
i

Vehicle Detection in Deep Learning

TEOH PER NIAN

A project report submitted in partial fulfillment of the requirements for the

award of Bachelor of Engineering (Honors) Electronic Engineering

Faculty of Engineering and Green Technology

University Tunku Abdul Rahman

May 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for citations

and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Signature :

Name : Teoh Per Nian

ID No. : 14AGB03306

Date : 12 / 4 / 2019

iii

APPROVAL FOR SUDMISSION

I certify that this project report entitled Vehicle Detection in Deep Learning was

prepared by TEOH PER NIAN has met the required standard for submission in

partial fulfillment of the requirements for the award of Bachelor of Engineering

(Hons.) Electronic Engineering at University Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Yap Vooi Voon

Date : 12 / 4 / 2019

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2019, TEOH PER NIAN. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Yap

Vooi Voon for his invaluable advice, guidance and his enormous patience throughout

the development of the research.

In addition, I would also like to express my gratitude to my loving parents

and friends who had helped and given me encouragement, continuous support and

motivation during the study.

vi

Vehicle Detection in Deep Learning

ABSTRACT

Robust and efficient vehicle detection is an important feature to utilize in the smart

transportation system. With the development of computer vision techniques and

accessibility of large-scale traffic transport data, deep learning has been enabled to

on-road vehicle detection algorithms. In addition, traffic transportation system

involves death and life concern which requiring high accuracy to ensure safety, also,

the detection system for autonomous driving requires real-time inference speed in

order to guarantee prompt vehicle control.

In this report, a brief concept of training a deep CNN and how deep CNN

works in object classification and localization is presented. The objective of this

project is vehicle detection with deep learning, so, vehicles data set from highway,

urban road and housing area had been collected and applied to the deep learning and

computer vision algorithms. Due to the limited resources for training large-scale data

set, the detecting classes will be limited to car, bicycle and motorcycle. Each class has

roughly same amount of training images with each other. Some experiments have

been conducted in this project to figure out which batch size performing well in the

training process. Moreover, output of the convolutional layers has been visualizing for

better understanding in CNN working principal. Finally, the result the vehicle

detection performance in this project still have room from further improving, and a

higher accuracy performance can be easily achieved by acquiring adequate data set

and find the suited hyper-parameters to train the model.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Artificial Intelligence Overview 2

1.2.1 Machine Learning 2

1.2.2 Deep Learning 3

1.3 Problem statement 3

1.4 Aim and Objective 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Real-time vehicle detection using deep learning 7

2.3 Comparison between R-CNN and Faster R-CNN network 8

2.4 Unified, Real-time object detection system YOLO 9

2.5 Benefits of adding batch normalization layer 10

viii

2.6 The impact of batch size towards the performance of CNN 11

3 RESEARCH METHODOLOGY 12

3.1 Software Installation 12

3.1.1 Step for installing CUDA Toolkit 13

3.1.2 Step for including cuDNN SDK into CUDA 14

3.1.3 Installing Python and Build tools 15

3.1.4 Installing Anaconda 15

3.2 Dataset preparation 16

3.3 Training process 18

3.4 Testing process 20

3.5 Process flow 20

4 RESULT AND DISCUSSION 22

4.1 Model Architecture 22

4.1.1 Convolutional layer 23

4.1.2 Batch normalization layer 24

4.1.3 Activation layer 25

4.1.4 Pooling layer 26

4.1.5 Fined-grained features 26

4.2 Loss function 26

4.3 Optimizer 29

4.4 Grid cell 30

4.5 Anchor box 31

4.6 Direct location prediction 33

4.7 Intersection over Union (IoU) 34

4.8 Non-max suppression (NMS) 36

4.9 Real-life vehicle detection and observation 39

4.10 Training loss performance 41

4.11 Model accuracy evaluation 44

4.12 Loss performance with different larger batch size 45

ix

4.13 Convolutional layer output evaluation 47

4.14 Benchmark GPU 51

4.15 Compare with existing product 53

5 CONCLUSION 54

5.1 A diverse large-scale dataset 55

5.2 Soft non-max suppression (Soft-NMS) 55

5.3 Deeper and more concatenated CNN nets 55

5.4 Train in medium batch size 56

5.5 Fast GPU 56

5.6 Data Input Pipeline 57

REFERENCES 58

APPENDIX A Dataset Annotation Extractor 61

APPENDIX B Vehicle Detection Train Coding 62

APPENDIX C Vehicle Detection Test Coding 67

x

LIST OF TABLES

TABLES TITLE PAGE

2.1
The result of network testing accuracy on MNIST and

CIFAR-10 datasets with different batch size value. 11

3.1 The number of images used in training and testing process 18

3.2 Relationship between Epoch, iteration and batch size. 19

4.1
GPU speed comparison in term of

total time usage to complete a training. 51

xi

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 An example of how machine learning works 3

1.2 An example of how deep learning works 3

2.1
Real-Time Systems accuracy and

detection speed PASCAL VOC 2007 9

2.2
The training accuracy (left) and testing

accuracy (right) through the training cycle 10

3.1 The CUDA v9.0 installation options 13

3.2 The CUDA v9.0 custom installation options 13

3.3
The require software and language version

to support specific tensorflow-gpu version 15

3.4
Anaconda terminal prompt the CPU

and GPU information of the pc. 16

3.5 Image annotation information in Jason format 17

3.6 Whole project design and implement flow 21

4.1
The model architecture (Darknet-23) demonstration.

Total 23 convolution layer and 5 Max-pooling layer 22

 4.2 The flow of how the system perform vehicle detection 23

 4.3 The activation function of ReLu and Leaky ReLu 26

4.4
Initial parameters are optimized and tends to converge to global

minimum loss. This method also known as gradient descent. 29

4.5
An illustration of 416 x 416 image divided into

13 x 13 grid cells and a ground truth box (red). 30

4.6 An example of diverse guesses for real-life objects 32

xii

4.7 Predefined 5 anchor box with different size at center of a cell 32

4.8
Predicted bounding box size adjusted through

anchor box to form an actual bounding box (yellow) 33

4.9
Computing the IoU by calculate the overlap area of two bounding

boxes, and divides it by union area of two bounding boxes. 34

4.10
Computing IoU score with different bounding boxes (a)

poor IoU score (b) good IoU score (c) excellent IoU score 35

4.11 The output of model prediction (a) without NMS (b) after NMS 37

4.12
Different size of bounding boxes triggered by objects

(a) before suppression and (b) after suppression 38

4.13
The result of model’s output detection on housing area

image at (a) epoch 10 (b) epoch 100 and (c) epoch 250 39

4.14
The result of model’s detection on a bicycle image

at (a) epoch 10 (b) epoch 100 and (c) epoch 250 39

4.15
The result of model’s output detection on traffic

image at (a) epoch 10 (b) epoch 100 and (c) epoch 250 40

4.16
The graph of training loss against the epohcs

with (a) 2 batch size and (b) 8 batch size. 41

4.17
The performance loss graph

for 100 epoch (noted that

 the loss values had

converted to average loss) 42

4.18
The performance loss graph for 100 epochs with increase

batch size, number of training images and learning rate. 43

4.19 mAP evaluation for 250 epochs 44

4.20
The model loss performance with different batch

size for 30 epochs and fixed learning rate at 0.001. 45

4.21
Original 480x640x3 resolution image

before propagate through the model. 47

4.22
Total 32 output feature map of 1st convolution

l a ye r w i t h 4 1 6 x 4 1 6 r e s o l u t i o n e a c h . 48

 4.23
3x3 filters for each of the feature map

respectively in 1st convolution layer. 48

xiii

 4.24
Total 256 ou tput fea ture map of 6th

convolution layer with 52x52 resolution each. 49

4.25
3x3 filters for each of the feature map

respectively in 6th convolution layer. 49

4.26
Total 40 output feature map of las t

convolution layer with 13x13 resolution each. 50

4.27
1x1 filters for each of the feature map

respectively in last convolution layer. 50

4.28
Speed comparison between GPUs had been used for

training the model (Takes GT755m as reference). 52

6.1
The execution process running (a)

without pipe-lining (b) with pipe-lining 57

1

CHAPTER 1

INTRODUCTION

1.1 Background

Deep learning is a class of state-of-the-art machine learning techniques that

has sparked tremendous global interest in the recent years. It continued to be

discovered and developed by most of mainstream company such as Nvidia,

Mircosoft, Google, Amazon and Facebook etc. The deep learning field had been

applied in many fields including from new internet services, like Google Assistant,

have learned speech from sound to the deep learning self-driving cars to recognize

and localize vehicles for making a better decision in avoiding obstacles.

Recent years, large amount of transportation data easily collected from

multiple sources including road sensors, GPS, CCTV, incident reports and many

more. Following the AI trends, this big transportation data can be utilize in intelligent

traffic system which helps modern transportation making smart decision. An efficient

smart decision support system has the potential to minimize incident response time,

reduce congestion duration and enhance situation awareness.

