

TITLE PAGE

SOFTWARE BUGS MANAGEMENT

 (ISO/IEC/IEEE 29119 STANDARD) SYSTEM

By

CHIN JUN KANG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: _________SOFTWARE BUGS MANAGEMENT _____________

 _________(ISO/IEC/IEEE 29119 STANDARD) SYSTEM__________

 __

Academic Session: _JAN 2020_

 I _____________CHIN JUN KANG___________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 _ No. 32, Jalan Besar,_____

 ___35500 Bidor, _______ _____Tan Teik Boon_______

 ___Perak ___________ Supervisor’s name

 Date: ___24 April 2020_____ Date: ____24 April 2020____

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR i

TITLE PAGE

SOFTWARE BUGS MANAGEMENT

 (ISO/IEC/IEEE 29119 STANDARD) SYSTEM

By

CHIN JUN KANG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2020

DECLARATION OF ORIGINALITY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “SOFTWARE BUGS MANAGEMENT

 (ISO/IEC/IEEE 29119 STANDARD) SYSTEM” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other awards.

Signature : _________________________

Name : CHIN JUN KANG_________

Date : _______24/04/2020_________

ACKNOWLEDGEMENTS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ts. Tan Teik

Boon who has given me this bright opportunity to engage in a Software Bug Management

project. It is my first step to establish a career in the software development field. A million

thanks to you.

Furthermore, I would like to thank Ts. Yeck Yin Ping who introduce Mr Tan to me so that

I can have a chance to work with Mr Tan. Finally, I must say thanks to my parents and my

family for their love, support and continuous encouragement throughout the course.

ABSTRACT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR iv

ABSTRACT

Bug management is a crucial process in the software development process. Low-quality bug

management could result in low-quality deliverable, resources wasted and profit lost.

However, bug management is not an easy process, software developers often have a hard

time managing software bugs. This is because a development team involves not only

technical software developer but also non-technical business unit. It can be hard to

communicate between the development team as the members have a different level of

technical knowledge. To solve this problem, this project proposes a bug management system

as a solution. Although there are many existing bug management systems, most of them do

not provide a standardized bug management process. The proposed system provides a

standardized bug management process following the ISO/IEC/IEEE 29119 Software

Testing Standard. The proposed system also aims to improve the understanding of the

software bugs and improve the communication between the development team. With the

help of the proposed system, the software developer can focus on the software developing

and software development team including business unit can communicate more effectively.

TABLE OF CONTENTS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR v

TABLE OF CONTENTS

TITLE PAGE i

TITLE PAGE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 1

1.2. Background and Motivation 2

1.3. Project Scope 3

1.4. Project Objectives 3

1.5. Impact, Significance and Contribution 4

CHAPTER 2: LITERATURE REVIEW 5

2.1. Bugs 5

2.1.1 Bug Report 5

2.1.2 Bug life cycle 6

2.2. ISO/IEC/IEEE 29119 Software Testing Standard 7

2.2.1 ISO/IEC/IEEE 29119-1:2013 – Concepts & Definitions 7

2.2.2 ISO/IEC/IEEE 29119-2:2013 – Test Processes 7

2.2.3 ISO/IEC/IEEE 29119-3:2013 – Test Documentation 10

2.2.4 ISO/IEC/IEEE 29119-4:2015 – Test Techniques 11

2.2.5 ISO/IEC/IEEE 29119-5:2016 – Keyword Driven Testing 13

2.3. Review of Existing Works 14

2.3.1 Airbrake 14

2.3.2 Backlog 16

2.3.3 Zoho BugTracker 19

2.3.4 Comparison of Key Features 21

TABLE OF CONTENTS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR vi

CHAPTER 3: PROPOSED METHOD 23

3.1. Design Specifications 23

3.1.1 Methodologies 23

3.1.2 General Work Procedures 23

3.1.4 Technologies and Tools Involved. 25

3.1.5 System Performance Definition 26

3.1.6 Verification Plan 26

3.2. System Design 28

3.2.1 System Flowchart 28

3.2.2 Use Case Diagram 29

3.2.3 Use Cases Description 30

3.2.4 Activity Diagrams 37

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION 44

4.1. General 44

4.1.1 Metrics 44

4.1.2 Classification 44

4.2. Form Design Specification 45

4.2.1 Test Case 45

4.2.2 Bug / Test Incident 46

CHAPTER 5: IMPLEMENTATION AND TESTING 49

5.1. Database Set up 49

5.2. Authentication 52

5.3. React Native Components 53

5.3.1 Community built libraries and components 53

5.3.2 Self-built components 54

5.4. User Interface Design 58

5.4.1 Mobile Platform 58

5.4.2 Web Platform 69

5.5. Use Case Testing 76

5.6. Implementation Issues and Challenges 78

CHAPTER 6: CONCLUSION 80

6.1. Project Review 80

TABLE OF CONTENTS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR vii

6.2. Novelties and Contribution 80

6.3. Future Work 81

BIBLIOGRAPHY 82

POSTER 84

PLAGIARISIM CHECK RESULT 85

CHECKLIST FOR FYP2 THESIS SUBMISSION 87

LSIT OF FIGURES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR viii

LIST OF FIGURES

Figure 2.1.1: The defect life cycle (Graham et al. 2008) 6

Figure 2.2.1: Test Management Process (International Organization for

Standardization 2013) 8

Figure 2.2.2: Test Planning Process (International Organization for Standardization

2013) 8

Figure 2.2.3: Test Monitoring and Control Process (International Organization for

Standardization 2013) 9

Figure 2.2.4: Dynamic Test Process (International Organization for Standardization

2013) 9

Figure 2.2.5: Test Design Techniques (International Organization for Standardization

2013) 12

Figure 2.3.1: Logo of Airbrake 14

Figure 2.3.2: Real-time errors capture and tracing features (‘Airbrake’ n.d.) 14

Figure 2.3.3: Real-time deployment monitoring and quality analysis features

(‘Airbrake’ n.d.) 15

Figure 2.3.4 Logo of Backlog 16

Figure 2.3.5: Project management features (‘Backlog’ n.d.) 17

Figure 2.3.6: Bugs tracking and team collaboration features (‘Backlog’ n.d.) 17

Figure 2.3.7: Task management and version control features (‘Backlog’ n.d.) 17

Figure 2.3.8: Logo of Zoho BugTracker 19

Figure 2.3.9: Bug management and Custom form field features (‘Zoho BugTracker’

