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ABSTRACT 

Detecting robbery-related concepts or any particular violent scenes in videos is one of the most fundamental 

on-going work in the world of computer vision. While it is evident that there are more discovery and 

improvements of such detection task especially in the realm of fully supervised settings, the acquisition of 

labelled training data at video’s temporal-level is not sensible.  

 

We instead tackle this problem by proposing two novel approaches – MIL-Ranking as well as TAL. At its 

very core, both aforementioned methods only necessitates ground-truth at video-level, instead of temporal-

level. We show that the implementation of MIL and TAL approaches on the huge-scale UCF-Crime dataset 

demonstrates their capabilities in detecting violent-related concepts at video’s temporal-level. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement and Motivation 

Precise detection on the presence of violent scenes is getting more crucial now more than ever, 

especially in field of computer vision and deep learning. This is true thanks to the rise of increasing 

available data, coupled with discovery of state-of-the-art deep learning techniques, as well as the 

presence of hardware capable of enriching and speeding up computations required in deep learning 

tasks. In this paper, what we are interested in is the system’s capability in predicting the violent 

category of the input video, as well as localizing the starting and ending timeframe of the violent 

event. The primary problem that motivates this experiment is the impracticality of training 

phase which involves untrimmed videos. For perspective, many state-of-the-art techniques like 

R-C3D [10] as well as SSN are able to predict and localize the starting and ending timeframe for 

specific actions. However, they necessitate the ground-truth labels at a more granular level during 

training. As such, these methods are regarded as fully-supervised because they rely on annotations 

at temporal-level, to indicate when a particular action starts and stops in a video. 

In fully-supervised paradigm, it is extremely laborious especially for untrimmed input videos, 

because they generally contain multiple background scenes that are irrelevant to our interest. A 

robbery scene in an untrimmed video might only contain the robbing act in the final portion of a 

video, while the majority of it contains unwanted scenes. This demands the annotation of only 

wanted crime scenes at temporal-level of videos. However, this is too meticulous and time-

consuming as it requires maximum supervision in order to fully annotate the datasets at temporal-

level. Apart from that, providing ground-truth labels on temporal-level may be trickier than it 

seems, due to conflicting ideas. A normal video (without any violent scenes) may contain actions 

where people are running around, and thus assigned a negative label. However, other might 

presumed the act of somebody running and fleeing in any scene to strongly imply the presence of 

violent scenes due to victims fleeing away from a violent event, and thus be given positive label 

at that particular temporal portion, to indicate presence of violent scenes. It is sometimes 

complicated to exactly define what is considered as normal behaviors or violent acts without taking 

into account of the overall video or context, based on report by (Chandola, et al., 2009).  
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Second problem is concerning the difficulty in predicting a particular violent scene fully, 

without annotations at temporal-level. When it boils down to violent-related action, there are a 

wide array of sub-actions or lower-level concepts that can be uniquely identified to that particular 

violence. For example, a theft may employ the steal-and-run tactic (robbery), while some thefts 

occurred where the perpetrators lingering around in a store, right before shoplifting by concealing 

the stolen item underneath their clothes, making as less noticeable actions as possible before slowly 

walking away. Previously mentioned lower-level concepts like running or hastily snatching other 

person’s belonging likely constitutes to a robbery scene, and this could be instantly learned by the 

model if it is supplied with temporal annotations. Unfortunately in the case of weakly-supervised 

techniques, this may seem tricky due to absence of ground-truth at temporal-level.  

In order to address the complexity of predicting a specific kind of violence actions as previously 

mentioned, the general step would be to employ system that specifically detects this kind of events 

as being described by (Mohammadi, et al., 2015) where the work was aimed specifically on both 

violence in crowds and riots in prison. However, the main limitation with said work is that it would 

hardly generalize on other types of violence with different premises – as in, violence that occurs 

in non-crowded area, or crimes that are totally different in nature, such as a perpetrator vandalizing 

a property. As a matter of fact, a thief who shoplifted may have done so very subtly with minimal 

actions, which definitely poses a challenge to detection systems that solely relies on a single visual 

cues exhibited in that video when it comes to detecting shoplifting scene. To that end, a more 

robust deep learning architecture is needed where it is able to perform better generalization on 

various types of violent actions containing different visual cues, and not solely rely on a single 

particular action exhibited by subject(s). In other words, we would not want our system to only 

operate well on limited categories of violent events.  

Moreover, in regards to this experiment, another hindrance in activity recognition of crime scene 

primarily lies in the scarcity of a wide array of crime scenes samples. It is a challenging task in 

acquiring large datasets which are rich in violent-based scenes as our training samples. Case in 

point, the Violence in Crowds dataset by (Hassner, et al., 2012) contains only 246 videos 

comprised of only two distinction, where half of it contains disruption among crowds, while the 

other half dataset contains normal scenes. Another variation of violence-related datasets, Hockey 

dataset [2] comprises 1000 clips, which can be categorized into 500 clips containing fights between 
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hockey players, while the remaining 500 clips are non-violence. For these datasets, both of them 

contains violence-related samples which are too specific to their particular category and lack in 

terms of variety. Classifiers that is being trained solely on these datasets may likely not generalize 

well on other types of violence samples that do not involve masses or hockey players. In this 

experiment, courtesy of (Sultani, et al., 2018), we will work on UCF-Crime datasets which 

contains 1,900 surveillance videos that can be broken down into 13 distinct violent categories as 

well as a non-violent category. The very fact that said dataset is based on recorded surveillance 

cameras without undergoing any trimming, makes it a very suitable and realistic candidate when 

it comes to violent scene detection. 

The main motivation of this project is to address aforementioned problem statements by exploring 

two weakly-supervised methods in violent scene detection, namely by experimenting on Multiple 

Instances Learning (MIL) and Temporal Action Localization (TAL) proposed by (Sultani, et 

al., 2018) and (Liu, et al., 2019), respectively. Further inner workings of both aforementioned 

techniques shall be further delved in chapter 3. 

 

1.2 Project Objectives 

1. To develop a Multiple Instances Learning (MIL) violence detection system. In this 

experiment, we wish to detect the presence of any violence scenes present in an untrimmed 

video by only providing labels on video-level during training – without having to 

meticulously annotate at temporal-level within every video. MIL shall be able to 

temporally detect the occurrences of violent scenes with respect to the frames of a particular 

video by generating higher anomaly scores to indicate the presence of any violence-related 

events, and minimize anomaly scores for trivial background scenes. 