However, processing and modelling traffic data are challenging because of

the complexity of road structures, traffic patterns and spatial-temporal dependencies

among them. Most of prediction systems used shallow traffic models which would

not be able process and utilize such complex big data scenarios. Therefore, deep

learning architecture become a rising research interest in the machine learning field.

With sufficient amount of data information, the deep learning algorithms are able to

learn complicated features and function from big data. The biggest advantage of deep

learning over traditional methods is that the learning process is automated and

2

trained repeatedly to reach specific task’s objective, without any human involvement.

(Nguyen et al., 2018)

1.2 Artificial Intelligence Overview

Generally, the idea of AI is an intelligent machine that could possess

human-like characteristics, including knowledge, reasoning, thinking and learning.

These also known as “General AI” which is unrealistic-like to develop, at least until

now. Therefore, most of the project or research are focusing on “Narrow AI”. It is

technologies that can accomplish specific task such as high-level strategic game

(Alpha-Go), self-driving car, object recognition, data mining and virtual assistance.

1.2.1 Machine Learning

Machine learning is a set of algorithms that train computer from learning

without being programmed in detail. The basic idea of machine learning is to

program an algorithm that can statistically analyze the input data to predict an output.

It required several disciplines working together such as statistic, probability,

information theory and analysis. By using this technology, machine can be trained by

manipulating large amount of input data and recognizing the data patterns in order to

accomplish specific task.

Supervised learning requires a set of data to perform algorithms training.

These labeled datasets contain variables, or attribute, the model going to analyze and

use for prediction. Regression and classification are popular examples for supervised

learning algorithms.

Unsupervised learning is learning the underlying structure or pattern from the

given data. The data feed to unsupervised algorithm are not labeled, means that the

algorithms are left to discover the data structures by themselves. K-means clustering

and association rule are examples for unsupervised learning algorithms.

3

Figure 1.1: An example of how machine learning works

1.2.2 Deep Learning

Deep learning is a subset of machine learning concerned with artificial neural

network algorithms. This model attempts to create meaningful representative of

given data with multiple levels of abstraction by passing through multiple processing

layers. Back-propagation algorithm make the machine “learn” from the dataset by

changing neural network internal parameters from previous layer to improve fitting

by reducing error prediction. Deep Neural network have greatest potential in areas

such as processing images, audio signal and video to classified or recognize the

information content in the image, signal or video.

Figure 1.2: An example of how deep learning works

1.3 Problem statement

Deep learning is a way to solve the complicated task, but there have many

types of deep neural networks architecture can be used to perform certain task. For

example, architecture neural network (ANN) capable to learn underlying structure of

input datasets based on the data attribute and model, to classified them in a

meaningful manner. But ANN is not suitable to process image-based data due to

4

each neuron in a layer is fully connected to the neurons at next layer. Hence, when

convert an image into a single vector and input to the ANN would lead to huge

amount of parameter eventually consuming a lot of computation power. Deep

convolution neural network (CNN) can be solved this problem due to window filters

in convolution layer act as extractor to extract the feature by sliding entire the image,

hence, the parameter can be reduced down when transfer to deeper layer. The deep

CNN only classified different objects in different categories, but the object

localization is important for vehicle detection. Thus, applying a suitable deep neural

network which can detect, classify and localize the object is an important

consideration to detect the vehicle on highway or urban road.

To train a deep learning model, it requires huge amount of data to make the

model has a good generalization in detection. The more data used to train the model,

the more features can be recognized or learn by model, hence, a better accuracy in

detection. However, collecting and labeling a quality data is very expensive which

usually consume a lot of time. Since, training a deep learning require a high

computational power, while using low-performance computer system would take

days or even weeks to complete the training and the outcome quality is largely

depends on the hardware performance too. The latest GPU technologies nowadays

such as Nvidia GTX or RTX can perform mathematical intensive computing

operations parallelly and have enough virtual memories for feeding large amount of

data to model per iteration. Unfortunately, a high-performance GPU required sub

component to support it, hence, adding more cost to the hardware requirements in

deep learning fields. Without the doubt, budget constraint will be taken into

consideration from switching a low-performance computer machine to

high-performance computer machine.

5

1.4 Aims and Objective

The objectives of the thesis are shown as following:

i. To understand the working principle of deep convolution neural network.

ii. To perform classification and localization on real life vehicle images.

iii. To perform real-time vehicle detection using deep learning.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

One of the applications of deep learning is in self-driving cars. Generally,

self-driving car tends to be more reliable when putting it on the road surfaces which

are well-maintained and line are marked clearly and accurately. Many automakers

pursuing their product that can reduce driver work load and adding more safety

features on their product. Most of the fully self-driving cars are equipped with

expensive sensor such as LIDAR, high-precision GPS, and radar.

The commercial grade autonomous vehicles are equipped with radar, sonar

and cameras. Detecting the car in long range required radar, while detecting nearby

car can rely on sonar. The cameras act as computer vision which help to detect the

lane as well as detecting redundant object at moderate distance. Radar working well

for detecting vehicles, but has ambiguity to distinguish different metal object such as

tin cans, thus, false decision would raise while moving on the road. Also, radar

convey little orientation information and imperfect measurement on the lateral

position of object, resulting difficulties for localization on sharp bends. Compared to

radar and sonar, cameras contain more on road information, and it could serve as

reliable addition sensor for autonomous car. The classic computer vision techniques

are not reaching production grade on automation vehicles yet due to the techniques

still not mature and require complicated modeling. (Huval et al., 2018)

Deep learning is alternative way for computer vision. Recently, it enjoys

great accomplishment in image and video recognition (convolution neural network

used in competition ILSVRC-2012 by Krizhevsky et al) become a solution to the

7

classic computer vision. Deep learning require huge amount of data and heavy

computation, but minimal hand-engineering. Engineer can evaluate the deep neural

networks with different driving environment and situation by input training data.

2.2 Real-time vehicle detection using deep learning.

In order to perform a real-time system, the detection system capable of

operating at greater than 10Hz on laptop GPU. Also, the system used is able to detect

vehicles more than 100m away, hence, the image resolution used will be higher. The

Overfeat CNN detector, which is integrated object detection, localization and

classification task all into one network. A “sliding window” will slide all over the

image to detect the vehicle. Once an object is detected, a bounding box through

regression is used to predict the object location. The classifier will ignore the object

if it cannot distinguish an object within an image. This is undesirable prediction,

which can only predict one object, as two different objects appear in an input view.

To ensure that all object in the input view can be classified, many contexts

with different views are taken from the image by using skip gram kernels. Then, the

classifier trained to recognize an object when it appears within its context view. The

redundant bounding box location appears when multiple object appears, the network

incorrectly predicting that there is a box between two merged bounding boxes to

minimize the lost function. The network mistakenly decides that there is a third

object between two merged bounding boxes. This is dangerous for autonomous car

when running on the road, which falsely believes there is a car, actually it is not, and

emergency breaking is falsely applied. This problem would become the bottleneck of

a real-time system due to the merged bounding box is hardly parallelizable as the

CNN (Huval et al., 2018).

8

2.3 Comparison between R-CNN and Faster R-CNN network.

The R-CNN network is made up of three modules. Firstly, it extracts region

proposals in different aspect ratio. The network provide comparison with labelled

work by using selective search methods. Secondly, it includes a convolution neural

network, creating an attribute vector for each region with constant length. The

convolution neural network will select the possible transformations of the proposed

region and a bounding box regression used to improve the localization accuracy.

Finally, it includes a linear support vector machine to classify the assortment of

regions. Each produced attribute vector from convolution neural network is classified

using the support vector machine. When there is high-intersection overlap for

specific region, a non-maximum suppression will be applied to filter the overlap

region and preserve the highest score region.

For the Faster R-CNN network is made up of two components. The first

component is called Region Proposal Networks (RPN). The RPN produces multiple

of rectangle object on an input image and each of the object will have an objectivity

score. The RPN is designed with fully convoluted network. The second component is

called Faster R-CNN detector which share a common set of convolution layers with

RPN. The Faster R-CNN is a single, unified network used for detection network.

The Faster R-CNN has improved the regional proposal computation as a

bottleneck by decreasing the process time of detection in R-CNN. Furthermore, RPN

integrated with detection network shares full image convolution characteristics

resulting free region proposals can be made. Faster R-CNN unlike R-CNN require

external zone recommendation. In addition, the RPN provide an accurate district

proposal, hence, improve the speed of detection and overall accuracy. An experiment

made by Yilmaz, et al.(2018) stated that the mean average precision (mAP) for

Faster R-CNN and R-CNN respectively, at approximately 0.76 and 0.65 values. For

vehicle detection, results obtained from Faster R-CNN have higher detection

accuracy compared with the R-CNN. In addition, the speed of object detection is

become faster and more reliable through Faster R-CNN network.

