

DEVELOPMENT OF FPGA BASED SMART TRAFFIC LIGHT

CONTROLLER SYSTEM WITH IMAGE PROCESSING

TAN KENG SHUEN

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

January 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF FPGA BASED

SMART TRAFFIC LIGHT CONTROLLER SYSTEM WITH IMAGE

PROCESSING” was prepared by TAN KENG SHUEN has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Hons) Electronic Engineering at Universiti Tunku Abdul

Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Loh Siu Hong

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2019, Tan Keng Shuen. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude to my supervisor, Dr. Loh Siu Hong

who has given me the golden opportunity to be involved in this project, and he helped

me a lot with his invaluable advice, guidance, support, and encouragement during the

development of the project. He has been an excellent advisor demonstrating good

patience and enormous help throughout the development of the project.

Furthermore, I would also like to express my special thanks to my loving

parents, colleagues and academic staffs who had helped and contributed to the

successful completion of this project.

vi

DEVELOPMENT OF FPGA BASED SMART TRAFFIC LIGHT

CONTROLLER SYSTEM WITH IMAGE PROCESSING

ABSTRACT

As the population of the city, as well as the number of automobiles travel on the roads

are increasing day by day, traffic congestion at the junctions is becoming a huge

problem for many major cities nowadays. One of the reasons behind this traffic issue

is the inefficiency of the techniques and algorithms used in the existing traffic light

system which unable to adapt to the continuous changing traffic situation and

eventually lead to traffic congestion spreads and occurrence of road accidents increase.

Therefore, to prevent the situations further deteriorate, there is a pressing need for the

introduction of advanced system and technology that able to improve the current traffic

light control system to better accommodate this increasing demand.

In this project, an FPGA based Smart Traffic Light Control System (STLCS)

is proposed with the aid of Computer Vision techniques in traffic signal control. The

developed STLCS is comprised two development boards; Altera DE2 board and

Raspberry Pi 3B+. Altera DE2 board is mainly used to execute the automated traffic

light signalling system while the Raspberry Pi 3B+ is utilized to in-charge the

computer vision tasks, for instance, video acquisition, processing, segmentation,

object detection, etc. In this system, a wide view angle digital camera is fixed at the

intersection road for real-time monitoring on four intersecting roads. A specific traffic

lane will be captured when the Raspberry Pi received a request signal from the Altera

DE2 board. The captured image of a particular road is processed through a series of

image processing techniques for vehicle detection and count. After this, the detected

number of vehicles is further used to calculate the proper time duration for controlling

vii

signal lights by using the dedicated timing algorithms. Next, the calculated time is sent

to the FPGA traffic light controller via UART serial communication, and the traffic

light controller will discharge the vehicles based on received time value. Once the

green light countdown timer reached the limit, the yellow light is turned ON and a

request signal is feed to the Raspberry Pi to calculate the green time for the next turn

of traffic light controller, these processes are repeated continuously.

The smart feature of the system is able to compute the flexible green light time

that dependent upon the detected traffic density on traffic lanes. Moreover, as a

precautionary measure, a maximum and minimum green light time limit are fixed

within the timing algorithm to prevent any vehicle detection error as well as over

waiting of vehicles in queue in other lanes. In this project, ModelSim and Quartus II

software are used to program and simulate the traffic light controller system that

written in Verilog Hardware Description Language (HDL) and upload the program to

ALTERA DE2 CYCLONE II 2C35 FPGA while the Syder IDE and OpenCV library

along with Python, high-level programming language (HLL) are used to implement

the computer vision program.

Keywords: Traffic Congestion, FPGA, Image Processing, Raspberry Pi 3B+, Altera

DE2 FPGA, Verilog, Python

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF SYMBOLS / ABBREVIATIONS xviii

LIST OF APPENDICES xix

CHAPTER

1 INTRODUCTION 1

1.1 Background of Study 1

1.1.1 Image processing with OpenCV 2

1.1.2 ALTERA Development and Education Board 3

1.1.3 Hardware Description Language (HDL) 6

1.1.4 Universal Asynchronous Receiver Transmitter

(UART) 7

1.1.5 Raspberry PI 3B+ 8

1.1.6 Colour Model 9

1.2 Problem Statements 11

1.3 Aims and Objectives 12

1.4 Thesis Organization 13

ix

2 LITERATURE REVIEW 14

2.1 Introduction 14

2.2 Background of Study 14

2.2.1 Smart Traffic Light Controller System 14

2.3 Research on Techniques applied in Traffic Light

Controller System 15

2.3.1 Sinhmar, P., 2012 15

2.3.2 Rakesh, V.S. et al., 2007 16

2.3.3 Nidhi D. Agrawal et al., 2013 19

2.3.4 Comparison of the Techniques Used by Other

Researchers 20

2.4 FPGA Based Traffic Light Controller System 22

2.4.1 Dilip, B. et al., 2012 22

2.4.2 Agho, O et al., 2015 24

2.4.3 Summary for FPGA based Traffic Light

Controller System 27

2.5 Image Processing Based Traffic Light Controller System 27

2.5.1 Almawagani, A.H.M., 2018 27

2.5.2 Parthasarathi, V. et al., 2015 30

3 METHODOLOGY 35

3.1 Proposed Project Architecture 35

3.2 System Working Principle 36

3.2.1 General flow of the system 36

3.2.2 Flowchart of Proposed System 37

3.3 Project management 38

3.4 Image Processing Operations 39

3.4.1 Flowchart of Image Processing Operations 39

3.4.2 Image Acquisition 40

3.4.3 Region of interest (ROI) 41

3.4.4 Image Enhancement (Histogram Equalization) 41

3.4.5 Colour-Based Segmentation 42

3.4.6 Morphological Operations 44

x

3.4.7 Vehicle Detection and Counting 45

3.5 UART- Serial communication 46

3.5.1 Serial Communication on Altera DE2 board 46

3.5.2 Serial Communication on Raspberry Pi 3B+ 50

3.5.3 UART- Serial Communication Connection 52

3.6 Traffic light Controller System on Altera DE2 Board 53

3.6.1 Structure of Traffic Junction 53

3.6.2 4 Phase Traffic Light Signals 54

3.6.3 State table of the Traffic Light Controller 55

3.6.4 Traffic Light Controller Flowchart 56

3.6.5 State Diagram of Traffic Light Controller System 57

3.6.6 Hardware Implementation of Traffic Light

Controller 58

3.7 Timing Algorithms for Traffic Light Signal 60

3.8 Cost Analysis of the Project. 62

4 RESULTS AND DISCUSSIONS 63

4.1 Software Testing 63

4.1.1 Traffic Light Controller Program Simulation 63

4.1.2 UART-Serial Communication Simulation 65

4.2 Hardware Testing 67

4.2.1 Basic Circuit Testing 67

4.2.2 Testing the Traffic Light Circuit 68

4.2.3 Testing the UART- Serial Communication

Interface 69

4.3 Prototype Model of Developed Smart Traffic Light

Controller 71

4.4 User Interface of the Developed Smart Traffic Light

Controller System 72

4.5 Result from the Developed Smart Traffic Light

Controller System 72

4.6 Limitations of the Developed System 84

xi

5 CONCLUSION AND RECOMMENDATIONS 85

5.1 Conclusion 85

5.2 Recommendations 86

REFERENCES 87

APPENDICES 89

xii

LIST OF TABLES

 TABLE TITLE PAGE

Table 2.1 : Comparison between True Count and Experiment

Count using 18

Table 2.2 : Comparison the Performance of Edge Detection

Techniques 20

Table 2.3 : Comparison between Methods Applied by Other

Researchers to Implement a Smart Traffic Light

Controller System 21

Table 2.4 : State Table for the Intelligent Traffic Light Controller

Proposed by Researchers (Agho, O et al, 2015) 25

Table 3.1 : Gantt chart for FYP 1 38

Table 3.2 : Gantt chart for FYP 2 38

Table 3.3 : Colour Models and Masks 43

Table 3.4 : State Table of the Traffic Light Controller System 55

Table 3.5 : Equipment and Components List with Price 62

Table 4.1 : Description for the Simulated Traffic Light Output 63

Table 4.2 : Data Transferred between Raspberry Pi and Altera DE2

 69

Table 4.3 : The Results Obtained in Test 1 73

Table 4.4 : The Results Obtained in Test 2 74

Table 4.5 : The Results Obtained in Test 3 75

Table 4.6 : The Results Obtained in Test 4 76

Table 4.7 : The Results Obtained in Test 5 77

xiii

Table 4.8 : The Results Obtained in Test 6 78

Table 4.9 : The Results Obtained in Test 7 79

Table 4.10 : The Results Obtained in Test 8 80

Table 4.11 : The Results Obtained in Test 9 81

Table 4.12 : Summary of the Results Obtained 82

xiv

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1.1 : Block Diagram of Altera DE2 board (Philipp, C. et al,

2019) 4

Figure 1.2 : Altera Development and Education Board (Terasic

Technologies, 2012) 5

Figure 1.3 : FPGA Design Flow (B. Dilip et al, 2012) 5

Figure 1.4 : UART Frame Format (Neha R. Laddha et al, 2013) 7

Figure 1.5 : Raspberry Pi 3 Model B+ 9

Figure 1.6 : Additive (RGB) and Subtractive (CMYK) Colour

Model 10

Figure 1.7 : HSV Colour Model (Andrey, 2014) 10

Figure 2.1: Architecture of the Smart Traffic Light System

(Sinhmar, P., 2012) 16

Figure 2.2 : Inductive Loop based Traffic Light Controller System

(Tom, H., 2001) 17

Figure 2.3 : Block diagram of Inductive Loop based Traffic Light

System 17

Figure 2.4 : Types of Inductive Loop Detectors (V.S. Rakesh et al,

2007) 18

Figure 2.5 : Proposed TLC Flowchart (Dilip, B. et al, 2012) 22

Figure 2.6 : Proposed TLC State Diagram (Dilip, B. et al, 2012) 23

Figure 2.7 : Hardware Implementation of FPGA based TLC (Dilip,

B. et al, 2012) 24

Figure 2.8 : Model of Traffic Junction (Agho, O et al, 2015) 24

xv

Figure 2.9 : Proposed Intelligent Traffic Light System Flowchart 26

Figure 2.10: Proposed Intelligent Traffic Light System State

Diagram 26

Figure 2.11 : Block Diagram of the Proposed System (Almawagani,

A.H.M., 2018) 28

Figure 2.12 : Vehicle Detection at Daytime Mode (Almawagani,

A.H.M., 2018) 29

Figure 2.13 : Vehicle Detection at Night-time Mode (Almawagani,

A.H.M., 2018) 29

Figure 2.14 : Prototype Model of the Proposed Smart Traffic Light

System 30

Figure 2.15: Background Reference Frame (left) and the Real Time

Frame(right) (Parthasarathi, V. et al, 2015) 31

Figure 2.16: Cropped Reference Frame (left) and the Cropped Real

Time Frame (right) (Parthasarathi, V. et al, 2015) 32

Figure 2.17: Cropped Frame at Certain Lane (left) and Red Colour

Detected (right) (Parthasarathi, V. et al, 2015) 33

Figure 2.18 : Blue Colour Detected (Parthasarathi, V. et al, 2015) 33

Figure 2.19 : Grayscale Image after Background Subtraction (left)

and the Enhanced Binary Image (right) (Parthasarathi,

V. et al, 2015) 34

Figure 2.20 : Boundaries of the Objects (Parthasarathi, V. et al,

2015) 34

Figure 3.1 : Block Diagram of the Proposed System Architecture 35

Figure 3.2 : General Flow of the System 36

Figure 3.3 : Flowchart of the Proposed STLC System. 37

Figure 3.4 : Image Processing Flowchart 39

Figure 3.5 : Pi Camera Module 40

Figure 3.6 : Camera’s Field of View 40

Figure 3.7 : Region of interests (ROIs) selection 41

Figure 3.8: Image before and after Histogram Equalization 42

file:///C:/Users/Tan/Desktop/FYP%20REPORT%20final_check_v1.docx%23_Toc17361414
file:///C:/Users/Tan/Desktop/FYP%20REPORT%20final_check_v1.docx%23_Toc17361414
file:///C:/Users/Tan/Desktop/FYP%20REPORT%20final_check_v1.docx%23_Toc17361415
file:///C:/Users/Tan/Desktop/FYP%20REPORT%20final_check_v1.docx%23_Toc17361415
file:///C:/Users/Tan/Desktop/FYP%20REPORT%20final_check_v1.docx%23_Toc17361419
file:///C:/Users/Tan/Desktop/FYP%20REPORT%20final_check_v1.docx%23_Toc17361420

