DOES CORRUPTION AFFECT PUBLIC DEBT IN DEVELOPED AND DEVELOPING COUNTRIES? AN EMPIRICAL ANALYSIS

BY

CHAN KHA MAN
CHENG POH CHOO
CHONG MEI JUNE
LOH HUI YUAN
TANG SWEE PING

A final year project submitted in partial fulfillment of the requirement for the degree of

BACHELOR OF BUSINESS ADMINISTRATION (HONS) BANKING AND FINANCE

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF BUSINESS AND FINANCE DEPARTMENT OF BANKING AND FINANCE

AUGUST 2019

Copyright @ 2019

ALL RIGHTS RESERVED. No part of this paper may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, graphic, electronic, mechanical, photocopying, recording, scanning, or otherwise, without the prior consent of the author.

DECLARATION

(1) This undergraduate research project is the end result of our own work and that due acknowledgement has been given in the references to ALL sources of information be they printed, electronic, or personal. (2) No portion of this research project has been submitted in support of any application for any other degree or qualification of this or any other university, or other institutes of learning. (3) Equal contribution has been made by each group member in completing the research project. (4) The word count of this research project is Name of Student: Student ID: Signature: 1. CHAN KHA MAN		We hereby declare that:		
application for any other degree or qualification of this or any other university, or other institutes of learning. (3) Equal contribution has been made by each group member in completing the research project. (4) The word count of this research project is Name of Student: Student ID: Signature: 1. CHAN KHA MAN		that due acknowledgemen	nt has been given i	in the references to ALL
the research project. (4) The word count of this research project is Name of Student: Student ID: Signature: 1. CHAN KHA MAN 16ABB07372 2. CHENG POH CHOO 16ABB07082 3. CHONG MEI JUNE 16ABB07156 4. LOH HUI YUAN 15ABB06361 5. TANG SWEE PING 16ABB06743		application for any other	degree or qualifica	• •
Name of Student: Student ID: Signature: 1. CHAN KHA MAN 16ABB07372		` / -	en made by each gro	oup member in completing
1. CHAN KHA MAN 2. CHENG POH CHOO 3. CHONG MEI JUNE 4. LOH HUI YUAN 5. TANG SWEE PING 16ABB07372 16ABB07082 16ABB07156 15ABB06361 16ABB06743		(4) The word count of this rese	earch project is	
1. CHAN KHA MAN 2. CHENG POH CHOO 3. CHONG MEI JUNE 4. LOH HUI YUAN 5. TANG SWEE PING 16ABB07372 16ABB07082 16ABB07156 15ABB06361 16ABB06743				
2. CHENG POH CHOO 16ABB07082 3. CHONG MEI JUNE 16ABB07156 4. LOH HUI YUAN 15ABB06361 5. TANG SWEE PING 16ABB06743		Name of Student:	Student ID:	Signature:
3. CHONG MEI JUNE 16ABB07156 4. LOH HUI YUAN 15ABB06361 5. TANG SWEE PING 16ABB06743	1.	CHAN KHA MAN	16ABB07372	
4. LOH HUI YUAN 15ABB06361 5. TANG SWEE PING 16ABB06743	2.	CHENG POH CHOO	16ABB07082	
5. TANG SWEE PING 16ABB06743	3.		16ABB07156	
Date:	5.	TANG SWEE PING	16ABB06743	
Date:				
	Dat	e:		

ACKNOWLEDGEMENT

With the assistance and co-operation of various authorities, this research project has been successfully carried out. Hence, we wish to express our greatest appreciate to those people who guide, helped and supported us in completing this research.

First of all, we would like to thank University Tunku Abdul Rahman (UTAR) for giving us this opportunity to involve in the research. Throughout this research, we gain a lot of experience, knowledge and expose to situation which cannot be learnt in syllabus and definitely going to be helpful in future.

Secondly, we would also like to express our deepest gratitude to our supervisor, Dr. Yiew Thian Hee who had guided us throughout the whole research. He always patient and advices us for doing this research so that we can done it smoothly. We sincerely appreciate what she had done to guide us.

Last but not least, we are grateful to our family members and friends who had supported us to the end of the project.

DEDICATION

This research project is dedicated to all individual who have been contributed to this research whether directly or indirectly.

Firstly, we would like to dedicate this research project to our beloved supervisor, Dr. Yiew Thian Hee, who contributed his precious time and effort in guiding us. Without her guidance and full support, we would not be able to complete this research project on time.

Secondly, we would like to dedicate this research project to our family members, friends and classmates whom have supported us unconditionally throughout the process. They have been providing us with umpteenth encouragement and motivation in completing this research project.

Last but not least, we would like to dedicate this research project to Universiti Tunku Abdul Rahman (UTAR) which have provided us with sufficient facilities and resources to conduct this research project. Without the help of all these parties, this research project will not be a success.

TABLE OF CONTENTS

		Page
Copyright Pag	e	ii
Declaration		iii
Acknowledge	ment	iv
Dedication		V
Table of Conte	ents	viii
List of Abbrev	riations	X1
List of Append	dices	xii
Preface		xiii
Abstract		xvi
CHAPTER 1	RESEARCH OVERVIEW	
1.0	Introduction	1
1.1	Research Background	
1.2	Problem Statement	
1.3	Research Objectives	
	1.3.1 General Objectives	
	1.3.2 Specific Objectives	
1.4	Research Question	
1.5	Hypotheses of the Study	
1.6	Significance of the Study	
1.7	Chapter Layout	
1.8	Conclusion	14
CHAPTER 2	LITERATURE REVIEW	
2.0	Introduction	15
2.1	Pierre Bourdieu's Theory (Theory)	18
2.2	Research Framework	
2.3	Empirical study of Corruption on Public debt	23
2.4	Empirical study of Government Spending and Public Debt.	
2.5	Empirical study of Inflation and Public Debt	28
2.6	Empirical study on Economic Growth and Public Debt	30
2.7	Empirical study of other control variable	
2.8	Conclusion	33

CHAPTER 3:	METHODOLOGY	
3.0	Introduction	34
3.1	Research Design	34
3.2	Source of Data	
	3.2.1 Public debt	
	3.2.2 Corruption	
	3.2.3 Government Spending	
	3.2.4 Inflation	
	38 Seconomic Growth	
3.3	Model	38
3.4	Data Processing.	
3.5	Generalized Method of Moments (GMM)	
	3.5.1 GMM Estimator	
	3.5.2 Efficiency	42
	3.5.3 Feasibility	
	3.5.4 One-Step and Two-Step GMM	
	3.5.5 Estimating Standard Error	
	3.5.6 The Different and System GMM estimators	
	3.5.7 Purging Fixed Effect.	47
	3.5.8 Instrumenting with variable orthogonal to the fixed effect.	10
	3.5.9 Sargan/ Hansen Test	
	3.5.10 Arellano-Bond Test.	
2.60		
3.6 Cc	onclusion	49
CHAPTER 4:	Results	
4.0	Introduction	50
4.1	Descriptive Analysis	
4.2	Correlation Analysis	
4.3	Result from Dynamic Panel GMM Estimations	
4.4	Diagnostic Test.	59
4.5	Conclusion	59
CHAPTER 5:	Conclusion	
5.0	Introduction	60
5.1	Summary of Study	62
5.2	Implication of Study	64
5.3	Limitation of Study	65
5.4	Recommendation for Future Research	66
5.5	Conclusion	66

REFERENCES	82
APPENDIES	

LIST OF TABLES

F	Page
Table 1.1: Top 10 higher public debt countries in developed countries	
attached with Corruption Perception Index from	
year 2013-2017	4
Table 1.2: Top 10 higher public debt countries in developing countries	
attached with Corruption Perception Index from	
year 2013-2017	6
Table 3.1: Source of Data	35
Table 4.1: Descriptive Analysis for Developed Countries	50
Table 4.2: Descriptive Analysis for Developing Countries	51
Table 4.3: Correlation between dependent variable and independent	
Follow by other control variable in Developed Countries	53
Table 4.4: Correlation between dependent variable and independent	
Follow by other control variable in Developing Countries	53
Table 4.5: Result of dynamic panel GMM estimation in Developed	
Countries	55
Table 4.6: Result of dynamic panel GMM estimation in Developing Countries	57
Table 5.1: Summary of result for independent variable	60
Table 5.2: Summary of result for control variable	60

LIST OF FIGURES

	Page
D' 11 D 11 D 11 2017	2
Figure 1.1: Percentage of Public Debt in 2017	3
Figure 1.2: Corruption on public debt in 35 developed countries in 2016	7
Figure 1.3: Corruption on public debt in 35 developing countries in 2016	8
Figure 2.1: Pierre Bourdieu's Theory	18
Figure 2.2: Independent variable and dependent variable	19
Figure 2.3: Control variable and dependent variable	19
Figure 3.1: The data processing	39

LIST OF ABBREVIATIONS

PD Public Debt

CPI Corruption Perception Index

INF Inflation

GS Government Spending

GDP Gross Domestic Product

EG Economic Growth

GMM Generalized Method of Moments

LIST OF APPENDICES

	Page
Appendixes 1: Literature Review Table	108
Appendixes 2: Countries covered	109
Appendixes 3: Descriptive analysis for Developed Countries	110
Appendixes 4: Correlation analysis for Developed Countries	110
Appendixes 5: Model 1 for Developed Countries	111
Appendixes 6: Model 2 for Developed Countries	112
Appendixes 7: Model 3 for Developed Countries	113
Appendixes 8: Model 4 for Developed Countries	114
Appendixes 9: Model 5 for Developed Countries	115
Appendixes 10: Model 6 for Developed Countries	116
Appendixes 11: Descriptive analysis for Developing Countries	117
Appendixes 12: Correlation analysis for Developing Countries	117
Appendixes 13: Model 1 for Developing Countries	118
Appendixes 14: Model 2 for Developing Countries	119
Appendixes 15: Model 3 for Developing Countries	120
Appendixes 16: Model 4 for Developing Countries	121
Appendixes 17: Model 5 for Developing Countries	122
Appendixes 18: Model 6 for Developing Countries	123

PREFACE

It is compulsory to carry out this research project in order to accomplish our study which is Bachelor of Business Administration (Hons) Banking and Finance. The topic of this research project is "To examine the impact of corruption on public debt in developed and developing countries". This topic is conducted to raise awareness of undergraduate students in UTAR regarding the impact of corruption on public debt.

In this era of globalization, public debt become a big issue to the country's economic development. Corruption is one of the main issue that cause the public debt in the country became seriously.

This research project take corruption into consideration to explain the significance influence of public debt. In short, this research project will provide the public with clear information and data for the impact of corruption on public debt.

ABSTRACT

While corruption on public debt has been widely investigated in many different countries, it is often overlooked some specific countries in the world. However, corruption was the main issue that affect public debt in the country and bring negative impact to the country's economy. Hence, this study aimed at examining the influence of corruption and other control variable on public debt in developed and developing countries. GMM was apply to investigate the result of corruption and other control variable on public debt. The result indicate corruption has a significant and positive impact on public debt.

Keywords: Public Debt, Corruption, Government spending, Inflation, Economic Growth

CHAPTER 1: RESEARCH OVERVIEW

1.0 Introduction

In the research overview, chapter one provides a brief introduction of the research background regarding topic include the detailed illustration of the problem statement. Furthermore, it also includes the research objectives, research question, hypothesis test, significance of this research, chapter layout and eventually the conclusion of this research.

1.1 Research Background

The worldwide global financial and economic crisis has led to an unprecedented increase in public debt across the world. Public debt is not only a big issue to the government but also to the common public. Furthermore, public debt may cause the country in the crisis of budget deficit. Huge budget deficit may bring a financial burden on government and policymakers on the mechanism to finance the basic development projects (Lartey, Musah, Okyere, & Yusif, 2018). On the other hand, public debt causes an increase in inflation and devalue the money causing economic repercussions (The Star, 2018). This situation reduces the purchasing power of the public since they need to pay more in order to purchase the same amount of goods and services compared with before. The condition was far worse and getting more concern by policymaker and economists across the year. Since the burden will bring a very big effect on the economy in the country.

According to Sutherland & Hoeller (2012), higher debt may increase the sensitivity of household or firm change in macroeconomic condition. The legacy of historically high and rising the level of public indebtedness across the advance economics was due to the recent financial crisis and recession (Reinhart, Reinhart, & Rogoff, 2012). A broader definition of the public debt is the government's liabilities and how much the country owed to the lender (The Star, 2018).

A study by Agim & Teuta (2014) found that the current economic crisis and the reduction of tax under the flat tax on public income collection were the major cause of the budget deficit and public debt. The reduction on the income tax and other tax may bring a key factor of reducing the government receipt of income. When the public debt increases, the government should increase the tax collection to cover the debt. External and internal debt has a significant and positive relationship with taxes (Alawneh, 2017). Economic crisis may reduce the number of business due to the business income decreased and bring the impact on revenue in the public budget.

In the perspective of macro-economic theory, government debt which spends expenditures such as education, healthcare, and nutrition must have a positive relationship on economic growth (Freeman & Webber, 2009). Basically, public debt refers to the accumulation of budget deficits. Budget deficits always appear when government spending greater than tax revenues. To deal with deficits, most governments would tend to borrow external and domestic debt instead of causing high inflation, economic crisis and some economic problems such as the rise in the interest rate. Higher public debt will lead to a higher interest rate to investors. Investors would like to earn more return for higher risk. Therefore, revenue has gone more toward repayment of public debt, and less toward government services.

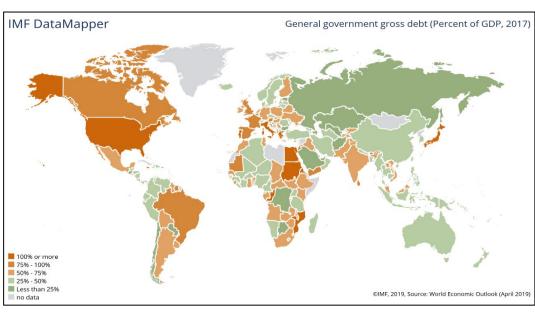


Figure 1.1: Percentage of Public Debt in 2017

Source: World Economic Outlook (2019)

Figure 1.1 shows that the percentage of public debt perception across the world in 2017. The Percentage of Gross Domestic Product (GDP) currently rank 237 countries on a scale from 100% or more (high debt) to less than 25% (low debt). The worst performing region was North America with a percentage of 102.1, followed by Western Hemisphere with a percentage of 95.8 and East Asia with a percentage of 92.3%. In contrast, the well-performing region was Central Asia and the Caucasus with a percentage of 27.2%, followed by Eastern Europe with a percentage of 33.4% and Pacific Islands with a percentage of 38.8% (World Economic Outlook, 2019).

Corruption is a deadly affair because it can increase the percentage of public debt in the country. This situation increased the financial burden of the country. In 2017, Malaysia has lost around RM46.9 billion because of corruption that happened in the public sector which reduced the competitiveness of the country

(The Star, 2018). Undeniably, corruption brings a serious problem, and it was further aggravated by the current financial crisis and might be damaging the performance of the economy. It can be defined as the illegal and benefit-oriented usage of public power (Akca, Ata, & Karaca, 2012). As corruption leads a reduced economic growth, lessened state income, and arise poverty. Another researcher also figured out that high corrupts countries bring a higher inflation rate (Ali & Sassi, 2016). Thus, higher corruption not only effects on public debt but also cause many other economic problems.

<u>Table 1.1: Top 10 higher public debt countries in developed countries attached</u> with Corruption Perception Index from the year 2013-2017.

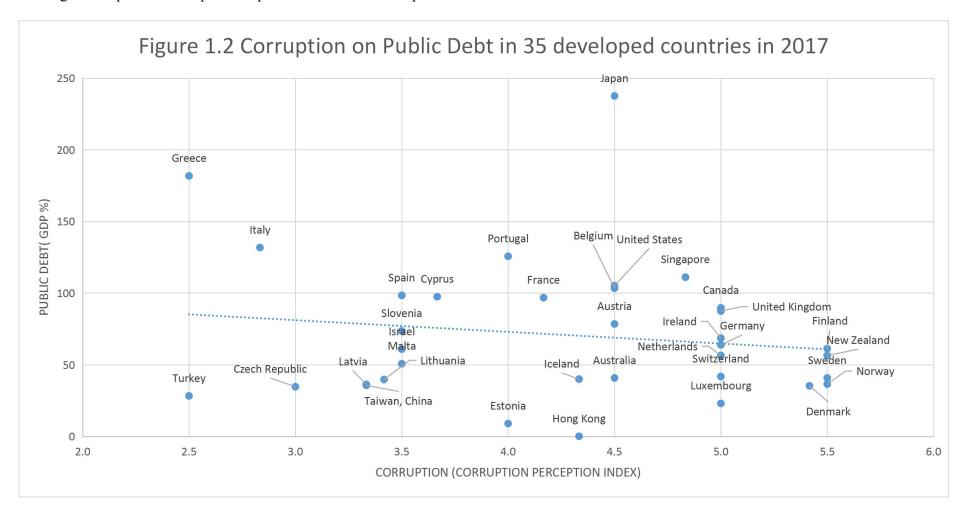
	Public debt (GDP %)							
	CPI (Index)							
Country/Year	2013	2013 2014 2015 2016 2017						
Japan	[232.5]	[236.1]	[231.3]	[235.6]	[237.6]			
	(4.5)	(4.5)	(4.5)	(4.5)	(4.5)			
Greece	[177.9]	[180.2]	[178.8]	[185.3]	[181.8]			
	(2.0)	(2.0)	(2.5)	(2.5)	(2.5)			
Portugal	[129]	[130.6]	[128.8]	[129.9]	[125.7]			
	(3.5)	(3.5)	(4.0)	(4.0)	(4.0)			
Italy	[129]	[131.8]	[131.5]	[132]	[131.8]			
	(2.5)	(2.5)	(2.5)	(2.5)	(2.8)			
Cyprus	[102.1]	[107.5]	[107.5]	[106.6]	[97.5]			
	(4.0)	(4.0)	(4.0)	(4.0)	(3.7)			
Belgium	[105.5]	[107]	[106.1]	[106]	[103.4]			
	(5.0)	(5.0)	(4.5)	(4.5)	(4.5)			
Unites Stated	[104.9]	[104.6]	[104.8]	[106.8]	[105.2]			
	(3.6)	(3.6)	(4.5)	(4.5)	(4.5)			
Spain	[95.5]	[100.4]	[99.4]	[99]	[98.4]			
	(4.0)	(4.0)	(3.5)	(3.5)	(3.5)			
Singapore	[101.5]	[96.6]	[100.5]	[106.8]	[111.1]			
	(4.5)	(4.5)	(4.5)	(4.5)	(4.8)			

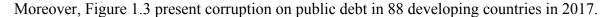
France	[93.4]	[94.9]	[95.6]	[96.6]	[96.8]
	(4.1)	(4.0)	(4.5)	(4.5)	(4.2)

Notes: Public Debt showed in [], CPI showed in ()

Table 1.1 shown that top 10 highest public debt countries in the developed countries. Most of the countries faced an increasing trend in public debt year by year. Based on table 1.1 and 1.2, the index of corruption indicated the control of corruption with a range of 0 (high corruption countries) to 6 (less corruption countries). According to the IMF, Japan had become the country to obtain the highest public debt in the globe in 2017 which was 237.6%. Japan was the most distinct faced an increasing trend on public debt whereas corruption perception index remains unchanged on index 4.5 from 2013-2017. As stated in Table 1.1, the decrease in public debt over the period also came with an increase in CPI in some countries such as Greece, Cyprus, and Portugal. There were also have some countries had increased the corruption perception index but the percentage of the public debt still had an increasing trend. Those countries included Italy, United States, Singapore, and France.

Table 1.2: Top 10 higher public debt countries in developing countries attached with Corruption Perception Index from year 2013-2017.


	Public debt (GDP %)				
			CPI (Index)		
Country/Year	2013	2014	2015	2016	2017
Lebanon	[136.6]	[137.2]	[140.9]	[145.5]	[146.8]
	(1.5)	(1.5)	(1.9)	(2.0)	(1.7)
Sudan	[93.1]	[83.2]	[82.3]	[99.5]	[121.6]
	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)
Jamaica	[140.5]	[139.7]	[121.3]	[113.6]	[101]
	(2.0)	(2.0)	(2.5)	(2.5)	(2.5)
Egypt	[84]	[85.1]	[88.5]	[96.8]	[103]
	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)


Mozambique	[53.1]	[62.4]	[88.1]	[121.6]	[102.1]
	(2.0)	(2.0)	(2.0)	(2.0)	(2.0)
Jordan	[86.7]	[89]	[93.4]	[95.1]	[95.9]
	(2.5)	(2.5)	(3.0)	(3.0)	(3.0)
Gambia	[58.6]	[69.4]	[68.6]	[82.3]	[88]
	(2.0)	(2.0)	(2.0)	(2.0)	(1.7)
Brazil	[60.2]	[62.3]	[72.6]	[78.4]	[84]
	(2.7)	(2.5)	(2.5)	(2.0)	(2.0)
Sri Lanka	[71.8]	[72.2]	[78.5]	[79.6]	[79.1]
	(2.5)	(2.5)	(2.5)	(2.5)	(2.5)
Ukraine	[40.5]	[70.3]	[79.3]	[81.2]	[71]
	(1.5)	(1.5)	(1.5)	(1.7)	(2.0)

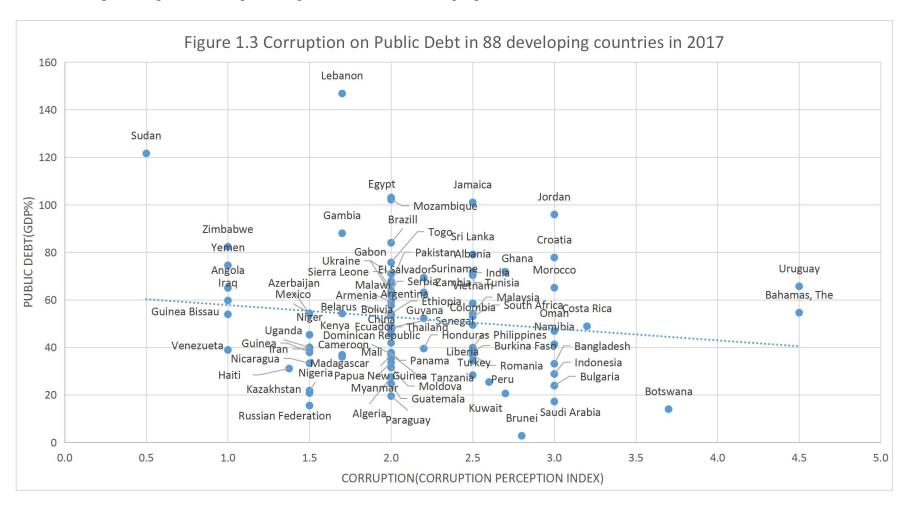

Notes: Public Debt showed in [], CPI showed in ()

Table 1.2 had shown that top 10 highest public debt countries among the developing countries. Majority of countries faced an increasing trend in public debt. Based on table 1.2 figured out a serious corruption occurred in developing countries since most of the corruption perception index less than 3.0. The higher the public debt, the lower the corruption perception index and the index indicate a range of 0 (high corruption countries) to 6 (fewer corruption countries). According to the International Monetary Fund (IMF), Lebanon had been turned out to be third-highest public debt in the world and the highest debt among developing countries. As Table 1.2 figured out Lebanon obtained the highest debt and keep remaining increase from the year 2013 to 2017 with CPI less than 2.0 whereby Sudan obtained the highest corruption which corruption perception index was only 0.5.

