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Vehicle Detection in Deep Learning 

ABSTRACT 

Robust and efficient vehicle detection is an important feature to utilize in the smart 

transportation system. With the development of computer vision techniques and 

accessibility of large-scale traffic transport data, deep learning has been enabled to 

on-road vehicle detection algorithms. In addition, traffic transportation system 

involves death and life concern which requiring high accuracy to ensure safety, also, 

the detection system for autonomous driving requires real-time inference speed in 

order to guarantee prompt vehicle control.  

In this report, a brief concept of training a deep CNN and how deep CNN 

works in object classification and localization is presented. The objective of this 

project is vehicle detection with deep learning, so, vehicles data set from highway, 

urban road and housing area had been collected and applied to the deep learning and 

computer vision algorithms. Due to the limited resources for training large-scale data 

set, the detecting classes will be limited to car, bicycle and motorcycle. Each class has 

roughly same amount of training images with each other. Some experiments have 

been conducted in this project to figure out which batch size performing well in the 

training process. Moreover, output of the convolutional layers has been visualizing for 

better understanding in CNN working principal. Finally, the result the vehicle 

detection performance in this project still have room from further improving, and a 

higher accuracy performance can be easily achieved by acquiring adequate data set 

and find the suited hyper-parameters to train the model.
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CHAPTER 1 

INTRODUCTION 

1.1   Background 

Deep learning is a class of state-of-the-art machine learning techniques that 

has sparked tremendous global interest in the recent years. It continued to be 

discovered and developed by most of mainstream company such as Nvidia, 

Mircosoft, Google, Amazon and Facebook etc. The deep learning field had been 

applied in many fields including from new internet services, like Google Assistant, 

have learned speech from sound to the deep learning self-driving cars to recognize 

and localize vehicles for making a better decision in avoiding obstacles. 

Recent years, large amount of transportation data easily collected from 

multiple sources including road sensors, GPS, CCTV, incident reports and many 

more. Following the AI trends, this big transportation data can be utilize in intelligent 

traffic system which helps modern transportation making smart decision. An efficient 

smart decision support system has the potential to minimize incident response time, 

reduce congestion duration and enhance situation awareness. 

However, processing and modelling traffic data are challenging because of 

the complexity of road structures, traffic patterns and spatial-temporal dependencies 

among them. Most of prediction systems used shallow traffic models which would 

not be able process and utilize such complex big data scenarios. Therefore, deep 

learning architecture become a rising research interest in the machine learning field. 

With sufficient amount of data information, the deep learning algorithms are able to 

learn complicated features and function from big data. The biggest advantage of deep 

learning over traditional methods is that the learning process is automated and 
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trained repeatedly to reach specific task’s objective, without any human involvement. 

(Nguyen et al., 2018) 

1.2   Artificial Intelligence Overview 

Generally, the idea of AI is an intelligent machine that could possess 

human-like characteristics, including knowledge, reasoning, thinking and learning. 

These also known as “General AI” which is unrealistic-like to develop, at least until 

now. Therefore, most of the project or research are focusing on “Narrow AI”. It is 

technologies that can accomplish specific task such as high-level strategic game 

(Alpha-Go), self-driving car, object recognition, data mining and virtual assistance.  

1.2.1 Machine Learning 

Machine learning is a set of algorithms that train computer from learning 

without being programmed in detail. The basic idea of machine learning is to 

program an algorithm that can statistically analyze the input data to predict an output. 

It required several disciplines working together such as statistic, probability, 

information theory and analysis. By using this technology, machine can be trained by 

manipulating large amount of input data and recognizing the data patterns in order to 

accomplish specific task. 

Supervised learning requires a set of data to perform algorithms training. 

These labeled datasets contain variables, or attribute, the model going to analyze and 

use for prediction. Regression and classification are popular examples for supervised 

learning algorithms. 

Unsupervised learning is learning the underlying structure or pattern from the 

given data. The data feed to unsupervised algorithm are not labeled, means that the 

algorithms are left to discover the data structures by themselves. K-means clustering 

and association rule are examples for unsupervised learning algorithms. 
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Figure 1.1: An example of how machine learning works 

1.2.2  Deep Learning 

Deep learning is a subset of machine learning concerned with artificial neural 

network algorithms. This model attempts to create meaningful representative of 

given data with multiple levels of abstraction by passing through multiple processing 

layers. Back-propagation algorithm make the machine “learn” from the dataset by 

changing neural network internal parameters from previous layer to improve fitting 

by reducing error prediction. Deep Neural network have greatest potential in areas 

such as processing images, audio signal and video to classified or recognize the 

information content in the image, signal or video. 

 

Figure 1.2: An example of how deep learning works 

1.3   Problem statement 

Deep learning is a way to solve the complicated task, but there have many 

types of deep neural networks architecture can be used to perform certain task. For 

example, architecture neural network (ANN) capable to learn underlying structure of 

input datasets based on the data attribute and model, to classified them in a 

meaningful manner. But ANN is not suitable to process image-based data due to 
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each neuron in a layer is fully connected to the neurons at next layer. Hence, when 

convert an image into a single vector and input to the ANN would lead to huge 

amount of parameter eventually consuming a lot of computation power. Deep 

convolution neural network (CNN) can be solved this problem due to window filters 

in convolution layer act as extractor to extract the feature by sliding entire the image, 

hence, the parameter can be reduced down when transfer to deeper layer. The deep 

CNN only classified different objects in different categories, but the object 

localization is important for vehicle detection. Thus, applying a suitable deep neural 

network which can detect, classify and localize the object is an important 

consideration to detect the vehicle on highway or urban road. 

To train a deep learning model, it requires huge amount of data to make the 

model has a good generalization in detection. The more data used to train the model, 

the more features can be recognized or learn by model, hence, a better accuracy in 

detection. However, collecting and labeling a quality data is very expensive which 

usually consume a lot of time. Since, training a deep learning require a high 

computational power, while using low-performance computer system would take 

days or even weeks to complete the training and the outcome quality is largely 

depends on the hardware performance too. The latest GPU technologies nowadays 

such as Nvidia GTX or RTX can perform mathematical intensive computing 

operations parallelly and have enough virtual memories for feeding large amount of 

data to model per iteration. Unfortunately, a high-performance GPU required sub 

component to support it, hence, adding more cost to the hardware requirements in 

deep learning fields. Without the doubt, budget constraint will be taken into 

consideration from switching a low-performance computer machine to 

high-performance computer machine. 
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1.4  Aims and Objective 

The objectives of the thesis are shown as following: 

i. To understand the working principle of deep convolution neural network. 

ii. To perform classification and localization on real life vehicle images. 

iii. To perform real-time vehicle detection using deep learning.
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

One of the applications of deep learning is in self-driving cars. Generally, 

self-driving car tends to be more reliable when putting it on the road surfaces which 

are well-maintained and line are marked clearly and accurately. Many automakers 

pursuing their product that can reduce driver work load and adding more safety 

features on their product. Most of the fully self-driving cars are equipped with 

expensive sensor such as LIDAR, high-precision GPS, and radar. 

