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EXPLORING ARTIFICIAL INTELLIGENCE(AI) 

FOR MACHINE AUTOMATION 

 

 

ABSTRACT 

 

 

Artificial intelligence (AI) is something intelligent and it could perform things that only 

human can perform. It might even be more powerful than the human minds if it was 

well developed. People all around the world are getting more familiar with AI as the 

technology development are getting more advance. Object detection task is one of the 

most popular example of artificial intelligence system that used to identify and classify 

objects. Inside the object detection task, it consists of deep convolutional neural 

networks as a classifier. This classifier is work together with other object detection 

technique to detect the region of interest of a particular image. There are many different 

type of open source frameworks such as Tensorflow, pytorch, Caffe and Keras are 

available on the internet. Many research had been done using Tensorflow by those huge 

company such as Nvidia, Uber and Snapchat in defecting object or face. Tensorflow is 

consider as low-level language which is more flexible in design. It is important to have 

more flexibility in desiging own functionalities as it allows us to change the architecture 

of networks based on our requirements. Researcher can understand how the operations 

are implemented through the network control provided by Tensorflow. It also allows 

the researcher to keep track of the updated change over certain time period. In this 

project, we use the Tensorflow Object Detection API which is an open source 

framework for object detection related task to identify and classify different types of 

components. Different type of deep learning models is used to make comparison in term 

of accuracy. In this case, we used Faster R-CNN as our object detection model and 

Inception-V2 as our feature extraction network. Faster R-CNN to run through the 

Region Proposal Network in order to obtain the region of interest and then input into 

the classifier network to obtain the classes for the particular object. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Artificial intelligence (AI) is a machine system that consist of sense of human minds.  

It is define as an intelligent device which react according to its environment. When a 

machine is able to do some reasoning, self-correction and self-learning, it is known as 

an artificial intelligence system.  

 

The birth of AI is during the year of 1956’s at Dartmouth where Allen Newell, 

Herbert A.Simon and Cliff Shaw came out with the Logic Theorist (Brunette et al., 

2009).  They had initiate a series of research projects which related on the programming 

of computers to have human behaviours.  The Logic Theorist was a software program 

that used to prove the theorems in symbolic logic. It is the first working program that 

able to simulate and solve some complex problem which require some aspect of human 

sense.  This Logic Theorist and some other cognitive simulations developed by Allen 

Newell, Herbert A.Simon and Cliff Shaw had brought lots of opportunities for 

researcher to explore on the information-processing psychology developing field 

(Brunette et al., 2009).  For current development, when dealing with some complex 

tasks studies in human factors psychology, Logic Theorist is still the central part of 

theory cognitive psychology, and the ideas from the Logic Theorist is still required for 

the use to solve those complex tasks. 
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 During the late 1990s, AI start to taking into concern in the real world 

applicability.  During the year of 1997, IBM’s Deep Blue chess program had 

successfully defeat the world champion, Garry Kasparov and this is the time that prove 

that the AI system is getting more intelligent (May, 2017).  Some real world application 

such as image recognition and speech recognition is start being developed by the 

researchers. Researches are finding way to allow the algorithms learn the logical rules 

by themselves without structuring the logical rules which set by humans manually (May, 

2017).  The researchers then shift their focus into the Artificial Neural Networks 

(ANNs).   The ANNs was first invented during the year 1940s to mimic how the human 

brains learn.  After a few decades, this ANNs was been use widely as the concept of 

the backpropagation of gradient descent was improved quite a lot (May, 2017).  The 

backpropagation method helps to reduce the number of permutations required.  Hence, 

it become more efficient when comes to the training session.  But there are still some 

limitations with current technology that had plagued their adoption even with the use 

of improved new algorithms.  

 

In 2006, some changes were made on the ANNs and now it is replaced by the 

term of deep learning neural networks (DNNs) which implemented by Geoffrey Hinton 

(May, 2017).  Hinton added multiple layers of neural networks into ANNs in order to 

optimize the results obtained by each layer.  Hence, there is a significant improve while 

the learning was now accumulated faster up the stack of layers.  When the Graphical 

Processing Units (GPUs) was implemented, Andrew Ng of Stanford University make 

an improvement for the deep neural networks using the GPUs at year of 2012 (May, 

2017).  GPUs consist of massive parallel architecture that are able to handle multiple 

tasks simultaneously.  Ng found that the training time used to train the deep learning 

neural networks is significantly reduced compared with the use of general purpose 

CPUs (May, 2017).   

 

Currently, there are 4 main factors which help to drive the AI today.  First of it 

is the “Big Data” was introduced.  AI require a huge amount of data in order to learn 

more effectively and precisely.  Big Data provide lots of data information from different 

sources such as mobile computing, Internet of Things sensors and social.  The second 

factor is about the cheap computation power.  Hardware is the one which remained as 

a constrain factor after the AI algorithms was improved at the past.  Now, GPU gained 
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the popularity in the AI community as it provides high computational power which can 

run the operations parallel and perform matrix multiplication in a more efficient manner.  

Not only the implementation of GPU, CPUs have also been improved as it now able to 

perform more efficient matrix computation and more effective parallelization with the 

new deep learning instruction set implement in the CPUs processor (May, 2017).  The 

third factor is a more sophisticated algorithms was implemented in recent. The state of 

the art in AI is depending on how the algorithms works.  Hence, a more advanced 

algorithm would allow the AI to solve some of the specific problems such as speech 

recognition and image classification with a more precise accuracy.   Lastly, broader 

investment is also one of the main factor to drive the AI towards the future. In the past, 

the funding in this area is not enough combined with some challenging problems met 

in AI resulted in minimal progress.  Now, AI investment is keeping increase as many 

people see the possibility and the benefits of AI which able to makes lots of working 

tasks become simple. 

 

 

 

1.2 Problem Statements 

 

Deep learning might be the best way in training a better AI but when it comes to training 

process, it definitely requires lots of data to make sure it would achieve a more precise 

accuracy.  Just like a normal human brain, a lots of real world experiences must be 

acquired in order to learn and deduce from it.  For the artificial neural networks, it 

requires a huge amount of data to abstract more parameters in more details.  For 

example, an image object recognition tasks require at least thousands of training data 

image in order to allow the machine extract and recognize the details of the object 

clearly.     

  

In the previous decade, object detection is hard to be implement because of the 

insufficient of dataset and the lack of powerful CPU resources. After the 

implementation of GPU by NVIDIA in year 1999, developing a deep learning model is 

not a dream anymore. The time used for training and testing the dataset had been 

reduced significantly. A powerful GPU can at least decrease 70% of the training and 

testing time for a particular model. Many researchers start to do research and working 
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on different type of architecture for the convolutional neural network. The accuracy of 

a classifier is getting better and better as the design of architecture used for the 

convolutional neural networks are keep improving. The amount of data used would also 

affect the quality of a classifier model. Insufficient data would lead to bad performance.  

 

With current technology, we now could obtain data image easily from different 

type of resources and the data can also be transfer easily through high speed internet. 

But yet for specific item, it might hard to be found on the internet. Hence, we still need 

to capture our own image if we want to use it as our dataset. A classifier is just available 

to classify an image into one category of classes. For example, in an image which 

consist of a cat, a classifier would identify it as a cat. If an image contains more than 

one objects, the classifier will also available to categories it into a certain class only. 

Object detection cannot be built using a standard convolutional neural network 

followed by a fully-connected layer. This is because the number of occurrences of the 

object of interest will vary for different input image. An object detection system 

requires the use of deep learning technique which involves implementation of several 

neural networks for both image localization and classification. If an input image 

consists of few objects, a boundary box would be drawn around each object and then it 

will input those boxes of image into a neural network for classifications.  

 

 Overfitting in neural networks is the problem that will occur in many of the 

cases.  Overfitting is basically when a neural network unable to learn in an effective 

manner due to several causes (O’Shea and Nash, 2015).  Besides, overfitting can also 

be explained in the case when the training accuracy is increasing but the validation 

accuracy is decreasing.  It most probably would occur in the complex models which 

having huge amount of parameters relative to the number of observations.  The 

efficiency of a model is not just only judged by its performance on the training dataset 

that fed in but also its ability to perform well on an unseen data set.  The model would 

only recognize those training data model but does not learn how to generalize to new 

situations and data set. 

 

 In deep learning for an image classifier, optimizing the hyperparameter’s value 

is not an easy task.  The value of a hyperparameters is define at the prior to the 

commencement of the learning process.  A small change in the hyperparameters value 



5 

 

would invoke a large change in the performance of the model.  The hyperparameters 

value which relying on the default parameters value without any optimization would 

bring a large impact on the model performance.   Learning rate, number of epochs, 

batch size, activation function, weight initialization, and dropout layers are the 

hyperparameters in a convolutional neural networks.  All these parameters value would 

affect the accuracy of outputs.  There are two type of methods in order to find out the 

best suit hyperparameter’s value which is the grid search and the randomized search.  

Grid search would search all the parameter combinations for given values. Parameter 

space of a given number of candidates is generated by random search with a specified 

distribution.  For grid search, it is more commonly used in many machine learning of 

algorithms but not for deep learning algorithms.  Random search is more suitable for 

tuning the deep learning neural network’s hyperparameter and it is more efficient 

compare to grid search. 

