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ANALYSIS OF MENTAL IMAGERY BASED COGNITIVE TASKS FOR 

BRAIN COMPUTER INTERFACE 

 

 

ABSTRACT 

 

 

By representing the EEG signals (brain waves) recorded during mental imagery in 

terms of features and classifying them using an appropriate classifier, the mental 

imagery tasks performed can be identified accurately and thus be used for BCI in full 

applications. The optimal electrodes for mental imagery applications are the C3, Cz 

and C4 electrodes that are not present in low cost EEG acquisition devices like the 

Emotiv EPOC+ headset. However, this limitation is overcome in this study. In fact, 

not all the electrodes available are needed. Most of the information necessary for the 

mental imagery applications is present at the FC5, FC6, P7, P8, AF3 and AF4 

electrodes. Moreover, it is found that the combination of features is able to improve 

the average cross validation accuracy further. By classifying the Band Power and 

ApEn features from the electrodes mentioned above using the KNN classifier, an 

average cross validation accuracy of 99.75% is achieved. If the same features from the 

FC5, FC6, AF3 and AF4 electrodes are classified, an average cross validation accuracy 

of 98.55% can be attained. Hence, it is deduced as the best model that meets the aim 

of this study, requiring only four instead of all the electrodes with a little compromise 

on the average cross validation accuracy. Based on the model selected, it can be 

concluded that out of the four mental imagery tasks (LEFT, RIGHT, PUSH and PULL), 

the PULL mental imagery task is the hardest to be classified, with a classification error 

of 2.4%.  
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1 INTRODUCTION 

 

 

 

1.1 Background 

 

Human brain is known to be the most unique yet mysterious structure in the universe. 

It allows us to think, to speak, to move, to solve problems and so forth. It also responds 

to the stimuli in the surroundings through information perceived by the sensory organs, 

such as the eyes, nose, ears etc. In short, it is the control centre that controls and 

regulates all conscious and unconscious facets of human’s daily life.  

 

 With the objective to unlock mysteries of the human brain, numerous studies 

and researches have been done to understand human brain better. One of the key 

research area is the Electroencephalography (EEG). As the brain processes 

information and reacts to it, electrical signals travel between nerve cells in the brain. 

However, some of the electrical signals escape while traveling between neurons and 

EEG is the method that detects these escaped signals. According to Jais et al. (2017), 

even the imagination of performing a task produces EEG signals and these signals are 

somewhat similar to that of executing the task in reality. This phenomenon is known 

as mental imagery or more specifically, motor imagery.  

 

Brain Computer Interface (BCI) is a system that enables direct communication 

between the human brain and computers or any other external devices. With proper 

signal processing methods, it is believed that the mental imagery based EEG signals 

can be utilised for BCI applications. These signals reflect the user’s intention and thus 
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can be used as the input for BCI systems. After processing the signals, BCI system 

sends out signal that controls the external devices according to the user’s intention.  

 

As a matter of fact, BCI is a neurotechnology initially developed for 

biomedical applications. With the development and advancement in BCI, the potential 

and future of BCI has been foreseen by researchers, leading to a wider scope of 

research that includes non-medical applications which target normal individuals. 

Particularly, BCI can improve on the current human computer interface (HCI), 

resulting in its contribution in numerous fields such as medical, communication, 

mental state monitoring as well as entertainment (Abdulkader, Atia and Mostafa, 

2015). 

 

 

 

1.2 Problem Statement 

 

According to Mak and Wolpaw (2009), there are millions of people around the globe 

who suffer from motor disabilities such as people with head injuries, spinal-cord 

injuries, stroke, amyotrophic lateral sclerosis (ALS) and other severe neuromuscular 

diseases. The loss of neuromuscular function and the ability to communicate greatly 

impacts the daily life of these less fortunate people. Therefore, the restoration of basic 

communication abilities for these people would be a gift to them as it can improve 

their quality of life considerably and reduce their dependence on others. 

 

BCI devices appear to be one of the possible solutions for them but these 

devices usually come with a hefty price tag that keeps them away. This is due to the 

fact that most of the BCI devices available in the market utilises a high cost EEG 

acquisition device in order to achieve a higher accuracy (Zhang et al., 2013). Low cost 

EEG acquisition devices like Emotiv EPOC+ are seldom used due to the lesser number 

of electrodes, especially the lack of electrodes covering regions essential for motor 

imagery applications. Use of these acquisition devices may lead to a lower accuracy, 

therefore affecting the user experience.  
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1.3 Aims and Objectives 

 

This study aims to propose a cost effective yet high accuracy method that is able to 

interpret the user’s mental imagery based on the EEG signal acquired. The objectives 

of this thesis are shown as follows: 

 

i) To pre-process the mental imagery EEG signals acquired from a low cost EEG 

acquisition device 

ii) To identify the features that can be used to represent the user’s intention 

precisely 

iii) To classify the EEG signals into four different classes, i.e. left, right, push and 

pull based on the features extracted  

 

 

 

1.4 Research Questions 

 

Can the cognitive tasks performed by users be classified into different classes based 

on the mental imagery based EEG signals acquired? 

 

 

 

1.5 Research Hypothesis 

 

1. The cognitive tasks performed by users can be classified by using features 

extracted from the EEG signals which represent information embedded in the 

signal. 

2. Different combinations of features extracted and classifier used will give 

different classification accuracy. 
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1.6 Significance of Study 

 

Fundamentally, BCI serves as a bridge that enables human brain to communicate 

directly with the external world, bypassing the normal information delivery method. 