 

2. To develop a Temporal Action Localization (TAL) violence detection system. TAL 

shares some similar traits with MIL, since both of these are weakly-supervised. In terms of 

capabilities however, TAL predominantly able to localize the boundary of a violence action 

by outputting the starting and ending timeframe, as well as classify the types of violence 

categories on every localized actions. 
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3. To juxtapose the performances of MIL and TAL paradigms. Since both MIL and TAL 

are weakly-supervised settings, we could gauge and compare both performances in 

detecting violent scenes. In short, both of these approaches have fundamentally different 

results – MIL aims to generate higher anomaly scores corresponding to temporal segments 

containing violent scenes and generate minimal scores for segments containing normal 

scenes. TAL on the other hand intends to localize violent scenes present in a video while 

simultaneously classify violent categories for each localized violent scenes.  

 

1.3 Impact, Significance and Contribution 

 The development of this experiment serves as a gateway for further exploration on the 

detection of violent scenes in videos through MIL and TAL. By capitalizing on weakly-

annotated data, our system is capable of localizing actions for input videos, aside from 

avoiding possibly noisy data at temporal-level. This very fact is imperative, due to the 

difficulties in obtaining annotations and labels at temporal-level for each videos. 

 

 Considering the huge amount of violent-based videos that can be further broken down into 

different categorization of violence, the UCF-Crime dataset is a prime candidate for further 

research when it comes to any violent-related detection, that are not bounded by specific 

elements such as location, or even the behaviors of perpetrators.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Action Recognition in Video 

Since the main gist of this project revolves around the detection of any violence or robbery-related 

concepts, we are really interested in detecting their presence throughout the entire duration of a 

given video. Given the fact that video is just a collection of frames that changes with respect to 

time, we can inherently regard detection in video as the expansion of aggregating 2D image 

classification task (2D tasks) on multiple input frames along the time dimension (3D tasks).  

To that end, (Karpathy, et al., 2014), proposed three approaches – Late Fusion, Early Fusion and 

Slow Fusion in the context of classifying continuous video frames and fusing them temporally via 

2D Convolution, with the aim of predicting video’s classification. 

 

Figure 2.1.1: Fusion-based approaches explored in video classification. 

Standard Single Frame CNN is derived from AlexNet architecture, where it takes a single input 

frame of a given video at a time, and only fuses information signal of entire frames (per video) at 

fully-connected (FC) layer, where it is linked to softmax classifier – resulting in computing 

probability distribution for multiple actions or activities. This approach is capable of detecting 

information spatially, but it could not temporally detect motions of objects or subjects throughout 

the frames. Instead of relying only on single CNN, Late Fusion is introduced, where it is made up 
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of two separated Single Frame CNN positioned at the first and last frame respectively, where both 

of them are 15 frames from each other. In short, two sampled frames are simultaneously fed into 

this Late Fusion scheme. Since the weights for both of these separated CNN are shared, the 

resulting predictions from both of these CNN will be merged in the FC layer, thereby enabling the 

detection of motion by computing the differences between outputs from both CNN components.  

The second technique, Early Fusion, is also based on the adjustment of Single Frame CNN. Instead 

of feeding one frame at a time into the network, Early Fusion takes in a chunk of sampled frames 

(N in total). In this case, the first convolution layer has access to input data that temporally spans 

across N frames at a time, and this even allows the detection of a particular motion’s characteristic, 

namely its speed and direction. Slow Fusion is considered to be the mixture of Early and Late 

Fusion and it performs the best out of the three Fusion schemes. Based on Figure 2.1.1, the first 

convolutional layers in Slow Fusion pipeline will convolve on 4 input frames temporally which 

are partially overlapped within a window size of N frames, at any given time. It works by having 

the fusion of temporally obtained motions right through the first layers, so that once we progress 

over to the subsequent higher convolutional layers in the network, it has already accumulated 

spatio-temporal information at a global level. 

 

2.2 3D Convolutions 

 

Figure 2.2.1: Comparison between 2D and 3D convolution. 
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While the previous work in activity recognition aims to delve deeper by taking into account of 

both spatial and temporal features of motion throughout a video, it is still relatively restricted when 

it comes to preserving its spatio-temporal features since all the convolution operations being done 

are in 2D.  

It implies that even if 2D convolution is being done temporally on multiple frames, the resulting 

output will still be in the form of 2D activation map, as shown in Figure 2.2.1’s case (b). This is 

because in 2D convolution, the depth of the filter that is being applied has to be the same as the 

depth of the input that is being fed, thereby making the convolution operates spatially on 2-

dimensions, but not temporally throughout multiple frames. 3D convolution on the other hand 

leverages filters which having different depth than the ones in input image, thereby enabling the 

convolution being done throughout multiple frames in a video and resulting in 3-dimensional 

output volume. (Tran, et al., 2015), introduced C3D network which essentially relies on 3D 

convolution method in order to tackle the issues faced by the previous work. In fact, applying a 

3D convolution across frames works better in preserving temporal information, as 2D 

convolution's temporal information will gradually diminish right after the initial convolution.  

 

Figure 2.2.2: C3D network configurations. 

In the same paper, (Tran, et al., 2015) also repurposed C3D as a refined feature extraction tool. 

Firstly, C3D network is being pre-trained on the Sports-1M datasets which contains 1.1 million 

videos of that can be categorized into 487 distinct sports. By doing so, it can be used to extract 

rich temporal features in UCF-Crime datasets via transfer learning, thereby potentially avoiding 

the need to train onto other UCF-Crime videos from scratch. To extract features, an input video is 

segregated into a number of clips (each containing a fixed predetermined number of frames, in this 

C3D’s case is 16 frames), where appearances and motions will be encapsulated at fully-connected 

layer (fc6), since this FC layer progressively obtains high-level information from every element 

of previous layers. C3D is reportedly able to first detect spatial appearances in the first several 

frames, followed by tracking vital motion of said appearances subsequently. For instance, it 
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initially detects a person, and later on tracks the motion of aforementioned person doing specific 

kinds of activities, such as running or swimming. 

 

2.3 Two-Stream Inflated 3D ConvNet (I3D) 

I3D is complementary to the previously discussed C3D network. Instead of only extracting high-

level features solely based on single spatial stream (RGB frames), I3D network also takes into 

account of temporal stream as well. Temporal stream comprised of optical flow frames, which 

extracts the motion flow of moving objects between contiguous frames along the horizontal and 

vertical axis – yielding a pair of optical flow frames. 

 

Figure 2.3.1: A pair of optical frames generated (left side) based on the consecutive RGB frames 

(right side). 

While a single spatial-stream ConvNet is able to discern spatio-temporal patterns throughout video 

frames, temporal streams can be of a great aid in improving ConvNet’s performance due to its 

explicit motion features captured through optical flows frames. In this paper, (Zisserman & 

Carreira, 2018) leverage the pre-trained 2D ConvNet and inflated it into 3D ConvNet by expanding 

every pooling kernels and filters, thereby “expanding” them by an extra dimension. The main take-

away of this work is the effectiveness of leveraging pre-trained 2D ConvNet (on ImageNet dataset), 

and adapt it into spatio-temporal feature extraction tool as a 3D ConvNet via transfer learning, 

instead of training from scratch. This is helpful mainly because a conventional 3D ConvNet has 

way more weights and biases thanks to an extra kernel dimension, thereby making training more 

computationally expensive. For perspective, the 3D-ConvNet experimented by (Zisserman & 
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Carreira, 2018) contains 79 million parameters, while the two-stream I3D only contains 25 million 

parameters. 

