

DESIGN AND DEVELOPMENT OF AN EMBEDDED
PLATFORM FOR COMPUTER VISION APPLICATIONS

KENNY KHOO KUAN YEW

MASTER OF COMPUTER SCIENCE

FACULTY OF ENGINEERING AND SCIENCE
UNIVERSITI TUNKU ABDUL RAHMAN

NOVEMBER 2011

DESIGN AND DEVELOPMENT OF AN EMBEDDED PLATFORM

FOR COMPUTER VISION APPLICATIONS

By

KENNY KHOO KUAN YEW

A dissertation submitted to the

Department of Internet Engineering and Computer Science,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Computer Science

November 2011

ii

ABSTRACT

DESIGN AND DEVELOPMENT OF AN EMBEDDED PLATFORM

FOR COMPUTER VISION APPLICATIONS

 Kenny Khoo Kuan Yew

Today, silicon chips are becoming more and more powerful despite the

reduction in size. Various general processors and graphic processing units

(GPUs) have been embedded in countless electronic gadgets such as personal

digital assistants (PDAs), mobile hand-phone, digital cameras, and etc. With

the high processing power of these embedded platforms and ever increasing

size of both volatile and non-volatile storage, it opens up a great opportunity to

integrate computer vision (CV) applications to these relatively low-cost and

standalone devices. Applying CV applications inside electronic gadgets can be

the next trends in industrial or commercial market. These devices can do

specific smart and intelligent job such as object or text recognition for

manufacturing, surveillance and security, as well as entertainment. It is

discovered that there is yet to have a standard embedded software or hardware

architecture in embedded systems (ES) for CV. An open architecture is needed

for CV researchers to develop CV application without worrying the underlying

embedded platform or CV library dependency in ES. This project provides a

preliminary study of embedded computer vision (ECV) and design of a single

common ECV platform using ARM-9 embedded processor. A few CV

applications are also demonstrated on this platform, which share the same

iii

embedded system characteristics and ECV library. Analysis on the

demonstration application during development has been conducted to study

the design work flow.

iv

ACKNOWLEDGEMENTS

I would like to specially thank my supervisor Dr Tay Yong Haur for his

continuous guidance, great passion and support. He has been sharing his ideas

and knowledge that helps me a lot in my research. Next, I would like to

express my utmost gratitude to my co-supervisor Mr Mok Kai Ming for his

support and encouragement during this project.

v

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

PERMISSION SHEET

It is hereby certified that KENNY KHOO KUAN YEW (ID No:

06UIM02006) has completed this dissertation entitled “DESIGN AND

DEVELOPMENT OF AN EMBEDDED PLATFORM FOR COMPUTER

VISION APPLICATIONS” under supervision of Dr Tay Yong Haur

(Supervisor) from the Department of Internet Engineering and Computer

Science, Faculty of Engineering and Science, and Mr Mok Kai Ming from the

Department of Computer and Communication Technology, Faculty of

Information and Communication Technology.

I hereby give permission to the University to upload softcopy of my thesis in

pdf format into UTAR Institutional Repository, which will be made accessible

to UTAR community and public.

Yours truly,

(KENNY KHOO KUAN YEW)

11
th

 November 2011

vi

APPROVAL SHEET

This dissertation entitled “DESIGN AND DEVELOPMENT OF AN

EMBEDDED PLATFORM FOR COMPUTER VISION

APPLICATIONS” was prepared by KENNY KHOO KUAN YEW and

submitted as partial fulfillment of the requirements for the degree of Master of

Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Tay Yong Haur)

Date: 11th November 2011

Supervisor

Department of Internet Engineering and Computer Science

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

vii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

Name ____________________________

Date _____________________________

11
th

 November 2011

Kenny Khoo Kuan Yew

viii

TABLE OF CONTENTS

 Page

TITLE i

ABSTRACT ii

ACKNOWLEDGEMENTS iv

PERMISSION SHEET v

APPROVAL SHEET vi

DECLARATION vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvi

CHAPTER

1.0 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Scope of Work 5

1.4 Thesis Outline 7

1.5 Thesis Contribution 8

2.0 LITERATURE REVIEW 11

2.1 Overview 11

2.2 Study on Embedded Systems for Computer Vision 11

Application

2.2.1 Imaging Input 12

2.2.2 Processor 14

2.2.3 Result Represents 17

2.2.4 Embedded Systems Platform 19

2.2.4.1 Basic Embedded Systems 19

2.2.4.2 Embedded Systems with Coprocessor 20

2.2.5 Comparison of Development Cycle 22

2.3 Study on Computer Vision Application in Embedded 25

Systems

2.3.1 Typical Function of Computer Vision Applications 26

2.3.2 Typical Task of Computer Vision Application 28

2.3.3 Study of Available Computer Vision Library 30

2.3.4 Examination of CV Library Layout 34

2.4 Summary 36

ix

3.0 EMBEDDED COMPUTER VISION DESIGN 38

METHODOLOGY

3.1 Introduction 38

3.2 Overall Methodology 39

3.3 Specific Methodology 42

3.3.1 Generalize of CV Function into ECV Library 42

3.3.2 API Design 45

3.3.3 Code Optimization 47

3.3.4 Application Runtime Benchmark 50

3.4 Summary 52

4.0 DEVELOPMENT OF EMBEDDED COMPUTER 53

VISION PLATFORM

4.1 Introduction 53

4.2 Examination to Identify Suitability of Hardware 53

4.2.1 Comparison of Core for Embedded Processor 54

4.2.2 Variety of ARM Embedded Processor 58

4.2.3 Coprocessor 60

4.2.4 Imaging Device 61

4.2.5 Interface Peripheral 63

4.2.6 Overall Hardware Design 64

4.3 Examination to Identify Software Layout 65

4.3.1 Operating Systems and Hardware Driver 65

4.3.2 Web Server Development 66

4.3.2.1 Server-side Scripting Engine 69

4.3.2.2 Web Server 70

4.3.2.3 Database Server 71

4.3.2.4 Streaming Media Server 73

4.3.2.5 Development and Examination 74

4.4 ECV Library Design 77

4.5 Code Optimization 78

4.5.1 Identifying the Critical Path 78

4.5.2 Compiler Optimization 80

4.5.3 Code Optimization without Coprocessor 82

5.0 SAMPLE ECV APPLICATIONS 83

5.1 Introduction 83

5.2 Sample ECV Applications 83

5.2.1 Basic ECV Platform Test Program 84

5.2.2 Motion Detection Test Program 85

5.2.3 Face Detection Test Program 86

5.2.4 Fingerprint Matching Test Program 87

5.2.5 Optical Character Recognition Test Program 89

5.2.6 Intelligent Character Recognition Test Program 90

x

6.0 CONCLUSION AND FUTURE WORK 92

6.1 Introduction 92

6.2 Results 93

6.3 Analysis 95

6.4 Conclusion 97

6.5 Future and Trend 98

6.6 Future Work 99

REFERENCES 101

APPENDIX A 108

Manuals of ECVLIB Systems

APPENDIX B 116

How to Add Your Own Function in UTAR-ECV Library

xi

LIST OF TABLES

Table

Page

2.1 List of invisible spectrum and the type of sensor

13

2.2 The function block according to the type of

embedded system platform

22

2.3 The development step according type of embedded

systems platform

24

2.4 Computing systems resources usage according to

typical computer vision function, in terms of I/O,

DSP, memory and processing time

28

2.5 List of proprietary computer vision library

30

2.6 List of open source computer vision library

31

2.7 List of open source computer vision library

according library classes

33

3.1 Comparison of time complexities versus number

operations for an algorithms analysis notation

49

3.2 The platform combination for ECV application is

benchmarking

51

4.1 Available ARM processor development board and

the specification

58

4.2 The overall ECV platform hardware design

specification

64

4.3 Software package that work in EP9315

development board

66

4.4 Inter-related web server and client component

68

4.5 Comparison of server-side scripting engine base on

fractal benchmark

69

4.6 Compares the size of server-side scripting engine

69

4.7 List of open source web server which using C/C++

as development language

70

4.8 List of open source database server 72

xii

4.9 List of open source database server using C/C++ as

development language

72

4.10 Open source streaming media server

73

4.11 List of evaluate of combination of open source

internet server

75

4.12 Miniature internet server software package that

work in ARM920T embedded system

77

4.13 GCC optimizations and the compilations level

81

6.1 Motion detection test result

94

6.2 Face detection test result

94

6.3 Fingerprint matching test result

94

6.4 Optical character recognition test result

95

6.5 Intelligent character recognition test result

95

6.6 Summary of all test application CPU run time in all

type of compilation setting

96

xiii

LIST OF FIGURES

Figures

Page

1.1 Rovers on mars and computer-aided surgery

systems

1

1.2 Research protocol and study life cycle

5

2.1 Basic structure of embedded computer vision

11

2.2 Example for calling colour.brightness function to

reduce 10% brightness

15

2.3 Early state of ES evolution

15

2.4 Middle state of ES evolution

16

2.5 Current state of ES evolution

16

2.6 Web based control service building block

19

2.7 Simple CV processing block for basic embedded

systems

20

2.8 Basic CV processing block

21

2.9 Typical function of computer vision application

26

2.10 ECV library layout and class diagrams

35

3.1 Interconnect between project main tasks

40

3.2 ECV library project’s working flow

40

3.3 Proposed matrix map for ECV library layout.

43

3.4 Process to exanimate of open source CV library

layout

44

3.5 Proposed 3D matrix map for ECV library layout

45

3.6 The ECV library API design flow chart

46

3.7 Code optimization flow

48

4.1 Suggestion of embedded computer vision platform

for this project

54

xiv

4.2 Price and power comparison

56

4.3 Cirrus Logic EP9315 development board

input/output

59

4.4 Cirrus Logic EP9315 systems on chip processor

60

4.5 Imaging device (From left fingerprint, 2 of colour

imaging sensor)

62

4.6 Schematic of add on input/output peripheral

interface controller

63

4.7 Overall ECV platform hardware design

64

4.8 Basic software block diagram

65

4.9 Inter-related web server and client software

component

67

4.10 Detail of software block diagram for embedded

computer vision platform

77

4.11 ECV library file directory and the library layout

78

4.12 Listing of flat profile output

79

4.13 Listing of call graph output

80

5.1 Web interface of the ECV platform 85

5.2 Motion detection application from the ECV’s web

interface

86

5.3 Face detection application from the ECV’s web

interface

87

5.4 Fingerprint matching illustration

88

5.5 Fingerprint matching application from the ECV’s

web interface

89

5.6 Optical character recognition application from the

ECV’s web interface

90

5.7 Intelligent character recognition application from

the ECV’s web interface

91

6.1 Illustrated of speed improvement between 3

platforms

97

xv

6.2 Industry integration and convergence 99

xvi

LIST OF ABBREVIATIONS

Abbreviation

Meaning

2D

Two Dimensional

3D

Three Dimensional

ALU

Arithmetic Logic Unit

ANN

Artificial Neural Network

API

Application Programming Interface

ARM

Advanced RISC Machine

ARM-9

Advanced RISC Machine, Version 9

ASCII

American Standard Code for Information Interchange

ASIC

Application Specific Integrated Circuit

CCD

Charge Coupled Device

CMOS

CPLD

Complimentary Metal-Oxide Semiconductor

Complex Programmable Logic Device

CPU

Central Processing Unit

CT

Computed Tomography

CV

Computer Vision

DMA

Direct Memory Bus

DSP

Digital Signal Processor

ECV

Embedded Computer Vision

EDA

Electronic Design Automation

ES

Embedded Systems

FAU

Fix-point Arithmetic Unit

FPGA

Field Programmable Gate Array

FPU Floating Point Unit

xvii

GCC

GNU Compiler Collection

GNU

GNU's Not Unix!

GPU

Graphic Processing Unit

HDL

Hardware Description Language

I/O

Input/Output

IC

Integrated Circuit

ICR

Intelligent Character Recognition

IDE

Integrated Drive Electronics Interface

IEEE

Institute of Electrical and Electronics Engineers

LAN

Local Area Network

LCD

Liquid Crystal Display

LED

Light Emitting Diode

LIDAR

Light Detection and Ranging

MIPS

Microprocessor without Interlocked Pipeline Stages

MMU

Memory Management Unit

OCR

Optical Character Recognition

OS

Operating System

PC

Personal Computer

PDAs

Personal Digital Assistants

RADAR

RAM

Radio Detection and Ranging

Random Access Memory

RISC

Reduced Instruction Set Computer

SIMD

Single Instruction and Multiple Data

SOC

System On Chip

SONAR Sound Navigation and Ranging

xviii

SPECT

SQL

Single Photon Emission Computed Tomography

Structured Query Language

SVM

Support Vector Machine

USB

Universal Serial Bus

VGA

Video Graphics Array

VOIP

Voice Over Internet Protocol

1

CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, we have witnessed a dramatic increment in the usage

of computer vision (CV) in embedded systems (ES). CV was successfully

used in various mission-critical systems right from the landing of the

exploration rovers on Mars to computer-aided surgery (Larry Matthies, 2005).

Figure 1.1 : Rovers on mars and computer-aided surgery systems

Traditionally, different computer vision domains such as computer-

aided surgery and surveillance were addressed separately due to the different

nature of the application domains. However, these domains share many

common problems related to their real-time, embedded-system characteristics.

CV researchers have difficulties to implement their CV algorithms directly

into a small embedded device for a specific CV application (Dana H. &

2

Christopher M. Brown, 1982). These situations occur because there are:

 No standardized framework or architecture in embedded system for

CV

 No common interface for CV programming library

CV is also widely used in industrial embedded systems, taking part in

production and inspection processes. Cameras find their way to everyday

appliances such as cell phones, personal digital assistants (PDAs), presentation

appliances and vehicles. Moreover, cameras are becoming “smarter” by

gaining the capability of processing the acquired images internally (K.Y. Khoo

& Y.H. Tay, 2006).

The field of CV can be characterized as immature and diverse. There is

no standard formulation on how computer vision problems should be solved.

Instead, there exists an abundance of methods for solving various well-defined

computer vision tasks (Bernd Jahne & Horst HauBecker, 2000).

Combining CV and ES eventually creates a new field known as the

embedded computer vision (ECV). The existence of a growing demand for

ECV applications are used to tackle problems which can hardly be solved

using traditional sensor systems, i.e. camera. However, due to the high

computational complexity of most computer vision algorithms, applying of

such applications on embedded systems is not a straight forward task.

3

This new field is gaining popularity as more people are showing

interest in ECV, and attempt to bring more CV applications in the form of ES.

Institute of Electrical and Electronics Engineers (IEEE) organization has also

shown their interest by conducting the first embedded computer vision

workshop in Jun 2005 at San Diego, United State (IEEE, 2005). Hence this

ECV project tries to study and develop a possible platform for ECV using

Advanced RISC Machine, Version 9 (ARM-9) processor.

1.2 Problem Statement

There are many types of embedded systems platforms, such as

microprocessor, digital signal processor (DSP), graphics processing unit

(GPU), floating-point unit (FPU) and field-programmable gate array (FPGA)

(Wayne Wolf, 2006). Each of them is possible to be used for CV application.

However, there is not much study on platform suitability for CV application in

term of processing power, speed and time to market.

There are no CV libraries designed for embedded systems.

Furthermore, generalization of CV functions into proper library layout is

difficult due to the CV files which are immature and diverse. There are many

formulations to solve a particular CV problem. CV methods are often very

task specific and seldom can be generalized over a wide range of applications.

Currently CV developers are not able to deploy any CV application in

embedded board directly; this is due to the lack of hardware optimization and

4

the lack of possibility for real-time application execution. The possible

outcome for the study of ECV is to design a platform where CV developers do

not need to know the underlay of embedded systems, and the CV application

can still be able to deploy on it.

Today, most of the ES are the system on chip (SOC), which is an

application-specific integrated circuit, for which the central processing unit

(CPU) was purchased as intellectual property to add integrated circuit (IC)

design. For example:

 Integrate a video processing unit on chip for multimedia purposes,

such as Sigma Design Inc.’s multimedia chip EM8600 (Sigma Designs

Inc, 2004) which can decode high definition Windows media format 9.

The equivalence processing power in this video encoding is only found

in Intel Pentium 4 3.06GHz (Microsoft Corp, 2008).

 Integrate voice codec with Advanced RISC Machine (ARM) processor

for VOIP purpose such as Octasic DSP chip which can handle 672

channels of G.971 audio codec at a time (Robert Keenan, 2003).

