

CONTEXT-AWARE REMINDER FOR FOOD JOURNAL MOBILE

APPLICATION

BY

HOE CHIA YONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology
(Kampar Campus)

JUNE 2020

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: CONTEXT-AWARE REMINDER FOR FOOD JOURNAL MOBILE

APPLICATION

Academic Session: JUNE 2020

 I HOE CHIA YONG

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 2372, MK 15,

 Jalan Kampung Baru, Dr. Ooi Boon Yaik

 14000 Bukit Mertajam, Pulau Pinang Supervisor’s name

 Date: 9/9/2020 Date: 9/9/2020

CONTEXT-AWARE REMINDER FOR FOOD JOURNAL MOBILE

APPLICATION

BY

HOE CHIA YONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology
(Kampar Campus)

JUNE 2020

ii
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “CONTEXT-AWARE REMINDER FOR FOOD

JOURNAL MOBILE APPLICATION” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

Signature :

Name : HOE CHIA YONG

Date : 9/9/2020

iii
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks and appreciation to my supervisor,

Dr. Ooi Boon Yaik who has given me this opportunity to engage in this project. Aside

from guidance on how to write a report, he taught me how to think and do in a scientific

wat as a Computer Science student. I learnt to be more independent to solve problem,

trying not to seek for help easily, as he said we must have the ability to solve problem

for customers when we are in career field.

Furthermore, I would like to say thanks to two of my friends for their patience,

assistance when I am doing this project. They gave me some suggestion how to improve

the report writing. Finally, I love my family for their continuous support and

encouragement throughout the course.

iv
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

ABSTRACT

Most of the existing food journal apps in the market provide reminder

functionality to notify users for logging a meal at specific mealtime each day. Yet, all

these time-based reminders are not sophisticated enough because the users presently

scheduling a reminder may not be able to predict a specific time. Since context-

awareness in mobile computing is concerned with gathering information about the user

current situation, this project proposes to develop a context-aware reminder for food

journal mobile application, that utilises factors of time, device location, and user

activity recognition to notify the users in a more efficient way. Provided the user has

set the context-aware reminder at certain time interval, for instance 2 - 3 pm for Lunch.

At 2 pm, the app will start tracking user device location using Fused Location Provider

API. If the user is detected inside a restaurant circular region of specified radius for

certain period, the app starts tracking step counter sensors value for activity recognition

purposes. Then, if the user current step counter remains the same and still stay inside

the restaurant region for certain period, the app assumes user is sitting for a meal in a

restaurant within specific mealtime. The app then vibrates the device and shows a

notification, which will prompt user for logging the meal he is taking. This project also

showed the phone battery consumption when user device is receiving location updates

using Fused Location Provider API, and tracking step counter sensor value is such

simple yet effective way to detect sitting activity.

v
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

TABLE OF CONTENTS

TITLE PAGE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Project Scope 2

1.3 Project Objectives 2

1.4 Impact, Significance and Contribution 3

1.5 Background Study 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Review of Similar Existing Apps to Log Food Journal 5

 2.1.1 Bitesnap 5

 2.1.2 Lose It! 6

2.2 Google Android APIs 8

 2.2.1 Fused Location Provider API 8

 2.2.2 Geofencing API 8

 2.2.3 Awareness API 9

 2.2.4 Fence API 10

2.3 Smartphone Sensors 13

 2.3.1 Motion Sensors 13

2.4 Mobile Device Location Detection Technologies 14

 2.4.1 AGPS/ GPS 14

 2.4.2 Wi-Fi Positioning System 15

vi
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.5 Review of ‘Context Based Reminder System: Supporting

Persons using Smartphone Accelerometer Data’