 

Figure 2.3.2: Side-by-side comparison between single-stream 3D ConvNet along with two-

stream 3D-ConvNet. 

Apart from that, I3D is capable of recognizing a wide array of activity and salient actions by pre-

training it on Kinetics Human Action Video dataset, comprising of 400 human-action classes, 

spanning over 400 video clips for every class. In the context of detecting violent-related scenes in 

this project, I3D network will be the foundation of our TAL's feature extraction instrument. 

 

2.4 Regional Convolutional 3D Network (R-C3D) 

 

Figure 2.4.1: Architecture of R-C3D model. 

Both C3D and I3D explored previously are primarily geared towards activity recognition tasks. 

They are capable of performing video classification, but not to the extent of temporally predict the 
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starting and ending timeframe where a particular action takes place in a video. To this end, (Xu, et 

al., 2017) came up with R-C3D model which works as follows: Feed an untrimmed input video 

into a 3D ConvNet feature extractor in order to yield feature map which holds spatio-temporal 

discriminating motions and actions. The extracted feature is then passed on to a proposal subnet. 

As its name suggests, this subnet will generate a number of proposal segments that may contain 

potential actions in them (proposals) based on pre-defined anchors. Localization task in video is 

tricky in nature, due to the difficulty in precisely predict the starting and ending boundary of an 

action, since actions have different durations where some lasts longer than others. Furthermore, 

actions could be located at either the beginning, the end or anywhere throughout a video clip. To 

resolve this matter, a number of K anchors with varying scales are incorporated to aid in the process 

of proposing localized actions throughout a video. As a matter of fact, during training, each of 

these anchor segments are assigned with binary labels – positive to indicate the presence of activity 

in the generated proposals, and negative to indicate otherwise. An anchor is assigned to positive 

label if its segment overlaps with ground truth’s segment which exceeds a pre-defined threshold 

value. On the flip side, if an anchor segment has overlapping value below the threshold with all 

the ground truth’s segment, said anchor will be tied to negative label. Hence, this subnet requires 

ground truth at temporal-level. 

Since the proposals generated in proposal subnet has varying temporal length, they will be passed 

into the classification subnet, resulting in every proposals having fixed feature dimensions via 

ROI pooling layer, as shown in Figure 2.4.1. More importantly, this subnet carries out two main 

tasks: Classifying action categories as well as regressing the boundary of starting and ending time 

containing said action(s). Just as mentioned in proposal subnet, classification subnet also 

necessitates video-level label for each candidate proposals in order to acquire video-level 

classification prediction. All in all, R-C3D is capable of localizing the starting and ending 

timeframe containing an action, as well as predicting action classes for every localized segments. 

 

2.5 Multiple Instances Learning (MIL) 

While R-C3D is capable of localizing actions and classifying their categories, it is quite tedious 

since it necessitates ground truth at temporal-level during training. Compared with R-C3D, MIL 

is a form of weakly-supervised learning which does not require ground-truth at temporal-level. 
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MIL played an indispensable role for exploring the capabilities of weakly-supervised techniques 

since it served as the main backbone of our preliminary work (Chapter 3). In contrast to 

conventional fully-supervised learning that assign labels at instances, we only provide labelling at 

a group of instances using MIL – we refer this group as “bag”. With reference to Figure 2.5.1, 

negative bag will only contain negative instances. Conversely, any positive bags is assumed to 

contain at the very least a single positive instance in order to easily distinguish positive bags apart 

from negative bags. In many applications, this concept works well since some of the causes for the 

labelling occurs at bag-level. A straightforward analogy would be the case of classifying cancerous 

organ – an organ will be labelled as positive if it contains any presence of cancer, regardless if it’s 

in the form of cancerous cells/tissue, or the variation cancer stages. 

 

Figure 2.5.1: Core concepts of MIL. 

Since our preliminary work is based on the pipeline propounded by (Sultani, et al., 2018), in-depth 

descriptions behind the intuition as well as implementation details of MIL will be further discussed 

in the following chapter 3. 

 

2.6 AutoLoc 

AutoLoc also shares the same modus operandi with MIL, in the sense that it is a form of weakly-

supervised setting on activity detection task. During training, only the video-level label is provided 

along with extracted input features. (Shou, et al., 2018) configured AutoLoc into having two main 

branches: Classification branch and localization branch, as shown in Figure 2.6.1. After extracting 

discriminative features of untrimmed videos using pre-trained model, the feature sequences are 
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being fed into the classification branch. Firstly, this branch generates classification score for all 

the input snippets to indicate snippet’s activation for K classes in total – this is referred to as Class 

Activation Sequences (CAS). Meanwhile, the extracted input features is being passed into the 

localization branch as well. This branch is responsible for generating anchor proposals directly in 

order to obtain prediction at temporal-level. Subsequently, aforementioned anchors generated 

would be regressed based on the anchor’s center location and anchor’s length (duration), resulting 

in an inner boundary (𝑥1 and 𝑥2 corresponds to starting and ending snippets of inner boundary, 

respectively). Having obtained inner boundary, both 𝑥1and 𝑥2 will be inflated to obtain 𝑋1and 𝑋2, 

where 𝑋1 precedes 𝑥1 and 𝑥2 precedes 𝑋2. 

 

Figure 2.6.1: System architecture of AutoLoc. 

 

Based on the CAS obtained from classification branch, only the ones similar to the video-level 

label is being chosen to supervise prediction at temporal-level. In order to achieve this feat, OIC 

(Outer Inner Contrastive) Loss is being introduced and it works as follows: 𝑳𝑶𝑰𝑪 =  𝑨𝒐𝒖𝒕𝒆𝒓(𝝓) − 𝑨𝒊𝒏𝒏𝒆𝒓(𝝓)   
where 𝐴𝑜𝑢𝑡𝑒𝑟(𝜙) represents the average activation on surrounding outer area (denoted with red 

region on the CAS in Figure 2.6.1), while the inner area (denoted with green region on the CAS in 
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Figure 2.6.1) is referred to as 𝐴𝑖𝑛𝑛𝑒𝑟(𝜙). The 𝐴𝑜𝑢𝑡𝑒𝑟(𝜙) is obtained by inflating the 𝐴𝑖𝑛𝑛𝑒𝑟(𝜙). 

