INTERACTIVITY PERFORMANCE BENCHMARK FOR WINDOWS AND MAC
oS
By
Fan Wei Cong

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONS)
Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Interactivity Performance Benchmark For Windows and Mac OS

Academic Session: _January 2020

FAN WEI CONG
(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

4 y

(Author’s signature) (Supervisor’s signature)

Address:

3, Persiaran Halaman Ampang 24,

Halaman Ampang Mewah, 31350, Wong Chee Siang

Ipoh, Perak. Supervisor’s name

Date: 23 April 2020 Date: 23 April 2020

INTERACTIVITY PERFORMANCE BENCHMARK FOR WINDOWS AND
MAC OS
By
Fan Wei Cong

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONS)
Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2020

DECLARATION OF ORIGINALITY

I declare that this report entitled “INTERACTIVITY PERFORMANCE
BENCHMARK FOR WINDOWS AND MAC OS” is my own work except as cited
in the references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

L

Signature

Name : Fan Wei Cong

Date) 23 April 2020

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Wong
Chee Siang for allowing me to involve in this research project titled Interactivity
Performance Benchmark for Windows and Mac OS and trying his very best to assist

me in making this project a success.

Besides that, | would also like to thank my dearest family and friends for the

unconditional support and love throughout the process of completing this project.

ABSTRACT

Operating system (OS) is a piece of software that exists between computer
hardware and programs. Communication between hardware and programs is impossible
without the help of an operating system. Within a computer system, there will be a
massive amount of tasks created by various types of installed programs which allows
the user to perform their work, such as rendering an image and playing a video.
However, the number of Central Processing Unit (CPU) available in a computer system
will not be accessed by all of the tasks at the same time. In order to allow a fair CPU
resource allocation to all the tasks, kernel scheduler is introduced as one of the

fundamental component in operating systems.

In this report, the interactivity performance of macOS kernel scheduler will be
measured and compared with other OS kernel schedulers using a benchmark program
called Interbench. However, Interbench was only available in Linux, making
interactivity performance benchmarking impossible without porting it to macOS.
Changes involving various semaphores implementations and macOS-specific
headers/libraries application are included in the process of porting the original

Interbench to macOS.

The Interbench benchmark program which was ported to Windows in the past
research will be reverified to ensure that the ported benchmark program is able to
simulate the interactive tasks and background loads correctly when it is being executed

in systems with different hardware configurations.

The final outcome of this research is to compare the interactivity performance
of kernel schedulers in macOS, Linux and Windows with the help of original and ported
versions of Interbench. The comparison shows that Linux kernel scheduler has the
greatest advantage in terms of interactivity performance in various types of interactive

tasks and background load conditions.

TABLE OF CONTENTS

INTERACTIVITY PERFORMANCE BENCHMARK FOR WINDOWS AND

IMIALC S eeeeeeeeeeeee b eeeeeeeeesh et E et h e R e nn e I
DECLARATION OF ORIGINALITY oot i
ACKNOWLEDGEMENTS ... i
ABST R A CT et 0\
TABLE OF CONTENTS ...ttt s %
LIST OF FIGURES ... oottt IX
LIST OF TABLESottt Xii
LIST OF ABBREVIATIONS ...t Xiil
CHAPTER 1 — INTRODUCTIONcciiiiiiiiierie et 1
1.1 Problem STateMENTc.oiiiiiiii e 3
1.2 Background and MOtIVALION..........ccveiiriiiciie e 4
1.2.1 Project BaCKgroUNQcccveiieiiiieiie ettt 4
1.2.2 MOTIVATION ...ttt 5

1.3 PrOJECE SCOPE ...tttk bbbttt bbbt 6
1.3.1 Porting Interbench to MacOS ... 6
1.3.2 Perform Reverification for Windows Interbench...........ccccocoviniiiinnnn, 6

1.3.3 Run benchmark test and compare the performance in Linux, Windows and

MACOS ... 6

1.4 PrOJECt ODJECHIVESveeuviieieiieeie ettt re e aneenne s 8
1.5 Proposed APPrOACKHcueiiiiiiiie et 9
1.6 Highlight of What Have Been Achieved...........cccccceeviiiiiieiii i 10
1.7 RepOrt OrganizZationccvcieeiiueeiieeiee et e e re e sve et e e sree s 11
CHAPTER 2 — LITERATURE REVIEWooi e 12

2.1 Fairness and Interactivity Performance of O(1) and CFS Linux Kernel
ST 0 T=To (1] T S SSSST SR 12

2.2 Latencies in Linux and FreeBSD kernels with different schedulers — O(1), CFS,

ABSD, ULE ..o 14
2.3 Fairness and Interactivity of Three CPU Schedulers in LinUX........c.cccceeevvennenn 16
2.4 Interactivity Performance Benchmark on Windows OScccccoveiiieiienne. 18
2.5 Synchronization PrIMITIVESc.coiiiiieiiec s 20
CHAPTER 3—SYSTEM DESIGNocoiiiiiiiecies e 21
3.1 General Workflow of macOS Interbench...........ccccoovviiiiiie, 21
3.2 Detailed FuNction FIOWCNAITSc.cooiiiiiiiiieeeeeee e 23
3.2.1 main() Function FIOWChArT..........ccccooiiiiiiee e 23
3.2.2 bench() Function FIOWChart...........ccooiiiiiii e 27
3.2.3 get_ram() Function FIOWCNhArT..........c.ccoiiiiiiiiiiiceee e 29
3.2.4 run_loadchild() Function FIOWChart............ccocooiiiiiiiiie, 31
3.2.5 run_benchchild(') Function Flowchartcocooviiniiienneece, 32
3.2.6 emulation_thread() Function Flowchart...........c.cccooveviieienieiiere e, 34
3.2.7 timekeeping_thread() Function Flowchartcccoovevviieiievicciccece, 36
3.2.8 init_sem(') Function FIOWChartcccccviieiieii i 39
3.2.9 wait_sem() Function FIOWChart............cccccoiiiiiiiiciie e 39
3.2.10 trywait_sem() Function FIOWChartccccevveiiiiiiie i 40
3.2.11 post_sem() Function FIOWChArt.............cccvevieiie i 41
3.2.12 emulate_none() Function Flowchart.............ccccocoeiiiiiiiieiic e 41
3.2.13 emulate_audio() Function Flowchart............c.ccoovviiiiiiiinineiecee, 42
3.2.14 emulate_video() Function Flowchart............c.ccoovvviiiiiienniiececee, 43
3.2.15 emulate_x(') Function FIOWChart ..o, 44
3.2.16 emulate_game() Function Flowchart.............ccccocviveiieiiiiececee e, 46
3.2.17 emulate_burn() Function FIowchartccccooiiriiiinenenceeee, 48
3.2.18 emulate_write() Function Flowchartccccoveveiieiecic e, 50
3.2.19 emulate_read() Function Flowchart............c.ccccooviieiiieiicic e, 54

Vi

3.2.20 emulate_ring(') Function FIOWChart...........ccooiiiiiiiiiece, 56

3.2.21 emulate_compile() Function FIOwChart.............ccooveiviieninininnie 58

3.3 System Design EXPlanationcccooveiiiieiieiecc e 61
3.3.1 Obtaining Total Physical MemOryccccceveiiieiiiie e 61
3.3.2 Semaphore OPErations..........ccccueiveeiierieiieese e s e se e e e 63

3.4 Implementation Issues and Challenges ... 66
CHAPTER 4 — METHODOLOGIESooo it 67
4.1 Methodology and General Work Procedures..........cccoovevvieeiieiiiieiie e 67
4.2 TOOIS TO USE ... 69
4.2.1 GNU Compiler Collection (GCC).....cccviiiiieiiiieiieie e 69
4.4.2 INTEIDENCH ... 69
4.2.3 VIM EGITO ..ottt 70
4.2.4 TUrbO BOOSt SWITCNETviiiiiiiiiiiieeee s 70
4.2.5 GNUPIOT ...t bbb 71

4.3 System’s SPeCIfICAtIONccvveiiiiiieiiiciee e 72
4.4 Verification PIANccoiiiiiiici e 73
CHAPTER 5- INTERACTIVITY PERFORMANCE BENCHMARK 82
5.1 INEraCHIVILY TESE ...veiiieeiieiecie ettt e re e e e nre s 82
5.2 Simulation ENVIFONMENTccooiiiiiiiiice e 83
5.3 ComPAariSON RESUILS.........eciieiiieiie et 86

5.3.1 Interactivity Performance Comparison Results for Linux, macOS and

WWVINOWS ... bbbt b bbbt 86
5.3.2 Interactivity Performance Comparison Results for Linux and macOS....... 92
CHAPTER 6 - CONCLUSION ..o 98
BIBLIOGRAPHY ..t 100
APPENDIX A - RESULTS DATA FOR INTERBENCH BENCHMARK A-1
A.1 Audio Interactive Task ReSUItS Data.............ccourerereineiiisieeeeeieeeee A-1

vii

A.2 Video Interactive TaSk RESUIS Data........eueueueueeeeieieieieieeeeeeeeeeeeeeenenennns A-5

A.3 X-window Interactive Task Results Data...........cccccevviieriienniienieneee e A-9
A.4 Gaming Interactive Task ReSUltS Data...........cccccveveieerieiesieie e A-13
APPENDIX B —WEEKLY LOGcccitiiiieieieie e B-1

PLAGIARISM CHECK RESULT

CHECKLIST FOR FYP2 THESIS SUBMISSION

viii

Figure Number

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19

Figure 3.20

LIST OF FIGURES

Title

7-State Model

General Workflow of macOS Interbench
Flowchart for main()

Flowchart for bench()

Flowchart for get_ram()
Flowchart for run_loadchild()
Flowchart for run_benchchild()
Flowchart for emulation_thread()
Flowchart for timekeeping_thread()
Flowchart for init_sem()
Flowchart for wait_sem()
Flowchart for trywait_sem()
Flowchart for post_sem()
Flowchart for emulate_none()
Flowchart for emulate_audio()
Flowchart for emulate_video()
Flowchart for emulate_x()
Flowchart for emulate_game()
Flowchart for emulate_burn()
Flowchart for emulate_write()

Flowchart for emulate_read()

Page

21
22
26
28
30
31
34
37
38
38
39
40
40
41
42
43
45
47
49

53

Figure Number

Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27
Figure 3.28
Figure 3.29
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 5.1

Title

Flowchart for emulate_ring()

Flowchart for emulate_compile()

Changes Made in get_ram()

Value for ud.ram in Program Output

Changes Made in init_sem()

Changes Made in wait_sem()

Changes Made in trywait_sem()

Changes Made in post_sem()

Output Containing Benchmark Results for Audio
Incremental Model

CPU Utilization Graph for Audio on macOS
CPU Utilization Graph for Audio on Linux

CPU Utilization Graph for Audio on Windows
CPU Utilization Graph for Video on macOS
CPU Utilization Graph for Video on Linux

CPU Utilization Graph for Video on Windows
CPU Utilization Graph for X-window on macOS
CPU Utilization Graph for X-window on Linux
CPU Utilization Graph for X-window on Windows
CPU Utilization Graph for Gaming on macOS
CPU Utilization Graph for Gaming on Linux
CPU Utilization Graph for Gaming on Windows

Average Latency for Audio on Linux, macOS and Windows

Page

55

57

60

61

63

63

64

64

64

66

73

73

74

75

75

76

7

77

78

79

79

80

87

Figure Number Title Page

Figure 5.2 Average Latency for Video on Linux, macOS and Windows 87
Figure 5.3 Average Latency for X-window on Linux, macOS and

Windows 88
Figure 5.4 Average Latency for Gaming on Linux, macOS and

Windows 88
Figure 5.5 Maximum Latency for Audio on Linux, macOS and

Windows 89
Figure 5.6 Maximum Latency for Video on Linux, macOS and

Windows 89
Figure 5.7 Maximum Latency for X-window on Linux, macOS and

Windows 90
Figure 5.8 Maximum Latency for Gaming on Linux, macOS and

Windows 90
Figure 5.9 Average Latency for Audio on Linux and macOS 93
Figure 5.10 Average Latency for Video on Linux and macOS 93
Figure 5.11 Average Latency for X-window on Linux and macOS 94
Figure 5.12 Average Latency for Gaming on Linux and macOS 94
Figure 5.13 Maximum Latency for Audio on Linux and macOS 95
Figure 5.14 Maximum Latency for Video on Linux and macOS 95
Figure 5.15 Maximum Latency for X-window on Linux and macOS 96
Figure 5.16 Maximum Latency for Audio on Linux and macOS 96

Xi

Table Number

Table 1.1

Table 3.1

Table 4.1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

LIST OF TABLES

Title

Mapping of Linux Semaphores to GCD Semaphores
Mapping of Linux Semaphores to GCD Semaphores
System’s Specification

Simulation of Audio Task for Linux, macOS and Windows
Simulation of Video Task for Linux, macOS and Windows

Simulation of X-window Task for Linux, macOS and
Windows

Simulation of Gaming Task for Linux, macOS and Windows
Simulation of Audio Task for Linux and macOS

Simulation of Video Task for Linux and macOS

Simulation of X-window Task for Linux and macOS

Simulation of Gaming Task for Linux and macOS

Page

62

71

xii

API

CFS

CPU

GCC

GCD

GUI

(ON

RAM

SD

SSD

LIST OF ABBREVIATIONS

Application Program Interface
Completely Fair Scheduler
Central Processing Unit

GNU Compiler Collection
Grand Central Dispatch
Graphical User Interface
Operating System

Random Access Memory
Staircase Deadline

Solid State Drive

Xiii

CHAPTER 1 - INTRODUCTION

CHAPTER 1 - INTRODUCTION

Operating system (OS) refers to a software that acts as an interface between programs
and computer hardware (Silberschatz, Galvin & Gagne 2009). It is comprised of a
fundamental component, known as kernel. The kernel will be loaded into the Random
Access Memory (RAM) once the system is booted and remains in the RAM for the
entire computer session to provide services such as process management and file
management. At any moment within a computer session, there are more than one tasks
in an OS requesting to execute. Task in OS terms is defined as a process or thread that
carries out a set of operations in sequential order (Kamal 2011). Thus, the Central
Processing Unit (CPU) scheduler, interrupt handler and process manager are designed
to handle the requests from the tasks and to ensure fair execution of tasks. To achieve
fairness in scheduling, the scheduler should ensure that the same task will not be
utilizing the CPU all the time, causing other tasks to face starvation. Starvation is a
condition where a task is ready to execute but it is not chosen to execute due to low
priority. Besides, an efficient CPU scheduling algorithm should exist as it is necessary

for making scheduling decision as soon as possible.

Most CPU scheduler benchmarking programs focused on determining the system
performance based on the throughput of non-interactive tasks (Phoronix Test Suite
2020). These benchmarking programs are not appropriate for the measurement of an
operating system’s interactivity performance as the main goal of these benchmarking
programs is to determine the number of tasks or instructions that can be executed over
time. Instead, interactivity performance should be measured based on the response time
which is defined as the time from the submission of a request until the time when the
response is received (Stallings, n.d.). In other words, response time refers to the time
required for a task to switch from Ready State to Running State. A task will be in Ready
State when it makes requests for CPU resources to execute instructions. After a request
is made by a task, the task will be enqueued to a data structure and will wait until it is
chosen by the scheduler for execution. When it is chosen to execute on the CPU, the
task will switch from Ready State to Running State. The transition of states for a task
is shown in Figure 1.1 below. Interactivity performance plays a very important role in
user-oriented systems such as desktops. These systems are used for various types of
interactive tasks involving both user and computer which are equivalent to response

time sensitive non-CPU bound tasks. The ideal condition for these tasks is when the

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 1

CHAPTER 1 - INTRODUCTION

amount of response time is low because high response time will become noticeable by
human when the response time exceeds the average response time for humans to a
visual stimulus, which is 250ms (Backyard Brains, n.d.). For instance, in a video
playback, bad interactivity performance will cause some frames in the video to be
dropped, making it unnatural for the users to look at. When problems like this exist in

a user-oriented system, the user experience of the system will be affected.

%,
e

Activate
Ready / Suspend

|

Blocked / Suspend

!
:

ﬂ, Release
Ready —
e

Timeout

Suspend

Event
Ocecurs
Event
Oceours

|

Blocked

Activate

?
:

Suspend

Figure 1.1 7-State Model

Interbench is one of the most well-known benchmark programs which can be used to
determine interactivity performance for an operating system (Kolivas 2006). The main
goal of this benchmark program is to measure the latencies and jitters that exist in Linux
kernel schedulers under different simulated conditions, called interactivity. Interactivity
can also be described as an interactive task’s response time. However, Interbench is
only available for Linux. Other operating systems designed for user-oriented
applications such as macOS and Windows are not supported by the benchmark program.
Therefore, there is no way to find out the interactivity performance for all operating

systems without porting the benchmark program to the unsupported OS.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 2

CHAPTER 1 - INTRODUCTION

1.1 Problem Statement

Lack of support of interactivity benchmark program for different operating

systems

A benchmark program should provide a standard set of tests to allow comparisons and
evaluations of system with same set of hardware and different operating systems.
However, Interbench only supports Linux. Because the benchmark program was
originally intended to compare different schedulers in Linux, the performance of the
same set of benchmark tests on other OS designed for user-oriented applications such

as Windows and macOS is limited.

Increasing need for comparisons of benchmark performance in terms of

interactivity between different OS kernel schedulers

If a benchmark program is not capable of running in different operating systems, OS
developers are not able to obtain sufficient and accurate information regarding the
interactivity performance of different OS kernel schedulers. Improvements of
scheduling performance will become more challenging to achieve on newly rolled out
operating systems or updates. Besides OS developers, normal users will also face a hard
time finding the most efficient OS schedulers as there is no way to accurately determine
their scheduling performance. The reason is because the users have no accurate
information such as latency time, they can only make a guess from the jitters and lags

based on their observations.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 3

CHAPTER 1 - INTRODUCTION

1.2 Background and Motivation
1.2.1 Project Background

Interbench was used in several past researches to measure the interactivity performance
for OS kernel schedulers. One of the researches has figured out the interactivity
performance and fairness of O(1) scheduler and Completely Fair Scheduler (CFS)
which is included in Linux kernel version 2.6 and version 2.6.23 respectively (Wong et
al. 2008). Both of the kernel schedulers were evaluated in terms of interactivity
performance and fairness. At the end of the research, CFS is proven to be better in terms
of efficiency and fairness of CPU bandwidth distribution without sacrificing its

interactivity performance.

