COMPARISON OF PATH PLANNING IN SIMULATED ROBOT

By
CH’NG CHEE YU’NG

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology
(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: Comparison of Path Planning in Simulated Robot

Academic Session: JAN 2020

CH’NG CHEE YU'NG
(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

24 R

(Author’s signature) (Supervisor’s signature)

Address:
No. 16, Jalan Bawal 7, Taman Mutiara,

42800, Tanjong Sepat, CHANG JING JING

Selangor. Supervisor’s name

Date: 4/23/2020 Date: 4/22/2020

COMPARISON OF PATH PLANNING IN SIMULATED ROBOT

By
CH’NG CHEE YU’NG

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONYS)
Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

DECLARATION OF ORIGINALITY

| declare that this report entitled “COMPARISON OF PATH PLANNING IN
SIMULATED ROBOT” is my own work except as cited in the references. The report has
not been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

L~

Signature
Name : CH’NG CHEE YU’NG
Date : 4/23/2020

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENT
I would like to thank my supervisor Dr. Chang Jing Jing for her valuable and constructive
suggestions during the planning and development of the project. In addition, thank you for
giving me this bright opportunity to participate in projects related to Robot Operating
System (ROS) and path planning algorithms. One million thank you.

Finally, 1 must thank my parents and family for their support and encouragement

throughout the Final Year Project.

iii
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT
The development of technology is getting faster and faster, and the robotics revolution is
also expanding rapidly. This is because robots can make a huge contribution to humans.
The flexibility of robots has made it being capable of performing a diversity of tasks
automatically (Benefits of Using Robotics, 2019). They can replace humans to do
dangerous jobs, and complete the jobs more efficiently and accurately than humans. A
basic task of a mobile robot is to move to a targeted point in order to perform the specified
tasks. Hence, path planning algorithm such as A* algorithm and Dijkstra’s algorithm are
essential for the robot to navigate efficiently from one place to the targeted place. However,
different robots will work in different environments. If all the robots use the same path
planning algorithm, it is possible that they may not bring the greatest benefit. This is
because each path planning algorithm has its own applicable domain, performance,
advantages and disadvantages in various situations. Thus, a comparison of path planning
algorithm in simulated robot will be conducted in this study. There are 4 path planning
algorithms will be compared, which are Dijkstra’s algorithm, A* algorithm, Rapid-
Exploring Random Tree (RRT) algorithm, and the last one is an algorithm modified from
A*. The concept of the modified A* is to search the path in two directions. As a result of
this paper, Dijkstra's algorithm suitable for finding the shortest distance. If you want to
speed up the search time and there are fewer obstacles on the map, it is recommended to
use A*, modified A* or RRT. However, if there are many obstacles on the map, RRT will
not be suitable for searching. Robot Operating System (ROS) and Simple Two

Dimensional Robot (STDR) simulator will be used in this project.

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents

THTLE PAGE ...ttt bt ettt et b e e bt et e sbe et et sae et e sbeeaeeees i
DECLARATION OF ORIGINALITY Lottt ettt sttt ettt s st s ii
ACKNOWLEDGEMENT ..ottt ettt st st st et e b e saee st e iii
ABSTRACT ettt b e et e bt e ae et e e bt et e st e ehe et e she e st e bt ehe et e sbe et e ntesaeenten iv
LIST OF FIGURES ...ttt st h et sttt sttt e b sbe e viii
LIST OF TABLES..... .ottt sttt et et e s b e sbe e st e st e s be e beesbeenaeas xi
LIST OF ABBREIVATIONS ...ttt ettt sttt ettt st st st st ae e s xii
Chapter 1: INTrOQUCTION.......co.iiiiiieieieiee ettt 1
1.1 Problem statement and MOTIVALIONc.ccvveirieireine s 1
1.2 PrOJECE SCOPE...ecutitieeeitieteete st ete sttt et e e et e te et esbesbe et e steese e besreessesbeeasastesseensesteesaensesseensenes 3
1.3 PrOJECt ODJECTIVES.....cviiiieieiieieeeeeter ettt sttt e e ene i 3
1.4 CONTIIDULION. ...ttt st sttt ene b 3
1.5 Background iNfOrmation..........c.cceceeiiiiieiiiiieeece ettt st 4
1.6 REPOIt OrganiZatiOncccoceecieiiieieticeeee ettt et s e e b e st e s beesaesteesa e besanensenns 5
Chapter 2: LItErature REVIEWcceccviiiieeeieeeete sttt et te e eva et e saesbe e e stesraensesteesaenbesseensenes 6
2.1 DijKstra’s al@Orithimccocoiiiiiiiiii e 6

2. 1.1 INEFOTUCTION ..ttt b ettt 6
2.1.2 How does a Dijkstra’s algorithm work?.............cccoooiiiiiiiiinieeeee, 6
2.1.3 Advantages and DisadVantagesS.........cceceerueieeveeiesrieieseeeesteseeseesreeeestesreesresteesnenens 7

2.2 AT AIGOFTERM L.ttt et st b e s re et b et e reeraentan 7
2.2.1 INEFOTUCTION ...ttt 7
2.2.2 HOW d0ES AN A* WOTK?....ocviiiiiiiiiieieiee ettt 8
2.2.3 Advantages and DisadVantagesS.........cceeeevueieeceerieerieiiesteeeesteseesee e s sestesreesresreesaenens 9

2.3 DF HIte AlgOTItRM ...ttt s teerae it 9
2.3.1 INEFOTUCTION ...ttt 9
2.3.2 HOW d0€s @ D* lIte WOIK?coviiiiiiiiiiicicec s 9
2.3.3 Advantages and DisadVantagesS.........ccceeeverereerierieeeerieeeesieseesestesseessesreesessesseeneens 10

2.4 Rapid-Exploring Random Tree (RRT) .cooiieieeeee et 10
2.4. 1 INEFOTUCTION ...ttt 10
2.4.2 How does a standard RRT WOFK?ccoiiiiniiniiciicecceeseneeeeees 10
2.4.3 Advantages and DisadVantagesS.........ccceeeverereeriesieeeenieeeerteseeeessesreesse e esseseesseensens 12

(O T T o] (=] e TS V] 1= 0 T DT T [PR 13
v

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

N0 IV - T ST U USROS PRSPPSO 13
BLL2 RODOT. ...ttt 15
3.1.3 Load the Map and RODOL..........coo oot 15
3.2 NAVIQALION SYSTEIM ...ttt e et ene s 16
3.2.1 CONVEIT TNE MAP ..ttt ettt 16
IV w14 a1 o] F- 1] 1 o SRRSO 16
3.2.3 Move the simulated robOt ..o 23
Chapter 4: Proposed method / APProach...........coeeeeieieiiceeieceeeesee et 25
4.1 DEeSIgN SPECITICALIONScviveieiienieiieieetest ettt sttt b e b e sa e eae e 25
4.1.1 Methodologies and General WOrk ProCedures............cocceeeirereneneneneeneeeeennene 25
4. 1.2 TOOI TO USE ..ttt sttt 26
4.2 Implementation issues and ChalleNgesS..........cooveeeeiiicieciceeeee e 27
4.3 THMEIINE .ottt ettt ettt b et b e 28
Chapter 5: System Implementation and TeSTINGcceveeirererenierieieeeeere s 30
5.1 Installation and enNViroNMENT SETUPccceveiririrererereeeee e 30
5.2 ROS OPEFAtiON TESEvivieeeiiieieeiecteeieste ettt ettt s re et e s teesae s besra et e sbeessesteeraenbesreensenns 31
5.3 InStall STDR SIMUIALOToveuiieiiieiiriciccce et 33
5.4 Create a launch file to load map and robot into STDR simulatorc.c.ccecevveeenene. 34
5.5 Write path planning algorithms and code to control robot motion.............ccccceeeeeenene 35
5.5.1 DijKkstra’s algorithmc.ccccooiiiiiiiiiiiiiiec et 35
B5.5. 1 A% AIGOFTTNM ...ttt st ea et st e e aesbeesaentens 36
5.5.3 RRT AlgOFtNM ...ttt st s beeraere 37
5.5.3 Modified A* algorithim........c.ooieiiieceece e 38
5.5.4 Write a code to control robot motion (Safegoto.py)ccceeevveeierireceerieseee e 40
5.6 TESTING vouveeieeieeeete sttt ettt ettt et e et e et e s te et e beeaa e teebeesbesteesaesbestsensesbeensesteeseentesteensenns 41
5.6.1 Load the map and robot into the STDR simulator...........cccoceoeviiieniiieieneeieee 41
5.6.2 MOVE the FODOL.........ooiiieiece et 42
Chapter 6: Experiment Result and COmMPariSONcccuevveeerieriecieseseese s 45
6.1 15 EXPEIIMENTcviiitiictiietieetectetest ettt ettt s et s se b esesbesesbese st eneeseneesens 45
6.1.1 DijKkstra’s algorithmcocooiiiiiiiii e 45
B.1.2 AF AlgOFITNM ..ot 46
6.1.3 Modified A* @lgOrithMcc.ociiiieeeee e e e 46

Vi

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

TN T o = o To] 1 | o S 47

6.1.5 Comparison of EXPeriment |cccoeriririninineseeeeeeesese s 47

6.2 279 EXPEIIMENTocvvvevcvcececececececee ettt ettt ettt se s sttt s asasasssssss s s s s s et asesesesesesesene 48
6.2.1 DijKstra’s algorithimc.ccoooiiiiiiiiiicee e 48
6.2.2 A% AIJOTTENIM ..ottt 49
6.2.3 Modified A* algOritNMc.ooiiiiiieee s 49
IR =4 = = 1o o |1] o 1T 50
6.2.5 Comparison of EXPeriment Tlccooveieiiiieeeeeeeeeeeeee e 51

8.3 3T EXPEIIMENTvvvveeceeecececeece ettt ettt ettt ettt ae e e s s s s esasesesetesesesene 51
6.3.1 DijKstra’s algorithimcc.ccoooiiiiiiiiiii e 52
6.3.2 A% AIJOTTENIM ..ottt 52
6.3.3 Modified A* algOritNMcc.ociiieeeeee e e 53
6.3.3 RRT @lgOIitNM. ..ottt st e be e e 53
6.3.5 Comparison of EXperiment Tl ..o 54

6.4 A1 EXPEIIMENT....cviiieieieeteteiiiceeeete ettt b bbb s s s e sesessnsnaes 54
6.4.1 DijKstra’s algorithimccccoooiiiiiiiiiii e 55
6.4.2 A% AlgOFItRM ..ot 56
6.4.3 Modified A* algOrithMi......cc.ociiieeeeee e e e 57
ORI B = 1 o 1] o S 57
6.4.5 Comparison of EXPEriment IVccooieioiiiieeecee ettt s 58