The commercial grade autonomous vehicles are equipped with radar, sonar 

and cameras. Detecting the car in long range required radar, while detecting nearby 

car can rely on sonar. The cameras act as computer vision which help to detect the 

lane as well as detecting redundant object at moderate distance. Radar working well 

for detecting vehicles, but has ambiguity to distinguish different metal object such as 

tin cans, thus, false decision would raise while moving on the road. Also, radar 

convey little orientation information and imperfect measurement on the lateral 

position of object, resulting difficulties for localization on sharp bends. Compared to 

radar and sonar, cameras contain more on road information, and it could serve as 

reliable addition sensor for autonomous car. The classic computer vision techniques 

are not reaching production grade on automation vehicles yet due to the techniques 

still not mature and require complicated modeling. (Huval et al., 2018) 

Deep learning is alternative way for computer vision. Recently, it enjoys 

great accomplishment in image and video recognition (convolution neural network 

used in competition ILSVRC-2012 by Krizhevsky et al) become a solution to the 
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classic computer vision. Deep learning require huge amount of data and heavy 

computation, but minimal hand-engineering. Engineer can evaluate the deep neural 

networks with different driving environment and situation by input training data. 

2.2  Real-time vehicle detection using deep learning. 

In order to perform a real-time system, the detection system capable of 

operating at greater than 10Hz on laptop GPU. Also, the system used is able to detect 

vehicles more than 100m away, hence, the image resolution used will be higher. The 

Overfeat CNN detector, which is integrated object detection, localization and 

classification task all into one network. A “sliding window” will slide all over the 

image to detect the vehicle. Once an object is detected, a bounding box through 

regression is used to predict the object location. The classifier will ignore the object 

if it cannot distinguish an object within an image. This is undesirable prediction, 

which can only predict one object, as two different objects appear in an input view.

  

To ensure that all object in the input view can be classified, many contexts 

with different views are taken from the image by using skip gram kernels. Then, the 

classifier trained to recognize an object when it appears within its context view. The 

redundant bounding box location appears when multiple object appears, the network 

incorrectly predicting that there is a box between two merged bounding boxes to 

minimize the lost function. The network mistakenly decides that there is a third 

object between two merged bounding boxes. This is dangerous for autonomous car 

when running on the road, which falsely believes there is a car, actually it is not, and 

emergency breaking is falsely applied. This problem would become the bottleneck of 

a real-time system due to the merged bounding box is hardly parallelizable as the 

CNN (Huval et al., 2018). 
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2.3  Comparison between R-CNN and Faster R-CNN network. 

The R-CNN network is made up of three modules. Firstly, it extracts region 

proposals in different aspect ratio. The network provide comparison with labelled 

work by using selective search methods. Secondly, it includes a convolution neural 

network, creating an attribute vector for each region with constant length. The 

convolution neural network will select the possible transformations of the proposed 

region and a bounding box regression used to improve the localization accuracy. 

Finally, it includes a linear support vector machine to classify the assortment of 

regions. Each produced attribute vector from convolution neural network is classified 

using the support vector machine. When there is high-intersection overlap for 

specific region, a non-maximum suppression will be applied to filter the overlap 

region and preserve the highest score region. 

For the Faster R-CNN network is made up of two components. The first 

component is called Region Proposal Networks (RPN). The RPN produces multiple 

of rectangle object on an input image and each of the object will have an objectivity 

score. The RPN is designed with fully convoluted network. The second component is 

called Faster R-CNN detector which share a common set of convolution layers with 

RPN. The Faster R-CNN is a single, unified network used for detection network.  

The Faster R-CNN has improved the regional proposal computation as a 

bottleneck by decreasing the process time of detection in R-CNN. Furthermore, RPN 

integrated with detection network shares full image convolution characteristics 

resulting free region proposals can be made. Faster R-CNN unlike R-CNN require 

external zone recommendation. In addition, the RPN provide an accurate district 

proposal, hence, improve the speed of detection and overall accuracy. An experiment 

made by Yilmaz, et al.(2018) stated that the mean average precision (mAP) for 

Faster R-CNN and R-CNN respectively, at approximately 0.76 and 0.65 values. For 

vehicle detection, results obtained from Faster R-CNN have higher detection 

accuracy compared with the R-CNN. In addition, the speed of object detection is 

become faster and more reliable through Faster R-CNN network. 
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2.4  Unified, Real-time object detection system YOLO. 

Comparing to traditional object detection method, YOLO has extremely fast 

detection. This is because YOLO frame the detection as single regression problem, 

using a single convolutional network to predict multiple bounding boxes, class score, 

and objectiveness for those boxes simultaneously. The network runs on a Titan X 

GPU gains 45 fps with no batch processing and a fast version gains more than150 fps. 

This result reflecting the YOLO able to process a real-time streaming video with a 

very little of latency.  

Furthermore, YOLO sees the entire image and making predictions globally 

based on the contextual information unlike receptive field and region proposal-based 

techniques. YOLO has a lesser background errors compared to Fast R-CNN. In 

addition, YOLO learns wide range of object representations. When trained on real 

life images and tested on artwork, YOLO gave better performance compare with top 

detection methods such as DPM and R-CNN by a wide margin. When applying a 

new or unexpected input, YOLO will less likely to break down due to its highly 

generalizable properties (Joseph, et al., 2015). Some performance and detection 

speed comparison between different method have made by Joseph, et al. (2015) as 

shown in Table. The Fast YOLO gave the highest fps among the other detectors and 

its mAP has doubled as any other real-time detector. YOLO has 10mAP higher than 

the fast version while still able to perform real-time detection as well. 

 

Figure 2.1 : Real-Time Systems accurancy and detection speed on PASCAL 

V0C 2007. (Joseph, et al., 2015) 



10 

 

 

2.5   Benefits of adding batch normalization layer. 

Theoretically in deep networks, high learning rate may cause gradients 

explode or vanish, as well as the network not learn at optimal. Batch Normalization 

tendency to speed up training without accuracy trade-off has become a favorite 

technique in deep learning. An experiment conducted by Johan, et al. (2018) have 

found that the Resnet model without batch normalization converge when the learning 

rate has be decreased to α = 0.0001 and training takes 2400 epochs. To shows how 

batch normalize benefits related, they have trained a batch normalized network using 

a learning rate of α = 0.003 and training takes 1320 epochs. These results further 

illustrated in Figure, the batch normalized network with low learning rate performs 

no better than an unnormalized networks. In addition, the batch normalized network 

with highest learning rate have the largest accuracy gap among the others. 

i 

 

Figure 2.2: The training accuracy (left) and testing accuracy (right) through the 

training cycle. (Johan, et al., 2018) 

The unnormalized networks tends to diverge for large rates in high learning 

rates and batch normalized networks perform well with higher learning rates. To 

investigate the reason behind, Johan, et al. (2018) have compared the gradient and 

distribution of comparable parameters between these two networks as shown in 

Figure. Through the histograms, the gradients are larger and distribution is 

heavy-tailed in unnormalized networks. Whereas for normalized networks, the 

gradients are centred around the mean and distribution is exponentially bounded. 
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2.6 The impact of batch size towards the performance of CNN. 

Improving the performance of a deep CNN is a difficult works. Adjusting the 

training parameters is the domain ways to obtain a relatively well performing deep 

CNN. An experiment conducted by Radiuk (2017) to investigate whether the batch 

size value affect the network training progress and testing accuracy. The deep CNN 

used in this experiment is not as deep as the CNN used in the project. Besides the 

database used in this experiment is different with the datasets used in this project. 

The MNIST database contain only gray scales hand written images and another 

database is CIFAR-10 which contain color images with 10 different classes. 

Although the deep network and datasets used in this experiment is different with the 

project used, the network training performance depends on the batch size value 

would be similar. 