 

 

 

1.3 Applications 

 

A very well-known application of object detection used in is the self-driving cars to 

detect objects around. As the industrial now is moving into 4.0 industrial which means 

fully automation industrial, this deep learning technique can also be implemented for 

this industrial use to reduce the need of human works. For example, this object detection 

application can be used in is the inspection process to detect the defect of a wafer 

product or component.  

 

Over the years, many of the semiconductor manufacturers had done lots of 

efforts to reduce the time used for each process and also reduce the need of human 

workers to operate each process. All of these can be a huge expense for a semiconductor 

company. Hence, for the past few years an automatic optical inspection machine has 

been developed. It was mainly to tackle the problem of inspecting defect products 

which take a long time and require many workers. Before the deep learning methods 

was used, there are several techniques such as image processing and machine learning 

is used to solve that inspection problem. The accuracy of image processing is very low 

compare to machine learning. For the image processing, its orientation is quite 
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important. Any mis-orientation would lead to the system to classify it as defect. For the 

machine learning, it requires engineers manually hand-featured its specifications. It 

takes time to specify all the feature of a component and its accuracy turn out is still 

acceptable. Lightning is also an important issue that need to be worked out for both 

machine learning and image processing technique in developing auto-inspection 

machine. A slight change of lighting sources would affect the output of the results. 

 

 

 

1.4 Aims and Objectives 

 

The below shows the objectives of the thesis: 

i) To study the use convolutional neural network for object detection purpose. 

ii) To build a deep learning based image component detection using Tensorflow 

framework in Python language. 

iii) To classify and localize the electronic components using the object detection 

model. 

iv) To detect and classify components in real-time. 

 

 

 

1.5 Scope 

 

The assignment entails the development of deep learning model running on the 

tensorflow gpu which capable to identify and classify the components accurately in real 

time form. The below shown few challenges that had been met for this project: 

1. Gathering and labelling of the training and testing data. 

2. Classifying components which has almost similar appearance but which 

actually are two different components. 

3. Identifying of multiple components in a single frame where some components 

might be only partially visible or overlapping with the others. 
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4. For the whole process, it need to be done really fast and must be accurate. Hence, 

real time video detection is recommended. Besides, it also requires a very high 

specification GPU to run for the testing for fast performance. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introductions 

 

2.1.1 Automated optical inspection (AOI) Machine 

 

Automated optical inspection (AOI) Machine has been widely used in the 

manufacturing production line for quality control and real-time detection of defects.  

One of the example of defect structure is the damages on the backside of wafer due to 

the inaccuracy of dicing saw process.  The main damage is the chipping and 

delamination of the backside wafer which can reduce the die strength (Mei et al., 2012). 

There are kinds of product such as wafer, semiconductor and led parts that are required 

this technology to enhance the speed and accuracy of the defect detection.  Furthermore, 

it can reduce the needs of human supervision to take care of this inspection process. 

 

 Artificial neural networks have been applied on these AOI machines in order 

ensure the accuracy for defect detection is great enough.  But there are still some of the 

defect features such as the flaw size and inclination might not be recognized (Ye et al., 

2018).  Hence, a more intelligent classification system has to be developed to evaluate 

different kinds of defect features.  The development of AI technology must be improved 

in order to improve the feature-based defect classification.  In the previous, the defect 

classification approaches are based on the classic neural networks which most of the 

time require the programmer to specify the characteristic of the features without the 

ability of self-learning (Ye et al., 2018).  As technology getting greater and greater, 
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deep learning methods was now introduced and used in the AOI system to output a 

more precise accuracy. 

 

 

 

2.2 Machine Learning, Artificial Intelligence and Deep Learning  

 

Artificial intelligence (AI) is the intelligence acquired by a machine. It would know 

how to do some human tasks such as reasoning, learning, planning and communicating 

(May, 2017).  AI is generally a branch of computer science which focused on 

developing machines capable of intelligent behaviour.  For machine and deep learning, 

both of them using the algorithms to learn from given data and make prediction on 

another new set of data (May, 2017).  The algorithm required a huge amount of data in 

order to perform well in specific task.  Machine and deep learning is definitely the 

subset of the AI and deep learning is also the subset of the machine learning which 

focus even more narrowly on machine learning techniques that require “thought”.  

 

 

Figure 2.1: Relationship between Machine learning, Deep learning and Artificial 

Intelligence (May, 2017)   

 

 

 

2.2.1 Machine Learning   

 

According to Arthur Samuel in 1959, he mentioned that machine learning helps to 

reduce the work of programming needed for the learning process.   Machine learning 

would learn from the data and make predictions on data through the explores study and 
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construction of algorithms.  There are two type of machine learning methods are widely 

used in recent real world applications.  One of the machine learning methods is the 

supervised learning and the another is the unsupervised learning method.  

 

 Supervised learning algorithms is given labelled samples and so the machine 

was trained to recognize the input and give a correct output based on the input given 

(Ongsulee, 2017).  For examples, an image could be labelled either cat or dog and then 

when a new image was inserted, it would outcome a correct output based on the image 

given.  The algorithm would compare the actual output with the correct outputs to find 

the errors and try to learn from it (Ongsulee, 2017).  Supervised learning will use the 

pattern of a labelled input to predict the value on the unlabelled data.  Supervised 

learning requires the supervision of a human and the labelled data was manually 

labelled by the programmer.  There are 2 groups of supervised learning that it can be 

categorize which one is the regression and the another is the classification problem.  

 

 Unsupervised learning is a more interesting way of learning to study the 

representation of input patterns in a way that reflects the statistical structure of the 

overall patterns (Dayan, 2009).  Unsupervised learning would react more likely to a 

human brain compared to the supervised learning.  The training set used in 

unsupervised learning do not include any labels.  The system was not told taught in 

recognizing the exact answer (Ongsulee, 2017).  The algorithm must figure out by its 

own about what is being inputted.  Unsupervised learning most of the time used in the 

transactional data and it is working quite well on it (Ongsulee, 2017).   

 

 Other than the supervised learning and the unsupervised learning, there are 

actually 2 more type of machine learning exist which is the semi-supervised learning 

and reinforcement learning.  In semi-supervised learning, the word “semi” represent the 

need of the programmer in order to do correction whenever the machine did some 

mistake.  It uses both unlabelled and labelled data for the training purposes.  This 

method of learning is usually useful in the classification, regression and prediction 

process (Ongsulee, 2017).  Whenever the cost associated is too high for labelling data, 

semi-supervised learning is recommended to be applied in order to reduce the cost by 

using more unlabelled data for training process (Ongsulee, 2017).  For reinforcement 

learning, it basically learns through the trial and error process which would help to 
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optimize the action yield accuracy (Ongsulee, 2017).  Gaming, robotics and navigation 

application would often consider to use this reinforcement learning method.  Three 

primary components are required to take in consideration in this learning process which 

is the environment, the agent and the actions.  The environment is referring to the things 

that the agent which is also known as the decision maker would interacts with.  Other 

than that, the actions are basically what the agent can do.  The main objective is to 

optimize the expected outcome for a given period by choosing the right actions by the 

agent (Ongsulee, 2017).   

 

 

 

2.2.2 Deep Learning 

 

Deep learning is a very powerful technique which is the enhancement of the machine 

learning. It is basically the integration of branch of machine learning. Deep learning 

has remove the need for feature engineering and replace it with a brittle, complex and 

engineering heavy pipelines with one end to one end trainable models with the help of 

different tensor operations.  Deep learning has the capability to learn from the past 

prediction by its own and to continually improve their predictions based on new testing 

data (Ongsulee, 2017).   

 

 Through this continuous learning process, it would have the capability to 

detect different kinds of defect structure even though the defect structure is small and 

tiny.   Thus, the deep neural networks were constructed and inputted into the AOI 

system for a better defect classification and evaluation (Ongsulee, 2017).  A graphics 

processing unit (GPU) card was required to deal with huge amount of training set data 

for the classification of defect structures for different kinds of electronic components.  

A faster training process could be done with the help of GPUs. 
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2.3 Convolutional Neural Network Architecture 

  

2.3.1 LeNet (Created by LeCun) 

 

LeNet was the first convolutional neural networks that built in 1990s which start the 

field in deep learning. It was mainly used for hand-written number or character 

recognition.   

 

 LeNet-5 was the latest architecture version of LeNet which is implemented 

at 1998.  LeNet-5 containing 7 layers with different trainable parameters also known as 

the weights (Patrick et al, 1998).  In this case, the size of input image used is larger than 

the largest character size in the database.  The size basically set at 32x32pixel which is 

larger than the largest character size of 20x20 pixels at most.  This is to ensure the end-

points or corner features would be detected.  LeNet-5 used normalization for the input 

pixels so that the learning rate would be faster (Patrick et al., 1998).  The layers of the 

LeNet-5 are arranged accordingly where the first layer is the convolutional layer, 

followed by a sub-sampling layer, again a convolutional layer and a sub-sampling layer, 

once again a convolutional layer, then a fully connected layer and finally an output 

layer.  The process for recognizing higher resolution images might require more 

convolutional layers.  Hence, LeNet architecture is more suitable in classifying hand-

written numbers or character’s due to its resources was limited.   