6.5 ANalysis the EXPEIIMENTScceciiieere ettt st esaesesreenee e 58
Chapter 7: CONCIUSIONcviiiieiececeeeeete ettt st e st e be et e steesa e besteebesbeenseseas 60
BIBLIOGRAPHY .ttt et b e st st st st e b e e b e s bt e saeesateenbeeneeens 61
POSTER ...ttt s h et b e ettt e ae et e s bt et e s b e eaeenbesbe e e e sbe et enbesbeenbens 63
PLAGIARISM CHECK RESULT ..ottt sttt st 64
CHECKLIST ettt b e s bttt st e et b e be e sbe e sat e st e e beesbeesbeesaeenane 66
vii

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure Number

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

LIST OF FIGURES

Title

system components of a typical ROS model
weighted graph

A* heuristic i(n)

Possible moves between grid cells

flow chart of the standard RRT

System design
simple_rooms_no_walls.png

map’s YAML file

YAML file of a simple robot

“Load Map” and “Load robot” buttons in STDR simulator

flowchart of search() function
flowchart of proceed() function of Dijkstra
flowchart of Planning() of RRT
example of bidirectional A*
flowchart of search_forward()
flowchart of proceed()

code to initialize the node in python
details of the message

example of atan2(y,x)

project methodology

Timeline for FYP1

Timeline for FYP2

Ubuntu opens in the virtual machine
command lines of quick installation
‘roscore’ command run successfully

‘turtlesim_node’ was created successfully

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

o 0 o P

13
14
14
15
15
17
18
19
20
21
22
23
23
24
25
28
29
30
31
31
32

viii

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22

Figure 5.23
Figure 5.24
Figure 5.25

Figure 5.26
Figure 5.27
Figure 5.28

‘turtle teleop key’ was created successfully

rgt graph

command line for installing the STDR simulator
STDR simulator

launch file that loads map and robot into the STDR

simulator

search function of Dijkstra

proceed function of Dijkstra

proceed function of A*

Planning function of RRT (1)

Planning function of RRT (2)

Planning function of RRT (3)

search_forward of modified A*

search_backward function of modified A*
proceed function of modified A* (1)

proceed function of modified A* (2)

go function for control robot motion (1)

go function for control robot motion (2)

terminal with a command line that launch the
“server_with_map and gui plus_robot.launch”
output of the launch file

robot at the target point (2, 10)

robot successfully reached the goal point by using
Dijkstra’s

robot successfully reached the goal point by using A*
robot successfully reached the goal point by using RRT
robot successfully reached the goal point by using
Modified A*

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

32
33
33
34
34

35
36
36
37
37
38
38
39
39
40
40
41
41

42
42
43

43
44
44

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21

two robots in "simple rooms no walls”
result of the Dijkstra
result of the A*

result of the Modified A*
result of the RRT

two robots in “sparse obstacles”
result of the Dijkstra
result of the A*

result of the Modified A*
result of the RRT

two robots in “utar”
result of the Dijkstra
result of the A*

result of the Modified A*
result of the RRT

two robots in “utar2”
result of the Dijkstra
result of the A*

result of the Modified A*
result of the RRT

result of the RRT

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

45
45
46
46
47
48
48
49
49
50
51
52
52
53
53
54
55
56
57
57
59

Table Number

Table 4.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

LIST OF TABLES

Title

specification of laptop
comparison of experiment |
comparison of experiment Il
comparison of experiment I11
comparison of experiment IV

Comparison of 2 RRTs

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

26
47
51
54
58
59

Xi

LIST OF ABBREIVATIONS

RRT Rapidly-exploring Random Tree
ROS Robot Operating System
STDR Simple Two Dimensional Robot

Xii
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

Chapter 1: Introduction

1.1 Problem statement and motivation

With the rapid development of science and technology, robots are considered as a
significant element in society. Robot is a biologically-like machine that can move
independently and perform complex actions (Definition of ROBOT, 2019). Robot can be
controlled by using an external control device, or the controls can be embedded in the robot
so it can operate automatically without the manual control. What is the reason why humans
want to develop robots? This is because robots can do what humans cannot do. Also, robot

can accomplish certain tasks are more precise and efficient than humans.

One of the benefits of robotics is that they can work in any environment (Benefits of Using
Robotics, 2019). For example, humans cannot fly, but robots can. A drone is a flying robot.
It can use software-controlled flight plan to fly automatically or remotely controlled (What
is a Drone? - Definition from Whatls.com, 2019). Drones are now widely used in civilian
applications, including search and rescue, surveillance, weather monitoring, traffic
monitoring and so on. In addition, there is a robot fish that can take video images and
pictures underwater (Soffar, 2019). It can gathers information and collects artifacts about
the water conditions. Even on land, there are many robots that can help humans perform
certain tasks. For example, a robotic vacuum cleaner, it is a floor cleaning robot and it can
clean autonomously without human control. In other words, robots reduce risky work for
humans because they are capable of working in dangerous environment. Moreover, they
can handle repetitive tasks, lifting heavy loads, and toxic substances. This has helped

humans avoid many accidents, also saving money and time.

According to the examples above, we can find that most of the robots are mobile robot.
They are capable of moving around in their environment and are not fixed to one physical
location. Therefore, navigation is the foundation and highlights of mobile robots.
Navigation in robotics is indivisible and essential. Navigation is the movement of a robot
to a specific point. A robot needs to use sensors to perceive the environment and build or
update its environment map (Domestic Environment - an overview | ScienceDirect Topics,

2017). Apart from that, if the robot’s navigation system leads to a poor routes or spends a

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

lot of time to find the route, then achieving the goal will waste a lot of energy and time.

Hence, path planning algorithm is a significant issue in robots.

Path planning is a process of searching an optimal path for robot to move from source to
destination. From a human point of view, the path planning from location X to location Y,
simultaneous obstacles, avoidance and response to environmental changes are simple (Path
Planning - an overview | ScienceDirect Topics, 2019). However, if this happens in mobile
robots, it becomes challenging. Therefore, various path planning algorithms have been
invented today in order to help mobile robots calculate the optimal path. For instance, A*
algorithm, Potential field, D*, RRT (Rapidly-exploring Random Tree) and so on. In
addition, each of the path planning algorithms has its own applicable domain, performance,
advantages and disadvantages in various situations. Therefore, the path planning algorithm
of the robot should be wisely selected in order to save the energy and time for the robot to

perform certain tasks.

However, if we do not know the properties of the path planning algorithms, then how do
we choose the appropriate path planning algorithm? Hence, this paper compared various
path planning algorithms. These path planning algorithms included Dijkstra’s, Rapidly-
exploring Random Tree (RRT), A*, and the last one is an algorithm modified from A*,
Also, the comparisons were made in a simulated robot. This is because various situation
can be simply simulated in the simulator. Apart from that, it also saves the cost of the robot

and the time to build the real environment.

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

1.2 Project Scope

The scope of this project is stated as follows:

1. 4 path planning algorithms which are Dijkstra’s, A*, RRT and modified A*
algorithms are focused in this project.

2. Only using Simple Two Dimensional Robot (STDR) simulator to simulate a robot
instead of using a real robot.
ROS Robot Programming is used in this project.

4. Python is used in this project.

1.3 Project Objectives

The project objectives are as follows:

e To review existing path planning algorithms.
e To modify an existing path planning algorithm.
e To simulate robot that is implemented by various path planning algorithms.

e To compare various path planning algorithms.

1.4 Contribution

Under different circumstances, different path planning algorithms may be preferred.
Through this study, the robot developer will be able to observe and understand the
differences in path planning algorithms in simulated robot without wasting a lot of time to
understand the properties of various path planning algorithms. This study is expected to
provide better evidence for the developer to make an informed choice of path planning

algorithm.

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

1.5 Background information
Robot Operating System (ROS)

ROS is a meta-operating system and it is an open-source (ROS/Introduction - ROS Wiki,
2019). It provides the services containing hardware abstraction, package management,
implementation of commonly-used function, message-passing between processes and so
on. In addition, it is a robot software platform and it provides a variety of development

environments dedicated to developing robot applications.

The ROS has 3 main characteristics. The first characteristic is the reusability of program.
Users can focus on the features they want to develop without having to worry about the
remaining functions. This is because they can download the corresponding package from
ROS. Moreover, they can share their own programs so that others can reuse them. The
second characteristic is that ROS is a communication-based program. Each program and
feature is programmed in the form of the smallest units of executable processes, and each
process runs independently and exchanges data systematically. Hence, this is very useful
for finding errors, because programs that are divided into minimum functions can be
debugged separately. Thirdly, the ROS supports a variety of development tools. The ROS
provides 2D visualization tool, 3D visualization tool, 3D simulator, debugging tool and so
on. These software tools necessary for robot development, which take full advantage of the

convenience of development.

ROS Master, nodes, publishers, subscriber, and topics are the 5 components of the ROS
architecture (Wilcher et al, 2019).

Advertising Subscribing

Publishing Callback

/-

Figure 1.1 shows the system components of a typical ROS model

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1: Introduction

The job of the ROS Master is to manage the names and registration services of nodes in
the ROS system. Apart from that, ROS Master monitors publishers and subscribers to
ensure that relevant themes and services are available in the robotic system. Moreover,
positioning and communication between nodes in a robotic system is enabled by the ROS
Master. In order to initiate the node communication function, the ROS Masters usually use
a command called ‘roscore’. Node is an executable file within the ROS system that allows
communication among another node. Publisher is a message transmitted by a node or topic
in a ROS system. Instead, a message received by node or topic in the ROS system is called

subscriber. Topic is the specific name type for the message of publishing and subscribing.

1.6 Report Organization

The report is divided into 7 chapters. The first chapter is about the problem statement,
project scope, motivation, project objectives, contributions and background information.
The second chapter is the literature review. Four path planning algorithms were reviewed,
namely Dijkstra algorithm, A* algorithm, RRT algorithm and D * Lite algorithm. The third
chapter is system design. The system design describes in detail the development method of
the project. The next chapter is the proposed method / approach. In this chapter, methods,
tools, implementation issues and challenges, and timelines will be introduced. Chapter 5
introduces system implementation and testing. In Chapter 6, some experiments will be
conducted to compare path planning algorithms. The last chapter is the conclusion of the

whole project and some future work of the system.

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

Chapter 2: Literature Review

2.1 Dijkstra’s algorithm

2.1.1 Introduction

This algorithm is a graph search based algorithm. It is used to solve shortest path problem
for a directed or undirected graph with nonnegative edge costs, resulting in a shortest path
tree. Dutch computer scientist Edsger Dijkstra created this algorithm in 1959 (Venkat,
2014).

The algorithm finds the lowest cost path between the point and each of the other points. It
can also be used to search the shortest path from a point to a target point by stopping the

algorithm after determining the shortest path to the target point.

2.1.2 How does a Dijkstra’s algorithm work?
In the Dijkstra’s algorithm, a graph G is considered with n nodes via edges e. Edge e;; ,,

has the cost c,,; , from node nl to node n2.