Intellectual property in the SOC is actually a unit to perform a specific

task in real-time where the general purpose processor unable to perform.

Currently there is no specific SOC for CV application. This is because the CV

methods are often very task specific and can seldom be generalized over a

wide range of applications.

5

Most of the embedded system for computer vision application is laid

on platform of combination between microprocessor, DSP, coprocessor (FPU

or GPU) and FPGA. Neither the co-processor nor coprocessor can perform

special group calculation which can be between 1,000 to 10,000 times much

faster than microprocessor. Further research must be conducted to identify a

path of computer vision code which can take advantage of the embedded

system (Graefe et al., 1991).

1.3 Scope of Work

Figure 1.2 illustrates that this project involves research protocol and

life cycle study (Wendy Bergeru, 2002). It starts by identifying the need for

embedded system and hardware-software design study, follows by establishing

and maintaining the study, analysing the archive data, communicating results

by submitting it as a paper for conference and lastly wrap-up the study and

evaluates the outcome.

Figure 1.2 : Research protocol and life cycle study

Further development has to be done in order to conduct this research:

1. Investigate and identify suitable development board

6

2. Design a complete ECV system with input-output infrastructure

3. Establish an operating systems on the development board

4. Configure or rewrite input/output device driver for camera and sensor

The research approach includes:

1. Examine a miniature internet server for ECV

2. Research on computer vision library layout

3. Research on code optimization for hardware device

4. Analyse the sample computer vision application

Firstly, embedded systems design project is studied in order to

determine the suitable hardware design that suites the CV application in term

of flexibility and availability. Secondly, the project installs suitable operating

system (OS) into the development board. Thirdly, as many as the input/output

device is installed and attached with the development board. Forth steps,

examination and finding of the miniature internet web server as a web

infrastructure for input-output control.

Next, this project includes a few CV sample applications which were

implemented on the ECV platform. The ECV library is built and grew through

the development of these sample applications. Meanwhile a research on

computer vision library layout is conducted to design a better ECV library by

generalizing the CV functions and group them. Three methods of code

optimization had been study and applied:

7

 General code optimization

 Code optimization for generic FPU

 Code optimization for specific FPU

 At last, the analysis of these CV sample application has been

conducted, where the sample application are compiled in few different

platform to test the performance.

1.4 Thesis Outline

In the first chapter, embedded computer vision subject and the problem

statement are introduced. Project scopes are initiated and the project

contribution is listed.

Chapter 2 studies the computer vision application in embedded

systems and the evolution of embedded systems in conjunction of popularity

of CV application. It also discusses the issues of embedded systems in

computer vision domain.

Chapter 3 is about the method that this project had been carry-out by

answering the most important of “How”:

• How to determine embedded systems design

• How computer vision application take ES advantage

• How to select a suitable embedded processor

8

• How to generalize CV function into a specific library (ECV Library)

After knowing computer vision and embedded systems with ECV

design idea in mind, Chapter 4.2 will show how the project had conducted a

quantitative research to determine an embedded systems platform and

peripheral device that is suitable for most of the computer vision.

Chapter 4.3 and Chapter 4.4 mainly explain the development of

software. The basic operating systems and driver are developed. Internet

server which acts as main interface of ECV board is pulled together and the

important core software of ECV library is designed base on the research result

in Chapter 3. Chapter 4.5 will provide details of compiler and code

optimization on several ECV platforms.

Chapter 5 will cover a few CV sample applications which are working

on new design of ECV platform. Finally Chapter 6 will analyse these CV

sample application in term of execute speed in ECV platform and discuss the

future work and potential ECV platform’s product.

1.5 Thesis Contribution

Minor contribution of the project is the development work on ECV

platform. Such works are:

1. Searching for a suitable hardware platform

9

2. Operating systems installation and configuration

3. Input-output device driver modification and development

Another contribution is the finding of a miniature internet server for

ECV platform which requires least processing power and memory

consumption.

The study of various open source CV library has led to the concern of

having a generalized CV library as most of them do not have common

classification for particular a CV function.

This project had developed a new ECV library which is a CV library

that has been designed in mind of embedded systems domain. It is an essential

combination library from the study of various open source CV library layout.

It has generic code which can later be optimized with other architecture of

embedded system. By default it has been optimized with Cirrus Logic EP9315

microprocessor.

Immediate contribution is 5 CV samples application which had been

optimized for Cirrus Logic EP9315 microprocessor by using a new ECV

library.

During the course of research, a few papers were submitted for

conference. They were:

10

1. Paper title : A Preliminarily Study on Embedded Platforms for

Computer Vision Applications

 Author : Kenny Khoo Kuan Yew, Tay Yong Haur

 Conference : Regional Computer Science Postgraduate Conference 2006

 Organizer : Universiti Technologi Malaysia

2. Paper title : A Study of Digital Colour Imaging Systems Design for

Embedded Systems

 Author : Kenny Khoo Kuan Yew, Tay Yong Haur

 Conference : MMU International Symposium on Information and

Communication Technologies (M2USIC 2007)

 Organizer : Multimedia University, Malaysia

3. Paper title : Study and Implementation of Embedded Computer Vision

Library

 Author : Kenny Khoo Kuan Yew, Tay Yong Haur

 Conference : 3rd International Conference on Postgraduate Education

(ICPE3 2008)

 Organizer : Malaysian Deans Graduate Studies Council (MYDEGS)

11

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The literature review is a study on embedded systems for computer

vision application and via versus study on computer vision application in

embedded systems.

2.2 Study on Embedded Systems for Computer Vision Application

The definition of embedded computer vision system means a hardware

which is able to perform real-time computer vision algorithm. The diagram

below shows an ideal block system of it (Dana H. & Christopher M. Brown,

1982).

Figure 2.1 : Basic structure of embedded computer vision

In the future, electronic gadgets will be equipped with powerful

processing power. Every 18 months, the number of transistor is doubled up

12

inside a single die of chip (David C. Brock, 2006). The speed of processor is

limited at some point due to the difficulty to keep power consumption and

reliability (Aleksandr Mitrofanov, 2006). The size of processor is limited at

some point due to the quantum tunnelling effect in wafer manufacturing

processes (Michael Kanellos, 2003). The doubling of transistor, limitation of

the speed of processor and limitation of the size of processor caused

manufacturer to:

• Multiply processor core on single die of chip, or

• Enable single instruction and multiple data (SIMD) processing on

single die of chip.

Computer vision application is always dealing with a group of data

(Such as image or array of data). Processor with SIMD ability will boost

application speed such computer vision (CV) application (Herb Sutter, 2005).

2.2.1 Imaging Input

Figure 2.1, shows that imaging input as a device that produce array of

data that represent a real world environment. Basically the device sensing

mechanism is touch sensing or seeing. The examples of touching mechanism

sensor device are push button, fingerprint reader. In general seeing mechanism

sensor device can detect 2 types of spectrum:

13

• Visible spectrum

• Invisible spectrum

Visible spectrum is a portion of the electromagnetic spectrum which

can be seen by human eyes. Sometimes it is also called as optical spectrum.

The wavelength of it is between 380nm to 750nm (Bir Bhanu & Ioannis

Pavlidis, 2004).

Invisible spectrum is an electromagnetic spectrum that human eye

unable to see or detect. Some of it is useful because it can pass through certain

object, such as X-ray (around 1nm wavelength) which can display inner

structure of human body. Due to this imaging device ability, most of them

produced the image by tomography method. It is rarely used in CV

application, because both systems are normally targeted for far object which is

invisible to human eye (Bir Bhanu & Ioannis Pavlidis, 2004).

Table 2.1 : List of invisible spectrum and the type of sensor

Physical Phenomenon

Approximately

Wavelength

 (in Meter)

Type of Sensor

Below

Visible

Spectrum

Sound 2 E-02 Sound Navigation and Ranging

(SONAR)

Ultrasound 5 E-05 Medical Sonography

(Ultrasonography)

Beyond

Visible

Spectrum

Laser 6 E-07 Light Detection and Ranging

(LIDAR)
X-Rays 1 E-07 Computed Tomography (CT)

Airport

Radar

1 E-10 Radio Detection and Ranging

(RADAR)

Gamma

Rays

1 E-11 Single Photon Emission

Computed Tomography

(SPECT)

14

To detect signal within visible spectrum, a seeing mechanism sensor

device, or so called colour image sensor will be used. The major constraints in

image sensor are sensitivity, resolution, progressive/interlaced scan image, and

interval between sequence images (video frame per second). These constraints

will determine the size of information that CV systems receive for analysis. An

ECV hardware platform must select the right image sensor as it will provide

sufficient information for CV systems to calculate accurate result.

Camera is the most popular image sensor in CV application. Nowadays

camera is part of every day’s appliances such as cell phones, PDAs,

presentation appliances and vehicles. Moreover, cameras is becoming

“smarter” by gaining the capability of processing the acquired images

internally.

Common criteria of all seeing mechanism sensor devices are that it

senses the reflection of the electromagnetic spectrum source. For example,

colour image camera sense the reflection of light from an environment object;

RADAR and LIDAR image systems use radio/laser waves to determine the

distance to an object by measuring the time delay between transmission pulse

and detection of the reflected pulse.

2.2.2 Processor

As imaging input produces array of data and the algorithm always

applied on the set of data, the processor must be able to handle parallel

15

processing. In a case study, a simple brightness adjustment operation of an

image requires to perform 1 million times of colour.brightness function for

each pixel in 1280 x 1024 pixel images. Figure 2.2 shows the example of

colour.brightness function mathematic.


 


0

1280

0

1024

%)10,(brightness.
X Y

RGBcolor

Figure 2.2 : Example for calling colour.brightness function to reduce 10%

brightness

The sequence of images and sound is called video. Processor itself

might not be able to process this video data in real-time. Integrated DSP/GPU

in the systems helps to process this video data in real-time. DSP/GPU is able

to do parallel processing, and a single instruction for multiple data operations

to solve the large data calculation (Ian Buck, 2005).

Figure 2.3 : Early state of ES evolution

16

Figure 2.4 : Middle state of ES evolution

Figure 2.5 : Current state of ES evolution

Figure 2.3, Figure 2.4, and Figure 2.5 show embedded systems

evolution. As time passes, embedded systems are capable to contain an OS and

cooperate with DSP/GPU to calculate complex mathematic (Wayne Wolf,

2006). With the high processing power of these embedded platforms and ever

17

increasing size of both volatile and non-volatile storage, it opens up a great

opportunity to integrate CV applications to these relatively low-cost and

standalone devices.

In the beginning of embedded systems evolution (Figure 2.3), ES is

just an input output device which gave electrical output base on incoming

command, or a variable, the software architecture just a control loop systems.

At the time when microprocessor has become fast and arithmetic logic

unit (ALU) has become more advanced, ES itself can collect data, and perform

calculation to determine the decision and output. At this stage (Figure 2.4), ES

can contain a simple operating system and software structure.

Current state of embedded systems evolution (Figure 2.5), shows that

as time goes on, embedded systems are capable to contain an OS and

cooperate with DSP/GPU to calculate complex math (K. Rath & P. K. Meher,

2006).

2.2.3 Result Represents

Usage of embedded computer vision can be a standalone device, or a

reporting/monitoring device. ES can attach input/output peripheral for

mobility. Such peripheral are liquid crystal display (LCD), input button, motor,

and servo motor.

18

Outcome for standalone device will be immediate action. For example,

iris recognition door access systems will unlock the door if the user permission

is granted.

If ECV systems act as reporting/monitoring device, this device may

report the result to the user through user interface. In the era of internet, an

embedded computer vision system is able to link up and send any message to

user through web.

High capacity integration in SOC enables ES to have much

functionality, such as Ethernet connection or wireless communication. Due to

the trend of web interface, and ability of network access in ES, the most

suitable control interface today will be web-based control. User can control the

ES from web browser at anywhere. To enable this web-based control, we will

later study the internet server for ES. Basic type of server which might be

related is web server, video server, scripting server and database server. Figure

2.6 shows the building block of internet server (James Kurien et al., 2002).

19

Figure 2.6 : Web-based control service building block

2.2.4 Embedded Systems Platform

The core of processing will determine the overall ECV design and

performance and such CV application can be categorised into 2 different

platforms of embedded system design (Wayne Wolf, 2006) which is:

1. Basic embedded systems

2. Embedded systems with coprocessor

2.2.4.1 Basic Embedded Systems

An embedded processor only processes single thread of program and

handle basic input/output. A fine example of such computer vision application

that runs on this kind of systems is “White surface and black colour line

tracking systems to guide the movement of robot”. This simple computer

vision application will grab the input data from black and white detection

20

sensor. The input image data is a single array of data. Each pixel is a binary

data that represents either black or white colour. This CV application will

detect the position of black colour, and will decide the robot movement to

ensure the black line is always in the middle of the array in real-time

(Pakdaman M. & Sanaatiyan M., 2009). It is illustrated in Figure 2.7.

Figure 2.7 : Simple CV processing block for basic embedded systems

2.2.4.2 Embedded Systems with Coprocessor

An embedded processor connects to a coprocessor with a high speed

bus interface such as direct memory access (DMA) bus. This embedded

processor processes a thread of program and the coprocessor processes a

group of flouting-point/fix-point data in memory. It combines domain specific

execution clusters to produce high performance low-power accelerators for

perception applications in the embedded space (Binu Mathew et al., 2003).

Most of the silicon on chip (SOC) do combine an embedded processor

with coprocessor in a single die of chip where it allows user to implement

algorithms without hardware knowledge. A descriptor method in which the

central processing unit gave instructions to coprocessor through a register

21

array enabled task-level parallel processing as well as pixel-level parallel

processing in the processing units (Komuro T. et al., 2010).

Examples of computer vision application that can run on this kind of

systems are:

• Finger print verification

• Palm print recognition

• Text recognition

• Human face detection

• Motion detection and etc.

For example in a motion detection of security monitoring, in order to

ensure a real-time processing, the programming code must not be O(N
2
) style.

Input image data is a two dimensional (2D) array of data and each pixel might

be 24 bits of colour data. But to apply CV algorithm, the input image data

needs to be in correct colour space and standard. To do so, a pre-processing

function needs to de-noise, convert or normalise input image data. The Figure

2.8 shows the interconnection of processing function in the CV processing

block.

Figure 2.8 : Basic CV processing block

22

2.2.5 Comparison of Development Cycle

The Figure 2.2 shows the function block according to the type of

embedded system platform.

Table 2.2 : The function block according to the type of embedded system

platform

Type of

Embedded

System

Platforms

Basic Embedded

Systems

Embedded Systems with Coprocessor

System On Chip

(SOC)

Configurable Chip

Function

Block

Fix-point

Arithmetic Unit

(FAU)

Floating Point Unit

(FPU)

Customized Floating

Point Unit

 Graphics

Processing Unit

(GPU)

Customized

Graphics Processing

Unit

 Specific

Coprocessor

Customized

Coprocessor

User develops software on top of basic embedded systems has no

concern of API software. All the programming code is translated into machine

code by compiler.

A SOC is an integrated circuit that integrates all components of a

computer or other electronic system into a single chip. It may contain digital,

analogue, mixed-signal, and often radio-frequency functions. A typical

application is in the area of embedded systems. Electronic system, such FAU,

FPU, GPU, and specific coprocessor had a set of advance function in SOC for

use.

23

Most of SOC come with a software distribution and the general

software library where both of it are optimized with the FPU, GPU or theirs

specific coprocessor. User develops software on top of it with:

• Guided API to use the specific coprocessor

• Optimized general software library

Programming style of the algorithm is adjusted according to the guided

API for the specific coprocessor. Adjusted programming style can gain speed

from that specific SOC.

CPLD, ASIC, FPGA is a configurable chip. It contains logic blocks

that can be programmed to perform the function of basic logic gates such as

AND gate, and XOR gate, or more complex combinational functions such as

decoders or mathematical functions. For it an algorithm is a hardwired

connection in the chip (Proshanta Saha, 2007). A programmable CPLD or

FPGA has the ability to update the functionality. One-time programmable

ASIC is more cost effective in large volume production.