 

 

 

2.3.2 AlexNet  

 

AlexNet is almost similar with the LeNet architecture. AlexNet has a deeper network 

compare to LeNet where there is an increase in the filters per layer and also with the 

stacked convolutional layer.  It consisted of convolutional layer, dropout layer, max 

pooling layer and also the fully connected layer.  ReLU activations function was 

performed at the end of each convolutional layer and fully connected layer.  The 

introduced “dropout” layer was used to set the output of each hidden neuron to zero or 

exclude it when it probability achieved is below 0.5 (Krizhevsky and Geoffrey, 2012).  

This can allow the network to learn more robust features which are useful. Those 
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unused random subsets of the other neurons are ignored in its backpropagation process 

to reduce the time consuming for the whole neural networks to complete its process. 

 

 

 

2.3.3 ZFNet (Created by Zeiler and Furgus) 

 

ZFNet model is a model architecture which modified from the AlexNet model 

architecture to have a more interesting way in visualizing feature maps.  ZFNet used a 

smaller filter size and with a decreased stride value in order to retain more information 

for the original pixel.  A larger filter and a larger stride value used in AlexNet might 

loss some of the relevant information especially during the process in the first 

convolutional layer.   In this ZFNet, it has introduced a new visualization technique 

which is the Deconvolutional Network. It able to examine the different feature 

activations and the relation of its compare with the input pixels (Zeiler and Fergus, 

2014).  Deconvolutional networks work in an opposite way of what a convolutional 

network does.  The input will go through a series of unpool, rectify, and filter operations 

for each preceding layer till it reaches the input space.  Through these processes, the 

type of structures excited could be examine for a given feature map (Zeiler and Fergus, 

2014). 

 

 

 

2.3.4 GoogLeNet/Inception 

 

Inception is used to differentiate some scale of invariance in an object recognition.  A 

convent might not be able to recognize an object if the object is too small in an image.  

The network filters of the Inception would enlarge the object and to be trained to 

recognize it.  Inception has the capability to convolve through an image using various 

filter sizes which both process at same computational step in the network (Murphy, 

2016).   

 

 At the end of the GoogLeNet network, it does not consist of a fully connected 

layer.  It is replaced by an average pooling process across a 7x7x512 output volume in 
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order to yield 1x1x512 vector (Murphy, 2016).  The purpose of replacing the fully 

connected layer to an average pooling layer is to avoid the substantial portion of 

parameters required for fully connected layers.  In constructing a high level 

representation with low dimension of an image, the successive recombination of high 

level parameters in a fully connected layers is excessive (Murphy, 2016).   

 

 

 

2.3.5 VGGNet (Created by Visual Geometry Group)  

 

VGG-16 consists of 16 layers which is a very uniform architecture.  It is similar to the 

AlexNet architecture but with lots of filters used for extracting more parameters and a 

deeper weight layers where AlexNet only consists of 8 weight layers (Yu et al., 2016).   

With the huge amount of filters used in the convolutional layer, this would cause it to 

have over millions of parameters and would take a very long time for its training process.  

VGG-16 is with better representation ability and also good in removing those unrelated 

background information (Yu et al., 2016).  It is more preferable to be used in those 

challenging baseline feature extractor.  Its network architecture weights are quite large 

due to its depth and number of fully connected nodes is very high.  

 

 

 

2.3.6 ResNet (Residual Neural Network) 

 

During the ILSVRC competition in 2015, Microsoft ResNet won that competition.  The 

ResNet have the solution for the backpropagation encountering the exploding or 

vanishing gradient problem (Murphy, 2016).  The output of the network is depends on 

the sum of a series of small residual changes applied on the original input.  This network 

has the possibility to perform even more deeper than anything previously possible.  At 

the competition, Microsoft has successfully implemented a residual network which 

having 152 layers which is equivalent to 8times deeper compared the VGGNet (Murphy, 

2016).  For the previous network design, increase in network depth would actually 

decrease the network performance. But this is different when it come to the design 
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architecture of a residual network. ResNet performance continues to increase as the 

depth increase.  

 

 

 

2.4 Basic Building Block of Convolutional Neural Network  

 

There are four main layers which represent the basic functionality of a convolutional 

neural network.  First of all is the input layer which help to convert and resize an image 

into the matrix form of pixel values.  Next, the convolutional layer which would 

determine the output of neurons through the calculations of the scalar product between 

the region of neurons connected to the inputs and also their weights.  Rectifier linear 

unit is used in this layer which act as the activation function for the convolutional layers.  

Pooling layer will then perform the subsampling along the spatial dimensionality of a 

given input, it would only take the important parameters and reduce all other unused 

features.  Max-pooling is the most common pooling process used in for the image 

recognition process.  After that, the fully-connected layers was introduced and the 

ReLU activation function was applied in this layer just like the convolutional layer did. 

This layers are used to allow a high level reasoning to be processed and to produce the 

output for the classification purpose.  All these operations are the basic building blocks 

of a convolutional neural network and also in any other different convolutional neural 

network architecture.  All of these operations have their own important role in the 

convolutional neural networks.   

 

 

 

2.4.1 Convolutional Layer  

 

 The convolution operation is the main core building block of the 

convolutional network which undergoing most of the high computational tasks. It is 

used to extract features information from the input image.  The convolutional layer 

would have a learnable filters extends through the full depth of the input volume.  

Assume an input image which having only 1 depth which is a grayscale image, a typical 

filter which have a size 3x3x1 would slide over the width and height of the input and 
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produce a 2-dimensional feature map.  The number of feature map produced would 

depends on the amount of filters used in a convolutional layer. For example, if 16 filters 

were used in a convolutional layer, it will produce 16 features map which will stack 

together along the depth dimension.  The features map can also be known as the 

activation maps which would give responses of that filter at every spatial position.  The 

figure 2.3.1 is an example of input image which is in the array form. When a learnable 

filter shown in figure 2.3.2 slide across it from the top left corner until the bottom right 

corner, it will produce a feature map just like what shown in figure 2.3.3. 

 

 

Figure 2.2.1: Input Image in Array Form (Britz, 2015) 

 

 

 

Figure 2.2.2: Learnable Filter with Certain Weight (Britz, 2015) 

 

 

 

Figure 2.2.3: Convolved Feature Map (Britz, 2015) 

 

 

 

2.4.2 Adaptive activation function 

 

Tanh, sigmoid or rectifier linear unit function in nonlinearity components could help to 

solve the complex function in a large neural network (Hornik et al., 1989).  However, 
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the activation function chosen for the deep neural networks must be very careful as it 

consists of large impact to the network performance.  

 

 Activation function is one of the training hyperparameter in the deep neural 

networks.  For the past few years, researcher has been developing the activation 

functions and make a great improvement on the activation chosen which help to speeds 

up the training process and to get more precise results.  Adaptive piece-wise linear 

function is introduced during the year of 2014 as it could be learned for each hidden 

neuron (He et al., 2015).  Then, a parametric form was proposed and those extremely 

deep models to be trained and achieve a high accuracy results on the GoogLeNet dataset 

(Zhang et al., 2015).  Polynomial activation function which is smooth piece wise is then 

proposed to reduce the bias of the regression networks.  Piece-wise linear function 

always assigns the negative part into zero.  A predefined value would be exponentially 

decreased into zero when using the elu function whereas leaky relu function consist of 

small predefined negative slope for the negative inputs (Clevert et al., 2016).  elu 

activation function able to accelerate the training process by preventing a bias shift to 

occur in the relu networks.  A mixed function of elu and leaky relu is then proposed as 

an adaptive function which learn in a data-driven way (Qian et al., 2018).  

 

 Inspired from the above explored method, it had given contribution to the study 

of effect of asymmetry on a parametric sigmoid.  The main objective is to produce an 

adaptive sigmoid function with parameter which can be fitted and controlled for each 

of the hidden neuron with the other deep neural network parameters in the training 

process.  Besides, one of the other aim is to propose a smooth variant relu function feed 

into the deep learning neural networks.  These activation functions which is in 

parametric form has improved the effectiveness of the deep neural network in the 

classification task such as image and text classification (Farhadi, 2017). 

 

 In recent, there are two model of classification functions is used in the 

convolutional neural network which is the softmax function and the Rectified Linear 

Units (ReLU) function.  Softmax function is basically used in the last layer of the neural 

network.  Discrete probability distribution for the K classes is described by the softmax 

function.  ReLU is an activation function which has been proven by strong 

mathematical and biological analysis for the neural network activation purpose (Agarap, 
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2019).  It works by thresholding values into 0.  For example, f (x) = max (0, x) would 

output a value of 0 when x < 0 and output a linear function when x ≥ 0.  The figure 2.4 

below shows the ReLU function for f (x) = max (0, x).   