Besides that, Interbench was also applied in the study of latencies that exist in
schedulers in Linux and FreeBSD kernels focusing on real-time system applications
(Abaffy & Krajcovic 2009). In the research, 4 different kernel schedulers were involved,
including O(1), CFS, 4BSD and ULE. Discovery of optimal kernel option had been
carried out to minimize the amount of latencies. Interbench was used for interactivity
benchmarks with different Linux kernel configurations applied. As Interbench does not
support benchmarks for FreeBSD kernel, a new benchmark, namely Pl-ping was
developed for the comparison of all 4 kernel schedulers. Final results of the benchmarks
showed that CFS has a greater advantage in servers which require high throughput and

embedded systems which emphasize in producing low latencies.

Next, the application of Interbench can be also found in a past research which studied
on the fairness, interactivity and multiprocessor performance of O(1) scheduler,
Staircase Deadline (SD) scheduler and Completely Fair Scheduler (CFS) (Wang et al.
2009). Results for the interactivity test showed that interactive tasks in O(1) scheduler
have the highest tendency to face starvation as the scheduler will raise the priority of
one of the interactive tasks once it is finally considered as an interactive task, allowing
that particular interactive task to stay in the active queue for a long time. In terms of
fairness, good fairness in long term can be achieved by all three kernel schedulers in a
uniprocessor environment. As for multiprocessor environment, CFS is the fairest

compared to O(1) scheduler and SD scheduler.

A clear idea about the interactivity performance of Linux kernel schedulers can be

provided by all three researches mentioned above. However, the coverage of these

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 4

CHAPTER 1 - INTRODUCTION

researches only include Linux OS while the interactivity performance of kernel
schedulers in other operating systems such as Windows and macQOS are still unknown.
Fortunately, a research has been conducted previously regarding the interactivity
performance for Windows OS (Cheng 2015). In order to achieve this, the researcher
ported Interbench to Windows 8 by implementing an alternative application program
interface (API) for Linux API in Windows. Comparison by using the original Linux
Interbench and ported Windows Interbench proved that Linux kernel scheduler has the
ability to handle interactive tasks better compared to Windows 8 kernel scheduler. The
great performance becomes more obvious when Linux kernel scheduler is operating in

high background load conditions.

1.2.2 Motivation

The first motivation of this project is to achieve a fair and accurate comparison on the
interactivity performance on different operating systems. In order to accomplish this,
the original Interbench benchmark program developed specifically for Linux OS will
require porting to macOS. Else, there is no way to figure out the differences in

interactivity performance for all OS.

Next, the second motivation of this project is to ease the process of OS developments
by providing a fair interactivity performance analysis solution to the OS developers.
The developers are able to determine whether their design and implementation of
schedulers in their operating systems’ kernel are better than the others or the schedulers
deployed previously. For normal users, they will be able to use the benchmark
application to determine their systems’ interactivity performance and figure out the
system that produces the greatest interactivity performance with minimal response time.
Past research showed that response time in a computing system can lead users to
psychological consequences such as stress and emotion problems. Bad interactivity
performance caused by great amount of response time can cause users to have a bad

emotional state, especially when the users are under time pressure (Stupak 2009).

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 5

CHAPTER 1 - INTRODUCTION

1.3 Project Scope
1.3.1 Porting Interbench to macOS

Due to the unavailability of Interbench in other operating systems other than Linux OS,
porting of the benchmark program is a necessary step to achieve our objectives. In this
project, Interbench will be ported into macOS to obtain the results in terms of
interactivity performance for interactive tasks in macOS. In order to achieve this, syntax
difference and parameter difference caused by different system libraries and headers

will be figured out and appropriate modifications will be made.
1.3.2 Perform Reverification for Windows Interbench

Interbench was made available to Windows by Cheng (2015) in the previous research.
Although a verification plan was completed by the researcher, however, Windows
Interbench was only executed on Windows 8 with one set of system hardware which
does not reflect the ported benchmark program’s ability to work in different hardware
configurations and different version of Windows OS. Besides, the past verification did
not include information for Intel Turbo Boost Technology, which allows CPU to run at
higher frequency than its base frequency for heavier workloads to achieve better
performance. Intel Turbo Boost Technology can affect the simulation of interactive
tasks and background loads because the behaviour of this technology differs from one
OS to another. In order to allow fair comparisons of interactivity performance, Intel
Turbo Boost Technology will be disabled for all three OS. Therefore, Windows
Interbench will be reverified to ensure that the benchmark program is able to behave
similarly to the original Interbench on different sets of system hardware and software

configurations.

1.3.3 Run benchmark test and compare the performance in Linux, Windows and
macOS

In order to compare the kernel schedulers’ performance, Linux, Windows and macOS
will be installed natively into the test computer so that fair comparisons can be done
with same hardware resources, for instance, the CPU. The original Interbench and the
modified Interbench will be executed in terminal of every OS. In the execution process,
combination pair consisting one interactive task and one background load will be

executed concurrently and the scheduling latencies will be measured.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 6

CHAPTER 1 - INTRODUCTION

For the actual benchmark test, 4 different interactive tasks will be simulated. Audio and
Video tasks represent low CPU consumption task and medium CPU consumption task
respectively. As for the high CPU consumption tasks, X and Gaming will be included.
These 4 interactive tasks will be simulated under different loads. Detailed discussion of
all possible combination pairs of interactive task and background loads is included in
Chapter 5.2 of this report. Average scheduling latencies and maximum scheduling
latencies that exist within each interactive task will be obtained by running Interbench
repeatedly for up to 30 times. The obtained latencies results will be compared side-by-
side in graphs to provide a clearer insight about the differences in interactivity

performance for the schedulers of Linux, Windows and macOS.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 7

CHAPTER 1 - INTRODUCTION

1.4 Project Objectives

e To modify existing benchmark application to enable the ability to run interactivity
benchmarking on macOS.

e To reverify Windows Interbench’s ability to work in different system hardware
configurations.

e To differentiate the interactivity performance of different OS kernel schedulers
from different operating systems by using a benchmark program with the simulation

of multiple computer related tasks under different types of load.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 8

CHAPTER 1 - INTRODUCTION

1.5 Proposed Approach

In the macOS Interbench, there are multiple critical sections consist of variables shared
among threads such as emulation_thread and timekeeping_thread. The threads are able
to access the shared variables and perform updates on the values of the variables during
the execution of the program. If there is no proper synchronization done for threads’
execution, the execution order of the program will be different every time, causing the
values of the variables will be changed improperly, also known as a race condition.
Semaphores are applied in macOS Interbench to ensure the correct thread execution
sequence and make sure that the critical sections are accessed by only one thread at a

time.

The thread synchronization for macOS Interbench is implemented with the help of
Grand Central Dispatch’s (GCD) semaphore (Apple Developer 2019). Semaphores
which were originally implemented in the original Interbench benchmark program is
not applicable in macOS as the functions located in semaphore.h header file are no
longer supported by Apple. Table 1.1 below shows the mapping of the original

functions from Linux semaphores to GCD semaphores.

Linux macOS

sem_init(sem_t *sem, int dispatch_semaphore_create(int value)

pshared, unsigned int value)

sem_wait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore_t
*s, DISPATCH_TIME_FOREVER)

sem_trywait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore _t
*s, DISPATCH_TIME_NOW)

sem_post(sem_t *s) dispatch_semaphore_signal(dispatch_semaphore_t
*s)

Table 1.1 Mapping of Linux Semaphores to GCD Semaphores

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 9

CHAPTER 1 - INTRODUCTION

1.6 Highlight of What Have Been Achieved

The first thing that have been achieved in this project is obtaining the total amount of
physical memory which is available. This information is required for the simulation of
multiple background loads involving Disk I/O operations such as Write and Read. The
Write background load is simulated by writing to a file with the size of the physical
memory while the Read background load is simulated by reading from a file with the

size of the physical memory from the disk.

Followed by the implementation of Grand Central Dispatch’s (GCD) semaphores for

synchronization of threads involving accesses to shared resources.

After the achieving the things mentioned above, verification on the Interbench
benchmark program on Linux, macOS and Windows was done to make sure that the
simulation behaves correctly so that the final interactivity performance results will be

reliable.

Lastly, Interbench was executed for 30 times repeatedly on each operating system to
obtain the average scheduling latencies and maximum scheduling latencies. The final

results were collected and presented in the form of bar charts for comparison purposes.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 10

CHAPTER 1 - INTRODUCTION

1.7 Report Organization

The details for this research are included in the following chapters. In Chapter 2, it
covers literature review that contains work done in previous researches and related to
the current project. Followed by Chapter 3 which contains discussions on the system
design and explanation of Interbench benchmark program. Then, Chapter 4 discusses
about the methodologies applied in this project. Next, the comparisons of interactivity
performance on Linux, macOS and Windows are discussed in Chapter 5. Lastly, the

project is concluded in Chapter 6.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 11

CHAPTER 2 - LITERATURE REVIEW

CHAPTER 2 - LITERATURE REVIEW

2.1 Fairness and Interactivity Performance of O(1) and CFS Linux Kernel

Schedulers

In this research done previously, the scheduling algorithms for two different Linux
kernel schedulers were explained (Wong et al. 2008). The paper focused on the ways
time sharing tasks work in the different kernel schedulers in terms of their interactivity
performance and fairness of the schedulers.

In Linux kernel version 2.6, O(1) scheduler was introduced by Ingo Molnar. In this
scheduler, each of the system’s CPU will have their own run-queue where all the
runnable tasks assigned to the specific CPU will handled. In order to achieve this, 2
different arrays will be used, an active array and an expired array. For a task to access
the CPU, a runnable task which is stored within the active array and having the greater
dynamic priority will be selected by the O(1) scheduler for execution with time
quantum pre-specified. When several runnable tasks with the same priority values, a
preemptive Round Robin scheduling style will be applied so that all the tasks can obtain
a fair access to the CPU resources. After the time quantum is finished, the current task’s
next time quantum will be calculated and the task will be placed into the expired run-
queue. Eventually the active array will become empty as all the tasks’ time quantum
have been finished. This is where the pointers of the 2 arrays will be switched. In other
words, the previous active array will become the current expired array and the previous

expired array will become the current active array.

In order to implement tasks prioritization in the system, 2-D array is used in the run-
queue. The 2-D array contains 140 different priority levels consisting of real-time
priority (ranging from 0 to 99) and static priority (ranging from 100 to 139). Each of
the static priorities is assigned with a nice value, which determines a process’s priority.
The base amount of time quantum allocated to a task is based on the static priority. The

equation below is followed:
Base time slice (in milliseconds) = if static priority < 120, (140 —static priority) x 20

if static priority > 120, (140 — static priority) < 5

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 12

CHAPTER 2 - LITERATURE REVIEW

Therefore, if a process has a higher static priority than others, a longer base CPU time
quantum will be allocated to the other processes with lower static priorities. In other

words, the task will be able to access the CPU for a longer period.

The O(1) kernel scheduler is being used in the next Linux kernel versions until Linux
kernel version 2.6.23. It is being replaced by another kernel scheduler called
Completely Fair Scheduler (CFS). To achieve a better efficiency, some components
that were used in the O(1) scheduler are removed, including run queue arrays and
allocation of time quantum based on priority values. The advantages of CFS include
the ability to produce a good interactivity performance while pushing the CPU to its
maximum utilization and allowing fair CPU resource access for all the tasks without
dragging down the interactivity performance of the CPU. Fair amount of CPU time is
assigned to each task by the application of proportional share algorithm to achieve

fairness.

The desired situation the CFS try to achieve is to allow parallel execution of tasks in a
uni-processor system. However, that is not possible as only one task is allowed to run
in the CPU at a time, which causes other tasks to wait for the time quantum of the
executing task to exhaust or request for 1/0. Proportional share algorithm is used to
break the time quantum to reduce the amount of lags to its minimum. The time quantum

that will be allocated to a task is calculated based on the equation below:

lice = se = load.weight o od
stiee = cfs_rq — load . weight perto

se -> load.weight refers to the schedule-able entity’s weight that can be obtained from
prio_to_weight 2-D array using nice values, cfs_rqg ->load_weight representing the sum
of all the weights from all the entities within the CFS run-queue and period refers to the

time quantum for the scheduler to run all the tasks.

At the end of the research, evaluations of fairness and interactivity performance in both
O(1) and CFS are carried out. Final results showed that CFS is better than O(1) kernel
scheduler in terms of efficiency and fairness of CPU bandwidth distribution without

sacrificing its interactivity performance.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 13

CHAPTER 2 - LITERATURE REVIEW

2.2 Latencies in Linux and FreeBSD kernels with different schedulers —O(1), CFS,
4BSD, ULE

Study was done by the researchers involved in this paper regarding the latencies present
in schedulers included in different Linux 2.6 kernel versions with a focus on its
application in real-time systems (Abaffy & Krajcovic 2009). Some soft real-time tuning
options were used to discover the best kernel configuration with the least amount of

latencies exists.

Comparisons had been carried out on O(1) scheduler in Linux kernel version 2.6.22 and
Completely Fair Scheduler (CFS) in Linux kernel version 2.6.28. Linux kernel version
2.6.22 is the last kernel version that uses O(1) kernel scheduler before it was replaced
by Completely Fair Scheduler (CFS) from Linux kernel version 2.6.23 and above.
Making the comparisons more accurate, different kernel options were also compared as
latency reduction is possible when other options are applied. A kernel which is designed
for server usage, 4BSD scheduler and ULE scheduler available in FreeBSD 7.1 kernel

were also included in the comparison.

The discovery of the optimal kernel configurations involves appropriate kernel options
setting, kernel compilations and benchmark performance. Interbench was the main
benchmark program used in the research for the testing various kernels. Each test was
carried out for a period of 30 seconds with 1055301 CPU cycles used per second,
enabling the collection of relevant data. Besides, the Linux kernels with default
configuration applied were used as reference kernels. Then, some appropriate kernel
options were added into the default kernel configurations and compared with the
reference kernels to determine the presence of any improvement in terms of real-time

performance.

Unfortunately, some problems were faced by the researchers in the middle of the study.
One of the problems is that they were unable to compare Linux and FreeBSD kernels
by only using Interbench, which is originally developed for Linux. As a solution, a new

benchmark called P1-ping was developed to compare all 4 kernel schedulers.

As for the results, CFS was proved to have an advantage in both applications in servers
and embedded systems, which requires high throughput or number of tasks completed
within a specified time and low latencies respectively. The researchers also proved that
CFS is able to perform better than O(1) for number of processes below than 500 due to

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 14

CHAPTER 2 - LITERATURE REVIEW

CFS’s complexity of O(log n). Lastly, processes are managed by CFS in a red-black

tree while others use run-queues.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 15

CHAPTER 2 - LITERATURE REVIEW

2.3 Fairness and Interactivity of Three CPU Schedulers in Linux

Analysis has been conducted on three different schedulers in terms of their fairness,
interactivity, and multi-processor performance by applying benchmarks (Wang et al.
2009). The three schedulers studied are O(1), Staircase Deadline (SD) schedulers and
Completely Fair Scheduler (CFS). Comparison and evaluation in the schedulers were
done using three different types of benchmarks, kernel codes remained unchanged

except for the scheduler to introduce the goals of CPU scheduling and the schedulers.

The primary goal of the scheduler is fairness, which refers to sharing CPU time fairly
with individual tasks and considering the priorities of the tasks at the same time.
According to the researcher, the scheduling algorithm is considered as fairer when the

amount of lag is smaller.

Followed by the next scheduling goals are regarding interactivity and impact on fairness.
Minimal amount of latencies is necessary in order to achieve a good response time for
interactive tasks. The tendency for an interactive task to sleep frequently has become
an assumption made by the scheduler to identify it as an interactive task. For a situation
which multiple interactive tasks existing the system, the scheduler needs to maintain
the fairness between the tasks to prevent any of the tasks from facing starvation.
Starvation refers to a situation where task is already in ‘Ready’ state but it is not chosen
to execute. Besides that, interactive tasks should not let the non-interactive tasks to

starve for a long time.

The next scheduling goal is load balance. In order to accelerate computation in a parallel
way, many multi-processor architecture were introduced and used in embedded fields.
Without the existence of load balance, CPUs in a system will face a significant amount

of unfairness as there is no way to predict the load of each CPU in a specific time.

Lastly, application performance in the real world is also an important goal. The number
of large real world applications that can be executed on both desktop environment and
server environment increases. So, maximum throughput, fairness and interactivity are

the important features that should be included in a well-designed scheduler.

To obtain the results for schedulers’ fairness, n tasks with nice value of 0 were executed
for uni-processor benchmark. Good long term fairness results were obtained for all O(1),

SD and CFS. However, CFS has an advantage in producing the least average lag

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 16

CHAPTER 2 - LITERATURE REVIEW

compared to the other two schedulers. Results also showed that average lags increase

linearly when the number of system tasks increases.

As for the interactivity results, interactive tasks in O(1) faced starvation the most as the
scheduler will raise the priority of a task considered as an interactive task and allowing
the particular task to stay in the active queue for a long time. As for SD and CFS, the

strict fairness scheduler design allowing both of the schedulers to achieve good fairness.

In conclusion, all schedulers are able to achieve a decent fairness in long term on uni-
processor. As for fairness on multi-processors, CFS is the fairest among the 3

schedulers.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 17

CHAPTER 2 - LITERATURE REVIEW

2.4 Interactivity Performance Benchmark on Windows OS

Studies had been conducted on the interactivity performance of the OS schedulers in
Linux OS and Windows OS (Cheng 2015). Interbench was used by the researcher to
perform the benchmark. But unfortunately, Interbench is only made available for Linux
by the original developer. Porting the benchmark program to Windows was done by the
researcher with the application of C programming language, producing the final product
named Windows Interbench. Tweaks have been made in the porting process due to
different system call and application program interface (API) that exists in Linux and

Windows.

