A DATA ANALYTIC MODULE TO EXTEND THE
GRAFANA ANALYTIC FUNCTION

BY

HAR PUI SEE

A REPORT

SUBMITTED TO

UNIVERSITI TUNKU ABDUL RAHMAN

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

BACHELOR OF COMPUTER SCIENCE(HONS)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)

JUNE 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: A Data Analytic Module To Extend Grafana Analytic Function

Academic Session: _'1¢2020

I HAR PUI SEE

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1.The dissertation is a property of the Library.

2.The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,
_ I\, ~
(Author’s signature) (Supervisor’s signature)
Address:
20, Jalan Perak 13,
Taman Bandar Baru Selatan, Dr. Ooi Boon Yaik

31900, Kampar, Perak. Supervisor’s name

Date: 10 September 2020 Date: L0 September 2020

Lauren Har
A Data Analytic Module To Extend Grafana Analytic Function

Lauren Har
June 2020

Lauren Har
HAR PUI SEE

Lauren Har
20, Jalan Perak 13,

Lauren Har
Taman Bandar Baru Selatan,

Lauren Har
31900, Kampar, Perak.

Lauren Har
10 September 2020

Boon Yaik
Typewriter
Dr. Ooi Boon Yaik

Lauren Har
10 September 2020

DECLARATION OF ORIGINALITY

I declare that this report entitled “A DATA ANALYTIC MODULE TO EXTEND
THE GRAFANA ANALYTIC FUNCTION” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature :

Name : HAR PUI SEE

Date : 10 September 2020

Lauren Har
HAR PUI SEE

Lauren Har
10 September 2020

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my project supervisor, Dr
Ooi Boon Yaik who has taught and guide me throughout the whole development of
my final year project. His insight and teaching method played a great influence on

guiding me to solve problems.

ABSTRACT

With the staggering growth of IoT data, the IoT industrial has been
transformed into big data industrial.There are wide variety of Time Series
Databases(TSDB) has been developed to handle the massive amount of time series
data which are being optimized in big data fields in terms of data monitoring and
analytics. The Grafana is a powerful open sourced analytic and visualization software
that associated with vast number of different databases. The data analytic process is
important to enable users to gain useful insight from a huge volume of raw data.
While there are vast number of different TSDB and RDMS available in the market
that possessed different pros and cons. In this project, we benchmarked the database
performance between the InfluxDB and the MySQL with Grafana by comparing the
data insertion and the query performance of both databases. The benchmarked results
will enable the users gain a deeper insight about the performance of InfluxDB and
MySQL and thus easier for them to choose a suitable database for their project
development used among wide variety of databases available in the market. Next, we
will address the limitation of the Grafana as it cannot perform custom query and
cannot visualize the data from the custom query. In order to enhance the analytic
performance of the Grafana, we will deliver a programme to sit between the
visualization tool Grafana and the data sources that function to perform custom query
functions from multiple databases and thus deliver to Grafana for further data analytic

function work.

TABLE OF CONTENTS

TITLE PAGE ..ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiittiietiittiistetetcsssseestcssscsnssonson i
REPORT DECLARATION STATUS..ciittttttiiintieieetiesenstcssssscsssssscssnsscsnns ii
DECLARATION OF ORIGINALITY ..cuutuiiiiuiniieiaininererinesasnrocsecasessasases iii
ACKNOWLEDGMENTS ...uiitiitiiiiiiiiiiiiiiiiiiieiiiiiittietiecesecssceecncensnses iv
ABSTRACT ... iitiiiiiiiiiiieiieiiiiiiateetttsatsessesssasssssssnsssssssssssssssssssssnssne v
TABLE OF CONTENTS...uiititiiiiiiiiiiiiiiiaiierittiiestestesntsasessncsnssasessnns vi
LIST OF TABLES.....uitiiiiiiiiiiiiiiitiiiiiiiiieiiiiiietietittnitsstesssacsssssnsnns viii
LIST OF FIGURES.......ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiietitetectiecieceencsacnees ix
LIST OF SOURCE CODEccuiiuiiiiiiiiiiiiiiiiuiieiieiiiiaiiesiesisassescsnssasnnes X
LIST OF ABBREVIATIONS. ...cuiuiiiiiiiiiiuiiiiiuiiieietieetasisesasessesasasssns xi
CHAPTER 1 INTRODUCTION...ccittttietiatterensrcosssstcsessscssssssosssssosssssscses 1
1.1 Project Background............cooiiiiiii i 1
1.2 Problem Statement............oueiuiniiniiin i 3
1.3 PrOJeCt ODJECHIVES . .vvntttteeeeee et et et e et e e e 4
| g (o) [STo AN o703 o 1S P 5
1.5 Impact, Significance and Contribution..................cooevviiiiiiiiiiinnn.n.. 6
CHAPTER 2 LITERATURE REVIEW....ciiiiiiiiiiiiiiiiiniiiiinnicicsnsiosenssccsnns 7
2.1 InfTUXDB. .o 7
2.2 MyYSQL .o 7
2.3 Comparison Between InfluxDB and MySQL...............cooooiiiiii 8

2.4 Benchmarking Graphite vs InfluxDB for Time Series Data, Metric

and Management.ooiuiiiniii i e 9
CHAPTER 3 SYSTEM DESIGN....coctiuiiuiiiiiiiiiuiieiniinieniseseessisatsessesnsnns 13
3.1 Use Case Diagram.........coouiiiiiiiiiiiii i e 13

3.2 Use Case DeSCIiPtion.uuieniiiiteitetiee et eeeeieeeenans 14

3.3 Activity Diagram...........oooiiiii e 16

3.4 Class DIagram.......c..oiuiiiiiii e e 17

Vi

3.5 Sequence DIagramcoueiiiiiiieiii e 17

3.9 Project TIMEINe.ovii it e 18
CHAPTER 4 SYSTEM IMPLEMENTATION.....ccciititiiiiiniiciinercccnccccnnns 19

4.1 MethodOLOZICS. . ..ttt e e e 19

O o) R o T O PP 22

Grafana.o 23

4.4 Visualizing Data From Custom Query Function On Grafana 31

4.5 Implementation Issues and Challengesccooiiiiiiii... 35
CHAPTER 5 EXPERIMENTAL RESULTcccciiviiiiiiiniieiiiiiiiniieniecnennnn 36

5.1 Develop Database Benchmark Framework Between SQL and NoSQL
Databases. . ettt 36

5.2 Generate Visualization Report For Weather Based Retail Sales Data..... 42

5.3 Execution Time Analysis of Extended Grafana Analytic Platform 46
CHAPTER 6 CONCLUSION.....c.titiiiiiiiiiiiiiiiiiiiiiiiiiiiaiitatasaeasaseaeneaeaes 53
BIBILOGRAPHY ...cuttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiientienetenenenenenees 55
APPENDIX A PROJECT POSTER.....cccceitiiiiiiiiiiniiiniiiiniiinicinecssresnscsnns 57
APPENDIX B PLAGIARISM CHECK RESULT.......cccccciiiiiiiiiiieiiiniiinnnens 58

APPENDIX C SUPERVISOR COMMENTS ON ORIGINALITY REPORT...59

APPENDIX D CHECKLIST FOR FYP1 THESIS SUBMISSION.........c........ 60

Vi

LIST OF TABLES

Table Number Title

Table 2-1
Table 3-1
Table 3-2
Table 5-1

Table 5-2

Table 5-3

Comparison between InfluxDB and MySQL

Perform custom query function use case description
Visualize data from custom query use case description
Performance comparison result between InfluxDB and
MySQL for table CPU

Performance comparison result between InfluxDB and
MySQL for table Temperature

Overall results of program performance between Python data

visualization program and extended Grafana analytic platform

Page

14

15

41

41

51

viii

Figure Number

Figure 1-1
Figure 2-1

Figure 2-2

Figure 2-3

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6

LIST OF FIGURES

Title

System Architect of the project

Comparison of writing throughput between InfluxDB
and Graphite

Comparison of on-disk storage between InfluxDB

and Graphite

Comparison of query throughput between InfluxDB

and Graphite

Use Case Diagram of Extended Grafana Analytic System
Activity Diagram of Extended Grafana Analytic System
Class Diagram of Extended Grafana Analytic System
Sequence Diagram of Extended Grafana Analytic System
Gantt chart of FYP 1 and FYP 2 Report

Prototype Based Methodology

Configure a new datasource to Grafana

Add a new panel on Grafana

Query Editor on Grafana

Query editor in “Toggle Edit Mode” on Grafana

Custom query request edit on Grafana

Page

10

Merged Dataframe result from InfluxDB and MySQL database 30

Scatter plot visualization of merged dataframe on Grafana.
Result dataframe display to Grafana in JSON format
Insert data using Java Client for InfluxDB.

Insert data using JDBC for MySQL

Dataset of table CPU in InfluxDB

Dataset of table CPU in MySQL

Query result in InfluxDB

Query result in MySQL

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 5-11

Figure 5-12

Figure 5-13

Figure 5-14

Figure 5-15

Figure 5-16

Figure 5-17

Figure 5-18

Figure 5-19

Retail sales data stored in MySQL database
Whether data stored in InfluxDB database
Scatter plot visualization between Temperature and Sales
Dual axis visualization of Temperature and Sales
Histogram visualization of correlation value between
Temperature and Sales
Program execution time is measured between the interval of
Influx query input follow by data display to Grafana
Processing custom query to display Daily Temperature
panel on Grafana
Program execution time is measured between the interval of
MySQL query input follow by data display to Grafana
Processing custom query to display Daily Temperature
panel on Grafana.
Influx data visualization report generated using python
matplotlib module
MySQL data visualization report generated
using python matplotlib module.
Average program execution time of
extended Grafana program
Average program execution time of Python

data visualization program.

42

43

44

44

45

47

47

48

48

49

50

50

51

LIST OF SOURCE CODE

Source Code Number Title Page

Source Code 4-1

Source Code 4-2

Source Code 4-3

Source Code 4-4

Source Code 4-5

Source Code 4-6

Source Code 4-7

Source Code 4-8

Source Code 4-9

Source Code 4-10

Source Code 5-1

Source Code 5-2

User program load custom query and get
processed multi-database result data frame 32
DuplexFetch program initialising the JSON
custom query with calling function import
from DataPlumbersTee 33
DuplexFetch program processed the custom query
request to get result dataframe 33
DataPlumbersTee program initialised custom query
database connection 35
DataPlumbersTee program processing custom query and
retrieve data across multi-databases. 35
User program processing custom query and get tee
object to call the function to display the
custom query data to Grafana 37
DuplexFetch program determine the tee variable based
on the target database specified in custom query 38
DataPlumbersTeeDebug program display single
correlation value of merged dataframe display to Grafana 38
DataPlumbersTeeDebug program display single column
MySQL or InfluxDB dataframe to Grafana. 39
DataPlumbersTeeDebug program display merged
MySQL with InfluxDB dataframe to Grafana 39
User python program measure the execution time of
processing query and display Influx dataframe to Grafana. 46
Python data visualization program process Influx query and

plot Influx data visualization report. 49

Xi

[oT

TSDB
InfluxDB
OpenTSDB
RAD
RDMS
SQL

API

LIST OF ABBREVIATIONS

Internet of Things

Time Series Database

Influx Database

Open Time Series Database

Rapid Application Development
Relation Database Management System
Structured Query Language

Application Programming Interface

Xii

Chapter 1 Project Background

Chapter 1 Project Background

1.1 Project Background

In this data driven age, big data analytics is important to explore the massive
volume of the IoT data generated from all connected sensor devices continuously to
get better insights of the data for value creation. According to the growth of the
application of time series database in big data fields and industrial IoT for data
monitoring and analysis, number of the developed time series database is increased
and optimized for time series data. However, a vast number of these time series
database has possessed differences in terms of algorithm approach, strengths and
weaknesses. Thus, an effective database benchmarking tool is crucial for comparing

and evaluating the database for time series data.

Internet of Things(IoT) is described as a computer environment that enable
massive number of devices connect over the internet physically and thus enabled the
collecting and exchanging of data through wireless sensor and actuator
networks.Moreover, the IoT paradigm is the integral of numerous technologies like
identification and tracking technologies, distributed intelligence, enhanced a
communication protocol which provides the communication solution among the
objects. As a matter of fact, the staggering growth of IoT data has transformed the
industrial data to the industrial big data. (Ranger, 2018)

Time series data is described as a sequence of data points being measured at a
periodical interval and stored in a timely order. All the data generated by the IoT
sensor devices is collected and stored over time. Time series data has become the new
oil as it is importance for analysis purpose to recognise the major component in time
series data like trend and novelties. Time series data can be used to understand the part
as well as predict the future. However, the rapid growth of the data degrading the
efficiency of storing and querying data and thus time series database is developed to

optimise the time series data.(Kulkarni, 2018)

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 1

Chapter 1 Project Background

Time series database is recognised as storage optimized for time stamped or time
series data. It is built for handling the metrics or events of a system and specialised to
deal with high traffic data. Time series database is exploded in popularity due to its
basic characteristics like high writing throughput, effective query performance and
high scalability data storage to enable efficient high volume data processing compared
to traditional database management system.Recently, numerous time series database
has sprung up as InfluxDB, OpenTSDB, Prometheus and TimescaleDB. Large variety
of these time series database has demonstrated different performance in the IoT and

industrial development. (Zhou, 2019)

IoT database benchmark is described as database benchmark framework
specifically designed for time series database. The benchmark framework is used to
evaluate the performance among the wide variety of time series database of desired
based on a set of well defined test. Normally, database benchmark is designed to
perform main test scenarios like insertion of high volume data and read the data
inserted as these basic tests are widespread in many real time systems. Moreover,
numerous important features being monitored and measured by the benchmark
framework is the writing throughput, reading speed and the size of the data storage is
required. An effective database benchmark is important use in different fields
especially [oT, industrial and financial fields whenever database need to be chosen for

web or application, IoT and Industrial application development.