Table 2.1: The result of network testing accuracy on MNIST and CIFAR-10 

datasets with different batch size value. (Radiuk, 2017) 

 

From the Table 2.1, the batch size of 16, 32, 50 and 64 giving poor testing 

accuracy. However, an average testing accuracy results obtained in batch sizes of 

100, 128, 150, 200, 250 and 256. The best testing accuracy are obtained from the 

batch size value of 512 and 1024. Radiuk (2017) had concluded that the larger the 

batch size value, the better the CNN network performing image recognition. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1  Software Installation 

The Tensorflow GPU framework requires adequate libraries and drivers to 

support. The hardware and software requirements are stated below. 

Hardware: 

NVIDIA GPU card with minimum CUDA Compute Capability 3.5 

Software: 

 

⚫ NVIDIA GPU drivers (CUDA 9.0 requries 384.x or higher) 

⚫ CUDA Toolkit (TensorFlow supports CUDA 9.0) 

⚫ cuDNN SDK 

⚫ Python 3.6 

⚫ Anaconda 
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3.1.1 Step for installing CUDA Toolkit 

 

Figure 3.1: The CUDA v9.0 installation options 

 

 

Figure 3.2: The CUDA v9.0 custom installation options 

 

The CUDA Toolkit executive file was run immediately once the package was 

downloaded. The installation options are shown in Figure 3.1 and Figure 3.2. If the 
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CUDA toolkit is not allowed to install, make sure the installer version is compatible 

with pc platform. Another way would be re-installed or updated to latest NVIDIA 

driver. 

3.1.2 Step for including cuDNN SDK into CUDA 

The SDK file was downloaded through the link: 

https://developer.nvidia.com/rdp/cudnn-download. Choose a file compatible with the 

pc window OS. Sign up or login to membership of the NVIDIA Developer Program 

is required to get access to the pages.  

After downloaded the file, following steps show how to build a cuDNN 

dependent program were gone through step by step: 

1. The installed CUDA Toolkit directory path is referred to as : C:\Program 

Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 

2. Navigate to the downloaded cuDNN directory and unzip the package. 

3. Inside the package containing bin, include and lib file. Copy the files into the 

CUDA Toolkit directory accordingly: 

a) Copy cudnn64_7.dll in bin file to C:\Program Files\NVIDIA GPU 

Computing Toolkit\CUDA\v9.0\bin 

b) Copy cudnn.h in include file to C:\Program Files\NVIDIA GPU Computing 

Toolkit\CUDA\v9.0\include 

c) Copy cudnn.lin in lib file to C:\Program Files\NVIDIA GPU Computing 

Toolkit\CUDA\v9.0\lib\x64 

 

 

https://developer.nvidia.com/rdp/cudnn-download
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3.1.3 Installing Python and Build tools 

 The minimum requirement for Python version and Build tools to support the 

Tensorflow GPU is provided as figure below. The Python version and build tools 

were installed via online. The required version to support tensorflow-gpu was 

followed from the list below. 

 

Figure 3.3: The require software and language version to support specific 

tensorflow-gpu version 

3.1.4 Installing Anaconda 

Anaconda provide a user-friendly distribution allows user to create a virtual 

environment and install packages needed for deep learning project. The Anaconda 

also come with conda, Jupyter Notebook and other open source packages. Conda is a 

package manager to manage virtual environment and allow user to install specific 

package version for project use without worrying about version conflicts. 

The Anaconda package was downloaded from online and installed in the pc. 

Once successfully installed the packages, a virtual environment was created to store 
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the conda packages into target folder. Also, Tensorflow-gpu and some support 

packages were installed in the created virtual environment through the conda. Once 

the installation was done, some verify codes were run immediately to verify whether 

Tensorflow has recognize the pc graphic card. The terminal will prompt pc GPU 

information as shown in Figure when successfully installed the Tensorflow-gpu. 

 

 

Figure 3.4: Anaconda terminal prompt the CPU and GPU information of the 

pc. 

3.2  Dataset preparation 

The first step to implement an object detection model is always acquire 

adequate datasets which are meaningful to the training and detection. In this project, 

the datasets not only an image itself, but the object annotations and labels are crucial 

for the neural network to learn the pattern of the detecting object and classifying 

them accordingly. Therefore, datasets creation must be carefully undertaken because 

the quality of the object detection is highly depending on the quality of the datasets 

provided. 
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Here are several methods of obtaining a dataset of images and annotation in 

this project: 

Open source datasets: COCO, ImageNet and PascalVOC are providing huge 

amount of image and annotation for up to 80 classes. However, this project only 

detecting vehicle objects which are car, motorcycle and bicycle. Hence only required 

objects were extracted from the COCO datasets. 

Filtering datasets: The datasets obtained from open source may not have 

captured properly and some of the annotations are missing or miss aligned. Those 

images which does not contain any related object in this detection were be removed 

and miss aligned object will be re-annotated. 

Self-creating datasets: The datasets can be obtained through capturing real 

world vehicle objects. Varieties of object type were captured in multiple scenes with 

different angles and image resolution. 

Dataset annotation: Image annotation is created by using image annotation 

tools to save the large volume of data stored after annotation. VOC Pascal format 

was used in this project as shows in Figure 3.5 below. 

 

Figure 3.5: Image annotation information in Jason format 
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Dataset augmentation: Acquiring and annotating large number of images are 

time consuming and tiring, but not enough of datasets to train the deep learning 

network may lead to generalization issue. Dataset augmentation is a proven method 

to deal with the issue of limited amount of data. This technique generating a new 

training data from the existing dataset by applying image transformations, change 

lighting conditions or crop it differently. 

The images and annotation files were collected by using the method mention 

above. There were only 3 classes contained in these images which were bicycle, car 

and motorcycle. Each of the class was split-ted equally among the total images. The 

total number of images used in this project were 7306 images for training and testing 

the model. These images then further split-ted into training images and testing 

images. The detail of these images is shown in Table below. 

Table 3.1: The number of images used in training and testing process 

Initial number of training 

images 

Final number of training 

images 

Number of testing 

images 

6000 6656 650 

 

3.3  Training process 

Before starts to train the model, it is important to decide the model whether is 

trained in scratch or pre-trained weight. Model trained in scratch takes much longer 

times to get to recognize the dataset underlying pattern. Tone of training images 

needed and required a decent GPU to support the training process. However, the 

pre-trained weight had trained explicitly with tone of images by researcher, also 

known as fine-tuning. The second option usually bring much improvement for 

training process, hence, transfer learning was adopted in this project to train own 

dataset. 
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During the training process, some hyper-parameters will be varying 

according to the training results such as batch size, learning rate and number of 

epochs for the training.  

Batch size is a number of images feed to the model and update the parameters 

once per iteration during training process. The relationship between epoch, iteration, 

batch size in training process are illustrated at Table 3.2 below. One epoch is when 

entire dataset has passed forward and backward through the model during training 

process. The iteration is the number of batches needed to complete one epoch. 

Table 3.2: Relationship between Epoch, iteration and batch size. 

Stage 1 2 3 

Training 

images 

6000 6000 6656 

Epoch 1 1 1 

Batch size 2 4 16 

iteration 3000 1500 416 

Learning rate is a hyper-parameter that controls the step for adjusting model’s 

weights with respect the loss gradient. A low learning rate takes longer time to reach 

global minimum loss, but the loss converges steadily. A high learning rate takes 

shorter time to converge to lower loss, but the model loss may also bounce back to 

higher loss due to the model weights update step is large causes model miss from 

global minimal easily. Hence, choosing a right learning rate is based on trial and error. 

A low batch size needs a low learning rate to prevent from weight explode leads to 

high performance loss. In contrast, a large batch size can use a high learning rate to 

speed up the training process. 