In order to port the program to Windows, issues and challenges had been faced by the
researcher in the porting process. A lot of time and effort was required to find an
alternative API for Linux API to be implemented in Windows. Besides that, accuracy
in Windows Interbench were not as good as the original Interbench benchmark program
for Linux. Both operating systems come with a structure called timeval in Windows
and timespec in Linux, primarily for time interval definition. The main reason of the
difference in accuracy is because the precision of microsecond is supported in Windows
OS’s timeval structure while the precision of nanosecond is supported in Linux OS’s

timespec structure.

After the completion of the program’s porting process, interactive tasks such as Audio,
Video, X and Gaming were simulated with different loads. First, number of
meaningless loops executed by the system within one millisecond was determined. This
process is required for the reproduction of a constant CPU usage in every test. After
that, the number of meaningless loops executed within one millisecond is saved to a
file, allowing the emulation CPU usage to remain unchanged for the following tests.
For every benchmark test performed, amount of latency that exists between the starting
time of an interactive task and the time the task finally acquires the CPU was recorded.
Each benchmark test was repeated for 10 times to obtain the average scheduling latency

and maximum scheduling latency.

Results for interactivity performance for the four different interactive tasks were
obtained as the descriptions below. For interactive tasks with low CPU consumption,
such as Audio task that consumed only 5% of CPU resources and Video task that
consumed 40% of CPU resources, both operating systems showed a very similar results

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 18

CHAPTER 2 - LITERATURE REVIEW

under low CPU load. However, when both of the interactive tasks were tested in
Windows under high amount of load in Burn load, the average latency in Windows was
significantly higher than in Ubuntu, a Linux distribution. As for interactive tasks with
high CPU consumption, including X task consuming 0% to 100% of CPU resources
and Gaming task which tries to consume as much CPU resources as possible, slight
performance advantages were shown in Windows compared to Ubuntu. Under low load,
latencies in both operating systems were not obvious. However, under high load, the

amount of latencies were high until they were noticeable to human’s senses.

In conclusion, in terms of overall interactivity performance, Linux scheduler is able to
handle interactive tasks better than the scheduler included in Windows, especially in

conditions with high amount of background load.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 19

CHAPTER 2 - LITERATURE REVIEW

2.5 Synchronization Primitives

There are two mechanisms made available by the kernel for kernel programming in
macOS, which includes semaphores and locks (Apple Developer 2013). These
mechanisms can be applied when multiple threads in a system need to access shared
resources or critical section to accomplish their tasks, so that the shared resources can
be protected.

For lock, a lock request can be made by multiple threads, however the lock will be
allocated to one and only one thread at a time. As for the remaining threads requested

for the lock, they have to wait until the thread which is holding the lock to release it.

As for the next synchronization mechanism semaphore, it is quite similar to a lock. The
difference between a semaphore and a lock is that a shared resource can be accessed by
more than one threads at the same time. Instead of protecting one shared resource by

lock, multiple indistinct shared resources can be protected with the use of semaphores.

In macOS, counting semaphores are used instead of binary semaphores which behaves
like a lock. There is some potentials for a thread to face starvation because Mesa
semantics are applied in Mach semaphores. This is because before Thread A is allowed
run and Thread B has a faster execution speed, Thread B will run first, causing Thread
A to wait indefinitely.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 20

CHAPTER 3 - SYSTEM DESIGN

CHAPTER 3-SYSTEM DESIGN
3.1 General Workflow of macOS Interbench

In the main()function, it is used to display the table outputs for each interactive task
and to loop through the interactive tasks and background loads defined in the threadlist]]
array. Checking is done in the function to determine whether the current value in the

array is an interactive task or a background load.

In order to reproduce a fixed percentage of CPU utilization in every benchmark run, the
system will be benchmarked by Interbench in the first execution by invoking a function
called calibrate_loop() to determine the number of meaningless loops that can be
executed by the system within one millisecond. Then the value will be written into a

file for the subsequent benchmark runs.

The bench(') function will be invoked to perform synchronization between interactive
task’s child task and background load’s child process. The synchronization is required

to ensure that the correct execution sequence can be achieved.

For the simulation of interactive tasks and background loads, run_loadchild() and
run_benchchild() are responsible to control the thread such as starting and stopping a
thread.

Followed by emulation_thread() function which is responsible to point to the
interactive task and background load which corresponds to the i and j integer values
indicating the current values of the interactive task and background load to be executed.
These values are being tracked by the previous main function using a nested for-loop.
For instance, when the value for i is equals to 4 and value for j is equals to 2 in the same
iteration, the emulation_thread() function will call the emulate_game() function which
simulates Gaming interactive task and emulate_video() function which simulates

Video background load.

Lastly, timekeeping_thread() is responsible to keep track of the time taken for an

interactive task to be scheduled under each background load.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 21

CHAPTER 3 - SYSTEM DESIGN

main()

v

calibrate_loop()

i

bench(i)

run_loadchild(j)

emulation_thread()

A IR I R I

[Nane][Video][X-\-vindox-'-x][Bum] [Wiite][Read][Ring HCompile]

N W U R B

timekeeping_thread()

run_benchchild(i,j)

emulation_thread()

[

!

[Audio] [Video] [X-\-'-xindox-'-x] [Gaming]

(

)

timekeeping_thread()

Figure 3.1 General Workflow of macOS Interbench

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

22

CHAPTER 3 - SYSTEM DESIGN

3.2 Detailed Function Flowcharts

3.2.1 main() Function Flowchart

If Iud loops_per ms

Ifbenchmark==1

T (fp = fopenfame, ')

If (fscanfifp."%l" &ud loops per ms) <
True

terminal_error("fscanf")

Tre If felose(fp) =-1

False

True

Aﬂf "loops_per_ms unknown; benchmmk:ing/

False 0

terminal_error("fopen")

terminal_error("felose")

False

Ifud loops per ms

/ print ud loops_per_ ms

Y

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

/
et ﬁ

Y
calibrate_loop()

/ﬁt“ loops_per_ms specified from command W

If (fp = fopen(fname."w")

23

CHAPTER 3 - SYSTEM DESIGN

Y
get logfilename()

Y
get creae ead file)

y

it pipes()

Ifud log AND !{ud logfile = fopenfud logfilenatee '2)

Hermo = EACCES

termtal. eror("fopen”)

/ petnt"Unable to wate to logfil" /

ulog=0

-

Bachelor of (Hons) Computer Science

:

Flie

termnal ror('fopen')

—7

print "Uabl to wite t fil
intecbench loops per mstn"

[

/

fornlfp, k",
udlmps - per).

)

print"You loops per ms saved to e

A{bmch loops per msla”, ud loops per

/

Iog_output("Load set o %y
processorsn’, ud cpu load):

Y

log_outpur("Ustng % loops per ms,
uamg every oad for %d
secondsta” ud oops per ms,
ud duraton);

y

Iog_output("Benchmarking kernel % a
datestamp s ' o wnamer,

ud dtestamp):

It felose(fp) =-1

termnal emvor('fcose)

.

log output("Comment %sta", comment);

Faculty of Information and Communication Technology (Perak Campus)

24

CHAPTER 3 - SYSTEM DESIGN

False
Declare vartables *thi = &threadlist[1,
*henchme
True
benchme = benchme =
&threadlist]1] stbench &threadlist{1] rtbench

(!*benchme | 1bit 15 on(selected benches, i

/ print table header /

False)

jH—

Declare variables *thj = &threadlist]}]

—

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

25

CHAPTER 3 - SYSTEM DESIGN

‘ log_output("%s\t", thj->1abel) ‘

'

‘ sync_flush() ‘

Figure 3.2 Flowchart for main()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

Ifj=10R !bif_15_on(selected loads j) OR. !threadist[;] load AND fud.do_rt) OR (!threadlsst]y] stload AND vd do_1t)

26

CHAPTER 3 - SYSTEM DESIGN

3.2.2 bench() Function Flowchart

o

Declare variables bench pid, load pid

Bachelor of (Hons) Computer Science

If (load pid=fork())=-1
False

wait_on(l2m[0])

If (bench_pid = fork()) =-1
False
Ifbench pid
False

wait_on(b2m[0])

Y

wakeup with(m2([1])

y

wait_on(l2m[0])

A

sleep(1)

terminal_ervor("fork”)

True

1 loadehild(j)

terminal_ervor("fork”)

True

run_benchehild(ij)

Faculty of Information and Communication Technology (Perak Campus)

27

CHAPTER 3 - SYSTEM DESIGN

Y

wakeup with(m2b[{])

Y
wait_on(b2m{0])

Y

microsleep(ud duration *1000000)

Y
wakeup with(m2b[1])

Y
wakeup with(m?1[1])

Y
wait_on(2m[0])

¥
wait_on(b2m{0])

Figure 3.3 Flowchart for bench()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

28

CHAPTER 3 - SYSTEM DESIGN

3.2.3 get_ram() Function Flowchart

Declare variables *meminfo, *vm_info, *fp, buf BUFFERSIZE], *command = "sysctl v memsize", ram, vsize

True

If (meminfo = popen(command, "r')) =NULL

termnal_error("popen”)

False
While fgets(buf, BUFFERSIZE, meminfo) = NULL

/ sscanf{buf, "hw memsize: %lu" dram) /

Y

ud.ram = /1000

False
If fclose(meminfo)

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

29

CHAPTER 3 - SYSTEM DESIGN

I True
/ Print "Command not found or exited with error smrus."/

False

Ifud ram > 1000

ud flestze = 1000000

End

ud filestze = ud ram

r

Figure 3.4 Flowchart for get_ram()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

30

CHAPTER 3 - SYSTEM DESIGN

3.2.4 run_loadchild() Function Flowchart

Declare variables *fhy

)

1 = &readlis]

v

set_nice(ud load_nice)

!

infilise_thread(])

!

wakeup_with(I2m[1])

!

wait on(m21[0])

!

start_thread(thy)

!

wakeup with(2m{1])

'

wait on(m2I[0])

v

stop_thread{hi)

Y

wakeup with(I2m[1])

!

exit()

Figure 3.5 Flowchart for run_loadchild()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

CHAPTER 3 - SYSTEM DESIGN

3.2.5 run_benchchild() Function Flowchart

Declare vartable *thn

\
thi = &threadlist]i]

3

set nice{ud bench_nice)

Y

mitialsse_thread(s)

.

thr->dt = &thu->benchmarks]j]

Y

initialise thread data(thi-~df)

.

False

'

wait_on(m2b[0])

\
start_thread(thi)

'

wakeup_with(b2m[1])

Bachelor of (Hons) Computer Science

set_thread fifo(thi->pthread 95)

wakeup_with(b2m[1]) f—J

Faculty of Information and Communication Technology (Perak Campus)

32

CHAPTER 3 - SYSTEM DESIGN

Y

wat_on(m?2b[0])

'

stop._thread(thi)

{

set_thread normal(thi-pthread)

wakeup_with(b2m[1]) (—J

'

show latences(thi)

!

wakeup_with(b2m(1])

'

exi()

Y

Figure 3.6 Flowchart for run_benchchild()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

33

CHAPTER 3 - SYSTEM DESIGN

3.2.6 emulation_thread() Function Flowchart

Declare vartables *th, *tk., *s, *tks, 1=t

it all sems(tks)

'

create_pthread(&th-~tk pthread NULL timekeeping thread (votd®)(long) I)

Y

wait_sem(dths->eady)

Y

post_sem(§s->ready)

Y

watt sem(fes->start)

Y

th->name(th)
\

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

34

CHAPTER 3 - SYSTEM DESIGN

’

post_sem(&tks->stop)

Y

post_sem(fetks-<stat)

Y
jomn pihread(th->tk pthread NULL)

Y

post_sem(des->complete)

Y

refurn NULL

Figure 3.7 Flowchart for emulation_thread()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

35

CHAPTER 3 - SYSTEM DESIGN

3.2.7 timekeeping_thread() Function Flowchart

Declare variables *th, *tk, *s, myts, 1=t

Y

th= dthreadlist]i]

Y

tk = deth->thihread

y

5 = &th->tkthread sem

Y

tk->sleep interval = th->slept mterval =0

Y

post_sem|&s->ready)

False

Declare vartables start_tme, now

Trie

I ltrywatt_sem(&s->stop)

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

36

CHAPTER 3 - SYSTEM DESIGN

'

watt sem(ds->start)

Y

th->slept mterval =0

Y

start tme = get usecs{demuyts)

Trie

e

If Hrywait sem(&s->stop)

False
if tk->sleep taterval

Declare variables diff =0

Y

microsleep(tk-sleep terval)

Y

flowy = get usecs|{dmy's)

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

37

CHAPTER 3 - SYSTEM DESIGN

i

diff = now - start_time

False
If diff > th-=sleep_mterval

,LTme

th->slept merval = diff - tk->sleep_mterval

y

th->sleep_mterval=0

y

— post_sem(&s->complete)

refum NULL

Figure 3.8 Flowchart for timekeeping_thread()

w

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

38

CHAPTER 3 - SYSTEM DESIGN

3.2.8 init_sem() Function Flowchart

If (*sem = dispatch_semaphore_create(0)) =NULL

terminal_error("dispatch_semaphore create”)

Figure 3.9 Flowchart for init_sem()

3.2.9 wait_sem() Function Flowchart

Declare variable ret=-1

4

Tr

ret = dispatch_semaphore waii(*s, DISPATCH TIME FOREVER)

@<

Figure 3.10 Flowchart for wait_sem()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 39

CHAPTER 3 - SYSTEM DESIGN

3.2.10 trywait_sem() Function Flowchart

Declare variable ret

False
If (et = dispatch_semaphore wait(*s DISPATCH TIME NOW)) 1=0

If et 1= KERN_OPERATION_TIMED_OUT

terminal_error("dispatch_semaphore wait")

False

Retum ret <

Figure 3.11 Flowchart for trywait_sem()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

40

CHAPTER 3 - SYSTEM DESIGN

3.2.11 post_sem() Function Flowchart

-

dispatch_semaphore_signal(*s)

‘

Figure 3.12 Flowchart for post_sem()

3.2.12 emulate_none() Function Flowchart

()

Declare variable *s = &th-sem stop

Y

walt sem(s)

‘

Figure 3.13 Flowchart for emulate_none()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

41

CHAPTER 3 - SYSTEM DESIGN

3.2.13 emulate_audio() Function Flowchart

Declare vartables deadline, *s = &th->sem stop, myts

th->decasecond_dadlines = 1000000 / AUDIO_INTERVAL * 10

deadline = get_usecs(&myts)

deadline = pertodic_schedule(th, AUDIO RUN, AUDIO INTERVAL deadline)

False

If ttrywait_sem(s)

Figure 3.14 Flowchart for emulate_audio()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

42

CHAPTER 3 - SYSTEM DESIGN

3.2.14 emulate_video() Function Flowchart

Declare vaniables deadline, *s = &th-sem stop.myts

Y

th->decasecond_deadlines = 1000000 / VIDEQ_INTERVAL * 10

Y

deadline = pet usecs(myts)

> While 1

deadlne = pertodic_schedule(th, VIDEO RUN, VIDEQ_INTERVAL deadlne)

False

If ltrywait_sem(s)

Figure 3.15 Flowchart for emulate_video()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

43

CHAPTER 3 - SYSTEM DESIGN

3.2.15 emulate_x() Function Flowchart

Declare vartables deadlime, *s = &th->sem stop, myts

Y

th->decasecond deadlines =100

Y

deadline = get usees(fmyts)

False
- While 1

True

Declare vartables 1, |

False

1==100

4

True

j=100-i

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

44

CHAPTER 3 - SYSTEM DESIGN

deadline = pertodic_schedule(th, 1 * 1000, * 1000, deadline);

Y

deadline +=1* 1000

False

If ltrywat sem(s)

Figure 3.16 Flowchart for emulate_x()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

45

CHAPTER 3 - SYSTEM DESIGN

3.2.16 emulate_game() Function Flowchart

Declare vaniables deadline, cument time, latency, *s = &ihi->sem stop.amyts, *tb

'

=t

Y

th->decasecond_deadlines = 1000000/ GAME_INTERVAL * 10

deadline = getusecs(&myts) + GAME INTERVAL

Y

burn_usesc(GAME RTN)

Y

current fime = get usecs(&myts)

Y

th-=archieved bums += GAME RUN

False

i

True

latency = current_time - deadline

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

46

CHAPTER 3 - SYSTEM DESIGN

v

latency =0

th->missed_burns += latency

If latency > th->max_latency

th->max_latency = latency

v

th->total_latency += latency

v

th->sum _latency squared += latency * latency

Y

th->nr_samples++

False

False

Figure 3.17 Flowchart for emulate_game()

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

47

CHAPTER 3 - SYSTEM DESIGN

3.2.17 emulate_burn() Function Flowchart

Declare variables *s = &th->sem stop, 1, t, burnthreads ud.cpu_load

'

t=th->threadno

False

create_pthread(&burnthreads{i], NULL, burn_thread (void®*)long) f)

'

find

wait_sem(s) <

'

post_sem(&th->sem stopchild)

]

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

48

CHAPTER 3 - SYSTEM DESIGN

False

> 1<udcpu_load

i True

jom_pthread(burnthreadi], NULL)

Y

\ H

Figure 3.18 Flowchart for emulate_burn()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

49

CHAPTER 3 - SYSTEM DESIGN

3.2.18 emulate_write() Function Flowchart

Declare vanables *s = &th->sem stop, *fp. *name = "mterbenca write", *buf = NULL, statuf. mem

True
If (fopen(name,"w"))

terminal_error{"fopen”)

True

Ifstat{name, &statbuf) =-1

False

If (statbufst_blksize < MIN_BLK SIZE ternunal fileopen_error(fp, "stat")

statbuf st blksize = MIN_BLE SIZE;