 

 

Figure 2.3: ReLU activation function for f (x) = max (0, x) (Agarap, 2019) 

 

 

ReLU is commonly used in the neural network as an activation function whereas 

the softmax function is being used as the classification function for the last layer. Then, 

the softmax cross-entropy function is introduced to learn the weight parameters of the 

neural networks (Agarap, 2019).  The weight parameters are learned using the 

backpropagation methods for the gradients from the ReLU classifier.  

 

 

 

2.4.3 Max Pooling Layer  

 

After passing through the convolutional layer, a max pooling layer is then applied for 

the subsampling purpose. The max pooling layer is mainly to reduce the spatial size of 

the input, number of parameters and the computations to prevent overfitting. It is 

basically applied on a non-overlapping slide of the receptive fields with certain value 

of stride to slide through the corresponding input. The zero padding parameter might 

need to be set in this process to produce an output of equivalent dimensions. Zero 

padding is a process of padding around the border of the input and is an effective way 

to control the dimensionality of the output volumes (O’Shea and Nash, 2015).  The 

down-sampled feature maps produced by the last max pooling layer are often follow up 

by the fully connected layer subsequently (Witten et al., 2016). 
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Figure 2.4: Max Pooling Process (Britz, 2015) 

 

 

 

2.4.4 Dropout 

 

Dropout is an efficient method on reducing the training time for a huge neural network 

which might take up to several days of training period.  Dropout is a method which 

remove or ignore those hidden neurons when the particular neuron achieves or fall 

below a certain amount of probability (Krizhevsky et al., 2012).  The removed neurons 

would not contribute to the forward pass or participating in the backpropagation process.  

Each time an input is obtained, the neural network would sample in different 

architecture where all these architectures are sharing their weights. This help to reduce 

the complex co-adaptations of neurons since a neuron unable to rely on the presence of 

particular neurons. Hence, it has the capability to learn more robust features which are 

useful in conjunction with many other random subsets of neurons (Krizhevsky et al., 

2012).  Dropout layer is implemented at the fully connected layers which consist of the 

hidden neurons and involved in the backpropagation process. 

 

 

 

2.4.5 Optimization Algorithms 

 

Different optimization algorithms used in deep learning neural networks would get 

different unexpected results based on its problems and datasets given.  Optimization 

algorithms is used to update and calculate appropriate and optimize the value for such 
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model’s parameters which would affect the model’s learning process and the output of 

the model.   

 

Gradient Descent is a first order optimization algorithm. First order 

optimization algorithm minimizes or maximizes a loss function using its gradient 

values relative to its parameter.  A line which is tangential to a point on its problematic 

surface are basically a first order derivative.  This technique is easier to compute and 

able to do fast converging on a huge data sets.  As we know, backpropagation is a 

common technique which used to train a neural network.  In this process, it will first 

propagate forward through the hidden layers and calculating the dot product of inputs 

and their corresponding weights. Then, activation function is applied to those sum of 

products and introduces non-linearities to the Model which allow the model to learn 

more functional mappings.  After that, it will propagate backwards in the network and 

carrying the error terms and update the weights values using this gradient descent 

optimization method.  Gradient descent will help to calculate the gradient of error 

function with respect to the weights and update the weight parameter in the opposite 

direction of the gradient of the loss function with respect to the Model’s parameters 

(Ruder, 2016).  The weight value would be finalized when the local minima point is 

found. 

 

 

Figure 2.5: Gradient Descent Model 

 

 

Gradient 

Initial Weight J(w) 

w 
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 Stochastic gradient descent (SGD) help to update the parameter for each training 

example. Before this, gradient descent performs redundant computation for large 

datasets through recomputing the gradients for similar examples before each parameter 

was updated (Ruder, 2016).  SGD do not follow this redundancy method but it 

performing one update at a time and it is a much faster way.  The loss function is 

fluctuated to different intensities due to its frequent updates with high variance.  Thus, 

there is a possibility to discover better local minima through these fluctuations (Ruder, 

2016). 

 

 

 

2.5 Object Detection Methods 

 

There has been a lot of research done in object recognition using the old computer 

vision method. One of the old method is by using the sliding window detector to detect 

the objects. Different size of window is used in order to find the location of object. 

After that, the feature is extracted using Histogram of Oriented Gradients, HOG feature 

extraction method and continued by using SVM classifier to classify it. This method is 

computationally expensive and it is very slow as it need different scale of windows and 

to slide it step by step. The accuracy for this method is significantly lower compare to 

the deep learning based methods. The deep learning based methods are divided into two 

categories which one is two stage detection method and the other is the unified detection 

method. Two stage detection methods consist of RCNN, Fast RCNN and Faster RCNN 

methods and for the unified detection method, it consists of YOLO and SSD methods. 

There are a few major concepts that are used in both of these techniques and it will be 

explained in the following sub-title.  

 

 

 

2.5.1 Bounding Box 

 

A bounding box is a rectangular or a square box which is drawn to fit a particular object 

in. It consists of 4 components which is the coordinates of the left bottom, right bottom, 

upper left and upper right of the boxes. A bounding box is generated whenever it found 
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the object of interest. The predicted bounding box would be compare with the ground 

truth bounding box to computes the value of intersection over union. A ground truth 

box is a box which is labelled in the testing dataset by the user its own. Hence, the 

system can be trained to generate a bounding box through the optimization process 

between labelled bounding box and predicted bounding box.  

 

 

Figure 2.6.1: Computing the Intersection of Union 

 

 

 

Figure 2.6.2: Example of Computed Intersection of Union 

 

 

An IoU is used to find the best region box for the object interest only. The higher 

the value of calculated IoU, the predicted box generated is more precise and located 

nicely around the object. A few example of computed IoU is shown in Figure 2.6.2 

above. 
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2.5.2 Anchor Boxes 

 

An anchor has multiple scaling and each of it are with different aspects ratio. For 

example, assume it has 3 different type of scaling, and each of it consists of 3 different 

aspects ratio. Hence, the anchor boxes that has been generated are equal to 9 for each 

location. An example image of anchor boxes is shown in Figure 2.6.3 below. 

 

 

Figure 2.6.3: Anchor boxes 

 

 

For y_rpn_cls (Region Proposal Network Classification Layer), each anchor 

box consists of two values which defined as y_is_box_valid and y_rpn_overlap. If 

y_is_box_valid is equal to 1 means the box generated is valid. If y_rpn_overlap is equal 

to 1 means the box consist of an object (Xu, 2018). These values are used to calculate 

the losses for the classification. For y_rpn_regr (Region Proposal Network Regression 

Layer), each anchor has four values which defined as tx, ty, tx2, ty2 and each of these 

consist of 2 values which is y_is_box_valid and y_rpn_overlap (Xu, 2018). These 

values are used to calculate the losses of a boundary box and to refine it. 

 

In short, if the IoU of the generated boundary box obtained is greater than 0.5, 

the particular anchor is known as foreground or a positive anchor. If IoU obtained is 

smaller than 0.1, the particular anchor is known as background or a negative anchor.  
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2.5.3 Classification and Regression 

 

The predicted bounding box is done using the regression methods. This 

regression process is to eliminate those duplicate boxes. Normally, a threshold is set for 

the IoU value in order to eliminate those inaccurate predicted bounding boxes. After 

the bounding box is obtained accurately, the classifier now would learn and recognize 

the features within the bounding box. During the classification process, it consists its 

own backpropagation process through the convolutional neural network of deep 

learning model or to optimize the losses for a particular model. 

 

 

 

2.6 Two-Stage Method 

 

2.6.1 RCNN (Regional-Based Convolutional Neural Network) 

 

RCNN method is proposed by Ross Girshick et al. where this method used selective 

search to extract only 2000 regions of interest from an image. Selective search uses 

local cues like intensity color, texture and measure of insideness to identify the region 

of interest. In this RCNN, selective search was done by generating initial sub-

segmentation in order to have many candidate regions. Then, by using the greedy 

algorithm to recursively combine those similar regions into one. Next, the generated 

regions are used to produce the final candidate region of proposals. These candidate 

regions are fed into a CNN to continue with the feature extraction process. Lastly, by 

using the SVM method it would classify the extracted regions into certain classes. The 

flow diagram of RCNN is shown in Figure 2.7.1 below. There are several disadvantages 

using this RCNN method for object detection. First of all, the time used for training is 

huge as it need to classify those 2000 regions proposal in an image. Besides, it is similar 

for testing, it also requires long time to complete its testing process. Hence, it is not 

suitable to use in real-time application. Selective search is a fixed algorithm. It does not 

consist of any learning process. It might lead to generating bad candidate regions. 
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Figure 2.7.1: RCNN Model  

 

 

 

2.6.2 Fast RCNN (Fast Regional-Based Convolutional Neural Network) 

 

Fast RCNN methods is almost similar with the approach of RCNN. The difference 

between Fast RCNN and RCNN is just only we change the sequence of inputting image 

to CNN. For the Fast RCNN approach, it feed the image into the CNN first to generate 

the convolution feature map. Then, it just identifies the region of proposals using 

selective search. Fast RCNN consist of an additional ROI Pooling layer to reshape the 

region of proposals into a fixed size. Lastly, it fed into a fully connected layer, most 

probably would be the softmax layer to perform the classification process. Refinement 

process for the bounding boxes will also be performed. The overflow of diagram for 

Fast RCNN are shown in Figure 2.7.2 below. Compare to RCNN, Fast RCNN has the 

benefit of the convolution is done only once per image rather than those 2000 region of 

proposal which will take a long time to run.  

