

INTERACTIVITY PERFORMANCE BENCHMARK FOR WINDOWS AND MAC

OS

By

Fan Wei Cong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: _Interactivity Performance Benchmark For Windows and Mac OS _

 __

 __

Academic Session: _January 2020_

 I ___FAN WEI CONG___

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 3, Persiaran Halaman Ampang 24,

 Halaman Ampang Mewah, 31350, __Wong Chee Siang______

 Ipoh, Perak. __ Supervisor’s name

 Date: ___23 April 2020________ Date: __23 April 2020______

INTERACTIVITY PERFORMANCE BENCHMARK FOR WINDOWS AND

MAC OS

By

Fan Wei Cong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2020

 ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “INTERACTIVITY PERFORMANCE

BENCHMARK FOR WINDOWS AND MAC OS” is my own work except as cited

in the references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : ___Fan Wei Cong__________

Date : ___23 April 2020__________

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Wong

Chee Siang for allowing me to involve in this research project titled Interactivity

Performance Benchmark for Windows and Mac OS and trying his very best to assist

me in making this project a success.

Besides that, I would also like to thank my dearest family and friends for the

unconditional support and love throughout the process of completing this project.

 iv

ABSTRACT

 Operating system (OS) is a piece of software that exists between computer

hardware and programs. Communication between hardware and programs is impossible

without the help of an operating system. Within a computer system, there will be a

massive amount of tasks created by various types of installed programs which allows

the user to perform their work, such as rendering an image and playing a video.

However, the number of Central Processing Unit (CPU) available in a computer system

will not be accessed by all of the tasks at the same time. In order to allow a fair CPU

resource allocation to all the tasks, kernel scheduler is introduced as one of the

fundamental component in operating systems.

 In this report, the interactivity performance of macOS kernel scheduler will be

measured and compared with other OS kernel schedulers using a benchmark program

called Interbench. However, Interbench was only available in Linux, making

interactivity performance benchmarking impossible without porting it to macOS.

Changes involving various semaphores implementations and macOS-specific

headers/libraries application are included in the process of porting the original

Interbench to macOS.

 The Interbench benchmark program which was ported to Windows in the past

research will be reverified to ensure that the ported benchmark program is able to

simulate the interactive tasks and background loads correctly when it is being executed

in systems with different hardware configurations.

 The final outcome of this research is to compare the interactivity performance

of kernel schedulers in macOS, Linux and Windows with the help of original and ported

versions of Interbench. The comparison shows that Linux kernel scheduler has the

greatest advantage in terms of interactivity performance in various types of interactive

tasks and background load conditions.

 v

TABLE OF CONTENTS

INTERACTIVITY PERFORMANCE BENCHMARK FOR WINDOWS AND

MAC OS ... i

DECLARATION OF ORIGINALITY .. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. ix

LIST OF TABLES ... xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1 – INTRODUCTION ... 1

1.1 Problem Statement ... 3

1.2 Background and Motivation ... 4

1.2.1 Project Background ... 4

1.2.2 Motivation ... 5

1.3 Project Scope .. 6

1.3.1 Porting Interbench to macOS .. 6

1.3.2 Perform Reverification for Windows Interbench .. 6

1.3.3 Run benchmark test and compare the performance in Linux, Windows and

macOS .. 6

1.4 Project Objectives .. 8

1.5 Proposed Approach .. 9

1.6 Highlight of What Have Been Achieved .. 10

1.7 Report Organization ... 11

CHAPTER 2 – LITERATURE REVIEW ... 12

2.1 Fairness and Interactivity Performance of O(1) and CFS Linux Kernel

Schedulers .. 12

 vi

2.2 Latencies in Linux and FreeBSD kernels with different schedulers – O(1), CFS,

4BSD, ULE .. 14

2.3 Fairness and Interactivity of Three CPU Schedulers in Linux 16

2.4 Interactivity Performance Benchmark on Windows OS 18

2.5 Synchronization Primitives .. 20

CHAPTER 3 – SYSTEM DESIGN .. 21

3.1 General Workflow of macOS Interbench ... 21

3.2 Detailed Function Flowcharts .. 23

3.2.1 main() Function Flowchart ... 23

3.2.2 bench() Function Flowchart.. 27

3.2.3 get_ram() Function Flowchart .. 29

3.2.4 run_loadchild() Function Flowchart .. 31

3.2.5 run_benchchild() Function Flowchart .. 32

3.2.6 emulation_thread() Function Flowchart ... 34

3.2.7 timekeeping_thread() Function Flowchart ... 36

3.2.8 init_sem() Function Flowchart ... 39

3.2.9 wait_sem() Function Flowchart .. 39

3.2.10 trywait_sem() Function Flowchart ... 40

3.2.11 post_sem() Function Flowchart .. 41

3.2.12 emulate_none() Function Flowchart ... 41

3.2.13 emulate_audio() Function Flowchart.. 42

3.2.14 emulate_video() Function Flowchart.. 43

3.2.15 emulate_x() Function Flowchart .. 44

3.2.16 emulate_game() Function Flowchart .. 46

3.2.17 emulate_burn() Function Flowchart ... 48

3.2.18 emulate_write() Function Flowchart .. 50

3.2.19 emulate_read() Function Flowchart.. 54

 vii

3.2.20 emulate_ring() Function Flowchart .. 56

3.2.21 emulate_compile() Function Flowchart .. 58

3.3 System Design Explanation ... 61

3.3.1 Obtaining Total Physical Memory .. 61

3.3.2 Semaphore Operations ... 63

3.4 Implementation Issues and Challenges .. 66

CHAPTER 4 – METHODOLOGIES .. 67

4.1 Methodology and General Work Procedures ... 67

4.2 Tools To Use .. 69

4.2.1 GNU Compiler Collection (GCC) ... 69

4.4.2 Interbench .. 69

4.2.3 Vim Editor ... 70

4.2.4 Turbo Boost Switcher .. 70

4.2.5 Gnuplot .. 71

4.3 System’s Specification ... 72

4.4 Verification Plan .. 73

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK 82

5.1 Interactivity Test .. 82

5.2 Simulation Environment .. 83

5.3 Comparison Results.. 86

5.3.1 Interactivity Performance Comparison Results for Linux, macOS and

Windows ... 86

5.3.2 Interactivity Performance Comparison Results for Linux and macOS 92

CHAPTER 6 - CONCLUSION .. 98

BIBLIOGRAPHY .. 100

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK A-1

A.1 Audio Interactive Task Results Data ... A-1

 viii

A.2 Video Interactive Task Results Data ... A-5

A.3 X-window Interactive Task Results Data .. A-9

A.4 Gaming Interactive Task Results Data .. A-13

APPENDIX B – WEEKLY LOG ... B-1

PLAGIARISM CHECK RESULT

CHECKLIST FOR FYP2 THESIS SUBMISSION

 ix

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 7-State Model 1

Figure 3.1 General Workflow of macOS Interbench 21

Figure 3.2 Flowchart for main() 22

Figure 3.3 Flowchart for bench() 26

Figure 3.4 Flowchart for get_ram() 28

Figure 3.5 Flowchart for run_loadchild() 30

Figure 3.6 Flowchart for run_benchchild() 31

Figure 3.7 Flowchart for emulation_thread() 34

Figure 3.8 Flowchart for timekeeping_thread() 37

Figure 3.9 Flowchart for init_sem() 38

Figure 3.10 Flowchart for wait_sem() 38

Figure 3.11 Flowchart for trywait_sem() 39

Figure 3.12 Flowchart for post_sem() 40

Figure 3.13 Flowchart for emulate_none() 40

Figure 3.14 Flowchart for emulate_audio() 41

Figure 3.15 Flowchart for emulate_video() 42

Figure 3.16 Flowchart for emulate_x() 43

Figure 3.17 Flowchart for emulate_game() 45

Figure 3.18 Flowchart for emulate_burn() 47

Figure 3.19 Flowchart for emulate_write() 49

Figure 3.20 Flowchart for emulate_read() 53

 x

Figure Number Title Page

Figure 3.21 Flowchart for emulate_ring() 55

Figure 3.22 Flowchart for emulate_compile() 57

Figure 3.23 Changes Made in get_ram() 60

Figure 3.24 Value for ud.ram in Program Output 61

Figure 3.25 Changes Made in init_sem() 63

Figure 3.26 Changes Made in wait_sem() 63

Figure 3.27 Changes Made in trywait_sem() 64

Figure 3.28 Changes Made in post_sem() 64

Figure 3.29 Output Containing Benchmark Results for Audio 64

Figure 4.1 Incremental Model 66

Figure 4.2 CPU Utilization Graph for Audio on macOS 73

Figure 4.3 CPU Utilization Graph for Audio on Linux 73

Figure 4.4 CPU Utilization Graph for Audio on Windows 74

Figure 4.5 CPU Utilization Graph for Video on macOS 75

Figure 4.6 CPU Utilization Graph for Video on Linux 75

Figure 4.7 CPU Utilization Graph for Video on Windows 76

Figure 4.8 CPU Utilization Graph for X-window on macOS 77

Figure 4.9 CPU Utilization Graph for X-window on Linux 77

Figure 4.10 CPU Utilization Graph for X-window on Windows 78

Figure 4.11 CPU Utilization Graph for Gaming on macOS 79

Figure 4.12 CPU Utilization Graph for Gaming on Linux 79

Figure 4.13 CPU Utilization Graph for Gaming on Windows 80

Figure 5.1 Average Latency for Audio on Linux, macOS and Windows 87

 xi

Figure Number Title Page

Figure 5.2 Average Latency for Video on Linux, macOS and Windows 87

Figure 5.3 Average Latency for X-window on Linux, macOS and

 Windows 88

Figure 5.4 Average Latency for Gaming on Linux, macOS and

 Windows 88

Figure 5.5 Maximum Latency for Audio on Linux, macOS and

 Windows 89

Figure 5.6 Maximum Latency for Video on Linux, macOS and

 Windows 89

Figure 5.7 Maximum Latency for X-window on Linux, macOS and

 Windows 90

Figure 5.8 Maximum Latency for Gaming on Linux, macOS and

 Windows 90

Figure 5.9 Average Latency for Audio on Linux and macOS 93

Figure 5.10 Average Latency for Video on Linux and macOS 93

Figure 5.11 Average Latency for X-window on Linux and macOS 94

Figure 5.12 Average Latency for Gaming on Linux and macOS 94

Figure 5.13 Maximum Latency for Audio on Linux and macOS 95

Figure 5.14 Maximum Latency for Video on Linux and macOS 95

Figure 5.15 Maximum Latency for X-window on Linux and macOS 96

Figure 5.16 Maximum Latency for Audio on Linux and macOS 96

 xii

LIST OF TABLES

Table Number Title Page

Table 1.1 Mapping of Linux Semaphores to GCD Semaphores 8

Table 3.1 Mapping of Linux Semaphores to GCD Semaphores 62

Table 4.1 System’s Specification 71

Table 5.1 Simulation of Audio Task for Linux, macOS and Windows 83

Table 5.2 Simulation of Video Task for Linux, macOS and Windows 83

Table 5.3 Simulation of X-window Task for Linux, macOS and

 Windows 83

Table 5.4 Simulation of Gaming Task for Linux, macOS and Windows 83

Table 5.5 Simulation of Audio Task for Linux and macOS 84

Table 5.6 Simulation of Video Task for Linux and macOS 84

Table 5.7 Simulation of X-window Task for Linux and macOS 84

Table 5.8 Simulation of Gaming Task for Linux and macOS 84

 xiii

LIST OF ABBREVIATIONS

API Application Program Interface

CFS Completely Fair Scheduler

CPU Central Processing Unit

GCC GNU Compiler Collection

GCD Grand Central Dispatch

GUI Graphical User Interface

OS Operating System

RAM Random Access Memory

SD Staircase Deadline

SSD Solid State Drive

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 1

CHAPTER 1 – INTRODUCTION

Operating system (OS) refers to a software that acts as an interface between programs