The Figure 1.2 present corruption on public debt in 35 developed countries in 2017.

1.2 Problem Statement

In the new global economy, corruption has been the main reason for a country's financial problems. Based on the previous researchers, corruption should be eradicated because it carries negative impacts on the economy (Dimant & Tosato, 2017). And, the consequences of corruption on public debt were indistinct. In addition, it brought a serious problem for the world developed and developing nations nowadays, limits a country economic freedom and unsubstantial enforcement on the rule of law (Nwabuzor, 2005).

Besides that, Global Finance (2018) stated that the main reason of an increase in public debt is the country's decision to cover the budget deficit ensure a sufficient fund able to pay back to the borrower before the due date. There was an increasing trend of public debt in some developed countries by analyzed data from the Organisation for Economic Co-operation and Development (OECD) and the International Monetary Fund (IMF). Furthermore, IMF had figured out 59 developing countries that faced a high debt crisis. The effect of the debt crisis in a country due to systemic financial instability and political problem occurred. Likewise, it led to serious economic problems such as high inflation and high-interest rate. Among the OECD area, Global Finance (2018) also stated that public debt had been significantly increasing across the period of 2008-2012, and yet their total debt was estimated rise from \$43.6 trillion in 2017 to \$45.0 trillion in 2018.

In the event of corruption, it may result to raise public debt (Jeng, 2018). Corruption can affect public debt in certain ways. First of all, some research has mentioned high public debt will link to rent seeking activities by the government (Yared, 2010). Second, corruption will tend to lower tax revenues. As Cooray & Schneider (2013) has argued when there was a low tax revenue, a government may have to more borrowing to finance the project. Hence, the higher corruption

of a government will leads more amount of tax revenue contribute to bribe payment which will bring more public debt. Moreover, Cooray & Schneider (2013) concluded corruption will lead to a fiscal deficit which decreased public revenues while public spending simultaneously rises and it will bring a rise of public debt.

On the other hand, a recent study done by Liu, Moldogaziev, & Mikesell (2017) reports that higher corruption may cause higher public debt. Thus, the author mentioned when the corruption in control, it would help the government reduce the borrowing cost in order to lower public debt. Next, Butler, Fauver, & Mortal (2009) analyzed that some rating agencies give lower bond rating look on as more corrupt and thus increase borrowing costs. Corruption affects public debt through expenditure and revenue (Benfratello, Del Monte, & Pennacchio, 2017). Some historians have argued that corruption has a statistically and positive impact on the public debt (Cooray & Schneider 2013; Henri, 2018; Grecheyna, 2012). Based on the study done by the previous author, showed that persistent growth in public debt has increased regard fiscal sustainability and it will bring negative impact to the country (Kim, Ha, & Kim, 2017).

Based on the previous studies, when the country faced increasing trend in corruption, it may lead to a high level of public debt in the country at the same time contribute a large amount of negative impact on country economic development. In addition, this research tried to scatter plot diagrams to observe the relationship between corruption and public debt in developed and developing countries. Surprisingly, the scatter plot showed that there was a negative effect of corruption on public debt in both developed and developing countries in Figure 1.1 and Figure 1.2 in the year 2017. This was the main reason which motivates this research to probe the impact of corruption on public debt. In addition, this research investigated the impact of corruption on public debt by separated into developed and developing countries in order to analyse the impact of corruption and public debt in two different condition countries.

1.3 Research Objectives

1.3.1 General Objective

The general objective of this paper was to investigate the impact of corruption on public debt in developed and developing countries. Besides that, this research also discriminated other control variables such as government spending, inflation, economic growth, and interest rate.

1.3.2 Specific Objectives

Specifically, the objectives of this research were as following:

- 1) To examine the impact of corruption on public debt in developed countries.
- 2) To examine the impact of corruption on public debt in developing countries.

1.4 Research Questions

- 1. Is there a significant impact of corruption on public debt in developed countries?
- 2. Is there a significant impact of corruption on public debt in developing countries?

1.5 Hypotheses of the Study

Hypothesis 1

H₀: There is no significant impact of corruption on public debt.

H₁: There is a significant impact of corruption on public debt in developed countries.

H₂: There is a significant impact of corruption on public debt in developing countries.

1.6 Significant of the study

Past studies on the public debt it only focused on one country it might be developed or developing country only and have been conducted on the country focus. Thus, there was limited knowledge and information on public debt across the world. This research aims to contribute to the existing in several ways.

Firstly, this research helps to investigate the key elements that will affect public debt. Through analysing the effect of corruption, government spending, inflation, economic growth and interest rate on public debt, a significant relationship might be found whether those variables were significant providing effects. By including those variables, this research was able to explain corruption on public debt clearly among the developed or developing country. Besides that, the findings of this research may also be of interest to the government for future economic growth and reduce the debt of the country. The government can set up the overall objective prohibited corruption try to reduce debt in the country.

In addition, this research may provide appropriate information for policymakers, researcher or economists on the impact of corruption on public debt and other variables that will influence the public debt. It might give the chance to those people understanding on the public debt. In short, the public debt of developed or developing countries always an important issue and often be concerned.

1.7 Chapter Layout

This research consists of five chapters which are introduction, literature review, research methodology, research results, discussion and conclusion. Firstly, chapter one gives a general review of this research. Besides that, a review of literature for independent variable and other control variable were discussed and evaluated, review of relevant theoretical models and proposed conceptual framework also discussed at the same time in chapter two. Furthermore, chapter three discussed the method applied to complete this research. Methodologies were the main focus of this chapter. Chapter four showed the result of this research from the estimated model. Lastly, chapter five summarized all the information and make a conclusion for this research.

1.8 Conclusion

In a nutshell, public debt always was an important issue that affects government, public, and individual. The research background and brief introduction to the public debt in developed or developing countries have been illustrated complying with the problem statement in our studies. Moreover, the general and specifies objectives, the significance of study and hypothesis of study have been addressed with clear direction in determining the effect of factors towards the public in

developed or developing countries. In order to know more about the key factors that affect the public debt, there will be a further discussion on the relevant studies by past researcher or scholars in the next chapter.

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

In this chapter, a literature review on the relation between the dependent variable (public debt) and independent variables, namely corruption, government spending, inflation, economic growth, interest rate is presented. Initially, this chapter will provide a layout of critical reviews on different ideas by different researchers. Relevant theory in this research was Pierre Bourdieu's Theory (De Graaf, 2007).

2.1 Pierre Bourdieu's Theory (Theory)

Nowadays, the collision of the corruption on public debt was getting serious in majority of countries. According to De Graaf (2007), the Pierre Bourdieu's Theory can be used to analyse and measure the corruption case studies. This theory was introduced by Pierre Felix Bourdieu in the year 1958. In Pierre Bourdieu's initial book, Sociologie de L'Algerie (*The Sociology of Algeria*), he had shown how the "habitus" can influence people on corruption.

There are four Bourdieu's key theoretical concepts in Pierre Bourdieu's Theory which are habitus, field, practice, and different forms of capital, for a given an example like economic, social and symbolic (Elaine, 1999). The first Bourdieu's key theoretical concept was habitus, a method of narrating the embodiment of history in individual and the social structure. In addition, it was also known as a misused, misunderstood and hotly contested of Pierre Bourdieu's ideas. In

Bourdieu's word, the related conditions with a special existence condition that produce habitus, transposable dispositions, systems of durable, this was the principle that build and arrange practices and can be expressed objectively adapt to their result without the pre-targeted aim or a convey mastery the operation necessary to achieve them (Bourdieu, 1990). In fact, habitus put a lot of effort into Bourdieu's approach. It was designed to transcend a series of deep-rooted dichotomies to build a way of thinking about the social world. Habitus was the reproducer of structures, and also the product of practices and the product of structures. The habitus will not act alone. Bourdieu was not recommended the preprogrammed automatons that can explain the impact of our growth. Practices were the answer of what it calls "an obscure and double relation" (Bourdieu & Wacquant 1992a: 126) or "an unconscious relationship" (Bourdieu, 1993a: 76) that between the field and the habitus. According to the research of Bourdieu, individual within the same habitus and having the same dispositions and predispositions were activate into corruption. De Graaf (2007) had thought the action of Bourdieu's theory was very useful for the corruption investigation that had shown in the previous section.

The second Bourdieu's key theoretical concepts were field. Subordinate positions, capital and consisting was the structured spaces planned around the specific types for field. Bourdieu had analysed some examples of fields, such as the field of science, the field of education, the field of religion and the field of law. The field represents the production area, knowledge, circulation, and with the competitive position that clasp by the actors that their scuffle to accumulate and scuffle control these different kinds of capital (Swart, 1997). The connection of condition, the field had structured the habitus, while on the other hand, it was a connection of knowledge. Habitus had subscribed to compose the field as a purposeful world (Bourdieu & Wacquant 1992). Furthermore, practice was one of Bourdieu's key theoretical concept. According to Bourdieu's theoretical framework, the result had shown the relationship of practice between a single's habitus, the field of action and the different form of capital. Habitus does not determine practice, but create and produces it. The adaptability of practice, was controlled by habitus and had

been differentiated with the musical practice of jazz musicians. Bourdieu's model of practice, practices are not decreasing to habitus and field but it will grow out of the "interrelationship" that began at the time (Swartz, 1997). There were three steps to approach any sociological study that had suggested by practice, the model of Bourdieu. The first step was the habitus negotiator bring their situation in the field and society that track of the situation. Next was the specific area related to a wider range of areas power. Then was the construction of an objective connection between the dissimilar situations within the field (Swartz, 1997).

A different form of capital was the last key theoretical concept for Bourdieu. Bourdieu had identified four main types of capital, which was symbolic, economic, cultural and social. In fact, the figurative capital was the configuration used by other kinds of capital, when its nature was an arbitrary misunderstanding. Economic capital was the greatest direct type of capital and used to the types of associated with its power. Next, the cultural capital had in the form of long last temperament of the body and the mind, and in the form of objectification resulting and last were in the configuration of cultural goods. Social capital accumulates from the networks of relationship, such as institutionalized relationships. Bourdieu had turned the field of study on the family (especially in *La Misere du Monde*, shortly it will publish in English translation as *The Poverty of Society: A Study in Social Suffering*).

According to Benfratello et al. (2017), studies on the relationship between corruption and public debt had shown that corruption can influence public debt in several ways. Foremost was expenditure and revenue, the public officials can exaggerate public expenditure for their own income, and they will also pay about the market price for the goods and services (Tanzi & Davoodi, 2002). In spite of the fact that the amount of public expenditure was higher than necessary, but the productivity from such expenditure was quite low, beyond the expectation (Mauro, 1998). In addition, corruption will lead to higher costs of debt by lowering the bond ratings (Depken & Lafountain, 2006). According to Grechyna (2012), the

collision of corruption on public debt had increased in majority countries, for a sample that as did by Cooray et al. (2017), it including the developed and developing countries. Furthermore, high government spending will damage the consequence of corruption on public debt in a country (Cooray et al., 2017). When the government spending was getting higher in higher-income (HICs), which may describe these countries had a stronger influence of corruption.

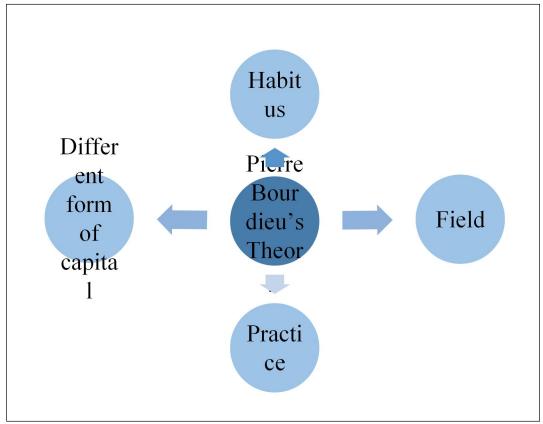
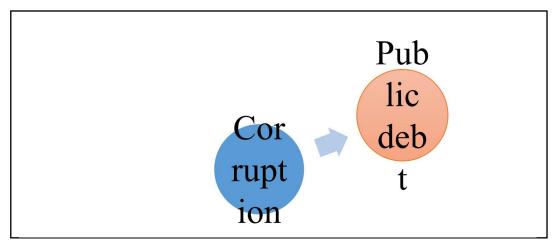
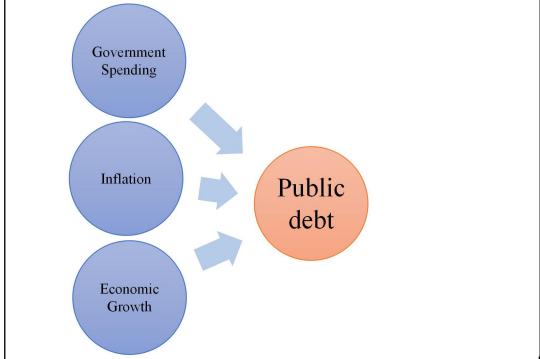



Figure 2.1: Pierre Bourdieu's Theory

Sources: De Graaf (2007), Bourdieu (1990), Swartz (1997), Benfratello, Del Monte, & Pennacchio (2017), Mauro (1995), Mo (2001), Tanzi & Davoodi (2002), Cooray, Dzhumashev, & Schneider (2017)

2.2 Research Framework


Figure 2.2: Independent variable and dependent variable

Sources: Kaufmann (2010)

Government

Figure 2.3: Control variable and dependent variable

Sources: Gomez- Gonzalez (2019), Joydeb & Ritwik (2017), Robert and Dogales (2002), Pattillo, Poirson, & Ricci (2011)

This research will use habitus to explain the relationship between corruption and public debt. There was a positive expected relation between corruption and public debt. This was because Kaufmann (2010) had pinpointed out that the measure of corruption was a positive correlation between government debt levels. Therefore, the expected relationship between inflation and public debt was positive, which indicates that when an increase in inflation will increase in public debt. Moreover, when inflation was raised, produce economies will increase public debt (Gomez-Gonzalez, 2019). Next, government expenditure showed a positive relationship with the public debt. Based on the study of Joydeb & Ritwik (2017), the research pointed out the total expenditure of the country which was financed by government borrowing, from this research know that if government spending rise at the same time public debt of country also rising. On the other site, interest rate showed a negative relation with the public debt. Based on the study done by Robert & Dogales (2002), it showed that the result of the data by nine Organization for Economic Cooperation and Development (OECD) countries had concluded that expand in interest rate will influence the government taking debt at large scale on the early year 1970s. Lastly, the economic growth was expected positive relationship with the public debt also. Based on the result of Moki (2012) show that was a positive relationship between public debt and the economic growth in Africa. The result meaning that the expansion in economic growth also will lead to an expansion in public debt.

2.3 Empirical study of Corruption on Public Debt

Public debt has become a popular issue currently in research. The main focus of this research was the impact of corruption on public debt. Corruption has been a global phenomenon (Iyanda, 2012) and the impact of corruption on economic has troubled policymakers and has affected the governance (Athanasouli, Goujard, & Sklias, 2012). Based on transparency international (2016), 69% of the total 176 countries scored below 50 in systemic corruption. According to the definition of Waite & Allen (2003), corruption is an illegal use of formal power or affected by the government to enrich themselves. Another perspective about corruption was studied by Shleifer & Vishmy (1993) and they define corruption as a personal gain by the government official. According to those definitions, corruption included all crimes which involve embezzlement, bribery, dishonesty, rent-seeking, and misconduct.

How corruption did influence public debt? Several empirical researchers demonstrated the relationship between corruption and public debt. A number of studies had found that public expenditures wasteful (Tanzi & Davoodi, 1997; Shleifer & Vishny, 1993; Tanzi 1998). Besides that, Tanzi & Davoodi (2000) pointed out corruption will raise public expenditure which would lead to a rise in public debt. The corruption will happen if the officer steals the loaned fund and other government income. This may limit the ability of government to meet the debt obligations and caused an increase in the public debt (Ng. 2006). Kaufmann (2010) pinpointed out that the measure of corruption was a positive correlation between government debt levels and corruption. Jalles (2011) demonstrated that the negative interaction of corruption on public debt and economic growth. This mean corruption will affect public debt and economic growth. Yet, the increase in corruption will cause public debt to increase and the economic growth decrease. In addition, Grechyna (2012) found that the impact of corruption on public debt for high income economic was loss, he aimed to fill up this gap, and collected data from 30 OCED countries for 1995 to 2010 and get a result from all specifications which corruption was significant and affect public debt. Moreover, Grechyna (2012) done another research about public debt and found that corruption was one of the main reason which affects the public debt. When the corruption increase, it will lead to an increase in public debt by using the sample of 23 high-income OECD countries. Cooray & Schneider (2013) found that the effect of corruption

on public debt by analyzing a sample of 106 countries. The result showed that if corruption increased, public debt will also increase.

González-Fernández & González-Velasco (2014) constructed CPI (corruption perception index) for Spain to test the relationship between corruption and public debt for the period 2000-2012. The result demonstrated the corruption had a positive and direct impact on public debt. Benfratello et al. (2015) shown that the impact of corruption on public debt by using a panel of 166 countries for the period 1995 until 2013, and found that corruption increase public debt. Moreover, Cooray & Schneider (2013) investigated corruption led to a fiscal deficit which decreased public revenue while public spending simultaneously rises and it will bring a rise of public debt. They concluded that the higher the index level of corruption, the higher the ratio of public debt by illustrated the data from 106 countries. In addition, Ivanyna, Mourmouras, & Rangazas, (2015) applied the model to run the result and concluded a positive interaction between long-term corruption and public debt. According to the research from Cooray et al. (2017), high government expenditure increased the influence of corruption on public debt. By this mean, corruption will reduce productive investment. Besides that, Cooray et al. (2017) analysed the data from 126 countries using System GMM model (generalized method of moments) for the period 1996 to 2012 and concluded that corruption had a positive effect on public debt, by lessening tax revenues. GMM had served as one of the main methods for analysis of financial and economic data (Hall, 2007). Among this process, it included simple results on estimation. On the whole, corruption may harm an economy (Sumah, 2018).

Furthermore, Liu et al. (2017) analyzed data from United State corruption from 1977 to 2008 and use benchmark model to evaluate the effect of corruption on public debt issued by the local and state government. They tried to find out the evidence that public corruption was a significant determinant of public debt expansion. In their research found that the level of public debt caused by local and state government become higher if the level of corruption rise. Next, Kim et al.

(2017) used the pooled OLS (ordinary least squares), fixed effect model and GMM models to investigate the effect of corruption on public debt with data collected from 77 countries for 1990 to 2014 and figured out a positive moderating impact of corruption on public debt. Henri (2018) investigated the effect of corruption on public debt and illustrated a positive impact exist between public debt and corruption. Hence, they found that an increase of 1-unit in corruption will bring an increase in public debt 0.64 unit. Jeng (2018) estimated the effect of corruption on public debt and had a result which was public debt had a slim relation with corruption. Furthermore, Benfratello et al. (2017) proved the impact of corruption on public debt toward middle to high-income countries by indicating a dynamic econometric model. This research stated that the damaging effect in middle-income countries was higher than high-income, and thus corruption had a positive associated with public debt, this means when corruption increased, and public debt increased simultaneously. In short, a country with high corruption has to pay a higher interest rate which leads to a higher public debt and financial crisis (Depken & Lafountain, 2006).

2.4 Empirical study of Government Spending and Public Debt

According to the study of Anyanwu & Erhijakpor (2004), government spending which was the expenses for country government and acts as a maintenance fee for country economy and society. Moreover, government spending its impact on productivity and growth was important to maintain fiscal balance because it has a direct effect on income and collection for tax revenue (Joydeb & Ritwik, 2017). Government also considers the actual payment or the creation of an obligation to make future payment for the services received (Anyanfo, 1996).