Grafana is recognised as an open source interactive analytic and monitoring
tools that handling the massive amount of data metrics of a specific database follow
by building the dashboards and graph for effective data monitoring use. It supports
multi-platform and compatible with vast number of data sources and some data
sources stores with time series data like InfluxDB, MySQL, Graphite, OpenTSDB
and so on. Plus, the rich features of the Grafana like data visualize, dynamic,
dashboards, alerting and extensibility of plug-in make the most of the Grafana
become a leading options of analytic and monitoring tools to be used among software
developers or to be used in a broad range of industries.(Pastil, 2020)

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 2

Chapter 1 Project Background

1.2 Problem Statements

¢ Incomprehensive database benchmarking between time series database and
relational database
There are vast numbers of database benchmarks available for measuring the
performance of different Time Series Database from a wide range of different
aspects. However, there are no efficient database benchmark available specifically
for measuring the performance between Time Series Database and Relational
Database. Instead, there are numerous general comparisons of system properties

between relational database and time series database available in the public.

® Grafana cannot perform customize query function
Grafana is designed to support both traditional relational database and time
series database likes MySQL and InfluxDB. The performance of the Grafana
visualization, monitoring and analytic functions are query to the specific database
that connected to the Grafana. Thus, only specific functions are performed by the
respective database and thus results return to Grafana for data visualization and

monitoring.

® Grafana cannot visualize customized query function as it is unable to perform
customize query function

Due to the unavailability of custom query function of Grafana, users are

unable to gain their certain desired insights from the datasets of the database

connected to the Grafana as the functionalities of the Grafana is solely depend on

the functions of the specific databases used such as InfluxDB or MySQL. Thus,

users are unable to visualize some certain customized functions since the Grafana

cannot perform the custom query function.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 3

Chapter 1 Project Background

1.3 Project Objectives

e To evaluate the data insertion and querying performance of Relational
Database and Time Series Database
The objectives of this project is to develop an efficient database benchmark
framework that specifically evaluate the data insertion and querying performance
of the database that designed with different primary model as MySQL that
optimized for storing standard SQL numeric datatypes and InfluxDB, a NoSQL
database that optimize for storing the time series metrics, events and real time
analytics. Thus, a detailed comparison between MySQL and InfluxDB in term of

data insertion and data reading performance are able to be identified effectively.

e To develop a program that extend the Grafana functionality in data analytic
platform

The second objectives of the project is to deliver a program to address the

problems and limitations of the Grafana with InfluxDB and MySQL. The program

is designed with the querying function across multiple databases as connected to

InfluxDB and MySQL simultaneously. Plus, the program is also enable the users

to perform query request from MySQL and InfluxDB separately and thus fetch the

combined data results to Grafana for further data visualization and monitoring

used. Hence, the Grafana users is able to extract their desired data insights from

different databases like InfluxDB and MySQL efficiently.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 4

Chapter 1 Project Background

1.4 Project Scopes

Browser

Data Source

Figure 1-1 System Architect of the project

This project is designed to deliver an efficient and comprehensive database
benchmark between the performance of both Relational Database and Time Series
Database by using the MySQL and InfluxDB respectively. Instead of benchmarking
the databases of same primary model, our project is delivered the benchmarking
results of MySQL that designed to optimize for standard SQL numeric datatypes and
InfluxDB that optimize for time series data, events and metrics. Moreover, the project
scope will not focus on the IoT data visualization, database storage and analytic
platform but concentrate solely on developing a program to support and enhance the
Grafana, MySQL and InfluxDB in the aspect of data analytic platform by improving

the extension functionalities of Grafana.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 5

Chapter 1 Project Background

1.5 Impact, Significance and Contribution

In this project, an effective database benchmark work is being performed to
evaluate the performance between the popular database that designed with different
primary database model as the InfluxDB is designed for storing time series metrics
and events while the MySQL database is designed for the storing standard SQL
numeric data. Based on the InfluxDB and MySQL benchmark result, the reader are
able to gain a more deeper insights towards the strength and weakness possessed by
these two database in term of data insertion and querying performance and thus

choose a more suitable database for their project development use more efficiently.

On the other hand, a data analytic module is delivered to improve the analytic
functions of Grafana by enable users to perform custom query function across
multiple databases like MySQL and InfluxDB databases. The program will redirect
the custom query results to Grafana and thus enable users to visualize the data from
custom query and to explore their desired insights from the data. In conclude, the
program is delivered to benefit society, business or organization to solve their
problems and support their business growth by exploring better insights on their

business data for a more effective decision making.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 6

Chapter 2 Literature Review

Chapter 2 Literature Review

Engine/Tools On Premises Approach

2.1 InfluxDB

InfluxDB is defined as an open source time series database with high
scalability optimized for heavy writing and query loads.For instance,user is able to
utilize the influxDB to process data at a higher speed. Secondly, the excellent query
performance of the influxDB is benefit user with efficient querying with high volume
data. It is enabled user to user DevOps to perform data monitoring and metric
function and thus increase the efficiency of influxDB. Moreover, the InfluxDB is an
integral component of TICK stack. In terms of definition, TICK is referred as
Telegraf,InfluxDB,Chronograf and Kapacitor. TICK is an open source projects
designed to handle massive amount of time series data interacted with InfluxDB.

(Isley and Savage, 2019)

2.2 MySQL

MySQL is an open sourced relational database system that emphasise on data
consistency and compliance with a formal database schema in use of Structure Query
Language (SQL). Moreover, the quick processing of data, reliability, flexibility and
ease of use has made the most of the MySQL recognised as a leading database to be
used among the software developers especially for web based application
developments. In term of web development platform, MySQL acts as an important
component of LAMP stack that consist of Linux operating system, Apache web
server, MySQL and object oriented programming languages as either PHP, Python or
Pearl. LAMP is recognised as an open source projects designed to be used for the

development of websites and web applications. (Rouse, 2013)

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 7

Chapter 2 Literature Review

2.3 Comparison Between The InfluxDB and MySQL

Name InfluxDB MySQL
License Open Source Open Source
Predefined Data Type Numeric Data, Numeric Data,
Strings Strings
Primary Database Time Series DBMS Relational DBMS
Model
Implementation On JAVA C and C++
Language
Operating System Linux OS Linux OS
OS X OS X
Windows
Solaris
Second Indexes No Yes
Supported Programming | .Net C
Language Java C++
JavaScript Java
Perl JavaScript
PHP Perl
Python PHP
Ruby Python
Rust Ruby
Scala
SQL Support InfluxQL, Yes
SQL-like query language
Data Access APIs HTTP, Telnet API PHP API

Table 2-1 Comparison between MySQL and InfluxDB

BCS(Hons) Computer Science

Faculty of Information Communication and Technology(Kampar Campus), UTAR.

Chapter 2 Literature Review

2.4 Benchmarking Graphite vs InfluxDB for Time Series Data, Metric and
Management
This previous database benchmark study was aimed to evaluate the
performance metrics between the Graphite and InfluxDB for common time series
workloads.InfluxDB is a time series database that built on SQL flavour while the
Graphite is not supported by any SQL query language. Both the Graphite and
InfluxDB was set to compare across multiple vectors like data ingestion

performance, on-disk storage and also the mean query response time.

Besides, all the content and statistics used in this benchmarking scenario is
from official benchmarking InfluxDB. In addition, the datasets is used to model the
DevOps monitoring and metric use case. The write performance benchmark is carried
by loading the 24 hours dataset with 4 worker threads. Furthermore, the query
performance of time series database is being tested by aggregating value on random 1
hour, compiled into one minute interval and thus represent a single line in visual
context for modelling DevOps use. Moreover, on-disk storage is tested after the
dataset is loaded and thus comparing the written value of space consumed by the
datasets in aid to get the performance of the TSDB. The lower the disk space used

value, the greater the on-disk compression of the TSDB.

Write Throughput (Higher is better

or Seco

es Pe

alu

Vi

InfluxDB Graphite

Figure 2-1 Comparison of writing throughput between InfluxDB and Graphite

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 9

Chapter 2 Literature Review

On-disk Storage Requirements (Lower is better)

ata represe 241 »f me
100 hosts (87.3M value:

Disk Space Used

Graphite InfluxDB

Figure 2-2 Comparison of on-disk storage between InfluxDB and Graphite

Query Throughput - Single Series (Higher is Better)

Queries Per Second

Graphite

InfluxDB

Figure 2-3 Comparison of query throughput between InfluxDB and Graphite

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

10

Chapter 2 Literature Review

Based on the comparison results shown above, we can conclude that InfluxDB
has possessed higher performance in data ingestion as approximately 12x speed faster
than Graphite with the same dataset loaded. Plus, the InfluxDB has beaten Graphite
by delivering 9x faster query performance. This is because the InfluxDB is built on
SQL flavour, a structure query language that introduce higher speed of data retrieval.
Thus, the InfluxDB users are able to use InfluxQL to retrieve huge amount of record
from InfluxDB efficiently compared to Graphite that is not supported by SQL.
Moreover, Graphite is required more space on disk compared to InfluxDB measured
on same datasets loaded. Hence, the InfluxDB is proved to be a stronger and more
efficient database compared to Graphite to provide better data writing and query

performance with lower disk storage required. (Churilo,2019)

Strengths
e Applying DevOps monitoring tool during testing to get better insights of the
database performance. Each dataset in this study is used to model a common
DevOps to monitor and metric use case such as comparing write performance,

query performance and on-disk storage.

e Provide basic performance test to evaluate data writing throughput, query
throughput and on-disk storage between InfluxDB and Graphite. Through a
series of basic database test, a detailed performance results can be shown to

enable user differentiate between these two TSDBs.

e Benchmarking between the popular TSDBs available in the market, Both the
InfluxDB and Graphite are recognised as the popular TSDBs widely used by
organisations or developer according to their high scalability and
efficiency.Thus, a performance benchmark between these TSDBs is important

and enable the users to choose easier between them.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 11

Chapter 2 Literature Review

Weakness
e This TSDB benchmark work is not comprehensive. In this research, there are
only two TSDBs are being benchmarked and three vector performance are
being evaluated between these TSDBs. The work is considered not
comprehensive to cover the more number of popular TSDBs at once. It is
insufficient to solve the difficulties of developers to choose TSDBs among

wide variety of TSDBs.

e Data accuracy of each TSDB is remained unchecked. As the data integrity is
important to ensure the security of the data in the database and thus, the
accuracy and completeness of the database must be ensured to avoid error
contained in the particular TSDB. And this may lead to further negative

impact to the developers like generate poor data analysis on inaccurate data.

Due to the numerous weaknesses of the benchmark approach has mentioned
above, we can conclude that an effective IoT database benchmark work must be
developed in order to evaluate the capability of both InfluxDB and MySQL through a
series of tests like data insertion test followed by query performance test together with
the data integrity check. Thus, an effective and accurate benchmark results is
delivered with the detailed data insertion and querying performance between
InfluxDB and MySQL in order to address the problems as incomprehensive database
benchmark work between TSDB and RDMS available in the market. Moreover, a
program will be developed to sit between the Grafana and the data source in order to
solve the limitations of Grafana that unable to visualize the data from a custom query
by designing the program to query data from multiple databases and thus pass the data

to Grafana for further data visualization used.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 12

Chapter 3 System Design

Chapter 3 System Design

In this chapter, various kinds of system design diagram like use case diagram,
activity diagram, class diagram and the communication diagram will be demonstrated
to visualize the component of the Grafana data analytic system together with the
depiction of how’s user able to interact with the Grafana data analytic system through
series of designed processes in order to achieve the system requirements that enabling
user to perform custom query functions follow by visualize data output with their
desired insights from custom query on Grafana for effective and efficient data

interpretation.

3.1 Use Case Diagram

Perform custom query function
across multiple databases

Generate results on
Grafana Dashboard

Visualize data from custom query

Sending HTTP Request

Figure 3-1 Use Case Diagram of Extended Grafana Analytic System

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 13

Chapter 3 System Design

3.2 Use Case Description

Use Case ID UcCo01 Version 1.0

Use Case Perform custom query function across multiple databases.

Aims To enable users to perform custom query across multiple
database as either retrieve data results from MySQL or
InfluxDB or from both MySQL and InfluxDB.