'

—¥ mem=ud filesize /(statbuf st blksize / 1024)

True

If (buf = calloc(1 statbuf st_blkstze))

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

50

CHAPTER 3 - SYSTEM DESIGN

Y

terminal fileopen envor(fp,"calloc”)

Iffelose(fp) =-1

teminal._esror(*fclose")

Whilk 1

Declare variable

True

I fopen(name"w")

terminal e "fopen')

Tre

Ifstafname, &stattuf) =-1

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

51

CHAPTER 3 - SYSTEM DESIGN

False

Bachelor of (Hons) Computer Science

l termal fileopen error(fp, "stat’)

False
\
Trne
If wee(buf, statbuf st blksize, 1, p) =1
If Hrywait sem(s) termnal fileopen error(fp, "fwite")
True
[felose(fp) =-1
termizal error{'felose")
Tme
termunal_exror("remove)

Faculty of Information and Communication Technology (Perak Campus)

52

CHAPTER 3 - SYSTEM DESIGN

{

sync_flush)

If fclose(fp) =-1

True

-

terminal_error("felose")

Figure 3.19 Flowchart for emulate_write()

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

53

CHAPTER 3 - SYSTEM DESIGN

3.2.19 emulate_read() Function Flowchart

Declare vartables *s = &ih->sem stop, *name = "inferbench.read”, *buf = NULL, stathuf. bsize, tmp

True
I (imp = open(name, O RDONLY))==-1

False termunal_eror("open’)

If stat(name. destatbuf) =-1

termumal_error("stat")

bsize = statbuf st_blksize

If ! {buf = malloc(bsize))

termmal error("malloc")

Declare vartable rd

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 54

CHAPTER 3 - SYSTEM DESIGN

While (rd = Read(tap, buf bsize)) = 0

False

False
If lseek{tmp, (off £)0. SEEK SET)==-1

temnal error("lseck”)

Figure 3.20 Flowchart for emulate_read()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

55

CHAPTER 3 - SYSTEM DESIGN

3.2.20 emulate_ring() Function Flowchart

Declare vaniables *s = &th->sem stop, 1

Y

tingthreads = calloc(sizerflstruct thread), RINGTHREADS + 1)

Y

i=0

/\ False

> 1<RINGTHREADS

True

it all sems(&ringthreads]t] sem)

Y

1+ € create pthread(rmgthreads{t] pthread NULL, ing thread, (void*)(long) 1)

wait sem(&ringthreads|0] sem.seady)

-

Y

post_sem(ermgthreads[(] sem start

Y

wait sem(s)

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

56

CHAPTER 3 - SYSTEM DESIGN

False

A 4

1< RINGTHREADS

wait_sem(&nngthreads[1] sem complete)

Y

join_pthread(ringthreads[1] pthread, NULL)

»

free(zingthreads) —

Figure 3.21 Flowchart for emulate_ring()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

57

CHAPTER 3 - SYSTEM DESIGN

3.2.21 emulate_compile() Function Flowchart

&

Declare variables *s = &th->sem stop, 1, threads[3]

False

False

threads[0] =1

If Istremplthreadlist[i] label, "Write")

threads[1] =1

If Istremp(threadlist]1] label, "Read")

threads[2] =1

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

False

58

CHAPTER 3 - SYSTEM DESIGN

False
p
If threads]] i+
/ Print"Can'tfind all threads for comple load" /
Y
ext(1)
- Ld 1=0

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

59

CHAPTER 3 - SYSTEM DESIGN

w

mittalise_thread(threads[1])

!

start_thread(&threadlist[threads[1]])

)

1+

wart_sem(s) —

End /“\

Figure 3.22 Flowchart for emulate_compile()

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

60

CHAPTER 3 - SYSTEM DESIGN

3.3 System Design Explanation

3.3.1 Obtaining Total Physical Memory

[}, buf[BUFFERSIZE];
ctl hw.memsize"

((meminfo = popen(command,”r™)) == NULL)

"\nError opening pipe for get ram \n");

1= NULL)

: %lu kB \n",ud.

(fclose(meminfo))

yrintf("Command not found or exited with error status.

Figure 3.23 Changes Made in get_ram()

When the ported Interbench is executed, the main() function of the benchmark program
will call get_ram(') function to determine the total physical memory in the system. This
system information is required for emulate_read() to simulate reading of a file with the
size of the physical memory from the disk and emulate_write() to simulate a write

operation to a file located in a disk with the size of physical memory.

Since /proc/meminfo file is missing in macOS, bash scripting method is used to access
the required information instead of reading from a file directly. Unlike Linux, “sysctl
hw.memsize” which allows the retrieval of total physical memory returns output in

bytes instead of Kilobytes (KB). Therefore, the returned output is divided by 1000 to

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 61

CHAPTER 3 - SYSTEM DESIGN

convert bytes into kilobytes before assigning it to ud.ram. For verification purpose, the
value stored in ud.ram is included in the output of the ported Interbench as shown in
Figure 3.24 below.

@ Terminal Shell Edit View Window Help
@ O B macOS_Interbench — -bash — 89x55

Alexanders-MacBook-Air:macOS_Interbench alexanderfan$./macOS_Interbench
185682 loops_per _ms read from file interbench.loops_per_ms

RAM in kB : 4294967 kB

Load set to 1 processors

Using 185682 loops per ms, running every load for 30 seconds
Benchmarking kernel 18.7.0 at datestamp 202004182249

Figure 3.24 Value for ud.ram in Program Output

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 62

CHAPTER 3 - SYSTEM DESIGN

3.3.2 Semaphore Operations

In the benchmark program, emulation threads and timekeeping threads will gain access
to shared resources by using semaphores. Semaphores for both Linux and macOS are
based on the traditional counting semaphores. However, for macOS, Grand Central
Dispatch’s (GCD) dispatch semaphores are used in the ported Interbench because the
semaphore.h in macOS which is similar to Linux’s semaphore.h header contains
deprecated functions. Table 3.1 below shows the mapping of the original functions from

Linux semaphores to GCD semaphores.

Linux macOS

sem_init(sem_t *sem, int dispatch_semaphore_create(int value)

pshared, unsigned int value)

sem_wait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore _t
*s, DISPATCH_TIME_FOREVER)

sem_trywait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore_t
*s, DISPATCH_TIME_NOW)

sem_post(sem_t *s) dispatch_semaphore_signal(dispatch_semaphore t
*3)

Table 3.1 Mapping Semaphores in Linux to macOS GCD semaphores

dispatch_semaphore_create is used to create a semaphore with argument “value” as the

initial value of the semaphore.

If the second argument of dispatch_semaphore_wait IS
“DISPATCH_TIME FOREVER”, the value of the semaphore will be decremented
directly. If the semaphore value falls below 0, the function will wait until a signal is

received.

If the second argument of dispatch_semaphore wait is “DISPATCH_TIME NOW?”,

the function will return a value immediately instead of blocking.

dispatch_semaphore_signal is used to increment the value of the semaphore, if the

semaphore value falls below 0, a waiting thread will be woke before the function returns.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 63

CHAPTER 3 - SYSTEM DESIGN

In order to solve the “Function not implemented” warning shown when POSIX
semaphore’s sem_init() is used to create semaphores for emulation threads and
timekeeping thread, Grand Central Dispatch’s dispatch semaphore create() function
is used to create a new semaphore with value 0 as the semaphore’s initial value. If the
operation is successful, the function will return the newly created semaphore. Else,

NULL will be returned and an error message will be shown in the terminal.

(*xsem = dispatch_semaphore_create(@)) == NULL)

terminal_error{"dispatch_semaphore_create");

Figure 3.25 Changes Made in init_sem()

The dispatch_semaphore_wait() function will perform a decrement on the semaphore’s
value similar to the sem_wait() function for POSIX semaphores. If the value of
semaphore s falls below 0, the function will wait indefinitely until a signal is received.

A value of 0 will be returned to “ret” if the operation is successful.

ret = dispatch_semaphore wait(#s,DISPATCH_TIME FOREVER);

Figure 3.26 Changes Made in wait_sem()

POSIX semaphore’s sem_trywait() function is implemented by using the same
dispatch_semaphore_wait() as in the one applied in wait_sem(). However, the second
argument is replaced with the DISPATCH_TIME_NOW constant which allows the
function to return immediately instead of waiting indefinitely. The function will return
0 if the operation is completed successfully. If the operation has timed out, a value of
49 will be returned by the function, indicating KERN_OPERATION_TIME_OUT.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 64

CHAPTER 3 - SYSTEM DESIGN

» wait (#s,DISPATCH_TIME_NOW)) != @)

if (ret != KERN_OPERATION TIMED OUT)

r
1

terminal_error({"dispatch_semaph

Figure 3.27 Changes Made in trywait_sem()

To release a shared resource, the sem_post() function in the original Interbench is
replaced by dispatch_semaphore_signal(). When this function is called, the value of
semaphore s will be incremented by one and checking will be done on the value. If the

value is negative, the function will wake a thread in the waiting queue before returning.

Figure 3.28 Changes Made in post_sem()

With the functions of original POSIX semaphores reimplemented successfully using
GCD semaphores, the ported Interbench can finally proceed with the simulation of
interactive tasks and background loads. Figure 3.29 below shows the output containing

the interactivity performance benchmark results for Audio interactive task.

@ Terminal Shell Edit View Window Help

o0 I macOS_Interbench — -bash — 89x55

Alexanders-MacBook-Air:macOS_Interbench alexanderfan$./macOS_Interbench
185682 loops_per_ms read from file interbench.loops_per_ms

RAM in kB : 4294967 kB

Load set to 1 processors

Using 185682 loops per ms, running every load for 3@ seconds
Benchmarking kernel 18.7.0 at datestamp 202004182249

-—— Benchmarking simulated cpu of Audio in the presence of simulated —
Load Latency +/- SD (ms) Max Latency % Desired CPU X% Deadlines Met
None 0.0 +/~ 2 100 100
Video] +/- 100 100
X e +/- 100 100
Burn 0.2 +/- 1ee 100
Write 0.4 +/- 1ee 1ee
Read ¢] +/= 100 100

) +/=- 100 1ee

2] +/= 100 100

POORPRERNO®
OONODOVOONWN

Ring
Compile

Figure 3.29 Output Containing Benchmark Results for Audio

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 65

CHAPTER 3 - SYSTEM DESIGN

3.4 Implementation Issues and Challenges

In the process of porting the original Interbench benchmark program from Linux
to macQS, there are a few challenges faced that require a great amount of research and
time. The first challenge is regarding the implementation of semaphores in macOS. In
the development environment running macOS 10.14.6 (Mojave), some of the functions
related to semaphore have been made unavailable in macOS’s “semaphore.h” system
header. This causes warnings to pop up during the compilation of the ported Interbench
for functions that worked fine in Linux such as sem_init() for the creation of a

semaphore although both of the operating systems are Unix-liked systems.

Besides, some files which is available in Linux is not accessible by macOS to
obtain some important system information. For instance, a function in Interbench
namely get_ram() is used by the main() function to obtain details about the system’s
physical memory for the use of one of the simulation load called Write. In Linux, those
details can be obtained by accessing “/proc/meminfo” file. However in macOS, the

physical memory info can only be obtained using the bash scripting method.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 66

CHAPTER 4 - METHODOLOGIES

CHAPTER 4 - METHODOLOGIES

4.1 Methodology and General Work Procedures

Desi
Version 1 e
Code-
Version 2)
REQUIREMENT Test
AND Design
SPECIFICATION 8 Deploy Full software
development
Code
Version 3
Test
Version n
Deploy
Design
Code

Test

Deploy

Figure 4.1 Incremental Model

Considering the time and effort required to put on the project, which requires going
through more than a thousand lines of pre-developed codes in Interbench to make sure
that the simulation tasks and loads can be implemented similar the software’s behavior
in Linux OS, the whole research and development process is based on the incremental
model (GeeksforGeeks, n.d.). Porting the entire Interbench benchmark program by
modifying all the simulation tasks and loads from one OS to another at once can be a
difficult task. If the development is not divided properly, confusion will occur, making
the researcher unsure about the suitable fundamental component to work on first to

make the next component work.

If benchmark program is unable to fulfil the software requirements in the middle of the
development process, it is still possible to make modifications on the original set of
requirements thanks to the flexibility in incremental model. Besides that, the delivery
time required for a working benchmark program can be reduced because it is easier to

port working module at a time rather than porting a large and complex program at once.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 67

CHAPTER 4 - METHODOLOGIES

Therefore, by following the incremental model, the whole benchmark program can be
broken down into smaller and less complex modules. Researcher will work on the
modules until the specific module is able to function as in the original Interbench
benchmark program in Linux OS. After the completion of each module, the researcher
will proceed to work on the next module until the ported Interbench benchmark
program is fully completed. Below are the stages that will be implemented in each

increment.
Design :

In this phase, the module’s architectural design will be identified. The researcher will
figure out the ways to design each simulation tasks and loads so that each module works
as the same as in the original Interbench benchmark program. The design phase is
highly demanded as an input for the coding phase.

Code :

After the completion of the module’s architectural design, researcher should be able to
gain more insight on the ways to implement the porting process of the simulation tasks
and loads. The original design will be converted from a concept to actual C language
source code. This is the stage where coding skills and debugging skills play a vital role.
At the end of this stage, the researcher should be able to run the module as an executable

program.
Testing :

To ensure that the module has the ability to solve the known problems obtained within
the requirement analysis phase, the module’s code will be tested against the defined
requirements after the completing of coding phase in each increment. Various kinds of
testing such as integration testing and unit testing will be performed to measure the

quality of the ported benchmark program before deploying it.
Deploy :

Lastly, after the researcher performed various types of tests on the developed module,
simulation tasks and loads are now ready to be used. Comparisons of interactivity can
be done using same set of simulation tasks, simulation loads and system hardware

between different operating systems.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 68

CHAPTER 4 - METHODOLOGIES

4.2 Tools To Use
4.2.1 GNU Compiler Collection (GCC)

GNU Compiler Collection, also known as GNU C Compiler previously is developed
by the founder of the GNU Project, Richard Stallman. It is a component which is very
important for the development of applications and operating systems. For this project,
several tools in the GNU Toolchain will be used. The Interbench program written in C
language will be compiled using the command “gcc” in the terminal. Besides the “make”
command is used to automate the compilation and build of the application. Lastly, GNU
Debugger (GDB) is triggered by the command “gdb” in the terminal. GDB allows
multiple breakpoints to be set to ease the troubleshooting process.

4.4.2 Interbench

Interbench simulates different tasks that use multiple system generated loads to
simulate different conditions to see how well the scheduler performs. In this project,
comparison will be made on the interactivity in different OS schedulers for the same

set of hardware components with the usage if this benchmark program.
The simulation tasks are:

X: A thread that utilizes amount of CPU that change from time to time ranging from 0%
to 100%. An idle Graphical User Interface (GUI) with a window being grabbed and

dragged across the screen is simulated

Audio: A thread which to execute at an interval of 50ms and requires 5% of CPU

utilization is used to simulate the Audio task.

Video: A thread which requires to utilize the 40% of CPU and attempts to receive from

the CPU 60 times per second is used to simulate the Video task.

Gaming: Emulates a CPU-bound game by using as much CPU as possible.
Load simulated for the tasks:

None: Idle system.

Video: Background load generated by using video simulation thread.

X: Load generated by using X simulation thread.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 69

CHAPTER 4 - METHODOLOGIES

Burn: Number of threads fully CPU bound that can be configured.
Write: Write a file of the size of Random Access Memory (RAM) as a stream.
Read: Reading a file of the size of RAM from the disk repeatedly.

Compile: Concurrent execution of Burn, Write and Read to simulate a heavy ‘make —

j4° compilation.
4.2.3 Vim Editor

As both Linux and macQOS are based on Unix, Vim Editor is used for efficient addition
and modification of source codes in the project. This editor provides supports for many

programming languages including C.
4.2.4 Turbo Boost Switcher

In most computer systems, there will be some applications that require more processing
power for users to accomplish certain tasks. To cope with these heavier workloads, a
solution called Intel Turbo Boost Technology is introduced which dynamically adjusts
the frequency of the CPU cores to the maximum turbo frequency to create a balance
between system performance and workloads (Intel Corporation, n.d.). This technology
will only be activated when the power, temperature and current specification limits of
the CPU are not exceeded when the CPU is in operation. The technology’s frequency
and the amount of time for the CPU to remain in the turbo state differ because they are
relying on factors including the hardware, software, workload and configuration of the

system.

Turbo Boost Switch is a program which allows users to disable or enable Intel Turbo
Boost Technology in systems running Apple’s macOS as BIOS in an Apple computer
is not accessible (rugarciap 2019). Intel Turbo Boost Technology is disabled in all three
operating systems when Interbench benchmarks were carried out. The reason why it
needs to be disable is because different operating systems can interpret the same
workload in a very different manner and one of the factors affecting the frequency of
Intel Turbo Boost Technology is the system’s software including operating systems. S0,
in order to achieve a fair comparison between the three operating systems, maximum

turbo frequency is not allowed for tasks involving high workloads.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 70

CHAPTER 4 - METHODOLOGIES

4.2.5 Gnuplot

Gnuplot is a free and command-line based graph plotting tool available for macOS,
Linux and Windows which allows users to obtain a visualized form of the data
(Gnuplot.info 2020). The tool is convenient to use as it can be started from the terminal.
In this project, it was used to generate CPU utilization graphs for macOS by providing
an input data file containing CPU utilization values with an interval of one second. The
generated graphs were compared with the ones from Linux and Windows for
verification purpose before proceeding to the final comparison of interactivity

performance.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 71

CHAPTER 4 - METHODOLOGIES

4.3 System’s Specification

Component Specification

Name

Processor

Memory

Disk Storage
Graphics Processor
Display

Operating System

MacBook Air A1466 (13-inch, Mid 2013)

Intel Core i5-4250U Processor (2 Cores, 4
Threads)

4GB DDR4
128GB Solid State Drive (SSD)
Intel HD Graphics 5000
1440x990 Backlit Display

macOS Mojave version 10.14.6 64-bit OS
Ubuntu 18.04.4 LTS 64-bit OS
Windows 10 Home 64-bit OS

Table 4.1 System’s Specification

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

72

CHAPTER 4 - METHODOLOGIES

4.4 Verification Plan

Before the actual comparison is conducted, the macOS Interbench which is ported in
this project is verified by comparing the CPU utilization when the interactive tasks and
background loads are executing. The comparison involves the ported macOS
Interbench, ported Windows Interbench done by the previous researcher and the
original Linux Interbench. This verification process is crucial because it allows us to
ensure that the simulation can be done correctly and the results of the final comparison
on interactivity performance is reliable. Although the verification was already
conducted by the previous researcher for Windows Interbench and Linux Interbench,
the same verification process is repeated in this project to confirm that Windows
Interbench is able to behave as expected by using a different set of system hardware

and Windows OS version compared to the previous research.