At initial training stage, the batch size was set to 4 dues to hardware constrain 

and trained for 100 epochs with total 6000 images. Then at the final training stage, 

the batch size was increased to 16 and continued training for 100 epochs with 

increase total training images to 6656 from initial 6000 images. The starting learning 
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rate was set to 0.001 and divided by 10 after epoch 30 and epoch 60 for both initial 

and final training stage.  

3.4  Testing process 

After certain epoch of training, the network will be evaluated its performance. 

A completely random images were input to the network to make the detection. These 

prediction and localization will be compared to the labels and ground truth provided 

by the annotations of testing set. Also, the model detection accuracy is evaluated 

using mean average precision metric (mAP). 

3.5  Process flow 

The whole project design and implementation flow are illustrated at the flow 

chart below: 
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Figure 3.6: Whole project design and implement flow  
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CHAPTER 4 

RESULT AND DISCUSSION 

4.1  Model Architecture  

 

Figure 4.1: The model architecture (Darknet-23) demonstration. Total 23 

convolution layer and 5 Max-pooling layers 

The layout of convolution neural network used in this project is demonstrated 

in Figure 4.1 above. There are total 23 convolution layer where each of the layer will 

follow by a batch normalization layer and activation layer. The size of the filter 

window in these convolution layers are 3x3 and 1x1. At intermediate layer, a larger 
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output feature map will be concatenated with a smaller feature map to improve small 

object detection accuracy. Finally, 5 max-pooling layers are used in the model to 

reduce the input size from 416x416 to 13x13 at the output of the last convolution 

layer. 

The flow of the detection system has shown in Figure 4.2 below. A random 

image or video with minimum 416x416x3 resolution will input to the model for 

making the prediction. After that, the output of the model is further post-processing 

and finally output the detection result which is understandable by human.  

Figure 4.2: The flow of how the system perform vehicle detection 

4.1.1 Convolutional layer 

The convolution layer is the core layer of a convolution neural network that 

does most of the computational heavy lifting. Each of the convolution layer have a 

window filter which slide through entire images to multiply with the input image and 

output a feature map. Each of the window filter is responsible to extract different 

features from input feature map. Once a layer accurately recognizes those features, 

they’re fed to the next layer, which trains itself to recognize even more complex 

features. 

Output 

detection 

result 

Post-processin

g algorithm 

Input image 

or video 

Convolutio

n neural 

network 
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The parameters of a convolution layer include: window size, depth, stride, 

zero-padding and filter quantity (Du, 2018). Window size and depth are the 

3-dimension of the window filter. The window size is 3x3 or 1x1 and the window 

depth usually same as input depth. The 1x1 window size convolution mainly used to 

reduce input spatial dimensionality to remove computational bottlenecks and also 

limit the size of models (Szegedy, et al., 2014). 

Stride is controlling the window filters shifting how many unit at a time. The 

window filters shift 1 unit per time in this model to convolve the input feature map in 

detail. Zero-padding pads zero values around the border of image. To ensure the 

spatial dimension of output convolution is remained as the input’s spatial dimension 

after convolves by window filter, the zero-pad size is set to 1. The filter quantity is 

the number of filters to convolve the input data in a single convolution layer. Finally, 

the spatial dimension of the output convolution layer can be calculated using formula 

below (Du, 2018): 
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4.1.2 Batch Normalization Layer 

 

Batch normalization layer can be treated as a data pre-processing layer which 

is applied after every convolution layer. The purpose of this layer is to normalize the 

input data by adjusting and scaling it to have a zero mean and unit variance (normal 

distribution). This will help to speed up convergence in result of greatly reduce the 

model’s training time. Also, it makes the hidden layer continue learning on a stable 

input distributions of activation values that experience less internal covariate shift, 

hence, a dramatically acceleration on training process (Ioff and Szegedy, 2015). 
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Batch Normalization eliminates the need of dropout layer to prevent for model 

over-fitting and also allowing model train in much higher learning rates without 

being explicitly adjust the hyper-parameter and parameter initialization. 

4.1.3 Activation layer 

Activation layer is applied immediately after the batch normalization layer. 

This layer help enable model to learn from the complex arbitrary dataset and a 

non-linear complex function applied between the input signal and output signal. 

Non-linear functions are those which have higher degree and have a curvature 

properties when plotting these functions (Walia, 2017). Without applying the 

activation function in the convolution layer, the model would be simply a linear 

regression function which not powerful enough to learn from the complex dataset. 

The purpose of this layer is to make a non-linear result and set to solve the vanishing 

gradient problem. The vanishing gradient problem happens when the gradient is too 

small that will not update the weights and biases from last layers to initial layers 

effectively during back-propagation. 

The activation function layer used in this model is Leaky ReLu. A 

comparison between ReLu and Leaky ReLu made by He, et al. (2015) stated that the 

Leaky ReLu improves overall training process with almost no computational cost. 

The ReLu may causes a dead neuron when a weight update during back propagation 

and Leaky ReLu solved this problem by introducing a small slope to prevent from 

dead neurons.  

 

Figure 4.3: The activation function of ReLu and Leaky ReLu. (Xu, et al., 2015) 
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4.1.4 Pooling layer 

Pooling layer down samples the dimension of the output from convolution 

layer. Max-pooling with window size 2x2 and stride of 2 is applied after some of the 

activation layer. It extracts highest value from pooling window when window slide 

through entire input feature map. This is because a high activation values from 

convolution layer is treated as meaningful feature and pooling layers filtered those 

low activation values to reduces the number of parameters and lessening the 

computational cost as well. 

4.1.5 Fine-grained features 

From the Figure 4.1 above, a 26x26x64 feature map from earlier layer is 

concatenated with 13x13x1024 feature maps producing a 13 x 13x1280 feature map. 

The purpose is to improve the model from detecting small object in a given image. A 

13x13 resolution alone is sufficient in detecting large object but still a large room of 

improvement in detecting small object. Hence, earlier layer concatenates with later 

layer increase the mAP by 1% (Redmon and Farhadi, 2016). 

4.2  Loss function 

The purpose of loss function is measuring the quality of model’s parameters 

(weight and bias) based on how well the induced scores matched with the ground 

truth labels in the training data. To compute the loss of the true positive, only the 

highest IoU among the all the prediction have made on an image will be selected and 

responsible to the object. This strategy improves the predictions among the bounding 

boxes at predicting certain sizes and aspect ratios. 

 YOLO architecture calculates the loss between the predictions and the 

ground truth by using sum-squared error method. Since vehicle detection involve 
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classification and localization, the loss function will involve classification loss, 

localization loss and confidence loss. 

 If an object appear and model successfully detected it in a grid cell, the 

classification loss for the particular cell is calculated as below:                    

                                    

(4.2) 

 

i. cellin  c classfor y probabilit class lconditiona predicted  theis  p

0 otherwise , cellin  detectedobject  when 1 is 
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The localization loss measures the errors in the predicted boundary box 

coordinate and sizes. The measurement occurs when the bounding box in a cell is 

responsible for detecting the object:   

 

(4.3) 
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The bounding box width and height are squared root to reflect that the small 

deviation in large bounding boxes should matter less than in a small bounding box. 

The cood  is to emphasize the loss from bounding box prediction (Redmon et. al, 

2016). 
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The confidence loss is measuring the objectness of the box: 
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Most of the grid cell may not contain any object and this would cause the confidence 

loss imbalance. To solve this problem, the noobj  is applied to decrease the loss 

value in no object confidence loss (Redmon et. al, 2016). 

Finally, all the losses combined and become the final loss function: 

         (4.5) 
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4.3  Optimizer 

Loss function in previous section measuring how wrongly the prediction have 

made for model. High value of losses meaning the model is not predicting accurately 

and the root cause the wrongly prediction is model’s parameters (weight and bias). 

