

DESIGN AND CONSTRUCTION OF COST SAVING

SOLAR IRRADIANCE DATA COLLECTION SYSTEM

SOI SHENG LEONG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

August 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for citations

and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Signature : _________________________

Name : SOI SHENG LEONG

ID No. : 16AGB05778

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DESIGN AND CONSTRUCTION OF COST

SAVING SOLAR IRRADIANCE DATA COLLECTION SYSTEM” was prepared

by SOI SHENG LEONG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering (Hons)

Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Yew Tiong Keat

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2019, SOI SHENG LEONG. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of this

project. I would like to express my gratitude to my research supervisor, Dr Yew Tiong

Keat and moderator, Mr Lee Yu Jen for their invaluable advice, guidance and enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

Last but not least, I would like to thank the lab assistants for their help and

allowing me to conduct experiment and testing using the equipment available in the

laboratory.

vi

DESIGN AND CONSTRUCTION OF COST SAVING

SOLAR IRRADIANCE DATA COLLECTION SYSTEM

ABSTRACT

Photovoltaic system is one common alternative in reducing usage of fossil fuel to

generate electricity. Photovoltaic system requires low cost of maintenance and is less

location-dependent. However, the cost to install a photovoltaic system is relatively high.

Furthermore, not all locations are suitable to build a photovoltaic system. Therefore,

solar irradiance data is crucial in determining feasibility to install a photovoltaic system.

In practical, solar irradiance data is collected using data logger and cannot be collected

remotely. To tackle these problems, a cost saving irradiance data collection system

which is able to perform solar tracking mechanism and IoT data collection, is designed

and constructed. Arduino UNO was implemented as the core in performing solar

tracking mechanism, while ESP32 was implemented as the core in performing IoT data

collection system. In this project, LDRs were calibrated in order to achieve high

precision in tracking the Sun. High precision current-to-voltage circuity for both

pyrheliometer and pyranometer were constructed in order to achieve accurate current

reading in ESP32, which will indirectly help in achieving high precision pyrheliometer

and pyranometer. Low cost pyrheliometer and pyranometer were designed and

constructed in this project. Extra features were included in this project. One of the

features includes the initialization of solar tracker when the solar tracker is powered on.

Another extra feature included was the ability of Blynk user interface platform in

displaying the current status of solar tracker besides being able to display real-time solar

irradiance data.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xxii

LIST OF APPENDICES xxiii

CHAPTER

1 INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statement 1

1.3 Aims and Objectives 2

1.4 Project Scope 2

1.5 Summary of the Entire Project 3

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Solar Irradiance 5

2.2.1 Pyranometer 7

viii

2.2.2 Pyrheliometer 9

2.3 Types of Solar Irradiance Collection System 10

2.3.1 Static Solar System (SSS) 11

2.3.2 Single-Axis Solar Tracker (SAST) 12

2.3.3 Dual-Axis Solar Tracker (DAST) 15

2.4 Dual-Axis Solar Tracking System 15

2.4.1 Reason to Implement Dual-Axis Solar Tracking

 System 16

2.4.2 Type of Dual-Axis Solar Tracking System

 Implemented 17

2.5 Solar Data Collection System 18

2.6 Internet of Things (IoT) 19

2.7 Solar Analysis in Malaysia 21

2.8 Conclusion 23

3 METHODOLOGY 25

3.1 Introduction 25

3.2 Design of Solar Irradiance Data Collection System 25

3.2.1 Design Architecture of Solar Irradiance Data

 Collection System 26

3.2.2 Algorithm of Solar Tracking Mechanism 28

3.2.3 Algorithm of IoT Data Collection System 33

3.3 Setup of Solar Tracking Mechanism 36

3.3.1 Design of Dual-Axis Solar Tracker 37

3.3.2 Microcontroller and Software Implemented 39

3.3.3 Design of LDR Circuitry 40

3.3.4 Asynchronous Dual-Axis Solar Tracking System 43

3.3.5 MPU6050 Gyro Sensor 48

3.3.6 LED Indicators in Solar Tracking Mechanism 48

3.3.7 Schematic Diagram for Solar Tracking

 Mechanism 51

ix

3.4 Setup of IoT Data Collection System 51

3.4.1 Design and Construction of Low Cost

 Pyrheliometer and Pyranometer 51

3.4.1.1 Multi-Junction Solar Cell (MJSC) 52

3.4.1.2 Design of Cost Effective Pyrheliometer 53

3.4.1.3 Design of Cost Effective Pyranometer 59

3.4.2 Current-to-Voltage Converter Circuitry 60

3.4.3 ESP32 Wi-Fi Module and Software

 Implemented 63

3.4.4 Configuration of Wi-Fi Extender 66

3.4.5 IoT User Interface Platform 73

3.4.6 IoT Database 79

3.4.7 LED Indicators in IoT Data Collection System 91

3.4.8 Schematic Diagram and PCB Design for IoT

 Data Collection System 93

3.5 Equipment and Cost Analysis 94

3.6 Project Milestone 97

4 RESULTS AND DISCUSSIONS 99

4.1 Introduction 99

4.2 Accuracy in Reading Input Current Signals 99

4.3 Accuracy of IoT Data Transmission 108

4.4 Accuracy of Solar Tracking Mechanism 112

4.5 Comparison of Constructed Pyrheliometer with the

 Actual Pyrheliometer 119

4.6 Analysis of Solar Irradiance Data Collected 124

4.6.1 Solar Irradiance Data on 9th August 2019 125

4.6.2 Solar Irradiance Data on 13th August 2019 127

4.6.3 Solar Irradiance Data on 14th August 2019 128

4.6.4 Solar Irradiance Data on 16th August 2019 129

x

4.6.5 Conclusion Based On The Solar Irradiance Data

 Collected 129

4.7 Improvement Done To Make Solar Tracker More

 Presentable 130

4.8 Limitation of the Project 131

4.8.1 Dependency on Weather 131

4.8.2 Limitation of Arduino IDE Software in

 Performing Software Operation 131

4.8.3 Limited Range of Wi-Fi Network 133

4.8.4 Weakness of Blynk 135

4.8.5 Weakness of Pushingbox API Cloud Service 136

4.8.6 Insufficient Time for IoT Data Collection 137

5 CONCLUSION AND RECOMMENDATIONS 138

5.1 Conclusion 138

5.2 Future Work and Enhancement 139

5.2.1 Solar Tracker With Camera 139

5.2.2 Enhancement on Remote Data Collection

 System 140

5.2.3 Waterproof Housing for the Circuitry and

 Power Supply of Solar Tracker 141

REFERENCES 143

APPENDICES 147

xi

LIST OF TABLES

 TABLE TITLE PAGE

2.1 The Efficiency (η) and Energy Gained by the Dual-
Axis Solar Tracker (DAST) over Static Solar System
(SSS) under Cloudy and Sunny Day (Lee and Rahim,
2013) 16

3.1 Mechanism for Movement of Solar Tracker 47

3.2 Operation of Indicators in Solar Tracking Mechanism 49

3.3 Cost Analysis for Components and Equipment 94

3.4 Gantt Chart for FYP 1 97

3.5 Gantt Chart for FYP 2 98

4.1 Accuracy of ESP32 Wi-Fi Module In Reading Input
Voltage Signal 101

4.2 Accuracy of ESP32 Wi-Fi Module with ADS1015
ADC Module In Reading Input Voltage Signal 102

4.3 Comparison of Actual and Measured Voltage Values
of First Solar Cell 105

4.4 Comparison of Actual and Calculated Current Values
of First Solar Cell 106

4.5 Comparison of Actual and Measured Voltage Values
of Second Solar Cell 106

xii

4.6 Comparison of Actual and Calculated Current Values
of Second Solar Cell 107

4.7 Average Arduino Analog Input Values Recorded
From LDRs According To Different Illuminance
Level 116

4.8 Comparison of Constructed Pyrheliometer and Actual
Pyrheliometer 123

xiii

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Different Ways on How The Solar Radiant Energy
Reaches the Earth 6

2.2 Pyranometer 6

2.3 Pyrheliometer 7

2.4 Design of the Standard Pyranometer (Omni
Instruments, 2009) 8

2.5 Design of the Standard Pyrheliometer 9

2.6 Acceptance Angle of Pyrheliometer 10

2.7 Latitude of the Earth 11

2.8 Static Solar System 12

2.9 Horizontal Single-Axis Solar Tracker 13

2.10 Vertical Single-Axis Solar Tracker 13

2.11 Tilted Single-Axis Solar Tracker 13

2.12 Polar-Aligned Single-Axis Solar Tracker 14

2.13 Identification of Polaris Star From Big Dipper
(SolarSystemQuick.com, 2010) 14

2.14 Daily Energy Captured by Dual-Axis Solar Tracker
(DAST) and Static Solar System (SSS) in a Month
(Lee and Rahim, 2013) 16

xiv

2.15 Solar Tracker Using Passive Tracking Method 17

2.16 Solar Data Collection Using Microcontroller-Based
System (Koutroulis and Kalaitzaiks, 2003) 18

2.17 Solar Data Collection Using Data Logging System
(Koutroulis and Kalaitzaiks, 2003) 19

2.18 Four Layers of IoT (Gupta, 2018) 20

2.19 Solar Radiation in Malaysia (Aziz, et al., 2016) 22

2.20 Calculation of LOCE of Renewable Energy
Technologies (IRENA, 2012) 23

3.1 Block Diagram of Solar Irradiance Data Collection
System 26

3.2 Algorithm of Solar Tracking Mechanism 29

3.3 Algorithm of Solar Tracking Mechanism (Continued) 30

3.4 Algorithm of Solar Tracking Mechanism (Continued) 31

3.5 Algorithm of IoT Data Collection System 34

3.6 Algorithm of IoT Data Collection System (Continued) 35

3.7 A Representation of the Azimuth and the Elevation of
the Sun (Pons, 2019) 37

3.8 Mechanical Design of Tip-Tilt Dual-Axis Solar
Tracker 38

3.9 Mechanical Design of Azimuth Altitude Dual Axis
Solar Tracker (Ray and Tripathi, 2016) 38

3.10 Arduino UNO Microcontroller Board 39

3.11 Arduino IDE Software 40

3.12 LDR Sensor Array Design (Hossain, et al., 2015) 41

3.13 LDR Circuitry Partition Constructed Using
Impraboard 41

xv

3.14 How Does Shading Effect Helps the Solar Tracker to
Track the Sun 42

3.15 Voltage Divider Circuit for Each LDR 42

3.16 CRD5107P Stepper Motor Driver 43

3.17 PK543AW-P36 Stepper Motor 43

3.18 Internal Design of SPDT Relay (Thonti, 2017) 44

3.19 Working Mechanism of SPDT Relay (Thonti, 2017) 44

3.20 Schematic Diagram of Relay Control Circuitry 46

3.21 Eagle PCB Layout for Relay Control Circuitry 46

3.22 PCB Board for Relay Control Circuitry 47

3.23 Yellow LED Turns On When Solar Tracker is
Initializing 49

3.24 Both Green and Yellow LEDs Turn On In Cloudy
Environment 49

3.25 Green LED Turn On When Solar Tracker Faces the
Sun 50

3.26 Both Green and Yellow LEDs Turn Off When Solar
Tracker is Tracking 50

3.27 Schematic Diagram for Solar Tracking Mechanism 51

3.28 How Multi-Junction Solar Cell Absorb Different
Wavelengths of Sunlight (Maas, 2012) 52

3.29 How Lens Concentrate the Sunlight to the Solar Cell
(Fedkin, 2018) 53

3.30 Multi-Junction Solar Cell Implemented For The
Project 53

3.31 Design of Standard Pyrheliometer 54

3.32 Outline for the Construction of Pyrheliometer 55

xvi

3.33 Testing Impraboard itself (a) and Impraboard Covered
With Black T-Shirt (b) Under the Light 57

3.34 Body of the Pyrheliometer 57

3.35 View through the Opening of Pyrheliometer When the
Body is Pointing to the Light 57

3.36 Pyrheliometer Constructed For The Project 58

3.37 Solar Cell is Visible Through the Body of
Pyrheliometer If The Solar Tracker is Facing the Sun 58

3.38 Design of Standard Pyranometer 60

3.39 Design of Pyranometer Constructed 60

3.40 Passive Current-to-Voltage Converter 61

3.41 Active Current-to-Voltage Converter 61

3.42 Go to “File > Preferences” (RandomNerdTutorial.com,
2013) 63

3.43 Edit Preferences Tab (RandomNerdTutorial.com,
2013) 64

3.44 Go to “Tools > Board > Boards Manager…”
(RandomNerdTutorial.com, 2013) 65

3.45 Installation of ESP32 Board in Arduino IDE Software
(RandomNerdTutorial.com, 2013) 65

3.46 Installation of ESP32 Board Done
(RandomNerdTutorial.com, 2013) 66

3.47 ESP8266 LiLon NodeMCU V3 66

3.48 Files In “wifi repeater files” 67

3.49 Click On “flash_download_tools_v3.6.5.exe” 67

3.50 Click on “ESP8266 DownloadTool” 68

3.51 ESP8266 Download Tool Firmware 69

xvii

3.52 Flash ESP8266 LiLon NodeMCU V3 70

3.53 ESP8266 LiLon NodeMCU V3 is Done Flashing 71

3.54 Connect the Preset Hotspot For Configuration of Wi-
Fi Extender 72

3.55 Wi-Fi Extender Configuration Page 72

3.56 Configuration of Wi-Fi Extender Completed 73

3.57 Code Line to Configure Wi-Fi Connection Between
ESP32 Wi-Fi Module and ESP8266 LiLon NodeMCU
V3 Wi-Fi Extender 73

3.58 Blynk App Icon 74

3.59 Create New Blynk Account 74

3.60 Click On “New Project” to Create New Project In
Blynk 75

3.61 Creation of New User Interface in Blynk 76

3.62 Auth Token Sent to E-mail 76

3.63 Arduino Code Line to Declare the Auth Token of
Blynk Project 76

3.64 Click On “+” Icon to Add Widgets to the User
Interface 77

3.65 Blynk IoT User Interface Platform 78

3.66 Indicator When ESP32 is Connected to Hotspot 78

3.67 Indicator When ESP32 is Not Connected to Hotspot 79

3.68 Generate Link For Shared Access 79

3.69 QR Code Created For Blynk IoT User Interface
Platform 79

3.70 Example of Real-Time Database Exported From
Blynk 80

xviii

3.71 Create a Form in Google Form 81

3.72 Preview of the Form Created 82

3.73 Pushingbox API Dashboard 83

3.74 List of Services Available in Pushingbox API 83

3.75 Configuration of CustomURL Service 84

3.76 Create a scenario in Pushingbox API 84

3.77 Add CustomURL Service (Google Form Service) as
the Action of Scenario 85

3.78 Message Box After Action of Scenario Created 85

3.79 Format of Command Line 86

3.80 Input Fields in the preview form in Google Form 86

3.81 “Elements” Tab 87

3.82 Fill in the Command Line and Update the Action of
Scenario 87

3.83 Code Section For ESP32 Wi-Fi module to Transfer
Data to Pushingbox API 88

3.84 Copy DeviceID of the Scenario 88

3.85 Code Section to Declare the Server Host and HTTP
Port of Pushingbox API 89

3.86 Create a Spreadsheet To Link With Google Form 89

3.87 Google Spreadsheet Created 90

3.88 Get Shareable Link For Public Access 90

3.89 Blue Super Bright LED Lights Up When Connected
to Hotspot 91

3.90 White Super Bright LED Blinks Once When Data
Uploaded To Blynk 92

xix

3.91 Yellow Super Bright LED Blinks Once When Data
Uploaded To Google Spreadsheet 92

3.92 Schematic Diagram for IoT Data Collection System 93

3.93 Eagle PCB Layout for IoT Data Collection System 93

3.94 PCB Board for IoT Data Collection System 94

4.1 Performance of ESP32 Wi-Fi module in Reading
Input Voltage Signal (RandomNerdTutorials.com,
2013) 100

4.2 ESP32 Wi-Fi Module in Reading Input Voltage Signal 100

4.3 ESP32 Wi-Fi Module with ADS1015 ADC Module in
Reading Input Voltage Signal 101

4.4 12 V Light Bulb 104

4.5 12 V Halogen Light Bulb 104

4.6 Comparison Done on Actual and Measured Voltage
and Current Values of Solar Cells 105

4.7 The Real Time Data Displayed on Blynk App
Matched The Data Displayed on the Serial Monitor in
Arduino IDE Software 109

4.8 The Data in Google Spreadsheet Matched The Data
Displayed on Serial Monitor in Arduino IDE Software
When Data were Uploaded to Google Spreadsheet 110

4.9 Blynk Shows “INITIALIZING…” When The Solar
Tracker is Initializing Its Position 111

4.10 Blynk Shows “CLOUDY(STOP)” When The Solar
Tracker Stops in Cloudy Environment 111

4.11 Blynk Shows “SUNNY(STOP)” When The Solar
Tracker is Facing The Sun 111

4.12 Blynk Shows “SUNNY(TRACKING)” When The
Solar Tracker is Tracking 112

xx

4.13 Resistance VS Illumination Curve of LDR
(Electrical4U, 2019) 113

4.14 Inaccurate Solar Tracking Mechanism During Sunny
Day Using Big LDRs 114

4.15 Accurate Solar Tracking Mechanism During Sunny
Day Using Small LDRs 114

4.16 Sunny 115

4.17 Mostly Sunny 115

4.18 Partly Sunny 116

4.19 Cloudy 116

4.20 Graph of Arduino Analog Input Value against
Illuminance Level for the LDRs 117

4.21 Inaccuracy (Scenario 1) 118

4.22 Inaccuracy (Scenario 2) 118

4.23 Inaccuracy (Scenario 3) 119

4.24 Actual Pyrheliometer Used 120

4.25 Comparison of Constructed Pyrheliometer with Actual
Pyrheliometer 121

4.26 Measurement of Small Voltage Signal From The
Actual Pyrheliometer Using Multimeter 122

4.27 Indication of Getting Exact Voltage Value From The
Actual Pyrheliometer 122

4.28 Graph of Irradiance Values of Actual Pyrheliometer
Against Current of Constructed Pyrheliometer 124

4.29 Graph of Solar Irradiance Data Collected on 9th of
August 2019 126

4.30 Graph of Solar Irradiance Data Collected on 13th of
August 2019 127

xxi

4.31 Graph of Solar Irradiance Data Collected on 14th of
August 2019 128

4.32 Graph of Solar Irradiance Data Collected on 16th of
August 2019 129

4.33 Improvement Done to Make Solar Tracker More
Presentable 130

4.34 Block Diagram of MQTT Protocol Data Transmission 132

4.35 Thingsboard Dashboard Created Before Implementing
Blynk 132

4.36 Graph of Distance Against RSSI 134

4.37 Setup Of Wi-Fi Connection 135

4.38 Result of inconsistency of Pushingbox API in
transferring data to Google Spreadsheet 137

5.1 Raspberry Pi with Addition of GSM Module 141

5.2 Solar Tracker Was Wet Due To Heavy Rain 142

xxii

LIST OF SYMBOLS / ABBREVIATIONS

AADAST azimuth-altitude dual-axis solar tracker

ADC analog-to-digital converter

DAST dual-axis solar tracker

DNI Direct Normal Irradiance

GPIO General-Purpose Input/Output

HTTP HyperText Transfer Protocol

I/O Input/Output

IoT Internet of Things

LCOE` levelized cost of energy generation

LDR light dependent resistor

LED light emitting diode

MJSC Multi-Junction solar cell

NC normally closed

NO normally open

PV photovoltaic

PWM Pulse Width Modulation

PCB printed circuit board

RSSI Received Signal Strength Indicator

SAST single-axis solar tracker

SSS static solar system

SPDT Single Pole Double Throw

TTDAST tip-tilt dual-axis solar tracker

xxiii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A LM324N Pinout 147

B ESP32 Devkit V1 Pinout 148

C CRD5107P Motor Driver Datasheet 149

D AZURSPACE Concentrator Tripe Junction Solar Cell 151

E Normal Incidence Pyrheliometer Datasheet 152

F Arduino Test Code (Tilts upwards) 153

G Arduino Test Code (Tilts downwards) 154

H Arduino Test Code (Moving Left) 155

I Arduino Test Code (Moving Right) 156

J Arduino Test Code (LDR Test) 157

K ESP32 Arduino Test Code (Voltage Reading- Using
ESP32) 158

L ESP32 Arduino Test Code (Voltage Reading- Using
ESP32 with ADS1015 Module) 159

M ESP32 Arduino Test Code (Voltage Reading- Using
ESP32 with ADS1015 Module) 160

N Coding for Solar Tracking Mechanism (Arduino UNO) 163

O Coding for IoT Data Collection System (ESP32
Arduino) 177

CHAPTER 1

INTRODUCTION

1.1 Background Study

Renewable energy sources are utilized in generation of electricity to reduce dependency

upon fossil fuels. As compared to other renewable energy sources, PV system requires

lower cost of maintenance and is less location-dependent. However, the cost to install a

solar power plant is relatively high. Furthermore, not all locations are suitable and

feasible to build photovoltaic system. Therefore, feasibility analysis is crucial to

determine suitability for PV system installation.

Solar irradiance data is useful to determine feasibility of installing a PV system.

Solar irradiance data can help to predict future energy yield, performance, efficiency and

maintenance. These crucial factors will help in deciding whether to start up a PV system

at a particular site.

1.2 Problem Statement

Many solar power stations perform data collection by using data logger. With data

logger, data has to be collected at the power station. It is inconvenient to perform data

 2

collection as data cannot be collected remotely. Furthermore, data logger requires initial

investment cost and is expensive for small tasks (RF Wireless World, 2012). In a worst

case scenario, if the data logger malfunctions, the data will be lost and not recorded.