The CPU utilization values on macOS were obtained through the “top” and “grep”
command in the terminal. The values were collected and stored into a .dat data file
which is used for graph plotting using Gnuplot. As for Linux and Windows, the CPU
utilization graphs were monitored and collected from System Monitor and Task

Manager.

The section below contains screenshots of the Gnuplot on macOS, System Monitor on
Linux and Task Manager on Windows for every interactive tasks. According to the
screenshots, the pattern of CPU utilization for the three operating systems involved are

identical to each other.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 73

CHAPTER 4 - METHODOLOGIES

Interactive Task 1: Audio (5% CPU Utilization)

100
100

80

CPU Utilization (%)
3

5

20

"andio.dat" ——

10 20 30
Time (seconds)

Figure 4.2 CPU Utilization Graph for Audio on macOS

CPU History

[100 %

| 80%

| 60%

60 seconds 50 40 30 20 10

I cru 25.3%

=1

Figure 4.3 CPU Utilization Graph for Audio on Linux

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

CHAPTER 4 - METHODOLOGIES

CPU Intel(R) Core(TM) i5-4250U CPU @ 1.30GHz

%o Utilization 100%

=

60 seconds

Figure 4.4 CPU Utilization Graph for Audio on Windows

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

75

CHAPTER 4 - METHODOLOGIES

Interactive Task 2: Video (40% CPU Utilization)

100 "Videodat" ——
80
\,?60
g
z
“a
20|
0 10 0 20 10 50)
Time (seconds)
Figure 4.5 CPU Utilization Graph for Video on macOS
CPU History
100 %
0%
60%
40%
0%
0%
60 seconds 50 40 30 20 10 1]
B cPu 96.0%
Figure 4.6 CPU Utilization Graph for Video on Linux
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 76

CHAPTER 4 - METHODOLOGIES

CPU

Intel(R) Core(TM) i5-4250U CPU @ 1.30GHz
%% Utilization 1005
- e -
. 1| // I| r, -
rd | rd | £
/ . I| i 'I /
.l"j IIII - { Ilu /]
- — P N S III ‘
- o o \.H III
&0 seconds

=1

Figure 4.7 CPU Utilization Graph for Video on Windows

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 77

CHAPTER 4 - METHODOLOGIES

Interactive Task 3: X-window (0 - 100% CPU Utilization)

10 "x dal" ——
80
@60
g
z
“a
20
0 10 0 20 10 50)
Time (seconds)
Figure 4.8 CPU Utilization Graph for X-window on macOS
CPU History
100 %
0%
60 %
40 %
0%
0%
& seconds 50 40 30 20 10 i
I crPu 60.6%
Figure 4.9 CPU Utilization Graph for X-window on Linux
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 78

CHAPTER 4 - METHODOLOGIES

CPU

% Utilization

Intel(R) Core(TM) i5-4250U CPU @ 1.30GHz

100%
/ i A
/

.-”'1| .-"Hl e
r; P "
P P i
_,l'r | _l."' e / | Fa | i
| i | iy | | _.,/ II ri
s / F
| i | , i | .,
g | P g | F. | £ s
f | ! | s | _(/ I i
& | / | i | L J_-" I r I': I
/AN T AR A |/ \ /
,.-"'r | ¥l | / | \ /
f | | / |/ W
F: | i 1 l,-"r
K ;. \
I \

&0 seconds

[=1

Figure 4.10 CPU Utilization Graph for X-window on Windows

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

79

CHAPTER 4 - METHODOLOGIES

Interactive Task 4: Gaming (Maximum CPU Utilization)

100

80,

2

CPU Utilization (%)

s

20
0 10 0 20 10 50)
Time (seconds)
Figure 4.11 CPU Utilization Graph for Gaming on macOS
CPU History
100%
0%
60%
0%
0%
0%
60 saconds 50 40 10 20 10 0
[cPu 75.8%
Figure 4.12 CPU Utilization Graph for Gaming on Linux
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 80

CHAPTER 4 - METHODOLOGIES

CPU Intel(R) Core(TM) i5-4250U CPU @ 1.30GHz

% Utilization 100%

&0 seconds

Figure 4.13 CPU Utilization Graph for Gaming on Windows

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

81

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

CHAPTER 5- INTERACTIVITY PERFORMANCE BENCHMARK
5.1 Interactivity Test

With the help of Interbench, different interactive tasks can be simulated concurrently
with various type of background loads. Each interactive task and background load is
represented by different amount of CPU utilization. The intended purpose of this
benchmark program is to measure the latency that exists within the scheduling process
which is represented by the time difference between the time when an interactive task
makes a CPU resources request and the time when the specific task actually acquires
the requested resources in order to start its execution. The involved interactive tasks

cover all workload conditions including low, medium and high workloads.

Two different comparisons for interactivity performance were conducted. The first
comparison covers all three operating systems which are Linux, macOS and Windows.
For this comparison, Four different interactive tasks are involved which are Audio,
Video, X-window and Gaming. These interactive tasks were executed concurrently

with various background loads which include None, Video, X-window and Burn.

As for the second comparison, the interactive tasks in the first comparison were used.
However, the background loads involved are Write, Read, Ring and Compile. This
comparison only involves Linux and macOS because the four background loads

specified are not available in Windows Interbench.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 82

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

5.2 Simulation Environment

In order to compare the schedulers’ performance in these three different operating
systems using the same set of hardware, Linux, macOS and Windows will be installed
natively into the test computer so that fair comparisons can be done with same hardware
resources, for instance, the CPU. The original Interbench and the modified Interbench
will be executed in terminal of every OS. Before the benchmark starts, the number of
active CPU cores is adjusted to only one in order to determine the operating system

kernel scheduler’s interactivity performance in uniprocessor environment.

Besides that, Intel Turbo Boost Technology which allows the CPU to operate in a higher
frequency than usual is disabled to ensure that the interactive tasks and background
loads can be simulated with the correct amount of CPU usage for all the involved

operating systems.

When Interbench benchmark program in all three different operating systems is being
executed for the first time, the number of meaningless loops that can be executed by
the system within one millisecond is determined and recorded in a text file for
subsequent benchmarks runs. This is done to ensure that the same CPU usage can be
emulated in the next benchmark runs to improve consistency and accuracy of the

benchmark results.

When a combination pair of interactive task and background load is executed, a thread
namely “timekeeping thread” is responsible to keep track of the time taken for an
interactive task to be scheduled. After the execution of the combination pair is
completed, the average scheduling latency and maximum scheduling latency are

displayed as output.

Each combination pair consisting of one of the interactive tasks and one of the
background loads are conducted repeatedly for 30 times. The average and maximum

scheduling latencies are recorded and calculated at the end of the benchmark.

Table 5.1, Table 5.2, Table 5.3 and Table 5.4 below show the interactive tasks and
background loads carried out for the benchmark involving Linux, macOS and Windows
while Table 5.5, Table 5.6, Table 5.7 and Table 5.8 show the interactive tasks and

background loads carried out for the benchmark involving Linux and macOS only.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 83

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Interactive Task

Background Load

Audio

None

Video

X-Window

Burn

Table 5.1 Simulation of Audio Interactive Task for Linux, macOS and Windows

Interactive Task

Background Load

Video

None

X-Window

Burn

Table 5.2 Simulation of Video Task for Linux, macOS and Windows

Interactive Task

Background Load

X-window

None

Video

Burn

Table 5.3 Simulation of X-window Task for Linux, macOS and Windows

Interactive Task

Background Load

Gaming

None

Video

X-Window

Burn

Table 5.4 Simulation of Gaming Task for Linux, macOS and Windows

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

84

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Interactive Task

Background Load

Audio

Write

Read

Ring

Compile

Table 5.5 Simulation of Audio Task for Linux and macOS

Interactive Task

Background Load

Video

Write

Read

Ring

Compile

Table 5.6 Simulation of Video Task for Linux and macOS

Interactive Task

Background Load

X-window

Write

Read

Ring

Compile

Table 5.7 Simulation of X-window Task for Linux and macOS

Interactive Task

Background Load

Gaming

Write

Read

Ring

Compile

Table 5.8 Simulation of Gaming Task for Linux and macOS

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus)

85

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

5.3 Comparison Results

5.3.1 Interactivity Performance Comparison Results for Linux, macOS and

Windows

For the first interactive task in the comparison, Audio which represents a low CPU
utilization interactive task and consumes 5% of CPU. Under most background loads,
Windows performed the worst among the three operating systems in terms of
interactivity performance. This can be proven by bar charts in Figure 5.1 and Figure 5.5
representing the average latency and maximum latency for Audio interactive task for
the involved operating systems. In idle condition and Video background load, all
operating systems performed similarly by showing near to zero average latencies.
However, when Audio interactive task was executed concurrently with X-window and
Burn background loads on Windows, the amount of average latencies are higher than
Linux and macOS. Besides, Windows also showed significantly higher maximum

latencies than Linux and macOS under all background loads.

Next, in condition with medium CPU utilization such as Video interactive task that
consumes 40% of CPU during execution, Figure 5.2 shows that the average latencies
for Windows under all background loads are higher than Linux and macOS. For
maximum latencies, the values produced by macOS and Windows in idle condition are
similar. However, when the interactive task is executed under variable workload and
high workload represented by X-window and Burn respectively, Windows performed
poorly in terms of interactivity performance by producing a higher maximum latencies

than the other operating systems.

Followed by X-window interactive task that consumes CPU utilization ranging from 0%
to 100% to simulate a condition where a GUI is grabbed and dragged across the screen.
The results for this interactive task is different compared to the Audio and Video
interactive tasks discussed previously. According to Figure 5.3, the average latency for
Windows is slightly higher than Linux and macOS when X-window interactive task is
being executed in idle condition. Unlike in the previous interactive tasks, the average
latency produced by macOS is higher than Linux and Windows when it is executing X-
window under Video background load. As for high workload simulated by Burn
background load, Windows’s average latency exceeded the average latencies produced

by the other two operating systems. Based on Figure 5.6, greatest amount of maximum

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 86

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

latencies are produced by Windows under None and Burn background loads while

macOS showed greatest amount of maximum latencies under Video background loads.

Lastly, Gaming interactive task which consumes as much CPU as possible was
executed. According to Figure 5.4, when the interactive task is executed in idle
condition, macOS’s average latency is the highest among the three operating systems
but it’s only 2.2 milliseconds. For the average latencies under Video and X-window,
the interactivity performance of macOS under medium and variable workloads are
proven to be the worst between Linux, macOS and Windows. However, the same result
doesn’t apply to Burn background load. Under Burn, Windows produced significantly
greater amount of average latency compared to Linux and macOS. For maximum
latencies as shown in Figure 5.8, macOS produced the highest maximum latencies for
three background loads including None, Video and X-window. As for Burn, the highest
maximum latency was produced by Windows when Gaming interactive task was

executed.

In conclusion, interactivity performance for system running Linux is the best under
most conditions, followed by macOS producing good interactivity performance
especially for interactive tasks consuming low to medium amount of CPU. Windows
shows the worst interactivity performance in most of the combination pairs of
interactivity tasks and background loads. The poor performance can be seen frequently

when the interactive tasks were executed within conditions with high background loads.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 87

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Average Latency(ms) for Audio on Linux, macOS and Windows

B Ubuntu [macOs Windows
180
160
140
120
100
80
&0
40
20

Average Latency (ms)

Mone Video Xowindow Burn

Background Load

Figure 5.1 Average Latency for Audio on Linux, macOS and Windows

Average Latency(ms) for Video on Ubuntu, macOS and
Windows

B Ubuntu [macOs Windows

180
160
140
120
100
a0
&0
40
20

Average Latency (ms)

Mone X-window Burn

Background Load

Figure 5.2 Average Latency for Video on Linux, macOS and Windows

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Average Latency(ms) for X-window on Ubuntu, macOS and
Windows

B Ubuntu [macOs Windows

an
a0
0
&0
50
40
30

20
0

Mone Video Burn

Average Latency (ms)

Background Load

Figure 5.3 Average Latency for X-window on Linux, macOS and Windows

Average Latency(ms) for Gaming on Ubuntu, macOS and
Windows

B Ubuntu [macOs Windows

450
400
350
300
250
200
150

100
° [_I_-L
0

Mone Video X-window Burn

Average Latency (ms)

Background Load

Figure 5.4 Average Latency for Gaming on Linux, macOS and Windows

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 89

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Maximum Latency(ms) for Audio on Linux, macOS and
Windows

B Vbuntu [macOs Windows

225
200
175
150
125
100
75
50
25

{]_—_—_-—_.—_.—

Mone Video X-window Burn

Maximum Latency (ms)

Background Load

Figure 5.5 Maximum Latency for Audio on Linux, macOS and Windows

Maximum Latency(ms) for Video on Ubuntu, macOS and
Windows

B Ubuntu [macOs Windows

225
200
175
150
125
100
75
50
25

Maximum Latency (ms)

Mone X-window Burn

Background Load

Figure 5.6 Maximum Latency for Audio on Linux, macOS and Windows

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 90

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Maximum Latency(ms) for X-window on Ubuntu, macOS and
Windows

B Ubuntu [macOs Windows

180
160
140
120
100
a0
&0
40
20

Maximum Latency (ms)

Mone Video Burn

Background Load

Figure 5.7 Maximum Latency for X-window on Linux, macOS and Windows

Maximum Latency(ms) for Gaming on Ubuntu, macOS and
Windows

B Ubuntu [macOs Windows

00
800
700
600
500
400
300
200
100

Maximum Latency (ms)

Mone Video X-window Burn

Background Load

Figure 5.8 Maximum Latency for Gaming on Linux, macOS and Windows

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

91

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

5.3.2 Interactivity Performance Comparison Results for Linux and macOS

This section includes comparison results for the four different interactive tasks executed
concurrently with Write, Read, Ring and Compile background loads on Linux and
macOS only as the four background loads specified are not included in Windows

Interbench.

For Audio, the average latencies for both Linux and macOS are considered to be low.
The average latencies for Disk 1/0 background loads are slightly higher on macOS with
differences of 0.4 milliseconds for Read and 0.2 milliseconds Write. For Ring
background load which executes tasks in a circular manner to allow them to take turns
for execution, the average latency on macOS is also slightly higher compared to Linux.
When the interactive task was executed under Compile background load which is the
emulation of “make —j4” compilation. “make —j4” refers to the parallel execution of 4
jobs. This background load is considered to be a heavy load because the emulation
involves running of three different background loads simultaneously including Burn,
Write and Read. The average latency for both operating systems are identical. As for
the maximum latencies, macOS produced a greater amount of maximum latencies

under all background loads for Audio interactive task.

Next, average latencies and maximum latencies for Video interactive task are discussed.
Running the task concurrently with Read background load on Linux and macOS shows
minimal latency difference between the two operating systems with 0.2 milliseconds of
average latency on Linux and 0.3 milliseconds of average latency on macOS. Under
Write and Ring background loads, both operating systems performed well in terms of
interactivity by showing near to zero average latencies. The same result is no longer
applicable to Compile background load, the average latency on macOS is twice the
average latency on Linux. Based on Figure 5.14, a slightly higher maximum latencies
were produced by Linux when Video interactive task was executed under Write and
Read background loads. However, the maximum latency on macOS under Ring
background load is higher than Linux. A more significant difference in terms of
maximum latency can be seen when the heavy Compile background load was executed

on macOS.

Followed by the third interactive task for this comparison, X-window. The average

latencies for all background load conditions on macOS are higher than Linux. Higher

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 92

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

maximum latencies can be also seen on macOS under majority of the background loads
for X-window interactive task, except for Read background load where maximum

latency on Linux is higher than macOS.

Lastly, the average latencies for CPU intensive interactive task such as Gaming on
macOS are up to double the average latencies on Linux. The difference became more
obvious when the interactive task was executed with the existence of high background
loads such as Compile. Besides, the high average latency on macOS under Compile
background load had exceeded the reaction time of human to visual stimulus which is
about 250 milliseconds or equivalent to 0.25 seconds (Backyard Brains, n.d.). In other
words, lagging or jitters will become noticeable to humans, leading to an unpleasant
experience to them. As for maximum latencies, the values produced by macOS were
higher when Gaming interactive task was executed concurrently under all background
loads. All the maximum latencies on macOS were beyond 250 millisecond while the
maximum latencies on Linux were below 250 milliseconds except for Compile

background load.

