

COMPARISON OF PATH PLANNING IN SIMULATED ROBOT

By

CH’NG CHEE YU’NG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: Comparison of Path Planning in Simulated Robot___________

 __

 __

Academic Session: JAN 2020

 I _________________CH’NG CHEE YU’NG__________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 No. 16, Jalan Bawal 7, Taman Mutiara,

 42800, Tanjong Sepat, _________________________

 Selangor. Supervisor’s name

 Date: _____4/23/2020_____ Date: ____________________ 4/22/2020

CHANG JING JING

TITLE PAGE

COMPARISON OF PATH PLANNING IN SIMULATED ROBOT

By

CH’NG CHEE YU’NG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

ii

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “COMPARISON OF PATH PLANNING IN

SIMULATED ROBOT” is my own work except as cited in the references. The report has

not been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

Signature : _________________________

Name : ___CH’NG CHEE YU’NG___

Date : ________4/23/2020_________

iii

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENT

I would like to thank my supervisor Dr. Chang Jing Jing for her valuable and constructive

suggestions during the planning and development of the project. In addition, thank you for

giving me this bright opportunity to participate in projects related to Robot Operating

System (ROS) and path planning algorithms. One million thank you.

Finally, I must thank my parents and family for their support and encouragement

throughout the Final Year Project.

iv

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

The development of technology is getting faster and faster, and the robotics revolution is

also expanding rapidly. This is because robots can make a huge contribution to humans.

The flexibility of robots has made it being capable of performing a diversity of tasks

automatically (Benefits of Using Robotics, 2019). They can replace humans to do

dangerous jobs, and complete the jobs more efficiently and accurately than humans. A

basic task of a mobile robot is to move to a targeted point in order to perform the specified

tasks. Hence, path planning algorithm such as A* algorithm and Dijkstra’s algorithm are

essential for the robot to navigate efficiently from one place to the targeted place. However,

different robots will work in different environments. If all the robots use the same path

planning algorithm, it is possible that they may not bring the greatest benefit. This is

because each path planning algorithm has its own applicable domain, performance,

advantages and disadvantages in various situations. Thus, a comparison of path planning

algorithm in simulated robot will be conducted in this study. There are 4 path planning

algorithms will be compared, which are Dijkstra’s algorithm, A* algorithm, Rapid-

Exploring Random Tree (RRT) algorithm, and the last one is an algorithm modified from

A*. The concept of the modified A* is to search the path in two directions. As a result of

this paper, Dijkstra's algorithm suitable for finding the shortest distance. If you want to

speed up the search time and there are fewer obstacles on the map, it is recommended to

use A*, modified A* or RRT. However, if there are many obstacles on the map, RRT will

not be suitable for searching. Robot Operating System (ROS) and Simple Two

Dimensional Robot (STDR) simulator will be used in this project.

v

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents
TITLE PAGE ... i

DECLARATION OF ORIGINALITY ... ii

ACKNOWLEDGEMENT .. iii

ABSTRACT ... iv

LIST OF FIGURES ... viii

LIST OF TABLES ... xi

LIST OF ABBREIVATIONS .. xii

Chapter 1: Introduction .. 1

1.1 Problem statement and motivation .. 1

1.2 Project Scope .. 3

1.3 Project Objectives .. 3

1.4 Contribution ... 3

1.5 Background information... 4

1.6 Report Organization ... 5

Chapter 2: Literature Review .. 6

2.1 Dijkstra’s algorithm .. 6

2.1.1 Introduction .. 6

2.1.2 How does a Dijkstra’s algorithm work? ... 6

2.1.3 Advantages and Disadvantages ... 7

2.2 A* algorithm .. 7

2.2.1 Introduction .. 7

2.2.2 How does an A* work? ... 8

2.2.3 Advantages and Disadvantages ... 9

2.3 D* lite algorithm .. 9

2.3.1 Introduction .. 9

2.3.2 How does a D* lite work? .. 9

2.3.3 Advantages and Disadvantages ... 10

2.4 Rapid-Exploring Random Tree (RRT) ... 10

2.4.1 Introduction .. 10

2.4.2 How does a standard RRT work? ... 10

2.4.3 Advantages and Disadvantages ... 12

Chapter 3: System Design ... 13

vi

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1 Create the environment .. 13

3.1.1 Map .. 13

3.1.2 Robot .. 15

3.1.3 Load the Map and Robot ... 15

3.2 Navigation System ... 16

3.2.1 Convert the map ... 16

3.2.2 Path planning .. 16

3.2.3 Move the simulated robot .. 23

Chapter 4: Proposed method / Approach.. 25

4.1 Design Specifications ... 25

4.1.1 Methodologies and General Work Procedures .. 25

4.1.2 Tool to use ... 26

4.2 Implementation issues and challenges ... 27

4.3 Timeline .. 28

Chapter 5: System Implementation and Testing .. 30

5.1 Installation and environment setup ... 30

5.2 ROS operation test .. 31

5.3 Install STDR simulator ... 33

5.4 Create a launch file to load map and robot into STDR simulator 34

5.5 Write path planning algorithms and code to control robot motion 35

5.5.1 Dijkstra’s algorithm ... 35

5.5.1 A* algorithm ... 36

5.5.3 RRT algorithm .. 37

5.5.3 Modified A* algorithm ... 38

5.5.4 Write a code to control robot motion (Safegoto.py) .. 40

5.6 Testing .. 41

5.6.1 Load the map and robot into the STDR simulator .. 41

5.6.2 Move the robot .. 42

Chapter 6: Experiment Result and Comparison .. 45

6.1 1st Experiment .. 45

6.1.1 Dijkstra’s algorithm ... 45

6.1.2 A* algorithm ... 46

6.1.3 Modified A* algorithm ... 46

vii

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.4 RRT algorithm .. 47

6.1.5 Comparison of Experiment I ... 47

6.2 2nd Experiment ... 48

6.2.1 Dijkstra’s algorithm ... 48

6.2.2 A* algorithm ... 49

6.2.3 Modified A* algorithm ... 49

6.2.3 RRT algorithm .. 50

6.2.5 Comparison of Experiment II ... 51

6.3 3rd Experiment ... 51

6.3.1 Dijkstra’s algorithm ... 52

6.3.2 A* algorithm ... 52

6.3.3 Modified A* algorithm ... 53

6.3.3 RRT algorithm .. 53

6.3.5 Comparison of Experiment III .. 54

6.4 4th Experiment.. 54

6.4.1 Dijkstra’s algorithm ... 55

6.4.2 A* algorithm ... 56

6.4.3 Modified A* algorithm ... 57

6.4.3 RRT algorithm .. 57

6.4.5 Comparison of Experiment IV .. 58

6.5 Analysis the experiments .. 58

Chapter 7: Conclusion .. 60

BIBLIOGRAPHY ... 61

POSTER ... 63

PLAGIARISM CHECK RESULT .. 64

CHECKLIST ... 66

viii

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 system components of a typical ROS model 4