Actor User

Trigger User send customized query to request for data among multiple
databases.

Precondition The users must perform a valid custom query.

Main Flow 1. User designed a valid custom query that can be recognised by

the targeted database.
2. User perform the designed query in order to collect the query

data across multiple databases.

Alternative Flow

1.1 Database errors occurs as wrong query inserted.

Author

Har Pui See

Table 3-1 Perform custom query function use case description

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 14

Chapter 3 System Design

2. User must enter the correct HTTP request.
3. User must set the correct HTTP request parameters.
4. The system will update the results on the dashboard.

5. User can view the dashboard with desired output.

Use Case ID ucCo002 Version 1.0

Use Case Visualize data from custom query

Aims To enable users to gain better insights on their desired data from
custom query.

Actor User

Trigger User create a dashboard in Grafana and set the panel in view
mode.

Precondition The user must enter the HTTP request correctly in order to
generate result on the dashboard.

Main Flow 1. User create a dashboard in Grafana.

Alternative Flow

2.1 Grafana dashboard panel show request error message.
3.1 Grafana dashboard panel show request error message.
4.1 System show error message.

Author

Har Pui See

Table 3-2 Visualize data from custom query use case description

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

15

Chapter 3 System Design

3.3 Activity Diagram

User

System

b

Sending HTTP request

v

Sending request parameter)

What database to be
queried?

MySQL
& MySQL InfluxDB
InfluxDB

Y

{ Query data from database }—J

Gonerato output on Grafana dashboard)

Output with data from
custom query?

Display error message Display output

Figure 3-2 Activity Diagram of Extended Grafana Analytic System

BCS(Hons) Computer Science

Faculty of Information Communication and Technology(Kampar Campus), UTAR.

16

Chapter 3 System Design

3.4 Class Diagram

Result

-queryResult : String

Database

-dbName : String

+viewResult()
+updateResult()
+deleteResult()

-tbName : String

-

+queryData()

&

(

MySQL

InfluxDB

-dbName : String
-tbName : String

-dbName : String
-tbName : String

Figure 3-3 Class Diagram of Extended Grafana Analytic System

3.5 Sequence Diagram

1: set HTTP request

System Ul

2: set request parameter

7: display output

<

3: send HTTP request

4: query data across multiple

database

6: return query result

T
|
|
|
|
|
|
|
|
|
|
|

5: generate query result

Figure 3-4 Sequence Diagram of Extended Grafana Analytic System

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

17

Chapter 3 System Design

3.6 Project Timeline

1oday g pue [A JO Meyd puen G-¢ I3

IM IMPM EM TM EM PMEM|TM M PM EM TN EM TN IM PN EMIZM BN PM EM TN M PMEM TM EM PM EM
d3s onv nr NNr AVW ydv yvw 934 NVF

1i0day 7 dAd @y} Bunpiom
wajsAs pastjeut) 03 adAjojoid ayy aaoidwy
SuIX1} JO1IJ pue 5U1}S) WISAS
2dfy0j01d waysAs Aiepuodas ayy ayepdn
sjnsal Aianb ayy azAjeuy
1591 AJjeUOIIDUNY WA)SAS
waysAs pasodoud ayy
Jo uonyduny A1anb aseqejep-13)nw ayy usdisag
adAjoyoid waisAs ping
wa)sAs pasodoid ay) japow pue usisaq

T 323f0.14 Jea, Jeuty
1oday | dAd 9y3 Sunjiopm
s})nsaJ pue yJom Ateurwnaid ayy pajuawndoq
aouewuoyad aseqejep Jo syNsal azAjeuy
MJIOM M}JReWYdUaq aseqelep Wwiojiad
BUIX14 J011J puUe 5U1}S3) WIISAS
25eD 159) 2seqelep JO |apow ay) usisag
syuawalinbau 0aloid azhjeuy
109(01g 2dods pue yoieasay Areulwjalgd

1 323f0.d Jea) euty

AWVN MSVL

0202 1edA

7 B | dAd J0 3Jeyd 13ueD

18

Faculty of Information Communication and Technology(Kampar Campus), UTAR.

BCS(Hons) Computer Science

Chapter 4 System Implementation

Chapter 4 System Implementation

4.1 Methodologies

The Rapid Application Development(RAD) is a kind of agile development

that optimized for rapid prototyping and iterative delivery. In this project, the program

is being developed based on emphasised on prototype in aid to deliver the products

with shorten delivery times. (Powell-Morse,2016).

- (

Refinement

Preliminary Framework Design

Partial Framework Design

Finalised Framework Design

Refinement

Demonstrate database benchmarking work
between MySQL and InfluxDB

Demonstrate the program function to perform
custom query function across multiple databases
like MySQL and InfluxDB

Demonstrate the program function to visualize the
data from custom query to Grafana

Figure 4-1 Prototype Based Methodology

In this prototyping based project, various number of prototype has been

designed to be used throughout the whole development cycle. There are concurrent

analysis, design and implementation steps keep repeated to generate few version of

system prototype until a prototype that satisfied all the requirements is being

developed. Different version of prototype has been developed throughout the whole

development cycle.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 19

Chapter 4 System Implementation

In the beginning of the project, all the project requirements are being well
defined as the problem statement and motivation of the project and follow by
finalizing the project scope and main objective of the project in order to improve the
analytic platform of the Grafana by addressing the limitation and weakness between

Grafana , InfluxDB and MySQL databases.

The second phase of the project is to analyze all project related scopes and
objectives in order to formalize and formulate the project requirements. Thus,
literature review has been done by gaining more understanding of current existing
research or approaches for addressing the incomprehensive benchmarking problem
between MySQL and InfluxDB together with the Grafana analytic platform related
problems and thus evaluate numerous available approaches and implement the system

based on a suitable approach is chosen.

Next, the first prototype is built to demonstrate the benchmarking work
between the MySQL and InfluxDB in order to possess the strengths and weakness of
both databases in term of data insertion and query performance with the designed test
cases. Thus, further test the performance of both databases with the Grafana
visualization functionalities. Based on this first prototyping testing , if new user
requirements introduced and thus refinement on the initial project problems and

requirements is needed.

Moreover, second prototype is built to further implement on the first prototype
to demonstrate and verify the interaction between MySQL, InfluxDB and Grafana in
term of data query and data visualization performance and thus design a program to
address the problems and limitations of data analytic functions of Grafana by enabling
the user to perform the custom query functions to access and retrieve data from both
MySQL and InfluxDB respectively. Follow by the further implement on the second
prototype, the model prototype is then delivered to demonstrate and test the function

of visualize the data from custom query on Grafana for effective data interpretation.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 20

Chapter 4 System Implementation

Furthermore, the prototype that performing partial functions of the
programs will be delivered to the users for collecting feedbacks and further improve
and refine the program until the developed system has completely satisfy all user
requirements efficiently as the system prototype will be re-analyzed, re-designed and
re-implemented in order to solve all project stated problems and thus to deliver a

finalised program that has been delivered.

Lastly, the finalised prototype will be implemented by performing
functionalities test in order to ensure the program to function properly and able to gain
accurate results effectively without any unwanted errors occurs before the finalised

program is being delivered to the users.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 21

Chapter 4 System Implementation

4.2 Tools to Use
In our project, we have use the following varies of tools to develop the data

analytic module to extend the Grafana data analytic function as:

% Development Tools
e Linux CentOS - A free community enterprise operating system that support

computer platform that function to support development and production servers.

e Linux Ubuntu - An open sourced operating system with Linux distribution based

on Debian used for developing the database benchmark work.

* Visual Paradigm - An online free UML diagramming tools that support effective

and efficient modelling of system design processes.

% Visualization Tools
« Grafana - A free data analytic platform with feature-rich dashboards and data
sources plugin that support effective and efficient data visualization and

monitoring functions.

< Data Sources
« MySQL - A relational database management system that mainly used for data

warehousing and web database based on SQL and it is supported by Grafana.

« InfluxDB - A time series database well known for dealing with high volume and

velocity of time series data and it is supported by Grafana.

“* Programming Language
« Python - A general purpose programming language that designed with extensive
support of libraries that provide rich set of functions that support wide range of

different project development use.

% Remote Computing Tools

« MobaXterm - A free remote computing tools that support wide range of server

connection like SSH, Telnet, FTP, VNC and so on.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 22

Chapter 4 System Implementation

4.3 Performing Custom Query Function Across Multiple Databases On Grafana
Grafana that provided feature-rich dashboards support and wide range of data
sources plugin support has made the most of Grafana to become a powerful piece of
data analytic tools that being widely employed among data scientists. In the event of
generating a data visualization report on Grafana, a dashboard with one or a set of
panels are being created to visualize the data being extracted by processing specific
query functions with connected to a corresponding data source. However, before
processing the query, it must have at least one datasource being added to Grafana for
further data visualization used. Each panel has come with a query editor to enable

user edit the query request to visualize specific data on Grafana panel.

Creation of data visualization report on Grafana can be generalized as following steps:

Add a datasource to Grafana

* (Create a new dashboard

Add a new panel in dashboard for each visual representation of data

Write at least one query to extract the specific data visualization display on panel

\ Data Sources / DataPlumbersTee

DataPlumbersTee i Default

InfluxDB

http://localhost:8087

Server (Default) Help »

Auth
Basic Auth 1 With Credentials (i)

TLS Client Auth = With CA Cert i]

Skip TLS Verification (Insecure)

Figure 4-2 Configure a new datasource to Grafana

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 23

Chapter 4 System Implementation

Graph General Metrics Axes Legend Display Alert Time range

=] DataSource DataPlumbersTee v » Options » Help » Query Inspector
v A SELECT mean("value’) FROM “measurement” WHERE $timeFilter GROUP BY time($__interval) fill(null)

FORMATAS Timeseries ~ ALIASBY

v B AddQuery

P
< &

L=
[
- 1 |
Alert List

4

Dashboard list Pie Chart

Figure 4-3 Add a new panel on Grafana

Graph General Metrics Axes Legend Display Alert Time range

Data Source DataPlumbersTee ~ » Options » Help » Query Inspector

default select measurement

field (value) mean() + Toggle Edit Mode

Duplicate

time (S_interval) fill (null) Move up

Move down
Time series ~

Figure 4-4 Query Editor on Grafana

Writing query is a key process to extract the specific data visualization display
on the panel. Its basically a process to design a query to enable Grafana panel
communicate with the specific connected datasource to fetch data for further
visualization on Grafana used. According different selected datasources, the query
editor will initially provide auto-completion, suggestion of metric names, or variable
that subject to availability. Alternatively, users are able to further edit the auto
completion query in a more flexible way by switching the initial query editor to a

“Toggle Edit Mode”.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 24

Chapter 4 System Implementation

Graph General Metrics Axes Legend Display Alert Time range

=] DataSource DataPlumbersTee v » Options » Help » Query Inspector

v A SELECT mean('value”) FROM "measurement” WHERE S$timeFilter GROUP BY time($__interval) fill(null)

FOR S Timeseries v ALIASBY

v B AddQuery

Figure 4-5 Query editor in “Toggle Edit Mode” on Grafana

In this “Toggle Edit Mode”, users are able to further edit the query by ignoring
those initially provided auto-completion and suggestion on data query request which
relatively more convenient for users wish to specify a custom query instead on

depending on the data source matching available query pattern.

In order to address the limitations of Grafana analytic functions that unable
user to perform custom query, we have developed a program seated between Grafana
and multiple datasources like MySQL and InfluxDB with function aid to enable users
performing custom query functions that valid to access and retrieve data across
multiple databases at the same time. Moreover, users are granted with the extended
functions to further process the retrieved data results like merging both correlated data
results in one single output or return single correlation value between different data
results collected across multiple databases as visualization results can be depend on

the custom query request input by users in the Grafana query editor.

Plotly General Metrics Display Traces Time range

e DataPlumbersTee + » Options » Help > Query Inspector

User {"Influx_dbname™: “testdb", “Influx_query” : * mean(value_t) as mean FROM weathertb WHERE (tag1 = ‘temperature’) AND StimeFilter group by time(24h) fill(previous) ",
"Mysgl_dbname™"testdb", "Mysql_query":"invoice_date as time, avg(sales_amt) as mean from retail group by time ", “Instruction”"merge”}

FORMATAS Timeseries ~ ALIASBY

Add Query

Figure 4-6 Custom query request edit on Grafana

Based on the figure above, it shows a panel editing work with a custom query
request that connected to an initial configured datasource named DataPlumbersTee. In

order to process the custom query, a module named DataPlumbersTee.jar will be

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 25

Chapter 4 System Implementation

executed using the same port number as the DataPlumbersTee datasource for the

redirecting of the input custom query from Grafana.

As from the custom query design, “User” is the name of the python program
that design to be executed to call all specific functions that mainly import from
DuplexFetch python program correspondingly to process the requested custom query.
Next, the custom query is designed in JSON format for ease and efficient data parsing
and translation between browser and server. Moreover, the custom query in JSON
format is designed to store both MySQL and InfluxDB database name and query

respectively together with data processing instructions.