 

 

Figure 2.7.2: Fast RCNN Model  
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2.6.3 Faster RCNN (Faster Regional-Based Convolutional Neural Network) 

 

Faster RCNN is an improved method of previous Fast RCNN and RCNN. Faster RCNN 

does not use selective search method to find those candidate regions. Selective search 

method is a slow and time consuming process. Faster RCNN allows the network to 

learn how to find the region proposals. The figure 2.7.3 below shows the process in 

Faster RCNN method. 

 

Figure 2.7.3: Faster RCNN Model  

 

 

Similar to Fast RCNN, image was first inputted into a CNN first to generate the 

feature map. Later, the generated convolution feature map will be into a region proposal 

network. Region proposal network would find the region of interest but there is no 

feature extracted. In the ROI Pooling layer, the region of interest found would match 

with the feature map. It will be resizing into a fixed shape. The resized region of interest 

would be input into a fully connected layer for classification. The bounding box is then 

refined in order to eliminate duplicated boxes. 
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2.7 Unified Method 

 

For the previous two-stage method require the producing of region proposals. For this 

unified method, it pre-define a set of boxes to look for objects.  

 

 

 

2.7.1 YOLO (You Only Look Once) 

 

You Only Look Once (YOLO) is a method which look at the entire image. Image was 

split into S x S grid. Each grid would contain number of M bounding boxes. For each 

bounding box, it has its own class probability. Single convolutional neural network 

would predict the bounding boxes and the class probabilities for all these boxes.  If the 

bounding boxes confidence score and class probability is above the value of threshold 

set, then the bounding box will be use to locate the object. YOLO only predict one type 

of class in each grid. Hence, it would be struggling in detecting a small object or very 

close object. 

 

 

 

2.7.2 SSD (Single Shot Detector)  

 

SSD achieve good balance between the speed and accuracy performance. SSD used 

auxiliary convolutional layers to extract features at multiple scales. These extracted 

feature maps will be input into a convolutional kernel to predict the bounding box and 

classification probability. The score of the class probability and 4 offset (coordinates of 

bounding box) is computed. Those score which exceed the threshold point would be 

use as the final box to locate the object. 
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2.8 Comparison of SSD with Faster RCNN  

 

Based on the research of Phon-Amnuaisuk et.al, they compared the method of SSD and 

Faster RCNN in detecting the appearance of baby which are less than 12months old 

inside a house. They find out that SSD is able to predict the bounding box accurately 

but Faster RCNN turn out has a better classification accuracy. Faster RCNN has an 

accuracy of 97.5% whereas SSD is only 86.1% accurate in classifying the image of a 

baby (Phon-Amnuaisuk et al., 2018). In this project, we require a better classification 

accuracy rather than focusing on the bounding box accuracy. Hence, we would use the 

Faster RCNN network for our research purpose in classifying different components. 

 

 

 

2.9 Preferred Coding Language  

 

Python is the preferred language in building project which involving artificial 

intelligence, machine learning or deep learning process.  Python is an object-oriented 

programming based, high level and interpreted programming language (Mandl, 2012).   

One of the benefits of using Python is that involve less coding. Python able to 

implement the same logic using only one fifth code as compared to other object-

oriented programming language.  Python also contain prebuilt libraries. There are lots 

of libraries such as Numpy, Tensorflow and matplotlib for the need in AI project.  All 

these prebuilt libraries help the programmer to save their time in writing coding (Mandl, 

2012).  Besides, python is also an open source application with a great community.  

There are lots of related examples of different type of AI projects script available in the 

online webpage.  It consist of a huge community which are active all the time and 

willing to help the programmers whenever they meet difficulties in their projects.  There 

is quite a large amount of Python developers outside the world.  With the extended 

libraries and active community, Python are getting more popular and becoming the 

hottest language for kinds of projects in today’s world.  
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Approach 

 

This section explains the procedure and rationality behind the conducted experiments 

and the choice of method used. The goal of this experiments was to access the 

performance of the object detection algorithms and to evaluate their ability in 

recognizing components. The network used in this experiments are Faster RCNN which 

is widely favoured.  

  

 

 

3.2 Data gathering and labelling 

 

Image data is collected by using microscope and webcam. The need of microscope to 

capture the image is because of the size of the components is very small. The image 

captured are in the format of jpg format and it is in the size of 600x480 resolutions. 

There are 5 different components are used in this experiment and it needed to be 

classified out later into different categories. About a total of 250 images was captured 

for all these different components which placed in different locations or backgrounds.  

 

 A software named “labellmg” is used for image annotation. The tool enables 

the user to easily draw a bounding box to annotate the objects with a pre-defined label. 

The saved annotation was an .xml file. This .xml file consist of the label data and the 
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coordination of the object for each image. In an image, it might consist more than one 

annotations.  

 

 

 

3.3 Hardware and Software 

 

The software required in this experiment is the Python software and anaconda software. 

Python was chosen for the development for this project as it is easier to use and the 

source example could be obtained easily from the webserver.  The choices of 

framework used would be the Tensorflow framework for deep learning. Tensorflow is 

one of the famous framework which consist of prebuilt libraries inside the python 

software and can be used to design, build and train for deep learning models. The 

training process for the networks was completed using following hardware 

specification: GPU- NVIDIA GeForce 840M (2GB), CPU- Intel i7-5500U @ 2.40GHz, 

RAM- 8GB, Operating System- Window 10. A camera and a microscope is required to 

obtain the inspection images.  Lighting is provided at both sides of the lens to get a 

clearer and constant image illumination. 

 

 

 

3.4 Model Training Details 

 

The networks model used would be explained in this section. 

 

3.4.1 Faster RCNN 

 

The model of object detection used in this project is based on Faster RCNN method. 

The process flow for this architecture is shown in figure 3.1.1 below. Inside a Faster 

RCNN, it would run through 2 different networks which is a region proposal network 

and a feature extractor network. A region proposal network is used to identify the 

candidate regions of an object in an image whereas a feature extractor network is used 

to extract the features of an image. 
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 Faster RCNN would first processes the input image with the feature extractor 

network, which is the inception-v2 network in this case. This inception-v2 consist of a 

convolution layer and pooling layer to extract the feature maps. It is then passed to the 

RPN network to obtain the region proposals. RPN is sharing the full-image convolution 

feature map with the detection network.  It is designed as a fully-convolutional network 

which has the ability to predict object bounding boxes and the object score at each 

position (Zhao et.al, 2018). RPN would scans over the feature maps to find out the 

object in an image is either background or foreground. The object present in an image 

might be various in size and shapes. Hence, multiple k windows which is define as 

anchor boxes would be used to identify the location of the object. Each region proposed 

would consist of an “objectness” score and 4 coordinates to represent the bounding box 

for that region. Regions proposed by the RPN network might be redundant due to its 

propose of multiple regions for the same object. Non-maximum suppression is used in 

this case to solve the problem of redundancy. The regions of proposals are set to a 

maximum number of 300 to enhance the efficiency and effectiveness during training. 

A ROI pooling layer was introduced because the generated region of proposals are 

various in size. ROI pooling layer would help to convert the output of RPN into fixed-

sized vector and to be input to a fully connected layer. The fully connected layer used 

in this project was the softmax layer. Refine for bounding box position would be done 

in order to get the most actual bounding box for each object in the image.  
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Figure 3.1.1: Flow of Faster RCNN 

 

 

 

3.4.2 Inception Network 

 

Inception-V2 act as a feature extractor. Feature at certain selected intermediate layer of 

this network are used to find the class-agnostic box proposals. These box proposals are 

then used to crop features which is in the same intermediate feature map. After the 

matching of the box proposals with the cropping of feature map, it is then fed into the 

fully connected layers to predict the categories of class it fall in. Box refinement need 

to be done for each region proposals in order to obtain the actual object location. 

 

Inception network is a heavily engineered network. The main reason to develop 

this network is to optimize the performance of an CNN in term of speed and accuracy. 
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In the inception-v1, it used to solve the problem of the large variation of object size in 

an image. An object in an image could be small or large in size but there have similar 

properties. The differences in area of an object occupied by the object in an image could 

cause the choosing of right kernel size for convolution operation become difficult. 

Large kernel is used for information that is distributed more globally and a small kernel 

is used for information that is distributed more locally.  

 

Inception-v1 introduce multiple sizes of filter to operate on the same level. 

Hence, this makes the network to become wider rather than deeper. If a network is 

getting deeper, it might be prone to overfitting and the might facing with the problem 

of vanishing gradient. Inception-v1 is implemented in the intermediate layer of a 

convolutional neural network. The input of inception-v1 might passes through lots of 

filter and cause the inputs to become “deep”. When a neural networks become deep, 

the particular neural network is computationally expensive. Hence, in this inception-v1 

the author limit the number of input channels by adding in an extra operation 1x1 

convolutions before passing through the multiple sizes filter as shown in Figure 3.1.2 

(Raj, 2018). Auxiliary classifiers are also introduced by the author to prevent the 

gradients from the middle part to be vanished out.  