xvi

Figure 3.9: The Binary Image before and after Morphological

Opening Operation 44

Figure 3.10: Binary image before and after Morphological Erosion

Operation 44

Figure 3.11: The Binary Image before and after Morphological

Closing Operation 45

Figure 3.12 : Centroid for Detected Vehicles 45

Figure 3.13 : UART Module (Mitu. R, 2017) 46

Figure 3.14 : Receiver Module FSM 48

Figure 3.15 : Transmitter Module FSM 49

Figure 3.16 : Install Python Serial Package 50

Figure 3.17 : Select Interfacing Options. 51

Figure 3.18 : Choose P6 Serial. 50

Figure 3.19 : Disable the Login Shell to Accessible Over Serial 51

Figure 3.20 : Disable the Serial Port Hardware 51

Figure 3.21 : Confirm the Configurations 51

Figure 3.22 : Reboot the System. 51

Figure 3.23 : Verify the ttyUSB0 52

Figure 3.24 : UART Connections 52

Figure 3.25 : Model of the Traffic Junction 53

Figure 3.26 : Phase 1 Traffic Signal 54

Figure 3.27 : Phase 2 Traffic Signal 54

Figure 3.28 : Phase 3 Traffic Signal 54

Figure 3.29 : Phase 4 Traffic Signal 54

Figure 3.30 : Flowchart of the Traffic Light Controller 56

Figure 3.31 : State Diagram of the Traffic Light Controller 57

xvii

Figure 3.32 : Schematic of the Traffic Light Controller 58

Figure 3.33 : PCB Design of the Traffic Light Circuit 59

Figure 3.34 : Headways Departing Trend 60

Figure 3.35 : Maximum and Minimum Green Light Period 61

Figure 4.1 : Test-bench for the Traffic Light Controller 64

Figure 4.2 : Simulated Output Waveform of the TLC 64

Figure 4.3 : Simulated Output Waveform of the TLC 64

Figure 4.4 : Test-bench for UART Serial Communication 65

Figure 4.5 : Output Waveform of the Transmitter (0000000 to

0010000) 65

Figure 4.6 : Output Waveform of the Transmitter (11101111 to

11111111) 66

Figure 4.7 : Output Waveform of the Receiver (0000000 to

0010000) 66

Figure 4.8 : Output Waveform of the Receiver (11101111 to

11111111) 66

Figure 4.9 : Red light LEDs Testing 68

Figure 4.10 : Yellow Light LEDs Testing 68

Figure 4.11 : Green Light LEDs Testing 68

Figure 4.12 : Setup for the UART Interface 69

Figure 4.13 : Prototype Model (View 1) 71

Figure 4.14 : Prototype Model (View 2) 71

Figure 4.15 : Prototype Model (View 3) 71

Figure 4.16 : User Interface of the System 72

xviii

LIST OF SYMBOLS / ABBREVIATIONS

Ω Ohm, resistance

V Voltage

I Current

en Start-up loss time

Sloss Total start-up loss time,

h Saturation headway

sloss Standard start up loss time

n Number of detected vehicles

f decrease factor

bps bits per second

STLCS Smart Traffic Light Controller System

TLC Traffic Light Controller

FPGA Field Programmable Gate Array

HDL Hardware Description Language

RXD Receive

TXD Transmit

UART Universal Asynchronous Receiver Transmitter

FSM Finite State Machine

GPIO General Purpose Input Output

RGB Red, Green, and Blue

HSV Hue, Saturation, and Value

OpenCV Open source Computer Vision

UI User Interface

xix

LIST OF APPENDICES

APPENDIX TITLE PAGE

 APPENDIX A Source code of Traffic Light Controller 89

 APPENDIX B Source code of UART Communication on Altera 93

 DE 2 board

 APPENDIX C Source code of Vehicle Detection Software 97

APPENDIX D Source code of UART communication on Raspberry 103

 Pi 3B+

1

1 INTRODUCTION

1.1 Background of Study

It is undeniable that traffic congestion is one of the main challenges in today’s society

and this issue is becoming serious day after day. Traffic congestion occurs when the

available street capacity is not able to accommodate the traffic demand and there are

several factors which cause traffic congestion, such as high rate of urban population

growth, rapid increase in the number of automobiles, ineffective road construction

strategies and management by government, and especially those non-adaptive traffic

light system which is becoming obsolete and unable to handle high traffic density

nowadays.

Traffic congestion has led to multiple negative impacts on our society and

environment, for instance, wasting the road users’ time and delays which reduces

productivity of employees, wasting the fuel and increasing the greenhouse gases

(especially CO2) emission which worsens the air quality and lead to global warming,

interferes or blocks the passage of emergency vehicles which are travelling to their

destination, etc. In order to overcome impacts from traffic congestion, the invention of

the Smart Traffic Light Controller System (STLCS) is vital to provide smooth motion

of vehicles in the transportation routes and also regulates the flow of vehicles through

the traffic intersections of many roads.

2

In Malaysia or any developing country, the traffic lights that are widely seen

nowadays consist of three lights: Green is the go sign, Yellow is the wait sign and Red

is the stop sign, while in some urban areas, there are some traffic light control systems

with countdown timers, which are able to improve the safety in the traffic by allowing

drivers to make better and safer traffic decisions based on the remaining time of red or

green light. Even though there are plenty of features that were implemented to the

traditional traffic light system to improve the traffic flow efficiency, these traffic light

control systems are still hardwired at the time of installation which means most of them

are pre-programmed for a fixed duration for every change in the signals. These

conventional traffic light control systems react accordingly to the traffic density on the

roads and always keep constant during its operation, sooner or later, it will become

one of the major causes that leads to several traffic issues due to the limited abilities

to control the high traffic density in urbanized areas.

To avoid those limitations, a STLCS with the feature of adapt itself to the

continuous changes is important. Therefore, the STLCS that is proposed will be image

processing based adaptive signal controlling with FPGA traffic light control system

which can fit in continuously changing traffic scenarios.

1.1.1 Image processing with OpenCV

OpenCV is an open-source computer vision and machine learning library introduced

by Intel more than a decade ago. Since then, a lot of software programmers have

contributed to the most recent library, therefore this makes OpenCV containing more

than 2500 optimized computer vision algorithms in 2009 (Ivan Culjak, 2012).

Nowadays, the latest version of OpenCV is 4.1.0 (OpenCV 4), this version is the most

functional, fastest and stable OpenCV ever because it is supported by a variety of

programming languages such as C++, Python, etc. and supported on many operating

platforms including Linux, Android, and macOS. (Alexander et al, 2014)

Image processing is a digital signal processing method that utilizes the image

processing algorithms in the OpenCV library to manipulate every pixel from an image

3

or video to obtain the required information. (Gholamreza Anbarjafari, 2014). Image

processing which treats input image or video frame as a 2D signals (x,y) and after this

apply signal processing operations to them and retrieve an output image that contains

the extracted characteristics associated with input image (Rose Mary, 2011). With the

rapid growth of technologies today, image processing becoming popular due to highly

applicable in various aspects of business, free and open source. Thus, it forms a core

research area within computer science and artificial intelligence.

Image processing includes the following steps:

• Import an image or video via acquisition tools which can either be software-

based source or hardware-based source.

• Manipulating and analysing the image using image processing algorithms.

• Output can be altered or extracted image.

In the proposed system, OpenCV installed Raspberry Pi 3B+ and digital

camera module are used to acquire the image, process, and estimate the number of

vehicles on each lane.

1.1.2 ALTERA Development and Education Board

Altera DE2 Development and Education board is an FPGA board that widely used for

the development of FPGA design and implementations. The purpose of the Altera DE2

is to provide users an ideal working station for design prototyping in multimedia,

networking, and storage. The state-of-the-art feature available within the DE2 board

offers a favourable practical environment for university and college courses, for

different levels of digital systems project design and development (Terasic

Technologies, 2012). In the Altera DE2 board FPGA board, it consists of Cyclone II

2C35 FPGA chip which offers low costs, high densities (35000 logic element (Les) in

a 672- pin package) and more features with exceptional performance. Therefore, all

the dedicated components mounted on the board like communication ports, switches,

4

display, I/O pins, etc. are connected to the pins of this chip so that the users can

manipulate all aspects of the board’s operation.

Altera DE2 with Cyclone II 2C35 FPGA consists of abundance of features and

interfaces to accommodate various application needs. Altera board provides an

adequate number of LEDs, switches, and seven-segment displays that suitable for a

simple project or experiment. While for the advanced project, there are SDRM, SRAM,

as well as liquid crystal display can be used. Furthermore, for a project that requires

I/O interfaces and processor, the user can easy to instantiate the Altera’s Nios

processor and communication ports such as RS-232, USB 2.0, and PS/2. Moreover,

Altera DE2 board also provides standard connectors for the line-in, microphone, line-

out audio decoder, video-in (TV) and VGA (10-bit DAC) for student or researcher to

conduct project related to analysis and processing of digital signal (Philipp, C. et al,

2019). Lastly, the DE2 board also offers USB 2.0 connectivity, 100/10 Mbps Ethernet

network, an infrared (IrDA) port, and an SD memory card connector.

Figure 1.1 : Block Diagram of Altera DE2 board (Philipp, 2019)

5

Figure 1.2 : Altera Development and Education Board (Terasic Technologies, 2012)

In the proposed system, the Altera DE2 FPGA Board is used to construct a

Traffic Light Controller (TLC). The design flow of the TLC using FPGA board is

shown in the figure below. In the circuit description process, Verilog HDL is used to

program the TLC software and then followed by the functional simulation and

synthesis. The design flow is followed until the time simulation and then the generated

file is downloaded into the Altera FPGA Board.

Figure 1.3 : FPGA Design Flow (Dilip, 2012)

6

1.1.3 Hardware Description Language (HDL)

Verilog is a Hardware Description languages (HDL) used to program the FPGA chips.

Verilog is relatively recent, and the programming concept is quite similar to the C

programming language, therefore, it allows the hardware design programmer to easily

familiarize and understand the programming styles that are used in Verilog. Moreover,

Verilog is a weakly typed programming language and it can be used to design digital

hardware at any level of abstraction. For example, Behavioural level, Register-transfer

level, and Gate level. In Behavioural level, the behaviour of a system is described with

a set of instructions or algorithms that are executed in sequence, for example, Verilog

uses always block, functions, and task to perform sequential instructions in

behavioural level design. Furthermore, in the Register Transfer Level, the

characteristic of a digital system is described using operations (i.e. always, assign, etc).

Operations in the register transfer level play around with the data transfer between the

registers, and it must be synchronized with the clock cycle. In Gate level, it refers to

the logic level design of a digital system that comprises a network of gates and registers

instanced from the technology library. It uses predefined logic primitives like NOT,

AND, NOR, and other gates in the design.

Nowadays, one of the two most commonly-used languages in digital hardware

design is Verilog HDL and the other is VHDL. In this project, Verilog HDL is used to

write the TLC and UART serial communication program into the Altera DE2 board.

The reason Verilog HDL is selected because Verilog programming is easy to

understand and write compare to VHDL since the programming concept is quite

similar to C programming.

7

1.1.4 Universal Asynchronous Receiver Transmitter (UART)

UART is a communication interface that widely used for budget, short distance, and

offers moderate data exchange speed between two computers or between computer

and peripheral devices. UART is designed for the asynchronous serial communication

by serializing a byte of parallel data (8-bits) at the transmitter with same extra overhead

bits using transmitter shift register (TSR) and vice versa at the receiver site (Neha R.

Laddha et al, 2013). UART transmit a byte of data sequentially one bit at a time from

the transmitter and receive the byte of data at the destination by decoding sequential

data with control bits. Since the entire transmission processes does not associate with

clock input from source, hence it is termed as asynchronous communication.