From the brain signals obtained, it is able to interpret a person’s silent thought, thus 

helping handicapped people to express their mind. Moreover, BCI also enables the 

mind-controlling of devices, further enhances the user experience of hands-free 

applications. Neuromuscular output channels are no longer required and brain signals 

alone are sufficient to complete a set of commands. As a result, through the use of BCI 

assistive robots, the life of those with motor disabilities would be easier as they can 

handle practically everything on their own. 

 

 In addition, BCI can also be a logical measuring tool that identifies a person’s 

emotional, cognitive or affectiveness state. Other than controlling external devices like 

in the passive BCI, the state monitoring function of BCI brings a variety of different 

applications. For instance, it is used to improve HCI by adapting the HCI based on the 

user’s emotion or cognitive state. This allows the best control to be implemented in a 

particular condition (Abdulkader, Atia and Mostafa, 2015). An example being the use 

of state monitoring in workplace. It ensures that the lighting and air condition is 

adjusted such that a conducive working condition is provided.  

 

 All the applications mentioned would not come into reality without accurate 

classification of the cognitive tasks performed. Hence, this study aims to propose a 

cost effective yet accurate way of analysing the user’s mental imagery based on the 

EEG signals acquired so that BCI are available and affordable by the masses.  
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2 LITERATURE REVIEW 

 

 

 

2.1 Brain Anatomy 

 

Undeniably, as the center of the nervous system, brain is the most complex organ in 

the human body. Generally, the brain can be divided into 3 main parts, which are 

cerebrum, cerebellum and brain stem as shown in Figure 2.1. 

 

 

Figure 2.1: Brain Anatomy (Graimann, Allison and Pfurtscheller, 2010) 
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Cerebrum, which is the largest among the three, consists of the left hemisphere 

and the right hemisphere. Each cerebral hemisphere can be further divided into four 

lobes, which are frontal, parietal, occipital and temporal lobe with their functions 

tabulated in Table 2.1. As shown in the Figure 2.1, the frontal lobe is separated from 

the parietal lobe by the central sulcus while the temporal lobe is separated from the 

parietal lobe by the lateral fissure (Graimann, Allison and Pfurtscheller, 2010).  

 

 

Table 2.1: Function of the Lobes 

Lobe Functions of the lobe 

Frontal lobe Higher level cognitive functions:  

 Problem solving 

 Concentration 

 Speaking   

 Writing 

Parietal lobe  Sensation 

 Spatial perception 

 Language and words interpretation 

Occipital lobe  Visual processing center 

Temporal lobe  Memory 

 Hearing 

 

 

Located below the cerebrum, cerebellum is accountable for maintaining 

posture and balance besides coordinating muscle actions.  Connecting the cerebrum 

and cerebellum to the spinal cord, brain stem acts as a relay centre and it is responsible 

for self-regulating functions, such as breathing, digestion, heart rate, swallowing etc. 

(Alnemari, 2017).  
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2.2 Electroencephalography (EEG) 

 

Neuron or nerve cell as shown in Figure 2.2, is the basic unit of brain and the nervous 

system. When a person is performing a task such as focusing on something, moving 

or performing mental calculations, nerve signals travel from neuron to neuron up to a 

speed of 250mph. In fact, nerve signals are basically electrical signals, generated due 

to the changes in concentration of charged potassium (K+) and sodium (Na+) ions in 

the neurons (Kamel and Malik, 2015). Even though the path travelled by the nerve 

signals are insulated by myelin, some of the electric signal still escapes (Anupama, 

Cauvery and Lingaraju, 2014). Electroencephalography (EEG) is a technique that 

detects and monitors these escaped signals by placing small flat metal discs known as 

electrodes on the scalp (Alnemari, 2017).  

 

 

Figure 2.2: Structure of a neuron (Tiziano D’Albis, 2008) 

 

 

Human EEG was first discovered by a German scientist, Hans Berger in 1924. 

He recorded the first EEG signal of human brain and identified oscillatory activity in 

the brain, which was the alpha wave through analysis performed on the recorded EEG 

signal (Anupama, Cauvery and Lingaraju, 2014). Hence, alpha wave is also known as 

Berger’s wave. Since then, EEG has been developed and new methods for exploring 

every possibility of it have been found. All of these efforts lay the groundwork for 

neuroscience and Brain Computer Interfaces (BCI). 
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2.3 Brain Waves 

 

EEG waveforms can be classified in terms of amplitude, frequency, shape and the site 

of recording electrical signals on the scalp (Nanditha and A, 2017). In fact, brain waves 

are commonly categorized based on their frequency range (bandwidth). The five major 

waves are delta (δ), theta (θ), alpha (α), beta (β) and gamma (γ) waves. These brain 

waves are in sequence from lowest frequency (highest amplitude) to highest frequency 

(lowest amplitude) as shown in Figure 2.3. 

 

 

Figure 2.3: Waveforms for the different types of EEG signal (Abo-Zahhad, Ahmed 

and Abbas, 2015) 

 

 

 Delta wave is the lowest frequency brain wave in the range of 1 – 4 Hz. 

However, it has the highest amplitude among all the other brain waves. It is usually 

observed in adults or babies in deep or dreamless sleep (Shakshi and Jaswal, 2016).  

 

 Theta wave ranges from 4 – 7 Hz. It is often associated with inefficiency, 

daydreaming, as well as a state between being awake and falling asleep (Larsen and 
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Wang, 2011). This brain wave usually appears with the closing of eyes and disappears 

with the opening of eyes (Shakshi and Jaswal, 2016). High level of theta waves are 

said to be abnormal in adults.  