Figure 2.1 weighted graph 6

Figure 2.2 A* heuristic ℎ(𝑛) 8

Figure 2.3 Possible moves between grid cells 8

Figure 2.4 flow chart of the standard RRT 11

Figure 3.1 System design 13

Figure 3.2 simple_rooms_no_walls.png 14

Figure 3.3 map’s YAML file 14

Figure 3.4 YAML file of a simple robot 15

Figure 3.5 “Load Map” and “Load robot” buttons in STDR simulator 15

Figure 3.6 flowchart of search() function 17

Figure 3.7 flowchart of proceed() function of Dijkstra 18

Figure 3.8 flowchart of Planning() of RRT 19

Figure 3.9 example of bidirectional A* 20

Figure 3.10 flowchart of search_forward() 21

Figure 3.11 flowchart of proceed() 22

Figure 3.12 code to initialize the node in python 23

Figure 3.13 details of the message 23

Figure 3.14 example of atan2(y,x) 24

Figure 4.1 project methodology 25

Figure 4.2 Timeline for FYP1 28

Figure 4.3 Timeline for FYP2 29

Figure 5.1 Ubuntu opens in the virtual machine 30

Figure 5.2 command lines of quick installation 31

Figure 5.3 ‘roscore’ command run successfully 31

Figure 5.4 ‘turtlesim_node’ was created successfully 32

ix

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.5 ‘turtle_teleop_key’ was created successfully 32

Figure 5.6 rqt graph 33

Figure 5.7 command line for installing the STDR simulator 33

Figure 5.8 STDR simulator 34

Figure 5.9 launch file that loads map and robot into the STDR

simulator

34

Figure 5.10 search function of Dijkstra 35

Figure 5.11 proceed function of Dijkstra 36

Figure 5.12 proceed function of A* 36

Figure 5.13 Planning function of RRT (1) 37

Figure 5.14 Planning function of RRT (2) 37

Figure 5.15 Planning function of RRT (3) 38

Figure 5.16 search_forward of modified A* 38

Figure 5.17 search_backward function of modified A* 39

Figure 5.18 proceed function of modified A* (1) 39

Figure 5.19 proceed function of modified A* (2) 40

Figure 5.20 go function for control robot motion (1) 40

Figure 5.21 go function for control robot motion (2) 41

Figure 5.22 terminal with a command line that launch the

“server_with_map_and_gui_plus_robot.launch”

41

Figure 5.23 output of the launch file 42

Figure 5.24 robot at the target point (2, 10) 42

Figure 5.25 robot successfully reached the goal point by using

Dijkstra’s

43

Figure 5.26 robot successfully reached the goal point by using A* 43

Figure 5.27 robot successfully reached the goal point by using RRT 44

Figure 5.28 robot successfully reached the goal point by using

Modified A*

44

x

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1 two robots in "simple_rooms_no_walls” 45

Figure 6.2 result of the Dijkstra 45

Figure 6.3 result of the A* 46

Figure 6.4 result of the Modified A* 46

Figure 6.5 result of the RRT 47

Figure 6.6 two robots in “sparse_obstacles” 48

Figure 6.7 result of the Dijkstra 48

Figure 6.8 result of the A* 49

Figure 6.9 result of the Modified A* 49

Figure 6.10 result of the RRT 50

Figure 6.11 two robots in “utar” 51

Figure 6.12 result of the Dijkstra 52

Figure 6.13 result of the A* 52

Figure 6.14 result of the Modified A* 53

Figure 6.15 result of the RRT 53

Figure 6.16 two robots in “utar2” 54

Figure 6.17 result of the Dijkstra 55

Figure 6.18 result of the A* 56

Figure 6.19 result of the Modified A* 57

Figure 6.20 result of the RRT 57

Figure 6.21 result of the RRT 59

xi

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 4.1 specification of laptop 26

Table 6.1 comparison of experiment I 47

Table 6.2 comparison of experiment II 51

Table 6.3 comparison of experiment III 54

Table 6.4 comparison of experiment IV 58

Table 6.5 Comparison of 2 RRTs 59

xii

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREIVATIONS

RRT Rapidly-exploring Random Tree

ROS Robot Operating System

STDR Simple Two Dimensional Robot

Chapter 1: Introduction

1

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

1.1 Problem statement and motivation

With the rapid development of science and technology, robots are considered as a

significant element in society. Robot is a biologically-like machine that can move

independently and perform complex actions (Definition of ROBOT, 2019). Robot can be

controlled by using an external control device, or the controls can be embedded in the robot

so it can operate automatically without the manual control. What is the reason why humans

want to develop robots? This is because robots can do what humans cannot do. Also, robot

can accomplish certain tasks are more precise and efficient than humans.

One of the benefits of robotics is that they can work in any environment (Benefits of Using

Robotics, 2019). For example, humans cannot fly, but robots can. A drone is a flying robot.

It can use software-controlled flight plan to fly automatically or remotely controlled (What

is a Drone? - Definition from WhatIs.com, 2019). Drones are now widely used in civilian

applications, including search and rescue, surveillance, weather monitoring, traffic

monitoring and so on. In addition, there is a robot fish that can take video images and

pictures underwater (Soffar, 2019). It can gathers information and collects artifacts about

the water conditions. Even on land, there are many robots that can help humans perform

certain tasks. For example, a robotic vacuum cleaner, it is a floor cleaning robot and it can

clean autonomously without human control. In other words, robots reduce risky work for

humans because they are capable of working in dangerous environment. Moreover, they

can handle repetitive tasks, lifting heavy loads, and toxic substances. This has helped

humans avoid many accidents, also saving money and time.

According to the examples above, we can find that most of the robots are mobile robot.

They are capable of moving around in their environment and are not fixed to one physical

location. Therefore, navigation is the foundation and highlights of mobile robots.

Navigation in robotics is indivisible and essential. Navigation is the movement of a robot

to a specific point. A robot needs to use sensors to perceive the environment and build or

update its environment map (Domestic Environment - an overview | ScienceDirect Topics,

2017). Apart from that, if the robot’s navigation system leads to a poor routes or spends a

Chapter 1: Introduction

2

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

lot of time to find the route, then achieving the goal will waste a lot of energy and time.

Hence, path planning algorithm is a significant issue in robots.

Path planning is a process of searching an optimal path for robot to move from source to

destination. From a human point of view, the path planning from location X to location Y,

simultaneous obstacles, avoidance and response to environmental changes are simple (Path

Planning - an overview | ScienceDirect Topics, 2019). However, if this happens in mobile

robots, it becomes challenging. Therefore, various path planning algorithms have been

invented today in order to help mobile robots calculate the optimal path. For instance, A*

algorithm, Potential field, D*, RRT (Rapidly-exploring Random Tree) and so on. In

addition, each of the path planning algorithms has its own applicable domain, performance,

advantages and disadvantages in various situations. Therefore, the path planning algorithm

of the robot should be wisely selected in order to save the energy and time for the robot to

perform certain tasks.