UART communication requires only two independent lines (RXD, TXD) for

full-duplex data communication. TXD is referred to transmit side, the transmission

line is at idle as not data to transmit. While the RXD is referred to receive site, which

is the input of the UART device. Since the type of data used for UART communication

is in binary form, therefore are only two states in the signal lines; HIGH (logic 1) and

LOW (logic 0).

Figure 1.4 : UART Frame Format (Neha, 2013)

From the UART frame format above, when the transmitter is idle, logic 1 state

will be transmitted continuously to the receiver site. When a byte data is given to the

UART for asynchronous transmission, a “START BIT” with logic 0 (LOW) will be

added to the beginning of the byte that is to be transmitted and function of this “START

BIT” is used to tell the receiver module that 8-bit data (1 byte) is ready to be received

and at the same time, the baud rate generator will synchronize the receiver’s clock with

8

the clock in the transmitter. After the “START BIT” the Least Significant Bit (LSB)

of data bits are being sent first, an 8-bit “Message BIT” is sent bit by bit until the Most

Significant Bit (MSB). After the 8-bit binary data has been sent to receiver, a Parity

Bit may be added at the end of transmitted data that is used for error checking. After

this, a “STOP BIT” is sent by the transmitter to the receiver to inform the receiver that

the data was completely transferred. In the receiver, regardless of whether the data was

received correctly or not, the UART will just ignore the START BIT, PARITY BIT

and STOP BIT.

1.1.5 Raspberry PI 3B+

The Raspberry Pi (RPi) is the world’s most inexpensive, credit-card-sized single-board

computer that can be plugged into a computer monitor, and uses peripheral devices

like keyboard and mouse. RPi is one of the most popular microprocessors that is widely

used by the students in Universities to carry out their projects that are related to image

or video processing, IoT based application, robotics controller, server application, etc.

Raspberry Pi Foundation officially provides an optimized OS, Debian based Raspbian

for developer to interface with the hardware, but users can install several third-party

OS like Ubuntu, Windows 10 IoT Core, RISC OS, etc (Umesh Lokhande, 2017). The

Raspberry Pi with installed Raspian OS have GUI that capable of doing everything

you would expect from a desktop, from document editing, internet browsing, and

playing games to simple graphic design. Although the performance of the RPi is

incomparable with a typical laptop or desktop, it gives the user flexibility to access

over the on-chip hardware, for example GPIOs can be used for developing an

application by connecting to the external components like analogue to digital converter

(ADC), LEDs, motor, etc.

9

Raspberry Pi 3B+ Specifications:

• Broadcom BCM2837 64-bit Quad-Core 1.4GHz

• 1GB RAM

• 2.4GHz and 5GHz Wireless LAN and Bluetooth 4.1

• 4 x USB ports (USB 2.0)

• Composite video port and 4 pole Stereo output

• Full size HDMI port

• 15 pins CSI camera port

• Micro SD slot for storing operating system and data

• Supports 40 GPIO Pins

Figure 1.5 : Raspberry Pi 3 Model B+

1.1.6 Colour Model

Colour Model is a colour system that utilizes abstract mathematical model to create a

full range of colours from the three primary colours which are Green, Red, and Blue

colour (RGB). There are two categories of colour models, the additive and the

subtractive model. Each colour model serves different purposes because of slightly

different in creatable colour range which is shown in the figure below. In additive

colour model like RGB, the colours perceived are the result of transmitted light,

therefore, the additive model requires light to create colour, and usually used in digital

10

display. While for subtractive colour models like CMYK, the colours perceived is the

result of reflected light, as a result, subtractive colour model is uses in printing inks.

Figure 1.6 : Additive (RGB) and Subtractive (CMYK) Colour Model

HSV (hue, saturation, and value) is a subset of RGB colour model, but it is an

improved version of RGB colour model which is capable to describe the colours in

terms of hue, saturation, and value, therefore, this colour model is useful in image

processing tasks regarding to the colour-based segmentation. From Figure 1.7 below,

the cylindrical shape of the HSV colour model tells that the variation of the saturation

is determined by the percentage of white component adding into the colour space, high

saturation represents no white component (shows pure colour), while unsaturated

represent shades of grey. Moreover, hue represents the colour type and it ranges from

0 to 360° with red at 0, blue at 240° green at 120° and so on. While for value channels,

it describes the brightness or intensity of the colour.

Figure 1.7 : HSV Colour Model (Andrey, 2014)

11

1.2 Problem Statements

As urbanization increases, the conventional traffic light control system becomes

insufficient and incapable to handle a huge amount of traffic due to the pre-

programmed traffic light algorithms and management system. As a consequence, road

users have to face the following drawbacks:

1. Heavy traffic jams.

-Heavy traffic congestion has substantially increased at certain lanes before and

after office hours, however, the conventional traffic light system still provides a

fixed duration of green signal to the lanes that having congestion and the lanes that

free of vehicles, as a result, it leads to heavy traffic jam.

2. Waiting for empty roads

-There are times where there is no cars on certain intersecting roads, but the traffic

light still give the green signal for that road. This is because the existing traffic light

system is pre-programmed and the road users need to wait until the light turns to

green and this is wasting the time of the road users.

3. Requires more manpower to control the traffic

-During certain festivals, there will be a higher traffic flow on roads. Owing to the

constant timer in the existing traffic light system, it will lead to serious traffic

congestion. As a result, a lot of manpower is required to control and maintain the

traffic order.

Thus, to minimize the mentioned drawbacks above, there is a need to develop

a real-time operating smart traffic light controller system (STLCS) that able to provide

a proper timing signal that depends on continuously changing of traffic density at the

traffic junction. Accurate to detect and count the vehicles and signal timing calculation

according to traffic density will be the evaluation points of the performance for the

proposed intelligence traffic light system.

12

1.3 Aims and Objectives

This project aims to design and develop an adaptive Smart Traffic light Control System

(STLCS) to improve the efficiency of the existing automatic traffic light signalling

system by reducing the waiting time of each lane of the vehicles and maximize the

flow of vehicles across a traffic intersection given the dedicated timing algorithms to

calculate the green time.

The objectives in this project are:

i. Design and develop a workable automatic Traffic Light Control System

using Altera DE2 board with Verilog programming.

ii. Familiar with the knowledge related to image processing and utilize the

techniques in the project using Raspberry Pi, OpenCV library and Python

programming.

iii. To implement a communication system on both Raspberry pi and Altera

 DE2 board.

iv. Implement a workable Smart Traffic Light Controller System with

prototype model.

13

1.4 Thesis Organization

Chapter 2 provides a brief review of the approaches as well as studies that have been

done by other researchers. Throughout this chapter, we are able to identify the

invaluable source of knowledge from other people who is working in the same field

and the gaps in current knowledge, so that we can avoid reinventing something that

has already been done. In Chapter 3, methods and approaches were described, and this

allows us to have more systematic and clearer implementation and design system to

accomplish the proposed project. In Chapter 4, the outcomes of this proposed

approaches were attached and discussed. Lastly, Chapter 5 gives a summary of this

project as well as discusses on some directions for future work.

14

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, few papers including a variety of approaches and techniques used to

implement a smart traffic light controller were researched and reviewed. Literature

reviews of these papers are classified into three parts which include recent techniques

used to develop a Smart Traffic Light Controller, FPGA based Traffic Light Controller

System and Image Processing based Traffic Light Controller System. In these papers,

different approaches that were used in the implementation of those traffic light systems

will be identified, and the advantages and disadvantages of the techniques that is used

in the papers will also be discussed. Furthermore, places where new contributions as

well as improvements of those limitations could be made was found to avoid those

limitations recurring in an endless cycle. Lastly, a brief summary of the literature

review is shown in Table 2.3 below.

2.2 Background of Study

2.2.1 Smart Traffic Light Controller System

Smart Traffic Light Controller System (STLCS) is always an active research topic due

to serious traffic problems that worsening the transportation system in urban cities.

The structure of STLCS is sophisticated because it integrates various systems, for

15

instance, detecting system, adaptive control system, communications system, etc.

those systems are combined for the purpose of providing efficiency, safety, mobility

and comprehension on traffic control. There is a plethora of researchers from different

disciplines collaborating to find out feasible solutions to reduce traffic congestion. In

this chapter, proposed methodologies and techniques that are used to construct an

STLCS using microcontroller, manufactured devices, and sensors in the literature will

be discussed and analysed.

2.3 Research on Techniques applied in Traffic Light Controller System

The following are some journal researched which contain the different techniques are

applied to implement a STLCS.

2.3.1 Review of Journal: Intelligent Traffic Light and density control using IR

sensors and microcontroller by Sinhmar, P.

Based on the paper (Sinhmar, P., 2012), the researcher implemented an intelligent

traffic light system using 89V51RD2 (MCS-51 family) microcontroller with IR

transmitters and receivers as traffic density sensing device. In her proposed system,

assembly language was used to program the traffic light system into the

microcontroller and synchronized it with the external hardware - IR sensors. The IR

sensors were mounted on either side of roads respectively and this enables the

microcontroller to make a comprehensive timing decision based on the number of

vehicles detected by sensors at each intersecting road. During the operation, the IR

system will be triggered whenever any obstacle like vehicles passes on the road

between the IR transmitter and receiver. After this, the microcontroller will increase

the count number of vehicles and the number will be stored in microcontroller’s

memory. Based on the different vehicles count, the microcontroller will define

different ranges for each traffic light delays and kept update the delays accordingly.

In this research, the system will record the number of vehicles count in memory

at a predefined recording interval on real time basis. Therefore, this indicates the

16

intelligent traffic light controller has a database system to store the number of vehicles

at a specific time interval. These recorded data can be downloaded from the

microcontroller to the PC through the serial communication method so that the user

can analyse the traffic condition at respective traffic lights connected to the system.

The administrator can perform some function to traffic light such as update the light

delays or algorithms parameters, erase the memory and download the data by using

the command system in the microcontroller. Figure 2.1 below illustrates the

architecture of the Intelligent Traffic Light Controller using IR sensors developed by

Sinhmar, P.

Figure 2.1: Architecture of the Smart Traffic Light System (Sinhmar, 2012)

2.3.2 Review of Journal: Traffic Control System Using Inductive Loop Detector

by Rakesh, V.S. et al

Based on the journal (Rakesh, V.S. et al, 2007), researchers implemented a TLC

system using the inductive loop detector that is placed below the surface of the

roadway which as shown in Figure 2.2 below.

17

Figure 2.2 : Inductive Loop based Traffic Light Controller System (Tom, 2001)

In the proposed system, the inductive loop was supplied with an AC current,

this makes the inductive loop system act as a tuned electrical circuit and lead-in cable

are the inductive elements (V.S. Rakesh et al, 2007). When a vehicle enters the

inductive loop, the electromagnetic field produced by the AC current in the loop sensor

will induce a small current in the vehicles. According to Lenz’s law, the induced eddy

current in the vehicle will generate its own electromagnetic field that opposite direction

to the electromagnetic field from the sensor coil, this presence of eddy current will

reduce the inductance of inductive loop. As a result, the decrease in inductance tends

to reduce the impedance and trigger the oscillator circuit to send a pulse signal to the

data acquisition system to indicate the presence of a vehicle and then used as an input

for traffic light control unit. Figure 2.3 below shows the block diagram of the inductive

loop based TLC system.

Figure 2.3 : Block Diagram of Inductive Loop based Traffic Light System

(Rakesh, 2007)

Rakesh, V.S. et al pointed out that the change in amplitude of loop inductance

in an inductive loop will give the corresponding information such as type (car, bus, or

18

bicycle), speed, count, and length of the vehicle to the traffic control unit. Thus,

researchers conducted studies to analyse three types of inductive loop structures which

as shown in Figure 2.4 below. From the Figure 2.4, the small loop designated as Loop

1 was used to detect small vehicles like bicycle, motorbike, etc., whereas the Loop 2

was used to detect the large size vehicles like cars, buses, trucks, etc. However, there

is a limitation in both Loop 1 and Loop 2. For example, when bicycles or other small

size vehicles pass over the Loop 2 detector, there will be no changes in the loop

inductance or induced current, as a result, this may lead to missing detection and

eventually affect the outcome of traffic light controller. Hence, researchers developed

a new inductive Loop 3 to overcome the limitations by merging both inductive Loop

1 and 2. Since inductive Loop 3 comprised characteristics of both Loop 1 and 2

structures, therefore, Loop 3 can detect any vehicle regardless of the size of the vehicle

passing over.