The model’s prediction improves when parameters able to process the input data and 

output a meaningful information which truly related to the objective task. Hence, 

these parameters have to be updated repeatedly throughout the training process in 

order to get to a lower loss value.  

 

Figure 4.4: Initial parameters are optimized and tends to converge to global 

minimum loss. This method also known as gradient descent. 

The goal of optimizer is to modified the parameters in order to minimizes the 

loss value. The optimizer computes the gradient of loss function, the procedure of 

evaluating the gradient repeatedly and performing a parameter update. The Adaptive 

Moment Estimation also called as Adam optimizer has been widely used in most of 

the deep learning architectures. Many experiments conducted by expert demonstrate 

that Adam works well in practice and outperforms other optimizers. Adam optimizer 

compute individual adaptive learning rates which provide heuristic approach without 

explicitly tuning hyper-parameters for the learning rate schedule manually. Moreover, 

Adam require lesser of memory to perform back-propagation for updating the 

parameters. Performing back-propagation almost double up the memory usage and 

this is the reason why so much memory needed during training.  
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4.4  Grid cell 

After an input images propagate through the model, the input images is 

divided into S x S grid cells. If the center of an object falls into a grid cell, that grid 

cell is responsible for detecting that object. The grid cells are demonstrated in Figure 

4.5. 

 

Figure 4.5: An illustration of 416 x 416 image divided into 13 x 13 grid cells and 

a ground truth box (red). 

Basically, each grid cell consist 5 bounding boxes and each bounding box 

contain of 5 components: hwyx , t, t, tt and ot . The ( yx, tt ) coordinates denote 

the center of the bounding box in a grid cell. The grid cell is not responsible for those 

centers of the bounding boxes are not fall inside it. The wt  and ht  are the width 

and height of the predicted bounding box respectively. 

The confidence score, ot indicates the confidence level of the model predict 

whether there is an object in particular grid cell and also reflects how accurate its 

prediction. The score should be 0 if there is no object appear in the cell (Redmon, et 

al., 2016). The IoU confidence score is calculated as equation below: 
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                     truth

predict
xIoUobject )Pr(

                      (4.6)                
 

Logically, the model will give a confidence score zero if there is no object in 

that particular cell. Otherwise, the confidence score tends to equal to the IoU 

between the predicted box and the ground truth box. 

Finally, each grid cell also predicts C conditional class probabilities, 

|Object)
i

(ClassPr . These probabilities are conditioned on the grid cell containing 

an object. Each bounding box predicts a set of class probabilities, C1, C2 and C3. In 

this project only predicts 3 classes which are bicycle, car and motorcycle. If there is 

an object predicted by model in the cell, the model will also predict which class the 

object belongs to. The class probabilities score indicates how confident the model 

classifies the object into particular class, from 0 the least confident to 1 the most 

confident. 

4.5  Anchor box 

Anchor Box is a predefined box used to make model training more stable by 

fixing the shapes and sizes of bounding boxes. Instead of directly predicting the 

anchor box size, the anchor box is determined via k-Means clustering on given 

dataset. After generating anchor boxes using K-Means clustering, it turns out that 

most bounding boxes have certain height-width ratios for certain objects. For 

example, as shown in Figure 4.6 below, car have a horizontal bounding box, whereas, 

person on bicycle has a vertical bounding box. 



32 

 

 

 

Figure 4.6: An example of diverse guesses for real-life objects. (Hui, 2018) 

 

Figure 4.7: Predefined 5 anchor box with different size at center of a cell. 

 

Instead of predicting arbitrary boundary boxes, this project predicts offsets to 

each of the anchor boxes. As illustrated in Figure 4.7 above, each anchor box is fixed 

for particular aspect ratio and size. The location of anchor boxes is the center of the 

cell in which the center of the ground truth box falls (Yadav, 2017). The ground-truth 

box and anchor box usually are highly overlap to each other due to the size of anchor 

box is generated based on the mean size of the object in the given dataset. Hence, the 

predicted bounding box with highest IoU between the ground-truth box and anchor 

box will be selected as appropriate bounding box. 
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4.6  Direct location prediction 

During testing stage, the model predicts 5 bounding boxes at each cell in the 

output of last convolution layer feature map. As mention in grid cell section, the 

model predicts 5 coordinates for each bounding box, tx, ty, tw, th, and to. The values 

of these 5 coordinates values are meaningful for model but not the actual results yet. 

The center coordinates (tx, ty) applies to activation function to constrain the model’s 

predictions to fall between 0 and 1 so that the center coordinates are bounded within 

respective cell. The actual bounding box coordinates calculation is shown in Figure 

4.8 below.  

 

Figure 4.8: Predicted bounding box size adjusted through anchor box to form 

an actual bounding box (yellow). (Redmon, et al., 2016) 

The (cx, cy) is the distance margin from top left corner of 1st grid cell to the 

top left corner of target cell and (pw, ph) is the width and height of anchor box. The 

width and height of actual bounding box are adjusted nearest to size of anchor boxes. 

The size of the anchor boxes is the size with most of the object going to be detected. 

Thus, the model is not directly predicting the final size of the bounding box, but 

adjusted to more similar to the object size which improve overall detection 

performance. 
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4.7  Intersection over Union (IoU) 

Intersection of Union is a metric for comparing the overlapping between two 

arbitrary shapes. It is used to measure how accurate an object detection base on the 

provided dataset. To calculate the IoU ratio, a ground-truth bounding boxes (drawn 

by hand) and predicted bounding boxes from output model are needed. These two 

bounding boxes will be used to determine the IoU ratio via: 

 

Figure 4.9: Computing the IoU by calculate the overlap area of two bounding 

boxes, and divides it by union area of two bounding boxes. (Rosebrock, 2016) 

In the IoU equation, the numerator is the area of overlap between 

ground-truth bounding boxes and predicted bounding boxes. The denominator is 

the area of union by both the ground-truth bounding boxes and predicted bounding 

boxes. The area of overlap divided by the area of union yields output Intersection 

over Union (IoU). 

Area of Overlap = BA                       (4.7) 

  Area of Union =  BA                       (4.8) 

IoU = 
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BA





                       (4.9) 

  Unionofon Intersecti 

box bounding Predicted 

box boundingtruth -Ground 

where

=

=

=

IoU

B

A
 



35 

 

 

The IoU is a number between 0 and 1, if IoU score approaches to 1 meaning 

that the size and location of predicted bounding box tends to similar with ground 

truth hence better prediction has made by the model. In training process, if the IoU 

score is below threshold value 0.6 will penalize the network and confidence of the 

boxes with low IoU. Ideally, the predicted box and the ground-truth have an IoU 

score of 1 but in practice anything over 0.5 is considered as a good prediction 

(Rosebrock, 2016). For example, the Figure shown below demonstrate a ground-truth 

(red) along with the predicted bounding boxes (green) from the custom object. 

     

(a)                               (b) 

 

(c) 

Figure 4.10: Computing IoU score with different bounding boxes (a) poor IoU 

score (b) good IoU score (c) excellent IoU score  

In Figure 4.10 (a) two predicted box with IoU score 0.172 and 0.361 are 

covered part of the object which fairly localize the whole object as one prediction 

and each of the predicted box (green) is not large enough to cover the ground truth 
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bounding box (red). However, in Figure 4.10 (b) the predicted box with IoU score 

0.722 is bounded within the ground truth, but predicted box not wider enough to 

cover front part of the object. In Figure 4.10 (c), the predicted box with IoU score 

0.904 is entirely cover the object and almost fully overlaps with the ground-truth 

bounding box. 