 

 Alpha wave which ranges from 7 – 13 Hz, is produced when a person closes 

his eyes or when he is relaxed. In other words, thinking something peaceful with the 

eyes closed will increase the alpha activity in the brain (Larsen and Wang, 2011). This 

brain wave is mostly found in the occipital lobe of the human brain.  

 

 Beta wave on the other hand, has a frequency range of 13 – 30 Hz. It is the 

characteristic of an active thinking or focused mind (Aparna Ashtaputre, 2016). This 

means that when the brain is aroused or actively engaged in mental activity, beta wave 

is generated, especially in the frontal and parietal lobe.   

 

 Gamma wave is the fastest and has the lowest amplitude among all brain waves, 

with frequency between 31 – 100 Hz. It is believed that gamma wave is the one that 

binds different population of nerve cells together when the brain processes 

simultaneous information from different parts of the brain. Hence, an optimal level of 

gamma waves is often associated with good memory whereas a lack of gamma waves 

result in learning disabilities (Warner, 2013). Typically, it is engaged in higher level 

tasks, for instance learning, memory and processing of information. 

 

 Mu wave has frequency ranges from 7 Hz to 13 Hz, which overlaps with the 

alpha wave’s frequency band. As opposed to alpha wave which usually presents in the 

occipital region, mu wave is normally found in the sensorimotor cortex, which is where 

the C3, Cz and C4 electrodes are located. This wave is “suppressed” or 

“desynchronized” whenever a person moves or has the intention to move (Garcia-Rill, 

2015).  Summary of the above brain waves are shown in Table 2.2.  
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Table 2.2: Summary of Brain Waves (Alshbatat et al., 2014) 

Brain Waves Frequency Range 

(Hz) 

Location Associated with 

Delta (δ) 1 – 4   Frontal region 

(adults) 

 Posterior region 

(premature 

babies) 

 Dreamless sleep 

 Coma 

Theta (θ) 4 – 7  Parietal region  

 Occipital region 

 Daydreaming 

 Drowsiness 

 Dream Sleep 

Alpha (α) 7 – 13  Occipital region 

 

 Relaxed state of 

mind 

 Closing of eyes 

in awake 

condition 

Beta (β) 13 – 30   Frontal region 

 Parietal region 

 Problem solving 

 Judgement 

 Decision making 

 Concentration 

Gamma (γ) 30 – 100  Every part of the 

brain 

 Learning 

 Processing of 

information 

 Concentration 

 High energy 

state, e.g. when 

afraid 

Mu (μ) 7 – 13 Sensorimotor 

cortex (C3, Cz and 

C4 electrodes) 

 Actual 

movement 

 Intention to 

move 
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3 METHODOLOGY 

 

 

 

3.1 Introduction 

 

The flow of this project is based on the implementation of a BCI system as shown in 

Figure 3.1. EEG data was recorded using Emotiv EPOC+ headset by a previous 

researcher. The EEG signal acquired is first pre-processed using EEGLAB in order to 

remove artifacts present in the signal. After removing artifacts in the signal, relevant 

features are extracted from the EEG signals using MATLAB. Next, classification of 

the features will be done by using the Weka software. The flowchart as shown in 

Figure 3.2 illustrates the flow of this study. 

 

 

Figure 3.1: A Brain Computer Interface (BCI) system (Ramadan et al., 2015) 
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Figure 3.2: Generic Flowchart of the Project 
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3.2 Equipment and Tools 

 

3.2.1 Hardware 

 

i. Personal Computer 

 

 

 

3.2.2 Software 

 

i. EEGLAB (Version 14) 

ii. MATLAB (Version R2014a) 

iii. Weka (Version 3.8) 

iv. Microsoft Excel 

 

 

 

3.3 Description of Data Set 

 

The EEG data used in this study is adopted from a previous researcher who developed 

a BCI system which controlled the robot using motor imagery. Listed below are the 

steps carried out by the researcher to record EEG signals from 13 subjects: 

 

1. The subject is first given some time familiarizing with the Emotiv headset and 

then he/she is asked to relax and close his eyes, in order to record the EEG 

signal for 5 minutes.  

 

2. Next, the subject is asked to relax again with eyes open and EEG signal is 

recorded for another 5 minutes.  

 

3. After some rest, the subject is introduced to the Emotiv Cognitive suite as 

shown in Figure 2.10 where the subject is required to undergo training of two 

actions, i.e. mental imagery of push and pull on the animated cube.  
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4. Step 3 is repeated three times so that the system obtain a better signal from the 

subject.  

 

5. Rest is given after the training phase.  

 

6. 5 minutes is given to the subject to apply the push action on the animated cube. 

 

7. Step 6 is repeated for pull action.  

 

8. Step 3 to step 7 are repeated for mental imagery of left and right action on the 

animated cube.   