Figure 2.4 : Types of Inductive Loop Detectors (Rakesh, 2007)

Table 2.1 below shows the result that was done by researchers to compare the

true and experimentally vehicle count using their new inductive Loop 3 in the traffic

light controller system. From the result, the proposed system is able to detect the

vehicle with around 97% accuracy.

Table 2.1 : Comparison between True Count and Experiment Count using

 Inductive Loop Detector (V.S. Rakesh et al, 2007)

Vehicle type True count

Experimental count

Bicycle 10 9

Car 10 10

Bus 10 10

19

2.3.3 Review of Journal: Intelligent Real Time Traffic Controller Using Image

Processing by Nidhi D. Agrawal et al.

As for the research (Nidhi D. Agrawal. et al, 2013), the researchers applied image

processing techniques in traffic light management system by using digital cameras to

perform real-time monitoring on the traffic condition on intersecting roads. In this

research, there are several image processing operations used to extract the information

from the video frames to detect the vehicles.

1. Image Acquisition: Uses a web camera to monitor traffic status. When there are no

vehicles on the road, the image of the road is captured as a reference image for other

image processing algorithms, for example, background subtraction or frame

differencing. Next, the acquired image is converted into grayscale and to a binary

image.

2. Image Enhancement: Involves operation like brightening, sharpening, etc.

, to extract certain detail and features from an unfavorable image.

3. Image restoration: Remove or reduce the noise that degrades an image to improve

the outcome for further image operations.

4. Image segmentation: Partitioning an image into its constituent objects. The

segmented output data is used for analysis or served for representation.

5. Morphological processing: Involves two basic operations Erosion and Dilation.

 Erosion operation uses to shrink the size of the foreground mask object while

dilation operation uses to expand the size foreground mask.

The proposed intelligent traffic light controller system by Nidhi D. Agrawal et

al combines both traffic surveillance and traffic control technologies. This research

emphasized the different types of edge detection techniques that are used to detect the

presence of the vehicles by identifying and locating the boundaries of the vehicles in

every frame (Nidhi D. Agrawal. et al, 2013). From Table 2.2 below, researchers

compared the performance of edge detection techniques such as Boolean, Marr-

20

Hildreth, Sobel, Prewitt and Canny edge detection used in vehicle detection. From the

result, it is known that by using appropriate operations, the performance of vehicle

detection can be highly accurate.

Table 2.2 : Comparison the Performance of Edge Detection Techniques

 (Nidhi, 2013)

Image

sample

Actual

no.

Boolean Marr-

Hildreth

Sobel Prewitt Canny

1 4 2 6 2 2 4

2 3 0 4 1 1 2

3 4 2 3 2 3 4

4 5 2 3 2 3 6

5 5 2 3 3 3 5

6 7 3 5 3 2 6

7 4 1 5 1 1 4

8 5 2 5 3 2 5

9 3 0 3 0 1 2

10 6 4 3 2 3 6

Accuracy 39.13% 84.78% 41.30% 45.65% 93.47%

2.3.4 Comparison of the Techniques Used by Other Researchers

In this chapter, it can be concluded that traffic sensing devices are important to indicate

the presence of vehicles and feed the information to the smart traffic light controller

system for adaptive signal control. From the research above, the vehicle sensing

devices can be categorized into two types, intrusive and non-intrusive types (V.S.

Rakesh et al, 2007). Inductive loop detector proposed by V.S. Rakesh et al is one of

the intrusive sensors that are placed below the surface of the roadway, whereas infrared

(IR) sensors proposed by Sinhmar, P. and video image processor by Nidhi D. Agrawal

et al belong to non-intrusive type that are installed above the roadway. A comparison

among those sensors used in the smart traffic light controller system from all the paper

is in the Table 2.3 below.

21

Table 2.3 : Comparison between Methods Applied by Other Researchers to

Implement a Smart Traffic Light Controller System

Author Type of sensor

Pros

Cons

P. Sinhmar,

(2012)

IR sensors

-Easy to construct.

-Detection system is

 inexpensive.

- System is dynamic

 since the proposed

 system has ability to

 collect the data, and

 modified the algorithm

 parameters.

- Sensors need to be

 well protected or

 secured in a safe

 place.

-Vehicle counting

 may not accurate

 due to: pedestrian

 pass through, two

 vehicles across in

 parallel or vehicle

 stop at between the

 sensors.

Rakesh,

V.S., and

Shaithya, V.

(2007).

Inductive loop

detector

-High accuracy in

 vehicle detection.

- Detection will not be

 affected by weather.

-Able to count and

 determine the types of

 vehicle.

- Expensive and

 difficult to install.

- Maintenance

 process may obstruct

 the traffic flow.

Nidhi, D. A.

and Amit, S.

(2015).

Image

processing

-High accuracy.

-Relatively inexpensive

 and easy to implement.

-Can use for both

 surveillance and traffic

 control system at the

 same time.

- Image quality and

 performance of vehicle

 detection can be

 improve by utilize

 suitable image

 processing algorithms.

-Image or video

 quality is depends

 on digital camera

 used and affected by

 the weather.

22

2.4 FPGA Based Traffic Light Controller System

2.4.1 Review of Journal: FPGA Implementation of an Advanced Traffic Light

Controller using Verilog HDL by Dilip, B. et al.

Based on the research (Dilip, B. et al, 2012), a low-cost advanced TLC was

implemented in the hardware using Spartan-3E FPGA with Verilog HDL

programming. In this research, a few design steps were conducted by researchers

during the implementation of the FPGA based TLC system. Firstly, a TLC flowchart

which is as shown in Figure 2.5 below was constructed. TLC flowchart is critical in

the TLC implementation process because it illustrates the predefined sequential order

of the light signals that are interchanged between the traffic lights and also provides a

general mapping for the programmer in the design regarding the flow of the program.

From the TLC flowchart below, the criteria that must be included in the TLC flowchart

are defining the action, for example which colour of the light should be turned ON or

OFF for certain traffic light, describing the sequence of the actions, for instance, which

traffic light should light up the green light first then follow by the next traffic light

(phase) and also the sequence of the three lights: red, yellow and green in each traffic

light. Lastly, arrow symbols were used to show the sequence and the relationship

between them.

Figure 2.5 : Proposed TLC Flowchart (Dilip, 2012)

23

After designing the general flow of TLC, the TLC state diagram was used to

illustrate the behaviours or actions of the system. From the state diagram below, the

proposed TLC system composed of a finite number of states that represent the different

actions in the system. For example at state cnt=00, dir=00, green light in the north

traffic light will be turned ON while red signal light in the other traffic lights will be

turned ON, while at state cnt 00, dir 01, the green light of the east traffic light will light

up whereas the other traffic lights will turn ON the red signals. The transition between

those states will occur when there are changes in input condition or triggered related

variable like timing out.

Figure 2.6 : Proposed TLC State Diagram (Dilip, 2012)

.

The final step is the hardware implementation. In this step, the designed state

machine of the TLC is described or coded using the Verilog Hardware Description

Language and is dumped into Spartan-3E FPGA trainer kit. The I/O pins from the

FPGA were connected to the external LEDs as shown in Figure 2.7 below.

24

Figure 2.7 : Hardware Implementation of FPGA based TLC (Dilip, 2012)

2.4.2 Review of Journal: Field Programmable Gate Array Based Intelligent

Traffic Light System by Agho, O et al.

In this journal (Agho, O et al, 2015), researchers designed and implemented an FPGA

based intelligent traffic light controller system using Xilinx Spartan-6 LX16 FPGA

with the aid of infrared (IR) sensors. In the proposed system, the IR sensors play crucial

roles to detect the vehicles at each intersecting road and send the information to the

TLC system, the FPGA based Intelligent Traffic Light Controller System will then

respond accordingly to adjust and achieve the optimal traffic signal setting so that the

vehicles discharge rate is maximized. In this paper, each oncoming lane in the traffic

junction was installed with infrared transmitter and receiver sensors which is as shown

in figure below.

Figure 2.8 : Model of Traffic Junction (Agho, 2015)

25

The proposed traffic light system operates depends on the vehicles detected by

the IR sensors. When there is no vehicle detected in each lane, all the red traffic signals

will be ON. While if there is a vehicle detected in one lane, the traffic light will turn

ON green light only for that lane, and at the same time, other traffic lights will remain

red. If vehicles are detected in every lane, the traffic will be allowed to move in a

sequence: North (highest priority), East, South and then the West direction. The

proposed traffic light controller consists of two major components: using state machine

to keep track on the current state and the next state of the traffic and using counter to

control the transition from one state to another. In the design process, finite state

machine design was used by the designers to define the behaviour of the system into

several states and then sequentialize together. From the table below, it shows a state

table of the proposed traffic light system by researchers based on specifications above.

Table 2.4 : State Table for the Intelligent Traffic Light Controller Proposed by

Researchers (Agho, O et al, 2015)

State State Description

NORTH EAST SOUTH WEST

S0 All red signals on Red Red Red Red

S1 NORTH

Green Red Red Red

S2 EAST

Red Green Red Red

S3 SOUTH

Red Red Green Red

S4 WEST

Red Red Red Green

S5 NORTH

Yellow Red Red Red

S6 EAST

Red Yellow Red Red

S7 SOUTH

Red Red Yellow Red

S8 WEST

Red Red Red Yellow

After constructing the state table, the flow of each state was described using a

flowchart and state diagram as shown in the Figure 2.9 and Figure 2.10 below.

26

Figure 2.9 : Proposed Intelligent Traffic Light System Flowchart (Agho, 2015)

Figure 2.10: Proposed Intelligent Traffic Light System State Diagram (Agho, 2015)

27

2.4.3 Summary for FPGA based Traffic Light Controller System

From the papers above, most of the FPGA based TLC system was developed using a

finite state machine (FSM) design. This is because simplicity makes any system easy

to be designed or implemented and quick in execution. To summarize the research

above, there are a few processes involved in FSM design.

1) Separate the actions or outputs of the system into a finite number of states.

2) Draw a state table to organize all the current and next states.

3) Construct a general flowchart that illustrates how the system flow.

4) Build a state diagram that shows the order and transition between the action states.

5) Use hardware description language to program the system.

6) Simulate, test and optimize the program.

2.5 Image Processing Based Traffic Light Controller System

2.5.1 Review of Journal: Design of Real Time Smart Traffic Light Control System

by Almawagani, A.H.M.

Based on the journal (Almawagani, A.H.M., 2018), a STLCS using image processing

techniques to control the traffic signal was implemented with the aid of MATLAB

software and Arduino microcontroller. The use of MATLAB software in this system

is focused on the image processing part, while the Arduino microcontroller was used

as a TLC. The proposed STLCS consists of four web cameras that are connected to a

computer with installed MATLAB software. After this, series image processing

algorithms in MATLAB software was utilized to process the video frames from each

camera for vehicle detection and counting. The number of vehicles detected is used as

an input parameter of timing algorithm to calculate and allocate a proper green time

for particular lane to discharge the vehicle. If a certain road is high in traffic load, the

system will calculate and assign a longer time for this crowded road compared to the

other less congested roads. Figure 2.11 below shows the block diagram of the

developed system.

28

Figure 2.11 : Block Diagram of the Proposed System (Almawagani, 2018)

Feature of the proposed system is able to adjust its timing algorithms with time

changes; daytime and night-time. In daytime, system will carry out daytime mode. In

the daytime mode, the system will apply background subtraction algorithms to obtain

a foreground mask between the background reference image and continuous moving

frames. After this, RGB to grayscale conversion will be used to convert 3 channel

foreground image (red, green and blue) into 1 channel image (black and white) to

reduce computation power for further image processing operation. Furthermore,

filtering techniques will be applied to remove the noises and lastly, bwboundaries

function is used to find the boundaries of the detected object and then count the number

of object. However, in the night-time, the researchers had proposed a solution to cope

with insufficient light condition issue and they called it night-time mode. In night-time

mode, it operates quite similar to daytime mode, the system will detect the front

headlights of vehicles rather than direct detect and count the vehicles. Since every car

has two headlights, the number of detected headlight divided by two will be the number

of the car. Figure 12 and Figure 13 shows the vehicle detection at daytime mode and

night-time mode

29

Figure 2.12 : Vehicle Detection at Daytime Mode (Almawagani, 2018)

Figure 2.13 : Vehicle Detection at Night-time Mode (Almawagani, 2018)

Lastly, the proposed system will use the estimated number of vehicles inside

the lanes to calculate the total time to complete one cycle. After the cycle period was

calculated, the weight factor method was used to divide the cycle period into each lane

30

according to the number of vehicles detected. Figure 2.14 below shows the prototype

of the proposed system.