4.8  Non-max suppression (NMS) 

NMS is post-processing algorithms to filter redundant bounding boxes. NMS 

makes selections based on the Intersection over Union (IoU) between detection 

boxes. As mentioned previously, IoU measures the ratio of the overlapped area over 

the union area between two boxes. NMS can be simplified into two steps (Hosang, et 

al., 2017):  

1) In the same vehicle category, all the predicted bounding boxes are sorted 

based on their box confidence scores from highest to lowest. 

2) NMS selects the box which has the highest box confidence score as the 

reference box, and then it discards other predicted bounding boxes whose 

IoU value with the reference box is beyond the threshold value.  

Then, NMS repeats the above two steps for the remaining predicted boxes until the 

last predicted bounding box in the sorted list. 

 



37 

 

 

     

(a)                             (b)  

Figure 4.11: The output of model prediction (a) without NMS (b) after NMS 

From the Figure 4.11 (a) shown above, multiple bounding boxes prompted 

around the vehicle and each of the bounding box correspond to a confidence score. 

Each of the bounding boxes giving true positive result meaning that the model is 

working as expected, but only one bounding box is needed to localize the vehicle. 

After implementing the non-max suppression algorithm, the result shown in Figure 

4.11 (b) has successfully eliminate the redundant bounding boxes. 

The NMS algorithm also called as Greedy NMS because algorithm greedily 

selects bounding box with high confidence score and eliminate close-by less 

confidence score neighbors since they are likely to cover the same category. The 

ideal result from this algorithm if:  

1) Bounding boxes with high confidence score triggered by same object will 

always be suppressed. 

2) Bounding boxes with high confidence score of the next closest object will 

never be suppressed.  

The greedy NMS usually works well when objects are far apart, but there is a 

tension for suppression when objects with same category are too close to each other 

or crowded scenes (Hosang, 2017). In other words, one object per image 
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post-processing the NMS problem is insignificant, but nearby objects require a better 

NMS algorithm. 

   

(a)                              (b)  

Figure 4.12: Different size of bounding boxes triggered by objects (a) before 

suppression and (b) after suppression 

The problem mention above is demonstrated in Figure 4.12. From the Figure 

4.12 (a), the model was successfully predicted multiple motorcycles and different 

size of bounding boxes was covering the motorcycles correspondingly. After 

post-processing it as shown in Figure 4.12 (b), the motorcycles with far apart from 

the other two is correctly bounded with a bounding box, but the other two 

motorcycles which are close to each other is simply bounded with one box. This is 

because NMS has taking the bounding boxes with high confidence score and 

eliminating the neighbor bounding box which are exceed the suppression threshold. 
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4.9  Real life vehicle detection and observation 

   

(a)                   (b)                      (c) 

Figure 4.13: The result of model’s output detection on housing area image at (a) 

epoch 10 (b) epoch 100 and (c) epoch 250 

From Figure 4.13 above, the model started to detect the cars in the given 

image while training process goes through. Initially, the model unable to detect any 

cars inside the image. After few hundreds of training, the model starts to detect some 

of the cars inside the image which is shown in Figure 4.13 (b), but the white car on 

the left still unable to detect it even though the white car is occupy large area in the 

image. Observing in Figure 4.13 (c), the model detected most of the car inside the 

image and the size of bounding boxes are bounded with the cars. Some of the 

bounding box does not match with exact size and location, but the overall 

performance is quite accurate. 

     

(a)                 (b)                  (c)  

Figure 4.14: The result of model’s detection on a bicycle image at (a) epoch 10 

(b) epoch 100 and (c) epoch 250 
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The model also tested with only one bicycle in an image. From the Figure 

4.14 (a) above, unsurprisingly the model is not able to detect bicycle inside the image 

and none of the bounding box appear in image. In Figure 4.14 (b), the model able to 

recognize small part of the target object, but detection is not accurate enough to 

detect a complete object. In Figure 4.14 (c), the model is starting to detect most part 

of the object compares with Figure 4.14 (b), but the bounding box is not confidence 

and large enough to cover the target object into one box. The overall performance for 

detecting one bicycle in this image is poor. 

 

  

(a)                                (b)  

 

(c) 

Figure 4.15: The result of model’s output detection on traffic image at (a) epoch 

10 (b) epoch 100 and (c) epoch 250 

 

The model also tested in real life traffic road. The model started to detect 

some of the vehicles at training epoch 100. From Figure 4.15 (b), most of the car 

which are very obvious on the image are able to detect correctly, but the motorcycle 
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on the right most is not classify correctly and motor on the left is not detected. At left 

of the image is covered with multiple bounding boxes indicate that the model is not 

confidence enough to localize the vehicle. Also, the motorcycle is wrongly classified 

as car although the size of the bounding box is perfectly bounded with the 

motorcycle. After few more hundred epoch of training, the model detection result 

shows in Figure 4.15 (c) is look more pleasant compare with Figure 4.15 (b). All the 

vehicles appear inside the image are correctly classified and localized. 

4.10  Training loss performance 

 

 

(a)                                   (b) 

Figure 4.16: The graph of training loss against the epohcs with (a) 2 batch size 

and (b) 8 batch size. 

Initially, the model was trained on a graphic card GT755m 2GB vram can 

process 2 images per iteration. The model was let trained for a day and the training 

performance is shown in Figure 4.16 (a). From the graph, the loss is converge for 

early epoch, but bouncing back to higher loss and hardly to converge to smaller loss 

for rest of the epoch. As illustrated from this graph, the model found very hard to 

learn from such small batch size especially at a deep model that contain 23 

convolution layers. In this case, the model may take longer time to learn from all data 

given or in worst case the model may not able to learn from the dataset no matter 

how many epochs have gone through. 

Epoch Epoch 
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The second model had trained on a graphic card GTX1050 4gb vram can 

process 4 images per iteration. The model was let trained for few hours and the 

training performance is shown in Figure 4.16 (b). From the graph, the overall loss 

slowly converges though the training process. There is a sudden grow of loss in 

epoch 8, but return to normal at following epoch. Comparing both graphs above, the 

model has a stable loss converge and better training performance after increasing the 

batch size. Besides, a better GPU with larger virtual ram also stand an important 

factor in quality training process and greatly reducing the time required to train a 

model. 

Since the result shown in Figure 4.16 (b) is in correct trend, the training 

process was continue running for 2 days until reach the final epoch 100 which was 

set initially. The complete loss performance graph has shown in the Figure 4.17 

below: 

             

Figure 4.17: The performance loss graph for 100 epochs (noted that the loss 

values had converted to average loss) 

From the graph in Figure 4.17, the loss barely converges and the line moving 

steadily after epoch 40. At epoch 100, the weight parameters were saved and had 

been evaluated the performance. The evaluation result (shown in Figure 4.19 at 

epoch 100th) is not satisfied, hence, a lower loss is required in this case meaning that 

a larger batch size and a decent GPU are necessary for better training performance. 

This time, the model was trained on a graphic card RTX2040 with 8gb vram. 

The weight files obtained initially was loaded and further trained in this training 

Epoch 
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process. The batch size was increased to 16 images per iteration and learning rate 

was fixed at 0.0001. Another reason that may cause low mAP performance is the 

number of images to train the model is not enough, hence, the total number of images 

was increased from 6000 images to 6656 images. After 13 hours of training, the 

model was trained in 100 epoch and the loss performance graph has shown below: 

 

Figure 4.18: The performance loss graph for 100 epochs with increase batch size, 

number of training images and learning rate. 