However, if we do not know the properties of the path planning algorithms, then how do

we choose the appropriate path planning algorithm? Hence, this paper compared various

path planning algorithms. These path planning algorithms included Dijkstra’s, Rapidly-

exploring Random Tree (RRT), A*, and the last one is an algorithm modified from A*.

Also, the comparisons were made in a simulated robot. This is because various situation

can be simply simulated in the simulator. Apart from that, it also saves the cost of the robot

and the time to build the real environment.

Chapter 1: Introduction

3

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Project Scope

The scope of this project is stated as follows:

1. 4 path planning algorithms which are Dijkstra’s, A*, RRT and modified A*

algorithms are focused in this project.

2. Only using Simple Two Dimensional Robot (STDR) simulator to simulate a robot

instead of using a real robot.

3. ROS Robot Programming is used in this project.

4. Python is used in this project.

1.3 Project Objectives

The project objectives are as follows:

 To review existing path planning algorithms.

 To modify an existing path planning algorithm.

 To simulate robot that is implemented by various path planning algorithms.

 To compare various path planning algorithms.

1.4 Contribution

Under different circumstances, different path planning algorithms may be preferred.

Through this study, the robot developer will be able to observe and understand the

differences in path planning algorithms in simulated robot without wasting a lot of time to

understand the properties of various path planning algorithms. This study is expected to

provide better evidence for the developer to make an informed choice of path planning

algorithm.

Chapter 1: Introduction

4

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Background information

Robot Operating System (ROS)

ROS is a meta-operating system and it is an open-source (ROS/Introduction - ROS Wiki,

2019). It provides the services containing hardware abstraction, package management,

implementation of commonly-used function, message-passing between processes and so

on. In addition, it is a robot software platform and it provides a variety of development

environments dedicated to developing robot applications.

The ROS has 3 main characteristics. The first characteristic is the reusability of program.

Users can focus on the features they want to develop without having to worry about the

remaining functions. This is because they can download the corresponding package from

ROS. Moreover, they can share their own programs so that others can reuse them. The

second characteristic is that ROS is a communication-based program. Each program and

feature is programmed in the form of the smallest units of executable processes, and each

process runs independently and exchanges data systematically. Hence, this is very useful

for finding errors, because programs that are divided into minimum functions can be

debugged separately. Thirdly, the ROS supports a variety of development tools. The ROS

provides 2D visualization tool, 3D visualization tool, 3D simulator, debugging tool and so

on. These software tools necessary for robot development, which take full advantage of the

convenience of development.

ROS Master, nodes, publishers, subscriber, and topics are the 5 components of the ROS

architecture (Wilcher et al, 2019).

Figure 1.1 shows the system components of a typical ROS model

Chapter 1: Introduction

5

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The job of the ROS Master is to manage the names and registration services of nodes in

the ROS system. Apart from that, ROS Master monitors publishers and subscribers to

ensure that relevant themes and services are available in the robotic system. Moreover,

positioning and communication between nodes in a robotic system is enabled by the ROS

Master. In order to initiate the node communication function, the ROS Masters usually use

a command called ‘roscore’. Node is an executable file within the ROS system that allows

communication among another node. Publisher is a message transmitted by a node or topic

in a ROS system. Instead, a message received by node or topic in the ROS system is called

subscriber. Topic is the specific name type for the message of publishing and subscribing.

1.6 Report Organization

The report is divided into 7 chapters. The first chapter is about the problem statement,

project scope, motivation, project objectives, contributions and background information.

The second chapter is the literature review. Four path planning algorithms were reviewed,

namely Dijkstra algorithm, A* algorithm, RRT algorithm and D * Lite algorithm. The third

chapter is system design. The system design describes in detail the development method of

the project. The next chapter is the proposed method / approach. In this chapter, methods,

tools, implementation issues and challenges, and timelines will be introduced. Chapter 5

introduces system implementation and testing. In Chapter 6, some experiments will be

conducted to compare path planning algorithms. The last chapter is the conclusion of the

whole project and some future work of the system.

Chapter 2: Literature Review

6

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

2.1 Dijkstra’s algorithm

2.1.1 Introduction

This algorithm is a graph search based algorithm. It is used to solve shortest path problem

for a directed or undirected graph with nonnegative edge costs, resulting in a shortest path

tree. Dutch computer scientist Edsger Dijkstra created this algorithm in 1959 (Venkat,

2014).

The algorithm finds the lowest cost path between the point and each of the other points. It

can also be used to search the shortest path from a point to a target point by stopping the

algorithm after determining the shortest path to the target point.

2.1.2 How does a Dijkstra’s algorithm work?

In the Dijkstra’s algorithm, a graph G is considered with n nodes via edges e. Edge 𝑒𝑛1,𝑛2

has the cost 𝑐𝑛1,𝑛2 from node n1 to node n2.

Figure 2.1 shows the weighted graph

First of all, a starting point, s is chosen and added in an unvisited list, U. The 𝑐𝑠,𝑠 = 0

because 𝑒𝑠,𝑠 is not exist. In addition, the other nodes are added to U and set the 𝑐𝑠,𝑛1…𝑘
=

 ∞, where the k is the nodes count in the graph. The U is a min-priority queue. In other

words, the node which has the minimum cost is chosen in the U.

Therefore, the s is chosen from the U since the 𝑐𝑠,𝑠 is the lowest. After that, the costs from

the s to its neighbors x are updated. The formula for updating the cost for x is shown below

(Kangutkar, 2017).

Chapter 2: Literature Review

7

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝑐𝑠,𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑑
= 𝑚𝑖𝑛 (𝑐𝑠,𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 , 𝑐𝑠,𝑥−1 + 𝑐𝑥−1,𝑥)

The 𝑐𝑠,𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 refers to x cost in U and the x-1 is the current node being considered. The

selected node is removed from U and placed in V after updating the costs to each neighbor.

The same steps are repeated until the goal node g is added to V or if the minimum cost in

U is ∞.

2.1.3 Advantages and Disadvantages

The advantages of Dijkstra’s algorithm are it has an O(𝑛2). Therefore, it is sufficiently

effective to use it for a relatively enormous problem. Besides that, it is simple as compare

to another path planning algorithm. However, the disadvantages of Dijkstra’s algorithm are

it performs blind searches. Thus, a lot of time will be wasted to search for useless resource.

Also, if Dijkstra’s algorithm handles negative weights, it will cause this algorithm to

produce incorrect results. (Huang et.al., 2009).

2.2 A* algorithm

2.2.1 Introduction

A* algorithm is a graph search algorithm. It is used to find a path from a starting node to a

target node (Gotal et.al. 2014). The algorithm was developed in 1968 by Hart et al. A*

combines the information used by the Dijkstra algorithm with the information used by

Best-First-Search. Compared to Dijkstra, A* achieves better performance by using

heuristic. It is an approximation of distance from the current location to the target location

(Dorin, n.d.). In the process of searching for the shortest route, each cell of the grid is

evaluated based on an evaluation function given by

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

(𝑛) is the evaluation function, where ℎ(𝑛) is the heuristic cost of the minimum path to reach

the goal node g. Besides that, the 𝑔(𝑛) refer to the accumulated cost from the starting point

s to the current point n. Figure 2.2 shows how the estimate is determined (Choset, n.d.).