With the intention of delivering a clean, readable and manageable program,
we have developed the program in modular fashion that possessed high reusability of
code. The simple and clean design of the User program is a sample program to depict
how Data Scientist can perform the custom query function efficiently and effectively
by making use of our developed DataPlumbersTee and DuplexFetch program through

execution of only a few program lines through python importing modules feature.

import sys

import json

from urllib2 import unquote

from DuplexFetch import DuplexFetch

#load incoming query in JSON
unquoted_query = unquote(sys.argv[1]).replace("+"," ")
res = json.loads(unquoted query)

fetch = DuplexFetch(res)
tee = fetch.get tee()

#get query result dataframe
output_df = fetch.get resultFrame()

#display result dataframe to grafana
tee.ps_display dataframe_to _grafana(output df)

Source Code 4-1 User program load custom query in JSON and get processed multi-

database result data frame

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 26

Chapter 4 System Implementation

#
#

H* o

1/usr/bin/env python3
-*- coding: utf-8 -*-

Created By : Pui See
Created Date: Mon August 3

import sys

import json

import pandas as pd

from urllib2 import unquote

from DataPlumbersTee import DataPlumbersTee

class DuplexFetch:

def __init__ (self, incoming_query):
self.influx_dbname = incoming_query["Influx_dbname"]
self.mysgl dbname = incoming guery["Mysgl dbname"] -
self.influx_tee = DataPlumbersTee("localhost™,8086,"admin","admin"”, self.influx_dbname)
self.mysql tee = DataPlumbersTee("localhost",3306,"root", "puisee123",self.mysql dbname)
self.intlux_query = 1ncoming_query| Intlux_query" |
self.mysql_query = incoming_query["Mysql_query"]
self.instruction = incoming_query["Instruction™]

Source Code 4-2 DuplexFetch program initialising the JSON custom query with

calling function import from DataPlumbersTee

#Get result dataframe display to grafana
def get_resultFrame(self):
if str(self.instruction).strip() != "none":
self.influx_df = self.influx_tee.ps_get dataframe_from_influx(sys.argv[1])
self.mysql_df = self.mysql_tee.ps_get dataframe_from_mysql(sys.argv[1])

if str(self.influx_query).strip() != "none" and str(self.mysql_query).strip() != "none":
if(str(self.instruction).strip()) == "merge™:
self.mysql_df.index.name = 'time’
self.influx_df.index.name = "time’

self.merged_df = self.influx_df.merge(self.mysql_df, on="time")
self.output_df = self.merged_df
return self.output_df

if(str(self.instruction).strip()) == "corr"
self.mysql_df.index.name = 'time’
self.influx_df.index.name = 'time’
self.merged_df = self.influx_df.merge(self.mysql_df, on="time")
self.corr_value = self.merged_df["mean_x"].corr(self.merged_df["mean_y"])

self.corr = {'col1l': str(self.corr_value)}
self.corr_df = pd.DataFrame(self.corr, index =[0])
return self.corr_df

elif str(self.instruction).strip() == "none™:
if str(self.mysql_query).strip() != "none" and str(self.influx_query).strip() == "none":
self.mysql_df = self.mysql tee.ps_get dataframe_from mysql(sys.argv[1])
self.mysql_df.index.name = 'time’

self.output_df = self.mysql_df
return self.output_df

elif str(self.mysql_query).strip() == "none" and str(self.influx_query).strip() != "none":
self.influx_df = self.influx_tee.ps_get dataframe_from_influx(sys.argv[1])
self.influx_df.index.name = "time’

self.output_df = self.influx_df
return self.output df

Source Code 4-3 DuplexFetch program processed the custom query request to get

result dataframe

BCS(Hons) Computer Science

Faculty of Information Communication and Technology(Kampar Campus), UTAR.

27

Chapter 4 System Implementation

Based on the source codes above, the DuplexFetch program is developed to
initialised JSON custom query passed from User program once the related
DuplexFetch module function is being called. From the DuplexFetch init
method, all related query component like target InfluxDB, MySQL databases name,
query and instruction will be initialised for further processing use. However, the
self.influx_tee, and self.mysql tee variable that require for processing multiple
databases querying functions is being initialised from calling the function named
ps_get datafame from influx() and ps get dataframe from mysql() respectively

imported from DataPlumbersTee module.

Next, get-resultFrame() function is developed to recognised the custom query
conditions as either to query across multiple databases, query from MySQL database
or just query data from InfluxDB. As for the custom query request to get data from
both InfluxDB and MySQL, the instruction query is also subject to recognise as
either “merge" for merging multiple databases result in one or “corr” for return single
correlation value between multiple databases result. In end of the function, only a
single dataframe will be returned for further process to be displayed on Grafana.
Furthermore, in order to execute the get resultFrame() function both self.influx df
and self.mysql_df is initialised by calling functions import from DataPlumbersTee
module which is intentionally designed to get the specific databases query result and

return in datarframe format for further data processing or visualisation used.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 28

Chapter 4 System Implementation

class DataPlumbersTee:
timezone = 'Asia/Kuala Lumpur'’

def __init__ (self, host, port, username, password, database):
self.host = host
self.port = port
self.username = username
self.password = password
self.database = database

Source Code 4-4 DataPlumbersTee program initialised custom query database

connection

def ps_get_dataframe_from_influx(self, incoming_query):
self.client = DataFrameClient(str(self.host), self.port, str(self.username), str(self.password), str(self.database))
#self.client = DataFrameClient(host="localhost', port=8086, username='admin', password='admin', database=str(self.database))
#remove additional queries, we only process Influxdb_query
self.unquoted_query = unquote(incoming_query.strip()).replace("+"," ")
self.query_list = json.loads(self.unquoted_query)
self.query = "SELECT " + self.query_ list["Influx_query"]
self.results = self.client.query(self.query,chunked=False)
self.client.close()
#get tablename
self.table = self.results.keys()[0]
#get aggregation method name e.g. last / mean
self.aggregation_method = self.results.values()[@].keys()[0]
#Grab the dataframe from the dictlist of the query
self.df = self.results[self.results.keys()[0]]
return self.df

def ps_get_dataframe_from_mysql(self,incoming_query):
#self.con=mysql.connector.connect(str(self.host),self.port,str(self.username),str(self.password), str(self.database))

self.unquoted_query = unquote(incoming_query.strip()).replace("+"," ™)
self.query_list = json.loads(self.unquoted_query)
self.query = "SELECT " + self.query_list["Mysql_query"]
self.cur = self.con.cursor(dictionary=True)
self.cur.execute(self.query)
self.results = self.cur.fetchall()
self.con.close()
for r in self.results:
r=r
#get tablename , r = self.results stored in <dict> type
self.table = r.keys()[0]
#get aggregation method name
self.aggregation_method = r.keys()[0]
#get datafranme from MySQL query result
self.df = pd.DataFrame(self.results)
#formalise the DataFrame format
self.df = self.df.set_index('time")
self.df.index = self.df.index.tz_localize('UTC').tz_convert('UTC")
self.df.index.name = ' '
return self.df

self.con=mysql.connector.connect(host=str(self.host),port=self.port,user=str(self.username),password=str(self.password), database=str(self.database))

Source Code 4-5 DataPlumbersTee program processing custom query and retrieve

data across multi-databases

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 29

Chapter 4 System Implementation

Firstly, the DataPlumberTee init method is designed to initialised all
custom query related variable that required for further data querying or visualization
used. On the other hand, both of the ps_get dataframe from influx method and
ps_get dataframe from_ mysql method will process the custom query and load it in
JSON follow by processing the specific database query to retrieved specific data

results accordingly.

In the event of processing the custom query function that shown on the figure
4-12 with title Custom query request edit on Grafana, “User" program is executed to
process the custom query that is designed to retrieve average temperature value from
InfluxDB and average sales from MySQL databases together with the instruction
“merge” to join both InfluxDB and MySQL query results together. Instead of
directly process the dataframe results for visualization, the merged dataframe result is
able to be print and displayed on the executed DataPlumbersTee.jar server connected

fronted as below:

User
Merged Temperature and Sales Dataframe:

averageTemperature averageSales

time

2011-01-04
2011-01-05
2011-02-01
2011-02-17
2011-02-22
2011-03-01
2011-03-28
2011-04-01
2011-04-15
2011-05-01
2011-06-01
2011-06-22
2011-06-27
2011-07-01
2011-08-01
2011-09-01
2011-09-22
2011-09-29
2011-10-02
2011-10-18
2011-11-01
2011-12-01
2011-12-09

19.057143
31.517727
18.888947
15.775000
24.301818
16.881000
15.197377
21.339487
23.463478
19.368000
21.407813
31.745000
17.757917
21.592836
24.230555
44,630435
15.964706
21.140000
21.679455
44.,612857
25.177069
21.017273
26.155745

[cloloNoNoNoNoNoNolooNoNoNoNoNoNooNoNoNoNoNol

Figure 4-7 Merged Dataframe result from InfluxDB and MySQL database

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 30

Chapter 4 System Implementation

4.4 Visualizing Data From Custom Query Function on Grafana

As a matter of fact, there is a strong relationship between both data querying

and data visualization as query is basically a vital component in data analytic platform

to communicate with data sources to get the user desired data results successfully and

thus only able to generate and display the data visualization report on Grafana. Hence,

the development of the program functions to visualize data from custom query is built

based on the valid program function that able to preform custom query function and

get the related accurate data results.

import sys

import json

from urllib2 import unquote

from DuplexFetch import DuplexFetch

#load incoming query in JSON
unquoted_query = unquote(sys.argv[1]).replace("+",
res = json.loads(unquoted query)

fetch = DuplexFetch(res)
tee = fetch.get tee()

#get query result dataframe
output_df = fetch.get resultFrame()

#display result dataframe to grafana
tee.ps_display dataframe_to grafana(output df)

)

Source Code 4-6 User program processing custom query and get tee object to call the

function to display the custom query data to Grafana

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

31

Chapter 4 System Implementation

From User program, the tee object can be obtained by calling get tee function
for further execution of ps display dataframe to grafana function import from

DuplexFetch module.

#get_tee for either mysql_df / influx_df / merged_df
def get_tee(self):
if str(self.instruction).strip() != "none™:
if str(self.influx_query).strip() != "none" and str(self.mysql_query).strip() != "none":
self.tee = self.influx_tee
return self.tee

elif str(self.instruction).strip() == "none":
if str(self.mysql_query).strip() != "none" and str(self.influx_query).strip() == "none":
self.tee = self.mysql_tee
return self.tee

elif str(self.mysql_query).strip() == "none" and str(self.influx_query).strip() != "none":
self.tee = self.influx_tee
return self.tee

Source Code 4-7 DuplexFetch program determine the tee variable based on the target

database specified in custom query

def ps_display dataframe_to_grafana(self,out_dataframe, row_columnl = @, row_column2 = 1, table = None):

#display corr_df / mysqldf / influx_df with one index and one column value
if len(out_dataframe.columns) == 1 :
if (table is None):
table = self.table
if (str(out_dataframe.index.name).strip() != "time"):
out_dataframe.index.name = "index"

json_values_list = []

display corr_df without time column as index

if (str(out_dataframe.index.name).strip() != "time"):

for index, row in out_dataframe.iterrows():

json_value_point = []
json_value_point.append(index)
json_value_point.append(row[row_columni])
json_values_list.append(json_value_point)

json_columns_array = []
json_columns_array.append(str(out_dataframe.index.name))
json_columns_array.append(str(out_dataframe.columns[@]))

json_series = {}

json_series["name"] = table
json_series["columns"] = json_columns_array
json_series["values™] = json_values_list

json_series_array = []
json_series_array.append(json_series)

json_statement = {}
json_statement["series"] = json_series_array
json_statement["statement_id"] = row_columnl

json_statement_array = []
json_statement_array.append(json_statement)
json_result = {}

json_result["results"] = json_statement_array

print (json.dumps(json_result).replace("'","'"").replace("NaN","null"))

Source Code 4-8 DataPlumbersTeeDebug program display single correlation value of

merged dataframe display to Grafana

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 32

Chapter 4 System Implementation

display mysql_df or influx_df with time column as index
elif (str(out_dataframe.index.name).strip() == "time"):
for index, row in out_dataframe.iterrows()
json_value_point = []
json_value_point.append(pd.Timestamp(index , tz = self.timezone).value/1000000)
json_value_point.append(row[row_columni])
json_values_list.append(json_value_point)

json_columns_array = []
json_columns_array.append(str(out_dataframe.index.name))
json_columns_array.append(str(out_dataframe.columns[@]))

json_series = {}

json_series["name"] = table
json_series["columns™] = json_columns_array
json_series["values"”] = json_values_list

json_series_array = []
json_series_array.append(json_series)

json_statement = {}
json_statement["series"] = json_series_array
json_statement["statement_id"] = row_columnl

json_statement_array = []
json_statement_array.append(json_statement)
json_result = {}

json_result["results"”] = json_statement_array

print (json.dumps(json_result).replace(B).replace("NaN","null™))

Source Code 4-9 DataPlumbersTeeDebug program display single column MySQL or

InfluxDB dataframe to Grafana

else:
if (table is None):
table = self.table

json_values_list = []

#in single output_df (iterate its stored element)
for index, row in out_dataframe.iterrows():
json_value_point = []
#get 1st column of df "always time column”
json_value_point.append(pd.Timestamp(index , tz = self.timezone).value/1000000)
#2nd column, temperature
json_value_point.append(row[row_columni])
#3rd column, sales
json_value_point.append(row[row_column2])
json_values_list.append(json_value_point)

json_columns_array = []
json_columns_array.append(“time")
json_columns_array.append(“temperature™)
json_columns_array.append(“sales™)

json_series = {}

json_series["name"] = table
json_series["columns™] = json_columns_array
json_series["values"] = json_values_list

json_series_array = []
json_series_array.append(json_series)

json_statement = {}

json_statement["series™] = json_series_array
json_statement["statement_id"] = row_columnl
#add

json_statement["statement_id2"] = row_column2

json_statement_array = []
json_statement_array.append(json_statement)
json_result = {}

json_result["results”] = json_statement_array

print (json.dumps(json_result).replace("'","'"").replace("NaN","null"))

Source Code 4-10 DataPlumbersTeeDebug program display merged MySQL with

InfluxDB dataframe to Grafana

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

33

Chapter 4 System Implementation

With the second highlights of our project that enabling users to visualize the
data from custom query, our program is developed to visualize the result dataframe
collected from performing the custom query functions regarding different conditions
like either to display the single correlation value of merged dataframe, Influx
dataframe, MySQL dataframe or merged dataframe of both InfluxDB and MySQL. In
this specific visualization function event, the deliverable of the custom query function

1s act as a determinant.