  

 

 

3.4 Pre-processing of EEG Signal 

 

As frequencies higher than 30Hz belong to the gamma band which is not the band of 

interest for mental imagery applications, EEG signals are filtered from 1 – 30Hz at the 

beginning of the pre-processing stage. In addition, EEG signals acquired are normally 

noisy with some artifacts being introduced. Examples of artifacts include muscle 

activity – Electromyography (EMG) artifacts, eye movements – Electrooculography 

(EOG) artifacts, interferences from electrical equipment and cables etc. as shown in 

Figure 3.3 (Alnemari, 2017). Hence, there is a need for artifact removal before 

extracting features from the signals and classifying them. A technique commonly used 

to remove artifacts from the EEG signals is the Independent Component Analysis (ICA) 

(Rak, Kołodziej and Majkowski, 2012). However, in this study, the removal of 

artifacts in EEG signal is done manually by using an open source MATLAB toolbox 

known as EEGLAB. All the artifacts are removed first before proceeding to the feature 

extraction stage. 
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APPENDIX A: Normalized Feature Values 

 

 

 

The normalized values of the features used in this study is shown in following pages 

(Table A.1 to A.4 ) 

 

Table A.1: Normalized Band Power values  

Features Mental Imagery Tasks 

LEFT RIGHT PUSH PULL 

Alpha Power 

(AF3) 

0.0463 0.0422 0.0877 0.0536 

Alpha Power 

(FC5) 

0.0401 0.0519 0.0280 0.0454 

Alpha Power 

(FC6) 

0.0558 0.0695 0.0536 0.0729 

Alpha Power 

(AF4) 

0.0558 0.0779 0.0507 0.0621 

Beta Power (AF3) 0.0829 0.0679 0.1346 0.0853 

Beta Power (FC5) 0.0995 0.0695 0.0830 0.0835 

Beta Power (FC6) 0.0947 0.0531 0.0942 0.0760 

Beta Power (AF4) 0.1002 0.0666 0.0937 0.0870 

AVERAGE 0.0719 0.0623 0.0782 0.0707 
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Table A.2: Normalized ApEn values  

Features Mental Imagery Tasks 

LEFT RIGHT PUSH PULL 

AF3 0.4857 0.4660 0.4516 0.4570 

FC5 0.5907 0.5562 0.5279 0.5015 

FC6 0.5097 0.4724 0.5164 0.4738 

AF4 0.4774 0.4166 0.5023 0.4208 

AVERAGE 0.5159 0.4778 0.4995 0.4633 
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Table A.3: Normalized Statistical feature values  

Features Mental Imagery Tasks 

LEFT RIGHT PUSH PULL 

Mean (AF3) 0.602 0.606 0.615 0.589 

Mean (FC5) 0.563 0.549 0.560 0.543 

Mean (FC6) 0.531 0.535 0.533 0.520 

Mean (AF4) 0.743 0.734 0.753 0.728 

SD (AF3) 0.106 0.108 0.133 0.137 

SD (FC5) 0.060 0.061 0.061 0.101 

SD (FC6) 0.085 0.085 0.094 0.115 

SD (AF4) 0.096 0.101 0.080 0.112 

1st diff (AF3) 0.345 0.331 0.399 0.368 

1st diff (FC5) 0.053 0.029 0.080 0.098 

1st diff (FC6) 0.054 0.025 0.089 0.099 

1st diff (AF4) 0.063 0.034 0.091 0.103 

Normalized 1st diff (AF3) 0.358 0.354 0.329 0.320 

Normalized 1st diff (FC5) 0.320 0.269 0.322 0.301 

Normalized 1st diff (FC6) 0.268 0.208 0.298 0.289 

Normalized 1st diff (AF4) 0.223 0.172 0.268 0.235 

2nd diff (AF3) 0.321 0.308 0.371 0.344 

2nd diff (FC5) 0.055 0.031 0.082 0.100 

2nd diff (FC6) 0.056 0.028 0.091 0.102 

2nd diff (AF4) 0.069 0.039 0.095 0.109 

Normalized 2nd diff (AF3) 0.379 0.372 0.353 0.342 

Normalized 2nd diff (FC5) 0.345 0.293 0.348 0.326 

Normalized 2nd diff (FC6) 0.294 0.232 0.324 0.316 

Normalized 2nd diff (AF4) 0.246 0.195 0.294 0.257 

AVERAGE 0.260 0.237 0.278 0.273 
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Table A.4: Normalized Wavelet-based feature values  

Features Mental Imagery Tasks 

LEFT RIGHT PUSH PULL 

D2 Mean (AF3) 0.453 0.447 0.452 0.434 

D2 Mean (FC5) 0.525 0.533 0.544 0.523 

D2 Mean (FC6) 0.490 0.497 0.505 0.483 

D2 Mean (AF4) 0.530 0.534 0.540 0.518 

D2 SD (AF3) 0.272 0.248 0.329 0.288 

D2 SD (FC5) 0.068 0.038 0.090 0.106 

D2 SD (FC6) 0.070 0.036 0.101 0.109 

D2 SD (AF4) 0.081 0.046 0.102 0.112 

D2 Energy (AF3) 0.122 0.097 0.170 0.137 

D2 Energy (FC5) 0.022 0.005 0.061 0.079 

D2 Energy (FC6) 0.025 0.004 0.067 0.080 

D2 Energy (AF4) 0.028 0.006 0.064 0.076 

D1 Mean (AF3) 0.500 0.483 0.490 0.473 

D1 Mean (FC5) 0.641 0.646 0.641 0.629 

D1 Mean (FC6) 0.710 0.711 0.695 0.690 

D1 Mean (AF4) 0.519 0.500 0.509 0.491 

D1 SD (AF3) 0.288 0.259 0.337 0.293 

D1 SD (FC5) 0.055 0.029 0.083 0.098 

D1 SD (FC6) 0.052 0.023 0.089 0.097 

D1 SD (AF4) 0.056 0.026 0.086 0.095 

D1 Energy (AF3) 0.140 0.106 0.179 0.147 

D1 Energy (FC5) 0.014 0.002 0.057 0.076 

D1 Energy (FC6) 0.016 0.002 0.065 0.078 

D1 Energy (AF4) 0.016 0.002 0.059 0.072 

AVERAGE 0.237 0.220 0.263 0.258 
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APPENDIX B: Results of Classification based on a Single Feature 

 

 

 

The average cross validation accuracies of using a single feature are shown in 

following pages (Table B.1 to B.4 ). 