Customized function block provides flexibility to user to customise

coprocessor. However, with such flexibility, user will have to spend more time

on:

• Design the customized function block

• Test the customized function block

24

• Manage the programming API

• Optimize general software library for the customized function block

Table 2.3 : The development step according type of embedded systems

platform

Development Step

Type of Embedded Systems Platform

Basic

Embedded

Systems

Embedded Systems with Coprocessor

System On Chip

(SOC)

Configurable

Chip

1 CV Algorithm

Design
Same

2 Algorithm

Strip Down
Same

3 Hardware

Optimization

None

Profiling
Register Transfer

Level
Using

Coprocessor

Extension in

Critical Loop

Design Synthesis

Gate Level

Simulation

Logic Synthesis

Table 2.3 shows the development step of generic algorithm for

different types of embedded system platforms. The only different development

step among them is hardware optimization. Note that embedded systems with

coprocessor for profiling performance might need to use coprocessor

extension in critical loop. The optimization for configurable chip requires

knowledge of hardware description language (Tammy Noergaard, 2005). The

adoption of FPGA in high performance computing is currently limited by the

complexity of FPGA design as compared to conventional software and the

extremely long turn-around times of current design tool where 4 to 8 hours of

waiting time is necessary even after a minor change is made to the source

code.

25

The development cycle for basic embedded systems is straightforward

but it hardly increases the runtime speed. And the development cycle for SOC

is much faster than customizable circuit. This is mainly due to SOC:

• Does not need to test the customized function block

• Does not need to optimize the general software library for the

customized function block

However SOC does not support dynamic reconfiguration in runtime.

Instead, it adapts itself to a specific functionality.

2.3 Study on Computer Vision Application in Embedded Systems

The CV field can be characterized as immature and diverse, and there

are many formulations to solve a particular CV problem. CV methods often

are very task specific and seldom can be generalized over a wide range of

applications.

Computer vision can also be described as a complement (but not

necessarily the opposite) of biological vision. In biological vision, the visual

perception of humans and various animals are studied, resulting in models of

how these systems operate in terms of physiological processes (Dana H. &

Christopher M. Brown, 1982). Computer vision, on the other hand, studies and

describes artificial vision system that is implemented in software and/or

hardware. Interdisciplinary exchange between biological and computer vision

26

has proven increasingly fruitful for both fields.

2.3.1 Typical Function of Computer Vision Applications

The organization of a computer vision system is highly application

dependent. Some systems are standalone applications which solve a specific

measurement or detection problem. While other systems constitute a

subsystem of a larger design which, for example, also contains subsystems for

control of mechanical actuators, planning, information databases, human

machine interfaces, and etc. The specific implementation of a computer vision

system also depends on if its functionality is pre-specified or if some part of it

can be learned or modified during operation. There are, however, typical

functions which are found in many computer vision systems (Gosta H. & Hans

Knutsson, 1995).

Figure 2.9 : Typical function of computer vision application.

Typical functions of computer vision system can be generalized into

the following subsystems in Figure 2.9. The image acquisition subsystems are

just a simple communication protocol to grab image or image sequence from

imaging devices, e.g. camera, radar, tomography system.

27

Pre-processing function uses a lot of memory to do image processing

for noise reduction on the image, but it also reduces the overall amount of

data. Feature extraction function perform a lot of CV algorithms to further

reduce the raw data to a set of features, which ought to be invariant to

disturbances such as lighting conditions, camera position, noise and distortion.

Examples of feature extraction function are:

a. Perform edge detection or estimation of local orientation

b. Extracting corner features

c. Detect blob features

d. Extract spin images from depth maps

e. Acquire contour lines and curvature zero crossings

f. Generate features with the scale-invariant feature transform

After obtaining a set of features, CV researchers are able to apply their

own idea/algorithm for specific CV application. The registration function has

to bring up a final hypothesis. It is a high level processing, where at this point

the input is typically a small set of data for example a set of points or an image

region which is assumed to contain a specific object. The remaining

processing deals with, for example:

1. Verification that the data satisfy model-based and application specific

assumptions

2. Estimation of application specific parameters, such as object poses or

object size

28

3. Classifying a detected object into different categories

Table 2.4 : Computing systems resources usage according to typical

computer vision function, in terms of I/O, DSP, memory and

processing time

Typical CV

Function

Computing Systems Resources

I/O Coprocessor Memory Processor

Image Acquisition Yes Low Low

Pre-processing Yes Very High High

Feature Extraction Yes Very High Very High

Registration Yes High High

Based on each typical CV function, there are different amount of

computing systems resource used, as shown in the Table 2.4. Some typical CV

function always run in critical time, any data which cannot be processed in

real-time will be ignored. Bottleneck of any CV subsystems might cause real-

time processing fail. Pre-processing subsystems always deal with adjustment

of large amount of images. The feature extraction subsystems processing time

is the worst, because it extracts a set of attribute from each static image or a

sequence of images. Both subsystems are computation intensive and deals

with large amount of data. Only GPU which have SIMD capability can

process all large amount of data faster and probably in real-time.

2.3.2 Typical Task of Computer Vision Application

Typical tasks of CV systems application that currently realize can be

categorized as (Linda G. Shapiro & George C. Stockman, 2001):

29

• Object recognition task - Detect the presence of known objects or

living things in an image, possibly together with estimating the pose of

these objects.

• Optical character recognition (OCR) task - Takes pictures of printed or

handwritten text, and then converts it into computer readable text such

as American Standard Code for Information Interchange (ASCII) or

Unicode.

• Tracking task - Known objects movement and direction through an

image sequence.

• Scene interpretation task - Create a model from an image/video of

scenes.

• Ego motion task - Determine the motion of the camera itself.

Thus typical task reflect the design of embedded systems. Such task

will directly reflect the embedded systems input device and memory design

example of such task are:

1. Object recognition tasks needs at least a single imaging device to

capture object, or a fingerprint reader device.

2. Tracking task and scene interpretation task also need imaging device

but there need to keep track previous data with some large memory

device.

30

2.3.3 Study of Available Computer Vision Library

This project is to build an ECV library which is optimized with the

selected ECV platform design. An examination on all available CV libraries is

conducted.

Table 2.5: List of proprietary computer vision library

No Product Company Country Website

1 Common

Vision Blox

Stemmer Imaging Germany commonvisionblox

.de

2 Halcon MVTec Germany mvtec.com

3 LabView-NI

Vision

National

Instruments

USA ni.com

4

Matlab Image

Processing

Toolbox

The MathWorks USA mathworks.com

5 Matrox Imaging Matrox Electronic

Systems

Canada matrox.com

6 NeuroCheck NeuroCheck Germany neurocheck.com

7 Open eVision Euresys Belgium euresys.com

Table 2.5 shows the list of proprietary computer vision library. But this

project will not concern about proprietary computer vision library as it is:

1. Close source and hard to evaluate inner code.

2. Software lockup with high maintenance cost.

3. Fully depend on vendor for available function, new function upon

request might be slow.

4. Operating systems dependent.

31

Study on available open source computer vision related library had

been conducted. The result is that there are at least 16 open source computer

vision libraries for CV developer to use; Table 2.6 is the list of it. In open

source community, there are still many CV related projects, as many of it are

not intended to be designed as library, so it is not discussed. Main concern in

open source software reliability is:

• Development status - Active or pending

• License - Free to use?

• Number of steady/registered developers

• Operating systems platform

Table 2.6 : List of open source computer vision library

No Library
Core

Language
Platform

Current

Version

Release

Date
Size

1 Blepo C Linux 0.6.2
24-Aug-

2007
9,095kB

2 Camellia C Linux 2.24
24-Jan-

2005
373kB

3 Diamond3D C++ Win/Linux 0.4
13-June-

2003
452kB

4 Gandalf C/C++ Win/Linux 1.6
21-Sep-

2006
6,574kB

5 JavaVis Java JRT 3.51
16-Dec-

2005
1,700kB

6 LibCV Java Linux 0.1
16-Jun-

2006
49kB

7 LTI-Lib C Linux 1.9.15
25-Nov-

2005
105kB

8 Mimas C/C++ Linux 2.1
30-Oct-

2006
45,756kB

9 NokiaCV C/C++ Symbian 1.0
19-Jun-

2008
3,585kB

10 OpenCV C/C++ Win/Linux 1
6-Nov-

2006
10,866kB

11 OpenVIDIA C Win/Linux 0.8
27-Jun-

2005
1,299kB

32

12 TLIB C/C++ Win/Linux 0.3
10-Dec-

2003
2,626kB

13 Torch-CV C/C++ Linux 2.1
2-Apr-

2007
7,347kB

14 VIGRA C/C++ Win/Linux 1.5.0
8-Dec-

2006
12,554kB

15 VXL C++ Win/Linux 1.10.0
6-Jan-

2008
21,553kB

16 WebCamXtra C++ Win/Linux 0025
16-May-

2006
475kB

The Table 2.6 shows the sixteen of open source computer vision

libraries which been analysed. In a detail preview of the source code for each

CV library, the library classes are categorized according to their functions in

Table 2.7. We found that most of them do not have internet service, hardware

driver, wavelet domain processing function, artificial neural network (ANN)

and support vector machine (SVM) support.

33

Table 2.7 : List of open source computer vision library according library

Library
File

Handling

Internet

Service

Desktop

GUI

Feature

Extraction
Image Processing

Image

Manipulate

Camera

Calibration

Hardware

Driver

Math
Machine

Learning

2D 3D Time Frequency Wavelet
Linear

Algebra
Matrix Vector Statistic ANN SVM

1 Blepo Yes - Yes Yes - Yes Yes - Yes Yes Yes Yes Yes Yes - - -

2 Camellia - - - Yes Yes Yes - - Yes - - Yes - - Yes - -

3 Diamond3D - - - Yes - Yes - - Yes - - Yes Yes - - - -

4 Gandalf Yes - Yes Yes Yes Yes Yes - Yes - - Yes Yes Yes - - -

5 JavaVis Yes - Yes Yes - Yes - - Yes - - - - - - - -

6 LibCV - - Yes Yes - Yes - - - - - Yes - - - - -

7 LTI-Lib - - Yes Yes - Yes - - Yes - - Yes Yes - - - -

8 Mimas Yes - - Yes - Yes Yes - Yes Yes - Yes Yes - - - -

9 NokiaCV Yes - - Yes - Yes - - Yes - - Yes Yes Yes - - -

10 OpenCV Yes - Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

11 OpenVIDIA Yes - - Yes - Yes Yes Yes Yes - - Yes Yes Yes Yes - -

12 TLIB Yes - Yes Yes Yes Yes Yes - Yes - - Yes Yes - - - -

13 Torch-CV Yes - Yes Yes - Yes Yes - Yes - - Yes Yes - - - -

14 VIGRA Yes - - Yes - Yes Yes - Yes - - Yes Yes Yes Yes - -

15 VXL Yes - Yes Yes Yes Yes Yes - Yes Yes - Yes Yes Yes - - -

16 Myron Yes - Yes Yes - Yes - - Yes - - - - - - - -

3
3

34

2.3.4 Examination of CV Library Layout

The typical CV function (Chapter 2.3.1), typical task of CV (Chapter

2.3.2) and CV library classes (Chapter 2.3.3) can be a reference point to

generalize all the CV method/function over a wide range of applications to be

a standard CV library.

Based on the type of CV application usage, the runtime of it can be

categorised as:

1. One short runtime - This kind of CV application can tolerate delay,

such application is fingerprint recognition (can be delay more than few

seconds).

2. Continues runtime - A kind of CV application which needs real-time

processing. Such as motion detection where it needs to process 15

frames of image data per second.

35

Figure 2.10 : ECV library layout and class diagrams

Figure 2.10 shows the possible ECV library layout. It covers most of

the functions which can be found in open source CV library. There are 3 main

groups of CV library classes:

1. Utilities - It is handling mostly operating systems task.

2. Core - Main CV library which generalize according to CV subsystems

and CV typical task.

3. Support - It's fundamental function routine, such as math and machine

learning algorithm.

36

The core class can be divided into a few sub-groups according to

typical CV function and typical CV task. For instance, image acquisition

function can group into hardware driver section, pre-processing function is

grouped into image processing section, and feature extraction is grouped into

registration section. Such also as feature extraction function is divided into 2D

or three dimensional (3D) CV task.

ECV library is not intended to reinvent/rework any existing code, such

as hardware driver and basic math library. Some of third party libraries are

inherited to ECV library.

2.4 Summary

 When the processing speed is to be considered in an ES hardware

design, the parallelism of the logic resources and coprocessor are the main

aspects in this consideration. The inherent parallelism of the logic resources on

the CPLD, ASIC, or FPGA allows for a considerable computation throughput

at a sub-500 MHz clock rate. For example, the current (2007) generation of

FPGA can implement around 100 single precision floating point units, all of

which can compute a result every single clock cycle. The flexibility of the

CPLD, ASIC, or FPGA provides a better performance by trading off the

precision and range in the number format for an increased number of parallel

arithmetic units. However modern coprocessor with DMA and SIMD

capability is able to achieve similar high performance by trading off

customized function block. Development of high performance embedded

37

systems consist of algorithm and hardware design.

ES development process is affected by the development cost,

knowledge, and tools. This process involves CV application developer

workforce and CPLD, ASIC, or FPGA engineers. The extra electronic design

automation (EDA) software tools are required to do the hardware description

language (HDL) process. Embedded processor with coprocessor is more

preferable as CV application developer does not need to know the underlay of

circuit design. Furthermore, comparing with high performance embedded

systems, the total cost is much lower.

Propose a design of embedded computer vision platform that supports

a wide range of CV applications with a shortest development cycle. The

project will enable a touch sensing input device (Fingerprint reader, a

capacitive touch sensing input device) and visible spectrum sensor device

(Colour image sensor, a light spectrum sensor device) to be capable for wide

range of CV applications. To achieve the shortest development cycle, all the

CV algorithms will be implemented on top of embedded systems with

coprocessor support. The emerging internet era, all the ES outcome, alert or

result will be able to be accessed by user from web browser.

Continuous studies and researches have shown the possibility of

grouping all the CV functions according to the typical CV task and the main

group of CV library classes.

38

CHAPTER 3

EMBEDDED COMPUTER VISION DESIGN METHODOLOGY

3.1 Introduction

This project methodology involves 3 major steps: start-up preparation,

platform establishment by integration of sample applications, and research on

ECV platform by benchmarking the performance.

Start-up preparation is to choose the suitable embedded systems board

for research and then enable operating systems and several imaging devices.

Platform establishment is to apply common CV algorithm in ECV

library through a few sample CV applications. Each sample CV application is

broken down into smaller functions. Smaller functions are then intergraded

into ECV library according to the library layout finding. Platform

establishment takes place at personal computer (PC) platform and embedded

systems platform. The sample CV application code is as generic as portable in

PC platform, and it is optimized according to the specific executed instructions

in embedded systems platform (Musser D. & Stepanov A., 1994). ECV library

source code is written from scratch during the implementation of CV

application.

39

Next research on ECV platform by benchmark the performance of the

sample CV application is performed. Performance and algorithm optimization

issue will then be studied.

3.2 Overall Methodology

Through this study, it had identified six main variables/tasks. Thus, the

main task needs to be completed for research methods are:

1. Apply CV algorithm in ECV library

2. Integration and optimization between ECV library and hardware

3. Sample CV application development

4. Determine the best layout of ECV library

5. Choose the suitable embedded systems board

6. Benchmark tools

The main task’s interconnection is shown in Figure 3.1. It shows that

the main focus of applying CV algorithm in ECV library is the determination

of best layout to build the ECV library. The determination of best layout task

is in the middle of other tasks. Any adjustment for any others task will affect

this task.

40

Figure 3.1 : Interconnection between project main tasks

Integration and optimization between ECV library and hardware take

place after CV function is placed on ECV library layout. Integration and

optimization step will depend on the chosen embedded systems while code

optimization will depend on additional function that embedded systems had.

Figure 3.2 : ECV library project’s working flow

41

Referring to Figure 3.2, choosing a suitable embedded systems board is

the first step for this research project. Next, the multiple installation option is

tested in order to determine the suitable operating systems and hardware

driver. Several imaging device are also tested.

After step 1, the hardware and software-based systems are built. Step 2

is to apply a common/generic CV algorithm in ECV library onto the base

systems and to check if the CV algorithm produces the same result for PC, and

embedded platform.

 When a CV algorithm is working, the optimization is performed to

speed up the program in step 3. Step 4 is to simplify and generalize the

functions into ECV library. Step 3 and step 4 are always monitored using a

benchmark tools.