Weather-Sales-Forecasting

Temperature vs. Sales

Temperature

30

Sales

Plotly General Metrics Display Traces Time range

=] DataSource DataPlumbersTee ~ » Options » Help » Query Inspector

~ B User {'Influx_dbname": "testdb", "Influx_query” : " mean(value_t) as averageTemperature FROM weathertb WHERE (tag1 = ‘temperature’) AND $timeFilter group by time(24h) fill(previous) ",
"Mysql_dbname": testdb", "Mysql_query"-'invoice_date as time, avg(sales_amt) as averageSales from retail group by time *, “Instruction" merge’}

ORMATAS Timeseries ~ ALIASBY

Figure 4-8 Scatter plot visualization of merged dataframe on Grafana

User

{"results": [{"series": [{"values": [[1294099200000, 3.0, 19.057143143245153], [1294185600000, 6.0, 31.5177273533561], [1296518400000, 3.0, 18.88894734466285
0800000, 7.0, 15.775000095367432], [1298332800000, 4.0, 24.30181814323772], [1298937600000, .881000022888184], [1301270400000, 8.6, 15.1973769600031918]
6000000, 13.0, 21.339487198071602], [1302825600000, 11.6, 23.463478046914805], [1304208000000, 13.0, 19.36799980044365], [1306886400000, 13.0, 21.40781255811¢
8700800000, 14.0, 31.74499996503194], [1309132800000, 24.0, 17.7579167286555], [1309478400000, 5.0, 21.592835767945246], [1312156800000, 19.0, 24.23055548138(
14835200000, 14.0, 44.630434782608695], [1316649600000, 16.6, 15.9647058318643], [1317254400000, 18.0, 21.139999937503895], [1317513600000, 19.0, 21.67945457:
[1318896000000, 10.0, 44.61285718282064], [132010560000! 12.0, 25.17706895696706], [1322697600000, 21.017272689125754], [1323388800000, 6.0, 26.1557447¢
"name": "weathertb", "columns": ["time", "temperature", "sales"]}], "statement_ id2": 1, "statement_id": ©}1}

Response Completed

Figure 4-9 Result dataframe display to Grafana in JSON format

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 34

Chapter 4 System Implementation

4.5 Implementation Issues and Challenges

In order to deliver an effective database benchmark work between MySQL
and InfluxDB together with develop a data analytic module to extend the analytic
functionalities of Grafana, there are numerous issues and challenges has been

possessed throughout the whole implementation of the project like

¢ Difficulties in design the model of the benchmark workload between different
datasources
Due to the MySQL and InfluxDB possessing differentiation in database type,
scalability and support different query language. Thus, in order to evaluate the
database efficiently, a comprehensive data writing and querying test case must be
performed by using specific query design that fit to both MySQL and InfluxDB

respectively.

* Benchmarking the performance of different datasources is time consumed.

In order to gain a reliable and comparable benchmark results between MySQL
and InfluxDB, the designed benchmark tests are needed to be run multiple times to
minimize the impacts and side effects to the output results, Plus, the quality of the
output results will be verified by calculate the average value of the collected
measurements. Thus, the project time management must be handled well in order

to deliver the benchmark work more efficiently.

e Design program to perform custom query function and integrating with
multiple datasources is challenging
In the event of develop program to perform custom query functions across
multiple databases, the query design and data standardising has become the pre-
requisite for further program development to delivered effective and accurate
analysis work. In fact, both MySQL and InfluxDB are compatible with different
query pattern. Hence, the design of the custom query statement is a challenging
work to ensure the query is effectively to fetch all related data from both MySQL
and InfluxDB and thus follow by data processing work to standardize different

format of dataframe collected from multiple datasource accordingly.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 35

Chapter 5 Experimental Result

Chapter 5 Experimental Result

5.1 Develop Database Benchmark Framework between SQL and NoSQL
Databases

In this chapter, we described the ideas and the work done to benchmark the
performance of the NoSQL and SQL databases like InfluxDB and MySQL with the
numerous designed test cases to evaluate the performance of both databases in term of
data insertion and data querying respectively. Besides, the different test methods of
the databases will be further discussed together with the performance metric used and

the overall test results of the database benchmark in this section.

5.1.1 Data Insertion

By testing the data insertion of the databases, we have used Java programming
language to build a program to access, store and retrieve data from InfluxDB and
MySQL respectively. In order to ensure the effectiveness and accuracy of the database
benchmark, both databases have been tested with same design model like table design
and amount of data tested in the databases. Firstly, the InfluxDB and the MySQL has
designed with a database that included 2 tables named as CPU and Temperature. The
CPU table was designed to store 3 attributes like host, region and value while
Temperature table is stored 2 attributes like machine and value. Moreover, each
database will be tested with the same 10000 rows of data for table CPU and
Temperature respectively. Next, the JAVA JDBC API is used to store and access the
MySQL while the java client is used to stored and retrieved data from InfluxDB with

the use Eclipse software act as a medium.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 36

Chapter 5 Experimental Result

) *Application01java 2

influxDB.write(Point.measurement("cpu™)
.time(System.currentTimeMillis(), TimeUnit.MILLISECONDS)
.addField("host", host)
.addField("region",region)
.addField("value", value)
.build());

influxDB.write(Point.measurement("temperature")
.time(System.currentTimeMillis(), TimeUnit.MILLISECONDS)
.addField("machine",machine)
.addField("value", value)
.build());

}//while
long end = System.currentTimeMillis();
long duration = (end - start);

influxDB.write(Point.measurement("InsertTempDuration™)

.time(System.currentTimeMillis(), TimeUnit.MILLISECONDS)

.addField("ID",8)

.addField("duration", duration)

.build());
System.out.println("Done!™);
System.out.println("Elapsed Time::
br.close();

}catch(Exception e) {

+ duration + "Milliseconds™);

System.out.println(e.getMessage());

insertCPU.java

tlass insertCPU{
public static void main(String[] args) {

string dburl = "jdbc:mysql://localhost:3366/psdb"”;
String username = "root";
String passwd = "puiseel23”;

long start = System.currentTimeMillis();

try{

BufferedReader br = new BufferedReader(new
FileReader("cpuScript.txt"));

String line = null;

while((line = br.readLine()) != null){

String tmp[] = line.split("” ");

String host = tmp[0];

String region= tmp[1];

Double value= Double.parseDouble(tmp[2]);

Class.forName("com.mysql. jdbc.Driver");
Connection conn = DriverManager.getConnection(dbuUrl, username, passwd);
Statement st = conn.createStatement();

int row = st.executeUpdate("Insert into cpu values('" + host + "' , '" + region + "' , "
+ value + ");");

}//while
long end = System.currentTimeMillis();
long duration = (end - start);

System.out.println("Done!");
System.out.println("Elapsed Time:: " + duration + "Milliseconds");
br.close();

Java ¥ Tabwidth:8 v LnS, Col1 ¥ INS

Figure 5-2 Insert data using JDBC for MySQL

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

Chapter 5 Experimental Result

root@puisee: ~

File Edit View Search Terminal Help
1584815769091000000 serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west
serverA us_west

Figure 5-3 Dataset of table CPU in InfluxDB

puisee@puisee: ~

File Edit View Search Terminal
serverA us_west | 47.00
serverA us_west | 58.00
serverA us_west | 78.00
serverA us_west | 93.00
serveraA us_west | 85.00
serverA us_west | 96.00
serverA us_west | 28.00
serverA us_west | 44.00
serverA us_west | 34.00
serverA us_west | 78.00
serverA us_west | ©.00
serverA us_west | 68.00
serverA us_west | 67.00
serverA us_west | .00
serverA us_west | .00
serverA us_west | .00
serverA us_west | .00
serverA | us_west | .00
serverA us_west | 94.00
serverA us_west | .00
serverA us_west | .00
serverA us_west |

10000 rows in set (0.04 sec)

mysql>

Figure 5-4 Dataset of table CPU in MySQL

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 38

Chapter 5 Experimental Result

5.1.2 Querying of Data

Numerous query types are designed to test the InfluxDB and MySQL that
storing with same dataset. Both InfluxDB and MySQL also support multiple query
types and thus we evaluated the query performance of InfluxDB and MySQL by
using different query types. The query types we used as

e Select All Query
The select all query is designed to retrieved all available data from the specific

tables with the syntax, i.e., select * from <table>.

e Average Aggregation Query
The average aggregation query is designed to retrieved the average value of an
attributes from a specific tables with syntax, i.e., select avg(column name) from

<table>.

* Minimum Aggregation Subquery
The minimum aggregation subquery is designed to retrieve the minimum
value returned from the nested inner query with syntax, i.e., select min(column_name)

from (select min(column_name) from <table>).

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 39

Chapter 5 Experimental Result

I*/ Problems @ Javadoc (2 Declaration @ Console : X %|=b 2] vOOv = 0O
<terminated> Application01 [Java Application] C:\Program Files\Java\jre1.8.0_201\bin\javaw.exe (31 Mar 2020, 4:09:14 pm)
19.0], [2020-03-3110/:55:0/.2427, un1tdl, 48.0], [2020-03-3110/:55:0/.2/2, unitd2, 22.9], [2020-03- ~

31T07:55:07.296Z, unit42, 42.0], [2020-83-31T07:55:07.308Z, unit42, 6.8], [2020-03-31T07:55:07.321Z, unit42,
16.0), [2020-03-31T07:55:07.336Z, unitd2, 11.0], [2020-03-31T07:55:07.362Z, unitd2, 20.0], [2020-03-
31T07:55:07.375Z, unitd2, 40.0], [2020-03-31T07:55:07.382Z, unitd2, 0.0], [2020-03-31T07:55:07.393Z, unit42,
43.0], [2020-03-31T07:55:07.406Z, unit42, 16.8], [2020-03-31T07:55:07.415Z, unitd2, 37.0], [2020-03-
31707:55:07.4287, unitd2, 1.0], [2020-03-31T07:55:07.4387, unitd2, 41.0], [2020-03-31T07:55:07.445Z, unitd2,
20.0], [2020-03-31T07:55:07.457Z, unitd2, 40.0], [2020-03-31T07:55:07.471Z, unitd2, 19.0], [2020-03-
31T07:55:07.476Z, unit42, 18.0], [2020-03-31T07:55:07.501Z, unit42, 5.8], [2020-03-31T07:55:07.523Z, unit42,
37.0], [2020-03-31T07:55:07.53Z, unitd2, 15.0], [2020-03-31T07:55:07.537Z, unitd2, 10.0], [2020-03-
31707:55:07.543Z, unitd2, 12.0], [2020-03-31T07:55:07.555Z, unitd2, 16.0], [2020-03-31T07:55:07.5717, unitd2,
40.0], [2020-03-31T07:55:07.584Z, unit42, 1.0], [2020-03-31T07:55:07.605Z, unit42, 46.0], [2020-03-
31T07:55:07.619Z, unitd2, 33.0], [2020-03-31T07:55:07.628Z, unitd2, 13.0], [2020-03-31T07:55:07.643Z, unitd2,
19.0), [2020-03-31T07:55:07.655Z, unitd2, 5.0], [2020-03-31T07:55:07.664Z, unitd2, 30.0], [2020-03-
31T07:55:07.678Z, unit42, 31.0], [2020-03-31T07:55:07.691Z, unit42, 33.0], [2020-03-31T07:55:07.699Z, unitd2,
43.0], [2020-03-31T07:55:07.71Z, unit42, 17.0], [2020-03-31T07:55:07.722Z, unitd2, 8.0], [2020-03-
31707:55:08.093Z, unitd2, 24.0], [2020-03-31T07:55:08.102Z, unitd2, 34.0], [2020-03-31T07:55:08.111Z, unitd2,
45.0], [2020-03-31T07:55:08.1237Z, unit42, 31.0], [2020-03-31T07:55:08.13Z, unit42, 46.0], [2020-03-
31T07:55:08.136Z, unit42, 10.0], [2020-03-31T07:55:08.142Z, unit42, 33.0], [2020-03-31T07:55:08.148Z, unitd2,
7.0]11]1]1, error=null]], error=null]