16

CHAPTER 3 SYSTEM DESIGN 19

3.1 Methodologies 19

3.2 System Design/ Overview 20

 3.2.1 Use Case Diagram 20

3.2.2 Use Case Descriptions 21

3.2.3 Activity Diagrams 24

3.2.4 Class Diagram 28

CHAPTER 4 IMPLEMENTATION 30

 4.1 Tools to Use 30

 4.2 User Interface Design 31

 4.3 App Function/ Module Implementation 34

 4.3.1 Set Reminder 34

 4.3.2 Location Tracking 37

 4.3.3 Activity Recognition 39

 4.3.4 Take Photo for Logging Journal 40

 4.3.5 Edit/ Delete Food Journal 41

 4.3.6 Navigate and View Food Journal 42

CHAPTER 5 TESTING & RESULTS 43

 5.1 Operational Testing of Context-Aware Reminder 43

 5.2 Responsiveness Testing of Context-Aware Reminder 44

 5.3 Responsiveness Testing Results 46

CHAPTER 6 DISCUSSION 47

 6.1 Trigger Time of Alarm (for Time-based Operations) 47

 6.2 Location Update Interval and Battery Consumption of Fused

Location Provider API (for User Device Location Tracking)

47

 6.3 Value of Step Counter (for User Sitting Activity Recognition) 49

vii
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 7 CONCLUSION 50

 7.1 Project Review 50

 7.2 Project Contribution 50

 7.3 Future Work 51

BIBLIOGRAPHY 53

APPENDICES A1

viii
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 Bitesnap UI of homepage, logging a journal, and

reminder.

6

Figure 2.2 LoseIT! UI of homepage, logging a journal, and

reminder.

7

Figure 2.3 Geofencing API trigger event according to transition

type.

8

Figure 2.4 Awareness API context types. 9

Figure 2.5 Flow chart of working theory of TimeFence. 10

Figure 2.6 Implementation theory of A-GPS. 14

Figure 2.7 Comparison between A-GPS and GPS. 15

Figure 2.8 Mathematical formulas to process raw accelerometer

data.

16

Figure 2.9 SdrAcc over 100 seconds from a participant. 17

Figure 2.10 Accuracy of activity recognition. 17

Figure 3.1 Use case diagram of food journal mobile application. 20

Figure 3.2 Activity diagram of ‘Set Reminder’. 24

Figure 3.3 Activity diagram of ‘Take Photo to Log Food Journal’. 25

Figure 3.4 Activity diagram of ‘Edit Food Journal’. 26

Figure 3.5 Activity diagram of ‘Delete Food Journal’. 27

Figure 3.6 Activity diagram of ‘Navigate and View Food Journal’. 27

Figure 3.7 Class diagram of food journal mobile application. 29

Figure 4.1 App ‘Main Screen’ UI. 31

Figure 4.2 App ‘Reminder’ UI. 32

Figure 4.3 App ‘Save Journal’ UI. 32

Figure 4.4 App ‘Update Journal’ UI. 33

Figure 4.5 App ‘Main Screen’ interface. 34

Figure 4.6 User is asked for location accessing permission. 34

ix
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 4.7 User can set the reminder time using hour, minute hands

of popped-up clock dialog when he clicks button for

specific mealtime.

35

Figure 4.8 User device is asked to switch on GPS first if GPS is not

enabled.

35

Figure 4.9 Setting a reminder creates alarms. 36

Figure 4.10 Stop all the executing device location and step counter

tracking.

36

Figure 4.11 Define longitude and latitude of a target restaurant. 37

Figure 4.12 Define function to track if the user device is near to the

restaurant.

37

Figure 4.13 Define parameter settings and action to be triggered for

location update.

37

Figure 4.14 Thread to check if user device is near to a restaurant for

certain period.

38

Figure 4.15 User device location tracking is running in the

background

38

Figure 4.16 Record step counter sensor value if user is detected

walking.

39

Figure 4.17 Thread to check if user is sitting in a restaurant for

certain period.

39

Figure 4.18 App notification is shown in the notification bar. 40

Figure 4.19 ‘Save Journal’ interface to let user enter journal detail

after taking a photo.

40

Figure 4.20 ‘Main Screen’ interface display logged food journal

photo.