 Step 5 is to distribute ECV library for developer to program CV

application on top of it. We will go back to step 2 to fix/create new algorithm

based on the developer feedback for any lack of functionalities, performance

and algorithm. After several CV application developments, the whole research

process is repeated for a few times. Literature review in Chapter 2 had help to

identify these research problems as listed below:

1. Generalization of CV function

2. Determination of library layout

3. Optimization code in embedded systems

42

3.3 Specific Methodology

This section explains specific methodology of this project. Literature

review helps to identify this research problem and formulate the problem into

procedure 4 sections:

1. Generalization of CV function

2. Application programming interface (API) design

3. Optimization code in embedded systems

4. Application runtime benchmark

3.3.1 Generalization of CV Function into ECV Library

This generalization process can preserve the information about the

former level of specialization and to allow round-tripping between specialized

and unspecialized forms of the same content. Generalization is important to

simplify and to make sure the proper categorization of the software library.

Image processing and interchange standard has been referred during designing

of API (ISO/IEC Copyright Office, 1998) (Pratt & William K, 1996).

Generalization of CV function into software library form is a specific

task for computer vision subject only. Referring to Chapter 2.3.1 and Chapter

2.3.2, CV function can be categorized according to typical CV function and

typical task of CV. Both can be used to create a matrix map for CV software

library.

43

Figure 3.3 : Proposed matrix map for ECV library layout.

Figure 3.3 above is a proposed matrix map for ECV library layout. It is

similar to Linux kernel matrix map. The Linux kernel matrix map consists of

function versus user layer (Constantine Shulyupin, 2008). The matrix map is a

guide for all the Linux developer to properly design their code in proper

section of code (Daniel P. Bovet & Marco Cesati, 2005). Finding the ECV

matrix map is a first method to generalize CV function according to the natural

of CV subject (The CV function and CV typical task).

44

Figure 3.4 : Processes to exanimate of open source CV library layout

Second method is to study the generalization of CV function with the

aim to study the current available open source CV library. Chapter 2.3.3 had

done such studies. Figure 3.4 shows the process during the examination of

open source CV library layout:

At Chapter 2.3.4, project found that commonly CV library function can

be grouped into 3 main groups of CV library classes:

• Utilities - It is handling mostly operating systems task.

• Core - Main CV library which generalize according to CV subsystems

and CV typical task.

• Support - It's fundamental function routine, such as math and machine

learning algorithm.

45

Considering building ECV matrix map by combination of CV function,

CV typical task and CV library classes, Figure 3.5 show the 3D matrix map

for ECV library layout. It will be a guide for ECV developer during CV

algorithm development, so that the piece of source code is in place

accordingly.

Figure 3.5 : Proposed 3D matrix map for ECV library layout

3.3.2 API Design

API design is about the function call of the ECV library. It is

important as user will learn the library through API and a successful public

APIs will capture user (David R. Hanson, 1997) (Joshua Bloch, 2006) and it

can be among ECV greatest liabilities.

46

Characteristics of a good API:

1. Easy to learn

2. Easy to use, even without documentation

3. Hard to misuse

4. Easy to read and maintain code that uses it

5. Sufficiently powerful to satisfy requirements

6. Easy to extend

7. Appropriate to audience

Figure 3.6 : The ECV library API design flow chart

Referring to Figure 3.6, the ECV library API design flow chart, the

process of ECV library API design flow is executed in 5 steps. The API is

always reviewed by repeating the design flow.

At first, gather all the requirements by conducting the required analysis

at Chapter 3.3.1 in order to generalize the CV function. Next, we need to

47

conduct survey with user regarding their desired features.

Step 2 is to implement the functionality, design API, and release to test

it. This way of API design tends to reflect the structure of the underlying code,

rather than what the application programmer who will use the API.

Step 3, writing a few typical application snippet codes based on short

specification list, as writing the code snippets, and the API takes shape. As

implementing the API or write unit tests for the implementation, found many

flaws or undefined corner cases in the original short specification design.

Finally, the API evolves by constantly repeating the API design flow.

The API design flow is updated base on developer’s feedback. It won’t be able

to please everyone, but it aims to displease everyone equally.

3.3.3 Code Optimization

Choosing the fastest speed and highest accuracy CV algorithm can be a

difficult task and there is no definitive comparison process for choosing the

right one for ECV library. The code optimization process flow in Figure 3.7

shows that choice of programming language which reflect subsequent step in

compiler optimization. And the correct choice of CV algorithm will

dramatically help to speed up the code. Benchmark or profiling can be the

performance determination. If there is a need to improve the benchmark

results, hand-on code optimization can be done in inner looping code or

48

implementation of assembly code.

Figure 3.7 : Code optimization flow

By reducing an O(N
2
) algorithm to O(N) algorithm, the program can

be speeded up, especially for a large amount of data (Robert L. Kruse & Alex

Ryba, 1998), such as image data. Table 3.1 showing number operations that

would be performed for various values of N in algorithms analysis notation.

Logarithms to base 2 (as used here) are proportional to logarithms in other

base, so this doesn't affect the big-oh formula.

49

Table 3.1 : Comparison of time complexities versus number operations for

an algorithms analysis notation

Operations

Time Complexities

Constant

Notation

Logarithmic

Notation

Linear

Notation

Quadratic

Notation

Cubic

Notation

n O(1) O(log N) O(N)
O(N log

N)
O(N

2
) O(N

3
)

1 1 1 1 1 1 1

2 1 1 2 2 4 8

4 1 2 4 8 16 64

8 1 3 8 24 64 512

16 1 4 16 64 256 4,096

1,024 1 10 1,024 10,240 1,048,576 1,073,741,824

1,048,576 1 20 1,048,576 20,971,520 1.1 E+12 1.15 E+18

For example, the camera images are captured, processed and displayed

on the screen. The algorithms that do this must not be O(N
2
). If it took one

microsecond (1 millionth of a second) to process each pixel, an O(N
2
)

algorithm would take more than a week to finish processing a 1 megapixel

image, and more than three months to process a 3 megapixel image (note the

rate of increase is definitely not linear).

The ECV library implementation was written in C/C++. This was a

good choice because the GNU compiler collection (GCC) has an option that

control code optimization. Turning on code optimization options makes the

compiler attempt to improve the performance and/or program size at the

expense of compilation time.

50

After settling on an algorithm choice and compiler optimization

options, if the program still does not execute fast enough, there are a number

of hand-on optimizations that can be performed. Optimizing inner looping

code will reap the greatest benefit, because most of the processing time is

spent in an inner loop. For code that needs to be extremely streamlined,

assembly language is a good choice. C programming allows assembly code to

be inserted directly into the code. It is also possible to write an entire section

of code in assembly.

3.3.4 Application Runtime Benchmark

Benchmarks provide a method of comparing the performance of EVC

program in various optimizations across different system architectures.

Benchmarking can be performs using 2 types of profiler (Thorsten Grotker et

al., 2007):

1. Flat profilers compute the average call times, from the calls, and do not

breakdown the call times based on the callee or the context.

2. Call graph profilers show the call times, and frequencies of the

functions, and also the call-chains involved based on the callee.

However context is not preserved.

Statistical profiler GNU gprof is used as flat profilers and call-graph

profiler. Step by step to do benchmark for ECV library function are:

51

1. Compiling a program for profiling

2. Generate profile data

3. Analysis flat profile and call graph

4. Rewrite the critical path of program

Each ECV application is benchmarked in 2 platforms, the PC platform

and embedded systems platform. Each sample CV application will be

benchmarked 3 times using the combination below, as shown in Table 3.2:

a. Code optimization of ECV application with microprocessor capability

only

b. Code optimization of ECV application with microprocessor and

generic coprocessor capability only

c. Code optimization of ECV application with microprocessor and

specific coprocessor capability only

Table 3.2 : The platform combination for ECV application is

benchmarking

ECV library

Combination 1 Combination 2 Combination 3

Generic

Compilation

Generic

Compilation

Optimized

Compilation

Software

Block

Illustration

Hardware

Involvement

With

Microprocessor

Only

With

Microprocessor

and Generic

Coprocessor

With

Microprocessor

and Specific

Coprocessor

52

3.4 Summary

The study of CV and ES domain in Chapter 2 are helping to determine

the overall project methodology. The overall project methodology helps to

design the Gantt chart and time line.

A specific methodology is needed as a guide, because the overall

project scope is too big. The specific methodology is helpful when meet some

technical problem, it can be review all over the work flow to find the problem.

53

CHAPTER 4

DEVELOPMENT OF EMBEDDED COMPUTER VISION PLATFORM

4.1 Introduction

The development of ECV platform splits into hardware design,

software design, ECV library design, and code optimization.

4.2 Examination to Identify Suitability of Hardware

This project aims to design an embedded computer vision platform for

a wide range of CV applications within the duration of 2 years. Based on the

analysis from Chapter 2, embedded systems with coprocessor were chosen as

platform due to:

a. Development cost, knowledge, and tools

b. Processing speed

To determine the availability of ES board, an analysis on the core of

embedded processor is first conducted. The market reliability among the

chosen core processor is then checked. Determination of ES board is based on

the criteria which are able to match the criteria of the suggestion in Chapter 2

as shown in Figure 4.1.

54

Figure 4.1 : Suggestion of embedded computer vision platform for this

project

4.2.1 Comparison of Core for Embedded Processor

Currently both Linux and Windows are battling among each other on

the embedded systems platform (Jerry Krasner, 2007). This is due to the

continuous embedded hardware growth which is currently stand at the

aggregate rate of 14.2% and had reached USD 78.7 billion in 2009. As for the

embedded board revenues, it will increase by an aggregate tare of 10% (Ravi

Krishnan, 2005). There are many different types of CPU architecture which

are currently used in embedded design where the most popular embedded

processor architectures are ARM, MIPS, PowerPC, and x86 (Rick Lehrbaum,

2001).

To compare the core of embedded processor for general purpose is a

tricky work. This is due to the difficulties in make an apple-to-apple

comparison. The processor performance is more complicated than just CPU

clock speed (Hertz) or CPU throughput (Dhrystone). Some vendors quote

55

maximum CPU clock speed, others quote typical CPU throughput while others

do not include CPU performance at all. Some processors include useful system

peripherals while others don't.

Based on an independent analyst (Linley Gwennap, 2005), they choose

four general-purpose processors with clock speeds of between 400 and

600MHz. for the analysis. The four processors are:

1. Microprocessor without interlocked pipeline stages (MIPS) based

reduced instruction set computer (RISC) processors

2. PMC-Sierra's popular RM7065C chip

3. Broadcom's low-end BCM1122

4. AMD's newest Alchemy Au1550

The analysis found that a new entrant of embedded processor from

Raza Microelectronics, the XL5105 is pin-compatible with the RM7065C

footprint, which means existing circuit can be upgraded easily. As most of the

PowerPC chips in this segment are aging and uncompetitive, the analysis

chose Freescale MPC8349. For variety, the analysis further included Intel's

80219 which is a general-purpose XScale processor, and Via's Eden C3, a low-

cost x86 chip for embedded systems.

The analysis report states some low speed grades processor with

system peripherals support are performed equally to high speed grades

processor. Some useful system peripherals in embedded processor could boost

56

some of the CPU speed. Such useful system is DMA or cache memory. For

example, the XScale chip has a scalar (single-instruction) CPU of level-two

(L2) cache. So it used a 600MHz speed grade to boost the performance.

Conversely, the Broadcom chip is a four-way super scalar CPU with 128kB of

integrated L2 cache which should deliver a similar performance at 400MHz.

The other processors are all at 500 or 533MHz. The analysis would have

preferred to bump the speed of the AMD chip to 600MHz, making up for its

scalar architecture, but that device is not yet available at the faster speed. The

RM7065C, XL5105, and Eden C3 are all traditional standalone CPUs,

whereas the other four processors integrate a memory controller, PCI interface,

and other common peripherals. To even the comparison, the analysis also

added Marvell's new Discovery LT companion chip into the two MIPS

processors.

Figure 4.2 : Price and power comparison

57

The graph in Figure 4.2 shows the resulting comparison of price and

power consumption for this group of processors. At USD 20 (list), the XL5105

is the least expensive of the group, but when the cost of the Discovery LT is

added, the Raza product ends up costing nearly USD 60. Via's Eden C3 is

similarly priced. The lowest-cost solutions are instead the integrated

processors that don't require an external support chip. At USD 30, the Au1550

looks to be the best deal, but its performance is slightly worse than the others

in this group. The MPC8349 and XScale 80219 offer a bit more performance

and still cost much less than the others in this group.

The analysis report shows that integrated processors are becoming

popular not just because they reduce board area but because they deliver real

savings in system cost and power. Engineer looking for a processor in the

500MHz range should consider AMD's new Au1550, Intel's XScale and

Freescale's MPC8349 embedded processor (Linley Gwennap, 2006). These

three suggested embedded processor share a common characteristic where all

of them are RISC based embedded processor.

Currently ARM processor accounts for approximately 75% of all

embedded 32 bits RISC CPU (Jim Turley, 2002) and thus making it one of the

most prolific 32 bits architectures in the world. The important branches in this

family include Marvell's XScale and the Texas Instruments OMAP series. In

January 2008, ARM achieves 10 billion processor milestones. Annual run rate

now are three billion processor shipments across very diverse markets. (ARM

Ltd, 2008). All data here had shown the availability and reliability of ARM

58

processor and therefore, ARM embedded processor will be the choice for this

project.

4.2.2 Variety of ARM Embedded Processor

ARM processor is better than other embedded processor in terms of

size of code, run time, product reliability, and to perform more than a single

instruction single data processing. We need a coprocessor which can perform a

single instruction multiple data function to speed up image data (array of data)

calculation. As we mentioned early in Chapter 2, computer vision is a chunk

of array that perform almost the same operations for the whole junk of data.

Table 4.1 : Available ARM processor development board and the

specification

Processor

Manufacture Cirrus Logic Intel Texas Instruments

CPU Model EP9315 IXP425 TMS320C6202

CPU Speed 200MHz 533MHz 600MHz

ARM Core ARM-9 XScale OMAP

Coprocessor Maverick Crunch Multiply-Accumulate VelociTI

MMU Yes Yes Yes

Interface

Serial Port Yes Yes Yes

Ethernet Yes Yes No

Wireless No No No

USB Host Yes Yes No

Compact Flash Yes Yes No

Hardware

Development

Board
EP9315 VULCAN dspModule

Form Factor PC104 PC104 PC104

Price USD 450 USD 995 USD 895

Website atmark-techno.com arcom.com rtd.com

Software

Development

Tools
GCC GCC Code Composer Studio

Price Free Free USD 495

Support Linux Yes Yes Yes

Support

WinCE
Yes Yes No

Image

59

Based on the cost factor and the lack of systems interface facility, the

Texas Instruments Inc development board is not chosen. Instead, Cirrus Logic

development board is chosen because of:

a. USB host controller which enable wide range of plug-n-play device

b. Free referent circuit design

c. Low-cost

Figure 4.3 : Cirrus Logic EP9315 development board input/output

Cirrus Logic EP9315 is a SOC that contains ARM920T embedded

processor, Maverick Crunch floating point math coprocessor and other

input/output peripheral interface (Cirrus Logic, 2007). Please refer to Figure

4.3, EP9315 development boards I/O, where the development board contain:

60

• Compact flash

• USB host controller

• Serial communication

• VGA video output

• PC/104 expansion slot

• Mini integrated drive electronics (IDE) interface slot

• Random access memory (RAM)

• Fast Ethernet port

4.2.3 Coprocessor

The Maverick Crunch is a floating point math coprocessor core by

Cirrus Logic, currently implemented in silicon alongside an ARM920T main

core in their 200MHz EP9302 EP9307 EP9312 and EP9315 system on chip

integrated circuits. Please refer to Figure 4.4.

Figure 4.4 : Cirrus Logic EP9315 systems on chip processor

61

It has its own instruction set which implements 32 bits and 64 bits

integer and IEEE-754 floating point addition, subtraction, multiplication,

negation, absolute value and comparison, a set of multiply-and-accumulate

functions, conversion between integer and floating point values, and

instructions to move data between itself and the ARM registers or memory

(Brett Davis, 2004). It has 16 x 64 bits registers, four 72 bits multiply-and-

accumulate registers and a status register.

The coprocessor operates in parallel with the main processor, both

processors receive their instructions from a single 32 bits instruction stream.

Thus, to use it efficiently, integer and floating point instructions must be

interleaved so as to keep both processors busy.