9

2.4 Unified, Real-time object detection system YOLO.

Comparing to traditional object detection method, YOLO has extremely fast

detection. This is because YOLO frame the detection as single regression problem,

using a single convolutional network to predict multiple bounding boxes, class score,

and objectiveness for those boxes simultaneously. The network runs on a Titan X

GPU gains 45 fps with no batch processing and a fast version gains more than150 fps.

This result reflecting the YOLO able to process a real-time streaming video with a

very little of latency.

Furthermore, YOLO sees the entire image and making predictions globally

based on the contextual information unlike receptive field and region proposal-based

techniques. YOLO has a lesser background errors compared to Fast R-CNN. In

addition, YOLO learns wide range of object representations. When trained on real

life images and tested on artwork, YOLO gave better performance compare with top

detection methods such as DPM and R-CNN by a wide margin. When applying a

new or unexpected input, YOLO will less likely to break down due to its highly

generalizable properties (Joseph, et al., 2015). Some performance and detection

speed comparison between different method have made by Joseph, et al. (2015) as

shown in Table. The Fast YOLO gave the highest fps among the other detectors and

its mAP has doubled as any other real-time detector. YOLO has 10mAP higher than

the fast version while still able to perform real-time detection as well.

Figure 2.1 : Real-Time Systems accurancy and detection speed on PASCAL

V0C 2007. (Joseph, et al., 2015)

10

2.5 Benefits of adding batch normalization layer.

Theoretically in deep networks, high learning rate may cause gradients

explode or vanish, as well as the network not learn at optimal. Batch Normalization

tendency to speed up training without accuracy trade-off has become a favorite

technique in deep learning. An experiment conducted by Johan, et al. (2018) have

found that the Resnet model without batch normalization converge when the learning

rate has be decreased to α = 0.0001 and training takes 2400 epochs. To shows how

batch normalize benefits related, they have trained a batch normalized network using

a learning rate of α = 0.003 and training takes 1320 epochs. These results further

illustrated in Figure, the batch normalized network with low learning rate performs

no better than an unnormalized networks. In addition, the batch normalized network

with highest learning rate have the largest accuracy gap among the others.

i

Figure 2.2: The training accuracy (left) and testing accuracy (right) through the

training cycle. (Johan, et al., 2018)

The unnormalized networks tends to diverge for large rates in high learning

rates and batch normalized networks perform well with higher learning rates. To

investigate the reason behind, Johan, et al. (2018) have compared the gradient and

distribution of comparable parameters between these two networks as shown in

Figure. Through the histograms, the gradients are larger and distribution is

heavy-tailed in unnormalized networks. Whereas for normalized networks, the

gradients are centred around the mean and distribution is exponentially bounded.

11

2.6 The impact of batch size towards the performance of CNN.

Improving the performance of a deep CNN is a difficult works. Adjusting the

training parameters is the domain ways to obtain a relatively well performing deep

CNN. An experiment conducted by Radiuk (2017) to investigate whether the batch

size value affect the network training progress and testing accuracy. The deep CNN

used in this experiment is not as deep as the CNN used in the project. Besides the

database used in this experiment is different with the datasets used in this project.

The MNIST database contain only gray scales hand written images and another

database is CIFAR-10 which contain color images with 10 different classes.

Although the deep network and datasets used in this experiment is different with the

project used, the network training performance depends on the batch size value

would be similar.

Table 2.1: The result of network testing accuracy on MNIST and CIFAR-10

datasets with different batch size value. (Radiuk, 2017)

From the Table 2.1, the batch size of 16, 32, 50 and 64 giving poor testing

accuracy. However, an average testing accuracy results obtained in batch sizes of

100, 128, 150, 200, 250 and 256. The best testing accuracy are obtained from the

batch size value of 512 and 1024. Radiuk (2017) had concluded that the larger the

batch size value, the better the CNN network performing image recognition.

12

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Software Installation

The Tensorflow GPU framework requires adequate libraries and drivers to

support. The hardware and software requirements are stated below.

Hardware:

NVIDIA GPU card with minimum CUDA Compute Capability 3.5

Software:

⚫ NVIDIA GPU drivers (CUDA 9.0 requries 384.x or higher)

⚫ CUDA Toolkit (TensorFlow supports CUDA 9.0)

⚫ cuDNN SDK

⚫ Python 3.6

⚫ Anaconda

13

3.1.1 Step for installing CUDA Toolkit

Figure 3.1: The CUDA v9.0 installation options

Figure 3.2: The CUDA v9.0 custom installation options

The CUDA Toolkit executive file was run immediately once the package was

downloaded. The installation options are shown in Figure 3.1 and Figure 3.2. If the

14

CUDA toolkit is not allowed to install, make sure the installer version is compatible

with pc platform. Another way would be re-installed or updated to latest NVIDIA

driver.

3.1.2 Step for including cuDNN SDK into CUDA

The SDK file was downloaded through the link:

https://developer.nvidia.com/rdp/cudnn-download. Choose a file compatible with the

pc window OS. Sign up or login to membership of the NVIDIA Developer Program

is required to get access to the pages.

After downloaded the file, following steps show how to build a cuDNN

dependent program were gone through step by step:

1. The installed CUDA Toolkit directory path is referred to as : C:\Program

Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

2. Navigate to the downloaded cuDNN directory and unzip the package.

3. Inside the package containing bin, include and lib file. Copy the files into the

CUDA Toolkit directory accordingly:

a) Copy cudnn64_7.dll in bin file to C:\Program Files\NVIDIA GPU

Computing Toolkit\CUDA\v9.0\bin

b) Copy cudnn.h in include file to C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v9.0\include

c) Copy cudnn.lin in lib file to C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v9.0\lib\x64

https://developer.nvidia.com/rdp/cudnn-download

15

3.1.3 Installing Python and Build tools

 The minimum requirement for Python version and Build tools to support the

Tensorflow GPU is provided as figure below. The Python version and build tools

were installed via online. The required version to support tensorflow-gpu was

followed from the list below.

Figure 3.3: The require software and language version to support specific

tensorflow-gpu version

3.1.4 Installing Anaconda

Anaconda provide a user-friendly distribution allows user to create a virtual

environment and install packages needed for deep learning project. The Anaconda

also come with conda, Jupyter Notebook and other open source packages. Conda is a

package manager to manage virtual environment and allow user to install specific

package version for project use without worrying about version conflicts.

The Anaconda package was downloaded from online and installed in the pc.

Once successfully installed the packages, a virtual environment was created to store

16

the conda packages into target folder. Also, Tensorflow-gpu and some support

packages were installed in the created virtual environment through the conda. Once

the installation was done, some verify codes were run immediately to verify whether

Tensorflow has recognize the pc graphic card. The terminal will prompt pc GPU

information as shown in Figure when successfully installed the Tensorflow-gpu.

Figure 3.4: Anaconda terminal prompt the CPU and GPU information of the

pc.

3.2 Dataset preparation

The first step to implement an object detection model is always acquire

adequate datasets which are meaningful to the training and detection. In this project,

the datasets not only an image itself, but the object annotations and labels are crucial

for the neural network to learn the pattern of the detecting object and classifying

them accordingly. Therefore, datasets creation must be carefully undertaken because

the quality of the object detection is highly depending on the quality of the datasets

provided.

17

Here are several methods of obtaining a dataset of images and annotation in

this project:

Open source datasets: COCO, ImageNet and PascalVOC are providing huge

amount of image and annotation for up to 80 classes. However, this project only

detecting vehicle objects which are car, motorcycle and bicycle. Hence only required

objects were extracted from the COCO datasets.

Filtering datasets: The datasets obtained from open source may not have

captured properly and some of the annotations are missing or miss aligned. Those

images which does not contain any related object in this detection were be removed

and miss aligned object will be re-annotated.

Self-creating datasets: The datasets can be obtained through capturing real

world vehicle objects. Varieties of object type were captured in multiple scenes with

different angles and image resolution.

Dataset annotation: Image annotation is created by using image annotation

tools to save the large volume of data stored after annotation. VOC Pascal format

was used in this project as shows in Figure 3.5 below.

Figure 3.5: Image annotation information in Jason format

18

Dataset augmentation: Acquiring and annotating large number of images are

time consuming and tiring, but not enough of datasets to train the deep learning

network may lead to generalization issue. Dataset augmentation is a proven method

to deal with the issue of limited amount of data. This technique generating a new

training data from the existing dataset by applying image transformations, change

lighting conditions or crop it differently.

The images and annotation files were collected by using the method mention

above. There were only 3 classes contained in these images which were bicycle, car

and motorcycle. Each of the class was split-ted equally among the total images. The

total number of images used in this project were 7306 images for training and testing

the model. These images then further split-ted into training images and testing

images. The detail of these images is shown in Table below.