Figure 2.1 shows the weighted graph

First of all, a starting point, s is chosen and added in an unvisited list, U. The ¢;5 = 0
because e ¢ is not exist. In addition, the other nodes are added to U and set the ¢;,, , =

oo, where the k is the nodes count in the graph. The U is a min-priority queue. In other

words, the node which has the minimum cost is chosen in the U.

Therefore, the s is chosen from the U since the c, ; is the lowest. After that, the costs from
the s to its neighbors x are updated. The formula for updating the cost for x is shown below
(Kangutkar, 2017).

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

Cijupdated = mln(Cijcurrent » Csx—1 + Cx—l,x)

The cs ..., refers to x cost in U and the x-1 is the current node being considered. The
selected node is removed from U and placed in V after updating the costs to each neighbor.
The same steps are repeated until the goal node g is added to V or if the minimum cost in

U is 0.

2.1.3 Advantages and Disadvantages

The advantages of Dijkstra’s algorithm are it has an O(n?). Therefore, it is sufficiently
effective to use it for a relatively enormous problem. Besides that, it is simple as compare
to another path planning algorithm. However, the disadvantages of Dijkstra’s algorithm are
it performs blind searches. Thus, a lot of time will be wasted to search for useless resource.
Also, if Dijkstra’s algorithm handles negative weights, it will cause this algorithm to

produce incorrect results. (Huang et.al., 2009).

2.2 A* algorithm

2.2.1 Introduction

A* algorithm is a graph search algorithm. It is used to find a path from a starting node to a
target node (Gotal et.al. 2014). The algorithm was developed in 1968 by Hart et al. A*
combines the information used by the Dijkstra algorithm with the information used by
Best-First-Search. Compared to Dijkstra, A* achieves better performance by using
heuristic. It is an approximation of distance from the current location to the target location
(Dorin, n.d.). In the process of searching for the shortest route, each cell of the grid is

evaluated based on an evaluation function given by

f(n) =g(n)+h(n)

(n) is the evaluation function, where /(n) is the heuristic cost of the minimum path to reach
the goal node g. Besides that, the g(n) refer to the accumulated cost from the starting point

s to the current point n. Figure 2.2 shows how the estimate is determined (Choset, n.d.).

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

EEEEN
i O c&e 3
2NN
......... : 'aotfual'“"""
B O TR T - — | P

Figure 2.2 shows the A4 * heuristic h(7) (using Euclidean distance)

According to the grid cell structure shown in Figure 2.3 (Kangutkar, 2017). The diagonal
edges have a cost ¢ of 1.4, while horizontal and vertical edges have a cost ¢ of 1. For

instance, cy1,5 = 1.4 and cyq 5, = 1. If xo and x, are obstacles, then c,;,9 = © and

Cx1,x4 = ©.

x9 xZL

x8 x1 x4

x7 x6 x5

Figure 2.3 shows the possible moves between grid cells

2.2.2 How does an A* work?

This algorithm requires 2 lists to store information about nodes which are open list O and
closed list C. The O stores nodes for expansions and the C stores nodes that have been
explored. Initially, the starting node s is added to the O for expansions. In O, the minimum
(n) is chosen which called (npest). Npes: 1S @ NOde with the minimum f(n). After that, the
Npese 1S remove from O and placed into C. If the n,,g; is not the goal node g and each
neighbor of n,,,: is not included in C, then the x in O will update g(n), and the x not in the

O will be placed into O. The same steps are repeated until the n,,;; =g or the O is empty.

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

2.2.3 Advantages and Disadvantages

The A* algorithm is complete and optimal. Apart from that, the time complexity of this
algorithm is O (n log n), it can be used to solve very complex problems. However, the
accuracy of the heuristic algorithm that is used to compute 4(n) has a greatly depends to a

large extent on the execution speed of A*.

2.3 D* lite algorithm

2.3.1 Introduction

Sven Koenig and Maxim Likhachev are the persons who designed the D* lite algorithm.
This algorithm is an incremental heuristic search algorithm. In the grid, each of the cell, x
has a g(u) and rhs(u) value. If g(u) = rhs(u) then, u is said to be consistent, else it is
inconsistent. Inconsistent cells are added to a priority queue U. A cell is termed as under-
consistent if g(u) < rhs(u) and over-consistent if g(u) > rhs(u). A term inconsistent is used
to detect the changes in the graph created by dynamic obstacles, under-consistent means
c(current, targeted) increase and over-consistent describes a situation, when c(current,

targeted) decrease. The formula of priority, k and rhs(u), is shown below (Kangutkar, 2017).
k = min(g(u), rhs(u) + h(u))
I’hS(U) = minneNeighbors (g(n) + C(U, n))

The function UPDATE_VERTEX() is called when u is adding to U. If u € U, it is removed

from U and if the neighbor is inconsistent, it is added to the queue along with its key k.

2.3.2 How does a D* lite work?

First of all, the rhs(goal) is set to 0 and then added to U. Besides, all g(deg) and rhs(deg)
are set to oo. After initialized, COMPUTE_SHORTEST PATH() is called. In this function,
while k¢,,,0f U is less than the kg, Or rhs(start)! = g(start) the function runs. The top
most element, u is dequeued. If u is over-consistent, g(u) = rhs(u) and the
UPDATE VERTEX() is called for all neighbors. If u is consistent, then g(u) = o« and
UPDATE_VERTEX() is called on u, itself, as well as its neighbors.

When the path is calculated, the robot move according to the calculated path. If any

inconsistency occurs, and it is not possible to travel to cell v, then the edge cost c(u, V) is

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

set to o and UPDATE VERTEX() is called on u. Likewise, for every member in U, the
cost is updated with rhs(u). After that, COMPUTE_SHORTEST_PATH() is called again.

2.3.3 Advantages and Disadvantages
The advantage of D* lite is it is more efficient than other brute-force replanner in expansive
and complex environments. However, D* lite algorithm is too complex as compare to other

algorithms such as A* algorithm.

2.4 Rapid-Exploring Random Tree (RRT)

2.4.1 Introduction

Rapid-Exploring Random Tree (RRT) was created by LaValle et al. A non-convex high-
dimensional spaces is suitable for this algorithm. The main idea is to explore the

unexplored part by sampling the points, and gradually “pull” the search tree near to them

(LaVvalle et.al, n.d.).

2.4.2 How does a standard RRT work?

First of all, a starting point, s and a goal point, g attempt to connect directly. If there is no
collision, the path is found. Otherwise, a new point needs to be created randomly in the
specific area, repeat this step if the new point is in the obstacle. Next, the new point tries
to connect with the closest point of the tree. Also, a new point is randomly created if the
new point cannot be connected to the point of tree. On the other hand, the new node become
the node of the tree if new node is successfully connected. Lastly, check if the node can
connect to the target node. If a collision occurs, a new point will be randomly created. If

the nodes can connect, it means that the path has been found.

10
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

Consider a field with
obstacles, a starting node
5 and a goal node g.

s and g try to EUFII'IE!EIW no collision

directly.

collision

¥

A new point is
created randomly over
the specific area.

¥YvYY¥Y

In an obstacle

in an obstacle.

Not in an obstacle

The new point tries fo
connect the nearest
point of the tree.

collision eck the points ca

be connected.

no collision

The new point is added
to tree and will become
the new node of the tree.

eck the new pai
can be connected to
he goal node

collision

no collision

Path is found.

F Y

Figure 2.4 shows the flow chart of the standard RRT

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

2.4.3 Advantages and Disadvantages

The advantage of the RRT is that the algorithm is very simple to program. Besides that, a
tree rapidly explores the entire area, instead of ‘staying’ in the near the starting node.
However, the algorithm is not deterministic. This means that with the same starting point,
it will have some different paths. Apart from that, it is difficult to connect a node to a node
if there are a lot of obstacle in state space. Moreover, some of the found paths may not be

the path chosen by humans.

12
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

Chapter 3: System Design

Navigation
System

'{ Convert map

h 4
—

Path planning e
e

Create the
environment

h
—

Move the

simulated robot
— .

Figure 3.1 shows the system design

3.1 Create the environment

Since the purpose of this project is to analyze and compare path planning algorithms in
simulated robot, it is necessary to conduct experiments with a simulated robot and
environments. Therefore, a simulated robot and map must be created. In this project,
Simple Two Dimensional Robot (STDR) simulator will be used to simulate the movement
of the robot in a two-dimensional environment. The STDR simulator already contains some

created maps and robots.

3.1.1 Map

The components of the map are image file containing the occupancy data and YAML file.
Name of image file and map meta-data need to be included in the YAML file. For example,
the Figure 3.2 shows the example of image file and Figure 3.3 shows the format of the map
YAML file.

13
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

- III --II —

Figure 3.2 shows the simple_rooms_no_walls.png
image: simple_rooms_no_walls.png
resolution: 0.05
origin: [0.0, 0.8, 0.0]
occupied_thresh: 0.6

free_thresh: 0.3
negate: ©

Figure 3.3 shows a map’s YAML file

In this case, the simple_rooms_no_walls.png is the path to image file. The map resolution
is 0.05 (m / pixel). In other words, 1 pixel represents 0.05 meters. According to the origin
(x, y, yaw), x-axis equal to 0, y-axis equal to 0, and the yaw as counterclockwise rotation
equal to 0. The occupied_thresh of 0.6 means that if the pixel’s occupancy probability is
greater than 0.6, the pixel is considered to be fully occupied. Conversely, free_thresh of
0.3 means that if the occupancy probability of a pixel is less than 0.3, the pixel is considered
completely free. The negate of 0 means that whether the white/black free/occupancy

semantics will not be reversed.

14
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

3.1.2 Robot
A YAML or XML file needs to be created according to the requirement of the robot.

robot:
robot_specifications:
footprint:
footprint_specifications:
radius: '9.2'
initial_pose:
Xx: '@’
lyl: IE}I
theta: '0'

Figure 3.4 shows the YAML file of a simple robot

In this robot’s YAML file, it explains the robot specifications, such as the robot footprint
and initial pose. The example shows that the radius of the robot is 0.2m, and the initial

posture of the robot is x-axis = 0, y-axis = 0 and theta = 0.

3.1.3 Load the Map and Robot

Load robot

Load Map

Figure 3.5 shows the “Load Map” and “Load robot” buttons in STDR simulator

Click the "Load Map" button and select the map’s YAML file to load the map. In the same
way, click the "Load Robot" button and then select the robot’s YAML file to load the robot.

15
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

3.2 Navigation System

In order to move a robot from one point to another point without collision obstacles, the
map in PNG format needs to be converted into a map that can be calculated. After that,
path planning algorithms are used to calculate the route where the robot can reach the
specified point without collision obstacles. After obtaining the path, the robot is moved by

using the calculated path.

