIPS 

Instruction Set Architecture (ISA) is not implemented entirely on those 

processors and they often lack of well-developed documentation. Because of 

these issues, it makes them not suitable for reuse and customization. 

• The verification specifications for a freely available RISC microprocessor core 

are usually incomplete and not well constructed. The lack of well-developed 

verification specification can cause the subsequent verification process of a 

RISC microprocessor core to be slow-going. Eventually, it might slow down 

the overall design process. 

• The physical design phase of these microprocessor cores will also be inevitably 

affected due to the lack of good verification specifications. In order for the 

physical design phase to be carried out smoothly, a design needs to be first 

functionally verified. This is in light of the fact that the physical design process 

will have to be repeated whenever the front-end design needs to change. 

The RISC32 project that has been initiated in UTAR aims to deliver solutions to all of 

the issues mentioned above by creating a 32-bit RISC core-based development 

environment for assisting the research works in the area of soft-core as well as the 

application specific hardware modeling. Up to date, the RISC32 project that was 

initiated in UTAR has completed the CPU designs that supports basic instructions 

similar to MIPS instructions. The system control coprocessor that is the Coprocessor 0 

(CP0) is also available to interface with I/O devices and handle interrupts.  

With the completion of the RISC32 project, a RF transceiver module which is the 

Zigbee module will then be added to extend the research into cognitive radio area which 

requires modification to the I/O controllers and firmware of the RISC32 microprocessor. 

In this RISC32 project, several units based on the MIPS architecture have been divided. 

This project is one of those units for making wireless communication across the 

network possible in the RISC32 processor. With the available microarchitecture design 
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developed in the UTAR FICT, we can easily gain the software or firmware flexibility 

advantage without having to rely and wait for third party community to develop for us.  

 

1.3 Problem Statement 

As mentioned earlier, the MIPS ISA compatible pipeline processor which includes the 

Central Processing Unit (CPU), Coprocessor 0 (CP0), basic memory, flash controller, 

UART controller, SPI controller, GPIO controller and so on has been developed and 

functionally verified. However, the existing SPI controller architecture and its Interrupt 

Service Routine (ISR) are not fully workable after integrating it into the RISC32 

pipeline processor. So, the previously developed SPI controller architecture and its ISR 

need to be revised. Further design work on the SPI controller unit needs to be continued 

in order for it to function normally with the processor. On top of that, there is also a 

lack of comprehensive documentation of the SPI controller unit such as verification 

specification, verification methodology, testbench and so on. The lack of well-

developed verification specifications of the SPI controller unit can have the direct effect 

on the physical design phase because a design needs to be verified for its complete 

functionalities so that the subsequent physical design process can be carried out 

smoothly and easily. Otherwise, the physical design process would have to be carried 

out repeatedly whenever the front-end design is required to change because of the 

serious functionality failure. 

 

1.4 Project Scope 

The project scope will mainly focus on designing and integrating the SPI controller unit 

into the existing RISC32 pipeline processor. The specifications of the SPI controller 

unit and its internal block will be functionally verified by developing testbenches. 

In addition, an Interrupt Service Routine (ISR) for handling all the interrupt requests 

generated by the SPI controller will be developed and then integrated into the existing 

exception handler of the RISC32 pipeline processor. Some MIPS test programs will 

also be written to test the SPI controller’s functions after integration as well as to verify 

the correctness of the ISR execution. 
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Moving on, the developed SPI controller unit will be synthesized on the Field 

Programmable Gate Array (FPGA) technology and further interfaced with the Zigbee 

module which is the CC2420 RF transceiver in this project for wireless data 

communication.  

Lastly, a comprehensive documentation on this project will be developed and 

maintained. In short, a piece of software, stimulation result and hardware are expected 

to be delivered at the end of the project. 

 

1.5 Project Objectives 

The objectives of this project are: 

• To develop a SPI controller. This involves the micro-architecture modelling and 

verification of the SPI controller using Verilog language. 

• To integrate the SPI controller into the RISC32. This involves the development 

of the interface between the SPI controller and the RISC32 based on I/O 

memory mapping technique. An Interrupt Service Routine (ISR) specifically for 

the SPI controller unit will also be developed in MIPS assembly language and 

integrated into the exception handler. 

• On-board testing with Zigbee module. This involves the synthesis of the 

RISC32 onto an FPGA board. A Zigbee module will be connected to the SPI 

controller ports for final testing to demonstrate the transfer of data between two 

FPGA boards via the Zigbee modules. 

 

1.6 Impact, Significance, and Contribution 

After this project is done, it can provide a complete RISC microprocessor core-based 

development environment and proper interfacing system for connecting the SPI 

controller unit to the microprocessor as well as the Zigbee module. The development 

environment attributes to the availability of the following: 

• A well-developed design documentation of the chip specification, the 

architecture specification as well as the micro-architecture specification. 

• A fully functional interfacing system between the CPU and the SPI controller 

unit in the form of synthesis-ready RTL that is written in Verilog. 
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• A proper verification specification of the SPI controller unit. The verification 

specification contains the suitable verification methodology, verification 

techniques, test plan, testbench architecture and so on. 

• A complete physical design in FPGA technology with documented timing and 

resources usage information.  

This project can contribute to develop an environment that mentioned above by 

providing support to the hardware modeling research work. By having well-developed 

basic RISC RTL model, the verification environment, as well as the design documents, 

researchers will be able to develop their own research specific RTL models as part of 

the MIPS environment and can quickly verify the models to obtain results. As a result, 

the research works could be done more easily and rapidly. 

 

1.7 Report Organization 

This report consists of 9 chapters and the details of the project are shown in the 

following chapters.  

In Chapter 1, some background information that matters is given, followed by the 

motivation of this project, the problem statement, project scope and objective in order 

to help readers to understand some facts or knowledge related to this project. 

In Chapter 2, a literature review on two types of SPI protocols, the design of various 

type of SPI controller unit, and memory-mapped I/O technique has been highlighted 

and compared. 

In Chapter 3, the methodologies and general work procedure for modeling, verifying, 

and synthesizing the SPI controller unit has been discussed. Moreover, it also discusses 

about the appropriate design tools that can help automate the design work, the 

technologies involved, the implementation issues and challenges, as well as the timeline 

of this project. 

In Chapter 4, it discusses about the system overview of the RISC32 pipeline processor 

that will be used. The architecture, memory map, chip interface, and pin description of 

the processor used are stated in detail in Chapter 4. 
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In Chapter 5, it shows the full information about the micro-architecture specification of 

the designed SPI controller unit. It also gives an overview about each of the internal 

block in the SPI controller unit in terms of their functionality, block interface, pin 

description, and so on. 

In Chapter 6, the exception handler of the RISC32 pipeline processor is briefly 

discussed, followed by the explanation of the Interrupt Service Routine (ISR) 

developed for the SPI controller unit. 

In Chapter 7, it discusses about how the designed SPI controller unit is functionally 

verified, both as a single unit and in a whole system. All of the related verification 

specifications, test plans, testbenches, test programs, and stimulation results can be 

found in Chapter 7. 

In Chapter 8, it analyses the synthesized SPI controller unit in terms of FPGA resource 

utilization and timing requirement. In addition, the solution for hardware and software 

implementation to achieve data transfer between two FPGA boards via the Zigbee 

modules is also proposed here. 

In chapter 9, it concludes the overall project development, highlighting what have been 

achieved in the project. Furthermore, the future work that can be made to this project is 

also discussed here. 
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Chapter 2: Literature Review 

2.1 Overview of 4-wire SPI Protocol 

2.1.1 Detailed Pin Description in 4-wire SPI Protocol 

The standard 4-wire SPI consists of 4 external pins, typically called Master Out Serial 

In (MOSI), Master In Serial Out (MISO), Serial Clock (SCLK), and Slave Select (SS). 

A detailed functional description of each pin is provided in Table 2.1.1.1. 

Pin Name 

(Typical) 

Pin Type Functional Description 

SCLK Input 

Output 

• It is used to output a clock signal generated by 

master to all the slave(s). 

• It is used for synchronizing the data transfer taking 

place across different devices. 

• It is only active during a data transfer and is tri-

stated at any other time. 

SS Input 

Output 

• It is an active low pin used by a master to select 

which slave.  

• Each slave has its own unique SS pin. 

• It must go low before a data transfer begins and must 

stay low during the process. Otherwise, the data 

transfer will be aborted. 

MOSI Input 

Output 

 

• It is a unidirectional pin used to transfer serial data 

from the master to the slave. 

• When a device is configured as a master, serial data 

is sent through this pin. 

• When a device is configured as a slave, serial data is 

received through this pin. 

• It is only active during a data transfer and is tri-

stated at any other time. 
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MISO Input 

Output 

• It is a unidirectional pin used to transfer serial data 

from the slave to the master. 

• When a device is configured as a slave and it is 

selected (the slave’s SS pin goes low), serial data is 

sent through this pin. 

• When a device is configured as a slave and it is not 

selected, the slave will drive this pin to high 

impedance. 

• When a device is configured as a master, serial data 

is received through this pin. 

• It is only active during a data transfer and is tri-

stated at any other time. 

Table 2.1.1.1: Functional descriptions of the standard 4-wire SPI’s external pins  

 

2.1.2 Transfer Modes in 4-wire SPI Protocol 

Normally, a SPI peripheral can support up to 4 transfer modes (mode 0, 1, 2, and 3) 

which provide great flexibility in communication between master and slave(s). These 

4 transfer modes have four different clocking configurations which is defined by a pair 

of parameters called Clock Polarity (CPOL) and Clock Phase (CPHA) (Anusha, 2017). 

The definition of the two parameters are given in Table 2.1.2.1. 

Parameter Value Functional Description 

Clock Polarity 

(CPOL) 

CPOL = 0 Active-low clock is selected. SCLK is high in idle state. 

CPOL = 1 Active-high clock is selected. SCLK is low in idle state. 

Clock Phase 

(CPHA) 

CPHA = 0 Data sampling occurs at odd edges (1, 3, 5, …,15) of the 

SCLK clock. 

CPHA = 1 Data sampling occurs at even edges (2, 4, 6, …, 16) of 

the SCLK clock. 

Table 2.1.2.1: Functional description of the Clock Polarity and Clock Phase parameters 

based on Motorola Inc.’s SPI Block Guide V03.06. 
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As shown in Table 2.1.2.2, each of the available modes has its own definition on the 

SCLK signal that determines what is the steady level (that is high or low) when the 

clock is not active as well as which SCLK edge is used for toggling the data and 

sampling the data (Leens, 2009, pp. 8-13). Therefore, in order for a communication to 

be possible, the master/slave pair must use the same set of parameters which include 

the SCLK frequency, CPOL and CPHA (Leens, 2009, pp. 8-13).  

Mode CPOL CPHA SCLK transmission edge SCLK 

sample edge 

SCLK 

idle stage 

0 0 0 One half clock cycle before the 

rising edge 

Rising edge Low 

1 0 1 Rising edge Falling edge Low 

2 1 0 One half clock cycle before the 

falling edge 

Falling edge High 

3 1 1 Falling edge Rising edge High 

Table 2.1.2.2: SPI transfer mode information based on Motorola Inc.’s SPI Block Guide 

V03.06. 

 

2.1.3 Timing Diagram in 4-wire SPI Protocol 

In any of the transfer mode, the SS signal must go low before a data transfer begins and 

must stay low during the process. Otherwise, the data transfer will be aborted. If the 4-

wire SPI device is set to operate in mode 0 (where CPOL = 0 and CPHA = 0), then it 

will transmit data (master → MOSI → slave, slave → MISO → master, simultaneously) 

one-half cycle before the rising edge and sample data on rising edge of the SCLK signal. 

Commonly, it is the mode 0 that is used for SPI bus communication (CORELIS, n.d.). 

Refer to Figure 2.1.3.1 to see the timing diagram for mode 0 serial data communication. 

SS_n

SCLK

MOSI(m)/MISO(s ) 

MOSI(s )/MISO(m) 
sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: M = master, S = slave
 

Figure 2.1.3.1: Timing diagram for mode 0 serial data communication in the 4-wire SPI 

protocol. 
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On the other hand, if the 4-wire SPI device is set to operate in mode 1 (where CPOL = 

0 and CPHA = 1), then it will transmit data (master → MOSI → slave, slave → MISO 

→ master, simultaneously) on rising edge and sample data on falling edge of the SCLK 

signal. Refer to Figure 2.1.3.2 to see the timing diagram for mode 1 serial data 

communication. 

Note: m = master, s = slave  

SS_n

SCLK

MOSI(m)/MISO(s ) 

MOSI(s )/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 

Figure 2.1.3.2: Timing diagram for mode 1 serial data communication in the 4-wire SPI 

protocol. 

 

Apart from that, if the 4-wire SPI device is set to operate in mode 2 (where CPOL = 1 

and CPHA = 0), then it will transmit data (master → MOSI → slave, slave → MISO 

→ master, simultaneously) on one half clock cycle before the falling edge and sample 

data on falling edge of the SCLK signal. Refer to Figure 2.1.3.3 to see the timing 

diagram for mode 2 serial data communication. 

SS_n

SCLK

MOSI(m)/MISO(s ) 

MOSI(s )/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: m = master, s = slave   

Figure 2.1.3.3: Timing diagram for mode 2 serial data communication in the 4-wire SPI 

protocol. 

 

Lastly, if the 4-wire SPI device is set to operate in mode 3 (where CPOL = 1 and CPHA 

= 1), then it will transmit data (master → MOSI → slave, slave → MISO → master, 

simultaneously) on falling edge and sample data on rising edge of the SCLK signal. 

Refer to Figure 2.1.3.4 to see the timing diagram for mode 3 serial data communication. 
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SS_n

SCLK

MOSI(m)/MISO(s ) 

MOSI(s )/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: m = master, s = slave   

Figure 2.1.3.4: Timing diagram for mode 3 serial data communication in the 4-wire SPI 

protocol. 

 

2.1.4 Working Principal of 4-wire SPI Protocol  

The working of this 4-wire SPI is based on the contents of an eight-bit serial shift 

register in both of the master and the slave. In this SPI protocol, the master is always in 

control and initiate the communication. When the master wants to send data to a slave 

or request data from it, it will first select the particular slave by pulling the SS pin of 

the slave to low and it then activates the clock signal at a clock frequency that is usable 

by the master and the slave (Leens, 2009, pp. 8-13). In order for the communication to 

be possible, the master and slave must first agree on certain synchronization protocol. 

Meaning, they need to synchronize to the same clock and also operate in the same 

transfer mode (that is having the same set of CPOL and CPHA value) to ensure a valid 

data exchange. If multiple slaves are configured in different transfer modes, then the 

master will have to reconfigure itself whenever it wants to communicate with a different 

slave (Leens, 2009, pp. 8-13). Once they have set to follow the same synchronization 

protocol, the full-duplex data communication between the master and the slave can 

begin. 

As the clock pulses are generated, the master transfers the data stored in its shift register 

serially to the slave via the MOSI pin. Similarly, the data contained in the slave’s shift 

register is transferred back serially to the master’s shift register via the MISO pin. For 

this case, the contents of the two shift registers get exchanged once a total of eight 

pulses of clock signals are generated. At the end, the master will pull the SS pin of the 

slave to high to complete the data transaction. An overview of the block diagram 

connection between a master device and a slave device in the 4-wire SPI protocol is 

provided in Figure 2.1.4.1 for better understanding. 
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Figure 2.1.4.1: An overview of the block diagram connection between a master and a 

slave in the 4-wire SPI protocol. 

 

On the other hand, it is also a single-master communication protocol in which only one 

master can exist in the connection at a time to initiate all the communications with 

slaves (Anusha, 2017). If more than one master is trying to drive the MOSI and SCLK 

simultaneously (with any attempt to pull low the SS pin), a mode fault error will occur 

(Motorola Inc, 2013). 

Besides setting up to operate with a single master and a single slave (See Figure 2.1.4.1), 

SPI can also be set up with multiple slaves controlled by a single master. Commonly, 

there are two types of configuration used to connect multiple slaves to the master. They 

are independent slave configuration and Daisy-chain configuration. 

In independent slave configuration, a master can have (3+N)-wire serial interface where 

N is the total number of slaves connected to a single master on the bus. As indicated in 

Figure 2.1.4.2, a master needs to allocate an independent SS pin to each of its slave so 

that they can be addressed individually. In order to talk to a particular slave, the master 

needs to pull the desired slave’s SS pin to low and keep the rest of them high. The 

advantage of this configuration is that it allows the connection of SPI devices operating 

in different transfer modes and/or baud rate as it controls each of the slaves separately. 

However, as the number of slaves increases in the system, the number of the 

independent SS pin needed by the master also increases and the board layout of the 

system become more complicated (Dhaker, 2018). Therefore, this method is simple to 

implement only when there are very few slaves connected to a single master. 
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Figure 2.1.4.2: An overview of the block diagram connection between a single master 

device and multiple slave devices using independent slave configuration. 

 

In Daisy-chain configuration, a common SS pin of the master is shared among all the 

slaves. Only the first slave in the chain receives the input data directly from the master 

while the rest of the slaves in the chain receive their input data from the output pin of 

the preceding slave. In Figure 2.1.4.3, the data shifted out of the master is connected 

directly to the first slave, and then out of the first slave into the second, and so on until 

the last slave in the series. In order for this scheme to work successfully, each of the 

slave needs to synchronize to the same clock as well as operate in the same transfer 

mode. The advantage of using Daisy-chain configuration is that it helps to save the 

number of SS pin needed on the master device. However, the speed of data transfer will 

be reduced significantly as the number of slave devices increases 

 

Figure 2.1.4.3: An overview of the block diagram connection between a single master 

device and multiple slave devices using Daisy-chain configuration. 
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Additionally, SPI does not use any slave acknowledge mechanism in its communication 

protocol to confirm receipt of data as well as offers no flow control (Leens, 2009, pp. 

8-13). Furthermore, SPI neither specify any maximum data transfer rate (normally 

ranging up to several megabits per second) nor any addressing scheme in the protocol 

(Leens, 2009, pp. 8-13). 

The 4-wire SPI protocol defined by Motorola Inc. has become a popular communication 

protocol and widely de facto in the industry due to its simplicity in interfacing with at 

least 4 wires only for data communication purpose between electronic devices. In 

addition, it becomes the current practice because it provides a good support for 

communication with low-speed devices by having full duplex capability. Meaning, it 

can transmit and receive data simultaneously, therefore resulting in a good data transfer 

performance and high throughput speed of over 10Mb/s (Leens, 2009, pp. 8-13). 

However, according to Tuan et al. (2017), the silicon cost and power consumption of 

the 4-wire SPI are the major issues in VLSI technology, such as the package size of IC 

and the quality of pad even though numerous transmission wires for data 

communication have been simplified. 

 

2.2 Overview of 3-wire SPI Protocol 

2.2.1 Detailed Pin Description of 3-wire SPI Protocol 

Besides the standard 4-wire SPI implementation, SPI can also be designed to have 3 

external pins only, namely Serial Data Input Output (SDIO), Serial Clock (SCLK), and 

Slave Select (SS). The bidirectional MOSI and MISO serial pin are now combined to a 

single bidirectional serial pin called SDI/SDO. A detailed functional description of each 

pin is provided in Table 2.2.1.1. 

Pin Name 

(Typical) 

Pin Type Functional Description 

SCLK Input 

Output 

• It is used to output a clock signal generated by 

master to all the slave(s). 

• It is used for synchronizing the data transfer taking 

place across different devices. 
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• It is only active during a data transfer and is tri-

stated at any other time. 

SS Input 

Output 

• It is an active low pin used by a master to select 

which slave to initiate the communication with the 

master.  

• Each slave has its own unique SS pin. 

• When the SS pin of the slave goes low, the 

corresponding slave is selected. Otherwise, it is not 

selected. 

• It must go low before a data transfer begins and must 

stay low during the process. Otherwise, the data 

transfer will be aborted. 

SDIO Input 

Output 

• It is a unidirectional pin used to transfer serial data 

from the master to the slave and vice versa. 

• When a device is configured as a master, serial data 

is sent and receive through this pin. 

• When a device is configured as a slave and it is 

selected, serial data is sent and receive through this 

pin. 

• When a device is configured as a slave and it is not 

selected, the slave will drive this pin to high 

impedance. 

• It is only active during a data transfer and is tri-

stated at any other time. 

Table 2.2.1.1: Functional descriptions of the 3-wire SPI’s external pins  

 

2.2.2 Transfer Modes of 3-wire SPI Protocol 

The 3-wire SPI can also support up to 4 transfer modes (mode 0, 1, 2, and 3) in fulfilling 

different serial communication requirements of the connected peripherals. Similarly, 

the SPI transmission mode used can be defined by a pair of parameters called Clock 

Polarity (CPOL) and Clock Phase (CPHA) (Anusha, 2017). Refer to Table 2.1.2.1 to 

understand the definition of these two parameters. Apart from that, the 3-wire SPI also 
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applies the same SCLK definition on each of the available modes and the SPI transfer 

mode information can be found in Table 2.1.2.2. 

 

2.2.3 Timing Diagram of 3-wire SPI Protocol 

As mentioned earlier, the 3-wire SPI applies the same SCLK definition as what the 4-

wire SPI uses. Therefore, they are having the same transfer mode information. In any 

of the transfer mode, the SS signal must go low before a data transfer begins and must 

stay low during the process. Otherwise, the data transfer will be aborted. If the 3-wire 

SPI device is set to operate in mode 0 (where CPOL = 0 and CPHA = 0), then it will 

transmit data one-half cycle before the rising edge and sample data on rising edge of 

the SCLK signal. On the other hand, if mode 1 (where CPOL = 0 and CPHA = 1) is 

selected, then it will transmit data on rising edge and sample data on falling edge of the 

SCLK signal. Apart from that, if it is set to operate in mode 2 (where CPOL = 1 and 

CPHA = 0), then it will transmit data on one half clock cycle before the falling edge 

and sample data on falling edge of the SCLK signal. Lastly, if mode 3 (where CPOL = 

1 and CPHA = 1) is set, then it will transmit data on falling edge and sample data on 

rising edge of the SCLK signal. Refer to Figure 2.2.3.1 below to see the full timing 

diagram for serial data communication in all the transfer modes. 

Figure 2.2.3.1: Timing diagram for mode 0, 1, 2 and 3 serial data communication in the 

3-wire SPI protocol. 

 

2.2.4 Working Principal of 3-wire SPI Protocol 

The principle of the 3-wire SPI protocol is very similar to the 4-wire SPI protocol (Tuan 

et al, 2017). However, in 3-wire SPI protocol, there is only one serial bidirectional data 

line used for both input and output instead of having separate data input and data output 
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pin as shown in the 4-wire SPI type. And this has greatly affected the way SPIs 

communicate with each other. 

The working of this 3-wire SPI is based on the contents of an eight-bit serial shift 

register in both of the master and the slave. In this SPI protocol, the master initiates the 

communication by first pulling the SS pin of the particular slave to low and then driving 

the clock signal at a clock frequency that is usable by the master and the slave. Once 

they have set to follow the same synchronization protocol, a valid data communication 

between the master and the slave can then begin. 

As the clock pulses are generated, the master will first send a fixed-length command 

over the SDIO line. If it is a write command, then the master will continue to transmit 

the data stored in its shift register serially to the slave via the SDIO pin. If it is a read 

command, then the selected slave will transmit back the data contained in its shift 

register serially to the master’s shift register via the SDIO pin as well. At the end, the 

SS pin of the slave will be de-asserted by the master in order to complete the data 

transaction. An overview of the block diagram connection between a master device and 

a slave device in 3-wire SPI protocol is provided in Figure 2.2.4.1 for better 

understanding. 

SPI 

Master

SPI

Slave
SDIO

SS

SCLK

SDIO

SCLK

SS

 

Figure 2.2.4.1: An overview of the block diagram connection between a master device 

and a slave device in the 3-wire SPI protocol. 

 

Since it uses only one bidirectional pin for I/O, so it can minimize the silicon area and 

achieve cost-efficient (Tuan at.al, 2017). However, it can only achieve half-duplex 

transmission in which either data transmission or receiving can occur at one time. 

Consequently, it will result in a slower throughput speed and lower data transfer 

performance. 
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2.3 SPI Controller 

2.3.1 SPI Controller from Motorola Inc. 

Based on the Motorola Inc’s SPI specifications, version V03.06 that were revised on 

February 2003, the designs are the general-purpose solutions which offer viable ways 

to control SPI bus and highly flexible to suit any particular needs. The SPI controller 

designed by the Motorola Inc. has the following distinctive features: 

• Have 4-wire SPI interfaces 

• Have selectable serial clock frequency/baud rate 

• Have 4 transfer modes with programmable clock phase and clock polarity 

• Support master mode and slave mode 

• Have bidirectional mode 

• Have one double-buffered data register 

• Have SPIF interrupt flag, SPI transmit empty interrupt flag, mode fault error 

interrupt capability 

• Provide low power mode options 

The SPI controller developed by Motorola Inc. consists of 4 pins, namely MOSI, MISO, 

SCLK and SS pin and it can support up to 4 transmission modes (mode 0, 1, 2, and 3). 

An overview on the Motorola’s SPI controller architecture which contains the status 

register, control register, data register, shifter logic, baud rate generator, master/slave 

control logic and port control logic is given in Figure 2.3.1.1 below.  

 

Figure 2.3.1.1: An overview on the Motorola Inc's SPI controller. 
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This SPI controller provides low power mode options that include run mode, wait mode, 

and stop mode. In run mode, the SPI system is in an active state and it operates normally. 

In wait mode, the SPI operation is in a configurable low power mode, which can be 

controlled by the setting of the SPICR2 register. In stop mode, it is inactive in order to 

save the power consumption.  

Apart from that, the SPI controller designed by Motorola Inc. does not only have full-

duplex capability, but also support half-duplex serial data communication. As shown in 

Table 2.3.1.1, it can have two modes, namely normal mode and bidirectional mode for 

interfacing with external devices. In normal mode, the SPI controller utilizes all of its 

4 external pins to perform the full-duplex data communication that has been illustrated 

earlier. However, in bidirectional mode, only one serial data pin is used to interface 

with external devices. So, only half-duplex data communication is performed in this 

mode. When configured in bidirectional mode, the MOSI pin acts as the serial data I/O 

(MOMI) pin in master device whereas the MISO pin of the slave device becomes the 

serial data I/O pin (SISO) pin. The MISO pin in master mode and MOSI pin in slave 

mode are not used by the SPI controller in this bidirectional mode.  