Figure 2.14 : Prototype Model of the Proposed Smart Traffic Light System

(Almawagani, 2018)

2.5.2 Review of Journal: Smart Control of Traffic Signal System using Image

Processing by Parthasarathi, V. et al.

As for the journal (Parthasarathi, V. et al, 2015), the researcher implemented a smart

traffic signal system using the image processing techniques. In the system, the web

camera was mounted at a certain height and provides real-time monitoring on each

intersecting lanes. After this, the real time frames of the traffics obtained from the

webcam are transfer to the PC with MATLAB installed for video processing. In video

processing, the traffic density estimation was done by calculating the number of

vehicles in each lane. In addition, throughout this research, Parthasarathi, V. et al

pointed out that the emergency vehicles get stuck in traffic congestion is a serious issue

nowadays, thus they added a feature in their system which able to detect the emergency

vehicles like ambulance. In this research, researchers come out with a solution with

regards to traffic density and the presence of emergency vehicles by setting a signal

31

priority condition to the traffic light system from high priority to low priority as shown

below.

1. If multiple emergency vehicles are detected in a different lane, the lane with

 emergency vehicle closest to the traffic signal will be given highest priority.

2. If an emergency vehicle is detected, the signal priority will be given to that lane.

3. If no emergency vehicle is present, the signal priority is given to the lane with the

 highest traffic density.

4. If traffic density is the same in the different lanes, no signal priority is given to any

lane and the traffic signal will follow the pre-set timer.

With regards to the image processing techniques involved in this system, these

techniques includes the following steps. First, image acquisition in which live stream

frames of the road were acquired from the web camera and a background image with

no traffic load will be taken as a reference frame. The figures below shows the

background reference frame and the current frame obtained.

Figure 2.15: Background Reference Frame (left) and the Real Time Frame (right)

(Parthasarathi, 2015)

32

Next, crop the region of interest from the frames, so that the system will focus

on the cropped region and eliminate the details in unwanted regions. In this system,

lanes of roads were cropped from the reference frame and real time frame and were

used as the region of interest. Figure 2.17 and Figure 2.18 below shows the region of

interest of the reference frame and real-time frame.

Furthermore, for emergency vehicle detection, the image segmentation

operation based on colour will be carried out to detect blue and red colour from the

siren of an ambulance. If there is a red and blue colour object detected, the distance

between red and blue objects is calculated. If the calculated distance is fall within the

predefined threshold distance, the system will be considered it as the presence of an

ambulance and gives signal priority to that lane. From the Figures below, it shows a

cropped frame from a certain lane and red colour and blue colour detected using image

segmentation technique.

Figure 2.16: Cropped Reference Frame (left) and the Cropped Real Time Frame

(right) (Parthasarathi, 2015)

33

Figure 2.18 : Blue Colour Detected (Parthasarathi, 2015)

Next, for traffic density estimation, the reference frame and real time frame

were converted to grayscale image using RGB to grayscale conversion algorithm and

the background subtraction method was used to subtract grayscale real time frame with

a grayscale reference frame to obtain foreground masks which indicate the presence

of vehicles on the road. Furthermore, several morphological operations are applied to

remove the unwanted noises existing in the 8-bit grayscale image. After this, the

enhanced image is further converted to binary image and filtered by Gaussian filter

operation to acquire only vehicles on the road.

Figure 2.17: Cropped Frame at Certain Lane (left) and Red Colour Detected (right)

(Parthasarathi, 2015)

34

Figure 2.19 : Grayscale Image after Background Subtraction (left) and the Enhanced

Binary Image (right) (Parthasarathi, 2015)

Lastly, a specific image operation was used to draw the boundaries of white

regions in a binary image. The number of boundaries found will be used to indicate

the number of vehicles. From Figure 2.24 below, it shows the boundaries of the white

region was connected.

Figure 2.20 : Boundaries of the Objects (Parthasarathi, 2015)

35

3 METHODOLOGY

3.1 Proposed Project Architecture

 Hardware Modules: Software Modules:

Camera

module

Raspberry Pi

3B+

USB to

RS232

Serial cable

ALTERA

Cyclone II-

DE2 Board

Red

LEDs (4)

Yellow

LEDs (4)

Green

LEDs (8) Monitor Mouse and

keyboard

Figure 3.1 : Block Diagram of the Proposed System Architecture

• Spyder IDE

• ModelSim

• Quartus II

• Raspberry Pi 3B+

• Traffic lights circuit

• Serial cable

• Monitor

• Camera module

• Altera DE2 Board

36

3.2 System Working Principle

3.2.1 General flow of the system

The Figure 3.2 above shows the general flow of the developed Smart Traffic Light

Controller System (STLCS) with image processing. In the first step, a wide-angle

camera module is used to monitor and capture the traffic lanes at the junction. Next,

image processing techniques such as image enhancement, restoration, morphological

process, segmentation are applied to the captured image for queuing vehicle detection

and count on particular traffic lane. Moreover, the number of vehicles counted on a

particular lane is further used in the dedicated timing algorithm to calculate the proper

green time to maximize the traffic flow across the junction. After timing calculation,

the calculated time is sent via UART serial communication to Altera DE2 which

function as TLC, the TLC will display the green light according to the received time

value. After the green light, the yellow light will be turned ON and the Altera DE2

Board will send a request signal to Raspberry Pi to perform timing calculation for the

next turn of green light and return the calculated value to Altera DE2 to display it.

These processes are repeated to provide optimal traffic flow at the junction.

Image

Acquisition

and

Processing

Vehicle

detection

and

counting

Timing

Calculation

Send signal back

to Raspberry PI

for next turn of

detection and

timing calculation

Altera DE2 turn

ON green LED

based on the

received value

Send calculated

time from

Raspberry PI to

Altera DE2

Figure 3.2 : General Flow of the System

37

3.2.2 Flowchart of Proposed System

Figure 3.3 : Flowchart of the Proposed STLC System.

38

3.3 Project management

The schedule of the project is shown in the Gantt chart below.

Table 3.1 : Gantt chart for FYP 1

Activity/

week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project

Proposal

Implement

project idea

Literature

Review

Methodology

Oral

presentation

Table 3.2 : Gantt chart for FYP 2

Activity/ week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project work

(continue)

Results and

Discussions

Conclusion and

recommendations

Report Checking

Final Report

Submission

Oral Presentation

39

3.4 Image Processing Operations

3.4.1 Flowchart of Image Processing Operations

Figure 3.4 : Image Processing Flowchart

40

3.4.2 Image Acquisition

Image acquisition is an action to retrieve an image from the external source. In the

proposed system, image acquisition is performed by the hardware-based source which

means the Pi camera module as shown in Figure 3.5 is used to capture the real-time

image of intersecting roads. Image acquisition plays an important role and a few

precautions need to be taken before proceeding to coming image processing steps. First,

the camera module must be placed at a position to ensure that the camera’s field of

view covers the junction roads which is as shown in Figure 3.6 below. Next, owing to

the limited focal length, the lack of autofocus abilities, and the relatively low resolution

of the Pi Camera, the distance between the camera module and traffic prototype model

becomes critical which may affect the image clarity and give rise to some image noise

that cannot be removed through image processing techniques. Therefore, the position

of the camera is vital and required gradual trial and error attempts during the

installation process for the better detection process.

Figure 3.5 : Pi Camera Module

Figure 3.6 : Camera’s Field of View

41

3.4.3 Region of interest (ROI)

Region of interest (ROI) is referred to a portion or region of an image that consists of

useful or meaningful information and may be extracted out with the need image

operations. Region of interest (ROI) is a useful function in this smart traffic light

project because it is used to provide the boundaries for vehicle detection and ignore

the interferences or noises appearing outside the boundaries. In this project, ROIs are

created on each of four intersecting roads at the junction which is as shown in Figure

3.7 below. Vehicles that are present within the ROIs created will be detected using

segmentation operation.

Figure 3.7 : Region of interests (ROIs) selection

3.4.4 Image Enhancement (Histogram Equalization)

Histogram Equalization is an image enhancement technique that modifies or adjusts

the image intensities to have a better contrast image. The working concept of histogram

equalization is basically “equalizing” the original intensity histogram, so that the

output image contains a uniform distribution of intensities. From Figure 3.8 below,

before applying the histogram equalization, the colour intensity of a colour image is

low in dynamic range which means a certain range of intensity levels are held by many

pixels than other intensity levels. As a result, the image shows fewer details. However,

when the histogram equalization is applied, it will alter the image by adjusting the

42

probability density function (PDF) of the original histogram so that all the range of

intensity levels are spread to each pixel almost equally, as a result, the image will have

more uniform distribution of intensities, improved image quality, enhanced brightness

and at the same time more details in low illumination image.

Figure 3.8: Image before and after Histogram Equalization

3.4.5 Colour-Based Segmentation

Colour-based segmentation is a segmentation technique that partition an image into

different regions such that each region shares homogeneous colours correspond to

useful information for the objects in the image. In other words, each region defines a

class of pixels that has similar colour properties. In this project, colour segmentation

is conducted using HSV (Hue, Saturation, and Value) colour model, because HSV is

able to separate colour from different intensity which is robust to remove the shaded

region and adapt to different illumination, thus, it is able to improve the accuracy and

effectiveness in the detection process.

In Table 3.3 below, it shows an RGB image that is converted to the HSV colour

model. After this, different range of hue, saturation and, value are adjusted to create

multiple masks for each RGB, white and black colour. The output HSV colour

segmentation will be a binary image which HIGH or 1 represent the pixels within the

43

threshold while the remaining pixels which are not within the threshold will be set to

0 or LOW.

Table 3.3 : Colour Models and Masks

RGB colour image HSV colour image

Red Mask Green Mask

Blue Mask White Mask

Black Mask

44

3.4.6 Morphological Operations

After segmentation, the images may be highly distorted due to amplified noises.

Therefore, morphological operation are required to remove all of these noises that will

affect the extracted shape and texture of the images. The morphological operation

requires two inputs, one is the binary images while the other is the kernel which

decides the nature of the operation. In this part, morphological opening with 3x3 kernel

is applied first on the filtered binary image to remove the amplified noises outside the

segmented object which is as shown in Figure 3.9 below.

Figure 3.9: The Binary Image before and after Morphological Opening Operation

After removing the outer noises, erosion function with 4x4 kernel is used to

erode the boundaries of the foreground object to separate the clustering vehicles region

into two separate objects for better vehicle number estimation. From Figure 3.10 below,

it shows the images before and after the morphological erosion operation.

Figure 3.10: Binary image before and after Morphological Erosion Operation

45

Furthermore, morphological closing function with the closing kernel of 4x4 is

further applied to join or close the small holes inside the foreground objects and at the

same time minimize two foreground objects touching to each other. The figure below

shows the before and after morphological closing is being applied.

Figure 3.11: The Binary Image before and after Morphological Closing Operation

3.4.7 Vehicle Detection and Counting

After a series of image processing processes, the moving foreground objects

representing the moving vehicles can be distinguished and detected easily in the binary

image. The centroid for each of detected foreground object is calculated as shown in

Figure 3.12 below. The system will estimate the number of vehicles according to the

number of centroids detected.

Figure 3.12 : Centroid for Detected Vehicles

46

3.5 UART- Serial communication

3.5.1 Serial Communication on Altera DE2 board

The implementation of UART serial communication in the Altera DE2 board is

divided into three sub-modules which are the receiver module, transmitter module, and

baud rate generator which is clearly shown in Figure 3.13 below. The implementation

of the UART communication module is the realization of the three sub-modules.

Firstly, the baud rate generator is used to produce a local clock signal which is much

higher than the baud rate to synchronize the UART reception and transmission.

Secondly, the receiver module is used to receive the serial data at RXD and convert

them into parallel data. Lastly, the transmit module is used to converts the bytes into

serial bits according to the basic frame format and transmits those bits through TXD.