2010) 19

Figure 2.3.10: Forum and working timesheet features (‘Zoho BugTracker’ 2010) 20

Figure 3.1.1: The flow of the development process 23

Figure 3.2.1: System Flowchart 28

Figure 3.2.2: Use Case Diagram 29

Figure 3.2.3: Activity diagram of the Login use case 37

Figure 3.2.4: Activity diagram of the Sign up use case 38

Figure 3.2.5: Activity diagram of the View feed list use case 39

Figure 3.2.6: Activity diagram of the View dashboard use case 39

Figure 3.2.7: Activity diagram of the View team use case 40

Figure 3.2.8: Activity diagram of the Create team use case 40

LSIT OF FIGURES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR ix

Figure 3.2.9: Activity diagram of the Add project use case 41

Figure 3.2.10: Activity diagram of the Add test case use case 42

Figure 5.1.1: Database structure of profiles 49

Figure 5.1.2: Database structure of teams 49

Figure 5.1.3: Database structure of projects 50

Figure 5.1.4: Database structure for feeds 50

Figure 5.1.5: Database structure of requirements 51

Figure 5.1.6: Database structure for test cases 51

Figure 5.1.7: Database structure for bugs 52

Figure 5.3.1: Screenshot of PasswordField.js 54

Figure 5.3.2: Screenshot of ProgressBar.js 55

Figure 5.3.3: Screenshot of Alert.js 56

Figure 5.3.4: Screenshot of style for Alert.js 57

Figure 5.4.1: The splash screen 58

Figure 5.4.2: The Login screen 59

Figure 5.4.3: The Signup screen 59

Figure 5.4.4: System alert when fields are invalid 59

Figure 5.4.5: The Feeds screen 60

Figure 5.4.6: Add function in the Feeds screen 60

Figure 5.4.7: Search function in the Feeds screen 60

Figure 5.4.8: The Drawer Navigation 61

Figure 5.4.9: The Bottom Bar Navigation 61

Figure 5.4.10: The Profile screen 62

Figure 5.4.11: The Team screen 62

Figure 5.4.12: Edit user list function in the Team screen 62

Figure 5.4.13: The Dashboard Screen - 1 63

Figure 5.4.14: The Dashboard Screen - 2 63

Figure 5.4.15: The Add Project Screen 64

Figure 5.4.16: The Requirement Screen 64

Figure 5.4.17: The Add Test Case Screen - 1 64

Figure 5.4.18: The Test Case Screen - 2 64

Figure 5.4.19: The Add Project Screen 65

Figure 5.4.20: The Requirement Screen 65

Figure 5.4.21: The Project List Screen 66

LSIT OF FIGURES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR x

Figure 5.4.22: The Project Home Screen 66

Figure 5.4.23: The Project Requirement Screen 67

Figure 5.4.24: The Project Test Case Screen 67

Figure 5.4.25: The Project Bug Screen 67

Figure 5.4.26: The Requirement Screen 68

Figure 5.4.27: The Test Case Screen 68

Figure 5.4.28: The Bug Screen 68

Figure 5.4.29: Screenshot of Login Page 69

Figure 5.4.30: Screenshot of Signup Page 69

Figure 5.4.31: The Home Page 70

Figure 5.4.32: The Profile Page 70

Figure 5.4.33: Screenshot of Project Home Page 71

Figure 5.4.34: The Team Page 71

Figure 5.4.35: The Dashboard Page 72

Figure 5.4.36: The Add Project Page 72

Figure 5.4.37: The Add Requirement Page 73

Figure 5.4.38: The Add Test Case Page 73

Figure 5.4.39: The Add Bug Page - 1 74

Figure 5.4.40: The Add Bug Page - 2 74

Figure 5.4.41: The Requirement Page 75

Figure 5.4.42: The Test Case Page 75

Figure 5.4.43: The Bug Page 76

LIST OF TABLES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR xi

LIST OF TABLES

Table 2.3.1: Key features comparison table 21

Table 3.1.1: Laptop specifications 25

Table 3.1.2: Mobile device specifications 25

Table 3.2.1: Use case description of the Login use case 30

Table 3.2.2: Use case description of the Sign up use case 31

Table 3.2.3: Use case description of the View feed use case 31

Table 3.2.4: Use case description of the View dashboard use case 32

Table 3.2.5: Use case description of the View team use case 32

Table 3.2.6: Use case description of the Create team use case 33

Table 3.2.7: Use case description of the Add project use case 34

Table 3.2.8: Use case description of the Add requirement use case 34

Table 3.2.9: Use case description of the Add test case use case 35

Table 3.2.10: Use case description of the Add bugs use case 35

Table 3.2.11: Use case description of the View project detail use case 36

Table 3.2.12: Activity diagram of the Add requirement use case 41

Table 3.2.13: Activity diagram of the Add bug use case 42

Table 3.2.14: Activity diagram of the View project detail use case 43

Table 4.1.1: ISO/IEC/IEEE 29119 standard general metrics 44

Table 4.1.2: Classification used in ISO/IEC/IEEE 29119 standards 44

Table 4.2.1: Form Fields Description for Test Case 46

Table 4.2.2: Form Template for Test Case 46

Table 4.2.3: Form Fields Description for bug 47

Table 4.2.4: Form Template for Bugs 48

Table 5.3.1: Libraries and components used and the repositories 53

LIST OF ABBREVIATIONS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR xii

LIST OF ABBREVIATIONS

NIST National Institute of Standards and Technology

U.S. United States

ISO International Organization for Standardization

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

OS Operating System

UML Unified Modeling Language

UI User Interface

etc. et cetera

Anon. Anonymous

n.d. No date

pp. pages

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 1

CHAPTER 1: INTRODUCTION

1.1. Problem Statement

Poor bugs management could post problems in every software development lifecycle.

First is the misunderstanding of bugs, not all bugs are caused by coding errors,

misunderstanding can be caused by miscommunication within the development team,

unclear requirements, misunderstanding of requirements and poor documentation of

bugs. Sometimes issues are reported technically (as bugs), but a development team

consisting of non-technical members such as customer, stakeholders, organization, etc.

It could be hard for non-technical members to involve in the software development

process this can cause the requirement and issue to become unclear.

Moreover, fixing bugs can become not effective and time-consuming if the

developers do not have a standardized testing process. As mentioned by (Ahonen et

al. 2004) one of the challenges in testing defects is that it is hard to ensure that all

members in the development team follow good practices. During a conference, (Kajko-

Mattsson & Bjornsson 2007) have also reported that organizations do not document

testing processes properly. These testing-related problems can delay the time a bug is

detected during the software development process and result in late in solving the bugs.

Last but not least, it will be an ineffective use of intellectual if a bug is not

documented well (Ahonen et al. 2004). A development team may consist of experts

from different domain/fields, an issue found by a developer may from a different field,

he/she may use a long time to solve the problem. In a larger development team, there

will be different members to do the testing which may not have coding skill to resolve

the issue. The member who found the bug has to determine the skills needed to solve

the problem and passes the bug to the members who have the required skill or informs

every member in the team to find out who has the ability to solve the problem. If the

bug is documented well, other developers who are expert in the domain can view the

documentation and resolve the problem effectively.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 2

1.2. Background and Motivation

Software bugs are always a challenge in the software development process. Software

bugs are errors occur in software including coding error, unexpected software

behaviour, misunderstood user requirement etc. These software bugs can prolong the

project development process and delay the delivery of the final product. These problems

arise because bugs are not well-documented and most of the time it is very difficult to

document bugs (Singh 2013) thus developers often use Bug Management System to

ease the bugs documentation process.

A bug management system is a tool for developers to report bugs, sort and filter

bugs, assign bugs to individuals and tracking the bugs to resolution. A bug management

system provides a standard for developers to document and distribute bugs so

developers can focus on developing and not documenting. A bug management system

eases the process of bug managing so the developers can focus on developing the

software and thus reduce development duration and increase product quality.

Bug management is the process of documenting, keep tracking and eventually

fixing the software bugs during the software development process. Bug management

involves different techniques to manage software bugs such as bug report, bug life cycle

monitoring, etc.

In this project, the ISO/IEC/IEEE 29119 Software Testing Standard is used to

provide a set of standardized formats for software testing and bug management

processes. Bug documentation with standardized format help the development team to

understand the documentation easier and hence result in solving the bugs better. A

software testing standard ensures the developers in the software development team to

deliver quality products.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 3

1.3. Project Scope

The scope of the project including the following three:

• To develop a system with bug management functionalities.

• To develop the bug management system in both the web and mobile

platforms.

• To develop a centralized database to maintain the bugs for the bug

management system.

1.4. Project Objectives

The main objective of this project is to build a system that is able to assist developers,

stakeholders, and customers in understanding the program development process. The

proposed system follows the ISO/IEC/IEEE 29119 Software Testing Standard to

provide better bugs management to the members involved in the software development

process. The objective can be broken down into sub-objectives:

• To offer bug tracking and management functionalities to the users such

as bug report, keep track of bug’s status, assign bugs to users, etc.

• To keep track the progress of bug management.

• To standardize the bug tracking and management process by using

software testing standard.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 4

1.5. Impact, Significance and Contribution

According to the report from the National Institute of Standards and Technology (NIST)

(Strate & Laplante 2013), the U.S. economy loses $60 billion a year because of software

defects and fixing these defects earlier could save $22 billion a year for the U.S.

economy. The statistic shows how crucial bug management is in the software

development process. It is the development team’s job to test, keep track and resolve

the bugs but it is not easy to duel with bugs. If the development team cannot resolve

bugs effectively, the system will become buggy which highly decreases the usability of

the system and even cause the system cannot meet the user requirement and result in

failure. This project aims to create a tool for the development teams to helps them in

producing quality products.