and computer hardware (Silberschatz, Galvin & Gagne 2009). It is comprised of a

fundamental component, known as kernel. The kernel will be loaded into the Random

Access Memory (RAM) once the system is booted and remains in the RAM for the

entire computer session to provide services such as process management and file

management. At any moment within a computer session, there are more than one tasks

in an OS requesting to execute. Task in OS terms is defined as a process or thread that

carries out a set of operations in sequential order (Kamal 2011). Thus, the Central

Processing Unit (CPU) scheduler, interrupt handler and process manager are designed

to handle the requests from the tasks and to ensure fair execution of tasks. To achieve

fairness in scheduling, the scheduler should ensure that the same task will not be

utilizing the CPU all the time, causing other tasks to face starvation. Starvation is a

condition where a task is ready to execute but it is not chosen to execute due to low

priority. Besides, an efficient CPU scheduling algorithm should exist as it is necessary

for making scheduling decision as soon as possible.

Most CPU scheduler benchmarking programs focused on determining the system

performance based on the throughput of non-interactive tasks (Phoronix Test Suite

2020). These benchmarking programs are not appropriate for the measurement of an

operating system’s interactivity performance as the main goal of these benchmarking

programs is to determine the number of tasks or instructions that can be executed over

time. Instead, interactivity performance should be measured based on the response time

which is defined as the time from the submission of a request until the time when the

response is received (Stallings, n.d.). In other words, response time refers to the time

required for a task to switch from Ready State to Running State. A task will be in Ready

State when it makes requests for CPU resources to execute instructions. After a request

is made by a task, the task will be enqueued to a data structure and will wait until it is

chosen by the scheduler for execution. When it is chosen to execute on the CPU, the

task will switch from Ready State to Running State. The transition of states for a task

is shown in Figure 1.1 below. Interactivity performance plays a very important role in

user-oriented systems such as desktops. These systems are used for various types of

interactive tasks involving both user and computer which are equivalent to response

time sensitive non-CPU bound tasks. The ideal condition for these tasks is when the

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 2

amount of response time is low because high response time will become noticeable by

human when the response time exceeds the average response time for humans to a

visual stimulus, which is 250ms (Backyard Brains, n.d.). For instance, in a video

playback, bad interactivity performance will cause some frames in the video to be

dropped, making it unnatural for the users to look at. When problems like this exist in

a user-oriented system, the user experience of the system will be affected.

Figure 1.1 7-State Model

Interbench is one of the most well-known benchmark programs which can be used to

determine interactivity performance for an operating system (Kolivas 2006). The main

goal of this benchmark program is to measure the latencies and jitters that exist in Linux

kernel schedulers under different simulated conditions, called interactivity. Interactivity

can also be described as an interactive task’s response time. However, Interbench is

only available for Linux. Other operating systems designed for user-oriented

applications such as macOS and Windows are not supported by the benchmark program.

Therefore, there is no way to find out the interactivity performance for all operating

systems without porting the benchmark program to the unsupported OS.

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 3

1.1 Problem Statement

Lack of support of interactivity benchmark program for different operating

systems

A benchmark program should provide a standard set of tests to allow comparisons and

evaluations of system with same set of hardware and different operating systems.

However, Interbench only supports Linux. Because the benchmark program was

originally intended to compare different schedulers in Linux, the performance of the

same set of benchmark tests on other OS designed for user-oriented applications such

as Windows and macOS is limited.

Increasing need for comparisons of benchmark performance in terms of

interactivity between different OS kernel schedulers

If a benchmark program is not capable of running in different operating systems, OS

developers are not able to obtain sufficient and accurate information regarding the

interactivity performance of different OS kernel schedulers. Improvements of

scheduling performance will become more challenging to achieve on newly rolled out

operating systems or updates. Besides OS developers, normal users will also face a hard

time finding the most efficient OS schedulers as there is no way to accurately determine

their scheduling performance. The reason is because the users have no accurate

information such as latency time, they can only make a guess from the jitters and lags

based on their observations.

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 4

1.2 Background and Motivation

1.2.1 Project Background

Interbench was used in several past researches to measure the interactivity performance

for OS kernel schedulers. One of the researches has figured out the interactivity

performance and fairness of O(1) scheduler and Completely Fair Scheduler (CFS)

which is included in Linux kernel version 2.6 and version 2.6.23 respectively (Wong et

al. 2008). Both of the kernel schedulers were evaluated in terms of interactivity

performance and fairness. At the end of the research, CFS is proven to be better in terms

of efficiency and fairness of CPU bandwidth distribution without sacrificing its

interactivity performance.

Besides that, Interbench was also applied in the study of latencies that exist in

schedulers in Linux and FreeBSD kernels focusing on real-time system applications

(Abaffy & Krajcovic 2009). In the research, 4 different kernel schedulers were involved,

including O(1), CFS, 4BSD and ULE. Discovery of optimal kernel option had been

carried out to minimize the amount of latencies. Interbench was used for interactivity

benchmarks with different Linux kernel configurations applied. As Interbench does not

support benchmarks for FreeBSD kernel, a new benchmark, namely PI-ping was

developed for the comparison of all 4 kernel schedulers. Final results of the benchmarks

showed that CFS has a greater advantage in servers which require high throughput and

embedded systems which emphasize in producing low latencies.

Next, the application of Interbench can be also found in a past research which studied

on the fairness, interactivity and multiprocessor performance of O(1) scheduler,

Staircase Deadline (SD) scheduler and Completely Fair Scheduler (CFS) (Wang et al.

2009). Results for the interactivity test showed that interactive tasks in O(1) scheduler

have the highest tendency to face starvation as the scheduler will raise the priority of

one of the interactive tasks once it is finally considered as an interactive task, allowing

that particular interactive task to stay in the active queue for a long time. In terms of

fairness, good fairness in long term can be achieved by all three kernel schedulers in a

uniprocessor environment. As for multiprocessor environment, CFS is the fairest

compared to O(1) scheduler and SD scheduler.

A clear idea about the interactivity performance of Linux kernel schedulers can be

provided by all three researches mentioned above. However, the coverage of these

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 5

researches only include Linux OS while the interactivity performance of kernel

schedulers in other operating systems such as Windows and macOS are still unknown.

Fortunately, a research has been conducted previously regarding the interactivity

performance for Windows OS (Cheng 2015). In order to achieve this, the researcher

ported Interbench to Windows 8 by implementing an alternative application program

interface (API) for Linux API in Windows. Comparison by using the original Linux

Interbench and ported Windows Interbench proved that Linux kernel scheduler has the

ability to handle interactive tasks better compared to Windows 8 kernel scheduler. The

great performance becomes more obvious when Linux kernel scheduler is operating in

high background load conditions.

1.2.2 Motivation

The first motivation of this project is to achieve a fair and accurate comparison on the

interactivity performance on different operating systems. In order to accomplish this,

the original Interbench benchmark program developed specifically for Linux OS will

require porting to macOS. Else, there is no way to figure out the differences in

interactivity performance for all OS.

Next, the second motivation of this project is to ease the process of OS developments

by providing a fair interactivity performance analysis solution to the OS developers.

The developers are able to determine whether their design and implementation of

schedulers in their operating systems’ kernel are better than the others or the schedulers

deployed previously. For normal users, they will be able to use the benchmark

application to determine their systems’ interactivity performance and figure out the

system that produces the greatest interactivity performance with minimal response time.

Past research showed that response time in a computing system can lead users to

psychological consequences such as stress and emotion problems. Bad interactivity

performance caused by great amount of response time can cause users to have a bad

emotional state, especially when the users are under time pressure (Stupak 2009).

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 6

1.3 Project Scope

1.3.1 Porting Interbench to macOS

Due to the unavailability of Interbench in other operating systems other than Linux OS,

porting of the benchmark program is a necessary step to achieve our objectives. In this

project, Interbench will be ported into macOS to obtain the results in terms of

interactivity performance for interactive tasks in macOS. In order to achieve this, syntax

difference and parameter difference caused by different system libraries and headers

will be figured out and appropriate modifications will be made.

1.3.2 Perform Reverification for Windows Interbench

Interbench was made available to Windows by Cheng (2015) in the previous research.

Although a verification plan was completed by the researcher, however, Windows

Interbench was only executed on Windows 8 with one set of system hardware which

does not reflect the ported benchmark program’s ability to work in different hardware

configurations and different version of Windows OS. Besides, the past verification did

not include information for Intel Turbo Boost Technology, which allows CPU to run at

higher frequency than its base frequency for heavier workloads to achieve better

performance. Intel Turbo Boost Technology can affect the simulation of interactive

tasks and background loads because the behaviour of this technology differs from one

OS to another. In order to allow fair comparisons of interactivity performance, Intel

Turbo Boost Technology will be disabled for all three OS. Therefore, Windows

Interbench will be reverified to ensure that the benchmark program is able to behave

similarly to the original Interbench on different sets of system hardware and software

configurations.