 

Table B.1: Average Cross Validation Accuracy of Band Power Features 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 49.87% 59.85% 69.38% 60.09% 

P7, P8 60.33% 65.62% 63.70% 61.77% 

AF3, AF4 52.40% 60.45% 57.93% 57.09% 

FC5, FC6, P7, P8 66.34% 81% 84.61% 81.49% 

FC5, FC6, AF3, 

AF4 

61.53% 77.76% 82.93% 80.04% 

P7, P8, AF3, AF4 65.50% 83.65% 86.65% 82.57% 

FC5, FC6, P7, P8, 

AF3, AF4 

69.23% 87.98% 92.30% 89.18% 

All 76.20% 93.87% 95.91% 93.62% 

 

 

Table B.2: Average Cross Validation Accuracy of ApEn Features 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 53.60% 59.85% 57.69% 60.21% 

P7, P8 49.03% 49.27% 48.91% 54.20% 

AF3, AF4 56.85% 60.69% 59.85% 61.17% 

FC5, FC6, P7, P8 72.47% 81% 88.58% 85.21% 

FC5, FC6, AF3, 

AF4 

78.36% 88.34% 94.23% 93.50% 

P7, P8, AF3, AF4 73.31% 86.41% 91.34% 91.70% 



67 

FC5, FC6, P7, P8, 

AF3, AF4 

82.69% 94.83% 98.67% 98.67% 

All 82.45% 98.19% 99.87% 99.75% 

 

 

Table B.3: Average Cross Validation Accuracy of Statistical Features 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 61.41% 72.83% 63.70% 63.82% 

P7, P8 59.97% 73.67% 66.82% 67.42% 

AF3, AF4 67.42% 77.04% 76.08% 74.39% 

FC5, FC6, P7, P8 68.26% 86.89% 81.61% 81% 

FC5, FC6, AF3, 

AF4 

72.83% 87.98% 85.45% 84.25% 

P7, P8, AF3, AF4 72.23% 89.54% 87.01% 86.17% 

FC5, FC6, P7, P8, 

AF3, AF4 

74.15% 92.78% 91.70% 88.82% 

All 79.92% 95.55% 95.67% 94.35% 

 

 

Table B.4: Average Cross Validation Accuracy of Wavelet-based Features 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 51.92% 62.86% 49.03% 46.63% 

P7, P8 58.53% 66.34% 53.72% 53.12% 

AF3, AF4 56.85% 67.30% 57.45% 61.29% 

FC5, FC6, P7, P8 65.26% 80.76% 66.34% 63.34% 

FC5, FC6, AF3, AF4 68.99% 82.21% 66.82% 68.99% 

P7, P8, AF3, AF4 66.94% 81.73% 75.12% 74.75% 

FC5, FC6, P7, P8, 

AF3, AF4 

74.03% 88.82% 79.68% 80.88% 

All 80.16% 95.07% 88.46% 90.14% 
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APPENDIX C: Results of Classification based on Combinations of Features 

 

 

 

The average cross validation accuracies of using combination of features are shown in 

following pages (Table C.1 to C.11 ) 

 

Table C.1: Average Cross Validation Accuracy of Combination 1 (Band Power 

and ApEn Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 73.31% 89.18% 92.66% 91.94% 

P7, P8 70.31% 84.61% 82.93% 84.13% 

AF3, AF4 70.79% 85.69% 90.26% 90.50% 

FC5, FC6, P7, P8 80.64% 94.23% 98.07% 96.15% 

FC5, FC6, AF3, 

AF4 

82.09% 96.75% 98.55% 98.67% 

P7, P8, AF3, AF4 78.72% 96.99% 98.19% 97.83% 

FC5, FC6, P7, P8, 

AF3, AF4 

83.89% 97.83% 99.75% 99.27% 

All 84.73% 98.31% 100% 99.75% 

 

 

Table C.2: Average Cross Validation Accuracy of Combination 2 (Band Power 

and Statistical Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 61.53% 80.28% 73.07% 74.51% 

P7, P8 62.74% 79.80% 74.39% 75.12% 

AF3, AF4 64.30% 81.85% 79.80% 79.20% 

FC5, FC6, P7, P8 69.23% 89.66% 87.86% 81.73% 

FC5, FC6, AF3, 

AF4 

75.48% 89.90% 87.86% 87.25% 
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P7, P8, AF3, AF4 71.75% 91.58% 90.74% 89.06% 

FC5, FC6, P7, P8, 

AF3, AF4 

77.04% 94.11% 93.02% 90.74% 

All 82.21% 96.63% 95.91% 95.07% 

 

 

Table C.3: Average Cross Validation Accuracy of Combination 3 (Band Power 

and Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 60.93% 74.03% 63.34% 62.01% 

P7, P8 63.10% 76.56% 67.66% 65.50% 

AF3, AF4 62.01% 73.43% 67.42% 66.10% 

FC5, FC6, P7, P8 67.66% 86.17% 81.12% 79.08% 

FC5, FC6, AF3, 

AF4 

71.51% 87.5% 77.40% 80.64% 

P7, P8, AF3, AF4 73.19% 87.37% 86.89% 82.93% 

FC5, FC6, P7, P8, 

AF3, AF4 

73.43% 92.42% 89.30% 87.5% 

All 80.04% 95.79% 93.62% 93.75% 

 

 