A study of Joydeb & Ritwik (2017), on India from 1970-2016 pointed out the total spending of the country increased significantly as the government financed new projects which result in the increase of public debt. The economic growth of the country it can be increased proficient and achieved to the macroeconomic growth since the government in less developed countries may try to use public debt as an imperative tool to finance the expenditure, so the public debt increased accordingly (Matiti, 2013). Besides that, when government wish to reduce public debt in the country, the government may cut down spending for the welfare of the citizen and increasing taxes (Mah, Mukkudem-Petersen, Miruka, & Petersen, 2013) and Uguru & Leonard (2016) also mention that government spending has a significant impact on public debt the study based on Nigeria by applied ordinary least squares regression technique. Many historians (Mah et al, 2013; Idenyi, Ogonna, & Ifeyinwa, 2016; Henri, 2018; Sheikh, Faridi, & Tariq, 2010) had argued that there was a positive impact on government spending on public debt by using different type of model to run the result which was Vector Error correction Model framework and Vector Autoregression Granger causality, Generalized method of moment (GMM) estimator and OLS method to examine the result. In addition, Mah et al. (2013) has done the research in Greek from 1976-2011; Idenyi et al. (2016) in Nigeria from 1980-2015; Henri (2018) investigate 29 Sub Saharan Africa countries from 2000-2015 and Sheikh et al. (2010) conduct research based on Pakistan for the period 1972 to 2009. Furthermore, increase of well-being and income of the citizen it can boost aggregate demand for good and service, at the same national income will increased due to higher aggregate demand, then increase government spending in the country and boost economic growth at the same time reduce public debt so the result shown that public debt and economic growth has a positive relation (Lici & Dika, 2016).

However, there is also have a negative relationship between government spending and public debt. Based on the findings of Lora & Olivera (2006) for each 1% increase in the debt ratio, the total government spending would decline 0.039-0.054 percentage it has a clear negative relationship in Latin America used unbalanced panel method from 1985 to 2003 while for Ouattara (2006) the

research used OLS method in developing countries from 1980-2000 also found a negative relationship. Nevertheless, overmuch government spending it becomes a burden to the country which was the cost of government was greater than the revenue (Mitchell, 2005). Moreover, the government will borrow from external sources as government spending due to the fiscal deficit happening in the country and this scenario will lead public debt to increase accordingly (Shonchoy, 2010).

Yusuf & Said (2018) pinpointed that by using the external debt as development expenditure to develop the countries then the country may benefit because development expenditure like infrastructure may have a multiplier effect on boost economic growth. On the other hand, Ayres & Warr (2010) mention that when public debt utilized improperly, it may cause the biggest problems to the country economy and it will restrict economic growth. A study done by (Yusuf & Said, 2018; Ayres & Warr, 2010) who made a conclusion that if the government spends in an appropriate way then the public debt has an adverse relationship with government spending whereas if government spending spend inappropriate way it restricted economic growth at the same time public debt increase accordingly it shows a positive relationship. In short, the real government spending volume that increases from interest payment and public debt (Barro, 1979).

2.5 Empirical study of Inflation and Public Debt

Inflation is one of the most famous words when determinants in economics. According to the study of Cheng & Tan (2002), inflation became a challenge in macroeconomics management; which was because most of the countries need to maintain low inflation rate and stable situation. Inflation is irresistible so that every country needs to study it fundamentally. In their major study, Cheng & Tan (2002) inflationary effect was the major macroeconomic variables (excess fiscal deficit and money supply) that causes by inflation and further investigation need

to be done by the domestic economy. Investment goes downward because of inflation causes. Therefore, the research also pointed out that inflation was a factor to decline the debt ratio although inflation had been relatively mild in the past decade (Aizenman & Marion, 2011). Inflation channel may also be more important for the growth effects of debt for developing economies (Caner, Grennes, & Koehler- Geib, 2010). Based on the study of Barro (1979), he had used a theoretical model to analyse the data of U.S from the year 1916 to 1976. Government spending raises temporary, a countercyclical response of debt to temporary income moments and a one-to-one effect of expected inflation on nominal debt growth was a positive effect on the debt issue.

There was a positive relationship between inflation and public debt. According to the research of Wijnbergen & Budina (2007), the critical point that disclose by this studies is high price of postponing fiscal adjustment in such an environment of raised interest rate and small economic development, taking too much time in making fiscal adjustment, that will result an enhancement in inflation rates that lead to expeditious public debt burden. In addition, the research of Bildirici & Ersin (2007), the increases in inflation will lead to higher price level and further increase in nominal interest rates and decrease seigniorage. As a result, it is inevitable that rising public debt will result in an economy through the same channels.

The relationship between inflation and the short to long term debt ratio was expected with sign positive (Goudswaard, 1990). The higher inflation was uncertainty when higher inflation associated. High-risk premium leading to long-term nominal debt; then leading governments to stop issuing long-term debt. Public debt will increase improbability through financial repression and inflation (Cochrane, 2011). However, the study of Aizenman & Marion (2011) pointed out that inflation corrodes the debt burden was affirmed when long maturities. The research had used a statistical model to test US from the year 1946-2009. The result mentions that it was a positive relationship between inflation and public

debt. The research had concluded, when increased in inflation will increase in public debt. The researcher using the fiscal theory of the price level model (FTPL models) for the U.S in year 1970s. The fiscal shock had financed the rise of debt issue by way of delayed and had to change the price level permanently; but in the financial shock, inflation was unexpected (Sims, 2011). According to the study of Bhattarai, Lee, & Park (2014), the study had using a dynamic stochastic general equilibrium (DSGE) model for the U.S. The inflation that had a high response of public debt was response by interest rate, then it comes from a passive fiscal policy system and positive monetary policy. When the government removes the inflation that relates to the incentive with the debt load, this will importantly affect the price indexation of public debt (Calvo, 2013). According to the study of Phulpoto, Mirani, & Channa (2016), the research had used a linear regression model with time series analysis to analyse the data of Pakistan from 1995 to 2014. The result showed that inflation and public debt had a positive relationship. The research had concluded that when increased in inflation will increase in public debt. Moreover, when inflation was raised, produce economies will increase public debt. Inflation and public debt had a positive relationship, but it was losing significant (Gomez-Gonzalez, 2019).

According to the study of Woodford (1996), the result that link with monetary policy, increase in inflation only will decrease a little in the real interest rate on public debt; and the inflation will rise to a greater extent and remains high for a longer time. The unexpected high inflation came from the clear connection stems of inflation and it will decline the actual cost of servicing the debt (Reinhart & Rogoff, 2010). In 1980, inflation came the end of the automatic devaluation of public debt (Streeck, 2013). Higher inflation can let public debt decreased (Akitoby, Komatsuzaki, & Binder, 2014). Based on the study of Van Bon (2015), the research had using the estimation method of difference panel GMM Arellano-Bond for 60 developing countries in Asia, Africa and Latin America from the year 1990 to 2014. The result showed that the inflation and public debt had a significant negative effect when using GMM Arellano-Bond with the control variables of private investment, government revenue, trade openness,

infrastructure and real GDP per capita. Besides that, in the foreign currency share of debt; the study targeted the inflation had decrease led 3-6 percentage point of sovereign international debt. The coefficients across all the standard are insignificant and negative. Thus, inflation targeting had no consequent in public debt. It used a probit model to test 75 developing countries from the year 1994 to 2013 (Ogrokhina & Rodriguez, 2018).

In conclusion, most of the research concluded that there was a positive impact of the relationship between inflation on public debt. Moreover, there concluded that the inflation increased will lead to public debt increase (Aizenman & Marion, 2011; Caner et al., 2010; Barro, 1979; Goudswaard, 1990; Cochrane, 2011; Phulpoto et al., 2016; Gomez- Gonzalez, 2019). On the other hand, based on the study done by (Woodford, 1996; Reinhart & Rogoff, 2010 & Van Bon, 2015), the research had pointed out that increase inflation will cause the public debt increase. There was a negative impact of inflation on public debt. There was no relationship between inflation and public debt (Ogrokhina & Rodriguez, 2018). In short, there has been a gap between the inflation and public debt, therefore, the researcher realized its importance.

2.6 Empirical study on Economic Growth and Public Debt

Economic growth can be defined as an increase in the total output (goods or services) of an economy. It also can be defined as an increase in the capacity of an economy to produce goods and services, compared from one period of time to another (Raisova & Durcova, 2014). Based on Matiti (2013) economic growth was measured the growth in term of monetary and look there were no other aspects of development.

There were many academics and researcher verification and controversy the relationship between economic growth and public debt. Based on the research done by Pattillo, Poirson, & Ricci (2011), they used the Gaussian Mixture Model to analyse the data of 93 developing countries from year 1969 to 1998. The result shows that economic growth had a negative relationship with public debt. The result was supported by other researchers. Kumar & Woo (2010), they used the Gaussian Mixture Model to analyse the data of 38 develop and developing country from 1970 to 2007. Besides that, Fincke & Greiner (2013), they used the pooled regression model and random effect model to investigate the panel data of seven developed countries from 1970 to 2012 and Brini, Jemmali, & Ferroukh (2016), they used the Autoregressive distributed lag model (ARDL) to analyse the result of Tunisia by the data from the year 1990 to 2013.

Moreover, that is the positive relationship between economic growth and public debt. This is because the government needs to borrow the money from the international financial and capital market to fill the gap between domestic investment and saving (Saungweme & Odhiambo, 2019). Besides that, Greiner (2006) said that the economic growth increase will cause the interest rate increase and lead the public debt to increase. The result of the Moki (2012) shows that was the positive relationship between economic growth and public debt in Africa from the year 1980 to 2010 using the SPSS software. The result same with the Laine (2011) in short term, she used the Vector Auto Regression (VAR) model to analyse the data of United States from 1959 to 2010 and Abbas & Christensen (2007), they use the GMM to analyse 93 low-income countries from period 1957 to 2004. However, the researcher also found that the relationship between economic growth and public debt will turn into negative in the long-term.

On the other hand, Schclarek (2004) said that was no relationship between economic growth and private external debt. He used the GMM to analyses the sample of 24 countries from 1970 to 2002 in developing countries. The result was same as Ogunmuyiwa (2008). In this research was used the Augmented Dickey-

Fuller test and the Johansen Co-integration test to investigate the relationship between economic growth and public debt of Nigeria in the year 1970 to 2007.

Furthermore, there were some researchers found that economic growth will interact with each other. According to Owusu-Nantwi & Erickson (2016) found that the relationship between two variables was positive in Ghana from the year 1970 to 2012. In this research, they used the Johansen cointegration, vector error correction model and Granger causality test. The result of them was opposite with the Hussain, Haque, & Igwike (2015). They found that was a negative relationship between the variable by using the Dynamic Arellano-Bond panel data and Granger causality test. In this research, they use the 48 countries of sub-Saharan from the year 1995 to 2012.

In conclusion, the study done by previous researchers, they concluded that there was the positive relationship between economic growth and the public debt, the research pointed out that when the economic growth increases the public debt also will increase. (Moki, 2012; Laine, 2011; Abbas & Christensen, 2007). On the other hand, based on the study done by (Pattillo et al., 2002; Kumar & Woo, 2010; Bokemeier & Greiner, 2013; Brini et al., 2016), the researcher had pointed out that was the negative relationship between economic growth and public debt. Besides that, based on research done by (Schclarek, 2004; Ogunmuyiwa, 2008) found that was no relationship between economic growth and public debt. In addition, this research also found that economic growth and public debt will influence each other (Owusu-Nantwi & Erickson, 2016; Hussain et al., 2015). This was the reason why the researcher wants to investigate the relationship between economic growth and public debt because it had some gap between these two variables.

2.7 Empirical study of other control variables

Many of the issues can cause public debt, and one of them was the interest rate. According to the research of Patterson & Lygnerud (1999), the interest rate was elucidated as prices. The interest was the amount of price that pay for the money that borrowed in a duration of time, it is stated in a percentage form from overall undone balance left were fixed or changeable. In addition, interest was the amount that charge by the debtor to the creditor within the period of using credit provided (Mutinda, 2014).

Morley & Fishlow (1987), the problem of speedily increase the internally held of public debt and the higher domestic interest rate. According to Bohn (1988) had done the research on the high goods demand increased the interest rate, which will contemporaneous implies the higher payment on public debt. Through the result of the data by nine Organization for Economic Cooperation and Development (OECD) countries had concluded that increase in interest rate will influence the government taking debt at large scale on the early year 1970s. Faini (2004) had found that increased one percentage point in the interest rate will increase in the public debt of the euro area. Linnemann (2006) had shown the research when there was a positive steady-state stock in public debt, it will easily show to indeterminacy active the interest rate policy. According to the study of the research that done by Doi, Hoshi, & Okimoto (2011) had shown the possibility started to increase the interest rate as the public debt to the GDP ratio will increase. The research had used Lagrange multiplier to analyse the data of OECD countries and the Europe countries from the year 1990 to 2005 to get a positive relation. Higher budget deficits increased in interest rate, will crowd out the effects of increasing public debt (Claeys, Moreno, & Surinach (2012). In this research, Cavalcanti, Vereda, Doctors, Lima, & Maynard (2018) had investigated the interaction between the fiscal policies and monetary, such as an increase in interest rate will cause the public debt increased. In fact, even though the fiscal policy rule had required an endogenous response that keeping the balanced primary budget, the increasing interest rate may lead to increase the payments on public debt.

The growth rate of the public debt will reduce when the interest rate had increased the measured at par values (Barro, 1979). Based on the study of Garin, Lester, Sims, & Wolff (2019) had defined that there had a "well" period for increased in public debt if the adjacent discounted the worth of primary surpluses increased when the interest rate decreased, and there had a "worst" period to increase the public debt if the adjacent discounted worth of primary surpluses decreased when the interest rate decreased. According to both economies, it was to estimate a good period of time for increased the public debt that depends on the exogenous strength driving the interest rate fall (Garin et al., 2019).

Estimating a "transversality condition" that requires the public debt discounted at some interest rate (Wilcox, 1989). According to the research of Aizenman & Guidotti (1994) had found that there is no relation between the two variables in OECD countries in the year 1989. Furthermore, it had shown that decreasing the domestic interest rate on public debt, the sum of integrating private holdings of the domestic public debt had given the "effective" tax based of external interest income tax. According to the study of Missale (1997), there were choosing a comparative short maturity which was parallel to index the public debt to the interest rate. Based on the research of Eijffinger, Huizinga, & Lemmen (1998), increased in interest rate will well-being the domestic receptacle of public debt. The empirical facts about the public debt and interest rate were reviewed the recent econometric investigation on the interaction of federal public debt and interest rate, institute some investigation for this relationship (Engen & Hubbard, 2004). The research of Kinoshita (2006) had used the Dynamic General Equilibrium model to analyse the data of 19 industrial countries in the year 1971 to year 2004. It had shown the relation between the public debt and interest rate that keenly debated in macroeconomics. The difference of real interest rate on the public debt had shown that the government certain to reimburse its public debt the interest rate was equalized (Romer, 2006). Reinhart & Rogoff (2009) had examined the interest rate related to elongate periods of exceptionally the lofty public debt. Adam (2011) had used the Rational Expectation model to analyse the data of OECD countries from the year 2007 to 2011 to get a positive relation. Moreover, the research on the decision of the nominal interest rate will affect the

real value and price level of the outstanding public debt. Based on the research of Phulpoto et al. (2016) had found that the relation between two variables was positive in developing countries and 9 OECD countries from the year 1981 to 2006. The interest rate was such an amount that needs to pay by the government on public debt. According to the study of Coccia (2017), it is compulsory to repay the borrowers and to impose the repayment at the lenders to keep the low-interest rate on the public debt.

2.8 Conclusion

Literature review on an independent variable which was corruption and followed by other control variables such as government spending, inflation, and economic growth was provided in this chapter. Theoretical framework and hypotheses development were critically identified by review of relevant literature. The following chapter was discussed about research methodology.

CHAPTER 3: METHODOLOGY

3.0 Introduction

This chapter was showing clear information on the research model designed. Therefore, research design, source of data, target population, model, research framework, data processing and the estimator model which was Generalized Method of Moments (GMM) will be clearly stated in this chapter.

3.1 Research Design

The purpose of the research was to examine how corruption (CPI), government spending (GS), inflation (INF) and economic growth (GDP) that affect the public debt (PD) in the whole world. This research used the secondary data to investigate the impact of corruption on public debt. In addition, Stata software will be applied to this research.

3.2 Source of Data

Based on the study of Smith (2008), the population that is targeted was more representative by the larger samples; if offer for greater validity and more generalizable on findings. Therefore, this research was able to access the data of developed and developing countries from the International Monetary Fund (IMF), International Counter Risk Guide (ICRG) and World Development Indicators (WDI). The data period of this research was from 1970 to 2018, but there are some data was missing. Thus, in Roodman (2006) major study, the researcher showed that some of the data were unavailable, but can use the Generalized Method of Moments (GMM) model to resist the missing data. According to Zsohar (2010), the GMM was a statistical model that produces an estimate of the unknown parameters by combining the observed economic data with information from population time conditions in the economic models. Based on previous researcher corruption between public debt had a positive relationship (Kim et al., 2017; Henri, 2018; Jeng, 2018 Benfratello et al., 2017 & Depken & Lafountain, 2006). Therefore, this research expected the corruption with public debt is positive.

Table 3.1: Source of Data

Variables	Abbreviatio	Definition	Expected	Sources
	n		Sign	
Public Debt	PD	Percentage of	-	International
		Gross Domestic		Monetary
		Product (GDP)		Fund
Corruption	CPI	Corruption	Positive	International
		Perception		Counter Risk
		Index		Guide
Government	GS	GDP per	Positive	World
Spending		percentage		Development
				Indicators

Inflation	INF	Consumer Price	Positive	World
		Index		Development
				Indicators
Economic	GDP	GDP per capita	Positive	World
Growth				Development
				Indicators

Sources: Kim, Ha, & Kim (2017), Henri (2018), Jeng (2018), Bemfratello, Del Monte, & Pennacchio (2017), Depken & Lafountain (2006)

3.2.1 Public Debt

Public debt had become a common general of the financial sectors of most of the economies (Hanif, 2002). According to the Government Finance Statistics Manual (2001), gross debt consists of all liabilities that involve principal and payment by the debtor to the creditor at a date. Currency and deposits, debt securities, insurance, loan, pensions and standardized guarantee schemes and other accounts payable were included debt liabilities in the form of SDRs. Therefore, the liabilities in the GFSM 2001 system are debt. Debt can be valued at the current market, face values and nominal. The data used in this research will be the percentage of Gross Domestic Product from the year 1970 to 2018 in developing and developed countries from the International Monetary Fund.

3.2.2 Corruption

Corruption can be defined as a global phenomenon (Iyanda, 2012) and the impact of corruption on economic performance always interests the government and policymakers (Athanasouli et al., 2012). Besides that,

corruption also can define as a personal gain by the government official (Shleifer & Vishmy, 1993). The expected sign for corruption and public debt was positive. Based on the study of Jalles (2011), an increase in corruption will cause public debt to increase. The data used in this research will be the Corruption Perception Index (CPI) from the year 1970 to 2018 in developed and developing countries from the International Counter Risk Guide (ICRG).

3.2.3 Government Spending

Government spending was the expenses of country government use for country maintenance for the good of economy and society and for assistance to external bodies and other countries (Anyanwu, 1993). Based on the study of Anyafo (1996), government spending also considers as actual payment or the creation of an obligation to make future payment for the services received. The expected sign for government spending and public debt was positive. Based on the study of Joydeb & Ritwik (2017), the research had pointed out the total expenditure of the country which was financed by government borrowing. Lastly, the data used in this research will be the GDP from the year 1970 to 2018 in developed and developing countries from World Development Indicators (WDI).

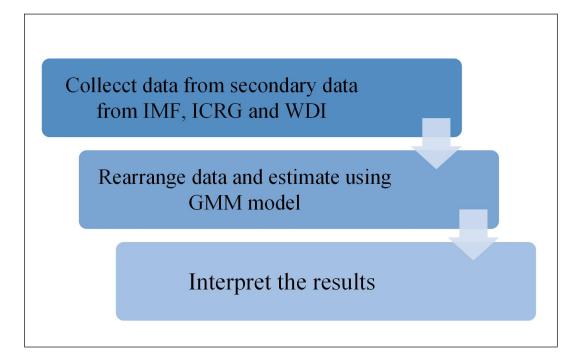
3.2.4 Inflation

Inflation was defined as irresistible so that every country needs fundamentally to study. In their major study, Cheng & Tan (2002) inflationary effect was the major macroeconomic variables (excess fiscal

deficit and money supply) that causes by inflation and further investigate need to done by the domestic economy. The expected sign for inflation and public debt was positive. Based on the research of Phulpoto et al. (2016), the researchers concluded that when an increase in inflation will increase in public debt. Moreover, the data used in this research will be the Consumer Price Index from the year 1970 to 2018 in developed and developing countries from World Development Indicators (WDI).

3.2.5 Economic Growth

Economic growth was defined as an increase in the total output (goods or services) of an economy. It also can be defined as an increase in the capacity of an economy to produce goods and services, compared from one period of time to another (Raisova & Durcova, 2014). Based on Matiti (2013) economic growth was measured the growth in term of monetary and look there were no other aspects of development. The expected sign for economic growth and public debt was positive. Based on the research of Laine (2011) found that was the positive relationship between economic growth and public debt in the United States form the year 1959 to 2010. Lastly, the data used in this research will be the Gross Domestic Product (GDP) per capita from the year 1970 to 2018 in developed and developing countries from World Development Indicators (WDI).


3.3 Model

$$lnPD_{it} = \widehat{\beta}_0 + \widehat{\beta}_1 lnPD_{it-1} + \widehat{\beta}_2 lnCPI_{it} + \widehat{\beta}_3 lnGS_{it} + \widehat{\beta}_4 lnINF_{it} + \widehat{\beta}_5 lnGDP_{it} + \varepsilon_{it}$$

where PD represents public debt, CPI represents corruption, GS represents government spending, INF represents inflation and GDP represents economic growth, index i = 1,...,N refers to countries, index t = 1,...,T refers to period of time, ϵ_{it} is error term and In represents nature logistic.

3.4 Data Processing

Figure 3.1: The Data processing

The data processing for this research was collecting the data from secondary data which accessed the data of developed and developing countries from the International Monetary Fund (IMF), International Counter Risk Guide (ICRG) and World Development Indicators (WDI). Next process will rearrange all the data

and run using Generalized Method of Moments (GMM) model. Lastly, those results will be fully interpreted through chapter 4.