1.3 Aims and Objectives

The aims and objectives of the project are:

i) To construct a cost effective active dual-axis solar tracking system

ii) To calibrate the constructed solar irradiance sensor with the actual solar

irradiance meter

iii) To design high precision amplifying circuit and current-to-voltage converter for

the sensors

iv) To implement the application of IoT in collecting data from sensors remotely via

Internet

1.4 Project Scope

The project basically consists of two major parts, which are solar tracking mechanism

and IoT data collection system. For solar tracking mechanism, calibration of light sensor

consisting four LDRs (light dependent resistors) was done to ensure accurate tracking of

the solar tracker. Arduino software was implemented to enable solar tracking

mechanism controlled by Arduino UNO. For IoT data collection system, ESP32 WiFi

module was used to perform data transmission to Blynk apps and Google Spreadsheet

using Arduino software. Construction of solar meters which are pyrheliometer and

pyranometer, and calibration of ADC (analog-to-digital converter) module were done as

 3

well. Circuitry for both solar tracking mechanism and IoT data collection system were

constructed and combined.

There are two main extra features included in the project. One of the features

included is the initialization of solar tracker. The position of y-axis or vertical axis of the

solar tracker will be initialized when it is powered on. Another extra feature done is that

enable current status of solar tracker to be displayed in Blynk apps besides only

displaying real-time data. The current status will indicate current illumination level

(sunny or cloudy) and indicate whether the solar tracking is currently tracking or stop.

Lastly, cable management is crucial to ensure the project is presentable. The

project was done on 20th August 2019.

1.5 Summary of the Entire Project

The entire project is summarized in five different chapters. The first chapter of the

project briefly introduces the importance of solar irradiance data in determining the

feasibility to install a PV system, and states the problem faced in the current solar

irradiance data collection system. In this chapter, aims, objectives and scope of project

are illustrated as well.

Literature review is done in the second chapter of the project. Areas of studies

related to the project are summarized. Online articles and journals from different authors

were reviewed. In chapter three of the project, procedures done in designing and

constructing the cost saving solar irradiance data collection system were summarized.

The block diagram and algorithm of the entire project were illustrated in this chapter.

The procedures in enabling accurate solar tracking system and IoT data collection

system were explained in details.

 4

The fourth chapter of the project analyses the results obtained and discusses on

improvement done. In this chapter, problems encountered and solutions for respective

problems were discussed. Some precautions were mentioned in this chapter as well.

Lastly, the fifth chapter concludes the entire project done and suggests future

improvements that can be done.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter summarizes various areas of studies applied in the project. Studies and

research done by authors from websites and journal are reviewed and used as references

throughout the project.

2.2 Solar Irradiance

Solar radiation is where the Sun emits radiant energy to the Earth. Solar radiant energy

reaches the Earth in different ways. Direct solar radiation is the sunlight travelled

directly to the surface of the Earth. Diffuse solar radiation is the sunlight being scattered

or diffused, but still able to reach the Earth’s surface. Reflected radiation is the sunlight

reflected back to the atmosphere by the surface of the Earth.

6

Figure 2.1: Different Ways on How Solar Radiant Energy Reaches the Earth

Solar irradiance is the measurement of solar radiation, which is the total amount

of solar power received per unit area of a surface from the Sun with the unit of

measurement, W/m2.

There are two types of sensors to measure solar irradiance, which are

pyranometer and pyrheliometer. Pynarometer is used to measure the total global

irradiance which includes direct and diffuse radiation. Pyrheliometer is used to measure

direct radiation to its sensing element, which is known as direct normal irradiance (DNI).

Figure 2.2: Pynarometer

7

Figure 2.3: Pyrheliometer

The design and mechanism of both pyrheliometer and pyranometer are further

discussed in the subsections respectively.

2.2.1 Pyranometer

Pyranometer is the solar meter implemented to measure the total irradiance which

includes direct sunlight and diffused sunlight collected. The design of the standard

pyranometer is shown in the next page.

8

Figure 2.4: Design of the Standard Pyranometer (Omni Instruments, 2009)

Pyranometer has two glass domes, which are outer and inner glass domes. Both

of the glass domes help to concentrate the sunlight within the field of view of 180° to the

detector of the pyranometer. The connector will be connected to the detector, and the

low voltage signal generated by the detector will need to be converted to its irradiance

value according to the formula provided in Equation 2.1.

ysensitivitVTI (2.1)

where

= total irradiance measured by pyranometer, W/m2

= voltage generated by the detector of pyranometer, mV

sensitivity = sensitivity of pyranometer, μV/(W.m-2)

A standard pyranometer weighs approximately 0.9kg and costs around £1,690.00

(RM 8600.00).

TI

V

9

2.2.2 Pyrheliometer

Pyrheliometer is the solar meter which measures DNI which includes only direct

sunlight collected. The design of the standard pyrheliometer is shown in the picture

below.

Figure 2.5: Design of the Standard Pyrheliometer

A standard pyrheliometer is designed with a detector covered with a hollow tube

to accept only direct sunlight. The length of the hollow tube of a standard pyrheliometer

is decided by three factors, which are the focal length of the quartz window, the width of

the opening and the area of the detector. The inner layer of the tube is coated with a non-

reflective layer. To determine whether the pyrheliometer is pointing to the Sun, the

alignment target of the pyrheliometer is the indicator. If it points to the Sun, the sunlight

will pass through the pinhole and a spot of light can be seen on the alignment target.

The field of view or acceptance angle of a standard pyrheliometer is 5° as shown

in the picture in next page. In another words, the pyrheliometer has to point directly to

the Sun due to its minimal acceptance angle (AmritaVirtual Lab, 2019). Pyrheliometer is

usually attached to DAST for higher efficiency and accuracy in measuring DNI. DNI

values are important because DNI is about 80 % of solar energy received by a PV

10

system (EKO Instruments, 2017). DNI can be calculated according to the small voltage

signal generated by the detector as shown in Equation 2.2.

ysensitivitVDNI (2.2)

where

= direct normal irradiance measured by pyrheliometer, W/m2

= voltage generated by the detector of pyrheliometer, mV

sensitivity = sensitivity of pyreliometer, μV/(W.m-2)

Figure 2.6: Acceptance Angle of Pyrheliometer

A standard pyrheliometer weighs approximately 1kg and costs around RM10,000.

2.3 Types of Solar Irradiance Collection System

There are three major method to collect solar energy, which are static solar system (SSS),

single-axis solar tracker (SAST) and dual-axis solar tracker (DAST).

DNI

V

11

2.3.1 Static Solar System (SSS)

SSS is also known as fixed-mounted solar system. For the design of SSS, the solar panel

is placed with one fixed angle of orientation. According to Landau (2017), there are

specific formulas for angle of orientation of SSS based on latitude of the location. If the

latitude of the location is below 25°, the angle of orientation for SSS can be calculated

according to Equation 2.3. If the latitude of the location is in between 25° and 50°, the

angle of orientation can be calculated according to Equation 2.4. For the latitude of

location above 50°, the calculation of angle of orientation is complicated.

orientation angle = latitude × 0.87 (2.3)

where

orientation angle = angle of orientation of SSS, °

latitude = latitude of the location, °

orientation angle = latitude × 0.76 +3.1° (2.4)

where

orientation angle = angle of orientation of SSS, °

latitude = latitude of the location, °

Figure 2.7: Latitude of the Earth

12

SSS is the cheapest method for solar energy collection compared to SAST and

DAST. Besides, it is easy to install SSS, where this system can be placed on the roof or

on the ground (Naked Solar Ltd, 2019). However, the drawback of using SSS is that the

optimal angle of orientation has to be selected in order to optimize the efficiency in solar

energy collection.

Figure 2.8: Static Solar System

2.3.2 Single-Axis Solar Tracker (SAST)

SAST is a device that move in one axis to track the Sun. SAST has more degree of

freedom compared to SSS. There are four different configurations of SAST, which are

horizontal SAST, vertical SAST, tilted SAST and polar-aligned SAST.

For the design of horizontal SAST, an actuator to rotate the solar panel is placed

horizontal to the ground. In another words, the solar panel will tilt perpendicular to the

ground for tracking purpose.

13

Figure 2.9: Horizontal Single-Axis Solar Tracker

For the design of vertical SAST, an actuator is placed vertical to the ground. In

another words, the solar panel will move either clockwise or counterclockwise parallel

to the ground. The solar panel will not be placed flat, but will be tilted at a fixed angle of

orientation as shown in the picture below.

Figure 2.10: Vertical Single-Axis Solar Tracker

Tilted SAST is designed where the solar panel is tilted at a certain angle of

elevation and rotates side by side as shown in the picture below.

Figure 2.11: Tilted Single-Axis Solar Tracker

14

Polar-aligned SAST has the same mechanism as tilted SAST. The only

difference is that the solar panel is tilted aligned to the polar star. The polar star is

known as Polaris star, and can be identified by drawing a line through the outer bowl of

the Big Dipper as shown in Figure 2.13 (SolarSystemQuick.com, 2010).

Figure 2.12: Polar-Aligned Single-Axis Solar Tracker

Figure 2.13: Identification of Polaris Star From Big Dipper

(SolarSystemQuick.com, 2010)

15

2.3.3 Dual-Axis Solar Tracker (DAST)

DAST has more degree of freedom compared to both SSS and SAST, where it is able to

perform both elevation and azimuth movement. Elevation is a movement of tilting

upwards and downwards, while azimuth is a movement of rotating clockwise and

counterclockwise parallel to the horizon.

There are three major types of DAST, which are passive solar tracker (PST),

active solar tracker (AST) and open-loop solar tracker (OLST). All of them perform

tracking mechanism automatically, but their design differs respectively.

For both PST and AST, they perform their own mechanism depending on the

condition of the environment. Further explanation and comparison among these two

trackers are discussed in Section 2.4.2.

Unlike PST and AST, OLST is preset with computer controlled algorithms to

determine the location of the Sun (harshi1990, 2013). The computer controlled

algorithms are done by performing calculation based on astronomical data or sun

position algorithm.

2.4 Dual-Axis Solar Tracking System

DAST is implemented in collecting solar irradiance data. The reason of implementing

this system and the type of the system implemented are further analyzed in the

subsections respectively.

16

2.4.1 Reason to Implement Dual-Axis Solar Tracking System

The main reason of implementing DAST is that it performs better than SSS according to

the research conducted by Lee and Rahim (2013).

According to the research done, it captures more solar energy daily throughout a

month as shown in Figure 2.4. Furthermore, Lee and Rahim (2013) found that it has

higher efficiency and generates more energy under both sunny and cloudy days as

shown in Table 2.1. Therefore, it is concluded that DAST is the better option.

Figure 2.14: Daily Energy Captured by Dual-Axis Solar Tracker (DAST) and

Static Solar System (SSS) in a Month (Lee and Rahim, 2013)

Table 2.1: The Efficiency (η) and Energy Gained by the Dual-Axis Solar Tracker

(DAST) over Static Solar System (SSS) under Cloudy and Sunny Day (Lee and

Rahim, 2013)

 Efficiency, η (%) Energy Generated,

(kW·hr/m2)

Cloudy 26.91 0.108

Sunny 82.12 0.603

17

DAST is also a better choice compared to SAST. This is because it tracks the

Sun in both horizontal and vertical direction, while SAST is limited to track either in

horizontal or vertical direction depending on its configuration.

2.4.2 Type of Dual-Axis Solar Tracking System Implemented

There are two major methods implemented in autonomous solar tracking system

depending on the conditions of the environment, which are active and passive tracking

method. For active tracking method, external electronic components are required. The

controller of the solar tracker controls the movement of the motors according to the light

intensities detected by light sensors. On the other hand, passive tracking method uses

low boiling point fluid in the canisters to move the solar tracker.

Figure 2.15: Solar Tracker Using Passive Tracking Method

Although passive solar tracking system requires lower cost, active tracking

method is recommended because passive tracking method depends on ambient

18

temperature, whereas active tracking method depends on light intensity. Due to

dependency upon ambient temperature, solar tracker with passive tracking method rarely

points directly to the Sun as the temperature will vary from day to day (harshi1990,

2013). Therefore, to ensure the solar tracker tracks the Sun accurately, active tracking

system is recommended as it track according to light intensities instead of ambient

temperature.

2.5 Solar Data Collection System

There are different designs for solar data collection system. However, they have a

common weakness, which is data collection cannot be done remotely. Furthermore, the

cost to design the system is relatively high for small task in performing data collection.

According to Koutroulis and Kalaitzakis (2003), there are two main designs in

performing solar data collection system. One of the designs is a microcontroller-based

system. In this design, the sensors will be connected to the ADC for the microcontroller

to read the irradiance values from the sensors. The microcontroller will then update the

values to the computer via RS-232 cable to perform data collection and storage.

Figure 2.16: Solar Data Collection Using Microcontroller-Based System

(Koutroulis and Kalaitzakis, 2003)

19

Another design according to Koutroulis and Kalaitzakis (2003) is by

implementing data logging system. In this design, the data logger is implemented to

store the data from the sensors, and the computer will collect the data from the data

logger via RS-232 cable.

Figure 2.17: Solar Data Collection Using Data Logging System (Koutroulis and

Kalaitzakis, 2003)

2.6 Internet of Things (IoT)

IoT is where devices are interconnected via the Internet. In the world of IoT, all

connected devices can share and collect information remotely anytime and anywhere

without the need of human intervention.

 IoT is widely implemented in businesses and various fields of industries as it

eases the process of data collection and analysis. There are four major layers of IoT on

how the data of sensors or devices is transmitted and analyzed via the Internet.

20

Figure 2.18: Four Layers of IoT (Gupta, 2018)

21

 The first layer of IoT consists of sensor-connected IoT devices (Gupta, 2018). In

this layer, the sensors will detect the physical parameters such as temperature, humidity,

etc., and convert the parameters into a signal which can be measured electrically. The

IoT devices will help the sensors to send signal wirelessly to the gateway device as the

sensors themselves cannot send data wirelessly.

 In the world of IoT, data of the sensing devices are transmitted remotely for data

collection and analysis. However, the devices themselves are unable to upload the data

via Internet. Hence, the second layer of IoT which is the gateway device, can help to

solve this problem. IoT gateway device can be a Wi-Fi router or any device that has

Internet connection, and acts as a networking device connecting the sensing devices to

the Cloud. In another words, IoT gateway device receives the data from sensing devices

and then transmit the data to the Cloud in the second layer of IoT (Gupta, 2018).

 The third layer of IoT is the Cloud (Gupta, 2018). In this layer, the Cloud server

accepts the data transmitted by the IoT gateway device. The Cloud server will store and

process the data received for monitoring and analytic purposes.

 The fourth layer of IoT is IoT analytic (Gupta, 2018). In this layer, the users will

analyse and monitor the data of the sensing devices by accessing into IoT platform

obtained from the Cloud server. The user can access the Cloud platform user interface

using mobile phone or computer as long these devices are connected to the Internet.

2.7 Solar Analysis in Malaysia

Malaysia is located at the equatorial region of the Earth and has a hot tropical rainforest

climate throughout a year. Basically, there are only sunny and raining season throughout

a year in Malaysia due to its tropical climate.

22

According to Aziz, et al (2016), Malaysia is a country with high potential in

installing a PV system as the average annual radiation in Malaysia is relatively high,

which is around 1643 kWh/m2.

Figure 2.19: Solar Radiation in Malaysia (Aziz, et al., 2016)

Although the average annual radiation is relatively high, feasibility study has to

be done before the installation of PV system due to high cost of installation. Furthermore,

the performance of commercialized solar panel will degrade over time (SunPower

Corporation, 2019). To conduct feasibility study, solar irradiance data will be collected

monthly or yearly, which will help in the calculation of levelised cost of electricity

generation (LCOE). LCOE is crucial to determine the suitability to start a PV system at

the particular site.

23

Figure 2.20: Calculation of LCOE of Renewable Energy Technologies (IRENA,

2012)

2.8 Conclusion

Based on the literature review done, Malaysia is a suitable to implement solar energy for

generation of electricity. However, the cost to install a PV system is high and not every

location is suitable to build a PV system. Therefore, solar irradiance data is needed to be

collected to analyze the feasibility and suitability to install PV system at the particular

site.

24

However, the major issue faced in the present solar irradiance data collection

system is that the data cannot be collected remotely. Furthermore, the cost to set up the

system is relatively high for small task in collecting irradiance data. To solve this issue,

application of IoT will be implemented in this project. Besides its ability to save cost in

setting up data collection system, data can be collected remotely in the world of IoT as

long Internet network is provided.

Another issue observed from the literature review, the cost of solar irradiance

meters are high. To solve this issue, both cost saving pyrheliometer and pyranometer

will be constructed, and construction of these meters will be further discussed in Chapter

3.

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter illustrates the design and mechanism of the solar irradiance data collection

system. The components and software implemented for the project are briefly described

in this chapter. Besides, budget and milestone of the project are shown in this chapter.

3.2 Design of Solar Irradiance Data Collection System

The solar irradiance data collection system constructed is implemented for both solar

tracking purpose and remote data collection. The design architecture of the entire project

and algorithms of both solar tracking mechanism and IoT data collection system are

explained in the subsections respectively.

26

3.2.1 Design Architecture of Solar Irradiance Data Collection System

The main functions of the project are solar tracking mechanism and IoT data collection

system. The block diagram is shown in the picture below.

Figure 3.1: Block Diagram of Solar Irradiance Data Collection System

For solar tracking mechanism, Arduino UNO acts as the core to get inputs from

both light dependent resistor (LDR) circuitry and MPU6050 gyro sensor and perform

operations according the input signal received.

27

The LDR circuitry consists of four LDRs and each LDR receives the ambient

light intensity respectively. Arduino UNO will compare all different light intensities

from the LDR circuitry, and send signal to both motor driver and relay control circuitry

to control the stepper motors in moving the solar tracker.

MPU6050 gyro sensor is a robust gyroscope module and is implemented to

initialize the solar tracker to the desired angle of elevation when it is powered on. The

gyro sensor is also used to limit the elevation angle to prevent the plate of the solar

tracker from hitting the entire circuitry. The LEDs are implemented to indicate the

current status of the solar tracker.

In IoT data collection system, ESP32 is implemented as the IoT device, while

ESP8266 LiLon NodeMCU V3 is implemented as the IoT gateway device. Since

ESP8266 LiLon NodeMCU V3 itself does not have Internet network, mobile phone is

used to provide Internet hotspot to enable the ESP8266 module to transfer data from

ESP32 to both Pushingbox API and Blynk Cloud server. Pushingbox API will upload

the data to Google Form and Google Spreadsheet for IoT database purpose, while Blynk

Cloud server will receive and show real-time data in mobile phone using Blynk apps.

Both pyrheliometer and pyranometer are constructed and used as sensors to

detect solar irradiance, which are direct normal irradiance and global irradiance. Both of

the sensors generate current signal according to the solar irradiance detected. Since

ADS1015 ADC module is only able to detect voltage signal, therefore, current-to-

voltage converters were needed in order to amplify and convert low current signals from

both sensors to voltage signals to the ADC module. The LEDs were added to indicate

Wi-Fi connection status and data transmission status.

ESP32 will calculate current signals according to voltage signals measured by

the ADC module. The calculated current signals will then be converted to solar

irradiance values for both sensors. In a meanwhile, ESP32 will receive the current status

of solar tracker from Arduino UNO via UART serial communication. The solar

28

irradiance values and current status of solar tracker will be data for the IoT data

collection system. ESP32 will be connected to ESP8266 LiLon NodeMCU V3

wirelessly, and the data will then be uploaded through the Internet.

3.2.2 Algorithm of Solar Tracking Mechanism

The algorithm of solar tracking mechanism is shown in the pictures in next three pages.

The coding uploaded to Arduino UNO as shown in Appendix N can be referred for more

details on the exact operation of the mechanism.

29

Figure 3.2: Algorithm of Solar Tracking Mechanism

START

Initialize the position of

the plate of the solar

tracker

The plate of

solar tracker lies flat?

Turn off yellow super

bright LED

No

Yes

Get reading from all four

LDRs

All LDRs give values

exceeding the preset

threshold of sunny

environment?

Send “CLOUDY(STOP)” to

ESP32 Wi-Fi module

Stop the solar tracker,

and and turn on both

yellow and green super

bright LEDs

Yes

Send “SUNNY(TRACKING)” to

ESP32 Wi-Fi module, and turn

off both yellow and green

super bright LEDs

No

Upper region receives

greater light intensity than

lower region?
A

B

No

Yes

E

Send signal to relay control

circuitry to perform elevation

movement of solar tracker

Send “INITIALIZING …”

to ESP32 Wi-Fi module

and turn on yellow super

bright LED

30

Figure 3.3: Algorithm of Solar Tracking Mechanism (Continued)

A

Move the solar

tracker upwards

Plate of solar

tracker reaches its

upper limit angle?

Light intensities at

upper region and

lower region are

equal?

Lower region gets

greater light intensity

than upper region?

B

Move the solar

tracker downwards

Plate of solar

tracker reaches its

lower limit angle?

Light intensities at

lower region and

upper region

equal?

Upper region gets

greater light intensity

than lower region?

Right region receives

greater light intensity than

left region?

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

D

C
Yes

No

Send signal to relay control

circuitry to perform azimuth

movement of solar tracker

31

Figure 3.4: Algorithm of Solar Tracking Mechanism (Continued)

C D

Move the solar tracker

to the right
Move the solar tracker

to the left

Light intensities at

right region and left

region are equal?

 Left region gets greater

light intensity than right

region?

Light intensities at

left region and right

region are equal?

Right region gets greater

light intensity than left

region?

The solar tracker is

facing the Sun?

Change of light

intensity on any LDR

is detected?

Stop the solar tracker, and

turn on green super bright

LED

E

E

No

No
No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Send “SUNNY(STOP)”

to ESP32 Wi-Fi module

32

Arduino UNO is implemented as a controller to perform operations depending on

the input signals from both LDR circuitry and MPU6050 gyro sensor. Yellow and green

super bright LEDs are added as indicators for the current status of the solar tracker.