When SPE = 1 Master Mode, MSTR = 1 Slave Mode, MSTR = 0 

Normal Mode 

SPC0 = 0 

  

Bidirectional 

Mode 

SPC0 = 1  
 

Table 2.3.1.1: Normal mode and bidirectional mode in Motorola Inc's SPI controller. 

 

Typically, full-duplex data communication is favorable over half-duplex one because 

half-duplex data communication often results in a slower throughput speed and lower 

data transfer performance. Although the SPI controller designed by the Motorola Inc. 

provides a great flexibility in interfacing with external devices by having two modes, it 

actually makes the design more complicated to implement if compared to the one with 

a single mode only.  
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From Figure 2.3.1.1, it is noticeable that only one 8-bit SPI data register is being shared 

in the design. Meaning, it can either be used as a SPI receiver data register for read or 

a SPI transmitter data register for write at a given time only. Whenever the data transfer 

has completed, a read operation on this SPI data register must be first performed to 

release the register before any write operation on it, thus making simultaneous reading 

and writing become impossible. Moreover, only one 8-bit data can be buffered 

temporarily in it after each data transfer. So, more CPU’s immediate attention may be 

required on it in order to release the register from time to time as it cannot hold large 

amount of data temporarily with the limited storage capability.  

 

2.3.2 SPI Controller Designed by Kiat Wei Pau 

The SPI controller developed by Kiat Wei Pau is a 4-wire SPI controller that contains 

all the MISO, MOSI, SCLK and SS pins in order to interface with external devices 

(Kiat, 2018). In short, it has the following features. 

• Have 4-wire SPI interfaces 

• Apply Wishbone interface connection 

• Have 16 selectable serial clock frequency/baud rate 

• Have 4 transfer mode with programmable clock phase and clock polarity 

• Support master mode only 

• Have separate transmitter and receiver data register 

• Have receiver buffer full, transmitter buffer empty, and mode fault error 

interrupt capability 

The discussed SPI controller consists of a clock generator block, input output control 

block, receiver block, and transmitter block. On top of that, 4 registers which include 

SPI Configuration Register (SPICR), SPI Status Register (SPISR), SPI Receiver Data 

Register (SPIRDR), and SPI Transmitter Data Register (SPITDR) are available for user 

to access whereas the 2 shift registers, namely Transmitter Shift Register (TSR) and 

Receiver Shift Register (RSR) are used for parallel-to-serial and serial-to-parallel data 

conversion respectively (Kiat, 2018). The internal connection of the SPI controller that 

has been developed is given in Figure 2.3.2.1. 
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Figure 2.3.2.1: An overview of the SPI controller designed by Kiat Wei Pau. 

 

When compared to the SPI controller from Motorola Inc., this SPI controller supports 

only full-duplex data communication between devices. The design is less complex and 

it uses lesser special-purpose registers for configuration and status monitoring. 

Moreover, it uses separate data registers to hold the data bytes, thus making 

simultaneous reading and writing become possible. To further illustrate on this point, 

the transmitter data register (SPITDR) is used to hold the data byte to be transmitted 

whereas the receiver data register (SPIRDRD) is used to store the received data byte 

from the other side. On top of that, it uses a 16 entries deep FIFO memory as the 

read/write buffer. So, by having larger data buffer capacity, less CPU’s immediate 

response will be needed and the CPU can focus on executing its core task. However, it 

can only operate correctly in master mode and it also does not provide any low power 

mode options for power saving.  

 

2.4 Memory-mapped I/O 

Memory-map I/O (MMIO) is one of the general methods for assembly language 

program to address an I/O device. It is the I/O scheme where portions of address space 

are allocated to I/O devices, and reads and writes to those addresses are interpreted as 

commands to the I/O device (Patterson & Hennessy, 2005). With MMIO. CPU views 
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an I/O device as a set of special-purpose registers. Table 2.4.1 discusses the three 

general types of the special-purpose registers used in MMIO. 

Register Type Description 

Status register • Used to provide status information about the I/O 

device. 

• Often can be read only. 

Configuration/Control 

register 

• Used to configure and control the I/O device. 

• Both readable and writable. 

Data register • Used to read data from or send data to the I/O device. 

• Both readable and writable. 

Table 2.4.1: Three general types of special-purpose registers used in MMIO. 

By using MMIO method, the addresses of the registers in each of the I/O devices are 

assigned in a dedicated portion of the kernel’s virtual address space. Each of the 

registers in the I/O controller must have a fixed and unique memory address within the 

mentioned address space in order for the CPU to access the specific register easily. 

The benefits of using MMIO is that it keeps the instructions set small by adhering the 

design principles of MIPS, that is keeping the hardware simple via regularity (Langer, 

2016). No new dedicated instructions are required in MMIO to simply read or write 

those special addresses because it allows the normal load and store instructions to be 

used for referencing, manipulating, and controlling both memory and I/O devices. The 

memory address that is being used will determine which type of device (memory or I/O 

device) to be accessed. 
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Chapter 3: Proposed Method/Approach 

3.1 Methodologies and General Work Procedures 

In the design process for digital system, there are 3 types of design methodologies 

available, namely top-down design methodology, bottom-up design methodology and 

mixed design methodology. In this project, the top-down design methodology will be 

used for designing and developing the SPI controller unit. In top-down design 

methodology, the top-level representation of a unit is first defined, followed by the 

lower-level representations based on several important criteria such as functionality, 

speed, silicon area and power consumption. 

 

3.1.1 RTL Design Flow 

The RTL design flow provided in Figure 3.1.1.1 below will be used throughout the 

project. In the RTL design flow, the micro-architectural level design will be focused 

more in this project because the SPI controller to be designed is in the unit level. A SPI 

controller that uses the 4-wire industry-standard SPI protocol will be designed for the 

Zigbee module in this project as it has better data transfer performance and higher 

throughput speed. 

 

Figure 3.1.1.1: The RTL design flow used for developing the SPI controller unit is 

provided. The arrows indicate process or work flow (not data flow). 

Micro-architecture 

Level Design 
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3.1.2 Micro-architecture Specification 

Micro-architecture specification will describe the internal design of the SPI controller 

unit. The internal design of the SPI controller unit will be described with detailed and 

design-specific technical information in order for RTL coding to begin. In this project, 

the unit level of the SPI controller will include the following information: 

• Functionality/feature description 

• Interfaces and I/O pin description 

• Functional partitioning into blocks and inter-blocks signaling 

- If the blocks are too complex to be coded, then further partition them 

into sub-blocks 

• Test plan (focus on functional test) 

Meanwhile, the block level of the SPI controller will have the following details: 

• Functionality/feature description 

• Interface and I/O pin description 

• Internal operation: function table, FSM, and etc. 

• Schematic and block diagram 

• Test plan (focus on functional test) 

 

3.1.3 RTL Modeling and Verification 

With the development of the micro-architecture specification, the RTL coding on the 

SPI controller can begin. After coding, the RTL models are verified for functional 

correctness at each level. To further illustrate on this point, each block (RTL model) 

are verified before they are integrated into unit level. During the development of the 

project, if the design of the SPI controller unit does not meet all of the specified 

functional requirements, then the design flow would need to be repeated. After all the 

RTL models have successfully met the specified functional requirements, then logic 

synthesis will be carried out on the targeted technology which is the FPGA technology 

in this project. 
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3.1.4 Logic Synthesis for FPGA 

After the SPI controller unit has been functionally verified, the model is said to be ready 

for logic synthesis. Logic synthesis is the process of converting RTL codes into an 

optimized gate level representation (a netlist). Based on the logic synthesis result, the 

gate level netlist is verified again for functional correctness. If it can successfully meet 

all the necessary specifications, the gate level netlist is now ready for physical design. 

However, if it cannot meet the required specifications, depending on the severity, 

corrections need to be made accordingly to the gate level netlist, the RTL models or the 

architecture.  

 

3.2 Design Tools 

Each stage of the design jobs requires the use of appropriate design tools to help 

automate the design work. Hence, there exist Electronic Design Automation (EDA) 

tools for design work at each particular level of abstraction. Since the RTL model of 

the SPI controller unit is designed by using Verilog hardware description language 

(HDL), thus a Verilog simulator is definitely needed to emulate the Verilog HDL. Some 

of the simulators are as shown in Table 3.2.1 below and several comparisons have been 

made among all of them. 

Simulator 
Incisive Enterprise 

Simulator 
ModelSim VCS 

Company 
 

  

Language 

Supported 

• VHDL-2002 

• V2001 

• SV2005 

• VHDL-2002 

• V2001 

• SV2005 

• VHDL-2002 

• V2001 

• SV2005 

Platform 

supported 
• Sun-solaris 

• Linux 

• Windows 

XP/Vista/7 

• Linux 

Linux 

Availability for 

free?  

 

(SE edition only)  

Table 3.2.1: Comparison among 3 different Verilog simulators 
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Based on the comparison above, it is clear that the ModelSim from Mentor Graphic is 

the best choice among others to be used as the design tool for this project as they offer 

a free license for Student Edition version. Even though there is certain degree of 

limitations on the ModelSim Student Edition version, it is adequate to be used for this 

project. In addition, it supports Microsoft Windows platform as well. Although the 

other two simulators can also offer great features for Verilog stimulation, the price are 

too expensive ($25,000 - $100,000) and certainly not affordable to be used in this 

project. 

As for the synthesis tools, there are a lot of logic synthesis tools targeting FPGA. Those 

logic synthesis tools include Quartus by Altera, Synplify by Synopsys, Vivado Design 

Suite by Xilinx, Encounter RTL Compiler by Cadence Design System, and so on. 

Among all the available logic synthesis tools, the Xilinx Vivado Design Suite is 

selected for this project as it is able to support the FPGA that we have in UTAR and it 

is already freely available in UTAR. 

 

3.2.1 ModelSim PE Student Edition 10.4a  

ModelSim from Mentor Graphic is the industry-leading simulation and debugging 

environment for HDL-based design in which its license can be obtained freely. The 

student version of the ModelSim is used for Verilog design stimulation instead of the 

full version because the features provided in the student edition are already adequate to 

be used for this project. Furthermore, both the Verilog and VHDL languages are 

supported by this ModelSim stimulator. This stimulator can also provide syntax error 

checking and waveform simulation which play an important part in developing the 

project. The timing diagrams and the waveforms are very useful in verifying the model 

functionalities after writing a program called testbench.  

 

3.2.2 Xilinx Vivado Design Suite 

Vivado Design Suite is a software suite designed by Xilinx. This software is designed 

for synthesis and analysis of HDL designs which enables developers to synthesize their 

designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction 

to different stimuli, and configure the target device with the programmer easily. On top 

of that, it is a good design environment for FPGA products from Xilinx but it cannot be 
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used with those FPGA products from other vendors. The FPGA products that are 

supported by Xilinx Vivado Design Suite include Spartan FPGA, Virtex FPGA, 

Coolrunner, XC9500 Series CPLD and so on.  

 

3.2.3 PCSpim 

PCSpim is the Window version of spim. It is a software stimulator that loads and 

executes assembly language program for the MIPS RISC architecture. Besides, it also 

provides a simple assembler, debugger and a simple set of operating services. Hence, it 

is used in this project for developing the MIPS test program in order to verify the 

functional correctness of the ISR. 

 

3.3 Technologies Involved 

3.3.1 Field Programmable Gate Array (FPGA) 

As mentioned earlier, the logic synthesis of the SPI controller unit will be eventually 

carried out on the FPGA technology. The FPGA technology is actually an integrated 

circuit (IC) that is programmable in the field after manufacture. FPGAs have been used 

widely by engineers in the design of specialized integrated circuits that can be later 

produced hard-wired in large qualities for distribution to computer manufacturers and 

end users. It is selected for prototype development in this project due to its benefits of 

cost efficiency, high flexibility and good scalability when compared to the other 

technologies. In this project, the FPGA development board used is the Xilinx Artix-7 

XC7A100T FPGA chip on Digilent Nexys 4 DDR board and it is shown in Figure 

3.3.1.1. 

 

Figure 3.3.1.1: The top view of the Nexys 4 DDR (XC7A100T) 
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3.3.2 Zigbee RF Transceiver 

Using the Zigbee communication system is less costly and simpler when compared to 

other short-range wireless sensor nodes like Bluetooth and Wi-Fi (Elprocus, n.d.). As 

presented in Figure 3.3.2.1, the Zigbee module used in this project would be the 

CC2420 transceiver product from the Texas Instruments company. The CC2420 

transceiver is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver that 

is designed for low power and low voltage wireless application (Texas Instrument, 

2013). It is a low-cost and highly integrated solution for robust wireless communication 

in the 2.4 GHz unlicensed ISM band. Besides, it has a digital direct sequence spread 

spectrum baseband modem that can provide a spreading gain of 9 dB and an effective 

data rate of 250 kbps (Texas Instrument, 2013).  Most importantly, the configuration 

interface and transmit/receive FIFOs of the CC2420 can be accessed via a 4-wire SPI 

interface with serial clock. Typically, only reference crystal and a minimized number 

of passives are needed for the operation of the CC2420. So, it can be used together with 

a microcontroller and very few external passive components.  

 

 

Figure 3.3.2.1: The top view of CC2420 from the Texas Instruments company. 

 

3.4 Implementation Issues and Challenges 

Multiple asynchronous clock domains have been employed in the RISC32 system. For 

instance, the designed SPI controller unit uses an I/O clock frequency of 10 MHz that 

is much slower than the 50 MHz CPU clock frequency for its internal operation. Since 

the clock signals of different clock domain are independent in general, passing signal 

and data safely from the fast clock domain into the slow clock domain can be a 

challenging task. This is on account of the fact that if the transition of the CDC signal 

happens too near to the active edge of the receiving clock, it may lead to setup or hold 

time violation of the flip flop, causing the output of this flip flop to be at an unknown 
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logic value for some duration of time. The undesired metastability problem is said to 

be occurred in the receiving system. Apart from that, a signal or data sending from the 

fast clock domain might change values twice or more times before it can be sampled 

by the receiving system that is running on a slower clock frequency. In short, serious 

design failures can happen due to the clock domain crossing error. Hence, proper 

synchronization is necessary when passing signals and data between clock domains and 

when receiving asynchronous inputs.  

 

3.5 Timeline 

3.5.1 Gantt Chart for Project 1 

 

Figure 3.5.1.1: Gantt chart for Project 1 

 

3.5.2 Gantt Chart for Project 2 

 

Figure 3.5.2.1: Gantt chart for Project 2 
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Chapter 4: System Specification 

4.1 System Overview of the RISC32 Pipeline Processor 

Since the selected CC2420 transceiver does not have any built-in microcontroller or 

processor with them, hence, it is proposed to interface the Zigbee module with the serial 

interface of the existing RISC32 pipeline processor which is the SPI in this project 

because of its convenience connection mechanism and full duplex capabilities. It is the 

RISC32 pipeline processor developed in the UTAR FICT that is being used because it 

can provide the software or firmware flexibility advantage for the SPI controller front-

end design (modeling and verification).  

 

4.1.1 RISC32 Pipeline Processor Architecture 

The developed RISC32 pipeline processor is a 32-bit pipeline processor that consists 

of 3 major components that include Central Processing Unit (CPU), memory system 

and I/O system (Kiat, 2018). The developed CPU is said to be compatible to the 5-stage 

32-bit MIPS Instruction Set Architecture (ISA) and it can support up to 49 instructions, 

covering arithmetic, logical, data transfer, program control, and system instruction 

classes. In addition, the memory system developed in this processor has a 2-level 

memory hierarchy with the first level consists of cache, Boot ROM as well as Data and 

Stack RAM whereas the second level contains a Flash memory. On the other hand, the 

I/O system of this processor contains GPIO controller, SPI controller, UART controller, 

Priority Interrupt controller and General-Purpose Register (GPR) unit. In addition, it 

also has a branch predictor that helps to improve the performance of the RISC32 

processor in running program in terms of the number of clock cycle spent. An 

architectural overview on the RISC32 pipeline processor that has been developed is 

shown in Figure 4.1.1.1. On the other hand, the detailed specification of the RISC32 

pipeline processor is also provided in Table 4.1.1.1.  

 



Chapter 4: System Specification 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
33 

D-CACHE

Memory arbiter Flash 
Controller

SPI 
Controller

UART 
Controller

GPIO
Controller

Sy
st

em
 B

u
s

Stack 
RAM

Data 
RAM

Priority 
interrupt 
controller

Flash 
Memory

I-CACHE

ZigBee EEPROM
LEDs, 

Sensors

CPU

 

Figure 4.1.1.1: An overview on the architecture of the RISC32 pipeline processor. 
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LUT 8266 

LUTRAM 315 

FF 5643 

BRAM 3.50 

IO 46 

BUFG 1 

Table 4.1.1.1: Specification of the RISC32 pipeline processor 

 

4.1.2 Functional View of the RISC32 Pipeline Processor 

The RISC32 pipeline processor that has been developed consists of 5 hardware stages 

which include Instruction Fetch (IF), Instruction Decode and Operand Fetch (ID), 

Execution (EX), Memory Access (MEM), and Write Back (WB) stages. Different 

hardware components are allocated in each of these pipeline stages. Therefore, every 
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instruction will need 5 clock cycles to run through all the 5 stages in order to complete 

its execution. Since the data hazard issue due to the Read-After-Write (RAW) data 

dependencies always exist in a pipeline processor, additional circuitries such as the 

forwarding and interlock block are built for solving the data hazards during the program 

execution (Kiat, 2018). The functional view of the 5-stage RISC32 pipeline processor 

is shown in Figure 4.1.2.1. 
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Figure 4.1.2.1: The functional view of the RISC32 pipeline processor. 

 

4.1.3 Memory Map of the RISC32 Pipeline Processor 

This RISC32 pipeline processor implements the MIPS memory space in two ways, that 

is by having virtual and physical addresses (Kiat, 2018). The virtual addresses are 

mainly used to access program instruction and data whereas the physical addresses are 

used to allocate physical memory such as Flash memory, Data and Stack RAM, boot 

ROM and I/O registers. The memory map used in the RISC32 pipeline processor is 

presented in Figure 4.1.3.1 and the purposes of various memory allocation are discussed 

in Table 4.1.3.1. 
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Figure 4.1.3.1: Memory map of the RISC32 pipeline processor. 

 

Memory Usage Description Memory Size 

I/O peripheral 

register 

Used as the memory-mapped registers for 

I/O peripheral controllers. 

512 bytes 

Boot code Used to store bootloader program code for 

initial system configuration when powered 

on. 

4k bytes 

Stack Used by procedure during execution to store 

register values. 

8k bytes 

Heap Used to hold variables declared dynamically. 

Exception handler Used to store the exception handler codes. 16k bytes 

User program code Used to store user program codes 128k bytes 

Table 4.1.3.1: Memory map description of the RISC32 pipeline processor. 

 

 



Chapter 4: System Specification 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
36 

4.2 Chip Interface of the RISC32 Pipeline Processor 

 

crisc

urisc_GPIO[31:0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

uorisc_ua_tx_data

uorisc_fc_sclk

uiorisc_fc_MOSI

uorisc_fc_ss

uirisc_clk_100mhz

uirisc_rst

uirisc_ua_rx_data

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

 

Figure 4.2.1: Chip interface of the RISC32 pipeline processor. 

 

4.3 Input Pin Description of the RISC32 Pipeline Processor 

Pin name: uirisc_clk_100mhz                       Pin class: Global                

Source → Destination: External → crisc 

Pin function: To provide a reference signal to synchronize all other signals in a 

system 

Pin name: uirisc_rst                                       Pin class: Global            

Source → Destination: External → crisc 

Pin function: To reset the whole MIPS ISA compatible pipeline processor 

Pin name: uirisc_ua_rx_data                         Pin class: Data 

Source → Destination: External device’s UART unit → crisc 

Pin function: UART standard pin – Receive Serial Data 

Pin name: uirisc_fc_MISO1                          Pin class: Data 

Source → Destination: Flash memory → crisc 

Pin function: SPI protocol serial input pin 

Pin name: uirisc_fc_MISO2                          Pin class: Data 

Source → Destination: Flash memory → crisc 

Pin function: SPI protocol serial input pin 

Pin name: uirisc_fc_MISO3                          Pin class: Data 

Source → Destination: Flash memory → crisc 

Pin function: SPI protocol serial input pin 

Table 4.3.1: Input pin description of the RISC32 pipeline processor. 
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4.4 Output Pin Description of the RISC32 Pipeline Processor 

Pin name: uorisc_ua_tx_data                         Pin class: Data             

Source → Destination: crisc → External device’s UART unit 

Pin function: UART standard pin – Transmit Serial Data 

Pin name: uorisc_fc_sclk                               Pin class: Data             

Source → Destination: crisc → Flash memory  

Pin function: SPI protocol Serial Clock signal 

Pin name: uorisc_fc_ss                                  Pin class: Control      

Source → Destination: crisc → Flash memory  

Pin function: SPI protocol Slave Select  

Table 4.4.1: Output pin description of the RISC32 pipeline processor. 

 

4.5 Input Output Pin Description of the RISC32 Pipeline Processor 

Pin name: urisc_GPIO[31:0]                         Pin class: Data 

Source → Destination: crisc ↔ External device (LEDs, switch, etc) 

Pin function: 32 GPIO pins 

Pin name: uiorisc_spi_mosi                           Pin class: Data 

Source → Destination: crisc ↔ External device’s SPI unit  

Pin function: SPI standard pin – Master out Serial In (MOSI) 

If the crisc is configured as a master, then uiorisc_spi_mosi will become an output, 

else otherwise. 

Pin name: uiorisc_spi_miso                           Pin class: Data 

Source → Destination: crisc ↔ External device’s SPI unit  

Pin function: SPI standard pin – Master In Serial Out (MISO) 

If the crisc is configured as a master, then uiorisc_spi_miso will become an input, 

else otherwise. 

Pin name: uiorisc_spi_sclk                            Pin class: Control 

Source → Destination: crisc ↔ External device’s SPI unit  

Pin function: SPI standard pin – SPI Serial Clock signal for data synchronization 

across devices. 

If the crisc is configured as a master, then uiorisc_spi_clk will become an output, else 

otherwise. 

Pin name: uiorisc_spi_ss_n                           Pin class: Control 

Source → Destination: crisc ↔ External device’s SPI unit  

Pin function: SPI standard pin – SPI Slave Select control signal.  

If the crisc is configured as a master, then uiorisc_spi_ss_n will become an output, 

else otherwise. 

Pin name: uiorisc_fc_MOSI                          Pin class: Data 

Source → Destination: crisc ↔ Flash memory 

Pin function: SPI protocol serial input output pin 

Table 4.5.1: Input output pin description of the RISC32 pipeline processor.
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Chapter 5: Micro-Architecture Specification 

5.1 SPI Controller Unit 

5.1.1 Functionality/Feature of the SPI Controller Unit 

The SPI controller is a controller unit that uses the 4-wire industry-standard SPI 

protocol to handle the data exchange between two SPI-interface devices. The details of 

the standard 4-wire SPI protocol have been fully discussed in Section 2.1. Currently, 

this SPI controller is mainly used to provide fast synchronous serial communication 

between a master device and a slave device. Additional address decoder will need to be 

added if it wants to communicate with multiple slaves in future. The designed SPI 

controller unit can transmit and receive 8-bit data simultaneously and correctly between 

the master device and the slave device in 4 different transfer modes as shown in 

Appendix A. This SPI controller can operate as a master or a slave device at a given 

time and Table 5.1.1.1 will describe the direction of the SPI standard pins (MOSI, 

MISO, SCLK, an SS pin) in each of the operation modes. 

SPI standard pin Master SPI Slave SPI 

MOSI Output Input 

MISO Input Output 

SCLK Output Input 

SS Output Input 

Table 5.1.1.1: Pin direction of the SPI standard pins when it is set as a master or slave 

device. 

 

In short, a summary of the designed SPI controller unit’s features is given in below. 

• Have easy configuration interface 

o 4-wire SPI interfaces, which include MISO, MOSI, SCLK and SS pin. 

• Have 16 selectable serial clock frequency/baud rate 

• Have 4 transfer modes with programmable clock phase and clock polarity 

o Mode 0 (CPOL = 0, CPHA = 0) 

o Mode 1 (CPOL = 0, CPHA = 1) 

o Mode 2 (CPOL = 1, CPHA = 0) 

o Mode 3 (CPOL = 1, CPHA = 1) 

• Have 2 operation modes  
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o Master mode 

o Slave mode 

• Have separate transmitter and receiver data register (16x1-byte FIFO) 

o Each of the transmitter FIFO element is a SPI Transmitter Data Register. 

o Each of the receiver FIFO element is a SPI Receiver Data Register  

• Support full-duplex synchronous serial data transfer 

o Serial data transmission and receiving can take place simultaneously. 

o 8 SCLK pulses are required when transmitting and receiving an 8-bit 

data. 

• Provide 3 types of interrupts 

o Receiver buffer full interrupt 

o Transmitter buffer empty interrupt 

o Mode fault error interrupt 

 

5.1.2 Operating Procedure (External Operation) 

The details of the procedure for CPU to operate the designed SPI controller is provided 

in below. 

1. CPU supplies a global clock signal to the SPI controller for clock reference. 

2. CPU resets the SPI controller in order to initialize all of its registers from an 

unknown value to the initialized value, reset all of its FIFOs’ pointers, as well 

as reset all of its FSMs to the idle state. 

3. CPU stores one or more 8-bit data that is/are to be transmitted into the SPI 

Transmitter Data Register (SPITDR) by using the 0xbfff_fe26 address value. 

Writing to the SPITDR is actually writing to the 16-deep transmitter FIFO. 

4. CPU configures the setting of the SPISR accordingly for status monitoring, 

interrupt enable controlling, and FSM stall controlling by using the 0xbfff_fe25 

address value (Refer to Section 5.8 for SPISR’s full information). 

5. CPU configures the setting of the SPICR accordingly for activating the SPI 

controller, selecting the desired operation mode (master or slave), selecting the 

transfer mode (mode 0, 1, 2 or 3), and selecting the suitable baud rate by using 

the 0xbfff_fe24 address value (Refer to Section 5.8 for SPICR’s full 

information).  
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a. Once the settings on the SPISR and the SPICR have been configured 

correctly, the SPI controller is said to be ready to perform the full-duplex 

data communication with another SPI-compatible device. 

b. The SPI controller starts to go through the respective FSMs to transmit 

and receive data simultaneously from the other side until all the pending 

transfers have completed. 