1.3.3 Run benchmark test and compare the performance in Linux, Windows and

macOS

In order to compare the kernel schedulers’ performance, Linux, Windows and macOS

will be installed natively into the test computer so that fair comparisons can be done

with same hardware resources, for instance, the CPU. The original Interbench and the

modified Interbench will be executed in terminal of every OS. In the execution process,

combination pair consisting one interactive task and one background load will be

executed concurrently and the scheduling latencies will be measured.

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 7

For the actual benchmark test, 4 different interactive tasks will be simulated. Audio and

Video tasks represent low CPU consumption task and medium CPU consumption task

respectively. As for the high CPU consumption tasks, X and Gaming will be included.

These 4 interactive tasks will be simulated under different loads. Detailed discussion of

all possible combination pairs of interactive task and background loads is included in

Chapter 5.2 of this report. Average scheduling latencies and maximum scheduling

latencies that exist within each interactive task will be obtained by running Interbench

repeatedly for up to 30 times. The obtained latencies results will be compared side-by-

side in graphs to provide a clearer insight about the differences in interactivity

performance for the schedulers of Linux, Windows and macOS.

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 8

1.4 Project Objectives

 To modify existing benchmark application to enable the ability to run interactivity

benchmarking on macOS.

 To reverify Windows Interbench’s ability to work in different system hardware

configurations.

 To differentiate the interactivity performance of different OS kernel schedulers

from different operating systems by using a benchmark program with the simulation

of multiple computer related tasks under different types of load.

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 9

1.5 Proposed Approach

In the macOS Interbench, there are multiple critical sections consist of variables shared

among threads such as emulation_thread and timekeeping_thread. The threads are able

to access the shared variables and perform updates on the values of the variables during

the execution of the program. If there is no proper synchronization done for threads’

execution, the execution order of the program will be different every time, causing the

values of the variables will be changed improperly, also known as a race condition.

Semaphores are applied in macOS Interbench to ensure the correct thread execution

sequence and make sure that the critical sections are accessed by only one thread at a

time.

The thread synchronization for macOS Interbench is implemented with the help of

Grand Central Dispatch’s (GCD) semaphore (Apple Developer 2019). Semaphores

which were originally implemented in the original Interbench benchmark program is

not applicable in macOS as the functions located in semaphore.h header file are no

longer supported by Apple. Table 1.1 below shows the mapping of the original

functions from Linux semaphores to GCD semaphores.

Linux macOS

sem_init(sem_t *sem, int

pshared, unsigned int value)

dispatch_semaphore_create(int value)

sem_wait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore_t

*s, DISPATCH_TIME_FOREVER)

sem_trywait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore_t

*s, DISPATCH_TIME_NOW)

sem_post(sem_t *s) dispatch_semaphore_signal(dispatch_semaphore_t

*s)

Table 1.1 Mapping of Linux Semaphores to GCD Semaphores

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 10

1.6 Highlight of What Have Been Achieved

The first thing that have been achieved in this project is obtaining the total amount of

physical memory which is available. This information is required for the simulation of

multiple background loads involving Disk I/O operations such as Write and Read. The

Write background load is simulated by writing to a file with the size of the physical

memory while the Read background load is simulated by reading from a file with the

size of the physical memory from the disk.

Followed by the implementation of Grand Central Dispatch’s (GCD) semaphores for

synchronization of threads involving accesses to shared resources.

After the achieving the things mentioned above, verification on the Interbench

benchmark program on Linux, macOS and Windows was done to make sure that the

simulation behaves correctly so that the final interactivity performance results will be

reliable.

Lastly, Interbench was executed for 30 times repeatedly on each operating system to

obtain the average scheduling latencies and maximum scheduling latencies. The final

results were collected and presented in the form of bar charts for comparison purposes.

CHAPTER 1 - INTRODUCTION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 11

1.7 Report Organization

The details for this research are included in the following chapters. In Chapter 2, it

covers literature review that contains work done in previous researches and related to

the current project. Followed by Chapter 3 which contains discussions on the system

design and explanation of Interbench benchmark program. Then, Chapter 4 discusses

about the methodologies applied in this project. Next, the comparisons of interactivity

performance on Linux, macOS and Windows are discussed in Chapter 5. Lastly, the

project is concluded in Chapter 6.

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 12

CHAPTER 2 – LITERATURE REVIEW

2.1 Fairness and Interactivity Performance of O(1) and CFS Linux Kernel

Schedulers

In this research done previously, the scheduling algorithms for two different Linux

kernel schedulers were explained (Wong et al. 2008). The paper focused on the ways

time sharing tasks work in the different kernel schedulers in terms of their interactivity

performance and fairness of the schedulers.

In Linux kernel version 2.6, O(1) scheduler was introduced by Ingo Molnar. In this

scheduler, each of the system’s CPU will have their own run-queue where all the

runnable tasks assigned to the specific CPU will handled. In order to achieve this, 2

different arrays will be used, an active array and an expired array. For a task to access

the CPU, a runnable task which is stored within the active array and having the greater

dynamic priority will be selected by the O(1) scheduler for execution with time

quantum pre-specified. When several runnable tasks with the same priority values, a

preemptive Round Robin scheduling style will be applied so that all the tasks can obtain

a fair access to the CPU resources. After the time quantum is finished, the current task’s

next time quantum will be calculated and the task will be placed into the expired run-

queue. Eventually the active array will become empty as all the tasks’ time quantum

have been finished. This is where the pointers of the 2 arrays will be switched. In other

words, the previous active array will become the current expired array and the previous

expired array will become the current active array.

In order to implement tasks prioritization in the system, 2-D array is used in the run-

queue. The 2-D array contains 140 different priority levels consisting of real-time

priority (ranging from 0 to 99) and static priority (ranging from 100 to 139). Each of

the static priorities is assigned with a nice value, which determines a process’s priority.

The base amount of time quantum allocated to a task is based on the static priority. The

equation below is followed:

Base time slice (in milliseconds) = if static priority < 120, (140 –static priority) × 20

if static priority ≥ 120, (140 – static priority) × 5

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 13

Therefore, if a process has a higher static priority than others, a longer base CPU time

quantum will be allocated to the other processes with lower static priorities. In other

words, the task will be able to access the CPU for a longer period.

The O(1) kernel scheduler is being used in the next Linux kernel versions until Linux

kernel version 2.6.23. It is being replaced by another kernel scheduler called

Completely Fair Scheduler (CFS). To achieve a better efficiency, some components

that were used in the O(1) scheduler are removed, including run queue arrays and

allocation of time quantum based on priority values. The advantages of CFS include

the ability to produce a good interactivity performance while pushing the CPU to its

maximum utilization and allowing fair CPU resource access for all the tasks without

dragging down the interactivity performance of the CPU. Fair amount of CPU time is

assigned to each task by the application of proportional share algorithm to achieve

fairness.

The desired situation the CFS try to achieve is to allow parallel execution of tasks in a

uni-processor system. However, that is not possible as only one task is allowed to run

in the CPU at a time, which causes other tasks to wait for the time quantum of the

executing task to exhaust or request for I/O. Proportional share algorithm is used to

break the time quantum to reduce the amount of lags to its minimum. The time quantum

that will be allocated to a task is calculated based on the equation below:

𝑠𝑙𝑖𝑐𝑒 =
𝑠𝑒 → 𝑙𝑜𝑎𝑑. 𝑤𝑒𝑖𝑔ℎ𝑡

cfs_rq → load.weight
 × 𝑝𝑒𝑟𝑖𝑜𝑑

se -> load.weight refers to the schedule-able entity’s weight that can be obtained from

prio_to_weight 2-D array using nice values, cfs_rq -> load_weight representing the sum

of all the weights from all the entities within the CFS run-queue and period refers to the

time quantum for the scheduler to run all the tasks.

At the end of the research, evaluations of fairness and interactivity performance in both

O(1) and CFS are carried out. Final results showed that CFS is better than O(1) kernel

scheduler in terms of efficiency and fairness of CPU bandwidth distribution without

sacrificing its interactivity performance.

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 14

2.2 Latencies in Linux and FreeBSD kernels with different schedulers – O(1), CFS,

4BSD, ULE

Study was done by the researchers involved in this paper regarding the latencies present

in schedulers included in different Linux 2.6 kernel versions with a focus on its

application in real-time systems (Abaffy & Krajcovic 2009). Some soft real-time tuning

options were used to discover the best kernel configuration with the least amount of

latencies exists.

Comparisons had been carried out on O(1) scheduler in Linux kernel version 2.6.22 and

Completely Fair Scheduler (CFS) in Linux kernel version 2.6.28. Linux kernel version

2.6.22 is the last kernel version that uses O(1) kernel scheduler before it was replaced

by Completely Fair Scheduler (CFS) from Linux kernel version 2.6.23 and above.

Making the comparisons more accurate, different kernel options were also compared as

latency reduction is possible when other options are applied. A kernel which is designed

for server usage, 4BSD scheduler and ULE scheduler available in FreeBSD 7.1 kernel

were also included in the comparison.

The discovery of the optimal kernel configurations involves appropriate kernel options

setting, kernel compilations and benchmark performance. Interbench was the main

benchmark program used in the research for the testing various kernels. Each test was

carried out for a period of 30 seconds with 1055301 CPU cycles used per second,

enabling the collection of relevant data. Besides, the Linux kernels with default

configuration applied were used as reference kernels. Then, some appropriate kernel

options were added into the default kernel configurations and compared with the

reference kernels to determine the presence of any improvement in terms of real-time

performance.

Unfortunately, some problems were faced by the researchers in the middle of the study.

One of the problems is that they were unable to compare Linux and FreeBSD kernels

by only using Interbench, which is originally developed for Linux. As a solution, a new

benchmark called PI-ping was developed to compare all 4 kernel schedulers.

As for the results, CFS was proved to have an advantage in both applications in servers

and embedded systems, which requires high throughput or number of tasks completed

within a specified time and low latencies respectively. The researchers also proved that

CFS is able to perform better than O(1) for number of processes below than 500 due to

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 15

CFS’s complexity of O(log n). Lastly, processes are managed by CFS in a red-black

tree while others use run-queues.

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 16

2.3 Fairness and Interactivity of Three CPU Schedulers in Linux

Analysis has been conducted on three different schedulers in terms of their fairness,

interactivity, and multi-processor performance by applying benchmarks (Wang et al.

2009). The three schedulers studied are O(1), Staircase Deadline (SD) schedulers and

Completely Fair Scheduler (CFS). Comparison and evaluation in the schedulers were

done using three different types of benchmarks, kernel codes remained unchanged

except for the scheduler to introduce the goals of CPU scheduling and the schedulers.