Elapsed Time: 852 Milliseconds

Figure 5-5 Query result in InfluxDB

Machine: unit42 value: 12.0
Machine: unit42 value: 16.0
Machine: unit42 value: 40.0
Machine: unit42 value: 1.0

Machine: unit42 Value: 46.0
Machine: unit42 value: 33.0
Machine: unit42 value: 13.0
Machine: unit42 value: 19.0
Machine: unit42 Vvalue: 5.0

Machine: unit42 Value: 30.0
Machine: unit42 value: 31.0
Machine: unit42 value: 33.0
Machine: unit42 value: 43.0
Machine: unit42 Vvalue: 17.0
Machine: unit42 Value: 8.0

Machine: unit42 value: 24.0
Machine: unit42 value: 34.0
Machine: unit42 value: 45.0
Machine: unit42 Value: 31.0
Machine: unit42 Value: 46.0
Machine: unit42 value: 10.0
Machine: unit42 value: 33.0
Machine: unit42 value: 7.0

Elapsed Time:: 2073 Milliseconds

root@puisee:

Figure 5-6 Query result in MySQL

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

Chapter 5 Experimental Result

5.1.3 Performance Metric

InfluxDB and MySQL database performance is being evaluated by comparing
the performance of each database in response to each different operations type. We
use average cost time metric as a measurements to benchmark the database
performance by comparing the elapsed time measured in milliseconds of complete
data insertion into the database or the query request sending to the database follow by
a full results are returned. The performance of InfluxDB and MySQL will be
measured in average cost time of 30 attempts of each operation tested in order to get a

more accurate database benchmark result.

5.1.4 Overall Database Benchmark Result

In this database benchmark work, the result shows that the InfluxDB is
outperform the MySQL by delivering greater data insertion and querying
performance.

Average Performance Measure in Milliseconds
InfluxDB MySQL
Data Insertion 394515 826230
Select All Query 288 2328
Average Aggregation Query 31 139
Minimum Aggregation 43 101
Subquery

Table 5-1 Performance result between InfluxDB and MySQL for table CPU

Average Performance Measure in Milliseconds

InfluxDB MySQL

Data Insertion 286993 631872
Select All Query 249 2141
Average Aggregation Query 38 155

Minimum Aggregation 54 81
Subquery
Table 5-2 Performance result between InfluxDB and MySQL for table
Temperature

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 41

Chapter 5 Experimental Result

5.2 Generate Visualization Report for Weather Based Retail Sales Data

With purpose of testing and ensuring the functions and performances of our
developed program is able to extend Grafana analytic function by enable users to
perform custom query functions and generate analytic report on Grafana to visualize
the data from custom query, we have created a real world scenario test case as

Weather Based Sales Forecasting to conduct the functionalities testing of the program.

The weather based retail sales forecasting test case is considered as an
effective real world scenario test case to further interpret the functionality and
possessed the importance of our program. In today business industry, there is an
advanced increase in the employment of the hybrid databases which embrace the
strengths of both SQL and NoSQL database like high scalability, efficiently data
query performance enable data analyst to execute transactional (OLTP) and analytical
(OLAP) workloads parallelly benefit for easy data interpretation and visualization. In
our test case, same period of weather datasets and retail sales datasets will be stored in
both InfluxDB and MySQL databases respectively and ready for further performing of

custom query functions.

| invoice_no | product_code | product_name ordered_qty

e oo e
536365 | 85123A WHITE HANGING HEART
536365 71053 WHITE METAL LANTERN
536365 | 84406B CREAM CUPID HEARTS C
536365 84029G KNITTED UNION FLAG H
536365 | 84029E RED WOOLLY HOTTIE WH
536365 22752 SET 7 BABUSHKA NESTI
536365 | 21730 GLASS STAR FROSTED T
536366 22633 HAND WARMER UNION JA
536366 | 22632 HAND WARMER RED POLK
536367 84879 ASSORTED COLOUR BIRD
536367 22745 POPPY'S PLAYHOUSE BE
536367 22748 POPPY'S PLAYHOUSE KI
536367 22749 FELTCRAFT PRINCESS C

United Kin
2010- 0 . 20.34 0 United Kin
2010-12- £ - 22 United Kin
2010-12-0 0 H: . 20.34 0 United Kin
2010-12- 2 20.34 United Kin
2010-12-0 0 . 15.3 0 United Kin
2010-12- - 25.5 United Kin
2010- 0 . 11.1 0 United Kin
2010-12- - 11.1 United Kin
2010-12-0 0 . 54.08 United Kin
2010-12- - 12.6 United Kin
2010-12-0 0 . 12.6 United Kin
2010-12- 3 30 United Kin
2010-12- :00:0 . 9.9 United Kin
2010-12- £ - 25.5 United Kin
2010-12-0 0 . 14.85 United Kin
2010-12- - 19.9 United Kin
2010-12-0 0 . 17.85 United Kin
2010-12- - 17.85 United Kin
2010-12-0 0 i . 31.8 United Kin
2010-12- - 31.8 United Kin
2010-12-0 0 . 25.5 United Kin
2010-12- - 14.85 United Kin
2010-12- . 14.85 United Kin
2010-12-01 00:00:00 14.85 United Kin
2010-12-01 00:00:00 17.85 United Kin

536367 | 84969 BOX OF 6 ASSORTED CO
536367 | 22623 BOX OF VINTAGE JIGSA
536367 | 22622 BOX OF VINTAGE ALPHA
536367 | 21754 HOME BUILDING BLOCK
536367 | 21755 LOVE BUILDING BLOCK

536367 | 21777 RECIPE BOX WITH META
536367 | 48187 DOORMAT NEW ENGLAND
536368 | 22960 JAM MAKING SET WITH
536368 | 22913 RED COAT RACK PARIS
536368 | 22912 YELLOW COAT RACK PAR
536368 | 22914 BLUE COAT RACK PARIS
536369 | 21756 BATH BUILDING BLOCK

—_———— — %

WWWWORAWWNWOODIDONDDIDN DO ®OD D

|
|
|
|
|
|
|
|
|
|
|
|
|
| 536367 | 22310 IVORY KNITTED MUG CO
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5-7 Retail sales data stored in MySQL database

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 42

Chapter 5 Experimental Result

> select * from weathertb
name: weathertb
time tagl tag2 tag3 tag4 tag5 value_c value_h value_t value v value w

1291161600000000000 temperature humidity visibility windspeed condition
1291248000000000000 temperature humidity visibility windspeed condition
1291334400000000000 temperature humidity visibility windspeed condition
1291420800000000000 temperature humidity visibility windspeed condition
1291507200000000000 temperature humidity visibility windspeed condition
1291593600000000000 temperature humidity visibility windspeed condition
1291680000000000000 temperature humidity visibility windspeed condition
1291766400000000000 temperature humidity visibility windspeed condition
1291852800000000000 temperature humidity visibility windspeed condition
1291939200000000000 temperature humidity visibility windspeed condition
1292025600000000000 temperature humidity visibility windspeed condition
1292112000000000000 temperature humidity visibility windspeed condition
1292198400000000000 temperature humidity visibility windspeed condition
1292284800000000000 temperature humidity visibility windspeed condition
1292371200000000000 temperature humidity visibility windspeed condition
1292457600000000000 temperature humidity visibility windspeed condition
1292544000000000000 temperature humidity visibility windspeed condition
1292630400000000000 temperature humidity visibility windspeed condition
1292716800000000000 temperature humidity visibility windspeed condition
1292803200000000000 temperature humidity visibility windspeed condition
1292889600000000000 temperature humidity visibility windspeed condition
1292976000000000000 temperature humidity visibility windspeed condition
1293062400000000000 temperature humidity visibility windspeed condition
1293148800000000000 temperature humidity visibility windspeed condition
1293321600000000000 temperature humidity visibility windspeed condition
1293408000000000000 temperature humidity visibility windspeed condition
1293494400000000000 temperature humidity visibility windspeed condition

P WNRNWNA RO

(=]

FHRRERRORFHFORRRORORRREFREREEORREO®®

Figure 5-8 Weather data stored in InfluxDB

Data analytic technologies is employed by tremendous numbers of compony
to optimize their business revenue by analyse and gain certain insights from their
business data in order to do informed business decision based on the history sales
data. According to researcher's study, the weather is considered as a factor impact on
sales. Moreover, after the custom query across both MySQL and InfluxDB is being
processed by data scientist to collect the data results, thus the retrieved weather based

retail sales data is then able to be displayed on Grafana for efficient data visualisation.

With the intention of testing the multi-database custom query function
together visualize function of the custom query data, we have generated numerous
different panel on Grafana to visually interpret the correlation between weather and
sales data by employ the use of scatter plot visualizations, dual axis graph
visualization together with histogram graph visualizations to depict the correlated

weather based retail sales data.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 43

Chapter 5 Experimental Result

Weather-Sales-Forecasting

Temperature vs. Sales

®
g
s
H
2
£
2

Sales
Plotly [Metrics Display Traces Time range

DataSource DataPlumbersTee » Options. » Help » Query Inspector

User {'Influx_dbname” “testdb, "Influx_query” : * mean(value_t) as averageTemperature FROM weathertb WHERE (tag1 = ‘temperature’) AND $timeFilter group by time(24h) ill previous) *,
"Mysql_dbname": testdb’, "Mysql_query‘invoice_date as time, avg(sales_amt) as averageSales from retail group by time *, "Instruction”: merge’)

FORMATAS Timeseries ~ ALIASBY

Figure 5-9 Scatter plot visualization between Temperature and Sales

Based on the figures, it shows our program is able to process the custom query
function to retrieve average temperatures data and average sales data from both
InfluxDB and MySQL respectively and thus display the custom query results to
Grafana in scatter plot fashion. Plus, the scatter plot is able to display the correlation

between temperature data and sales data within a specified time interval.

Weather-Sales-Forecasting
Average Weather Based Retail Sales Data (merged df)

— weathertbtemperature 3.00
= weatherth.sales 1520

n an

Graph General Metics Axes Legend Displyy Alert Timerange

© DataSouce DataPlumbersTee v » Options » Help » Query Inspector

v B User {"Influx_dbname": “testdb", “Influx_query” : “ mean(value_t) as mean FROM weathertb WHERE (tag1 = ‘temperature’) AND StimeFilter group by time(24h) fill(previous) *,
"Mysql_dbname"testdb", "Mysql_query"-"invoice_date as time, avg(sales_amt) as mean from retail group by time *, “Instruction":"'merge’}

FORMATAS ~ Timeseries ~ ALIASBY

Figure 5-10 Dual axis visualization of Temperature and Sales

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 44

Chapter 5 Experimental Result

88 Weather-Sales-Forecasting

Temperature vs Sales Correlation Value

Data points outside time range

Gra ph General Metrics Axes Legend Display Alert Time range

DataPlumbersTee ~ » Options » Help » Query Inspector

~ A User {"Influx_dbname": “testdb, “Influx_query” : “value_t as mean FROM weathertb WHERE (tag1 = ‘temperature’) AND S$timeFilter fill(previous) *, "Mysql_dbname™:"testdb”,
"Mysql_query"invoice_date as time, sales_amt as mean from retail group by time *, "Instruction"-"corr’}

FORMATAS Timeseries ~ ALIASBY 11

Figure 5-11 Histogram visualization of correlation value between Temperature and

Sales

To summarise all of the test case results, our developed program is able to
achieve all our expected requirements in order to extend the Grafana analytic
functions in term of query performance together with extended custom query
visualization function that enable data scientist to interpret and generate analytic
visualization report by performing customized query across multiple databases more

efficiently and effectively.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 45

Chapter 5 Experimental Result

5.3 Execution Time Analysis of Extended Grafana AnalyticPlatform

As a matter of fact, the program execution time analysis is often consider as a
mandatory steps to evaluate the performance of the developed software program
component. Instead of conducting execution time analysis of single extended Grafana
analytic platform, we have further explore and compare the performance between
both extended Grafana analytic platform and simple python visualization program
under scenario performing same data query functions to retrieve and display the data
in same type of visualization report. The execution performance of both programs are
generally being measured from program initiation at presentation of some input and
function call follow by a termination whenever the expected output of the program is

being delivered.

import sys

import json

import time

from urllib2 import unquote

from DuplexFetch import DuplexFetch

start = time.time()

#load incoming query in JSON
unquoted_query = unquote(sys.argv[1]).replace("+"," ")
res = json.loads(unquoted_query)

fetch = DuplexFetch(res)
tee = fetch.get tee()

#get query result dataframe
output_df = fetch.get_resultfFrame()