6. Depending on the SPISR configuration for the application, CPU will serve the 

SPI controller in different ways. 

a. If interrupt is disabled, CPU will need to use the polling method to 

determine when it is ready to read the received data from the SPIRDR, 

load new data into the SPITDR or disable the SPI controller. The SPI 

controller simply puts the information in the SPISR, and the CPU must 

come dan get the information. The status flag(s) such as RXDF, TXEF 

and MODF flag in the SPISR will have to be checked periodically by 

using instructions. When the status flag(s) is/are asserted, the CPU 

performs the service accordingly. The status flag(s) of the SPISR will 

be cleared automatically once the CPU finished the service. After that, 

the CPU can move on to perform other tasks. 

b. If interrupt is enabled, the CPU can perform its normal tasks until it is 

being noticed. No extra instructions are needed to monitor the status 

flags in the SPISR. Whenever the SPI controller needs the CPU’s 

immediate attention, it will notify the CPU by sending it an interrupt 

signal. Depending on the types of the interrupt requests generated by the 

SPI controller, the CPU will take the appropriate actions as defined in 

the SPI’s Interrupt Service Routine (ISR), that is to read the received 

data from the SPIRDR or disable the SPI controller. Reading from the 

SPIRDR is actually reading from the 16-deep receiver FIFO. After 

finishing the ISR, the CPU returns to the place where it was interrupted 

and resumes the normal program execution. The status flag(s) of the 

SPISR will be cleared automatically once the CPU finished the service. 
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If the CPU wants to reconfigure the setting(s) after going through step 1 to 6, it is 

advisable to first de-activate the SPI controller to ensure a smooth configuration and 

operation. Do not perform the reconfiguration while the SPI controller is performing 

data transfer with other devices in both operation modes. 

a. Firstly, reset the SPE control bit in the SPICR to de-activate the SPI 

controller as well as to reset all of its FSMs to the initial state.  

b. Perform new setting on the SPI controller. 

i. Repeat step 4 to 6 if only want to reconfigure the setting of the 

SPISR. 

ii. Repeat step 5 to 6 if only want to reconfigure the setting of the 

SPICR (for new operation mode, new transfer mode and/or new 

SPI baud rate). 

iii. Repeat step 4 to 6 if want to reconfigure the settings of both 

SPISR and SPICR. 

 

5.1.3 Unit Interface of the SPI Controller Unit 
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Figure 5.1.3.1: SPI controller unit interface. 
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5.1.4 Input Pin Description of the SPI Controller Unit 

Pin name: uispi_SPIE                                    Pin class: Data 

Source → Destination: Priority interrupt controller unit → SPI controller unit 

Pin function: To allow the SPI to interrupt  

1: enable SPI global interrupt 

0: disable SPI global interrupt 

Pin name: uispi_pipe_stall                            Pin class: Control 

Source → Destination: Priority interrupt controller unit → SPI controller unit 

Pin function: To stall the SPI controller unit 

1: stall the SPI controller unit 

0: do not stall the SPI controller unit 

Pin name: uispi_wb_w_din[7:0]                   Pin class: Data 

Source → Destination: Datapath unit → SPI controller unit 

Pin function: Wishbone standard data input bus (for write operation) 

Pin name: uispi_wb_w_sel[3:0]                    Pin class: Control 

Source → Destination: Address decoder block → SPI controller unit 

Pin function: Wishbone standard byte select signal (for write operation) 

Pin name: uispi_wb_w_we                            Pin class: Control 

Source → Destination: Address decoder block → SPI controller unit 

Pin function: Wishbone standard write enable signal – indicate current bus cycle for 

write 

1: write cycle – write to SPI controller 

Pin name: uispi_wb_w_stb                            Pin class: Control 

Source → Destination: Address decoder block → SPI controller unit 

Pin function: Wishbone standard strobe signal (for write operation) – indicate valid 

data transfer cycle 

1: activate SPI controller for write access 

0: de-activate SPI controller for write access 

Pin name: uispi_wb_r_sel[3:0]                      Pin class: Control 

Source → Destination: Address decoder block → SPI controller unit 

Pin function: Wishbone standard byte select signal – data granularity control 

1111: word select 

1100: upper half-word selected 

0011: lower half-word selected 

1000: 4th byte selected 

0100: 3rd byte selected 

0010: 2nd byte selected 

0001: 1st byte selected 

Pin name: uispi_wb_r_we                             Pin class: Control 

Source → Destination: Address decoder block → SPI controller unit 

Pin function: Wishbone standard read enable signal – indicate current bus cycle for 

read 

0: read cycle – read from SPI controller 

Pin name: uispi_wb_r_stb                             Pin class: Control 

Source → Destination: Address decoder block → SPI controller unit 

Pin function: Wishbone standard strobe signal (for read operation) – indicate valid 

data transfer cycle 

1: activate SPI controller for read access 

0: de-activate SPI controller for read access 
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Pin name: uispi_wb_clk                                Pin class: Global 

Source → Destination: Global clock → SPI controller unit 

Pin function: Global clock 

Pin name: uispi_wb_rst                                 Pin class: Global 

Source → Destination: Global reset → SPI controller unit 

Pin function: Global reset 

1: reset 

0: no reset is required 

Table 5.1.4.1: Input pin description of the SPI controller unit 

 

5.1.5 Output Pin Description of the SPI Controller Unit 

Pin name: uospi_IRQ                                    Pin class: Control 

Source → Destination: SPI controller unit → CP0 block & Priority interrupt 

controller unit 

Pin function: To request an interrupt  

(The uispi_SPIE must be pulled high before an interrupt can be sent) 

1: request to interrupt 

0: no interrupt request 

Pin name: uospi_wb_r_dout[31:0]                Pin class: Data 

Source → Destination: SPI controller unit → Datapath unit  

Pin function: Wishbone standard data output bus  

Pin name: uospi_wb_w_ack                          Pin class: Status 

Source → Destination: SPI controller unit → Datapath unit  

Pin function: Wishbone standard acknowledge signal (for write operation) 

1: normal bus cycle termination 

0: no bus cycle termination 

Pin name: uospi_wb_r_ack                            Pin class: Status 

Source → Destination: SPI controller unit → Datapath unit  

Pin function: Wishbone standard acknowledge signal (for read operation) 

1: normal bus cycle termination 

0: no bus cycle termination 

Table 5.1.5.1: Output pin description of the SPI controller unit. 

 

5.1.6 Input Output Pin Description of the SPI Controller Unit 

Pin name: uiospi_MOSI                                Pin class: Data 

Source → Destination: SPI controller unit ↔ External device’s SPI unit 

Pin function: SPI standard pin – Master Out Serial In 

If the SPI controller unit is configured as a master, then uiospi_MOSI will become 

an output, else otherwise. 

Pin name: uiospi_MISO                                Pin class: Data 

Source → Destination: SPI controller unit ↔ External device’s SPI unit 

Pin function: SPI standard pin – Master In Serial Out 

If the SPI controller unit is configured as a master, then uiospi_MISO will become 

an input, else otherwise. 
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Pin name: uiospi_SCLK                                Pin class: Control 

Source → Destination: SPI controller unit ↔ External device’s SPI unit 

Pin function: SPI standard pin – Serial Clock 

It is the clock signal for data synchronization across devices. If the SPI controller unit 

is configured as a master, then uiospi_SCLK will become an output, else otherwise. 

Pin name: uiospi_SS_n                                  Pin class: Control 

Source → Destination: SPI controller unit ↔ External device’s SPI unit 

Pin function: SPI standard pin – Slave Select 

If the SPI controller unit is configured as a master, then uiospi_SS_n will become an 

output, else otherwise. 

Table 5.1.6.1: Input output pin description of the SPI controller unit. 

 

5.1.7 Internal Operation of the SPI Controller Unit 

uspi_wb_w_stb uispi_wb_w_we uspi_stall_reg uispi_wb_w_sel 

[3:0] 

Function 

1 1 0 0001 Enable write 

operation to 

SPICR 

1 1 0 0010 Enable write 

operation to 

SPISR 

1 1 0 0100 Enable write 

operation to 

SPITDR 

Table 5.1.7.1: Functional description of the SPI controller’s write operation. 

 

uspi_wb_r_stb uispi_wb_r_we uispi_wb_r_sel 

[3:0] 

Function 

1 0 0001 Enable read operation to SPICR 

1 0 0010 Enable read operation to SPISR 

1 0 1000 Enable read operation to 

SPIRDR 

1 0 0011 Enable read operation to SPISR 

and SPICR 
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1 0 1100 Enable read operation to 

SPIRDR 

1 0 1111 Enable read operation on 

SPIRDR, SPISR, and SPICR. 

Table 5.1.7.2: Functional description of the SPI controller’s read operation. 

 

5.1.8 Design Partitioning of the SPI Controller Unit 

The SPI controller unit developed in this project consists of several internal blocks that 

work together so that the data communication between two SPI-interface devices can 

be performed correctly when using the SPI protocol. This SPI controller unit consists 

of one SPI transmitter block, one SPI receiver block, one SPICR FIFO block, one 

SPISR FIFO block, and one SPI clock generator block. In addition, it also consists of 4 

special-purpose registers for users to access (read or write). These special registers are 

the SPI Configuration Register (SPICR) for configuration setting, the SPI Status 

Register (SPISR) for status monitoring purpose, the SPI Transmitter Data Register 

(SPITDR) for holding the data to be transmitted, and the SPI Receiver Data Register 

(SPIRDR) for holding the received data. Writing to the SPITDR is actually writing to 

a 16x1-byte transmitter FIFO block whereas reading from the SPIRDR is actually 

reading from the 16x1-byte receiver FIFO block. All of these I/O peripheral registers 

are memory-mapped and have their own addresses so that the CPU can read or write 

the specific registers easily. The details of these 4 memory-mapped I/O peripheral 

registers are discussed in Section 5.7 respectively. An overview of the block-level 

partitioning of the SPI controller unit is provided in Figure 5.1.8.1 whereas the details 

of its internal blocks are discussed in Table 5.1.8.1. 
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SPI transmitter 
block

SPI receiver block

SPI Transmitter 
Data Register

SPICR FIFO block

SPI Receiver Data 
Register

SPISR FIFO block

SPI clock generator 
block

SPI controller unit

 

Figure 5.1.8.1: Block-level partitioning of the SPI controller unit. 

 

Internal Block Function 

SPI transmitter block  To handle the serial data transmission of the 

SPI controller unit. 

SPI receiver block  To handle the serial data receiving of the SPI 

controller. 

SPI Transmitter Data Register 

(a 16-deep asynchronous FIFO 

block) 

 

• To hold the data that will be 

transmitted to another SPI-

compatible device. 

• To pass multiple data bits safely 

across CDC boundaries. 

SPI Receiver Data Register 

(a 16-deep asynchronous FIFO 

block) 

 

• To hold the data received from 

another SPI-compatible device. 

• To pass multiple data bits safely 

across CDC boundaries. 

SPICR FIFO block  

(a 2-deep FIFO synchronizer block) 

To safely handle the passing of multi-bit 

control signal from one clock domain to a 

new clock domain. 
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SPISR FIFO block  

(a 2-deep FIFO synchronizer block) 

To safely handle the passing of multi-bit 

control signal from one clock domain to a 

new clock domain. 

SPI clock generator block 

 

• To generate the I/O clock frequency 

for SPI internal operation. 

• To generate 16 transmission speed / 

baud rates. 

Table 5.1.8.1: Functional description of each SPI internal block 
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5.1.9 Micro-Architecture of the SPI Controller Unit (Block Level) 
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Note: The shaded areas indicate the internal blocks of the designed SPI controller
 

Figure 5.1.9.1: Simplified micro-architecture of the SPI controller unit. 
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Figure 5.1.9.2: Datapath of the SPI controller unit. 
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5.2 SPI Transmitter Block 

5.2.1 Functionality/Feature of the SPI Transmitter Block 

The SPI transmitter block is used to handle the serial data transmission of the SPI 

controller unit. It uses an 8-bit transmitter shift register (TSR) to store data loaded from 

the SPITDR block. As the baud clock pulses are generated, it transmits the data stored 

in the transmitter shift register (TSR) serially to another SPI device via one of the SPI 

standard pins, namely MISO or MOSI. The designed SPI transmitter block can perform 

the serial data transmission between SPI devices as shown in Appendix A correctly in 

all of the 4 transfer modes (mode 0, 1, 2, 3) regardless of whether it is configured as a 

master or a slave. 

 

5.2.2 Block Interface of the SPI Transmitter Block 

 

 

 

Figure 5.2.2.1: Block interface of the SPI transmitter block. 

 

5.2.3 Input Pin Description of the SPI Transmitter Block 

Pin name: bispiTX_FIFO_empty                    Pin class: Status 

Source → Destination: SPITDR block→ SPI transmitter block 

Pin function:  

1: SPITDR block is empty 

0: SPITDR block is not empty 

Pin name: bispiTX_cpol                                  Pin class: Control 

Source → Destination: SPICR → SPI transmitter block 

Pin function: Clock polarity 

bspiTX

bispiTX_FIFO_empty

bispiTX_cpol

bispiTX_cpha

bispiTX_din[7:0]

bispiTX_SPE

bispiTX_TXCHE

bispiTX_fsm_stall

bispiTX_ss_n

bispiTX_MSTR

bispiTX_baud_clk

bispiTX_spi_clk

bispiTX_rst

bospiTX_dout

bospiTX_sclk

bospiTX_TXC

bospiTX_FIFO_pop

bospiTX_ss_n
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Pin name: bispiTX_cpha                                 Pin class: Control 

Source → Destination: SPICR → SPI transmitter block 

Pin function: Clock phase 

Pin name: bispiTX_din[7:0]                            Pin class: Data 

Source → Destination: SPICR → SPI transmitter block 

Pin function: 8-bit data input bus 

Pin name: bispiTX_SPE                                  Pin class: Control 

Source → Destination: SPICR → SPI transmitter block 

Pin function: SPI controller enable control signal 

1: enable SPI transmitter block 

0: disable SPI transmitter block 

Pin name: bispiTX_TXCHE                            Pin class: Control 

Source → Destination: SPISR → SPI transmitter block 

Pin function: Transmit complete halt enable signal 

1: halt SPI transmitter’s FSM state when complete transmission 

0: continue SPI transmitter’s FSM state when complete transmission 

Pin name: bispiTX_fsm_stall                          Pin class: Control 

Source → Destination: SPI controller unit → SPI transmitter block 

Pin function: SPI transmitter stall control signal 

1: stall SPI transmitter’s FSM state 

0: SPI transmitter’s FSM state run normally 

Pin name: bispiTX_ss_n                                  Pin class: Control 

Source → Destination: SPI controller unit → SPI transmitter block 

Pin function: Slave select input signal 

1: selected by master to communicate with 

0: not selected by master to communicate with/when it is configured as master 

Pin name: bispiTX_MSTR                              Pin class: Control 

Source → Destination: SPICR → SPI transmitter block 

Pin function: Master/Slave mode 

1: SPI is in master mode 

0: SPI is in slave mode 

Pin name: bispiTX_baud_clk                          Pin class: Control 

Source → Destination: SPI clock generator block → SPI transmitter block 

Pin function: Data synchronization clock source 

Pin name: bispiTX_spi_clk                             Pin class: Control 

Source → Destination: SPI clock generator block → SPI transmitter block 

Pin function: SPI I/O clock 

Pin name: bispiTX_rst                                     Pin class: Global 

Source → Destination: Global reset → SPI transmitter block 

Pin function: Global reset 

1: reset 

0: no reset is required 

Table 5.2.3.1: Input pin description of the SPI transmitter block. 
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5.2.4 Output Pin Description of the SPI Transmitter Block 

Pin name: bospiTX_dout                                 Pin class: Data 

Source → Destination: SPI transmitter block → SPI controller unit  

Pin function: Serial data output 

Pin name: bospiTX_sclk                                  Pin class: Control 

Source → Destination: SPI transmitter block → SPI controller unit  

Pin function: Data synchronization clock source 

Pin name: bospiTX_TXC                                Pin class: Status 

Source → Destination: SPI transmitter block → SPI controller unit  

Pin function:  

1: complete transmission of one data byte 

0: transmission of one data byte is not complete 

Pin name: bospiTX_FIFO_pop                        Pin class: Control 

Source → Destination: SPI transmitter block → SPITDR  

Pin function: To pop one byte of data from the SPITDR block 

Pin name: bospiTX_ss_n                                 Pin class: Control 

Source → Destination: SPI transmitter block → SPI controller unit  

Pin function: Serial data valid control 

1: disable serial data communication 

0: enable serial data communication 

Table 5.2.4.1: Output pin description of the SPI transmitter block. 
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5.2.5 Finite State Machine of the SPI Transmitter Block 

The SPI transmitter block that has been developed has a built-in FSM that is used to 

switched between different states. The change of state can be done based on the internal 

events. The details of the SPI transmitter’s FSM are illustrated in Figure 5.2.6.1. 

bspiTX_IDLE

bspiTX_WAIT

bspiTX_LOAD

bspiTX_SYNCbspiTX_TX

bspiTX_BYTE_
COMPLETE

 

Figure 5.2.5.1: Finite State Machine of the SPI transmitter block. 

 

State Name Description 

bspiTX_IDLE No operation 

bspiTX_WAIT Wait state when FSM halt 

bspiTX_LOAD Load data to transmitter shift register (TSR) 

bspiTX_SYNC SCLK synchronizing 

bspiTX_TX Data transmission is in progress 

bspiTX_BYTE_COMPLETE One-byte data transmission is complete 

Table 5.2.5.1: State description of the SPI transmitter block. 
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5.3 SPI Receiver Block 

5.3.1 Functionality/Feature of the SPI Receiver Block 

The SPI receiver block is responsible to handle the serial data receiving of the SPI 

controller. It uses an 8-bit receiver shift register (RSR) to receive each bit serially from 

another SPI device. After 8 baud clock cycles are generated by the master, the process 

of data exchange between the master and the slave is said to be completed. Thus, the 

receiver shift register (RSR) will contain the 8-bit received data. The data on the shift 

register (RSR) is transferred to the receiver data register (RDR) before it is later pushed 

into the SPIRDR block. The designed SPI receiver block can perform the serial data 

receiving between SPI devices in all of the 4 transfer modes (mode 0, 1, 2 and 3) as 

shown in Appendix A correctly regardless of whether it is configured as a master or a 

slave. 

 

5.3.2 Block Interface of the SPI Receiver Block 

 

 

 

Figure 5.3.2.1: Block interface of the SPI receiver block. 

 

5.3.3 Input Pin Description of the SPI Receiver Block 

Pin name: bispiRX_din                                   Pin class: Data 

Source → Destination: SPI controller unit → SPI receiver block  

Pin function: Serial data input 

Pin name: bispiRX_cpol                                  Pin class: Control 

Source → Destination: SPICR → SPI receiver block  

Pin function: Clock polarity 

bspi_RX

bispiRX_din

bispiRX_cpol

bispiRX_cpha

bispiRX_SPE

bispiRX_sclk

bispiRX_ss_n

bispiRX_spi_clk

bispiRX_rst

bospiRX_dout[7:0]

bospiRX_RSRF
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Pin name: bispiRX_cpha                                 Pin class: Control 

Source → Destination: SPICR → SPI receiver block  

Pin function: Clock phase 

Pin name: bispiRX_SPE                                  Pin class: Control 

Source → Destination: SPICR → SPI receiver block  

Pin function: SPI controller enable control signal 

1: enable SPI receiver 

0: disable SPI receiver 

Pin name: bispiRX_sclk                                  Pin class: Control 

Source → Destination: SPI controller unit → SPI receiver block  

Pin function: Data synchronization clock source 

Pin name: bispiRX_ss_n                                  Pin class: Control 

Source → Destination: SPI controller unit → SPI receiver block  

Pin function: Serial data valid control 

1: disable serial data communication 

0: enable serial data communication 

Pin name: bispiRX_spi_clk                             Pin class: Control 

Source → Destination: SPI clock generator block → SPI receiver block  

Pin function: SPI I/O clock 

Pin name: bispiRX_rst                                     Pin class: Global 

Source → Destination: Global reset → SPI receiver block  

Pin function: Global reset 

1: reset 

0: no reset is required 

Table 5.3.3.1: Input pin description of the SPI receiver block. 

 

5.3.4 Output Pin Description of the SPI Receiver Block 

Pin name: bospiRX_dout[7:0]                         Pin class: Data 

Source → Destination: SPI receiver block → SPIRDR block 

Pin function: 8-bit data output bus 

Pin name: bospi_RSRF                                    Pin class: Status 

Source → Destination: SPI receiver block → SPIRDR block 

Pin function:  

1: RSR is full 

0: RSR is not full 

Table 5.3.4.1: Output pin description of the SPI receiver block. 
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5.3.5 Finite State Machine of the SPI Receiver Block 

The SPI receiver block that has been developed has a built-in FSM that is used to 

switched between different states. The change of state can be done based on the internal 

events. The details of the SPI receiver’s FSM are illustrated in Figure 5.3.6.1. 

bspiRX_IDLE

bspiRX_RXbspiRX_FINISH
 

Figure 5.3.5.1: Finite State Machine of the SPI receiver block. 

 

State Name Description 

bspiRX_IDLE No operation 

bspiRX_RX Data receiving is in progress 

bspiRX_FINISH Data receiving is complete 

Table 5.3.5.1: State description of the SPI receiver block. 
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5.4 SPI Clock Generator Block 

5.4.1 Functionality/Feature of the SPI Clock Generator Block 

The SPI clock generator block is used to generate the 10 MHz SPI I/O clock frequency 

for SPI internal operation. Besides, it is also a user-configurable clock divider. It is able 

to generate 16 transmission speed (or baud rate), ranging from 152 Hz to 5 MHz. Only 

the baud rate generated by the master device will be used for synchronizing the serial 

data transfer taking place across different SPI-compatible devices.  The last four bits in 

the SPICR (which is the SPICR[3:0]) will control the divisor to the SPI I/O clock and 

determine the baud rate generation. The baud rate can be calculated by using the 

equation provided in below. 

𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 (𝐻𝑧) =  
𝑆𝑃𝐼 𝐼/𝑂 𝑐𝑙𝑜𝑐𝑘(𝐻𝑧)

2 𝑥 2𝑆𝑃𝐼𝐶𝑅[3:0]
 

 

5.4.2 Block Interface of the SPI Clock Generator Block  

bspiclk_gen

bispiclk_gen_sel[3:0]

bispiclk_gen_sysclk

bispiclk_gen_rst

bospiclk_gen_baud_clk

bospiclk_gen_spi_clk

 

Figure 5.4.2.1: Block interface of the SPI clock generator block. 

 

5.4.3 Input Pin Description of the SPI Clock Generator Block 

Pin name: bispiclk_gen_sel[3:0]                      Pin class: Control 

Source → Destination: SPI controller unit → SPI clock generator block  

Pin function: To select 1 out of 16 transmission speed or baud rate 

Pin name: bispiclk_gen_sysclk                        Pin class: Global 

Source → Destination: Global → SPI clock generator block  

Pin function: Global clock 

Pin name: bispiclk_gen_rst                              Pin class: Global 

Source → Destination: Global reset → SPI clock generator block  

Pin function: Global reset 

1: reset 

0: no reset is required 

Table 5.4.3.1: Input pin description of the SPI clock generator block. 
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5.4.4 Output Pin Description of the SPI Clock Generator Block 

Pin name: bospiclk_gen_baud_clk                   Pin class: Control 

Source → Destination: SPI clock generator block → SPI transmitter block  

Pin function: To output the selected baud rate 

Pin name: bospiclk_gen_spi_clk                      Pin class: Control 

Source → Destination: SPI clock generator block → All SPI blocks and registers  

Pin function: To output the generated SPI I/O clock 
Table 5.4.4.1: Output pin description of the SPI clock generator block. 
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5.5 16-deep Asynchronous FIFO Block 

5.5.1 Functionality/Feature of the 16-deep Asynchronous FIFO Block 

One of the FIFO designs used in this project is the asynchronous FIFO design with 

asynchronous pointer comparisons. An asynchronous FIFO refers to a FIFO design 

where data values are written sequentially into a FIFO buffer using one clock domain, 

and the data values are sequentially read from the same FIFO buffer using another clock 

domain, where the two clock domains are asynchronous to each other (Cummings & 

Alfke, 2002). Basically, it is used to safely handle the passing of multi-bit data 

(randomly changing signals) from one clock domain to a new clock domain as the use 

of synchronizer to handle the passing of these type of data is generally unacceptable. 

The FIFO used in this project is a 16 entries deep FIFO memory with each data entry 

is of 8-bit size. It uses circular memory with two pointers to stimulate the infinite big 

memory needed. As a result, multiple data bytes can be stored sequentially in it as long 

as the total number of data bytes does not exceed 16, which greatly reduces the CPU’s 

workload to move the data and allow continuous data transfer in the background. Apart 

from that, it has implemented full-removal and empty-removal using a “pessimistic” 

method. Meaning, the “full” and “empty” statuses are both asserted exactly on time but 

removed late. In this project, it is used as the SPITDR and SPIRDR respectively. 

 

5.5.2 Block Interface of the 16-deep Asynchronous FIFO Block 

 

bFIFO

biFIFO_din[7:0]

biFIFO_pop

biFIFO_push

biFIFO_rclk

biFIFO_wclk

biFIFO_rst

boFIFO_dout[7:0]

boFIFO_rempty

boFIFO_wfull

 

Figure 5.5.2.1: Block interface of the 16-deep asynchronous FIFO block. 
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5.5.3 Input Pin Description of the 16-deep Asynchronous FIFO Block 

Pin name: biFIFO_din[7:0]                           Pin class: Data 

Source → Destination: SPI controller unit → Asynchronous FIFO block 

                                        SPI receiver block → Asynchronous FIFO block 

Pin function: 8-bit input data bus 

Pin name: biFIFO_pop                                  Pin class: Control 

Source → Destination: SPI controller unit → Asynchronous FIFO block 

                                        SPI transmitter block → Asynchronous FIFO block 

Pin function: To pop one data byte from the asynchronous FIFO block 

1: pop one data byte from the FIFO 

0: no popping of one data byte from the FIFO 

Pin name: biFIFO_push                                 Pin class: Control 

Source → Destination: SPI controller unit → Asynchronous FIFO block 

                                        SPI receiver block → Asynchronous FIFO block 

Pin function: To push one data byte into the asynchronous FIFO block 

1: push one data byte into the FIFO 

0: no pushing of one data byte into the FIFO 

Pin name: biFIFO_rclk                                  Pin class: Control 

Source → Destination: SPI controller unit → Asynchronous FIFO block 

                                        SPI clock generator block → Asynchronous FIFO block 

Pin function: Read clock signal 

Pin name: biFIFO_wclk                                Pin class: Control 

Source → Destination: SPI controller unit → Asynchronous FIFO block 

                                        SPI clock generator block → Asynchronous FIFO block 

Pin function: Write clock signal 

Pin name: biFIFO_rst                                    Pin class: Global 

Source → Destination: Global reset → Asynchronous FIFO block  

Pin function: Global reset 

Table 5.5.3.1: Input pin description of the 16-deep asynchronous FIFO block. 