4.2.4 Imaging Device

As a suggestion from Chapter 2.2.1, a fingerprint reader and a colour

image sensor will act as imaging input.

There are four types of finger print capture mechanism; optical,

ultrasonic, passive capacitance, and active capacitance. However, this project

will use active capacitance capture mechanism in the Microsoft fingerprint

reader (model number DG2-00002). The Microsoft fingerprint reader is used

with “libdpk”, an open source driver. It allows us to capture 400 x 200

resolutions of digital image of the fingerprint pattern.

62

Two most popular colour image sensor technologies today are charge-

coupled device (CCD) and complimentary metal-oxide semiconductor

(CMOS) where there are some noticeable differences between these sensors

(Nicolas Blanc & Zurich, 2001):

• CCD sensors create high-quality, low-noise images.

• CCDs use a process that consumes more power.

• CCDs consume as much as 100 times more power than an equivalent

CMOS sensor.

• CMOS chips can be fabricated on just about any standard silicon

production line, so they tend to be extremely inexpensive compared to

CCD sensors.

Figure 4.5 : Imaging device (From left: fingerprint, 2 of colour imaging

sensor)

A Logitech and Z-star CMOS colour imaging sensor is chosen because

of the availability of hardware driver. Both sensors can capture 620 x 480 of

YUV colour image at 20 frames per second.

63

4.2.5 Interface Peripheral

To make the ECV systems possible as a standalone device, an input

output controller is needed for light emitting diode (LED) blinking, switch

buttons and servo motor. Microcontroller PIC18F4550 is used for this purpose.

It can perform digital input, digital output and analogue input. Figure 4.6 is a

schematic of the peripheral interface controller.

Figure 4.6 : Schematic of add on input/output peripheral interface controller

64

4.2.6 Overall Hardware Design

Figure 4.7 : Overall ECV platform hardware design

Figure 4.7 shows the overall embedded computer vision platform

hardware design. The overall ECV hardware design specification is shown in

Table 4.2.

Table 4.2 : The overall ECV platform hardware design specification

Development Board

Colour Imaging Device

Processor ARM-9 at 200MHz Resolution 640 x 480

Coprocessor Maverick Crunch Frame per Second 25

RAM 64MB Colour Level 32 bits

Storage 1GB Fingerprint Imaging Device

Connection Fast Ethernet Resolution 394 x 289

Input/output Peripheral Colour Level 8 bits

Button 4

LED Indicator 4

Servo Motor 4

65

4.3 Examination to Identify Software Layout

4.3.1 Operating Systems and Hardware Driver

In a design idea, in order to hide the underlay of hardware from CV

developer, a CV library is provided for the developer. This CV library must be

optimized with either an embedded processor or a coprocessor by the CV

library maintainer. Figure 4.8 shows the basic software block diagram.

Figure 4.8 : Basic software block diagram

Study of the existing open source software is conducted to identify the

software specifications that make up the software block diagram as shown in

Table 4.3. In order for most of the open source software to execute on EP9315

development board a Linux distribution is installed.

66

Table 4.3 : Software package that work in EP9315 development board

Package Software Version

Operating Systems Linux v2.6.22

Utilities File Sharing samba v3.0.26

Imaging Input Driver Camera gspca v1.0.16

Fingerprint Reader libdpfp v0.2.1

General I/O Interface Custom USB Driver libUSB v0.1.4

Result of the software engineering work on the EP9315 development

board is shown in Table 4.3. The main challenge of this engineering work is to

identify a small footprint of software which is able to run on the chosen

embedded systems.

4.3.2 Web Server Development

Web interface technology is studied and developed for this ECV

platform. It will exclude physical output display and physical input switch

from the hardware design. The development is aiming for minimum program

footprint and processing power. In the evolution of web technology, today’s

rich interactivity of the web based interface can be created by a group of inter-

related web development techniques. Examples of such group are:

• Adobe Flash, Adobe Flex and Adobe AIR

• Sun Java applets, Sun Java and JavaScript

• Microsoft ActiveX, Microsoft ASP and Microsoft Silverlight

• JavaScript and XML

67

Each group of the inter-related web development can be derived into

few software components such as shown in Figure 4.9.

Figure 4.9 : Inter-related web server and client software component

Table 4.4 shows the example of software for each software component.

In any combinations of the software component, there are standard web

technologies which involve the following:

• Database communication protocol, such as SQL and LINQ

• Server-side scripting, such as JSP, PHP, ASP and LUA

• Client-side scripting, such as JavaScript, and VBScript

• Data representation format, such as XML, JSON and YAML

• Layout representation format, such as HTML, XHTML, CSS, and

SVG

• Client feedback protocol, such as POST, CGI, and XMLHttpRequest

68

Table 4.4 : Inter-related web server and client component

Component Example of Software

Server-side

Web Server IIS, Apache

Database Server MySQL, Microsoft SQL

Server-side Scripting Engine PHP, ASP, LUA

Video Server IceCast, Apple Streaming Server

Client-side
Client-side Scripting JavaScript, VBScript

Layout Engine Gecko, Trident, WebKit

According to W3School continuous survey (Refsnes Data, 2008), it

shows that the most popular client side software (better known as internet

browser) is the Internet Explorer and Firefox. Each of it gains 53.8% and

39.1% respectively for the internet browser’s market shared by the end of

April 2008. However, Firefox does not support VBScript or ActiveX, which

are both proprietary to Microsoft. Therefore, JavaScript is the only possibility

for achieving Internet Explorer and Firefox compatibility (Danny Goodman &

Michael Morrison, 2004).

Referring to Figure 4.9, only the server-side component is needed in

the embedded systems platform. Client side software will only require the

Internet Explorer or Firefox internet browser for Windows and Unix platform.

Server-side scripting engine will be examined first before looking for a

suitable web server that supports it. Database server is important to log and

keep data that the web server needs to represent it later. Video server is an add-

on tool to view the recorded video or live capture video from the embedded

systems board. The main concerns during the evaluation of each internet

server component are:

69

• Open source licensing and free to use

• Small size of source code or program

• Cross platform compilation

• Cross platform of client side software

4.3.2.1 Server-side Scripting Engine

Table 4.5 is a comparison of server-side scripting engine based on

fractal benchmark that is conducted (Erik Wrenholt, 2005). It shows that LUA

is the fastest server-side scripting engine available.

Table 4.5 : Comparison of server-side scripting engine base on fractal

benchmark

Language Version Time (Sec) Relative Speed

C (Using GCC) 4.0.1 0.05 1.00 x

Java 1.4.2 0.40 8.00 x

LUA 5.1.0 1.50 30.00 x

Perl 5.8.6 21.75 435.00 x

PHP 5.1.4 23.12 462.40 x

Python 2.5.1 9.99 199.80 x

Ruby 1.8.4 34.31 686.18 x

Table 4.6 : Compares the size of server-side scripting engine

Language Version Source Code Size (kB)

LUA 5.1.0 830

Perl 5.10.0 65,910

PHP 5.2.6 63,960

Python 2.5.2 48,900

Ruby 1.8.7 21,180

70

Referring to Table 4.5 and Table 4.6, LUA is the fastest and most

lightweight server-side scripting language. It consists of all the basic server-

side scripting functionalities. In general, LUA strives to provide flexible meta-

features that can be extended when needed, rather than supply a feature-set

specific to one programming paradigm (Roberto Ierusalimschy, 2006). As a

result, the base language is light. In fact, the full reference interpreter size is

only about 150kB and easily adaptable to a broad range of applications.

4.3.2.2 Web Server

Assessment found out that there are 48 open source web servers.

However, only 26 of the open source web server software are using C/C++ as

development language. The C/C++ development language enables the web

server software for cross-platform compilation. Finally, it is found that there

are only 9 of the C/C++ open source web server software that support CGI

function. Table 4.7 lists out nine of the C/C++ open source web server

software.

Table 4.7 : List of open source web server which using C/C++ as

development language

No Web server License
Operating

Systems

Source

Code Size

(kB)

LUA

Support

1 Apache HTTP

Server

Apache Unix,

Windows

31,610 Yes

2 Bozohttpd BSD

Variant

Unix 32 -

3 Cherokee

HTTP Server

GPL Unix,

Windows

686 Yes

4 Hiawatha GPL Unix,

Windows

100 -

71

5 Mini httpd BSD

Variant

Unix 41 -

6 Null httpd GPL Unix,

Windows

52 -

7 SHTTPD BSD

Variant

Unix,

Windows

50 -

8 Thttpd BSD Unix 129 Yes

9 Xavante GPL

Variant

Unix 260 Yes

Table 4.7 also shows that C/C++ open source web server software with

LUA support that has the least memory size are the Thttpd web server,

Xavante web server and Cherokee HTTP web server.

4.3.2.3 Database Server

Structured query language (SQL) is a recognizable standard language

which designed to organize, manage, and retrieve data from a database. SQL is

essentially a programming language for relational databases, and over the past

decade SQL server has consistently delivered a reliable, scalable, cost-

effective data management platform (C.J. Date & Hugh Darwen, 1996).

SQL provides a standard for database interoperability and LUA

scripting support SQL interface. Hence, the database server must support

relational databases since SQL is used as the database programming language

in the miniature internet server.

72

Table 4.8 : List of open source database server

Database

Server
License

Development

Language
Platform

Apache Derby Apache Java Unix, Windows

Firebird IPL and IDPL C++ Unix, Windows

H2 MPL Java Unix, Windows

HSQLDB BSD Java Unix, Windows

Ingres GPL and

Proprietary

C/C++ Unix

MonetDB MonetDB Public

License

C/C++ Unix, Windows

MySQL GPL and

Proprietary

C/C++ Unix, Windows

PostgreSQL BSD C Unix, Windows

SmallSQL LGPL Java Unix, Windows

SQLite Public Domain C Unix, Windows

Table 4.8 is a list of free and open source database server. C/C++

development language is required for platform portability and the small code

size of database are important for miniature systems. Table 4.9 shows the

analysis for the size of C/C++ database server.

Table 4.9 : List of open source database server using C/C++ as

development language

Database Version Source Code Size (kB)

Firebird 2.1.0 86,800

Ingres 2006 R2 39,000

MonetDB Feb-08 343,240

MySQL 5.0.51b 110,870

PostgreSQL 8.3.3 74,153

SQLite 3.5.9 9,390

It was found that SQLite has a relatively smaller code size among

others, with the basic SQL functionalities. This program uses SQLite's

73

functionality through simple function calls, which reduces latency in database

access as function calls are more efficient than inter-process communication.

The entire database is stored as a single cross-platform file on a host machine

(Chris Newman, 2004). This simple SQLite architecture and the code size

making it possible to be implemented in miniature internet server.

4.3.2.4 Streaming Media Server

A streaming media server is a specialized application which runs on an

internet server. It is able to allow user for streaming audio and video content

from internet using media player or embedded media player inside the internet

browser (Roy S. et al., 2003). Table 4.10 shows the available open source

streaming media servers.

Table 4.10 : Open source streaming media server

Streaming

Media

Server

Licen

-se

Operating

Systems
Language

Source

Code Size

(kB)

Video

Format

Darwin APSL Unix C 31,846 Mpeg4, 3GP

FFmpeg GPL Unix C 14,123 ASF, AVI,

FLV

Flumotion GPL Unix C, Python 8,400 OGG, WMV,

FLV

FreeCast GPL Unix,

Windows

Java 26,130 OGG

IceCast GPL Unix,

Windows

C 4,240 OGG

PeerCast GPL Unix C 840 OGG

VLC/VLS GPL Unix,

Windows

C 85,280 Mpeg4,

OGG, WMV,

FLV

74

PeerCast and IceCast is the smaller code size streaming media server.

However both of it only support OGG video format. Which the video format is

not support by default in internet browser.

Most of the portable video format is FLV. Currently Adobe Flash is

widely use, and is portable either in Windows systems or Unix systems and

either on Desktop platform or mobile platform. Thus Flumotion server and

FFmpeg server has the smaller code size streaming media server which

supports FLV format.

The Flumotion server requires Python. Since the Python standard

library is large and comprehensive, the Flumotion server is not suitable to be

fitted into the embedded systems. Only FFmpeg has the smallest code size and

it supports the FLV format.

4.3.2.5 Development and Examination

The search of miniature internet server will start from open source web

server platform, which is known as LAMP. The acronym LAMP’s full

meaning is as follow (Eric Rosebrock & Eric Filson, 2004):

• ‘L’ for Linux, referring to the Linux operating system

• ‘A’ for Apache, the web server

• ‘M’ for MySQL, the database server

• ‘P’ for Perl, PHP or Python, the scripting programming languages

75

Table 4.11 : List of evaluate of combination of open source internet server

At-

tempt

Web

Server

Scripting

Language

Engine

Database

Server

Streaming

Media

Server

Total

Program

Size

1
Apache PHP MySQL PeerCast

137,323 kB
(6,124 kB) (13,200 kB) (117,000 kB) (999 kB)

2
Thttpd PHP SQLite IceCast

16,370 kB
 (389 kB) (13,200 kB) (1,298 kB) (1,483 kB)

3
Thttpd LUA SQLite IceCast

3,522 kB
(389 kB) (352 kB) (1,298 kB) (1,483 kB)

4
Thttpd LUA SQLite FFmpeg

9,039 kB
(389 kB) (352 kB) (1,298 kB) (7,000 kB)

5
Xavante LUA SQLite FFmpeg

9,273 kB
(623 kB) (352 kB) (1,298 kB) (7,000 kB)

For the first attempt, the LAMP open source web server platform is

recreated with smaller streaming media server, PeerCast. It is later discovered

that the PeerCast does not feature BitTorrent-like swarming; if a point node

fails, all others in the tree are mute and dead.

For the second attempt, the web server and database server are stripped

down to Thttps and SQLite respectively and the Streaming media server is

upgraded to IceCast. It is discovered that the Thttpd-PHP module is an

extreme stripped down port with nothing is installed but the Thttpd binary,

which has the PHP interpreter statically linked in. However, it does not work if

external PHP modules are needed. Note that Thttpd-PHP is limited in its

performance, simply because all the PHP requests are serialized, which means

that a new connection is only accepted if the former has finished. The IceCast

server is working well in this setup and it is capable of streaming content as

OGG over standard HTTP.

76

For the third attempt, the scripting language engine is stripped down

from PHP to LUA, which reduces 97.33% of the program size. The LUA

remains to include the basic scripting functionalities.

For the fourth attempt, the streaming media server is upgraded to

FFmpeg for supporting the FLV format. As explained in section 4.3.2.4,

FFmpeg has the smallest code size and it supports the FLV format for a variety

of systems and platform.

For the last attempt, the web server is upgraded to Xavante as it has the

maximum integration with LUA. Xavante web server is support LUA scripting

language through WSAPI interface. WSAPI is an API that abstracts the web

server from LUA web applications.

In Table 4.11, LAMP open source web server platform with PeerCast

has 137.323 MB of program size and research shows that it can be stripped

down to 9.273MB after the 5 attempts while remaining the basic

functionalities.

Currently the development shows that internet server with web,

scripting, database and media streaming feature are able to be setup in

embedded system which is less than 10MB program footprint. Table 4.12

shows the miniature internet server software package.

77

Table 4.12 : Miniature internet server software package that work in

ARM920T embedded system

Package Software Version

Internet

Server

Web Server Xavenda v2.0.0

Scripting Language LUA v5.1.2

Database SQLite v3.5.9

Video Streaming FFserver v3.0.0

4.4 ECV Library Design

From Figure 4.10, the actual software block diagram is resent based on

software list in Table 4.3. It describes that CV application is able to access

systems memory and gain the processor optimization through the ECV library

function call.

Figure 4.10 : Detail of software block diagram for embedded computer

vision platform

78

Figure 4.11 : ECV library file directory and the library layout

4.5 Code Optimization

4.5.1 Identifying the Critical Path

Profiler (GNU gprof) is used to learn on how the program spent its’

time and which functions called which other functions while it is executing.