Although there are many existing bug management systems, most of the

systems are not standardized. This can cause solving bugs becomes ineffective and

time-consuming. This project provides a standard based on the ISO/IEC/IEEE 29119

Software Testing Standard so the developers can be more consistent at work and solve

the bugs effectively. Another limitation for the existing works is that most systems only

concern about the developer aspect and disregard for the business aspect of the

development team. This project considers the business aspect of the development team

and provides easy to understand non-technical information for the progress of the

developments.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 5

CHAPTER 2: LITERATURE REVIEW

2.1. Bugs

A bug is a failure, flaw, error or abnormal behaviour in software that causes the software

to behave differently from what is expected. A bug can be a logical error, incorrect

implementation of code, design error, syntax error or unfulfillment of user requirements.

2.1.1 Bug Report

Bug reports are the primary method users and testers of a system to communicate an

issue to the developers. When a bug is detected, a bug report should be generated and

send to the developers for resolving. The content of a bug report is important as it helps

developers to understand the issue, find and fix the bugs. After comparing several

sources by (Bug n.d., Defect Management Process in Software Testing (Bug Report

Template) n.d., Davies & Roper 2014, What is Defect or bugs or faults in software

testing? 2012), the following parameters are found to be important to be included in a

bug report to assist the developers in resolving an issue.

• Bug ID – A unique identifier for each bug

• Bug Description – Detailed description of the bug including expected

behaviour and observed behaviour.

• Build Information – The system and the release version of the system in

which the bug was detected.

• Environment – Description of the environment the bug was found

including operating system, browser system and more.

• Steps to Reproduce – The detailed steps for the developers to reproduce

the same issue in different machines.

• Date Raised – Date when the bug is reported.

• Reported by – Name or ID of the tester who detected and reported the

bug.

• Status – The current status of the bug, could be New, Assigned, Open,

etc.

• Assigned to / Fixed by – Name or ID of the developer who assigned to

solve the issue or fixed the bug.

• Date Closed – Date when the issue is closed.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 6

• Severity – Level of the impact of the bug on the system.

• Priority – Level of urgency in resolving the bug.

2.1.2 Bug life cycle

In software development, the bug life cycle describes the statuses a bug goes through

during its lifetime. It differs between organizations and projects, some may prefer a

simpler life cycle like presented by (Graham et al. 2008, D’Ambros et al. 2007) while

others may adopt a more extensive life cycle.

Figure 2.1.1: The defect life cycle (Graham et al. 2008)

• Reported – When a bug is first detected and reported, it is in the

Reported state.

• Opened – After the bug is reviewed, it is in the Opened state.

• Assigned – After the bug is approved by the development team lead

tester, the bug is assigned to the developers.

• Fixed – Once the developers have repaired the bug, it is in the Fixed

state and will go through a confirmation test.

• Reopened – If the bug is checked not fixed after the confirmation test, it

is reopened and repeat until it passes the confirmation test.

• Closed – The final state of the bug, after it is fixed and passes the

confirmation test it is closed to indicate that the bug is repaired and do

not exist in the program anymore.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 7

• Rejected – The developers can reject the bug by a few reasons, the issue

is not reproducible, duplicated issue, it is not a bug, etc..

• Deferred – Deferred state means the bug is expected to be fixed in the

next releases for the reason that the bug has a low severity and low

priority.

2.2. ISO/IEC/IEEE 29119 Software Testing Standard

ISO/IEC/IEEE 29119 is a software testing standard developed by ISO Software Testing

Group of the ISO/IEC JTC1/SC7 Software and Systems Engineering committee

starting from 2007. The ISO/IEC/IEEE 29119 consists of a series of 5 international

standards for systems and software engineering testing. Each release of the

ISO/IEC/IEEE 29119 focus on an aspect of software testing such as concepts and

definitions, test processes, test documentation, test techniques and keyword-driven

testing.

2.2.1 ISO/IEC/IEEE 29119-1:2013 – Concepts & Definitions

Part 1 of the ISO/IEC/IEEE 29119 standard release in 2013 and covers the concepts

and definitions of software testing. It provides practical examples of the application of

each concept and introduces vocabulary used throughout the ISO/IEC/IEEE 29119

series to help the reader in understanding the concepts presented in the ISO/IEC/IEEE

29119 series.

2.2.2 ISO/IEC/IEEE 29119-2:2013 – Test Processes

Part 2 describes more details about test processes with a generic software testing model

that can be used in any software development. The series presents a multi-layer process

model for governing, managing and implementing software testing. The diagrams

provided by (International Organization for Standardization 2013) below describe the

model in detail.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 8

Figure 2.2.1: Test Management Process (International Organization for

Standardization 2013)

Figure 2.2.2: Test Planning Process (International Organization for Standardization

2013)

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 9

Figure 2.2.3: Test Monitoring and Control Process (International Organization for

Standardization 2013)

Figure 2.2.4: Dynamic Test Process (International Organization for Standardization

2013)

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 10

2.2.3 ISO/IEC/IEEE 29119-3:2013 – Test Documentation

Part 3 introduces the software test documentation with standard templates. All

templates follow the three test process levels defined in ISO/IEC/IEEE 29119-2 and

can be customized for any organization and software development process. The test

documentation standard presented is built on top of the IEEE 829 Test Documentation

standard.

The documents defined in this part are as follows (International Organization

for Standardization 2013):

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 11

2.2.4 ISO/IEC/IEEE 29119-4:2015 – Test Techniques

Part 4 of the standard covers software test design techniques based on the BS-7925-2

Component Testing standard. It defines different types of testing and testing techniques

that can be applied as well as provides detailed examples of the implementation of each

technique.

Following are the testing type discussed in the standard(International

Organization for Standardization 2013):

The diagram below shows the test design techniques that are discussed in the

standard (International Organization for Standardization 2013):

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 12

Figure 2.2.5: Test Design Techniques (International Organization for Standardization

2013)

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 13

2.2.5 ISO/IEC/IEEE 29119-5:2016 – Keyword Driven Testing

Part 5 of the standard introduce Keyword-Driven Testing, an approach of software

testing that using predefined keywords in describing test cases. The standard covers the

introduction in Keyword-Driven Testing, application of Keyword-Driven Testing,

frameworks, data interchange, roles and tasks in Keyword-Driven Testing and some

basic Keywords. The standard also discussed on benefits and issues of Keyword-Driven

Testing.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 14

2.3. Review of Existing Works

There are many similar systems exist in the market, 3 of them are selected for review.

2.3.1 Airbrake

Figure 2.3.1: Logo of Airbrake

Airbrake is a cloud-based monitoring tool for software development teams to manage

and monitor deployed projects. Airbrake is an API that automatically captures uncaught

errors in deployed and ongoing projects and reports to development teams directly.

Currently, there are many well-known companies using Airbrake including Twitch,

TED, Zenefits, SalesForce, SoundCloud, Adobe and more.

Key Features:

• Capture real-time errors automatically from deployed projects

• Real-time issues tracking and monitoring

• Errors code tracing

• Real-time deploy monitoring

• Deployment quality analysis and insight

• User experience monitoring

• Security features to protect users data.

Figure 2.3.2: Real-time errors capture and tracing features (‘Airbrake’ n.d.)

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 15

Figure 2.3.3: Real-time deployment monitoring and quality analysis features

(‘Airbrake’ n.d.)

Strength:

• Errors are captured automatically in real-time as they arise on client

sides.

• Provides real-time deployment quality monitoring and analysis.

• Notification for new issues.

• Support for a vast amount of programming languages.

• Support for numbers of third-party integrations.

• Easy to install and integrate it into software projects.

• Highly secured data protection.

• API is available for developers.

• Accessible anywhere anytime as a web-based service.

• Mobile-friendly web design.

Weakness:

• Complex user interface.

• Lack of team communication functionality.

• Lack of support for different platforms.

• Users are unable to attach additional files on an error.

• Lack of test case management features.

• Lack of requirement management features.