Arduino UNO will update the current status of solar tracker to ESP32 via UART serial

communication.

When the solar tracker is powered on, the plate of the solar tracker will initialize

its position to lay parallel to the ground. MPU6050 gyro sensor will play its role to

determine whether the plate of solar tracker is lying parallel to the ground by calculating

the angle of elevation of the plate. When the solar tracker is initializing its position,

Arduino UNO will update the current status of “INITIALIZING…” which indicates the

solar tracker is currently initializing its position. In a meanwhile, yellow super bright

LED will light up to indicate that the plate of solar tracker is currently initializing its

position. Once the plate of solar tracker is lying parallel to the ground, the yellow super

bright LED will turn off.

Next, all four LDRs in the LDR circuitry will start to measure the ambient light

intensity detected respectively and send signal to Arduino UNO to perform comparison

among light intensities measured by the LDRs. To determine whether the environment is

cloudy or sunny, a threshold of sunny environment is preset into Arduino UNO. If light

intensities from all four LDRs exceed the preset threshold, Arduino UNO will update the

current status of “CLOUDY(STOP)”, and both green and yellow super bright LEDs will

light up to indicate cloudy environment. The solar tracker will stop if the environment is

cloudy.

If the light intensities obtained do not exceed the preset threshold, the solar

tracker will start to track the Sun. Arduino UNO will update current status of

“SUNNY(TRACKING)” to indicate the environment is sunny and the solar tracker

starts to track. Both yellow and green super bright LEDs will turn off when the solar

tracker is tracking.

33

In this project, the solar tracker will perform its elevation movement followed by

its azimuth movement. Firstly, Arduino UNO will turn on the relay control circuitry to

enable the solar tracker to perform elevation movement which is to tilt upwards or

downwards. LDRs at the upper region and lower region are then calculated in average

respectively and compared. The solar tracker will tilt upwards if the upper region gets

greater light intensity, and vice versa. Next, Arduino UNO will turn off the relay control

circuitry to enable azimuth movement of solar tracker which is to move left or right.

LDRs at the right region and left region are then calculated in average respectively and

compared. The solar tracker will move to the right if the right region gets greater light

intensity, and vice versa.

After performing both elevation and azimuth movement, Arduino UNO will

check the values of LDRs to ensure that the solar tracker is facing the Sun. If it faces the

Sun, ESP32 will receive the current status of “SUNNY(STOP)” from Arduino UNO to

indicate the solar tracker stops and points towards the Sun. The green super bright LED

will also light up for indication purpose. However, if it does not face the Sun, it will

keep tracking until it faces the Sun. If there is any changes in the light intensity detected

by any one of the LDRs, the green super bright LED will turn off to indicate the solar

tracker starts to track.

3.2.3 Algorithm of IoT Data Collection System

The algorithm of IoT data collection system is shown in the pictures in next two pages.

The coding uploaded to ESP32 can be referred for more details on the exact operation

shown in Appendix O.

34

Figure 3.5: Algorithm of IoT Data Collection System

START

ESP32 Wi-Fi module

connects to Wi-Fi

Hotspot?

Blink blue super bright

LED, and reconnect to

Wi-Fi Hotspot

Collect converted voltage values of

pyrheliometer and pyranometer

from the ADC module

Convert the voltage values into

respective current values

Convert the current values into

respective solar irradiance values

for pyrheliometer and pyranometer

Get the current status of solar

tracker from Arduino UNO via UART

serial communication

Time interval from the last

data uploaded to Blynk

reaches one second?

Turn on blue

super bright LED

No

Yes

ESP32 Wi-Fi module

connects to Blynk?

Upload solar irradiance values and

current status of solar tracker to Blynk,

and blink white super bright LED once

Yes

Yes

A
No

ESP32 Wi-Fi module

connects to Wi-Fi

Hotspot?

No

A

Reconnect to Wi-Fi

Hotspot

No

Yes

B

Reconnect to

Blynk

35

Figure 3.6: Algorithm of IoT Data Collection System (Continued)

ESP866 LiLon NodeMCU V3 is implemented as Wi-Fi extender to boost the

range of Wi-Fi network from mobile phone. In IoT data collection system, ESP32 is the

core to receive inputs from ADS1015 ADC module and Arduino UNO, and then upload

data to Blynk and Google Spreadsheet. There are three super bright LEDs, which are

blue, white and yellow in colours, acting as indicators.

To perform IoT data transmission, ESP32 connects to the hotspot of ESP8266

LiLon NodeMCU V3 which has the Internet network from mobile phone. The blue

super bright LED will keep blinking if ESP32 is not connected to the hotspot from

ESP8266 LiLon NodeMCU V3. If ESP32 connects to the hotspot, the blue super bright

LED will light up and stop blinking.

A

Time interval from the last data

uploaded to Google Spreadsheet reaches

five minutes?

ESP32 Wi-Fi module

connects to

Pushingbox API?

ESP32 Wi-Fi module

connects to Wi-Fi

Hotspot?

Upload solar irradiance values to

Pushingbox API which will be

uploaded to Google Form and Google

Spreadsheet, and blink yellow super

bright LED once

B

B

Reconnect to Wi-Fi

Hotspot

Reconnect to

Pushingbox API

Yes

Yes

No

No

Yes

No

36

Once the hotspot is connected, ESP32 will get the converted voltage values of

both pyrheliometer and pyranometer from ADS1015 ADC module. ESP32 will convert

the voltage values obtained to respective current values. This step is done when testing

the accuracy of the ADC module in reading the voltage values from both current-to-

voltage converters with respect to input current signals from both pyrheliometer and

pyranometer. The current values obtained will then be converted to respective solar

irradiance values. The solar irradiance values are direct normal irradiance from

pyrheliometer and global irradiance from pyranometer. Next, ESP32 will get the current

status of solar tracker from Arduino UNO via UART serial communication.

Once the data are collected, ESP32 will send the data to Blynk every second and

to Google Spreadsheet every five minutes. Solar irradiance values and current status of

solar tracker will be uploaded to Blynk Cloud server which will then be displayed in

Blynk mobile apps. On the other hand, only solar irradiance values will be uploaded to

Pushingbox API server which will then be uploaded to Google Form and Google

Spreadsheet. The white super bright LED blinks once if the data are uploaded to Blynk,

while yellow super bright LED blinks once if the data are uploaded to Google

Spreadsheet. Once the data are sent to Blynk and Google Spreadsheet, ESP32 will repeat

the steps in checking Wi-Fi connection, and obtaining solar irradiance values and current

status of solar tracker.

3.3 Setup of Solar Tracking Mechanism

This subsection discusses about the setup of the solar tracking mechanism. The process

of building the mechanism is illustrated and explained in details.

37

3.3.1 Design of Dual-Axis Solar Tracker

The dual-axis solar tracker designed can track the Sun automatically without the need of

human intervention. Active solar tracking method is implemented where microcontroller

will decide the movement of solar tracker according to the light intensities detected by

light sensors.

Azimuth-altitude dual-axis solar tracker (AADAST) and tip-tilt dual-axis solar

tracker (TTDAST) are the common designs of dual-axis solar tracker. Both of these

designs are similar in terms of tracking mechanism, where they are able to perform both

azimuth movement and elevation movement. Figure 3.7 shows a clear picture on

azimuth and elevation. From Figure 3.7, azimuth movement is the movement of turning

to the left or to the right along the horizontal axis, while elevation movement is the

movement of tilting upwards or downwards along the vertical axis.

Figure 3.7: A Representation of the Azimuth and the Elevation of the Sun (Pons,

2019)

There is distinct difference in design of AADAST and TTDAST. TTDAST is

constructed with swivel gear actuator for horizontal movement and a linear actuator for

38

vertical rotation (Whitlock, 2016). AADAST normally implements two actuators or

motors to perform both azimuth and elevation movement (Ray and Tripathi, 2016). In

the project, the design of AADAST is implemented.

Figure 3.8: Mechanical Design of Tip-Tilt Dual-Axis Solar Tracker

Figure 3.9: Mechanical Design of Azimuth Altitude Dual Axis Solar Tracker (Ray

and Tripathi, 2016)

39

3.3.2 Microcontroller and Software Implemented

Arduino UNO microcontroller board is implemented for the solar tracking mechanism.

It is ATmega328 based microcontroller and can be powered on with DC power supply in

the range of 7V to 12V. Besides receiving input signals, it can be a mini power supply

where it can supply 5V.

Arduino UNO can perform its operation according to the source code uploaded

to it. It is easy to setup the Arduino IDE software. The IDE software is free and open-

source for users to download Arduino IDE official website. Once the software is

download, the source code can be created, compiled and then uploaded to Arduino UNO

via USB cable. The programming language used in Arduino IDE software is in C or

C++, which is easy to understand. Besides that, the source code can be rewrite and

upload again to the microcontroller easily.

Figure 3.10: Arduino UNO Microcontroller Board

40

Figure 3.11: Arduino IDE Software

3.3.3 Design of LDR Circuitry

To enable accurate solar tracking mechanism, LDR circuitry is the crucial component of

the solar tracker. Light dependent resistor (LDR) depends on light intensity received to

decide its resistance value (Electrical4U, 2019). With this characteristic, LDR is also

known as photoresistor. LDR works on the principle of photoconductivity, which is a

phenomenon where the material conductivity increases as the amount of photons

increases (Electrical4U, 2019). When conductivity increases, more current will start to

flow through the LDR causing its resistance to drop. In another words, the resistance of

LDR will drop if the ambient light intensity is high, and vice versa.

In this project, four LDRs are implemented to detect ambient light intensities

from four different regions. The four LDRs are placed closely, but separated by using

opaque material to form a ‘+’ shape as shown in Figure 3.12 (Hosain, et al., 2015). For

the material to form the ‘+’ shape, black impraboard was selected because it is opaque

and hard. The impraboard was then cut and stick to form a ‘+’ shape as shown in Figure

3.13. Once the ‘+’ shaped partition for LDR circuitry was done, the partition was then

41

stick to the circuitry of LDRs as shown in Figure 3.10. The purpose of LDR sensor array

design in Figure 3.12 is to enable shading effect for the solar tracker to track the Sun as

shown in Figure 3.14. The presence of shadow on any region will move the solar tracker

until all regions receive equal light intensity or the solar tracker faces the Sun. The

shading effect principle shown in Figure 3.12 can help in increasing the sensitivity of

LDR circuitry in detecting difference of light intensities among all regions which can

lead to high precision solar tracking mechanism. High precision solar tracking

mechanism is needed because the pyrheliometer only detects the sunlight which directly

strikes to it. Furthermore, the small sensing cell of the pyrheliometer is covered by a

long hollow tube.

Figure 3.12: LDR Sensor Array Design (Hossain, et al., 2015)

Figure 3.13: LDR Circuitry Partition Constructed Using Impraboard

42

Figure 3.14: How Does Shading Effect Helps the Solar Tracker to Track the Sun

The LDR circuitry is designed by combining the four voltage divider circuits as

shown in the picture below. The four voltage divider circuits have a common Vcc of 5V

supplied from Arduino UNO, and a common ground. The analog input pins of Arduino

UNO are connected in between the LDR and resistor of the voltage divider circuits

accordingly to avoid confusion when perform LDR test code in Appendix J.

Figure 3.15: Voltage Divider Circuit for Each LDR

43

3.3.4 Asynchronous Dual-Axis Solar Tracking System

In this project, CRD5107P stepper motor driver and PK543AW-P36 stepper

motors were implemented. However, one motor driver can only control one stepper

motor. Therefore, relay control circuitry was constructed to enable the motor driver to

control two stepper motors asynchronously.

Figure 3.16: CRD5107P Stepper Motor Driver

Figure 3.17: PK543AW-P36 Stepper Motor

Relay is an electronic component which acts as a switch. In this project, SPDT

relays are implemented to construct the relay control circuitry. The internal design and

the working mechanism of SPDT relay are shown in the pictures in next page

respectively. When the copper wire windings or the electromagnetic coil is not energized,

44

the movable armature in the relay remains at its initial position, where the common

terminal is connecting NC terminal. When there is voltage supplied to the coil, the coil is

energized, attracting the movable armature towards NO terminal. In another words, the

common terminal will be connected to NO terminal when there is voltage supplied to the

coil.

Figure 3.18: Internal Design of SPDT Relay (Thonti, 2017)

Figure 3.19: Working Mechanism of SPDT Relay (Thonti, 2017)

Each stepper motor has five wires with different colours which are blue, red,

orange, green and black. Therefore, five relays are used in the circuitry. The common

terminals of the relays are connected to motor connector terminals of the motor driver.

The NO terminals of the relays are connected to the stepper motor for vertical movement,

45

while NC terminals of the relays are connected to the stepper motor for the horizontal

movement. However, do take note that the wires from motor connector terminals of

motor driver have to be connected according to the colour of the wires from the stepper

motors, which is shown in Figure 3.20.

To enable the switching mechanism of the relays, Arduino UNO is implemented

to control the relay control circuitry. However, the current signal from Arduino UNO is

too low to energize the coil of the 5 V relays eventhough it produces 5 V to the relays.

Therefore, a pair of transistors is formed into darlington transistor to have higher current

gain (Elprocus, 2013). The connection of darlington transistor in the relay control

circuitry is shown in Figure 3.20.

Besides deciding the switching mechanism of the relays, Arduino UNO plays an

important role in deciding the stepper motor in rotating clockwise or counterclockwise

by sending pulse to the motor driver. Pin D9 of Arduino UNO connects to CW pulse

input of motor driver for clockwise direction, while pin D10 of Arduino UNO connects

to CCW pulse input of motor driver for counterclockwise direction. To activate the

motor driver, 24V power supply is needed. For more details on wiring for the motor

driver, the datasheet attached in Appendix C can be referred.

46

Figure 3.20: Schematic Diagram of Relay Control Circuitry

After schematic diagram of the relay control circuitry is done, the PCB layout

was then drawn using Eagle software as shown in the picture below. The PCB board for

the relay control circuitry is shown in the picture in next page.

Figure 3.21: Eagle PCB Layout for Relay Control Circuitry

47

Figure 3.22: PCB Board for Relay Control Circuitry

After the components and wires are soldered on PCB board for relay control

circuitry, the movement of the solar tracker is tested using test codes in Appendices F, G,

H and I. The mechanism in moving the solar tracker is shown in the table below.

Table 3.1: Mechanism for Movement of the Solar Tracker

Arduino UNO pin Movement of

Solar Tracker D7 D9 D10

HIGH LOW 1 pulse UP

HIGH 1 pulse LOW DOWN

LOW LOW 1 pulse LEFT

LOW 1 pulse LOW RIGHT

48

3.3.5 MPU6050 Gyro Sensor

The extra feature included is the initialization of the solar tracker when it is powered on.

The plate of the solar tracker will initialize its position, so that it lies parallel to the

ground. According to Pandian (2019), the Sun will be at North or South depending on

the seasons throughout a year and will rise from East to West throughout a day

regardless seasonal changes. Therefore, initialization of solar tracker is important. Lying

the plate of solar tracker flat to be the initial position is important to help the solar

tracker to decide whether to track at the North or South region throughout the day.

Hence, MPU6050 gyro sensor is useful in initializing the position of the plate of the

solar tracker by calculating its elevation angle.

Another function of the gyro sensor is to limit the range of elevation angle to

prevent the plate of the solar tracker from hitting the circuitry of the solar tracker. With

MPU6050 gyro sensor, usage of limit switches can be eliminated and hence, reduce the

number of components and wires used.

3.3.6 LED Indicators in Solar Tracking Mechanism

There are two LEDs used as indicators in solar tracking mechanism. The purpose of

adding indicators is to reduce the dependency of connecting Arduino UNO using USB

cable to perform serial monitoring. Furthermore, it is inconvenient to perform serial

monitoring on the moving solar tracker. The operation on how the indicators work is

shown in the table in next page.

49

Table 3.2: Operation of Indicators in Solar Tracking Mechanism

Current Status of

Solar Tracker

Yellow super bright LED Green super bright LED

Initializing the position of

plate of solar tracker

ON OFF

Stop during cloudy

environment

ON ON

Stop and facing the Sun OFF ON

Tracking the Sun OFF OFF

Figure 3.23: Yellow LED Turns On When Solar Tracker is Initializing

Figure 3.24: Both Green and Yellow LEDs Turn On In Cloudy Environment

50

Figure 3.25: Green LED Turn On When Solar Tracker Faces the Sun

Figure 3.26: Both Green and Yellow LEDs Turn Off When Solar Tracker is

Tracking

51

3.3.7 Schematic Diagram for Solar Tracking Mechanism

Figure 3.27: Schematic Diagram for Solar Tracking Mechanism

3.4 Setup of IoT Data Collection System

This subsection illustrates and explains the procedures in setting up the IoT data

collection system. The circuitry for the IoT data collection system is illustrated in this

subsection. Hardware and software selection are discussed as well.

3.4.1 Design and Construction of Low Cost Pyrheliometer and Pyranometer

This subsection illustrates the sensing cells implemented for both sensors, and the

designs of both pyrheliometer and pyranometer.

52

3.4.1.1 Multi-Junction Solar Cell (MJSC)

MJSC has higher efficiency in absorbing photons compared to single junction cells as

there are three different semiconductor materials arranged in different layers to absorb

different wavelengths of sunlight (Maas, 2012) . The semiconductor with the largest

bandgap is placed at the top to absorb short wavelength, followed by the semiconductor

with medium bandgap, and the semiconductor with the narrowest bandgap at the bottom

for long wavelength absorption, which is shown as in Figure 3.28. Concentrated light is

supplied on the solar cell to enhance its efficiency, and it can be done using optical light

collector such as lenses (Fedkin, 2018). The lens will collect the sunlight and

concentrate it to a small area of solar cell as shown in Figure 3.29.

Two MJSCs as shown in Figure 3.30, are implemented as the sensing cell for

both pyrheliometer and pyranometer.

Figure 3.28: How Multi-Junction Solar Cell Absorb Different Wavelengths of

Sunlight (Maas, 2012)

53

Figure 3.29: How Lens Concentrate the Sunlight to the Solar Cell (Fedkin, 2018)

Figure 3.30: Multi-Junction Solar Cell Implemented For The Project

3.4.1.2 Design of Cost Effective Pyrheliometer

Pyrheliometer is a sensing device measuring direct normal irradiance, which is the direct

sunlight hitting the sensing element. Pyrheliometer is a long tube which only allow the

sunlight passing through it with an acceptance angle of 5°. The inner layer of the tube is

blackened and is not reflective to ensure only acceptance angle of 5°. The design of the

pyrheliometer is shown in the picture in next page.

54

Figure 3.31: Design of Standard Pyrheliometer

However, cost of the standard pyrheliometer is relatively high. Therefore, a cost

effective pyrheliometer is designed and constructed in this project. One of the solar cells

shown in Figure 3.30 will be implemented as sensing element for the pyrheliometer.

Before constructing the body of the pyrheliometer, an outline shown in next page was

drawn and simple mathematical calculation was done.

55

Figure 3.32: Outline for the Construction of Pyrheliometer

D

L

d

5°

Sunlight

Note:

- D = Diameter of the opening of pyrheliometer

- L = Length of pyrheliometer

- d = Diameter of the solar cell

56

From the outline drawn in the previous page, a formula for construction of

pyrheliometer was formed as shown in Equation 3.1.

)
2

5
tan(

 =

L

dD
)]

2
()

2
[(

 (3.1)

where

D = diameter of the opening of pyrheliometer, cm

d = diameter of the solar cell, cm

L = length of pyrheliometer, cm

From Equation 3.1, the diameter of solar cell, d was known, which is 1 cm.

However, the diameter of the opening of pyrheliometer, D and length of pyrheliometer,

L were unknown. Therefore, the diameter of the opening of pyrheliometer, D was

predefined to calculate the length of pyrheliometer, L. The diameter of the opening, D

has to be larger than the diameter of the solar cell. In this project, the diameter of the

opening of pyrheliometer was set to be 2.6 cm. Hence, the length of pyrheliometer, L

would be 41.2 cm according to Equation 3.1 together with given values of diameter of

the opening of pyrheliometer, D and diameter of the solar cell, d.

Impraboard was selected as material for the body of pyrheliometer. However,

impraboard is reflective and it is not desirable to have inner layer of the body to be

reflective. Therefore, black T-shirt was cut and stick on the surface of the impraboard.

The shirt acts as a non-reflective coating for inner layer of the body. Impraboard itself

and impraboard covered with black T-shirt were tested under the light as shown in

Figure 3.33. From Figure 3.33, impraboard covered with black T-shirt can be seen not to

be reflective compared to impraboard itself. The impraboard was cut into four rectangles

and covered with black T-shirt respectively. The four rectangles were stick to form a

hollow cuboid, and the outer body of the cuboid covered with PVC tape. The body of

pyrheliometer was done as shown in Figure 3.34. The body of the pyrheliometer was

then tested under the light by looking through the opening of the body. The inner layer

57

of the body of pyrheliometer was proved to be not reflective when the result obtained

was as in Figure 3.35.

Figure 3.33: Testing Impraboard itself (a) and Impraboard Covered With Black T-

Shirt (b) Under the Light

Figure 3.34: Body of the Pyrheliometer

Figure 3.35: View through the Opening of Pyrheliometer When the Body is

Pointing to the Light

(a)

(b)

58

Once the inner layer of the pyrheliometer was verified to be not reflective, the

solar cell was stick at the base of the pyrheliometer and covered with the body

constructed. The pyrheliometer was done constructed and stick on the plate of the solar

tracke. The calculation done for the construction of the pyrheliometer is proved to be

accurate if the solar cell can be seen through the body of pyrheliometer when the solar

tracker is facing the Sun.