#display result dataframe to grafana
tee.ps_display_dataframe_to_grafana(output_df)

end = time.time()

print("Elapsed Time_in_seconds: ")
print(end - start)

#Append test result to file

filel = open(“"GrafanaInfluxDF.txt","a")#append mode
filel.write(str(end-start)+"\n")

filel.close()

Source Code 5-1 User python program measure the execution time of processing

query and display Influx dataframe to Grafana

For ease of data storing and retrieving for later used, all attempts of the
program execution times is written into a text file and being loaded and stored in

MySQL database correspondingly.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 46

Chapter 5 Experimental Result

, 14], [1313712000000, 16], [1313798400 , 19], [1313884800 , 211, [1313971200000, 18], [1314057600000, 16], [1314144000000, 18], [131423040
0000, 18], [1314316800000, 16], [1314403200000, 16], [1314489600000, 16], [1314576000000, 13], [13146624000 14], [1314748800000, 14], [13148
35200000, 14], [1314921600000, 20], [1315008000000, 20], [131560944 , 171, [1315180800000, 16], [131526720 17], [1315353600000, 14], [1
315440000000, 17], [1315526400000, 19], [1315612800000, 20], [1315699200000, 18], [1315785600000, 19], [1315872000000, 17], [1315958400000, 16]
[1316044800000, 13], [1316131200000, 18], [13162176! , 14], [1316304000000, 13], [1316390400000, 14], [1316476800000, 18], [1316563200000
16], [131664960000! 16], [13167360000 [1316822400000, 13], [1316968800000, 17], [13169952 , [131708160000! 17], [1317168600
000, 17], [1317254400000, 18], 3 0 000, 18], [1317427200000, 18], [1317513600000, 19], [131760 0 [13176864t , 171, [131777
2800000, 19], [1317859200000, 3 3 0 12], [1318032000000, 11], [1318118400000, 18], [131 00ee0, 18], [1318291206! 18], [13
183776 , 171, [131846400 0 00 11], [1318636800000, 8], [1318723200000, 9], [131880960 12], [1318896000000, 10], [
1318982400000, 9], [1319068800 , 9 0 [13192416000 160], [1319328000000, 14], [1319414400000, 12], [13195600800 13]
[1319587200000, 11], [1319673 102, 00 1319932800000, 16], [1320019200000, 13], [1320105600000
12], [1320192000000, 13], [132027840000 171, [1326364800000, 14], 0 0 12], [1320537600000, 10], [1320624000000, 12], [13207104000
00, 10], [1320796800000, 13], [13208832 111, [1320969600000, 9], 0 000, 12], [1321142400000, 11], [13212288600 » 91, [132131520
0000, 8], [1321401600000, 6], [132148800 , 12], [1321574400000, 12], [1321660800 , 71, [1321747200000, 7], [13218336000 6], [1321920000
000, 11], [1322006400000, 7], [1322092800000, 11], [1322179200000, 11], [1322265600000, 10], [1322352000000, 10], [1322438400000, 4], [13225248
00000, 11], [1322611200000, 9], [1322697600000, 9], [1322784000000, 6], [1322870400000, 10], [1322956800000, 7], [1323043200000, 4], [132312960
0, 4], [1323216000000, 7], [1323302400000, 10], [1323388800000, 6], [1323561600000, 7], [1323648000000, 6], [1323734400000, 7], [13238208000
00, 6], [1323967200000, 7], [1323993600000, 2], 240 00, 3], [1324166400000, 1], [1324252800 , 21, [1324339200000, 7], [1324425600000
9], [1324512000000, 9], [1324598400000, 8], 4 s 6], [1324771200000, 7], [1324857600000, 11], [1324944000000, 9], [1325030400000, 9
1, [1325116800000, 8], [1325203200000, 7], [1325289600000, 12]], "name": "weathertb", "columns": ["time", "value_t"]}], "statement_id": 0}]}

Elapsed Time_in_seconds:

0.219964981079

Figure 5-12 Program execution time is measured between the interval of Influx query

input follow by data display to Grafana

-Sales-Forecasting

Daily Temperature

n

= t1 Min:1.00 Max 24.00 Avg: 11.74

Graph General Metrics Legend Display Alert Time range

& DataSource DataPlumbersTee + » Options » Help » Query Inspector

lbname": "testdb”, “Influx_query” : "value_t FROM weathertb WHERE (tag1 = ‘temperature’) AND $timeFilter fill(previous)", "Mysql_dbname":"testdb", "Mysql_query"'none",
one’}

Time series ~ ALIASBY 11

Figure 5-13 Processing custom query to display Daily Temperature panel on Grafana

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 47

Chapter 5 Experimental Result

In a similar fashion as measure the execution time of processing Influx query
and display the data to Grafana, all the attempts of different execution time is being

append to a GrafanaMySQL text file and being stored to MySQL databases.

105600000, 10.2], [1320105600000, 15.0], [1320105600000, [1320105600000, 15.0], [1320105600000, 18.72],

00000, 6.96], [1320105600000, 6.96], [1320105600000, 6.96], [1320105600000, 19.8], [1320105600000, 19.9], [1320105600000, 25.2], [132016!
, 9.96], [1320105600000, 11.4], [1320105600000, 101.88], [1320105600000, 25.2], [1320105600000, 15.0], [1320105600000, 19.8], [132010560(
0.28]1, [1320105600000, 17.7]1, [1320105600000, 30.0], [1320105600000, 38.16], [1320105600000, 24.96], [1320105600000, 19.8], [13201056000(
5], [1320105600000, 15.0], [1320105600000, 15.0], [1320105600000, 29.7], [1320105600000, 30.0], [1320105600000, 10.2], [1320105600000, 1¢
[1320105600000, 17.0], [1320105600000, 12.7], [1320105600000, 17.0], [1320105600000, 19.5], [1320105600000, 23.4], [1320105600000, 15.0]
105600000, 19.8], [1320105600000, 15.0], [1320105600000, 42.5], [1320105600000, 163.8], [1320105600000, 42.5], [1320105600000, 62.4], [1
00000, 62.4], [1320105600000, 20.8], [1320105600000, 20.8], [1320105600000, 62.4], [1320105600000, 62.4], [1320105600000, 20.8], [132016!
, 15.0], [1320105600000, 17.0], [1320105600000, 9.36], [1320105600000, 10.5], [1320105600000, 17.0], [1320105600000, 19.8], [13201056000(
2], [1320105600000, 6.96], [1322697600000, 39.6], [1322697600000, 17.85], [1322697600000, 15.0], [1322697600000, 17.34], [1322697600000,
[1322697600000, 19.9], [1322697600000, 17.7]1, [1322697600000, 30.6], [1322697600000, 16.6], [1322697600000, 20.4], [1322697600000, 20.4
3388800000, 16.5], [1323388800000, 12.48], [1323388800000, 17.4], [1323388800000, 58.0], [1323388800000, 66.6]1, [1323388800000, 51.84],

8800000, 88.8], [1323388800000, 4.68], [1323388800000, 4.56], [1323388800000, 23.4], [1323388800000, 15.0], [1323388800000, 20.4], [1323:
00, 24.96], [1323388800000, 27.04], [1323388800000, 20.4], [1323388800000, 17.0], [1323388800000, 17.85], [1323388800000, 30.0], [132338¢
, 15.0], [1323388800000, 8.5], [1323388800000, 10.08], [1323388800000, 10.5], [1323388800000, 15.0], [1323388800000, 10.2], [13233888000(
8], [1323388800000, 15.0], [1323388800000, 11.4], [1323388800000, 23.4], [1323388800000, 23.6], [1323388800000, 30.0], [1323388800000, 2
[1323388800000, 70.8], [1323388800000, 23.4], [1323388800000, 19.8], [1323388800000, 19.8], [1323388800000, 15.0], [1323388800000, 15.0]
388800000, 15.0], [1323388800000, 15.0], [1323388800000, 15.6], [1323388800000, 23.4], [1323388800000, 16.6], [1323388800000, 10.2], [13:
0000, 12.6], [1323388800000, 16.6], [1323388800000, 16.6], [1323388800000, 14.85]], "name": "sales", "columns": ["time", "sales"]}], "st¢
_id": 0}1}

Elapsed Time_in_seconds:

0.553485155106

Response Completed

Figure 5-14 Program execution time is measured between the interval of

MySQL query input follow by data display to Grafana

88 Weather-Sales-Forecasting

Retail Sales Data

n 2n

== Retail.sales_amt Min:0 Max: 1213

Graph General Metrics Axes Legend Display Alert Time range

© DataSource DataPlumbersTee v » Options » Help > Query Inspector

~ A User{Influx_dbname’: “testdb’, "Influx_query": "none", "Mysql_dbname":"testdb’, "Mysql_query'invoice_date as time, sales_amt as sales from retail", "Instruction""none}

Timeseries ~ ALIASBY Retail.sales_amt

Figure 5-15 Processing custom query to display Retail Sales panel on Grafana

In the event of conduct the program execution time analysis of python data
visualization program, it practice the In a similar fashion to extended Grafana analytic
platform as capturing the program execution time of processing the MySQL query
follow by generation of a visualization report and storing the elapsed time in text file

and thus loaded in MySQL database for further data retrieving. However, this python

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 48

Chapter 5 Experimental Result

data visualization program has possessed differences from extended Grafana analytic

platform as instead of display visualization report on Grafana, it was able to generate

a data visualization by import matplotlib module and export the plot in PNG format.

[Import matplotlib
matplotlib.use('Agg")
import matplotlib.pyplot as plt

start = time.time()

results = client.query(query, chunked-False)
client.close()

df = results[results.keys()[@]]
df.index.name = 'time

date = list(df.index)
mean = df['mean’]

client = DataFrameClient("localhost"”, 8086,"admin", "admin", "testdb")
query = "SELECT mean(value_t) as mean FROM weathertb WHERE (tagl =

plt.figure(figsize=(15.0, 10.0))
plt.plot(date,mean)

plt.xlabel('Date')

plt.ylabel('Average Temperature')
plt.title('Average Temperature Report')

plt.savefig('Average_Temperature_Report.png')
lend = time.time()

#Append test result to file

file1 = open("InfluxDF.txt","a")#append mode

filel.write(str(end-start)+"\n")
file1.close()

“temperature’) AND time >= 1293811200000ms and time <= 1325347199000ms group by time(24h) fill(previous)

Source Code 5-2 Python data visualization program process Influx query and plot

Influx data visualization report

25

Average Temperature Report

20

Average Temperature
-
&

-
°

Jan°2011 Feb 2011 Mar 2011 Apr2011 May 2011 Jjun2011 Jul2011 Aug 2011 Sep 2011 Oct2011 Nov 2011 Dec 2011
D:

ate

Figure 5-16 Influx data visualization report generated using python matplotlib module

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR.

49

Chapter 5 Experimental Result

Average Retail Sales Report

90

o]
o
T

~
o
T

[*)]
o
T

Average Sales
w
8 3

w
o

20

10 Jan 2011 Mar 2011 May 2011 Jul 2011 Sep 2011 Nov 2011

Transaction Date

Figure 5-17 MySQL data visualization report generated using python matplotlib

module

In a similar fashion, the Average Retails Sales report above is being plotted by
using python matplotlib module, program execution time will be recorded and stored

in MySQL databases for further performance analysis use.

The comparison performance of both Python data visualization program and Extended

Grafana data analytic platform are being measured and compare in average case:

mysql> select avg(time in seconds) from GrafanaInfluxDF;

1 row in set (0.01 sec)

Figure 5-18 Average program execution time of extended Grafana program

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 50

Chapter 5 Experimental Result

mysql> select avg(time in seconds) from InfluxDF;

1 row in set (0.00 sec)

Figure 5-19 Average program execution time of Python data visualization program

Average Program Execution Time (in seconds)

Python Data Visualization | Extended Grafana Analytic
Program with Matplotlib Module with
DataPlumbersTee
Influx Datafame 0.397 0.171
MySQL Dataframe 0.252 0.279

Table 5-3 Overall results of program performance between Python data visualization

program and extended Grafana analytic platform

In overall speaking, the extended Grafana analytic platform is outperform the
Python data visualization program with matplotlib as it possessed lower program
execution time in context of processing same input query and generate same type
visualization report. Lower program execution time is recognised as the program
execute the task in a reasonable or faster speed with lower program energy
consumption. In contrast, if the execution of the program is running way too slow it
will cost higher program execution time that lead to higher program energy
consumption to execute the specific task. Apart from execution time, the user
satisfaction, program error rates together with program energy consumption is also the

important metric to evaluate and manage the quality of the software program.

In addition, the implementation of the program execution timing analysis
between both Python data visualization program with Matplotlib and extended
Grafana analytic platform is not only deliver the program performance measured

results in execution time but it also depict the vast different between both program in

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 51

Chapter 5 Experimental Result

performance of generating data visualization report. In term of efficiency and
effectiveness, the higher flexibility of the extended Grafana analytic platform is
enable users to generate the data visualization that are subject change with time range
controls feature provided on Grafana query editor. The visualization generated to
display on extended Grafana platform can be updated whenever users edit on the
query time interval controls. Conversely, in generate data visualization report using
Python Matplotlib users is required to specify the data to plot with titles, labels
together with the plotting types and thus only the data visualization report will be

shown or saved in PNG format.