Table 3.1: The number of images used in training and testing process

Initial number of training

images

Final number of training

images

Number of testing

images

6000 6656 650

3.3 Training process

Before starts to train the model, it is important to decide the model whether is

trained in scratch or pre-trained weight. Model trained in scratch takes much longer

times to get to recognize the dataset underlying pattern. Tone of training images

needed and required a decent GPU to support the training process. However, the

pre-trained weight had trained explicitly with tone of images by researcher, also

known as fine-tuning. The second option usually bring much improvement for

training process, hence, transfer learning was adopted in this project to train own

dataset.

19

During the training process, some hyper-parameters will be varying

according to the training results such as batch size, learning rate and number of

epochs for the training.

Batch size is a number of images feed to the model and update the parameters

once per iteration during training process. The relationship between epoch, iteration,

batch size in training process are illustrated at Table 3.2 below. One epoch is when

entire dataset has passed forward and backward through the model during training

process. The iteration is the number of batches needed to complete one epoch.

Table 3.2: Relationship between Epoch, iteration and batch size.

Stage 1 2 3

Training

images

6000 6000 6656

Epoch 1 1 1

Batch size 2 4 16

iteration 3000 1500 416

Learning rate is a hyper-parameter that controls the step for adjusting model’s

weights with respect the loss gradient. A low learning rate takes longer time to reach

global minimum loss, but the loss converges steadily. A high learning rate takes

shorter time to converge to lower loss, but the model loss may also bounce back to

higher loss due to the model weights update step is large causes model miss from

global minimal easily. Hence, choosing a right learning rate is based on trial and error.

A low batch size needs a low learning rate to prevent from weight explode leads to

high performance loss. In contrast, a large batch size can use a high learning rate to

speed up the training process.

At initial training stage, the batch size was set to 4 dues to hardware constrain

and trained for 100 epochs with total 6000 images. Then at the final training stage,

the batch size was increased to 16 and continued training for 100 epochs with

increase total training images to 6656 from initial 6000 images. The starting learning

20

rate was set to 0.001 and divided by 10 after epoch 30 and epoch 60 for both initial

and final training stage.

3.4 Testing process

After certain epoch of training, the network will be evaluated its performance.

A completely random images were input to the network to make the detection. These

prediction and localization will be compared to the labels and ground truth provided

by the annotations of testing set. Also, the model detection accuracy is evaluated

using mean average precision metric (mAP).

3.5 Process flow

The whole project design and implementation flow are illustrated at the flow

chart below:

21

Figure 3.6: Whole project design and implement flow

22

CHAPTER 4

RESULT AND DISCUSSION

4.1 Model Architecture

Figure 4.1: The model architecture (Darknet-23) demonstration. Total 23

convolution layer and 5 Max-pooling layers

The layout of convolution neural network used in this project is demonstrated

in Figure 4.1 above. There are total 23 convolution layer where each of the layer will

follow by a batch normalization layer and activation layer. The size of the filter

window in these convolution layers are 3x3 and 1x1. At intermediate layer, a larger

23

output feature map will be concatenated with a smaller feature map to improve small

object detection accuracy. Finally, 5 max-pooling layers are used in the model to

reduce the input size from 416x416 to 13x13 at the output of the last convolution

layer.

The flow of the detection system has shown in Figure 4.2 below. A random

image or video with minimum 416x416x3 resolution will input to the model for

making the prediction. After that, the output of the model is further post-processing

and finally output the detection result which is understandable by human.

Figure 4.2: The flow of how the system perform vehicle detection

4.1.1 Convolutional layer

The convolution layer is the core layer of a convolution neural network that

does most of the computational heavy lifting. Each of the convolution layer have a

window filter which slide through entire images to multiply with the input image and

output a feature map. Each of the window filter is responsible to extract different

features from input feature map. Once a layer accurately recognizes those features,

they’re fed to the next layer, which trains itself to recognize even more complex

features.

Output

detection

result

Post-processin

g algorithm

Input image

or video

Convolutio

n neural

network

24

The parameters of a convolution layer include: window size, depth, stride,

zero-padding and filter quantity (Du, 2018). Window size and depth are the

3-dimension of the window filter. The window size is 3x3 or 1x1 and the window

depth usually same as input depth. The 1x1 window size convolution mainly used to

reduce input spatial dimensionality to remove computational bottlenecks and also

limit the size of models (Szegedy, et al., 2014).

Stride is controlling the window filters shifting how many unit at a time. The

window filters shift 1 unit per time in this model to convolve the input feature map in

detail. Zero-padding pads zero values around the border of image. To ensure the

spatial dimension of output convolution is remained as the input’s spatial dimension

after convolves by window filter, the zero-pad size is set to 1. The filter quantity is

the number of filters to convolve the input data in a single convolution layer. Finally,

the spatial dimension of the output convolution layer can be calculated using formula

below (Du, 2018):

(4.1)
)2(

1 ;
)2(

1
s

KpW
W

s

KpH
H

widthin
out

heightin
out

−+
+=

−+
+=

4.1.2 Batch Normalization Layer

Batch normalization layer can be treated as a data pre-processing layer which

is applied after every convolution layer. The purpose of this layer is to normalize the

input data by adjusting and scaling it to have a zero mean and unit variance (normal

distribution). This will help to speed up convergence in result of greatly reduce the

model’s training time. Also, it makes the hidden layer continue learning on a stable

input distributions of activation values that experience less internal covariate shift,

hence, a dramatically acceleration on training process (Ioff and Szegedy, 2015).

stride
padding-zero

sizefilter window
dimension spatialinput

dimension spatialoutput ,

=
=

=
=
=

s
p

, KK
,HH

WH
where

widthheight

outin

outout

25

Batch Normalization eliminates the need of dropout layer to prevent for model

over-fitting and also allowing model train in much higher learning rates without

being explicitly adjust the hyper-parameter and parameter initialization.

4.1.3 Activation layer

Activation layer is applied immediately after the batch normalization layer.

This layer help enable model to learn from the complex arbitrary dataset and a

non-linear complex function applied between the input signal and output signal.

Non-linear functions are those which have higher degree and have a curvature

properties when plotting these functions (Walia, 2017). Without applying the

activation function in the convolution layer, the model would be simply a linear

regression function which not powerful enough to learn from the complex dataset.

The purpose of this layer is to make a non-linear result and set to solve the vanishing

gradient problem. The vanishing gradient problem happens when the gradient is too

small that will not update the weights and biases from last layers to initial layers

effectively during back-propagation.

The activation function layer used in this model is Leaky ReLu. A

comparison between ReLu and Leaky ReLu made by He, et al. (2015) stated that the

Leaky ReLu improves overall training process with almost no computational cost.

The ReLu may causes a dead neuron when a weight update during back propagation

and Leaky ReLu solved this problem by introducing a small slope to prevent from

dead neurons.

Figure 4.3: The activation function of ReLu and Leaky ReLu. (Xu, et al., 2015)

26

4.1.4 Pooling layer

Pooling layer down samples the dimension of the output from convolution

layer. Max-pooling with window size 2x2 and stride of 2 is applied after some of the

activation layer. It extracts highest value from pooling window when window slide

through entire input feature map. This is because a high activation values from

convolution layer is treated as meaningful feature and pooling layers filtered those

low activation values to reduces the number of parameters and lessening the

computational cost as well.

4.1.5 Fine-grained features

From the Figure 4.1 above, a 26x26x64 feature map from earlier layer is

concatenated with 13x13x1024 feature maps producing a 13 x 13x1280 feature map.

The purpose is to improve the model from detecting small object in a given image. A

13x13 resolution alone is sufficient in detecting large object but still a large room of

improvement in detecting small object. Hence, earlier layer concatenates with later

layer increase the mAP by 1% (Redmon and Farhadi, 2016).

4.2 Loss function

The purpose of loss function is measuring the quality of model’s parameters

(weight and bias) based on how well the induced scores matched with the ground

truth labels in the training data. To compute the loss of the true positive, only the

highest IoU among the all the prediction have made on an image will be selected and

responsible to the object. This strategy improves the predictions among the bounding

boxes at predicting certain sizes and aspect ratios.

 YOLO architecture calculates the loss between the predictions and the

ground truth by using sum-squared error method. Since vehicle detection involve

27

classification and localization, the loss function will involve classification loss,

localization loss and confidence loss.

 If an object appear and model successfully detected it in a grid cell, the

classification loss for the particular cell is calculated as below:

(4.2)

i. cellin c classfor y probabilit class lconditiona predicted theis p

0 otherwise , cellin detectedobject when 1 is

where

(c)
i

i
i

οbj
1

The localization loss measures the errors in the predicted boundary box

coordinate and sizes. The measurement occurs when the bounding box in a cell is

responsible for detecting the object:

(4.3)

i
ii

i
i

y
i

i
i

οbj

 cellin box boudning predicted ofheight and width theis h andw

 cellin box boundingfor coordinate predicted theis and x

0 otherwise , cellin detectedobject when 1 is

where

1

The bounding box width and height are squared root to reflect that the small

deviation in large bounding boxes should matter less than in a small bounding box.