3.5 Generalized Method of Moments (GMM)

Generalized Method of Moments (GMM) was a dynamic panel estimator used for estimating parameters in statistical models. Nowadays, GMM has become a very useful heuristic and popular tool amid empirical researchers (Baum, Schaffer & Stillman, 2003). According to the study of Roodman (2006), GMM was the general estimators intended for circumstances with small number of years and large number of observations panels, a single left hand side variable with dynamic, a linearity functional relationship, that are not biting exogenous independent variables, which means correlated current and past acknowledge of the mistake, independent effect that is fixed, autocorrelation and heteroskedasticity within individuals. According to Zsohar (2010), the GMM was a statistical model that produces an estimate of unknown parameters by combining the observed economic data with information from population time conditions in the economic models.

Zsohar (2010) stated, "the population's conditions assumed a critical role in the discussion, so it was worth returning back to the primitives to comprehend the mechanics of GMM. It was easy to compute the raw uncentered moments and they disclose important aspects of a distribution." When there have some data on the population, the inquiry has remains how to utilize the example to evaluate the parameters of interest. On the whole, inside the population have a counterpart for each sample statistics. The characteristic following step in the analysis was to use an analogy to utilize using the sample moments bases of population parameter's estimators. (Zsohar, 2010). Therefore, the sample analogue needs to replace it and be used to solve the equation for the unknown parameter.

Method of moment estimator:

Population moment condition: $E[x_i] = \mu$

$${x_i:i = 1,2,...,n}$$

Sample analogue: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \hat{\mu}$

3.5.1 GMM estimator

$$\widehat{\beta_A} = (X'ZAZ'X)^{-1}X'ZAZ'Y$$

The GMM estimator was implied by A. A will result in the different estimator of β . Let A be the scalar that was inefficient, intuitive and instructive. X was representing regressor matrix and Z was instrument matrix. The cross-examine in estimate the instrument of the model are hypothetically symmetrical to the error term $(E[z\varepsilon] = 0)$, and the corresponding vector of empirical moments $E_N[z\varepsilon] = \frac{1}{N}Z'\widehat{E}$ are trying forced, because the instruments outnumber parameters are the zero creates a systems equations more than variables. Besides, an estimator was predictable, implying if exchanges in probability to β as sample size goes to infinitude (Roodman, 2006).

3.5.2 Efficiency

$$A_{EGMM} = Var[Z'E]^{-1} = (Z'Var[E|Z]Z)^{-1} = (Z'\Omega Z)^{-1}$$

The EGMM stands for efficient Generalized Method of Moments (EGMM). The models above were the variance matrix of the moments that the weight by the inverse for efficiency in general. EGMM would signal by high variance or covariance among the moments in the inefficiency theoretically. This will make A scaler become inexpert unless the moments $\frac{1}{N}Z'_iE$ have equal variance and uncorrelated, which are when it has itself scalar Var[Z'E] (Roodman, 2006). Therefore, their A must in effect weight moment of variances and covariances to inverse proportion. However, unless Ω was known that EGMM was not feasible.

3.5.3 Feasibility

$$\widehat{\boldsymbol{\beta}_{FEGMM}} = (X'Z(Z'\widehat{\Omega}Z)^{-1}Z'X)^{-1}X'Z(Z'\widehat{\Omega}Z)^{-1}Z'Y$$

The FEGMM stands for feasible efficient GMM estimator (FEGMM). According to Roodman (2006), the researcher can make the standard errors and use a kernel-based estimator, with the cluster and robust options that requested from Stata estimation commands which were "sandwich" one ordinarily. Moreover, Ω can establish a formula that itself with asymptotically convergent to a matrix $\widehat{\Omega}$, and with the characteristic that $\frac{1}{N}Z'\Omega Z$ was under the given assumptions to consistent estimator convergent to $\frac{1}{N}Z'\widehat{\Omega}Z$.

$$\widehat{\boldsymbol{\beta}_1} = (X'\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{H}\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{X})^{-1}\ X'\boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{H}\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{Y}$$

$$\widehat{\boldsymbol{\beta}_2} = \widehat{\boldsymbol{\beta}_{FEGMM}} = (X'\boldsymbol{Z}(\boldsymbol{Z}'\widehat{\boldsymbol{\Omega}}_{\widehat{\boldsymbol{\beta}_1}}\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{X})^{-1}\ X'\boldsymbol{Z}(\boldsymbol{Z}'\widehat{\boldsymbol{\Omega}}_{\widehat{\boldsymbol{\beta}_1}}\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{Y}$$

In addition, $A=(Z'HZ)^{-1}$ and Ω was estimate by H based on a very few random assumptions about the errors, example of the error was homoskedasticity. One-step GMM was $\widehat{\beta}_1$, one-step GMM means it get the residuals from the estimation, and they use sandwich proxy to establish the Ω which was $\widehat{\Omega}_{\widehat{\beta}_1}$. The research rerun the GMM estimation with the setting $A=(Z'\widehat{\Omega}_{\widehat{\beta}_1}Z)^{-1}$. There are asymptotically efficient and robust to any examples that have cross-correlation and heteroskedasticity the sandwich covariance estimator model in this two-step estimator (Roodman, 2006). The researchers have regularly reported one-step result which was due to the downward bias, and it has computed standard error in second-step result. So, according to Windmeijer (2005), two-step GMM has extremely decrease this problem.

3.5.4 One-step and Two-step GMM

According to Roodman (2006), the meaning of one-step and two-step GMM was the research rerun the one-step GMM estimate parameter to become second step of estimate the parameter. The GMM estimator as below:

$$\widehat{\boldsymbol{\beta}_A} = (X'ZAZ'X)^{-1}X'ZAZ'Y$$

$$\widehat{\boldsymbol{\beta}_1} = (X'Z(Z'HZ)^{-1}Z'X)^{-1}X'Z(Z'HZ)^{-1}Z'Y$$

In the first step of the GMM, the weighting matrix is $A = (Z'HZ)^{-1}$ and Ω was estimate by H based on a very few random assumptions about the errors, for example of the error is homoskedasticity. One-step GMM was $\widehat{\beta}_1$, one-step GMM means it get the residuals from the estimation, and they use sandwich proxy to establish the Ω which was $\widehat{\Omega}_{\widehat{\beta}_1}$ (Roodman, 2006). The result of $\widehat{\beta}_1$ was consistent only.

$$\widehat{\boldsymbol{\beta}_2} = \widehat{\boldsymbol{\beta}_{FEGMM}} = (X'Z(Z'\widehat{\Omega}_{\widehat{\boldsymbol{\beta}_1}}Z)^{-1}Z'X)^{-1}\ X'Z(Z'\widehat{\Omega}_{\widehat{\boldsymbol{\beta}_1}}Z)^{-1}Z'Y$$

Therefore, the research rerun the GMM estimation, it means the second step GMM appears. Thus, the research minimized the effect and use the setting $A = (Z'\widehat{\Omega}_{\widehat{\beta_1}}Z)^{-1}$. There are asymptotically efficient and robust to any examples that have cross-correlation and heteroskedasticity the sandwich covariance estimator model in this two-step estimator (Roodman, 2006). The result of $\widehat{\beta_2}$ is consistent and asymptotically efficient.

The research had regularly reported one-step result which was due to the downward bias, and it has computed the standard error in second-step result. According to Windmeijer (2005), two-step GMM has extremely decreased this problem and the research will use the xtabond2 in the test. This was because xtabond2 comply with these estimators, which means it has some great benefit over Stata's establish into xtabond. Thus, the research will use the xtabond2 in the test.

3.5.5 Estimating Standard Errors

True variance:

Var
$$[\widehat{\beta}_A|Z] = (X'ZAZ'X)^{-1}X'ZAZ'\Omega ZAZ'X(X'ZAZ'X)^{-1}$$

In this estimation Let $A = (Z'HZ)^{-1}$ as a weighting matrix for the instruments. This will not cause the inconsistent in the parameter estimates when the incorrect assumptions about the variance of the errors. The substitute H for Ω can make the estimate of their variance inconsistent. There will not robust the standard error to serial correlation or heteroskedasticity in the errors. The problem can solve by replacing Ω with a sandwich-type proxy. This will make the one step standard error be the robust estimators (Roodman, 2006).

One-step standard errors:

$$\widehat{Var}\left[\widehat{\beta_{1}}\right] = (X'Z(Z'HZ)^{-1}Z'X)^{-1}X'Z(Z'HZ)^{-1}Z\widehat{\Omega_{\beta_{1}}}Z(Z'HZ)^{-1}Z'X(X'Z(Z'HZ)^{-1}Z'X)^{-1}$$

Two-step standard error:

$$|\widehat{Var}|\widehat{\beta_2}| = (X'Z(Z'\widehat{\Omega_{\beta_1}}Z)^{-1}Z'X)^{-1}$$

In this formula, the number of instruments was big this will let the standard errors are downward biased (Arellano & Bond, 1991). This will make trouble when the small samples reweighting empirical moments, which indirect with the overweighting and underweighting observations that fit the model (Roodman, 2006).

3.5.6 The Difference and System GMM estimators

In the data generation process, the difference and system GMM estimator uses more sophisticated techniques to isolate useful information. The estimator also creates fewer assumptions throughout the historical flow of econometrics (Roodman, 2006).

$$y_{it} = \alpha y_{i,t-1} + X'_{it}\beta + \varepsilon_{it}$$

$$\varepsilon_{it} = \mu_i + \nu_{it}$$

$$E[\mu_i] = E[\nu_{it}] = E[\mu_i \nu_{it}] = 0$$

where y represents public debt, x represents corruption, government spending, inflation and economic growth, ϵ represents disturbance term; μ represents fixed effect and ν represents idiosyncratic shocks.

Rewrite the model as:

$$\Delta y_{it} = (\alpha - 1)y_{i,t-1} + X'_{it}\beta + \varepsilon_{it}$$

Data-Generating Process Assumption:

- i. Some independent variable may be endogenous
- ii. No correlated among the idiosyncratic error
- iii. Individual-specific patterns of heteroscedasticity and serial correlation among the idiosyncratic error
- iv. A dynamic process, the current predictor variable will affect by the past.
- v. In the dynamic, the fixed individual effect may be randomly distributed. The predictor variable will change consistently faster than other observation units.
- vi. Number of observation (N) must be larger than the number of time period (T)
- vii. Some independent variable will not strictly exogenous but may be predetermined.

viii. Based on the lag instrumented variables, the data set was the only available instruments.

3.5.7 Purging Fixed Effect

The endogeneity can solve by the Difference and System GMM. The first method was using Difference GMM, remove the fixed effect by converting the data. The second method was using System GMM, instrument $y_{i, t-1}$ and other endogenous variables which uncorrelated with the fixed effect (Roodman, 2006).

First-Difference Transform (Difference GMM)

$$\Delta y_{it} = \alpha \Delta y_{i,t-1} + \Delta X'_{it} \beta + \Delta v_{it}$$

The lagged dependent variable was still endogenous even though the fixed effects are removed since the $y_{i, t-1}$ correlates with the $v_{i, t-1}$.

The weakness of the First-Difference Transform has magnified the gap in the unbalance panels. For example, the Δy_{it} and $\Delta y_{i, t-1}$ will miss in the transformed data if some of the y_{it} was missing.

The weakness of the First-Difference Transform causes the second transform "Forward Orthogonal Deviations" appear (Arellaono & Bover,

1995). The Forward Orthogonal Deviations can determinable the observation regardless of how may the gaps except for the last number so it can minimize the data loss.

3.5.8 Instrumenting with variables orthogonal to the fixed effects

The Difference GMM will perform not well if y was close to a random walk. This was because the Difference GMM used the previous result to transmit the little information about future changes. The System GMM was different from the Difference GMM. The Difference GMM was to expunge the fixed while the System GMM was transformed the instrument to make them exogenous to the fixed effect. The System GMM assume that fixed effect was uncorrelated with any change instrument in variable w (Roodman, 2006).

$$E[\Delta w_{it}\mu_i] = 0$$
 for all i and t

 $w = instrument variable; \mu = fixed effect$

If $E[\Delta w_{it}\mu_i]$ was time-invariant, then $\Delta w_{i,t-1}$ was a valid instrument for the variables.

$$\mathbb{E}\left[\Delta w_{i,t-1}\varepsilon_{it}\right] = E\left[\Delta w_{i,t-1}\mu_{i}\right] + E\left[w_{i,t-1}\nu_{it}\right] - E\left[w_{i,t-2}\nu_{it}\right] = 0 + 0 - 0$$

3.5.9 Sargan / Hansen Test

The Sargan / Hansen Test was used for testing over-identifying restrictions in the model. In other words, the test was used to make sure that the model was no endogenous. The detection will invalid if the estimation was exactly identified because the estimator will make $Z'\widehat{E}=0$ be correct by choosing $\widehat{\beta}$ when $E[_{z\varepsilon}]\neq 0$. The test statistic for the joint validity of moment conditions will fall out of the GMM framework natural when the system was over identified. The null of joint validity was $\frac{1}{N}Z'\widehat{E}$ randomly distributed around zero.

 H_0 : The over-idenfication restriction are valid

 H_1 : The over-idenfication restriction are invalid

3.5.10 Arellano-Bond Test

Arellano-Bond Test was used to detect the correlation between disturbance term. The full disturbance was the combination of fixed effect and idiosyncratic shock. The estimators were developed to remove the trouble. The $y_{i,t-2}$ was endogenous to the $v_{i,t-1}$ in the error term in difference if the ε_{it} were serially correlated with one of themselves. AR (1) was to test

the idiosyncratic residuals in first difference are not serially correlated. AR

(2) was to reject the H_0 of second-order serial correlation of the first-

difference residual.

 H_0 : The linear regression error term are uncorrelated

 H_1 : The linear regression error term are correlated

3.6 Conclusion

The research design, source of data, model, and data processing had been

discussed in this chapter. The Generalized Method of Moments (GMM) was used

to analyse the data and result. The following next chapter was discussed the data

analysis.

CHAPTER 4: RESULTS

4.0 Introduction

This chapter applies GMM model and generates the empirical result of the impact

of corruption on public debt. By full filling the assumption of the GMM model,

the hypothesis testing and diagnostics checking will be done, which included one-

step and two-step GMM and the difference and system GMM estimators.

Moreover, those results will be fully interpreted in this chapter.

4.1 Descriptive Analysis

Table 4.1: Shown descriptive analysis for Developed Countries

Variables	Obs	Mean	Std. Dev.	Min	Max
lnPD	1032	3.836652	0.912267	-2.302585	5.473111
lnCPI	1152	-4.446639	1.117265	-6.00000	-2.00000
lnGS	1493	2.871956	0.2893475	1.646794	3.73667
InINF	1464	2.297479	0.6595821	-0.6502854	7.159636
InGDP	1471	0.229554	0.031686	-0.1573534	0.214633

Notes: PD represented Public Debt, CPI represented Corruption Perception Index, GS represented Government Spending, INF represented Inflation, GDP represented Economic Growth, and In represented nature logistics.

Table 4.2: Shown descriptive analysis for Developing Countries

Variables	Obs	Mean	Std. Dev.	Min	Max
lnPD	1975	3.743693	0.7673757	-2.302585	6.243973
IIII D	19/3	3.743093	0.7073737	-2.302363	0.243973
lnCPI	2936	-2.40454	0.9389388	-6.428571	0
lnGS	3439	2.583295	0.4349273	-0.0929549	4.333652
1.00	2272	2.252655	0.6200001	0.104700	0.252024
lnINF	3262	3.352655	0.6308001	-0.124798	9.373024
lnGDP	3699	0.0155855	0.0598672	-1.049716	0.4314175

Notes: PD represented Public Debt, CPI represented Corruption Perception Index, GS represented Government Spending, INF represented Inflation, GDP represented Economic Growth, and In represented nature logistics and t-1 represented current year minus 1.

Table 4.1 & Table 4.2 represented the result of estimations using dynamic panel GMM all the result executed using STATA software. Based on the table, there are two types of GMM estimation, it was Different GMM and System GMM. Both Different GMM and System GMM layout for few situation when independent

variable they were correlated with past and possible current actuality of the mistaken, small T large N, a linear functional relationship, one left-hand-side variable that was dynamic, fixed individual effect and heteroskedasticity and autocorrelation within individuals but not across them (Roodman, 2009). Since this research was fulfilled several situations of GMM Model so GMM model was applied to generate the result. However, the result will interpret based on System GMM because if the series was overly tenacious, the Different GMM model will turn to bias. On the whole, Arellano & Bover (1995) and Blundell & Bond (1998) has developed System GMM to solve weakness in Different GMM.

As this research used the corruption perception index (CPI) as corruption main data resources. The CPI was used to measure the control of corruption and had been used many times in other past studies (Henri, 2018; Kim et al., 2017 & Benfratello et al., 2017). It was an index number from a range of 0 (most corrupt) to 6 (least corrupt). To indicate the level of corruption instead of control of corruption, this research used the original corruption perceptions index by multiple negative 1 to analyse the result.

According to table 4.1, the result has shown that public debt, government spending, and economic growth in developed countries have higher mean value compared with developing countries which were 3.8367, 2.8720, 0.2296 compared with 3.7437, 2.5833 and 0.01559. However, the mean for corruption perception index and inflation in developing countries was higher compared with developed countries it was -2.4045 and 3.3527 compared with -4.4466 and 2.2975. Besides that, Standard deviation used mostly to measure variability (Barde & Barde, 2012). As the higher the value of standard deviation, the more variability. According to table 4.1 and 4.2, the standard deviation of the variables for government spending and GDP in developed countries lower than developing countries as revealed by 0.2893 and 0.03169 compared with 0.4349 and 0.05987. However, the standard deviation of public debt, corruption perception index and

inflation in developed countries were higher than developing countries which were 0.9123, 1.1173 and 0.6596 compared with 0.7674, 0.9389 and 0.6308.

4.2 Correlation Analysis

<u>Table 4.3: Analysis correlation between dependent variable and independent</u>
variable follow by other control variable in Developed Countries

	$lnPD_{it-1}$	lnCPI	lnGS	lnINF	lnGDP
lnPD	1.0000				
lnCPI	0.0897	1.0000			
lnGS	0.3773	-0.1912	1.0000		
lnINF	-0.1214	0.1500	-0.0570	1.0000	
lnGDP	-0.1103	-0.0417	-0.0664	0.0540	1.0000

Notes: PD represented Public Debt, CPI represented Corruption Perception Index, GS represented Government Spending, INF represented Inflation, GDP represented Economic Growth, and In represented nature logistics.

Table 4.3 shown the correlation matrix between public debt and corruption followed by the other control variable. The result shown that corruption has a weak positive correlation with public debt in developed countries which show the result 0.0897.

Table 4.4: Analysis correlation between dependent variable and independent variable follow by other control variable in Developing Countries

	$lnPD_{it-1}$	lnCPI	lnGS	lnINF	lnGDP
lnPD	1.0000				
lnCPI	-0.0723	1.0000			
lnGS	-0.1231	-0.1015	1.0000		
lnINF	0.1246	-0.1239	-0.0462	1.0000	
lnGDP	-0.1007	0.1039	-0.0283	0.0021	1.0000

Notes: PD represented Public Debt, CPI represented Corruption Perception Index, GS represented Government Spending, INF represented Inflation, GDP represented Economic Growth, and In represented nature logistics.

Table 4.4 figured out the correlation matrix between the public debt and the main independent variable, corruption followed by other control variables in developing countries. Based on the result, public debt appears a weak negative correlation with corruption which the value of the correlation coefficient was only -0.0723.

4.3 Result from Dynamic Panel GMM Estimations

Table 4.5: Result of dynamic panel GMM estimation in Developed Countries

One-Step	Two-Step	Two-Step	One-Step	Two-	Two-
Difference	Difference	Robust	System	Step	Step

	GMM	GMM	Difference GMM	GMM	System GMM	Robust System GMM
	(1)	(2)	(3)	(4)	(5)	(6)
$lnPD_{it-1}$	0.555***	0.886***	0.113	0.987***	0.961***	0.961***
	(2.44)	(17.84)	(0.20)	(47.82)	(57.44)	(39.18)
lnCPI	0.0947^{*}	0.0127	0.160	0.0319***	0.0343***	0.0343*
	(1.67)	(0.68)	(1.55)	(2.85)	(2.64)	(1.96)
lnGS	0.423	0.416***	0.349	0.338*	0.775***	0.775**
	(1.00)	(2.60)	(0.37)	(1.71)	(4.04)	(2.35)
lnINF	0.150*	0.190***	-0.0188	0.132**	0.214***	0.214**
	(1.85)	(5.74)	(-0.07)	(2.33)	(4.20)	(2.52)
lnGDP	0.632	0.476***	0.562	0.750**	0.693***	0.693*
	(1.09)	(3.15)	(1.10)	(2.48)	(2.66)	(1.81)
Cons				-1.043*	-2.344***	-2.344**
				(-1.85)	(-4.39)	
Obs	535	535	535	568	568	568
AR1	-1.515	-1.851*	0.308	-8.792***	-1.871*	-1.870*
	[0.130]	[0.064]	[0.758]	[0.000]	[0.061]	[0.061]
AR2	1.929*	1.104	1.958**	1.675*	1.309	1.304
	[0.054]	[0.270]	[0.050]	[0.094]	[0.192]	[0.192]
Sargan	14.85**	21.59	14.85**	15.28**	15.28**	15.28**
	[0.011]	[0.119]	[0.011]	[0.018]	[0.018]	[0.018]
Hansen		19.90	5.469		6.876	6.876
		[0.176]	[0.361]		[0.332]	[0.332]

Notes: t statistics shown in (), Probability shown in [], *, **, *** are represent the significant level at 10%. 5%, and 1% respectively.