3.2.1 Convert the map

In the map, white indicates no obstacles, and other colors indicates obstacles. Each pixel
of the map contains a decimal code (R, G, B) representing the color of the pixel. For
example, (255,0,0) is represent red, (0,255,0) is represent green, and (0,0,255) is represent
blue. Therefore, an occupancy map can be constructed by reading each pixel. If the pixel
is white (255,255,255), append True to a list otherwise append False. In other words, true

means no obstacles, false means obstacles.

3.2.2 Path planning

In this project, Dijkstra's algorithm, A* algorithm, Rapid-exploration Random Tree (RRT)
algorithm, and an algorithm modified from A * will be coded. The following sections will
show the main functional flowcharts of these algorithms.

16
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

3.2.2.1 Dijkstra's and A* algorithms

b4

start = beqgin

goal = end
openl_put{start, 0)
explored[startj=None
cost[stari] = 0

self proceed
(gridworld)

[={ zelf. makepath(gridworld)

Y

self proceed(gridworld) return False

v

refurn True

Figure 3.6 shows flowchart of search() function

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

current == goal

[return 1

gridworld.
gei@Meighbors
{current)

.-

newcost = costlcurrent] +
self.distancelcurrent,next)

next not in cost

costnext] = newcost
priority = newcost

openl_put{next, priority)
explored[next] = current

Figure 3.7 shows the flowchart of proceed() function of Dijkstra

Both of the codes are almost the same. The main difference is that in the proceed() function

of A*, priority = newcost + self.heuristic(next, goal) instead of just priority = newcost.

18
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

3.2.2.2 RRT algorithm

self. AddVertices(self.qstart) i

self AddEdges(Mone, self qgstart
k=-1

k=
eli.max_siep

k+=1
grand = self. GenerateRandomMode()
_. gnear = self FindMearestNode(grand)
gnew = sell. ExtendTree(gnear, qrand)

gnew == Mone

gnew
and

self CollisicinFree
{qnear, qnew)

seli. AddVertices(gnew)
self AddEdges(gnear, gnew)

selflsArriva
(qnew)

self AddVertices(self.ggoal)
seli. AddEdges{gnew, seli.qgoal)

v

path = self Findpathi()
smooth_path = self. SmoothPath({path)

End

Figure 3.8 shows the flowchart of Planning() of RRT

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

3.2.2.3 Modified A* algorithm (bidirectional A* search)

The A* algorithm finds the path from the starting point to the goal point. In this modified
A* algorithm, it will find the path by looking in both directions. In other words, the
algorithm will search from the starting point to the goal point, and from the goal point to
the starting point. When one side (forward/backward) of the current neighbor node is on
the other side of explored node, the searching process can be stopped. For example, if the
current’s neighbor node of forward searching meet the explored node of backward
searching, the path can be obtained from the start point to the current node of forward

searching plus from the explored node of backward searching to goal.

|

lele

o

Figure 3.9 shows the example of bidirectional A*

20
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

start = begin

goal = end

openl_f put{start, 0)
explored_s[start]=None
cost[starf] = 0

self procesd
(gridworld, "front™)

return False |

return False |

return True

Figure 3.10 shows the flowchart of search_forward()
The search_backward() is almost the same with search_forward(). The difference are:

1. openL_f.put(start,0) change to openL_b.put(goal, 0).

2. explored_s[start] = None —change to explored_g[goal]=None

3. cost[start] = 0 change to cost[goal] = 0

4. self.proceed(gridworld, “front”) change to self.proceed(gridworld, “back”)

21
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

current =
openL_f.get()

current == goal

next=first neighbor

next
in
gridworld.
get8Meighbors

Mo

newcost = costfcurrent] +
self. heuristic(current, next)

next=next
neighbor 5_current = current

s_meet = next

cost{next] = newcost
priority = newcost +
seli heuristic{next, goal)
openl_f put{ne:xt priority)
explored_s[next] = current

-q

Figure 3.11 shows the flowchart of proceed()

Bachelor of Computer Science (HONS)

next=next
neighbor

newcost = costcurrent] +
self. heuristic(current. next)

cost[next] = newcost
priority = newcost +
self heuristic{next, start)
openl_b.put{next priority)
explored_g[next] = current

next
in
gridworld.
getdMeighbors

g_current = current
g_meet = next
‘

22

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

3.2.3 Move the simulated robot
After obtaining the calculated path, the next step is to move the simulated robot. In order

to move the simulated robot, a node must be initialize.

rospy.init_node('traveler', anonymous=True)
self.vel_publisher = rospy.Publisher('/robot®/cmd_vel', Twist, queue size=18)
self.odom_subscriber = rospy.Subscriber(’/robot®/odom’, Odometry, self.odom callback)

Figure 3.12 shows the code to initialize the node in python

A node called ‘traveler’ is created. This node is published to a topic called ‘/robot0/cml_vel’
through the “Twist” message class in order to control the speed and direction of the robot.

When the robot publishes a Twist message, it will move according to the message.

cheeyung@ubuntu:~$ rostopic type /robote@/cmd vel
geometry msgs/Twist
cheeyung@ubuntu:~S rosmsg show geometry_msgs/Twist
geometry_msgs/Vector3 linear

float64 x

float6d y

floatéd z
geometry_msgs/Vector3 angular

floaté4 x

float64 y

float64d z

Figure 3.13 shows the details of the message

The rostopic type will return the message type of any topic being published. In this case,
“geometry msgs/Twist” is returned. The message contains "geometry_msgs/VVector3
linear" and "geometry_msgs /Vector3 angular”, which are used to control the movement
speed and rotation speed, respectively.

In addition, the "traveler" node also subscribes to the "/robotO/odom™ topic with the
"Odometry" message class to obtain the current location of the robot. Apart from that,
‘self.odom_callback is the callback function for the odemetry subscriber, which will

continuously update the current position of the robot.

After the current position and calculated path of the robot are obtained, they can be used to
calculate the distance and the rotation angle. The distance can be calculated using

Euclidean distance and the rotation angle can be calculated using math.atan2(y,x).

23
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: System Design

‘o‘\ 0 = atan2(v.x)

Figure 3.14 shows the example of atan2(y,x)

Therefore, the robot can move to the goal by controlling the rotation angle and linear

velocity.

24
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: Proposed method / Approach

Chapter 4: Proposed method / Approach
4.1 Design Specifications

4.1.1 Methodologies and General Work Procedures
s ™y

Review related
information

h 4
i ™

Software installation

e "y

h J

Implementation and

testing
v
s ™y
Analysis and
comparison
L. i
v
' "y
Documentation
L. i

Figure 4.1 shows the project methodology

In the beginning, some relevant information will be studied. In order to simulate robots,
the robotic operating system (ROS) plays an important role. ROS has many software
libraries and tools to build a robots. Besides, if we want to simulate a robot, then a simulator
is needed. Therefore, information about the STDR simulator need to be studied. Apart from

that, several existing path planning algorithms also need to be reviewed.

After reviewing the relevant information, we can start to install the software that we need
in order to do the implementation. The only platform that ROS currently run is Unix-based
platform. Also, most of the ROS software is established on Ubuntu and Max OS X systems.
Therefore, VMware Workstation 15 Player and Ubuntu 16.04 Xenial Xerus (LTS)
operating system are chosen to be installed. After install the Ubuntu, the ROS development

25
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: Proposed method / Approach

environment need to be configured. Besides, a ROS operation test is configured by using

a Turtlesim package provided by ROS.

At the implementation phase, 4 path planning algorithms need to be written which are
Dijkstra’s, A*, RRT, and modified A*. After that, those path planning algorithms are used
to do a simulation in STDR simulator. If the path planning algorithms in simulated robot

can perform correctly, then the result of the simulations will be collected.

Once the results are collected, the results can be analyzed and compared. Finally, the

information obtained from the analysis will be used to do a documentation.

4.1.2 Tool to use

Hardware:
Laptop:

Processor Intel Core i5 @ 2.30GHz

Graphics 2047MB NVIDIA GeForce 930M

Installed RAM 12.0GB

System Type Windows 10 Home 64-bit

Table 4.1 shows the specification of laptop

Software:

1. VMware Workstation 15 Player:
It is an ideal utility for running a single virtual machine on a Window or Linux PC.
The purpose of installing this software is that an Ubuntu operating system is needed
in this project.

2. Simple Two Dimensional Robot (STDR) simulator:
It is a 2D simulator that can create a robot in a 2D scene and simulate the robot's

movement on the computer.

26
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: Proposed method / Approach

4.2 Implementation issues and challenges

Learning ROS takes a lot of time

ROS is a fairly large system that includes many packages and libraries. These packages are
bundled with message-passing framework. In order to understand the concept of ROS, a

lot of information need to be studied.
Difficult to set up the software environment

An Ubuntu 16.04 Xenial Xerus (LTS) operating system needs to be installed. This is
because most of the ROS software is established on Ubuntu and Max OS X systems.
Besides that, the ROS and TurtleBot3 development environment need to be configured by
using Linux command. To ensure proper ROS configuration, a Turtlesim package is used
to do a ROS operation test. In other words, a lot of time will be wasted in order to build an

environment for implementation.
A lot of computing power are needed

Although the Gazebo is an excellent tool for simulating robots. However, it requires a lot
of computing power and may not work well on the laptop. In additionally, the virtual
machine is also running. This will lead to an increase in computing power.