41

Figure 4.21 ‘Update Journal’ interface to let user update existing

journal detail when user clicks a journal photo.

41

Figure 4.22 User can view the logged food journal of certain date

using popped-up calendar interface when he clicks

button showing current date.

42

Figure 5.1 Flowchart showing how to get expected time taken to

trigger the reminder in Responsiveness Testing 1.

45

x
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 5.2 Box-and-whisker plot showing time taken to trigger

context-aware reminder in Responsiveness Testing 1

and 2.

46

Figure 6.1 Phone battery consumption when user device is

receiving location updates at 30 seconds and 120

seconds interval.

48

xi
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1 Comparison Between Fence API and Proposed Method

for Building Context-Aware Reminder.

12

Table 2.2 Android Smartphone Sensor Categories. 13

Table 3.1 Use Case Description for ‘Set Reminder’. 21

Table 3.2 Use Case Description for ‘Take Photo to Log Food

Journal’.

22

Table 3.3 Use Case Description for ‘Edit Food Journal’. 22

Table 3.4 Use Case Description for ‘Delete Food Journal’. 23

Table 3.5 Use Case Description for ‘Navigate and View Food

Journal’.

23

Table 4.1 Smartphone Hardware Specification. 30

Table 4.2 Laptop Hardware Specification. 30

Table 5.1 Operational Testing of Context-Aware Reminder in

Different Conditions.

43

Table 5.2 Responsiveness Testing 1 Details. 44

Table 5.3 Responsiveness Testing 2 Details. 45

xii
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF ABBREVIATIONS

A-GPS Assisted Global Positioning System

API Application Programming Interface

BDS BeiDou Navigation Satellite System

BTS Base Transceiver Station

CASE Computer-Aided Software Engineering

CDMA Code-division Multiple Access

GLONASS Global Navigation Satellite System

GPS Global Positioning System

GSM Global System for Mobile Communications

IDE Integrated Development Environment

LTE Long-Term Evolution

MAC Media Access Control

RSSI Received Signal Strength Indication

SSID Service Set Identifier

UI User Interface

UML Unified Modelling Language

1
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 1: INTRODUCTION

1.1 Problem Statement and Motivation

A food journal is a great tool to help people in tracking what they ate daily to achieve

several purposes such as weight loss goals, maintain healthy eating habits or monitor

food allergies. In this digital era, the journal logging process become easier and

convenient, as nearly everyone having one smartphone which can use fitness, food

diary apps with more advanced features.

However, most users may be busy working and forget to use the apps to log any

meal taken daily. While most of those apps provide reminder functionality to notify

users in the phone notification bar to log a meal at specific mealtime, these time-based

reminders, are not efficient (MyFitnessPal, Inc. 2019; FitNow, Inc. 2019; Azumio, Inc.

2019; Bite AI 2019). A time-based reminder may be set to trigger at some arbitrarily

selected time which as it turns out may be inconvenient, because the users presently

scheduling a reminder may not be able to predict a specific time.

Consider a case that a user set a reminder for lunch in the app. The user might

forget about the reminder easily in situation such as before reminder is shown up, he

has taken lunch already, or after reminder is shown up, he does not look at the phone

when having the meal and thus forget about it. When part of the users’ food journal are

missing entries, they feel that the journal becomes less inaccurate and lazy to log food

journal persistently. Eventually, their journaling habit will be gradually undermined.

(Cordeiro et al. 2015).

Instead, the reminder should only triggers when the user is in a specific location

such as a restaurant, cafe or when the user is performing certain activity such as sitting

for a meal, within specified time interval. Therefore, there are two problems need to be

tackled to encourage users to use a mobile application for logging a food journal, which

can be summarised as statements below:

• How to measure activities (sitting or non-sitting) using smartphone sensor

technology, and use the measurement results to automate reminder to the users?

• How to design the reminder to be a support for a food journal mobile application so

that users will be reminded in a more efficient way to log every meal they are taking?

2
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

1.2 Project Scope

The outcome of this project is not just a food journal mobile application, but also an

efficient way to remind users to log every meal taken daily, by applying concept of

context-awareness.