 

5.5.4 Output Pin Description of the 16-deep Asynchronous FIFO Block 

Pin name: boFIFO_dout[7:0]                           Pin class: Data 

Source → Destination: Asynchronous FIFO block → SPI transmitter block 

                                        Asynchronous FIFO block → SPI controller unit  

Pin function: 8-bit output data bus 

Pin name: boFIFO_rempty                              Pin class: Status 

Source → Destination: Asynchronous FIFO block → SPI transmitter block 

                                        Asynchronous FIFO block → SPI controller unit  

Pin function:  

1: the FIFO is empty 

0: the FIFO is not empty 

Pin name: boFIFO_wfull                                 Pin class: Status 

Source → Destination: Asynchronous FIFO block → SPI controller unit 

Pin function:  

1: the FIFO is full 

0: the FIFO is not full 

Table 5.5.4.1: Output pin description of the asynchronous FIFO block. 
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5.5.5 Schematic and Block Diagram of the 16-deep Asynchronous FIFO block 
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Figure 5.5.5.1: Schematic and block diagram of the 16-deep asynchronous FIFO design with asynchronous pointer comparisons 
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5.6 2-deep FIFO Synchronizer Block 

5.6.1 Functionality/Feature of the 2-deep FIFO Synchronizer Block 

The 2-deep FIFO synchronizer block is another variation on passing multiple control 

and data bits safely across CDC boundaries. It allows the CPU to buffer the multi-bit 

control signal at its own speed, thus reducing the timing requirement. It is a 2-deep dual 

port FIFO memory as it is built by using only two registers. Each data entry is of 8-bit 

size. Similarly, it also uses circular memory with two pointers to stimulate the infinite 

big memory needed. On the other hand, an inverted not-full condition is used in this 

FIFO design to indicate that the FIFO is ready to receive a control byte. On the other 

hand, in order to indicate that the FIFO has a data or control byte that is ready to be 

read, an inverted not empty condition is applied. In this project, it is used as the SPICR 

FIFO and SPISR FIFO block. 

 

5.6.2 Block Interface of the 2-deep FIFO Synchronizer Block 
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Figure 5.6.2.1: Block interface of the 2-deep FIFO synchronizer block. 
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5.6.3 Input Pin Description of the 2-deep FIFO Synchronizer Block 

Pin name: biFIFO_sync_rget                           Pin class: Control 

Source → Destination: 2-deep FIFO synchronizer block → 2-deep FIFO 

synchronizer block  

Pin function: To get one data byte from the FIFO block 

1: pop one data byte from the FIFO 

0: no popping of one data byte from the FIFO 

Pin name: biFIFO_sync_din[7:0]                    Pin class: Data 

Source → Destination: SPI controller unit → 2-deep FIFO synchronizer block  

Pin function: 8-bit input data bus 

Pin name: biFIFO_sync_wput                         Pin class: Control 

Source → Destination: SPI controller unit → 2-deep FIFO synchronizer block  

Pin function: To push one data byte into the FIFO block 

1: push one data byte into the FIFO 

0: no pushing of one data byte into the FIFO 

Pin name: biFIFO_sync_rclk                           Pin class: Control 

Source → Destination: SPI clock generator block → 2-deep FIFO synchronizer 

block  

Pin function: Read clock signal 

Pin name: biFIFO_sync_rrst                            Pin class: Global 

Source → Destination: Global reset → 2-deep FIFO synchronizer block  

Pin function: Global reset 

1: reset 

0: no reset is required 

Pin name: biFIFO_sync_wclk                         Pin class: Global 

Source → Destination: Global clock → 2-deep FIFO synchronizer block  

Pin function: Global clock 

Pin name: biFIFO_sync_wrst                          Pin class: Global 

Source → Destination: Global reset → 2-deep FIFO synchronizer block  

Pin function: Global reset 

1: reset 

0: no reset is required 

Table 5.6.3.1: Input pin description of the 2-deep FIFO synchronizer block 

 

5.6.4 Output Pin Description of the 2-deep FIFO Synchronizer Block 

Pin name: biFIFO_sync_dout[7:0]                  Pin class: Data 

Source → Destination: 2-deep FIFO synchronizer block → SPICR 

                                        2-deep FIFO synchronizer block → SPISR 

Pin function: 8-bit output data bus 

Pin name: biFIFO_sync_rrdy                          Pin class: Status 

Source → Destination: 2-deep FIFO synchronizer block → 2-deep FIFO 

synchronizer block  

Pin function:  

1: the data in the FIFO is ready to be read 

0: the data in the FIFO is not ready to be read 

Pin name: biFIFO_sync_wrdy                         Pin class: Status 
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Source → Destination: 2-deep FIFO synchronizer block → SPI controller unit 

Pin function:  

1: FIFO is ready to receive a data 

0: FIFO is not ready to receive a data 

Table 5.6.4.1: Output pin description of the 2-deep FIFO synchronizer block. 
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5.6.5 Schematic and Block Diagram of the 2-deep FIFO Synchronizer Block 
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Figure 5.6.5.1: Schematic and block diagram of the 2-deep FIFO synchronizer block 
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5.7 Register Set of SPI Controller Unit 

Four special-purpose registers are used to allow data communication between the CPU 

and the SPI controller unit. All these special registers are memory-mapped and user-

accessible by using the normal load and store instructions. 

SPICRSPISRSPITDRSPIRDR

0xbfff_fe240xbfff_fe250xbfff_fe260xbfff_fe27

 

Figure 5.7.1: Address of the special-purpose registers in virtual memory. 

 

5.7.1 SPI Configuration Register (SPICR) 

Type: read/write 

Width: 8 bits 

Address: 0xbfff_fe24 

Function: To configure the setting of the SPI controller unit. 

 
Figure 5.7.1.1: SPI Configuration Register (SPICR) 
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a) SPE - SPI enable control 

It is used to deactivate the SPI controller when it is not in use. To have better 

control on power consumption, the SPI controller is recommended to be 

deactivated when it is not in use. 

• SPE = 0: Deactivate SPI controller. 

• SPE = 1: Activate SPI controller. 

b) MSTR - Master/Slave device 

• MSTR = 0: Set as slave device. 

• MSTR = 1: Set as master device. 

c) CPOL - Clock Polarity 

• CPOL = 0: Active-high clock is selected. SCLK is low in idle state. 

• CPOL = 1: Active-low clock is selected. SCLK is high in idle state. 

d) CPHA - Clock Phase 

• CPHA = 0: Data sampling occurs at odd edges (1, 3, 5, …, 15) of the 

SCLK clock. 

• CPHA = 1: Data sampling occurs at even edges (2, 4, 6, …, 16) of the 

SCLK clock. 

e) SCR [3:0] - SPI Baud Rate (Given the SPI I/O clock speed is 10 MHz) 

• 0000: 5 MHz 

• 0001: 2.5 MHz 

• … 

• 1110: 305 Hz 

• 1111: 152 Hz 

 

5.7.2 SPI Status Register (SPISR) 

Type: read/write 

Width: 8 bits 

Address: 0xbfff_fe25 

Function: To configure the setting of the SPI controller unit and for status monitoring 

purpose. 
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Figure 5.7.2.1: SPI Status Register (SPISR) 
 

a) RXDF: Receive Done Flag 

When this bit is set by the SPI controller unit, it indicates that 1-byte or 16-byte 

of data have been completely received. It is used in conjunction with the RXFM 

bit in the SPISR to determine if the received data is 1-byte (when RXFM = 0) 

or 16-byte (when RXFM = 1) when the FIFO is full. 

b) TXEF: Transmit FIFO Empty flag 

• TXEF = 0: SPI Transmitter FIFO block is not empty. 

• TXEF = 1: SPI Transmitter FIFO block is empty. 

c) MODF: Mode fault error 

When the SPI controller unit is configured as a master device, the uiospi_SS_n 

pin must be pulled high by the master device. If there exist two or more master 

devices in the same connection, any attempt to pull low the uiospi_SS_n pin 

will trigger the mode fault error. This is to avoid damage to the hardware. 

• MODF = 0: No mode fault error occurs. 

• MODF = 1: Mode fault error occurs. 

d) RXFM: Receive FIFO Full Mode.  

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes 

of SPICR. 

• RXFM = 0: 1-byte of data is expected to be read by CPU. 

• RXFM = 1: 16-byte of data (FIFO full) is expected to be read by CPU. 

e) RXFIE: Receive Complete Interrupt enable 

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes 

of SPICR. It can only be used if and only if the SPIE bit (the SPI global interrupt 

enable pin) is set to high. This bit is used for interrupt enable control (to select 

interrupt method instead of polling) after data has been completely received (as 

indicated by the RXDF bit in SPISR). 

• RXFIE = 0: Disable Receive Complete Interrupt. 

• RXFIE = 1: Enable Receive Complete Interrupt. 

f) TXEIE: Transmit FIFO Empty Interrupt Enable 
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It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes 

of SPICR. It can only be used if and only if the SPIE bit (SPI global interrupt 

enable bit) is set to high. This bit is used for interrupt enable control (to select 

interrupt method instead of polling) when the SPI transmitter FIFO is empty (as 

indicated by the TXEF bit in SPISR). 

• TXEIE = 0: Disable Transmit Enable Interrupt. 

• TXEIE = 1: Enable Transmit Enable Interrupt. 

g) RXBHE: Receive Byte Halt enable 

It is part of the SPICR and it is placed in SPISR to avoid creating longer bytes 

of SPICR. 

• RXBHE = 0: Disable SPI transmitter’s FSM stall. 

• RXBHE = 1: Enable SPI transmitter’s FSM stall when one byte of data 

is received. 

h) TXCHE: Transmit FIFO Complete Halt enable 

It is part of SPICR and it is placed in SPISR to avoid creating longer bytes of 

SPICR. 

• TXCHE = 0: Continue SPI transmitter’s FSM state when complete 

transmission. 

• TXCHE = 1: Halt SPI transmitter’s FSM state when complete 

transmission. 

 

5.7.3 SPI Transmitter Data register (SPITDR) 

Type: read/write 

Width: 8 bits 

Address: 0xbfff_fe26 

Function: To hold the data that will be transmitted to another SPI-compatible device. 

 
Figure 5.8.3.1: SPI Transmitter Data Register (SPITDR) 
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5.8.4 SPI Receiver Data register (SPIRDR) 

Type: read/write 

Width: 8 bits 

Address: 0xbfff_fe27 

Function: To hold the data received from another SPI-compatible device. 

 
Figure 5.7.4.1: SPI Receiver Data Register (SPIRDR) 
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Chapter 6: Firmware Development 

6.1 Exception Handler of the RISC32 Pipeline Processor 

Exception is the unexpected or unscheduled event (internally or externally caused) that 

can change the normal flow of the instruction execution. In order to handle the 

unexpected events within the processor, an exception handler has already been created. 

The exception handler is able to handle unexpected events such as interrupt, address 

error trap on data load or instruction fetch, address error trap on data store, bus error on 

data load or store, bus error on instruction fetch, Syscall trap, breakpoint trap, undefined 

instruction trap, and arithmetic overflow trap. Upon detecting an exception signal, the 

CPU suspends its current program execution, saves the address of the next instruction 

(PC) for return purpose, and then jumps to the exception handler at 0x8000_b400 for 

handling the exception. After performing whatever actions that are required because of 

the exception, the CPU returns to the place where it was interrupted and resumes the 

normal program execution. A pseudocode that describes the existing exception handler 

of the RISC32 pipeline processor is given in below for better understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

BEGIN 

 Push the current state of the user program to stack 

 Push the current CP0’s status register value to stack 

 Push the current CP0’s cause register value to stack 

 Clear the exception level in the CP0’s status register 

 Decode the exception code in the CP0’s cause register 

 CASEOF exception code 

  0: Branch to the exception routine of Interrupt 

  4: Branch to the exception routine of Address Error Trap LOAD 

  5: Branch to the exception routine of Address Error Tap STORE 

  6: Branch to the exception routine of Bus Error on IF Trap 

  7: Branch to the exception routine of Bus Error on LOAD/STORE Tap 

  8: Branch to the exception routine of Syscall 

  9: Branch to the exception routine of Breakpoint Trap 

  10: Branch to the exception routine of Reserved/Undefined Instruction 

  12: Branch to the exception routine of Arithmetic Overflow 

 ENDCASE 

Set the exception level in the CP0’s status register 

Pop the previous state of user program from stack 

 Clear the exception code in the CP0’s cause register 

 Clear the interrupt priority level in the CP0’s cause register 

 Return to user program based on the address value in the CP0’s EPC register 

END 
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6.2 Interrupt Service Routine (ISR) of the SPI Controller Unit 

An interrupt is an external event that interrupts the CPU to inform it that a device needs 

its service. In this project, the device that interrupts the CPU will be the SPI controller 

unit. Since interrupt is asynchronous to the program execution, the CPU will simply 

suspend the normal instruction execution and then resume to the place where it was 

interrupted after finishing the execution of the corresponding Interrupt Service Routine 

(ISR).  

In this project, an ISR specifically for the SPI controller unit is developed by using 

MIPS assembly language and subsequently integrated into the existing exception 

handler. This ISR will be invoked by the CPU to handle different types of interrupt 

requests generated by the SPI controller unit. The generated interrupt request(s) could 

be mode fault error interrupt, transmitter buffer empty interrupt and/or receiver buffer 

full interrupt. Table 6.2.1 describes the actions that the CPU performs when the 

corresponding SPI controller’s interrupt request is generated.  

Types of interrupt Actions to be taken 

Mode fault error 

interrupt 

The CPU will deactivate the SPI controller unit and force it 

into the idle state. The transmission will be aborted if a 

transmission is in progress when the mode fault error occurs. 

Transmitter buffer 

empty interrupt 

When there are no more data bytes to be transmitted, the CPU 

will deactivate the SPI controller unit to reduce power 

consumption. Eventually, the SPI controller is forced into the 

idle state.  

Receiver buffer full 

interrupt 

The CPU will load the received data bytes from the receiver 

buffer to process. 

 

Below shows the pseudocode of the developed ISR for handling different types of 

interrupt requests from the SPI controller unit. 

 

 

 

 

BEGIN 

 Load the SPISR value 

Check the mode fault error (MODF) interrupt status from the SPISR 

 Check the transmitter buffer empty (TXEF) interrupt status from the SPISR 

 IF the MODF or the TXEF interrupt occurs THEN 

  Deactivate the SPI controller 
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 ENDIF 

 Check the receiver buffer full (RXDF) interrupt status from the SPISR 

 IF the RXDF interrupt does not occur THEN 

  Return to the main exception handler 

 

 ELSE 

  BEGIN 

   Load the received data bytes from the receiver buffer 

   Return to the main exception handler 

  END 

END 
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Chapter 7: Verification Specification and Stimulation Result 

The test cycle in this project consists of two stages. During the first stage, the SPI 

controller unit is tested and verified individually for functional correctness before any 

integration. Once it has passed the individual test, it will be tested again as a whole in 

the second stage for its complete functionality.  

 

7.1 Test Plan for SPI Controller Unit’s Functional Test 

Before the designed SPI controller unit can be integrated into the RISC32 pipeline 

processor, it is important to first verify the functional behaviors of the SPI controller 

unit. Thus, a test plan detailing the functional testing objective, scope, approach, 

expected output, and final test status is constructed and presented in Table 7.1.2. A 

testbench based on the test plan is written in Verilog HDL and can be found in Appendix 

B.1. 

As shown in Figure 7.1.1, the DUT_MASTER used in this verification test represents 

the master device whereas the DUT_SLAVE used represents the slave device. Same 

type of SPI controller unit is used throughout the verification process but with different 

operation modes (master mode or slave mode) to prove that the designed SPI controller 

unit can function correctly in both operation modes. 
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Figure 7.1.1: The connection mechanism of the DUT_MASTER and the DUT_SLAVE 

for SPI controller unit’s functional verification. 
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Unit/Block Used in Stimulation Instance Name Used in Stimulation 

SPI controller unit (configured as master) DUT_MASTER 

SPI controller unit (configured as slave) DUT_SLAVE 

SPI transmitter block  bspiTX 

SPI receiver block  bspiRX 

SPI Transmitter Data Register TX_buffer16x8 

SPI Receiver Data Register RX_buffer16x8 

SPICR FIFO block  SPICR_buffer2x8 

SPISR FIFO block  SPISR_buffer2x8 

SPI clock generator block bspiclk_gen 

Table 7.1.1 Instance name of each SPI controller unit and its internal blocks that are 

being used in the test plans, testbenches, flowcharts and stimulation. 

 

Test Expected Output Status 

Test Case #1:  

System Reset 

 

Function to be tested 

• Able to reset the whole SPI 

controller unit 

Procedure 

1. Reset both devices.  

• tb_w_uiospi_SS_n = 1’bz 

• tb_w_uiospi_SCLK = 1’bz 

• tb_w_uiospi_MOSI = 1’bz 

• tb_w_uiospi_MISO = 1’bz 

• tb_w_uospi_IRQ_master = 

1’b0 

• tb_w_uospi_wb_w_ack_m

aster = 1’b0 

• tb_w_uospi_wb_r_ack_ma

ster = 1’b0 

• tb_w_uospi_wb_r_dout_m

aster = 32’hz 

• SPICR of DUT_MASTER 

= 8’b0000_0000  

• SPISR of DUT_MASTER 

= 8’b0100_0000 

• tb_w_uospi_IRQ_slave = 

1’b0 

• tb_w_uospi_wb_w_ack_sl

ave = 1’b0 

• tb_w_uospi_wb_r_ack_sla

ve = 1’b0 

• tb_w_uospi_wb_r_dout_sl

ave = 32’hz 

• SPICR of DUT_SLAVE = 

8’b0000_0000  

Pass 
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• SPISR of DUT_SLAVE =  

8’b0100_0000 

Test Case #2:  

Write operation on SPISR 

 

Function to be tested 

• Write operation on SPISR in both 

master mode and slave mode  

Procedure 

1. Enable write access on both 

devices. 

2. Enable write operation on both 

SPISR. 

3. Configure both SPISR with 

8’b0000_1111. 

4. Disable write operation on both 

SPISR. 

• SPISR of DUT_MASTER 

= 8’b0100_1111  

• SPISR of DUT_SLAVE = 

8’b0100_1111 

 

Pass 

Test case #3:  

Write operation on SPICR 

 

Function to be tested 

• Write operation on SPICR in both 

master mode and slave mode 

Procedure 

1. Enable write operation on both 

SPICR. 

2. Configure DUT_MASTER’s 

SPICR with 8’b1100_0000. 

3. Configure DUT_SLAVE’s 

SPICR with 8’b1000_0000. 

4. Disable write operation on both 

SPICR. 

5. Enable read operation on both 

SPISR and SPICR of the devices. 

• SPICR of DUT_MASTER 

= 8’b1100_0000 

• SPICR of DUT_SLAVE = 

8’b1000_0000 

 

Pass 

Test Case #4:  

Transmitter buffer empty interrupt 

support 

 

Function to be tested 

• Transmitter buffer empty 

interrupt support in both master 

mode and slave mode 

Procedure 

1. Hold for 20 clock cycles 

2. Disable read operation on both 

SPISR and SPICR of the devices. 

 

• SPISR of DUT_MASTER 

= 8’b0100_1111  

• tb_w_uospi_IRQ_master = 

1’b1 

• tb_w_uospi_wb_r_dout_m

aster = 32’h0000_4fc0 

• SPISR of DUT_SLAVE = 

8’b0100_1111 

• tb_w_uospi_IRQ_slave = 

1’b1 

• tb_w_uospi_wb_r_dout_sl

ave = 32’h0000_4f80 

 

Pass 
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Test Case #5:  

Push one 8-bit data into the 

TX_buffer16x8 

 

Function to be tested 

• Able to load data into the 

TX_buffer16x8 in both master 

mode and slave 

Procedure 

1. Enable write operation on both 

TX_buffer16x8. 

2. Load 8’b1010_1010 to 

DUT_MASTER’s 

TX_buffer16x8. 

3. Store 8’b0101_0101 to 

DUT_SLAVE’s TX_buffer16x8. 

4. Disable write operation on both 

TX_buffer16x8. 

5. Enable read operation on both 

SPISR. 

6. Hold for 20 clock cycles. 

7. Disable read operation on both 

SPISR. 

• bFIFO_FIFOmem[0] of 

DUT_MASTER = 

8’b1010_1010 

• SPISR of DUT_MASTER 

= 8’b0000_1111  

• tb_w_uospi_IRQ_master = 

1’b0 

• bFIFO_FIFOmem[0] of 

DUT_SLAVE = 

8’b0101_0101 

• SPISR of DUT_SLAVE = 

8’b0000_1111 

• tb_w_uospi_IRQ_slave = 

1’b0 

 

 

Pass 

Test case #6:  

Mode 0 serial data communication 

 

Function to be tested 

• Able to transmit and receive data 

simultaneously in both master 

mode and slave mode when mode 

0 is used. 

Procedure 

1. Enable write operation on both 

TX_buffer16x8. 

2. Store 8’b1010_1010 to 

DUT_MASTER’s 

TX_buffer16x8. 

3. Store 8’b0101_0101 to 

DUT_SLAVE’s TX_buffer16x8. 

4. Disable write operation on both 

TX_buffer16x8. 

5. Hold for 100 clock cycles. 

 

• tb_w_uiospi_SS_n = 1’b0 

• 8 baud clock cycles should 

appear on the 

tb_w_uiospi_SCLK  

• There should be only one 

bit of data on the 

tb_w_uiospi_MOSI for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b1010_1010 

• There should be only one 

bit of data on the 

tb_w_uiospi_MISO for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b0101_0101 

• Each of these data bit is 

transmitted serially at one 

half clock cycle before the 

rising edge of the 

tb_w_uiospi_SCLK clock. 

• tb_w_uospi_IRQ_master = 

1’b1 

Pass 
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• tb_w_uospi_IRQ_slave = 

1’b1 

Test case 7:  

Receiver buffer full interrupt support 

after receiving a 1-byte data  

(RXFM = 0) 

 

Function to be tested 

• Receiver buffer full interrupt 

support in both master mode and 

slave mode when RXFM = 0 

Procedure 

1. Hold for 15 clock cycles. 

• SPISR of DUT_MASTER 

= 8’b1000_1111  

• tb_w_uospi_IRQ_master = 

1’b1 

• SPISR of DUT_SLAVE = 

8’b1000_1111 

• tb_w_uospi_IRQ_slave = 

1’b1 

 

Pass 

Test case 8:  

Pop 1-byte of received data from the 

RX_buffer16x8 

 

Function to be tested 

• Pop 1-byte of received data from 

the RX_buffer16x8 in both 

master mode and slave mode 

Procedure 

1. Enable read operation on both 

RX_buffer16x8. 

2. Disable read operation on 

RX_buffer16x8 

3. Enable read operation on both 

SPISR and SPICR of the devices. 

4. Hold for 5 clock cycles. 

5. Disable read operation on both 

SPISR and SPICR of the devices. 

• tb_w_uospi_wb_r_dout_m

aster = 32’h00000055 

• SPISR of DUT_MASTER 

= 8’b0000_1111 

• tb_w_uospi_IRQ_master = 

1’b0 

• tb_w_uospi_wb_r_dout_sl

ave = 32’h000000aa 

• SPISR of DUT_SLAVE = 

8’b0000_1111 

• tb_w_uospi_IRQ_slave = 

1’b0 

 

Pass 

Test case #9:  

Receiver buffer full interrupt support 

after receiving 16x1-byte data  

(RXFM = 1) 

 

Function to be tested 

• Receiver buffer full interrupt 

support in both master mode and 

slave mode when RXFM = 1 

Procedure 

1. Enable write operation on both 

SPICR. 

2. Configure DUT_MASTER’s 

SPICR with 8’b0100_0000. 

3. Configure DUT_SLAVE’s 

SPICR with 8’b0000_0000. 

4. Disable write operation on both 

SPICR and enable write 

operation on both SPISR. 

• SPISR of DUT_MASTER 

= 8’b1000_1111  

• tb_w_uospi_IRQ_master = 

1’b1 

• SPISR of DUT_SLAVE = 

8’b1000_1111 

• tb_w_uospi_IRQ_slave = 

1’b1 

• All the received data 

should be stored correctly 

on the RX_buffer16x8 of 

both devices. 

 

Pass 
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5. Configure both SPISR with 

8’b0001_1111. 

6. Disable write operation on both 

SPISR and enable write operation 

on both TX_buffer16x8. 

7. Store 16-1byte data into both 

TX_buffer16x8. 

8. Disable write operation on 

TX_buffer16x8 and enable write 

operation on SPICR. 

9. Configure DUT_MASTER’s 

SPICR with 8’b1100_0000. 

10. Configure DUT_SLAVE’s 

SPICR with 8’b1000_0000. 

11. Disable write operation on both 

SPICR. 

12. Enable read operation on SPISR 

and SPICR of the devices. 

13. Hold for 1640 clock cycles. 

14. Enable write operation on both 

TX_buffer16x8. 

15. Store one 8-bit data into both 

TX_buffer16x8. 

16. Disable write operation on both 

TX_buffer16x8. 

Test case 10:  

Pop 16 number of 1-byte data from the 

RX_buffer16x8 

 

Function to be tested 

• Able to pop data from the 

RX_buffer16x8 in both master 

mode and slave mode 

Procedure 

1. Enable the read operation on both 

RX_buffer16x8. 

2. Hold for 18 clock cycles. 

3. Disable the read operation on 

both RX_buffer16x8. 

• tb_w_uospi_IRQ_master = 

1’b0 

• SPISR of DUT_MASTER 

= 8’b0001_1111 

• tb_w_uospi_IRQ_slave = 

1’b0 

• SPISR of DUT_SLAVE = 

8’b0001_1111 

• All the received data 

should be loaded correctly 

on the 

tb_w_uospi_wb_r_dout_m

aster and the 

tb_w_uospi_wb_r_dout_sl

ave.  

Pass 

Test case 11:  

Mode 1 serial data communication 

 

Function to be tested 

• Able to transmit and receive data 

simultaneously in both master 

mode and slave mode when mode 

1 is used. 