The primary goal of the scheduler is fairness, which refers to sharing CPU time fairly

with individual tasks and considering the priorities of the tasks at the same time.

According to the researcher, the scheduling algorithm is considered as fairer when the

amount of lag is smaller.

Followed by the next scheduling goals are regarding interactivity and impact on fairness.

Minimal amount of latencies is necessary in order to achieve a good response time for

interactive tasks. The tendency for an interactive task to sleep frequently has become

an assumption made by the scheduler to identify it as an interactive task. For a situation

which multiple interactive tasks existing the system, the scheduler needs to maintain

the fairness between the tasks to prevent any of the tasks from facing starvation.

Starvation refers to a situation where task is already in ‘Ready’ state but it is not chosen

to execute. Besides that, interactive tasks should not let the non-interactive tasks to

starve for a long time.

The next scheduling goal is load balance. In order to accelerate computation in a parallel

way, many multi-processor architecture were introduced and used in embedded fields.

Without the existence of load balance, CPUs in a system will face a significant amount

of unfairness as there is no way to predict the load of each CPU in a specific time.

Lastly, application performance in the real world is also an important goal. The number

of large real world applications that can be executed on both desktop environment and

server environment increases. So, maximum throughput, fairness and interactivity are

the important features that should be included in a well-designed scheduler.

To obtain the results for schedulers’ fairness, n tasks with nice value of 0 were executed

for uni-processor benchmark. Good long term fairness results were obtained for all O(1),

SD and CFS. However, CFS has an advantage in producing the least average lag

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 17

compared to the other two schedulers. Results also showed that average lags increase

linearly when the number of system tasks increases.

As for the interactivity results, interactive tasks in O(1) faced starvation the most as the

scheduler will raise the priority of a task considered as an interactive task and allowing

the particular task to stay in the active queue for a long time. As for SD and CFS, the

strict fairness scheduler design allowing both of the schedulers to achieve good fairness.

In conclusion, all schedulers are able to achieve a decent fairness in long term on uni-

processor. As for fairness on multi-processors, CFS is the fairest among the 3

schedulers.

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 18

2.4 Interactivity Performance Benchmark on Windows OS

Studies had been conducted on the interactivity performance of the OS schedulers in

Linux OS and Windows OS (Cheng 2015). Interbench was used by the researcher to

perform the benchmark. But unfortunately, Interbench is only made available for Linux

by the original developer. Porting the benchmark program to Windows was done by the

researcher with the application of C programming language, producing the final product

named Windows Interbench. Tweaks have been made in the porting process due to

different system call and application program interface (API) that exists in Linux and

Windows.

In order to port the program to Windows, issues and challenges had been faced by the

researcher in the porting process. A lot of time and effort was required to find an

alternative API for Linux API to be implemented in Windows. Besides that, accuracy

in Windows Interbench were not as good as the original Interbench benchmark program

for Linux. Both operating systems come with a structure called timeval in Windows

and timespec in Linux, primarily for time interval definition. The main reason of the

difference in accuracy is because the precision of microsecond is supported in Windows

OS’s timeval structure while the precision of nanosecond is supported in Linux OS’s

timespec structure.

After the completion of the program’s porting process, interactive tasks such as Audio,

Video, X and Gaming were simulated with different loads. First, number of

meaningless loops executed by the system within one millisecond was determined. This

process is required for the reproduction of a constant CPU usage in every test. After

that, the number of meaningless loops executed within one millisecond is saved to a

file, allowing the emulation CPU usage to remain unchanged for the following tests.

For every benchmark test performed, amount of latency that exists between the starting

time of an interactive task and the time the task finally acquires the CPU was recorded.

Each benchmark test was repeated for 10 times to obtain the average scheduling latency

and maximum scheduling latency.

Results for interactivity performance for the four different interactive tasks were

obtained as the descriptions below. For interactive tasks with low CPU consumption,

such as Audio task that consumed only 5% of CPU resources and Video task that

consumed 40% of CPU resources, both operating systems showed a very similar results

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 19

under low CPU load. However, when both of the interactive tasks were tested in

Windows under high amount of load in Burn load, the average latency in Windows was

significantly higher than in Ubuntu, a Linux distribution. As for interactive tasks with

high CPU consumption, including X task consuming 0% to 100% of CPU resources

and Gaming task which tries to consume as much CPU resources as possible, slight

performance advantages were shown in Windows compared to Ubuntu. Under low load,

latencies in both operating systems were not obvious. However, under high load, the

amount of latencies were high until they were noticeable to human’s senses.

In conclusion, in terms of overall interactivity performance, Linux scheduler is able to

handle interactive tasks better than the scheduler included in Windows, especially in

conditions with high amount of background load.

CHAPTER 2 – LITERATURE REVIEW

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 20

2.5 Synchronization Primitives

There are two mechanisms made available by the kernel for kernel programming in

macOS, which includes semaphores and locks (Apple Developer 2013). These

mechanisms can be applied when multiple threads in a system need to access shared

resources or critical section to accomplish their tasks, so that the shared resources can

be protected.

For lock, a lock request can be made by multiple threads, however the lock will be

allocated to one and only one thread at a time. As for the remaining threads requested

for the lock, they have to wait until the thread which is holding the lock to release it.

As for the next synchronization mechanism semaphore, it is quite similar to a lock. The

difference between a semaphore and a lock is that a shared resource can be accessed by

more than one threads at the same time. Instead of protecting one shared resource by

lock, multiple indistinct shared resources can be protected with the use of semaphores.

In macOS, counting semaphores are used instead of binary semaphores which behaves

like a lock. There is some potentials for a thread to face starvation because Mesa

semantics are applied in Mach semaphores. This is because before Thread A is allowed

run and Thread B has a faster execution speed, Thread B will run first, causing Thread

A to wait indefinitely.

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 21

CHAPTER 3 – SYSTEM DESIGN

3.1 General Workflow of macOS Interbench

In the main()function, it is used to display the table outputs for each interactive task

and to loop through the interactive tasks and background loads defined in the threadlist[]

array. Checking is done in the function to determine whether the current value in the

array is an interactive task or a background load.

In order to reproduce a fixed percentage of CPU utilization in every benchmark run, the

system will be benchmarked by Interbench in the first execution by invoking a function

called calibrate_loop() to determine the number of meaningless loops that can be

executed by the system within one millisecond. Then the value will be written into a

file for the subsequent benchmark runs.

The bench() function will be invoked to perform synchronization between interactive

task’s child task and background load’s child process. The synchronization is required

to ensure that the correct execution sequence can be achieved.

For the simulation of interactive tasks and background loads, run_loadchild() and

run_benchchild() are responsible to control the thread such as starting and stopping a

thread.

Followed by emulation_thread() function which is responsible to point to the

interactive task and background load which corresponds to the i and j integer values

indicating the current values of the interactive task and background load to be executed.

These values are being tracked by the previous main function using a nested for-loop.

For instance, when the value for i is equals to 4 and value for j is equals to 2 in the same

iteration, the emulation_thread() function will call the emulate_game() function which

simulates Gaming interactive task and emulate_video() function which simulates

Video background load.

Lastly, timekeeping_thread() is responsible to keep track of the time taken for an

interactive task to be scheduled under each background load.

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 22

Figure 3.1 General Workflow of macOS Interbench

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 23

3.2 Detailed Function Flowcharts

3.2.1 main() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 24

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 25

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 26

Figure 3.2 Flowchart for main()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 27

3.2.2 bench() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 28

Figure 3.3 Flowchart for bench()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 29

3.2.3 get_ram() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 30

Figure 3.4 Flowchart for get_ram()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 31

3.2.4 run_loadchild() Function Flowchart

Figure 3.5 Flowchart for run_loadchild()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 32

3.2.5 run_benchchild() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 33

Figure 3.6 Flowchart for run_benchchild()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 34

3.2.6 emulation_thread() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 35

Figure 3.7 Flowchart for emulation_thread()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 36

3.2.7 timekeeping_thread() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 37

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 38

Figure 3.8 Flowchart for timekeeping_thread()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 39

3.2.8 init_sem() Function Flowchart

Figure 3.9 Flowchart for init_sem()

3.2.9 wait_sem() Function Flowchart

Figure 3.10 Flowchart for wait_sem()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 40

3.2.10 trywait_sem() Function Flowchart

Figure 3.11 Flowchart for trywait_sem()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 41

3.2.11 post_sem() Function Flowchart

Figure 3.12 Flowchart for post_sem()

3.2.12 emulate_none() Function Flowchart

Figure 3.13 Flowchart for emulate_none()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 42

3.2.13 emulate_audio() Function Flowchart

Figure 3.14 Flowchart for emulate_audio()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 43

3.2.14 emulate_video() Function Flowchart

Figure 3.15 Flowchart for emulate_video()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 44

3.2.15 emulate_x() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 45

Figure 3.16 Flowchart for emulate_x()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 46

3.2.16 emulate_game() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 47

Figure 3.17 Flowchart for emulate_game()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 48

3.2.17 emulate_burn() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 49

Figure 3.18 Flowchart for emulate_burn()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 50

3.2.18 emulate_write() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 51

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 52

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 53

Figure 3.19 Flowchart for emulate_write()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 54

3.2.19 emulate_read() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 55

Figure 3.20 Flowchart for emulate_read()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 56

3.2.20 emulate_ring() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 57

Figure 3.21 Flowchart for emulate_ring()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 58

3.2.21 emulate_compile() Function Flowchart

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 59

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 60

Figure 3.22 Flowchart for emulate_compile()

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 61

3.3 System Design Explanation

3.3.1 Obtaining Total Physical Memory

Figure 3.23 Changes Made in get_ram()

When the ported Interbench is executed, the main() function of the benchmark program

will call get_ram() function to determine the total physical memory in the system. This

system information is required for emulate_read() to simulate reading of a file with the

size of the physical memory from the disk and emulate_write() to simulate a write

operation to a file located in a disk with the size of physical memory.

Since /proc/meminfo file is missing in macOS, bash scripting method is used to access

the required information instead of reading from a file directly. Unlike Linux, “sysctl

hw.memsize” which allows the retrieval of total physical memory returns output in

bytes instead of Kilobytes (KB). Therefore, the returned output is divided by 1000 to

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 62

convert bytes into kilobytes before assigning it to ud.ram. For verification purpose, the

value stored in ud.ram is included in the output of the ported Interbench as shown in

Figure 3.24 below.