The main gist of 𝑳𝑶𝑰𝑪 is to ensure that the average activation on the inner area exceeds the ones in 

the outer area, because it’s more likely that the inner boundary’s activation is aligned with ground 

truth at temporal-level. Based on the above equation, the loss incurred by 𝑳𝑶𝑰𝑪 will be minimal if 

the value of 𝐴𝑖𝑛𝑛𝑒𝑟(𝜙) is larger than its outer counterpart. And by minimizing 𝑳𝑶𝑰𝑪, it can be used 

to determine which temporal-level sequences is needed to supervise the training of the boundary 

predictor, for more accurate localized prediction. 
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CHAPTER 3: METHODOLOGY 

This chapter is made up of two main sections – Section 3.1 details the workflow of MIL, followed 

by description of TAL pipeline in Section 3.2. In the case of MIL, it was trained and tested via 

Keras framework (running on top of Theano as back-end), while TAL was experimented using 

Pytorch framework. We utilized NVIDIA GTX1070ti GPU to accommodate the feature extraction 

and training process in both mentioned pipelines. (Liu, et al., 2019) experimented TAL paradigm 

using THUMOS’14 validation datasets, which is made up of 20 categories of action classes (soccer 

penalty, diving, high jump) for localizing and action classification tasks. This paper will examine 

both MIL and TAL technique onto the UCF-Crime dataset (as shown in Table 3) which comprises 

a wide multitude of violent scenes. MIL aims to generate higher anomaly scores for temporal 

segments containing crime scenes. Meanwhile for TAL, instead of providing the label at temporal-

level in every video samples during training, the goal of TAL is to (1) localize violent actions apart 

from the background scenes, as well as (2) classifying these localized actions, given the label at 

video-level only during training. 

 

Class Training Testing  Class Training Testing 

Abuse 48 2  Road 

Accidents 

127 23 

Arrest 45 5  Robbery 145 5 

Arson 41 9  Shooting 27 23 

Assault 47 3  Shoplifting 29 21 

Burglary 87 13  Stealing  95 5 

Explosion 29 21  Vandalism 45 5 

Fighting 45 5  Normal 800 150 

 

Table 3: Distribution of UCF-Crime dataset based on category of videos. 
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3.1 Multiple Instances Learning (MIL) 

Feature Extraction. To ensure clarity in terminologies for MIL’s section, we will regard 

‘instances’ to signify temporal segments, and ‘bags’ to denote videos (containing several temporal 

segments) in this following sub-section.  

To start off, we need to obtain snippets for every input videos where each snippet consisted of 16 

frames. We do so by firstly using a C3D network as the basis of our feature extraction tool, 

specifically the layer at FC6. Through transfer learning, the pre-trained C3D network will extract 

high-level features of every 16 consecutive frames as an individual clip. Since the duration of 

video varies from one another, this will result in some videos to contain smaller, or larger number 

of clips than the others. To remedy this differences, we will average out the extracted clips and 

normalize them via L2-normalization, thereby making every video to contain fixed number of 

segments (each segment comprised of 4096 dimension of features), regardless of the number of 

clips extracted earlier, as can be seen in following Figure 3.1.1. 

Figure 3.1.1 Flow of system prior to training. 
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Figure 3.1.2 Rundown of system during training. 

Training. Having obtained the averaged 32 segments per video, these segmented features will be 

segregated into training and testing set, as illustrated in Table 3. The training set will be made up 

of 2 different directories – abnormal directory which contains 810 samples of abnormal videos 

(videos containing violent scenes), and normal directory which contains 800 samples of normal 

videos with non-violent scenes. The remaining 290 samples will be populated in the test set. As 

for the network’s architecture, it is made up of 3 fully-connected layers, with first, second and third 

layer having 512, 32 and 1 neuron respectively, as can be seen in Figure 3.1.2. The single neuron 

in the final layer of the model will generate a score for every single segment via linear regression. 

Dropout rate of 60% is enforced in order to avoid overfitting during training. Adagrad optimizers 

is being implemented, with its learning rate and epsilon value set to 0.01 and  1 × 10−8 , 

respectively. Training is being done for 20000 iterations, with each mini-batch having 60 randomly 

sampled videos (30 abnormal and another 30 normal videos will be fed into the network). The 

main key idea revolving the training of these features is the custom MIL ranking loss function 

proposed by (Sultani, et al., 2018), which will shortly be discussed in-depth. During training, only 

the ground-truth for each corresponding video will be assigned, instead of labelling the entire 

segment within each video. Regardless of the category for videos containing either abusive, 

explosive, or robbery scenes, these videos will be labelled as positive as long as they contain some 

violence scenes. Normal videos conversely will be labelled as negative during training.  
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In order for our model to learn and perform better in computing scores for each segments, it has to 

have a lower loss function. The main point of this loss function is to quantify on how bad our 

classifier or system performs, and its parameter will be updated at each iterations in order to 

minimize the loss being incurred. For this experiment, the loss function will be based on the (SVM) 

hinge-loss function: 

𝐿 = ∑ max (0, 1 −  𝑠𝑦𝑖 +  𝑠𝑗)𝑦𝑖≠𝑗  

where 𝑠𝑦𝑖 represents the score for the true class, while 𝑠𝑗 denotes the score of the non-true class. 

In this experiment however, we are training our model via regression manner and not classification, 

since the output of our predicted model is not which category/class does our input video belongs 

to, but rather what are the computed scores for all the segments within our input video. We then 

reframe 𝑠𝑦𝑖  to be 𝑠𝑎𝑏𝑛𝑖 , which denotes the score for every segment within an abnormal video. 

Likewise 𝑠𝑗  will be  𝑠𝑛𝑜𝑟𝑖 , which indicates the score for all segments within a normal video, 

whereby superscript i denotes the segment within each video. Thus our hinge-loss function is 

represented as such:  𝐿 = max(0, 1 −   𝑠𝑎𝑏𝑛𝑖 +   𝑠𝑛𝑜𝑟𝑖 ). 
Essentially, we want  𝑠𝑎𝑏𝑛𝑖  to have larger values than  𝑠𝑛𝑜𝑟𝑖  by a margin of 1. If not, then this loss 

function will incur some “penalty” on our model. Since we do not provide the ground-truth label 

at segment-level during training, we could not right away implement  𝑠𝑎𝑏𝑛𝑖  >   𝑠𝑛𝑜𝑟𝑖  in our loss 

function, as we do not exactly know which segments in an abnormal video that truly contains 

scores higher than the ones in normal video’s counterpart. A workaround to this matter is to enforce 

ranking by expressing max(𝑠𝑎𝑏𝑛𝑖 ) to represent the maximum score for each abnormal video, and max(𝑠𝑛𝑜𝑟𝑖 )  to signify the maximum score per normal video, without having to know which 

segments in either of these videos that contains the maximum score. Another reasoning of doing 

so is because max(𝑠𝑛𝑜𝑟𝑖 ) contains maximum score which are likely to be false positive (false alarm 