Figure 3.36: Pyrheliometer Constructed For The Project

Figure 3.37: Solar Cell is Visible Through the Body of Pyrheliometer If The Solar

Tracker is Facing the Sun

Solar Cell of Pyrheliometer

Pyrheliometer

59

The constructed pyrheliometer is not only able to work as a standard

pyrheliometer, but it is also lighter compared to the standard pyrheliometer. Furthermore,

the cost incurred for pyrheliometer constructed is much more cheaper compared to the

standard pyrheliometer.

After the construction of pyheliometer was done, comparison was done with the

actual normal incidence pyrheliometer as in Appendix E. The results of comparison will

be reviewed and analyzed in Chapter 4.

3.4.1.3 Design of Cost Effective Pyranometer

Pyranometer is a sensing device which measures global irradiance. A pyranometer

consists of two glassdomes which help to concentrate the sunlight to the sensing element.

The sensing element will then convert the radiation received to a differential voltage

signal proportional to the amount of radiation received. However, the cost of a standard

pyranometer is relatively high.

Since pyranometer measures global irradiance which is the solar radiation around

it, therefore, one of the solar cells is implemented as the pyranometer, where it is

directly stick on the plate of the solar tracker. The solar cell is also able to collect the

solar radiation around it, which has the same functionality as the standard pyranometer.

The solar cell is not only lighter and smaller in size, but it also helps to save cost as well.

60

Figure 3.38: Design of Standard Pyranometer

Figure 3.39: Design of Pyranometer Constructed

3.4.2 Current-to-Voltage Converter Circuitry

Since the solar cells given produce current signal when receive radiation from the Sun,

therefore, current-to-voltage conversion is needed as both ESP32 and ADS1015 ADC

module are able to read only voltage input signals.

Pyranometer

61

Two current-to-voltage converters are needed as there are two solar cells given. The

procedures of constructing the current-to-voltage conversion circuitry was done and

tested before the construction of both pyrheliometer and pyranometer. There are two

types of current-to-voltage converter, which are active and passive current-to-voltage

converters shown in the pictures below respectively.

Figure 3.40: Passive Current-to-Voltage Converter

Figure 3.41: Active Current-to-Voltage Converter

Passive current-to-voltage converters might work well theoretically, but the

performance will not be as desired in practical due to poor gain and insufficient noise-to-

signal ratio (Gupta, 2019). Active current-to-voltage converters will be the solution for

the problem of passive current-to-voltage converters, and are implemented for current-

62

to-voltage conversion purpose. Two LM324 ICs are used as the current-to-voltage

converters for both pyrheliometer and pyranometer.

Before the circuitry for current-to-voltage conversion was constructed, direct

voltage input signal testing was done using ESP32 itself and ADS1015 ADC module

connecting to ESP32. After the testing was done, the method of using ADS1015 ADC

module connecting to ESP32 was preferred. The comparison between these two methods

and reason to implement ADS1015 ADC module to read voltage signal are analyzed and

discussed in Chapter 4.

To build a circuitry for current-to-voltage conversion, it is important to

determine the correct resistance value for the feedback resistor, Rf shown in Figure 3.41.

From Figure 3.41, the value for feedback resistor, Rf can be obtained using the formula

shown in Equation 3.2.

Vout = Ip Rf (3.2)

where

Vout = output voltage of current-to-voltage converter, V

Ip = input current to the current-to-voltage converter, A

Rf = feedback resistance, Ω

The maximum current produced by the solar cells given is 20 mA, and the

maximum voltage signal measurable by ADS1015 ADC module is set at 3V. With the

values of these two variables given, the feedback resistor for each current-to-voltage

converter will be 150 Ω.

63

3.4.3 ESP32 Wi-Fi Module and Software Implemented

ESP32 is implemented to transfer data wirelessly to both IoT user interface platform and

IoT database platform for data collection and analysis. This Wi-Fi module board uses

ESP-WROOM-32 chip consisting of thirty GPIO pins, one enable pin, two common

ground pins, one pin which supply 3.3V and one power input pin.

Arduino IDE software is compatible with ESP32. It is easy to install ESP32

board in Arduino IDE software regardless the operating system implemented and steps

of installation are followed as the pictures shown accordingly

(RandomNerdTutorial.com, 2013).

Figure 3.42: Go to “File > Preferences” (RandomNerdTutorial.com, 2013)

64

Figure 3.43: Edit Preferences Tab (RandomNerdTutorial.com, 2013)

65

Figure 3.44: Go to “Tools > Board > Boards Manager…”

(RandomNerdTutorial.com, 2013)

Figure 3.45: Installation of ESP32 Board in Arduino IDE Software

(RandomNerdTutorial.com, 2013)

66

Figure 3.46: Installation of ESP32 Board Done (RandomNerdTutorial.com, 2013)

3.4.4 Configuration of Wi-Fi Extender

Internet network is a must for IoT data collection system. ESP32 itself does not have

Internet network, and hence, mobile phone is used as a router to provide Internet

network. However, mobile phone provides short range of Wi-Fi network. Therefore,

ESP8266 LiLon NodeMCU V3 is implemented as the Wi-Fi extender to increase the

range of Wi-Fi network.

Figure 3.47: ESP8266 LiLon NodeMCU V3

67

Before configuring the Wi-Fi extender, a zip file, “wifi extender files” from

MediaFire (2019) has to be downloaded. Next, extract and open the zip file downloaded

as shown in the picture below. At the same time, connect ESP8266 LiLon NodeMCU

V3 to the computer via USB cable for configuration of Wi-Fi extender.

Figure 3.48: Files In “wifi repeater files”

Open “flash_download_tools_v3.6.5_0” folder from extracted zip file shown in

the picture above. Then, click on “flash_download_tools_v3.6.5.exe” as shown in the

picture below.

Figure 3.49: Click On “flash_download_tools_v3.6.5.exe”

68

After clicking on the execution file, wait until it is as shown in the picture below,

and then click on the button “ESP8266 DownloadTool”.

Figure 3.50: Click on “ESP8266 DownloadTool”

ESP8266 Download Tool firmware is executed as shown in next page. In the

section “SPIDownload”, the column in both green and orange frame are typed as follow.

Before checking the two radio buttons at the upper left corner, the button in the red

frame is clicked, and then double click on “0x0000.bin” when a tab appears as in Figure

3.48. Next, the button in the blue frame is clicked, and then double click on

“0x02000.bin” when a tab appears as in Figure 3.48. For “SpiFlashConfig”, the

properties of “CrystalFreq”, “SPI SPEED”, “FLASH SIZE” and “SPI MODE” are set as

follow. The “COM:” must be according to the name of the serial communication port

which can be checked in Control Panel, while the “BAUD:” is set to 115200 since baud

rate of data transmission for the IoT data collection system is 115200 bits per second.

69

Figure 3.51: ESP8266 Download Tool Firmware

70

Once the setting for flashing is done, flash the ESP8266 module by clicking

“START” button as shown in Figure 3.52. The green square box at the lower left corner

will show “Download”. Once the ESP8266 is flashed, the green square box at the lower

left corner in Figure 3.53 will show “FINISH”.

Figure 3.52: Flash ESP8266 LiLon NodeMCU V3

71

Figure 3.53: ESP8266 LiLon NodeMCU V3 is Done Flashing

Once ESP8266 LiLon NodeMCU V3 is flashed, the configuration of Wi-Fi

extender has to be done. Remove the USB cable from the computer after flashing the

ESP8266 module. After that, supply the ESP8266 module by connecting it to 5V adapter.

The access point of the ESP8266 module with its default SSID of “MyAP” can be seen

when turn on Wi-Fi connection as shown in Figure 3.54. The security of the SSID is

open and it requires no password to connect.

After connected to the ESP8266 module, open the web browser and type

“192.168.4.1”. The Wi-Fi extender configuration page will appear as shown in Figure

3.55. Firstly, change the “SSID” and “Password” in “STA Settings” according to the

SSID and password of hotspot from mobile phone, and then click on the “Connect”

button. Next, change the “AP Settings” for configuration of access point of ESP8266

Wi-Fi extender. In this project, the SSID for the hotspot to ESP32 is “Solar_Tracker”

and the password of the hotspot is “UTAR_1234”. The security mode of the hotspot is

72

set to “WPA2”. Once the hotspot is configured, a new SSID “Solar_Tracker” can be

seen as shown in Figure 3.56.

Figure 3.54: Connect the Preset Hotspot For Configuration of Wi-Fi Extender

Figure 3.55: Wi-Fi Extender Configuration Page

73

Figure 3.56: Configuration of Wi-Fi Extender Completed

To enable the connection of the ESP32 to ESP8266 LiLon NodeMCU V3 Wi-Fi

extender, the code line as shown in the picture below has to be included in the source

code shown in Appendix O.

Figure 3.57: Code Line to Configure Wi-Fi Connection Between ESP32 Wi-Fi

Module and ESP8266 LiLon NodeMCU V3 Wi-Fi Extender

3.4.5 IoT User Interface Platform

In this project, Blynk is implemented as the IoT user interface platform where the users

can view the real-time data in it. In this project, the IoT data collection system requires

only real-time data display together with a data storage system. Furthermore, this simple

IoT data collection system does not require sophisticated software operation. Therefore,

74

Blynk is implemented as it is easy to use and is powerful in performing IoT data

collection (Blynk Inc., 2019). It can display real-time data for the user to visualize, and

is able to store data. Furthermore, Arduino IDE software is compatible to perform IoT

data transmission to Blynk for data visualization (Blynk Inc., 2019).

It is easy to set up IoT data collection system using Blynk. There are three main

elements needed, which are a smartphone, an IoT hardware and Internet connection

(Blynk Inc., 2019). First of all, download Blynk app in the smartphone. Blynk can be

downloaded in both iOS and Android operating system. Once Blynk app is download,

execute it and create a new account for creation of IoT user interface platform.

Figure 3.58: Blynk App Icon

Figure 3.59: Create New Blynk Account

75

After log into the created account, click on “New Project” icon as shown in

Figure 3.60 to create a new user interface platform. Next, set the project name, and

select device and connection type as shown in Figure 3.61. Once the project name,

device and connection type are set as in Figure 3.61, click on “Create” button to create

the new user interface platform. Auth Token will be received by the creator via e-mail,

and there will be a message box appear in Blynk app as shown in Figure 3.62. Auth

Token is a unique identifier for connection of IoT device with the smartphone. Once the

Auth Token is received from the e-mail, copy the Auth Token and replace the highlight

part of the code line of Appendix O with the received Auth Token as shown in Figure

3.63.

Figure 3.60: Click On “New Project” to Create New Project In Blynk

76

Figure 3.61: Creation of New User Interface in Blynk

Figure 3.62: Auth Token Sent to E-mail

Figure 3.63: Arduino Code Line to Declare the Auth Token of Blynk Project

77

The new user interface platform should be empty by default, and widgets can be

added by clicking “+” icon shown in Figure 3.64. The widget menu bar will be displayed.

The required widgets for user interface of the IoT data collection system are added until

the user interface platform looks as shown in Figure 3.65. The white indicator box

functions as a display to indicate the current status of solar tracker. The “Database

Access” button is the button which allow users to view the data of both pyrheliometer

and pyranometer stored in Google Spreadsheet when it is pressed. In the user interface

platform, two value displays and two graphs are implemented to display live irradiance

data measured by both pyrheliometer and pyranometer.

Figure 3.64: Click On “+” Icon to Add Widgets to the User Interface

Click here to

add widgets

78

Figure 3.65: Blynk IoT User Interface Platform

Blynk user interface itself does have an indicator of connection status. The

indicator will tell whether ESP32 is connecting the hotspot as shown in both Figure 3.66

and Figure 3.67.

Figure 3.66: Indicator When ESP32 is Connected to Hotspot

79

Figure 3.67: Indicator When ESP32 is Not Connected to Hotspot

In this project, the user interface platform will be accessible to everyone. To

make the user interface platform accessible, click on “Project Setting” to enable shared

access. In “Shared Access”, turn on the shared access and then click on “Generate Link”

button as shown in Figure 3.68. The QR code will be generated as shown in Figure 3.69.

Figure 3.68: Generate Link For Shared Access

Figure 3.69: QR Code Created For Blynk IoT User Interface Platform

80

3.4.6 IoT Database

Although real-time database can exported from the real-time graphs in Blynk, the CSV

files exported are hard to understand as shown in the picture below. Therefore, a user-

friendly IoT database has to be created.

Figure 3.70 : Example of Real-Time Database Exported From Blynk

In this project, Google Spreadsheet is implemented as the database for IoT data

collection system. Database is crucial because it is useful for users to analyze data stored

from time to time.

The data of both pyrheliometer and pyranometer will be collected every five

minutes. Data are not collected instantaneously due to the limited memory space

available in Google Spreadsheet. Google Spreadsheet can hold only up to five million

cells (Google, 2019). Google Spreadsheet itself has nine rows by default, and hence,

there are only 555,555 columns available. In another words, Google Spreadsheet can

only collect up to 555,555 sets of data. If the data are collected every second, there will

be 86,400 data per day, and the data can be stored for only 6 days. Therefore, data

collection per second is not recommended. Besides, it is quite instantaneous to save solar

irradiance data every five minutes. Throughout a day, the Sun rises from the East to the

West, and it takes hours for the Sun to change its position. Therefore, it is reasonable to

save irradiance data every five minutes.

81

In this project, Pushingbox API is implemented to retrieve irradiance data from

ESP32 and upload them to Google Form and Google Spreadsheet for data storage

purpose. Pushingbox API is a cloud service to send notifications based on HTTP request

such as GET or POST. In this project, Pushingbox API will GET the data from ESP32,

and then POST to Google Form and Google Spreadsheet. Pushingbox API is a free

cloud service and it allows 1000 request per day, which is enough for data to be

uploaded every five minutes throughout a day.

To enable data transmission from ESP32 to Google Spreadsheet, online tutorial

from Microcontroller Tutorials (2019) was referred. Firstly, create a form using Google

Form as shown in Figure 3.71. Next, click the eye icon which is in the yellow circle

shown in Figure 3.71. A preview of the form created will be shown as in Figure 3.72.

Figure 3.71: Create a Form in Google Form

82

Figure 3.72: Preview of the Form Created

Next, configuration of Pushingbox API service is done. To configure Pushingbox

API, go to pushingbox.com and create a new account. Once the new account is created,

the dashboard should be similar as in Figure 3.74. From the dashboard, click on “My

Services” and then click on “Add a Service”. The list of services will be shown as in

Figure 3.74. From the list of services, select “CustomURL”. In CustomURL Service tab

shown in Figure 3.75, select the method as “GET” for Google Form to retrieve data

upload to Pushingbox API. The URL of the Google Form preview shown in Figure 3.73

is copied and pasted into the “Root URL” section, but remember to replace the keyword

“viewform” in the URL to “formResponse”. The step of changing the keyword is to let

Pushingbox API to fill up the short answers created (Pyrheliometer(W/m2) and

Pyranometer(W/m2)) in Google Form shown in Figure 3.72. The name of the

CustomURL service is set to “Google Form Service” in this project as shown in Figure

3.75. Click on the “Update” button once the configuration of CustomURL service is

done.

83

Figure 3.73: Pushingbox API Dashboard

Figure 3.74: List of Services Available in Pushingbox API

84

Figure 3.75: Configuration of CustomURL Service

After the configuration of Pushingbox API service is done, click on “My

Scenarios” shown in Figure 3.73 to set a notification ID. In “Create a scenario or add a

device” tab, enter the name for the scenario and then click on “Add” button to create the

scenario as shown in Figure 3.76. For this project, the name of the scenario is set to

“Google Form Service”. Next, click on “Add an Action” and then add the CustomURL

Service created as action of the scenario shown in Figure 3.77. A message box shown in

Figure 3.78 will then appear.

Figure 3.76: Create a scenario in Pushingbox API

85

Figure 3.77: Add CustomURL Service (Google Form Service) as the Action of

Scenario

Figure 3.78: Message Box After Action of Scenario Created

In the message box above, notification ID or task of Pushingbox API to perform

its operation has to be set by adding a command line in the column under “Data”. In this

project, two solar irradiance data are included in data transmission from ESP32 to

Google Form via Pushingbox API, and Google Form will perform GET request to

receive data from ESP32. Therefore, the format of the command line must be in the

structure shown in Figure 3.79.

86

Figure 3.79: Format of Command Line

According to Appendix O, the name of variable 1 is set as

“Pyrheliometer(W/m2)” and the name of variable 2 is set as “Pyranometer(W/m2)”. The

input fields are the short answers of the preview form in Figure 3.72, which are

highlighted in Figure 3.79. To check the names of input fields in Google Form, right

click on the respective input field then click “Inspect” to check the name of input field.

The “Elements” tab will appear as shown in Figure 3.81. In the blue highlighted region,

search the keyword with the format of “ name= “entry.xxxxxxx” ” and then copy the

name of the input field with the format of “entry.xxxxxxx”. For this project, the name of

input field “Pyrheliometer (W/m2)” is “entry.686762019” and the name of input field

“Pyranometer (W/m2)” is “entry.765147090”. Therefore, the command line will be

“?entry.686762019=$Pyrheliometer(W/m2)$&entry.765147090=$Pyranometer(W/m2)$

” and the message box should be as shown in Figure 3.82. Next, click “Update” button

and the action of the scenario is updated.

Figure 3.80: Input Fields in the preview form in Google Form

87

Figure 3.81: “Elements” Tab

Figure 3.82: Fill in the Command Line and Update the Action of Scenario

Once the action of scenario is updated, the “Scenarios” page should be as shown

in Figure 3.84. From the page, copy DeviceID from the scenario of Pushingbox API and

then paste it on the highlighted part in the code section of Appendix N shown in Figure

3.83. The configuration of Pushingbox API cloud service is done. To enable ESP32 to

send data to Pushingbox API, the name of server host and HTTP port of Pushingbox

API has included in global declaration section of Arduino IDE source code in Appendix

88

O as shown in Figure 3.85. The name of server host of Pushingbox API is

“api.pushingbox.com” and the HTTP port is “80”.

Figure 3.83: Code Section For ESP32 Wi-Fi module to Transfer Data to

Pushingbox API

Figure 3.84: Copy DeviceID of the Scenario

89

Figure 3.85: Code Section to Declare the Server Host and HTTP Port of

Pushingbox API

Once the configuration of Pushingbox API is done, click on “RESPONSES” in

Figure 3.71. Next, click on the icon in the red circle shown in Figure 3.86, and create a

new spreadsheet. The created spreadsheet is linked to Google Form. The created

spreadsheet is empty by default which is shown in Figure 3.87, and the data are ready to

be stored.

Figure 3.86: Create a Spreadsheet To Link With Google Form

90

Figure 3.87: Google Spreadsheet Created

In this project, the database of IoT data collection system is accessible to public

to view the data. To enable this property, click on “Share” button and a message box

shown in Figure 3.88 will appear. Click on “Get shareable link” to enable public access

to the database, and then get the shareable link. The shareable link will be useful for

configuration of “Database Access” button in Blynk user platform shown in Figure 3.65.

Figure 3.88: Get Shareable Link For Public Access

91

3.4.7 LED Indicators In IoT Data Collection System

There are three LEDs used as indicators in IoT data collection system. The purpose of

adding indicators is to indicate Wi-Fi connection status and data transmission status. The

LEDs are super bright LEDs with different colours, which are blue, white and yellow.

When ESP32 is not connected to the hotspot from ESP8266 Wi-Fi extender, the blue

super bright LED will keep blinking while the rest of the LEDs are ‘OFF’. Once the

ESP32 is connected to the hotspot, the blue super bright LED will stop blinking and

light up. Both yellow and white super bright LEDs function as data transmission

indicators. The white super bright LED blinks once if data is uploaded to Blynk, while

the yellow super bright LED blinks once if data is uploaded to Google Spreadsheet.

Figure 3.89 : Blue Super Bright LED Lights Up When Connected to Hotspot

92

Figure 3.90 : White Super Bright LED Blinks Once When Data Uploaded To Blynk

Figure 3.91 : Yellow Super Bright LED Blinks Once When Data Uploaded To

Google Spreadsheet

93

3.4.8 Schematic Diagram and PCB Design for IoT Data Collection System

Figure 3.92 : Schematic Diagram for IoT Data Collection System

Figure 3.93 : Eagle PCB Layout for IoT Data Collection System

94

Figure 3.94 : PCB Board for IoT Data Collection System

3.5 Equipment and Cost Analysis

Table 3.3: Cost Analysis for Components and Equipment

No. Component /

Equipment

Quantity Unit Price

(RM)

Total Price

(RM)

Remarks

1 L Bracket

30*30mm

1 1.70 1.70 From MR. D.I.Y.

2 Cable Clip 10mm

- 70S

1 2.08 2.08 From MR. D.I.Y.

3 3'' S/S L Bracket 2 4.90 9.80 From MR. D.I.Y.

4 8pc Bolt Nut 1 1.50 1.50 From MR. D.I.Y.

5 Terminal Block

3A 80003

3 2.10 6.30 From MR. D.I.Y.

INDICATO

95

6 Bulb 12V 55WA-

H4

1 12.70 12.70 From MR. D.I.Y.

7 Pet Necklace 2 3.60 7.20 From MR. D.I.Y.

8 IVON Charger

Set XX-V8

1 8.74 8.74 From MR. D.I.Y.

9 Plastic Plug With

Hole 3A

2 0.94 1.88 From MR. D.I.Y.

10 IVON Charger

AD14-V8

2 5.90 11.80 From MR. D.I.Y.