Figure 3.24 Value for ud.ram in Program Output

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 63

3.3.2 Semaphore Operations

In the benchmark program, emulation threads and timekeeping threads will gain access

to shared resources by using semaphores. Semaphores for both Linux and macOS are

based on the traditional counting semaphores. However, for macOS, Grand Central

Dispatch’s (GCD) dispatch semaphores are used in the ported Interbench because the

semaphore.h in macOS which is similar to Linux’s semaphore.h header contains

deprecated functions. Table 3.1 below shows the mapping of the original functions from

Linux semaphores to GCD semaphores.

Linux macOS

sem_init(sem_t *sem, int

pshared, unsigned int value)

dispatch_semaphore_create(int value)

sem_wait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore_t

*s, DISPATCH_TIME_FOREVER)

sem_trywait(sem_t *s) dispatch_semaphore_wait(dispatch_semaphore_t

*s, DISPATCH_TIME_NOW)

sem_post(sem_t *s) dispatch_semaphore_signal(dispatch_semaphore_t

*s)

Table 3.1 Mapping Semaphores in Linux to macOS GCD semaphores

dispatch_semaphore_create is used to create a semaphore with argument “value” as the

initial value of the semaphore.

If the second argument of dispatch_semaphore_wait is

“DISPATCH_TIME_FOREVER”, the value of the semaphore will be decremented

directly. If the semaphore value falls below 0, the function will wait until a signal is

received.

If the second argument of dispatch_semaphore_wait is “DISPATCH_TIME_NOW”,

the function will return a value immediately instead of blocking.

dispatch_semaphore_signal is used to increment the value of the semaphore, if the

semaphore value falls below 0, a waiting thread will be woke before the function returns.

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 64

In order to solve the “Function not implemented” warning shown when POSIX

semaphore’s sem_init() is used to create semaphores for emulation threads and

timekeeping thread, Grand Central Dispatch’s dispatch_semaphore_create() function

is used to create a new semaphore with value 0 as the semaphore’s initial value. If the

operation is successful, the function will return the newly created semaphore. Else,

NULL will be returned and an error message will be shown in the terminal.

Figure 3.25 Changes Made in init_sem()

The dispatch_semaphore_wait() function will perform a decrement on the semaphore’s

value similar to the sem_wait() function for POSIX semaphores. If the value of

semaphore s falls below 0, the function will wait indefinitely until a signal is received.

A value of 0 will be returned to “ret” if the operation is successful.

Figure 3.26 Changes Made in wait_sem()

POSIX semaphore’s sem_trywait() function is implemented by using the same

dispatch_semaphore_wait() as in the one applied in wait_sem(). However, the second

argument is replaced with the DISPATCH_TIME_NOW constant which allows the

function to return immediately instead of waiting indefinitely. The function will return

0 if the operation is completed successfully. If the operation has timed out, a value of

49 will be returned by the function, indicating KERN_OPERATION_TIME_OUT.

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 65

Figure 3.27 Changes Made in trywait_sem()

To release a shared resource, the sem_post() function in the original Interbench is

replaced by dispatch_semaphore_signal(). When this function is called, the value of

semaphore s will be incremented by one and checking will be done on the value. If the

value is negative, the function will wake a thread in the waiting queue before returning.

Figure 3.28 Changes Made in post_sem()

With the functions of original POSIX semaphores reimplemented successfully using

GCD semaphores, the ported Interbench can finally proceed with the simulation of

interactive tasks and background loads. Figure 3.29 below shows the output containing

the interactivity performance benchmark results for Audio interactive task.

Figure 3.29 Output Containing Benchmark Results for Audio

CHAPTER 3 – SYSTEM DESIGN

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 66

3.4 Implementation Issues and Challenges

In the process of porting the original Interbench benchmark program from Linux

to macOS, there are a few challenges faced that require a great amount of research and

time. The first challenge is regarding the implementation of semaphores in macOS. In

the development environment running macOS 10.14.6 (Mojave), some of the functions

related to semaphore have been made unavailable in macOS’s “semaphore.h” system

header. This causes warnings to pop up during the compilation of the ported Interbench

for functions that worked fine in Linux such as sem_init() for the creation of a

semaphore although both of the operating systems are Unix-liked systems.

 Besides, some files which is available in Linux is not accessible by macOS to

obtain some important system information. For instance, a function in Interbench

namely get_ram() is used by the main() function to obtain details about the system’s

physical memory for the use of one of the simulation load called Write. In Linux, those

details can be obtained by accessing “/proc/meminfo” file. However in macOS, the

physical memory info can only be obtained using the bash scripting method.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 67

CHAPTER 4 – METHODOLOGIES

4.1 Methodology and General Work Procedures

Figure 4.1 Incremental Model

Considering the time and effort required to put on the project, which requires going

through more than a thousand lines of pre-developed codes in Interbench to make sure

that the simulation tasks and loads can be implemented similar the software’s behavior

in Linux OS, the whole research and development process is based on the incremental

model (GeeksforGeeks, n.d.). Porting the entire Interbench benchmark program by

modifying all the simulation tasks and loads from one OS to another at once can be a

difficult task. If the development is not divided properly, confusion will occur, making

the researcher unsure about the suitable fundamental component to work on first to

make the next component work.

If benchmark program is unable to fulfil the software requirements in the middle of the

development process, it is still possible to make modifications on the original set of

requirements thanks to the flexibility in incremental model. Besides that, the delivery

time required for a working benchmark program can be reduced because it is easier to

port working module at a time rather than porting a large and complex program at once.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 68

Therefore, by following the incremental model, the whole benchmark program can be

broken down into smaller and less complex modules. Researcher will work on the

modules until the specific module is able to function as in the original Interbench

benchmark program in Linux OS. After the completion of each module, the researcher

will proceed to work on the next module until the ported Interbench benchmark

program is fully completed. Below are the stages that will be implemented in each

increment.

Design :

In this phase, the module’s architectural design will be identified. The researcher will

figure out the ways to design each simulation tasks and loads so that each module works

as the same as in the original Interbench benchmark program. The design phase is

highly demanded as an input for the coding phase.

Code :

After the completion of the module’s architectural design, researcher should be able to

gain more insight on the ways to implement the porting process of the simulation tasks

and loads. The original design will be converted from a concept to actual C language

source code. This is the stage where coding skills and debugging skills play a vital role.

At the end of this stage, the researcher should be able to run the module as an executable

program.

Testing :

To ensure that the module has the ability to solve the known problems obtained within

the requirement analysis phase, the module’s code will be tested against the defined

requirements after the completing of coding phase in each increment. Various kinds of

testing such as integration testing and unit testing will be performed to measure the

quality of the ported benchmark program before deploying it.

Deploy :

Lastly, after the researcher performed various types of tests on the developed module,

simulation tasks and loads are now ready to be used. Comparisons of interactivity can

be done using same set of simulation tasks, simulation loads and system hardware

between different operating systems.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 69

4.2 Tools To Use

4.2.1 GNU Compiler Collection (GCC)

GNU Compiler Collection, also known as GNU C Compiler previously is developed

by the founder of the GNU Project, Richard Stallman. It is a component which is very

important for the development of applications and operating systems. For this project,

several tools in the GNU Toolchain will be used. The Interbench program written in C

language will be compiled using the command “gcc” in the terminal. Besides the “make”

command is used to automate the compilation and build of the application. Lastly, GNU

Debugger (GDB) is triggered by the command “gdb” in the terminal. GDB allows

multiple breakpoints to be set to ease the troubleshooting process.

4.4.2 Interbench

Interbench simulates different tasks that use multiple system generated loads to

simulate different conditions to see how well the scheduler performs. In this project,

comparison will be made on the interactivity in different OS schedulers for the same

set of hardware components with the usage if this benchmark program.

The simulation tasks are:

X: A thread that utilizes amount of CPU that change from time to time ranging from 0%

to 100%. An idle Graphical User Interface (GUI) with a window being grabbed and

dragged across the screen is simulated

Audio: A thread which to execute at an interval of 50ms and requires 5% of CPU

utilization is used to simulate the Audio task.

Video: A thread which requires to utilize the 40% of CPU and attempts to receive from

the CPU 60 times per second is used to simulate the Video task.

Gaming: Emulates a CPU-bound game by using as much CPU as possible.

Load simulated for the tasks:

None: Idle system.

Video: Background load generated by using video simulation thread.

X: Load generated by using X simulation thread.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 70

Burn: Number of threads fully CPU bound that can be configured.

Write: Write a file of the size of Random Access Memory (RAM) as a stream.

Read: Reading a file of the size of RAM from the disk repeatedly.

Compile: Concurrent execution of Burn, Write and Read to simulate a heavy ‘make –

j4’ compilation.

4.2.3 Vim Editor

As both Linux and macOS are based on Unix, Vim Editor is used for efficient addition

and modification of source codes in the project. This editor provides supports for many

programming languages including C.

4.2.4 Turbo Boost Switcher

In most computer systems, there will be some applications that require more processing

power for users to accomplish certain tasks. To cope with these heavier workloads, a

solution called Intel Turbo Boost Technology is introduced which dynamically adjusts

the frequency of the CPU cores to the maximum turbo frequency to create a balance

between system performance and workloads (Intel Corporation, n.d.). This technology

will only be activated when the power, temperature and current specification limits of

the CPU are not exceeded when the CPU is in operation. The technology’s frequency

and the amount of time for the CPU to remain in the turbo state differ because they are

relying on factors including the hardware, software, workload and configuration of the

system.

Turbo Boost Switch is a program which allows users to disable or enable Intel Turbo

Boost Technology in systems running Apple’s macOS as BIOS in an Apple computer

is not accessible (rugarciap 2019). Intel Turbo Boost Technology is disabled in all three

operating systems when Interbench benchmarks were carried out. The reason why it

needs to be disable is because different operating systems can interpret the same

workload in a very different manner and one of the factors affecting the frequency of

Intel Turbo Boost Technology is the system’s software including operating systems. So,

in order to achieve a fair comparison between the three operating systems, maximum

turbo frequency is not allowed for tasks involving high workloads.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 71

4.2.5 Gnuplot

Gnuplot is a free and command-line based graph plotting tool available for macOS,

Linux and Windows which allows users to obtain a visualized form of the data

(Gnuplot.info 2020). The tool is convenient to use as it can be started from the terminal.