Chapter 2: Literature Review

8

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2 shows the A* heuristic ℎ(𝑛) (using Euclidean distance)

According to the grid cell structure shown in Figure 2.3 (Kangutkar, 2017). The diagonal

edges have a cost c of 1.4, while horizontal and vertical edges have a cost c of 1. For

instance, 𝑐𝑥1,𝑥5 = 1.4 and 𝑐𝑥1,𝑥2 = 1. If 𝑥9 and 𝑥4 are obstacles, then 𝑐𝑥1,𝑥9 = ∞ and

𝑐𝑥1,𝑥4 = ∞.

Figure 2.3 shows the possible moves between grid cells

2.2.2 How does an A* work?

This algorithm requires 2 lists to store information about nodes which are open list O and

closed list C. The O stores nodes for expansions and the C stores nodes that have been

explored. Initially, the starting node s is added to the O for expansions. In O, the minimum

(𝑛) is chosen which called (𝑛𝑏𝑒𝑠𝑡). 𝑛𝑏𝑒𝑠𝑡 is a node with the minimum 𝑓(𝑛). After that, the

𝑛𝑏𝑒𝑠𝑡 is remove from O and placed into C. If the 𝑛𝑏𝑒𝑠𝑡 is not the goal node g and each

neighbor of 𝑛𝑏𝑒𝑠𝑡 is not included in C, then the x in O will update g(n), and the x not in the

O will be placed into O. The same steps are repeated until the 𝑛𝑏𝑒𝑠𝑡 = g or the O is empty.

Chapter 2: Literature Review

9

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2.3 Advantages and Disadvantages

The A* algorithm is complete and optimal. Apart from that, the time complexity of this

algorithm is 𝑂 (𝑛 𝑙𝑜𝑔 𝑛), it can be used to solve very complex problems. However, the

accuracy of the heuristic algorithm that is used to compute ℎ(𝑛) has a greatly depends to a

large extent on the execution speed of A*.

2.3 D* lite algorithm

2.3.1 Introduction

Sven Koenig and Maxim Likhachev are the persons who designed the D* lite algorithm.

This algorithm is an incremental heuristic search algorithm. In the grid, each of the cell, x

has a g(u) and rhs(u) value. If g(u) = rhs(u) then, u is said to be consistent, else it is

inconsistent. Inconsistent cells are added to a priority queue U. A cell is termed as under-

consistent if g(u) < rhs(u) and over-consistent if g(u) > rhs(u). A term inconsistent is used

to detect the changes in the graph created by dynamic obstacles, under-consistent means

c(current, targeted) increase and over-consistent describes a situation, when c(current,

targeted) decrease. The formula of priority, k and rhs(u), is shown below (Kangutkar, 2017).

k = min(g(u), rhs(u) + h(u))

rhs(u) = 𝑚𝑖𝑛𝑛∈Neighbors (g(n) + c(u, n))

The function UPDATE_VERTEX() is called when u is adding to U. If u ∈ U, it is removed

from U and if the neighbor is inconsistent, it is added to the queue along with its key k.

2.3.2 How does a D* lite work?

First of all, the rhs(goal) is set to 0 and then added to U. Besides, all g(deg) and rhs(deg)

are set to ∞. After initialized, COMPUTE_SHORTEST_PATH() is called. In this function,

while 𝑘𝑡𝑜𝑝of U is less than the 𝑘𝑠𝑡𝑎𝑟𝑡 or rhs(start)! = g(start) the function runs. The top

most element, u is dequeued. If u is over-consistent, g(u) = rhs(u) and the

UPDATE_VERTEX() is called for all neighbors. If u is consistent, then g(u) = ∞ and

UPDATE_VERTEX() is called on u, itself, as well as its neighbors.

When the path is calculated, the robot move according to the calculated path. If any

inconsistency occurs, and it is not possible to travel to cell v, then the edge cost c(u, v) is

Chapter 2: Literature Review

10

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

set to ∞ and UPDATE_VERTEX() is called on u. Likewise, for every member in U, the

cost is updated with rhs(u). After that, COMPUTE_SHORTEST_PATH() is called again.

2.3.3 Advantages and Disadvantages

The advantage of D* lite is it is more efficient than other brute-force replanner in expansive

and complex environments. However, D* lite algorithm is too complex as compare to other

algorithms such as A* algorithm.

2.4 Rapid-Exploring Random Tree (RRT)

2.4.1 Introduction

Rapid-Exploring Random Tree (RRT) was created by LaValle et al. A non-convex high-

dimensional spaces is suitable for this algorithm. The main idea is to explore the

unexplored part by sampling the points, and gradually “pull” the search tree near to them

(LaValle et.al, n.d.).

2.4.2 How does a standard RRT work?

First of all, a starting point, s and a goal point, g attempt to connect directly. If there is no

collision, the path is found. Otherwise, a new point needs to be created randomly in the

specific area, repeat this step if the new point is in the obstacle. Next, the new point tries

to connect with the closest point of the tree. Also, a new point is randomly created if the

new point cannot be connected to the point of tree. On the other hand, the new node become

the node of the tree if new node is successfully connected. Lastly, check if the node can

connect to the target node. If a collision occurs, a new point will be randomly created. If

the nodes can connect, it means that the path has been found.

Chapter 2: Literature Review

11

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 2.4 shows the flow chart of the standard RRT

Chapter 2: Literature Review

12

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4.3 Advantages and Disadvantages

The advantage of the RRT is that the algorithm is very simple to program. Besides that, a

tree rapidly explores the entire area, instead of ‘staying’ in the near the starting node.

However, the algorithm is not deterministic. This means that with the same starting point,

it will have some different paths. Apart from that, it is difficult to connect a node to a node

if there are a lot of obstacle in state space. Moreover, some of the found paths may not be

the path chosen by humans.

Chapter 3: System Design

13

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

Figure 3.1 shows the system design

3.1 Create the environment

Since the purpose of this project is to analyze and compare path planning algorithms in

simulated robot, it is necessary to conduct experiments with a simulated robot and

environments. Therefore, a simulated robot and map must be created. In this project,

Simple Two Dimensional Robot (STDR) simulator will be used to simulate the movement

of the robot in a two-dimensional environment. The STDR simulator already contains some

created maps and robots.

3.1.1 Map

The components of the map are image file containing the occupancy data and YAML file.

Name of image file and map meta-data need to be included in the YAML file. For example,

the Figure 3.2 shows the example of image file and Figure 3.3 shows the format of the map

YAML file.