From the graph shown in Figure 4.18, the loss converged slowly through the 

epochs. The moving pattern of the graph showing that the loss can be further 

converged as number of training epoch extended. To prevent from over fitting issues, 

the weight parameters at epoch 50 (epoch 150 at graph 4.19) and epoch 100 (epoch 

200 at graph 4.19) were used to evaluate mAP. The mAP obtained for epoch 50 and 

epoch 100 are 0.3, 0.23 and 0.39, 0.32 for IoU = 0.3, 0.5 respectively. The mAP has 

significant grow compared with previous training process. From the observation, a 

larger batch size can help the model converge to a lower loss. Also, the more training 

images feed to model for training, the better the detection performance. Most 

importantly, a better GPU is benefits from the training speed and training quality. 

 

 

 

Epoch 
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4.11  Model accuracy evaluation 

 

Figure 4.19: mAP evaluation for 250 epochs 

Mean Average Precision (mAP) is a metric in measuring the detection 

accuracy of an object detection system. Since the object detection involves in 

classification and localization, hence, correctly classified the target object and 

bounding box overlap with ground truth exceed predefined IoU threshold value will 

improve the overall mAP values. Similarly, target object wrongly classified or below 

IoU threshold or miss detection will decrease the mAP as well. The higher the mAP 

value, the better the detection performance. 

From the mAP graph in Figure 4.19, the mAP improved as training goes 

through hundreds of epochs. The highest mAP obtained are 0.39, 0.33 for IoU 0.3 

and 0.5 respectively. Again, from the graph clearly shows that IoU=0.3 has higher 

mAP than IoU=0.5 because a smaller box which poorly overlap with the ground truth 

boxes also considered as correct detection as long as correctly classify the particular 

object (A clear explanation about IoU in Section 4.7). The mAP improvement with 

IoU=0.3 may interpret that the model has successfully detected there is an object 

appear in the input image and classified it correctly, but the model localization is not 

fine enough to cover the entire object into one box.  

The overlapping area between predicted bounding boxes and ground-truth 

which have IoU score greater or equal to 0.5 are considered as good detection as 
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mention in previous section. Hence, improve the mAP with IoU=0.5 set as a 

destination to obtained a good object detection system.  

4.12 Loss performance with different larger batch size 

 

Figure 4.20: The model loss performance with different batch size for 30 epochs 

and fixed learning rate at 0.001. 

To study how the batch size affect model training loss performance with only 

6656 images. The experiment was conducted with different batch size which are 64, 

128, 256 and 512. The training process was fixed at high learning rate 0.001. The 

model was trained on graphic card Tesla K80 with 11 GB vram (free cloud GPU 

from Google Colab), but the GPU only available continuous running for 12 hours 

and will be force-disconnected by system after the time constrain. Due to the limited 

time resources to train on a free GPU, the training epoch was set to 30 epochs instead 

of 100 epochs. The purpose of this experiment is to figure out the effect of batch size 

at high learning rate on training performance for current number of images. 
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From Figure 4.20, the loss tends to decrease gradually with a larger batch size 

and a steeper decrease with a smaller batch size at the beginning of training epochs. 

This implies that a smaller batch size saturate faster than larger batch size. After a 

few epochs of training, the loss decreased slowly and steadily for batch size 256 and 

512, but small fluctuate without clear decreasing sign for batch size 64 and 128. This 

can be further encoding that; larger batch size guarantees a lower loss or minimal 

optima compare with smaller batch size.  

The experiment shows that using a smaller batch sizes have faster 

convergence to “good” solutions. A smaller batch size will update model’s weight 

parameters more frequently and this intuitively explained by the fact that the model 

start learning vigorously before seeing entire data. The disadvantages model trained in 

smaller batch is not guaranteed to reach global optima (lowest loss with highest test 

accuracy). Also, using too small batch size will apply too much noise during model 

training process leads to poor model performance (As proven in Section 4.10 with 

batch size 2 and 4). Many researchers usually use a larger batch size to train their 

model as it allows computational speedups from multiple GPUs in parallel. However, 

it is well known that too large of a batch size will lead to poor generalization (cannot 

adapt new data properly). 

From the investigation above, it is not easy to find a optimal batch size to 

obtain a well performing model. The batch size also largely depending on the number 

of images used to train the model. Huge number of images hardly leads to poor 

generalization since variety of samples can be observed by the model, hence, a larger 

batch size would do a better job in this case. The dataset amount used in this project is 

incomparable with the dataset amount used by researcher and developer. They trained 

the model in millions of images which allowed them to use a larger batch size yet 

hardly over-fitting the model cause poor generalization.  

An experiment conducted by Smith, et al. (2018) states the model benefits 

from increasing batch size during training instead of decaying the learning rate. Also, 

Hoffer, Hubara and Soudry (2018) claim that initial high-learning rate training helps 

model find wider local minimal and no inherent generalization issue with training 

using large batch size. If without computational constrain and time constrain, it is 
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advisable to train the model starting with small batch size and varies the batch size 

with steady grows through training process. At the same times, evaluate whether the 

model detection performance is improved from guaranteed loss converge as the batch 

size increase. 

4.13  Convolutional layer output evaluation 

Other than focusing on loss performance or mAP accuracy graph analysis, 

there are so much more about CNN can be visualized to help for better understanding. 

Visualizing output of each convolution layer through the training process gain a better 

insight of CNN. 

For instance, the following Figures showing the output of intermediate layer 

of trained model when provided multiple vehicles image in Figure 4.21. 

 

Figure 4.21: Original 480x640x3 resolution image before propagate through the 

model. 
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Figure 4.22: Total 32 output feature map of 1st convolution layer with 416x416 

resolution each. 

 

Figure 4.23: 3x3 filters for each of the feature map respectively in 1st 

convolution layer. (weight value is interpreted in color intensity so that can be 

easily compared, positive weights are red and negative weights are blue) 
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Figure 4.24: Total 256 output feature map of 6th convolution layer with 52x52 

resolution each. 

 

Figure 4.25: 3x3 filters for each of the feature map respectively in 6th 

convolution layer. 
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Figure 4.26: Total 40 output feature map of last convolution layer with 13x13 

resolution each. 

 

 

Figure 4.27: 1x1 filters for each of the feature map respectively in last 

convolution layer. 

The output of first convolution layer shown in Figure 4.22 retaining most of 

the information of the original image. The features that are important for 

discrimination are usually retained from higher layers of CNN, while irrelevant 

variations are suppressed. Each of the filter in Figure 4.23 containing 3x3 weight 

parameter values and each responsible to slide through the entire original image and 

produce feature maps. Each of the filter extract different features from original image 

as the result each of the feature map is different to each other. 

As the feature map propagates to deeper layers, the output become more 

abstract and less visually understandable as shown in Figure 4.24. This is due to the 

combination of convolution layer, activation layer and polling layer have extracted, 

activated and dropped the input feature map and output to another layer. Hence, the 

deeper the layer, the less information contain about the image, and increasingly more 

information which understand by the model. 
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Finally, at the last layer as shown in Figure 4.26, the output feature map 

completely distorted by model. This information will be post-processed before 

presented to human use. 

4.14 Benchmark GPU 

A fast GPU allowing for rapid gain in practical experience of deep learning 

which help in responds to new problem arise quickly or monitoring model’s learning 

condition while training. Without these rapid feedbacks, it would take long time to 

realize a mistake or do some changes based on the result. In long term training and 

evaluating, it can be discouraging and frustrating to continue with deep learning. To 

emphasize how important a fast GPU for doing deep learning, table below shows the 

comparison between different GPU’s performance for training a deep CNN. 