At the end of this comparison, we found out that Linux has a better interactivity
performance in multiple interactive tasks with CPU utilizations ranging from low to

high under Write, Read, Ring and Compile background loads.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 93

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Average Latency(ms) for Audio on Linux and macOS

B Ubuntu [macOs
09
08
07

Average Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.9 Average Latency for Audio on Linux and macOS

Average Latency(ms) for Video on Ubuntu and macOS

B Ubuntu [macOs

18
16
14

™)

E 12

E 10

@

= 8

[ak]

g 6

Z s

2
0

Write Read Ring Compile

Background Load

Figure 5.10 Average Latency for Video on Linux and macOS

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

06
05
04
0.3
0.2
B
0 |

94

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Average Latency(ms) for X-window on Ubuntu and macOS

B Ubuntu [macOs

an
a0
0
&0
a0
40
a0
20
10

Average Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.11 Average Latency for X-window on Linux and macOS

Average Latency(ms) for Gaming on Ubuntu and macOS

B Ubuntu [macOs
450
400
350
300
250
200
150
100
50

Average Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.12 Average Latency for Gaming on Linux and macOS

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 95

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Maximum Latency(ms) for Audio on Linux and macOS

B Ubuntu [macOs
a0
80
70
&0
50
40
30
20
10

Maximum Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.13 Maximum Latency for Audio on Linux and macOS

Maximum Latency(ms) for Video on Ubuntu and macOS

B Ubuntu [macOS
450
400
350
300
250
200
150
100
50

Maximum Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.14 Maximum Latency for Video on Linux and macOS

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 96

CHAPTER 5 - INTERACTIVITY PERFORMANCE BENCHMARK

Maximum Latency(ms) for X-window on Ubuntu and macOS

B vUbunty [macOs

450
400
350
300
250
200
150
100

50

Maximum Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.15 Maximum Latency for X-window on Linux and macOS

Maximum Latency(ms) for Gaming on Ubuntu and macOS

B vUbunty [macOs
900
800
700
600
500
400
300
200
100

Maximum Latency (ms)

Write Read Ring Compile

Background Load

Figure 5.16 Maximum Latency for Gaming on Linux and macOS

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 97

CHAPTER 6 — CONCLUSION

CHAPTER 6 - CONCLUSION

In conclusion, Interbench which is originally used to determine the interactivity
performance of Linux OS kernel schedulers is ported to macOS using C programming
language in order to solve the lack of support for interactivity performance benchmark
program in different operating systems. Next, the ported benchmark program has the
potential to assist OS developers to perform fair and accurate comparisons between
different OS kernel schedulers. Besides OS developers, normal users will be able to
make a better decision in choosing a system that best fits their requirements and needs

based on the benchmark results.

In order to port Interbench into macOS successfully, some modifications have
been made in the headers required by the program. For instance, “semaphore.h” in the
original Interbench is replaced by Grand Central Dispatch’s “dispatch/semaphore.h” as
POSIX semaphore is not applicable in macOS. Besides, semaphore implementations
were also changed accordingly to ensure that operations related to semaphores can be
done similar to the semaphore operations using POSIX semaphores. As some Linux-
specific system files is not available in macQOS, shell scripting is applied in the ported
benchmark program to obtain some system information such as total RAM to simulate

Read and Write background loads.

Besides, reverification of Windows Interbench was performed in the project’s
verification plan together with the original Linux Interbench and ported macOS
Interbench. Windows Interbench was proven to perform as expected in different
hardware configurations and Windows OS versions. The verification plan also showed
that both ported versions of Interbench benchmark program were able to behave
similarly to the original Linux Interbench, allowing reliable comparisons of

interactivity performance for all operating systems involved.

At the end of this project, two sets of comparison were produced by executing
the original and ported benchmark program to determine the interactivity performance

of the involved operating systems including Linux, macOS and Windows.

The first comparison involved all three operating systems. Audio, Video, X-
window and Gaming interactive tasks were executed concurrently with background
loads such as None, Video, X-window and Burn. As for the results, Linux performed

the best by producing the lowest average and maximum latencies in most of the task

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 98

CHAPTER 6 — CONCLUSION

and background load conditions. macOS performed well in terms of interactivity in
tasks utilizing low and medium amount of CPU resources. The interactivity
performance in Windows is the worst compared to the other two operating systems by
producing the highest average and maximum latencies in majority of the background

loads for each interactive task.

The second comparison is comprised of results for Write, Read, Ring and
Compile background loads and they were executed with the same set of interactive task
on Linux and macQOS. The final results showed that Linux produced lower average and

maximum latencies in majority of the background loads in each interactive task.

In the future, the remaining Memload background load will be made available
to the Interbench on macOS to determine the average latencies and maximum latencies
when the RAM is fully occupied and requires swapping to and from the virtual memory.
Besides, Write, Read, Ring, Compile and Memload background loads will be
implemented in Windows Interbench to broaden the coverage of the interactivity
performance comparison. Lastly, benchmarks for multiprocessor environment can be
done to gain insights on the operating systems’ interactivity performance compared to

the results obtained from a uniprocessor environment.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 99

IBLIOGRAPHY

BIBLIOGRAPHY

Abafty, J] & Krajcovic, T 2009, ‘Latencies in Linux and FreeBSD kernels with different
schedulers — O(1), CFS, 4BSD, ULE’, pp 1-6.

Apple Developer 2013, Synchronization Primitives, Awvailable from:
<https://developer.apple.com/library/archive/documentation/Darwin/Conceptu
al/KernelProgramming/synchronization/synchronization.html>. [3 November
2019].

Apple Developer 2019, DispatchSemaphore, Available from:
<https://developer.apple.com/documentation/dispatch/dispatchsemaphore>.
[10 November 2019].

Backyard Brains n.d., Experiment: How Fast Your Brain Reacts To Stimuli. Available

from < https://backyardbrains.com/experiments/reactiontime>. [22 April 2020].
Cheng, SW 2015, ‘Interactivity Performance Benchmark on Windows OS’, pp.2-38.

ElysiumAcademy Private Limited 2017, What are the Software Development Life
Cycle (SDLC) phases?. Available from:
<https://www.linkedin.com/pulse/what-software-development-life-cycle-sdic-

phases-private-limited>. [10 August 2019].

GeeksforGeeks n.d., Software Engineering | Incremental process model. Available
from: <https://www.geeksforgeeks.org/software-engineering-incremental-

process-model/>. [10 August 2019].
Gnuplot, computer software 2020. Available from: <http://www.gnuplot.info>. [15
April 2020].

Intel Corporation n.d., Intel Turbo Boost Technology 2.0. Available from:
<https://www.intel.com/content/www/us/en/architecture-and-

technology/turbo-boost/turbo-boost-technology.html>. [31 March 2020].

Kamal, R 2011, Microcontrollers: Architecture Programming, Interfacing and System
Design, 2" Edition. Pearson Education, India. [22 April 2020].

Kolivas, C 2006, The homepage of Interbench The Linux interactivity benchmark.
Available from: < http://www.users.on.net/~ckolivas/interbench/>. [20 July 2019].

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 100

IBLIOGRAPHY

Linfo 2005, Kernel Definition. Available from <http://www.linfo.org/kernel.ntml>. [20
July 2019].

Luo, Y & Wu, Y 2011, ‘A Comparison on Interactivity of Three Schedulers in
Embedded System’, pp. 494 — 497.

Monitor Types, n.d. Available from : <https://pages.mtu.edu/~shene/NSF-3/e-
Book/MONITOR/monitor-types.html> [20 November 2019].

Patel, K n.d, pipe() System call. Available from: <https://www.geeksforgeeks.org/pipe-
system-call/>. [3 November 2019].

Phoronix Test Suite 2020, Open-Source, Automated Benchmarking. Available from <

https://www.phoronix-test-suite.com>. [20 April 2020].

Silberschatz, A, Galvin, PB & Gagne, G 2009. Operating System Concepts. John Wiley
& Sons Inc, New York. [20 April 2020].

Stallings, W n.d., Operating Systems, Internals and Design Principles. Pearson Prentice
Hall, New Jersey. [20 April 2020].

Stupak, N 2009, Time delays and system response time in human-computer interaction.
Rochester Institute of Technology. [22 April 2020].

Techopedia n.d., Benchmarking. Available from: <
https://www.techopedia.com/definition/17053/benchmarking>. [20 July 2019].

Turbo Boost Switcher, computer software 2019. Awvailable from
<http://tbswitcher.rugarciap.com>. [20 March 2019].

Wang, S, Chen, Y, Jiang, W, Li, P, Dai, T & Cui, Y 2009, ‘Fairness and Interactivity
of Three CPU Schedulers in Linux’, Proceedings of the fifteenth IEEE
International Conference on Embedded and Real-Time Computing Systems and

Applications, pp. 172-177.

Wong, CS, Tan, IKT, Kumari, RD & Lam, JW 2008. ‘Fairness and Interactive
Performance of O(1) and CFS Linux Kernel Schedulers’, pp 1-8.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) 101

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

APPENDIX A - RESULTS DATA FOR INTERBENCH BENCHMARK

A.1 Audio Interactive Task Results Data

Video

Bench Sample Number Ubuntu (; ge) Ubuntu (Max) macOS$ (Average) macO$ (Max) Windows (£ Windows (Max)
1 0.0 21 0.0 27 0.0 0.1
2 0.0 24 0.1 7.0 0.2 531
3 00 23 0.0 05 0.0 00
4 00 26 01 78 0.0 a1
5 00 28 06 131 0.0 00
[00 50 0.0 01 0.0 a1
T 00 28 0.0 27 0.0 00
8 00 21 0.0 38 0.1 500
9 0.0 25 0.0 0.6 0.0 0.0
10 0.0 28 0.2 79 0.0 0.0
1 0.0 28 0.0 13 0.0 0.0
12 0.0 25 0.0 0.1 0.0 0.0
13 0.0 28 0.0 0.3 0.0 0.0
14 0.0 04 0.1 72 0.0 0.0
15 00 23 0.0 01 0.0 00
16 00 24 01 27 0.0 00
1w 00 67 01 T2 0.0 03
18 00 69 01 8.1 0.0 00
19 00 18 0.0 01 0.1 500
20 00 28 0.0 L[0.0 a1
21 0.0 21 0.0 0.1 0.0 0.0
22 0.0 24 0.0 0.6 0.0 0.1
23 0.0 26 0.0 6.8 0.0 0.0
24 0.0 26 0.2 8.2 0.0 0.1
25 0.0 28 0.0 27 0.0 0.1
26 0.0 1.8 0.0 0.2 0.0 0.1
2 00 28 0.0 05 0.0 a1
28 00 58 0.0 01 0.0 00
29 00 18 0.0 08 0.0 00
30 00 21 01 8.1 0.1 500

Average : 0.0 Max:69 Average : 0.1 Max - 13.1 Average : 0.0 Max : 53.1
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-1

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

X
Bench Sample Number Ubuntu {Average) Ubuntu (Max) macOS (Average) macOS$ (Max) Windows (Average) ‘Windows (Max)
1 01 32 06 112 12 500
2 0.1 36 0.1 10.0 28 50.1
5 0.1 33 0.2 1.3 19 50.1
4 0.1 31 0.5 112 14 50.0
5 0.1 65 09 216 1.3 50.0
6 0.1 30 04 112 20 500
T 01 26 0.1 100 12 500
8 0.1 46 04 11.3 1.1 50.0
9 0.1 44 08 200 15 50.0
10 01 26 04 112 15 500
1 01 30 02 114 13 500
12 0.1 43 0.1 10.0 16 50.0
13 0.1 32 04 101 11 50.0
14 0.1 70 04 1.3 21 50.0
15 0.1 32 0.3 112 1.6 50.0
16 01 52 0.3 26 14 50.0
17 01 27 03 114 10 500
18 01 26 03 115 13 500
19 0.1 33 0.1 10.0 15 50.0
20 0.1 26 05 1.3 09 50.0
21 0.1 38 0.2 10.0 1.7 50.0
2 01 26 05 200 10 50.1
23 0.1 34 02 208 1.7 50.1
24 0.1 29 04 200 18 50.0
25 0.1 32 07 200 15 50.0
26 0.1 31 0.1 10.0 19 50.0
27 01 42 0.3 10.0 14 500
28 01 35 06 212 10 500
29 01 45 06 200 14 500
30 0.1 26 03 10.0 19 50.0
Average : 0.1 Max:7.0 Average : 0.4 Max : 22.6 Average : 1.5 Max : 50.1
Burn
Bench Sample Number Ubuntu (Average) Ubuntu (Max) macO$ (Average) macO$ (Max) Windows (Average) Windows (Max)
1 0.0 62 02 201 135.0 2000
2 0.0 13 00 10.0 130.0 150.0
3 0.0 74 08 200 130.0 150.0
4 0.0 02 0.1 212 131.0 150.0
5 0.0 02 02 200 1324 150.1
6 0.0 18 0.0 0.1 132.4 1502
7 0.0 49 02 212 128.9 150.2
i} 0.0 05 0.1 20,0 131.0 150.2
9 0.0 05 0.1 212 1292 150.1
10 0.0 02 0.0 4.0 129.2 1502
1 0.0 0.1 02 200 132.0 1502
12 0.0 0.1 0.0 0.1 131.0 2002
13 0.0 18 0.1 20,0 130.0 1502
14 0.0 0.1 00 04 1313 2000
15 0.0 57 0.1 212 1289 1502
16 0.0 05 00 02 1324 1502
17 0.0 0.1 02 212 1333 150.0
18 0.0 0.1 0.0 26 1324 150.0
19 0.0 65 02 212 1295 150.2
20 0.0 1.1 03 225 1295 150.0
21 0.0 28 02 20,0 131.8 150.2
2 0.0 0.1 0.0 06 131.0 1502
23 0.0 0.1 0.0 07 1295 1502
24 0.0 02 0.1 200 1313 150.1
25 0.0 0.1 0.1 20.1 130.7 200.0
26 0.0 27 0.0 10.1 127.8 150.0
27 0.0 14 02 202 1318 1502
28 0.0 0.1 0.1 200 1324 1500
29 0.0 66 00 0.1 130.3 1502
30 0.0 42 05 212 133.6 200.0
Average : 0.0 Max :7.4 Average : 0.1 Max : 22.5 Average :131.0 Max : 200.2

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-2

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

A-3

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Ring
Bench Sample Number Ubuntu (Average)
1

0w N3 ;e W N

Average -

Compile
Bench Sample Number Ubuntu (Average)
1

W0~ @ U AW N

Average :

Bachelor of (Hons) Computer Science

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.1
0.1
0.1
0.1
0.1
0.0
0.1
0.1
0.0
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.1
0.1
0.1

Ubuntu (Max)
66
58
34
17
08
0.1
04
19
0.1
02
64
0.1
54
30
1.7
43
72
05
16
39
00
60
17
65
19
42
17
68
12
0.1
Max : 72

Ubuntu (Max)

i)
43
77
31
23
28
69
31
25
42
49
31
42
41
34
26
42
50
32
20
28
47
31
43
9.3
32
30
36
36
Max : 9.3

macO$ (Average)
0.0
03
02
03
0.0
0.0
01
0.0
01
01
01
o7
02
02
01
02
01
01
03
01
02
01
01
05
0.0
02
01
01
02
01
Average : 0.2

macOS (Average)
0.0
01
01
0.0
0.0
01
0o
0o
0.0
01
01
02
0.0
01
0.0
0.0
00
0o
0o
0.0
01
02
0.0
0.0
0.0
01
01
02
0o
0o
Average : 0.1

macO$§ (Max)

0.1
213
213
26

02
10.0
20,0
10.0
20,0
200
200
216
214
20,0
214
20,0
224
2000
221
201
214
208
200
213
114
200
214
200
216
200

Max - 22.6

macOS (Max)

18
50.7
50.2

06

12
503

92

07

07
519
500
50.7

038
50.7

06

07

06

07

07

07
50.3
508

038

07

07
50.3
50.3
524

07

07

Max - 52.4

Faculty of Information and Communication Technology (Perak Campus)

A-4

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

A.2 Video Interactive Task Results Data

X

Bench Number Ubuntu Ubuntu (Max) macOS$ (A macO$ (Max) Windows (2 Windows (Max)
1 04 235 1.5 66.2 12.4 50.2
2 04 167 15 70.3 125 501
3 03 236 13 457 123 742
4 04 243 15 50.0 122 50.1
5 05 236 1.5 68.6 12.3 1094
6 04 235 14 68.9 12.0 5041
T 03 241 1.6 68.2 125 96.5
8 04 16.7 1.6 78.3 12.7 50.2
9 04 29.7 14 69.3 12.0 50.0
10 04 210 1.7 80.8 12.3 5041
1 04 16.8 15 48.7 124 50.0
12 04 226 14 734 121 501
13 04 227 1.7 66.9 12.7 50.0
14 0.3 16.7 20 T70.6 12.3 50.0
15 04 236 13 66.4 127 500
16 04 167 16 68.0 127 501
1w 04 234 14 739 121 501
18 04 17.0 1.5 65.7 124 5041
19 04 285 1.6 701 12.2 50.0
20 03 231 14 69.5 12.4 501
21 04 234 1.3 48.5 12.3 501
2 04 333 18 804 124 501
23 04 16.7 1.6 704 12.2 50.0
24 03 222 14 68.1 12.6 113
25 04 234 15 70.9 12.3 5041
26 04 238 1.6 68.9 12.4 646
27 04 18.0 1.5 70.7 121 1121
28 0.3 167 15 674 122 500
29 04 240 16 473 124 1167
30 04 241 15 673 122 1138

Average : 0.4 Max: 333 Average : 1.5 Max : 80.8 Average: 12.3 Max: 116.7
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-5

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Burn
Bench Sample Number
1

=R R R RS R

Ubuntu (Average)

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

00

00

00

Average : 0.0

Write
Bench Sample Number

1
2
3
4
5
6
7
8
9
10
1"
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30

Ubuntu (Max)

333
237
224
0.1
237
227
0.1
216
1.7
1.7
212
27
18.7
224
213
216
306
11
16.7
240
18
238
167
24
222
205
02
231
203
17
Max : 333

Ubuntu (Average)
0.2
0.1
01
01
02
01
02
02
13
0.1
0.1
0.1
0.2
0.1
0.1
0.2
0.2
0.2
0.1
0.2
0.2
02
01
0.1
0.1
0.1
02
0.1
02
0.1

Average : 0.2

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

macOS$ (Average)
02
0.1
0.1
02
0.0
0.1
0.1
0.0
0.0
0.1
00
00
0.0
0.0
0.1
0.1
0.0
0.1
0.0
0.0
0.0
0.0
00
0.1
0.1
0.1
00
0.1
00
0.1
Average : 0.1