11 LWD 5Y 2G

Cable Box

1 29.90 29.90 From MR. D.I.Y

12 Impra Board 3 7.90 23.70 From Super

Galaksi Enterprise

and Miracle

Stationary & Sport

Centre

13 LM324 IC 2 2.30 4.60 From Destiny

Electronic Centre

14 14 Pin IC Socket 2 0.40 0.80 From Destiny

Electronic Centre

15 Veroboard 1 3.80 3.80 From Destiny

Electronic Centre

16 16 Pin Single

Row Female

2 2.10 4.20 From Destiny

Electronic Centre

17 PVC Cloth 1 20.11 20.11 From Kamdar Sdn

Bhd

18 Mens Black T-

shirt

1 19.90 19.90 From Tesco

Kampar

19 Jumper Wire

Male to Male

20cm

1 3.50 3.50 From FabGear

Engineering

Enterprise

96

20 Jumper Wire

Male to Female

20cm

1 3.50 3.50 From FabGear

Engineering

Enterprise

21 Jumper Wire

Male to Female

30cm

2 4.50 9.00 From FabGear

Engineering

Enterprise

22 Jumper Wire

Male to Male

30cm

1 4.50 4.50 From FabGear

Engineering

Enterprise

23 LDR 4 1.00 4.00 From Tonsin

Component

24 8mm Spiral Wrap 1 10.50 10.50 From Tonsin

Component

25 7/0.2mm Tinned

PVC SGL Black

- 100 meter

1 27.00 27.00 From States

Electronic Sdn

Bhd

26 Nylon Spiral

Wrapping -

White / 8mm

1 6.00 6.00 From States

Electronic Sdn

Bhd

27 ESP32 Wi-Fi

module

1 43.90 43.90 From SG Robot

Technology

Enterprise

28 Arduino UNO R3 1 26.50 26.50 From SG Robot

Technology

Enterprise

29 ADS1015 12-bit

Precision ADC

module

1 21.90 21.90 From SG Robot

Technology

Enterprise

Total Cost: RM 331.01

97

3.6 Project Milestone

Gantt Chart for FYP 1:

Table 3.4: Gantt Chart for FYP 1

 Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Title Selection

Preliminary Work and

Literature Review

Component Selection

Coding for the tracker

to move automatically

and troubleshooting

Progress Report

Writing

Submission of

Progress Report

FYP 1 Oral

Presentation

98

Gantt Chart for FYP 2:

Table 3.5: Gantt Chart for FYP 2

 Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PCB design and

soldering

components

Calibration and

data collection of

solar irradiance

sensors

Create IoT user

interface

Troubleshooting

the whole project

Report Writing

Submission of

Final Report

Poster

Presentation

FYP 2 Oral

Presentation

Hard Bound

Submission

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, results from various stages done were obtained and analyzed. The

problems faced and improvement done were illustrated and discussed in this chapter as

well.

4.2 Accuracy in Reading Input Current Signals

To enable ESP32 in determining the current produced by both solar cells given, current-

to-voltage converters have to be constructed as ESP32 is able to read only voltage input

signals.

Before constructing current-to-voltage converters, the accuracy of voltage signal

reading by ESP32 was tested. Although ESP32 has analog input pins with 12-bit

resolution according to RandomNerdTutorials.com (2013), the accuracy of ESP32 in

reading input voltage signal was relatively low due to its non-linear behaviour in reading

voltage input signal as shown in Figure 4.1. Therefore, ADS1015 ADC module was

added and connected to ESP32. Accuracy of ADS1015 ADC module was relatively high

100

as it has very high voltage reading resolution of 2 mV per bit. The accuracy of ESP32

itself and ESP32 with ADS1015 ADC module in reading input voltage signal were

recorded as shown in Table 4.1 and Table 4.2 respectively.

Figure 4.1: Performance of ESP32 Wi-Fi module in Reading Input Voltage Signal

(RandomNerdTutorials.com, 2013)

Figure 4.2: ESP32 Wi-Fi Module in Reading Input Voltage Signal

101

Figure 4.3: ESP32 Wi-Fi Module with ADS1015 ADC Module in Reading Input

Voltage Signal

Table 4.1: Accuracy of ESP32 Wi-Fi Module In Reading Input Voltage Signal

Actual Voltage

(V)

Measured

Voltage (V)

Difference (V) Accuracy(%)

0.002 0 0.002 0

0.003 0 0.003 0

0.01 0 0.01 0

0.05 0 0.05 0

0.1 0 0.1 0

0.5 0.35 ~ 0.39 0.11 ~ 0.15 70 ~ 78

1 0.87 ~ 0.9 0.1 ~ 0.13 87 ~ 90

1.5 1.35 ~ 1.38 0.12 ~ 0.15 90 ~ 92

2 1.85 ~ 1.88 0.12 ~ 0.15 92.5 ~ 94

2.5 2.34 ~ 2.38 0.12 ~ 0.16 93.6 ~ 95.2

3 2.9 ~ 3.04 0.04 ~ 0.1 96.67 ~ 98.67

3.3 3.3 0 100

102

Table 4.2: Accuracy of ESP32 Wi-Fi Module with ADS1015 ADC Module In

Reading Input Voltage Signal

Actual Voltage

(V)

Measured

Voltage (V)

Difference (V) Accuracy(%)

0.002 0.002 0 100

0.003 0.002 0.001 66.66666667

0.01 0.01 0 100

0.05 0.056 0.006 88

0.1 0.104 0.004 96

0.5 0.502 0.002 99.6

1 1.006 0.006 99.4

1.5 1.502 0.002 99.86666667

2 2.008 0.008 99.6

2.5 2.506 0.006 99.76

3 3.01 0.01 99.66666667

3.3 3.3 0 100

From both of the tables above, ADS1015 ADC module was far more accurate

compared to ESP32 in reading input voltage signal, where the percentage of accuracy is

higher than 90 % for almost every voltage value recorded. From Table 4.1, ESP32 was

able to read the input voltage signal starting from 0.5 V, which was relatively ineffective

compared to ADS105 ADC module. Furthermore, ESP32 was not stable in reading

voltage values as the measured values fluctuate upon a constant input voltage, and was

only able to give a stable reading when the input voltage was at 3.3 V. Therefore,

ADS1015 ADC module was connected to ESP32 due to its high accuracy in reading

input voltage signal.

The current-to-voltage converter circuitry for both solar cells were then

constructed and connected to ADS1015 ADC module. The ADC module would then

measure the converted voltage signals of both solar cells and send to ESP32 for

103

conversion of voltage signals to current respectively. The calculation for current signals

by ESP32 according to converted voltage signals were done with the formula shown in

Equation 4.1.

1000
R

V
i (4.1)

where

i = Current calculated by ESP32, mA

V = Converted voltage measured by ADS1015 ADC module, V

R = Resistance of feedback resistor of current-to-voltage converter, Ω

Although 150 Ω resistors were used for the current-to-voltage converters

respectively, it would be better to include the actual resistance value for respective

values of R in Equation 4.1. The reason of including the actual resistance was that the

resistors have tolerance itself and will not be exactly 150 Ω. Furthermore, considering

the actual resistance value can help to improve the accuracy in obtaining the current

values.

To obtain current signal from the solar cells, both 12 V light bulb and 12 V

halogen light bulb were used to shine on the solar cells. These light bulbs were bright

enough for the solar cells to produce current. With the method implemented, the author

did not need to test the current-to-voltage circuitry under the Sun. The actual current and

converted voltage were measured using multimeters, and the voltage received and the

current calculated by ESP32 were recorded as well. Comparisons of voltage and current

reading for both solar cells were done as shown in the tables below.

104

Figure 4.4: 12 V Light Bulb

Figure 4.5: 12 V Halogen Light Bulb

105

Figure 4.6: Comparison Done on Actual and Measured Voltage and Current

Values of Solar Cells

Table 4.3: Comparison of Actual and Measured Voltage Values of First Solar Cell

No. Actual Voltage (V) Measured

Voltage (V)

Difference (V) Accuracy (%)

1 0.002 0.002 0 100

2 0.006 0.008 0.002 66.66666667

3 0.018 0.02 0.002 88.88888889

4 0.08 0.08 0 100

5 0.155 0.154 0.001 99.35483871

6 0.24 0.244 0.004 98.33333333

7 0.35 0.354 0.004 98.85714286

8 0.92 0.928 0.008 99.13043478

9 1.18 1.19 0.01 99.15254237

10 1.5 1.502 0.002 99.86666667

11 2.01 2.016 0.006 99.70149254

12 2.26 2.26 0 100

13 2.7 2.702 0.002 99.92592593

106

Table 4.4: Comparison of Actual and Calculated Current Values of First Solar Cell

No. Actual Current (mA) Calculated

Current (mA)

Difference

(mA)

Accuracy (%)

1 0.02 0.1215 0.1015 -407.5

2 0.05 0.054 0.004 92

3 0.132 0.135 0.003 97.72727273

4 0.536 0.5403 0.0043 99.19776119

5 1.046 1.0401 0.0059 99.43594646

6 1.644 1.648 0.004 99.756691

7 2.39 2.391 0.001 99.958159

8 6.266 6.268 0.002 99.96808171

9 8.043 8.0378 0.0052 99.93534751

10 10.151 10.1452 0.0058 99.94286277

11 13.621 13.617 0.004 99.97063358

12 15.343 15.2651 0.0779 99.49227661

13 18.3 18.2505 0.0495 99.7295082

Table 4.5: Comparison of Actual and Measured Voltage Values of Second Solar

Cell

No. Actual Voltage (V) Measured

Voltage (V)

Difference (V) Accuracy

(%)

1 0.01 0.01 0 100

2 0.014 0.008 0.006 57.14285714

3 0.018 0.018 0 100

4 0.076 0.076 0 100

5 0.153 0.154 0.001 99.34640523

6 0.22 0.226 0.006 97.27272727

7 0.37 0.38 0.01 97.2972973

8 0.95 0.954 0.004 99.57894737

107

9 1.21 1.22 0.01 99.17355372

10 1.57 1.572 0.002 99.87261146

11 2.03 2.034 0.004 99.80295567

12 2.28 2.198 0.082 96.40350877

13 2.69 2.698 0.008 99.70260223

Table 4.6: Comparison of Actual and Calculated Current Values of Second Solar

Cell

No. Actual Current (mA) Calculated

Current (mA)

Difference

(mA)

Accuracy (%)

1 0.015 0.0673 0.0523 -248.6666667

2 0.055 0.054 0.001 98.18181818

3 0.117 0.1211 0.0041 96.4957265

4 0.507 0.5116 0.0046 99.09270217

5 1.026 1.0366 0.0106 98.9668616

6 1.512 1.5213 0.0093 99.38492063

7 2.544 2.558 0.014 99.44968553

8 6.406 6.422 0.016 99.75023416

9 8.185 8.2127 0.0277 99.66157605

10 10.59 10.5822 0.0078 99.92634561

11 13.69 13.6923 0.0023 99.98319942

12 15.4 14.7963 0.6037 96.07987013

13 18.17 18.1622 0.0078 99.9570721

From the tables above, 13 sets of data were recorded and compared for two solar

cells. To determine the accuracy in reading current values, the calculated current values

were compared with the actual current values respectively. The corresponding measured

output voltages were also measured to verify whether the calculated current values were

correct according to the formula in Equation 4.1, and to find out the reason of inaccuracy

108

in current reading for the current values less than 0.05 mA as shown in both Table 4.4

and Table 4.6. The accuracy of the calculated current values in both Table 4.4 and Table

4.5 were relatively high, where almost all current values recorded have percentage of

accuracy exceeding 90 %. However, inaccuracies occurred for current values lower than

0.05 mA as shown in both Table 4.4 and Table 4.5. This phenomena happened due to

small output offset voltages from both LM324 ICs which are implemented as the

current-to-voltage converter.

In conclusion, ADS1015 ADC module helped ESP32 in reading input voltage

signals accurately, and thus helped in achieving the objective of building a high

precision current sensing circuitry.

4.3 Accuracy of IoT Data Transmission

Before started to build up the IoT data collection system, source code shown in

Appendix O was uploaded to ESP32, and the accuracy of IoT data transmission was

tested by performing serial monitor using USB cable. From the serial monitor test, it was

found that the data transmitted were precise as long ESP32 was connected to the hotspot

provided the ESP8266 LiLon NodeMCU V3 Wi-Fi extender. This can be proven with

the pictures in next two pages.

109

Figure 4.7: The Real Time Data Displayed on Blynk App Matched The Data

Displayed on the Serial Monitor in Arduino IDE Software

110

Figure 4.8: The Data in Google Spreadsheet Matched The Data Displayed on Serial

Monitor in Arduino IDE Software When Data were Uploaded to Google

Spreadsheet

After serial monitoring using Arduino IDE software, the IoT data collection

system was then constructed and combined with the circuitry for solar tracking

mechanism. After the combination of circuits was done, another test on IoT data

transmission was performed. In this test, the display of indicator box in Blynk user

interface platform was compared with the LED indicators for the solar tracking

mechanism. The LED indicators indicate four different status of the solar tracker. If the

solar tracker is initializing, only yellow super bright LED will light up. If the solar

tracker stops in the cloudy environment, both yellow and green super bright LEDs will

light up. If the solar tracker stops and faces towards the Sun, only green super bright

LED will light up. If the solar tracker is tracking, both super bright LEDs will turn off.

From this test, it was verified that IoT data transmission was precise as long ESP32 was

connected to the hotspot from the Wi-Fi extender. The pictures shown in next two pages

proof the accuracy of IoT data transmission.

111

Figure 4.9: Blynk Shows “INITIALIZING…” When The Solar Tracker is

Initializing Its Position

Figure 4.10: Blynk Shows “CLOUDY(STOP)” When The Solar Tracker Stops in

Cloudy Environment

Figure 4.11: Blynk Shows “SUNNY(STOP)” When The Solar Tracker is Facing

The Sun

112

Figure 4.12: Blynk Shows “SUNNY(TRACKING)” When The Solar Tracker is

Tracking

From the two tests done, it can be concluded that the data will be transmitted

precisely as long the IoT device is connected to the Internet.

4.4 Accuracy of Solar Tracking Mechanism

The mechanism of solar tracker is easy to understand theoretically. However, it is not

easy to ensure the solar tracker to track accurately using LDRs. This is because the

resistance of LDR is not linearly proportional to illumination as shown in Figure 4.13.

Furthermore, LDR is a type of resistor and will have tolerance as normal resistors. In

another words, the four LDRs implemented will not give the same resistance values. It is

even worse when the LDRs are connected in series with resistors to form voltage-divider

circuits respectively as shown in Figure 3.15. The colour code for the resistors

implemented are same, but the respective resistance value will differ due to tolerance.

Hence, this brings great challenge in doing calibration on LDR circuitry.

113

Figure 4.13: Resistance VS Illumination Curve of LDR (Electrical4U, 2019)

To determine the accuracy of solar tracking mechanism, the array of LDRs in

LDR circuitry as shown in Figure 3.12 will be observed. If there is any shadow falling

on the LDR circuitry board, it indicates that the solar tracker is not facing the Sun

precisely. Installation of pyrheliometer is the key factor that requires high precision solar

tracking mechanism. This is because the pyrheliometer only receives direct sunlight

parallel to its body.

At the beginning of the project, big LDRs were implemented as the light sensors.

However, the solar tracker is unable to track the Sun precisely after iterations of

calibration. There was shadow visible on the LDR circuitry board of the solar tracker

eventhough it was during the sunny day. To solve this problem, the big LDRs were

replaced by smaller LDRs. The LDR circuitry was reconstructed, and the LDRs were

placed close to each other at the centre of the circuitry board. With the modification

done, the solar tracker was able to track precisely during the sunny day. Hence, smaller

LDRs are recommended to be implemented as light sensors compared to big LDRs.

114

Figure 4.14: Inaccurate Solar Tracking Mechanism During Sunny Day Using Big

LDRs

Figure 4.15: Accurate Solar Tracking Mechanism During Sunny Day Using Small

LDRs

Before performing calibration for LDR circuitry, the analog input values for all

four LDRs in the LDR circuitry were recorded using the LDR test code provided in

Appendix J. The analog input values were recorded using serial monitor under

surrounding with different illuminance levels, and the average of input values were

calculated which would be included in Table 4.7. The illuminance levels include sunny,

115

mostly sunny, partly sunny and cloudy. Sunny is a condition when there is no opaque

cloud covering the Sun, mostly sunny is a condition when there is opaque cloud

covering a small region of the Sun, partly sunny is a condition when half of the Sun is

covered by opaque cloud, and cloudy is a condition when opaque cloud covers the Sun

completely (Sonaik, 2017). The exact illuminance values cannot be determined and

hence, the illuminance level can only be determined according to the conditions of the

sky.

Figure 4.16: Sunny

Figure 4.17: Mostly Sunny

116

Figure 4.18: Partly Sunny

Figure 4.19: Cloudy

Table 4.7: Average Arduino Analog Input Values Recorded From LDRs According

To Different Illuminance Level

Illuminance

Level

Arduino Analog Input Value

Top Left LDR Top Right

LDR

Bottom Left

LDR

Bottom Right

LDR

Cloudy 90 110 90 90

Partly Sunny 10 62 9 10

Mostly Sunny 5 32 3 6

Sunny 2 27 1 3

117

Figure 4.20: Graph of Arduino Analog Input Value against Illuminance Level for

the LDRs

From the table in Table 4.7 and graph in Figure 4.20, the top right LDR would

give the highest analog input regardless illuminance level. Furthermore, the analog input

values recorded were not linearly proportional to illuminance level, and it was a great

challenge in doing calibration for the LDR circuitry. Fortunately, only the top right LDR

has the distinct difference compared to the other three LDRs which provide similar

analog input values. Therefore, the top right LDR was the only LDR needed to be

calibrated.

Although small LDRs could help the solar tracker to track more precise

compared to big LDRs, there were several scenarios of inaccuracy in the solar tracking

mechanism shown in the pictures in two next pages.

118

Figure 4.21: Inaccuracy (Scenario 1)

Figure 4.22: Inaccuracy (Scenario 2)

119

Figure 4.23: Inaccuracy (Scenario 3)

From these scenarios of inaccuracy, the top right region of the LDR circuitry

board was never covered by shadow. This means that the calibration of the top right

LDR was not precise. From the graph shown in Figure 4.20, the slope of curve for top

right LDR differed a lot compared to the other three LDRs. Besides, it was uncertain to

determine the exact amount of illuminance although there were conditions of sky to

determine the illuminance level. These factors contributed to high uncertainty in

presetting a threshold to calibrate the top right LDR. Therefore, these cases of

inaccuracies in solar tracking mechanism were unavoidable.

4.5 Comparison of Constructed Pyrheliometer with the Actual Pyrheliometer

Constructed pyrheliometer was compared with the actual pyrheliometer. Calibration

would be needed if there was great difference between the construced and actual

pyrheliometer. Before comparing both pyrheliometers, the formulas of Direct Normal

120

Irradiance (DNI) for both constructed and actual pyrheliometer were given as shown in

Equation 4.2 and Equation 4.3 respectively.

DNI constructed =
3.15

1000
I (4.2)

where

DNI constructed = Direct Normal Irradiance of constructed pyrheliometer, W/m2

I = Calculated current of the solar cell in pyrheliometer, mA

DNI actual =
ysensitivit

V
1000

 (4.3)

where

DNI actual = Direct Normal Irradiance of actual pyrheliometer, W/m2

V = Voltage measured from actual pyrheliometer, mV

ysensitivit = Sensitivity of actual pyrheliometer, μV/ (W.m-2)

Figure 4.24: Actual Pyrheliometer Used

Comparison of constructed pyrheliometer with actual pyrheliometer was done as

shown in Figure 4.25. Both of the pyrheliometers were placed under the Sun and the

121

irradiance values were measured respectively. The irradiance value of constructed

pyrheliometer was recorded via Blynk user interface as the formula in Equation 4.2 was

included into the source code shown in Appendix O uploaded to ESP32. For the actual

pyrheliometer, the small voltage signal was measured using multimeter as shown in

Figure 4.26, and then the irradiance value was calculated according to Equation 4.3,

where the sensitivity of pyrheliometer is 8.11 μV/ Wm-2. To obtain the exact voltage

value of the actual pyrheliometer, the pyrheliometer would have to be adjusted its

position until there was one small dot of light falls on the bull-eye of the sensing element

of the pyrheliometer as shown in Figure 4.27.

Figure 4.25: Comparison of Constructed Pyrheliometer with Actual Pyrheliometer

122

Figure 4.26: Measurement of Small Voltage Signal From The Actual Pyrheliometer

Using Multimeter

Figure 4.27: Indication of Getting Exact Voltage Value From The Actual

Pyrheliometer

Sensing element

123

The results of comparison between both constructed and actual pyrheliometers

were recorded in the table below.

Table 4.8: Comparison of Constructed Pyrheliometer and Actual Pyrheliometer

Actual Pyrheliometer

Constructed Pyrheliometer

Accuracy of

Constructed

Pyrheliometer in

Measuring

Irradiance Values

(%)

Measured

Voltage

(mV)

Irradiance

Value

(W/m
2
)

Calculated

Current

(mA)

Irradiance

Value

(W/m
2
)

0.02 2.47 0.0267 1.75 70.85020243

1.4 172.63 2.6331 172.1 99.692985

1.9 234.28 3.3813 221 94.33156906

2 246.61 3.7102 242.5 98.33340092

3.1 382.24 5.7222 374 97.84428631

4.3 530.21 7.7571 507 95.6224892

4.9 604.19 8.7057 569 94.17567322

5 616.52 9.4554 618 99.75994291

5.3 653.51 10.7253 701 92.73308748

6.2 764.49 11.2302 734 96.01172023

6.5 801.48 11.9538 781.3 97.48215801

From the table above, accuracy of the constructed pyrheliometer was relatively

high as the constructed pyrheliometer had more 90 % of accuracy for all data recorded

during sunny day which having the irradiance values above 100 W/m2. The accuracy of

the constructed pyrheliometer was slightly low during cloudy day, which having an

accuracy around 70 %. Therefore, a low cost pyrheliometer with high precision was

constructed.

124

A graph of irradiance values of actual pyrheliometer against current of

constructed pyrheliometer was plotted according to Table 4.7. The graph plotted is

shown in the picture below.