Table 4.5 and Table 4.6 showed two types of GMM estimations which included Difference GMM and System GMM model. However, this research selected

column 5 and column 11 as the final model which was Two-Step System GMM model to interpret the result. As mentioned before, the Difference GMM model would turn biased, and biased will be removed in System GMM model. This was the reason of two-step System GMM model more accurate compared with two-step Difference GMM model. The CPI was used to measure the control of corruption and had been used many times in other past studies. It was an index number from a range of 0 (most corrupt) to 6 (least corrupt). Besides that, this research used debt to GDP ratio as the public debt's main source and apply it into t-1 in order to obtain accurate data. This is because the effect of period t-1 would affect the period in t.

This research used public debt as dependent variable and corruption was the main independent variable followed by other control variables namely government spending, inflation and GDP on this research. Furthermore, the relationship between the variables will be shown in Table 4.5 and Table 4.6. Public debt was measured by % of GDP from 0% to 270.6%, the higher the percentage indicates the higher the public debt in the country. Based on Table 4.5 carried out that the impact of corruption on public debt had a positive coefficient and statistically significant at the significant level of 10% in 33 developed countries. The estimated of the coefficient was 0.0343% under column (5). Hence, on average, 1% rise of corruption will bring to a rise of the public debt of 0.0343%, ceteris paribus. This result supported by the past studies of Grechyana (2012) and Liu et al. (2017) that corruption was a significant determinant of public debt. Truly, Tanzi & Davoodi (2002) pointed out corruption will raise public expenditure and this will lead to a rise in public debt due to the public expenditure will cause public debt when the public revenue can't overcome it.

Besides that, among the other control variables, namely government spending, inflation and GDP also figured out an impact significantly on the public debt. For instance, result in table 4.5 shown that government spending, inflation, and GDP significantly and positively affect public debt, stated that 1% in these variables

may raise public debt by 0.775%, 0.214%, and 0.693% respectively. These results had been proved by some researchers in part studies. According to Yusuf & Said (2018) pinpointed that by using government spending as development expenditure to develop the countries then the country may benefit because development expenditure like infrastructure may have a multiplier effect on boost economic growth but if not spend in an appropriate way it restricted economic growth at the same time public debt increase accordingly. Moreover, the findings of the impact of inflation on public debt corroborate the research of Barro (2007) and Aizenman & Marion (2011). According to the research of Wijnbergen & Budina (2007), the critical point that disclose by this studies is high price of postponing fiscal adjustment in such an environment of raised interest rate and small economic development, taking too much time in making fiscal adjustment, that will result an enhancement in inflation rates that lead to expeditious public debt burden. Furthermore, the higher GDP leads to a higher public debt (Laine, 2011). The research found that the relationship between GDP and public debt had a positive significant relationship. This was because the economic growth increase will cause the interest rate increase and lead the public debt increase (Greiner, 2006).

Table 4.6: Result of dynamic panel GMM estimation in Developing Countries

	One Step	Two-Step	Two-Step	One-	Two-Step	Two-Step
	Difference	Difference	Robust	Step	System	Robust
	GMM	GMM	Difference	System	GMM	System
			GMM	GMM		GMM
	(7)	(8)	(9)	(10)	(11)	(12)
$lnPD_{it-1}$	0.820***	0.917***	0.917***	0.988***	1.005***	1.005***
	(12.36)	(14.24)	(9.13)	(19.28)	(23.90)	(14.20)
lnCPI	0.108***	0.102***	0.102***	0.0411*	0.0407***	0.0407*
	(3.84)	(4.56)	(3.46)	(1.92)	(2.66)	(1.89)
lnGS	0.401*	0.486***	0.486**	0.512***	0.444***	0.444**

	(1.69)	(2.79)	(2.12)	(3.27)	(3.18)	(2.41)
lnINF	0.143***	0.121***	0.121***	0.158***	0.101***	0.101*
	(2.65)	(3.32)	(3.01)	(4.32)	(3.32)	(1.67)
lnGDP	0.580***	0.532***	0.532***	0.488**	0.550***	0.550***
	(3.09)	(4.45)	(3.01)	(2.48)	(6.58)	(3.41)
Cons				- 1.702***	-1.387***	-1.387**
					(-3.14)	(-2.20)
Obs	1290	1290	1290	1373	1373	1373
ARI		-3.239*** [0.001]		7.170***	-3.175*** [0.002]	
	+++			[0.000]		
AR2	-4.193***	-1.272	-1.270	- 4 220***	-1.261	
	[0.000]	[0.203]	[0.204]	4.220*** [0.000]	[0.207]	[0.208]
Sargan	26.87	26.87	26.87		55.92***	55.92***
	[0.139]	[0.139]	[0.139]			
Hanse		15.60	15.60		20.72	
n	-41-4111	[0.741]	[0.741]		[0.756]	[0.756]

Notes: t statistics shown in (), Probability shown in [], *, **, *** are represent the significant level at 10%. 5%, and 1% respectively.

Table 4.5 and Table 4.6 summarizes the relationship between public debt and those variables in 33 developed Countries and 82 Developing Countries. As shown in the table, the result indicated that the relationship of corruption and public debt was similar to Table 4.6 whereby an increase of 1% in corruption, on average, public debt will increase by 0.0407%, ceteris paribus. In other words, the effect of corruption on public debt was positive significant at the 10% significance level in column (11). The corruption will happen if the officer steals the loaned fund and other government income. This may limit the ability of government to meet the debt obligations and caused the public debt happened (Ng, 2006).

According to table 4.6, the relationship between the other control variables which included government spending, inflation, GPD and public debt in 82 developing countries had been shown as positively significant at 10% significance level. As

the result, the estimate of the coefficient between government spending and public debt was 0.444 % whereas a rise of 1% in government spending, on average, public debt led to rise by 0.444%. This was because economic growth of the country it can be increased proficient and achieved to the macroeconomic growth since the government in less developed countries may try to use public debt as an imperative tool to finance the government spending so the public debt increased accordingly (Matiti, 2013). Furthermore, Joydeb & Ritwik (2017) argues that if government spending finance by public borrowing and it fails to generate sufficient income, public debt will increase due to difficult to repay the loan and the interest on loan it bring a snowball effect. Besides that, based on the result in table 4.6, the relationship between inflation and public debt had a coefficient of 0.101%. For example, an increase of 1% of inflation, on average, public debt would increase by 0.101%, ceteris paribus. Based on Bildirici & Ersin (2007), the increases in inflation will lead to higher price level and further increase in nominal interest rates and decrease seigniorage. As a result, it is inevitable that rising public debt will result in an economic through the same channels. Furthermore, the final result of the impact of GDP on public debt was matching the expected sign which the rise of 1% GDP, on average, public debt will rise by 0.550% under Model (11). This is because the government needs to borrow the money from the international financial and capital market to fill the gap between domestic investment and saving (Saungweme & Odhiambo, 2019).

4.4 Diagnostic test

Model AR(1), AR(2) and Hansen test was applied for a diagnostic test. According to table 4.5 and 4.6 the p-value for AR(1) shown it was less than 0.10 respectively. However, AR(1) presented the first-order autoregressive. From the result, it is clearly known that first-order autoregressive was valid and happened in this research due to the effect of period t-1 would affect the period in t. Besides that, AR(2) stand for Second-order autoregressive. However, AR(2) was most important compared with AR(1) in GMM because AR(2) has taken emphasis on the error on AR(1). Based on table 4.5 and 4.6 the p-value for both AR(2) was

greater than 0.10. Hence, there was no autocorrelation available in the model. Furthermore, Hansen test was applied to justify the independent variable either it was valid or invalid for the model. The result for Hansen test from both table the p-value was greater than 0.10 which shown the result 0.332 (column 5) in table 4.5 and 0.756 (column 11) in table 4.6. This result indicated that the independent variable in this research was valid in the model.

4.5 Conclusion

In this chapter, STATA software was applied to generate the result for this research. The result of Dynamic Panel Difference GMM has been developed to explain the relationship and the level of significance between public debt and corruption followed by other control variables. From the result table 4.5 and 4.6, it clearly states that corruption has a significant and positive effect on public debt in both developed and developing the country. This similar result shown by the research of Kim et al (2018), they mention that public debt and corruption was significant and positively correlated. Hence, further discussion and conclusion will be carried out on following chapter.

CHAPTER 5: CONCLUSION

5.0 Introduction

This research was to investigate the effects of corruption on public debt in developed and developing countries. Besides corruption, this research had involved three control variables which are government spending, inflation, and economic growth among the developed and developing countries. Furthermore,

Generalized Method of Moments (GMM) had been used to examine the relationship between corruption and public debt. On the whole, this research will discuss the summary of the study, implication of study, limitation of study and recommendation for future research.

5.1 Summary of Study

Table 5.1: Summary of result for independent variable

Independent variable	Impact on public debt	
Corruption	Positive significant	

Table 5.1: Summary of result for control variables

Control variable	Impact on public debt
Government spending	Positive significant
Inflation	Positive significant
Economic growth	Positive significant

Based on the result in Chapter 4, the research will use a two-step system GMM's final result shows in this research. This was because the result of the one-step system GMM will downward bias. Two-step GMM has extremely decreased this problem, so the research use two-step system GMM to interpret and summary in this research. In addition, this research obtained data from World Economic Outlook (WEO), International Counter Risk Guide (ICRG) and World Development Indicators (WDI). There are involve 33 developed countries and 82 developing countries in our study. It clearly shown that corruption and public debt has a significant and positive effect on both developed and developing countries. In this research, the research intended to find out the relationship between corruption and public debt in developed countries and developing countries.

Besides of corruption as the exogenous variable, this research had also involved three control variables which are government spending, inflation and economic growth among the developed countries and developing countries. In Chapter 4, corruption as our exogenous variable has positive relationship towards public debt in developed countries and developing countries. This result supported by the past studies of Grechyana (2012) and Liu et al. (2017) that corruption was a significant determinant of public debt. Truly, Tanzi & Davoodi (2002) pointed out corruption will raise public expenditure and this will lead to a rise in public debt due to the public expenditure will cause public debt when the public revenue can't overcome it.

On the other hand, government spending, inflation and economic growth as control variable also have a positive relationship on the developed countries and developing countries. Government spending and public debt has positive significant which was because the research that had done by Yusuf & Said (2018), the researcher had pinpointed that by using government spending as development expenditure to develop the countries then the country may benefit because development expenditure like infrastructure may have a multiplier effect on boost economic growth but if not spend in an appropriate way it restricted economic growth at the same time public debt increase accordingly. Moreover, the findings of the impact of inflation on public debt corroborate the research of Barro (2007) and Aizenman & Marion (2011). As a result, the increasing debt to GDP ratios escort these countries to appropriate at higher interest rates and with lower maturity rates. Furthermore, the higher GDP leads to a higher public debt (Laine, 2011). The research found that the relationship between GDP and public debt had a positive significant relationship. This was because the economic growth increase will cause the interest rate increase and lead the public debt increase (Greiner, 2006). On the whole, through this research, the research can clearly show that was a positive relationship between corruption, government spending, inflation and economic growth on public debt.

5.2 Implication of Study

This research gives some new idea and the foresight on decision making for the future researcher and policymakers. This research was to determine the factor that affects the public debt in the development and developing the country.

In this research paper show that was a positive relationship between corruption and public debt in the developed and developing country. Based on the research Liu et al. (2017) found that the level of public debt becomes higher if the level of the corruption increases and Kaufmann (2010) pinpointed out that the measure of corruption was a positive correlation between government debt levels. First, the government can external monitoring to decrease corruption. The government can form an external auditor and anti-corruption agency for monitoring. For example, the government can launch the anti-corruption program to decrease corruption. The research done by Silva (2010) shows that Brazil government launch the anticorruption program "naming and shaming" to overcome corruption in the country. Furthermore, transparency also was a way to decrease corruption happen. There are many evidenced shows that transparency was the beneficial effects to solve corruption (Reinikka & Svennson, 2004). The government needs to transparency the information of the project for the citizen. The government needs to open tendering all the project and open the information of the project to prevent corruption happen. For example, the Ugandan government published the funding process of education in the local newspaper to allow the citizen to monitor the government. This process will help to decrease corruption in the country.

Moreover, the government can implement the law to control corruption. The government must implement the law without political favouritism. This action can prevent those who are trying to engage the corruption (Whitton, 2001). The government can establish the inspection bodies and good judicial system to

inspect the corruption. For example, Hong Kong has the inspection bodies named "Independent Commission Against Corruption (ICAC)" to investigate the people who corrupt.

Besides that, this research shows that inflation was positive related to the public debt. Aizenman & Marion (2011) said that an increase in inflation will cause public debt to increase and Goudswaard (1990) said that the relationship between inflation and the short to long term debt ratio was expected with sign positive. Therefore, the government needs to decrease or control inflation to decrease public debt. The government can reduce inflation by used fiscal policy (Ascari, Florio, & Gobbi, 2017). For example, the government can increase tax revenue by increasing the personal tax and good and service tax. This policy will help the government to decrease the public debt because the government can use the tax revenue to repay the debt.

In addition, this research shows that was the positive relation of government spending on public debt. The research conduct by Joydeb & Ritwik (2017) and Henri (2018) show that public debt will increase when the government spending increase. The government needs to overcome this problem because it will cause budget deficit. Government can reform or terminate the irrelevant programs to decrease the spending. For example, Malaysia government reform the program named as "Bantuan Rakyat 1 Malaysia" to "Bantuan Sara Hidup" decrease the government spending.

Lastly, there was a positive relation of economic growth on public debt in this research. Laine (2011) said that was the economic was positive related with the public debt and the result of the Moki (2012) show that was the positive relationship between the economic growth and public debt in Africa from year 1980 to 2010 with using the SPSS software. The economic growth will cause inflation to happen if an increase in the long term. The national bank can solve

this problem with used the monetary policy (Dimitrijevic & Lovre, 2012). For example, national bank increases the interest rate and decrease the money supply to control economic growth.

5.3 Limitation of Study

Through the research, there was a variety of issue and limitation that need to be hone in future research to get the best and ultimate research. Thus, along the result that has procure may not fully support the relationship between public debt and corruption. The limitation that faced during the research is as below.

First and foremost, this research was not able to collect the data from every developed and developing countries. According to the world's bank group, there are 35 of developed countries, but this research was able to accumulate 33 developed countries data. In addition, there are 88 of developing countries, and this research was able to accumulate 82 developing countries data. Through the limitation of the data, this research was able to accumulate 33 developed countries data and 82 developing countries data to represent for the whole world. Go through this research, some developed country does not have the data of inflation such as Germany. Moreover, some developing country such as Taiwan does not have the data on government spending, inflation and economic growth.

Last but not least, this research was not able to get more information for this investigation in the year of 1970 to year 2008. For instance, there was some information that difficult to be found on those years, such as the corruption on public debt, government spending on public debt, economic growth on public debt and inflation on public debt. Through the research that had found by this research, more of the information for this kind of investigation was easily found in the year

of 2009 to year 2018. This limitation had caused this research difficult to get more adequate and accurate information to obtain a more valid result.

5.4 Recommendation for Future Research

To overcome the limitations of the study, there was some recommendation suggested to the future researchers to avoid a similar problem, the recommendation will be beneficial to the future researchers to acquire better and accurate result.

Foremost, this research will suggest the future researcher try to collect more data for the developed and developing countries. In addition, this may let the future researchers to get more adequate and accurate information in the generalized method of moment model (GMM). Hence, future researchers should find out more data for the developed and developing countries in order to get a more justifiable result.

On the other hand, the future researchers had been recommended to find out more information that states in the previous year. It is the way to find out whether the developed or developing counties had more affected to the public debt in the previous year. Furthermore, it can also find out more perfect and exact information for the comparative reason.

5.5 Conclusion

This chapter had explained about the summary of study, implication of study, limitation of study and recommendation for this study. Through this research, the research can clearly show that was a positive relationship between corruption, government spending, inflation and economic growth on public debt. Furthermore, there was two limitation had found in this study. Lastly, this research had provided two recommendation to solve the limitation.

REFERENCES

Abbas, A., & Christensen, J. (2007). The Role Domestic Debt Markets in Economic Growth: An Empirical Investigation for Low-income Countries and Emerging Markets. IMF Working Paper No. 07-127.

Adam, K. (2011). Government debt and optimal monetary and fiscal policy. *European Economic Review*, 55(1), 57–74.

- Agim, N., & Teuta, C. (2014). Causes of the Growth of Public Debt and Budget Deficit. In Albania: Report Based On Report Rule Of Maastricht (60/3 Of Gnp) Recommendations For Reducing These Parameters. *European Scientific Journal*, 10(13), 507-518.
- Aizenman, J., & Guidotti, P. E. (1994). Capital controls, collection costs and domestic public debt. *Journal of International Money and Finance*, *13*(1), 41–54.
- Aizenman, J., & Marion, N. (2011). Using inflation to erode the US public debt. *Journal of Macroeconomics*, 33(4), 524–541.
- Akca, H., Ata, A. Y., & Karaca, C. (2012). Inflation and corruption relationship: Evidence from panel data in developed and developing countries. *International Journal of Economic and Financial Issues*, 2(3), 281-295.
- Akitoby, B., Komatsuzaki, T., & Binder, A. (2014). *Inflation and Public Debt Reversals in the G7 Countries*. International Monetary Fund Working Paper No. 14, Fiscal Affairs Department.
- Alawneh, A. (2017). The Impact of Public Expenditure and Public Debt on Taxes: A Case Study of Jordan. *Accounting and Finance Research*, 6(3), 10-23.
- Ali, M. S. B., & Sassi, S. (2016). The corruption-inflation nexus: evidence from developed and developing countries. *The BE Journal of Macroeconomics*, 16(1), 125-144.
- Anyafo, A. M. O. (1996). Public Finance in Developing Economy: The Nigerian case. Enugu: Dept. of Banking and Finance, University of Nigeria. Enugu Campus.
- Anyanwu, J. C. (1993). Monetary Economics: Theory, Policy and Institutions. Onitsha: Hybrid Publishers LTD.

- Anyanwu, J. C., & Erhijakpor, A. E. O. (2004). Domestic debt and economic growth: The Nigerian case. *West African Financial and Economic Review*, 1(2), 98-128.
- Arellaono, M., & Bover, O. (1995). Another Look at The Instrument Variable Estimation of Error-components Model. *Journal of Econometric*, 68, 29-51.
- Ascari, G., Florio, A., & Gobbi, A. (2017). Controlling Inflation with Switching Monetary and Fiscal Policy: Expectations, Fiscal Guidance and Timid Regime Change. Discussion Paper No. 9-2017. Finland: Bank of Finland.
- Athanasouli, D., Goujard, A., & Sklias, P. (2012). Corruption and firm performance: Evidence from Greek firms. *International Journal of Economic Sciences and Applied Research*, 5(2), 43-67.
- Ayres, R., & Warr, B. (2010). The Economic Growth Engine: How useful work creates material prosperity. Retrieve from https://books.google.com.my/books?hl=en&lr=&id=nLfJKVK9uJsC&oi=f nd&pg=PR1&dq=Ayres,+R.+and+Warr,+B.+(2010).+The+Economic+Gr owth+Engine:+How+useful+work+creates%09material+prosperity&ots=8 6AEc_gO8M&sig=DrJ7d1ytqsu3RnexZfo9XWImDMY&redir_esc=y#v= onepage&q&f=false
- Barde, M. P., & Barde, P. J. (2012). What to use to express the variability of data: Standard deviation or standard error of mean? *Perspectives in clinical research*, 3(3), 113.
- Barro, R.J. (1979). On the determination of the public debt. *Journal of Political Economy*, 87(5): 940-971.

- Benfratello, L., Del Monte, A., & Pennacchio, L. (2015). *Corruption and public debt: an empirical analysis*. University of Naples "Federico II" and CSEF, WP, 1-10.
- Benfratello, L., Del Monte, A., & Pennacchio, L. (2017). Corruption and public debt: a cross-country analysis. *Applied Economics Letters*, 25(5), 340-344.
- Bhattarai, S., Lee, J. W., & Park, W. Y. (2014). Inflation dynamics: The role of public debt and policy regimes. *Journal of Monetary Economics*, 67(1), 108.
- Bildirici, M., & Ersin, O. O. (2007). Domestic debt, inflation and economic crises: A panel cointegration application to emerging and developed economies. *Applied Econometrics and International Development*, 7(1), 31-47.
- Bohn, H. (1988). Why do we have nominal government debt? *Journal of Monetary Economics*, 21(1), 127–140.
- Bourdieu, P. (1993). The Field of Cultural Production: Essays on Art and Literature. Columbia University Press, New York.
- Bourdieu, P., & Passeron, J.-C. (1990). Theory, culture & society. Reproduction in education, society and culture (2nd ed.) (R. Nice, Trans.). Thousand Oaks, CA, US: Sage Publications, Inc.
- Bourdieu, P., & Wacquant, L. J. D. (1992). An invitation to reflexive sociology. Chicago: University of Chicago Press.
- Brini, R., Jemmali, H., & Ferroukh, A. (2016). Public Debt and Economic Growth in Tunisia: A Re-examination. *Advances in Economic and Business*, 2(11), 584-590.