Ubuntu (Max)
233
69
55
234
184
167
212
219
781
167
167
228
16.8
167
222
26.8
196
247
228
285
221
234
16.7
26.0
167
167
224
167
239
228
Max : 78.1

macO$§ (Max)
282
282
282
1333
16.7
267
26.7
16.7
16
36.7
16.7
16.7
16.7
16.7
297
282
16.7
320
07
63
16.7
15
16.7
36.7
267
285
16.7
267
16.7
284
Max: 1333

macO$ (Average)
03
04
03
04
02
05
03
03
03
04
0.2
04
03
03
04
04
04
05
0.1
03
04
03
03
0.2
04
04
03
03
04
0.2
Average : 0.3

Windows (Average)
159.0
1594
158.2
159.3
159.1
159.3
169.5
159.0
159.4
158.9
158.8
158.8
158.7
158.6
158.8
159.0
159.2
159.5
158.7
159.1
159.1
158.6
158.6
158.3
160.0
158.9
159.1
159.0
158.3
158.9

Average - 1593

macO$ (Max)
50.5
T2.1
626
50.7
536
609
506
504
614
534
50.7
61.3
50.6
60.8
75.6
50.5
743
434
50.2
50.4
60.8
609
50.3
50.4
50.2
50.4
50.6
50.3
50.0
50.4
Max : 75.6

Windows (Max)
1834
1834
1833
1834
1833
1833
2167
1833
2167
1834
1833
1833
1834
1834
1833
1833
1834
1834
1833
2333
1834
1833
1833
1833
2000
1833
1834
1834
1833
1833

Max : 233.3

A-6

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

A-7

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Compile
Bench Sample Number Ubuntu (Average)
1

W~ T ! W N

Average :

Bachelor of (Hons) Computer Science

36
36
36
4.1
4.4
43
43
4.1
)
36
aT
42
42
41
43
44
39
38
38
42
38
4.4
4.4
43
ar
4.4
36
a7
45
38
40

Ubuntu (Max)
297
333
409
311
468
334
461
470
452
392
416
392
300
467
387
455
359
606
298
334
298
368
333
307
628
428
309
334
438
302
Max :62.8

macOS (Average)

10.1
10.0
10.0
10.1
10.0
103
10.1
103
938
10.2
104
10.2
99
10.0
103
10.1
10.0
99
10.0
102
99
10.2
10.2
10.0
10.1
99
99
10.0
10.1
10.0
Average : 10.1

macOS (Max)
1440
2049
2123
1734
167.7
1925
1420
2417
138.8
1453
365.8
178.1
139.8
1324
2049
1426
136.8
1357
146 6
1413
1355
146 4
168.5
1392
14389
1113
1347
147 4
1422
1412
Max : 365.8

Faculty of Information and Communication Technology (Perak Campus)

A-8

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

A.3 X-window Interactive Task Results Data

Video

Bench Number Ubuntu (i ge) Ubuntu (Max) macO$ (Average) macO$ (Max) Windows (/ Windows (Max)
1 0.0 0.0 16.7 83.0 14 220
2 0.1 10.0 18.1 80.0 1.5 220
3 0.1 10.0 17.9 84.0 1.3 220
4 0.1 14.0 184 80.0 16 80.0
5 0.4 15.0 16.7 85.0 1.3 220
6 0.2 15.0 175 84.0 14 240
T 0.1 9.0 175 80.0 155 230
8 0.0 00 19.0 136.0 11 200
9 00 100 176 80.0 14 220
10 0.0 6.0 184 93.0 1.1 18.0
1 0.0 9.0 175 114.0 1.3 250
12 0.1 9.0 174 84.0 1.3 240
13 0.0 50 18.0 850 14 220
14 01 210 16.6 85.0 15 280
15 01 110 173 80.0 13 200
16 03 640 16.9 79.0 16 250
1w 01 360 176 80.0 14 220
18 0.0 5.0 18.0 84.0 13 200
19 0.1 11.0 171 86.0 12 230
20 0.0 0.0 18.0 80.0 1.1 200
21 0.1 15.0 19.2 184.0 12 220
s 00 6.0 17.0 80.0 13 200
23 0.1 14.0 174 78.0 153 240
24 0.1 10.0 171 85.0 12 43.0
25 0.0 20 17.8 80.0 12 220
26 0.0 0.0 17.3 80.0 13 220
27 0.2 20.0 17.6 96.0 12 200
28 0.1 15.0 17.1 79.0 1= 240
29 0.1 10.0 17.6 79.0 14 240
30 0.1 8.0 17.9 50.0 1= 210

Average : 0.1 Max : 64.0 Average : 17.6 Max : 184.0 Average : 1.3 Max : 80.0
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-9

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Burn
Bench Sample Number
1

BRI R)

Ubuntu (Average)

173

181

177

177

259

175

17.9

174

17.9

18.2

18.1

173

18.0

173

179

179

203

18.2

18.1

17.8

17.0

18.6

17.3

178

18.7

1756

176

176

174

18.1

Average : 18.1

Write
Bench Sample Number

1
2
3
4
5
6
7
8
g
10
1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30

Ubuntu (Max)

820
840
88.0
86.0
1240
850
920
870
86.0
96.0
87.0
870
910
900
88.0
870
106.0
840
870
920
840
89.0
87.0
870
840
86.0
96.0
85.0
870
89.0
Max : 1240

Ubuntu (Average)
104
9.9
104
105
124
10.0
1.0
102
10.9
105
105
10.8
106
108
108
1.0
1.8
104
105
109
10.6
109
12
103
105
11.6
10.8
10.6
1.3
124
Average : 10.6

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

macOS (Average)
236
25
229
231
232
25
234
240
233
233
240
228
229
232
234
228
224
233
233
222
27
287
231
229
241
228
230
233
229
230
Average : 23.3

Ubuntu (Max)

78.0
740
700
75.0
950
750
750
80.0
81.0
75.0
720
720
810
820
80.0
7o
90.0
90.0
700
76.0
770
80.0
900
780
700
720
770
780
820
1100
Max : 1100

macOS (Max)
1040
1140
108.0
107.0
113.0
107.0
1100
171.0
106.0
108.0
107.0
1040
108.0
1100
105.0
108.0
108.0
107.0
105.0
1100
108.0
166.0
109.0
1140
1320
105.0
1100
109.0
103.0
108.0
Max : 171.0

macOS (Average)
245
249
249
247
256
246
250
252
244
243
256
255
256
247
240
249
248
248
253
26.4
26.2
240
236
236
250
256
250
253
248
253
Average : 24.9

Windows (Average)
844
855
857
8438
86.0
836
846
862
896
85.1
832
86.3
83.0
840
85.1
86.8
86.0
843
852
851
86.7
831
855
855
839
85.1
879
835
837
865

Average : 852

macO$§ (Max)
132.0
121.0
132.0
120.0
180.0
138.0
136.0
126.0
132.0
120.0
126.0
140.0
137.0
119.0
114.0
130.0
116.0
126.0
120.0
147.0
120.0
132.0
126.0
126.0
114.0
129.0
112.0
133.0
128.0
117.0
Max : 180.0

Windows (Max)
1520
166.0
166.0
1520
166.0
160.0
1720
160.0
1720
156.0
150.0
1640
1720
1720
1920
166.0
1700
1440
1540
162.0
1740
166.0
1720
1720
166.0
1700
166.0
1640
166.0
166.0

Max : 192.0

A-10

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Read

Bench Sample Number Ubuntu (Average)

1

W oW~ @ ;W

Average :

Ring

137
137
126
16.9
23
16.9
171
174
154
142
141
171
16.6
17.0
171
17.3
121
14.0
134
17.3
138
174
16.7
17.6
119
16.7
137
126
16.7
136
156

Bench Sample Number Ubuntu (Average)

1

W W~ DM AW N

Average :

Bachelor of (Hons) Computer Science

173
178
178
175
314
176
17.8
174
177
18.1
172
177
18.0
18.2
18.2
179
187
179
174
183
175
179
178
175
185
179
16.9
177
18.3
184
183

Ubuntu (Max)

85.0
91.0
80.0
87.0
1280
87.0
84.0
87.0
840
86.0
84.0
91.0
88.0
84.0
87.0
87.0
77.0
84.0
81.0
86.0
86.0
85.0
86.0
90.0
82.0
90.0
84.0
86.0
87.0
96.0
Max : 1280

Ubuntu (Max)

88.0
89.0
86.0
900
1280
86.0
910
88.0
910
840
86.0
89.0
88.0
86.0
940
86.0
88.0
910
89.0
85.0
86.0
900
89.0
86.0
86.0
870
920
1360
900
950
Max : 136.0

macOS (Average)
235
236
231
232
236
234
229
233
234
233
233
231
229
23.0
234
236
23.0
229
236
229
234
231
232
233
233
234
231
234
234
225
Average 1 23.2

macO$ (Average)
230
25
233
231
231
226
271
231
235
233
25
226
234
235
234
231
234
230
234
226
232
230
236
29
230
226
226
226
227
228
Average : 232

macO8 (Max)
17.0
119.0
108.0
109.0
115.0
105.0
107.0
108.0
109.0
104.0
106.0
104.0
105.0
108.0
114.0
111.0
112.0
108.0
105.0
116.0
108.0
108.0
108.0
106.0
105.0
108.0
111.0
105.0
108.0
104.0
Max : 119.0

macO$8 (Max)
1040
108.0
102.0
104.0
106.0
107.0
240.0
1120
108.0
106.0
108.0
102.0
108.0
104.0
109.0
108.0
107.0
108.0
108.0
108.0
1120
104.0
1040
108.0
1440
108.0
108.0
108.0
108.0
1120
Max : 240.0

Faculty of Information and Communication Technology (Perak Campus)

A-11

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Compile

Bench Sample Number Ubuntu (Average)

1

W m N Em W W N

Average :

Bachelor of (Hons) Computer Science

552
562
542
27
586
702
721
mnr
552
564
551
8
733
728
726
721
579
57.2
535
731
547
723
729
721
541
722
567
588
721
604
643

Ubuntu (Max)
182.0
2150
175.0
2620
3060
2710
2640
249.0
204.0
2250
2450
2580
2700
270.0
270.0
266.0
231.0
248.0
204.0
264.0
207.0
2550
260.0
2550
2480
2540
2200
2240
270.0
246.0

Max - 306.0

macOS (Average)
922
934
934
922
928
930
924
93.1
914
934
920
927
91.7
926
919
93.0
935
928
914
929
91.7
927
92.0
91.6
926
928
924
928
928
929
Average - 925

macO$§ (Max)
328.0
3230
3240
3240
3250
315.0
315.0
320.0
312.0
3200
3300
315.0
320.0
315.0
324.0
317.0
330.0
330.0
307.0
336.0
314.0
351.0
316.0
328.0
308.0
318.0
323.0
313.0
322.0
345.0
Max - 351.0

Faculty of Information and Communication Technology (Perak Campus)

A-12

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

A.4 Gaming Interactive Task Results Data

Video

Bench Number Ubuntu (ge) Ubuntu (Max) macOS (£ ge) macO0S (Max) Windows (£ Windows (Max)
1 0.2 174 73.8 101.7 1.7 248
2 0.3 203 736 955 16 85
2} 0.5 839 91.8 3384 13 9.0
4 0.2 122 74.0 995 1.5 162
5 0.6 135 739 105.3 1.9 17.5
6 00 27 739 995 12 105
7 03 157 740 98.3 13 126
8 02 258 736 99.9 31 1039
9 0.1 50 739 89.1 1.3 8.3
10 0.2 265 739 999 20 174
" 0.2 145 653 199.1 16 171
12 05 593 741 100.1 21 23
13 02 197 737 992 22 104
14 0.2 125 73.8 957 11 93
15 0.0 67 739 98.0 1.3 18.1
16 0.2 261 74.0 101.6 16 17.9
17 0.2 171 74.0 97.3 14 84
18 0.1 111 TRE/ 100.1 13 187
19 03 269 738 928 15 467
20 01 148 TR 90.3 12 92
pal 01 156 739 98.3 16 814
2 0.2 415 74.0 1035 1.6 220
25} 0.1 103 76.7 216.9 13 17.3
24 0.2 16.8 739 98.7 11 92
25 02 228 738 100.2 12 85
26 04 431 737 100.2 16 26
27 0.2 266 7486 96.8 12 106
28 0.1 152 73.8 107.7 1.9 10.0
222) 0.3 1041 74.0 90.0 1.2 17.6
30 0.3 328 76.8 218.2 1.5 17.7

Average : 0.2 Max : 83.9 Average : 74.4 Max : 338.4 Average: 1.5 Max : 103.9
Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-13

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

X
Bench Sample Number Ubuntu (Average) Ubuntu (Max) macO$ (Average) macO$ (Max) Windows (Average) Windows (Max)
1 133 95.1 68.0 200.8 L 1403
2 129 T84 66.9 139.0 58.5 1337
3 13.6 953 68.0 175.3 575 1399
4 147 1183 672 133.0 58.1 1421
5 16.7 835 679 173.1 60.0 13986
6 144 87.1 66.9 1266 596 1400
7 148 925 673 1536 58.1 1398
8 144 846 66.6 130.7 577 1389
9 129 831 67.1 1285 578 1389
10 13.1 829 67.3 149.7 579 1337
" 13.0 843 67.0 1517 572 1389
12 136 75 664 1289 596 1410
13 136 869 67.1 160.0 594 1364
14 135 %27 68.3 151.0 58.7 146.1
15 135 8438 68.2 3218 585 1408
16 129 718 674 1242 579 1348
17 123 89.1 67.1 149.0 585 1385
18 13.1 887 68.7 203.6 59.3 1419
19 13.1 86.7 67.2 1216 58.1 1378
20 12.1 848 67.0 129.0 58.4 1366
21 13.0 943 67.2 1442 614 1378
prl 132 90.5 67.7 170.0 578 1402
23 125 90.0 67.3 159.7 592 1380
24 129 827 66.5 1393 594 1405
25 135 852 674 1456 58.0 1415
26 132 90.5 66.2 1334 58.0 1405
27 13.6 938 67.0 1339 577 1392
28 144 87.1 67.3 165.4 58.1 1408
29 158 1355 67.1 1431 58.1 1829
30 137 945 672 1336 583 1433
Average : 13.6 Max : 1355 Average - 67.3 Max : 321.8 Average - 58.6 Max : 182.9
Burn
Bench Sample Number Ubuntu (Average) Ubuntu (Max) macO$ (Average) macO$ (Max) Windows (Average) Windows (Max)
1 417 1086 1044 119.7 4231 595.1
2 458 935 1042 1212 404 .4 5499
3 510 971 109.1 363.0 404 6 6077
4 495 1406 1047 1716 4049 5535
5 472 97 1034 1196 3971 5489
6 489 943 104 4 130.8 4047 550.7
7 46.0 918 1035 1254 4043 5559
8 368 97 1042 1325 404.9 547 6
9 411 912 1034 1265 404.6 564.3
10 535 957 1043 118.8 404.0 5675
1" 50.1 966 104 4 124.1 4126 5582
12 458 97 104 6 1407 4047 5635
13 365 916 1043 1257 3973 5483
14 78 9T 105.6 196.5 405.7 628.1
15 444 944 1045 1229 3979 5480
16 36.0 1050 1044 118.9 3976 5493
17 436 930 1033 1257 4059 563.1
18 424 949 1042 1195 4041 5498
19 425 96.7 1046 1214 397.7 5520
20 430 918 1034 1236 3977 562.0
21 502 938 105.8 195.7 403.9 562.0
2 391 915 1046 1285 4045 5517
3 3986 922 1046 1324 4043 5622
24 385 1084 1043 1288 396.6 5490
25 451 916 1033 119.7 404.7 5463
26 a7 97 1033 1203 404.8 5625
27 46.0 974 104 4 1252 3979 5456
28 450 917 103.5 119.1 3974 5622
29 452 1398 1044 119.2 4059 5476
30 417 951 104.2 1252 4043 561.7
Average : 43.8 Max : 1406 Average - 104 .4 Max : 363.0 Average : 403.4 Max : 628.1

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-14

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-15

APPENDIX A — RESULTS DATA FOR INTERBENCH BENCHMARK

Ring
Bench Sample Number Ubuntu (Average) Ubuntu (Max) macOS (Average) macOS (Max)
1 473 96.7 1042 1203
2 458 943 1035 118.8
3 438 956 1259 362.3
4 548 1459 1043 1226
5 484 922 1043 118.3
6 494 1348 1033 1202
7 465 936 103.0 1205
i} 430 956 103.3 119.0
9 472 944 104.3 119.1
10 487 925 1043 1185
1 517 917 1034 119.9
12 419 916 1033 1287
13 371 916 1034 1222
14 432 952 1034 1183
15 443 917 1043 1186
16 423 917 1043 118.8
1w 504 935 1043 117.1
18 429 916 1033 1225
19 527 930 1057 2320
20 402 916 1034 1159
21 493 916 1034 1185
2 50.2 1442 106.2 359.0
23 426 942 1033 121.1
24 442 917 1043 1188
25 459 942 1033 1204
26 437 915 1058 2443
27 466 919 1042 1276
28 451 912 103.0 119.8
29 572 1456 1033 1373
30 444 916 1042 1203
Average - 46.4 Max : 1459 Average : 104.7 Max : 362.3
Compile
Bench Sample Number Ubuntu (Average) Ubuntu (Max) macO$ (Average) macO$ (Max)
1 2274 2837 3143 3637
2 2300 2935 3145 3659
3 2243 2830 3446 8375
4 2244 3418 3142 3712
5 2298 2853 3146 3564
6 2264 2833 3151 356.5
7 216.7 2707 3149 3857
8 2201 3010 3148 376.9
9 2306 2837 3169 3742
10 2220 2818 3149 3473
1" 2249 2929 317.0 3799
12 2182 2827 3146 3490
13 2174 2904 3786 3995
14 2231 2826 3149 359.6
15 2204 2830 3193 3633
16 2340 3612 372 356.9
17 2356 2979 316.9 359.8
18 2337 2836 3145 356.9
19 2315 2847 3145 358.1
20 2195 2843 3151 350.1
21 2247 286.4 3143 3675
prl 2197 2811 3150 366.3
3 2172 2704 3180 3587
24 2129 2836 377 368.1
25 2276 2923 316.9 3695
26 2267 2930 3147 3616
27 2302 296.1 3149 365.1
28 2319 2829 3146 3495
29 2344 3095 3149 350.7
30 2400 357.0 3148 3632
Average : 225.8 Max : 3612 Average : 316.5 Max : 837.5

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) A-16

APPENDIX B — WEEKLY LOG

APPENDIX B - WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project I1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 1

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

All the interactive tasks were executed by excluding emulate_memload() function
from the background loads as Memload cannot be simulated successfully for now.
Preparation for verification was done by disabling extra physical and virtual CPU
cores in the system. The number of CPU cores was set to 1 through XCode’s
Instrument Preferences and hardware multithreading was disabled. Besides that, Intel
Turbo Boost Technology was also disabled.