 

 

• tb_w_uiospi_SS_n = 1’b0 

• 8 baud clock cycles should 

appear on the 

tb_w_uiospi_SCLK. 

• There should be only one 

bit of data on the 

tb_w_uiospi_MOSI for 

every baud clock cycles. 

The expected sequence of 

Pass 
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Procedure 

1. Enable write operation on both 

SPICR. 

2. Configure DUT_MASTER’s 

SPICR with 8’b0101_0000. 

3. Configure DUT_SLAVE’s 

SPICR with 8’b0001_0000. 

4. Disable write operation on 

SPICR and enable write 

operation on SPISR. 

5. Configure both SPISR with 

8’b0000_1111. 

6. Disable write operation on both 

SPISR and enable write operation 

on both TX_buffer16x8. 

7. Store 16x1-byte data into both 

TX_buffer16x8. 

8. Disable write operation on both 

TX_buffer16x8 and enable write 

operation on both SPICR. 

9. Configure DUT_MASTER’s 

SPICR with 8’b1101_0000. 

10. Configure DUT_SLAVE’s 

SPICR with 8’b1001_0000. 

11. Disable write operation on both 

SPICR. 

12. Enable read operation on SPISR 

and SPICR of the devices. 

13. Hold for 140 clock cycles 

14. Disable the read operation on 

SPISR and SPICR of the devices. 

data to be transmitted on 

this pin is 8’b1010_1010. 

• There should be only one 

bit of data on the 

tb_w_uiospi_MISO for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b0101_0101. 

• Each of these data bit is 

transmitted serially at the 

rising edge of the 

tb_w_uiospi_SCLK clock. 

• tb_w_uospi_IRQ_master = 

1’b1 

• tb_w_uospi_IRQ_slave = 

1’b1 

 

Test case #12:  

Mode 2 serial data communication 

 

Function to be tested 

• Able to transmit and receive data 

simultaneously in both master 

mode and slave mode when mode 

2 is used. 

Procedure 

1. Enable write operation on both 

SPICR. 

2. Configure DUT_MASTER’s 

SPICR with 8’b1110_0000. 

3. Configure DUT_SLAVE’s 

SPICR with 8’b1010_0000. 

4. Disable the write operation on 

both SPICR. 

5. Enable the read operation on both 

RX_buffer16x8. 

• tb_w_uiospi_SS_n = 1’b0 

• 8 baud clock cycles should 

appear on the 

tb_w_uiospi_SCLK. 

• There should be only one 

bit of data on the 

tb_w_uiospi_MOSI for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b0101_0101. 

• There should be only one 

bit of data on the 

tb_w_uiospi_MISO for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b1010_1010. 

Pass 
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6. Disable the read operation on 

both RX_buffer16x8 and enable 

the read operation on the SPISR 

and SPICR. 

7. Hold for 100 clock cycles 

8. Disable the read operation on 

SPISR and SPICR of the devices. 

 

• Each of these data bit is 

transmitted serially at one 

half clock cycle before the 

falling edge of the 

tb_w_uiospi_SCLK clock. 

• tb_w_uospi_IRQ_master = 

1’b1 

• tb_w_uospi_IRQ_slave = 

1’b1 

Test case #13:  

Mode 3 serial data communication 

 

Function to be tested 

• Able to transmit and receive data 

simultaneously in both master 

mode and slave mode when mode 

3 is used. 

Procedure 

1. Enable write operation on both 

SPICR. 

2. Configure DUT_MASTER’s 

SPICR with 8’b1111_0000. 

3. Configure DUT_SLAVE’s 

SPICR with 8’b1011_0000. 

4. Disable the write operation on 

both SPICR. 

5. Enable the read operation on both 

RX_buffer16x8. 

6. Disable the read operation on 

both RX_buffer16x8 and enable 

the read operation on the SPISR 

and SPICR. 

7. Hold for 110 clock cycles. 

8. Disable the read operation on 

SPISR and SPICR of the devices. 

 

• tb_w_uiospi_SS_n = 1’b0 

• 8 baud clock cycles should 

appear on the 

tb_w_uiospi_SCLK. 

• There should be only one 

bit of data on the 

tb_w_uiospi_MOSI for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b1010_1010. 

• There should be only one 

bit of data on the 

tb_w_uiospi_MISO for 

every baud clock cycles. 

The expected sequence of 

data to be transmitted on 

this pin is 8’b0101_0101. 

• Each of these data bit is 

transmitted serially at the 

falling edge of the 

tb_w_uiospi_SCLK clock. 

• tb_w_uospi_IRQ_master = 

1’b1 

• tb_w_uospi_IRQ_slave = 

1’b1 

Pass 

Test case #14: Selectable transmission 

speed (baud rate) 

 

Function to be tested 

• Support selectable transmission 

speed (baud rate) 

Procedure 

1. Enable write operation on both 

SPICR. 

2. Configure DUT_MASTER’s 

SPICR with 8’b1111_0001. 

3. Configure DUT_SLAVE’s 

SPICR with 8’b1011_0001. 

• Firstly, the uiospi_SCLK is 

expected to be 4 times 

slower than the 

bospi_gen_spi_clk of 

DUT_MASTER. 

• Next, the uiospi_SCLK is 

expected to be 8 times 

slower than the 

bospi_gen_spi_clk of 

DUT_MASTER. 

• Lastly, the uiospi_SCLK is 

expected to be 16 times 

slower than the 

Pass 
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4. Disable the write operation on 

both SPICR. 

5. Enable the read operation on both 

RX_buffer16x8. 

6. Disable the read operation on 

both RX_buffer16x8 and enable 

the read operation on the SPISR 

and SPICR. 

7. Hold for 220 clock cycles. 

8. Disable the read operation on 

SPISR and SPICR of the devices. 

9. Repeat step 1 to 8 by replacing 

some values in the above steps. 

That is, assign 8’b1111_0010 to 

the DUT_MASTER’s SPICR in 

step 2 and 8’b1011_0010 to the 

DUT_SLAVE’s SPICR in step 3, 

and hold 450 clock cycles in step 

7. 

10. Enable write operation in both 

SPISR. 

11. Configure both SPISR with 

8’b0000_0011. 

12. Repeat step 1 to 8 by replacing 

some values in the above steps. 

That is, assign 8’b1111_0011 to 

the DUT_MASTER’s SPICR in 

step 2 and 8’b1011_0011 to the 

DUT_SLAVE’s SPICR in step 3, 

and hold 660 clock cycles in step 

7. 

13. Enable read operation on SPISR 

and SPICR of the devices. 

bospi_gen_spi_clk of 

DUT_MASTER. 

Test case #15:  

Mode Fault Error Interrupt Support 

 

Function to be tested 

• Mode fault error support in 

master mode 

Procedure 

1. Enable write operation on 

DUT_SLAVE’s SPICR. 

2. Configure DUT_SLAVE’s 

SPICR with 8’b1111_0011. 

3. Disable write operation on 

DUT_SLAVE’s SPICR. 

4. Enable read operation on 

DUT_SLAVE’s RX_buffer16x8. 

5. Hold for 120 clock cycles. 

• tb_w_uospi_IRQ_master = 

1’b1 

• SPISR of DUT_MASTER 

= 8’b1010_0011 

• tb_w_uospi_IRQ_slave = 

1’b0 

• SPISR of DUT_SLAVE = 

8’b0000_0011 

Pass 

Table 7.1.2: Test plan for the SPI controller unit’s functional verification 
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7.2 Stimulation Results of the SPI Controller Unit’s Functional Test 

7.2.1 Test Case #1: System Reset 

Figure 7.2.1.1: Stimulation result for test case #1 using ModelSim stimulator. 

1. Before the reset signal is asserted, most of the signals have an unknown value. 

2. The reset signal is asserted in order to initialize all the system registers, FSM 

state, and read/write pointers. 

3. All of the output signals and registers are set to their respective default value.  

4. The bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and the 

DUT_SLAVE is set to 1 by itself respectively when the reset signal is de-

asserted as the TX_buffer16x8 block of each device is initially empty. At the 

end, both SPISRs hold the value of 8’b0100_0000 (0x40) respectively. 

 

7.2.2 Test Case #2: Write Operation on SPISR 

 

Figure 7.2.2.1 Stimulation result for test case #2 using ModelSim stimulator. 

1. Write operation on the SPISR of the DUT_MASTER is activated and an input 

data of 8’b0000_1111 (0x0f) is sent to it. 
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2. Write operation on the SPISR of the DUT_SLAVE is activated and an input 

data of 8’b0000_1111 (0x0f) is sent to it. 

3. The SPISR in both of the DUT_MASTER and the DUT_SLAVE is configured 

with the value of 8’b0000_1111 (0x0f) respectively. 

4. The bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and the 

DUT_SLAVE is set to 1 by itself respectively as the TX_buffer16x8 of each 

device is initially empty. At the end, both SPISRs hold the value of 

8’b0100_1111 (0x4f) respectively. 

 

7.2.3 Test Case #3: Write Operation on SPICR 

 

Figure 7.2.3.1: Stimulation result for test case #3 using ModelSim stimulator. 

1. Write operation on the SPICR of the DUT_MASTER is activated and an input 

data of 8’b1100_0000 (0xc0) is sent to it. 

2. Write operation on the SPICR of the DUT_SLAVE is activated and an input 

data of 8’b1000_0000 (0x80) is sent to it. 

3. The SPICR of the DUT_MASTER is configured with the value of 

8’b1100_0000 (0xc0) whereas the SPICR of the DUT_SLAVE is configured 

with the value of 8’b1000_0000 (0x80) now. 
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7.2.4 Test Case #4: Transmitter Buffer Empty Interrupt Support 

 

Figure 7.2.4.1: Stimulation result for test case #4 using ModelSim stimulator. 

1. Even though the bit 7 (TXEF) of both SPISR is asserted respectively (which 

means the TX_buffer16x8 is now empty), no interrupt request is being 

generated from both of the DUT_MASTER and the DUT_SLAVE. This is 

because both of the SPI controllers are initially de-activated (because SPE = 0) 

and their transmitter buffer empty interrupts are not enabled (because TXEIE = 

0). 

2. When all the conditions are met (TXEF = 1, SPE = 1, TXEIE = 1), both of the 

DUT_MASTER and the DUT_SLAVE will generate an interrupt request to 

notify the CPU for service. 

 

7.2.5 Test Case #5: Push One 8-bit Data into the TX_buffer16x8 

 

Figure 7.2.5.1: Stimulation result for test case #5 using ModelSim stimulator. 

1. Write operation on the TX_buffer16x8 of the DUT_MASTER is activated and 

an input data of 8’b1010_1010 (0xaa) is sent to it. 

2. Write operation on the SPITDR of the DUT_SLAVE is activated and an input 

data of 8’b0101_0101 (0x55) is sent to it. 
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3. The data value of 8’b1010_1010 (0xaa) is stored into the 

TX_buffer16x8.bFIFO_FIFOmem[0] of the DUT_MASTER whereas the data 

value of 8’b0101_0101 (0x55) is stored into the 

TX_buffer16x8.bFIFO_FIFOmem[0] of the DUT_SLAVE. 

4. Bit 6 (TXEF) of the SPISR in both of the DUT_MASTER and DUT_SLAVE 

is initially one. However, it changed to zero after the corresponding input data 

is successfully stored into the TX_buffer16x8 of the DUT_MASTER and 

DUT_SLAVE respectively. At the end, both SPISRs hold the value of 

8’b0000_1111 (0x0f) respectively. 

5. No interrupt request is generated from the DUT_MASTER and also the 

DUT_SLAVE as the TX_buffer16x8 of each device has been filled with one 8-

bit data and is not empty now. 

 

7.2.6 Test Case #6: Mode 0 Serial Data Communication 

 

Figure 7.2.6.1: Stimulation result for test case #6 using ModelSim stimulator  

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b1010_1010 (0xaa) can be successfully transmitted by the DUT_MASTER 

via its MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be 

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these 

data bit is transmitted serially at one half clock cycle before the rising edge of 

the SCLK clock. 

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register 

(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (0xaa) 

is stored into receiver shift register (RSR) of the DUT_SLAVE. 
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3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE 

is asserted respectively after they have received one 8-bit data from each other 

(See test case 7). 

 

7.2.7 Test Case #7: Receiver Buffer Full Interrupt Support After Receiving A 1-

byte Data (RXFM = 0) 

 

Figure 7.2.7.1: Stimulation result of test case #7 using ModelSim stimulator. 

1. Since the bit 4 (RXFM) of the SPISR is set to 0 in both of the DUT_MASTER 

and DUT_SLAVE, it indicates that only 1-byte of data is expected to be read 

by CPU. Hence, the interrupt request from both of the DUT_MASTER and 

DUT_SLAVE is asserted when the bit 7 (RXDF) of the SPISR become 1 

(indicates that the 1-byte of data has been completely received). At the end, both 

SPISRs hold the value of 8’b1000_1111 (0x8f) respectively. 

 

7.2.8 Test Case #8: Pop 1-byte of Received Data from the RX_buffer16x8 

  

Figure 7.2.8.1: Stimulation result for test case #8 using ModelSim stimulator. 

1. Read operation on the RX_buffer16x8 of the DUT_MASTER is activated.  

2. Read operation on the RX_buffer16x8 of the DUT_SLAVE is activated. 
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3. The data value of 32’h0000_0055 (0x0000_0055) stored in the 

RX_buffer16x8.FIFOmem[0] can be read by the DUT_MASTER. On the other 

hand, the DUT_SLAVE can also read the received data whose value is 

32’h0000_000aa (0x0000_000aa) from its RX_buffer16x8.FIFOmem[0]. 

4. The bit 7 (RXDF) of the SPISR for both of the DUT_MASTER and the 

DUT_SLAVE is set to 0 respectively because the 1-byte of received data has 

been read from the RX_buffer16x8. At the end, both SPISRs hold the value of 

8’b0001_1111 (0x1f) respectively. 

5. The de-assertion of bit 7 in SPISR causes the interrupt request in both of the 

devices to be de-activated. 

 

7.2.9 Test Case #9: Receiver Buffer Full Interrupt Support After Receiving 16x1-

byte Data (RXFM = 1) 

 

Figure 7.2.9.1: Stimulation result for test case #9 using ModelSim stimulator. 

 

Figure 7.2.9.2: Stimulation result for test case #9 using ModelSim stimulator (cont’d). 

1. Since the bit 4 (RXFM) of the SPISR is set to 1 in both of the DUT_MASTER 

and the DUT_SLAVE, it indicates that 16 number of 8-bit data are expected to 

be read by the CPU. Moreover, both of the transmit buffer empty and received 

buffer full interrupt have also been enabled. 

2. So, there are two reasons why the interrupt requests from both of the devices 

happen here: 

a. Their TX_buffer16x8 become empty (TXEF = 1) after sending 16 

number of 8-bit data (See test case 4). 
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b. Their RX_buffer16x8 become full (RXDF = 1) after receiving 16 

number of 8-bit data. 

3. A new data is then inserted into their TX_buffer16x8 to disable the transmitter 

buffer empty interrupt. At the end, the interrupt requests from both of the 

DUT_MASTER and the DUT_SLAVE remain asserted, indicating that the SPI 

controller can issue an interrupt to alert the CPU after receiving 16 number of 

1-bit data.  

 

7.2.10 Test Case #10: Pop 16 Number of 1-byte Data from the RX_buffer16x8 

 

Figure 7.2.10.1: Stimulation result for test case #10 using ModelSim stimulator. 

1. Read operation on the RX_buffer16x8 of the DUT_MASTER and the 

DUT_SLAVE is activated respectively. 

2. The 16 number of 1-byte data that were stored in the RX_buffer16x8 of the 

DUT_MASTER and the DUT_SLAVE can be successfully read by them. 

3. The bit 7 (RXDF) of the SPISR for both of the DUT_MASTER and the 

DUT_SLAVE is set to 0 respectively because the RX_buffer16x8s in both 

devices are no longer full with data. At the end, both SPISRs hold the value of 

8’b0001_1111 (0x1f) respectively. 

4. The de-assertion of bit 7 in SPISR causes the interrupt request in both of the 

devices to be de-activated. 
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7.2.11 Test Case #11: Mode 1 Serial Data Communication 

 

Figure 7.2.11.1: Stimulation result for test case #11 using ModelSim stimulator. 

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b1010_1010 (0xaa) can be successfully transmitted by the DUT_MASTER 

via its MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be 

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these 

data bit is transmitted serially at the rising edge of the SCLK clock. 

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register 

(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (0xaa) 

is stored into receiver shift register (RSR) of the DUT_SLAVE. 

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE 

is asserted respectively after they have received one 8-bit data from each other 

(See test case 7). 

 

7.2.12 Test Case #12: Mode 2 Serial Data Communication 

 

Figure 7.2.12.1: Stimulation result for test case #12 using ModelSim stimulator.  

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b0101_0101 (0x55) can be successfully transmitted by the DUT_MASTER 

via its MOSI pin. Similarly, the data value of 8’b1010_1010 (0xaa) can also be 
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successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these 

data bit is transmitted serially at one half clock cycle before the falling edge of 

the SCLK clock. 

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b1010_1010 (0xaa) is stored into the receiver shift register 

(RSR) of the DUT_MASTER whereas the data value of 8’b0101_0101 (0x55) 

is stored into receiver shift register (RSR) of the DUT_SLAVE. 

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE 

is asserted respectively after they have received one 8-bit data from each other 

(See test case 7). 

 

7.2.13 Test Case #13: Mode 3 Serial Data Communication 

 

Figure 7.2.13.1: Stimulation result for test case #13 using ModelSim stimulator.  

1. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b1010_1010 (0xaa) can be successfully transmitted by the DUT_MASTER 

via its MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be 

successfully transmitted by the DUT_SLAVE via its MISO pin. Each of these 

data bit is transmitted serially at the falling edge of the SCLK clock. 

2. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b0101_0101 (0x55) is stored into the receiver shift register 

(RSR) of the DUT_MASTER whereas the data value of 8’b1010_1010 (0xaa) 

is stored into receiver shift register (RSR) of the DUT_SLAVE. 

3. The interrupt request from both of the DUT_MASTER and the DUT_SLAVE 

is asserted respectively after they have received one 8-bit data from each other 

(See test case 7). 
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7.2.14 Test Case #14: Selectable Transmission Speed (Baud Rate) 

 

Figure 7.2.14.1: Stimulation result for test case #14 with SCLK clock signal is 4 times 

slower than the I/O clock of the DUT_MASTER. 

1. The SCLK clock signal can be configured to be 4 times slower than the I/O 

clock of the DUT_MASTER. 

 

Figure 7.2.14.2: Stimulation result for test case #14 with SCLK clock signal is 8 times 

slower than the I/O clock of the DUT_MASTER. 

1. The SCLK clock signal can be configured to be 8 times slower than the I/O 

clock of the DUT_MASTER. 

 

Figure 7.2.14.3: Stimulation result for test case #14 with SCLK clock signal is 16 times 

slower than the I/O clock of the DUT_MASTER. 

1. The SCLK clock signal can be configured to be 16 times slower than the I/O 

clock of the DUT_MASTER. 
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7.2.15 Test Case #15: Mode Fault Error Interrupt Support 

 

Figure 7.2.15.1: Stimulation result for test case #15 using ModelSim stimulator.  

1. The contents of the two shift registers get exchanged once a total of eight pulses 

of clock signals are generated. When the data transaction is completed, the 

DUT_MASTER will de-activate the SCLK signal and pull its SS pin to high.  

2. The DUT_MASTER’s transmit buffer empty and received full interrupt 

supports are both disabled for this test case, leaving the mode fault error 

interrupt support being activated only. Meaning, the interrupt request from the 

DUT_MASTER will be generated if and only if a mode fault error is detected. 

3. The DUT_ SLAVE is reconfigured to act as a master. Since there are two master 

devices in the same connection, any attempt to pull the SS pin to low will trigger 

the mode fault error. 

4. The newly configured master device attempts to initiate the communication 

with the DUT_MASTER by pulling the SS pin to low. 

5. Once the mode fault error is successfully detected, the bit 5 (MODF) of the 

DUT_MASTER’s SPISR will be set to 1. 

6. An interrupt request corresponding to the mode fault error detection is 

immediately issued by the DUT_MASTER in order to alert the CPU to take 

action. 

 

 

 

 

 

1 

2 

1 

3 

4 

5 

6 



Chapter 7: Verification Specification and Stimulation Result 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
94 

7.3 Test Plan for SPI Controller Unit’s Integration Test with RISC32 

Once the developed SPI controller has met its functional specifications, it is then ready 

to be integrated into the existing RISC32. In order to do this, the interface connection 

between the SPI controller unit and the RISC32 is developed based on the I/O memory 

mapping technique as this technique keeps the instructions set small. After that, a test 

plan is created for verifying the behaviors of the integrated SPI controller unit and the 

RISC32. 

As indicated in Figure 7.3.1. it is the RISC32 discussed in Chapter 4 that is being used 

as the c_risc_dut and the c_risc_client respectively during the verification process. On 

the other hand, each of the RISC32s has its own flash memory (a non-volatile memory) 

where it can get its program codes to execute upon reset. For your information, all the 

written programs such as the MIPS test programs and the exception handler programs 

are first stored into the flash memory before the verification test starts.  

In this test, the SPI controller unit that has been integrated into the c_risc_dut is 

configured as a master device whereas the SPI controller unit which is integrated in the 

c_risc_client is set as a slave device. Same type of SPI controller unit is used throughout 

the verification process but with different operation modes (master mode or slave mode) 

to prove that the designed SPI controller unit can function correctly in both operation 

modes. In this test phase, a testbench has been specifically developed based on the 

constructed test plan and Appendix B.2 provides the full information about this 

testbench. 
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Figure 7.3.1: The connection mechanism of the c_risc_dut, c_risc_client, SPI_flash_dut, 

and SPI_flash_client for SPI controller unit’s integration test with RISC32. 
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Test Expected Output Status 

Test Case #1:  

System Reset 

 

Function to be tested 

• Reset the whole 

RISC32 (including 

SPI controller unit) 

Procedure 

1. Reset both devices. 

• uiospi_MOSI of c_risc_dut = 1’b0 

• uiospi_MISO of c_risc_dut = 1’b1 

• uiospi_SCLK of c_risc_dut = 1’b0 

• uiospi_SS_n of c_risc_dut = 1’b1 

• uospi_IRQ of c_risc_dut = 1’b0 

• uospi_wb_r_dout of c_risc_dut = 32’hz 

• SPICR of c_risc_dut = 8’h00  

• SPISR of c_risc_dut = 8’h00 

• uodp_if_pseudo_pc of c_risc_dut = 

8’hbfc0_0000 

 

• uiospi_MOSI of c_risc_client = 1’b0 

• uiospi_MISO of c_risc_client = 1’b1 

• uiospi_SCLK of c_risc_client = 1’b0 

• uiospi_SS_n of c_risc_client = 1’b1 

• uospi_IRQ of c_risc_client = 1’b0 

• uospi_wb_r_dout of c_risc_client = 

32’hz 

• SPICR of c_risc_client = 8’h00  

• SPISR of c_risc_client = 8’h00 

• uodp_if_pseudo_pc of c_risc_client = 

8’hbfc0_0000 

Pass 

Test Case #2:  

Transmitter buffer empty 

interrupt support 

 

Function to be tested 

• Transmitter buffer 

empty interrupt 

support in both 

master mode and 

slave mode 

Procedure for c_risc_dut 

1. Store a value of 0x08 

to PICMASK. 

2. Store a value of 0x05 

to both SPISR  

3. Store a value of 0xc0 

to SPICR.  

Procedure for c_risc_client 

1. Store a value of 0x08 

to PICMASK. 

2. Store a value of 0x05 

to both SPISR  

3. Store a value of 0x80 

to SPICR. 

• PICMASK of c_risc_dut = 8’h08 

• PICSTAT of c_risc_dut = 8’h03 

• SPISR of c_risc_dut = 8’h45 

• SPICR of c_risc_dut = 8’hc0 

• uospi_IRQ of c_risc_dut = 1’b1 

• uodp_if_pc of c_risc_dut = 

8’h8001_b400 (Jump to the exception 

handler address in the next clock cycle) 

• bcpo_cause[6:2] of c_risc_dut = 

6’b00_0000 

• bcpo_epc of c_risc_dut = bicp0_if_pc 

of c_risc_dut  

 

• PICMASK of c_risc_client = 8’h08 

• PICSTAT of c_risc_client = 8’h03 

• SPISR of c_risc_client = 8’h45 

• SPICR of c_risc_client = 8’h80 

• uospi_IRQ of c_risc_client = 1’b1 

• uodp_if_pc of c_risc_client = 

8’h8001_b400 (Jump to the exception 

handler address in the next clock cycle) 

• bcpo_cause[6:2] of c_risc_client = 

6’b00_0000 

Pass 
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• bcpo_epc of c_risc_client = 

bicp0_if_pc of c_risc_client  

Test Case #3:  

Mode 0 Serial Data 

Communication 

 

Function to be tested 

• Able to transmit and 

receive data 

simultaneously in 

both master mode 

and slave mode when 

mode 0 is used. 

Procedure for c_risc_dut 

1. Store 0xaa to 

SPITDR. 

2. Store 0x0b to SPISR 

3. Store 0xc0 to SPICR 

Procedure for c_risc_client 

1. Store 0x55 to 

SPITDR. 

2. Store 0x0b to SPISR 

3. Store 0x81 to SPICR 

• uiospi_SS_n = 1’b0 

• 8 baud clock cycles should appear on 

the uiospi_SCLK. 

• There should be only one bit of data on 

the uiospi_MOSI for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b1010_1010. 

• There should be only one bit of data on 

the uiospi_MISO for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b0101_0101. 

• Each of these data bit is transmitted 

serially at one half clock cycle before 

the rising edge of the uiospi_SCLK 

clock. 

• uospi_IRQ of c_risc_dut = 1’b1 

• uospi_IRQ of c_risc_client = 1’b1 

Pass 

Test Case #4:  

Receiver buffer full interrupt 

support 

 

Function to be tested 

• Receiver buffer full 

interrupt support in 

both master mode 

and slave mode. 