- Butler, A. W., Fauver, L., & Mortal, S. (2009). Corruption, political connections, and municipal finance. *The review of financial studies*, 22(7), 2873-2905.
- Calvo, G. A. (2013). Servicing the public debt: The role of expectations. *The American Economic Review*, 647-661.
- Caner, M., Grennes, T., & Koehler- Geib, F. (2010). Finding the tipping pointwhen sovereign debt turns bad. Policy Research Working Paper, No. 5391, The World Bank, Latin America and the Carribean Region, Economic Policy Sector.
- Caron, M. I., Ficici, A., & Richter, C. L. (2012). The influence of corruption on corporate governance standards: Shared characteristics of rapidly developing economies. *EMAJ: Emerging Markets Journal*, 2(1), 21-37.
- Cavalcanti, M. A. F. H., Vereda, L., Doctors, R. de B., Lima, F. C., & Maynard, L. (2018). The macroeconomic effects of monetary policy shocks under fiscal rules constrained by public debt sustainability. *Economic Modelling*, 71, 184-201.
- Cheng, M. Y., & Tan. H. B. (2002). Inflation in Malaysia. *International Journal of Social Economics*, 29(5), 411-425.
- Claeys, P., Moreno, R., & Suriñach, J. (2012). Debt, interest rates, and integration of financial markets. *Economic Modelling*, 29(1), 48–59.
- Coccia, M. (2017). Asymmetric paths of public debts and of general government deficits across countries within and outside the European monetary unification and economic policy of debt dissolution. *The Journal of Economic Asymmetries*, 15, 17-31.
- Cochrane, J. H. (2011). Inflation and debt. *National affairs*. Retrieved from https://faculty.chicagobooth.edu/john.cochrane/research/papers/Cochrane Inflation nd Debt National Affairs.pdf

- Cooray, A., & Schneider, F. (2013): *How does corruption affect public debt? An empirical analysis*, Working Paper, No. 1322, Johannes Kepler University of Linz, Department of Economics, Linz.
- Cooray, A., Dzhumashev, R., & Schneider, F. (2017). How Does Corruption Affect Public Debt? An Empirical Analysis. *World Development*, 90, 115-127.
- Dass, A. (2018). How does public debt make our money worthless? *The Star*. Retrieved from https://www.thestar.com.my/business/business news/2018/06/06/how-does public-debt-make-our-money-worth less/?fbclid=IwAR2w0Fo7O2tBc4w3rtrWdSoVInoOIFMoOpbckEMIKI w2HDS3 Ai-zufM
- Davoodi, H., & Tanzi, V. (2000). Corruption, growth, and public finances. *The political economy of corruption*, 101-122.
- De Graaf, G. (2007). Cause of corruption: Towards a contextual theory of corruption. *Vrije Universiteit Amsterdam*. Retrieved from http://unpan1.un.org/intradoc/groups/public/documents/undpadm/unpan0 9603.pdf
- Depken, C. A., & Lafountain, C. L. (2006). Fiscal consequences of public corruption: Empirical evidence from state bond ratings. *Public Choice*, 126(1-2), 75-85.
- Dimant, E., & Tosato, G. (2017). Causes and effects of corruption: what has past decade's empirical research taught us? A survey. *Journal of Economic Surveys*, 32(2), 335-356.
- Dimitrijevie, B., & Lovre, I. (2012). Essay on Monetary Policy and Economic Growth. *Journal of Central Banking Theory and Practice*, *1*, 111-138.

- Doi, T., Hoshi, T., & Okimoto, T. (2011). Japanese government debt and sustainability of fiscal policy. *Journal of the Japanese and International Economies*, 25(4), 414 433.
- Eijffinger, S. C., Huizinga, H. P., & Lemmen, J. J. (1998). Short-term and long term government debt and nonresident interest withholding taxes. *Journal of Public Economics*, 68(3), 309–334.
- Engen, E. M., & Hubbard, R. G. (2004). Federal Government Debt and Interest Rates. *NBER Macroeconomics Annual*, 19, 83–138.
- Faini, R. (2004). Fiscal Policy and Interest Rates in Europe. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2040815
- Fincke, B., & Greiner, A. (2013). On The Relation between Public Debt and Economic Growth: An Empirical Investigation. Working Paper in Economic and Management No. 24-2013. Faculty of Business Administration and Economics: Bielefeld University.
- Freeman, S., & Webber, D. J. (2009). Basic needs, government debt and economic growth. *The World Economy*, 32(6), 965-994.
- Garín, J., Lester, R., Sims, E., & Wolff, J. (2019). Without looking closer, it may seem cheap: Low interest rates and government borrowing. *Economics Letters*.
- Gomez- Gonzalez, P. (2019). Inflation-linked public debt in emerging economies. *Journal of International Money and Finance*, 93, 313-334.
- González-Fernández, M., & González-Velasco, C. (2014). Shadow economy, corruption and public debt in Spain. *Journal of Policy Modeling*, *36*(6), 1101-1117.

- Goudswaard, K. P. (1990). Determinants of public debt maturities. *De Economist*, 138(1), 33-46.
- Grechyna, D. (2012). Public Debt Levels and Corruption in High-Income Economies. University of Auckland, Department of Economics.
- Grechyna, D. (2012). Public corruption and public debt: Some empirical evidence. Department of Economics. University of Auckland. New Zealand. Hall, A. R. (2007). Generalized method of moments. Oxford university press. Retrieved from https://books.google.com.my/books?hl=en&lr=&id=8YkSDAAAQBAJ&i=fnd&pgPR9&dq=generalized+method+of+moments+hall+&ots=z5_jho_OmQ&sg=OV45CX5Lz6URaIv5RSJ9V6oNI&redir_esc=y#v=onepage&q=generalized%20method% 0of%20moments%20hall&f=false
- Greiner, A. (2008). Human capital formation, public debt and economic growth. Journal of Macroeconomics, 30(1), 415–427.
- Hanif, M. N. (2002). Public Debt Management. MPRA Paper No 10212.
- Henri, N. N. (2018). Impact of Corruption on Public Debt: Evidence from Sub-Saharan African Countries. *American Journal of Economics*, 8(1), 14-17.
- How does public debt make our money worth less? (2018). *Star Online*. Retrieved from https://www.thestar.com.my/business/business news/2017/01/18/epf-more-than-half of-simpanan-shariah-fund-taken-up/.
- Hussain, M. E., Haque, M., & Igwike, R. S. (2015). Relation between Economic Growth and Debt: An Empirical Analysis for Sub-Saharan Africa. *Journal of Economic and Political Economy*, 2(2), 262-275.

- Idenyi, O. S., Ogonna, I. C., & Ifeyinwa, A. C. (2016). Public Debt and Public Expenditure in Nigeria: A Causality Analysis. *Research Journal of Finance and Accounting*. 7(10). 27-38.
- Ivanyna, M., Mourmouras, A., & Rangazas, P. (2015). Corruption, public debt, and economic growth. Unpublished Manuscript, Michigan State University.
- Iyanda, D. O. (2012). Corruption: Definitions, theories and concepts. *Oman Chapter of Arabian Journal of Business and Management Review*, 34(973), 1-9.
- Jalles, T. J. (2011). The impact of democracy and corruption on the debt-growth relationship in developing countries. *J. Econ. Dev*, *36*, 41–72.
- Jeng, A. M. (2018). Studying the Relationship between Corruption and Poverty, Public Debt, and Economic Growth: A Case Study of the Gambia (1996-2016).
- Joydeb, S., & Ritwik, S. (2017). Government Spending with Public Debt, Economic Growth and Fiscal Balance: Evidences from India. *International Academic Conference*, *Florence*. Doi: 10.20472/Iac.2017.034.049
- Kana, G. (2018). The burden to the country. *The Star*. Retrieved from https://www.thestar.com.my/business/business-news/2018/06/30/the burden-to-thecountry/
- Kaufman D. (2010). Can Corruption Adversely Affect Public Finance in Industrialized Countries? Brookings Institution Opinions April 19.
- Kim, E., Ha, Y., & Kim, S. (2017). Public debt, corruption and sustainable economic growth. *Sustainability*, *9*(3), 433.

- Kinoshita, N. (2006). *Government Debt and Long-Term Interest Rates*. Working Paper no. 06/63, International Monetary Fund.
- Kumar, M. S., & Woo, J. (2010). *Public Debt and Growth*. IMF Working Paper No. 10/174.
- Laina, P. (2011). Dynamic Effects of Total Debt and GDP: A Time-Series Analysis of the United States. Unpublished master's thesis, Greater Helsinki, Espoo, Finland, University of Aalto.
- Lartey, E. Y., Musah, A., Okyere, B., & Yusif, A. N. (2018). Public Debt and Economic Growth: Evidence from Africa. *International Journal of Economics and Financial Issues*, 8(6), 35-45.
- Lici, E., & Dika, I. (2016). The relationship between economic growth and public debt: a survey of the empirical literature. *International Journal of Economics, Comeerce and Management*, 4(9). 265-272.
- Linnemann, L., & Schabert, A. (2006). Productive government expenditure in monetary business cycle models. *Scottish Journal of Political Economy*, 53(1), 28-46.
- Liu, C., Moldogaziev, T. T., & Mikesell, J. L. (2017). Corruption and state and local government debt expansion. *Public Administration Review*, 77(5), 681-690.
- Lora, E., & Olivera, M. (2006). Public debt and social expenditure: Friends or foes? *Emerging Markets Review*, 8(4), 1-35.
- Mah, G., Mukkudem-Petersen, J., Miruka, C., & Petersen, M. A. (2013). The Impact of Government Expenditure on the Greek Government Debt: An Econometric Analysis. *Mediterranean Journal of Social Sciences*, 4(3), 323-330.

- Matiti, C. (2013). The relationship between public debt and economic growth in Kenya. *International Journal of Social Sciences and Project Planning Management*, *I*(1), 65-86.
- Mauro, P. (1998). Corruption and the composition of government expenditure. *Journal of Public Economics*, 69(2), 263–279.
- Mehra, R., & Mehta, S. (2018). Analysing Debt Asymmetries: Effect of Taxation and Government Spending on Public Debt in India between 2002-2013. *Amity School of Economics*, 23(4), 85-94.
- Missale, A. (1997). Managing the Public Debt: The Optimal Taxation Approach. Journal of Economic Surveys, 11(3), 235–265.
- Mitchell, D. J. (2005). The Impact of Government Spending on Economic Growth. *The Heritage Foundation*, *18*(13), 1-18.
- Moki, M. (2012). An Analysis of the relationship between public debt and economic growth in Africa. Unpublished MBA Project: University of Nairobi.
- Morley, S. A., & Fishlow, A. (1987). Deficits, debt and destabilization. *Journal of Development Economics*, 27(1-2), 227–244.
- Mutinda, D., M., (2012). The Effect of Lending Interest Rate on Economic Growth in Kenya. Retrieved from https://chss.uonbi.ac.ke/sites/default/files/chss/Musyoka%20Dan%20Proj ct21%20pdf.pdf
- Ng, D. (2006). The impact of corruption on financial markets. *Managerial Finance*, 32(10), 822–836.

- Nwabuzor, A. (2005). Corruption and Development: New Initiatives in Economic Openness and Strenghtened Rule of Law. *Journal of Business Ethics* 59(1/2), 121-138.
- Ogrokhina, O., & Rodriguez, C. M. (2018). The role of inflation targeting in international debt denomination in developing countries. *Journal of International Economics*, 114, 116–129.
- Ogunmuyiwa, M. S. (2002). Does External Debt Promote Economic Growth in Nigeria? *Journal of Economic Theory*, 3(1), 29-35.
- Ouattara, B. (2006). Foreign aid and government fiscal behavior in developing countries: Panel data evidence. *Economic Modelling*, 23(3), 506–514.
- Owusu-Nanti, V., & Erickson, C. (2016). Public Debt and Economic Growth in Ghana. *African Development Review*, 28(1), 116-126.
- Patterson, B., & Lygnerud, K. (1999). *The Determination of Interest Rates*. Working Paper no. 2929, Directorate General for Research.
- Pattillo, C., Poirson, H., & Ricci, L. A. (2011). External Debt and Growth. *Review of Economic and Institutions*, 2(3).
- Percentage of Public Debt to GDP around the World 2018. (2018). *Global Finance*. Retrieved from https://www.gfmag.com/global-data/economicdata/public-debt-percentage-gdp
- Phulpoto, G. S., Mirani, I. A., & Channa, M. A. (2016). The Impact of Interest Rate, Exchange Rate, Inflation and Balance of Trade on Public Debt: Evidence from Pakistan. *Journal ISSN*, 5, 94-102.

- Power, E. M. (1999). An Introduction to Pierre Bourdieu's Key Theoretical Concepts. *Journal for the Study of Food and Society*, *3*(1), 48–52.
- Raisova, M., & Durcova, J. (2014). Economic Growth-Supply and Demand Perspective. *Procedia Economic and Finance*, 15, 184-191.
- Reinhart, C. M., & Rogoff, K. S. (2010). Growth in a time of debt. *American Economic Review: Papers & Proceedings*, 100(2), 573-578.
- Reinhart, C. M., Reinhart, V. R., & Rogoff, K. S. (2012). *Debt overhangs: Past and present* (No. w18015). National Bureau of Economic Research.
- Reinhart, C.M., & Rogoff, K.S. (2009). The time is different: Eight centuries of financial folly. *Econ Paper*. Princeton, Princeton University Press.
- Reinikka, R., & Svensson, J. (2004). The Power of Information in Public Services: Evidence from education in Uganda. *Journal of Public Economic*, 95, 956 966.
- Romer, D. (2006). Advanced macroeconomics, 3rd edition. United States of America: The McGraw-Hill Publisher.
- Roodman, D. (2006). *How to do xtabond2: An Introduction to "Difference" and "System" GMM in Stata*. Working Paper No. 103, Center for Global Development.
- Roodman, D. (2009). How to do xtabond2: An Introduction to Different and SystemGMM in Stata. *The stata journal*, *9*(1), 86-136.

- Saungweme, T., & Odhiambo, N. M. (2019). The Impact of Public Debt on Economic Growth: A Review of Contemporary Literature. The Review of Black Political Economy, 1-19.
- Schclarek, A. (2004). *Debt and Economic Growth in Developing and Industrial Countries*. Working Papers No. 34-2015, Department of Economics: Lund University.
- Senibi, V., Oduntan, E., Uzoma, O., Senibi, E., & Oluwaseum, A. (2016). Public Debt and External Reserve: The Nigerian Experience (1981–2013). *Economics Research International*, 1–7.
- Sheikh, R.M., Faridi, M.Z., & Tariq, K. (2010). "Domestic Debt and Economic Growth in Pakistan: An Empirical Analysis", *Pakistan Journal of Social Sciences (PJSS)*, 30(2), 373-387.
- Shleifer, A., & Vishny, R. W. (1993). Corruption. *The Quarterly Journal of Economics*, 108: 599–617.
- Shonchoy, A. S. (2010). What is happening with the Government Expenditure of Developing Countries A Panel Data Study. Retrieve from https://www.econstor.eu/handle/10419/39964
- Silva, P. (2010). Corruption and Policy Reform. New Haven, Connecticut, United States: School of Yale Law.
- Sims, C. A. (2011). Stepping on a rake: The role of fiscal policy in the inflation of the 1970s. *European Economic Review*, 55(1), 48–56.
- Smith, E. (2008). Using secondary data in educational and social research, new york, ny: mcgraw-hill education.

- Steindel, C. (2001). The effect of tax changes on consumer spending. *Current issues in economics and finance*, 7(11).
- Streeck, W. (2013). The politics of public debt: Neoliberalism, Capitalist Development and the Restructuring of the State. *German Economic Review*, 1-23.
- Šumah, Š. (2018). Corruption, Causes and Consequences. *In Trade and Global Market*. Intech Open.
- Sutherland, D., & Hoeller, P. (2012). "Debt and Macroeconomic Stability: An Overview of the Literature and Some Empirics", OECD Economics Department Working Papers, No. 1006, OECD Publishing, Paris.
- Swartz, D. (1997). *Culture and power: The sociology of Pierre Bourdieu*. United State of America: The University of Chicago.
- Tanzi, V. (1998). Corruption and the Budget: Problems and Solutions. *In Economics of Corruption*, 111–28.
- Tanzi, V., & Davoodi, H. (1997). *Corruption, Public Investment, and Growth*. Working Paper no. 97/139, International Monetary Fund.
- Transparency international (2016).Corruption perception index. Retrieved from https://www.transparency.org/news/feature/corruption_perceptions_index_ 2016
- Uguru, & Leonard, C. (2016). The Link between Public Debt and Government Expenditure Pattern: The Nigeria Experience. *Journal of Business and Management*, 18(1), 37-41.
- Van Bon, N. (2015). The relationship between public debt and inflation in developing countries: Empirical Evidence based on difference panel GMM. *Asian Journal of Empirical Research*, *5*(9), 128-142.

- Waite, D., & Allen, D. (2003). Corruption and abuse of power in educational administration. *The urban review*, 35(4), 281-296.
- Whitton, H. (2011). Implementing Effective Ethics Standards of Government and the Civil Service. Retrieve from https://www.oecd.org/mena/governance/35521740.pdf
- Wijnbergen, S. V., & Budina, N. (2007). Inflation Stabilization, Fiscal Deficits and Public Debt Management in Poland. *Journal of Economic Literature*.
- Wilcox, D. W. (1989). The Sustainability of Government Deficits: Implications of the Present Value Borrowing Constraint. *Journal of Money, Credit and Banking*, 21(3), 291-306.
- Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. *Journal of Econometrics*, 126(1), 25-51.
- Woodford, M. (1996). *Control of the public debt: A requirement for price stability?* National Bureau of Economic Research, NBER Working Paper 5684, 1-35.
- Yared, P. (2010). "Politicians, Taxes and Debt". *Review of Economic Studies*, 77 (2), 806-840.
- Yusuf, S., & Said, A, O. (2018). Public Debt and Economic Growth: Evidence from Tanzania. *Journal of Economics, Management and Trade*, 21(7), 1-12.
- Zsohar, P. (2012). Short Introduction to the Generalized Method of Moments. Hungarian Statistical Review, 16, 150-170.

Does Corruption affect Public Debt in Develo	ped and Developing countries? An Empirical Analysis

APPENDIXES

Appendix 1: Literature Review Table

Authors (Years)	Country / Data	Method of estimation and	Findings		Variable
		model			
Abbas &	93 low-income	Generalized	The finding found that was the positive	•	Domestic
Christensen (2007)	countries	Method of	relation between the economic growth and		public debt and
		Moments	domestic public debt.		economic
		Pooled OLS	This mean that when the domestic public		growth
		regressions	debt increase will cause the economic		
		Granger-causality	growth increase.		
		regressions			

Adam (2011)	OECD countries	• Rational	The research had showed that the	• GDP
		Expectation model	investigate the research on the decision of	 Monetary
			nominal interest rate will affect the real	policy
			value and price level of the outstanding	 Interest rate
			public debt.	 Fiscal policy
			Thus, to the extent that the monetary policy	
			can affect the real interest rate or the price	
			level, it will affect the government budget.	

Aizenman &	34 OECD	• Real endowment	According to the research had showed that	• Domestic debt
Guidotti (1994)	countries	economy	decreasing the domestic interest rate on	• Collection costs
			public debt, the sum of integrate private	Capital controls
			holdings of the domestic public debt had	
			gave the "effective" tax based of external	
			interest income tax.	
Aizenman & Marion	United States	Stylistic model	The temptation to inflation away some of	• Inflation
(2011)		Sensitivity analysis	this debt burden is similar to that at the end	• Public debt
			of World War II.	Debt overhang
			The model illustrates that the optimal	Debt maturity
			inflation rate is positively related to the	
			share of the debt held by foreign creditors,	
			the cost of tax collection, and the share of	
			non-indexed debt.	

Akitoby,	G7 Countries	• The debt dynamics	The inflation impact on debt is positively	• Inflation
Komatsuzaki &		equation	correlated with the initial share of medium	• Debt drisis
Binder (2014)		• Fisher effect	and long term, non-indexed, and domestic-	• G7
		• Robustness of	currency debts.	• Public debt
		assumptions	In the full OECD countries case, inflation is	
			positively correlated with output growth,	
			and real and nominal interest rates, and	
			negatively correlated with the debt- to GDP	
			ratio.	
Barro (1979)	United States -	Theoretical model	The findings show a positive effect on debt	Level of debt
	hypotheses are		issue of temporary increases in government	• Federal
	tested on U.S.		spending, a countercyclical response of debt	spending
	data since		to temporary income movement, and a one-	 Inflation
	World War I		to-one effect of expected inflation on	
			nominal debt growth.	

Barro (1979)	United States	Ricardian model	The research had showed that the growth	• Debt
			rate of public debt will reduce when the	• Federal
			interest rate had increased of the measured	spending
			at par values.	Interest rate
Benfratello, Del	166 countries	GMM estimation	-The finding figure out corruption in the	Public Debt
Monte, &			public sector increases government debt.	
Pennacchio, (2015)			-This research disentangle the direct and	
			indirect effect of corruption, the former	
			operating via increased public expenses and	
			the latter via the negative impact on GDP.	

Bhattarai, Lee &	United States-	Dynamic stochastic	The findings show active monetary and	Inflation target
Park (2014)	U.S. data is used	general equilibrium	passive monetary fiscal policy regime,	 Inflation
		(DSGE) model	inflation moves oppositely from the	response
			inflation target and a stronger reaction of	Public debt
			interest rates to inflation increases the	• Monetary and
			response inflation to shocks.	fiscal policy
			A higher level of public debt increases the	
			response of inflation while a weaker	
			reaction of taxes to debt decrease the	
			response of inflation to shocks.	

Bohn (1988)	World economy	• Stochastic	According to the research, the high goods	 Inflation
		monetary	demand increased the interest rate, which	Inflation rate
			will contemporaneous implies the higher	• Consumption
			payment on public debt.	• Government
			If the government wants to borrow more, it	spending
			must offer higher interest rates to induce	• Taxes
			inter temporal substitution towards later	
			consumption.	

Calvo (2013)	United States	Game-theoretic	The findings show the rate of inflation is an	• Debt
	and several	model	increasing function of nominal debt service	repudiation
	other countries		and government spending.	Money and non-
			The relationship between the rate of stock of	indexed debt
			government bonds and inflation,	 International
			incidentally, will hold true even when the	debt
			equilibrium is unique.	• inflation
Caner, Grennes &	75 developing	• Threshold	The findings show that the coefficients on	• Real growth
Koehler (2010)	countries & 26	Regression Model	inflation are insignificant. Trade has a	rate
	developed		positive effect on the growth under the high-	Public debt
	countries		debt regime, possibly because more credit is	• Country index
			available for trade. Initial GDP per capita	• Trade openness
			coefficients are significant and much higher	 Inflation
			in low-debt than high-debt regimes.	