The cood is to emphasize the loss from bounding box prediction (Redmon et. al,

2016).

28

The confidence loss is measuring the objectness of the box:

∑ ∑ 𝟙𝑖
𝑜𝑏𝑗

(𝐶𝑖 − �̂�𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0 + 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝟙𝑖
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − �̂�𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0 (4.4)

truth -ground andbox bouding predictedbetween score IoU is ˆ

score confidence predicted theis

0 otherwise , cellin detectedobject no when 1 is

0 otherwise , cellin detectedobject when 1 is

where

C

C

i
i

noobj

i
i

οbj

i

1

1

Most of the grid cell may not contain any object and this would cause the confidence

loss imbalance. To solve this problem, the noobj is applied to decrease the loss

value in no object confidence loss (Redmon et. al, 2016).

Finally, all the losses combined and become the final loss function:

 (4.5)

29

4.3 Optimizer

Loss function in previous section measuring how wrongly the prediction have

made for model. High value of losses meaning the model is not predicting accurately

and the root cause the wrongly prediction is model’s parameters (weight and bias).

The model’s prediction improves when parameters able to process the input data and

output a meaningful information which truly related to the objective task. Hence,

these parameters have to be updated repeatedly throughout the training process in

order to get to a lower loss value.

Figure 4.4: Initial parameters are optimized and tends to converge to global

minimum loss. This method also known as gradient descent.

The goal of optimizer is to modified the parameters in order to minimizes the

loss value. The optimizer computes the gradient of loss function, the procedure of

evaluating the gradient repeatedly and performing a parameter update. The Adaptive

Moment Estimation also called as Adam optimizer has been widely used in most of

the deep learning architectures. Many experiments conducted by expert demonstrate

that Adam works well in practice and outperforms other optimizers. Adam optimizer

compute individual adaptive learning rates which provide heuristic approach without

explicitly tuning hyper-parameters for the learning rate schedule manually. Moreover,

Adam require lesser of memory to perform back-propagation for updating the

parameters. Performing back-propagation almost double up the memory usage and

this is the reason why so much memory needed during training.

30

4.4 Grid cell

After an input images propagate through the model, the input images is

divided into S x S grid cells. If the center of an object falls into a grid cell, that grid

cell is responsible for detecting that object. The grid cells are demonstrated in Figure

4.5.

Figure 4.5: An illustration of 416 x 416 image divided into 13 x 13 grid cells and

a ground truth box (red).

Basically, each grid cell consist 5 bounding boxes and each bounding box

contain of 5 components: hwyx , t, t, tt and ot . The (yx, tt) coordinates denote

the center of the bounding box in a grid cell. The grid cell is not responsible for those

centers of the bounding boxes are not fall inside it. The wt and ht are the width

and height of the predicted bounding box respectively.

The confidence score, ot indicates the confidence level of the model predict

whether there is an object in particular grid cell and also reflects how accurate its

prediction. The score should be 0 if there is no object appear in the cell (Redmon, et

al., 2016). The IoU confidence score is calculated as equation below:

31

 truth

predict
xIoUobject)Pr(

 (4.6)

Logically, the model will give a confidence score zero if there is no object in

that particular cell. Otherwise, the confidence score tends to equal to the IoU

between the predicted box and the ground truth box.

Finally, each grid cell also predicts C conditional class probabilities,

|Object)
i

(ClassPr . These probabilities are conditioned on the grid cell containing

an object. Each bounding box predicts a set of class probabilities, C1, C2 and C3. In

this project only predicts 3 classes which are bicycle, car and motorcycle. If there is

an object predicted by model in the cell, the model will also predict which class the

object belongs to. The class probabilities score indicates how confident the model

classifies the object into particular class, from 0 the least confident to 1 the most

confident.

4.5 Anchor box

Anchor Box is a predefined box used to make model training more stable by

fixing the shapes and sizes of bounding boxes. Instead of directly predicting the

anchor box size, the anchor box is determined via k-Means clustering on given

dataset. After generating anchor boxes using K-Means clustering, it turns out that

most bounding boxes have certain height-width ratios for certain objects. For

example, as shown in Figure 4.6 below, car have a horizontal bounding box, whereas,

person on bicycle has a vertical bounding box.

32

Figure 4.6: An example of diverse guesses for real-life objects. (Hui, 2018)

Figure 4.7: Predefined 5 anchor box with different size at center of a cell.

Instead of predicting arbitrary boundary boxes, this project predicts offsets to

each of the anchor boxes. As illustrated in Figure 4.7 above, each anchor box is fixed

for particular aspect ratio and size. The location of anchor boxes is the center of the

cell in which the center of the ground truth box falls (Yadav, 2017). The ground-truth

box and anchor box usually are highly overlap to each other due to the size of anchor

box is generated based on the mean size of the object in the given dataset. Hence, the

predicted bounding box with highest IoU between the ground-truth box and anchor

box will be selected as appropriate bounding box.

33

4.6 Direct location prediction

During testing stage, the model predicts 5 bounding boxes at each cell in the

output of last convolution layer feature map. As mention in grid cell section, the

model predicts 5 coordinates for each bounding box, tx, ty, tw, th, and to. The values

of these 5 coordinates values are meaningful for model but not the actual results yet.

The center coordinates (tx, ty) applies to activation function to constrain the model’s

predictions to fall between 0 and 1 so that the center coordinates are bounded within

respective cell. The actual bounding box coordinates calculation is shown in Figure

4.8 below.

Figure 4.8: Predicted bounding box size adjusted through anchor box to form

an actual bounding box (yellow). (Redmon, et al., 2016)

The (cx, cy) is the distance margin from top left corner of 1st grid cell to the

top left corner of target cell and (pw, ph) is the width and height of anchor box. The

width and height of actual bounding box are adjusted nearest to size of anchor boxes.

The size of the anchor boxes is the size with most of the object going to be detected.

Thus, the model is not directly predicting the final size of the bounding box, but

adjusted to more similar to the object size which improve overall detection

performance.

34

4.7 Intersection over Union (IoU)

Intersection of Union is a metric for comparing the overlapping between two

arbitrary shapes. It is used to measure how accurate an object detection base on the

provided dataset. To calculate the IoU ratio, a ground-truth bounding boxes (drawn

by hand) and predicted bounding boxes from output model are needed. These two

bounding boxes will be used to determine the IoU ratio via:

Figure 4.9: Computing the IoU by calculate the overlap area of two bounding

boxes, and divides it by union area of two bounding boxes. (Rosebrock, 2016)

In the IoU equation, the numerator is the area of overlap between

ground-truth bounding boxes and predicted bounding boxes. The denominator is

the area of union by both the ground-truth bounding boxes and predicted bounding

boxes. The area of overlap divided by the area of union yields output Intersection

over Union (IoU).

Area of Overlap = BA (4.7)

 Area of Union = BA (4.8)

IoU =
BA

BA

 (4.9)

 Unionofon Intersecti

box bounding Predicted

box boundingtruth -Ground

where

=

=

=

IoU

B

A

35

The IoU is a number between 0 and 1, if IoU score approaches to 1 meaning

that the size and location of predicted bounding box tends to similar with ground

truth hence better prediction has made by the model. In training process, if the IoU

score is below threshold value 0.6 will penalize the network and confidence of the

boxes with low IoU. Ideally, the predicted box and the ground-truth have an IoU

score of 1 but in practice anything over 0.5 is considered as a good prediction

(Rosebrock, 2016). For example, the Figure shown below demonstrate a ground-truth

(red) along with the predicted bounding boxes (green) from the custom object.

(a) (b)

(c)

Figure 4.10: Computing IoU score with different bounding boxes (a) poor IoU

score (b) good IoU score (c) excellent IoU score

In Figure 4.10 (a) two predicted box with IoU score 0.172 and 0.361 are

covered part of the object which fairly localize the whole object as one prediction

and each of the predicted box (green) is not large enough to cover the ground truth

36

bounding box (red). However, in Figure 4.10 (b) the predicted box with IoU score

0.722 is bounded within the ground truth, but predicted box not wider enough to

cover front part of the object. In Figure 4.10 (c), the predicted box with IoU score

0.904 is entirely cover the object and almost fully overlaps with the ground-truth

bounding box.

4.8 Non-max suppression (NMS)

NMS is post-processing algorithms to filter redundant bounding boxes. NMS

makes selections based on the Intersection over Union (IoU) between detection

boxes. As mentioned previously, IoU measures the ratio of the overlapped area over

the union area between two boxes. NMS can be simplified into two steps (Hosang, et

al., 2017):

1) In the same vehicle category, all the predicted bounding boxes are sorted

based on their box confidence scores from highest to lowest.