 

• PICMASK of c_risc_dut = 8’h08 

• PICSTAT of c_risc_dut = 8’h03 

• SPISR of c_risc_dut = 8’hcb 

• SPICR of c_risc_dut = 8’hc0 

• uospi_IRQ of c_risc_dut = 1’b1 

• uodp_if_pc of c_risc_dut = 

8’h8001_b400 (Jump to the exception 

handler address in the next clock cycle) 

• bcpo_cause[6:2] of c_risc_dut = 

6’b00_0000 

• bcpo_epc of c_risc_dut = bicp0_if_pc 

of c_risc_dut  

 

• PICMASK of c_risc_client = 8’h08 

• PICSTAT of c_risc_client = 8’h03 

• SPISR of c_risc_client = 8’hcb 

• SPICR of c_risc_client = 8’h81 

• uospi_IRQ of c_risc_client = 1’b1 

• uodp_if_pc of c_risc_client = 

8’h8001_b400 (Jump to the exception 

handler address in the next clock cycle) 

• bcpo_cause[6:2] of c_risc_client = 

6’b00_0000 

• bcpo_epc of c_risc_client = 

bicp0_if_pc of c_risc_client  

 

Pass 
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Test Case #5:  

Mode 1 Serial Data 

Communication 

 

Function to be tested 

• Able to transmit and 

receive data 

simultaneously in 

both master mode 

and slave mode when 

mode 1 is used. 

Procedure for c_risc_dut 

1. Store 0x55 to 

SPITDR. 

2. Store 0x0f to SPISR 

3. Store 0xd1 to SPICR 

Procedure for c_risc_client 

1. Store 0xaa to 

SPITDR. 

2. Store 0x0f to SPISR 

3. Store 0x91 to SPICR 

• uiospi_SS_n = 1’b0 

• 8 baud clock cycles should appear on 

the uiospi_SCLK. 

• There should be only one bit of data on 

the uiospi_MOSI for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b0101_0101. 

• There should be only one bit of data on 

the uiospi_MISO for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b1010_1010. 

• Each of these data bit is transmitted 

serially at the rising edge of the 

uiospi_SCLK clock. 

• uospi_IRQ of c_risc_dut = 1’b1 

• uospi_IRQ of c_risc_client = 1’b1 

Pass 

Test Case #6:  

Mode 2 Serial Data 

Communication 

 

Function to be tested 

• Able to transmit and 

receive data 

simultaneously in 

both master mode 

and slave mode when 

mode 2 is used. 

Procedure for c_risc_dut 

1. Store 0xaa to 

SPITDR. 

2. Store 0x0f to SPISR 

3. Store 0xe2 to SPICR 

Procedure for c_risc_client 

1. Store 0xaa to 

SPITDR. 

2. Store 0x0f to SPISR 

3. Store 0xa1 to SPICR 

• uiospi_SS_n = 1’b0 

• 8 baud clock cycles should appear on 

the uiospi_SCLK. 

• There should be only one bit of data on 

the uiospi_MOSI for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b1010_1010. 

• There should be only one bit of data on 

the uiospi_MISO for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b0101_0101. 

• Each of these data bit is transmitted 

serially at one half clock cycle before 

the falling edge of the uiospi_SCLK 

clock. 

• uospi_IRQ of c_risc_dut = 1’b1 

• uospi_IRQ of c_risc_client = 1’b1 

Pass 



Chapter 7: Verification Specification and Stimulation Result 
 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
98 

Test Case #7:  

Mode 3 Serial Data 

Communication 

 

Function to be tested 

• Able to transmit and 

receive data 

simultaneously in 

both master mode 

and slave mode when 

mode 3 is used. 

Procedure for c_risc_dut 

1. Store 0x55 to 

SPITDR. 

2. Store 0x0b to SPISR 

3. Store 0xf3 to SPICR 

Procedure for c_risc_client 

1. Store 0xaa to 

SPITDR. 

2. Store 0x0f to SPISR 

3. Store 0xb1 to SPICR 

• uiospi_SS_n = 1’b0 

• 8 baud clock cycles should appear on 

the uiospi_SCLK. 

• There should be only one bit of data on 

the uiospi_MOSI for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b0101_0101. 

• There should be only one bit of data on 

the uiospi_MISO for every baud clock 

cycles. The expected sequence of data 

to be transmitted on this pin is 

8’b1010_1010. 

• Each of these data bit is transmitted 

serially at the falling edge of the 

uiospi_SCLK clock. 

• uospi_IRQ of c_risc_dut = 1’b1 

• uospi_IRQ of c_risc_client = 1’b1 

Pass 

Test Case #8:  

Mode fault error interrupt 

support 

 

Function to be tested 

• Mode fault error 

interrupt in master 

mode 

Procedure for c_risc_client 

1. Store 0x55 to 

SPITDR. 

2. Store 0xf1 to SPICR 

• PICMASK of c_risc_dut = 8’h08 

• PICSTAT of c_risc_dut = 8’h03 

• SPISR of c_risc_dut = 8’h6b 

• SPICR of c_risc_dut = 8’hf3 

• uospi_IRQ of c_risc_dut = 1’b1 

• uodp_if_pc of c_risc_dut = 

8’h8001_b400 (Jump to the exception 

handler address in the next clock cycle) 

• bcpo_cause[6:2] of c_risc_dut = 

6’b00_0000 

• bcpo_epc of c_risc_dut = bicp0_if_pc 

of c_risc_dut  

Pass 

Table 7.3.1: Test plan for the SPI controller unit’s integration test with RISC32 

pipeline processor. 
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7.4 MIPS Test Program for c_risc_dut in Integration Test 

Label Instruction Comment 

setting: lui $s0, 0xbfff  

 ori $s0, $s0, 

0xfe00 

$s0 = 0xbfff_fe00 (I/O peripheral address) 

 addi $t0, $zero, 

0x08 

$t0[7:0] = 8’b0000_1000 

 sb $t0, 34($s0) PICMASK = 0x08 => enable SPI controller’s 

interrupt. Interrupt method instead of the polling 

method will be used throughout this test program 

for testing the ISR execution of the SPI 

controller unit. 

Test Case #2 

TXEF_int: addi $t0, $zero, 

0x05 

$t0[7:0] = 8’b0000_0101 

 sb $t0, 37($s0) SPISR = 0x05 => enable transmitter buffer 

empty interrupt, disable receiver full buffer 

interrupt, halt TX FSM when TX_buffer16x8 is 

empty 

 addi $t0, $zero, 

0xc0 

$t0[7:0] = 8’b1100_0000 

 sb$t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, set 

as master, use mode 0, use baud rate = (SPI i/o 

clock)/2 

 jal program_code Whenever the transmitter buffer is detected to be 

empty (TXEF bit = 1), the SPI controller unit 

will interrupt the CPU for service even though 

the CPU is busy executing its normal task. 

Test Case #3 and #4 

mode_0: addi $t0, $zero, 

0xaa 

$t0[7:0] = 8’b1010_1010 

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[0] = 0xaa 

 addi $t0, $zero, 

0x0b 

$t0[7:0] = 8’b0000_1011 

 sb $t0, 37($s0) SPISR = 0x0b => disable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 is 

empty or when one byte of data is received 

 addi $t0, $zero, 

0xc0 

$t0[7:0] = 8’b1100_0000 

 sb $t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, set 

as master, use mode 0, use baud rate = (SPI i/o 

clock)/2 

 jal program_code Whenever the receiver buffer is detected to be 

full (RXDF bit = 1), the SPI controller unit will 

interrupt the CPU for service even though the 

CPU is busy executing its normal task. 

Test Case #5 
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mode_1: addi $t0, $zero, 

0x55 

$t0[7:0] = 8’b0101_0101  

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[1] = 0x55 

 addi $t0, $zer0, 

0x0f 

$t0[7:0] = 8’b0000_1111 

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 is 

empty or when one byte of data is received 

 addi $t0, $zero, 

0xd1 

$t0[7:0] = 8’b1101_0001 

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, set 

as master, use mode 1, use baud rate = (SPI i/o 

clock)/4 

 jal program_code Whenever the transmitter buffer is empty (TXEF 

= 1) or the receiver buffer is full (RXDF = 1), the 

SPI controller unit will interrupt the CPU for 

service even though the CPU is busy executing 

its normal task. 

Test Case #6 

mode_2 addi $t0, $zero, 

0xaa 

$t0[7:0] = 8’b1010_1010  

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[3] = 0xaa 

 addi $t0, $zer0, 

0x0f 

$t0[7:0] = 8’b0000_1111 

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 is 

empty or when one byte of data is received 

 addi $t0, $zero, 

0xe2 

$t0[7:0] = 8’b1110_0010 

 sb $t0, 36($s0) SPICR = 0xe2 => activate the SPI controller, set 

as master, use mode 2, use baud rate = (SPI i/o 

clock)/8 

 jal program_code Whenever the transmitter buffer is empty (TXEF 

= 1) or the receiver buffer is full (RXDF = 1), the 

SPI controller unit will interrupt the CPU for 

service even though the CPU is busy executing 

its normal task. 

Test Case #7 

mode_3: addi $t0, $zero, 

0x55 

$t0[7:0] = 8’b0101_0101  

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[2] = 0x55 

 addi $t0, $zer0, 

0x0b 

$t0[7:0] = 8’b0000_1011 

 sb $t0, 37($s0) SPISR = 0x0f => disable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 is 

empty or when one byte of data is received 
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 addi $t0, $zero, 

0xf3 

$t0[7:0] = 8’b1111_0011 

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, set 

as master, use mode 3, use baud rate = (SPI i/o 

clock)/16 

 jal program_code Whenever the receiver buffer is full (RXDF = 1), 

the SPI controller unit will interrupt the CPU for 

service even though the CPU is busy executing 

its normal task. 

Test Case #8 

MODF_int: jal program_code Only one master can exist in the connection at a 

time to initiate all the communications with 

slaves. Since there are two master devices in the 

same connection, any attempt from a master 

device to pull the SS pin to low will trigger the 

mode fault (MODF) error in other master device. 

Whenever the MODF error is detected, the SPI 

controller unit will interrupt the CPU for service 

even though the CPU is busy executing its 

normal task. 

 j exit  

Function 

program_code: addi $t1, $zero, 

300 

$t1 = 300 

loop_1 addi $t1, $t1, -1 $t1 = $t1 -1 

 slt $t2, $t1, $zero $t2 = 1 if $t1 < 0, $t2 = 0 if $t1 >= 0 

 beq $t2, $zero, 

loop_1 

branch to loop_1 if $t2=0 

 jr $ra This program_code function represents a simple 

user program which is just a loop to decrease the 

value from 300 to 0. It will be executed 

whenever it is called in order to test if the 

integrated SPI controller is able to interrupt the 

CPU for service while the CPU is executing its 

normal task. 

exit: nop  

Table 7.4.1: MIPS test program for c_risc_dut in integration test. 
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7.5 MIPS Test Program for c_risc_client in Integration Test 

Label Instruction Comment 

setting: lui $s0, 0xbfff  

 ori $s0, $s0, 0xfe00 $s0 = 0xbfff_fe00 (I/O peripheral address) 

 addi $t0, $zero, 0x08 $t0[7:0] = 8’b0000_1000 

 sb $t0, 34($s0) PICMASK = 0x08 => enable SPI controller’s 

interrupt. Interrupt method instead of the 

polling method will be used throughout this 

test program for testing the ISR execution of 

the SPI controller unit. 

Test case #2 

TXEF_int: addi $t0, $zer0, 0x05 $t0[7:0] = 8’b0000_0101 

 sb $t0, 37($s0) SPISR = 0x05 => enable transmitter buffer 

empty interrupt, disable receiver full buffer 

interrupt, halt TX FSM when TX_buffer16x8 

is empty 

 addi $t0, $zero, 0x80 $t0[7:0] = 8’b1000_0000 

 sb$t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, 

set as slave, use mode 0, use baud rate = (SPI 

i/o clock)/2 

 jal program_code Whenever the transmitter buffer is detected to 

be empty (TXEF bit = 1), the SPI controller 

unit will interrupt the CPU for service even 

though the CPU is busy executing its normal 

task. 

Test case #3 and #4 

mode_0: addi $t0, $zero, 0x55 $t0[7:0] = 8’b0101_0101 

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[0] = 0x55 

 addi $t0, $zero, 0x0b $t0[7:0] = 8’b0000_1011 

 sb $t0, 37($s0) SPISR = 0x0b => disable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 

is empty or when one byte of data is received 

 addi $t0, $zero, 0x81 $t0[7:0] = 8’b1000_0001 

 sb $t0, 36($s0) SPICR = 0xc0 => activate the SPI controller, 

set as slave, use mode 0, use baud rate = (SPI 

i/o clock)/4 

 jal check_RXDF Whenever the receiver buffer is detected to be 

empty (RXDF bit = 1), the SPI controller unit 

will interrupt the CPU for service. 

Test case #5 

mode_1: addi $t0, $zero, 0xaa $t0[7:0] = 8’b1010_1010  

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[1] = 0xaa 

 addi $t0, $zer0, 0x0f $t0[7:0] = 8’b0000_1111 

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 

is empty or when one byte of data is received 

 addi $t0, $zero, 0x91 $t0[7:0] = 8’b1001_0001 
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 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, 

set as slave, use mode 1, use baud rate = (SPI 

i/o clock)/4 

 jal check_RXDF Whenever the transmitter buffer is empty 

(TXEF = 1) or the receiver buffer is full 

(RXDF = 1), the SPI controller unit will 

interrupt the CPU for service even though the 

CPU is busy executing its normal task. 

Test case #6 

mode_2 addi $t0, $zero, 0x55 $t0[7:0] = 8’b0101_0101  

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[3] = 0x55 

 addi $t0, $zer0, 0x0f $t0[7:0] = 8’b0000_1111 

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 

is empty or when one byte of data is received 

 addi $t0, $zero, 0xa1 $t0[7:0] = 8’b1010_0001 

 sb $t0, 36($s0) SPICR = 0xe2 => activate the SPI controller, 

set as slave, use mode 2, use baud rate = (SPI 

i/o clock)/4 

 jal check_RXDF Whenever the transmitter buffer is empty 

(TXEF = 1) or the receiver buffer is full 

(RXDF = 1), the SPI controller unit will 

interrupt the CPU for service even though the 

CPU is busy executing its normal task. 

Test case #7 

mode_3: addi $t0, $zero, 0xaa $t0[7:0] = 8’b1010_1010  

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[2] = 0x55 

 addi $t0, $zer0, 0x0f $t0[7:0] = 8’b0000_1111 

 sb $t0, 37($s0) SPISR = 0x0f => enable transmitter buffer 

empty interrupt, enable receiver buffer full 

interrupt, halt TX FSM when TX_buffer16x8 

is empty or when one byte of data is received 

 addi $t0, $zero, 0xb1 $t0[7:0] = 8’b1011_0001 

 sb $t0, 36($s0) SPICR = 0xd1 => activate the SPI controller, 

set as slave, use mode 3, use baud rate = (SPI 

i/o clock)/4 

 jal check_RXDF Whenever the transmitter buffer is empty 

(TXEF = 1) or the receiver buffer is full 

(RXDF = 1), the SPI controller unit will 

interrupt the CPU for service even though the 

CPU is busy executing its normal task. 

Test case #8 

MODF_int: addi $t0, $zero, 0x55 $t0[7:0] = 8’b0101_0101 

 sb $t0, 38($s0) TX_buffer16x8.bFIFO_FIFOmem[6] = 0x55 

 addi $t0, $zero, 0xf1 $t0[7:0] = 8’b1111_0001 

 sb $t0, 36($s0) SPICR = 0xf1 => activate the SPI controller, 

set as master, use mode 3, use baud rate = (SPI 

i/o clock)/4 
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 jal_program_code In test case 8, this SPI controller unit is 

reconfigured to act as a master device instead 

of the slave device. It will then initiate a 

communication to another master device in the 

c_risc_dut by pulling the shared SS line to low. 

 j exit  

Function #1 

program_code: addi $t1, $zero, 100 $t1 = 100 

loop_1 addi $t1, $t1, -1 $t1 = $t1 -1 

 slt $t2, $t1, $zero $t2 = 1 if $t1 < 0, $t2 = 0 if $t1 >= 0 

 beq $t2, $zero, loop_1 branch to loop_1 if $t2=0 

 jr $ra This program_code function represents a 

simple user program which is just a loop to 

decrease the value from 100 to 0. A smaller 

value is used here to make sure the slave is 

ready before the master initiate a 

communication with it in test case #3 and #4. 

It will be executed whenever it is called in 

order to test if the integrated SPI controller is 

able to interrupt the CPU for service while the 

CPU is executing its normal task. 

Function #2 

check_RXDF: lbu $t1, 37($s0) $t1 = SPISR 

 srl $t1, $t1, 7 $t1 = SPISR[7] = RXDF 

 beq $t1, $zero, 

check_RXDF 

branch to check_RXDF if $t1 = 0 

exit:  nop Before a new transfer mode can be used, need 

to make sure that the SPI controller has used 

the current transfer mode to perform the data 

transmission and sampling. So, this 

check_RXDF function will do this job by 

constantly checking the RXDF bit in the 

SPISR. When a data transfer occurs and a data 

byte has been successfully received, the RXDF 

will be asserted. After successfully testing the 

current mode for data transfer, the program can 

then continue to test a new transfer mode. 

Table 7.5.1: MIPS test program for c_risc_client in integration test 
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7.6 Stimulation Results of the SPI Controller Unit’s Integration Test with RISC32 

7.6.1 Test Case #1: System Reset 

 

Figure 7.6.1.1: Stimulation result for test case #1 using Vivado stimulator. 

1. Before the reset signal is asserted, most of the signals have an unknown value. 

2. The reset signal is asserted in order to initialize all the system registers, FSM 

state, read/write pointer, program counter (PC) and etc. 

3. All of the output signals and registers are set to their respective default values. 

The program counter of both RISC32s is set to point at the memory address of 

0xbfc0_000 (which is the beginning address of the boot ROM) for executing 

the bootloader program. 

 

7.6.2 Test Case #2: Transmitter Buffer Empty Interrupt Support 

Stimulation Result of c_risc_dut:  

 

Figure 7.6.2.1: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator. 
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Figure 7.6.2.2: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator 

(cont’d). 

 

Figure 7.6.2.3: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator 

(cont’d).  

 

Figure 7.6.2.4: Stimulation result of c_risc_dut for test case #2 using Vivado stimulator 

(cont’d).  

1. With the value of 0x08 being set in the PICMASK, the SPI I/O interrupt in 

c_risc_dut is enabled. 

2. Initially, the TX_buffer16x8 of the SPI controller is empty. Upon activation, the 

on-board SPI controller is configured to enable the transmitter buffer empty 

interrupt only (by setting SPISR[2] = 1). Thus, when the bit 6 (TXEF) of the 

SPISR goes high, the SPI controller will initiate an interrupt request (IRQ) to 

notify the CPU for service. As a result, the uospi_IRQ status flag goes high. 

3. Whenever an I/O interrupt is detected, the PICSTAT of the c_risc_dut will be 

updated with a value corresponding to the IRQ source. The value for SPI’s IRQ 

is 0x03. The exception handler will then compare this PICSTAT value to 
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identify which I/O to serve and which Interrupt Service Routine (ISR) to jump 

to. 

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocp0_exc_flag 

and set to flush the IF/ID pipeline register. 

5. The bcp0_stat[1] (which is the CP0’s status register) is set to 1 in order to 

disable further exception from occurring whereas the bcp0_cause[6:2] (which 

is the CP0’s cause register) remain unchanged because the exception code for 

I/O interrupt is 0. 

6. The CP0 will also load the bicp0_if_pc (which is the IF stage’s PC) into the 

bcp0_epc (which is the CP0’s EPC register) for return purpose after executing 

the exception handler program. 

7. The c_risc_dut will then jump to the exception handler address of 0x8001_b400 

in the next clock cycle and start servicing the SPI controller request. 

8. After decoding the PICSTAT value to figure out which ISR to jump to, the 

c_risc_dut will then branch to the ISR of the respective interrupt source and 

execute the ISR. For SPI, the starting address of its ISR is 0x8001_b68c. 

9. For handling the transmitter buffer empty interrupt, the SPI controller will need 

to be disabled. At the end, the SPICR holds the value of 8’b0100_0000 (0x40). 

After the c_risc_dut successfully disables the SPI controller, the uospi_IRQ 

from the SPI controller is also removed and no more interrupt request is 

triggered from the SPI controller. 

10. When the interrupt request is successfully handled, the PICSTAT value that 

stores the I/O interrupt source information will be changed from 0x03 to 0x00 

value. 

11. After completing the SPI’s ISR, the c_risc_dut will branch to the address of 

0x8001_b4bc and pop all the saved contents from stack before returning to the 

user program. When the last instruction which is the eret instruction is being 

executed (bicp0_eret = 1), it will load the saved return address value from 

bcp0_epc (which is the CP0’s EPC register) to the bocp0_eret_addr for jumping 

back to the user program in the next clock cycle. 

12. Upon completing the last instruction in the exception handler program, the 

c_risc_dut returns to the place where it was interrupted and starts to execute 

from that address. 
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13. The bcp0_stat[1] (which is the CP0’s status register) is reset to 0 in order to 

allow further exception from occurring whereas the bcp0_cause (which is the 

CP0’s cause register) is cleared in order to remove the exception code stored in 

it. 

 

Stimulation Result of c_risc_client:  

 

Figure 7.6.2.5: Stimulation result of c_risc_client for test case #2 using Vivado 

stimulator. 

 

Figure 7.6.2.6: Stimulation result of c_risc_client for test case #2 using Vivado 

stimulator (cont’d). 

 

Figure 7.6.2.7: Stimulation result of c_risc_client for test case #2 using Vivado 

stimulator (cont’d). 
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Figure 7.6.2.8: Stimulation result of c_risc_client for test case #2 using Vivado 

stimulator (cont’d). 

1. With the value of 0x08 being set in the PICMASK, the SPI I/O interrupt in 

c_risc_client is enabled. 

2. Initially, the TX_buffer16x8 of the SPI controller is empty. Upon activation, the 

on-board SPI controller is configured to enable the transmitter buffer empty 

interrupt (by setting SPISR[2] = 1) only. Thus, when the bit 6 (TXEF) of the 

SPISR goes high, the SPI controller will initiate an interrupt request (IRQ) to 

notify the CPU for service. As a result, the uospi_IRQ status flag goes high. 

3. Whenever an I/O interrupt is detected, the PICSTAT of the c_risc_client will be 

updated with a value corresponding to the IRQ source. The value for SPI’s IRQ 

is 0x03. The exception handler will then compare this PICSTAT value to 

identify which I/O to serve and which Interrupt Service Routine (ISR) to jump. 

4. When the SPI’s IRQ occurs, the CPO hardware will raise the bocp0_exc_flag 

and set to flush the IF/ID pipeline register. 

5. The bcp0_stat[1] (which is the CP0’s status register) is set to 1 in order to 

disable further exception from occurring whereas the bcp0_cause[6:2] (which 

is the CP0’s cause register) remain unchanged because the exception code for 

I/O interrupt is 0. 

6. The CP0 will also load the bicp0_if_pc (which is the IF stage’s PC) into the 

bcp0_epc (which is the CP0’s EPC register) for return purpose after executing 

the exception handler program. 

7. The c_risc_client will then jump to the exception handler address of 

0x8001_b400 in the next clock cycle and start servicing the SPI controller 

request. 

8. After decoding the PICSTAT value to figure out which ISR to jump to, the 

c_risc_client will then branch to the ISR of the respective interrupt source and 

execute the ISR. For SPI, the starting address of its ISR is 0x8001_b68c. 
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9. For handling the transmitter buffer empty interrupt, the SPI controller will need 

to be disabled. At the end, the SPICR holds the value of 8’b0100_0000 (0x40). 

After the c_risc_client successfully disables the SPI controller, the uospi_IRQ 

from the SPI controller is also removed and no more interrupt request is 

triggered from the SPI controller. 

10. When the interrupt request is successfully handled, the PICSTAT value that 

stores the I/O interrupt source information will be changed from 0x03 to 0x00 

value. 

11. After completing the SPI’s ISR, the c_risc_client will branch to the address of 

0x8001_b4bc and pop all the saved contents from stack before returning to the 

user program. When the last instruction which is the eret instruction is being 

executed (bicp0_eret = 1), it will load the saved return address value from 

bcp0_epc (which is the CP0’s EPC register) to the bocp0_eret_addr for jumping 

back to the user program in the next clock cycle. 

12. Upon completing the last instruction in the exception handler program, the 

c_risc_dut returns to the place where it was interrupted and starts to execute 

from that address. 

13. The bcp0_stat[1] (which is the CP0’s status register) is reset to 0 in order to 

allow further exception from occurring whereas the bcp0_cause (which is the 

CP0’s cause register) is cleared in order to remove the exception code stored in 

it. 

 

7.6.3 Test Case #3: Mode 0 Serial Data Communication 

 

Figure 7.6.3.1: Stimulation result for test case #3 using Vivado stimulator. 
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1. Before the data exchange begins, the c_risc_dut has the data value of 

8’b1010_1010 (0xaa) in its TX_buffer16x8.bFIFO_FIFOmem[0] whereas the  

TX_buffer16x8.bFIFO_FIFOmem[0] of the c_risc_client holds the data value 

of 8’b0101_0101 (0x55). 

2. Same transfer mode, which is mode 0 has been set by both devices for 

communication. 

3. Initially, both of them have disabled the transmitter buffer empty interrupt and 

enabled the received buffer full interrupt only (for test case #4). 

4. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b1010_1010 (0xaa) can be successfully transmitted by the c_risc_dut via its 

MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be 

successfully transmitted by the c_risc_client via its MISO pin. Each of these 

data bit is transmitted serially at one half clock cycle before the rising edge of 

the SCLK clock. 

5. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b0101_0101 (0x55) is stored into the 

RX_buffer16x8.bFIFO_FIFOmem[0] of the c_risc_dut whereas the data value 

of 8’b1010_1010 (0xaa) is stored into RX_buffer16x8.bFIFO_FIFOmem[0] of 

the DUT_SLAVE. 

6. Both of the devices generate an interrupt request upon completing the data 

transaction (See test case #4). 
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7.6.4 Test Case #4: Receiver Buffer Full Interrupt Support 

Stimulation Result of c_risc_dut: 

 

Figure 7.6.4.1: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator. 

 

Figure 7.6.4.2: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator 

(cont’d). 

 

Figure 7.6.4.3: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator 

(cont’d). 
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Figure 7.6.4.4: Stimulation result of c_risc_dut for test case #4 using Vivado stimulator 

(cont’d). 

1. Since the bit 4 (RXFM) of the SPISR is set to 0, it indicates that only 1-byte of 

data is expected to be read by CPU.  

2. The interrupt request is asserted when the bit 7 (RXDF) of the SPISR become 

1 (indicates that the 1-byte of data has been completely received). At the end, 

the SPISR holds the value of 8’b1100_1011 (0xcb). 