- where our model predicted the segment to contain violent scenes, where in actual truth it does 

not), while max(𝑠𝑎𝑏𝑛𝑖 ) contains maximum anomaly scores which are true positive in nature, since 

these predicted scores corresponds to segments containing violent scenes. Ultimately, our wish is 
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that the model is able to learn in outputting higher anomaly scores for segments within abnormal 

videos, and lower scores for segments within normal videos. By imposing ranking on maximum 

scores, we are able to set a distinction between true positive scores and false positive scores by 

further widening the gap between maximum scores in both abnormal and normal videos, such that: max(𝑠𝑎𝑏𝑛𝑖 )𝑖∈𝐵𝑎𝑏𝑛 > max(𝑠𝑛𝑜𝑟𝑖 )𝑖∈𝐵𝑛𝑜𝑟 . 
When considering 𝐵𝑎𝑏𝑛 and 𝐵𝑛𝑜𝑟 to represent abnormal video and normal video respectively, our 

MIL ranking loss function now becomes: 

 𝐿(𝐵𝑎𝑏𝑛, 𝐵𝑛𝑜𝑟) = max (0, 1 −  max(𝑠𝑎𝑏𝑛𝑖 )𝑖∈𝐵𝑎𝑏𝑛 +  max(𝑠𝑛𝑜𝑟𝑖 )𝑖∈𝐵𝑛𝑜𝑟 ). 
Subsequently, we will also take into consideration of temporal smoothness and sparsity for our 

MIL ranking loss. Since our model outputs the scores for every segments within a video, the scores 

between contiguous segments should not be too far apart. In an abnormal video, if a violent scene 

occurs within several adjacent segments, then these neighboring segments should not be too 

uneven in terms of predicted scores, since segments in videos are continuous in manner. Aside 

from that, it is quite rare for a video to have a longer scenes of anomalies, especially true in the 

case of this experiment’s dataset where the surveillance videos are untrimmed, thereby making the 

anomalies to be thinly scattered throughout the video. To emphasize on this, we shall include the 

sparsity term as well, thereby making our loss function to be: 

𝐿(𝐵𝑎𝑏𝑛, 𝐵𝑛𝑜𝑟) = max (0, 1 −  𝑚𝑎𝑥(𝑠𝑎𝑏𝑛𝑖 )𝑖∈𝐵𝑎𝑏𝑛 +  𝑚𝑎𝑥(𝑠𝑛𝑜𝑟𝑖 )𝑖∈𝐵𝑛𝑜𝑟 )
+  𝜆 ∑ (𝑠𝑎𝑏𝑛𝑖 −  𝑠𝑎𝑏𝑛𝑖+1 )2 +  𝜆 ∑(𝑠𝑎𝑏𝑛𝑖 ) 𝑛

𝑖
(𝑛−1)

𝑖 + ‖𝑊‖, 
where W represents the weights of our model, 𝜆 ∑ (𝑠𝑎𝑏𝑛𝑖 −  𝑠𝑎𝑏𝑛𝑖+1 )2(𝑛−1)𝑖 corresponds to the 

temporal smoothness, 𝜆 ∑ (𝑠𝑎𝑏𝑛𝑖 ) 𝑛𝑖 denotes our sparsity constraints, 𝜆 is set to 8 × 10−5, and 

finally value n is set to be the total number of segments per video. After having computed the loss 

of every training samples per batch via the equation above, the summed up loss acquired will be 
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averaged over the number of samples per batch, and compute gradient during backpropagation in 

order to perform gradient update on to the weights of our model. 

 

Testing. The model and weight that has been trained will subsequently be used to predict the 

scores of every segment of unseen video during testing phase. The generated scores indicates the 

probability of violent scenes being detected for a particular segment. These scores will then be 

distributed across the entire frames once we determine the position of clips in their respective 

segment. Aside from that, the temporal annotations for each test sample will also be used as ground 

truth. These annotations contain the number of both starting and ending frame that indicates the 

presence of violent scenes. Having acquired both the predicted scores and ground truth, we shall 

be able to compute area under the ROC on frame-level.  

 

3.2 Temporal Action Localization (TAL) 

Data preparation and preprocessing. Prior to extracting features, the optical flows (temporal) 

and RGB (spatial) frames for every single video has to be acquired. Unlike RGB frames which 

can be generated almost instantly for all videos, the optical flows frames for every video has to be 

saved on the disk firstly, since it is very time consuming to generate them. The TVL1 Optical Flow 

algorithm will be utilized in extracting the temporal motion information between adjoining RGB 

frames. Spatial and temporal I3D networks that has been pre-trained on the Kinetics Human Action 

Video Dataset will be utilized in extracting high-level discriminative motion features for every 

non-overlapping snippets, with each snippet containing 16 frames. Since the default size of RGB 

frames and optical flow frames generated is 320 x 240 during prior to feature extraction, these 

input frames will be resized into 224 x 224 and subsequently fed into I3D network. With that, 

every input video will contain both spatial (𝑋𝑟𝑔𝑏 ) and temporal (𝑋𝑓𝑙𝑜𝑤 ) extracted features, 

indicated by 𝑋 ∈ ℝ𝑇 ×𝐷, where T is number of snippets per video and D stands for the feature 

dimensions per snippet. 

 

Generating static clips. One key ideas in activity recognition for untrimmed videos lies in the 

capability of the system in differentiating between violent actions and background scenes. 
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Violent events tend to contain more vigorous actions or salient motions, compared to background 

events. To that end, we would be preparing static clips which comprises minimal intensity of 

actions, based on the optical flows frames. Only optical flow frames that belongs to the training 

set shall be included in the formation of static clips. Furthermore, not every training sample’s static 

clips would be generated, as those which are too short or too long would be discarded. The 

resulting violent static clips along with those static clips generated from Normal (non-violent) 

videos shall then be grouped and categorized as a new class – Background. The ratio of selecting 

static clips is set as 30%, while Normal static clips are sampled at 50% rate.  
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Figure 3.2.1: TAL architecture is mainly comprised of 3 main modules. 
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Training. Just as detailed in weakly-supervised MIL’s training phase, we only supply ground-

truth in the form of video-level label during training phase for 3 types of modalities: RGB, flow 

and both. For brevity’s sake, we will regard extracted RGB and flow features, 𝑋𝑟𝑔𝑏 and  𝑋𝑓𝑙𝑜𝑤 

respectively as X. As for input features for both modality, 𝑋𝑏𝑜𝑡ℎ, it undergoes the same procedure 

during training as well, with the slight difference in that it stacks both 𝑋𝑟𝑔𝑏 and  𝑋𝑓𝑙𝑜𝑤 along the 

feature dimensions axis. 

During forward propagation, the extracted features X will firstly be fed into the embedding module. 