In this project, it was used to generate CPU utilization graphs for macOS by providing

an input data file containing CPU utilization values with an interval of one second. The

generated graphs were compared with the ones from Linux and Windows for

verification purpose before proceeding to the final comparison of interactivity

performance.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 72

4.3 System’s Specification

Table 4.1 System’s Specification

Component Specification

Name MacBook Air A1466 (13-inch, Mid 2013)

Processor Intel Core i5-4250U Processor (2 Cores, 4

Threads)

Memory 4GB DDR4

Disk Storage 128GB Solid State Drive (SSD)

Graphics Processor Intel HD Graphics 5000

Display 1440x990 Backlit Display

Operating System macOS Mojave version 10.14.6 64-bit OS

Ubuntu 18.04.4 LTS 64-bit OS

Windows 10 Home 64-bit OS

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 73

4.4 Verification Plan

Before the actual comparison is conducted, the macOS Interbench which is ported in

this project is verified by comparing the CPU utilization when the interactive tasks and

background loads are executing. The comparison involves the ported macOS

Interbench, ported Windows Interbench done by the previous researcher and the

original Linux Interbench. This verification process is crucial because it allows us to

ensure that the simulation can be done correctly and the results of the final comparison

on interactivity performance is reliable. Although the verification was already

conducted by the previous researcher for Windows Interbench and Linux Interbench,

the same verification process is repeated in this project to confirm that Windows

Interbench is able to behave as expected by using a different set of system hardware

and Windows OS version compared to the previous research.

The CPU utilization values on macOS were obtained through the “top” and “grep”

command in the terminal. The values were collected and stored into a .dat data file

which is used for graph plotting using Gnuplot. As for Linux and Windows, the CPU

utilization graphs were monitored and collected from System Monitor and Task

Manager.

The section below contains screenshots of the Gnuplot on macOS, System Monitor on

Linux and Task Manager on Windows for every interactive tasks. According to the

screenshots, the pattern of CPU utilization for the three operating systems involved are

identical to each other.

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 74

Interactive Task 1: Audio (5% CPU Utilization)

Figure 4.2 CPU Utilization Graph for Audio on macOS

Figure 4.3 CPU Utilization Graph for Audio on Linux

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 75

Figure 4.4 CPU Utilization Graph for Audio on Windows

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 76

Interactive Task 2: Video (40% CPU Utilization)

Figure 4.5 CPU Utilization Graph for Video on macOS

Figure 4.6 CPU Utilization Graph for Video on Linux

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 77

Figure 4.7 CPU Utilization Graph for Video on Windows

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 78

Interactive Task 3: X-window (0 - 100% CPU Utilization)

Figure 4.8 CPU Utilization Graph for X-window on macOS

Figure 4.9 CPU Utilization Graph for X-window on Linux

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 79

Figure 4.10 CPU Utilization Graph for X-window on Windows

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 80

Interactive Task 4: Gaming (Maximum CPU Utilization)

Figure 4.11 CPU Utilization Graph for Gaming on macOS

Figure 4.12 CPU Utilization Graph for Gaming on Linux

CHAPTER 4 – METHODOLOGIES

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 81

Figure 4.13 CPU Utilization Graph for Gaming on Windows

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 82

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

5.1 Interactivity Test

With the help of Interbench, different interactive tasks can be simulated concurrently

with various type of background loads. Each interactive task and background load is

represented by different amount of CPU utilization. The intended purpose of this

benchmark program is to measure the latency that exists within the scheduling process

which is represented by the time difference between the time when an interactive task

makes a CPU resources request and the time when the specific task actually acquires

the requested resources in order to start its execution. The involved interactive tasks

cover all workload conditions including low, medium and high workloads.

Two different comparisons for interactivity performance were conducted. The first

comparison covers all three operating systems which are Linux, macOS and Windows.

For this comparison, Four different interactive tasks are involved which are Audio,

Video, X-window and Gaming. These interactive tasks were executed concurrently

with various background loads which include None, Video, X-window and Burn.

As for the second comparison, the interactive tasks in the first comparison were used.

However, the background loads involved are Write, Read, Ring and Compile. This

comparison only involves Linux and macOS because the four background loads

specified are not available in Windows Interbench.

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 83

5.2 Simulation Environment

In order to compare the schedulers’ performance in these three different operating

systems using the same set of hardware, Linux, macOS and Windows will be installed

natively into the test computer so that fair comparisons can be done with same hardware

resources, for instance, the CPU. The original Interbench and the modified Interbench

will be executed in terminal of every OS. Before the benchmark starts, the number of

active CPU cores is adjusted to only one in order to determine the operating system

kernel scheduler’s interactivity performance in uniprocessor environment.

Besides that, Intel Turbo Boost Technology which allows the CPU to operate in a higher

frequency than usual is disabled to ensure that the interactive tasks and background

loads can be simulated with the correct amount of CPU usage for all the involved

operating systems.

When Interbench benchmark program in all three different operating systems is being

executed for the first time, the number of meaningless loops that can be executed by

the system within one millisecond is determined and recorded in a text file for

subsequent benchmarks runs. This is done to ensure that the same CPU usage can be

emulated in the next benchmark runs to improve consistency and accuracy of the

benchmark results.

When a combination pair of interactive task and background load is executed, a thread

namely “timekeeping_thread” is responsible to keep track of the time taken for an

interactive task to be scheduled. After the execution of the combination pair is

completed, the average scheduling latency and maximum scheduling latency are

displayed as output.

Each combination pair consisting of one of the interactive tasks and one of the

background loads are conducted repeatedly for 30 times. The average and maximum

scheduling latencies are recorded and calculated at the end of the benchmark.

Table 5.1, Table 5.2, Table 5.3 and Table 5.4 below show the interactive tasks and

background loads carried out for the benchmark involving Linux, macOS and Windows

while Table 5.5, Table 5.6, Table 5.7 and Table 5.8 show the interactive tasks and

background loads carried out for the benchmark involving Linux and macOS only.

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 84

Interactive Task Background Load

Audio

None

Video

X-Window

Burn

Table 5.1 Simulation of Audio Interactive Task for Linux, macOS and Windows

Interactive Task Background Load

Video

None

X-Window

Burn

-

Table 5.2 Simulation of Video Task for Linux, macOS and Windows

Interactive Task Background Load

X-window

None

Video

Burn

-

Table 5.3 Simulation of X-window Task for Linux, macOS and Windows

Interactive Task Background Load

Gaming

None

Video

X-Window

Burn

Table 5.4 Simulation of Gaming Task for Linux, macOS and Windows

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 85

Interactive Task Background Load

Audio

Write

Read

Ring

Compile

Table 5.5 Simulation of Audio Task for Linux and macOS

Interactive Task Background Load

Video

Write

Read

Ring

Compile

Table 5.6 Simulation of Video Task for Linux and macOS

Interactive Task Background Load

X-window

Write

Read

Ring

Compile

Table 5.7 Simulation of X-window Task for Linux and macOS

Interactive Task Background Load

Gaming

Write

Read

Ring

Compile

Table 5.8 Simulation of Gaming Task for Linux and macOS

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 86

5.3 Comparison Results

5.3.1 Interactivity Performance Comparison Results for Linux, macOS and

Windows

For the first interactive task in the comparison, Audio which represents a low CPU

utilization interactive task and consumes 5% of CPU. Under most background loads,

Windows performed the worst among the three operating systems in terms of

interactivity performance. This can be proven by bar charts in Figure 5.1 and Figure 5.5

representing the average latency and maximum latency for Audio interactive task for

the involved operating systems. In idle condition and Video background load, all

operating systems performed similarly by showing near to zero average latencies.

However, when Audio interactive task was executed concurrently with X-window and

Burn background loads on Windows, the amount of average latencies are higher than

Linux and macOS. Besides, Windows also showed significantly higher maximum

latencies than Linux and macOS under all background loads.

Next, in condition with medium CPU utilization such as Video interactive task that

consumes 40% of CPU during execution, Figure 5.2 shows that the average latencies

for Windows under all background loads are higher than Linux and macOS. For

maximum latencies, the values produced by macOS and Windows in idle condition are

similar. However, when the interactive task is executed under variable workload and

high workload represented by X-window and Burn respectively, Windows performed

poorly in terms of interactivity performance by producing a higher maximum latencies

than the other operating systems.

Followed by X-window interactive task that consumes CPU utilization ranging from 0%

to 100% to simulate a condition where a GUI is grabbed and dragged across the screen.

The results for this interactive task is different compared to the Audio and Video

interactive tasks discussed previously. According to Figure 5.3, the average latency for

Windows is slightly higher than Linux and macOS when X-window interactive task is

being executed in idle condition. Unlike in the previous interactive tasks, the average

latency produced by macOS is higher than Linux and Windows when it is executing X-

window under Video background load. As for high workload simulated by Burn

background load, Windows’s average latency exceeded the average latencies produced

by the other two operating systems. Based on Figure 5.6, greatest amount of maximum

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 87

latencies are produced by Windows under None and Burn background loads while

macOS showed greatest amount of maximum latencies under Video background loads.

Lastly, Gaming interactive task which consumes as much CPU as possible was

executed. According to Figure 5.4, when the interactive task is executed in idle

condition, macOS’s average latency is the highest among the three operating systems

but it’s only 2.2 milliseconds. For the average latencies under Video and X-window,

the interactivity performance of macOS under medium and variable workloads are

proven to be the worst between Linux, macOS and Windows. However, the same result

doesn’t apply to Burn background load. Under Burn, Windows produced significantly

greater amount of average latency compared to Linux and macOS. For maximum

latencies as shown in Figure 5.8, macOS produced the highest maximum latencies for

three background loads including None, Video and X-window. As for Burn, the highest

maximum latency was produced by Windows when Gaming interactive task was

executed.

In conclusion, interactivity performance for system running Linux is the best under

most conditions, followed by macOS producing good interactivity performance

especially for interactive tasks consuming low to medium amount of CPU. Windows

shows the worst interactivity performance in most of the combination pairs of

interactivity tasks and background loads. The poor performance can be seen frequently

when the interactive tasks were executed within conditions with high background loads.

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 88

Figure 5.1 Average Latency for Audio on Linux, macOS and Windows

Figure 5.2 Average Latency for Video on Linux, macOS and Windows

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 89

Figure 5.3 Average Latency for X-window on Linux, macOS and Windows

Figure 5.4 Average Latency for Gaming on Linux, macOS and Windows

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 90

Figure 5.5 Maximum Latency for Audio on Linux, macOS and Windows

Figure 5.6 Maximum Latency for Audio on Linux, macOS and Windows

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 91

Figure 5.7 Maximum Latency for X-window on Linux, macOS and Windows

Figure 5.8 Maximum Latency for Gaming on Linux, macOS and Windows

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 92

5.3.2 Interactivity Performance Comparison Results for Linux and macOS

This section includes comparison results for the four different interactive tasks executed

concurrently with Write, Read, Ring and Compile background loads on Linux and

macOS only as the four background loads specified are not included in Windows

Interbench.