In view of the data analytic market, the extended Grafana analytic platform is
able to gain competitive advantage with its extended analytic function that able to
process custom query function and visualize the data from custom query on wide
range support of different visualization panel. For instances, the data scientists are
able to generate the visualization report once and submit for its client to further
interpret or update the report with flexible time range controls. Consequently, this
could lead to the boasting of the effectiveness and efficiency of the Grafana analytic
platform function to deliver important data insights to company for further decision

making that could devote to optimise the business revenue.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 52

Chapter 6 Conclusion

Chapter 6 Conclusion

IoT database benchmark is crucial for individuals, companies or organisations
to investigate the different database solutions available today. In this project, the
benchmark work is developed to evaluate the performance between the NoSQL and
SQL database like InfluxDB and MySQL through the series of data insertion and
query performance tests. The delivered benchmark work was able to solve the
incomprehensive benchmark work between NoSQL and SQL database available in the
market. As the NoSQL and SQL database will possess different performance towards
the big data with high volume and velocity of data. Therefore, the comprehensive
benchmark results between InfluxDB and MySQL in this project will enable users to
gain a better understanding towards the differentiations, pros and cons of both

databases.

Grafana is a powerful visualization tools that associated with wide range of
databases as including NoSQL and SQL databases. However, there is a limitations
possessed by the Grafana that troubles the users unable to perform the custom query
functions to extract desired group of data from the specific databases. Moreover, the
users also unable to visualize the data from the custom query as the Grafana failed to
performed the custom query functions. Thus, the purpose of this project is to
delivered a programs to address the failed custom query functions of Grafana by
enable the users to use the program to perform customized query data from different
data sources connected to the program and thus pass all the returning rows to the
Grafana for further data visualization used. This enable the users to visualize their
desired data collected across multiple databases for gaining a better insights from their

customized query data.

Furthermore, the novelty of our program to enable users perform custom query
on Grafana as our program are able to processing the query to fetch data from
heterogenous data sources like MySQL and InfluxDB. Moreover, the custom query
design is functions to communicate with both SQL and NoSQL databases. In today

markets, the enterprise data is pouring in various scenarios like customer relationship

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 53

Chapter 6 Conclusion

management system, web application and business databases system. All of these
scenarios possessed the importance of our program developed to extend the Grafana
analytic work that enable users to perform custom query to extract data from
heterogenous data sources. In addition, our program is developed to handle the
integration of data extracted from both MySQL and InfluxDB follow by data
processing and standardizing in order to deliver an effective and accurately analytic
visualization report on Grafana. Plus, with extended Grafana function users are able to
optimize the data analytic on Grafana. In a business analytic scenario there are various
visualization reports are required to interpret the huge business data and thus deliver
certain insights for business decision making that could lead to optimize the business
revenue. Due to high data traffic flow in the business, data scientist may require to
generate visualization report according periodic data change over time. In this case,
our program is developed to enable users to perform such efficient extended function
on a mature visualization tools Grafana that provide high flexibility to users as enable
the users to visualize the data with time range controls. This features could save data
scientist from generate visualization report more frequently due to slightly change in

time range request by their client.

In conclude, the program was able to support multiple data sources and
compatible with the visualization tools Grafana to perform data analytics functions. In
future, the program can be improve by designing to support more different databases

and thus optimise the use of the programs with the Grafana data analytic platform.

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 54

Bibliography

BIBLIOGRAPHY

Bogaards, L. 2019, An Introduction to Graphite - DZone DevOps. Available from: <

https://dzone.com/articles/an-introduction-to-graphite >. [1 Aug 2019].

Churilo, C. 2019, InfluxDB vs. Graphite for Time Series Data & Metrics Benchmark |

InfluxData, InfluxData. Available from: < https://www.influxdata.com/blog/influxdb-

outperforms-graphite-in-time-series-data-metrics-benchmark/>.[1 Aug.2019].

CI, T. 2010, OpenTSDB - A Distributed, Scalable Monitoring System.Available

from:< http://opentsdb.net/overview.html >.[1 Aug 2019].

Isley, N. and Savage, R. 2019, InfluxDB Open Source Time Series Database |

InfluxDB | InfluxData. Available from:<https://www.influxdata.com/products/

influxdb-overview/ >.[31 Jul 2019].

Kulkarni, A. 2018, What the heck is time-series data (and why do I need a time-series

database)?. Available from:< https://blog.timescale.com/what-the-heck-is-time-series-

data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/ >.[1 Aug 2019].

Pagano Dritto, G. 2019, An Overview on Elasticsearch and its usage. Available
from:<https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-

e26dfld1d24a >[5 Aug 2019].

Powell-Morse, A. 2016, What Is Rapid Application Development (RAD) and How Do
You Use It?, Airbrake Blog. Available from:< https://airbrake.io/blog/sdlc/rapid-

application-development >.[3 Aug 2019].

Prometheus.io. 2014, Overview | Prometheus. Available from:< https://prometheus.io/

docs/introduction/overview/ >.[31 Jul 2019].

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 55

https://dzone.com/articles/an-introduction-to-graphite
https://www.influxdata.com/blog/influxdb-outperforms-graphite-in-time-series-data-metrics-benchmark/
https://www.influxdata.com/blog/influxdb-outperforms-graphite-in-time-series-data-metrics-benchmark/
https://www.influxdata.com/blog/influxdb-outperforms-graphite-in-time-series-data-metrics-benchmark/
http://opentsdb.net/overview.html
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-e26df1d1d24a
https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-e26df1d1d24a
https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-usage-e26df1d1d24a
https://airbrake.io/blog/sdlc/rapid-application-development
https://airbrake.io/blog/sdlc/rapid-application-development
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/

Bibliography

Ranger, S. 2018, What is the loT? Everything you need to know about the Internet of

Things right now | ZDNet. Available from:< https://www.zdnet.com/article/what-is-

the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/ >.

[31 Jul 2019].

Rouse, M. (2013). What is MySQL? - Definition from Whatls.com. [online]
SearchOracle. Available from:<https://searchoracle.techtarget.com/definition/MySQL

>.[18 Feb. 2020].

Zhou, Z. 2019, Key Concepts and Features of Time Series Databases, Alibaba Cloud

Community. Available from:< https://www.alibabacloud.com/blog/key-concepts-and-

features-of-time-series-databases_594734 >.[1 Aug 2019].

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 56

https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
https://searchoracle.techtarget.com/definition/MySQL
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734

Appendix A Poster

FYP Poster

A Data Analytic Module

Grafana Data Analytic Function

Developed by Har Pui See

¢ In this data driven age, an analytic platform is
crucial to visualize and analyze the massive
volume of data.

Grafana is a leading visualization and analytic
solutions that support a wide range of data
sources and rich set of graphing options.

Proposed System

E H Program

Grafana

Supervised by Dr Ooi Boon Yaik

PROBLEM STATEWENTS
Incomprehensive database benchmarking
between time series database and relational

database

Grafana cannot perform customize query function.

¢ Grafana cannot visualise customized query

function as it is unable to perform customize
query function.

¢ Adata analytic module was developed to address the limitation of Grafana that failed to
perform custom query functions by enhance the analytic functions of Grafana.

o Aprogram is designed to seat between datasources and Grafana, it enable users to
perform custom query functions across multiple databases.

o Next, the program will delivered the query result to Grafana for visualization purpose.

The funcitonalities of the Grafana anaytic platform
will be enhanced via this analytic module by

e Enable users to perform multi-database query
functions and visualize the data from custom
query for getting better insights from the data.

e In future, the data analytic module can be further
improved to support more different data sources
for efficient visualization of custom query data.

BCS(Hons) Computer Science

Faculty of Information Communication and Technology(Kampar Campus), UTAR.

Proposed System
© conciuszon

e The interactive analytic solution of Grafana is
crucial for high data driven companies or
organizations.

Thus the Grafana must be further improve to
achieve higher flexibility and comprehensive to
become an effective analytic solutions that able
to support a wider range of data sources
efficiently.

57

Appendix B Plagiarism Check Result

{J) feedback studio

Har Pui See A pata Analytic Module To Extend Grafana Analytic Function

@

E’Inpter 1 Project Background

1.1 Project Background

In this data driven age, big data analytics is important to explore the massive
volume of the IoT data generated from all connected sensor devices continuously to
get better insights of the data for value creation. According to the growth of the
application of time series database in big data fields and industrial loT for data
monitoring and analysis, number of the developed time series database is increased

and optimized for time series data. However, a vast number of these time series

database has d diffe in terms of algorithm approach, strengths and

P

weaknesses.Thus, an effective database benchmarking tool is crucial for comparing

and evaluating the database for time series data.

Internet of Things(IoT) is described as a computer environment that enable

massive number of devices connect over the internet physically and thus enabled the

81

collecting and hanging of data th h wireless sensor and actuator

Match Overview X

1%

K]

Internet Source

Sandin, Marianne, Joha.. <1% >
Publication

iwmptripura.in <‘| % >
Internet Source

mafiadoc.com <1% >
Internet Source
2 Submitted to Universiti.. <1% >
Student Paper
3 Submittedto QA Leami.. <1% >
~ Student Paper
4 wwwiist.lk <1% >
Internet Source
5 www.foxinfosoft.com <1% >

A Data Analytic Module To Extend Grafana Analytic Function

ORIGINALITY REPORT

1. 19 O 0

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

1 mafiadoc.com

Internet Source

Submitted to Universiti Teknologi MARA

Student Paper

=

Submitted to QA Learning

Student Paper

=]

www.iist.lk

Internet Source

www.foxinfosoft.com

Internet Source

g a8

Sandin, Marianne, Johan Teleman, Johan
Malmstrom, and Fredrik Levander. "Data
processing methods and quality control
strategies for label-free LC—MS protein
quantification", Biochimica et Biophysica Acta
(BBA) - Proteins and Proteomics, 2013.

Publication

iwmptripura.in

Internet Source

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 58

<1%
<14%
<19
<19
<%

<1%

<1%

Appendix C Supervisor’s Comments on Originality Report

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: | Effective Date: Page No.: 1of 1
0 01/10/2013
FACULTY OF INFORMATION COMMUNICATION

et DRM AND TECHNOLOGY
Full Name(s) of Candidate(s) HAR PUI SEE
ID Number(s) 17ACB05558
Programme / Course CS
Title of Final Year Project A Data Analytic Module To Extend Grafana Analytic Function
Similarity Supervisor’s Comments

(Compulsory if parameters of originality
exceeds the limits approved by UTAR)

Overall similarity index: 1 %

Similarity by source 1

Internet Sources: %
Publications: 0 %
Student Papers: 0%

Number of individual sources listed
of more than 3% similarity: _ No

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less
than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality
report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

Signatufe\of Supervisor Signature of Co-Supervisor
Dr. Ooi Boon Yaik

Name : Name:

10-Sep-2020

Date : Date :

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 59

Lauren Har
HAR PUI SEE

Lauren Har
17ACB05558

Lauren Har
CS

Lauren Har
A Data Analytic Module To Extend Grafana Analytic Function

Lauren Har
1

Lauren Har
1

Lauren Har
0

Lauren Har
0

Lauren Har
No

Boon Yaik
Typewriter
Dr. Ooi Boon Yaik

Boon Yaik
Typewriter
10-Sep-2020

Appendix D Checklist for FYP 1 Thesis Submission

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP1 THESIS SUBMISSION
Student Id 17ACB05558
Student Name HAR PUI SEE
Supervisor Name DR. OOI BOON YAIK
TICK DOCUMENT ITEMS
(\/) Your report must include all the items below. Put a tick on the left column after you
have checked your report with respect to the corresponding item.
/ Title Page
/ Signed form of the Declaration of Originality
/ Abstract
/ Table of Contents
/ List of Figures (if applicable)
/ List of Tables (if applicable)
/ List of Symbols (if applicable)
/ List of Abbreviations (if applicable)
/ Chapters / Content
/ Bibliography (or References)
/ All references in bibliography are cited in the thesis, especially in the chapter of
literature review
Appendices (if applicable)
Poster
/ Signed Turnitin Report (Plagiarism Check Result — Form Number: FM-
IAD-005)
*Include this form (checklist) in the thesis (Bind together as the last page)
I, the author, have checked and confirmed Supervisor verification. Report with incorrect
all the items listed in the table are included formaj can get 5 mark (1 grade) reduction.
in my report.
(Signature of Student) (Sigﬁa*ur(of Supervisor)
Date: 10 Sep 2020 Date: 10 Sep 2020

BCS(Hons) Computer Science
Faculty of Information Communication and Technology(Kampar Campus), UTAR. 60

Lauren Har
17ACB05558

Lauren Har
HAR PUI SEE

Lauren Har
DR. OOI BOON YAIK

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Lauren Har
/

Boon Yaik
Typewriter
10 Sep 2020

Boon Yaik
Typewriter
10 Sep 2020