Table C.4: Average Cross Validation Accuracy of Combination 4 (ApEn and 

Statistical Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 77.76% 90.14% 86.41% 85.45% 

P7, P8 69.83% 85.33% 85.21% 87.13% 

AF3, AF4 74.27% 90.14% 92.06% 91.10% 

FC5, FC6, P7, P8 82.09% 96.99% 94.95% 96.63% 

FC5, FC6, AF3, 

AF4 

83.41% 96.27% 96.87% 96.39% 

P7, P8, AF3, AF4 78.36% 96.15% 96.99% 96.99% 
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FC5, FC6, P7, P8, 

AF3, AF4 

85.93% 97.83% 98.43% 97.71% 

All 87.37% 98.43% 99.39% 99.87% 

 

 

Table C.5: Average Cross Validation Accuracy of Combination 5 (ApEn and 

Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 79.68% 90.26% 81.49% 83.77% 

P7, P8 70.07% 81.97% 80.76% 79.56% 

AF3, AF4 72.83% 86.17% 86.17% 87.37% 

FC5, FC6, P7, P8 79.44% 95.31% 96.51% 93.87% 

FC5, FC6, AF3, 

AF4 

85.33% 96.63% 95.91% 97.35% 

P7, P8, AF3, AF4 81% 94.95% 96.63% 96.39% 

FC5, FC6, P7, P8, 

AF3, AF4 

84.01% 97.95% 98.91% 99.03% 

All 84.13% 98.91% 99.39% 99.51% 

 

 

Table C.6: Average Cross Validation Accuracy of Combination 6 (Statistical and 

Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 64.54% 79.08% 66.34% 64.54% 

P7, P8 68.14% 78.72% 75.36% 74.15% 

AF3, AF4 66.22% 79.80% 76.08% 74.27% 

FC5, FC6, P7, P8 67.78% 88.94% 85.21% 82.21% 

FC5, FC6, AF3, 

AF4 

73.31% 89.66% 86.05% 84.73% 

P7, P8, AF3, AF4 75.36% 91.10% 90.38% 89.66% 
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FC5, FC6, P7, P8, 

AF3, AF4 

74.87% 93.62% 91.70% 90.86% 

All 81.85% 96.27% 95.55% 95.79% 

 

 

Table C.7: Average Cross Validation Accuracy of Combination 7 (Band Power, 

ApEn and Statistical Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 76.44% 93.87% 91.22% 88.70% 

P7, P8 67.66% 87.62% 88.94% 87.37% 

AF3, AF4 71.39% 91.10% 93.14% 91.46% 

FC5, FC6, P7, P8 80.40% 97.23% 96.75% 96.87% 

FC5, FC6, AF3, 

AF4 

81.85% 97.11% 97.11% 96.63% 

P7, P8, AF3, AF4 81% 96.27% 97.59% 96.63% 

FC5, FC6, P7, P8, 

AF3, AF4 

84.97% 97.71% 98.79% 98.31% 

All 88.34% 98.43% 99.51% 99.87% 

 

 

Table C.8: Average Cross Validation Accuracy of Combination 8 (Band Power, 

ApEn and Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 74.51% 93.02% 92.54% 91.46% 

P7, P8 70.55% 85.57% 86.65% 86.29% 

AF3, AF4 73.19% 89.06% 89.90% 90.50% 

FC5, FC6, P7, P8 80.40% 95.31% 97.71% 97.11% 

FC5, FC6, AF3, 

AF4 

84.49% 98.07% 97.35% 98.07% 

P7, P8, AF3, AF4 78.96% 95.19% 97.23% 97.23% 
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FC5, FC6, P7, P8, 

AF3, AF4 

80.88% 98.19% 99.03% 98.67% 

All 82.09% 98.55% 99.15% 99.63% 

 

 

Table C.9: Average Cross Validation Accuracy of Combination 9 (Band Power, 

Statistical and Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 64.42% 82.09% 74.15% 75.60% 

P7, P8 67.54% 80.52% 79.08% 78.24% 

AF3, AF4 64.66% 83.17% 79.44% 77.88% 

FC5, FC6, P7, P8 70.55% 89.54% 88.46% 87.62% 

FC5, FC6, AF3, 

AF4 

73.67% 91.94% 87.74% 86.17% 

P7, P8, AF3, AF4 73.19% 92.90% 92.06% 91.10% 

FC5, FC6, P7, P8, 

AF3, AF4 

73.91% 94.95% 93.02% 91.94% 

All 83.41% 96.39% 96.39% 96.03% 

 

 

Table C.10: Average Cross Validation Accuracy of Combination 10 (ApEn, 

Statistical and Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 75.96% 91.22% 87.13% 87.13% 

P7, P8 70.19% 83.65% 87.98% 85.33% 

AF3, AF4 72.95% 89.54% 91.34% 89.78% 

FC5, FC6, P7, P8 80.64% 96.63% 96.15% 95.91% 

FC5, FC6, AF3, 

AF4 

80.28% 96.39% 96.63% 95.91% 

P7, P8, AF3, AF4 80.64% 96.27% 96.87% 95.07% 
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FC5, FC6, P7, P8, 

AF3, AF4 

84.49% 97.59% 98.67% 98.55% 

All 86.53% 98.43% 98.91% 99.51% 

 

 

Table C.11: Average Cross Validation Accuracy of Combination 11 (Band Power, 

ApEn, Statistical and Wavelet-based Features) 