27
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: Proposed method / Approach

4.3 Timeline

No Task Start Finish |Days| Oct-19 Nov-19

wl w2 w3lwd wi w6 w7
1 |Review Preliminary Report 14/10/19 | 14/10/19 | 1
2 |Abstract 15/10/19 | 15/10/19 | 1
3 |Introduction 16/10/19 | 23/10/19 | 7
4 |Problem Statement 16/10/19 | 16/10/19 | 1
5 |Motivation 17/10/19 | 17/10/19 | 1
6 |Project Scope 18/10/19 | 18/10/19 | 1
7 |Project Objectives 21/10/19 | 21/10/19 | 1
§ [fmpact, Significance and 21019 | 2210019 | 1
Contribution

9 |Project Background 23/10/19 | 23/10/19 | 1
10 |Literature Review 24/10/19 | 2/11/2019 | 10
11 |Proposed Method/Approach 3/11/2019 | &/11/19 7
12 |Methodology 3/11/2019 | 4/11/2019 | 2
13 |Tools to Use 5/11/2019 | 5/11/2019 | 1
14 |System Design/Overview 6/11/19 8/11/19 3
15 |Challenges 9/11/19 9/11/19 1
16 |Preliminary Work 10/11/19 | 19/11/19 | 10
17 |Conclusion 20/11/19 | 20/11/19 | 1
18 |FYP Report 1 Submission 22711719 | 22/11/19 | 1
19 |Preparation for Presentation 23/11/19 | 27/11/19 | 5
20 |Oral Presentation 28/11/19 | 28/11/19 | 1

Figure 4.2 shows the Timeline for FYP1

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

28

Chapter 4: Proposed method / Approach

Ne Tazk Start Finish PDays Jan-20 Feb-20 Mar-20 Apr-20
wl w2 willwd wi wo wiiwsd§ wl@ wil0 willjwll wii wild
[Review F‘P! Report 27/1720 | 274720 | ID
2 WUb:rract 2820 | 28020 | 1D
3 Untroduction 20/1/20 | 3/272020 | D
4 [Problem Statement 2020 | 20120 | 1D
5 Worivation 30/1/20 | 3041720 1D
0 [Project Scope 3120) 31420 | ID
7 VProject Objectives 122020) 1222020 | 1D
8 Hmpact, Significance and
Contribution 222020 222020 | 1D
9 WProject Background 3/22020) 322020 | ID
10 Witerature Review 7/2/2020 | 12/2/2020 | 6D
11 WPropozed Method/Approach 1372720 | 15/2720 | 3D I
12 Wethodology 1372720 | 1372720 | ID
13 fTools to Use 14/2720 | 142720 | ID
14 |User Requirements 15220 | 1522220 | ID
15 §System Design/Overview 1772220 | 242720 | SD
16 |Block Diagram 17/220 | 182/20 | 2D
17 Block Diagram Description 192720 | 212720 | 3D
18 YFlowchart 232120 | 24220 | 2D I
190 Umplementation Issues and
(Challenges 26/220 | 262720 | 1D
20 Umplementation and Testing 27/2720 | 2353720 | 40D
21 [Develop the system 27220 | 173720 | 20D
22 (Testing the system 1873720 | 225720 | 5D
23 |Experiment 23/320 | o420 15D
24 YFinalize the Results 8/4/20 124720 | 5D
25 |Conclusion 13420 | 14420 | 2D ‘
26 |Design Poster 164120 | 204120 | 30]
27 \FYP2 Report Submission 35/4/20 35/4/20 D
28 |Prepararion for Presentation 25/4r20 | 28420 | 5D l.
20 |Oral Presentation 20420 | 0130 | 10 [

Figure 4.3 shows the Timeline for FYP2

29
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

Chapter 5: System Implementation and Testing

5.1 Installation and environment setup

In order to run an Ubuntu operating system on Windows, a virtual machine was required.
Therefore, VMware Workstation 15 Player was installed. Once the virtual machine was
installed, Ubuntu 16.04.6 LTS (Xenial Xerus) was created by using ISO image for Ubuntu
in the virtual machine.

Ubuntu 64-bit - VMware Workstation 15 Player (Non-commercial use only) — [} X
Player v | || ~ l% [D] & = | B

@ 1y B) 244pPm

Chng Chee Yung

l

Guest Session

Figure 5.1 shows the Ubuntu opens in the virtual machine

Since the ROS is required in this project, so the Kinetic Kame version had been installed
and ROS environment had been configured. In order to save time, a quick installation was
used rather than a general installation. However, the quick installation is only available for
16.04.x or Linux Mint 18.x. The quick installation include the Network Time Protocol
configuration, adding source list, setting key, updating package index, installing ROS
Kinetic Kame, initializing rosdep, installing rosintall, load the environment file, creating

30
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

and initializing a workspace folder. The command lines of quick installation shown as

below.

§ wget https://raw_githubusercontent.com/ROBOTIS-GIT/robotis_tools/master/install_ros_kinetic.sh
% chmod 755 . /install_ros_kinetic.sh

% bash ./finstall_ros_kinetic.sh

Figure 5.2 shows the command lines of quick installation (Pyo, Cho, Jung and Lim,
2017)

5.2 ROS operation test

After the installation of ROS, we need to check if it works properly. Thus, a Turtlesim
package was used for testing which is provided by ROS. The test is very simple. First of
all, a command ‘roscore’ was entered and run it in a terminal window. This command is

used for control the entire ROS system.

cheeyung@ubuntu:~$ roscore
. logging to fhome/cheeyung/.ros/log/978b8e22-0b26-11ea-boed-000c29fedeea/roslaunch-ubuntu-2310.1log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://192.168.126.131:34679/
ros_comm version 1.12.14

SUMMARY

PARAMETERS
* [rosdistro: kinetic
* frosversion: 1.12.14

NODES

auto-starting new master
process[master]: started with pid [2321]
ROS_MASTER_URI=http://192.168.126.131:11311/

setting frun_id to 978b8e22-0b26-11ea-bbed-000c29fedeea
process[rosout-1]: started with pid [2334]
started core service [/rosout]

Figure 5.3 shows the ‘roscore’ command run successfully

After that, a turtlesim_node need to be created in order to display a turtle on the screen. A
new terminal window was opened and enter the command “rosrun turtlesim
turtlesim_node”. If the node was created successfully, then a turtle will be displayed on a

screen.

31
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

cheeyung@ubuntu:~$ rosrun turtlesim turtlesim_node
[INFO] [1574207470.218610550]: Starting turtlesim with node name /turtlesim
é INFO] [1574207470.231585584]: Spawning turtle [turtlel] at x=[5.544445], y=[5.544445], theta=[0.000000]

TurtleSim

Figure 5.4 shows the ‘turtlesim node’ was created successfully

Lastly, a node that controls the turtle also need to be created. The command is “rosrun
turtlesim turtle teleop key”. As before, a new terminal window was opened and enter this
command. If the node was created, the turtle can be controlled by pressing the arrow keys

on keyboard in this terminal window.

cheeyung@ubuntu:~5 rosrun turtlesim turtlesim_node
[INFO] [15742067476.2186105560]: Starting turtlesim with node name /turtlesim
h INFO] [1574207470.231585584]: Spawning turtle [turtlel] at x=[5.544445], y=[5.544445], theta=[0.600000]

cheeyung@ubuntu: ~

cheeyung@ubuntu: rosrun turtlesim turtle_teleop_key
Reading from ke d

Use arrow keys to move the turtle.

Figure 5.5 shows the ‘turtle teleop key’ was created successfully

32
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

Also, a command ‘rqt_graph’ was used to show a diagram of the information of currently

running nodes in a GUI form.

|ﬁneey\mg@ubuntu :~$ rqt_graph

rqt_graph__RosGraph - rqt
&"Node Graph

€ | | Nodes only </ /

Group: & Namespaces [Actions Hide: @ Deadsinks @ Leaftopics & Debug @& Unreachable & Highlight ®& Fit | (1)

[teleop_turtle (el cmd_ve

Figure 5.6 shows the rqt graph

The circle represents a node. The arrow is point from the ‘/teleop turtle’ to ‘/turtlesim’
through a topic ‘/turtlel/cmd_vel’. The topic ‘/turtlel/cmd_vel’ which is a sub-topic of the
turtle1 topic. When ‘/teleop_turtle’ get a speed input, it sent the input as a message in the
topic to the ‘/turtlesim’. Therefore, ‘/turtlesim’ can use the message in the topic as input to

visualize the speed command.

5.3 Install STDR simulator
In order to simulate the path planning and movement of the robot, the STDR simulator will

be used.

cheeyung@ubuntu:~$ sudo apt-get install ros-S$ROS_DISTRO-stdr-simulatorf

Figure 5.7 shows the command line for installing the STDR simulator

If running on Ubuntu Linux or Linux Mint, this command line can be used to install the
STDR simulator.

33
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

STDR Simulator - GUI

Q66 OO0 @ @QQ6

vinformation
Map width
Map height
Resolution
Robots

o

Figure 5.8 shows the STDR simulator

5.4 Create a launch file to load map and robot into STDR simulator
For convenience, a launch file “server with map and gui plus robot.launch” was
written in order to load the map and robot at the same time instead of loading the map and

the robot one by one.

<launch=
<include file="S(find stdr_robot)/launch/robot _manager.launch" /=

<node type="stdr_server_node" pkg="stdr_server" name="stdr_server"
output="screen" args="5(find stdr_resources)/maps/simple rooms_no walls.yaml" />

<include file="$(find stdr_gui)/launch/stdr_gui.launch"/=
<node pkg="stdr_robot" type="robot_handler" name="S5(anon robot_spawn)"

args="add $(find stdr_resources)/resources/robots/simple robot.yaml 2 2 0" />

</launch=

Figure 5.9 shows the launch file that loads map and robot into the STDR simulator

“robot_manager” launch file is included in order to listen to the ROS services. The node
“stdr_server node” in “stdr_server” package is called and the argument is the path of the

map’s YAML file. After that, stdr_gui launch file is included in order to open the STDR

34
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

simulator. After opening the simulator, the node “robot handler” in “stdr robot” package
is called with the argument “add $(find stdr resources) /resources /robots
/simple_robot.yaml 2 2 0”. This means that a robot described in simple_robot.yaml will be

added, where x = 2, y = 2, and theta = 0.

5.5 Write path planning algorithms and code to control robot motion
The following sections will show the main function codes of those algorithms and

“Safegoto.py”.

5.5.1 Dijkstra’s algorithm

def search(self, gridworld, begin, end):
global openL
global start, goal, explored, cost

start = begin; goal = end
openL.put(start, @)

explored[start]=None
cost[start]l=0

if self.proceed(gridworld) == 1:
self.makepath(gridworld)
return False

else:

self.proceed{gridworld)
return True

Figure 5.10 shows the search function of Dijkstra

35
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

def proceed(self, gridworld):
global openL
global start, goal, explored, cost

if openL.isEmpty():
return 1

else:
current = openL.get()
if current == goal:
return 1

for next in gridworld.get8Neighbors{current):
newcost = costl[current] + self.distance(current, next)

if next not in cost:
cost[next] = newcost
priority = newcost
print{newcost, priority, len{explored))
openL.put(next, priority)
explored[next] = current
return @

Figure 5.11 shows the proceed function of Dijkstra

5.5.1 A* algorithm

def proceed(self, gridworld):
global openL
global start, goal, explored, cost

if openL.isEmpty():
return 1

else:
current = openL.get()
if current == goal:
return 1

for next in gridworld.get8Neighbors(current):
newcost = costlcurrent] + self.heuristic({current, next)

if next not in cost:
costlnext] = newcost
priority = newcost + self.heuristic(next, goal)
print(newcost, priority, len({explored))
openL.put{next, priority)
exploredinext] = current
return @

Figure 5.12 shows the proceed function of A*

The priority of A* adds a heuristic function.