Chapter 3: System Design

14

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2 shows the simple_rooms_no_walls.png

Figure 3.3 shows a map’s YAML file

In this case, the simple_rooms_no_walls.png is the path to image file. The map resolution

is 0.05 (m / pixel). In other words, 1 pixel represents 0.05 meters. According to the origin

(x, y, yaw), x-axis equal to 0, y-axis equal to 0, and the yaw as counterclockwise rotation

equal to 0. The occupied_thresh of 0.6 means that if the pixel’s occupancy probability is

greater than 0.6, the pixel is considered to be fully occupied. Conversely, free_thresh of

0.3 means that if the occupancy probability of a pixel is less than 0.3, the pixel is considered

completely free. The negate of 0 means that whether the white/black free/occupancy

semantics will not be reversed.

Chapter 3: System Design

15

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.2 Robot

A YAML or XML file needs to be created according to the requirement of the robot.

Figure 3.4 shows the YAML file of a simple robot

In this robot’s YAML file, it explains the robot specifications, such as the robot footprint

and initial pose. The example shows that the radius of the robot is 0.2m, and the initial

posture of the robot is x-axis = 0, y-axis = 0 and theta = 0.

3.1.3 Load the Map and Robot

Figure 3.5 shows the “Load Map” and “Load robot” buttons in STDR simulator

Click the "Load Map" button and select the map’s YAML file to load the map. In the same

way, click the "Load Robot" button and then select the robot’s YAML file to load the robot.

Chapter 3: System Design

16

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Navigation System

In order to move a robot from one point to another point without collision obstacles, the

map in PNG format needs to be converted into a map that can be calculated. After that,

path planning algorithms are used to calculate the route where the robot can reach the

specified point without collision obstacles. After obtaining the path, the robot is moved by

using the calculated path.

3.2.1 Convert the map

In the map, white indicates no obstacles, and other colors indicates obstacles. Each pixel

of the map contains a decimal code (R, G, B) representing the color of the pixel. For

example, (255,0,0) is represent red, (0,255,0) is represent green, and (0,0,255) is represent

blue. Therefore, an occupancy map can be constructed by reading each pixel. If the pixel

is white (255,255,255), append True to a list otherwise append False. In other words, true

means no obstacles, false means obstacles.

3.2.2 Path planning

In this project, Dijkstra's algorithm, A* algorithm, Rapid-exploration Random Tree (RRT)

algorithm, and an algorithm modified from A * will be coded. The following sections will

show the main functional flowcharts of these algorithms.

Chapter 3: System Design

17

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2.1 Dijkstra's and A* algorithms

Figure 3.6 shows flowchart of search() function

Chapter 3: System Design

18

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.7 shows the flowchart of proceed() function of Dijkstra

Both of the codes are almost the same. The main difference is that in the proceed() function

of A*, priority = newcost + self.heuristic(next, goal) instead of just priority = newcost.

Chapter 3: System Design

19

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2.2 RRT algorithm

Figure 3.8 shows the flowchart of Planning() of RRT

Chapter 3: System Design

20

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2.3 Modified A* algorithm (bidirectional A* search)

The A* algorithm finds the path from the starting point to the goal point. In this modified

A* algorithm, it will find the path by looking in both directions. In other words, the

algorithm will search from the starting point to the goal point, and from the goal point to

the starting point. When one side (forward/backward) of the current neighbor node is on

the other side of explored node, the searching process can be stopped. For example, if the

current’s neighbor node of forward searching meet the explored node of backward

searching, the path can be obtained from the start point to the current node of forward

searching plus from the explored node of backward searching to goal.

Figure 3.9 shows the example of bidirectional A*

Chapter 3: System Design

21

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.10 shows the flowchart of search_forward()

The search_backward() is almost the same with search_forward(). The difference are:

1. openL_f.put(start,0) change to openL_b.put(goal, 0).

2. explored_s[start] = None –change to explored_g[goal]=None

3. cost[start] = 0 change to cost[goal] = 0

4. self.proceed(gridworld, “front”) change to self.proceed(gridworld, “back”)

Chapter 3: System Design

22

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.11 shows the flowchart of proceed()

Chapter 3: System Design

23

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.3 Move the simulated robot

After obtaining the calculated path, the next step is to move the simulated robot. In order

to move the simulated robot, a node must be initialize.

Figure 3.12 shows the code to initialize the node in python

A node called ‘traveler’ is created. This node is published to a topic called ‘/robot0/cml_vel’

through the “Twist” message class in order to control the speed and direction of the robot.

When the robot publishes a Twist message, it will move according to the message.

Figure 3.13 shows the details of the message

The rostopic type will return the message type of any topic being published. In this case,

“geometry_msgs/Twist” is returned. The message contains "geometry_msgs/Vector3

linear" and "geometry_msgs /Vector3 angular", which are used to control the movement

speed and rotation speed, respectively.

In addition, the "traveler" node also subscribes to the "/robot0/odom" topic with the

"Odometry" message class to obtain the current location of the robot. Apart from that,

‘self.odom_callback is the callback function for the odemetry subscriber, which will

continuously update the current position of the robot.

After the current position and calculated path of the robot are obtained, they can be used to

calculate the distance and the rotation angle. The distance can be calculated using

Euclidean distance and the rotation angle can be calculated using math.atan2(y,x).

Chapter 3: System Design

24

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.14 shows the example of atan2(y,x)

Therefore, the robot can move to the goal by controlling the rotation angle and linear

velocity.

Chapter 4: Proposed method / Approach

25

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: Proposed method / Approach

4.1 Design Specifications

4.1.1 Methodologies and General Work Procedures

Figure 4.1 shows the project methodology

In the beginning, some relevant information will be studied. In order to simulate robots,

the robotic operating system (ROS) plays an important role. ROS has many software

libraries and tools to build a robots. Besides, if we want to simulate a robot, then a simulator

is needed. Therefore, information about the STDR simulator need to be studied. Apart from

that, several existing path planning algorithms also need to be reviewed.

After reviewing the relevant information, we can start to install the software that we need

in order to do the implementation. The only platform that ROS currently run is Unix-based

platform. Also, most of the ROS software is established on Ubuntu and Max OS X systems.

Therefore, VMware Workstation 15 Player and Ubuntu 16.04 Xenial Xerus (LTS)

operating system are chosen to be installed. After install the Ubuntu, the ROS development

Chapter 4: Proposed method / Approach

26

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

environment need to be configured. Besides, a ROS operation test is configured by using

a Turtlesim package provided by ROS.

At the implementation phase, 4 path planning algorithms need to be written which are

Dijkstra’s, A*, RRT, and modified A*. After that, those path planning algorithms are used

to do a simulation in STDR simulator. If the path planning algorithms in simulated robot

can perform correctly, then the result of the simulations will be collected.

Once the results are collected, the results can be analyzed and compared. Finally, the

information obtained from the analysis will be used to do a documentation.

4.1.2 Tool to use

Hardware:

Laptop:

Processor Intel Core i5 @ 2.30GHz

Graphics 2047MB NVIDIA GeForce 930M

Installed RAM 12.0GB

System Type Windows 10 Home 64-bit

Table 4.1 shows the specification of laptop

Software:

1. VMware Workstation 15 Player:

It is an ideal utility for running a single virtual machine on a Window or Linux PC.

The purpose of installing this software is that an Ubuntu operating system is needed

in this project.