The embedding module will apply a 1D-convolution over the input features X, followed by ReLU 

activation layer, as follows: 𝑿𝒄𝒐𝒏𝒗 =  𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒎𝒃 ∗  𝑿 +  𝒃𝒊𝒂𝒔𝒆𝒎𝒃  𝑿𝒆𝒎𝒃 =  𝐦𝐚𝐱(𝑿𝒄𝒐𝒏𝒗, 𝟎) 

where 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑚𝑏  , 𝑏𝑖𝑎𝑠𝑒𝑚𝑏  and 𝑋𝑒𝑚𝑏 ∈ ℝ𝑇 ×𝐹  denotes the weight and biases values for the 

embedding module, as well as the output of embedding module (where T signifies number of 

snippets, F indicates number of filters), respectively. 𝑋𝑒𝑚𝑏  encompasses temporal information 

from neighboring timeframe after it undergoes 1D temporal convolution. Subsequently, 𝑋𝑒𝑚𝑏 will 

be feed-forward into the multi-branch classification module. As its name implies, this module 

comprises of K number of classification branches, working in tandem. Each of these classification 

branches have exact similar structures, in such as way:  𝒔𝒄𝒐𝒓𝒆𝒄𝒍𝒔𝒌  = 𝑾𝒆𝒊𝒈𝒉𝒕𝒄𝒍𝒔𝒌 ∗  𝑿𝒆𝒎𝒃 +  𝒃𝒊𝒂𝒔𝒄𝒍𝒔𝒌  𝑪𝑨𝑺𝒌  = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒔𝒄𝒐𝒓𝒆𝒄𝒍𝒔𝒌 )  
where 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑠𝑘 ∈ ℝ𝑇×(𝐶+1) represents the classification scores at k-th branch, while 𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑠𝑘  

and 𝑏𝑖𝑎𝑠𝑐𝑙𝑠𝑘  represents the weights and biases for classification module in the k-th branch as well. 

The raw classification scores, 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑠𝑘  is computed by feeding 𝑋𝑒𝑚𝑏 into a temporal convolutional 

layer. Note that since we have included an additional Background class through mining static clips, 

classification scores now amounts to 𝐶 + 1 classes throughout T snippets in a video. In addition, 𝐶𝐴𝑆𝑘 refers to Class Activation Sequence (CAS) at k-th branch after applying softmax onto the 
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classification scores, 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑠𝑘  – resulting in a probabilistic distributions for the activation of 

classes throughout a video.  

The goal of having K parallel branches in the classification module is to resolve the issue of 

capturing a variety of different sub-actions throughout a video, in the hopes of capturing violent 

actions fully. In other words, for every k-th branch, we want each of them to yield different 

activations of classes. As a result, we implement a cosine similarity formulation:  

𝒄𝒐𝒔𝒊𝒏𝒆_𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =  𝑪𝑨𝑺𝒊 ∙ 𝑪𝑨𝑺𝒋∥ 𝑪𝑨𝑺𝒊 ∥×∥ 𝑪𝑨𝑺𝒋 ∥ 

Based on the equation, cosine similarity measure the gap between CAS from i-th branch and CAS 

from j-th branch. The smaller the gap between 𝐶𝐴𝑆𝑖 and 𝐶𝐴𝑆𝑗, the higher the cosine similarity. 

To put it simply, if both i-th and j-th branch in the classification module focuses on the same action 

parts in a video and therefore have almost very high similarities, it will incur a higher cosine 

similarity value. Hence, we can express this equation as a diversity loss, 𝐿𝑑𝑖𝑣:  

𝑳𝒅𝒊𝒗 = 𝟏𝒁 ∑ ∑ ∑ 𝑪𝑨𝑺𝒄𝒊 ∙ 𝑪𝑨𝑺𝒄𝒋∥ 𝑪𝑨𝑺𝒄𝒊 ∥×∥ 𝑪𝑨𝑺𝒄𝒋 ∥𝑲
𝒋=𝒊+𝟏

𝑲−𝟏
𝒊=𝟏

𝑪+𝟏
𝒄=𝟏   

𝑳𝒅𝒊𝒗 = 𝑾𝒆𝒊𝒈𝒉𝒕𝒅𝒊𝒗 ∗ 𝑳𝒅𝒊𝒗 

Z signifies the normalization factor, where 𝑍 =  12 𝐾(𝐾 − 1)(𝐶 + 1). 𝐶𝐴𝑆𝑐𝑖 ∈ ℝ𝑇 denotes the CAS 

for a particular class c from i-th branch, while 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑖𝑣 represents the diversity weight, with the 

value of 0.2. By plugging in the above functions, we have diversity loss that incurs higher loss if 

any pair of branches have very similar CAS values. By enforcing such formulation, we can expect 

that each branch in the classification module to generate higher activations on different parts or 

sub-actions across a single video. The goal of minimizing 𝐿𝑑𝑖𝑣 is to further diversify the CAS 

generated across all K branches, by not ignoring other minor regions throughout the video. By 

establishing this first loss function, we can obtain the overall CAS by averaging the classification 

scores, 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑠𝑘  across the entire K branches: 

𝒔𝒄𝒐𝒓𝒆𝒔𝒂𝒗𝒈 =  𝟏𝑲 ∑ 𝒔𝒄𝒐𝒓𝒆𝒄𝒍𝒔𝒌𝑲
𝒌=𝟏  
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𝑪𝑨𝑺𝒂𝒗𝒈 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒔𝒄𝒐𝒓𝒆𝒔𝒂𝒗𝒈) 

At this point, 𝐶𝐴𝑆𝑎𝑣𝑔 ∈ ℝ𝑇 ×(𝐶+1)  represents average CAS which encapsulates the different class 

activations throughout a video, across the average scores of all branches. Apart from that, we also 

have to ensure that none of the branch has more dominance than the others. To avoid a particular 

branch in dominating the overall CAS, the other branches has to have similar importance as well. 

Failure in doing so would likely render 𝐶𝐴𝑆𝑎𝑣𝑔 to solely depend on a single dominant branch, 

resulting in activations only on a single action. Thus, this is where the second loss function comes 

into the equation: 

𝑳𝒏𝒐𝒓𝒎 = 𝟏𝑲(𝑪 + 𝟏) ∑ ∑ | ∥ 𝒔𝒄𝒐𝒓𝒆𝒔𝒄𝒊 ∥ − ∥ 𝒔𝒄𝒐𝒓𝒆𝒔𝒂𝒗𝒈𝒄 ∥ |𝑲
𝒊=𝟏

𝑪+𝟏
𝒄=𝟏  

𝑳𝒏𝒐𝒓𝒎 = 𝑾𝒆𝒊𝒈𝒉𝒕𝒏𝒐𝒓𝒎 ∗ 𝑳𝒏𝒐𝒓𝒎 𝑊𝑒𝑖𝑔ℎ𝑡𝑛𝑜𝑟𝑚 is assigned to value 0.2, 𝑠𝑐𝑜𝑟𝑒𝑠𝑐𝑖  represents the scores for a particular class c from 

the i-th branch, while 𝑠𝑐𝑜𝑟𝑒𝑠𝑎𝑣𝑔𝑐  corresponds to the average scores (without softmax) of all 

branches for a particular class c. The main principle in this normalization loss is such that it 

penalizes the model if the 𝑠𝑐𝑜𝑟𝑒𝑠𝑐𝑖  deviates from 𝑠𝑐𝑜𝑟𝑒𝑠𝑎𝑣𝑔𝑐 by a large margin. This ensures that 

every branch shall carry equal importance in contributing to the overall average CAS. 