Electrodes Used Decision Tree Random 

Forest 

KNN (k = 1) SVM 

FC5, FC6 75.12% 92.18% 91.10% 88.46% 

P7, P8 70.91% 86.05% 90.26% 86.41% 

AF3, AF4 71.51% 89.18% 92.06% 90.98% 

FC5, FC6, P7, P8 79.80% 95.67% 96.87% 95.91% 

FC5, FC6, AF3, 

AF4 

81.25% 96.51% 96.87% 95.79% 

P7, P8, AF3, AF4 80.16% 95.67% 96.99% 95.91% 

FC5, FC6, P7, P8, 

AF3, AF4 

85.81% 96.99% 98.55% 98.67% 

All 86.17% 98.31% 99.15% 99.27% 
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APPENDIX D: Source Code for Extracting Band Power Features 

 

 

 

filename = 'bp_features.csv'; 

sampRate = 128; % sampling rate of your data 

lowerFreq = 7; % lower bound of alpha band 

higherFreq = 13; % upper bound of alpha band 

 

length = 20;    % desired length of EEG signal in seconds 

window_size = 5;    % size of sliding window in seconds 

overlap = 0.25;  % overlapping ratio of sliding windows 

loop = ((length-window_size)/((1-overlap)*window_size)) + 1;    % Number of 

windows (features) extracted from a signal 

 

abspower=0; 

nbchannel=EEG.nbchan; 

inter_ar=zeros(1,nbchannel); 

window_bp = zeros(int16(loop),nbchannel); 

 

for chanNr = 1:nbchannel; % channel number of your specific lead 

     

    start_index = 1; 

    end_index = start_index + window_size*sampRate - 1; 

    data = EEG.data(chanNr,1:length*sampRate); 

     

    for i = 1:loop 

        window_data = data(start_index:end_index); 

         

        % computing log spectrum for different frequencies 

        [power, freq] = spectopo(window_data, 0, sampRate);%(chanNr, :) 

 

        % average power within the predefined frequency range 

        AlphaIdx = find(freq == lowerFreq) : find(freq == higherFreq); 

        temp = 10^(mean(power(AlphaIdx))/10); 

         

        % Saving data for sliding window 

        window_bp(i,chanNr) = temp;  

        start_index = int16(start_index + window_size*sampRate*(1-overlap)); 

        end_index = int16(end_index + window_size*sampRate*(1-overlap)); 

    end 

end 

 

%Writing the features extracted into a csv file 

dlmwrite(filename,window_bp,'delimiter',',','-append'); 
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APPENDIX E: Source Code for Extracting ApEn Features 

 

 

 

filename = 'apen_features.csv'; 

sampRate = 128; %sampling rate of your data 

 

length = 20;    % desired length of EEG signal in seconds 

window_size = 5;    % size of sliding window in seconds 

overlap = 0.8;  % overlapping ratio of sliding windows 

loop = ((length-window_size)/((1-overlap)*window_size)) + 1;    % Number of 

windows(features) extracted from a signal 

 

apen=0; 

nbchannel=EEG.nbchan; 

channel_ar=zeros(1,nbchannel); 

window_apen = zeros(int16(loop),nbchannel); 

h = waitbar(0,'Please wait...'); 

for chanNr = 1:nbchannel; % channel number of your specific lead 

 

    fprintf('%d ', chanNr); 

    perc = fix((chanNr/nbchannel)*100); 

    waitbar(chanNr/nbchannel,h,sprintf('%d%% done...',perc)) 

 

    start_index = 1; 

    end_index = start_index + window_size*sampRate - 1; 

    data = EEG.data(chanNr,1:length*sampRate); 

     

    for i = 1:loop 

        window_data = data(start_index:end_index); 

         

        r = 0.5 * std(data);        % tolerance value 

        % Computing approximate entropy for single channel 

        apen = ApEn( 2, r, window_data, 1 ); 

         

        % Saving data for sliding window 

        window_apen(i,chanNr) = apen;  

        start_index = int16(start_index + window_size*sampRate*(1-overlap)); 

        end_index = int16(end_index + window_size*sampRate*(1-overlap)); 

    end 

 

end 

close(h); 

 

%Writing the features extracted into a csv file 

dlmwrite(filename,window_apen,'delimiter',',','-append'); 
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APPENDIX F: Source Code for Extracting Statistical Features 

 

 

 

filename = 'stat_features.csv'; 

sampRate = 128; % sampling rate of your data 

 

length = 20;    % desired length of EEG signal in seconds 

window_size = 5;    % size of sliding window in seconds 

overlap = 0.8;  % overlapping ratio of sliding windows 

loop = ((length-window_size)/((1-overlap)*window_size)) + 1;    % Number of 

windows(features) extracted from a signal 

h = waitbar(0,'Please wait...'); 

 

abspower=0; 

nbchannel=EEG.nbchan; 

inter_ar=zeros(1,nbchannel); 

window_mean = zeros(int16(loop),nbchannel); 

window_std = zeros(int16(loop),nbchannel); 

window_1st = zeros(int16(loop),nbchannel); 

window_2nd = zeros(int16(loop),nbchannel); 

window_1stnorm = zeros(int16(loop),nbchannel); 

window_2ndnorm = zeros(int16(loop),nbchannel); 

 

for chanNr = 1:nbchannel; % channel number of your specific lead 

     

    fprintf('%d ', chanNr); 

    perc = fix((chanNr/nbchannel)*100); 

    waitbar(chanNr/nbchannel,h,sprintf('%d%% done...',perc)) 

     

    start_index = 1; 

    end_index = start_index + window_size*sampRate - 1; 

    data = EEG.data(chanNr,1:length*sampRate); 

     

    for i = 1:loop 

        window_data = data(start_index:end_index); 

        norm_window = (window_data - mean(window_data))/std(window_data); 