 

 

Figure 3.1.2: Inception-v1 
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Inception-v2 is implemented to reduce the computational complexity of the 

previous method. Neural networks perform better when convolutions did not make 

changes on the dimensions of the input drastically. If ones reduce the dimension too 

much, it might cause loss of information. This issue also known as a “representational 

bottleneck”. In this inception-v2, the author introduces smart factorization methods so 

that the convolutions process is much more efficient when computing its complexity 

(Phon-Amnuasisuk et al., 2018). For example, a 5x5 convolution would be replace by 

two 3x3 convolution operations which give the same outputs which is 1.38 time cheaper. 

Moreover, the 3x3 convolutions can be replace with the combination of 1x3 and 3x1 

convolutions. The diagram of smart factorization for inception-v2 can be seen in Figure 

3.1.3. Combination of 1x3 and 3x1 consist of only 6 parameters and 3x3 consist of 9 

parameters. Hence, this method is 33% more cheaper than the single 3x3 convolutions. 

Besides, batch normalization is also introduced in this inception-v2 network to solve 

the problem of internal convariate shift. Convariate shift is refer to the change in the 

input distribution to a learning system. In a convolutional neural networks, parameter 

of all the input layers would affect the input produced to each different layer. Any small 

changes in the input would get amplified down the network (Shagunsodhani, 2019). 

The change in the input distribution to those internal layers of a deep neural network 

would occur. Batch normalization would help to normalize the output in each hidden 

layer. Batch normalization used the exponentially weight averages and bias correction 

to do the corrections. The use of weight and bias correction is to keep the mean and 

variance fixed. After normalizing, the scale of input features would still remain almost 

similar as original. This is some way of making those layer to be independent and would 

not affect by the other layers.  
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Figure 3.1.3: Inception-v2 

 

 

 

3.4.3 Network Setting 

 

In this project, the input image inserted is a RGB image that has been resized into 

224x224 dimension. This network is on its best performance with the input image 

resolution between 600 and 1024. The object would be classified into 5 different classes. 

There are 4 different scaling of anchor boxes were being generated with a ratio of 0.25, 

0.5, 1 and 2. For each scales, it consists of 3 different aspect ratio. The aspect ratios 

used are 0.5, 1 and 2. The regularizer used in the first stage for the box predictor is the 

L2 regularizer. Through regularization, we could prevent the overfitting to occur by 

penalizing complex models. Overfitting occurs when the generalization curve shows 

the loss of training loss is decreasing but the validation loss eventually goes up. An 

example of generalization curve which meet with this situation are shown in Figure 

3.1.4 below. 
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Figure 3.1.4: Loss on Training Set and Validation Set After Several Iterations 

 

 

The loss term measures only how well the model fits the training data. With this 

regularization term, it would help to measure the complexity of the model. Now we 

have all these measurement, we can minimize the losses and also the complexity for a 

particular model. The model complexity must be minimized because it represents the 

weights of all the features in the model and the total number of features with non-zero 

weights. During region proposal, the initializer used is the truncated normal initializer 

with a standard deviation of 0.01. An initializer is used to initialize the value for the 

weight and bias. This truncated normal initializer would generate random values except 

those values with more than two standard deviations from the mean. The non-max 

suppression for the IoU threshold value is set at 0.7 which means only those predicted 

boxes with IoU threshold value more than 0.7 just will be remained and the maximum 

amount of box proposals is 300. The batch size is set at 1 as the GPU resources is 

limited. Mask RCNN is used to extends Faster RCNN to a pixel-level image 

segmentation. In Faster RCNN, it consists of third branch to predict the object mask 

which is in parallel with the existing branches for localization and classification (Weng, 

2017).  This mask branch is applied on a RoI pooling layer to predict the segmentation 

mask in the form of pixel to pixel manner. In pixel level segmentation, a much more 

fine-grained alignment is required. Mask RCNN help to improve the RoI pooling layer 

so that the RoI can be more accurate and precise when mapping with the regions of the 

original image. Mask RCNN is used to fix those locations with misalignment cause 

during the quantization or resizing process in the RoI pooling layer. The learning rate 

was at first 0.0002 and then later when reach till 90k step it would decrease to 0.00002 

which is 10time smaller than the initial setting. Learning rate is a hyperparameter which 

controls the adjustment for the weights of the network with respect to the loss gradient. 
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The larger the value of learning rate, the faster the training would proceed and the losses 

would decrease significantly. But the large value of learning rate might not optimize 

the losses in an ideal way. It might be keep fluctuating and make us could not hit the 

ideal target loss. Low value of learning rate might travel slower along the slope of the 

losses curve but it ensures that each local minima point could be achieved. It might take 

a long time to travel along the slope but it is worth to wait for the favorable outcome. 

To fasten the process, we avoid from using fixed value for the learning rate. We use a 

larger initial value at first which is consider as a suitable value for the initial setting. 

Later, we just decrease the initial learning rate to a smaller value so it can optimize 

more further. 

 

During the classification of validation image, the network would go through the 

forward propagation step and output a probability for each class. The output probability 

is depending on the weights which have been optimized correctly during the training 

process. The more convolution layers we have, the more complicated features could be 

obtained. Example of complicated features are edges and scratches. The neurons in the 

last fully connected layer represent the number of classes that we have for a particular 

model.  This fully connected layer are also known as the output layer.  

 

 

 

3.5 Experiment Setup 

 

Due to the CPU resources is insufficient to run the CNN, we have to run this neural 

networks with a GPU. To access the GPU, CUDA v9.0 and cuDNN v7 must be 

downloaded. Besides, some other software like Anaconda and Python is downloaded 

to run the coding. The Tensorflow Object Detection API repository is downloaded from 

GitHub and a directory folder is setup. The model for Faster-RCNN-Inception-v2 is 

obtained from the official Tensorflow’s model zoo and it is placed in the same directory 

folder.  

 

An Anaconda virtual environment is setup specifically for this experiment. First, 

we have to install the tensorflow-gpu v1.10.0 and the python version used must set to 

v3.5.2 Only this version could help to support the use of GPU on windows. Some 
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additional libraries such as anaconda protobuf, pillow, lxml, Cython, jupyter, matplotlib, 

pandas and opencv-python are required to be download in order to run the full coding. 

The PYTHONPATH must be setup and point to the required directories. Protobufs files 

which are needed by Tensorflow to configure model and training parameters are 

compiled and setup.  

 

Once we had completed our environment setup, then we start gather the pictures 

of different components. In this experiment, 5 different components are needed to be 

classified which is White Led, Red Led, Yellow Led, Led X, and Mini Led as shown 

in Figure 3.41 below. To train a good detection classifier, the images captures should 

have consisted the desired objects and some other random objects. Besides, the object 

captured should also come along with a variety of backgrounds and lightning conditions. 

Overlapped images or halfway images are also allowed to be used as training data. Next, 

use the software “Labellmg” to annotate the desired objects in each image that captured. 

The labelled annotation is saved in .xml file and all these .xml file is then converted 

into a .csv file. 80% of the images is used as training dataset and the remaining 20% is 

used as test dataset. Hence, two .csv files containing the data for the train and test 

images is generated which one named as train_label.csv and the other is the 

test_label.csv. These .csv file is later used to generate the record files for training dataset 

and testing dataset. These files are the main files that will be used to train the object 

detection classifier.  

 

 

Figure 3.2: Labelling of 5 Different Components 

Led X 
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A label map is created which tell the trainer what the components is defined by 

mapping it class name to it class ID numbers and save it as .pbtxt file. After that, 

configure the component detection training pipeline. When completed the configuration, 

we now can start our training process. During the training process, backpropagation 

method was applied in the convolutional neural layer in order to compute the difference 

between the actual outputs and the target. In between the hidden layers and the output 

layers, the algorithm will keep computing until such that the output result is close the 

target. After the training process was completed, generate the frozen inference graph 

by exporting it from the last step of training process. This frozen inference graph would 

be our model for classification. Now, we can test it out on new component images and 

check the accuracy for this particular component detection classifier. 

 

 

 

3.6 Testing  

 

A total number of 50 images is used for testing in order to find out the mean average 

precision for the overall model. At first, the model was loaded by inputting the frozen 

inference graph to obtain the optimized weight and bias value which is set during the 

training. The component would be detected if only the score of the classifier and the 

boxes are higher than 80%. In other word, only things with confidence level which is 

higher than 80% would show the labelling score and the localization box around.  
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CHAPTER 4 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

4.1 Losses 

 

4.1.1 Box Classifier Loss 

 

 

Figure 4.1.1: Classification Loss and Localization Loss. The graph is generated from 

the tensorboard. 