4. When the SPI’s IRQ occurs, the CP0 hardware will raise the bocp0_exc_flag. 

Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed 

because the exception occurs at the branch delay slot. 

6. Since the exception occurs at the branch delay slot, the CP0 loads the 

bicp0_id_pc (which is the ID stage’s PC) into the bcp0_epc (which is the CP0’s 

EPC register) for return purpose after executing the exception handler program. 

9. In response to the receiver buffer full interrupt request, the c_risc_dut will 

handle it by loading the received data into the $v1 register. After the c_risc_dut 

successfully loads the data from the RX_buffer16x8 into the $v1 register, the 

uospi_IRQ from the SPI controller is then removed and no more interrupt 

request is triggered by the SPI controller. At the end, the $v1 will hold the 

received 8-bit data whose value is 0x55. 

For the remaining numbers, refer to the stimulation results part of the c_risc_dut in 

test case 2. 
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Stimulation Result of c_risc_client:  

 

Figure 7.6.4.5: Stimulation result of c_risc_client for test case #4 using Vivado 

stimulator. 

 

Figure 7.6.4.6: Stimulation result of c_risc_client for test case #4 using Vivado 

stimulator (cont’d). 

 

Figure 7.6.4.7: Stimulation result of c_risc_client for test case #4 using Vivado 

stimulator (cont’d). 
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Figure 7.6.4.8: Stimulation result of c_risc_client for test case #4 using Vivado 

stimulator (cont’d). 

1. Since the bit 4 (RXFM) of the SPISR is set to 0, it indicates that only 1-byte of 

data is expected to be read by CPU.  

2. The interrupt request is asserted when the bit 7 (RXDF) of the SPISR become 

1 (indicates that the 1-byte of data has been completely received). At the end, 

the SPISR holds the value of 8’b1100_1011 (0xcb). 

4. When the SPI’s IRQ occurs, the CP0 hardware will raise the bocp0_exc_flag. 

Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed 

because the exception occurs at the branch delay slot. 

6. Since the exception occurs at the branch delay slot, the CP0 loads the 

bicp0_id_pc (which is the ID stage’s PC) into the bcp0_epc (which is the CP0’s 

EPC register) for return purpose after executing the exception handler program. 

9. In response to the receiver buffer full interrupt request, the c_risc_client will 

handle it by loading the received data into the $v1 register. After the 

c_risc_client successfully loads the data from the RX_buffer16x8 into the 

$v1register, the uospi_IRQ from the SPI controller is then removed and no more 

interrupt request is triggered by the SPI controller. At the end, the $v1 will hold 

the received 8-bit data whose value is 0xaa. 

For the remaining numbers, refer to the stimulation results part of the 

c_risc_client in test case 2. 
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7.6.5 Test Case #5: Mode 1 Serial Data Communication 

 

Figure 7.6.5.1: Stimulation result for test case #5 using Vivado stimulator. 

1. Before the data exchange begins, the c_risc_dut has the data value of 

8’b0101_0101 (0x55) in its TX_buffer16x8.bFIFO_FIFOmem[1] whereas the  

TX_buffer16x8.bFIFO_FIFOmem[1] of the c_risc_client holds the data value 

of 8’b1010_1010 (0xaa). 

2. Same transfer mode, which is mode 1 has been set by both devices for 

communication. 

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b0101_0101 (0x55) can be successfully transmitted by the c_risc_dut via its 

MOSI pin. Similarly, the data value of 8’b1010_1010 (0xaa) can also be 

successfully transmitted by the c_risc_client via its MISO pin. Each of these 

data bit is transmitted serially at the rising edge of the SCLK clock. 

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b1010_1010 (0xaa) is stored into the 

RX_buffer16x8.bFIFO_FIFOmem[1] of the c_risc_dut whereas the data value 

of 8’b0101_0101 (0x55) is stored into RX_buffer16x8.bFIFO_FIFOmem[1] of 

the DUT_SLAVE. 

5. Both of the devices generate an interrupt request upon completing the data 

transaction. 
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7.6.6 Test Case #6: Mode 2 Serial Data Communication 

 

Figure 7.6.6.1: Stimulation result for test case #6 using Vivado stimulator. 

1. Before the data exchange begins, the c_risc_dut has the data value of 

8’b1010_1010 (0xaa) in its TX_buffer16x8.bFIFO_FIFOmem[3] whereas the  

TX_buffer16x8.bFIFO_FIFOmem[3] of the c_risc_client holds the data value 

of 8’b0101_0101 (0x55). 

2. Same transfer mode, which is mode 2 has been set by both devices for 

communication. 

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b1010_1010 (0xaa) can be successfully transmitted by the c_risc_dut via its 

MOSI pin. Similarly, the data value of 8’b0101_0101 (0x55) can also be 

successfully transmitted by the c_risc_client via its MISO pin. Each of these 

data bit is transmitted serially at one half clock cycle before the falling edge of 

the SCLK clock. 

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b0101_0101 (0x55) is stored into the 

RX_buffer16x8.bFIFO_FIFOmem[3] of the c_risc_dut whereas the data value 

of 8’b1010_1010 (0xaa) is stored into RX_buffer16x8.bFIFO_FIFOmem[3] of 

the DUT_SLAVE. 

5. Both of the devices generate an interrupt request upon completing the data 

transaction. 
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7.6.7 Test Case #7: Mode 3 Serial Data Communication 

 

Figure 7.6.7.1: Stimulation result for test case #7 using Vivado stimulator. 

1. Before the data exchange begins, the c_risc_dut has the data value of 

8’b0101_0101 (0x55) in its TX_buffer16x8.bFIFO_FIFOmem[2] whereas the  

TX_buffer16x8.bFIFO_FIFOmem[2] of the c_risc_client holds the data value 

of 8’b1010_1010 (0xaa). 

2. Same transfer mode, which is mode 3 has been set by both devices for 

communication. 

3. The SS pin goes low for 8 SCLK clock cycles. Meanwhile, the data value of 

8’b0101_0101 (0x55) can be successfully transmitted by the c_risc_dut via its 

MOSI pin. Similarly, the data value of 8’b1010_1010 (0xaa) can also be 

successfully transmitted by the c_risc_client via its MISO pin. Each of these 

data bit is transmitted serially at the falling edge of the SCLK clock. 

4. The data on the MOSI and MISO line get exchange after 8 SCLK clock cycles. 

The data value of 8’b1010_1010 (0xaa) is stored into the 

RX_buffer16x8.bFIFO_FIFOmem[2] of the c_risc_dut whereas the data value 

of 8’b0101_0101 (0x55) is stored into RX_buffer16x8.bFIFO_FIFOmem[2] of 

the DUT_SLAVE. 

5. Both of the devices generate an interrupt request upon completing the data 

transaction. 
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7.6.8 Test Case #8: Mode Fault Error Interrupt Support 

 

Figure 7.6.8.1: Stimulation result for test case #8 using Vivado stimulator. 

Stimulation Result of c_risc_dut: 

 

Figure 7.6.8.2: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator. 

 

Figure 7.6.8.3: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator 

(cont’d) 
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Figure 7.6.8.4: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator 

(cont’d). 

 

Figure 7.6.8.5: Stimulation result of c_risc_dut for test case #8 using Vivado stimulator 

(cont’d). 

1. In this case, the c_risc_client is reconfigured to act as a master. Since there are 

two master devices in the same connection, any attempt to pull the SS pin to 

low will trigger the mode fault error. 

2. The newly configured master device, namely c_risc_client attempts to initiate 

the communication with the c_risc_dut by pulling the SS pin to low. Once the 

mode fault error is successfully detected, the bit 5 (MODF) of the c_risc_dut’s 

SPISR will be set to 1. An interrupt request corresponding to the mode fault 

error detection is immediately issued by the SPI controller in order to alert the 

c_risc_dut to take action. 

4. When the SPI’s IRQ occurs, the CP0 hardware will raise the bocp0_exc_flag. 

Besides, the IF/ID as well as the ID/EX pipeline register are set to be flushed 

because the exception occurs at the branch delay slot. 

6. Since the exception occurs at the branch delay slot, the CP0 loads the 

bicp0_id_pc (which is the ID stage’s PC) into the bcp0_epc (which is the CP0’s 

EPC register) for return purpose after executing the exception handler program. 

9. In response to the mode fault error interrupt request, the c_risc_dut will handle 

it by disabling the SPI controller. At the end, the SPICR holds the value of 

8’b0111_0011 (0x73). After the c_risc_dut successfully disables the SPI 
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controller, the uospi_IRQ from the SPI controller is also removed and no more 

interrupt request is triggered from the SPI controller. 

For the remaining numbers, refer to the stimulation results part of the c_risc_dut 

in test case 2. 
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Chapter 8: Synthesis and Implementation 

8.1 FPGA Resources Utilization of the Synthesized SPI Controller Unit 

After the successful behavioral stimulation of the SPI controller unit, it is then ready 

for logic synthesis and implementation. The FPGA development board used in this 

project is the Xilinx Artix-7 XC7A100T FPGA chip on Digilent Nexys 4 DDR board. 

The resources utilization information of the synthesized SPI controller unit on the 

selected FPGA board is shown in below. 

 

Figure 8.1.1: Resource utilization report of the synthesized SPI controller unit on the 

Nexys 4 DDR (XC7A100T) board. 

 

Figure 8.1.2: Resource utilization summary of the synthesized SPI controller unit on 

the Nexys 4 DDR (XC7A100T) board. 
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8.2 Timing Analysis 

8.2.1 Timing Analysis of the On-board SPI Controller Unit 

Since the SPI controller unit is operating at 10Mhz clock frequency, so it is important 

to make sure that the largest data path delay within it must not exceed 
1

10𝑀ℎ𝑧
= 100𝑛𝑠 

clock period. In order to obtain its maximum data path delay, static timing analysis is 

performed on the on-board SPI controller unit after it had been successfully 

implemented on the selected FPGA board. During the timing analysis, a timing 

constraint/requirement of 20ns clock period with 50% duty cycle is used because the 

RISC32 pipeline processor is running at 50Mhz clock frequency. At the end, the 

maximum data path delay found within the SPI controller unit is about 12.607ns, which 

is below the 100ns clock period. This indicates that the designed SPI controller unit can 

operate safely when the 10Mhz clock frequency is used in it. A timing report describing 

the largest data path delay together with the source and destination of the path is 

provided in below. 

 

 
 

Figure 8.2.1.1: Timing report of the on-board SPI controller unit. 
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Figure 8.2.1.2: Timing report of the on-board SPI controller unit (cont’d). 

 

8.2.2 Timing Analysis of the RISC32 with the SPI Controller Unit  

As mentioned previously, the RISC32 pipeline processor is currently running at 50Mhz 

clock frequency. Thus, it is crucial to ensure that the RISC32 can still operating at the 

same clock frequency even after the SPI controller unit has been integrated into it. To 

check this, static timing analysis is conducted on the entire RISC32 to obtain the 

maximum data path delay. Same period constraint of 20ns is applied here.  

From Figure 8.2.2.1, the worst negative slack (WNS) is calculated to be 2.056ns (> 0) 

which shows that it has spare time after meeting the timing requirement. WNS = 

2.056ns indicates that it takes only approximate 17.944ns (20ns-2.056ns, where 20ns is 

the time period of 1 clock cycle for 50Mhz clock frequency that is specified in the 

constraints file) to complete the execution. Therefore, the maximum possible frequency 

that can be used is 
1

17.944𝑛𝑠
≈ 55𝑀ℎ𝑧. In other words, the RISC32 with the on-board 

SPI controller unit can still run at 50Mhz in terms of implementation. This is further 

supported with the result shown in Figure 8.2.2.2. As we can observe from Figure 

8.2.2.2, the largest data path delay of the RISC32 is only about 17.731ns, which does 

not exceed the 20ns clock period. In short, the integrated SPI controller unit has 

minimum impact on the RISC32 pipeline processor in terms of timing requirement. 
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Figure 8.2.2.1: Design timing summary of the entire RISC32 pipeline processor. 

 

 

Figure 8.2.2.2: Top 10 paths in the RISC32 pipeline processor that have the largest total 

data path delay. 

 

8.3 Proposed Hardware Implementation 

Only a few external components are required to build up the typical transceiver circuit 

for wireless communication in this project and they are the antenna, bias resistors, 

decoupling capacitors, inductors and reference crystal. The overview of the external 

components used can be found in Appendix C.2 and C.3 respectively. Proper power 

supply must be used for the error-free performance of the CC2420 transceiver. Thus, a 

suggested power supply of 3.3 V is used as its voltage regulator power supply input in 

the circuit. In addition, it is also connected directly to the RISC32 pipeline processor 

via the SPI bus and several GPIO pins. The transceiver circuit is designed and followed 

closely based on the reference circuit provided in its datasheet in order to obtain the 

optimum performance of the Zigbee module. Figure 8.3.1. gives the full information 

about how to interface the CC2420 transceiver with the RISC32 pipeline processor. 
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In this project, there will be only one SPI master and one SPI slave in one node. At the 

end, there will be two nodes used in this project because a single Zigbee module is 

meaningless and a pair of Zigbee modules are always required in order to communicate 

with each other wirelessly. In each node, the RISC32 pipeline processor acts as the SPI 

master, providing the serial clock to initiate communication with the CC2420 

transceiver that acts as the SPI slave. The Zigbee module is eventually monitored, 

controlled and programmed by the RISC32 pipeline processor via the high-speed SPI 

bus and the connected GPIO pins. The S25FL128S SPI serial flash memory is also 

available in the connection for program storage purpose. Moreover, a simple active-

high LED circuit that consist of LED1, LED2, LED3 and LED4 is setup and driven by 

the RISC32 pipeline processor for debugging purpose. Upon requested, data received 

by the CC2420 module can be read by the RISC32 pipeline processor via the SPI bus. 

After that, the data can be displayed on a PC by using the UART serial communication. 

In order to do this, the RISC32 pipeline processor needs to be connected to the UART 

interface of a PC that has the PuTTY software.  
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RISC32 pipeline processor

GPIO[0](output)

uiorisc_spi_miso

uiorisc_spi_mosi

uiorisc_spi_sclk

GPIO[1](output)

GPIO[2](input)

GPIO[3](input)

GPIO[4](input)

GPIO[5](input)

GPIO[6](output)

uiospi_MISO

uiospi_MOSI

uiospi_SCLK

uspi
R1

R2 R3

Vcc

27pF 27pF

16Mhz

10uF

The C42 is required for 

the stability of the voltage 

regulator.

45kOhm 

0.5pF

5.6pF

7.5nH

5.6nH
5.6pF

7.5nH

0.5pF An external pull-down resistor is used to set 

a defined value to prevent the SI input from 

floating.

An external crsytal with two loading 

capacitors (C381 and C391) is used 

for providing reference frequency 

for synthesizer.

The bias resistor R451 is 

used to set an accurate 

bias current.

Discrete balun for 

single-ended operation.

SPI serial 

communication SPI master

SPI slave

An external pull-up resistor is used at SO to 

prevent floating input at RISC32.

When mode 0 is set, an external pull-down 

resistor is used to ensure a default logic state.

 

Figure 8.3.1: Detailed descriptions about the connection mechanism of the RISC32 pipeline processor with the CC2420 transceiver by 

using only few external components. 
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SCK
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s25fl128s

urisc_GPIO[31:8]
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See Figure 8.3.1 for 

connection details.
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GPIO[7]

330Ohm

GPIO[8]

GPIO[9]

330Ohm

330Ohm

GPIO[10]

330Ohm

LED1

LED2

LED3
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SPI serial 
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For debugging purpose

 

Figure 8.3.2: Connection mechanism of the c_risc_dut with the CC2420 transceiver for wireless communication. 
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Figure 8.3.3: Connection mechanism of the c_risc_client with the CC2420 transceiver for wireless communication. 



Chapter 8: Synthesis and Implementation 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR  
130 

8.4 Proposed Software Implementation 

After setting up the necessary connections and circuits, the CC2420 transceiver is first 

initialized by using the connected SPI bus and GPIO pins. By using SPI serial 

communication, the RISC32 pipeline processor can send and read data from the 

CC2420 transceiver simultaneously through the SPI interface.  

First of all, activate the CC2420’s voltage regulator for 1.8V power supply and wait 

around 1ms before proceeding to ensure the voltage regulator has powered up. Upon 

activated, reset the CC2420 transceiver and then issue the SXOSCON command strobe 

for activating its crystal oscillator. Once the crystal oscillator of the CC2420 transceiver 

is running, all of its FIFO/RAM can be accessed. Finally, configure both CC2420 

transceivers by programming their configuration registers and FIFO/RAM respectively.  

As stated in the Zigbee protocol, in a network, one device needs to act as the coordinator 

and the rest can be either routers or end devices. Therefore, one of the C2420 transceiver 

is configured as the coordinator whereas the other is used as the end device. Point-to-

point network is used as both Zigbee modules will transmit and receive data wirelessly 

from each other only. In order for data to transmit and receive from one CC2420 

transceiver to another, they need to be properly configured on the same network and 

using the same frequency channel. In this project, the PAN id is manually programmed 

to be 1 and both Zigbee modules are set to operate in channel 12. 

After completing the initialization, both CC2420 transceivers are ready to be used. 

Besides configurating the C2420 transceiver, the RISC32 pipeline processor also 

performs the frame-transfer operations. The processor of the Zigbee end device 

transmits data frame serially to the Zigbee end device through the SPI bus. The Zigbee 

end device will first check its CCA signal for congestion avoidance and do not transmit 

unless the channel is clear. Once the CCA signal goes high, it will then transmit the 

data wirelessly to the Zigbee coordinator and wait for acknowledgement.  

On the other hand, the Zigbee coordinator continuously looks for any wireless radio 

message sent to it. It will only receive the data frame if and only if the address 

recognition is successful. After that, it will pass the received data frame serially to the 

processor interfaced to it and automatically issue an acknowledgement of the data frame 

back to the Zigbee end device, confirming the successful frame reception. Figure 8.4.1 

depicts the expected wireless communication between both CC2420 transceivers. In 
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addition, Section 8.4.1 and 8.4.2 provide the full descriptions of the MIPS program for 

c_risc_dut (interfaced with the Zigbee coordinator) and c_risc_client (interfaced with 

the Zigbee end device) in terms of flowchart. 

 

Zigbee end device Zigbee coordinator

When CCA = 0

Time Time

When CCA = 1

12 symbol periods = 192us

Successful address recognition

  

 

Figure 8.4.1: Expected wireless communication between the Zigbee end device and the 

Zigbee coordinator in this project. 
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8.4.1 Flowchart of the Hardware/Software Behaviors in c_risc_dut 

A MIPS program for c_risc_dut in terms of hardware implementation has been 

developed and the flowchart below provides the full information about the 

hardware/software behaviors in c_risc_dut for on-board testing. 

Start

Enable SPI controller s interrupt

Configure GPIO

Activate the CC2420's voltage 
regulator for 1.8V power supply 
inputs

Wait around 1ms until the 
voltage regulator has powered 
up

Reset the CC2420

Wait around 10ms

Turn on the 16MHz crystal 
oscillator of the CC2420

Wait until the 16MHz crystal 
oscillator is running

Configure MDMCTRL0 register 
to enable automatic 
transmission of acknowledge 
frame

If register write 
operation fails?

Yes No

If register write 
operation fails?

Yes No

If register write 
operation fails?

Yes No

Configure SECCTRL0 register to 
disable RXFIFO protection since 
the MAC level security is not 
used to achieve the optimum 
use of the CC2420's RX FIFO

Light up LED1 to indicate the 
failure of register write 
operation

Light up LED1 to indicate the 
failure of register write 
operation

Light up LED1 to indicate the 
failure of register write 
operation

B

B

B

Configure the RXCTRL1 register 
to use the 3uA reference bias 
current (Recommended setting)

Assign PAN id to 0x0001

If ram write 
operation fails?

Yes No

Light up LED2 to indicate the 
failure of ram write operation

B

Configure FSCTRL register to 
operate in channel 12

If register write 
operation fails?

Yes No

Light up LED1 to indicate the 
failure of register write 
operation

B

A

 

Figure 8.4.1.1: Flowchart of the hardware/software behaviors in c_risc_dut for on-

board testing. 
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B

Turn off the crystal oscillator 
and RF

Reset the CC2420

Wait around 10ms

De-activate the CC2420's 
voltage regulator for 1.8V power 
supply inputs

End

A

If ram write 
operation fails?

Yes No

Assign short address to 0x5678

Light up LED2 to indicate the 
failure of ram write operation

B Enable CC2420's 
receive mode 

Get the Start of Frame 
Delimiter (SFD) signal to check 
if the SFD field has been 
completely received

If SFD == 0?
Yes No

If address recognition 
failure occurs

Light up LED4 to indicate the 
failure of address recognition

Yes No

Get the Start of Frame 
Delimiter (SFD) signal to check 
if the complete MPDU field 
has been received or address 
recognition has failed

If SFD == 1?
Yes No

Read from the RX FIFO of the 
CC2420

Display the received data

Wait around 250us

Light up LED3 to indicate the 
success of address recognition

Get the FIFOP signal to check if  
address recognition has failed

 

Figure 8.4.1.2: Flowchart of the hardware/software behaviors in c_risc_dut for on-

board testing. (cont’d). 
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8.4.2 Flowchart of the Hardware/Software Behaviors in c_risc_client 

A MIPS program for c_risc_client in terms of hardware implementation has been 

developed and the flowchart below provides the full information about the hardware 

and software behaviors in for on-board testing. 

Start

Enable SPI controller s interrupt

Configure GPIO

Activate the CC2420's voltage 
regulator for 1.8V power supply 
inputs

Wait around 1ms until the 
voltage regulator has powered 
up

Reset the CC2420

Wait around 10ms

Turn on the 16MHz crystal 
oscillator of the CC2420

Wait until the 16MHz crystal 
oscillator is running

Configure MDMCTRL0 register 
to enable automatic 
transmission of acknowledge 
frame

If register write 
operation fails?

Yes No

If register write 
operation fails?

Yes No

If register write 
operation fails?

Yes No

Configure SECCTRL0 register to 
disable RXFIFO protection since 
the MAC level security is not 
used to achieve the optimum 
use of the CC2420's RX FIFO

Light up LED1 to indicate the 
failure of register write 
operation

Light up LED1 to indicate the 
failure of register write 
operation

Light up LED1 to indicate the 
failure of register write 
operation

B

B

B

Configure the RXCTRL1 register 
to use the 3uA reference bias 
current (Recommended setting)

Assign PAN id to 0x0001

If ram write 
operation fails?

Yes No

Assign short address to 0x1234

Light up LED2 to indicate the 
failure of ram write operation

B

Configure FSCTRL register to 
operate in channel 12

If register write 
operation fails?

Yes No

Light up LED1 to indicate the 
failure of register write 
operation

B

A  

Figure 8.4.2.1: Flowchart of the hardware/software behaviors in c_risc_client for on-

board testing. 
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Turn off the crystal oscillator 
and RF

Reset the CC2420

Wait around 10ms

De-activate the CC2420's 
voltage regulator for 1.8V power 
supply inputs

End

Receive the correct 
acknowledge frame?

Yes

Light up LED3 and LED4 to 
indicate successful packet 
transmission and reception of 
the correct acknowledge 
frame (successful) 

No

Light up LED1, LED2 and LED3 
to indicate complete 
transmission but fail to receive  
the correct acknowledge 
frame  (not successful)

Enable CC2420's 
receive mode 

If ram write 
operation fails?

Yes No

Configure the data frame to be 
transmitted and write the data 
frame to the TX FIFO of the 
CC2420

Light up LED2 to indicate the 
failure of ram write operation

B

A

Perform packet transmission 
when the respective channel is 
available and not busy by 
enabling CC2420's transmit 
mode 

If SFD == 0?
Yes No

Get the Start of Frame 
Delimiter (SFD) signal to check 
if the SFD field has been 
completely transmitted

Get the Start of Frame 
Delimiter (SFD) signal to check 
if the complete MPDU field 
has been transmitted

If SFD == 1?
Yes No

Light up LED3 to indicate 
complete transmission

If CCA == 0

Get the Clear Channel 
Assessment (CCA) signal for 
collision avoidance

Yes No

Wait around 128us

Wait around 250ms

Read from the RX FIFO of the 
CC2420

B

 

Figure 8.4.2.2: Flowchart of the hardware/software behaviors in c_risc_client for on-

board testing (cont’d). 
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Chapter 9: Conclusion and Future Work 

9.1 Conclusion 

The first two objectives of this project have been achieved. The previously developed 

SPI controller unit has been revised and further enhanced. It can now perform full-

duplex data communication correctly with another SPI-interface device in all of the 4 

transfer modes (mode 0, 1, 2, 3) in both master and slave operations. The micro-

architecture specification of the designed SPI controller unit and its internal blocks have 

been presented and they can be found in Chapter 5. With the availability of well-

developed designed documents, the research works can now be done easier and speed 

up significantly as a SPI controller that meet the standard SPI protocol can now be built 

easily. 

Besides, it has also been successfully integrated into the RISC32 pipeline processor by 

using the I/O memory mapping technique. It can function well with the RISC32 

pipeline processor and vice versa across the CDC boundaries regardless of interrupt or 

polling method is being used. Chapter 6 provides the full information about the 

Interrupt Service Routine (ISR) that is developed specifically for the SPI controller unit. 

In addition, the designed SPI controller has been functionally proven and is able to meet 

all of the specified functional requirements, either as a single unit or in a whole system. 

A comprehensive documentation about the verification specifications, test plans, test 

programs and testbenches of the SPI controller unit has been well-developed and 

maintained. All of the stimulation results can be found in Chapter 7. 

However, in response to the COVID-19 pandemic in the country, the university campus 

is closed temporarily during the implementation of MCO. As a result, the third objective 

of this project is only partially completed as the physical design (which is the on-board 

testing with Zigbee module) cannot be completed due to the inaccessibility of the 

required lab hardware resources and equipment. By using the Vivado Design Suite tools, 

the RISC32 pipeline processor can be stimulated and synthesized into the Digilent 

Nexys 4 DDR (XC7A100T) board. At the end, the designed SPI controller unit is fully 

synthesizable and can operate safely at its 10Mhz I/O clock. Moreover, it has minimum 

impact on the integrated RISC32 pipeline processor in terms of timing requirement. 