Figure 3.13 : UART Module (Mitu. R, 2017)

3.5.1.1 Baud Rate Generator Module

Baud rate refers to the time taken for bytes of data transmitted in a serial line. Baud

rate is expressed in the unit of bits per second (bps). Thus, in the context of serial port,

115200 baud indicates that the serial port is capable to transferring maximum of

115200 bps and this indicates the higher the baud rate, the more data can be transferred

in a short time. Since the baud rate is associated with the speed of data transmission,

therefore it is important to have an equal baud rate between transmitter and receiver.

47

In this part, to implement a baud rate generator in the Altera DE2 board, the

clock cycle per bit is calculated by using system clock frequency and the baud rate. In

the Altera DE2 board, there are two build-in oscillators with a clock frequency of

27MHz and 50MHz respectively can be used. However, in this project, an oscillator

with 50MHz clock frequency and baud rate of 115200 bps will be used to implement

a baud rate generator because high data transmission speed is required.

To calculate the clock cycle per bit, equation below is used

 Clock cycle per bit =
System clock frequency (Hz)

Baud rate (bps)
 (3.1)

 =
50 𝑀𝐻𝑧

115200 𝑏𝑝𝑠
 = 434 cycle per bit

From the calculation above, when the clock frequency is 50MHz with the baud

rate of 115200 bps, 1 bit of binary data will consist around 434 clock cycles. This

calculated value is used by the receiver module to determine the middle point of each

serial data bit to sample the received data information, and for the transmitter to

transmit 1 bit of data based on the calculated cycle per bit.

3.5.1.2 Receiver Module

As mentioned before, the receiver is basically used to receive the serial data from

transmitter and then convert it into 8-bit parallel data. During the UART reception, it

is critical to correctly define the start-bit from a frame of serial data since the receiving

clock are asynchronous with the transmitting clock. The receiver module will receive

serial data from receiving pin (RXD) and if the state of received data transits from

logic 1 to logic 0, it can be regarded as the beginning of a data frame (start-bit). When

the UART receiver module is idle, it has been waiting for RXD logic state to transit.

In the receiver module, after the start-bit has been identified, the receiver will sample

the logic state at the middle of each bit serial data by using half of the clock cycle per

48

bit value that is calculated in the baud rate generator module. Each sampled value of

the data state is then deposited in the 8-bit register by order. When the count equals to

10 bit (start-bit + 8 bit data + stop-bit), and verified, received serial data are converted

into a byte of parallel data and stored. In this project, the UART receiver module is

implemented by using the finite state machine.

3.5.1.3 Serial Receive FSM

From Figure 3.14 below, the finite state machine for receiver module consists of five

states: IDLE (waiting for start bit), Start (find and check whether the midpoint of start

bit is logic 0), Data (sampling the serial data), Stop (waiting and receiving stop bit)

and Cleanup (reset some variable).

Figure 3.14 : Receiver Module FSM

IDLE

Start

Data Stop

Cleanu

p

Rx_Byte = 0

Rx_DV =0

Rx_serdata

= 0

Rx_serdata =0

Rx_Byte [bit_index] = Rx_serdata

Rx_DV =0

Bit_index < 7

Rx_Byte = 0

Rx_DV = 1

Bit_index = 7

Rx_Byte = 0

Rx_DV = 0

Rx_Byte = 0

Rx_DV =0

Rx_serdata

= 1

49

3.5.1.4 Transmitter Module

The transmitter module serialize the 8-bit parallel binary data and adds a start-bit at

the beginning of the data as well as a stop-bit at the end of the data. When the UART

transmitter module is enable in IDLE state, the transmitter module will jump to Start

state and send a logic 0 to the receiver to inform data is ready to be sent. After this, 8

bit parallel data is read in the 8-bit register and sends it out bit by bit via the TXD line.

The data is sent following the order 1 start-bit, 8 data-bits, and 1 stop-bit. In this project,

the UART transmitter module is also implemented using the finite state machine.

3.5.1.5 Serial Transmit FSM

From Figure 3.15 below, the finite state machine for transmitter module consists of

five states: IDLE (waiting for enable signal), Start (send start bit), Data (transmit 8 bit

serial data), Stop (send stop bit) and Cleanup (reset some variable).

Figure 3.15 : Transmitter Module FSM

IDLE

Start

Data
Stop

Clean

up

Tx_Serial =1

Tx_Active = 0

Tx_Done = 0

Tx_DV =1

Tx_Serial =0

Tx_Active = 1

Tx_Done = 0

Tx_Serial = tx_data [bit_index]

Tx_Active = 1

Tx_Done = 0

Bit_index < 7
Tx_Serial = 1

Tx_Active = 0

Tx_Done = 1

Bit_index = 7

Tx_Serial = 1

Tx_Active = 0

Tx_Done = 1

50

3.5.2 Serial Communication on Raspberry Pi 3B+

3.5.2.1 Install PySerial Package

The command “pip install pyserial” was ran in the terminal to download and install

python serial communication package to enable the serial communication function in

Raspberry Pi.

Figure 3.16 : Install Python Serial Package

3.5.2.2 Disable Unused Serial Ports

The configuration command “sudo rasp-config” was ran and the instructions as shown

in Figures below were followed to prohibit other serial ports in order to optimize the

Raspberry Pi performance by freeing up some resources. After that, the system was

rebooted for the configuration to take effect.

Figure 3.17 : Select Interfacing Options. Figure 3.18 : Choose P6 Serial.

51

Figure 3.19 : Disable the Login Shell to Figure 3.20 : Disable the Serial Port

 Accessible Over Serial. Hardware.

Figure 3.21 : Confirm the Configurations. Figure 3.22 : Reboot the System.

3.5.2.3 Check ttyUSB port list appearance from the list and ready to function

After the configurations, “ dmesg | grep tty” command is used to search the related

configuration files with the term “tty” and display the messages regarding to the status

of configuration. From the Figure 3.23 below, it shows that ttyUSB0 port is enabled

and ready to be used.

52

Figure 3.23 : Verify the ttyUSB0

3.5.3 UART- Serial Communication Connection

Figure 3.24 below shows the connections of serial communication for the Raspberry

Pi 3B+ and Altera DE2 FPGA. From the figure, USB to serial RS232 converter cable

is used to provide connectivity between USB port (Raspberry Pi 3B+) and RS232

serial port (Altera DE2 FPGA). Within the USB to RS232 converter cable, it consists

of ch340 chip which function to equalize the voltage level for serial communication

between USB and RS232 port, and at the same time interconnect the receiver terminal

to transmitter terminal so that duplex communication can be made.

Figure 3.24 : UART Connections

Raspberry PI

3B+

(USB port)

Alter DE2

FPGA (RS-232

port)

USB to Serial RS232

converter cable

53

3.6 Traffic light Controller System on Altera DE2 Board

3.6.1 Structure of Traffic Junction

Figure 3.25 : Model of the Traffic Junction

From the Figure 3.25 above, it depicts a general structure of traffic junction which

consists of North, East, and West and South directions. Four traffic lights with a set of

four lights: two green, yellow and red light are used to control the traffic flow or

discharge the vehicles from each direction of the lane. From the model of the traffic

junction above, vehicles are free to move from West to North, South to West, East to

South, and North to East directions. However, for the vehicles that need to move in

straight or right direction, drivers are required to obey the traffic signals with pre-

defined sequences or phases.

54

To design a traffic light controller, traffic phase design is one of the important

steps to separate the conflict of vehicle movements in an intersection into various

phases. In the proposed system, four-phase signals are used in the implementation of

the TLC and the movement of vehicles across the traffic intersection in different phases

are shown in the figures below.

3.6.2 4 Phase Traffic Light Signals

 Figure 3.26 : Phase 1 Traffic Signal Figure 3.27 : Phase 2 Traffic Signal

 Figure 3.28 : Phase 3 Traffic Signal Figure 3.29 : Phase 4 Traffic Signal

55

3.6.3 State table of the Traffic Light Controller

Table 3.4 : State Table of the Traffic Light Controller System

States Direction of lanes

Output

Current

State

Stored

State
Next State North East South West S_light ,

W_light,

N_light,

E_light
clr=0 clr=1

Idle

(D)

A

I

Idle

Red

Yellow

Red

Red

0001

0001

0001

0010

A

C

B

Idle

Green

Red

Red

Red

1100

0001

0001

0001

B

I

Idle

Yellow

Red

Red

Red

0010

0001

0001

0001

C

E

D

Idle

Red

Green

Red

Red

0001

1100

0001

0001

D

I

Idle

Red

Yellow

Red

Red

0001

0010

0001

0001

E

G

F

Idle

Red

Red

Green

Red

0001

0001

1100

0001

F

I

Idle

Red

Red

Yellow

Red

0001

0001

0010

0001

G

A

H

Idle

Red

Red

Red

Green

0001

0001

0001

1100

H

I

Idle

Red

Red

Red

Yellow

0001

0001

0001

0010

I

Stored

State

Idle

Red

Red

Red

Red

0001

0001

0001

0001

56

3.6.4 Traffic Light Controller Flowchart

Figure 3.30 : Flowchart of the Traffic Light Controller

Figure 3.30 above illustrates the flowchart of the implemented TLC. At first, the traffic

light controller will send a request signal and receive the green time value calculated

by the Raspberry Pi. If the data is not received correctly due to connection problem or

received value is not within the range, the traffic light controller system will use the

default green light time for traffic control. Otherwise, the traffic light will display the

57

green light according to the received green time value from the Raspberry Pi, the

system will always compare the received data with counter value to limit the green

time period, if the green light period has reached, green light will be turned OFF and

yellow light will be turned ON, the system will send a signal to retrieve the green time

value for the next phase of traffic signal. This process is repeated continuously.

3.6.5 State Diagram of Traffic Light Controller System

Figure 3.31 : State Diagram of the Traffic Light Controller

A B

C

D

E
F

G

H
I

D Next State =B

Stored Next State = C

I

I

Next State = I

Next state = Stored Next State

Next State =D

Stored Next State = E

time < 3sec

time < 3sec

I

time < 3sec

 Next State = Stored Next

State

Next State = Stored Next State

Next State = Stored Next State

Next State = I

Next State =F

Stored Next State = G

Next State = I

Next State = I

Next State =H

Stored Next State = A

time < 3sec

Next State =A

time < 3sec

time < 3sec

time < 3sec

time < 3sec

58

3.6.6 Hardware Implementation of Traffic Light Controller

Figure 3.32 below shows the TLC circuit is simulated using the build-in general-

purpose input output (GPIO) pins on the Altera DE2 board. From the circuit model,

one traffic light circuit consists of 4 resistors, 2 green LEDs, 1 yellow LED, and 1 red

LED. Thus, a total of 16 LEDs (4 red LEDs, 4 yellow LEDs, and 8 green LEDs) and

resistors are required for all directions of the traffic light circuit.

Figure 3.32 : Schematic of the Traffic Light Controller

The precaution needs to be considered during the implementation of the TLC

circuit is the maximum current rating for LEDs. In the traffic light circuit, each LED

must have a resistor that is connected in series connection in order to prevent the

overflow of the current flow through the LED, otherwise the LED will burn out

instantly. In this project, 5mm LEDs with a maximum current rating is about 20mA.

Therefore, to ensure the reliability of the circuit, current flow with less than 10mA is

required. To obtain this current value, Ohm’s Law equation as shown in the equation

below is used to calculate the minimum required resistor value.

59

 R =
Vs - Vf

I
 (3.2)

 R =
Vs - Vf

I
 =

3.3V - 1.8V

10mA

 R = 150 Ω

Where,

Vs is voltage supply by GPIO output pin, maximum voltage is 3.3V.

Vf is forward voltage of LED, typical value is 1.8V.

I is current value, assume is 10mA.

R is resistance value in unit ohms, Ω

Based on the calculation above, a simple traffic light circuit consists of four

150 Ω resistors and 4 LEDs which is as shown in the PCB design. From the traffic

light PCB circuit below, the circuit consists of 6 connectors, 4 connectors were used

for each LED making the connection to the Altera DE2 board through the 150 Ω

resistor. Another one connector is the ground terminal of the LEDs.