         

        % Saving data for sliding window 

        window_mean(i,chanNr) = mean(window_data);  

        window_std(i,chanNr) = std(window_data);  

        window_1st(i,chanNr) = mean(abs(diff(window_data))); 

        window_1stnorm(i,chanNr) = mean(abs(diff(norm_window))); 

        window_2nd(i,chanNr) = mean(abs(window_data(3:end) -

window_data(1:end-2))); 

        window_2ndnorm(i,chanNr) = mean(abs(norm_window(3:end) -

norm_window(1:end-2))); 
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        start_index = int16(start_index + window_size*sampRate*(1-overlap)); 

        end_index = int16(end_index + window_size*sampRate*(1-overlap)); 

    end 

end 

 

close(h); 

stat_feature = [window_mean window_std window_1st window_1stnorm 

window_2nd window_2ndnorm]; 

 

%Writing the features extracted into a csv file 

dlmwrite(filename,stat_feature,'delimiter',',','-append'); 
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APPENDIX G: Source Code for Extracting Wavelet-based Features 

 

 

 

filename1 = 'D1_features.csv'; 

filename2 = 'D2_features.csv'; 

sampRate = 128; % sampling rate of your data 

 

length = 20;    % desired length of EEG signal in seconds 

window_size = 5;    % size of sliding window in seconds 

overlap = 0.8;  % percentage of overlapping between windows 

loop = ((length-window_size)/((1-overlap)*window_size)) + 1;    % Number of 

windows(features) extracted from a signal 

 

waveletFunction = 'db4';    % Mother wavelet - db4 

level = 3;      % Level of decomposition 

 

nbchannel=EEG.nbchan; 

h = waitbar(0,'Please wait...'); 

 

d1window_mean = zeros(int16(loop),nbchannel); 

d1window_std = zeros(int16(loop),nbchannel); 

d1window_energy = zeros(int16(loop),nbchannel); 

 

d2window_mean = zeros(int16(loop),nbchannel); 

d2window_std = zeros(int16(loop),nbchannel); 

d2window_energy = zeros(int16(loop),nbchannel); 

 

for chanNr = 1:nbchannel; % channel number of your specific lead 

 

    fprintf('%d ', chanNr); 

    perc = fix((chanNr/nbchannel)*100); 

    waitbar(chanNr/nbchannel,h,sprintf('%d%% done...',perc)) 

 

    data = EEG.data(chanNr,1:length*sampRate); 

    start_index = 1; 

    end_index = start_index + window_size*sampRate - 1; 

     

    for i = 1:loop 

        window_data = data(start_index:end_index); 

         

        %Computing wavelet coefficient for single channel 

        [C,L] = wavedec(window_data,level,waveletFunction);  

        cD1 = detcoef(C,L,1);          % D1 wavelets 

        cD2 = detcoef(C,L,2);          % D2 wavelets 

        cD3 = detcoef(C,L,3);          % D3 wavelets 

        cA3 = appcoef(C,L,waveletFunction,3);       % A3 wavelets 

         



79 

        d1norm_window = (cD1 - mean(cD1))/std(cD1); 

        d2norm_window = (cD2 - mean(cD2))/std(cD2); 

         

        %Saving D1 wavelets features for sliding window 

        d1window_mean(i,chanNr) = mean(cD1);  

        d1window_std(i,chanNr) = std(cD1);  

        d1window_energy(i,chanNr) = sum(abs(cD1).^2); 

         

        %Saving D2 wavelets features for sliding window 

        d2window_mean(i,chanNr) = mean(cD2);  

        d2window_std(i,chanNr) = std(cD2);  

        d2window_energy(i,chanNr) = sum(abs(cD2).^2); 

        start_index = int16(start_index + window_size*sampRate*(1-overlap)); 

        end_index = int16(end_index + window_size*sampRate*(1-overlap)); 

    end 

     

end 

close(h); 

d1stat_feature = [d1window_mean d1window_std d1window_energy]; 

d2stat_feature = [d2window_mean d2window_std d2window_energy]; 

 

%Writing the features extracted into a csv file 

dlmwrite(filename1,d1stat_feature,'delimiter',',','-append'); 

dlmwrite(filename2,d2stat_feature,'delimiter',',','-append'); 
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APPENDIX H: Procedures of Classifying the Features Extracted 

 

 

 

Step 1: Load the features extracted into the Weka interface 

First of all, open the Weka 3 software and select the Explorer application. From the 

Weka Explorer window that appeared, click the “Open file” option and select the 

features (with the file format .csv) to be classified.  

 

Figure H1: Weka Interface 

 

 

 

Figure H2: Weka Explorer window 
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Step 2: Normalizing the data before classify 

The features have to be normalized before the classification process begins. At the 

filter section, click the “Choose” button  select filters  > unsupervised > attributes 

 select Normalize. Then, click on the “Apply” button to normalize the features. 

 

 

Figure H3: Normalizing the features 

 

 

Step 3: Choose the classifier 

Click on the “Classify” tab to proceed to the classification process. At the classifier 

section, click the “Choose” button and select lazy > IBk for the KNN classifier. Make 

sure that the “Cross-validation” option is selected in the Test Option section and the 

number 10 is entered. Then, press the “Start” button to begin the classification process.  
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Figure H4: Choosing the classifier to be used 

 

 

Step 4: Record the average cross validation accuracy  

Lastly, the classification results are displayed and the average cross validation 

accuracy can be obtained from the “Correctly Classified Instances” section. 

 

 

 Figure H5: Recording the classification results 

 