• Lack of traceability of bugs.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 16

2.3.2 Backlog

Figure 2.3.4 Logo of Backlog

Backlog is an all-in-one software development assisting tool that includes functions

such as project management, bug tracking, task management, version control and more.

In Backlog, developers can communicate effectively throughout the software

development process. Currently, companies that using Backlog include Omron,

SoftBank Robotics, Adobe, TransferWise and Vanilla Air.

Key Features:

• Push notifications for new issues.

• Bugs tracking and managing.

• Extensive task managing.

• Version control support with integration with Git.

• Centralize repository for each project.

• Project scheduling with Gantt charts.

• Access control for IP addresses and roles.

• Team collaboration using comments and attachments.

• Project wiki page.

• Customizable forms.

• Jira and Redmine importer.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 17

Figure 2.3.5: Project management features (‘Backlog’ n.d.)

Figure 2.3.6: Bugs tracking and team collaboration features (‘Backlog’ n.d.)

Figure 2.3.7: Task management and version control features (‘Backlog’ n.d.)

Strength:

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 18

• Greate functionalities in team collaboration.

• Wiki page to help newly added developers to understand the project

effectively.

• Supports for numbers of third-party integrations.

• Push notification for new issues.

• Simple user interface design.

• API is available for developers.

• Customizable forms to suit different projects and organization.

• Display project planning and progress using Gantt charts.

• Centralized repository for every project.

• Support for multiple platforms.

• Accessible anywhere anytime as a web-based service.

• Self-hosting is available for data protection.

• Version control is available.

Weakness:

• Lack of dashboard or reports for bug management.

• Status options for issues are insufficient and not customizable.

• Priority options for issues are insufficient and not customizable.

• Poorly implemented version control function.

• Notification functionalities are poorly implemented.

• Lack of test case management features.

• Lack of requirement management features.

• Lack of traceability of bugs.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 19

2.3.3 Zoho BugTracker

Figure 2.3.8: Logo of Zoho BugTracker

Zoho BugTracker is a cloud-based bug tracking system that helps development teams

in delivering issue free products. Zoho BugTracker provides simple bug management

for the development team to track and fix bugs quickly and easily.

Key Features:

• Bug tracking and management.

• Milestone management.

• Integration with other Zoho Cloud products.

• Personalize interfaces.

• Timesheet for work hour record.

• Include chat and forums for better communications.

Figure 2.3.9: Bug management and Custom form field features (‘Zoho BugTracker’

2010)

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 20

Figure 2.3.10: Forum and working timesheet features (‘Zoho BugTracker’ 2010)

Strength:

• Allow integration with other Zoho products.

• Working timesheet recording feature.

• Project milestone management feature.

• Customizable interface.

• Customizable forms to suit any projects and organizations.

• Forum and chat feature.

• Accessible across the web and mobile platform

Weakness:

• Lack of dashboard or reports for bug management.

• Lack of test case management features.

• Lack of requirement management features.

• Lack of traceability of bugs.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 21

2.3.4 Comparison of Key Features

Table 2.3.1: Key features comparison table

It is clear that each of the systems reviewed focus in different domain and included

different functionality. Airbrake is focusing on deployment management and capture

error in real-time, Backlog focus in project management and task management and

Zoho BugTracker focus in bug management and team communication while the

proposed system will focus on bug management with ISO/IEC/IEEE 29119 standards.

Airbrake Backlog
Zoho

BugTracker

Proposed

System

Group Bugs by Projects ✓ ✓ ✓ ✓

Requirements Management ✓

Track overall progress ✓ ✓ ✓ ✓

Gantt Chart ✓

Burndown chart ✓

Agile Board

Dashboard for project ✓ ✓

Automatic capture error in real-time ✓

Automatic include environment information ✓

Record bugs ✓ ✓ ✓ ✓

Show user feeds ✓ ✓ ✓ ✓

Backtraces & Breadcrumbs for errors ✓

Navigate to code which error occur ✓

Template for forms ✓ ✓ ✓ ✓

Custom fields for forms ✓ ✓

Filters ✓ ✓ ✓ ✓

Notification for new issues ✓ ✓ ✓ ✓

Customize notifications ✓

Dashboard for bug management ✓ ✓ ✓

Add issues via email ✓

Create test case ✓

Assign test case to testers ✓

Link requirements, test cases and bugs ✓

Progress tracking (bug density, test progress …) ✓

Dashboard for progress ✓

Web application ✓ ✓ ✓ ✓

iOS app ✓ ✓ ✓

Android app ✓ ✓ ✓

Mobile friendly web sites ✓

Platform

Project Management

Bug Management

Test Case Management

Progress Tracking

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 22

Although each system focusses in different domains, there are similar features

included in all 3 of the systems and it shows that these are good features in a bug

management system and relevant features should be included in the proposed system.

The proposed system also includes some features that can enhance team collaboration

to improve usability as well as effectiveness in resolving issues. It is also noticed that

there are limited progress tracking and bug tracing features in those systems.

Progress tracking is an important feature in a bug management system because

it monitors the software development progress and makes sure the bugs are fixed in

time and not delaying the software release. Progress tracking features such as bug

density and test progress allows users to keep track which module is heavily bugged

and assign more resource to the module to ensure the product delivered in time.

Bug tracing features ensure the developing system meets the requirements and

goals as well as ensures the bugs are resolved in the right manner. Bug tracing allows

users to link bugs to test cases and requirement, this gives developers more

understanding on what is the actual problem and how to fix the bugs.

Both progress tracking and bug tracing are particularly important to the business

unit in the development team. As discussed in Chapter 1, a development team consists

not only technical members but also business unit such as stakeholders, customers, etc.

and they do not understand Software Bugs which are reported in technical terms.

Progress tracking and bug tracing features help the business unit to understand is the

system developed following the goals set and how is the progress.

For the platform selection, the proposed system will be supporting web

application, iOS and Android OS. A web-based application is convenient for users as

it can be accessed in anywhere anytime. As for mobile platforms, it is better to

implement an app so the users can get push notifications when new issues added which

web application is unable to.

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 23

CHAPTER 3: PROPOSED METHOD

3.1. Design Specifications

3.1.1 Methodologies

The development model used to develop the proposed system is the Extreme

Prototyping Model in which prototypes are built, evaluated and refined throughout the

whole development process.

Figure 3.1.1: The flow of the development process

Figure 4.1-1 shows the flow of the development process for the proposed

system. Note that the evaluation phase and refining prototype phase form a cycle,

prototypes are evaluated and refined until the prototype meets all the user requirements.

Using Prototype Model ensures the proposed system meets all the user requirements

and can be deployed in time with high usability.

3.1.2 General Work Procedures

1. Requirement Analysis

The development process starts with analysing the requirement for the proposed

system. The requirements are gathered by doing research on existing works in

the bugs management area and review of existing bug management products in

the market then useful features are analysed and selected as user requirements.

2. Quick Design

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 24

The proposed system is designed based on the user requirements gathered from the

first phase using system UML diagrams such as use-case diagram, activity diagram

and sequence diagram.

3. Build a Prototype

In this phase, a basic front-end prototype with minimal functionalities and UI design

is built based on the design created in the second phase.

4. Evaluation

After the first prototype is created, it is presented to the user for evaluation. The

feedback and comments from the user are gathered and analysed for refining the

user requirements.

5. Refining Prototype

The prototype is then refined based on the user’s feedback and comments gathered

from the evaluation phase.

Then the evaluation phase and refining prototype phase is iterated until all the user

requirements are met. Once the user satisfied with the prototype, actual

functionalities such as data processing are implemented and integrated into the final

prototype as the final system.

6. Implementation

After the final system is implemented, it is then thoroughly tested and deployed as

the final deliverable after it passed all tests. This ensures the final deliverable of the

proposed system meets all the user requirements with high usability.