 

 

For box classifier loss, it measures the losses of the boundary box predicted for both 

classification and localization. Classification loss is the loss for the classification of 

detected objects into various classes. In this case, the detected object is classified into 

5 different classes. For the localization loss, it is referring to the loss of the boundary 

box regressor. It measures how accurate the box fit the object in. From the figure 4.1.1 

above, we can see that the classification loss is decreasing very fast till the point 0.01 

losses. It only took 5k epoch to reach the point while the localization loss took around 

15k epoch to reach the point of 0.01 losses. This means that the classification layer is 

0.01 0.01 

epoch epoch 
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learning faster compare to the regression layer. This situation occur because of the 

accuracy for objectness is already high and able to recognize what the object are but at 

the same time, the bounding box coordination still can’t accurately localize the 

boundary box to fit nicely the object. Hence, the boundary box requires more time to 

learn for the localization prediction. A target line is set at 0.01 for both classification 

and localization losses which mean the training would only be stop after the model 

achieved an accuracy below this target line. 

 

 

 

4.1.2 RPN Loss  

 

 

Figure 4.1.2: Localization Loss and Objectness Loss. The graph is generated from 

tensorboard. 

 

 

For RPN loss, it measures the losses of the boundary box predicted during region 

proposals. Localization loss is still the same referring to the loss of the boundary box 

regressor but it is for the region proposals use. The objectness loss is the loss of the 

classifier that classifies if a boundary box is an object of interest. From the Figure 4.1.2, 

we can observe that objectness loss converge faster than the localization loss. The 

objectness loss reached at the point of 0.005 losses after passes through 5k epoch 

whereas the localization loss reached at the similar point of losses at 10k epoch. Similar 

as previous situation, to ensure the localization to propose accurately, it require more 

time to learn. A target line is set at 0.01 for the localization loss and 0.005 for the 

objectness loss. 

epoch epoch 

0.01 
0.005 
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4.1.3 Total Loss and Clone Loss 

 

 

Figure 4.1.3: Total Loss and Clone Loss. The graph is generated from tensorboard. 

 

 

Total loss is the losses for both RPN network and the Classifier network. In measure 

the average losses for all of the losses occur in RPN network and Classifier network as 

shown in figure 4.1.1 and figure 4.1.2. From figure 4.1.3, we can observe that the total 

loss is decreasing slowly which mean that the learning process is still occurring and the 

networks are trying to optimize their losses. The training should stop only after the 

losses reached the point of 0.05. In this case, the training is stop when the losses are 

around 0.02. The clone loss is similar as the total loss graph due to only using a single 

GPU. The clone loss would be different only if we train it on multiple GPUs. Then, the 

Tensorflow would create a clone of the model to train on each GPU and report the loss 

on each clone. This total loss does not represent the model can identify accurately when 

we use a totally new image for testing. Hence, validation dataset is input into this model 

for testing in order to find out its mean average precision (mAP). For each epoch, it 

took around 1.5seconds to complete using Nvidia GT840M GPU. To hit the target line 

which is set at 0.05, the number of epoch require is roughly 30k epochs which require 

11hours to achieve the target. All the target line is set to ensure the best performance 

for a particular model could achieve.  

 

 

 

 

epoch epoch 
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4.2 Validation Data 

 

4.2.1 Correct Detection  

 

In this first part, we would first discuss about those images which has been identified 

accurately. 

 

    

 Figure 4.2.1.1: Yellow Led    Figure 4.2.1.2: Red Led  Figure 4.2.1.3: White Led 

     

Figure 4.2.1.4: Led X            Figure 4.2.1.5: Mini Led 

 

 

From the Figure 4.2.1.1-4.2.1.5 shows that this model able to predict all of the 

validation images accurately if the image consists only one component and the object 

captured is a full image of the object.  

 

      

Figure 4.2.2.1: Mini Led with Larger Scale  Figure 4.2.2.2: Mini Led with Smaller Scale 
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Image different scaling might cause the confidence level to decrease as show in Figure 

4.2.2.1 and Figure 4.2.2.2. This is due to the image with smaller scaling might not be 

clear enough for the model to detect it. 

 

   

Figure 4.2.3.1: Two Mini Led                 Figure 4.2.3.2: Led X and Mini Led 

   

Figure 4.2.3.3: Yellow Led and White Led   Figure 4.2.3.4: Yellow Led and Red Led 

 

Figure 4.2.3.5: Yellow Led and Mini Led 

 

 

From the Figure 4.2.3.1-4.2.3.5 shows the component which is side by side are also 

able to be identified and localized accurately. In Figure 4.2.3.2 shows that the 

microscope is focusing on the Mini Led and cause the Led X to become blur but it still 

able to identify it with a lower confidence score.  
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Figure 4.2.4: White Led in Bright Condition and Dim Condition 

 

 

The lightning condition does not affect the output result of the object detection model. 

In the deep neural network several pre-processing have been done onto the image, 

feature extracted does not depend on the difference of lightning condition. Hence, the 

object detection is still able to identify it accurately even in a dim condition as show in 

figure 4.2.4. 

 

                                    

Figure 4.2.5.1: White Led   Figure 4.2.5.2: White Led      Figure 4.2.5.3: White Led 

                   

  Figure 4.2.5.4: Red Led       Figure 4.2.5.5: Red Led     Figure 4.2.5.6: Red Led 
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  Figure 4.2.5.7: Yellow Led  Figure 4.2.5.8: Yellow Led    Figure 4.2.5.9: Yellow Led 

 

 

From the figure 4.2.5.1-4.2.5.9 above, it shows different cropped image for White Led, 

Red Led and Yellow Led. The trained object detection model is still able to identify 

them accurately. This is because inside the training and testing dataset, we also provide 

of these cropped image which is similar as above. This is to teach them to recognize 

the components even if it is a halfway image which certain feature is still retained. In 

human perspective, once we see a thing very frequently, we can identify it even if it is 

a halfway image. Same as in this deep learning, once it identified certain feature which 

similar in their “memories”, it will compare with its “memories” and categories it into 

certain classes which it thinks it is most likely.  

 

 

 

4.2.2 Error Detection  

 

 In this second part, we would discuss about those image with object not 

classified, has been classified wrongly or the boundary box is wrongly localized.  

 

       

Figure 4.2.6.1: Led X and Mini Led 
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Figure 4.2.6.2: Yellow Led and Mini Led 

 

 

From Figure 4.2.6.1 and 4.2.6.2 above, we could observe that the model somehow 

unable to identify all the object in the images. Smaller object or blurred object might 

easily be ignored by the model and cause the object to be unclassified. This problem is 

most likely can be solved if we input more images with different object inside it for the 

training process. 

 

         

Figure 4.2.7.1: Images of Yellow Led Classified Wrongly into White Led 

 

                             

  Figure 4.2.7.2: Preprocessed Yellow Led        Figure 4.2.7.3: Preprocessed White Led 

 

 

From the Figure 4.2.7.1 above, it shows that the Yellow Led is classified wrongly into 

White Led. This situation occurs because the White Led has almost similar feature as 

Yellow Led if we do not include its color information. During testing, the input image 

would be preprocessed and the color information of the image might be washed out as 
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shown in Figure 4.2.7.2 and 4.2.7.3. The pattern difference between the Yellow Led 

and White Led is the center part of it. More details feature on the center part must be 

extracted for training session in order to improve the accuracy of classification. 

Different type of feature extractor network might help in solving this problem.  

 

 

 

 

 

Figure 4.2.8: White Led with Two Boundary Box in Two Different Location 

 

 

From Figure 4.2.8 above, two boundary box is generated on an images which consist 

only one White Led. This problem is due to input too many cropped images for White 

Led into the training session. As in previous, we had mentioned that by inputting 

cropped object images can allow us to identify it even if it is a halfway image. This 

would lead to this problem to occur. The object detection model would identify the 

object by part.  

 

 

Figure 4.2.9: Yellow Led which has been Wrongly Localized 

 

 

Figure 4.2.9 shows that one of the yellow Led has been wrongly localized in other 

location/ The boundary box tend to appear at inaccurate position. This problem almost 
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similar as the previous situation for the object not detected. It also can be solved by 

inputting more images with object side by side for training to improve its localization.  

 

 

 

4.2.3 Unrecognized Data 

 

       

                                  

Figure 4.3: Unrecognized Object 

 

 

In the Figure 4.3(a), it is a different component which we do not included in this 

experiment. Hence, the model would not classify it into any classes. For the figure 

4.3(b)-4.3(d), the image does not provide enough feature information. Hence, the model 

also unable to categories them into any classes. From the Figure 4.3(e), it shows that 

one of the Red Led is overlapped with the other and cause the middle golden part of it 

have the reflection of light. This turn out that the Yellow Led consist of different feature 

information and so the object detection classifier is unable to classify it 

 

 

 

 

(a) (b) (c) 

(d) (e) 
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4.3 Analysis 

 

4.3.1 Mean Average Precision  

 

 

   

     Figure 4.4.1: Led X AP Graph    Figure 4.4.2: MiniLed AP Graph 

 

        Figure 4.4.3: RedLed AP Graph     Figure 4.4.4: WhiteLed AP Graph 

 

Figure 4.4.5: YellowLed AP Graph 

 

 

Each of the graph from Figure 4.4.1-4.4.5 above show the average precision for each 

component. All of the graph are generated from Pattern Analysis, Statistical Modelling 
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and Computational Learning Visual Object Classes (PASCAL VOC) 2012. This graph 

would measure the trade-off between true positive rate and true positive predictive 

value for this deep learning model using different IoU thresholds. Precision measures 

the ability of a model to detect only relevant objects. Recall measures the ability of a 

model to identify all relevant cases. The IoU threshold here used is 0.5 which means 

those predicted object which exceed an IoU 0.5 would be classify as true positive. A 

true positive result indicate the result is a correct detection. A false positive result which 

below IoU threshold would be indicate as a wrong detection. IoU is the area overlapped 

between predicted bounding box and ground truth box. Object where ground truth was 

not detected is indicate as a false negative result.  The precision is calculated through 

the equation 4.1 shown below: 

 

                                 Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (4.1) 

 

The Recall is computed through the equation 4.2 shown below: 

 

   Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
          (4.2) 

 

 If the false positive obtained is equal to 0, this means it has high precision 

whereas if the false negative obtained is equal to 0, this means that it has high recall. 