2) NMS selects the box which has the highest box confidence score as the

reference box, and then it discards other predicted bounding boxes whose

IoU value with the reference box is beyond the threshold value.

Then, NMS repeats the above two steps for the remaining predicted boxes until the

last predicted bounding box in the sorted list.

37

(a) (b)

Figure 4.11: The output of model prediction (a) without NMS (b) after NMS

From the Figure 4.11 (a) shown above, multiple bounding boxes prompted

around the vehicle and each of the bounding box correspond to a confidence score.

Each of the bounding boxes giving true positive result meaning that the model is

working as expected, but only one bounding box is needed to localize the vehicle.

After implementing the non-max suppression algorithm, the result shown in Figure

4.11 (b) has successfully eliminate the redundant bounding boxes.

The NMS algorithm also called as Greedy NMS because algorithm greedily

selects bounding box with high confidence score and eliminate close-by less

confidence score neighbors since they are likely to cover the same category. The

ideal result from this algorithm if:

1) Bounding boxes with high confidence score triggered by same object will

always be suppressed.

2) Bounding boxes with high confidence score of the next closest object will

never be suppressed.

The greedy NMS usually works well when objects are far apart, but there is a

tension for suppression when objects with same category are too close to each other

or crowded scenes (Hosang, 2017). In other words, one object per image

38

post-processing the NMS problem is insignificant, but nearby objects require a better

NMS algorithm.

(a) (b)

Figure 4.12: Different size of bounding boxes triggered by objects (a) before

suppression and (b) after suppression

The problem mention above is demonstrated in Figure 4.12. From the Figure

4.12 (a), the model was successfully predicted multiple motorcycles and different

size of bounding boxes was covering the motorcycles correspondingly. After

post-processing it as shown in Figure 4.12 (b), the motorcycles with far apart from

the other two is correctly bounded with a bounding box, but the other two

motorcycles which are close to each other is simply bounded with one box. This is

because NMS has taking the bounding boxes with high confidence score and

eliminating the neighbor bounding box which are exceed the suppression threshold.

39

4.9 Real life vehicle detection and observation

(a) (b) (c)

Figure 4.13: The result of model’s output detection on housing area image at (a)

epoch 10 (b) epoch 100 and (c) epoch 250

From Figure 4.13 above, the model started to detect the cars in the given

image while training process goes through. Initially, the model unable to detect any

cars inside the image. After few hundreds of training, the model starts to detect some

of the cars inside the image which is shown in Figure 4.13 (b), but the white car on

the left still unable to detect it even though the white car is occupy large area in the

image. Observing in Figure 4.13 (c), the model detected most of the car inside the

image and the size of bounding boxes are bounded with the cars. Some of the

bounding box does not match with exact size and location, but the overall

performance is quite accurate.

(a) (b) (c)

Figure 4.14: The result of model’s detection on a bicycle image at (a) epoch 10

(b) epoch 100 and (c) epoch 250

40

The model also tested with only one bicycle in an image. From the Figure

4.14 (a) above, unsurprisingly the model is not able to detect bicycle inside the image

and none of the bounding box appear in image. In Figure 4.14 (b), the model able to

recognize small part of the target object, but detection is not accurate enough to

detect a complete object. In Figure 4.14 (c), the model is starting to detect most part

of the object compares with Figure 4.14 (b), but the bounding box is not confidence

and large enough to cover the target object into one box. The overall performance for

detecting one bicycle in this image is poor.

(a) (b)

(c)

Figure 4.15: The result of model’s output detection on traffic image at (a) epoch

10 (b) epoch 100 and (c) epoch 250

The model also tested in real life traffic road. The model started to detect

some of the vehicles at training epoch 100. From Figure 4.15 (b), most of the car

which are very obvious on the image are able to detect correctly, but the motorcycle

41

on the right most is not classify correctly and motor on the left is not detected. At left

of the image is covered with multiple bounding boxes indicate that the model is not

confidence enough to localize the vehicle. Also, the motorcycle is wrongly classified

as car although the size of the bounding box is perfectly bounded with the

motorcycle. After few more hundred epoch of training, the model detection result

shows in Figure 4.15 (c) is look more pleasant compare with Figure 4.15 (b). All the

vehicles appear inside the image are correctly classified and localized.

4.10 Training loss performance

(a) (b)

Figure 4.16: The graph of training loss against the epohcs with (a) 2 batch size

and (b) 8 batch size.

Initially, the model was trained on a graphic card GT755m 2GB vram can

process 2 images per iteration. The model was let trained for a day and the training

performance is shown in Figure 4.16 (a). From the graph, the loss is converge for

early epoch, but bouncing back to higher loss and hardly to converge to smaller loss

for rest of the epoch. As illustrated from this graph, the model found very hard to

learn from such small batch size especially at a deep model that contain 23

convolution layers. In this case, the model may take longer time to learn from all data

given or in worst case the model may not able to learn from the dataset no matter

how many epochs have gone through.

Epoch Epoch

42

The second model had trained on a graphic card GTX1050 4gb vram can

process 4 images per iteration. The model was let trained for few hours and the

training performance is shown in Figure 4.16 (b). From the graph, the overall loss

slowly converges though the training process. There is a sudden grow of loss in

epoch 8, but return to normal at following epoch. Comparing both graphs above, the

model has a stable loss converge and better training performance after increasing the

batch size. Besides, a better GPU with larger virtual ram also stand an important

factor in quality training process and greatly reducing the time required to train a

model.

Since the result shown in Figure 4.16 (b) is in correct trend, the training

process was continue running for 2 days until reach the final epoch 100 which was

set initially. The complete loss performance graph has shown in the Figure 4.17

below:

Figure 4.17: The performance loss graph for 100 epochs (noted that the loss

values had converted to average loss)

From the graph in Figure 4.17, the loss barely converges and the line moving

steadily after epoch 40. At epoch 100, the weight parameters were saved and had

been evaluated the performance. The evaluation result (shown in Figure 4.19 at

epoch 100th) is not satisfied, hence, a lower loss is required in this case meaning that

a larger batch size and a decent GPU are necessary for better training performance.

This time, the model was trained on a graphic card RTX2040 with 8gb vram.

The weight files obtained initially was loaded and further trained in this training

Epoch

43

process. The batch size was increased to 16 images per iteration and learning rate

was fixed at 0.0001. Another reason that may cause low mAP performance is the

number of images to train the model is not enough, hence, the total number of images

was increased from 6000 images to 6656 images. After 13 hours of training, the

model was trained in 100 epoch and the loss performance graph has shown below:

Figure 4.18: The performance loss graph for 100 epochs with increase batch size,

number of training images and learning rate.

From the graph shown in Figure 4.18, the loss converged slowly through the

epochs. The moving pattern of the graph showing that the loss can be further

converged as number of training epoch extended. To prevent from over fitting issues,

the weight parameters at epoch 50 (epoch 150 at graph 4.19) and epoch 100 (epoch

200 at graph 4.19) were used to evaluate mAP. The mAP obtained for epoch 50 and

epoch 100 are 0.3, 0.23 and 0.39, 0.32 for IoU = 0.3, 0.5 respectively. The mAP has

significant grow compared with previous training process. From the observation, a

larger batch size can help the model converge to a lower loss. Also, the more training

images feed to model for training, the better the detection performance. Most

importantly, a better GPU is benefits from the training speed and training quality.

Epoch

44

4.11 Model accuracy evaluation

Figure 4.19: mAP evaluation for 250 epochs

Mean Average Precision (mAP) is a metric in measuring the detection

accuracy of an object detection system. Since the object detection involves in

classification and localization, hence, correctly classified the target object and

bounding box overlap with ground truth exceed predefined IoU threshold value will

improve the overall mAP values. Similarly, target object wrongly classified or below

IoU threshold or miss detection will decrease the mAP as well. The higher the mAP

value, the better the detection performance.

From the mAP graph in Figure 4.19, the mAP improved as training goes

through hundreds of epochs. The highest mAP obtained are 0.39, 0.33 for IoU 0.3

and 0.5 respectively. Again, from the graph clearly shows that IoU=0.3 has higher

mAP than IoU=0.5 because a smaller box which poorly overlap with the ground truth

boxes also considered as correct detection as long as correctly classify the particular

object (A clear explanation about IoU in Section 4.7). The mAP improvement with

IoU=0.3 may interpret that the model has successfully detected there is an object

appear in the input image and classified it correctly, but the model localization is not

fine enough to cover the entire object into one box.