2. Simple Two Dimensional Robot (STDR) simulator:

It is a 2D simulator that can create a robot in a 2D scene and simulate the robot's

movement on the computer.

Chapter 4: Proposed method / Approach

27

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Implementation issues and challenges

Learning ROS takes a lot of time

ROS is a fairly large system that includes many packages and libraries. These packages are

bundled with message-passing framework. In order to understand the concept of ROS, a

lot of information need to be studied.

Difficult to set up the software environment

An Ubuntu 16.04 Xenial Xerus (LTS) operating system needs to be installed. This is

because most of the ROS software is established on Ubuntu and Max OS X systems.

Besides that, the ROS and TurtleBot3 development environment need to be configured by

using Linux command. To ensure proper ROS configuration, a Turtlesim package is used

to do a ROS operation test. In other words, a lot of time will be wasted in order to build an

environment for implementation.

A lot of computing power are needed

Although the Gazebo is an excellent tool for simulating robots. However, it requires a lot

of computing power and may not work well on the laptop. In additionally, the virtual

machine is also running. This will lead to an increase in computing power.

Chapter 4: Proposed method / Approach

28

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Timeline

Figure 4.2 shows the Timeline for FYP1

Chapter 4: Proposed method / Approach

29

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3 shows the Timeline for FYP2

Chapter 5: System Implementation and Testing

30

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

5.1 Installation and environment setup

In order to run an Ubuntu operating system on Windows, a virtual machine was required.

Therefore, VMware Workstation 15 Player was installed. Once the virtual machine was

installed, Ubuntu 16.04.6 LTS (Xenial Xerus) was created by using ISO image for Ubuntu

in the virtual machine.

Figure 5.1 shows the Ubuntu opens in the virtual machine

Since the ROS is required in this project, so the Kinetic Kame version had been installed

and ROS environment had been configured. In order to save time, a quick installation was

used rather than a general installation. However, the quick installation is only available for

16.04.x or Linux Mint 18.x. The quick installation include the Network Time Protocol

configuration, adding source list, setting key, updating package index, installing ROS

Kinetic Kame, initializing rosdep, installing rosintall, load the environment file, creating

Chapter 5: System Implementation and Testing

31

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

and initializing a workspace folder. The command lines of quick installation shown as

below.

Figure 5.2 shows the command lines of quick installation (Pyo, Cho, Jung and Lim,

2017)

5.2 ROS operation test

After the installation of ROS, we need to check if it works properly. Thus, a Turtlesim

package was used for testing which is provided by ROS. The test is very simple. First of

all, a command ‘roscore’ was entered and run it in a terminal window. This command is

used for control the entire ROS system.

Figure 5.3 shows the ‘roscore’ command run successfully

After that, a turtlesim_node need to be created in order to display a turtle on the screen. A

new terminal window was opened and enter the command “rosrun turtlesim

turtlesim_node”. If the node was created successfully, then a turtle will be displayed on a

screen.

Chapter 5: System Implementation and Testing

32

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4 shows the ‘turtlesim_node’ was created successfully

Lastly, a node that controls the turtle also need to be created. The command is “rosrun

turtlesim turtle_teleop_key”. As before, a new terminal window was opened and enter this

command. If the node was created, the turtle can be controlled by pressing the arrow keys

on keyboard in this terminal window.

Figure 5.5 shows the ‘turtle_teleop_key’ was created successfully

Chapter 5: System Implementation and Testing

33

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Also, a command ‘rqt_graph’ was used to show a diagram of the information of currently

running nodes in a GUI form.

Figure 5.6 shows the rqt graph

The circle represents a node. The arrow is point from the ‘/teleop_turtle’ to ‘/turtlesim’

through a topic ‘/turtle1/cmd_vel’. The topic ‘/turtle1/cmd_vel’ which is a sub-topic of the

turtle1 topic. When ‘/teleop_turtle’ get a speed input, it sent the input as a message in the

topic to the ‘/turtlesim’. Therefore, ‘/turtlesim’ can use the message in the topic as input to

visualize the speed command.

5.3 Install STDR simulator

In order to simulate the path planning and movement of the robot, the STDR simulator will

be used.

Figure 5.7 shows the command line for installing the STDR simulator

If running on Ubuntu Linux or Linux Mint, this command line can be used to install the

STDR simulator.

Chapter 5: System Implementation and Testing

34

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.8 shows the STDR simulator

5.4 Create a launch file to load map and robot into STDR simulator

For convenience, a launch file “server_with_map_and_gui_plus_robot.launch” was

written in order to load the map and robot at the same time instead of loading the map and

the robot one by one.

Figure 5.9 shows the launch file that loads map and robot into the STDR simulator

“robot_manager” launch file is included in order to listen to the ROS services. The node

“stdr_server_node” in “stdr_server” package is called and the argument is the path of the

map’s YAML file. After that, stdr_gui launch file is included in order to open the STDR

Chapter 5: System Implementation and Testing

35

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

simulator. After opening the simulator, the node “robot_handler” in “stdr_robot” package

is called with the argument “add $(find stdr_resources) /resources /robots

/simple_robot.yaml 2 2 0”. This means that a robot described in simple_robot.yaml will be

added, where x = 2, y = 2, and theta = 0.

5.5 Write path planning algorithms and code to control robot motion

The following sections will show the main function codes of those algorithms and

“Safegoto.py”.

5.5.1 Dijkstra’s algorithm

Figure 5.10 shows the search function of Dijkstra

Chapter 5: System Implementation and Testing

36

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.11 shows the proceed function of Dijkstra

5.5.1 A* algorithm

Figure 5.12 shows the proceed function of A*

The priority of A* adds a heuristic function.

Chapter 5: System Implementation and Testing

37

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5.3 RRT algorithm

Figure 5.13 shows the Planning function of RRT (1)

Figure 5.14 shows the Planning function of RRT (2)

Chapter 5: System Implementation and Testing

38

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.15 shows the Planning function of RRT (3)

5.5.3 Modified A* algorithm

Figure 5.16 shows the search_forward of modified A*

Chapter 5: System Implementation and Testing

39

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.17 shows the search_backward function of modified A*

Figure 5.18 shows the proceed function of modified A* (1)

Chapter 5: System Implementation and Testing

40

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.19 shows the proceed function of modified A* (2)

5.5.4 Write a code to control robot motion (Safegoto.py)

Figure 5.20 shows the go function for control robot motion (1)

Chapter 5: System Implementation and Testing

41

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.21 shows the go function for control robot motion (2)

5.6 Testing

5.6.1 Load the map and robot into the STDR simulator

Figure 5.22 shows a terminal with a command line that launch the

“server_with_map_and_gui_plus_robot.launch”

Chapter 5: System Implementation and Testing

42

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.23 shows the output of the launch file

According to the Figure 5.23, the map and robot are successfully loaded into the STDR

simulator, and the robot is placed in the correct position.