Figure 3.33 : PCB Design of the Traffic Light Circuit

60

3.7 Timing Algorithms for Traffic Light Signal

In order to make the system more comprehensive, the proposed STLCS comes with a

timing algorithm that aims to minimize the queuing time at each intersecting road and

make the system more effective in discharging the traffic load.

The timing algorithm is implemented based on Figure 3.34 below. From the

figure, the time needed for a vehicle to pass through the junction is referred to as

headway. Theoretically, the first headway will be relatively greater than the remaining

headway because it includes longer start-up loss time, en (driver’s reaction time +

vehicle acceleration time). The second headway is comparatively shorter because the

start-up loss time may partially overlap with the first driver and continuously decline

for the remaining headway. After a few vehicles, the headway tends to be more

saturated or stable at a constant value which means that the vehicles queuing behind

have more time to accelerate to high velocity, and eventually, it achieved stable

movement of vehicles across the junction. In real life the average saturation headway,

h is around 2.4 s/vehicles, however, to shorten the waiting time during the

demonstration, saturation headway, h is assumed to be half of the actual value which

is at 1.2 s /vehicle.

Figure 3.34 : Headways Departing Trend

To make the algorithm more reliable and practical, the total start-up loss time,

Sloss must be added to the algorithms. Since the start-up loss time, en is shown in a

61

negative inverse trend, therefore, the total start-up loss time, Sloss can be calculated by

using equation,

 Sloss =∑ sloss[(𝑓𝑖−1)] 𝑛
𝑖=1 (3.3)

Where,

Sloss is total start-up loss time.

sloss is standard start-up loss time (assume 2.5s).

f is decrease factor (assume 0.75).

n is number of detected vehicles.

 Furthermore, the green time required to clear N vehicles can be estimated as

T = Sloss + h*N (3.4)

Where,

T is required green time.

Sloss is total start-up loss time

N is number of detected vehicles

h is saturation headway. (assume 1.2s / vehicle)

Lastly, though the system will calculate and adjust the green time depending

upon the traffic load, but it still provides a minimum and maximum time limit which

are fixed to 5 seconds and 25 seconds respectively, and this is considered as a

precautionary measure for vehicle detection error.

Figure 3.35 : Maximum and Minimum Green Light Period

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18

G
re

en
 T

im
e,

 s
ec

o
n

d

Number of queuing vehicles

Green time against number of vehicles

62

3.8 Cost Analysis of the Project.

The total expenditure done in favour of the project right from its initiation up to its

completion has been tabulated in the Table 3.5 below.

Table 3.5 : Equipment and Components List with Price

No. Components Quantity Remarks Price

(RM)

1. Altera DE2 board

(2C35)

1 Acquired from Lab -

2. Raspberry Pi 3B+ 1 Acquired from Lab

-

3. OV5647 camera Module

- 175 ° view angle

1 Website : Shopee.com RM49.67

4.

Female to Female

jumper wires (40p)

1 Website : Lelong.com

RM 5.80

5. RS232 to USB serial

cable

1 Website : Shopee.com

RM10.10

6. LEDs (Red) 4 Acquired from Lab

 -

7. LEDs (Yellow) 4 Acquired from Lab

 -

8. LEDs (Green) 8 Acquired from Lab

 -

9. Polystyrene -12x1

inches

6 Website : Shopee.com

RM14.40

10. Polystyrene -10x1

inches

5 Website : Shopee.com

RM10.00

11. Toy Cars 1 Giant Kampar RM 9.91

Total Cost : RM 99.88

63

4 RESULTS AND DISCUSSIONS

4.1 Software Testing

The software testing process involves the utilization of simulation software to test and

check the behaviour and functionality of the implemented software and to determine

whether the program is able to generate the required outcomes when different inputs

or conditions were applied.

4.1.1 Traffic Light Controller Program Simulation

In this project, the traffic light controller program was written in Verilog HDL using

the ModelSim 10.1b simulator software. After implementation, a simple test-bench as

shown in Figure 4.1 was loaded to simulate the functionality of the FPGA based traffic

light controller program. The simulated output waveforms of the TLC are shown in

Figure 4.2 and 4.3 below, and the description for related output is shown in Table 4.1.

Table 4.1 : Description for the Simulated Traffic Light Output

Simulated output Description

0001 Red light turn ON

0010 Yellow light turn ON

1100 Two green lights turn ON

64

Figure 4.1 : Test-bench for the Traffic Light Controller

Figure 4.2 : Simulated Output Waveform of the TLC

Figure 4.3 : Simulated Output Waveform of the TLC

65

4.1.2 UART-Serial Communication Simulation

UART serial communication consists of three modules, which are baud rate generator,

transmitter, and a receiver module. These modules were simulated and tested using the

test-bench as shown in Figure 4.4 below. The output waveforms for each transmitter

and receiver module are shown in Figure 4.5, 4.6, 4.7 and 4.8 below.

Figure 4.4 : Test-bench for UART Serial Communication

Figure 4.5 : Output Waveform of the Transmitter (0000000 to 0010000)

66

Figure 4.6 : Output Waveform of the Transmitter (11101111 to 11111111)

From Figure 4.5 and 4.6 above, each increment value in variable test_in was

assigned into the variable r_Tx_byte in the transmitter module. When w_tx_Serial

drops from 1 to 0, the transmitter module serialized and transmitted the value stored

in the variable r_Tx_byte to the receiver module.

Figure 4.7 : Output Waveform of the Receiver (0000000 to 0010000)

Figure 4.8 : Output Waveform of the Receiver (11101111 to 11111111)

67

From Figure 4.7 and 4.8 above, each serialized data from the w_tx_Serial was

assigned into serial input of receiver module r_Rx_Serial. The receiver module

parallelized the received value and stored it in the variable w_Rx_Byte. The binary

data stored in w_Rx_Byte is then compared with the binary data in r_Tx_byte, if the

data is equal, the binary data in test_in is increasing continuously until it reached

11111111.

4.2 Hardware Testing

During the development process, hardware testing has been done in several phases to

ensure the proper operation of the circuit designed as well as hardware device involved.

4.2.1 Basic Circuit Testing

The phase of hardware testing was conducted based on the following tests and

evaluations:

i. Short circuit testing between Vcc (3.3V) and ground.

ii. Testing the functionality of Altera DE2 GPIO ports.

iii. Checking the functionality of LEDs and resistors.

iv. Connectivity testing.

v. Testing the data transfer of RS232 to USB converter cable.

68

4.2.2 Testing the Traffic Light Circuit

The traffic light circuit was tested by connecting the female connector that is connected

to the anode of LEDs (traffic signs) via 150Ω resistors to the build-in 3.3V GPIO port

on Altera DE2 and connector connected to the cathode of LED to the ground. The

circuit was checked whether the certain LEDs were illuminated as required. If the LED

was not turned ON, it might be caused by either the short circuit connection, faulty of

LED and resistors, or improper connection of components in the circuit.

Figure 4.9 : Red light LEDs Testing

Figure 4.10 : Yellow Light LEDs Testing

Figure 4.11 : Green Light LEDs Testing

69

4.2.3 Testing the UART- Serial Communication Interface

Figure 4.12 : Setup for the UART Interface

From the Figure 4.1 above, the Raspberry Pi 3B+ and Altera DE2 board were

connected using RS232 to USB converter cable. The UART serial communication was

programmed into both devices and tested. The data that is transferred from the

Raspberry Pi to Altera DE2 board and Altera DE2 board to Raspberry Pi was checked

and observed whether the data reached properly, and recorded which is shown in Table

4.1 below.

Table 4.2 : Data Transferred between Raspberry Pi and Altera DE2

Raspberry Pi Command Prompt Altera DE2 Board

RPI: Received data is 1 and transmitted data is 255. (decimal)

Altera DE2: Transmitted data is 1 and received data is FF. (hexadecimal)

70

RPI: Received data is 2 and transmitted data is 110. (decimal)

Altera DE2: Transmitted data is 2 and received data is 6E. (hexadecimal)

RPI: Received data is 3 and transmitted data is 10. (decimal)

Altera DE2: Transmitted data is 3 and received data is A. (hexadecimal)

RPI: Received data is 4 and transmitted data is 119. (decimal)

Altera DE2: Transmitted data is 4 and received data is 77. (hexadecimal).

71

4.3 Prototype Model of Developed Smart Traffic Light Controller

After successfully passing the software and hardware testing phases, a traffic junction

model was built using polystyrene and the toy cars were used to imitate the traffic light

junction in the real world. Next, every module implemented in the software and

hardware, and model were integrated for further functional testing. Figures below

show the prototype model of the developed STLCS in different views.

Figure 4.13 : Prototype Model (View 1)

Figure 4.14 : Prototype Model (View 2)

Figure 4.15 : Prototype Model (View 3)

72

4.4 User Interface of the Developed Smart Traffic Light Controller System

Figure 4.16 below depicts a simple user interface (UI) of the developed system. In the

beginning, the UI will display the real-time video captured by the camera and the user

needs to draw the ROIs (red, green, blue, pink colour of four-sided polygons) which

refer to the boundaries for vehicle detection. After that, some information for instance,

number of vehicles detected for four different lanes (near the top left corner) and the

calculated green time corresponds to the number of detected vehicle (near the top right

corner) will appear automatically after the user input to indicate the system is operating.

Figure 4.16 : User Interface of the System

4.5 Result from the Developed Smart Traffic Light Controller System

In this phase, few experiments were conducted to validate the effectiveness of the

developed system in terms of the principle of work and expected results. From the

tables below, different combinations and arrangements of the colour and number of

vehicles were assigned into four traffic lanes in the intersection. The actual vehicle

number represents the number of actual vehicles in real life, detected vehicles indicate

the number of vehicles detected and counted by the computer vision and accuracy

represent the percentage error between the actual and measured number of vehicles.

73

Table 4.3 : The Results Obtained in Test 1

Actual vehicle number

Lane 1: 1

Lane 2: 1

Lane 3: 1

Lane 4: 1

Detected vehicles Accuracy(%)

Lane 1: 1

Green time: 5 sec

100%

Lane 2: 1

Green time : 5 sec

100%

Lane 3: 1

Green time : 5 sec

100%

Lane 4: 1

Green time : 5 sec

100%

74

Table 4.4 : The Results Obtained in Test 2

Actual vehicle number

Lane 1: 2

Lane 2: 4

Lane 3: 2

Lane 4: 2

Detected vehicles Accuracy(%)

Lane 1: 2

Green time: 6 sec

100 %

Lane 2: 5

Green time: 13 sec

75 %

Lane 3: 2

Green time: 6 sec

100 %

Lane 4: 2

Green time: 6 sec

100 %

75

Table 4.5 : The Results Obtained in Test 3

Actual vehicle number

Lane 1: 3

Lane 2: 3

Lane 3: 3

Lane 4: 3

Detected vehicles Accuracy(%)

Lane 1: 3

Green time: 9 sec

100%

Lane 2: 2

Green time: 6 sec

66.67%

Lane 3: 3

Green time: 9 sec

100%

Lane 4: 3

Green time: 9 sec

100%

76

Table 4.6 : The Results Obtained in Test 4

Actual vehicle number

Lane 1: 4

Lane 2: 4

Lane 3: 4

Lane 4: 0

Detected vehicles Accuracy(%)

Lane 1: 3

Green time: 9 sec

75%

Lane 2: 5

Green time: 13 sec

75%

Lane 3: 4

Green time: 11 sec

100%

Lane 4: 0

Green time: 5 sec

100%

77

Table 4.7 : The Results Obtained in Test 5

Actual vehicle number

Lane 1: 5

Lane 2: 3

Lane 3: 0

Lane 4: 4

Detected vehicles Accuracy(%)

Lane 1: 5

Green time: 13 sec

100%

Lane 2: 3

Green time: 9 sec

100%

Lane 3: 0

Green time: 5 sec

100%

Lane 4: 4

Green time: 11 sec

100%

78

Table 4.8 : The Results Obtained in Test 6

Actual vehicle number

Lane 1: 6

Lane 2: 5

Lane 3: 0

Lane 4: 0

Detected vehicles Accuracy(%)