2. WORK TO BE DONE
Proceed with verification for Audio interactive task.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-1

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

Faced difficulties in disabling Intel Turbo Boost Technology as Apple computer
products do not have a BIOS where the option of disabling/enabling Intel Turbo
Boost Technology can be found in other computer systems. Turbo Boost Switcher,
which allows user to disable or enable Intel Turbo Boost Technology did not work
for the first installation. To solve this problem, a clean macOS Mojave 10.14.6
installation was performed.

4. SELF EVALUATION OF THE PROGRESS
Try to spend some time looking for alternatives instead of sticking to only one
solution in the project.

b .

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-2

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 2

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification on the CPU utilization was started by monitoring the CPU utilization for
Audio interactive task and the background loads used for concurrent execution. At
the end of the verification, Audio interactive task’s was proven to be able to generate
5% CPU utilization which is similar to the original Linux Interbench.

2. WORK TO BE DONE
Proceed with verification for Video interactive task.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-3

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

illustrated using gnuPlot.

Faced difficulties in monitoring CPU utilization graphs as WindowServer process
which is responsible in rendering the Graphical User Interface (GUI) consumes high
amount of CPU, causing inconsistencies in CPU utilization graphs in Activity
Monitor. As a solution, CPU utilization data was collected into a data file and

4. SELF EVALUATION OF THE PROGRESS

background loads in the macOS Interbench are able to behave consistently.

Try to repeat the verification process to ensure that the interactive tasks and

b S

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 3

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification on the CPU utilization was continued by monitoring the CPU utilization
for Video interactive task and the background loads used for concurrent execution.
At the end of the verification, Video interactive task’s was proven to be able to
generate 40% CPU utilization which is similar to the original Linux Interbench.

2. WORK TO BE DONE
Proceed with verification for X-window interactive task.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-5

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS
Try to repeat the verification process to ensure that the interactive tasks and
background loads in the macOS Interbench are able to behave consistently.

b 4

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-6

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 4

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification on the CPU utilization was continued by monitoring the CPU utilization
for X-window interactive task and the background loads used for concurrent
execution. According to the execution of the same interactive task on Linux
Interbench, X-window interactive task should be able to emulate CPU utilization
ranging from 0% to 100% to simulate a condition where a Graphical User Interface
(GUI) window is being grabbed and dragged. In conclusion, the behavior of X-
window on macOS is similar compared to the one in the original Linux Interbench.

2. WORK TO BE DONE
Proceed with verification for Gaming interactive task.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-7

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS
Try to repeat the verification process to ensure that the interactive tasks and
background loads in the macOS Interbench are able to behave consistently.

b 4

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-8

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 5

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE
The last interactive task verification for macOS Interbench was conducted. Gaming
interactive task utilizes as much CPU as it can in Linux. Similar behavior was
obtained from macOS Interbench. All the interactive tasks and background loads in
macOS Interbench were verified with the interactive tasks and background loads in
Linux Interbench.

2. WORK TO BE DONE

Perform verification for Windows Interbench ported by previous researcher before
conducting the actual comparison of interactivity performance between Linux,
macOS and Windows.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-9

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

Try to make sure that the CPU configuration for the verification process is maintained
for all operating systems so that the verification will be reliable before proceeding to
the final comparison.

I Lo

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-10

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 6

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification environment for Windows Interbench was set up. Started with a clean
installation of Windows 10 Single Language on the test computer. Limiting the
number of active CPU cores to 1 by making changes in the boot option located within
System Configuration program. Then, Intel Turbo Boost Technology was disabled
with the help of ThrottleStop program which is intended for CPU power adjustments.

After all the preparation steps were completed, the Windows Interbench from the
previous research was executed for verification purposes. Just like the Interbench on
macOS and Linux, each interactive task was executed concurrently with the
background loads. Task manager was used to monitor the Windows Interbench CPU
utilization while the benchmark program was executing at the same time.

After several executions, the behavior of Windows Interbench was similar to the
Linux Interbench and macQOS Interbench for every interactive tasks and background
loads involved.

2. WORK TO BE DONE
Collect the average and maximum scheduling latency values by executing Windows
Interbench for 30 iterations.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-11

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED
Error occurred on the first attempt of executing Windows Interbench. Problem solved
by recompiling Windows Interbench using Microsoft Visual Studio 2013.

4. SELF EVALUATION OF THE PROGRESS
Try to use batch scripts to automate the Interbench benchmarks for all operating
systems to save time and maintain consistencies in the benchmarks.

I L

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-12

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 7

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

For the execution of Windows Interbench and collection of scheduling latencies, a
batch script is written for the repeated execution of the benchmark program for 30
times. When the batch script was running, the test computer was left uninterrupted in
order to avoid any unnecessary workload that can affect the final results. After
running Windows Interbench for 30 times, the results were written to a log file. Lastly
the collected results were transferred to a spreadsheet for comparison after all the
benchmark results are obtained.

2. WORK TO BE DONE
Prepare benchmark environment for Linux Interbench. Collect the average and
maximum scheduling latency values by executing Linux Interbench for 30 iterations.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-13

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS
Try to use batch scripts to automate the Interbench benchmarks for all operating
systems to save time and maintain consistencies in the benchmarks.

e L

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-14

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 8

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang
Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

The test computer was formatted and included with a clean installation of Linux OS
(Ubuntu). Similar to Windows, number of active cores was changed and Intel Turbo
Boost Technology was disabled from the terminal. A shell script was written for
automation of Linux Interbench. The shell script was executed to run the benchmark
program repeatedly for 30 times. The test computer was left uninterrupted to increase
the accuracy of the final benchmark results. After the completion of the benchmark,
the scheduling latencies were recorded into a spreadsheet for future comparison.

2. WORK TO BE DONE

Prepare benchmark environment for macOS Interbench. Collect the average and
maximum scheduling latency values by executing macOS Interbench for 30
iterations.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-15

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS
Try to use shell scripts to automate the Interbench benchmarks for all operating
systems to save time and maintain consistencies in the benchmarks.

b S

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-16

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 9

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

For macOS Interbench, the test computer was formatted and clean installation was
performed just like the previous benchmark preparation. A shell script was also
written for repeated execution of macOS Interbench for 30 times. Number of active
CPU cores was set to 1 with the help of XCode. Then, Turbo Boost Switcher was
used to switch off Intel Turbo Boost Technology. The shell script was executed and
the test PC was left uninterrupted. Lastly, the benchmark results were recorded into
a spreadsheet for comparison purpose.

2. WORK TO BE DONE
Repeat benchmark for macOS with boot arguments changed.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-17

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED
Even with the extra physical and virtual CPU cores disabled through XCode,
ud_cpuload variable still remains as 4. This causes 4 threads used for simulation of

Burn, Ring and Compile background loads instead of 1 thread. This leads to an
unfair benchmark.

4. SELF EVALUATION OF THE PROGRESS

Try to figure out reasons that produces the benchmark results to be included in the
discussion of the final comparison.

b .

Supervisor’s signature

Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-18

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 10

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

The execution of macOS Interbench was repeated by changing the number of active
CPU cores through ‘sudo nvram boot-args="cpus=1""" instead of using XCode. The
same macOS Interbench was executed for 30 times to obtain the latest values for
scheduling latencies. The latest macOS benchmark results showed a significant
decrease in average and maximum scheduling latencies for Burn, Ring and Compile
background loads in all interactive tasks compared to the previous macOS
benchmark.

2. WORK TO BE DONE
Analyze the benchmark results recorded in the spreadsheet for Linux, macOS and
Windows. Generate graphs to illustrate their interactivity performance.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-19

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS
Try to figure out reasons that produces the benchmark results to be included in the
discussion of the final comparison.

e L

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-20

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 11

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

All benchmarks for Linux, macOS and Windows were completed. The average
latencies for background loads executed together with each of the interactive tasks
were calculated by totaling the average latencies from 30 benchmark samples and
dividing them by 30. The maximum latencies were determined by obtaining the
greatest value within the 30 benchmark samples. Bar charts were created for the
calculated values for every background loads within every interactive tasks.

2. WORK TO BE DONE

Add necessary comments into the source code of macOS Interbench and remove
temporary codes used for debugging previously. Proceed to discussion of comparison
results.

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-21

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS
Provide sufficient details and explanations for the comparison results.

e L

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus)

B-22

APPENDIX B — WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project 1)

Trimester, Year: Semester 3, Year 3 | Study week no.: 12

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Code cleanup performed by removing all unnecessary codes used in troubleshooting
and debugging. New comments added to allow better understanding of codes in
future use. The benchmark program was executed once to make sure that the changes
made does not cause failure of macOS Interbench.

2. WORK TO BE DONE

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-23

APPENDIX B — WEEKLY LOG

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

I Lo

Supervisor’s signature Student’s signature

Bachelor of (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus) B-24

FINAL YEAR PROJECT 2

INTERACTIVITY PERFORMANCE BENCHMARK
FOR WINDOWS AND MAC OS

INTRODUCTION

DISCUSSION

Operating system (OS) refers to a software that acts as an interface
between programs and computer hardware. The OS consists of a kernel,
which is a fundamental component that provides services such as
process management within a computer session. At any moment in a
computer session, there will be multiple tasks in an OS requesting to
execute. Thus, the Central Processing Unit (CPU) scheduler, interrupt
handler and process manager are introduced to handle the tasks'
requests and to ensure fair execution of tasks. Scheduler is responsible
to swap the tasks from time to time to ensure that the same task will not
be monopolizing the CPU.

The performance of a scheduler can be determined in terms of
interactivity. Interactivity is defined as the response time for a task to
switch from Ready State to Running State. One of the most popular
benchmark program that can be used to determine interactivity
performance is Interbench. The main goal of Interbench is to measure
the latencies and jitters that exist in Linux kernel schedulers under
various simulated conditions. Interactivity is important especially in user-
oriented systems such as desktops as a bad interactivity performance
caused by large amount of latencies will lead to noticeable lags and
unpleasant user experience. However, Interbench is only available for
Linux. Other OS which are designed for user-oriented applications such
as macOS and Windows were not supported by the benchmark program.
In this project, porting of Interbench from Linux to macOS is done to find
out the operating systems' interactivity performance.

PROBLEM STATEMENT

a. LACK OF SUPPORT OF INTERACTIVITY BENCHMARK PROGRAM
FOR DIFFERENT OPERATION SYSTEMS

Interbench only supports Linux. Because the benchmark program was

originally intended to compare different schedulers in Linux, the

performance of the same set of benchmark tests on other OS such as

Windows and macOS is limited.

b. INCREASING NEED FOR COMPARISON OF BENCHMARK
PERFORMANCE IN TERMS OF INTERACTIVITY BETWEEN
DIFFERENT OS KERNEL SCHEDULERS

OS developers are not able to obtain sufficient and accurate information
regarding the interactivity performance of different OS kernel schedulers.
Improvements of scheduling performance will become more challenging
to achieve on newly rolled out operating systems or updates. Besides OS
developers, normal users will also face a hard time finding the most
efficient OS schedulers as there is no way to accurately determine their
scheduling performance.

In the benchmark program, emulation threads and timekeeping threads
will gain access to shared resources by using semaphores. Semaphores
for both Linux and macOS are based on the traditional counting
semaphores. However, for macOS, Grand Central Dispatch’s (GCD)
dispatch semaphores are used in the ported Interbench because the
semaphore.h in macOS which is similar to Linux's semaphore.h header
contains deprecated functions. Table below shows the mapping of the
original functions from Linux semaphores to GCD semaphores.

Linux macOS

sem _init(sem t *sem, int pshared, dispatch _semaphore create(int value)

unsigned int value)

i h h YRR h h
t t

sem_wait(sem t *s)

*s, DISPATCH_TIME_FOREVER)
sem_trywait(sem _t *s) dispatch hore _wait(di h hore t
*s, DISPATCH_TIME_NOW)

sem_post(sem_t *s) di h hore_signal(di

*s)

Besides, Windows Interbench ported by the previous researcher was
verified with Linux Interbench in the verification plan in the past research.
However, the ported benchmark program was only executed on one set
of system hardware which does not prove its ability to work on different
hardware configuration. Therefore, reverification of Windows Interbench
is completed before proceeding to the actual comparisons involving
Linux, macOS and Windows. The outcome of the verification showed that
the behavior of Windows Interbench is similar to Linux Interbench and
macOS Interbench.

RESULTS

OBJECTIVES

« To modify existing benchmark application to enable the ability to run
interactivity benchmarking on macOS.

« To reverify Windows Interbench’s ability to work in different system
hardware configurations.

« To differentiate the interactivity performance of different OS kernel
schedulers from different operating systems by using a benchmark
program with the simulation of multiple computer related tasks under
different types of load.

After the completion of macOS Interbench and verification plan for all
three versions of Interbench, Two different comparisons for interactivity
performance were conducted. Same set of interactive tasks is used for
both comparisons. The first comparison covered Linux, macOS and
Windows. The interactive tasks were executed concurrently with various
background loads which include None, Video, X-window and Burn.

As for the second comparison, the background loads involved are Write,
Read, Ring and Compile. This comparison only involves Linux and
macOS because the four background loads specified are not available in
Windows Interbench.

For the comparison results of the first comparison, Linux showed the best
interactivity performance under most conditions, followed by macOS
producing good interactivity performance especially for interactive tasks
consuming low to medium amount of CPU. Windows shows the worst
interactivity performance in most of the combination pairs of interactivity
tasks and background loads. The poor performance became more
obvious when the interactive tasks were executed within conditions with
high background loads.

In the second comparison, Linux has a better interactivity performance in
multiple interactive tasks with CPU utilizations ranging from low to high
under Write, Read, Ring and Compile background loads.

CONCLUSION

METHODS

The whole research and development process is based on the Incremental
Model.

Prepared by : Fan Wei Cong
Bachelor of Computer Science (HONS)
Faculty of Information and Communication Technology

In this project, Interbench has been successfully ported to macOS with
the implementation of GCD semaphores and other changes.
Reverification of Windows Interbench proved the benchmark program's
ability to work in different hardware configurations. Comparisons done in
this project shows that Linux is the best in terms of interactivity
performance in most conditions.

PLAGIARISM CHECK RESULT

Document Viewer

Turnitin Originality Report

Processed on: 23-Apr-2020 17:44 +08
ID: 1305408725
Word Count: 11054

Similarity by Source

Similarity Index
Submitted: 1 Internet Sources: 2%

0 Publications: 3%
6 /) Student Papers: 3%

Interactivity Performance Benchmark For Windo... By Wc Fan

include quoted include bibliography excluding matches < 2 words mode: |Sh0w highest matches together "|| Change mode ‘ print download

1% match (publications)
C.S. Wong. "Fairness and interactive performance of (1) and CFS Linux kernel schedulers", 2008 International Symposium en Information Technology, 08/2008

1% match (publications)

Shen Wang. "Fairness and Interactivity of Three CPU Schedulers in Linux", 2009 15th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 08/2009

<1% match (student papers from 05-Feb-2019)
Submitted to Asia Pacific Instutute of Information Technology on 20138-02-05

<1% match (publications)
"Distributed Embedded Control Systems", Springer Nature, 2008

<1% match (publications)
Chee Siang Wong, Ian Tan, Rosalind Deena Kumari, Fun Wey. "Towards achieving fairness in the Linux scheduler”, ACM SIGOPS Operating Systems Review, 2008

<1% match (Internet from 13-Mar-2016)
http://etheses.bham.ac.uk

<1% match (student papers from 24-Oct-2015)
Submitted to University of Johannsburg on 2015-10-24

<1% match (publications)
Nigel Jacob, Carla Brodley. "Offloading IDS Computation to the GPU", 2006 22nd Annual Computer Security Applications Conference (ACSAC'06), 2006

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-1AD-005 | Rev No.: 0 | Effective Date: 01/10/2013 | Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY
Full Name(s) of Fan Wei Cong
Candidate(s)
ID Number(s) 16ACB02681
Programme / Course Bachelor of Computer Science (HONS)
Title of Final Year Project | Interactivity Performance Benchmark For Windows And Mac
0S

Similarity

Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 6 %

Similarity by source

Internet Sources: 2 %
Publications: 3 %
Student Papers: 3 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Owverall similarity index is 20% and below, and
(i) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

b

Signature of Supervisor

Name: Wong Chee Siang

Date: 23 April 2020

Signature of Co-Supervisor

Name:

Date:

UT

UNIVERSITI TUNKU ABDUL RAHMAN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION
TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB02681

Student Name Fan Wei Cong

Supervisor Name | Wong Chee Siang

TICK (\/) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

Front Cover

Signed Report Status Declaration Form

Title Page

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

All references in bibliography are cited in the thesis, especially in the chapter
of literature review

Appendices (if applicable)

Poster

212 1=2 2|22 1=2 22|22l 22 2|

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

[, the author, have checked and confirmed | Supervisor verification. Report with
all the items listed in the table are included | incorrect format can get 5 mark (1 grade)

in my report. reduction.
(Signature of Student) (Signature of Supervisor)

Date: 23 April 2020 Date: 23 April 2020