When the precision remains high as the recall increases, this mean that it would has a 

high average precision (Padilla, 2019). The graph computed is based on 50 different 

validation data.  

 

 The average precision obtained for each classes is shown in the Table 4 below. 

The mAP value would be the average value of the 5 classes and it is found to be 59.34%. 

The mAP value calculated are based on Pattern Analysis, Statistical Modelling and 

Computational Learning Visual Object Classes (PASCAL VOC) 2012 which the input 

variable consists of class name, left coordination, top coordination, width and height 

information. PASCAL VOC assist in providing evaluation performance for different 

object classes recognition. 
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 Table 4.1: Average Precision (in percentage) for each Different Classes 

Class Average Precision(%) 

Led X 37.50 

Mini Led 30.83 

Red Led 69.48 

White Led 89.34 

Yellow Led 69.57 

mAP 59.34 
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4.3.2 Comparison of GPU Speed 

 

Table 4.2: Performance score for different type of GPUs 

 GPU Performance Score Memory 

Nvidia Titan RTX 100 24GB 

Nvidia GeForce RTX 2080 Ti 98.4 11GB 

Nvidia GeForce RTX 2080 96.1 8GB 

Nvidia Titan X 96.0 12GB 

Nvidia GeForce GTX 1080Ti 96.0 11GB 

AMD Radeon VII 92.4 16GB 

Nvidia GeForce RTX 2070 87.2 8GB 

AMD Radeon RX Vega 64 84.4 8GB 

Nvidia GeForce GTX 1080 84.3 8GB 

Nvidia GeForce GTX 1070Ti 78.5 8GB 

Nvidia GeForce RTX 2060 77.6 6GB 

AMD Radeon RX Vega 56 76.7 8GB 

Nvidia GeForce GTX 1660 Ti 71.4 8GB 

Nvidia GeForce GTX 1050Ti 33.1 4GB 

AMD Radeon RX 560 28.6 4GB 

Nvidia GeForce GTX1050 28.1 2GB 

AMD Radeon RX550 17.9 4GB 

Nvidia GeForce GT1030 13.0 2GB 

Nvidia GeForce GT840 11.0 2GB 

Nvidia GeForce GT765 7.0 2GB 

 

 



54 

 

 

Figure 4.5: Performance Score of GPUs 

 

 

The information in table 4.2 is obtained from a website resources (Angelini, 2019). The 

Figure 4.5 above show the performance score of different type of GPUs. The higher the 

performance score, the faster the performance speed of a GPU. The model which 

currently used in this project is only 11 performance score. It is consider having slow 

performance compare with the other advance GPUs. 

 

 

Table 4.3: Comparison of time used per epoch for training using different GPUs 

Type of GPU Training Time Per Epoch(s) Memory 

Nvidia GeForce GTX1050Ti 0.3 4GB 

Nvidia GeForce GT840 1.3 2GB 

 

 

In the Table 4.3 above, we could see that the Nvidia GeForce GTX1050Ti has 

a faster performance speed compare to Nvidia GeForce GT840. From the given time 

shown in the table, we know that the Nvidia GeForce GTX1050Ti is about 4time faster 

than the GT840 as it consists of a larger memory space. 
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4.3.3 Comparison of Mean Average Precision using Different Amount of 

Images 

 

Table 4.4: Mean Average Precision Obtained using Different Amount of Images 

for Training 

Class 

FasterRCNN-
250images        

Average Precision 
(%) 

FasterRCNN-
150images        

Average Precision (%) 

FasterRCNN-
50images        

Average Precision 
(%) 

Led X 37.5 6.32 4.33 

MiniLed 30.83 40 25.8 

RedLed 69.48 80.41 50.23 

WhiteLed 89.34 51.62 40.5 

YellowLed 69.57 25.71 10.6 

mAP 59.34 40.81 26.29 

 

 

 

Figure 4.6: Number of Images Used versus Mean Average Precision (%) 

 

 

From the figure 4.6 above, we can see that if more images are used for training, the 

higher the accuracy of model can achieve. But when it reaches till certain accuracy level, 

images would not help much in optimizing anymore. We need to find other ways in 

order to improve its accuracy. The accuracy not only depend on one factor only, there 
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are many other factor such as image resolution, data augmentation, architecture of the 

networks and number of proposal for prediction.  
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CHAPTER 5 

 

 

 

CONCLUSION 

 

 

 

5.1 Conclusion 

 

The advance of technology which is keep improving over the last decade make the deep 

learning approach to become possible. Deep learning requires a lots of data to achieve 

favourable output results and it need a very high specification GPU to reduce the 

training time. The previous method of machine learning might need lots of hand 

featured data and must be heavily engineered in order to get high accuracy of object 

detector. Deep learning requires only images to learn from the image without specifying 

any feature data. The convolutional network will automatically extract feature and learn 

from it during the back propagation process. This experiment used Faster RCNN 

Inception-v2 network to train for the component detection model. It consists a mean 

average precision of 59.34% which still acceptable. To improve the mAPs, more image 

data with variety of backgrounds should be collected and input it for the training process. 

Faster RCNN not suitable for real-time video detection as it detection speed is only 

around 2FPS. If you looking for real-time video detection, SSD and YOLO might be a 

good choice as they can run up to 50FPS since their way of detecting object is different. 

SSD and YOLO does not require any region proposals before they can classify the 

object. Both of them using multiple network for classifications and localization which 

help to improve the speed of detecting the objects. Faster RCNN is not only applicable 

in the industrial area. It also applicable in other field such as medical and biotechnology 

uses. Those field require this object detection model to help them because of the 

inspection task that they currently do it manually for micro-organisms is quite 

challenging. The micro-organisms have different cell shape, color and density. Hence, 
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it is hard to be identify. Training Faster RCNN model for the use in such field might 

reduce lots of inspection time and can save many of our human life if certain disease is 

identified earlier through this detection. 

 

 

 

5.2 Future Implementation and Recommendation 

 

By using the same technique as this experiment, we could also use it to detect for 

defectivity of a component. Some of the industrial company are still using manual 

visual inspection rather than an automated inspection machine. To train the automated 

inspection machine, we require lots of ‘Pass’ and ‘Fail” component images to do this 

training in order to have a nice accuracy model. The ‘Pass’ component images are easier 

to collect compare to the ‘Fail’ component images. A component would only consider 

as defect whenever it is not functionable or not safe to be use. A cracked component is 

surely will be classify as defect component. In some other cases such as components 

melt during heating in oven might also classify as defect. The most important uses of 

the automated inspection machine are help to check the part which require the use 

microscope. For example, inspection of checking whether the wire is bonded or not. 

This might hard to see through our eye without a microscope. But with microscope, 

human sometime might also do some careless mistake and inputting the defect 

components as usable components. With the help automated inspection machine this 

could help a lot in the industrial by reducing the need of human workers and reduce 

some unwanted mistake which done by human. A defect component can be classified 

to many different kinds. Hence, it is quite challenging in collecting the data for the 

defect components. In different accidental situation, different kinds of damages could 

be done on the components. We cannot ensure that all different kinds of accidental 

damages which done on the components could be collected completely and use it for 

training purpose. But, we have another deep learning method which known as deep one 

class method which recognize the ‘Pass’ component only. It only recognizes those 

component which is valid to be use. For those components which are different from the 

normal component product would be classify as abnormal. As the name deep one class 

method means it only classify and recognize for one class and the other would fall at 

the category of abnormal. With those abnormal product, we would consider it as a 



59 

 

defect product. Hence, now the only thing is we need to provide those products which 

consider as valid for the training. Deep learning is the current trend in order to optimize 

the accuracy of classification as it can react according to its environment and keep 

learning. 
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APPENDICES 

APPENDIX A – Coding 

Faster RCNN with Inception-v2 (Network Setting) 
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PASCAL VOC 2012 (Calculate Mean Average Precision) 

 

 

 

 

 



67 

 

 

 



68 

 

 

 



69 

 

 

 



70 

 

 

 



71 

 

 

 

 



72 

 

Training Session 

 

 



73 

 

 

 

 



74 

 

 

 



75 

 

 

 

Testing Session (With GUI) 
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