Figure 4.28: Graph of Irradiance Values of Actual Pyrheliometer Against Current

of Constructed Pyrheliometer

From the graph above, the range of current produced by the solar cell in the

pyrheliometer was in between 4 mA to 12 mA during sunny day. If the day was

extremely bright, the solar cell would produce high current values between 8 mA and 12

mA. If it was not very sunny or cloudy, the current values would be smaller than 4 mA.

4.6 Analysis of Solar Irradiance Data Collected

Solar irradiance values from pyranometer and pyrheliometer can help to determine the

conditions of the environment which are either cloudy or sunny, and to determine the

accuracy of solar tracking mechanism.

125

Pyranometer is the sensor which measures the overall solar radiation around it

which includes direct sunlight and sunlight reflected onto it. Hence, the total irradiance

measured by the pyranometer can help to indicate the conditions of the environment.

The environment is known to be sunny if the irradiance values of pyranometer exceeds

400 W/m-2. On the other hand, pyrheliometer is the sensor which accepts and measures

the radiation of direct sunlight onto the sensing cell. The values of direct normal

irradiance measured by the pyrheliometer will determine the accuracy in tracking

mechanism. If the environment is sunny and the solar tracker is tracking the Sun

accurately, the value of direct normal irradiance by the pyrheliometer will exceed 100

W/m-2. If the day is extremely bright, the value of irradiance measured by the

pyrheliometer will be approximately 50 % or almost the same as the irradiance values

from the pyranometer.

The solar irradiance data were collected at the common area between Block D

and E in Universiti Tunku Abdul Rahman. The data were collected for four days, which

were on 9th, 13th, 14th and 16th August 2019. The data were download from Google

Spreadsheet. Graphs for respective days were then plotted and analyzed accordingly.

4.6.1 Solar Irradiance Data On 9th of August 2019

On 9th of August 2019, solar irradiance data of both pyrheliometer and

pyranometer were collected and the graph was plotted. Data collection was done from

9:00 am to 2:00 pm.

126

Figure 4.29: Graph of Solar Irradiance Data Collected on 9th of August 2019

According to the graph, the ambient light intensity was relatively low and

remained consistent from 9:00 am to 12:00 pm according to total irradiance measured by

the pyranometer. This indicated that it was cloudy within this period of time, and hence,

the values of direct normal irradiance from pyrheliometer was extremely low due to low

ambient light intensity.

The ambient light intensity started to raise at noon and reached its peak around

12:30pm according to total irradiance measured by the pyranometer. This phenomena

happened when the Sun was not covered by the cloud during this period of time.

However, the values of direct normal irradiance from pyrheliometer did not increase

accordingly. This indicated that the solar tracker was tracking the Sun accurately. The

values of direct normal irradiance should exceed 100 W/m-2 if the solar tracker is facing

the Sun accurately.

After the ambient light intensity reached its peak, it dropped drastically and then

remained low until 2:00 pm. The values of total irradiance from the pyranometer

fluctuated within the range of 200 W/m2, while the values of direct normal irradiance

from the pyrheliometer remained extremely low.

127

In conclusion, it was cloudy throughout the day, except when it was at noon. The

Sun was not covered by opaque cloud for around 30 minutes at noon. Therefore, it was

basically cloudy on 9th of August 2019.

4.6.2 Solar Irradiance Data On 13th of August 2019

On 13th of August 2019, solar irradiance data were collected from 10:00 am to 5:00 pm,

and the graph of solar irradiance data was plotted.

Figure 4.30: Graph of Solar Irradiance Data Collected on 13th of August 2019

From the graph, the ambient light intensity started increasing from morning and

then remained high in the afternoon, and dropped when it was in the evening according

to total irradiance measured by the pyranometer. Theoretically, the shape of direct

normal irradiance from pyrheliometer in the graph should look similar to the total

irradiance from pyranometer with lower or slightly lower values during sunny day from

11:00 am to 3:30 pm. From the values of direct normal irradiance obtained, the solar

tracker did track the Sun accurately, but there were cases of inaccuracy in solar tracking

mechanism when the value of direct normal irradiance was extremely low during sunny

day. For the cloudy condition in the morning and evening, the direct normal irradiance

128

measured by the pyrheliometer was extremely low, while the values of total irradiance

from the pyranometer were within the range of 250 W/m2.

In conclusion, it was basically a clear day on 13th August 2019, where it was

sunny in the afternoon and no opaque cloud was blocking the Sun.

4.6.3 Solar Irradiance Data On 14th of August 2019

Solar irradiance data were collected from 10:00 am to 5:00 pm on 14th of August 2019.

The graph of solar irradiance data was plotted.

Figure 4.31: Graph of Solar Irradiance Data on 14th August 2019

From the graph, it was basically sunny on 14th August 2019, where most of the

values of total irradiance from the pyranometer exceeded 200 W/m2. However, the solar

tracking mechanism on this day was not accurate. From the two peaks of direct normal

irradiance measured by the pyrheliometer, the solar tracker is facing the Sun with slight

inaccuracy, where there was small region of shadow on the LDR circuitry board as

shown in Figure 4.23. For the rest of time, the pyrheliometer was not pointing to the Sun,

which indicated inaccuracy in solar tracking mechanism.

129

4.6.4 Solar Irradiance Data On 16th of August 2019

On 16th of August 2019, solar irradiance data were collected from 10:00 am to 5:00 pm.

The graph of solar irradiance data was plotted.

Figure 4.32: Graph of Solar Irradiance Data on 16th of August 2019

From the graph, it was sunny throughout the day on 16th of August 2019, where

all values of total irradiance measured by the pyranometer were above the range of 250

W/m2. The accuracy of solar tracking mechanism was relatively high on that day as the

values of direct normal irradiance exceeded 100 W/m2. There were also a few cases of

inaccuracy in solar tracking mechanism when the values of direct normal irradiance

were extremely low.

4.6.5 Conclusion Based On The Solar Irradiance Data Collected

In conclusion, it was cloudy on 9th of August 2019, and was sunny on 13th, 14th and

16th of August 2019. From the solar irradiance data analyzed for these four days, the

130

accuracy of tracking mechanism was relatively low. Therefore, enhancement on solar

tracking mechanism is required.

Solar irradiance data is useful to determine whether the particular site is suitable

to install a PV system. However, solar irradiance data collection for four days is not

enough to determine the feasibility to start up a PV system at the particular site. Usually,

solar irradiance data are collected monthly or yearly to decide the installation of PV

system.

4.7 Improvement Done To Make Solar Tracker More Presentable

To make the solar tracker look presentable, cable management was done by using spiral

cable wrap tube. The circuitry of solar tracker was soldered on PCB board and

stripboard. The solar tracker is more presentable after cable management and

arrangement of circuitry as shown in the picture below.

Figure 4.33 : Improvement Done to Make Solar Tracker More Presentable

131

4.8 Limitations of the Project

This subsection discusses about the constraints and limitations of the project.

4.8.1 Dependency on Weather

The greatest challenge faced in this project was high dependency of weather to test the

accuracy of solar tracking mechanism. Solar tracker tracks the Sun throughout the day,

and it is useless to test the solar tracker during cloudy day. In another words, testing of

solar tracker can be done when it is sunny day. To increase the probability for the solar

tracker to track accurately, iterations of testing on solar tracking mechanism under sunny

day were required. In another words, if that particular day was either rainny day or

cloudy day, it would affect and delay the progression in testing the accuracy of solar

tracking mechanism.

4.8.2 Limitation of Arduino IDE Software in Performing Software Operation

At the initial stage of the project, Blynk was not opted to be the IoT user interface

platform due to its weakness and limitation which will be discussed in Section 4.8.4.

MQTT protocol was applied for IoT data collection purpose at the beginning of the

project. MQTT protocol is one of the most easiest and yet the most effective IoT

protocol in transmitting real-time data using Publish/Subscribe method. Publish in

MQTT refers to an event when the device uploads or publishes data under the topic

created to the MQTT broker, while Subscribe in MQTT refers to an event when the

device or application subscribes the topic from the MQTT broker and retrieves data from

the topic subscribed. The data transmission flow of MQTT protocol is shown in Figure

4.34.

132

Figure 4.34 : Block Diagram of MQTT Protocol Data Transmission

Thingsboard Community Edition was implemented to create an MQTT platform

to visualize the real-time data and charts. Thingsboard was a powerful IoT platform

where it was user-friendly and was able to review historical data besides the ability to

display live data upload the MQTT broker created. Thingsboard dashboard was created

as shown in the picture below. However, Thingsboard Community Edition was unable to

export the data of the graphs for data analysis purpose.

Figure 4.35 : Thingsboard Dashboard Created Before Implementing Blynk

Like Thingsboard Community Edition, most of the free IoT platforms available

can only display real-time data. Therefore, an IoT database had to be created, and

Google Spreadsheet was opted to serve as the IoT database.

133

To enable Arduino IDE software to transmit data to Google Spreadsheet, HTTPS

client had to be created. However, this caused conflict in creating clients from different

open source libraries. PubSub library was needed for creation of PubSub client to

perform MQTT data transmission, while HTTPS library was needed for creation of

HTTPS client to perform data transmission to Google Spreadsheet. Arduino IDE

software got confused as two different clients were created simultaneously. This

phenomena happened due to limitations and restrictions of Arduino open-source

libraries created. Furthermore, it is hard and tedious to troubleshoot the code line in

open-source libraries. In another words, Arduino IDE software is not flexible in dealing

with software development.

Due to the limitations of Arduino IDE software, Blynk was then opted to be the

IoT user interface platform. This is because Blynk has its own specific library for

Arduino IDE software and does not need declaration of client in Arduino IDE software.

With these features of Blynk, the problem of having conflict in creating client can be

avoided. Thus, ESP32 can upload data to both Blynk and Google Spreadsheet in IoT

data collection system of the project.

4.8.3 Limited Range of Wi-Fi Network

Wi-Fi hotspot from the mobile phone has small network coverage, and thus, ESP8266

LiLon NodeMCU V3 is implemented as the Wi-Fi extender to expand the network

coverage. Although ESP8266 LiLon NodeMCU V3 is able to extend the Wi-Fi network

range more than 10 meter, however, the connection of ESP32 to ESP8266 LiLon

NodeMCU V3 is found out to be weak due to low value of RSSI. In another words, the

distance of Wi-Fi connection is inversely proportional to RSSI value of the network

device as shown in Figure 4.36. RSSI or known as “Received Signal Strength Indicator”

is applied to indicate the strength of signal received by a device from the access point. In

134

this project, the device refers to ESP32 and the access point refers to ESP8266 LiLon

NodeMCU Wi-Fi extender.

Figure 4.36: Graph of Distance Against RSSI

Therefore, ESP8266 LiLon NodeMCU V3 together with mobile phone has to be

transferred nearer the solar tracker for stable Wi-Fi connection as shown in Figure 4.37.

A shading for both mobile phone and ESP8266 LiLon NodeMCU V3 was done to avoid

direct sunlight.

135

Figure 4.37: Setup Of Wi-Fi Connection

4.8.4 Weakness of Blynk

Blynk is an easy alternative for IoT data collection system and provides an user-friendly

interface for end users to visualize real-time data and to utilize the functions available in

the user interface. Furthermore, the Blynk user interface created can be accessed in

different mobile phones by scanning on the QR code generated.

However, the major drawback of using Blynk is that the mobile phone has to

remain turned on while using Blynk to visualize the real-time data. Blynk cloud server

will disconnect itself once the mobile phone is not executing the Blynk app, and will

require a long time to reconnect if Blynk app is executed again. Therefore, the mobile

phone will have to keep on charging to prevent battery drainage due to high power

consumption of Blynk app.

136

4.8.5 Weakness of Pushingbox API Cloud Service

Pushingbox API cloud service is implemented as a medium to transfer solar irradiance

data from ESP32 to Google Form and Google Spreadsheet. It is easy to configure the

setting of Pushingbox API cloud service in IoT data transmission.

However, there was limitation found in Pushingbox API cloud service when

performing IoT data collection. When performing IoT data collection, it was found that

the data were not uploaded to Google Spreadsheet every five minutes consistently

according to the algorithm of IoT data collection system discussed in Chapter 3.

There were two possibilities proposed for inconsistency of data collection in

Google Spreadsheet, which were mistakes in source code for IoT data collection system

and poor Wi-Fi connection of ESP32. Hence, troubleshooting was done upon the source

code in Appendix O, and Wi-Fi connection status of ESP32 was checked using Blynk

app. After troubleshooting, none of the two possibilities are the factors of inconsistency

in data collection as shown in Figure 4.38. The algorithm of the source code in

Appendix O was checked and it matched with the algorithm of IoT data collection

system illustrated in Chapter 3. Inconsistency of data collection in Google Spreadsheet

still occurred eventhough the connection of ESP32 to Wi-Fi hotspot from the Wi-Fi

extender was stable throughout the entire session of IoT data collection.

Therefore, it was considered to be the limitation of Pushingbox API cloud

service in performing data transmission. Furthermore, the Pushingbox API is a

predefined function set for data transmission, and the backend process and algorithm of

Pushingbox API is not accessible for troubleshooting.

137

Figure 4.38: Result of inconsistency of Pushingbox API in transferring data to

Google Spreadsheet

4.8.6 Insufficient Time for IoT Data Collection

The solar irradiance data collection system will be useful if the solar tracker tracks the

Sun accurately. In another words, solar tracking mechanism is crucial in determining the

effectiveness of solar irradiance data collection system. Inaccurate solar tracking

mechanism will cause IoT data collection to be inaccurate eventhough high precision

sensing circuitry is constructed.

Therefore, most of the time were spent in troubleshooting the solar tracking

mechanism. It took a long period of time to achieve high precision solar tracking

mechanism although there were possibilities of inaccuracy. Hence, there was a few days

left to perform IoT data collection and analysis before the deadline of the project.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the objectives of the project are achieved. A cost effective active dual-

axis solar tracking system is constructed. Cost saving pyrheliometer and pyranometer

are constructed which can help to save a lot of cost to buy the actual solar meters.

Furthermore, the constructed solar meters are much lighter and smaller compared to the

actual solar meters. According to the comparison between constructed and actual

pyrheliometer, the accuracy of constructed pyrheliometer was relatively high. To ensure

the constructed solar meters to function as the actual meters, high precision current-to-

voltage converter circuits are needed for ESP32 to read accurate current values for

conversion to respective solar irradiance values of both pyrheliometer and pyranometer.

In this project, high precision current-to-voltage converter circuitry for the sensors were

successfully built. The solar irradiance data can be collected and visualized remotely

using Blynk app and Google Spreadsheet as long ESP32 connects to the Internet.

Although all objectives in the project are achieved, there are several problems and

challenges faced. Firstly, uncertainty in achieving high precision solar tracking

mechanism is relatively high. Iterations of calibration were done in order to high

precision solar tracking mechanism due to uncertain difference in resistance and

tolerance among different LDRs under the same environment. However, cases of

inaccuracy in solar tracking mechanism were unavoidable although the solar tracker

139

with small LDRs is better in solar tracking mechanism compared to big LDRs. Besides,

the range of Wi-Fi network is relatively short for stable connection between ESP32 and

ESP8266 LiLon NodeMCU V3. Furthermore, Arduino IDE software was not flexible in

IoT software development due to limitations of open-source libraries. Extra features

were implemented in this project as well. MPU6050 gyro sensor was implemented to

initialize the position of solar tracker when the solar tracker was powered on. Besides,

the current status of solar tracker can be displayed in Blynk user interface platform.

5.2 Future Work and Enhancement

There are weaknesses and limitations in the project. Therefore, this subsection lists

down several recommendations for future enhancement of the project.

5.2.1 Solar Tracker With Camera

In this project, the accuracy of solar tracker in tracking the Sun using small LDRs was

improved compared to big LDRs. However, there were still several cases of inaccuracy

due to great difference in Arduino analog input of the top right LDR from another three

LDRs in LDR circuitry. The problem was found but it was hard to troubleshoot and

calibrate the top right LDR. This is because the resistance of LDR is not linearly

proportional to illuminance level. Furthermore, illuminance level was predefined

according to the condition of the sky, and the exact amount of illuminance was unknown.

To solve this problem, a camera can be added as the ‘eye’ of the solar tracker

since the LDRs cannot ‘see’ the exact position of the Sun. To ensure the camera is able

to ‘recognize’ the Sun, knowledge of image processing is required. Method of edge

140

detection together with image thresholding can be implemented to seek for the Sun

according to light intensity within the view of camera.

The proposed algorithm of the recommended idea is that the solar tracker will

track according to comparison within LDRs, and then camera will check after the solar

tracker according to reading of LDRs. The camera will send a signal to adjust the solar

tracker if the pyrheliometer is not pointing the Sun. The camera is recommended to

place close to the pyrheliometer to ensure high precision in solar tracking mechanism.

5.2.2 Enhancement on Remote Data Collection System

One of the major problems faced when performing IoT data collection system is limited

range of Wi-Fi network. Wi-Fi provides a small coverage of network (Guillemette,

2019). The strength of Wi-Fi signal can be affected and weakened if there are obstacles.

To overcome these problems, cellular network is recommended for its wider network

coverage. Furthermore, the connection of cellular network is much more stable

compared to Wi-Fi network.

Arduino IDE software is powerful in performing hardware operation such as

solar tracking mechanism. However, Arduino IDE software is not flexible in performing

software operation due to limitations and restrictions in the open-source libraries. In this

project, Arduino IDE software was unable to perform operation and send data to two

clients from different network protocol when tried to have Arduino to upload data to

Thingsboard under MQTT protocol and Google Spreadsheet under HTTP protocol.

Python and Java programming language will be a better option for software operation.

ESP32 is recommended to be replaced with Raspberry Pi. Raspberry Pi uses

python language which is better than Arduino IDE software in software operation and

development, and it is more powerful in running complex software operation.

141

Furthermore, it can perform data transmission via cellular 3G or 4G network with the

addition of GSM module.

Figure 5.1: Raspberry Pi with Addition of GSM Module

One major drawback of real-time IoT data collection system is that the data will

be lost if the IoT device is disconnected from the Internet or if the Internet is down. To

solve this problem, Raspberry Pi can help to store the backup data in its operating

system and upload the data once it is connected to the Internet. The storage of the

operating system depends on the size of the memory card inserted to Raspberry Pi. The

method proposed is possible to be done, but it will require strong programming skills.

5.2.3 Waterproof Housing for the Circuitry and Power Supply of Solar Tracker

A tragic happened when it suddenly rained heavily while performing solar irradiance

data collection on 21st August 2019. The solar tracker was wet as shown in the picture

below. The circuitry and power supply of the project is not waterproof, but fortunately,

142

both circuitry and power supply still functioned well. Therefore, it is recommended to

include waterproof housing to increase the durability of the project.

Figure 5.2: The Solar Tracker Was Wet Due To Heavy Rain

143

REFERENCES

Arduino.cc., 2017. Getting Stared with Arduino and Genuino UNO. [online] Available
at: <https://www.arduino.cc/en/Guide/ArduinoUno> [Accessed 12 April 2019]

AmritaVirtual Lab, 2019. Solar Energy Measurements - Pyrheliometer. [online]

Available at:<https://vlab.amrita.edu/?sub=77&brch=298&sim=1745&cnt=1>
[Accessed 12 August 2019]

Aziz, et al., 2016. Evaluation of Solar Energy Potential in Malaysia. Trends in

Bioinformatics. [online] Available at: <http://docsdrive.com/pdfs/ansinet/tb/2016/35-
43.pdf> [Accessed 12 August 2019]

Blynk Inc, 2019. Build your first IoT app in five minutes. [online] Available at:

<https://blynk.io/en/getting-started> [Accessed 12 July 2019]

BurkayKirnik, 2019. How to Measure Angle With MPU-6050(GY-521).[online]

Available at: <https://www.instructables.com/id/How-to-Measure-Angle-With-MPU-
6050GY-521/> [Accessed 12 June 2019]

Cope, S., 2011. Beginners Guide To The MQTT Protocol. [online] Available at:

<http://www.steves-internet-guide.com/mqtt/> [Accessed 1 June 2019]

EKO Instruments, 2017. DNI Measurements with a pyrheliometer. [online] Available at:

<https://eko-eu.com/applications/dni-measurements-with-a-pyrheliometer>
[Accessed 12 August 2019]

Electrical4U, 2019. Light Dependent Resistor| LDR and Working Principle of LDR.