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 25

3.1.4 Technologies and Tools Involved.

Hardware Tools

◼ Laptop

Hardware Specification

Operating system Windows 10 Home Single Language

Processor Intel® Core™ i7-4710HQ @ 2.50GHz

Ram 8.00 GB

Graphics NVIDIA GeForce GTX 860M

Table 3.1.1: Laptop specifications

◼ Mobile Device

Hardware Specification

Operating system Android OS v6.0

Processor Hisilicon Kirin 935 @ 2.2GHz octa-core

Ram 3.00 GB

Table 3.1.2: Mobile device specifications

Software Tools

◼ Firebase Realtime Database

Firebase Realtime Database is a cloud-based NoSQL database developed by Google.

It acts as a centralised database for application on different platforms to update and

retrieve data from the database in real-time.

◼ React Native

React Native is an open-source framework created by Facebook. It allows

developers to develop native Android, iOS and Web application without needing to

repeating the development for each platform. The proposed system can be

developed with high accessibility for different platforms using React Native

framework.

◼ Visual Studio Code

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 26

Visual Studio Code is a code editor developed by Microsoft that allows users to

build and debug modern applications. It also includes features and extensions that

ease the development process for developers.

◼ BrowserStack

BrowserStack is a web application that provides interactive cross-platform testing

experience to users. BrowserStack provides live streaming of thousands of devices

in different operating systems and sizes with native behaviour. BrowserStack is

going to be the testing tool for this project to ensure it is compatible with different

operating systems and different sizes of devices.

3.1.5 System Performance Definition

The performance of the final deliverable shall define by 3 main aspects:

➢ Usability and Accessibility

• Ensure users can achieve their objectives in the least

steps without extra training needed.

• Able to be accessed from different platforms.

➢ Bug Management Functionalities

• Users shall able to report bugs.

• Users shall able to keep track of bugs status.

• Test manager shall able to assign bugs to users.

➢ Progress Tracking

• Users shall able to keep track of the progress of the bug

management process.

3.1.6 Verification Plan

The verification plan for this project is defined in 3 phases:

➢ Coding Phase

During development for prototypes, the prototype is verified in parallel with coding

to ensure the prototype is working as expected.

➢ Evaluation Phase

During the evaluation phase of each prototype, the prototype is presented to the user

to get feedback and comments for refinement.

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 27

➢ Testing Phase

After the implementation of the final system, the system is tested thoroughly to

ensure the final deliverable meeting all the requirement and behave as expected.

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 28

3.2. System Design

3.2.1 System Flowchart

Figure 3.2.1: System Flowchart

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 29

3.2.2 Use Case Diagram

Figure 3.2.2: Use Case Diagram

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 30

3.2.3 Use Cases Description

Login

Use Case ID UC001

Feature Login

Purpose To allow user to login with an account

Actor Test manager, tester/developer, business unit

Trigger The application is started up

Precondition User is not logged in.

Main Flow Step Action

1 User enter email and password.

2 User press the “Login” button.

3 System authenticate user’s account.

4 System redirects user to the home screen.

Alternative Flow –

1a. Invalid email or

password

Step Action

1a User enters invalid email or password.

2 System displays error message.

Table 3.2.1: Use case description of the Login use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 31

Sign up

Use Case ID UC002

Feature Sign up

Purpose To allow user to create a new account

Actor Test manager, tester/developer, business unit

Trigger User press the “Sign up” button

Precondition User is not logged in; user has no account.

Main Flow Step Action

1 User enters email and password.

2 User confirms password.

3 System creates a new account.

4 System log user in.

5 System redirects user to the home screen.

Alternative Flow –

2a. Unable to

confirm password

Step Action

2a User enters different password during password

confirmation.

3 System displays error message.

Table 3.2.2: Use case description of the Sign up use case

View feed

Use Case ID UC003

Feature View feed

Purpose To allow user to view recent feeds

Actor Test manager, tester/developer, business unit

Trigger User enters feeds screen.

Precondition User is logged in.

Main Flow Step Action

1 System shows a list of most recent feeds.

2 User press on feed.

3 System displays feed details.

Table 3.2.3: Use case description of the View feed use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 32

View dashboard

Use Case ID UC004

Feature View dashboard

Purpose To allow user to view chart and information about the

progress of bug management

Actor Test manager, tester/developer, business unit

Trigger User enters the dashboard screen.

Precondition User is logged in.

Main Flow Step Action

1 User filter information option.

2 System display relevant information and chart.

Table 3.2.4: Use case description of the View dashboard use case

View team

Use Case ID UC005

Feature View team

Purpose To allow user to view users in the team

Actor Test manager, tester/developer, business unit

Trigger User enters team screen.

Precondition User is logged in.

Main Flow Step Action

1 System displays user list.

Table 3.2.5: Use case description of the View team use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 33

Create team

Use Case ID UC006

Feature Create team

Purpose To allow user to add users to the team and edit the user roles.

Actor Test manager

Trigger User enters team screen.

Precondition User is logged in. User role is test manage.

Main Flow Step Action

1 User creates a team.

2 User adds other users to the team.

3 User edits the user roles.

4 System update feed list.

5 System notifies related users.

Alternative Flow –

2a User adds a user

which is already in

the team

Step Action

2a User adds a user which is already in the team.

3 System display error message.

Alternative Flow –

2b User remove the

last member in the

team

Step Action

2a User removes the last member in the team

3 System displays error message.

Alternative Flow –

2c User removes

the last admin in

the team

Step Action

2a User removes the last admin in the team

3 System displays error message.

Table 3.2.6: Use case description of the Create team use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 34

Add project

Use Case ID UC007

Feature Add project

Purpose To allow user to create project.

Actor Test manager, tester/developer

Trigger User enter add project screen.

Precondition User is logged in. User role is test manager or developer.

Main Flow Step Action

1 User enter project information.

2 System saves the project information in the database.

3 System update feed list.

4 System notifies related users.

Alternative Flow –

1a User did not enter

mandatory fields

Step Action

1a User did not enter mandatory fields.

2 System display error message.

Table 3.2.7: Use case description of the Add project use case

Add requirement

Use Case ID UC008

Feature Add requirement

Purpose To allow user to add requirement.

Actor Test manager, tester/developer

Trigger User enter add requirement screen.

Precondition User is logged in. User role is test manager or developer.

Main Flow Step Action

1 User enter requirement information.

2 System save the requirement information in database.

3 System update feed list.

4 System notifies related users.

Alternative Flow –

1a User did not enter

mandatory fields

Step Action

1a User did not enter mandatory fields.

2 System display error message.

Table 3.2.8: Use case description of the Add requirement use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 35

Add test case

Use Case ID UC009

Feature Add test case

Purpose To allow user to add test case.

Actor Test manager, tester/developer

Trigger User enter add requirement screen.

Precondition User is logged in. User role is test manager or developer.

Main Flow Step Action

1 User enters test case information.

2 System saves the test case information in database.

3 System update feed list.

4 System notifies related users.

Alternative Flow –

1a User did not enter

mandatory fields

Step Action

1a User did not enter mandatory fields.

2 System display error message.

Table 3.2.9: Use case description of the Add test case use case

Add bugs

Use Case ID UC010

Feature Add bugs

Purpose To allow user to report bugs.

Actor Test manager, tester/developer

Trigger User enter add bug screen.

Precondition User is logged in. User role is test manager or developer.

Main Flow Step Action

1 User enters bug information.

2 The system saves the bug information in the database.

3 System update feed list.

4 System notifies related users.

Alternative Flow –

1a User did not enter

mandatory fields

Step Action

1a User did not enter mandatory fields.

2 System display error message.

Table 3.2.10: Use case description of the Add bugs use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 36

View project detail

Use Case ID UC011

Feature View project detail

Purpose To allow the user to view project detail.

Actor Test manager, tester/developer, business unit

Trigger User enter project home screen.

Precondition User is logged in.