This information is useful to identify the pieces of code which is slower and

might be the candidates for rewriting and optimizing as to make it executes

faster. It can also identify the function which has been called more or less

often. This may help to spot unnoticed bugs (Brian J. Gough, 2004). Profiling

has several steps which include:

• Compile and link the program with profiling enabled

• Execute the program to generate a profile data file

79

• Run GNU gprof to analyse the profile data

The result of the analysis is a file contains two listings, the flat profile

and the call graph. The flat profile such as Figure 4.12 shows the total amount

of time for the program spent executing each function. While the call graph

such as Figure 4.13 shows detail of how much time was spent in each function

and its children. The call graph also tells how many times that function was

called. The GNU gprof profiler had been used to identify the:

• Section of code that are most frequently executed

• Section of code that take most CPU cycles to execute

• Inefficiencies in assembly code from the compilation

1. Each sample counts as 0.01 seconds.
2. % cumulative self self total
3. time seconds seconds calls ms/call ms/call name
4. 33.34 0.02 0.02 7208 0.00 0.00 open
5. 16.67 0.03 0.01 244 0.04 0.12 offtime
6. 16.67 0.04 0.01 8 1.25 1.25 memccpy
7. 16.67 0.05 0.01 7 1.43 1.43 write
8. 16.67 0.06 0.01 mcount
9. 0.00 0.06 0.00 236 0.00 0.00 tzset
10. 0.00 0.06 0.00 192 0.00 0.00 tolower
11. 0.00 0.06 0.00 47 0.00 0.00 strlen
12. 0.00 0.06 0.00 45 0.00 0.00 strchr
13. 0.00 0.06 0.00 1 0.00 50.00 main
14. 0.00 0.06 0.00 1 0.00 0.00 memcpy
15. 0.00 0.06 0.00 1 0.00 10.11 print
16. 0.00 0.06 0.00 1 0.00 0.00 profil
17. 0.00 0.06 0.00 1 0.00 50.00 report

Figure 4.12 : Listing of flat profile output

80

1. index % time self children called name

2. <spontaneous>

3. [1] 100.0 0.00 0.05 start [1]

4. 0.00 0.05 1/1 main [2]

5. 0.00 0.00 1/2 on_exit [28]

6. 0.00 0.00 1/1 exit [59]

7. ---------------------------------------

8. 0.00 0.05 1/1 start [1]

9. [2] 100.0 0.00 0.05 1 main [2]

10. 0.00 0.05 1/1 report [3]

11. ---------------------------------------

12. 0.00 0.05 1/1 main [2]

13. [3] 100.0 0.00 0.05 1 report [3]

14. 0.00 0.03 8/8 timelocal [6]

15. 0.00 0.01 1/1 print [9]

16. 0.00 0.01 9/9 fgets [12]

17. 0.00 0.00 12/34 strncmp[40]

18. 0.00 0.00 8/8 lookup [20]

19. 0.00 0.00 1/1 fopen [21]

20. 0.00 0.00 8/8 chewtime [24]

21. 0.00 0.00 8/16 skipspace [44]

22. --

23. [4] 59.8 0.01 0.02 8+472 [4]

24. 0.01 0.02 244+260 offtime [7]

25. 0.00 0.00 236+1 tzset [26]

26. ---

Figure 4.13 : Listing of call graph output

4.5.2 Compiler Optimization

The GCC-ARM compiler was studied in order to identify the

optimization option for increasing the speed of code and the optimization

option for reducing the code size. In this experiment, the option to increase

speed will be our priority. Methods below are the GCC general compiler

optimization list (Heiko Falk & Peter Marwedel, 2004):

a. Peephole - Combining several instruction into one simple instruction

b. Local - Optimizing instruction in a serial code

c. Loop optimization

d. Intraprocedural - Optimizes the way control and data are passed

between procedures

81

Table 4.13 : GCC optimizations option and optimizations level

Table 4.13 is the common set of GCC compiler optimizations option

and the optimizations levels. By default each optimizations level includes

certain optimizations option, where the included option is marked in the

optimizations level column (William Von Hagen, 2006). Optimization level 1

let the compiler tries to reduce code size and execution time, without

performing any optimizations that take a great deal of compilation time.

Optimization level 2 performs nearly all supported optimizations that do not

involve a space-speed trade-off and does not perform loop unrolling or inline

function. Optimization level S enables optimizations option that does not

typically increase code size and performs further optimizations designed to

reduce code size. Optimization level 3 turns on more expensive optimizations,

such as function inlining, predictive-commoning and tree-vectorize in addition

to all the optimizations option to increase the speed, but it can also increase

the program size. In this project, optimization level 3 is a default compiler

setting because the fast executes runtime is the concern to run CV application

82

in real-time.

4.5.3 Code Optimization without Coprocessor

The sample CV application has generic source code and optimized

source code. The generic source code means it contains no perform code

optimization. The optimized source code was performed using the method

below:

• Avoid redundancy - Store computations rather than re-computing them

• Serialize code - Minimum amount of branching, code branching is

expensive

• Code locality - Code executed closely together in time should be

placed closely together in memory, increasing spatial locality of

reference and reducing expensive cache misses

83

CHAPTER 5

SAMPLE ECV APPLICATIONS

5.1 Introduction

In this chapter, a sample application to prove the basic functionality of

ECV platform and 5 samples of CV application to demonstrate the workable

ECV library were conducted.

5.2 Sample ECV Application

Sample application is chosen based on the finding of potential

optimization part. For each sample application, the algorithm is first studied

and then a generic sample program is integrated in ECV platform. Profiling

tools is then used to identify the runtime of the code.

Sample application with potential optimization part is improved with

optimization method. Five samples of CV application which was chosen to be

integrated and optimized on the ECV platform are as shown below:

1. Motion detection

2. Face detection

3. Fingerprint matching

84

4. Optical character recognition

5. Intelligent character recognition

5.2.1 Basic ECV Platform Test Program

 The basic ECV platform shows the ability of ECV platform can be

controlled through integrated mini internet server which is able to:

1. Capture image from camera and finger printed device

2. Receive and transmitted digital signal (LED light output and switch

input)

3. Control multiple servo motor

4. Allow user to configure the ECV platform

Figure 5.1 shows the web interface of the ECV platform by using

internet browser. The webpage is built from LUA server script, HTML markup

language, and JavaScript. Section 4.3.2 clarifies more about this mini internet

server.

85

Figure 5.1 : Web interface of the ECV platform

5.2.2 Motion Detection Test Program

It is a simple algorithm for motion detection by a fixed camera. It

compares the current image with a reference image and simply counts the

number of different pixels. Since images will naturally differ due to factors

such as varying lighting, camera flicker, and charge coupled device (CCD)

dark currents, pre-processing is useful to reduce the number of false positive

alarms. Figure 5.2 shows the web interface for the motion detection test

program in ECV platform.

86

Figure 5.2 : Motion detection application from the ECV’s web interface

The profiling found the intensive part of motion detection in below

function:

• Image thresholding during pre-processing

• Comparing two images using “for” loop

• Summation up array data

• Replicate image buffer

5.2.3 Face Detection Test Program

Face detection is a computer technology that determines the locations

and sizes of human faces in arbitrary digital images (Shahrin Azuan Nazeer et

al., 2007). It detects facial features and ignores anything else, such as

buildings, trees and bodies. Face detection can be regarded as a specific case

of object-class detection where it finds the locations and sizes of all objects in

an image that belong to a given class. This face-detection application focused

87

on the detection of frontal human faces, whereas newer algorithms attempt to

solve the more general and difficult problem of multi-view face detection.

That is, the detection of faces that are either rotated along the axis from the

face to the observer (in-plane rotation), or rotated along the vertical or left-

right axis (out-of-plane rotation), or both. Figure 5.3 shows the web interface

for the face detection test program in ECV platform.

Figure 5.3 : Face detection application from the ECV’s web interface

The main intensive part of face detection application is in the ANN

classification function.

5.2.4 Fingerprint Matching Test Program

Among all the biometric techniques, fingerprint-based identification is

the oldest method which has been successfully used in numerous applications.

88

Everyone is known to have a unique, immutable fingerprint. A fingerprint is

made of a series of ridges and furrows on the surface of the finger. The

uniqueness of a fingerprint can be determined by the pattern of ridges and

furrows as well as the minutiae points (Anil Jain et al., 2001). Minutiae points

are local ridge characteristics that occur at either a ridge bifurcation or a ridge

ending. Fingerprint matching techniques can be placed into two categories

techniques:

a. Minutiae-based techniques first find minutiae points and then map

their relative placement on the finger.

b. Correlation-based techniques are able to overcome some of the

difficulties of the minutiae-based approach.

Figure 5.4 : Fingerprint matching illustration

This sample application will only focus on minutiae-based techniques,

and this method does not take into account the global pattern of ridges and

89

furrows. The Figure 5.5 shows the web interface for the fingerprint matching

program in ECV platform. The process of loading matching image from

database and fingerprint matching processing consume idle time and CPU

processing time.

Figure 5.5 : Fingerprint matching application from the ECV’s web interface

5.2.5 Optical Character Recognition Test Program

Optical character recognition (OCR) refers to a process whereby

printed documents are transformed into ASCII files. This optical character

recognition application is achieved by training a neural network (Mani N. &

Srinivasan B., 1997), feed in an image, segmenting the image to detect a

pattern, pre-processing the detected pattern, and applying the pre-processed

90

detected pattern to the trained neural network. The pre-processing includes

determining a centroid of the pattern and centrally positioning the centroid in a

frame containing the pattern. The training of the neural network includes

randomly displacing template patterns within frames before applying the

template patterns to the neural network.

Figure 5.6 shows the web interface for the OCR application in ECV

platform. The training process of neural network is not run on ECV platform.

The classification process of neural network is improved on ECV platform.

Figure 5.6 : Optical character recognition application from the ECV’s web

interface

5.2.6 Intelligent Character Recognition Test Program

Intelligent character recognition (ICR) is an advanced version of OCR

91

which is used to enhance the accuracy in recognition levels. It is a handwriting

recognition system that allows fonts and different styles of handwriting. It

extends the usefulness of scanning devices for the purpose of document

processing, from printed character recognition to hand-written matter

recognition.

Figure 5.7 shows the web interface for the ICR application in ECV

platform. The training process of neural network is not run on ECV platform.

Profiling found that the classification process of neural network and character

segmentation is intensive and it is improved on ECV platform.

Figure 5.7 : Intelligent character recognition application from the ECV’s

web interface

92

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Introduction

The entire tested CV application program for analysis is run on the

same ECV platform with the same processor and coprocessor. The critical path

of CV application program is identified by using a profiler. Next the code

optimization is conducted and this method is explained in Chapter 4.5 “Code

Optimization” and Chapter 4.5.2 “Compiler Optimization”. Computer vision

applications are then compiled into 3 platforms for testing. These configured

platforms on the same processor are:

1. Microprocessor only platform

2. Microprocessor with generic coprocessor platform

3. Microprocessor with specific coprocessor platform (Maverick Crunch

coprocessor)

At the end of this experiment, there were 5 computer vision

applications which were tested. For higher accuracy, this test was repeated 10

times or more in order to obtain the largest timing.

93

This project has successfully demonstrated a working embedded

computer vision platform by using “Embedded with coprocessor” platform

within a circumscribed development timeline. Many developers might still

have concern regarding the CV algorithm on whether it needs more

computational power than that the embedded systems platform can provide.

However this project shows that Cirrus Logic embedded processor is able to

perform several typical CV application task with optimization with

coprocessor.

This project provides a learning ground for ECV development in:

1. Hardware circuit design

2. Building a Linux systems on embedded system

3. Build standard ECV library and the API

4. Code optimization with specific coprocessor

6.2 Results

Table 6.1 to Table 6.5 show the experiment results of 5 CV tests

application. The CPU runtime is the average of 10 experiments.

94

Table 6.1 : Motion detection test result

Compilation Setting

CPU Run Time (Second)

Default

Code

Code

Optimization

gcc-4.1.2 none (emulated FPU) 108 53

gcc-4.2.1 -mcpu=ep_9315 -mfast-math 12 5

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

7 2

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp -Os

8 3

gcc-4.1.2-

cirrus

-mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

6 2

gcc-4.2.0 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

8 3

Table 6.2 : Face detection test result

Compilation Setting

CPU Run Time (Second)

Default

Code

Code

Optimization

gcc-4.1.2 none (emulated FPU) 425 376

gcc-4.2.1 -mcpu=ep_9315 -mfast-math 48 33

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

16 13

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp -Os

17 14

gcc-4.1.2-

cirrus

 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

16 13

gcc-4.2.0 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

17 13

Table 6.3 : Fingerprint matching test result

Compilation Setting

CPU Run Time (Second)

Default

Code

Code

Optimization

gcc-4.1.2 none (emulated FPU) 768 489

gcc-4.2.1 -mcpu=ep_9315 -mfast-math 78 47

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

31 20

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp -Os

32 21

gcc-4.1.2-

cirrus

 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

30 20

gcc-4.2.0 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

32 20

95

Table 6.4 : Optical character recognition test result

Compilation Setting

CPU Run Time (Second)

Default

Code

Code

Optimization

gcc-4.1.2 none (emulated FPU) 138 117

gcc-4.2.1 -mcpu=ep_9315 -mfast-math 13 11

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

5 3

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp -Os

6 4

gcc-4.1.2-

cirrus

-mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

5 4

gcc-4.2.0 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

5 4

Table 6.5 : Intelligent character recognition test result

Compilation Setting

CPU Run Time (Second)

Default

Code

Code

Optimization

gcc-4.1.2 none (emulated FPU) 293 245

gcc-4.2.1 -mcpu=ep_9315 -mfast-math 31 28

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

13 11

gcc-4.1.2 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp -Os

14 11

gcc-4.1.2-

cirrus

 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

13 11

gcc-4.2.0 -mcpu=ep_9315 -mfpu=maverick -

mfloat-abi=softfp

13 11

6.3 Analysis

GCC compiler version 4.1.2, version 4.2.0, and version 4.2.1 are

available to compile the CV application for this arm processor (with Maverick

Crunch coprocessor). Based on each CV application experiment result, it was

found that different compiler version will produced a slight difference of CPU

runtime for all CV programs. Hence, the compilation setting is sum-up as:

96

• GCC compilation without enabling any FPU option. It means the code

only run on the main processor, in this case ARM processor.

• GCC compilation by enabling common FPU option (“gcc -

mcpu=ep_9315 -mfast-math”). It means the code is for a generic FPU

coprocessor.

• GCC compilation by enabling specific FPU option (“gcc -

mcpu=ep_9315 -mfpu=maverick -mfloat-abi=softfp”). It means the

code is the best optimization for this specific FPU coprocessor, in this

case ARM-9 processor with Maverick Crunch coprocessor.

Table 6.6 : Summary table of all test application CPU run time in all type

of compilation setting

Compilation

Setting

CPU Run Time (Second)

1.Motion

Detection

2.Face

Detection

3.Finger

-print

Matching

4.Optical

Character

Recognition

5.Intelligent

Character

Recognition

D
ef

a
u

lt

C
o
d

e

C
o
d

e

O
p

t

D
ef

a
u

lt

C
o
d

e

C
o
d

e

O
p

t

D
ef

a
u

lt

C
o
d

e

C
o
d

e

O
p

t

D
ef

a
u

lt

C
o
d

e

C
o
d

e

O
p

t

D
ef

a
u

lt

C
o
d

e

C
o
d

e

O
p

t
Without FPU 1

0
8

5
3

4
2
5

3
7
6

7
6
8

4
8
9

1
3
8

1
1
7

2
9
3

2
4
5

With FPU 1
2

5

4
8

3
3

7
8

4
7

1
3

1
1

3
1

2
8

With

Specific FPU

6

2

1
6

1
3

3
0

2
0

5

3

1
3

1
1

Improvement

“Without

FPU” Over

“With FPU”

9
.0

0

1
0

.6
0

8
.8

5

1
1

.3
9

9
.8

5

1
0

.4
0

1
0

.6
2

1
0

.6
4

9
.4

5

8
.7

5

Improvement

“With FPU”

Over “With

Specific

FPU”

2
.0

0

2
.5

0

3
.0

0

2
.5

4

2
.6

0

2
.3

5

2
.6

0

3
.6

7

2
.3

8

2
.5

5

6.4 Conclusion

97

Based on Table 6.6, we conclude that:

a. Average improvement “without FPU” over “with FPU” is 9.96 times.

b. Average improvement “with FPU” over “with specific FPU” is 2.62

times.

c. The overall average improvement “without FPU” over “with specific

FPU” is 26.07 times.

The code optimization and compiler optimization, had achieved:

a. The code optimization for the Improvement “without FPU” over “with

FPU” shows 81% improvement.

b. The code optimization for the Improvement “with FPU” over “with

specific FPU” shows 20% improvement.

c. The overall code optimization had 50.5% improvement.