[online] Available at: <https://www.electrical4u.com/light-dependent-resistor-ldr-
working-principle-of-ldr/> [Accessed 11 August 2019]

Elprocus, 2013. Darlington Transistor Working along with Applications. [online]

Available at: <https://www.elprocus.com/darlington-transistor-working-with-
applications/> [Accessed 12 August 2019]

Fedkin, M., 2018. 5.1. What are concentrating photovoltaics? [online] Available at:

<https://www.e-education.psu.edu/eme812/node/537> [Accessed 12 August 2019]

https://vlab.amrita.edu/?sub=77&brch=298&sim=1745&cnt=1
http://docsdrive.com/pdfs/ansinet/tb/2016/35-43.pdf
http://docsdrive.com/pdfs/ansinet/tb/2016/35-43.pdf
https://blynk.io/en/getting-started
https://www.instructables.com/id/How-to-Measure-Angle-With-MPU-6050GY-521/
https://www.instructables.com/id/How-to-Measure-Angle-With-MPU-6050GY-521/
http://www.steves-internet-guide.com/mqtt/
https://eko-eu.com/applications/dni-measurements-with-a-pyrheliometer
https://www.electrical4u.com/light-dependent-resistor-ldr-working-principle-of-ldr/
https://www.electrical4u.com/light-dependent-resistor-ldr-working-principle-of-ldr/
https://www.elprocus.com/darlington-transistor-working-with-applications/
https://www.elprocus.com/darlington-transistor-working-with-applications/
https://www.e-education.psu.edu/eme812/node/537

144

Google, 2019. Files you can store in Google Drive. [online] Available at:
<https://support.google.com/drive/answer/37603?hl=en> [Accessed 12 July 2019]

Gupta, A, 2018. 4 Layers Of The Internet Of Things. [online] Available at:

<https://analyticstraining.com/4-layers-of-the-internet-of-things/> [Accessed 13 May
2019]

Gupta, S., 2019. Transimpedance Amplifier - Current to Voltage Converter. [online]

Available at: <https://circuitdigest.com/tutorial/transimpedance-amplifier-design-
working-and-applications> [Accessed 13 August 2019]

Guillemette, P., 2019. Battle of the IoT networks: Cellular versus Wi-Fi. [blog] 25 April

2019. Available at: <https://internetofthingsagenda.techtarget.com/blog/IoT-
Agenda/Battle-of-the-IoT-networks-Cellular-versus-Wi-Fi> [Accessed 16 August
2019]

harshi1990, 2013. Solar Tracker. [online] Available at:

<https://www.slideshare.net/harshi1990/solar-tracker> [Accessed 29 April 2019]

Hossain, et al., 2015. Azimuth-Altitude Dual Axis Soalr Tracker. International

Conference on Mechanical Engineering and Renewable Energy, [e-journal], pp. 1-6.
Available through: ResearchGate website
<https://www.researchgate.net/publication/286195219_Azimuth-
Altitude_Dual_Axis_Solar_Tracker> [Accessed 11 August 2019]

IRENA, 2012. Solar Photovoltaics. Renewable Energy Technologies: Cost Analysis

Series. [online] Available at:
<https://www.irena.org/documentdownloads/publications/re_technologies_cost_analy
sis-solar_pv.pdf> [Accessed 12 August 2019]

Koutroulis, E. and Kalaitzakis, K., 2003. Development of an integrated data-acquisition

system for renewable energy sources systems monitoring. Renewable Energy 28.
[online] Available at:
<https://www.tuc.gr/fileadmin/users_data/elci/Koutroulis/J.03.pdf> [Accessed 12
August 2019]

Landau, C.R., 2017. Optimum Tilt of Solar Panels. [online] Available at:

<https://www.solarpaneltilt.com/> [Accessed 12 August 2019]

Lee, J.F. and Rahim, N.A., 2013. Performance Comparison of Dual-Axis Solar Tracker

VS Static Solar System in Malaysia. IEEE Conference on Clean Energy and
Technology (CEAT), [e-journal], pp. 102-107. Available through: Universiti Tunku
Abdul Rahman Library website < https://ieeexplore-ieee-
org.libezp2.utar.edu.my/document/6775608> [Accessed 29 April 2019]

Maas, M., 2012. Multi-Junction Solar Cells with Concentrators. [online] Available at:

<http://large.stanford.edu/courses/2012/ph240/maas2/> [Accessed 12 August 2019]

https://support.google.com/drive/answer/37603?hl=en
https://analyticstraining.com/4-layers-of-the-internet-of-things/
https://circuitdigest.com/tutorial/transimpedance-amplifier-design-working-and-applications
https://circuitdigest.com/tutorial/transimpedance-amplifier-design-working-and-applications
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Battle-of-the-IoT-networks-Cellular-versus-Wi-Fi
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Battle-of-the-IoT-networks-Cellular-versus-Wi-Fi
https://www.slideshare.net/harshi1990/solar-tracker
https://www.researchgate.net/publication/286195219_Azimuth-Altitude_Dual_Axis_Solar_Tracker
https://www.researchgate.net/publication/286195219_Azimuth-Altitude_Dual_Axis_Solar_Tracker
https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-solar_pv.pdf
https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-solar_pv.pdf
https://www.tuc.gr/fileadmin/users_data/elci/Koutroulis/J.03.pdf
https://www.solarpaneltilt.com/
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/6775608
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/6775608
http://large.stanford.edu/courses/2012/ph240/maas2/

145

MediaFire, 2019. wifi repeater file. zip. [online] Available at:
<https://www.mediafire.com/file/bf96acaje8gd7jd/wifi_repeater_files.zip/file>
[Accessed 12 July 2019]

Microcontroller Tutorials, 2019. Log Data with NodeMCU and Google Sheets. [online]

Available at: <https://www.teachmemicro.com/log-data-nodemcu-google-sheets/>
[Accessed 12 July 2019]

Naked Solar Ltd, 2019. Solar Panel Mounting. [online] Available at:

<https://nakedsolar.co.uk/solar-pv/solar-panel-mounting/> [Accessed 12 August 2019]

Omni Instruments, 2009. CMP6 Pyranometer. [online] Available at:

<https://www.omniinstruments.co.uk/weather-stations-and-
instruments/pyranometers-solar-irradiance/cmp6-pyranometer.html> [Accessed 12
August 2019]

Pandian, J.D., 2019. How does the location of sunrise and sunset change throughout the

year? (Advanced). Available at: <http://curious.astro.cornell.edu/people-and-
astronomy/161-our-solar-system/the-earth/day-night-cycle/184-how-does-the-
location-of-sunrise-and-sunset-change-throughout-the-year-advanced> [Accessed 12
August 2019]

Pons, R., 2019. Understanding Azimuth and Elevation. [online] Available at:

<https://www.photopills.com/articles/understanding-azimuth-and-elevation>
[Accessed 11 August 2019]

Racharla, S. and Rajan, K., 2016. Solar Tracking System - A review. International

Journal of Sustainable Engineering, [e-journal], pp. 1-56. Available through:
ResearchGate website
<https://www.researchgate.net/publication/312067334_SOLAR_TRACKING_SYST
EM-_A_REVIEW> [Accessed 11 August 2019]

RandomNerdTutorials.com, 2013. ESP32 ADC - Read Analog Values with Arduino IDE.

[online] Available at: <https://randomnerdtutorials.com/esp32-adc-analog-read-
arduino-ide/> [Accessed 1 July 2019]

RandomNerdTutorials.com, 2013. Installing the ESP32 Board in Arduino IDE

(Windows, MAC OS X, Linux). [online] Available at:
<https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-
windows-instructions/> [Accessed 11 June 2019]

Ray, S. and Tripathi, A.K., 2016. Design and Development of Tilted Single Axis and

Azimuth-Altitude Dual Axis Solar Tracking Systems. IEEE International Conference
on Power Electronics, Intelligent Control and Energy Systems, [e-journal], pp. 1-6.
Available through: Universiti Tunku Abdul Rahman Library website
<https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/7853190> [Accessed 11
August 2019]

https://www.mediafire.com/file/bf96acaje8gd7jd/wifi_repeater_files.zip/file
https://www.teachmemicro.com/log-data-nodemcu-google-sheets/
https://nakedsolar.co.uk/solar-pv/solar-panel-mounting/
https://www.omniinstruments.co.uk/weather-stations-and-instruments/pyranometers-solar-irradiance/cmp6-pyranometer.html
https://www.omniinstruments.co.uk/weather-stations-and-instruments/pyranometers-solar-irradiance/cmp6-pyranometer.html
http://curious.astro.cornell.edu/people-and-astronomy/161-our-solar-system/the-earth/day-night-cycle/184-how-does-the-location-of-sunrise-and-sunset-change-throughout-the-year-advanced
http://curious.astro.cornell.edu/people-and-astronomy/161-our-solar-system/the-earth/day-night-cycle/184-how-does-the-location-of-sunrise-and-sunset-change-throughout-the-year-advanced
http://curious.astro.cornell.edu/people-and-astronomy/161-our-solar-system/the-earth/day-night-cycle/184-how-does-the-location-of-sunrise-and-sunset-change-throughout-the-year-advanced
https://www.photopills.com/articles/understanding-azimuth-and-elevation
https://www.researchgate.net/publication/312067334_SOLAR_TRACKING_SYSTEM-_A_REVIEW
https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/
https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://ieeexplore-ieee-org.libezp2.utar.edu.my/document/7853190

146

RF Wireless World, 2012. Advantages of Data Loggers | disadvantages of Data Loggers.
[online] Available at: < http://www.rfwireless-world.com/Terminology/Advantages-
and-Disadvantages-of-Data-Loggers.html > [Accessed 13 April 2019]

Solar Power World, 2019. How does a solar tracker work? [online] Available at:

<https://www.solarpowerworldonline.com/2013/04/how-does-a-solar-tracker-work/>
[Accessed 12 August 2019]

SolarSystemQuick.com, 2010. Polaris Star. [online] Available at:

<https://www.solarsystemquick.com/universe/polaris-star.htm> [Accessed 12 August
2019]

Soniak, M., 2017. What’s the Difference Between “Mostly Sunny” and “Partly Cloudy”?

[online] Available at: <http://mentalfloss.com/article/56820/whats-difference-
between-mostly-sunny-and-partly-cloudy> [Accessed 16 August 2019]

SunPower Corporation, 2019. Commercial solar panel degradation: What should you

know and keep in mind. [online] Available at:
<https://businessfeed.sunpower.com/articles/what-to-know-about-commercial-solar-
panel-degradation> [Accessed 12 August 2019]

Thonti, V., 2017. Relay: Construction, Working and Types. [online] Available at:

<https://circuitdigest.com/article/relay-working-types-operation-applications>
[Accessed 12 August 2019]

Whitlock, R., 2016. Tracking the sun: trackers for solar power systems. [online]

Available at: <https://interestingengineering.com/tracking-the-sun-trackers-for-solar-
power-systems> [Accessed 11 August 2019]

http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Data-Loggers.html
http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Data-Loggers.html
https://www.solarpowerworldonline.com/2013/04/how-does-a-solar-tracker-work/
https://www.solarsystemquick.com/universe/polaris-star.htm
http://mentalfloss.com/article/56820/whats-difference-between-mostly-sunny-and-partly-cloudy
http://mentalfloss.com/article/56820/whats-difference-between-mostly-sunny-and-partly-cloudy
https://businessfeed.sunpower.com/articles/what-to-know-about-commercial-solar-panel-degradation
https://businessfeed.sunpower.com/articles/what-to-know-about-commercial-solar-panel-degradation
https://circuitdigest.com/article/relay-working-types-operation-applications
https://interestingengineering.com/tracking-the-sun-trackers-for-solar-power-systems
https://interestingengineering.com/tracking-the-sun-trackers-for-solar-power-systems

147

APPENDICES

APPENDIX A: LM324N Pinout

148

APPENDIX B: ESP32 Devkit V1 Pinout

149

APPENDIX C: CRD5107P Motor Driver Datasheet

150

151

APPENDIX D: AZURSPACE Concentrator Tripe Junction Solar Cell

152

APPENDIX E: Normal Incidence Pyrheliometer Datasheet

153

APPENDIX F: Arduino Test Code (Tilts upwards)

/* This is the test code for solar tracker to tilt upwards */

void setup()

{

 pinMode(9,OUTPUT); // D9 ---> Clockwise Direction

 pinMode(10,OUTPUT); // D10 ----> Counterclockwise Direction

 pinMode(7,OUTPUT); // D7 ---> Relay Control

}

void loop()

{

 digitalWrite(7,HIGH); // Enable the relay control for movement in vertical axis

 digitalWrite (9,LOW); // Disable clockwise pulse for upward movement

 //Give counterclockwise for upward movement

 digitalWrite(10,HIGH);

 delay(10);

 digitalWrite(10,LOW);

 delay(10);

}

154

APPENDIX G: Arduino Test Code (Tilts downwards)

/* This is the test code for solar tracker to tilt downwards */

void setup()

{

 pinMode(9,OUTPUT); // D9 ---> Clockwise Direction

 pinMode(10,OUTPUT); // D10 ----> Counterclockwise Direction

 pinMode(7,OUTPUT); // D7 ---> Relay Control

}

void loop()

{

 digitalWrite(7,HIGH); // Enable the relay control for movement in vertical axis

 digitalWrite (10,LOW); // Disable counterclockwise pulse for upward movement

 //Give clockwise pulse for downward movement

 digitalWrite(9,HIGH);

 delay(10);

 digitalWrite(9,LOW);

 delay(10);

}

155

APPENDIX H: Arduino Test Code (Moving Left)

/* This is the test code for solar tracker to go left */

void setup()

{

 pinMode(9,OUTPUT); // D9 ---> Clockwise Direction

 pinMode(10,OUTPUT); // D10 ----> Counterclockwise Direction

 pinMode(7,OUTPUT); // D7 ---> Relay Control

}

void loop()

{

 digitalWrite(7,LOW); // Disable the relay control for movement in horizontal axis

 digitalWrite (10,LOW); // Disable counterclockwise pulse to move left

 //Give clockwise pulse to move left

 digitalWrite(9,HIGH);

 delay(10);

 digitalWrite(9,LOW);

 delay(10);

}

156

APPENDIX I: Arduino Test Code (Moving Right)

/* This is the test code for solar tracker to go right */

void setup()

{

 pinMode(9,OUTPUT); // D9 ---> Clockwise Direction

 pinMode(10,OUTPUT); // D10 ----> Counterclockwise Direction

 pinMode(7,OUTPUT); // D7 ---> Relay Control

}

void loop()

{

 digitalWrite(7,LOW); // Disable the relay control for movement in horizontal axis

 digitalWrite (9,LOW); // Disable clockwise pulse to move right

 //Give counterclockwise pulse to move right

 digitalWrite(10,HIGH);

 delay(10);

 digitalWrite(10,LOW);

 delay(10);

}

157

APPENDIX J: Arduino Test Code (LDR Test)

/* This is the test code for LDR reading (without calibration) */

void setup()

{

 Serial.begin(9600); // Set serial monitor for checking LDR readings

}

void loop()

{

 int topLeft = analogRead(A0); // A0 ---> Top Left LDR

 int topRight = analogRead(A1); //A1 ---> Top Right LDR

 int bottomLeft = analogRead(A2); //A2 ---> Bottom Left LDR

 int bottomRight = analogRead(A3); //A3 ---> Bottom Right LDR

 int avgTop = (topLeft + topRight) / 2; // Light intensity at upper region

 int avgBottom = (bottomLeft + bottomRight) / 2; // Light intensity at lower region

 int avgLeft = (topLeft + bottomLeft) / 2; // Light intensity at left region

 int avgRight = (topRight + bottomRight) / 2; // Light intensity at right region

 //Serial monitor to display light intensities ...

 Serial.print("Top Left: ");

 Serial.println(topLeft);

 Serial.print("Top Right: ");

 Serial.println(topRight);

 Serial.print("BottomLeft: ");

 Serial.println(bottomLeft);

 Serial.print("BottomRight: ");

 Serial.println(bottomRight);

 Serial.print("Average Top: ");

 Serial.println(avgTop);

 Serial.print("Average Bottom: ");

 Serial.println(avgBottom);

 Serial.print("Average Left: ");

 Serial.println(avgLeft);

 Serial.print("Average Right: ");

 Serial.println(avgRight);

 Serial.println();

 delay(5000);

}

158

APPENDIX K: ESP32 Arduino Test Code (Voltage Reading- Using ESP32)

/*This is the test code for ESP32 to read voltage values*/

#include "BigNumber.h" // Library for more decimal points

const int READ = 15; //Pin D15 of ESP32 to perform ADC reading

/* Global declaration (all set to zero by default) */

BigNumber ADC = 0; //ADC reading from ESP32

BigNumber VOLTS = 0; //Voltage converted from Analog input pin D15

void setup()

{

 Serial.begin(115200);

 /*Setting for ADC reading resolution and step size */

 analogReadResolution(12); //12 bits

 analogSetAttenuation(ADC_11db);

 BigNumber::begin(4); // 4 decimal places

}

void loop()

{

 ADC = analogRead(READ);

 VOLTS = ADC * BigNumber ("3.3000") / BigNumber ("4095.0000");

 /* Serial Monitor Checking Purpose */

 Serial.print("VOLTAGE: ");

 Serial.println(VOLTS);

 delay(1000);

}

159

APPENDIX L: ESP32 Arduino Test Code

(Voltage Reading- Using ESP32 with ADS1015 Module)

/* This is the test code for ESP32 with the aid of ADS1015 module to read voltage values */

/* Take Note: VDD (ADS1015) to 3V3 (ESP32) & GND (ADS1015) to GND (ESP32) */

/* Take Note (for I2C purpose): pin SCL (ADS1015) to pin D22 (ESP32) , pin SCA (ADS1015) to pin D21 (ESP32) */

#include "BigNumber.h" // Library for more decimal places

//Libraries for ADS1015 module

#include <Wire.h>

#include <Adafruit_ADS1015.h>

Adafruit_ADS1015 ads; // Global declaration for ADS1015 module

void setup()

{

 Serial.begin(115200);

 /* Setup for ADS1015 module */

 ads.begin();

 ads.setGain(GAIN_ONE); // 1 bit = 2mV, Range: +/- 4.096V

 BigNumber::begin(4); // 4 decimal places

}

void loop()

{

 BigNumber VOLTS; // Voltage value from ADS1015

 VOLTS = BigNumber (ads.readADC_SingleEnded(0)) * BigNumber ("0.0020"); //0.002V = 2mV

 //ads.readADC_SingleEnded(0) means ADC reading at pin A0 of ADS1015 module

 /* Serial Monitor Checking Purpose */

 Serial.print("Voltage: ");

 Serial.println(VOLTS);

 delay(1000);

}

160

APPENDIX M: ESP32 Arduino Test Code

(Voltage-to-Current Convertion - ESP32 with ADC module)

/* Take Note: VDD (ADS1015) to 3V3 (ESP32) & GND (ADS1015) to GND (ESP32) */

/* Take Note (for I2C purpose): pin SCL (ADS1015) to pin D22 (ESP32) , pin SCA (ADS1015) to pin D21 (ESP32) */

#include "BigNumber.h" // Library for more decimal places

//Libraries for ADS1015 module

#include <Wire.h>

#include <Adafruit_ADS1015.h>

Adafruit_ADS1015 ads; // Global declaration for ADS1015 module

void setup()

{

 Serial.begin(115200);

 /* Setup for ADS1015 module */

 ads.begin();

 ads.setGain(GAIN_ONE); // 1 bit = 2mV, Range: +/- 4.096V

 BigNumber::begin(4); // 4 decimal places

}

void loop()

{

 BigNumber VOLTS; // Voltage value from ADS1015 (from converter 1)

 BigNumber VOLT1; // from converter 2

 BigNumber mA; // calculated current of converter 1

 BigNumber MA; // calculated current of converter 2

 // Voltage reading formula for ADC module

 VOLTS = BigNumber (ads.readADC_Differential_0_1()) * BigNumber ("0.0020"); //0.0020V = 2mV / bit

 // A0 connected to output pin of converter 1 and A1 to ground (Voltage Differential)

 VOLT1 = BigNumber (ads.readADC_Differential_2_3()) * BigNumber ("0.0020"); //0.0020V = 2mV / bit

 // A2 connected to output pin of converter 1 and A3 to ground (Voltage Differential)

 if (VOLTS > 5)

 {

 mA = 0;

161

 }

 else

 {

 if (VOLTS < 0)

 {

 mA = 0;

 }

 else

 {

 mA = BigNumber (VOLTS) * BigNumber("1000.00007") / BigNumber ("148.0500"); // 148.05 ohm (between 148 ohm and 148.1

ohm)

 }

 }

 if (VOLT1 > 5)

 {

 MA = 0;

 }

 else

 {

 if (VOLT1 < 0)

 {

 MA = 0;

 }

 else

 {

 MA = BigNumber (VOLT1) * BigNumber("1000.0000") / BigNumber("148.5500"); // 148.55 ohm (between 148.5 ohm and 148.6

ohm)

 }

 }

 /* Serial Monitor Checking Purpose */

 Serial.print("Voltage: ");

 Serial.print(VOLTS);

 Serial.print(" ");

 Serial.println(VOLT1);

 Serial.print("mA: ");

 Serial.print(mA);

 Serial.print(" ");

 Serial.println(MA);

162

 Serial.println(" ");

}

163

APPENDIX N: Coding for Solar Tracking Mechanism (Arduino UNO)

/* Library and Global Declarations for Gyroscope*/

#include<Wire.h>

/* Library for Serial Communication to ESP32 */

#include <SoftwareSerial.h>

SoftwareSerial ESP32 (3,4); //RX, TX

/* Global Declaration for Gyroscope */

const int MPU_addr=0x68;

int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;

int minVal=265;

int maxVal=402;

double x;

double y;

double z;

double Y_Angle;

/* Global Declaration for Solar Tracking */

int CHECK = 0;

int topLeft = 0;

int topRight = 0;

int Right = 0;

int bottomLeft = 0;

int bottomRight = 0;

int avgTop = 0;

int avgBottom = 0;

int avgLeft = 0;

int avgRight = 0;

int topLEFT = 0;

int topRIGHT = 0;

int rIGHT = 0;

int bottomLEFT = 0;

int bottomRIGHT = 0;

int avgAll = 0;

int avgAll_Previous = 0;

int START;

void setup()

{

164

 Serial.begin(115200);

 ESP32.begin(115200); // Start Serial Communication with ESP32

 /* Output Declaration for Solar Tracking */

 pinMode(7,OUTPUT); // D7 ---> Relay Control

 pinMode(9,OUTPUT); // D9 ---> Clockwise Control

 pinMode(10,OUTPUT); // D10 ---> Counterclockwise Control

 pinMode(11,OUTPUT);

 pinMode(12,OUTPUT); // D12 ---> STOP indicator

 /* Setup for Gyroscope */

 Wire.begin();

 Wire.beginTransmission(MPU_addr);

 Wire.write(0x6B);

 Wire.write(0);

 Wire.endTransmission(true);

 START = 1;

}

void Initialize() //Initialize Y-axis before start to track

{

 ESP32.flush();

 ESP32.write("INITIALIZING...");

 digitalWrite(11,HIGH); // Initialization indicator ON (Start to initialize)

 Y_Angle = Y_ANGLE(); // Get Y-angle

 delay(10);

 while (Y_Angle < 359)