Subsequently, the output from embedding module, 𝑋𝑒𝑚𝑏 shall be fed into the temporal attention 

module: 𝓐 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝑾𝒆𝒊𝒈𝒉𝒕𝒂𝒕𝒕 ∗ 𝑿𝒆𝒎𝒃  + 𝒃𝒊𝒂𝒔𝒂𝒕𝒕) 

where 𝓐 ∈ ℝ𝑻 represents attention sequence after applying temporal convolutional operations on 

the embedded features, followed by softmax operations. The temporal attention’s weight and bias 

are represented by 𝑊𝑒𝑖𝑔ℎ𝑡𝑎𝑡𝑡  and 𝑏𝑖𝑎𝑠𝑎𝑡𝑡 , respectively. The purpose of obtaining class-

independent attention sequence, 𝓐  is that it captures on every distinctive action parts of a 

particular video regardless of violent classes, and yields class-agnostic parameters. Following this, 

we obtain video-level classification prediction through the weighted sum of attention sequence 

with average scores of all branches: 
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𝛒 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 (∑ 𝓐𝒕 ∗ 𝒔𝒄𝒐𝒓𝒆𝒔𝒂𝒗𝒈𝒕
𝑻

𝒕=𝟏 ) 

where ρ ∈ ℝ𝐶+1 stands for video-level prediction across all classes, including background class. 

To obtain MIL loss, we enforce Cross-Entropy loss as follows: 

𝑳𝒎𝒊𝒍 = − ∑ 𝒚𝒄𝐥𝐨𝐠(𝛒𝒄)𝑪+𝟏
𝒄=𝟏  

where 𝐿𝑚𝑖𝑙  computes the distance between distributions of video-level classification predictions ρ 

and its corresponding video-level ground truth, 𝑦. Having established the third loss function, we 

can now incorporate all aforementioned loss functions into a single summation loss, 𝑳𝒔𝒖𝒎: 𝑳𝒔𝒖𝒎 = 𝑳𝒎𝒊𝒍 + 𝑳𝒅𝒊𝒗 + 𝑳𝒏𝒐𝒓𝒎 

In training phase, the accumulated 𝑳𝒔𝒖𝒎 computed based on the output of forward passes will 

then be backpropagated from the back to earlier layers within each modules while computing the 

gradient with respect to the weights. In terms of the experimental settings and configuration, this 

experiment ran for 9000 iterations, with a batch size of 24. The dropout rate is set to be 0.5, with 

learning rate and weight decay value set to be 0.0004 and 0.001, respectively. In the embedding 

module, a total of 32 filters are being used, with each filter having the size of 1. As for the multi-

branch classification module, 16 filters are being allocated, with every filter size set as 3, and the 

number of branches, K is assigned to 4. Finally in the temporal attention module, 16 filters are 

being used, with every filter having the kernel size of 1. Both the strides and paddings for every 

convolutional layer is set as 1. 

 

Testing. In order for the model to be able to classify action class at each localized instances, we 

feed the input features into the model, which would generate the average Class Activation 

Sequence across all K branches, 𝐶𝐴𝑆𝑎𝑣𝑔 as well video-level classification prediction, ρ. However, 

at this stage the model would exclude the prediction of the Background class, and only consider 

violent classes C. To achieve the prediction of a localized actions, the model must be able to detect 

the starting and ending timeframe that bounds the localized action. Coupled with OIC loss function 

proposed by (Shou, et al., 2018), we also implemented it, but with a slight twist. In AutoLoc, the 
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OIC loss function is implemented during its training stage where it determines which predicted 

instances at segment-level is needed to supervise the boundary predictor. As an alternative, OIC 

loss is only implemented during this paper’s testing phase for outputting confidence score for a 

localized predictions in regards to its predicted violent class: 𝑰𝒏𝒏𝒆𝒓𝒎𝒆𝒂𝒏 = 𝒎𝒆𝒂𝒏(𝑪𝑨𝑺𝒂𝒗𝒈|𝒔𝒕𝒂𝒓𝒕:𝒆𝒏𝒅) 𝑶𝒖𝒕𝒆𝒓𝒎𝒆𝒂𝒏 = 𝒎𝒆𝒂𝒏([𝑪𝑨𝑺𝒂𝒗𝒈|𝒔𝒕𝒂𝒓𝒕−𝝑:𝒔𝒕𝒂𝒓𝒕 , 𝑪𝑨𝑺𝒂𝒗𝒈|𝒆𝒏𝒅:𝒆𝒏𝒅+𝝑]) 𝒄𝒐𝒏𝒇 = 𝑰𝒏𝒏𝒆𝒓𝒎𝒆𝒂𝒏 −  𝑶𝒖𝒕𝒆𝒓𝒎𝒆𝒂𝒏 +  𝜸𝛒𝒄 

The 𝐼𝑛𝑛𝑒𝑟𝑚𝑒𝑎𝑛 is acquired by getting the mean of 𝐶𝐴𝑆𝑎𝑣𝑔 right from the starting and ending time 

frame localized by the system. Let 𝜗 denote the inflation length, where 𝜗 = (𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑛𝑑)/4. We 

then obtain the surrounding activations of inner mean, 𝑂𝑢𝑡𝑒𝑟𝑚𝑒𝑎𝑛  via the inflation length. 

Subsequently we computed 𝑐𝑜𝑛𝑓, which signifies the confidence score of a particular localized 

boundary with respect to the probability score of its predicted class, ρ𝑐. All things considered at 

this point, for every test sample with ρ𝑐 above or equal to the threshold value (set to 0.1), the model 

is capable of outputting  [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑐𝑜𝑛𝑓, 𝑐𝑙𝑎𝑠𝑠] which represents starting time of localized 

action, ending time of localized action, confidence score as well as types of violent class pertaining 

to the particular localized action. In addition, four modalities will be evaluated based on AUC 

score: spatial stream, temporal stream, both (early fusion) as well as late fusion. The evaluation 

results for MIL and TAL shall be showcased in the next chapter. 

 

 

 

 

 

 

 

 



Chapter 4: Evaluation Results 

 

27 

Bachelor of Computer Science (Hons) 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

CHAPTER 4: EVALUATION RESULTS 

In order to gauge the performance between MIL and TAL, we evaluated their area under the ROC 

curve (AUC) at frame-level across all the testing samples in the first place. Following that, we also 

compare the detection and localization output for both weakly-supervised pipelines based on a 

number of selected testing set in order to gain some insights as to how both of them perform 

qualitatively. Subsequently, we presented ablation studies on TAL by visualizing the Class 

Activation Sequences (CAS) generated by the branches in TAL’s Multi-Branch Classification 

module, as well as examining the significance of implementing static background clips prior to 

TAL’s training phase. 