Figure 6.1 : Illustrated of speed improvement between 3 platforms

Embedded systems with specific coprocessor can dramatically help to

98

improve CV application runtime.

6.5 Future and Trend

As mentioned in abstract, currently silicon chips are becoming more

and more powerful despite the reduction in size. Various general processors,

digital signal processors (DSPs) and graphic processing units (GPUs) were

embedded in electronic gadgets. With the high processing power of these

embedded platforms, it is a great opportunity to integrate CV applications to

these relatively low-cost and standalone devices. Therefore, the ECV

engineering will be the next major topic.

Figure 6.2 shows that convergence is happening in industry and

consumer product (Zamani Zakariahm, 2004), for example telecom industry

and computer industry converge as new telecoms industry. From this research,

we foresee that ECV industry will be the next converged industry between ES

industry and emerging CV industry.

99

Figure 6.2 : Industry integration and convergence

6.6 Future Work

In the future, further studies can be conducted on an open API for

computer vision algorithm so that SOC manufacture and ECV maintainer can

provide optimized ECV library according to their SOC chip. The SOC

industrial support and standard CV organization body are needed in order to

serve two main purposes which are:

1. To hide the complexities of interfacing with different CV accelerators

by presenting the programmer with a single and uniform interface.

2. To hide the differing capabilities of hardware platforms by requiring all

implementations in order to support the full ECV feature set (Using

software emulation if necessary).

100

Next, research on speed improvement between FPGA with coprocessor

will be conducted. This research is crucial as it will justify whether a

coprocessor platform is worth more than FPGA platform in terms of total

development cost. In order to do so, we need to identify whether the

equivalence FPGA and coprocessor can be determined according to:

1. Number of processing cell, or

2. Same speed of processing step, or

3. Number of transistor or else.

Among the future research and development for the project are:

1. Research on an open API for computer vision algorithm.

2. Research on total of cost between FPGA and coprocessor for

justification.

3. Development on the ECV library so that it can fulfil near 100%

function that all CV developer need.

4. Development to enhance current ECV platform as to ensure better

integration of coprocessor with the embedded processor such as:

a. Single SIMD instruction which is able to perform with the size

of a single image data.

b. Possibility of multi coprocessor on a single SOC chip.

5. Development on hardware peripheral so that no waiting time is spent

on peripheral driver.

101

REFERENCES

Aleksandr Mitrofanov (August 15, 2006), Dual-core Intel Conroe Processor.

Retrieved from http://www.digital-daily.com/cpu/intel-conroe/print

Anil Jain, Arun Ross and Salil Prabhakar (Oct 7 - 10, 2001), Fingerprint

Matching Using Minutiae and Texture Features. Proceedings of Int’l

Conference on Image Processing (ICIP), Pages 282-285

ARM Ltd (22 January 2008), ARM Achieves 10 Billion Processor Milestone.

Retrieved from ARM Ltd. Website:

http://www.arm.com/about/newsroom/19720.php

Bernd Jahne and Horst HauBecker (2000), Computer Vision and Applications

A Guide for Students and Practitioners. Retrieved from Academic

Press. ISBN 0-13-085198-1.

Binu Mathew, Al Davis, and Ali Ibrahim (2003), Perception Coprocessors for

Embedded Systems. Retrieved from IEEE/ACM/IFIP Workshop on

Embedded Systems for Real Time Multimedia (ESTIMEDIA 2003)

Bir Bhanu and Ioannis Pavlidis (November 12, 2004), Computer Vision

Beyond the Visible Spectrum. Retrieved from Springer. ASIN

B000UJB8TI

Brett Davis (Jan 2004), Optimizing Code Speed for the Maverick Crunch

Coprocessor. Retrieved from Cirrus Logic Inc. Web site:

http://www.cirrus.com/en/pubs/appNote/AN253-1.pdf

Brian J. Gough (30 Mar 2004), An Introduction to GCC - for the GNU

Compilers gcc and g++. Retrieved from Network Theory Limited.

ISBN-10: 0954161793. Chapter 10.2 Using the profiler gprof.

Chris Newman (November 19, 2004), SQLite. Retrieved from Sams

Publishing. ISBN-10: 067232685X

102

C.J. Date, and Hugh Darwen (November 18, 1996), Guide to Sql Standard, 4

Editions. Retrieved from Addison-Wesley Professional. ISBN-10:

0201964260

Cirrus Logic (September 2007), EP93xx User's Guide. Retrieved from:

http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.p

df

Constantine Shulyupin (2008), Linux Kernel Map. Retrieved from

http://www.makelinux.net/kernel_map

Dana H. Ballard and Christopher M. Brown (1982), Computer Vision.

Retrieved from Prentice Hall. ISBN 0131653164.

Daniel P. Bovet and Marco Cesati (Nov 2005), Understanding the Linux

Kernel, Third Edition. Retrieved from O'Reilly Media. ISBN-10:

0596005652

Danny Goodman and Michael Morrison (2004), JavaScript Bible, 5th edition.

Retrieved from John Wiley and Sons Inc. ISBN 0-7645-5743-2.

Chapter 47 Cross-browser dynamic HTML issues

David C Brock (2006), Understanding Moore's Law: Four Decades of

Innovation. Retrieved from Chemical Heritage Press. ISBN-10

0941901416

David R. Hanson (1997), C Interfaces and Implementations: Techniques for

Creating Reusable Software. Retrieved from Addison-Wesley

Professional Computing Series. ISBN 0201498413

Eric Rosebrock and Eric Filson (July 22, 2004), Setting Up LAMP: Getting

Linux, Apache, MySQL, and PHP Working Together. Retrieved from

Sybex Publisher. ISBN-10 0782143377

103

Erik Wrenholt, (20 September 2005), Ruby, Io, PHP, Python, Lua, Java, Perl,

Applescript, TCL, ELisp, Javascript, OCaml, Ghostscript, and C

Fractal Benchmark. Retrieved from

http://www.timestretch.com/FractalBenchmark.html

Gosta H. Granlund and Hans Knutsson (1995). Signal Processing for

Computer Vision. Retrieved from Kluwer Academic Publisher, ISBN

0-7923-9530-1.

Graefe, V., Fleder K, and Fuer Messtech (28 Oct 1991), A Powerful and

Flexible Co-processor for Feature Extraction in a Robot Vision

System. Retrieved from University Der Bundeswehr Muenchen,

Neubiberg, Germary, Proceedings of Industrial Electronics, Control

and Instrumentation. ISBN: 0-87942-688-8. Pages: 2019 - 2024 vol.3

Heiko Falk and Peter Marwedel (December 20, 2004), Source Code

Optimization Techniques for Data Flow Dominated Embedded

Software. Retrieved from Springer Publisher, ISBN-10: 1402028229

Herb Sutter (March 2005), The Concurrency Revolution. Retrieved from

C/C++ Users Journal. Issues 23(2), February 2005. Pages 8

Ian Buck (June 2005), Programming GPU for General Computing. Retrieved

from Graphics Laboratory, Stanford University. Web site

http://www.eetasia.com/ART_8800367818_480100_NT_221862cd.HT

M

IEEE (June 25 2005), The First IEEE Workshop on Embedded Computer

Vision. Retrieved from

http://computervisioncentral.com/sites/all/files/images/ecvw2005.pdf

ISO/IEC Copyright Office (1998), Image Processing and Interchange

Standard. Retrieved from ISO/IEC Document 12087-5: Image

Processing and Interchange Standard (1998)

104

James Kurien, Xsenofon Koutsoukos, and Feng Zhao (2002), Distributed

Diagnosis of Networked, Embedded Systems. Proceedings of the 13th

International Workshop on Principles of Diagnosis, 2002

Jerry Krasner (December 2007), Embedded Linux Total Cost of Development

Analyzed. Retrieved from Embedded Forecast Web site

http://embeddedforecast.com/images/Embedded_Linux_TCD_Analyze

d_120507.pdf

Jim Turley (December 18 2002), The Two Percent Solution. Retrieved from

Embedded Systems Design Web site

http://www.embedded.com/story/OEG20021217S0039

Joshua Bloch (2006), How to Design a Good API and Why It Matters.

Retrieved from Dynamic Languages Symposium archive. Publisher

ACM New York. ISBN: 1-59593-491-X, Pages: 506 - 507

K. Rath, and P.K.Meher (2006), Design of a Merged DSP Microcontroller for

Embedded Systems using Discrete Orthogonal Transform. Retrieved

from Journal of Computer Science 2006. ISSN 1549-3636. Pages 388-

394

K.Y. Khoo and Y.H. Tay (2006), A Preliminarily Study on Embedded

Platforms for Computer Vision Applications, Regional Computer

Science Postgraduate Conference 2006, Universiti Technologi

Malaysia

Komuro T, Tabata T, and Ishikawa M (2010), A Reconfigurable Embedded

System for 1000 f/s Real-Time Vision, Retrieved from IEEE

Transactions on Circuits and Systems for Video Technology

(TCSVT.2009)

Larry Matthies (2005), Vision Systems for Mars Rovers and Landers.

Retrieved from Jet Propulsion Laboratory. Web site:

http://www.scr.siemens.com/ecv05

105

Linda G. Shapiro and George C. Stockman (2001), Computer Vision.

Retrieved from Prentice Hall. ISBN 0-13-030796-3.

Linley Gwennap (2005), A Guide to High-Speed Embedded Processor, 3rd

Edition. Retrieved from Linley Group report.

Mani N. and Srinivasan B. (October 12 1997), Application of Artificial Neural

Network Model for Optical Character Recognition. Retrieved from

IEEE International Conference on Computational Cybernetics and

Simulation. ISBN: 0-7803-4053-1. Issue volume: 3. Pages: 2517 -

2520

Michael Kanellos (December 1 2003), Intel Scientists Find Wall for Moore's

Law. Retrieved from CNET Networks Inc. Web site

http://news.cnet.com/2100-1008-5112061.html

Microsoft Corp (2008), WMV HD Content Showcase-High Definition Quality

with WMV9. Retrieved from Microsoft Corp Web Site:

http://www.microsoft.com/windows/windowsmedia/musicandvideo/hd

video/contentshowcase.aspx#sysreq

Musser D. and Stepanov, A. (1994), Algorithm-Oriented Generic Libraries.

Retrieved from Software-Practice and Experience. Issues Vol. 24.

Pages 623-642

Nicolas Blanc and Zurich (2001), CCD versus CMOS - has CCD imaging

come to an end?. Retrieved from Photogrammetric Week Issue 01,

2001, Page 131-137.

Pakdaman M. and Sanaatiyan M. (2009), Design and Implementation of Line

Follower Robot, Retrieved from Computer and Electrical Engineering,

2009 (ICCEE '09)

Pratt and William K. (1996), Overview of the ISO/IEC Image Processing and

Interchange Standard. Retrieved from Proceeding of Standards for

Electronic Imaging Technologies, Devices, and Systems, (SPIE).

Volume CR61. Pages 29-53

106

Proshanta Saha (2007), Automatic Software Hardware Co-Design for

Reconfigurable Computing Systems. Retrieved from 17th International

Conference on Field Programmable Logic and Applications (FPL

2007)

Ravi Krishnan (June, 2005), Future of Embedded Systems Technology.

Retrieved from BCC Reseach Publication ID: WA1124992

Refsnes Data (2008), Browser Statistics. Retrieved from Refsnes Data

Company Web site:

http://www.w3schools.com/browsers/browsers_stats.asp

Rick Lehrbaum (December 2001), Embedded Processor and System-on-Chip

Quick Reference Guide. Retrieved from LinuxDevices.com Web site

http://www.linuxdevices.com/articles/AT4313418436.html

Robert Keenan (Apr 07, 2003), Startup Octasic Delivers Scalable Echo

Canceller. Retrieved from CommsDesign.com. Web site

http://www.commsdesign.com/news/OEG20030407S0070

Robert L. Kruse and Alex Ryba (October 3, 1998), Data Structures and

Program Design in C++. Retrieved from Prentice Hall. ISBN-10:

0137689950

Roberto Ierusalimschy (March 2006), Programming in Lua, 2nd Edition.

Retrieved from Lua.org. ISBN13 9788590379829

Roy, S., Ankcorn, J. and Wee, S. (2003), Architecture of a Modular Streaming

Media Server for Content Delivery Networks. Retrieved from

Multimedia and Expo 2003, ICME apos; 03. Proceedings. 2003

International Conference on Volume 3, Issue 6-9 July 2003, Page: III -

569-72

Shahrin Azuan Nazeer, Nazaruddin Omar, Khairol Faisal and Jumari,Marzuki

Khalid (March 27, 2007), Face Detecting Using Artificial Neural

Network Approach. Retrieved from First Asia International Conference

on Modelling & Simulation (AMS'07). ISBN: 0-7695-2845-7

107

Sigma Designs Inc (August 24, 2004), I-O Data Launches Networked DVD

Media Player with WMV9 Support. Retrieved from Sigma Designs

Web site

http://www.sigmadesigns.com/news/press_releases/040824.htm

Tammy Noergaard (February 24, 2005), Embedded Systems Architecture: A

Comprehensive Guide for Engineers and Programmers. Retrieved

from Newnes Publisher. ISBN-10: 0750677929

Thorsten Grotker, Ulrich Holtmann, Holger Keding, and Markus Wloka

(November 30, 2007), The Developer's Guide to Debugging, 1st

Edition. Retrieved from Springer. ASIN: B001VNC98G

Wayne Wolf (September 25, 2006), High-Performance Embedded Computing:

Architectures, Applications, and Methodologies. Retrieved from

Morgan Kaufmann Publisher. ISBN-13: 978-0123694850

Wendy Bergeru (April 15, 2002), Planning and Implementing a Research

Study. British Columbia and Ministry of Forests Research Branch, Web

site http://www.for.gov.bc.ca/hre/forprod/researchprotocols.pdf

William Von Hagen (August 11, 2006), The Definitive Guide to GCC, Second

Edition. Retrieved from Apress Publisher. ISBN-10: 1590595858

Zamani Zakariahm (March 2004) Transition into Next Generation Networks.

Retrieved from Malaysia Communication and Multimedia Commission

2004 report. Proceeding of APEC Telecommunications and

Information Working Group. Web site:

http://www.cu.ipv6tf.org/casos/unpan017962.pdf

108

APPENDIX A

Manuals of ECVLIB Systems

This manual is to guide user to setup ECV base systems. Users can either choose PC or

hardware version of ECV base systems. The only different on setup procedure is in

section 2. The section 3 is common for either version

Section 1. Prepare Development Environment

Install Debian 5.0 from CD

Link : http://cdimage.debian.org/cdimage/lenny/i386/iso-cd/debian-testing-

i386-netinst.iso

Update systems
HostPC# apt-get update

HostPC# apt-get dist-upgrade

Install GUI systems
HostPC# apt-get install gnome

Prepare installation source
HostPC# Vi /etc/apt/source.list

deb http://download.atmark-techno.com/debian etch/

Install cross compile software
HostPC# dpkg -i genext2fs_1.3-7.1-cvs20050225_i386.deb

Link: http://download.atmark-techno.com/armadillo-9/

tools/genext2fs_1.3-7.1-cvs20050225_i386.deb

HostPC# vi /etc/apt/preferences

 Package: genext2fs

Pin: version 1.3-7.1*

Pin-Priority: 1001

HostPC# apt-get install atde-essential-arm

HostPC# apt-get install a9-development-environment

HostPC# apt-get install libpcap0.8-arm-cross

HostPC# apt-get install libpcap0.8-dev-arm-cross

HostPC# apt-get install libnet0-arm-cross

HostPC# apt-get install libnet0-dev-arm-cross

Section 2. Choose Version of ECV Base Systems

Go to section 2.1, if user chooses to setup ECV base systems on VMware

simulator.

If you have Armadillo-9 or Armadillo-300 embedded systems board, you

might refer section 2.2 for the guide to install ECV base systems on the

embedded systems board.

http://cdimage.debian.org/cdimage/lenny/i386/iso-cd/debian-testing-i386-netinst.iso
http://cdimage.debian.org/cdimage/lenny/i386/iso-cd/debian-testing-i386-netinst.iso
http://download.atmark-techno.com/debian%20etch/

109

Section 2.1. PC Version Using VMware as Emulator

Step 1 - Install VMware player

Please refer to VMware player to create a empty virtual PC, or

Download ready VMware blank PC File from:

ftp://cvislab.com/project/kykhoo/ECVsystem-i386-VMW-001-Blank.7z

Step 2 - Obtain latest CD image from Debian website

Example link:

http://cdimage.debian.org/debian-cd/4.0_r3 / i386/ iso-cd/ debian-40r3-

i386-netinst.iso

Step 3 - Install the Debian mini systems
Booting from the CD to the systems and follow the instruction menu

During installation it ask about networkmirror, please DON’T use any

network mirror.