 {

 Y_Angle = Y_ANGLE();

 if (Y_Angle < 200) // if the LDR pointing forward

 {

 /* Tilt upwards until the ldr point perpendicular to the ground */

 UP();

 }

 else if (Y_Angle > 200) // if the LDR pointing backwards

 {

 /* Tilt downwards until the ldr point perpendicular to the ground */

 DOWN();

 }

165

 delay(1);

 Y_Angle = Y_ANGLE();

 if (Y_Angle > 359)

 {

 break;

 }

 delay(1);

 }

 START = 0;

 delay(1000);

 digitalWrite(11,LOW);

 delay(1000);

}

double Y_ANGLE() // Y-angle calculation

{

 Wire.beginTransmission(MPU_addr);

 Wire.write(0x3B);

 Wire.endTransmission(false);

 Wire.requestFrom(MPU_addr,14,true);

 AcX=Wire.read()<<8|Wire.read();

 AcY=Wire.read()<<8|Wire.read();

 AcZ=Wire.read()<<8|Wire.read();

 int xAng = map(AcX,minVal,maxVal,-90,90);

 int yAng = map(AcY,minVal,maxVal,-90,90);

 int zAng = map(AcZ,minVal,maxVal,-90,90);

 x= RAD_TO_DEG * (atan2(-yAng, -zAng)+PI);

 y= RAD_TO_DEG * (atan2(-xAng, -zAng)+PI);

 z= RAD_TO_DEG * (atan2(-yAng, -xAng)+PI);

 return y;

}

void LDR_VALUES() //Read LDR values and average

{

166

 topLeft = analogRead(A0);

 Right = analogRead(A1);

 bottomLeft = analogRead(A2);

 bottomRight = analogRead(A3);

 //Calibration for top right LDR, because it will always get higher reading regardless light intensities

 if (Right < 30)

 {

 topRight = Right - 27;

 if (topRight < 0 || topRight == 0)

 {

 topRight = 1;

 }

 }

 else if (Right > 29 && Right < 40)

 {

 topRight = Right - 36 ;

 if (topRight < 0 || topRight == 0)

 {

 topRight = 1;

 }

 }

 else if (Right > 39 && Right < 50)

 {

 topRight = Right - 42;

 if (topRight < 0 || topRight == 0)

 {

 topRight = 1;

 }

 }

 else if (Right > 49 && Right < 60)

 {

 topRight = Right - 52;

167

 if (topRight < 0 || topRight == 0)

 {

 topRight = 1;

 }

 }

 else

 {

 topRight = Right;

 }

 avgTop =(topLeft + topRight) / 2;

 avgBottom = (bottomLeft + bottomRight) / 2;

 avgLeft = (topLeft + bottomLeft) / 2;

 avgRight = (topRight + bottomRight) / 2;

 }

void LDR_CHECK() // Checing and comparing LDR values when stop

{

 topLEFT = analogRead(A0);

 rIGHT = analogRead(A1);

 bottomRIGHT = analogRead(A2);

 bottomRIGHT = analogRead(A3);

 //Calibration for top right LDR, because it will always get higher reading regardless light intensities

 if (rIGHT < 30)

 {

 topRIGHT = rIGHT - 27;

 if (topRIGHT < 0 || topRIGHT == 0)

 {

 topRIGHT = 1;

 }

 }

 else if (rIGHT > 29 && rIGHT < 40)

 {

 topRIGHT = rIGHT - 36;

 if (topRIGHT < 0 || topRight == 0)

168

 {

 topRIGHT = 1;

 }

 }

 else if (rIGHT > 39 && rIGHT < 50)

 {

 topRIGHT = rIGHT - 42;

 if (topRIGHT < 0 || topRight == 0)

 {

 topRIGHT = 1;

 }

 }

 else if (rIGHT > 49 && rIGHT < 60)

 {

 topRIGHT = rIGHT - 52;

 if (topRIGHT < 0 || topRIGHT == 0)

 {

 topRIGHT = 1;

 }

 }

 else

 {

 topRIGHT = rIGHT;

 }

}

void STOP() // STOP

{

 digitalWrite(12,HIGH); // STOP indicator HIGH

 digitalWrite(7,LOW);

 digitalWrite(9,LOW);

 digitalWrite(10,LOW);

}

void BREAK() // BREAK

{

 digitalWrite(12,LOW);

 digitalWrite(7,LOW);

 digitalWrite(9,LOW);

169

 digitalWrite(10,LOW);

 digitalWrite(11,LOW);

}

void UP() // GO UP

{

 digitalWrite(7,HIGH);

 digitalWrite(9,LOW);

 digitalWrite(10,HIGH);

 delay(0.5);

 digitalWrite(10,LOW);

 delay(0.5);

 }

void DOWN() // GO DOWN

{

 digitalWrite(7,HIGH);

 digitalWrite(10,LOW);

 digitalWrite(9,HIGH);

 delay(0.5);

 digitalWrite(9,LOW);

 delay(0.5);

}

void LEFT() // GO LEFT

{

 digitalWrite(7,LOW);

 digitalWrite(10,LOW);

 digitalWrite(9,HIGH);

 delay(0.5);

 digitalWrite(9,LOW);

 delay(0.5);

}

void RIGHT() // GO RIGHT

{

 digitalWrite(7,LOW);

 digitalWrite(9,LOW);

 digitalWrite(10,HIGH);

 delay(0.5);

 digitalWrite(10,LOW);

 delay(0.5);

}

170

void loop() // Main Program

{

 if (START == 1)

 {

 Initialize();

 }

 /* Set all outputs to LOW (Initialization) */

 digitalWrite(7,LOW);

 digitalWrite(9,LOW);

 digitalWrite(10,LOW);

 digitalWrite(12,LOW);

 /* Read LDR values before decideing to stop or to track */

 LDR_VALUES();

 /* IF TOO DARK, STOP THE TRACKER */

 if ((topLeft > 8) && (topRight > 8) && (bottomLeft > 8) && (bottomRight > 8))

 {

 ESP32.flush();

 ESP32.write("CLOUDY(STOP)");

 while ((topLeft > 8) && (topRight > 8) && (bottomLeft > 8) && (bottomRight > 8))

 {

 STOP(); // STOP the tracker

 digitalWrite(11,HIGH);

 LDR_VALUES(); // Get LDR values

 if ((topLeft < 6) || (topRight < 6) || (bottomLeft < 6) || (bottomRight < 6)){

 BREAK(); // If not so dark, terminate the stop loop

 delay(5000);

 break;

 }

 delay(1000); // If it is still too dark, wait for 1s before checking the new LDR values in this stop loop.

 }

 }

 /* IF NOT SO DARK, TRACK! */

 else

 {

 digitalWrite(12,LOW); // Turn off STOP indicator because the solar tracker does not stop

 ESP32.flush();

 ESP32.write("SUNNY(TRACKING)");

 delay(2000);

171

 LDR_VALUES(); // Read LDR values before proceed to compare the light intensity of both upper and lower regions

 /* CHECK UP/DOWN */

 //IF UPPER REGION BRIGHTER

 if (avgTop < avgBottom)

 {

 //Serial.println("UP");

 while(avgTop < avgBottom) //While looping for going UP

 {

 Y_Angle = Y_ANGLE(); //read Y-angle

 if ((Y_Angle < 305) && (Y_Angle > 300))

 {

 BREAK(); // Terminate if the solar tracker tilts to its upward limit

 break;

 }

 else // If the solar tracker does not reach the limit to move upwards

 {

 if ((abs(avgTop - avgBottom)< 2) || (abs (topLeft - bottomLeft) < 1) || (abs (topRight - bottomRight) < 1))

 {

 BREAK(); // Terminate if the light intensity of upper and lower region are the same

 break;

 }

 else if (avgTop > avgBottom)

 {

 BREAK(); // Terminate if the lower region is brighter than the upper region

 break;

 }

 else

 {

 UP(); // Go UP if the solar tracker does not reach the upward limits, the light intensity of both upper and lower region are

different, and upper region is still brighter than lower region

 }

 }

 LDR_VALUES(); //Get LDR values after going UP for 1 pulse, then repeat the upward movement until it is terminated

 }

 }

 //IF LOWER REGION BRIGHTER

172

 else if (avgTop > avgBottom)

 {

 //Serial.println("DOWN");

 while(avgTop > avgBottom) //While looping for going DOWN

 {

 Y_Angle = Y_ANGLE(); // read Y-angle

 if ((Y_Angle > 40) && (Y_Angle < 50))

 {

 BREAK(); //Terminate if the solar tracker tilts to its downwards limit

 break;

 }

 else // If the solar tracker does not reach to its downwards limit

 {

 if ((abs(avgTop - avgBottom)< 2) || (abs (topLeft - bottomLeft) < 1) || (abs (topRight - bottomRight) < 1))

 {

 BREAK(); //Terminate if the light intensity of upper and lower region are the same

 break;

 }

 else if (avgTop < avgBottom)

 {

 BREAK(); //Terminate if the upper region is brighter than the lower region

 break;

 }

 else

 {

 DOWN(); // Go DOWN if the solar tracker does not reach to its downwards limit, the intensity of upper and lower region

are different, and lower region is still brighter than upper region

 }

 }

 LDR_VALUES(); //Get LDR values after going DOWN for 1 pulse, then repeat the downward movement until it is terminated

 }

 }

 delay(1000); // Delay for 1s before proceed to check LEFT/RIGHT...

 /* CHECK LEFT/RIGHT */

 //IF RIGHT REGION BRIGHTER

 if (avgRight < avgLeft)

 {

173

 //Serial.println("RIGHT");

 while (avgRight < avgLeft) //While looping for operation when right region is brighter than left region

 {

 Y_Angle = Y_ANGLE(); // read Y-angle

 //IF THE LDR POINTING UPWARDS PERPENDICULAR TO THE GROUND OR POINTING BACKWARDS

 if ((Y_Angle > 300))

 {

 if ((abs(avgRight - avgLeft)< 2) || (abs (topLeft - topRight) < 1) || (abs (bottomLeft - bottomRight) < 1))

 {

 BREAK(); //Terminate if the light intensity of right and left region are the same

 break;

 }

 else if (avgRight > avgLeft)

 {

 BREAK(); // Terminate if left region is brighter than right region

 break;

 }

 else

 {

 if (avgTop < avgBottom)

 {

 LEFT(); //If the 2 conditions above are not fulfilled, go LEFT

 }

 else

 {

 RIGHT();

 }

 }

 }

 //IF THE LDR POINTING FORWARD

 else

 {

 if ((abs(avgRight - avgLeft)< 2) || (abs (topLeft - topRight) < 1) || (abs (bottomLeft - bottomRight) < 1))

 {

 BREAK(); //Terminate if the light intensity of right and left region are the same

 break;

 }

 else if (avgRight > avgLeft)

174

 {

 BREAK(); //Terminate if left region is brighter than right region

 break;

 }

 else

 {

 RIGHT(); //If the 2 conditions above are not fulfilled, go RIGHT

 }

 }

 LDR_VALUES(); //Get LDR values after 1 pulse of movement (either LEFT or RIGHT) is done, then repeat the cycle until it is

terminated

 }

 }

 //IF LEFT REGION BRIGHTER

 else if (avgRight > avgLeft)

 {

 //Serial.println("LEFT");

 while (avgRight > avgLeft) //While looping for operation when left region is brighter than right region

 {

 Y_Angle = Y_ANGLE(); //read Y-angle

 //IF THE LDR POINTING UPWARDS PERPENDICULAR TO THE GROUND OR POINTING BACKWARDS

 if ((Y_Angle > 300))

 {

 if ((abs(avgRight - avgLeft)< 2) || (abs (topLeft - topRight) < 1) || (abs (bottomLeft - bottomRight) < 1))

 {

 BREAK(); //Terminate if the light intensity of right and left region is the same

 break;

 }

 else if (avgRight < avgLeft)

 {

 BREAK(); //Terminate if right region is brighter than left region

 break;

 }

 else

 {

 if(avgTop < avgBottom)

 {

 RIGHT(); //If the 2 conditions above are not fulfilled, go RIGHT

175

 }

 else

 {

 LEFT();

 }

 }

 }

 //IF THE LDR POINTING FORWARD

 else

 {

 if ((abs(avgRight - avgLeft)< 2) || (abs (topLeft - topRight) < 1) || (abs (bottomLeft - bottomRight) < 1))

 {

 BREAK();//Terminate if the light intensity of right and left region are the same

 break;

 }

 else if (avgRight < avgLeft)

 {

 BREAK(); //Terminate if right region is brighter than left region

 break;

 }

 else

 {

 LEFT(); // If the 2 conditions above are not fulfilled, go LEFT

 }

 }

 LDR_VALUES(); //Get LDR values after 1 pulse of movement (either LEFT or RIGHT) is done, then repeat the cycle until it is

terminated

 }

 }

 delay (1000); // Give a delay for 1s before checking condition to enter STOP loop

 avgAll = (topLeft + topRight + bottomLeft + bottomRight) / 4; // First, calculate recent overall average

 if ((abs(avgAll - avgAll_Previous) < 2) && (avgAll_Previous > 0))

 {

 CHECK = CHECK + 1; //Increment the iteration of counter to enter STOP loop if the recent overall average has only slight

difference with the previous overall average

 }

176

 else

 {

 CHECK = CHECK - 1; //Decrement the iteration of counter to enter STOP loop if the recent overall average differs a lot from

the previous overall average

 if (CHECK < 0)

 {

 CHECK = 0; // Set number of iteration to be zero if the number of iteration is reduced to be less than zero

 }

 }

 avgAll_Previous = avgAll; //Update the previous overall average with the recent one

 delay(1000); // delay another 1s

 if (CHECK == 5)

 {

 ESP32.flush();

 ESP32.write("SUNNY(STOP)");

 //STOP if the number of iteration is equal to 5

 //Assuming the solar tracker is facing the SUN

 while(CHECK == 5) //While loopig when the number of iteration is equal to 5...

 {

 STOP(); // STOP the solar tracker

 delay(5000);

 LDR_CHECK(); //Get the current LDR values at STOP position, and compare with the LDR values when entering STOP looop

 if ((abs(topLeft-topLEFT)> 2) || (abs(topRight-topRIGHT)> 2)|| (abs(bottomLeft-bottomLEFT)> 2) || (abs(bottomRight-

bottomRIGHT)> 2))

 {

 delay(1000);

 BREAK(); //Terminate if there is difference of light intensity at any one of the LDRs or when the solar tracker is not

pointing the SUN

 CHECK=0; //Then set the number of iteration to zero

 break;

 }

 }

 }

 delay(1000); //delay another 1s before proceed for solar tracking...

 }

}

177

APPENDIX O: Coding for IoT Data Collection System (ESP32 Arduino)

#define BLYNK_PRINT Serial

#include <WiFi.h>

#include <BlynkSimpleEsp32.h>

#include <Wire.h>

#include <Adafruit_ADS1015.h>

#include "BigNumber.h"

/* Declaration of Indicators */

int LED_BUILTIN = 2; // Pin D2 (ESP32 built-in LED) ---> WiFi Connection Indicator

int PUSH = 15; // Pin D15 ---> Data Transfer Indicator (Google Sheet)

int Data = 4; // Pin D4 ---> Data Transfer Indicator (Blynk)

String STATS = " ";

int INITIALIZE;

unsigned long lastSend;

unsigned long pushingbox;

unsigned long current;

Adafruit_ADS1015 ads; // Global declaration for ADS1015 module

double Pyrheliometer;

double Pyranometer;

const char* ssid = "Solar_Tracker"; //Wi-Fi network you want to connect

const char* password = "UTAR_1234";

const char host[] = "api.pushingbox.com";

const int httpPort = 80;

// You should get Auth Token in the Blynk App.

// Go to the Project Settings (nut icon).

const char auth[] = "951c69db77154adaa6c754fcbb90ed8d";

BLYNK_READ(V1)

{

 Blynk.virtualWrite(V1, Pyrheliometer);

}

BLYNK_READ(V2)

178

{

 Blynk.virtualWrite(V2, Pyranometer);

}

WidgetLCD lcd (V0);

void setup()

{

 Serial.begin(115200);

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(Data, OUTPUT);

 pinMode(PUSH, OUTPUT);

 /* Setup for ADS1015 module */

 ads.begin();

 ads.setGain(GAIN_ONE); // 1 bit = 2mV, Range: +/- 4.096V

 BigNumber::begin(4); // 4 decimal places

 WiFi.begin(ssid, password);

 Blynk.begin(auth, ssid, password);

 lcd.clear();

 INITIALIZE = 1;

 lastSend = 0;

 pushingbox = 0;

}

void Wifi()

{

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)

 {

 digitalWrite(LED_BUILTIN, LOW); //ESP32 LED LOW if connected to WiFi

 delay(500);

 digitalWrite(LED_BUILTIN, HIGH);

 delay(500);

 Serial.println("Connecting to WiFi ...");

 }

179

 digitalWrite(LED_BUILTIN, HIGH);

 Serial.print("Connected to the WiFi network! "); //ESP32 LED HIGH if connected to WiFi

}

void Solar_Irradiance()

{

 BigNumber VOLTS; // Voltage value from ADS1015

 BigNumber VOLT1;

 BigNumber mA;

 BigNumber MA;

 VOLTS = BigNumber (ads.readADC_Differential_0_1()) * BigNumber ("0.0020");

 VOLT1 = BigNumber (ads.readADC_Differential_2_3()) * BigNumber ("0.0020");

 if (VOLTS > 5)

 {

 mA = 0;

 }

 else

 {

 if (VOLTS < 0)

 {

 mA = 0;

 }

 else

 {

 mA = BigNumber (VOLTS) * BigNumber("1000.00007") / BigNumber ("148.0500"); // 148.05 ohm (between 148 ohm and

148.1 ohm)

 }

 }

 if (VOLT1 > 5)

 {

 MA = 0;

 }

 else

 {

 if (VOLT1 < 0)

 {

 MA = 0;

180

 }

 else

 {

 MA = BigNumber (VOLT1) * BigNumber("1000.0000") / BigNumber("148.5500"); // 148.55 ohm (between 148.5 ohm and

148.6 ohm)

 }

 }

 /* Serial Monitor Checking Purpose */

 Serial.print("Voltage: ");

 Serial.print(VOLTS);

 Serial.print(" ");

 Serial.println(VOLT1);

 Serial.print("mA: ");

 Serial.print(mA);

 Serial.print(" ");

 Serial.println(MA);

 Serial.println(" ");

 BigNumber Pyrh = mA/ BigNumber ("15.3000") * BigNumber("1000.0000");

 BigNumber Pyra = MA/ BigNumber ("15.3000") * BigNumber("1000.0000");

 Pyrheliometer = round(Pyrh * BigNumber ("1000.0000")) / double(1000); // round up to 2 decimal places

 Pyranometer = round(Pyra * BigNumber("1000.0000")) / double(1000); // round up to 2 decimal places

 Serial.print("Pyrheliometer:");

 Serial.println(Pyrheliometer);

 Serial.print("Pyranometer:");

 Serial.println(Pyranometer);

 if (Serial.available())

 {

 STATS = Serial.readString();

 }

 lcd.clear();

 lcd.print(0, 0, "STATUS :");

 lcd.print(0, 1, STATS);

 Serial.print("STATS: ");

 Serial.println(STATS);

}

181

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH);

 digitalWrite(Data, LOW);

 digitalWrite(PUSH, LOW);

 while (WiFi.status() != WL_CONNECTED)

 {

 digitalWrite(LED_BUILTIN, LOW);

 digitalWrite(Data, LOW);

 digitalWrite(PUSH, LOW);

 Wifi();

 }

 if (millis() - lastSend > 1000) // Update and send only after 1 seconds

 {

 Serial.println(millis());

 while (!Blynk.connected())

 {

 Serial.println("Connecting to Blynk...");

 digitalWrite(LED_BUILTIN, LOW);

 digitalWrite(Data, LOW);

 digitalWrite(PUSH, LOW);

 if (WiFi.status() != WL_CONNECTED)

 {

 digitalWrite(LED_BUILTIN, LOW);

 digitalWrite(Data, LOW);

 digitalWrite(PUSH, LOW);

 Wifi();

 }

 Blynk.begin(auth, ssid, password);

 if (Blynk.connected())

 {

 Serial.println("[DONE]");

 break;

 }

 }

182

 digitalWrite(Data, HIGH);

 Solar_Irradiance();

 Blynk.run();

 Serial.println("SENT TO BLYNK !");

 lastSend = millis();

 Serial.println(" ");

 }

 if (millis() - pushingbox > 300000) //Update and send after 5 minutes

 {

 WiFiClient client;

 Serial.println(millis());

 while (!client.connected())

 {

 Serial.println("Connecting to Pushingbox API...");

 digitalWrite(LED_BUILTIN, LOW);

 digitalWrite(Data, LOW);

 digitalWrite(PUSH, LOW);

 if (WiFi.status() != WL_CONNECTED)

 {

 digitalWrite(LED_BUILTIN, LOW);

 digitalWrite(Data, LOW);

 digitalWrite(PUSH, LOW);

 Wifi();

 }

 if (client.connect(host, httpPort))

 {

 Serial.println("[DONE]");

 digitalWrite(LED_BUILTIN, HIGH);

 }

 }

 digitalWrite(PUSH, HIGH);

 // We now create a URL for the request

 String url = "/pushingbox?";

 url += "devid=";

 url += "v99B1CB5254AB3D5";

183

 url += "&Pyrheliometer(W/m2)=" + String(Pyrheliometer);

 url += "&Pyranometer(W/m2)=" + String(Pyranometer);

 // This will send the request to the server

 client.print(String("GET ") + url + " HTTP/1.1\r\n" + "Host: " + host + "\r\n" + "Connection: close\r\n\r\n");

 Serial.println("SENT TO GOOGLE FORM!");

 client.flush();

 client.stop();

 pushingbox = millis();

 return;

 }

}

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES