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

36

Chapter 5: System Implementation and Testing

5.5.3 RRT algorithm

def Planning(self):

path s time = time.time()

path return = []

smooth _path return = []

if not self.maplself.gstart.pos[@]][self.gstart.pos[1]1]:
print("Sstart is an obstacle!™)
sys.exit()

if not self.maplself.qgoal.pos[@]1]1[self.qgoal.pos[1]]:
print(“Goal is an obstacle!™)
sys.exit()

self.AddVertices(self.gstart)
self.AddEdges(None, self.gstart)

Figure 5.13 shows the Planning function of RRT (1)

self.AddEdges (None, self.gstart)

k=-1
while k < self.max_steps:
k+=1
qrand = self.GenerateRandomNodel()
_, gnear = self.FindNearestNode(grand)
gnew = self.ExtendTree(gnear, grand)
if gnew == None:
continue

print("Random node: ", grand.pos, " MNearest node: ", gnear.pos, " New node: ", gnew.pos)

if gnew and self.CollisionFree(qgnear, gnew):
self.AddVertices(gnew)
self.AddEdges(gnear, gnew)
print("The new node is added: ", gnew.pos)
if self.IsArrival(gnew):
path_e time = time.time()
print("Path Found!"™)
print("Step used: ", k+2)
print("Time used to calculate the path: ", (path_e_time - path_s_time))
self.AddVertices(self.ggoal)
self.AddEdges(gnew, self.ggoal)

path = self.FindPath()

print("The path is: ")

for i in range(len(path}):
print{path[i].pos)
path return.append({path[i].pos)

Figure 5.14 shows the Planning function of RRT (2)

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

37

Chapter 5: System Implementation and Testing

path_return.append(path[il].pos)

print("\nSmoothing the path...")
spath s time = time.time()
smooth path = self.SmoothPath(path)
spath e time = time.time()
print("Smoothed!")
print("Time used to smooth the path: ", (spath_e time - spath_s_time})
print("The smoothed path is: ")
for i in range(len{smooth_path)):
print(smooth path[i].pos)
smooth_path_return.append(smooth_path[i].pos)
return smooth path return
print(“Finish Iteration!")
sys.exit()

Figure 5.15 shows the Planning function of RRT (3)

5.5.3 Modified A* algorithm

def search forward(self, gridworld, begin, end):
global openL f
global start, goal, explored s, cost

start = begin;
goal = end
openL_f.put(start, @)

explored s[start] = None
cost[start] = 0

if self.proceed(gridworld, "frent") == 1:
return False

else:
if self.proceed(gridworld, "front") == 1:
return False
return True

Figure 5.16 shows the search_forward of modified A*

38
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

def search backward(self, gridworld, begin, end):
global openL b
global start, goal, explored g, cost

start = begin;
goal = end
openL_b.put(goal, @)

explored glgoall = None
costlgoall = @

if self.proceed(gridworld, "back") == 1:
return False

else:
if self.proceed(gridworld, “back") == 1:
return False
return True

Figure 5.17 shows the search_backward function of modified A*

def proceed(self, gridworld, direction):
global openL f, openL b
global start, goal, explored s, explored g, cost, s meet, g meet, g current, s current

if direction == “"front":
if openL f.isEmpty():
return 1
else:
current = openL_f.get()
if current == goal:
return 1

for next in gridworld.get8Neighbors({current):
if next in explored g:
s current = current
5 meet = next
return 1

newcost = cost[current] + self.heuristic(current, next)

if next not in cost:
costlnext] = newcost
priority = newcost + self.heuristic({next, goal)
print(newcost, priority, len{explored s))
openL_f.put{next, priority)
explored_s[next] = current
return @

Figure 5.18 shows the proceed function of modified A* (1)

39
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

elif direction == "back":
if openL_b.isEmpty():
return 1
else:
current = openL b.get()
if current == start:
return 1

for next in gridworld.get8Neighbors(current):
if next in explored s:
g_current = current
g_meet = next
return 1

newcost = costlcurrent] + self.heuristic(current, next)

if next not in cost:
cost[next] = newcost
priority = newcost + self.heuristic(next, start)
print{newcost, priority, len{explored g})
openL b.put(next, priority)
explored_glnext] = current
return @

Figure 5.19 shows the proceed function of modified A* (2)

5.5.4 Write a code to control robot motion (Safegoto.py)

def go{self):
while self.euclidean distance()[2] = TOLERANCE:
inc_x, inc_y, inc_d = self.euclidean distance()
ang_diff = self.shortest_angular difference(inc_x, inc_y)

if abs{ang_diff) = 0.1:
print{"Turning:", ang_diff)
L S
0]

ang diff

self.vel msg.angular.x
self.vel msg.angular.y
self.vel msg.angular.z

set linear velocity

1
=

self.vel_msg.linear.x
self.vel_msg.linear.y
self.vel_msg.linear.z

o
== Qg]

publish velocity
self.vel_publisher.publish{self.vel msg)
self.rate.sleep()

else:

Figure 5.20 shows the go function for control robot motion (1)

40
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

else:
print(“distance from goal " + str(self.goal) + ": ", inc_d)
print(“"Current position: ", self.pos.position.x, self.pos.position.y)

581 anguca VELULLLY

3elf.vel;m5g.angular.x

=0
self.vel msg.angular.y = 0@
self.vel msg.angular.z = @

self.vel msg.linear.x = LINEAR VELOCITY
self.vel msg.linear.y = 8
self.vel msg.linear.z = 8

2E'L LLNE: vELLLLL)

self.vel publisher.publish(self.vel msg)
self.rate.sleep()
self.stop()

Figure 5.21 shows the go function for control robot motion (2)

5.6 Testing
5.6.1 Load the map and robot into the STDR simulator

cheeyung@ubuntu:~$ roslaunch stdr_launchers server_with_map_and_gui_plus_robot.launch
. logging to fhome/cheeyung/.ros/log/34c8c936-8258-11ea-a08f-008c29fedeea/roslaunch-ubuntu-49945.1o0g
checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://192.168.126.135:35267/

* frosdistro: kinetic
* [frosversion: 1.12.14

NODES
!
robot_manager (nodelet/nodelet)
robot_spawn_ubuntu_49945_ 1556449694614876785 (stdr_robot/robot_handler)
stdr_gui_node_ubuntu_49945_4043288006383929809 (stdr_gui/stdr_gui_node)
stdr_server (stdr_server/stdr_server_node)

ROS_MASTER_URI=http://192.168.126.135:11311

process[robot_manager-1]: started with pid [49962]

process[stdr_server-2]: started with pid [49963]

process[stdr_gui_node_ubuntu_49945_4043288006383929809-3]: started with pid [49964]

[INFO] [1587541764.169591780]: Loading map from image "/home/cheeyung/catkin_ws/src/stdr_simulator/stdr_resources/maps/simple_rooms_no_walls.pn

9

process[robot_spawn_ubuntu_49945_1556449694614876785-4]: started with pid [49978]

[INFO] [1587541764.205699790]: Read a 400 X 300 map @ 0.850 m/cell

[robot_spawn_ubuntu_49945_1556449694614876785-4] process has finished cleanly

iog file: /home/cheeyung/.ros/log/34c8c936-8258-11ea-a08f-000c29fedeea/robot_spawn_ubuntu_49945_1556449694614876785-4*%, log

Figure 5.22 shows a terminal with a command line that launch the

“server_with_map_and gui_plus_robot.launch”

41
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

066 @EACO @ @AQE6

¥ Information

Map width 20m
Map height 15m
Resolution 0.05 m/px
~ Robots
» robot0 = =
Pose [x,y,theta] :
o robot@
y=2m
theta = 0 rad G
Speeds [u,w]: -
u_x=0m/s

uy=0m/s |
w=0rad/s
Time elapsed : 4 min 6 sec 692 ms

Figure 5.23 shows the output of the launch file

According to the Figure 5.23, the map and robot are successfully loaded into the STDR
simulator, and the robot is placed in the correct position.

5.6.2 Move the robot

Next, we move the robot from the starting point (2, 2) to the target point (2, 10). If there is
a collision or the goal cannot be reached, it means that there is a problem with the path
planning algorithm or the code of "Safegoto.py".

1
13"

Figure 5.24 shows the robot at the target point (2, 10)

42
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

5.6.2.1 Dijkstra’s algorithm
The function run(1) will run the Dijkstra’s algorithm.

run{1)
run()
simulator
[INFO] [1587545553.639592): Position[9.950000000000001, 1.9500000000000002]1has been achieved.
('distance from goal [108.8, 2.8]: ', 0.2784337984377451)

('Current position: ', 9.819214981917847, 1.798875121940366)
[INFO] [1587545553.838621]: Destination was reached! x: 9.8884762515 y: 1.86074393873 Tolerance:0.171476493947
('Time used to reached goal: ', 38.802634954452515)

Process finished with exit code ®

Figure 5.25 shows the robot successfully reached the goal point by using Dijkstra’s

5.6.2.2 A* algorithm
The function run(2) will run the A* algorithm.

run(2)

run()

Simulator

[INFO] [1587545415.339242]: Position[9.950000000000001, 2.0]lhas been achieved.

('distance from goal [10.8, 2.0]: ', 0.24138057631706025)

('Current position: ', 9.784799135628035, 1.8906694434445928)

[INFO] [1587545415.539222]: Destination was reached! x: 9.87501879787 y: 1.93423192298 Tolerance:0.141229390848
('Time used to reached goal: ', 35.60224589239197)

Process finished with exit code 8

Figure 5.26 shows the robot successfully reached the goal point by using A*

43

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: System Implementation and Testing

5.6.2.3 RRT algorithm
The function rrt.Planning() will run the RRT algorithm.

rrt = RRT(map, gstart, gqgoal, grid size, step size, max_steps, goal prob)
p = rrt.Planning()

robot = SafeGoto()

robot.travel(p)

RRT

("Turning:', 0.12749679867141472)

("Turning:', 0.10206609137333145)

('distance from goal [10.0, 2.08]: ', 0.2842499455633517)

('Current position: ', 9.837485431820054, 2.23321030560943544)

[INFO] [1587546033.979618]: Destination was reached! x: 9.888010831435 y: 2.14637714872 Tolerance:0.184303986282
('Time used to reached goal: ', 52.4021278275116)

Process finished with exit code 0

Figure 5.27 shows the robot successfully reached the goal point by using RRT

5.6.2.4 Modified A* algorithm

The function run(3) will run the modified A* algorithm.

run(3)

Simulator
TITUT TITUTTNU e . TUUUS [+ 1 UL LU L I UUDUUUUUSUUU UL LU D Bee UL e

[INFO] [1587543842.749425]: Position[9.75, 2.8lhas been achieved.

('distance from goal [9.8, 2.8]: ', ©.21486091013880085)

{'Current position: ', 9.585847813299297, 2.017437876503273)

[INFO] [1587543842.949454]: Position[9.8, 2.8)has been achieved.

[INFO] [1587543842.950023]: Position[9.850000000000001, 2.8lhas been achieved.

('distance from goal [9.9, 2.8]: ', ©.21471625088195723)

('Current position: ', 9.686078947115934, 2.01846216470992)

[INFO] [1587543843.149559]: Position[9.9, 2.8)has been achieved.