Main Flow Step Action

1 System display project information.

2 System display requirement, test case and bug list.

Table 3.2.11: Use case description of the View project detail use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 37

3.2.4 Activity Diagrams

Figure 3.2.3: Activity diagram of the Login use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 38

Figure 3.2.4: Activity diagram of the Sign up use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 39

Figure 3.2.5: Activity diagram of the View feed list use case

Figure 3.2.6: Activity diagram of the View dashboard use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 40

Figure 3.2.7: Activity diagram of the View team use case

Figure 3.2.8: Activity diagram of the Create team use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 41

Figure 3.2.9: Activity diagram of the Add project use case

Table 3.2.12: Activity diagram of the Add requirement use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 42

Figure 3.2.10: Activity diagram of the Add test case use case

Table 3.2.13: Activity diagram of the Add bug use case

CHAPTER 3: PROPOSED METHOD

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 43

Table 3.2.14: Activity diagram of the View project detail use case

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 44

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION

4.1. General

This section shows the definition and description of different metrics and classification

as described in the 29119 standard.

4.1.1 Metrics

Table 4.1.1: ISO/IEC/IEEE 29119 standard general metrics

The table above shows the metrics used in the ISO/IEC/IEEE 29119 standard to

measure the progress and quality of the system. These metrics help to track down which

part of the project needs extra attention and increase the effectiveness of the software

development process.

4.1.2 Classification

Table 4.1.2: Classification used in ISO/IEC/IEEE 29119 standards

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 45

4.2. Form Design Specification

In this section, the forms design specification as stated in the ISO/IEC/IEEE 29119

standard is shown. To prevent confusion, some of the fields are renamed as some words

are interchangeable according to the ISO/IEC/IEEE 29119 standard. The

ISO/IEC/IEEE 29119 standards discussed the comprehensive software testing standard

including requirement management, test management and bug management, therefore

some fields do not apply to the proposed system as this project focus on bug

management only.

4.2.1 Test Case

Form Fields

Fields Field Description Renamed to
Included

/Left Out

Test Case ID
Unique identifier for the test

case.

Included

Related Feature ID
The ID of the related

requirement.

Related

Requirement ID
Included

Objective The objective of the test case. Included

Covered Test

Coverage Items

One or more IDs of Test

Coverages that are covered in

the test case.

Left Out

Input

Actual input value, type of

input or the action that

executed in the test case.

Included

Expected Result
The expected outputs and

performance of the system.

Included

Special Procedural

Requirements

Special procedures that are

required to execute the test

case.

Included

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 46

Intercase

Dependency

One or more IDs of other test

cases that must be executed

prior to this test case.

Included

Table 4.2.1: Form Fields Description for Test Case

Form Template with Examples

Test Case ID TC-04-004

Related Requirement ID F004

Objective ID Verification (8 digits)

Input Expected Result
Special Procedural

Requirements

Intercase

Dependency

12012378
System display message

“No student id found”.

Import of student

data
None

Table 4.2.2: Form Template for Test Case

4.2.2 Bug / Test Incident

Form Fields

Fields Field Description
Renamed

to

Included

/Left Out

Test Incident

Number

Unique identifier for the bug.
Bug ID Included

Summary A description of the bug.
Bug

Description
Included

Date and Time

Incident

The date and time the bug is

reported

Reported

Time
Included

Context
The project name the bug found

in including the release version
Project Included

Test Procedure The specification of test cases. Left Out

Procedure to

reproduce the

incident

The sequence of actions which

cause the bug.
 Included

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 47

Test Environment

The setup of hardware and

software when executing the test

case or when the bug was

observed.

 Included

Attempt to repeat
Times the test case tested to

produce the same result.
 Included

Tester’s Name
The name of the tester who tested

the test case or bug.
Tester Included

Observer’s Name
The name of the tester who

observed the bug.
Reported by Included

Status of Incident The current status of the bug. Status Included

Impact
The level of impact of the bug on

the system.
 Included

Priority
The level of urgency in resolving

the bug.
 Included

Approvals

The name of the person that

confirmed the bug is fixed and

resolved.

Approved

by
Included

Table 4.2.3: Form Fields Description for bug

CHAPTER 4: ISO/IEC/IEEE 29119 STANDARD SPECIFICATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 48

Form Template with Examples

Table 4.2.4: Form Template for Bugs

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 49

CHAPTER 5: IMPLEMENTATION AND TESTING

5.1. Database Set up

The Firebase Realtime Database is used in this project as the centralized database.

Firebase Realtime Database is a NoSQL cloud database developed by Google, the

backend is managed by Google and developer interact with the database using API

without worrying the backend implementation. Data is stored as JSON format in

Firebase which is better in representing an object compare to the traditional relational

database.

In this project, the database is organized so that data is grouped by team or

project so that it is easier to filter and fetch the specific data.

Structure of profiles

Figure 5.1.1: Database structure of profiles

Structure for teams

Figure 5.1.2: Database structure of teams

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 50

Structure for projects

Figure 5.1.3: Database structure of projects

Structure for feeds

Figure 5.1.4: Database structure for feeds

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 51

Structure for requirements

Figure 5.1.5: Database structure of requirements

Structure for test cases

Figure 5.1.6: Database structure for test cases

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 52

Structure for bugs

Figure 5.1.7: Database structure for bugs

5.2. Authentication

The authentication service used in this project is the Firebase Authentication service by

Google. All the backends are managed by Google and developers only need to

communicate with the server through SDKs and libraries. Firebase Authentication

provides different types of authentication methods including passwords, phone

numbers, link with Google, Facebook and Twitter, etc.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 53

Firebase Authentication service is secure and time saving by providing useful

features to developers. The guide for setting up of the authentication service can be

found in the Firebase documentation <https://firebase.google.com/docs/auth>

5.3. React Native Components

React Native is used as the development framework for this project. One of the

advantages of using React Native is that React Native has many official libraries that

can help developers to reduce wasting time on repetitive works that have done by

others. React Native also has a very large and healthy community which shares the

components that they built. In this project, there are some libraries and components

used to speed up the development process.

5.3.1 Community built libraries and components

Following are the library and component used, installation and usage guide can be

found in their repositories.

Library/Component Repository

React Native Chart Kit https://github.com/indiespirit/react-native-chart-

kit

React Native Dropdown Menu https://github.com/WheelerLee/react-native-

dropdown-menu#readme

React Native Elements https://react-native-elements.github.io/react-

native-elements/

React Native Paper https://callstack.github.io/react-native-paper/

React Native Simple Toast https://github.com/vonovak/react-native-simple-

toast#readme

React Navigation V4.0 https://reactnavigation.org/

React Redux https://react-redux.js.org/

React Router Dom https://reacttraining.com/react-router/

Redux https://redux.js.org/

Redux Persist https://github.com/rt2zz/redux-persist

Redux Thunk https://github.com/reduxjs/redux-thunk

RN Multi Progress Bar https://github.com/abaktiar/rn-multi-progress-bar

Victory Native https://formidable.com/open-source/victory/docs

Table 5.3.1: Libraries and components used and the repositories

https://firebase.google.com/docs/auth
https://github.com/indiespirit/react-native-chart-kit
https://github.com/indiespirit/react-native-chart-kit
https://github.com/WheelerLee/react-native-dropdown-menu#readme
https://github.com/WheelerLee/react-native-dropdown-menu#readme
https://react-native-elements.github.io/react-native-elements/
https://react-native-elements.github.io/react-native-elements/
https://callstack.github.io/react-native-paper/
https://github.com/vonovak/react-native-simple-toast#readme
https://github.com/vonovak/react-native-simple-toast#readme
https://reactnavigation.org/
https://react-redux.js.org/
https://reacttraining.com/react-router/
https://redux.js.org/
https://github.com/rt2zz/redux-persist
https://github.com/reduxjs/redux-thunk
https://github.com/abaktiar/rn-multi-progress-bar
https://formidable.com/open-source/victory/docs

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 54

5.3.2 Self-built components

By the time this project is in the development stage, React Native for web is in beta

version, so many features only support mobile platform and not web platform same as

community-built components and libraries. Because of that, some components are built

to use in the web platform.

Password Field

Figure 5.3.1: Screenshot of PasswordField.js

The React Native password field does not have an option for the user to show

the entered password. To increase the usability of the system, a custom password field

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 55

component is built which allow users to show the password by pressing the eye icon

located beside the text input. This can easily be achieved by using the React Native

state.