Cavalcanti, Vereda,	OECD countries	Ricardian model	In this research had investigated that	• Monetary
Doctors, Lima &			increase in interest rate will caused the	policy
Maynard (2018)			public debt increased. In fact, even though	• Public
			the fiscal policy rule had required an	investment
			endogenous response that keeping the	• Public debt
			balanced primary budget, the increased in	• Fiscal rules
			interest rate may lead to increased the	
			payments on debt.	
Cheng & Tan (2002)	Malaysia	Vector error	The financial crisis hit the ASEAN region	• Inflation
		correction model	caused the Malaysian Ringgit to depreciate	• Financial
		(VECM)	to a substantial extent. The consequent	management
			increase in import prices, prices for	
			intermediate and capital goods, has placed	
			an extremely powerful inflationary pressure	
			in the country. Inflation become an	
			important issue and the focus of the	
			government in macroeconomic	

Claeys, Moreno &	OECD countries	• Lagrange	The agestern showed that higher budget	• Inflation
Surinach (2012)	and Europe	Multiplier (LM)	deficits increased in interest rate, will	• Interest rate
	countries		crowding out the effects of increasing	 Fiscal policy
			public debt.	
			The typical empirical test for crowding out	
			regresses a domestic	
			interest rate on domestic public debt, and	
			controls for spill lover	
			including proxy measures of capital	
			mobility, such as aggregate capital flows or	
			a composite measure of foreign debt or	
			foreign interest rates.	

Cochrane (2011)	Federal Reserve	 Keynesian 	The findings show that the Fed wants to	 Inflation
			slow down inflation by raising interest rate,	• Government
			the Treasury must raise the additional	debt
			revenue needed to pay off the consequently	Unemployment
			larger payments on government debt.	• Interest rate
			It desires to avoid a dangerous inflation	Money supply
			should point us in the same direction as just	J 11 J
			about every other economic indicator and	
			concern. It should point us toward finally	
			bringing our deficits and debt under control	
			and spurring long-term growth.	

Engen & Hubbard	United States	Ricardian	Based on the research that had done, the	Interest rate
(2004)		equivalence	empirical facts about the public debt and	 Consumption
			interest rate was review the recent	expenditure
			econometric investigation on the interaction	• Investment
			of federal public debt and interest rate,	• Wealth
			institute some investigation for this	• GDP
			relationship.	
Faini (2004)	Industrial	Ricardian model	Found that increased one percentage point	• GDP
	countries		in the interest rate will increased in the	• Interest rate
			public debt of the euro area.	Public debt
			In a general model where initial public debt	
			holdings are positive and taxes are	
			distortionary, the increased in interest rate	
			will negatively affect the budgetary	
			situation in the country.	

Fincke & Greiner	Austria, France,	• Pooled regressions	We find strong evidence for a significantly	Public debt and
(2013)	Germany, Italy,	model	negative relation between debt and growth.	economic
	Netherlands,	• Random effect	Further, for most specifications this	growth
	Portugal and	model	relationship does not seem to be	
	USA		characterized by non-linearity.	
Garin, Lester, Sims	Miami	Real business cycle	Based on the research, there had a "well"	Interest rate
& Wolff (2019)		model (RBC)	period for increased in public debt if the	• Fiscal
			present discounted the value of primary	sustainability
			surpluses increased when the interest rate	
			decreased, and there had a "worst" period to	
			increased the public debt if the present	
			discounted value of primary surpluses	
			decreased when the interest rate decreased.	
			According to both economies, it was to	
			estimate good period of time for increased	
			the public debt that depends on the	
			exogenous force driving the interest rate	

Kaufmann (2010)	European Union	• Ordinary Least	finding show that was the positive	• Corruption
		Square regression	relationship between the corruption and the government debt. Moreover, the increase in corruption will lead to increase government debt.	• Government debt
Kim, Ha & Kim (2017)	77 Countries	Fixed EffectSystem GMM	The empirical results show that the interaction term between public debt and corruption is statistically significant. This confirms the hypothesis that the effect of public debt on economic growth is a function of corruption.	• Debt, Corruption, GDP per capita, Human Capital, Inflation, Government Size

Kinoshita (2006)	19 industrial	• Dynamic general	The study had showed that the relationship	• Government
	countries	equilibrium model	between the public debt and interest rate	debt
			that keenly debated in macroeconomics.	• Long-term
			The effect of government debt on interest	interest rate
			rates depend on the assumed structure of the	 Consumption
			economy.	
			The interest rate effects of government debt	
			alone tend to be small, an increase in	
			government consumption and debt leads to	
			a considerably larger effect.	
Kumar & Woo	38 develop and	Generalized	The result show that was inverse	• Government
(2010)	developing	Method of	relationship between the economic growth	debt
	country	Moments	and debt.	• economic
		• Pooled OLS	This mean that when the economic growth	growth
		regressions	decrease will lead to the debt decrease.	• Inflation rate,
				government size
				trade openness

Laine (2011)	United States	VAR model	The finding in this study show that the	Total debt and
		Granger causality	economic growth and public debt will in the	economic
			same direction.	growth
Linnemann &	Euro area	• Business cycle	The research had showed that when there	• Private
Schabert (2006)		model	was a positive steady-state stock in public	consumption
			debt, it will easily show to indeterminacy	• Real wages
			active the interest rate policy.	• Employment
Liu, Moldogaziev, &	America	GMM model	This study evaluate the direct link between	• Corruption,
Mikesell (2017)			corruption and public debt issued by state	Public Debt
			and local governments.	
Missale (1997)	OECD countries	Neoclassical model	The research had showed that there were	• Debt
			choosing a comparative short maturity	denomination
			which was parallel to index the public debt	 Maturity
			to the interest rate.	structure
			Discretionary debt management which aims	• Optimal tax
			at reducing the cost of debt servicing points	Price indexation
			to the possible failure of the expectations	Public debt
			theory of the term structure of interest rates.	

Moki (2012)	Africa	• SPSS	The finding in this study show that was the	National debt
			significant positive relationship between	and economic
			economic growth and public debt.	growth
				• Investment,
				trade openness
				and foreign
				direct
				investment
Morley & Fishlow	Latin American	Seignorage models	The research had showed that the problem	Money balances
(1987)	countries		of speedily increase the internally held of	• Wealth
			public debt and the higher domestic interest	• Government
			rate.	bonds
			For countries with large amounts of public	• Stock
			debt outstanding, the sharp rise in interest	 Inflation
			rates created a drain on the treasury which	•
			cannot easily be covered by tax increases,	
			thereby provoking new bond issues.	

Mutinda (2014)	Kenya	• Ordinary Least	The research showed that the interest was	• GDP
		Square (OLS)	the amount that charge by the debtor to the	 Inflation
			creditor within the time of using credit	• Gross
			provided.	investment
			Following interest rate liberalization,	Budget deficit
			interest rates have	• FX rate
			fluctuate to respond to changes in demand	Lending rates
			and supply of loanable funds in the financial	J
			market.	
Ng (2006)	133 countries	• Ordinary Least	The result show that the corruption was	Corruption
		Square regression	positive significant to the public debt.	Public debt
			Furthermore, when increase in the	
			corruption will cause the public debt	
			increase.	

Ogrokhina &	Developing	Probit model	The findings not only contribute to the	• Inflation
Rodriguez (2018)	countries		literature on the benefits of adopting	targeting
			inflation targeting in developing countries,	 International
			but also emphasize the importance of	debt
			policy-oriented solutions in reducing	• Currency
			developing countries' reliance on foreign	composition
			currency debt.	
Ogunmuyiwa (2008)	Nigeria	Augmented	The result show that was insignificant	Public debt
		Dickey-Fuller test	relationship between the economic growth	• Economic
		 Johansen Co- 	and public debt.	growth
		integration test	Furthermore, the result show reveal that	
		Vector Error	causality does not exist between external	
		Correction Method	debt and economic growth.	
		(VECM)		

Owusu-Nantwi & Erickson (2016)	Ghana	 Johansen cointegration, vector error correction model Granger causality test 	The findings from the study reveal a positive and statistically significant long-run relationship between public debt and economic growth.	 Economic growth and public debt Inflation, population growth and investment spending
Patterson & Lygnerud (1999)	Euro area, US and Japan – from national data	Economic model	According to this research, interest rate was defined as prices. Interest were the amount of price that pay for the money that borrowed in a duration of time, it is stated in a percentage form from overall undone balance left where were fixed or changeable.	InterestDiscountRentProfit

Pattillo, Poirson &	93 developing	•	Gaussian	Mixture	The finding show that was the negative	•	Economic
Ricci (2002)	countries		Model		relationship between the economic growth		growth and
					and public debt.		public debt
						•	Population and
							investment
Phulpoto, Mirani &	Pakistan	•	Linear	regression	The findings show there is a positive	•	Public debt
Channa (2016)	Developing		model		relationship between inflation and public	•	Inflation
	countries				debt. Thus, the insignificant negative effect	•	Balance of trade
					of inflation and negative significant effect	•	Exchange rate
					of BOT on public debt in Pakistan was	•	Interest rate
					observed.		

Phulpoto, Mirani &	Developing	• Linear	Regression	According to the research that had done,	•	Public debt
Channa (2016)	countries and 9	model		interest rate was such an amount that need	•	Inflation
	OECD countries			to pay by government on public debt.	•	Balance of trade
				The impact of interest rate can be credited	•	Exchange rate
				on the basis of fiscal deficit and	•	Interest rate
				governmental debt, the results of the		
				research show that fiscal shortage as well as		
				governmental debt show-off a significant		
				and positive effect on interest rates.		
Reinhart & Rogoff	Developed and	_	_	Based on the research that had done, to	•	GDP
(2009)	developing			examine the interest rate related with	•	Inflation
	countries			elongate periods of exceptionally the lofty	•	Interest rate
				public debt.		
				Economists were convinced that high		
				commodity prices, low interest rates and		
				reinvested oil profits would prop up the		
				economy forever.		

Reinhart & Rogoff	44 countries	World economy	The findings show that in emerging market	Public debt
(2010)			countries, high public debt levels coincide	• Real GDP
			with higher inflation. As for inflation, an	growth
			obvious connection stems from the fact that	 Inflation
			unanticipated high inflation can reduce the	
			real cost of servicing the debt.	
Romer (2006)	World economy	• Solow growth	According to the research that had done, the	• Consumption
		model	difference of real interest rate on the public	 Investment
			debt had showed that the government	 Inflation
			certain to reimburse its public debt the	 Monetary
			interest rate are equalized.	policy
				• Unemployment
Schclarek (2004)	24 develop	Gaussian Mixture	The finding of this research found that was	• Economic
	countries.	Model	no relationship between the two variable	growth and total
			(economic growth and public debt)	public debt

Sims (2011)	United States	• Fiscal theory of the	A central bank is seriously considering the	• Monetary
		price level (FTPL)	full range of impacts of its actions and the	• Fiscal
		models	actions of fiscal authorities on future output	 Inflation
			growth and inflation should be using a	• Government
			quantitative model that treats explicitly and	debt
			realistically the potential impacts of fiscal	
			policy on the price level.	
Streeck (2013)	OECD countries	Keynesian	As growth rates declined and	Democracy
			unemployment became endemic in the	• Capitalism
			OECD world after the end of inflation, the	Neoliberalism
			wage and income spread increased, and so	Fiscal crisis
			did public spending.	• Privatization
				• Consolidation

VanBon (2015)	60 developing	Generalized	The study confirmed that public debt and	• Public debt
	countries	Method of	inflation have negative effects on the	 Inflation
		Moments (GMM)	economy although in some cases their	
			interaction can foster the growth.	
			Highly growing public debt not only makes	
			inflation high but leads to economic crisis	
			and social instability as well.	
Wilcox (1989)	United States	Autoregressive	The research had estimating a	• Real interest
		integrated moving	"transversality condition" that require the	rate
		average (ARIMA)	public debt discounted at some interest rate.	• Government
			Flavin implement this test by first verifying	debt
			the stationarity of the undiscounted surplus	
			and then testing the stationarity of the	
			undiscounted debt.	

Woodford (1996)	European Union	• General	The capital loss on existing nominal	• Public debt
		Equilibrium Model	government liabilities due to increased	 Inflation
			inflation is not sufficient to prevent an	• Interest rate
			increase in the real value of outstanding	Price stability
			government debt.	 Monetary
			The findings show unexpected inflation	policy
			causes on nominal government debt, and to	
			the reduced debt.	

Appendix 2: Countries covered

Economy type	Countries
Developed economy	Australia; Austria; Belgium; Canada; Cyprus; Czech Republic;
(35)	Denmark; Estonia; Finland; France; Germany; Greece; Hong Kong
	SAR, China; Iceland; Ireland; Israel; Italy; Japan; Latvia; Lithuania;
	Luxembourg; Malta; Netherlands; New Zealand; Norway, Portugal,
	Singapore, Slovenia, Spain, Sweden, Switzerland; Taiwan, China;
	Turkey; United Kingdom; United States
Developing	Albania; Algeria; Angola; Argentina; Armenia; Azerbaijan;
economy	Bahamas, The; Bangladesh; Belarus; Bolivia; Botswana; Brazil;
(88)	Brunei; Bulgaria; Burkina Faso; Cameroon; China; Colombia;
	Costa Rica; Croatia; Dominican Republic; Ecuador; Egypt; EI
	Salvador; Ethiopia; Gabon; Gambia; Ghana; Guatemala; Guinea;
	Guinea Bissau; Guyana; Haiti; Honduras; India; Indonesia; Iran;
	Iraq; Jamaica; Jordan; Kazakhstan; Kenya; Kuwait; Lebanon;
	Liberia; Madagascar; Malawi; Malaysia; Mali; Mexico; Moldova;
	Morocco; Mozambique; Myanmar; Namibia; Nicaragua; Niger;
	Nigeria; Oman; Pakistan; Panama; Papua New Guinea; Paraguay;
	Peru; Philippines; Romania; Russian; Saudi Arabia; Senegal;
	Serbia; Sierra Leone; South Africa; Sri Lanka; Sudan; Suriname;
	Tanzania; Thailand; Togo; Tunisia; Turkey; Uganda; Ukraine;
	Uruguay; Venezueta; Yemen; Zambia; Zimbabwe

Appen	dixe 3: Descri	ptive Analy	ysis for Dev	veloped Co	ountries	
	.sum	InPD	InCPI	InGS	InINF	InGDP
	Variable	Obs	Mean	Std.Dev	Min	Max
	InPD	1032	3.836652	0.912267	-2.30259	5.47311
	InCPI	1152	-4.44664	1.117265	-6	
	InGS	1493	2.871956	0.289348	1.646794	3.7366
	InINF	1464	2.297479	0.659582	-0.65029	7.15963
	InGDP	1437	0.022955	0.031689	-0.15735	0.2146

Appe	ndixes 4: Corre	lation Ana	lysis for dE	Developed	Countries.	
	corr	InPD	InCPI	InGS	InINF	InGDP
	(obs=880)					
	InPD	1				
	InCPI	0.0897	1			
	InGS	0.3373	-0.1912	1		
	InINF	-0.1214	0.15	-0.057	1	
	InGDP	-0.1103	-0.0417	-0.0664	0.054	

Appendixes 5:	Model 1 for Dev	eloped Co	untries			
Dynamic panel	-data estimatior	n, one-step	differenc	e GMM		
Group variable			er of obs	= 535		
Time variable :	•		r of groups			
Number of inst			os per grou	•		
Wald chi2(5) =			avg = 16.			
Prob > chi2 =	0.000	m	nax = 19			
ly	Coef.	Std.Err	z	P> z	 [95% Conf	Intervall
+						intervarj
InPD	0.555272	0.227886	2.44	0.015	0.108624	1.00192
InCPI	0.094736	0.05665	1.67	0.094	-0.0163	0.205768
InGS	0.422724	0.422827	1	0.317	-0.406	1.25145
InINF	0.150117	0.081276	1.85	0.065	-0.00918	0.309415
InGDP	0.631794	0.580025	1.09	0.276	-0.50503	1.768622
	r first difference	·				
	issing=0, separa		ents for ea	ch period	unless coll	apsed)
L(4/5).(Iy Ix1)	n lx3 lx4 lx5g) co	llapsed				
Auglione Devel	++ f A D(1) :	c: 1:cc		4 F2 D	0.120	
	test for AR(1) in					
Arenano-Bond	test for AR(2) in	ante	rences: z =	1.95 P(>	z = 0.054 	
Sargan test of o	overid. restrictio	ns: chi2(5)	= 14.85	Prob > chi2	P = 0.011	
	ut not weakene				. 0.011	

Appendix	es 6: Mode	el 2 for Dev	eloped Co	untries			
Dynamic	oanel-data	estimation	ı, two-step	differenc	e GMM		
Group var	iable: code	9		er of obs	= 535		
	able : year		Numbe	r of groups	= 33		
	of instrume		Ok	s per grou			
	(5) = 539			avg = 16.			
Prob > chi	2 = 0.00	0	r	nax = 19			
ly		Coef.	Std.Err	Z	P> z	[95% Conf	Interval]
	-+						
InPD		0.886156	0.049676	17.84	0.000	0.788794	0.983518
IIIFU		0.000130	0.045070	17.04	0.000	0.700734	0.365516
InCPI		0.012678	0.018682	0.68	0.497	-0.02394	0.049293
		0.012070	0.010002	0.00	0.437	0.0233-	0.043233
InGS		0.415831	0.159938	2.6	0.009	0.102358	0.729304
InINF		0.190383	0.033166	5.74	0.000	0.12538	0.255387
InGDP		0.476044	0.151096	3.15	0.002	0.179901	0.772187
Warning:	Uncorrecte	ed two-ster	standard	errors are	unreliable		
Instrumer	nts for first	difference	es equation	1			
		g=0, separa		ents for ea	ch period	unless coll	apsed)
L(4/7).(I	y lx1n lx3 l	x4 lx5g) co	llapsed				
		or AR(1) in					
Arellano-	Bond test f	or AR(2) in	tirst diffe	rences: z =	1.10 Pr >	z = 0.270	
C		 			Duals -!:		
_		l. restrictio	-	-		∠ = 0.119	
•	•	t weakene			,	12 - 0.176	
		d. restriction				12 = 0.1/6	
(Kopust,	put can be	weakened	ı by many	instrumen	ts. <i>)</i>		

Appendixes 7:	Model 3 for Dev	eloped Co	untries			
Dynamic pane	l-data estimatio	n, two-step	differenc	e GMM		
Group variable			er of obs	= 535		
Time variable	•		r of groups			
Number of ins			s per grou			
Wald chi2(5) = Prob > chi2 =			avg = 16.3			
=	0.002		nax = 19 			
		Corrected				
ly	Coef.	Std.Err	z	P> z	[95% Conf	Interval]
+						
InPD	0.113321	0.559161	0.2	0.839	-0.98261	1.209257
InCPI	0.150505	0.102621	1.55	0.12	-0.04163	0.360638
IIICPI	0.159505	0.102621	1.55	0.12	-0.04103	0.300036
InGS	0.348897	0.95438	0.37	0.715	-1.52165	2.219447
InINF	-0.01883	0.266967	-0.07	0.944	-0.54207	0.50442
InGDP	0.562379	0.509601	1.1	0.27	-0.43642	1.561179
Instruments fo	or first difference	es equation	ı			
GMM-type (n	nissing=0, separa	ite instrum	ents for ea	ch period	unless coll	apsed)
L(4/5).(ly lx1	n lx3 lx4 lx5g) cc	llapsed				
	l test for AR(1) ir					
Arellano-Bond	l test for AR(2) ir	first diffe	rences: z =	1.96 Pr>	z = 0.050	
	overid. restriction				2 = 0.011	
	out not weakene			•		
	overid. restricti	•	•		2 = 0.361	
(Robust, but	can be weakene	d by many	instrument	ts.)		