Step 4 - Tuning ECV base systems

1. Turn off annoying beep sound
HostPC# vi /etc/rc.local

 modprobe -r pcspkr.

2. Fast boot up time by adjust grub
 HostPC# vi /boot/grub/menu.lst

 timeout = 1

Section 2.2. Hardware Version Using Embedded System Board

Step 1 - Prepare typical on board systems. Currently for Armadillo-9 /300

board only

Burning Bootloader, Kernel, Userland flash image using downloader program

(Note: Jumper 1= SET, Jumper 2 = CLEAR)

 Downloader = Hermit_WIN32 program

 Bootloader = “loader-armadillo9-eth-v1.1.13.bin” image

 Kernel = “linux-2.6.12.3-a9-13.bin.gz” image

 Userland = “romfs-20071214-2.6.12.3-a9-13.img.gz” image

Step 2 - Prepare network and mount CF Card

(Note: Jumper 1= CLEAR, Jumper 2 = SET)
Board.rs232 # clearenv

Board.rs232 # boot

Board.rs232 # fdisk /dev/hdc // create only 1 partition, type

83

Board.rs232 # mke2fs -O -filetype /dev/hdc1

Board.rs232 # mount /dev/hdc1 /mnt

Board.rs232 # mount -t ramfs none /home/ftp/pub

Board.rs232 # chmod 777 /home/ftp/pub

Board.rs232 # ifconfig eth0 192.168.88.7 netmask 255.255.255.0

up

ftp://cvislab.com/project/kykhoo/ECVsystem-i386-VMW-001-Blank.7z
http://cdimage.debian.org/debian-cd/4.0_r3%20/%20i386/%20iso-cd/%20debian-40r3-i386-netinst.iso
http://cdimage.debian.org/debian-cd/4.0_r3%20/%20i386/%20iso-cd/%20debian-40r3-i386-netinst.iso

110

Step 3 - Install by unzip Debian into ARM-CF card

Transfer each Debian zip file using FTP protocol, and then unzip it into CF

card. Repeat following step for 5 of the Debian zip file

HostPC# ftp 192.168.88.7

HostPC# ftp> cd pub

HostPC# ftp> bin

HostPC# ftp> put debian-etch-a9-X.tgz

Board.rs232 # tar zxvf /home/ftp/pub/ debian-etch-a9-X.tgz -C

/mnt

Board.rs232 # rm -f /home/ftp/pub/debian-etch-a9-X.tgz

Board.rs232 # sync && umount /mnt

Step 4 - 1
st
 time boot Debian from CF card

(Note: JP1 = CLEAR, JP2 = SET)
Hermit v1.3-armadillo9-2 compiled at 22:13:37, Mar 11 2005

Board.rs232 # setenv noinitrd root=/dev/hdc1

(ECVsystem-A300-CFcard-001-Basic)

Step 5 - Boot Debian from ARM-CF card (JP1 = Clear, JP2 = Clear)
Board # Login : root (no password)

Board # passwd

Board # useradd -D -s /bin/bash

Board # useradd -c user -m user

Board # passwd user

Step 6 - Enable Debian networking
Board # apt-get install wireless-tools
Board # vi /etc/network/interfaces

Used by ifup(8) and ifdown(8). See the interfaces(5)

manpage or

/usr/share/doc/ifupdown/examples for more information.

auto lo ath0 eth0

iface lo inet loopback

iface ath0 inet static

 address 192.168.88.7

 gateway 192.168.88.1

 netmask 255.255.255.0

 network 192.168.88.0

 broadcast 192.168.88.255

 wireless-essid CVIS-Wifi_2_(Test)

 wireless-key qwertyuiop

iface eth0 inet static

 address 192.168.88.11

 gateway 192.168.88.1

 netmask 255.255.255.0

 network 192.168.88.0

 broadcast 192.168.88.255

Board # vi /etc/resolv.conf

search local-network

nameserver 202.188.0.133

nameserver 202.188.1.5

Board # vi /etc/hostname

 ECVsystem

Board # /etc/init.d/networking restart

111

Step 6 - Fix APT and update system time
Board # mkdir /var/cache

Board # mkdir /var/cache/debconf

Board # mkdir /var/cache/apt

Board # mkdir /var/cache/apt/archives

Board # mkdir /var/cache/apt/archives/partial

Board # apt-get update

Board # apt-get install ntp-server ntp-simple

Board # vi /etc/ntp.conf

Board # /etc/init.d/ntp restart

Board # date -s "12/2/2008 21:18:00"

(ECVsystem-A300-CFcard-002-MiniSystem)

Section 3. Prepare Debian as ECV Base Systems

Step 1: Update Debian systems
update all package to very latest package. Purpose: Point to the latest (APT)’s

software list

HostPC# vi /etc/apt/sources.list

deb http://http.us.debian.org/debian lenny main

HostPC# apt-get update

HostPC# apt-get -u dist-upgrade

Repeat step 1 unitl terminal show

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded

(ECVsystem-A300-CFcard-003-Update-20080808)

Step 2: Install necessary package

For any package, please use bellow command to find the actual name

HostPC# apt-cache search [name_of_package]

Then install the package by

HostPC# apt-get install [name_of_package]

wireless-tools

For Development Tools Package

Description
Name of

Package
Note

Communication openssh-

server

Secure shell server, an rshd replacement

Compiler build-essential Informational list of build-essential

packages

 locate Maintain and query an index of a directory

tree

 libreadline5-

dev

GNU readline and history libraries,

development files

 pkg-config Manage compile and link flags for libraries

 libssl-dev SSL development libraries, and header

files

112

Share samba A LAN manager - file/printer server for

Unix

Board # smbpass -a user;

Board # vi /etc/samba/smb.conf

 [homes]

 comment = Home

Directories

 browseable = yes

 writable = yes

 create mask = 0775

 directory mask = 0775

(ECVsystem-A300-CFcard-004-DevTools)

For Internet Server Package

Description
Name of

Package
Note

Web xavante Lua HTTP 1.1 Web server
vi /etx/xavante/xavante_start.lua

server = {host = "*", port = 80},

vi /etc/rc.local

 lua

/etx/xavante/xavante_start.lua &

mkdir /home/user/www/ && chmod 777

/home/user/www/

vi /etc/xavante/sites-available/localhost.lua

 local webDir = '/home/user/www/'

 params = {"index.lp"}

 Kepler 1.1 Beta

2

Lua HTTP 1.1 Web server - kepler module

Board # wget

http://luaforge.net/frs/download.php

 /2720/kepler-1.1beta2.tar.gz
Board # tar -xzvf kepler-

1.1beta2.tar.gz

Board # cd kepler-1.1

Board # ./configure --

launcher=xavante

 --enable-lua --prefix=/usr

Board # make && make install

Scripting lua5.1 Simple, extensible, embeddable programming

language

 liblua5.1-0 LUA shared library

 liblua5.1-sql-

sqlite3-2

luasql library for the lua language version 5.1

Database sqlite3 A command line interface for SQLite 3

 libsqlite3-0 SQLite 3 shared library

Video ffmpeg multimedia player, server and encoder

http://luaforge.net/frs/download.php/2720/kepler-1.1beta2.tar.gz
http://luaforge.net/frs/download.php/2720/kepler-1.1beta2.tar.gz

113

Configure internet server
Board # vi /usr /etc/kepler/1.1/xavante/config.lua >>> port=80

Board # ln -s /usr/htdocs /home/user/ecv

Board # vi /erc/rc.local

 xavante_start &

Board # chmod 777 -R /usr/htdocs

For Hardware Device Driver Package

Description
Name of

Package
Note

WebCam gspca-source GSPCA video for Linux (v4l) driver modules

 qc-usb-source source code for QuickCam Express kernel

module

 qc-usb-utils Utility programs for the qc-usb kernel

module

Finger

Print

libdpfp Board # wget

http://download.berlios.de/dpfp/

 libdpfp-0.2.2.tar.gz

Board # tar -xzvf libdpfp-

0.2.2.tar.gz

Board # cd libdpfp-0.2.2

Board # ./configure

Board # make && make check && make

install

USB libusb++-0.1-

4c2

userspace C++ USB programming library

 libusb++-dev userspace C++ USB programming library

development files

 libusb-0.1-4 userspace USB programming library

 libusb-dev userspace USB programming library

development files

 usbutils Linux USB utilities

Configure GSPCA driver

NWFPE math emulation

FastFPE math emulation (EXPERIMENTAL)

Compile Kernel
HostPC# #tar zxvf linux-2.6.12.3-a9-8.tar.gz

HostPC# #cd linux-2.6.12.3-a9-8

HostPC# #make armadillo9_defconfig

HostPC# #make menuconfig

 Device Drivers -> Multimedia devices -> <M>Video For

Linux

 Device Drivers -> Graphics support -> <>Support for

frame ...

 Device Drivers -> USB Support …

HostPC# #make

HostPC# #make modules

HostPC# #make modules_install

arch/arm/boot/Image

arch/arm/boot/zImage

Compile GSPCA driver
cd /usr/src

tar -xjvf gspca-source.tar.bz2

114

cd /usr/src/modules/gspca/

HostPC# #vi Makefile

 KERNEL_VERSION=2.6.12.5-at5

make CC=arm-linux-gnu-gcc LD=arm-linux-gnu-ld AR=arm-linux-gnu-

ar NM=arm-linux-gnu-nm OBJCOPY=arm-linux-gnu-objcopy

make install CC=arm-linux-gnu-gcc LD=arm-linux-gnu-ld AR=arm-

linux-gnu-ar NM=arm-linux-gnu-nm OBJCOPY=arm-linux-gnu-objcopy

Compile QC-USB driver
cd /usr/src

tar -xzvf qc-usb-modules.tar.gz

cd /usr/src/modules/qc-usb-source

HostPC# #vi Makefile

 MODULE_DIR := /lib/modules/2.6.12.5-at5

KVER := 2.6.12.3-a9-16

KMISC := /lib/modules/$(KVER)/kernel/drivers/media/video/

make all CC=arm-linux-gnu-gcc LD=arm-linux-gnu-ld AR=arm-linux-

gnu-ar NM=arm-linux-gnu-nm OBJCOPY=arm-linux-gnu-objcopy

make install CC=arm-linux-gnu-gcc LD=arm-linux-gnu-ld AR=arm-

linux-gnu-ar NM=arm-linux-gnu-nm OBJCOPY=arm-linux-gnu-objcopy

Copy Kernel Module
cd /lib/modules/

tar -cjvf 2.6.12.5-at5.bz2 2.6.12.5-at5

mv 2.6.12.5-at5.bz2 /home/user/Desktop/

Auto Load driver module

HostPC# #tar zxvf gspcav1-20070508.tar.gz

HostPC# #cd ../gspcav1-20070508

HostPC# #vi Makefile

 KERNEL_VERSION=2.6.12.5-at5

HostPC# #cd

HostPC# #make install

HostPC# cd /lib/modules

HostPC# tar czvf 2.6.12.3-a9-8.tar.gz 2.6.12.3-a9-8

Board # cd /lib/modules

Board # tar zxvf 2.6.12.3-a9-8.tar.gz

qc-usb-modules.tar.gz

m-a prepare

cd /usr/src

tar -xjvf qc-usb.tar.bz2

m-a i-a qc-usb

Prepare Kernel for Hardware Driver Compilation

apt-get install libreadline5-dev

cd /usr/src/ && tar -xzvf linux-2.6..tz

cd linux-2.6

make armadillo300_defconfig

make menuconfig
 Device Drivers -> Multimedia devices -> <M>Video For Linux
 Device Drivers -> Graphics support -> <>Support for frame ...

make CC=gcc LD=ld AR=ar NM=nm OBJCOPY=objcopy

make install

115

make modules

make modules_install

Re-compile kernel as optimize using cross-compiler from Atmark Corp
make armadillo300_defconfig

make menuconfig
 Device Drivers -> Multimedia devices -> <M>Video For Linux

 Device Drivers -> Graphics support -> <>Support for frame ...

make

make install

make modules

make modules_install

Compile hardware driver
ln -s cpp-4.3 arm-linux-cpp

ln -s g++-4.3 arm-linux-g++

ln -s gcc-4.3 arm-linux-gcc

Cd /usr/src/

m-a a-i qc-usb

make install CC=gcc LD=ld AR=ar NM=nm OBJCOPY=objcopy

make CC=arm-linux-gnu -gcc LD= arm-linux-gnu -ld AR= arm-

linux-gnu -ar NM= arm-linux-gnu -nm OBJCOPY= arm-linux-gnu-

objcopy

Prepare hardware node
mknod /dev/video0 c 81 0

Multimedia Manipulate Tools

Description
Name of

Package
Note

Image netpbm Graphics conversion tools

 libjpeg-progs Programs for manipulating JPEG files

 libjpeg62 The independent JPEG group's JPEG

runtime library

Video libsdl1.2-dev Simple DirectMedia layer development files

 mjpegtools Board # wget

http://optusnet.dl.sourceforge.net/

 sourceforge/mjpeg/

 mjpegtools-1.9.0rc3.tar.gz

Board # tar -xzvf mjpegtools-

1.9.0rc3.tar.gz Board # cd

mjpegtools-1.9.0rc3

Board # ./configure

Board # make && make check && make

install

Section 4. Install UTAR-ECV Library

Only Steps: Install UTAR-ECV library
To install source code, demo and application template of UTAR-ECV library

Please request access key from author, and download it from:
ftp://cvislab.com/project/kykhoo/utarecv.zip.php

ftp://cvislab.com/project/kykhoo/utarecv.zip.php

116

APPENDIX B

How to Add Your Own Function in UTAR-ECV Library

A new function has to be added in the ECVfunc package. To do that, we create a new

class. This class inherits from ECVFunction abstract class. As an abstract class, it has to

implement some methods. Once created, the file containing the class is inserted in the

ECVfunc directory. That´s all. Once compiled, it can be used from the GUI and command

line. The following code is an example of a function (ECVinarize):

// This option indicates that this function owns to the ecvfunc package

package ecvfunc;

import ecv.ECV;

import ecv.ECVFunction;

import ecv.ECVImage;

import ecv.ECVParameter;

import ecv.ECVFunctionList;

//A function allways inherits from ECVFunction

public class FBinarize extends ECVFunction {

 public FBinarize() { // Constructor

 name = "FBinarize"; // Function name

 //Description

 description = "Transforms a BYTE image to binary";

 //Group to which this function is included

 groupFunc = ECVFunctionList.TRANSFORM;

 //First parameter

 ECVParameter p1 = new ECVParameter("u1", ECV.pINT, false);

 p1.setDefault(128);

 p1.setDescription("Lower bound of the range to consider as 1");

 //Second parameter

 ECVParameter p2 = new ECVParameter("u2", ECV.pINT, false);

 p2.setDefault(255);

 p2.setDescription("Upper bound of the range to consider as 1");

 params.addElement(p1);

 params.addElement(p2);

 }

 // A function allways implements this method. It is where our code is

placed

 public ECVImage processImg(ECVImage img) {

 ECVImage res = null;

 //We obtain the value of the parameters

 int p1 = getParamValueInt("u1");

 int p2 = getParamValueInt("u2");

 // This function is only applied to BYTE images

 if (img.getType() == ECV.tBYTE) {

 int w = img.getWidth();

 int h = img.getHeight();

 int b = img.getNumBands();

 //The result image is created

 res = new ECVImage(b, w, h, ECV.tBIT);

 // For each band

 for (int nb = 0; nb < b; nb++) {

 // We obtain all the pixels, as we don´t need spatial

relationships

 int[] bmp = img.getAllPixel(nb);

 int[] bin = new int[w * h];

 for (int i = 0; i < w * h; i++)

 bin[i] = (bmp[i] >= p1 && bmp[i] <= p2) ? 1 : 0;

 // Once the band is processed, it is assigned to the output

image

 res.setAllPixel(nb, bin);

 }

 }

 else {

 error=new String("Binarize only defined for BYTE images");

 return img; }

 return res; }}