The overlapping area between predicted bounding boxes and ground-truth

which have IoU score greater or equal to 0.5 are considered as good detection as

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300

m
A

P

Epoch

Graph of mAP against Epoch

IoU = 0.3

IoU = 0.5

45

mention in previous section. Hence, improve the mAP with IoU=0.5 set as a

destination to obtained a good object detection system.

4.12 Loss performance with different larger batch size

Figure 4.20: The model loss performance with different batch size for 30 epochs

and fixed learning rate at 0.001.

To study how the batch size affect model training loss performance with only

6656 images. The experiment was conducted with different batch size which are 64,

128, 256 and 512. The training process was fixed at high learning rate 0.001. The

model was trained on graphic card Tesla K80 with 11 GB vram (free cloud GPU

from Google Colab), but the GPU only available continuous running for 12 hours

and will be force-disconnected by system after the time constrain. Due to the limited

time resources to train on a free GPU, the training epoch was set to 30 epochs instead

of 100 epochs. The purpose of this experiment is to figure out the effect of batch size

at high learning rate on training performance for current number of images.

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

-1 4 9 14 19 24 29

Lo
ss

Epochs

Graph of loss against epochs with
different batch size

512

256

128

64

46

From Figure 4.20, the loss tends to decrease gradually with a larger batch size

and a steeper decrease with a smaller batch size at the beginning of training epochs.

This implies that a smaller batch size saturate faster than larger batch size. After a

few epochs of training, the loss decreased slowly and steadily for batch size 256 and

512, but small fluctuate without clear decreasing sign for batch size 64 and 128. This

can be further encoding that; larger batch size guarantees a lower loss or minimal

optima compare with smaller batch size.

The experiment shows that using a smaller batch sizes have faster

convergence to “good” solutions. A smaller batch size will update model’s weight

parameters more frequently and this intuitively explained by the fact that the model

start learning vigorously before seeing entire data. The disadvantages model trained in

smaller batch is not guaranteed to reach global optima (lowest loss with highest test

accuracy). Also, using too small batch size will apply too much noise during model

training process leads to poor model performance (As proven in Section 4.10 with

batch size 2 and 4). Many researchers usually use a larger batch size to train their

model as it allows computational speedups from multiple GPUs in parallel. However,

it is well known that too large of a batch size will lead to poor generalization (cannot

adapt new data properly).

From the investigation above, it is not easy to find a optimal batch size to

obtain a well performing model. The batch size also largely depending on the number

of images used to train the model. Huge number of images hardly leads to poor

generalization since variety of samples can be observed by the model, hence, a larger

batch size would do a better job in this case. The dataset amount used in this project is

incomparable with the dataset amount used by researcher and developer. They trained

the model in millions of images which allowed them to use a larger batch size yet

hardly over-fitting the model cause poor generalization.

An experiment conducted by Smith, et al. (2018) states the model benefits

from increasing batch size during training instead of decaying the learning rate. Also,

Hoffer, Hubara and Soudry (2018) claim that initial high-learning rate training helps

model find wider local minimal and no inherent generalization issue with training

using large batch size. If without computational constrain and time constrain, it is

47

advisable to train the model starting with small batch size and varies the batch size

with steady grows through training process. At the same times, evaluate whether the

model detection performance is improved from guaranteed loss converge as the batch

size increase.

4.13 Convolutional layer output evaluation

Other than focusing on loss performance or mAP accuracy graph analysis,

there are so much more about CNN can be visualized to help for better understanding.

Visualizing output of each convolution layer through the training process gain a better

insight of CNN.

For instance, the following Figures showing the output of intermediate layer

of trained model when provided multiple vehicles image in Figure 4.21.

Figure 4.21: Original 480x640x3 resolution image before propagate through the

model.

48

Figure 4.22: Total 32 output feature map of 1st convolution layer with 416x416

resolution each.

Figure 4.23: 3x3 filters for each of the feature map respectively in 1st

convolution layer. (weight value is interpreted in color intensity so that can be

easily compared, positive weights are red and negative weights are blue)

49

Figure 4.24: Total 256 output feature map of 6th convolution layer with 52x52

resolution each.

Figure 4.25: 3x3 filters for each of the feature map respectively in 6th

convolution layer.

50

Figure 4.26: Total 40 output feature map of last convolution layer with 13x13

resolution each.

Figure 4.27: 1x1 filters for each of the feature map respectively in last

convolution layer.

The output of first convolution layer shown in Figure 4.22 retaining most of

the information of the original image. The features that are important for

discrimination are usually retained from higher layers of CNN, while irrelevant

variations are suppressed. Each of the filter in Figure 4.23 containing 3x3 weight

parameter values and each responsible to slide through the entire original image and

produce feature maps. Each of the filter extract different features from original image

as the result each of the feature map is different to each other.

As the feature map propagates to deeper layers, the output become more

abstract and less visually understandable as shown in Figure 4.24. This is due to the

combination of convolution layer, activation layer and polling layer have extracted,

activated and dropped the input feature map and output to another layer. Hence, the

deeper the layer, the less information contain about the image, and increasingly more

information which understand by the model.

51

Finally, at the last layer as shown in Figure 4.26, the output feature map

completely distorted by model. This information will be post-processed before

presented to human use.

4.14 Benchmark GPU

A fast GPU allowing for rapid gain in practical experience of deep learning

which help in responds to new problem arise quickly or monitoring model’s learning

condition while training. Without these rapid feedbacks, it would take long time to

realize a mistake or do some changes based on the result. In long term training and

evaluating, it can be discouraging and frustrating to continue with deep learning. To

emphasize how important a fast GPU for doing deep learning, table below shows the

comparison between different GPU’s performance for training a deep CNN.

Table 4.1: GPU speed comparison in term of total time usage to complete a

training.

GPUs vram(GB)
batch

size

Total

images

1

epoch

100

epochs

image

/min

image

/sec

GT 755M 2 2 6000
80

min

8000

min
75 1

GTX1050 4 4 6000
39

min

3239

min
153 2

Tesla K80 12 16 6656
14

min

1410

min
475 7

RTX2040 8 16 6656 8 min
831

min
832 13

52

Figure 4.28: Speed comparison between GPUs had been used for training the

model (Takes GT755m as reference).

From Table 4.1, a normal GPU GT 755M estimated takes 5 days and 12

hours to complete 100 epoch training. Also, the GPU’s virtual memory is not enough

room for a higher batch size other than maximum of 2 batch size. The batch size is

too small for making the model’s loss converge, in fact, the model found very hard

from learning the dataset. However, a gaming GPU GTX1050 setting as the

minimum requirement to train a deep learning algorithm. Although the time usage 2

days and 6 hours is considered long training time period, the batch size of 4 just right

enough to makes the model’s loss converge. Google provides a free cloud GPU for

any user to do the research in deep learning. The cloud GPU Tesla k80 provide a

fairly fast enough speed for deep learning learner to run their algorithm. The

downside of cloud GPU is maximum access time connected to particular GPU is 12

hours and user have to wait for next access time after force disconnected by system.

Hence, it is very hard to do any real time training evaluation without interruption.

Lastly, a decent GPU RTX 2040 showing a pleasant performance in training speed

with a good batch size of 16. In Figure 4.28 compares how many times of speed

reduced between a normal used GPU and higher spec GPU.

1

2.47

5.67

9.62

0 2 4 6 8 10 12
x speed

A
xi

s
Ti

tl
e

Speed comparison between GPU for training deep

CNN

RTX2040

Tesla K80

GTX1050

GT755m

53

4.15 Compare with existing product

Tesla had deployed a new neural net for Autopilot and it claimed to be

massively bigger neural net with impressive new capabilities compare to previous

version. The new computer vision had to be significantly updated by such massive

network. The network handling all 8 cameras to detect and track vehicles and other

objects all around the car. These features add up requires tremendous amount of data

to fully utilize all neural network parameters and huge computational processing

power. The Tesla CEO Elon Musk claimed that the neural network improvement has

nearly 400% increase in useful operation per second due to enabling integrated GPU

and further utilize of discrete GPU. Compare with such advance in neural network

architecture and GPU processing power, the neural network in this project would be

just a learning purpose.

54

CHAPTER 5

CONCLUSION

The objective of this project is to perform vehicle detection using deep

learning. The model used for vehicle detection was originated from You Only Look

Once (YOLOv2) architecture which have 23 layers and it is deep enough to

recognize multiple classes with good accuracy and fast enough to use in real-time

system. It had been trained by own dataset and successfully perform vehicle

detection.

In conclusion, the highest mAP obtained were 0.39, 0.33 for IoU 0.3 and 0.5

respectively. The detection accuracy is limited by various factors which has

discussed before. Firstly, the greedy NMS algorithm was not smart enough to filter

the redundant bounding box from crowded scene causing some overlapped object

bounded with only a box instead of multiple discrete boxes. Also, the number of

training images used to train the deep model were not enough to improve the model’s

generalization. Major accuracy improvement in increasing the amount of training

dataset and minimum batch size had proven in Section 4.10.