5.6.2 Move the robot

Next, we move the robot from the starting point (2, 2) to the target point (2, 10). If there is

a collision or the goal cannot be reached, it means that there is a problem with the path

planning algorithm or the code of "Safegoto.py".

Figure 5.24 shows the robot at the target point (2, 10)

Chapter 5: System Implementation and Testing

43

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6.2.1 Dijkstra’s algorithm

The function run(1) will run the Dijkstra’s algorithm.

Figure 5.25 shows the robot successfully reached the goal point by using Dijkstra’s

5.6.2.2 A* algorithm

The function run(2) will run the A* algorithm.

Figure 5.26 shows the robot successfully reached the goal point by using A*

Chapter 5: System Implementation and Testing

44

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6.2.3 RRT algorithm

The function rrt.Planning() will run the RRT algorithm.

Figure 5.27 shows the robot successfully reached the goal point by using RRT

5.6.2.4 Modified A* algorithm

The function run(3) will run the modified A* algorithm.

Figure 5.28 shows the robot successfully reached the goal point by using Modified A*

Chapter 6: Experimental Result and Comparison

45

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experiment Result and Comparison

6.1 1st Experiment

The first experiment is to use the "simple_rooms_no_walls" map, and the robot must move

from the starting point (2, 2) to the target point (16, 12). The position of robot 0 in Figure

6.1 is the starting point (2, 2), and the position of robot 1 in Figure 6.1 is the target point

(16, 12).

Figure 6.1 shows the two robots in "simple_rooms_no_walls”

6.1.1 Dijkstra’s algorithm

Figure 6.2 shows the result of the Dijkstra

Chapter 6: Experimental Result and Comparison

46

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.2 A* algorithm

Figure 6.3 shows the result of the A*

6.1.3 Modified A* algorithm

Figure 6.4 shows the result of the Modified A*

Chapter 6: Experimental Result and Comparison

47

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.1.4 RRT algorithm

Figure 6.5 shows the result of the RRT

6.1.5 Comparison of Experiment I

 Explored cell Iteration Distance (pixel) Time

Dijkstra 73940 - 414.9777 11.4290

A* 22860 - 423.2620 4.8768

Modified A* 18315 - 440.5890 2.7511

RRT - 735 419.5832 0.1791

Table 6.1 shows the comparison of experiment I

According to the Table 6.1, Dijkstra has the smallest distance among these algorithms.

However, Dijkstra spent the most time to find the path. In contrast, RRT took the least

amount of time to find a path with a distance of 419.5832. In addition, the modified A* is

faster than A*, but the modified A* has a greater distance than A*.

Chapter 6: Experimental Result and Comparison

48

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 2nd Experiment

The second experiment is to use the "sparse_obstacles" map, and the robot must move from

the starting point (2, 2) to the target point (14, 12). The position of robot 0 in Figure 6.6 is

the starting point (2, 2), and the position of robot 1 in Figure 6.6 is the target point (14, 12).

Figure 6.6 shows the two robots in “sparse_obstacles”

6.2.1 Dijkstra’s algorithm

Figure 6.7 shows the result of the Dijkstra

Chapter 6: Experimental Result and Comparison

49

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2 A* algorithm

Figure 6.8 shows the result of the A*

6.2.3 Modified A* algorithm

Figure 6.9 shows the result of the Modified A*

Chapter 6: Experimental Result and Comparison

50

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.3 RRT algorithm

Figure 6.10 shows the result of the RRT

Chapter 6: Experimental Result and Comparison

51

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.5 Comparison of Experiment II

 Explored cell Iteration Distance (pixel) Time

Dijkstra 276362 - 961.7544 73.8550

A* 158097 - 1057.0235 71.7896

Modified A* 105922 - 1031.8276 42.3568

RRT - 12786 1237.4605 30.7087

Table 6.2 shows the comparison of experiment II

According to Table 6.2, Dijkstra has the smallest distance among these algorithms.

However, Dijkstra spends most of its time searching for route. In contrast, RRT takes the

least time but has the largest distance. In addition, modified A* is faster than A* and the

distance of modified A* is less than A*.

6.3 3rd Experiment

The third experiment is to use the "utar" map, and the robot must move from the starting

point (4, 19) to the target point (28, 20). The position of robot 0 in Figure 6.11 is the starting

point (4, 19), and the position of robot 1 in Figure 6.11 is the target point (28, 20).

Figure 6.11 shows the two robots in “utar”

Chapter 6: Experimental Result and Comparison

52

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3.1 Dijkstra’s algorithm

Figure 6.12 shows the result of the Dijkstra

6.3.2 A* algorithm

Figure 6.13 shows the result of the A*

Chapter 6: Experimental Result and Comparison

53

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3.3 Modified A* algorithm

Figure 6.14 shows the result of the Modified A*

6.3.3 RRT algorithm

Figure 6.15 shows the result of the RRT

Chapter 6: Experimental Result and Comparison

54

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3.5 Comparison of Experiment III

 Explored cell Iteration Distance (pixel) Time

Dijkstra 89941 - 942.1808 11.8375

A* 63345 - 942.1808 11.7257

Modified A* 74747 - 988.6438 12.6640

RRT - 2488 928.0737 1.1798

Table 6.3 shows the comparison of experiment III

According to Table 6.3, the RRT has a minimum distance and time for calculating the route.

The distance between Dijkstra and A* is the same. However, A* uses less time than

Dijkstra. In this experiment, the modified A* is slower than A* and the distance is greater

than A*.

6.4 4th Experiment

The fourth experiment is to use the "utar2" map, which is more obstacles added in the “utar”

map. The robot must move from the starting point (4, 19) to the target point (28, 20). The

position of robot 0 in Figure 6.16 is the starting point (4, 19), and the position of robot 1 in

Figure 6.16 is the target point (28, 20).

Figure 6.16 shows the two robots in “utar2”

Chapter 6: Experimental Result and Comparison

55

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4.1 Dijkstra’s algorithm

Figure 6.17 shows the result of the Dijkstra

Chapter 6: Experimental Result and Comparison

56

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4.2 A* algorithm

Figure 6.18 shows the result of the A*

Chapter 6: Experimental Result and Comparison

57

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4.3 Modified A* algorithm

Figure 6.19 shows the result of the Modified A*

6.4.3 RRT algorithm

Figure 6.20 shows the result of the RRT

Chapter 6: Experimental Result and Comparison

58

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4.5 Comparison of Experiment IV

 Explored cell Iteration Distance (pixel) Time

Dijkstra 67378 - 1047.0437 8.2289

A* 53184 - 1065.2691 8.1139

Modified A* 55708 - 1097.2346 8.0345

RRT - - - -

Table 6.4 shows the comparison of experiment IV

According to Table 6.4, Dijkstra has the smallest distance among these algorithms.

However, Dijkstra spends most of its time searching for route. In addition, modified A* is

faster than A* but the distance of modified A* is longer than A*. Apart from that, the RRT

still cannot find the path after 50,000 iterations.