For Audio, the average latencies for both Linux and macOS are considered to be low.

The average latencies for Disk I/O background loads are slightly higher on macOS with

differences of 0.4 milliseconds for Read and 0.2 milliseconds Write. For Ring

background load which executes tasks in a circular manner to allow them to take turns

for execution, the average latency on macOS is also slightly higher compared to Linux.

When the interactive task was executed under Compile background load which is the

emulation of “make –j4” compilation. “make –j4” refers to the parallel execution of 4

jobs. This background load is considered to be a heavy load because the emulation

involves running of three different background loads simultaneously including Burn,

Write and Read. The average latency for both operating systems are identical. As for

the maximum latencies, macOS produced a greater amount of maximum latencies

under all background loads for Audio interactive task.

Next, average latencies and maximum latencies for Video interactive task are discussed.

Running the task concurrently with Read background load on Linux and macOS shows

minimal latency difference between the two operating systems with 0.2 milliseconds of

average latency on Linux and 0.3 milliseconds of average latency on macOS. Under

Write and Ring background loads, both operating systems performed well in terms of

interactivity by showing near to zero average latencies. The same result is no longer

applicable to Compile background load, the average latency on macOS is twice the

average latency on Linux. Based on Figure 5.14, a slightly higher maximum latencies

were produced by Linux when Video interactive task was executed under Write and

Read background loads. However, the maximum latency on macOS under Ring

background load is higher than Linux. A more significant difference in terms of

maximum latency can be seen when the heavy Compile background load was executed

on macOS.

Followed by the third interactive task for this comparison, X-window. The average

latencies for all background load conditions on macOS are higher than Linux. Higher

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 93

maximum latencies can be also seen on macOS under majority of the background loads

for X-window interactive task, except for Read background load where maximum

latency on Linux is higher than macOS.

Lastly, the average latencies for CPU intensive interactive task such as Gaming on

macOS are up to double the average latencies on Linux. The difference became more

obvious when the interactive task was executed with the existence of high background

loads such as Compile. Besides, the high average latency on macOS under Compile

background load had exceeded the reaction time of human to visual stimulus which is

about 250 milliseconds or equivalent to 0.25 seconds (Backyard Brains, n.d.). In other

words, lagging or jitters will become noticeable to humans, leading to an unpleasant

experience to them. As for maximum latencies, the values produced by macOS were

higher when Gaming interactive task was executed concurrently under all background

loads. All the maximum latencies on macOS were beyond 250 millisecond while the

maximum latencies on Linux were below 250 milliseconds except for Compile

background load.

At the end of this comparison, we found out that Linux has a better interactivity

performance in multiple interactive tasks with CPU utilizations ranging from low to

high under Write, Read, Ring and Compile background loads.

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 94

Figure 5.9 Average Latency for Audio on Linux and macOS

Figure 5.10 Average Latency for Video on Linux and macOS

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 95

Figure 5.11 Average Latency for X-window on Linux and macOS

Figure 5.12 Average Latency for Gaming on Linux and macOS

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 96

Figure 5.13 Maximum Latency for Audio on Linux and macOS

Figure 5.14 Maximum Latency for Video on Linux and macOS

CHAPTER 5 – INTERACTIVITY PERFORMANCE BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 97

Figure 5.15 Maximum Latency for X-window on Linux and macOS

Figure 5.16 Maximum Latency for Gaming on Linux and macOS

CHAPTER 6 – CONCLUSION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 98

CHAPTER 6 - CONCLUSION

In conclusion, Interbench which is originally used to determine the interactivity

performance of Linux OS kernel schedulers is ported to macOS using C programming

language in order to solve the lack of support for interactivity performance benchmark

program in different operating systems. Next, the ported benchmark program has the

potential to assist OS developers to perform fair and accurate comparisons between

different OS kernel schedulers. Besides OS developers, normal users will be able to

make a better decision in choosing a system that best fits their requirements and needs

based on the benchmark results.

In order to port Interbench into macOS successfully, some modifications have

been made in the headers required by the program. For instance, “semaphore.h” in the

original Interbench is replaced by Grand Central Dispatch’s “dispatch/semaphore.h” as

POSIX semaphore is not applicable in macOS. Besides, semaphore implementations

were also changed accordingly to ensure that operations related to semaphores can be

done similar to the semaphore operations using POSIX semaphores. As some Linux-

specific system files is not available in macOS, shell scripting is applied in the ported

benchmark program to obtain some system information such as total RAM to simulate

Read and Write background loads.

Besides, reverification of Windows Interbench was performed in the project’s

verification plan together with the original Linux Interbench and ported macOS

Interbench. Windows Interbench was proven to perform as expected in different

hardware configurations and Windows OS versions. The verification plan also showed

that both ported versions of Interbench benchmark program were able to behave

similarly to the original Linux Interbench, allowing reliable comparisons of

interactivity performance for all operating systems involved.

At the end of this project, two sets of comparison were produced by executing

the original and ported benchmark program to determine the interactivity performance

of the involved operating systems including Linux, macOS and Windows.

The first comparison involved all three operating systems. Audio, Video, X-

window and Gaming interactive tasks were executed concurrently with background

loads such as None, Video, X-window and Burn. As for the results, Linux performed

the best by producing the lowest average and maximum latencies in most of the task

CHAPTER 6 – CONCLUSION

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 99

and background load conditions. macOS performed well in terms of interactivity in

tasks utilizing low and medium amount of CPU resources. The interactivity

performance in Windows is the worst compared to the other two operating systems by

producing the highest average and maximum latencies in majority of the background

loads for each interactive task.

The second comparison is comprised of results for Write, Read, Ring and

Compile background loads and they were executed with the same set of interactive task

on Linux and macOS. The final results showed that Linux produced lower average and

maximum latencies in majority of the background loads in each interactive task.

In the future, the remaining Memload background load will be made available

to the Interbench on macOS to determine the average latencies and maximum latencies

when the RAM is fully occupied and requires swapping to and from the virtual memory.

Besides, Write, Read, Ring, Compile and Memload background loads will be

implemented in Windows Interbench to broaden the coverage of the interactivity

performance comparison. Lastly, benchmarks for multiprocessor environment can be

done to gain insights on the operating systems’ interactivity performance compared to

the results obtained from a uniprocessor environment.

IBLIOGRAPHY

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 100

BIBLIOGRAPHY

Abaffy, J & Krajcovic, T 2009, ‘Latencies in Linux and FreeBSD kernels with different

schedulers – O(1), CFS, 4BSD, ULE’, pp 1-6.

Apple Developer 2013, Synchronization Primitives, Available from:

<https://developer.apple.com/library/archive/documentation/Darwin/Conceptu

al/KernelProgramming/synchronization/synchronization.html>. [3 November

2019].

Apple Developer 2019, DispatchSemaphore, Available from:

<https://developer.apple.com/documentation/dispatch/dispatchsemaphore>.

[10 November 2019].

Backyard Brains n.d., Experiment: How Fast Your Brain Reacts To Stimuli. Available

from < https://backyardbrains.com/experiments/reactiontime>. [22 April 2020].

Cheng, SW 2015, ‘Interactivity Performance Benchmark on Windows OS’, pp.2-38.

ElysiumAcademy Private Limited 2017, What are the Software Development Life

Cycle (SDLC) phases?. Available from:

<https://www.linkedin.com/pulse/what-software-development-life-cycle-sdlc-

phases-private-limited>. [10 August 2019].

GeeksforGeeks n.d., Software Engineering | Incremental process model. Available

from: <https://www.geeksforgeeks.org/software-engineering-incremental-

process-model/>. [10 August 2019].

Gnuplot, computer software 2020. Available from: <http://www.gnuplot.info>. [15

April 2020].

Intel Corporation n.d., Intel Turbo Boost Technology 2.0. Available from:

<https://www.intel.com/content/www/us/en/architecture-and-

technology/turbo-boost/turbo-boost-technology.html>. [31 March 2020].

Kamal, R 2011, Microcontrollers: Architecture Programming, Interfacing and System

Design, 2nd Edition. Pearson Education, India. [22 April 2020].

Kolivas, C 2006, The homepage of Interbench The Linux interactivity benchmark.

Available from: < http://www.users.on.net/~ckolivas/interbench/>. [20 July 2019].

IBLIOGRAPHY

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) 101

Linfo 2005, Kernel Definition. Available from <http://www.linfo.org/kernel.html>. [20

July 2019].

Luo, Y & Wu, Y 2011, ‘A Comparison on Interactivity of Three Schedulers in

Embedded System’, pp. 494 – 497.

Monitor Types, n.d. Available from : <https://pages.mtu.edu/~shene/NSF-3/e-

Book/MONITOR/monitor-types.html> [20 November 2019].

Patel, K n.d, pipe() System call. Available from: <https://www.geeksforgeeks.org/pipe-

system-call/>. [3 November 2019].

Phoronix Test Suite 2020, Open-Source, Automated Benchmarking. Available from <

https://www.phoronix-test-suite.com>. [20 April 2020].

Silberschatz, A, Galvin, PB & Gagne, G 2009. Operating System Concepts. John Wiley

& Sons Inc, New York. [20 April 2020].

Stallings, W n.d., Operating Systems, Internals and Design Principles. Pearson Prentice

Hall, New Jersey. [20 April 2020].

Stupak, N 2009, Time delays and system response time in human-computer interaction.

Rochester Institute of Technology. [22 April 2020].

Techopedia n.d., Benchmarking. Available from: <

https://www.techopedia.com/definition/17053/benchmarking>. [20 July 2019].

Turbo Boost Switcher, computer software 2019. Available from

<http://tbswitcher.rugarciap.com>. [20 March 2019].

Wang, S, Chen, Y, Jiang, W, Li, P, Dai, T & Cui, Y 2009, ‘Fairness and Interactivity

of Three CPU Schedulers in Linux’, Proceedings of the fifteenth IEEE

International Conference on Embedded and Real-Time Computing Systems and

Applications, pp. 172-177.

Wong, CS, Tan, IKT, Kumari, RD & Lam, JW 2008. ‘Fairness and Interactive

Performance of O(1) and CFS Linux Kernel Schedulers’, pp 1-8.