Moreover, the model training loss performance had been tested by larger

batch size in Section 4.12. The loss saturated faster with smaller batch size, whereas,

larger batch size having a steady converge after saturation compare with smaller

batch size. Unfortunately, too low in loss value may interpret the model over-fitting

from dataset cause poor detection in new input dataset. Hence, training a model is an

state of art which does not have any fix steps to train the model. Instead, training a

model require trial and error for tuning the hyper-parameters or adding more layers

in order to approach to global minimal where the idea loss with highest testing

accuracy.

55

Finally, all those training and result analysis are unable to perform effectively

without a fast GPU. Training deep learning is computationally intensive, hence,

acquiring a better GPU will improve in both practical experience and quality result as

well.

To help further improve in the model’s training performance and vehicle

detection accuracy, following recommendation are proposed:

5.1 A diverse large-scale dataset

The deep learning is data centric and requires large data sets that represent all

possible driving environments and scenarios in vehicle transport system. Explicitly

collecting relevant dataset is expensive and time consuming. An effective way to

counter with limited dataset resources is data augmentation. Modifying the existing

image to different color space, size, viewpoint, orientation, and transformation would

double the number of images with no duplicate data resources. This could helps the

model recognize in a variety of conditions, hence, improve in generalization.

5.2 Soft non-max suppression (Soft-NMS)

A post-processing algorithm improve from greedy non-max suppression

issues. Greedy NMS easily suppress close-by vehicle’s bounding boxes and only

retain highest confidence score box causes overlapped vehicle miss detected.

Soft-NMS has mitigated this problem by decaying the detection scores of all other

vehicles as a continuous function, lower confidence box still be ranked in the list.

(Bodla, et al., 2017)

5.3 Deeper and more layer concatenated CNN

The more convolution layer, the more complex structure and feature can be

recognized by the model, hence, more complicated works can be resolved or the

model can accurately perform the specific task such as classification and localization.

56

Moreover, concatenate higher layers with lower layers help in detecting smaller

object because higher layers usually retain the most information from the data given,

hence, some detail information can be further extracted at the lower layers. Many

well performing object detection networks such as GoogleNet, Yolov3, Inception Net

are built in very deep layers, however, the downside is it requires much more

complexity big-scale data to utilize all the layers in the model and the memory size

for training the network is increasing dramatically.

5.4 Train in medium batch size

A very large batch size would lead to poor generalization, also, a very small

batch size would lead to under-fitting and unable to converge the loss value. Finding

a fitted batch size should be in between very large batch size and very small batch

size. A suitable one is tightly depending on the amount of dataset with many trial and

error evaluation in order to make the model’s loss reach or approach to global loss

minimal.

5.5 Fast GPU

Graphic card is designated to handle large-scale mathematical intensive task

in parallel especially like deep learning algorithm contain massive of parameters

value. A fast GPU only bring benefits in exploring deep learning fields, but the

costing would block many learners to afford a decent unit for just further study in

this field. Luckily, Google has providing a free online cloud GPU which save them

from limited resources for going deeper into deep learning studies, but the cloud

GPU have limited time access which would have some minor availability constrain

for training a model.

57

5.6 Data Input Pipeline

To execute a training step, first must pre-processing the data and then input to

a model running on a GPU. However, in a naive implementation way would be the

CPU is preparing the data and the GPU is sitting idle at the same time. Similarly,

while the GPU is training the model, the CPU is sitting idle. Hence, the training step

time is sum of both CPU pre-processing time and the GPU training time. To utilize

the hardware resources, an efficient data pipe-lining could lessen the resources in idle

mood. Tensorflow’s data API provides users with building blocks to design input

pipelines that effectively. The pipe-lining overlaps the pre-processing and model

execution of a training step. Figures show below illustrate the effect of total

execution time with and without pipe-lining

(a)

(b)

Figure 6.1: The execution process running (a) without pipe-lining (b)with

pipe-lining

58

REFERENCES

Nguyen, H., Kieu, L., Wen, T. and Cai, C. (2018). Deep learning methods in

transportation domain: a review. IET Intelligent Transport Systems, 12(9),

pp.998-1004.

Yilmaz, A., A., Guzel, M.,S., Askerbeyli, I., Bostanci, E., 2018. A Vehicle Detection

Approach using Deep Learning Methodologies. [ONLINE] Available at:

https://arxiv.org/ftp/arxiv/papers/1804/1804.00429.pdf [Accessed 17 February

2019].

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., Andriluka,

M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R., Mujica, F., Coates, A. and Ng,

A. (2019). An Empirical Evaluation of Deep Learning on Highway Driving.

[online] arXiv.org. Available at: https://arxiv.org/abs/1504.01716 [Accessed 7

Apr. 2019].

Joseph, R., Santosh, D., Ross, G., Ali, F., 2015, You Only Look Once: Unified,

Real-Time Object Detection. [ONLINE] Available at:

https://arxiv.org/pdf/1506.02640.pdf [Accessed 19 February 2019].

Johan, B., Carla, G., Bart, S., Kilian Q.,W., 2018. Understanding Batch

Normalization. [ONLINE] Available at: https://arxiv.org/pdf/1806.02375.pdf

[Accessed 17 February 2019].

Radiuk, P. (2017). Impact of Training Set Batch Size on the Performance of

Convolutional Neural Networks for Diverse Datasets. Information Technology

and Management Science, 20(1).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. and Rabinovich, A. (2014). Going Deeper with Convolutions.

[online] arXiv.org. Available at: <https://arxiv.org/abs/1409.4842> [Accessed 1

Apr. 2019].

Ioff, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, 9, pp.1,4.

Xu, B., Wang, N., Chen, T. and Li, M. (2015). Empirical Evaluation of Rectified

Activations in Convolution Network, 5, pp.2,3.

He, K., Zhang, X., Ren, S. and Sun, J. (2015). Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification, 11, p.8.

https://arxiv.org/pdf/1506.02640.pdf

59

Walia, A. (2017). Activation functions and it’s types-Which is better?. [online]

Towards Data Science. Available at:

<https://towardsdatascience.com/activation-functions-and-its-types-which-is-bette

r-a9a5310cc8f> [Accessed 1 Apr. 2019].

Redmon, J. and Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger, 9, pp.3,4.

Du, J. (2018). Understanding of Object Detection Based on CNN Family and

YOLO. Journal of Physics: Conference Series, 1004, p.012029.

Menegaz, M. (2018). Understanding YOLO. [online] Hacker Noon. Available at:

<https://hackernoon.com/understanding-yolo-f5a74bbc7967> [Accessed 28 Mar.

2019].

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016). You Only Look Once:

Unified, Real-Time Object Detection. 10, p.2.

Yadav, V. (2017). (Part 1) Generating Anchor boxes for Yolo-like network for

vehicle detection using KITTI dataset.. [online] Medium. Available at:

<https://medium.com/@vivek.yadav/part-1-generating-anchor-boxes-for-yolo-like

-network-for-vehicle-detection-using-kitti-dataset-b2fe033e5807> [Accessed 29

Mar. 2019].

Hui, J. (2018). Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3.

[online] Medium. Available at:

<https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2

-28b1b93e2088> [Accessed 29 Mar. 2019].

Rosebrock, A. (2016). Intersection over Union (IoU) for object detection -

PyImageSearch. [online] PyImageSearch. Available at:

<https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-obj

ect-detection/#> [Accessed 22 Mar. 2019].

Hosang, J., Benenson, R. and Schiele, B. (2017). Learning non-maximum

suppression. [online] arXiv.org. Available at: <https://arxiv.org/abs/1705.02950>

[Accessed 25 Mar. 2019].

Hui, J. (2018). mAP (mean Average Precision) for Object Detection. [online]

Medium. Available at:

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-dete

ction-45c121a31173 [Accessed 1 Apr. 2019].

Smith, S., Kindermans, P., Ying, C. and Le, Q. (2018). Don't Decay the Learning

Rate, Increase the Batch Size. [online] arXiv.org. Available at:

https://arxiv.org/abs/1711.00489 [Accessed 4 Apr. 2019].

Hoffer, E., Hubara, I. and Soudry, D. (2018). Train longer, generalize better: closing

the generalization gap in large batch training of neural networks. [online]

arXiv.org. Available at: https://arxiv.org/abs/1705.08741 [Accessed 4 Apr. 2019].

60

Bodla, N., Singh, B., Chellappa, R. and Davis, L. (2017). Soft-NMS -- Improving

Object Detection With One Line of Code. [online] arXiv.org. Available at:

https://arxiv.org/abs/1704.04503 [Accessed 8 Apr. 2019]

61

Appendix A Dataset Annotation Extractor

62

Appendix B Vehicle Detection Train Coding

63

64

65

66

67

Appendix C Vehicle Detection Test Coding

68