Progress Bar

Figure 5.3.2: Screenshot of ProgressBar.js

For the progress bar, the community-built RN Multi Progress Bar is used for the

mobile platform. However, it does not support web platform so a progress bar for the

web platform is created. It replicates the look of the RN Multi Progress Bar which allow

multiple progress show in the same bar.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 56

Alert

Figure 5.3.3: Screenshot of Alert.js

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 57

Figure 5.3.4: Screenshot of style for Alert.js

React Native has an Alert component for the mobile platform but it does not

support the web platform. Usually, developers use the native javascript alert function

but it is too general and cannot be customized for different usage and function. For this

reason, a custom Alert is created which replicates the native Alert component for

consistency across mobile and web platforms.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 58

5.4. User Interface Design

Both mobile and web platform of this project have different user interface design to

increase the usability of the system across different platform. For the mobile platform,

as the screen is smaller, each screen focus on less information and the navigation of the

App is more native mobile design. For the web platform, as the screen is bigger, more

information is shown in each screen and more functions can be achieved within one

page so it is more effective in using the system.

5.4.1 Mobile Platform

Splash Screen

Figure 5.4.1: The splash screen

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 59

Authentication Screen

Figure 5.4.2: The Login

screen

Figure 5.4.3: The Signup

screen

Figure 5.4.4: System alert

when fields are invalid

The Splash screen is the first screen users will see after launching the App, it

serves as the loading page when the App prepares for the start-up. Then is the

authentication screens, users can log in or create an account if they are not signed up

before. An alert message will show if fields entered are invalid. There is also a “Forgot

password?” option for users to reset the password if they forgot, an email will send to

the user for reset password.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 60

Feeds Screen

Figure 5.4.5: The Feeds

screen

Figure 5.4.6: Add

function in the Feeds

screen

Figure 5.4.7: Search

function in the Feeds

screen

After logging in, the first screen the user will see is the Feeds screen which

shows the most recent feeds or update of the team including new and updates action.

When the user press on the feeds, the App will navigate to the according screen shows

the details of the feed. There are 2 functions on the top right corner, add and search

functions. Add function allows users to add project, requirement, test case or bug while

the search function allows users to filter the feeds list with project or query.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 61

Navigation

Figure 5.4.8: The Drawer Navigation

Figure 5.4.9: The Bottom Bar

Navigation

There is 2 main navigation in the App, Drawer Navigation and Bottom Bar

Navigation. The Drawer Navigation can be accessed by pressing the menu button in the

top left corner and navigates through Home Screen, Profile Screen, Dashboard Screen,

Team Screen and Logout function. The Bottom Bar Navigation is located in the bottom

and navigates through Feeds Screen and Project List Screen.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 62

Profile Screen and Team Screen

Figure 5.4.10: The Profile

screen

Figure 5.4.11: The Team

screen

Figure 5.4.12: Edit user

list function in the Team

screen

In the Profile Screen, users can edit the profile picture, display name and reset

the password. In the Team Screen admin can edit the user list by pressing the top right

corner button. The edit function includes invite user, remove user and edit user role.

The system will display an alert message for any invalid actions.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 63

Dashboard Screen

Figure 5.4.13: The Dashboard Screen -

1

Figure 5.4.14: The Dashboard Screen -

2

In the Dashboard Screen, users can choose the project and the relevant charts

will shows. The charts in the Dashboard Screen includes Test Case Status, Bug Status,

Bug Density and Bugs Due Date Heat Map.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 64

Add Project Screen and Add Requirement Screen

Figure 5.4.15: The Add Project Screen

Figure 5.4.16: The Requirement Screen

Add Test Case Screen

Figure 5.4.17: The Add Test Case

Screen - 1

Figure 5.4.18: The Test Case Screen - 2

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 65

Add Bug Screen

Figure 5.4.19: The Add Project Screen

Figure 5.4.20: The Requirement Screen

For all form screens, an alert message will be displayed if there are mandatory

fields not entered or there are invalid inputs. For the Add Bug Screen, users can attach

images by pressing the paperclip button located in the top right corner. The image will

then upload to the Firebase Cloud Storage upon the bug is saving.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 66

Project List Screen and Project Home Screen

Figure 5.4.21: The Project List Screen

Figure 5.4.22: The Project Home Screen

The Project List Screen shows the list of the project and the overall progress of

each project including the number of opened test cases and the number of opened bugs.

The Project Home Screen shows the information about the project and more detail

progress. There are 3 options in the Project Home Screen, Requirements, Test Cases

and Bugs which navigate to the list accordingly.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 67

Project Requirement Screen & Project Test Case Screen & Project Bug Screen

Figure 5.4.23: The

Project Requirement

Screen

Figure 5.4.24: The

Project Test Case Screen

Figure 5.4.25: The

Project Bug Screen

The Project Requirement Screen shows the list of the requirements, the Project Test

Case Screen shows the list of the test cases and the Project Bug Screen shows the list

of the bugs of the selected project. Each of the list screens has options for the user to

filter the list and add a new entry.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 68

Requirement Screen & Test Case Screen & Bug Screen

Figure 5.4.26: The

Requirement Screen

Figure 5.4.27: The Test

Case Screen

Figure 5.4.28: The Bug

Screen

Each of the detail screens shows the detail of the entry and the related entries

for traceability. For example, Requirement Screen has a list of the related test cases,

Test Case Screen has a list of the related bugs. All of the details screen have the

information group by section and each of the section can be hide so the screen is no

heavily crowded and reduces the readability.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 69

5.4.2 Web Platform

Authentication Screen

Figure 5.4.29: Screenshot of Login Page

Figure 5.4.30: Screenshot of Signup Page

The authentication page of the web platform has the same design and functions as the

mobile platform.

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 70

Home Page

Figure 5.4.31: The Home Page

The Home Page combined the Feeds Screen and Project List Screen of the

mobile platform and provides extra information on the total number of bug due today,

the number of test case not executed and the number of bugs not resolved.

Profile Page

Figure 5.4.32: The Profile Page

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 71

Project Home Page

Figure 5.4.33: Screenshot of Project Home Page

The Project Home Page combined the Project Home Screen, Project

Requirement Screen, Project Test Case Screen and Project Bug Screen of the mobile

Platform.

Team Page

Figure 5.4.34: The Team Page

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 72

Dashboard Page

Figure 5.4.35: The Dashboard Page

With a bigger screen, all the charts are able to fit in the screen with one glance.

Add Project Page

Figure 5.4.36: The Add Project Page

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 73

Add Requirement Page

Figure 5.4.37: The Add Requirement Page

Add Test Case Page

Figure 5.4.38: The Add Test Case Page

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 74

Add Bug Page

Figure 5.4.39: The Add Bug Page - 1

Figure 5.4.40: The Add Bug Page - 2

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 75

Requirement Page

Figure 5.4.41: The Requirement Page

Test Case Page

Figure 5.4.42: The Test Case Page

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 76

Bug Page

Figure 5.4.43: The Bug Page

5.5. Use Case Testing

Use Case Input Actual Output
Expected

Output
Result

UC001

Login

Valid email and

password

Succesful login

and navigate to

Home screen

Succesful login

and navigate to

Home screen

Passed

Invalid email
System display

error message

System display

error message
Passed

Invalid password
System display

error message

System display

error message
Passed

UC002 Sign

up

Valid email and

password

Succesful login

and navigate to

Home screen

Succesful login

and navigate to

Home screen

Passed

Invalid email
System display

error message

System display

error message
Passed

Invalid password
System display

error message

System display

error message
Passed

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 77

UC003

View feed

User press on the

feed.

Navigate user to

the feed details

screen

Navigate user to

the feed details

screen

Passed

UC004

View

dashboard

User selects a

project.

System display

information and

chart for the

project.

System display

information and

chart for the

project.

Passed

UC005

View team

User navigates to

team screen

System display

user list.

System display

user list.
Passed

UC006

Create team

User adds new

user to the team.

Update and show

the new user list.

Update and show

the new user list.
Passed

User removes the

last member.

System display

error message

System display

error message
Passed

User removes the

last admin.

System display

error message

System display

error message
Passed

UC007 Add

project

User enter valid

project

information

Update database,

notify users and

navigate to

project screen.