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-1

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

A.1 Audio Interactive Task Results Data

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-2

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-3

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-4

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-5

A.2 Video Interactive Task Results Data

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-6

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-7

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-8

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-9

A.3 X-window Interactive Task Results Data

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-10

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-11

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-12

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-13

A.4 Gaming Interactive Task Results Data

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-14

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-15

APPENDIX A – RESULTS DATA FOR INTERBENCH BENCHMARK

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) A-16

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-1

APPENDIX B – WEEKLY LOG

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 1

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

All the interactive tasks were executed by excluding emulate_memload() function

from the background loads as Memload cannot be simulated successfully for now.

Preparation for verification was done by disabling extra physical and virtual CPU

cores in the system. The number of CPU cores was set to 1 through XCode’s

Instrument Preferences and hardware multithreading was disabled. Besides that, Intel

Turbo Boost Technology was also disabled.

2. WORK TO BE DONE

Proceed with verification for Audio interactive task.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-2

3. PROBLEMS ENCOUNTERED

Faced difficulties in disabling Intel Turbo Boost Technology as Apple computer

products do not have a BIOS where the option of disabling/enabling Intel Turbo

Boost Technology can be found in other computer systems. Turbo Boost Switcher,

which allows user to disable or enable Intel Turbo Boost Technology did not work

for the first installation. To solve this problem, a clean macOS Mojave 10.14.6

installation was performed.

4. SELF EVALUATION OF THE PROGRESS

Try to spend some time looking for alternatives instead of sticking to only one

solution in the project.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-3

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 2

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification on the CPU utilization was started by monitoring the CPU utilization for

Audio interactive task and the background loads used for concurrent execution. At

the end of the verification, Audio interactive task’s was proven to be able to generate

5% CPU utilization which is similar to the original Linux Interbench.

2. WORK TO BE DONE

Proceed with verification for Video interactive task.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-4

3. PROBLEMS ENCOUNTERED

Faced difficulties in monitoring CPU utilization graphs as WindowServer process

which is responsible in rendering the Graphical User Interface (GUI) consumes high

amount of CPU, causing inconsistencies in CPU utilization graphs in Activity

Monitor. As a solution, CPU utilization data was collected into a data file and

illustrated using gnuPlot.

4. SELF EVALUATION OF THE PROGRESS

Try to repeat the verification process to ensure that the interactive tasks and

background loads in the macOS Interbench are able to behave consistently.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-5

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 3

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification on the CPU utilization was continued by monitoring the CPU utilization

for Video interactive task and the background loads used for concurrent execution.

At the end of the verification, Video interactive task’s was proven to be able to

generate 40% CPU utilization which is similar to the original Linux Interbench.

2. WORK TO BE DONE

Proceed with verification for X-window interactive task.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-6

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Try to repeat the verification process to ensure that the interactive tasks and

background loads in the macOS Interbench are able to behave consistently.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-7

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 4

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification on the CPU utilization was continued by monitoring the CPU utilization

for X-window interactive task and the background loads used for concurrent

execution. According to the execution of the same interactive task on Linux

Interbench, X-window interactive task should be able to emulate CPU utilization

ranging from 0% to 100% to simulate a condition where a Graphical User Interface

(GUI) window is being grabbed and dragged. In conclusion, the behavior of X-

window on macOS is similar compared to the one in the original Linux Interbench.

2. WORK TO BE DONE

Proceed with verification for Gaming interactive task.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-8

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Try to repeat the verification process to ensure that the interactive tasks and

background loads in the macOS Interbench are able to behave consistently.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-9

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 5

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

The last interactive task verification for macOS Interbench was conducted. Gaming

interactive task utilizes as much CPU as it can in Linux. Similar behavior was

obtained from macOS Interbench. All the interactive tasks and background loads in

macOS Interbench were verified with the interactive tasks and background loads in

Linux Interbench.

2. WORK TO BE DONE

Perform verification for Windows Interbench ported by previous researcher before

conducting the actual comparison of interactivity performance between Linux,

macOS and Windows.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-10

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Try to make sure that the CPU configuration for the verification process is maintained

for all operating systems so that the verification will be reliable before proceeding to

the final comparison.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-11

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 6

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Verification environment for Windows Interbench was set up. Started with a clean

installation of Windows 10 Single Language on the test computer. Limiting the

number of active CPU cores to 1 by making changes in the boot option located within

System Configuration program. Then, Intel Turbo Boost Technology was disabled

with the help of ThrottleStop program which is intended for CPU power adjustments.

After all the preparation steps were completed, the Windows Interbench from the

previous research was executed for verification purposes. Just like the Interbench on

macOS and Linux, each interactive task was executed concurrently with the

background loads. Task manager was used to monitor the Windows Interbench CPU

utilization while the benchmark program was executing at the same time.

After several executions, the behavior of Windows Interbench was similar to the

Linux Interbench and macOS Interbench for every interactive tasks and background

loads involved.

2. WORK TO BE DONE

Collect the average and maximum scheduling latency values by executing Windows

Interbench for 30 iterations.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-12

3. PROBLEMS ENCOUNTERED

Error occurred on the first attempt of executing Windows Interbench. Problem solved

by recompiling Windows Interbench using Microsoft Visual Studio 2013.

4. SELF EVALUATION OF THE PROGRESS

Try to use batch scripts to automate the Interbench benchmarks for all operating

systems to save time and maintain consistencies in the benchmarks.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-13

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 7

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

For the execution of Windows Interbench and collection of scheduling latencies, a

batch script is written for the repeated execution of the benchmark program for 30

times. When the batch script was running, the test computer was left uninterrupted in

order to avoid any unnecessary workload that can affect the final results. After

running Windows Interbench for 30 times, the results were written to a log file. Lastly

the collected results were transferred to a spreadsheet for comparison after all the

benchmark results are obtained.

2. WORK TO BE DONE

Prepare benchmark environment for Linux Interbench. Collect the average and

maximum scheduling latency values by executing Linux Interbench for 30 iterations.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-14

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Try to use batch scripts to automate the Interbench benchmarks for all operating

systems to save time and maintain consistencies in the benchmarks.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-15

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 8

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

The test computer was formatted and included with a clean installation of Linux OS

(Ubuntu). Similar to Windows, number of active cores was changed and Intel Turbo

Boost Technology was disabled from the terminal. A shell script was written for

automation of Linux Interbench. The shell script was executed to run the benchmark

program repeatedly for 30 times. The test computer was left uninterrupted to increase

the accuracy of the final benchmark results. After the completion of the benchmark,

the scheduling latencies were recorded into a spreadsheet for future comparison.

2. WORK TO BE DONE

Prepare benchmark environment for macOS Interbench. Collect the average and

maximum scheduling latency values by executing macOS Interbench for 30

iterations.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-16

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Try to use shell scripts to automate the Interbench benchmarks for all operating

systems to save time and maintain consistencies in the benchmarks.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-17

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 9

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

For macOS Interbench, the test computer was formatted and clean installation was

performed just like the previous benchmark preparation. A shell script was also

written for repeated execution of macOS Interbench for 30 times. Number of active

CPU cores was set to 1 with the help of XCode. Then, Turbo Boost Switcher was

used to switch off Intel Turbo Boost Technology. The shell script was executed and

the test PC was left uninterrupted. Lastly, the benchmark results were recorded into

a spreadsheet for comparison purpose.

2. WORK TO BE DONE

Repeat benchmark for macOS with boot arguments changed.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-18

3. PROBLEMS ENCOUNTERED

Even with the extra physical and virtual CPU cores disabled through XCode,

ud_cpuload variable still remains as 4. This causes 4 threads used for simulation of

Burn, Ring and Compile background loads instead of 1 thread. This leads to an

unfair benchmark.

4. SELF EVALUATION OF THE PROGRESS

Try to figure out reasons that produces the benchmark results to be included in the

discussion of the final comparison.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-19

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 10

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

The execution of macOS Interbench was repeated by changing the number of active

CPU cores through ‵sudo nvram boot-args=“cpus=1”′ instead of using XCode. The

same macOS Interbench was executed for 30 times to obtain the latest values for

scheduling latencies. The latest macOS benchmark results showed a significant

decrease in average and maximum scheduling latencies for Burn, Ring and Compile

background loads in all interactive tasks compared to the previous macOS

benchmark.

2. WORK TO BE DONE

Analyze the benchmark results recorded in the spreadsheet for Linux, macOS and

Windows. Generate graphs to illustrate their interactivity performance.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-20

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Try to figure out reasons that produces the benchmark results to be included in the

discussion of the final comparison.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-21

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 11

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

All benchmarks for Linux, macOS and Windows were completed. The average

latencies for background loads executed together with each of the interactive tasks

were calculated by totaling the average latencies from 30 benchmark samples and

dividing them by 30. The maximum latencies were determined by obtaining the

greatest value within the 30 benchmark samples. Bar charts were created for the

calculated values for every background loads within every interactive tasks.

2. WORK TO BE DONE

Add necessary comments into the source code of macOS Interbench and remove

temporary codes used for debugging previously. Proceed to discussion of comparison

results.

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-22

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

Provide sufficient details and explanations for the comparison results.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-23

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 3, Year 3 Study week no.: 12

Student Name & ID: Fan Wei Cong (16ACB02681)

Supervisor: Mr. Wong Chee Siang

Project Title: Interactivity Performance Benchmark for Windows and Mac OS

1. WORK DONE

Code cleanup performed by removing all unnecessary codes used in troubleshooting

and debugging. New comments added to allow better understanding of codes in

future use. The benchmark program was executed once to make sure that the changes

made does not cause failure of macOS Interbench.

2. WORK TO BE DONE

-

APPENDIX B – WEEKLY LOG

Bachelor of (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus) B-24

3. PROBLEMS ENCOUNTERED

-

4. SELF EVALUATION OF THE PROGRESS

-

_________________________ _________________________

 Supervisor’s signature Student’s signature

PLAGIARISM CHECK RESULT

 FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

 Fan Wei Cong

ID Number(s)

 16ACB02681

Programme / Course Bachelor of Computer Science (HONS)

Title of Final Year Project Interactivity Performance Benchmark For Windows And Mac

OS

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: %

Similarity by source
Internet Sources: %
Publications: %
Student Papers: %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: Wong Chee Siang__________

 Name: __________________________

Date: 23 April 2020__________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

6

2

3
3

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB02681

Student Name Fan Wei Cong

Supervisor Name Wong Chee Siang

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Front Cover
√ Signed Report Status Declaration Form
√ Title Page
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed
all the items listed in the table are included
in my report.

(Signature of Student)
Date: 23 April 2020

Supervisor verification. Report with

incorrect format can get 5 mark (1 grade)

reduction.

(Signature of Supervisor)
Date: 23 April 2020