Lane 1: 5

Green time: 13 sec

83.33%

Lane 2: 4

Green time: 11 sec

80%

Lane 3: 0

Green time: 5 sec

100%

Lane 4: 0

Green time: 5 sec

100%

79

Table 4.9 : The Results Obtained in Test 7

Actual vehicle number

Lane 1: 0

Lane 2: 6

Lane 3: 5

Lane 4: 0

Detected vehicles Accuracy(%)

Lane 1: 0

Green time: 5 sec

100%

Lane 2: 4

Green time: 11sec

66.67%

Lane 3: 5

Green time: 13 sec

100%

Lane 4: 0

Green time: 5 sec

100%

80

Table 4.10 : The Results Obtained in Test 8

Actual vehicle number

Lane 1: 0

Lane 2: 0

Lane 3: 6

Lane 4: 5

Detected vehicles Accuracy(%)

Lane 1: 0

Green time: 5 sec

100%

Lane 2: 0

Green time: 5 sec

100%

Lane 3: 5

Green time: 13 sec

83.33%

Lane 4: 5

Green time: 13 sec

100%

81

Table 4.11 : The Results Obtained in Test 9

Actual vehicle number

Lane 1: 2

Lane 2: 2

Lane 3: 2

Lane 4: 6

Detected vehicles Accuracy(%)

Lane 1: 2

Green time: 6 sec

100%

Lane 2: 2

Green time: 6 sec

100%

Lane 3: 2

Green time: 6 sec

100%

Lane 4: 6

Green time: 15 sec

100%

82

Table 4.12 : Summary of the Results Obtained

Test Lanes Actual number of

vehicles

Detected number

of vehicles

Accuracy

(%)

Calculated

green time, s

1 1 1 1 100 5

2 1 1 100 5

3 1 1 100 5

4 1 1 100 5

2 1 2 2 100 6

2 4 5 75 13

3 2 2 100 6

4 2 2 100 6

3 1 3 3 100 9

2 3 2 66.67 6

3 3 3 100 9

4 3 3 100 9

4 1 4 3 75 9

2 4 5 75 13

3 4 4 100 11

4 0 0 100 5

5 1 5 5 100 13

2 3 3 100 9

3 0 0 100 5

4 4 4 100 11

6 1 6 5 83.33 13

2 5 4 80 11

3 0 0 100 5

4 0 0 100 5

7 1 0 0 100 5

2 6 4 66.67 11

3 5 5 100 13

4 0 0 100 5

83

8 1 0 0 100 5

2 0 0 100 5

3 6 5 83.33 13

4 5 5 100 13

9 1 2 2 100 6

2 2 2 100 6

3 2 2 100 6

4 6 6 100 15

Total 95 90 94.74

Based on the results obtained in the summary table above, the frequency of the

miscounting is high in lane 1 and lane 2, this issue is most likely caused by the

morphological operations and the segmentation algorithms used in the vehicle

detection process. In the testing process, if the vehicles with common color properties

are placed compactly together, morphological closing tends to join the binary objects

together and may cause the segmentation algorithms over-segment the objects and this

eventually leads the system counting the vehicles more than the actual number.

Moreover, if two vehicles that have different color properties but queuing in series, are

close enough together and are far away from the camera, some portion of the detection

area for the vehicle queuing behind is blocked by vehicle in front, if the detection area

is small, the system will consider it as a noise and ignore it in the counting process. In

general, the developed system is able to generate acceptable results in a few tests, the

overall vehicle detection accuracy is more than 90% which proved the effectiveness

of the methodology used in the system.

84

4.6 Limitations of the Developed System

Despite the fact that some of the problems found in the existing traffic light controller

system has been solved successfully in this project; some limitations still exists in the

developed STLCS. The limitations of this system are as follows:

i. When the vehicles are too close to each other, the system tends to miscount the

vehicles, this will affect the accuracy of the result and calculate an undesirable

green time to discharge the vehicles.

ii. In this system, although the image enhancement technique is applied to

enhance the brightness and recover some details in low illumination image, but

this approach is just able to improve the image to some extent, this caused the

system to not respond well under unfavourable lighting conditions for instance

during night time, rainy days, or in poorly illuminated environment.

iii. In this project, the high-resolution video (1280 x 800) is used to obtain decent

detection accuracy. But at the same time, high-resolution video processing

requires more computational resources and caused the Raspberry Pi tends to be

fully loaded easily. As a consequence, the frame rate obtained is relatively low

(around 5 fps).

iv. Since the detection algorithms used are not vigorous enough to perfectly count

the vehicle in day time and night time. Therefore, the implemented STLCS is

still unable to skip the lane for now just in case of detection error.

85

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The project “Development of FPGA based Smart Traffic Light Controller System with

Image Processing” which aims to improve the efficiency of existing automatic traffic

light signalling system by reducing the queuing time of each lane of the vehicles and

maximize the discharge of vehicles across an intersection was successfully designed

and developed.

The development of STLCS is divided into three major parts which are the

automatic traffic light control system, vehicle detection system and the UART

communication system. The implementation of the vehicle detection system was done

by using the Raspberry Pi 3B+ and written in Python programming language, the

vehicle detection approach emphasizes on the segmentation that is based on colour

properties of the object and the overall accuracy of this approach is 94.74%.

Furthermore, a full-duplex UART communication system was constructed on both the

Altera FPGA board and the Raspberry Pi to allow the communication of multiple

designed systems. Moreover, an automatic traffic light control system based on FPGA

was constructed successfully on the Altera FPGA board using the Mealy finite-state

machine design, the system can communicate with the vehicle detection system to

enhance the flexibility in traffic signal control.

Although the developed system has not been tested in the actual field, the

performance of the system was evaluated and satisfactory results were obtained. As

86

mentioned above, some limitations still exist in the system and those limitations need

to be addressed and a few other modifications as well as enhancements can be made

in the future so that the system can be applied in the actual field.

5.2 Recommendations

There are several enhancements that can be made in future to address the limitations

as mentioned previously and improve the robustness of the STLCS to cope with

unpredictable environment. The recommendations for the enhancements are as follows:

i. A powerful single board computer could be used so that the machine learning

techniques such as K-means clustering, Deep Neural Network (DNNs),

Convolutional Neural Network (CNN), etc. can be used for more robust vehicle

detection.

ii. Using a more advanced image processing algorithms and libraries so that the

system is able to operate properly regardless of the unfavourable weather and

illuminating conditions.

iii. Use multi-camera to monitor each lane in the junction instead of single camera

monitor on all traffic lanes. This approach will solve the detection error due to

the blockage of the rear vehicle by the front vehicle and improve the

performance of vehicle detection and counting.

iv. Utilize the deep learning method to train a highly complex and advanced traffic

management model that is able to control the traffic flow in the traffic junction

in a more efficient and effective manner.

87

REFERENCES

Agho, O., Faisal, S. B., and Ganiyu, B. (2015). Field Programmable Gate Array Based

Intelligent Traffic Light System. Abubakar Tafawa Balewa University, Department

of Mechatronic and Systems Engineering, 4(11), pp,10-16.

Andrey. (2014). What is a color model? [online] Available at: https://www.script-

 tutorials.com/what-is-a-color-model/ [Accessed: 25 June 2019]

Alexander, M. and Abid Rahman K. (2014). Introduction to OpenCV-Python Tutorials.

 [online] Available at: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_setup

 /py_intro /py_intro.html#intro [Accessed: 4 March. 2019].

Alemu, A. (2015). Automatic Traffic Light Control System Using Image Processing In

Ethiopia. [online] Available at: https://www.academia.edu/23228882/Automatic_

Traffic_Light_Control_System_Using_Image_Processing_In_Ethiopia.

[Accessed: 25 February. 2019].

Almawagani, A.H.M. (2018). DESIGN OF REAL TIME SMART TRAFFIC LIGHT

CONTROL SYSTEM. Najran University, Department of Electrical Engineering.

pp.51-55.

Bilal, G., Khaled, E., Khaled, C., and Mohamad Kherfan. (2016). Smart Traffic Light

Control System. Faculty of Sciences IV Lebanese University and School of

Engineering Lebanese International University, pp.161-166.

Dilip, B., Alekhya, Y. and Divya, P.B. (2012). FPGA Implementation of Advanced

Traffic Light Controller using Verilog HDL. International Journal of Advanced

Research in Computer Engineering & Technology (IJARCET), 1(7), pp.1-6.

Gholamreza Anbarjafari (2014) Introduction to image processing. [online] Available

 at: https://sisu.ut.ee/imageprocessing/book/1 [Accessed: 4 March. 2019].

Ivan Culjak - IEEE Conference Publication. (2012). A brief Introduction to OpenCV.

[online] Available at: https://ieeexplore.ieee.org/document/6240859 [Accessed 3

March. 2019].

Mitu, R., 2017. UART Receiver Synchronization: Investing the Maximum Tolerable

Clock Frequency Deviation. Indian Journal of Science and Technology. Kerala

University, Department of Electronics and Communication, Electronic Research

and Development Centre of India, 10 (25), pp. 1-5

https://www.script-/
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_setup
https://www.academia.edu/23228882/Automatic_

88

Neha R. Laddha and Prof A.P. Thakare (2013). Implementation of serial

communication using UART with configurable baud rate. International Journal of

Recent and Innovation Trends in Computing and Communication, 1(4), pp. 263-

268.

Nidhi, D. A. and Amit, S. (2015). Intelligent Real Time Traffic Controller Using Image

Processing. Raison College of Engineering and Technology, Amravati, India, 4(4),

pp.2980-2983.

Philipp, C., Christian, K. and Maher, Y. (2019). DE2 Board Cyclone II FPGA

 Development Kit. [online] Available at: https://www.secs.oakland.edu/~ ganesan/

 ece576f10project/index_files/Page361.htm [Accessed: 12 March. 2019].

Parichita, B. and Ramandeep, K. (2016). Intelligent Traffic Controller System using

Image Processing. Guru Gobind Signh Indraprastha University, Bharati

Vidyapeeth’s College of Engineering, Department of Information Technology.

International Journal of Science and Research (IJSR), 5(8), pp.1396-1398.

Parthasarathi, V., Surya1, M., Akshay, B., Murali Siva, K. and Shriram, K. Vasudevan.

(2015). Smart Control of Traffic Signal System using Image Processing. Amrita

Vishwa Vidyapeetham University, Department of Electrical and Electronics

Engineering and Department of Computer Science and Engineering, 8(16), pp.1-5.

Rakesh, V.S. and Shaithya, V. (2007). A Traffic Control System Using Inductive Loop

Detector. International Journal of Advanced Research in Electrical and Electronics

and Instrumentation Engineering, 4(5), pp.4590-4593.

Sinhmar, P. (2012). Intelligent traffic light and density control using IR sensors and

microcontroller. International journal of advanced technology & engineering

research (IJATER), 2(2), pp. 30-35.

Terasic Technologies (2012) Terasic - Phased Out - Main Boards - Altera DE2

 Board. [online] Available at: https://www.terasic.com.tw/cgi-bin/page/archive.pl?

 No=30 [Accessed: 5 March. 2019].

The 4 important color models for presentation design (2016) [online]. Available at:

 http://presentitude.com/color-theory-part-iii/ [Accessed: 25 Jun. 2019].

Tom, H. (2001). How Red-light Cameras Work. [online]. Available at:

https://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/red-

light-camera1.htm [Accessed 23 March. 2019].

UART Communication with Spartan3an FPGA Project Kit (2017) [online] Available

 at: https://www.pantechsolutions.net/fpga-tutorials/uart-communication-with-

 spartan3an-fpga-project-kit [Accessed: 5 March. 2019].

Umesh Lokhande (2017) Introduction of Raspberry Pi 3 Model B [online]. Available

at: https://binaryupdates.com/introduction-of-raspberry-pi-3-model-b/ [Accessed:

10 March. 2019].

https://www.secs.oakland.edu/~
https://www.terasic.com.tw/cgi-bin/page/archive.pl
file:///C:/Users/Tan/Desktop/:/auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/red-light
file:///C:/Users/Tan/Desktop/:/auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/red-light

89

APPENDICES

Appendix A: Source code of Traffic Light Controller

90

91

92

93

Appendix B: Source code of UART Communication on Altera DE2 board

94

95

96

97

Appendix C : Source code of Image Processing Software

98

99

100

101

102

103

Appendix D: Source code of UART Communication on Raspberry Pi 3B+