Appendixe	s 8· Mode	l 4 for Dev	eloned Co	untries			
Dynamic pa			•		\ _N_N_/I		
Бупаппс ра	illei-uata	estillation	i, one-step	system di	IVIIVI		
Cun	.b.aad.		NIa la		- FCO		
Group varia					= 568		
Time variab	•	13		of groups			
Number of			Or	s per grou	•		
Wald chi2(5					7.21		
Prob > chi2	= 0.000)	r	nax = 20			
			Corrected				
ly		Coef.	Std.Err	Z	P> z	[95% Conf	Interval
						- -	
_							
InPD		0.986641	0.020633	47.82	0	0.946202	1.027081
InCPI		0.03187	0.011193	2.85	0.004	0.009933	0.053807
InGS		0.33769	0.196907	1.71	0.086	-0.04824	0.72362
InINF		0.132453	0.056951	2.33	0.02	0.020831	0.244074
InGDP		0.750047	0.302175	2.48	0.013	0.157795	1.3423
cons		-1.04284	0.563608	-1.85	0.064	-2.14749	0.061809
Instrument	s for first	difference	s equation	ı			
			•		ch period	unless coll	apsed)
		x5g) collap					
Instrument							
Standard							
cons							
year							
	Imissing	r-O canara	ta instrum	ants for as	ch neriod	unless coll	anced)
		lx5g) colla			ich periou	ume33 com	арзец
DLS.(IV IX		ixog) com	pscu				
Arellano-Bo	and tast f	or A D(1) in	first diffo		0 70 Drs	0 000	
Arellano-Bo	mu test i	OI AK(Z) III	mst umei	ences: z =	1.07 PI >	2 = 0.094	
Carran tost	i			_ 15 30	Duala > ala:		
Sargan test						2 = 0.018	
(Not robus	st, but no	t weakene	d by many	instrumen	its.}		
			•.				
Difference-			xogeneity	of instrum	ent subset	IS:	
GMM instr			1				
		ing group:		= 1.95 Pro			
		= exogeno	us): chi2(5) = 13.33	Prob > chi	2 = 0.020	
iv(year, ed							
		ing group:		= 15.28 Pr			
Differenc	e (null H	= exogeno	us): chi2(1) = 0.00	Prob > chi2	2 = 0.997	

Appendixes 9:	Model 5 for Dev	eloped Co	untries.			
	l-data estimation			MM		
Group variable	: code	Numbe	er of obs	= 568		
Time variable :		Numbe	r of groups	= 33		
Number of ins	•		s per grou			
Wald chi2(5) =			avg = 1			
Prob > chi2 =		m	nax = 20			
	Corrected					
ly	Coef.	Std.Err	Z	P> z	[95% Conf	Interval]
-						-
InPD	0.961122	0.016733	57.44	0.000	0.928326	0.993918
InCPI	0.034285	0.012984	2.64	0.008	0.008838	0.059732
	0.00.1200	0.01230	2.0.	0.000	5.55555	0.003702
InGS	0 774545	0.191875	4.04	0.000	0.398477	1.150613
11103	0.774343	0.151075	4.04	0.000	0.550477	1.130013
InINF	0.213748	0.050924	4.2	0.000	0.113939	0.313558
	0.213740	0.030324	7.2	0.000	0.113333	0.515550
InGDP	0.692992	0.260769	2.66	0.008	0.181895	1.204089
mobi	0.032332	0.200703	2.00	0.000	0.101055	1.204005
_cons	-2 34404	0.534197	-4.39	0.000	-3.39105	-1.29703
	2.54404	0.554157	7.55	0.000	-3.33103	-1.25703
Warning, Unco	rracted two star		0 FF0 F6 0 F0	upraliabla		
warning: Onco	rrected two-step	Stariuaru	errorsare	umenable		
	6:		_			
	or first difference	-				
	nissing=0, separa		ents for ea	ich perioa	uniess coii	apsedj
	3 lx4 lx5g) collap					
	or levels equatio	n				
Standard						
_cons						
year						
	nissing=0, separa		ents for ea	ich period	uniess coll	apsed)
DL3.(Iy Ix1n I	x3 lx4 lx5g) colla	psed				
						
	test for AR(1) in					
Arellano-Bond	test for AR(2) in	first diffe	rences: z =	1.31 Pr>	z = 0.190	
	overid. restrictio				2 = 0.018	
	out not weakene					
Hansen test of	overid. restricti	ons: chi2(6) = 6.88	Prob > chi2	2 = 0.332	
(Robust, but o	an be weakened	by many	nstrumen	ts.)		
	Hansen tests of e	exogeneity	of instrun	nent subse	ets:	
GMM instrum	ents for levels					
Hansen test	excluding group	: chi2(1)	= 1.56 P	rob > chi2 =	= 0.212	
Difference (null H = exogeno	us): chi2(5) = 5.32	Prob > chi2	2 = 0.378	
iv(year, eq(le						
	excluding group	: chi2(5)	= 6.66 P	rob > chi2 =	= 0.247	
	null H = exogeno) = 0.22	Prob > chi2	2 = 0.640	

Annendiy	ces 10: Mod	el 6 for De	veloned C	ountries			
	panel-data				MM		
	paner data		1, 1440 312				
Craun	مامد مماد		Numbe	er of obs	= 568		
•	riable: code	•					
	able : year	10		r of groups			
	of instrume		Or	s per grou			
	2(5) = 3975				7.21		
	i2 = 0.00	U	m	nax = 20)		
		Corrected					
ly	Coef.	Std.Err	Z	P> z	[95% Conf	.Interval]	
	+						
InPD	0.961122	0.024528	39.18	0.000	0.9130474	1.009196	
InCPI	0.034285	0.017524	1.96	0.05	-0.0000614	0.0686308	
InGS	0.774545	0.32994	2.35	0.019	0.1278755	1.421214	
InINF	0.213748	0.084655	2.52	0.012	0.0478284	0.3796681	
InGDP	0.692992	0.382048	1.81	0.07	-0.0558084	1.441792	
_cons	-2.34404	0.989824	-2.37	0.018	-4.284059	-0.4040196	
Instrume	nts for first	difference	es equation	า			
GMM-ty	pe (missing	g=0, separa	te instrum	ents for ea	ch period ur	nless collaps	ed)
L4.(ly lx	1n lx3 lx4 l	x5g) collap	sed				
Instrume	nts for leve	ls equation	n				
Standard	k						
cons							
 year							
	pe (missing	=0. separa	te instrum	ents for ea	ch period ur	nless collaps	ed}
	lx1n lx3 lx4						,
Arellano-	Bond test f	or AR(1) in	first diffe	rences: z =	-1.87 Pr>z	= 0.061	
					1.30 Pr>z		
						0.152	
Sargan te	st of overic	l restrictio	ns: chi2(6)	= 15 28	Prob > chi2 =	0.018	
•	ust, but no					0.010	
					Prob > chi2 =	· 0 333	
	but can be					0.552	
(Nobust,	but can be	weakened	a by many	instrument	cs. j		
Difference	- 	n tests of	avoganait	of inctrus	nent subsets	•	
	struments f		-vogenent)	, or mstrull	nent subsets	·-	
	scruments t		ah:2/1\	_ 1 FC D	 	2 2 2 2	
	المستميلة مط			= 1.56 Pi	rob > chi2 = (J.ZIZ	
Hansen	test exclud					0.270	
Hansen Differe	nce (null H				Prob > chi2 =	0.378	
Hansen Differe iv(year,	nce (null H eq(level))	= exogeno	us): chi2(5) = 5.32			

Appendix	es 11: Desc	criptive and	alysis for D	eveloping	Countries.	
	sum	РВ	СРІ	GS	INF	GDP
	Variable	Obs	Mean	Std.Dev.	Min	Max
	InPB	1975	3.743693	0.767376	-2.30259	6.243973
	InCPI	2936	-2.40454	0.938939	-6.42857	0
	InGS	3439	2.583295	0.434927	-0.09295	4.333652
	InINF	3262	3.352655	0.6308	-0.1248	9.373024
	InGDP	3699	0.015586	0.059867	-1.04972	0.431418

Appe	ndixes 12: Co	rrelation and	alysis for D	eveloping (Countries.	
	corr	РВ	CPI	GS	INF	GDP
	(obs=137	'3)				
	InPB	1				
	InCPI	-0.0723	1			
	InGS	-0.1231	-0.1015	1		
	InINF	0.1246	-0.1239	-0.0462	1	
	InGDP	-0.1007	0.1039	-0.0283	0.0021	

Dynamic	panel-data	estimation	n, one-step	differenc	e GMM		
Group va	riable: code		Numbe	er of obs	= 1290		
Time variable : year			Numbe	r of groups	= 81		
Number	of instrume	nts = 25	Ob	s per grou	p: min = 0		
Wald chi2	2(5) = 227.	70		avg = 15	.93		
Prob > ch	i2 = 0.000	ס	n	nax = 24			
ly	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]	
	+						
ly InPD	0.819595	0.06629	12.36	0.000	0.68967	0.94952	
InCPI	0.108261	0.028183	3.84	0.000	0.053024	0.163498	
InGS	0.401317	0.238151	1.69	0.092	-0.06545	0.868085	
InINF	0.14305	0.053905	2.65	0.008	0.037399	0.248702	
InGDP	0.579948	0.187963	3.09	0.002	0.211548	0.948348	
Instrume	nts for first	difference	es equation	า			
	pe (missing		•		ch period	unless colla	psed)
	ly lx1n lx3 l						. ,
Arellano-	·Bond test f	or AR(1) in	first diffe	rences: z =	-5.61 Pr>	z = 0.000	
Arellano-	Bond test f	or AR(2) in	first diffe	rences: z =	-4.19 Pr>	z = 0.000	
Sargan te	st of overid	. restrictio	ns: chi2(20) = 26.87	Prob > chi	2 = 0.139	
(Not rob	ust but no	t weakene	d by many	instrumer	its)		

Appendi	xes 14: Mod	lel 2 for D	eveloping (Countries.			
Dynamic	panel-data	estimation	n, two-step	differenc	e GMM		
Group va	riable: code		Numbe	er of obs	= 1290		
Time var	iable : year		Number	r of groups	= 81		
Number	of instrume	nts = 25		os per grou	-		
	2(5) = 235.			avg = 15.	.93		
Prob > ch	10 = 0.000)	m	nax = 24			
	Coef.						
	+						
-							
InPD	0.916687	0.064373	14.24	0.000	0.790519	1.042855	
L 05:	0.400005	0.000=			0.0501.55	0.44=0==	
InCPI	0.102009	0.02237	4.56	0.000	0.058165	0.145852	
1 66	0.406245	0.474204	2.70	0.005	0.444420	0.000054	
InGS	0.486245	0.174394	2.79	0.005	0.144438	0.828051	
InINF	0.12120	0.036543	2 22	0.001	0.040736	0.102004	
IIIINF	0.12136	0.036543	3.32	0.001	0.049736	0.192984	
InGDP	N 531989	0.119452	4.45	0.000	0.297867	0.766111	
	0.551505	0.115452	4.43	0.000	0.237007		
Warning	: Uncorrecte	d two-ster	n standard	errors are	unreliahle		
vvarring	. Oncorrecte	d two ste	Januara	Citors are	differiable	•	
Instrume	nts for first	difference	s equation	<u> </u>			
	pe (missing		•		ch period i	unless coll	ansed)
	(ly lx1n lx3 l:				ich penica	umess com	арзечу
Arellano	-Bond test f	or AR(1) in	first diffe	rences: z =	-3.24 Pr>	z = 0.001	
	-Bond test f						
Sargan te	est of overid	l. restrictio	ns: chi2(20) = 26.87	Prob > chi	2 = 0.139	
(Not rok	oust, but not	t weakene	d by many	instrumen	its.)		
-	est of overi					i2 = 0.741	
	, but can be		-	•			

	xes 15: Mod				00.40.4		
Dynamic	panel-data	estimation	ı, two-step	differenc	e GMM		
	riable: code				= 1290		
	iable : year			r of groups			
	of instrume		Ok	os per grou	•		
	2(5) = 120.				.93		
Prob > ch	ii2 = 0.000)	m	nax = 24			
_	Corrected				_		
ly		Std. Err.	Z	P> z	[95% Conf	. Interval]	
	+						
InPD	0.916687	0.100432	9.13	0.000	0.719844	1.113529	
_							
InCPI	0.102009	0.029494	3.46	0.001	0.044201	0.159816	
_							
InGS	0.486245	0.229083	2.12	0.034	0.03725	0.93524	
_							
InINF	0.12136	0.040273	3.01	0.003	0.042427	0.200293	
InGDP	0.531989	0.176989	3.01	0.003	0.185098	0.87888	
	nts for first		•				
	pe (missing			ents for ea	ch period	unless coll	apsed)
L(3/7).((ly lx1n lx3 l	x4 lx5g) co	llapsed				
	-Bond test f						
Arellano	-Bond test f	or AR(2) in	first diffe	rences: z =	-1.27 Pr>	z = 0.204	
	est of overid		•	•		2 = 0.139	
•	oust, but no						
	est of overi		•	•		i2= 0.741	
(Robust	, but can be	weakened	d by many i	instrument	ts.)		

Annendi	xes 16: Mod	lel 4 for D	evelonina (Countries				
* *	panel-data		1 0		MM			
•	riable: code			er of obs	= 1373			
	iable : year			Number of groups = 82				
	of instrume	nts = 32		s per grou				
	2(5) = 1212			avg = 16	•			
	-12 = 0.000		m	nax = 25				
ly	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]		
· 	+							
InPD	0.988111	0.051255	19.28	0.000	0.887653	1.088568		
InCPI	0.041133	0.021449	1.92	0.055	-0.00091	0.083173		
InGS	0.512276	0.156743	3.27	0.001	0.205065	0.819487		
InINF	0.15807	0.03663	4.32	0.000	0.086277	0.229864		
InGDP	0.488029	0.19641	2.48	0.013	0.103073	0.872984		
_cons	-1.70206	0.563975	-3.02	0.003	-2.80743	-0.59669		
Instrume	ents for first	difference	es equation	1				
GMM-ty	/pe (missing	g=0, separa	te instrum	ents for ea	ch period	unless coll	apsed)	
L(3/7).	(ly lx1n lx3 l	x4 lx5g) co	llapsed					
Instrume	ents for leve	Is equatio	n					
Standar	d							
_cons								
year								
GMM-ty	/pe (missing	g=0, separa	te instrum	ents for ea	ch period	unless coll	apsed)	
DL2.(ly	lx1n lx3 lx4	lx5g) colla	psed					
Arellano	-Bond test f	or AR(1) in	first diffe	rences: z =	-7.17 Pr>	z = 0.000		
Arellano	-Bond test f	or AR(2) in	first diffe	rences: z =	-4.22 Pr>	z = 0.000		
Sargan te	est of overid	l. restrictio	ns: chi2(26	5) = 55.92	Prob > chi	2 = 0.001		
(Not rob	oust, but no	t weakene	d by many	instrumen	ts.)			
Differen	ce-in-Sargar	n tests of e	xogeneity	of instrum	ent subset	s:		
GMM in	struments f	or levels						
Sargan	test exclud	ing group:	chi2(21)	= 32.70 P	rob > chi2	= 0.050		
	ence (null H	= exogeno	us): chi2(5) = 23.23	Prob > chi	2 = 0.000		
iv(year,	eq(level))							
Sargan	test exclud	ing group:	chi2(25)	= 55.54 P	rob > chi2	0.000		
Differe	ence (null H	= exogeno	us): chi2(1) = 0.38	Prob > chi2	= 0.536		

Appendi	xes 17: Moo	lel 5 for De	eveloning (Countries			
	panel-data				MM		
					V II V I		
Group va	ariable: code	<u> </u>	Numbe	er of obs	= 1373		
-	iable : year	-		r of groups			
	of instrume	ntc = 22		s per grou			
	2(5) = 1261		O L	avg = 16			
	1i2 = 0.00		·~	_			
PIOD>CI	112 = 0.00	U	11	nax = 25	1		
	Coof	Std. Err.		DS La L	[OE9/ Conf	Intorvall	
	Coef.	-	Z		[95% Conf		
	+						
l DD	4 004573	0.042020	22.0	0.000	0.022400	4.006047	
InPD	1.004572	0.042029	23.9	0.000	0.922198	1.086947	
InCPI	0.040689	0.015275	2.66	0.008	0.010752	0.070627	
InGS	0.444389	0.139927	3.18	0.001	0.170138	0.718641	
InINF	0.101231	0.030446	3.32	0.001	0.041558	0.160904	
InGDP	0.549682	0.083534	6.58	0.000	0.385958	0.713407	
cons	-1.38695	0.441841	-3.14	0.002	-2.25294	-0.52095	
	ents for first one (missing				ich neriod	unless colla	ansed)
	/pe (missing			ents for ea	ich period	unless colla	apsed)
	(ly lx1n lx3 l		-				
	ents for leve	is equatio	n 				
Standar	·d						
_cons							
year							
	/pe (missing			ents for ea	ich period	unless colla	apsed)
DL2.(ly	lx1n lx3 lx4	lx5g) colla	psed				
	-Bond test f						
	-Bond test f -Bond test f						
Arellano		or AR(2) in	first diffe	rences: z =	-1.26 Pr>	z = 0.207	
Arellano Sargan te	-Bond test f	or AR(2) in I. restrictio	first diffe ns: chi2(26	rences: z = 5) = 55.92	-1.26 Pr > 	z = 0.207	
Arellano Sargan te (Not rol	-Bond test f est of overic	or AR(2) in I. restrictio t weakene	first diffe ns: chi2(26 d by many	rences: z = 5) = 55.92 instrumen	-1.26 Pr > Prob > chi	z = 0.207 2 = 0.001	
Arellano Sargan te (Not rol Hansen t	-Bond test f est of overic bust, but no	or AR(2) in 	first diffe ns: chi2(26 d by many ons: chi2(2	rences: z = 5) = 55.92 instrumen 6) = 20.72	-1.26 Pr > Prob > chi ets.) ! Prob > ch	z = 0.207 2 = 0.001	
Arellano Sargan te (Not rol Hansen t	-Bond test f est of overic bust, but no est of overi	or AR(2) in 	first diffe ns: chi2(26 d by many ons: chi2(2	rences: z = 5) = 55.92 instrumen 6) = 20.72	-1.26 Pr > Prob > chi ets.) ! Prob > ch	z = 0.207 2 = 0.001	
Arellano Sargan te (Not rol Hansen t (Robust	-Bond test f est of overic bust, but no est of overi	or AR(2) in 	first diffe ins: chi2(26 d by many ons: chi2(2 d by many	rences: z = 	-1.26 Pr > 	z = 0.207 2 = 0.001 i2 = 0.756	
Arellano 	-Bond test f	or AR(2) in	first diffe ins: chi2(26 d by many ons: chi2(2 d by many	rences: z = 	-1.26 Pr > 	z = 0.207 2 = 0.001 i2 = 0.756	
Arellano Sargan te (Not rol Hansen t (Robust Differen GMM in	-Bond test for the state of overing the state overing the state of overing the state of overing the state overing the state of overing the state overing the	or AR(2) in I. restriction t weakened d. restriction weakened in tests of cor levels	first diffe constant d by many ons: chi2(2 d by many exogeneity	rences: z = 5) = 55.92 instrumen 6) = 20.72 instrument / of instrum	-1.26 Pr > 	z = 0.207 2 = 0.001 i2 = 0.756	
Arellano Sargan te (Not rol Hansen t (Robust Differen GMM in	-Bond test for the set of overice bust, but no test of overice, but can be ce-in-Hanse struments f	or AR(2) in I. restriction t weakene d. restriction weakene en tests of en for levels ding group	first diffe ons: chi2(26 d by many ons: chi2(2 d by many exogeneity chi2(21)	rences: z = 5) = 55.92 instrument 6) = 20.72 instrument 7 of instrum	-1.26 Pr > -1.26 Pr > Prob > chi ets.) Prob > ch ets.)	z = 0.207 2 = 0.001 i2 = 0.756 tts:	
Arellano Sargan te (Not rol Hansen t (Robust Differen GMM in Hanser	-Bond test for the state of overights and the state of th	or AR(2) in I. restriction t weakene d. restriction weakene en tests of en for levels ding group	first diffe ons: chi2(26 d by many ons: chi2(2 d by many exogeneity chi2(21)	rences: z = 5) = 55.92 instrument 6) = 20.72 instrument 7 of instrum	-1.26 Pr > Prob > chi ts.) Prob > ch ts.) nent subse	z = 0.207 2 = 0.001 i2 = 0.756 tts:	
Arellano Sargan te (Not rol Hansen t (Robust Differen GMM in Hansei Differe iv(year,	-Bond test for the state of overights, but not can be considered as the struments for test excludence (null H	for AR(2) in I. restriction t weakened d. restriction weakened in tests of election for levels ding group exogeno	d first diffe cons: chi2(26 d by many ons: chi2(2 d by many exogeneity coni2(21) us): chi2(5	rences: z = 5) = 55.92 instrument 6) = 20.72 instrument 7 of instrum 9 = 15.54 1 = 5.18	-1.26 Pr > Prob > chi ts.) Prob > ch ts.) nent subse	z = 0.207 	

Appendi	xes 18: Mod	lel 6 for D	eveloping (Countries.			
Dynamic	panel-data	estimation	າ, two-step	system G	MM		
Group va	riable: code	2	Numbe	er of obs	= 1373		
Time vari	iable : year		Numbe	r of groups	= 82		
Number	of instrume	nts = 32		s per grou			
Wald chi	2(5) = 347	.23			.74		
	112 = 0.000		n	nax = 25			
l	Correc	cted					
ly '		Std. Err.	z	P> z	[95% Conf	. Intervall	
	+						
InPD	1.004572	0.071	14.2	0.000	0.865903	1.143242	
IIII D	1.004372	0.071	17.2	0.000	0.003303	1.145242	
InCPI	0.040689	0.021509	1.89	0.059	-0.00147	0.082846	
	0.0-0003	0.021303	1.05	0.033	5.55147	5.552540	
InGS	0 444300	0.184074	2.41	0.016	0.08361	0.805168	
	0.444365	0.1040/4	∠.41	0.016	0.00301	0.003100	
InINF	0.101231	0.060797	1.67	0.096	-0.01793	0.22039	
ШИГ	0.101231	0.000757	1.67	0.036	-0.01793	0.22039	
lCDD	0.540000	0.161220	3.41	0.001	0.222405	0.00500	
InGDP	0.549682	0.161328	3.41	0.001	0.233485	0.86588	
	1 2000	0.620120	2.2	0.007	2 62001	0.15200	
_cons	-1.38695	0.629128	-2.2	0.027	-2.62001	-0.15388	
						-	
	ents for first		•				
				ents for ea	ach period	unless collapsed	1 }
	(ly lx1n lx3 l		•				
	nts for leve	ls equatio	n				
Standar	d						
_cons							
year							
GMM-ty	/pe (missing	g=0, separa	te instrum	ents for ea	ch period	unless collapsec	d)
DL2.(ly	lx1n lx3 lx4	lx5g) colla	psed				
Arellano-	-Bond test f	or AR(1) in	first diffe	rences: z =	-3.09 Pr>	z = 0.002	
Arellano-	-Bond test f	or AR(2) in	first diffe	rences: z =	-1.26 Pr>	z = 0.208	
Sargan te	est of overid	l. restrictio	ns: chi2(26	5) = 55.92	Prob > chi	2 = 0.001	
(Not rob	oust, but no	t weakene	d by many	instrumen	nts.)		
Hansen t	est of overi	d. restricti	ons: chi2(2	6) = 20.72	2 Prob > ch	i2 = 0.756	
(Robust	, but can be	weakened	d by many	instrumen	ts.)		
•							
Differen	ce-in-Hanse	n tests of	exogeneity	of instrun	nent subse	ts:	
	struments f						
	n test exclud		: chi2(21)	= 15.54	Prob > chi2	= 0.795	
	nce (null H						
	eq(level))	2550110	,. 51112(5	, 3.10			
	-91.500111						
	n test exclud	ling group	· chi2/25	= 20 12	Prob > chi2	= 0.741	