Table 4.1: GPU speed comparison in term of total time usage to complete a 

training. 

GPUs vram(GB) 
batch 

size 

Total 

images 

1 

epoch 

100 

epochs 

image

/min 

image

/sec 

GT 755M 2 2 6000 
80 

min 

8000 

min 
75 1 

GTX1050 4 4 6000 
39 

min 

3239 

min 
153 2 

Tesla K80 12 16 6656 
14 

min 

1410 

min 
475 7 

RTX2040 8 16 6656 8 min 
831 

min 
832 13 
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Figure 4.28: Speed comparison between GPUs had been used for training the 

model (Takes GT755m as reference). 

From Table 4.1, a normal GPU GT 755M estimated takes 5 days and 12 

hours to complete 100 epoch training. Also, the GPU’s virtual memory is not enough 

room for a higher batch size other than maximum of 2 batch size. The batch size is 

too small for making the model’s loss converge, in fact, the model found very hard 

from learning the dataset. However, a gaming GPU GTX1050 setting as the 

minimum requirement to train a deep learning algorithm. Although the time usage 2 

days and 6 hours is considered long training time period, the batch size of 4 just right 

enough to makes the model’s loss converge. Google provides a free cloud GPU for 

any user to do the research in deep learning. The cloud GPU Tesla k80 provide a 

fairly fast enough speed for deep learning learner to run their algorithm. The 

downside of cloud GPU is maximum access time connected to particular GPU is 12 

hours and user have to wait for next access time after force disconnected by system. 

Hence, it is very hard to do any real time training evaluation without interruption. 

Lastly, a decent GPU RTX 2040 showing a pleasant performance in training speed 

with a good batch size of 16. In Figure 4.28 compares how many times of speed 

reduced between a normal used GPU and higher spec GPU. 
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4.15 Compare with existing product 

Tesla had deployed a new neural net for Autopilot and it claimed to be 

massively bigger neural net with impressive new capabilities compare to previous 

version. The new computer vision had to be significantly updated by such massive 

network. The network handling all 8 cameras to detect and track vehicles and other 

objects all around the car. These features add up requires tremendous amount of data 

to fully utilize all neural network parameters and huge computational processing 

power. The Tesla CEO Elon Musk claimed that the neural network improvement has 

nearly 400% increase in useful operation per second due to enabling integrated GPU 

and further utilize of discrete GPU. Compare with such advance in neural network 

architecture and GPU processing power, the neural network in this project would be 

just a learning purpose.  
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CHAPTER 5 

CONCLUSION 

The objective of this project is to perform vehicle detection using deep 

learning. The model used for vehicle detection was originated from You Only Look 

Once (YOLOv2) architecture which have 23 layers and it is deep enough to 

recognize multiple classes with good accuracy and fast enough to use in real-time 

system. It had been trained by own dataset and successfully perform vehicle 

detection.  

In conclusion, the highest mAP obtained were 0.39, 0.33 for IoU 0.3 and 0.5 

respectively. The detection accuracy is limited by various factors which has 

discussed before. Firstly, the greedy NMS algorithm was not smart enough to filter 

the redundant bounding box from crowded scene causing some overlapped object 

bounded with only a box instead of multiple discrete boxes. Also, the number of 

training images used to train the deep model were not enough to improve the model’s 

generalization. Major accuracy improvement in increasing the amount of training 

dataset and minimum batch size had proven in Section 4.10.  

Moreover, the model training loss performance had been tested by larger 

batch size in Section 4.12. The loss saturated faster with smaller batch size, whereas, 

larger batch size having a steady converge after saturation compare with smaller 

batch size. Unfortunately, too low in loss value may interpret the model over-fitting 

from dataset cause poor detection in new input dataset. Hence, training a model is an 

state of art which does not have any fix steps to train the model. Instead, training a 

model require trial and error for tuning the hyper-parameters or adding more layers 

in order to approach to global minimal where the idea loss with highest testing 

accuracy. 
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Finally, all those training and result analysis are unable to perform effectively 

without a fast GPU. Training deep learning is computationally intensive, hence, 

acquiring a better GPU will improve in both practical experience and quality result as 

well. 

To help further improve in the model’s training performance and vehicle 

detection accuracy, following recommendation are proposed: 

5.1  A diverse large-scale dataset 

The deep learning is data centric and requires large data sets that represent all 

possible driving environments and scenarios in vehicle transport system. Explicitly 

collecting relevant dataset is expensive and time consuming. An effective way to 

counter with limited dataset resources is data augmentation. Modifying the existing 

image to different color space, size, viewpoint, orientation, and transformation would 

double the number of images with no duplicate data resources. This could helps the 

model recognize in a variety of conditions, hence, improve in generalization. 

5.2  Soft non-max suppression (Soft-NMS) 

A post-processing algorithm improve from greedy non-max suppression 

issues. Greedy NMS easily suppress close-by vehicle’s bounding boxes and only 

retain highest confidence score box causes overlapped vehicle miss detected.  

Soft-NMS has mitigated this problem by decaying the detection scores of all other 

vehicles as a continuous function, lower confidence box still be ranked in the list. 

(Bodla, et al., 2017) 

5.3  Deeper and more layer concatenated CNN 

The more convolution layer, the more complex structure and feature can be 

recognized by the model, hence, more complicated works can be resolved or the 

model can accurately perform the specific task such as classification and localization. 
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Moreover, concatenate higher layers with lower layers help in detecting smaller 

object because higher layers usually retain the most information from the data given, 

hence, some detail information can be further extracted at the lower layers. Many 

well performing object detection networks such as GoogleNet, Yolov3, Inception Net 

are built in very deep layers, however, the downside is it requires much more 

complexity big-scale data to utilize all the layers in the model and the memory size 

for training the network is increasing dramatically. 

5.4  Train in medium batch size 

A very large batch size would lead to poor generalization, also, a very small 

batch size would lead to under-fitting and unable to converge the loss value. Finding 

a fitted batch size should be in between very large batch size and very small batch 

size. A suitable one is tightly depending on the amount of dataset with many trial and 

error evaluation in order to make the model’s loss reach or approach to global loss 

minimal. 

5.5  Fast GPU 

Graphic card is designated to handle large-scale mathematical intensive task 

in parallel especially like deep learning algorithm contain massive of parameters 

value. A fast GPU only bring benefits in exploring deep learning fields, but the 

costing would block many learners to afford a decent unit for just further study in 

this field. Luckily, Google has providing a free online cloud GPU which save them 

from limited resources for going deeper into deep learning studies, but the cloud 

GPU have limited time access which would have some minor availability constrain 

for training a model. 
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5.6  Data Input Pipeline 

To execute a training step, first must pre-processing the data and then input to 

a model running on a GPU. However, in a naive implementation way would be the 

CPU is preparing the data and the GPU is sitting idle at the same time. Similarly, 

while the GPU is training the model, the CPU is sitting idle. Hence, the training step 

time is sum of both CPU pre-processing time and the GPU training time. To utilize 

the hardware resources, an efficient data pipe-lining could lessen the resources in idle 

mood. Tensorflow’s data API provides users with building blocks to design input 

pipelines that effectively. The pipe-lining overlaps the pre-processing and model 

execution of a training step. Figures show below illustrate the effect of total 

execution time with and without pipe-lining 

 

(a) 

 

(b) 

Figure 6.1: The execution process running (a) without pipe-lining (b)with 

pipe-lining
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Appendix A  Dataset Annotation Extractor 
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Appendix B  Vehicle Detection Train Coding 
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Appendix C  Vehicle Detection Test Coding 
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