The information about FPGA resource utilization and timing requirement are available 

in Chapter 8. 
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9.2 Future Work 

In future, the on-board testing with Zigbee module may need to be carried out. By using 

the proposed solutions for hardware and software implementation presented in Chapter 

8, a final testing can be performed easily for demonstrating the transfer of data between 

two FPGA boards via the CC2420 transceivers.  

Moreover, the designed SPI controller unit can also be further enhanced by having two 

modes, namely normal mode and bidirectional mode so that it can communicate with 

3-wire and 4-wire SPI devices in future. Four external pins will be used in the normal 

mode to perform the full-duplex data communication whereas three external pins will 

be used in the bidirectional mode for half-duplex data communication. This special 

feature could allow the SPI-equipped processor to interface more flexibly with all types 

of SPI devices in the market. 
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Appendix A: Timing Diagram 

A.1 Timing diagram of different SPI’s Transfer Modes  
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SCLK
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MOSI(s )/MISO(m) 
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bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Note: M = master, S = slave  

Figure A.1.1: Timing diagram for mode 0 serial data communication. 

 

Note: m = master, s = slave  

SS_n

SCLK

MOSI(m)/MISO(s ) 

MOSI(s )/MISO(m)sample

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 

Figure A.1.2: Timing diagram for mode 1 serial data communication. 
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Figure A.1.3: Timing diagram for mode 2 serial data communication. 
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Figure A.1.4: Timing diagram for mode 3 serial data communication. 
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Appendix B: Testbench 

B.1 Testbench for SPI Controller Unit’s Functional Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

`default_nettype none//to catch typing errors due to misspelled of signal names 

 

`ifdef MODEL_TECH 

 `include "../util/macro.v" 

`else  

 `include "../../util/macro.v" 

`endif 

 

//`define WORD_NB      32 (defined in macro.v) 

//`define BYTE_NB 8 (defined in macro.v) 

 

module tb_uspi_v3 

(); 

//Declarations of the connections to the DUT_MASTER outputs 

wire                    tb_w_uiospi_MOSI; 

wire                    tb_w_uiospi_MISO; 

wire                    tb_w_uiospi_SCLK; 

wire                    tb_w_uiospi_SS_n; 

wire                    tb_w_uospi_IRQ_master; 

wire [`WORD_NB - 1 : 0] tb_w_uospi_wb_r_dout_master; 

wire                    tb_w_uospi_wb_w_ack_master; 

wire                    tb_w_uospi_wb_r_ack_master; 

//Declarations of the drivers to the DUT_MASTER inputs 

reg                                   tb_r_uispi_SPIE_master; 

reg                                   tb_r_uispi_pipe_stall_master; 

reg [`BYTE_NB - 1 : 0] tb_r_uispi_wb_w_din_master; 

reg [3:0]                          tb_r_uispi_wb_w_sel_master; 

reg                                   tb_r_uispi_wb_w_we_master; 

reg                                   tb_r_uispi_wb_w_stb_master; 

reg [3:0]                          tb_r_uispi_wb_r_sel_master; 

reg                                   tb_r_uispi_wb_r_we_master; 

reg                                   tb_r_uispi_wb_r_stb_master; 

 

//Declarations of the connections to the DUT_SLAVE outputs 

wire                                    tb_w_uospi_IRQ_slave; 

wire [`WORD_NB - 1 : 0] tb_w_uospi_wb_r_dout_slave; 

wire                                    tb_w_uospi_wb_w_ack_slave; 

wire                                    tb_w_uospi_wb_r_ack_slave; 

//Declarations of the drivers to the DUT_SLAVE inputs 

reg                                  tb_r_uispi_SPIE_slave; 

reg                                  tb_r_uispi_pipe_stall_slave; 

reg [`BYTE_NB - 1 : 0] tb_r_uispi_wb_w_din_slave; 

reg [3:0]                         tb_r_uispi_wb_w_sel_slave; 

reg                                  tb_r_uispi_wb_w_we_slave; 
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reg                                   tb_r_uispi_wb_w_stb_slave; 

reg [3:0]                          tb_r_uispi_wb_r_sel_slave; 

reg                                   tb_r_uispi_wb_r_we_slave; 

reg                                   tb_r_uispi_wb_r_stb_slave; 

 

//Declaration of the drivers to the sys and rst of both modules 

reg tb_r_sys_clk; 

reg tb_r_sys_rst; 

 

//Module instantiation 

uspi_v2 

DUT_MASTER 

(.uiospi_MOSI(tb_w_uiospi_MOSI), 

 .uiospi_MISO(tb_w_uiospi_MISO), 

 .uiospi_SCLK(tb_w_uiospi_SCLK), 

 .uiospi_SS_n(tb_w_uiospi_SS_n), 

 .uospi_IRQ(tb_w_uospi_IRQ_master), 

 .uospi_wb_r_dout(tb_w_uospi_wb_r_dout_master), 

 .uospi_wb_w_ack(tb_w_uospi_wb_w_ack_master), 

 .uospi_wb_r_ack(tb_w_uospi_wb_r_ack_master), 

 .uispi_SPIE(tb_r_uispi_SPIE_master), 

 .uispi_pipe_stall(tb_r_uispi_pipe_stall_master), 

 .uispi_wb_w_din(tb_r_uispi_wb_w_din_master), 

 .uispi_wb_w_sel(tb_r_uispi_wb_w_sel_master), 

 .uispi_wb_w_we(tb_r_uispi_wb_w_we_master), 

 .uispi_wb_w_stb(tb_r_uispi_wb_w_stb_master), 

 .uispi_wb_r_sel(tb_r_uispi_wb_r_sel_master), 

 .uispi_wb_r_we(tb_r_uispi_wb_r_we_master), 

 .uispi_wb_r_stb(tb_r_uispi_wb_r_stb_master), 

 .uispi_wb_clk(tb_r_sys_clk), 

 .uispi_wb_rst(tb_r_sys_rst)); 

 

uspi_v2 

DUT_SLAVE 

(.uiospi_MOSI(tb_w_uiospi_MOSI), 

 .uiospi_MISO(tb_w_uiospi_MISO), 

 .uiospi_SCLK(tb_w_uiospi_SCLK), 

 .uiospi_SS_n(tb_w_uiospi_SS_n), 

 .uospi_IRQ(tb_w_uospi_IRQ_slave), 

 .uospi_wb_r_dout(tb_w_uospi_wb_r_dout_slave), 

 .uospi_wb_w_ack(tb_w_uospi_wb_w_ack_slave), 

 .uospi_wb_r_ack(tb_w_uospi_wb_r_ack_slave), 

 .uispi_SPIE(tb_r_uispi_SPIE_slave), 

 .uispi_pipe_stall(tb_r_uispi_pipe_stall_slave), 

 .uispi_wb_w_din(tb_r_uispi_wb_w_din_slave), 

 .uispi_wb_w_sel(tb_r_uispi_wb_w_sel_slave), 

 .uispi_wb_w_we(tb_r_uispi_wb_w_we_slave), 
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 .uispi_wb_w_stb(tb_r_uispi_wb_w_stb_slave), 

 .uispi_wb_r_sel(tb_r_uispi_wb_r_sel_slave), 

 .uispi_wb_r_we(tb_r_uispi_wb_r_we_slave), 

 .uispi_wb_r_stb(tb_r_uispi_wb_r_stb_slave), 

 .uispi_wb_clk(tb_r_sys_clk), 

 .uispi_wb_rst(tb_r_sys_rst)); 

 

//Clock waveform generation for DUT_MASTER  

initial tb_r_sys_clk <= 1'b1; 

always #10 tb_r_sys_clk = ~tb_r_sys_clk; 

 

//Test pattern generation 

initial begin 

  //Sim time = 0 

  //Signals initialization for DUT_MASTER 

  tb_r_uispi_SPIE_master <= 1'b1;//enable global interrupt 

  tb_r_uispi_pipe_stall_master <= 1'b0;//do not stall the master 

  tb_r_uispi_wb_w_stb_master <= 1'b0;//disable the write access on master 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_r_stb_master <= 1'b0;//disable the read access on master 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

 

  //Signals initialization for DUT_SLAVE 

  tb_r_uispi_SPIE_slave <= 1'b1;//enable global interrupt 

  tb_r_uispi_pipe_stall_slave <= 1'b0;//do not stall the slave 

  tb_r_uispi_wb_w_stb_slave <= 1'b0;//disable the write access on slave 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  tb_r_uispi_wb_r_stb_slave <= 1'b0;//disable the read access on slave 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

 

//#################################################################### 

//Test case 1: System reset 

  repeat(5)@(posedge tb_r_sys_clk) tb_r_sys_rst <= 1'b0; 

  repeat(5)@(posedge tb_r_sys_clk) tb_r_sys_rst <= 1'b1; 

  repeat(10)@(posedge tb_r_sys_clk) tb_r_sys_rst <= 1'b0; 

 

//#################################################################### 

//Test case 2: Write operation on SPISR 

  tb_r_uispi_wb_w_stb_master <= 1'b1;//enable the write access on master 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on SPI master 

  tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable write operation on SPISR 

  tb_r_uispi_wb_w_din_master <= 8'b0000_1111;//8'h0F 

  tb_r_uispi_wb_w_stb_slave <= 1'b1;//enable write access on slave 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable write operation on SPISR 

  tb_r_uispi_wb_w_din_slave <= 8'b0000_1111;//8'h0F 

 

  @(posedge tb_r_sys_clk); 
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  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  repeat(5)@(posedge tb_r_sys_clk); 

 

 //#################################################################### 

//Test case 3: Write operation on SPICR 

  //Mode 0 is selected 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1100_0000;//8'hC0 

 

  //Mode 0 is selected 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1000_0000;//8'h80 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable write operation on slave 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_stb_master <= 1'b1;//enable the read access on master 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content 

  tb_r_uispi_wb_r_stb_slave <= 1'b1;//enable the read access on slave 

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content 

 

//#################################################################### 

//Test case 4: Transmitter buffer empty interrupt support 

  repeat(20)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

 

//#################################################################### 

//Test case 5: Push one 8-bit data into the bFIFO_FIFOreg of the TX_buffer16x8 

  //Load data 8'b1010_1010 into the TX_buffer16x8 of the DUT_MASTER (master)  

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on  

                                                                     //TX_buffer16x8 

  tb_r_uispi_wb_w_din_master <= 8'b1010_1010;//8'hAA 

   

  //Load data 8'b0101_0101 into the TX_buffer16x8 of the DUT_SLAVE (slave)  

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave   

  tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on  

                                                                   //TX_buffer16x8 

  tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;//8'h55 
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  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b0010;//read SPISR content 

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b0010;//read SPISR content 

 

  repeat(20)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on master 

 

//#################################################################### 

//Test case 6: Mode 0 serial data communication 

  //Load data 8'b1010_1010 into bFIFO TX_buffer16x8 of the DUT_MASTER 

(master)  

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on  

                                                                     //TX_buffer16x8 

  tb_r_uispi_wb_w_din_master <= 8'b1010_1010;//8'hAA 

  //Load data 8'b0101_0101 into bFIFO TX_buffer16x8 of the DUT_SLAVE (slave)  

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on  

                                                                   //TX_buffer16x8 

  tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;//8'h55 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  repeat(100)@(posedge tb_r_sys_clk); 

 

//#################################################################### 

//Test case 7: Received buffer full interrupt support after receiving a 1-byte data 

//(RXFM = 0) 

  repeat(15)@(posedge tb_r_sys_clk); 

 

//#################################################################### 

//Test case 8: Pop 1-byte of received data from the RX_buffer16x8 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//pop 1-byte of data from the  

                                                                   //RX_buffer16x8 

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//pop 1-byte of data from the RX_buffer16x8 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content 
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  repeat(5)@(posedge tb_r_sys_clk);  

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

 

//#################################################################### 

//Test case 9: Received buffer full interrupt support after receiving 16 x 1-byte data  

//(RXFM = 1) 

  //Configure the SPICR first to de-activate/stop the data communication 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b0100_0000;//8'h40 

  //Configure the SPICR first to de-activate/stop the data communication 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b0000_0000;//8'h00 

   

  @(posedge tb_r_sys_clk); 

  //Configure the SPISR 

  tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable the write operation on SPISR 

  tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR 

  tb_r_uispi_wb_w_din_master <= 8'b0001_1111;//8'h1F 

  tb_r_uispi_wb_w_din_slave <= 8'b0001_1111;//8'h1F 

 

  //Load 16x1-byte data into bFIFO TX_buffer16x8 of the DUT_MASTER (master) for  

  //serial 1-byte data transmission  

  //to another SPI device (slave) 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_din_master <= 8'b1010_1010;//8'hAA 

  tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on  

                                                                     //TX_buffer16x8   

  tb_r_uispi_wb_w_din_slave <= 8'b0101_0101;//8'h55 

  tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on 

TX_buffer16x8 

  repeat(16) begin 

    @(posedge tb_r_sys_clk); 

    tb_r_uispi_wb_w_din_master <= ~tb_r_uispi_wb_w_din_master; 

    tb_r_uispi_wb_w_din_slave <= ~tb_r_uispi_wb_w_din_slave; 

  end 

 

  @(posedge tb_r_sys_clk); 

  //Configure the SPICR again to activate the master and the slave 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1100_0000;//8'hC0 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1000_0000;//8'h80 

 

  @(posedge tb_r_sys_clk); 
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  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content 

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content 

 

  //data communication between the master and the slave begins 

  //transmit 16x1-byte of data 

  //receive 16x1-byte of data 

  repeat(1640)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on  

                                                                     //TX_buffer16x8 

  tb_r_uispi_wb_w_din_master <= 8'b1001_1010;//8'h9A 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write the operation on  

                                                                   //TX_buffer16x8 

  tb_r_uispi_wb_w_din_slave <= 8'b1010_1001;//8'hA9 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  repeat(20)@(posedge tb_r_sys_clk); 

 

//####################################################################

//Test case 10: Pop 16 number of 1-byte data from the RX_buffer16x8 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content 

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content 

  repeat(18)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

 

//####################################################################

//Test case 11: Mode 1 serial data communication 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  //Configure the SPICR first to de-activate/stop the data communication 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on master 

  tb_r_uispi_wb_w_din_master <= 8'b0101_0000;//8'h50 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on slave 

  tb_r_uispi_wb_w_din_slave <= 8'b0001_0000;//8'h10 

 

  @(posedge tb_r_sys_clk); 

  //Configure the SPISR 
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  tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable the write operation on SPISR 

  tb_r_uispi_wb_w_din_master <= 8'b0000_1111; 

  tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR 

  tb_r_uispi_wb_w_din_slave <= 8'b0000_1111; 

 

  //Load 16x1-byte data into bFIFO TX_buffer16x8 of the DUT_MASTER (master)    

  // for serial 1-byte data transmission  

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_sel_master <= 4'b0100;//enable the write operation on  

                                                                     //TX_buffer16x8 

  tb_r_uispi_wb_w_din_master <= 8'b1010_1010; 

  tb_r_uispi_wb_w_sel_slave <= 4'b0100;//enable the write operation on  

                                                                   //TX_buffer16x8 

  tb_r_uispi_wb_w_din_slave <= 8'b0101_0101; 

  repeat(16) begin 

    @(posedge tb_r_sys_clk); 

    tb_r_uispi_wb_w_din_master <= ~tb_r_uispi_wb_w_din_master; 

    tb_r_uispi_wb_w_din_slave <= ~tb_r_uispi_wb_w_din_slave; 

  end 

 

  @(posedge tb_r_sys_clk); 

  //Configure the SPICR again to activate the master and slave 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1101_0000; 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1001_0000; 

 

 @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content 

 

  //data communication between the master and the slave begins 

  //transmit 1-byte of data 

  //receive 1-byte of data 

  repeat(140)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

  

//#################################################################### 

//Test case 12: Mode 2 serial data communication 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

 

 

  tb_r_uispi_wb_w_din_master <= 8'b1110_0000; 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1010_0000; 

 

  repeat(20)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content  

 

  //data communication between the master and the slave are happening 

  //transmit 1-byte of data 

  //receive 1-byte of data 

  repeat(100)@(posedge tb_r_sys_clk); 

  

//#################################################################### 

//Test case 13: Mode 3 serial data communication 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1111_0000; 

 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1011_0000; 

 

 

  //Pop 1-byte of data from the RX_buffer16x8 

  repeat(20)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  @(posedge tb_r_sys_clk); 

 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content  

 

 

 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content  

 

  //data communication between the master and the slave are happening 

  //transmit 1-byte of data 

  //receive 1-byte of data 

  repeat(110)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

  

//#################################################################### 

  //Test case 14: Selectable transmission speed (baud rate) 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1111_0001; 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1011_0001; 

 

  //Pop 1-byte of data from the RX_buffer16x8 

  repeat(20)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the write operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the write operation on master 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content  

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content  

 

  //data communication between the master and the slave are happening 

  //transmit 1-byte of data 

  //receive 1-byte of data 

  repeat(220)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//disable the read operation on master 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//disable the read operation on slave 

 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1111_0010; 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1011_0010; 

 

  //Pop 1-byte of data from the RX_buffer16x8 

 

 

 

 

 

  repeat(30)@(posedge tb_r_sys_clk);  

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content  

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content 

 

  //data communication between the master and the slave are happening 

  //transmit 1-byte of data 

  //receive 1-byte of data 

  repeat(450)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b1;//de-activate the read enable signal 

  tb_r_uispi_wb_r_we_slave <= 1'b1;//de-activate the read enable signal 

  tb_r_uispi_wb_w_we_master <= 1'b1;//enable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

 

  //To disable the transmit buffer empty and received buffer full interrupt 

   tb_r_uispi_wb_w_sel_master <= 4'b0010;//enable the write operation on SPISR 

  tb_r_uispi_wb_w_din_master <= 8'b0000_0011; 

   tb_r_uispi_wb_w_sel_slave <= 4'b0010;//enable the write operation on SPISR 

  tb_r_uispi_wb_w_din_slave <= 8'b0000_0011; 

  repeat(5)@(posedge tb_r_sys_clk); 

 

  tb_r_uispi_wb_w_sel_master <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_master <= 8'b1111_0011; 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1011_0011; 

 

  // Pop 1-byte of data from the RX_buffer16x8 

  repeat(30)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_w_we_master <= 1'b0;//disable the write operation on master 

  tb_r_uispi_wb_w_we_slave <= 1'b0;//disable the write operation on slave 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b1000;//read RX_buffer16x8 content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read RX_buffer16x8 content 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content  

 

 



Appendix 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
B-9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content 

  //data communication between the master and the slave are happening 

  //transmit 1-byte of data 

  //receive 1-byte of data 

  repeat(660)@(posedge tb_r_sys_clk); 

 

  @(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_master <= 1'b0;//enable the read operation on master 

  tb_r_uispi_wb_r_sel_master <= 4'b0011;//read SPISR and SPICR content  

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on slave 

  tb_r_uispi_wb_r_sel_slave <= 4'b0011;//read SPISR and SPICR content  

  repeat(15)@(posedge tb_r_sys_clk); 

 

 //#################################################################### 

  //Test case 15: Mode fault error interrupt 

  //Mode fault error occurs when more than one master are trying to drive the shared  

  //line 

  //Firstly, reconfigure the slave device to act as a master 

  tb_r_uispi_wb_w_we_slave <= 1'b1;//enable the write operation on slave 

  tb_r_uispi_wb_w_sel_slave <= 4'b0001;//enable the write operation on SPICR 

  tb_r_uispi_wb_w_din_slave <= 8'b1111_0011; 

 

  repeat(10)@(posedge tb_r_sys_clk); 

  tb_r_uispi_wb_r_we_slave <= 1'b0;//enable the read operation on the newly  

                                                            //configured master 

  tb_r_uispi_wb_r_sel_slave <= 4'b1000;//read the RX_buffer16x8 content 

  repeat(120)@(posedge tb_r_sys_clk); 

 

  //Give output some time to settle down 

  repeat(120)@(posedge tb_r_sys_clk); 

  //To stop stimulation 

  $stop;   

end 

endmodule 
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B.2 Testbench for SPI Controller Unit’s Integration Test with RISC32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

`timescale 1ns / 1ps 

`default_nettype none 

`define demo005_SPI 1 

`ifdef demo005_SPI 

`define  TEST_CODE_PATH_DUT "demo005_SPI_mem_03program.txt" 

`define  EXC_HANDLER_DUT "new_exc_handler_dut_2.txt" 

`define  TEST_CODE_PATH_CLIENT 

"demo101_pending_for_int_mem_03program.txt" 

`define  EXC_HANDLER_CLIENT "new_exc_handler_dut_2.txt" 

`endif 

 

module tb_r32_pipeline(); 

reg               tb_u_clk; 

reg               tb_u_rst; 

wire             tb_u_spi_mosi; 

wire             tb_u_spi_miso; 

wire             tb_u_spi_sclk; 

wire             tb_u_spi_ss_n; 

 

wire             tb_u_fc_sclk_dut; 

wire             tb_u_fc_ss_dut; 

wire             tb_u_fc_MOSI_dut; 

wire             tb_u_fc_MISO1_dut; 

wire             tb_u_fc_MISO2_dut; 

wire             tb_u_fc_MISO3_dut; 

wire             tb_ua_tx_rx_dut; 

wire             tb_ua_RTS_dut, tb_ua_CTS_dut; 

wire [31:0]  tb_u_GPIO_dut; 

 

wire             tb_u_fc_sclk_client; 

wire             tb_u_fc_ss_client; 

wire             tb_u_fc_MOSI_client; 

wire             tb_u_fc_MISO1_client; 

wire             tb_u_fc_MISO2_client; 

wire             tb_u_fc_MISO3_client; 

wire             tb_ua_tx_rx_client; 

wire             tb_ua_RTS_client, tb_ua_CTS_client; 

wire [31:0]  tb_u_GPIO_client; 

 

//*********** INSTANTIATION ************* 

crisc c_risc_dut( 

//======= INPUT ======= 

//GPIO 

.urisc_GPIO(tb_u_GPIO_dut), 

//SPI controller 

.uiorisc_spi_mosi(tb_u_spi_mosi), 
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.uiorisc_spi_miso(tb_u_spi_miso), 

.uiorisc_spi_sclk(tb_u_spi_sclk), 

.uiorisc_spi_ss_n(tb_u_spi_ss_n), 

 

//UART controller 

.uorisc_ua_tx_data(tb_ua_tx_rx_dut), 

.uirisc_ua_rx_data(tb_ua_tx_rx_client), 

 

//FLASH controller 

.uorisc_fc_sclk(tb_u_fc_sclk_dut), 

.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut), 

.uirisc_fc_MISO1(tb_u_fc_MISO1_dut), 

.uirisc_fc_MISO2(tb_u_fc_MISO2_dut), 

.uirisc_fc_MISO3(tb_u_fc_MISO3_dut), 

.uorisc_fc_ss(tb_u_fc_ss_dut), 

 

// System signal 

.uirisc_clk_100mhz(tb_u_clk), 

.uirisc_rst(tb_u_rst)); 

 

s25fl128s SPI_flash_dut( 

.SI(tb_u_fc_MOSI_dut), //IO0 

.SO(tb_u_fc_MISO1_dut), //IO1  

.SCK(tb_u_fc_sclk_dut), 

.CSNeg(tb_u_fc_ss_dut), 

.RSTNeg(tb_u_rst), 

.WPNeg(tb_u_fc_MISO2_dut), //IO2 

.HOLDNeg(tb_u_fc_MISO3_dut)); 

 

crisc c_risc_client( 

//======= INPUT ======= 

//GPIO 

.urisc_GPIO(tb_u_GPIO_client), 

//SPI controller 

.uiorisc_spi_mosi(tb_u_spi_mosi), 

.uiorisc_spi_miso(tb_u_spi_miso), 

.uiorisc_spi_sclk(tb_u_spi_sclk), 

.uiorisc_spi_ss_n(tb_u_spi_ss_n), 

 

//UART controller 

.uorisc_ua_tx_data(tb_ua_tx_rx_client), 

.uirisc_ua_rx_data(tb_ua_tx_rx_dut), 

 

//FLASH controller 

.uorisc_fc_sclk(tb_u_fc_sclk_client), 

.uiorisc_fc_MOSI(tb_u_fc_MOSI_client), 
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.uirisc_fc_MISO1(tb_u_fc_MISO1_client), 

.uirisc_fc_MISO2(tb_u_fc_MISO2_client), 

.uirisc_fc_MISO3(tb_u_fc_MISO3_client), 

.uorisc_fc_ss(tb_u_fc_ss_client), 

 

// System signal 

.uirisc_clk_100mhz(tb_u_clk), 

.uirisc_rst(tb_u_rst)); 

 

s25fl128s SPI_flash_client( 

.SI(tb_u_fc_MOSI_client), //IO0 

.SO(tb_u_fc_MISO1_client), //IO1  

.SCK(tb_u_fc_sclk_client), 

.CSNeg(tb_u_fc_ss_client), 

.RSTNeg(tb_u_rst), 

.WPNeg(tb_u_fc_MISO2_client), //IO2 

.HOLDNeg(tb_u_fc_MISO3_client)); 

 

assign tb_ua_CTS_dut = tb_ua_RTS_client; 

assign tb_ua_CTS_client = tb_ua_RTS_dut; 

 

//**********************Clock************************ 

initial tb_u_clk = 1'b1; 

always #5 tb_u_clk =~ tb_u_clk; 

initial begin 

$readmemh(`EXC_HANDLER_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem); 

$readmemh(`TEST_CODE_PATH_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem); 

$readmemh(`EXC_HANDLER_DUT, tb_r32_pipeline.SPI_flash_dut.Mem); 

$readmemh(`TEST_CODE_PATH_DUT, tb_r32_pipeline.SPI_flash_dut.Mem); 

tb_u_rst = 1'b1; 

repeat(1)@(posedge tb_u_clk); 

tb_u_rst = 1'b0; 

repeat(30000)@(posedge tb_u_clk); 

tb_u_rst = 1'b1; 

repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk); 

end 

endmodule 
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Appendix C: CC2420 

C.1 Pin Assignment of the CC2420  

 

Figure C.1.1: Top view of the CC2420 pinout 

 

Figure C.1.2: Pin description of the CC2420. 
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Figure C.1.3: Pin description of the CC2420 (cont’d). 

Note: The exposed die attach pad must be connected to a solid ground plane as this 

is the main ground connection for the chip. 

 

 

 

 

 



Appendix 

BIT (Hons) Computer Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
C-3 

C.2 Overview of the External Components Used with the CC2420 

 

Figure C.2.1: Description of the external components used with the CC2420. 

 

C.3 List of Materials for the Application Circuits 

 

Figure C.3.1: List of materials for the application circuit. 
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