[INFO] [1587543843.158717]: Destination was reached! x: 9.78564200036 y: 2.019480842029 Tolerance:8.165508425228
('Time used to reached goal: ', 36.402925968170166)

Process finished with exit code @

Figure 5.28 shows the robot successfully reached the goal point by using Modified A*

44
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

Chapter 6: Experiment Result and Comparison

6.1 15t Experiment

The first experiment is to use the "simple_rooms_no_walls™ map, and the robot must move
from the starting point (2, 2) to the target point (16, 12). The position of robot 0 in Figure
6.1 is the starting point (2, 2), and the position of robot 1 in Figure 6.1 is the target point

(16, 12).
l vtbr)tl
L IIIIIJ\I
L llllll‘[l |
T

Figure 6.1 shows the two robots in "simple rooms no_walls”

6.1.1 Dijkstra’s algorithm

: III IIIIII — Il:l III llllIl — IIIjI lI‘.iIFIIII —
4 III llllIl 5 -I- --I- - II:i III IIIIII -:f:r
I O N A A

('The distance is:', 414.97770542341397)
('Explored: ', 73940)

Figure 6.2 shows the result of the Dijkstra

45
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.1.2 A* algorithm

S R B) I
=T TT "TT
S W S B RS B

—
Path found!
['Time used to calculate the path: ', 4.8768370151519775)

('The distance is:', 423.26197667087604)
("Explored: ', 22860)

Figure 6.3 shows the result of the A*

6.1.3 Modified A* algorithm

Sl = O)
= I B B R B
-1 Zld=_"11°
B B R B A B

('Time used to calculate the path: ', 2.751891957092285)
('The distance is:', 440.6589462905465)
('Explored: ', 18315)

Figure 6.4 shows the result of the Modified A*

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

46

Chapter 6: Experimental Result and Comparison

6.1.4 RRT algorithm

S O Y O Y
414_51J-:lJ:
_— lll IIIII- e N lIl llllll N III llllll llll

Path Found!

('Step used: ', 735)

("Time used to calculate the path: ', ©.17911791881452637)
Smoothing the path...

Smoothed!

('Time used to smooth the path: ', 0©.033316858662231445)
('The distance is:', 419.5831514237449)

Figure 6.5 shows the result of the RRT

6.1.5 Comparison of Experiment |

Explored cell Iteration Distance (pixel) Time
Dijkstra 73940 - 4149777 11.4290
A* 22860 - 423.2620 4.8768
Modified A* 18315 - 440.5890 2.7511
RRT - 735 419.5832 0.1791

Table 6.1 shows the comparison of experiment |

According to the Table 6.1, Dijkstra has the smallest distance among these algorithms.
However, Dijkstra spent the most time to find the path. In contrast, RRT took the least
amount of time to find a path with a distance of 419.5832. In addition, the modified A* is
faster than A*, but the modified A* has a greater distance than A*.

47
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.2 2"d Experiment

The second experiment is to use the "sparse_obstacles” map, and the robot must move from
the starting point (2, 2) to the target point (14, 12). The position of robot 0 in Figure 6.6 is
the starting point (2, 2), and the position of robot 1 in Figure 6.6 is the target point (14, 12).

Figure 6.6 shows the two robots in “sparse_obstacles”

6.2.1 Dijkstra’s algorithm

s

Path found!

('Time used to calculate the path: ', 73.85504007339478)
{'The distance is:', 961.7544807280521)
('Explored: ', 276362)

Figure 6.7 shows the result of the Dijkstra

48
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.2.2 A* algorithm

— |
EI

L

1
——
tJ_I o
(]
Bl
—
- :
Ea B

Path found!

('Time used to calculate the path: ', 71.78962397575378)

('The distance is:', 1057.0235200658667)

('Explored: ', 158697)

Figure 6.8 shows the result of the A*

6.2.3 Modified A* algorithm

|
M D M-
DER P S S RS

Path found!

('Time used to calculate the path: '
('The distance is:', 1031.8275605729727)
('Explored: ', 185922)

, 42.35676717758179)

Figure 6.9 shows the result of the Modified A*

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

Chapter 6: Experimental Result and Comparison

6.2.3 RRT algorithm

Path Found!

('Step used: ', 12786)

{'Time used to calculate the path: ', 30.70873188972473)
Smoothing the path...

Smoothed!

('Time used to smooth the path: ', ©.22470998764038086)
{'The distance is:', 1237.4604640595624)

Figure 6.10 shows the result of the RRT

50
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.2.5 Comparison of Experiment 11

Explored cell Iteration Distance (pixel) Time
Dijkstra 276362 - 961.7544 73.8550
A* 158097 - 1057.0235 71.7896
Modified A* 105922 - 1031.8276 42.3568
RRT - 12786 1237.4605 30.7087

Table 6.2 shows the comparison of experiment |1

According to Table 6.2, Dijkstra has the smallest distance among these algorithms.

However, Dijkstra spends most of its time searching for route. In contrast, RRT takes the

least time but has the largest distance. In addition, modified A* is faster than A* and the

distance of modified A* is less than A*.

6.3 3" Experiment

The third experiment is to use the "utar" map, and the robot must move from the starting

point (4, 19) to the target point (28, 20). The position of robot 0 in Figure 6.11 is the starting

point (4, 19), and the position of robot 1 in Figure 6.11 is the target point (28, 20).

(€]

Figure 6.11 shows the two robots in “utar”

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

Chapter 6: Experimental Result and Comparison

6.3.1 Dijkstra’s algorithm

CILCILCL,
TauTa

('Time used to calculate the path: ', 11.837491035461426)
('The distance is:', 942.1808075912454)
('Explored: ', 89941)

Figure 6.12 shows the result of the Dijkstra

6.3.2 A* algorithm

Path found!

('Time used to calculate the path: ', 11.72567892074585)
("The distance is:', 942.1808075912458)

('Explored: ', 63345)

Figure 6.13 shows the result of the A*

52
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.3.3 Modified A* algorithm

Path found!

('Time used to calculate the path: ', 12.664036989212036)
('The distance is:', 988.6437943888992)

('Explored: ', 74747)

Figure 6.14 shows the result of the Modified A*

6.3.3 RRT algorithm

Path Found!

('Step used: ', 2488)

('Time used to calculate the path: ', 1.1798150539398193)
Smoothing the path...

Smoothed!

('Time used to smooth the path: ', ©.11949896812438965)
('The distance is:', 928.073771852548)

Figure 6.15 shows the result of the RRT

53
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.3.5 Comparison of Experiment 111

Explored cell Iteration Distance (pixel) Time
Dijkstra 89941 - 942.1808 11.8375
A* 63345 - 942.1808 11.7257
Modified A* 74747 - 988.6438 12.6640
RRT - 2488 928.0737 1.1798

According to Table 6.3, the RRT has a minimum distance and time for calculating the route.
The distance between Dijkstra and A* is the same. However, A* uses less time than

Dijkstra. In this experiment, the modified A* is slower than A* and the distance is greater

than A*.

6.4 41 Experiment

The fourth experiment is to use the "utar2" map, which is more obstacles added in the “utar”
map. The robot must move from the starting point (4, 19) to the target point (28, 20). The
position of robot 0 in Figure 6.16 is the starting point (4, 19), and the position of robot 1 in
Figure 6.16 is the target point (28, 20).

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.3 shows the comparison of experiment I11

C

Figure 6.16 shows the two robots in “utar2”

54

Chapter 6: Experimental Result and Comparison

6.4.1 Dijkstra’s algorithm

Path found!

('Time used to calculate the path: ', 8.228917121887207)
(‘The distance is:', 1047.8437226013973)
('Explored: ', 67378)

Figure 6.17 shows the result of the Dijkstra

55
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.4.2 A* algorithm

Path found!

('Time used to calculate the path: ', 8.113867998123169)
('The distance is:', 1065.2691193458136)

('Explored: ', 53184)

Figure 6.18 shows the result of the A*

56
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.4.3 Modified A* algorithm

Path found!

('Time used to calculate the path: ', 8.834536838531494)
('The distance is:', 1097.2346314604083)

('Explored: ', 55708)

Figure 6.19 shows the result of the Modified A*

6.4.3 RRT algorithm

Finish Iteration! Cannot find the path!
('Time used: ', 93.85454297065735)

Figure 6.20 shows the result of the RRT

57
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

6.4.5 Comparison of Experiment 1V

Explored cell Iteration Distance (pixel) Time
Dijkstra 67378 - 1047.0437 8.2289
A* 53184 - 1065.2691 8.1139
Modified A* 55708 - 1097.2346 8.0345
RRT - - - -

Table 6.4 shows the comparison of experiment IV

According to Table 6.4, Dijkstra has the smallest distance among these algorithms.
However, Dijkstra spends most of its time searching for route. In addition, modified A* is
faster than A* but the distance of modified A* is longer than A*. Apart from that, the RRT
still cannot find the path after 50,000 iterations.

6.5 Analysis the experiments

Through these experiments, we know that Dijkstra's always result the shortest distance path,
but in most cases, it takes the longest time to calculate the path. Apart from that, the
modified A* is faster than A*, but sometimes the modified A* is slower or return a distance
greater than distance of A*. This may be because the modified A * of the forward search
and the backward search has a larger bifurcation, so they meet for a longer time, which
also results in a longer distance. The RRT algorithm takes the least amount of time to find
the route, but the route is not optimal. In addition, when the map contains many obstacles,
RRT needs more iteration time to find the path. In Experiment IV, we can see that RRT
cannot find a route in a map with too many obstacles even though it has already spent
50,000 iterations. Moreover, the route found by RRT every time may be different from the
last time. To prove this, experiment Il was conducted again using the RRT algorithm.

58
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Experimental Result and Comparison

WEE R RS REE B

('Step used: ', 18242)

('Time used to calculate the path: ', 20.51811408996582)
smoothing the path...

Smaothed!

('Time used to smooth the path: ', 0.16437292098999023)
("The distance is:', 1230.335569493429)

Figure 6.21 shows the result of the RRT

Iteration Distance (pixel) Time
1tRRT 12786 1237.4605 30.7087
2" RRT 5361 1230.3356 20.5181

Table 6.5 shows the comparison of 2 RRTs

According to Table 6.5, the results prove that each time route calculated by RRT is different.

59
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7: Conclusion

Chapter 7: Conclusion

Path planning is a process of finding an optimal path for robot move from source to
destination. Besides that, different path planning algorithms has its own applicable fields,
performance in various situations. Therefore, it is significant to understand the properties
of various path planning algorithms. In this paper, Robot Operating System (ROS), and
STDR simulator are used to simulate a robot that is implemented by various path planning

algorithms and environments.

In this paper, we can conclude that if you need to find the shortest distance path, Dijkstra
is the best choice. If you want to speed up the search time and there are fewer obstacles on
the map, it is recommended to use A*, modified A* or RRT. However, if there are many
obstacles on the map, RRT will not be suitable for searching. They will use shorter time to
search for the path, but they may not lead to the shortest path. In addition, the route

discovered by RRT may be different from the route discovered last time.