4.1 Comparison between MIL and TAL 

 



Chapter 4: Evaluation Results 

 

28 

Bachelor of Computer Science (Hons) 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

Figure 4.1.1: The ROC graphs obtained based on the evaluation of our model on test sets. The 

top-most ROC graph (denoted in red color) corresponds to MIL’s, while the bottom chart depicts 

the TAL’s evaluation result across all 4 modalities. 

 

There are two folds in evaluating the performance of TAL’s testing set. Firstly, we evaluated the 

area under the ROC curve (AUC) at frame-level for the entire testing samples. Unlike in the case 

of MIL’s quantitative evaluation, we would only evaluate ROC for non-normal testing samples 

only. The ROC-AUC is an evaluation metric whereby it assess the performance of detection 

systems based on its ability in classification predictions. Essentially, the higher the AUC score, 

the better the system is in distinguishing between different classes. In the case of MIL, all the 

violence classes are treated as a singular positive class, while the normal videos are treated as 

negative class. MIL system managed to achieve 74.08% for the area under curve (AUC) by 

proposing the smoothness and sparsity constraints on our MIL loss function. 

Detection System Type Modality Area under ROC curve 

(AUC) 

MIL - 74.08 

TAL Both 52.88 

TAL RGB 51.73 

TAL Flow 59.81 

TAL Late-Fusion 52.36 

Table 4.1.1: Comparison of experimental setups in regards to AUC score. 

Based on the above reported results, TAL has a very low quantitative score compared to MIL. This 

could potentially be attributed to the system’s localization tasks which involves the classification 

of various different violence scenes, instead of simply grouping them as a single positive “bag” as 

discussed in MIL. Furthermore, investigation should be done in comparing between different 

feature extraction tools in order to further find out if different pre-trained models may have some 

effect on the high-level features being extracted from UCF-Crime dataset, prior to training.  

Aside from quantitatively evaluate the performance of AUC, we further observe the contrast 

between MIL and TAL’s performance onto several testing samples. The results on these test 
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samples will illuminate on how well both detection system works in the context of temporally 

detect violence actions. In these following figures, brown color indicates ground-truth annotations 

at frame-level (along the x-axis), while the green color chart/graph indicates prediction results. 

Specifically for TAL, it also outputs the predicted violent class for each of the modalities within 

the parenthesis. Best viewed in color. 

 



Chapter 4: Evaluation Results 

 

30 

Bachelor of Computer Science (Hons) 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

Figure 4.1.2: The contrast of detection results between MIL and TAL onto a test set containing 

Burglary scene. 

 

Figure 4.1.3: Comparison between MIL and TAL on a particular test set containing Explosion 

scene. 
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Figure 4.1.4: Comparison between MIL and TAL on a particular test set containing Stealing 

action. 
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4.2. Visualization of Class Activation Sequences (CAS) 

By visualizing the CAS generated for each branch in TAL’s Multi-Branch Classification module, 

we can conceptualize which temporal frames throughout a video that are responsible for invoking 

higher activations for a particular class. The coloured region in each branches denotes the degree 

of activation for a particular action class. Starting at Figure 4.2.1 to Figure 4.2.3, from top to 

bottom – Each horizontal grid charts in the ensuing figures corresponds to ground truth (GT), full 

localization prediction of TAL (Full), average CAS of all branches (Average), followed by CAS 

in each individual branch (Branch 1 to Branch 4). Best viewed in color. 

 

 

Figure 4.2.1: Visualization on a test sample containing explosion scene. 
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Figure 4.2.2: Visualization on a test sample containing shoplifting activity. 

 

 

Figure 4.2.3: Visualization on a test sample containing stealing scene. 
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4.3. Analysis on Static Clips 

In this section, we take a closer look at the performance of localized prediction in regards to 

implementing with and without static clips in TAL’s experimentation. Two observations were 

being made, with each observation corresponds to a particular video in the test set. Based on both 

ensuing tables, localized detections without incorporating static clips generation tends to localized 

longer predicted boundary, largely because the model have a hard time distinguishing between 

distinct violent actions with its surrounding background noise. The absence of Background class 

from not including static clips confuses the model and thereby causing models to even include 

some fragments of unrelated background events as violent. It is also worthwhile to note that the 

AUC scores across all modalities which implemented static clips in TAL are a tad higher than its 

counterpart (without static clips) as shown in Table 4.3.3. 

 

Observation I:  

 

         GT  

 

Both With static 

clips 

 

Both Without static 

clips 

 

Late-Fusion With static 

clips 

 

Late-Fusion Without static 

clips 

Table 4.3.1: Table above depicts the performance of TAL model in regards to availability of 

static clips.  
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Observation II:  

 

 GT  

 

Both With static 

clips 

 

Both Without static 

clips 

 

Late-Fusion With static 

clips 

 

Late-Fusion Without static 

clips 

Table 4.3.2: Another observation on localized events. 

 

Modality Area under ROC curve (AUC) 

Both 52.88 

RGB 51.73 

Flow 59.81 

Late-Fusion 52.36 

Both * 49.18 

RGB * 50.60 

Flow * 56.90 

Late-Fusion * 49.41 

Table 4.3.3: Comparison of AUC between modalities which implemented training with static 

clips and without static clips. The * notation denotes modalities which did not include static clips 

for TAL’s training.
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CHAPTER 5: CONCLUSION 

In this paper, we demonstrated the capability of predicting violent-related concepts in general by 

using weakly-supervised setting. This project gives us an insight on the minimal amount of 

supervision needed by providing annotations at video-level, and it is especially paramount in 

mitigating the laborious task of providing annotations at segment-level. This goes to show the 

robustness of both MIL and TAL paradigm when it comes to violent-scene detection even with 

the absence of temporal-level ground truth. MIL is limited to assigning higher anomaly scores 

temporally where segments containing violent-related concepts, while trying to suppress and 

minimize anomaly scores for irrelevant background scenes. On the flip side, TAL is able to detect 

the starting and ending boundary containing a violent scene, as well as classifying the violent 

categories pertaining to the predicted boundary. 

As a further matter, the evaluation results in TAL leaves a lot to be desired, due to its low AUC in 

comparison with MIL’s AUC. This means that while TAL is capable of precisely localize and 

classify violent categories for several testing samples, it has weaker detection performance and 

misclassify a lot of testing samples as a whole. Alternatively, the TAL paradigm can be a great 

foundation in further improving its evaluation benchmark, by possibly incorporating MIL’s “bag” 

formulation to train the model in contrasting between violence actions and normal actions, instead 

of solely relying on mining static clips. 
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