Update database,

notify users and

navigate to

project screen.

Passed

User enter

invalid project

information.

System display

error message

System display

error message
Passed

UC008 Add

requirement

User enter valid

requirement

information

Update database,

notify users and

navigate to

requirement

screen.

Update database,

notify users and

navigate to

requirement

screen.

Passed

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 78

User enter

invalid

requirement

information.

System display

error message

System display

error message
Passed

UC009 Add

test case

User enter valid

test case

information

Update database,

notify users and

navigate to test

case screen.

Update database,

notify users and

navigate to test

case screen.

Passed

User enter

invalid test case

information.

System display

error message

System display

error message
Passed

UC010 Add

bug

User enter valid

bug information

Update database,

notify users and

navigate to bug

screen.

Update database,

notify users and

navigate to bug

screen.

Passed

User enter

invalid bug

information.

System display

error message

System display

error message
Passed

UC011

View

project

details

User navigates to

project screen

System display

project

information,

requirement, test

case and bug list

System display

project

information,

requirement, test

case and bug list

Passed

5.6. Implementation Issues and Challenges

 Compatibility issues of APIs and native features across platforms.

To implement all the features in the user requirements, APIs and some native device

features are needed. For example, to upload pictures as information in bug reports,

mobile platforms have a native camera while not all laptops and desktops have a

CHAPTER 5: IMPLEMENTATION AND TESTING

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 79

camera. To ensure the system well-functioning across any platforms, some functions

are limited to particular platforms and develop alternative approaches for the functions.

 High usability design across platforms.

Building a high usability system is one of the objectives of this project. However,

different platforms have different user interactions. It is a challenge to build a high

usability system across different platforms while maintaining the consistency of the

user interface design. For instance, the mobile platform has a smaller screen so it might

be more appropriate to limit the information on the screen to focus in few sections while

for devices with a bigger screen, it might be considered to provide more information on

the screen.

CHAPTER 6: CONCLUSION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 80

CHAPTER 6: CONCLUSION

6.1. Project Review

Bugs management is often a challenge in software development as bugs can be easily

misunderstood. Misunderstood bugs are resource-wasting as the bug might be assigned

to a not familiar developer. Although there are many existing solutions, most of them

are not standardized and have only limited progress tracking and traceability features.

This project aims to help the software development team to manage bugs with

standardization.

Throughout this project, many problems have encountered and most of them are

because of cross-platform compatibility. By the time this project is developed, React

Native for the web is in beta version, it is unstable and risen many problems during

development. Most of the time the functions provided by the library cannot be used and

a self-built version has to create work across multi-platform which consume a lot of

time during the project development.

The objectives include providing bug management functionality and progress

tracking functionality which follows the ISO/IEC/IEEE 29119 Software Testing

Standard to provide better bugs management. The final system built have achieved all

the objectives. By using the system, users can focus on software development and not

need to worry about bugs documentation and hence result in shorter development time

and better product quality.

6.2. Novelties and Contribution

Compare to other existing bug management system, the system built in this project have

follows the ISO/IEC/IEEE 29119 Software Testing Standard to standardized the

software testing process. The final system also provides bug traceability features which

other existing bug management system does not have. Bug traceability links up the

relationship between requirements, test cases and software bugs and gives a clear view

of the current progress of the project and the quality of the project. This is very

important for developers to ensure the project met the user requirements and for the

client to monitor the project progress and quality.

CHAPTER 6: CONCLUSION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 81

6.3. Future Work

Currently, this project only focuses on bug management functions, the system can be

further extended to include more software testing functions. As the ISO/IEC/IEEE

29119 Software Testing Standard discussed thoroughly the whole software testing

process, it can be used to extend this project’s functions., this provides users a complete

software testing process which could improve the software development quality.

Other sign in methods can also provide as the future extension of this project.

Since Firebase Authentication is used in this project, it provides Google, Facebook and

Twitter authentication service which could reduce the troublesome and increase the

effectiveness of signing up for a new account. This could increase the pleasant of the

project and hence increase the user’s satisfaction.

BIBLIOGRAPHY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 82

BIBLIOGRAPHY

Ahonen, JJ, Junttila, T, & Sakkinen, M 2004, ‘Impacts of the Organizational Model on

Testing: Three Industrial Cases’, Empirical Software Engineering, vol. 9, no. 4,

pp. 275–296,

<http://link.springer.com/10.1023/B:EMSE.0000039880.99096.af>.

‘Airbrake’ n.d., viewed 7 August 2019, <https://airbrake.io/>.

‘Backlog’ n.d., viewed 7 August 2019, <https://backlog.com/>.

Bug n.d., tutorialspoint, viewed 6 August 2019,

<https://www.tutorialspoint.com/software_testing_dictionary/bug>.

D’Ambros, M, Lanza, M, & Pinzger, M 2007,‘“A Bug’s Life” Visualizing a Bug

Database’, in, 2007 4th IEEE International Workshop on Visualizing Software

for Understanding and Analysis, IEEE, pp.113–120,

<http://ieeexplore.ieee.org/document/4290709/>.

Davies, S & Roper, M 2014,‘What’s in a bug report?’, in, Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement - ESEM ’14, ACM Press, New York, New York, USA, pp.1–10,

<https://strathprints.strath.ac.uk/50083/1/esemBugReportDataCamera.pdf>.

Defect Management Process in Software Testing (Bug Report Template) n.d., Guru99,

viewed 6 August 2019, <https://www.guru99.com/defect-management-

process.html>.

Graham, D, Veenendaal, E, & Evans, I 2008, Foundations of software testing : ISTQB

certification, Course Technology Cengage Learning.

International Organization for Standardization 2013, ‘Software Testing Standard’,

ISO/IEC/IEEE 29119, <http://www.softwaretestingstandard.org>.

Kajko-Mattsson, M & Bjornsson, T 2007,‘Outlining Developers’ Testing Process

Model’, in, 33rd EUROMICRO Conference on Software Engineering and

Advanced Applications (EUROMICRO 2007), IEEE, pp.263–270,

<http://ieeexplore.ieee.org/document/4301088/>.

Singh, S 2013, ‘Analysis of Bug Tracking Tools’, International Journal of Scientific &

BIBLIOGRAPHY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 83

Engineering Research, vol. 4, no. 7, pp. 134–140.

Strate, JD & Laplante, PA 2013, ‘A Literature Review of Research in Software Defect

Reporting’, IEEE Transactions on Reliability, vol. 62, no. 2, pp. 444–454,

<http://ieeexplore.ieee.org/document/6509998/>.

What is Defect or bugs or faults in software testing? 2012, TRY QA, viewed 6 August

2019, <http://tryqa.com/what-is-defect-or-bugs-or-faults-in-software-testing/>.

‘Zoho BugTracker’ 2010, <https://www.zoho.com/bugtracker/>.

POSTER

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 84

POSTER

PLAGIARISM CHECK RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 85

PLAGIARISIM CHECK RESULT

PLAGIARISM CHECK RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 86

 FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

CHIN JUN KANG

ID Number(s)

15ACB04844

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONS)

Title of Final Year Project SOFTWARE BUGS MANAGEMENT (ISO/IEC/IEEE 29119

STANDARD) SYSTEM

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 10 %

Similarity by source
Internet Sources: ____3_________%
Publications: _3__ ___ %
Student Papers: ____10__ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to

Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: ______Tan Teik Boon________

 Name: __________________________

Date: _______24 April 2020 _______ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

CHECKLIST FOR FYP2 THESIS SUBMISSION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 87

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 15ACB04844

Student Name CHIN JUN KANG

Supervisor Name Ts. TAN TEIK BOON

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Front Cover
√ Signed Report Status Declaration Form
√ Title Page
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review

 Appendices (if applicable)
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed
all the items listed in the table are included
in my report.

(Signature of Student)
Date: 24 April 2020

Supervisor verification. Report with

incorrect format can get 5 mark (1 grade)

reduction.

(Signature of Supervisor)
Date: 24 April 2020

CHECKLIST FOR FYP2 THESIS SUBMISSION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR 88