By reading this paper, readers will be able to understand the properties of various path
planning algorithms without having to spend extra time reading irrelevant information.
Also, the readers can observe the difference between path planning algorithms more clearly
on the simulator. All in all, if we want to design a robot, we can better understand which

algorithm is best suited for which situation to use in order to get the maximum benefit.

In future work, more path planning algorithms will be reviewed and compared. In addition,
existing path planning algorithms will be modified or improved to increase accuracy or
reduce the time used to calculate paths. For example, the modified A* search speed can be

improved by using parallelism.

60
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY

BrainKart. n.d.. Brainkart. [online] Available at: <https://www.brainkart.com/article/A--
Search--Concept,-Algorithm,-Implementation,-Advantages,-
Disadvantages_8883/ > [Accessed 13 August 2019].

Cs.cmu.edu. 2002. [online] Available at:
<https://www.cs.cmu.edu/~motionplanning/lecture/ AppH-astar-dstar_howie.pdf>
[Accessed 17 August 2019].

Cs.cmu.edu. 2007. [online] Available at:
<http://www.cs.cmu.edu/~motionplanning/lecture/lec21.pdf> [Accessed 10
November 2019].

Design News. 2019. ROS 101: An Intro To The Robot Operating System. [online]
Available at: <https://www.designnews.com/gadget-freak/ros-101-intro-robot-
operating-system/107053141061075> [Accessed 15 November 2019].

Hindex.org. 2014. [online] Available at: <http://www.hindex.org/2014/p520.pdf>
[Accessed 17 August 2019].

loT Agenda. 2019. What Is A Drone? - Definition From Whatis.Com. [online] Available
at: <https://internetofthingsagenda.techtarget.com/definition/drone> [Accessed 16
November 2019].

Kangutkar, R., 2017. Obstacle Avoidance And Path Planning For Smart Indoor Agents.
[online] RIT Scholar Works. Available at:
<https://scholarworks.rit.edu/theses/9521/> [Accessed 12 November 2019].

Merriam-webster.com. 2019. Definition Of ROBOT. [online] Available at:
<https://www.merriam-webster.com/dictionary/robot> [Accessed 14 November
2019].

Msl.cs.uiuc.edu. n.d.. [online] Available at:
<http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf> [Accessed 15 August
2019].

61
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pyo, Y., Cho, H., Jung, R. and Lim, T., 2017. ROS Robot Programming. ROBOTIS
Co.,Ltd.

RobotWorx. 2019. Benefits Of Using Robotics. [online] Available at:
<https://www.robots.com/articles/benefits-of-using-robotics> [Accessed 15
November 2019].

Sciencedirect.com. 2017. Path Planning - An Overview | Sciencedirect Topics. [online]
Available at: <https://www.sciencedirect.com/topics/engineering/path-planning>
[Accessed 16 August 2019].

Soffar, H., 2019. Aquatic Robots (Swimming Robots Or Robot Fish) Types, Uses, Cons &
Pros | Science Online. [online] Science online. Available at: <https://www.online-
sciences.com/robotics/aquatic-robots-swimming-robots-or-robot-fish-types-uses-
cons-pros/> [Accessed 18 November 2019].

Techunited.nl. 2010. Path Planning: RRT - Explanation RRT - Tech United Eindhoven.
[online] Available at:
<http://www.techunited.nl/wiki/index.php?title=Path_planning:_RRT_-
_Explanation_RRT> [Accessed 15 August 2019].

Users.monash.edu. n.d.. [online] Available at:
<http://users.monash.edu/~cema/courses/FIT3094/lecturePDFs/lecture6a_Astar.p
df> [Accessed 16 August 2019].

Wiki.ros.org. 2018. ROS/Introduction - ROS Wiki. [online] Available at:
<http://wiki.ros.org/ROS/Introduction> [Accessed 18 November 2019].

Wiki.ros.org. 2019. Turtlesim/Tutorials/Moving In A Straight Line - ROS Wiki. [online]
Available at:
<http://wiki.ros.org/turtlesim/Tutorials/Moving%20in%20a%20Straight%20Line
> [Accessed 19 November 2019].

62
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

COMPARISON OF

PATH PLANNING IN
SIMULATED ROBOT

BY CH'NG CHEE YU'NG

INTRODUCTION PROJECT
With the rapid development of science and technology, robots OBJECTIVE

are considered as a significant element in society. The flexibility
of robots has made it being capable of performing a diversity of

To review existing path planning

tasks automatically. As we all know, a basic task of a mobile algorithms.
robots is to move to a targeted point in order to perform the » To modify an existing path planning
specified tasks. Hence, path planning algorithm is importance algorithm.
for the robot to navigate efficiently. However, each path * To simulate robot that is implemented by
planning algorithms has its own applicable domain in various various path planning algorithms.
situation. Thus, a comparison of path planning algorithm in * To compare various path planning
simulated robot will be conducted in this study. algorithms.
Explored cell Iteration Distance (pixel) Time N a\‘ig ~h
Dijkstra 73940 B 414.9777 11.4290 System
A* 22860 - 4232620 48768
Modified A~ 18315 - 440.5890 27511
RRT E 735 419.5832 01791
Explored cell | Iteration | Distance (pixel) Time 7N }_{ Create the [)] AN
— . — | Sttt) . Path planning End)
Dijkstra 276362 - 9617544 738550 N environment N
A* 158097 - 1057.0235 71.7896
Modified A* 105922 B 1031.8276 423568 Move the
RRT - 12786 1237.4605 307087 simulated robot
Explored cell | Tteration | Distance (pixel) Time
Dijkstra 89941 E 942 1808 118375
re 63345 - 9421808 117257 CONCLUSION
Modified A* 74747 B 988.6438 12,6640
RRT E 2488 9280737 11798))
In this paper, we can conclude that if you need to
Explored cell | Tteration | Distance (pixel) Time find the shortest distance path, Dijkstra is the best
Dijkstra 67378 - 1047.0437 82289 choice. If you want to speed up the search time and
A" 53184 B 1065.2691 81130 there are fewer obstacles on the map, it is
Modified A* 55708 B 1097.2346 80345 recommended to use A* modified A* or RRT.
RRT . N B N However, if there are many obstacles on the map,
RRT will not be suitable for searching. They will use
Iteration Distance (pixel) Time shorter time to search for the path, but they may not
T RRT 12786 1237.4605 30.7087 lead to the shortest path. In addition, the route
9RRT 5361 13303356 305181 d?scovered by FERT may be different from the route
discovered last time.

63
Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Q: feedback studio Ch'ng Chee Yu'ng comparison of path planning in simulated robot

ABSTRACT Submitted to University. 1%
The development of technology is getting faster and faster, and the robotics revolution is ’ o
also expanding rapidly. This is because robots can make a huge contribution to humans. fublﬂl\ted to Chungna 1%
The flexibility of robots has made it being capable of performing a diversity of tasks e
automatically (Benefits of Using Robotics, 2019). They can replace humans to do ?4bm\\ted to Nottingha 1%
dangerous_jobs, and complete the jobs more efficiently and accurately than humans. A S
basic task Efmdnobile robot is to move to a targeted point in order to perform the Submitted to University.. <7 %
Amcneﬁm: Student Pape
tasks. Hence, path planning algorithm such as A* ithm and Dijkstra’s algol c
essential for the robol (0 navigale elTiciently l'mmﬁe Lo the targeted place. However, Submitied o University.. <%
different robots will work in diflerent environments. I all the robots use the same path .
planning algorithm, 1f is possible that they may nol bring the greatest benelil. This 1s ?ubmlﬁed to Higher Ed <‘| %
because cach path planning algorithm has its own applicable domain, performance, s
advantages and disadvantages in various situations. Thus, a comparison of path planning Submitted to Universiti <1%
algorithm in simulated robot will be conducted in this study. There arc 4 path planning e
- . PO Article Error [e - - . - - - - - - - - — P
Page: 1 of 61 Word Count: 7152 Text-only Report High Resolution (il) @ —&———

Document Viewer

Turnitin Originality Report

Processed on: 24-Apr-2020 00:01 +08

ID: 1305542778

Similarity by Source
Word Count: 7152

Similarity Index

Submitted: 2 Internet Sources: 1%
o, Publications: 3%
)) . . 11 A Student Papers: 10%
Comparison of path planning in simulated robo... By Ch'ng
Chee Yu'ng
include quoted include bibliograph: exclude small matches mode: |qui|:kvie\v (classic) report v ‘ | Change mode | print download

1% match (student papers from 28-Aug-2013)
Submitted to University of Mauritius on 2013-08-28

1% match (student papers from 05-Dec-2016)
Submitted to Chungnam National University on 2016-12-05

1% match (student papers from 26-Sep-2008)
Submitted to Nottingham Trent University on 2008-09-26

<1% match (student papers from 10-Oct-2013)
Submitted to University of Hong_ Kong_ on 2013-10-10

<1% match (student papers from 27-Feb-2020)
Submitted to University of Morth Texas on 2020-02-27

<1% match (student papers from 18-Apr-2016)
Submitted to University of Liverpool on 2016-04-18

<1% match {publications)

< 1% match (student naners from 13-1an-20121

Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin for
Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-1AD-005 | Rev No.: 0 [Effective Date: 01/10/2013 | Page No.: 1of 1

y FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

nnnnnnnnnnnnnnnnnnnnnnnnnn

Full Name(s) of Candidate(s)| Ch’ng Chee Yu’'ng

ID Number(s) 16ACB04126

Programme / Course CS

Title of Final Year Project | Comparion of Path Planning in Simulated Robot

Simi Iarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds

the limits approved by UTAR)

Overall similarity index:__11 %

Similarity by source

Internet Sources: 1 %
Publications: 3 %
Student Papers: 10 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Owverall similarity index is 20% and below, and
(i) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality
report to Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

g

Signature of Supervisor Signature of Co-Supervisor
Name: CHANG JING JING Name:
Date: 4/22/2020 Date:

65
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

UT

UNIVERSITI TUNKU ABDUL RAHMAN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY
(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB04126

Student Name Ch’ng Chee Yu'ng

Supervisor Name Dr. Chang Jing Jing

TICK (V)

DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you
have checked your report with respect to the corresponding item.

Front Cover

Signed Report Status Declaration Form

Title Page

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

P P P P Rl Pl P P = = = = B

literature review

All references in bibliography are cited in the thesis, especially in the chapter of

Appendices (if applicable)

\/ Poster

N Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

|, the author, have checked and confirmed all
the items listed in the table are included in
my report.

£

(Signature of Student)
Date: 23 April 2020

Supervisor verification. Report with incorrect
format can get 5 mark (1 grade) reduction.

g

(Signature of Supervisor)
Date: 22 April 2020

Bachelor of Computer Science (HONS)

66

Faculty of Information and Communication Technology (Kampar Campus), UTAR