6.5 Analysis the experiments

Through these experiments, we know that Dijkstra's always result the shortest distance path,

but in most cases, it takes the longest time to calculate the path. Apart from that, the

modified A* is faster than A*, but sometimes the modified A* is slower or return a distance

greater than distance of A*. This may be because the modified A * of the forward search

and the backward search has a larger bifurcation, so they meet for a longer time, which

also results in a longer distance. The RRT algorithm takes the least amount of time to find

the route, but the route is not optimal. In addition, when the map contains many obstacles,

RRT needs more iteration time to find the path. In Experiment IV, we can see that RRT

cannot find a route in a map with too many obstacles even though it has already spent

50,000 iterations. Moreover, the route found by RRT every time may be different from the

last time. To prove this, experiment II was conducted again using the RRT algorithm.

Chapter 6: Experimental Result and Comparison

59

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.21 shows the result of the RRT

 Iteration Distance (pixel) Time

1st RRT 12786 1237.4605 30.7087

2nd RRT 5361 1230.3356 20.5181

Table 6.5 shows the comparison of 2 RRTs

According to Table 6.5, the results prove that each time route calculated by RRT is different.

Chapter 7: Conclusion

60

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7: Conclusion

Path planning is a process of finding an optimal path for robot move from source to

destination. Besides that, different path planning algorithms has its own applicable fields,

performance in various situations. Therefore, it is significant to understand the properties

of various path planning algorithms. In this paper, Robot Operating System (ROS), and

STDR simulator are used to simulate a robot that is implemented by various path planning

algorithms and environments.

In this paper, we can conclude that if you need to find the shortest distance path, Dijkstra

is the best choice. If you want to speed up the search time and there are fewer obstacles on

the map, it is recommended to use A*, modified A* or RRT. However, if there are many

obstacles on the map, RRT will not be suitable for searching. They will use shorter time to

search for the path, but they may not lead to the shortest path. In addition, the route

discovered by RRT may be different from the route discovered last time.

By reading this paper, readers will be able to understand the properties of various path

planning algorithms without having to spend extra time reading irrelevant information.

Also, the readers can observe the difference between path planning algorithms more clearly

on the simulator. All in all, if we want to design a robot, we can better understand which

algorithm is best suited for which situation to use in order to get the maximum benefit.

In future work, more path planning algorithms will be reviewed and compared. In addition,

existing path planning algorithms will be modified or improved to increase accuracy or

reduce the time used to calculate paths. For example, the modified A* search speed can be

improved by using parallelism.

61

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY

BrainKart. n.d.. Brainkart. [online] Available at: <https://www.brainkart.com/article/A--

Search--Concept,-Algorithm,-Implementation,-Advantages,-

Disadvantages_8883/ > [Accessed 13 August 2019].

Cs.cmu.edu. 2002. [online] Available at:

<https://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf>

[Accessed 17 August 2019].

Cs.cmu.edu. 2007. [online] Available at:

<http://www.cs.cmu.edu/~motionplanning/lecture/lec21.pdf> [Accessed 10

November 2019].

Design News. 2019. ROS 101: An Intro To The Robot Operating System. [online]

Available at: <https://www.designnews.com/gadget-freak/ros-101-intro-robot-

operating-system/107053141061075> [Accessed 15 November 2019].

Hindex.org. 2014. [online] Available at: <http://www.hindex.org/2014/p520.pdf>

[Accessed 17 August 2019].

IoT Agenda. 2019. What Is A Drone? - Definition From Whatis.Com. [online] Available

at: <https://internetofthingsagenda.techtarget.com/definition/drone> [Accessed 16

November 2019].

Kangutkar, R., 2017. Obstacle Avoidance And Path Planning For Smart Indoor Agents.

[online] RIT Scholar Works. Available at:

<https://scholarworks.rit.edu/theses/9521/> [Accessed 12 November 2019].

Merriam-webster.com. 2019. Definition Of ROBOT. [online] Available at:

<https://www.merriam-webster.com/dictionary/robot> [Accessed 14 November

2019].

Msl.cs.uiuc.edu. n.d.. [online] Available at:

<http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf> [Accessed 15 August

2019].

62

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pyo, Y., Cho, H., Jung, R. and Lim, T., 2017. ROS Robot Programming. ROBOTIS

Co.,Ltd.

RobotWorx. 2019. Benefits Of Using Robotics. [online] Available at:

<https://www.robots.com/articles/benefits-of-using-robotics> [Accessed 15

November 2019].

Sciencedirect.com. 2017. Path Planning - An Overview | Sciencedirect Topics. [online]

Available at: <https://www.sciencedirect.com/topics/engineering/path-planning>

[Accessed 16 August 2019].

Soffar, H., 2019. Aquatic Robots (Swimming Robots Or Robot Fish) Types, Uses, Cons &

Pros | Science Online. [online] Science online. Available at: <https://www.online-

sciences.com/robotics/aquatic-robots-swimming-robots-or-robot-fish-types-uses-

cons-pros/> [Accessed 18 November 2019].

Techunited.nl. 2010. Path Planning: RRT - Explanation RRT - Tech United Eindhoven.

[online] Available at:

<http://www.techunited.nl/wiki/index.php?title=Path_planning:_RRT_-

_Explanation_RRT> [Accessed 15 August 2019].

Users.monash.edu. n.d.. [online] Available at:

<http://users.monash.edu/~cema/courses/FIT3094/lecturePDFs/lecture6a_Astar.p

df> [Accessed 16 August 2019].

Wiki.ros.org. 2018. ROS/Introduction - ROS Wiki. [online] Available at:

<http://wiki.ros.org/ROS/Introduction> [Accessed 18 November 2019].

Wiki.ros.org. 2019. Turtlesim/Tutorials/Moving In A Straight Line - ROS Wiki. [online]

Available at:

<http://wiki.ros.org/turtlesim/Tutorials/Moving%20in%20a%20Straight%20Line

> [Accessed 19 November 2019].

63

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

64

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

65

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

Full Name(s) of Candidate(s) Ch’ng Chee Yu’ng

ID Number(s)

 16ACB04126

 Programme / Course CS

Title of Final Year Project Comparion of Path Planning in Simulated Robot

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds

the limits approved by UTAR)

Overall similarity index: 11_ %

Similarity by source
Internet Sources: ______1________%

Publications: ____3____ _ %

Student Papers: ____10___ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin for
Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

CHANG JING JING

4/22/2020

66

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB04126

Student Name Ch’ng Chee Yu’ng

Supervisor Name Dr. Chang Jing Jing

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you

have checked your report with respect to the corresponding item.

√ Front Cover

√ Signed Report Status Declaration Form
√ Title Page

√ Signed form of the Declaration of Originality
√ Acknowledgement

√ Abstract

√ Table of Contents
√ List of Figures (if applicable)

√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)

√ Chapters / Content
√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of
literature review

 Appendices (if applicable)

√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all
the items listed in the table are included in
my report.

(Signature of Student)
Date:

Supervisor verification. Report with incorrect

format can get 5 mark (1 grade) reduction.

(Signature of Supervisor)
Date: 22 April 2020

23 April 2020