At certain time interval like lunch time, the app will keep on tracking user device

location using Fused Location Provider API at specific interval to determine if the user

stays in a target restaurant (defined by longitude and latitude), then use the step counter

sensor to recognise user’s current activity.

If the app assumes user is sitting for a meal in a restaurant within specific

mealtime, the device shall vibrate, and a notification will be shown. Once the user clicks

it, he will be prompted to camera screen of the app for logging the meal he is taking.

The logged food journal photo and details will be finally saved to app-specific storage

and local Room database respectively.

1.3 Project Objectives

This project proposes to develop a context-aware reminder for food journal mobile

application, so that users are reminded to use the app when he is sitting for a meal in a

restaurant within specific mealtime. The specific objectives of this project:

- To develop a context-aware reminder that can identify users’ activity (still or moving)

of concern using smartphone step counter sensor.

- To enhance the context-aware reminder with time-based and location-based features

to detect if the user is having a meal in a restaurant for specific mealtime.

3
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

1.4 Impact, Significance and Contribution

Aside from supporting food journal app, the context-aware reminder proposed by this

project can be support for many existing apps in the market. For instance, petrol fuelling

app reminds user to get the member card points when fuelling petrol at the station,

shopping mall app reminds user to buy certain commodities in shopping mall during

weekend, or even specific reminder app reminds user to take his personal belongings

such as key and wallet when he leaves home.

Furthermore, this project showed the phone battery consumption when user

device is receiving location updates in the background using Fused Location Provider

API (with highest priority and 30 seconds of update interval settings), which is about 4

mAh per 2 minutes. The same observation is made by changing update interval to 120

seconds for battery saving purposes. The results showed that the difference of battery

consumption is very small within short period of time like interval of one hour, and

only become bigger and obvious if the user device location tracking is going to run for

long period of time.

Lastly, this project showed that in the context of merely recognising user

activity whether he is still or moving, using Android built in step counter sensor is a

very simple yet effective way by just tracking its value compared to other methods such

as using Awareness API, or calculating phone accelerometer value.

1.5 Background Study

Food Journal

A food journal is a log of your daily food intake, may include nutritional or other dietary

information, such as amount of calories intake and body symptoms happened after

certain diet. Writing a food diary can help individuals understand their recent eating

habits, find out where extra calories come from, and develop a scientific diet plan

accordingly. For people with allergic reactions, writing a food diary can be used to

determine the relationship between allergies and eating, and to find clues to allergenic

food. A food diary also will give your doctor or health care provider a quick way to

understand your eating habits and check your progress.

4
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

In this modern era, many people are interested in tracking what they ate each

day to help them achieve weight loss goals, maintain healthy eating habits or monitor

food allergies, using health and fitness or calorie-counter mobile applications like

MyFitnessPal, Lose It!, etc. (MyFitnessPal, Inc. 2019; FitNow, Inc. 2019). These

apps track user diet and exercise to calculate optimal nutrients and caloric intake for the

personal goals. These apps also use gamification elements to motivate users. Besides,

users can search the comprehensive food database to find the food item they have taken

each day. Then by selecting the serving size and quantity, all nutrition information will

be automatically calculated and then stored into their food journal. These apps make

the process of logging food journal convenient and easy, especially with more advanced

technology of Artificial Intelligence in recent years - some of these existing mobile

applications in the market like CalorieMama, Bitesnap have started to apply Artificial

Intelligence into the application features to perform image-based food recognition, to

assist users easily log their daily meals (Azumio, Inc. 2019; Bite AI 2019).

Context-Awareness

Context awareness is a term originated from ubiquitous or pervasive computing - a

computer science concept where presence, appearing of computing are made anywhere

and anytime (Ubiquitous computing 2020). It refers to the property of mobile devices

that is able to adapt behaviours according to the information gathered from its

environment at any given time.

This term is defined complementarity to location awareness. While context is

perceived as a matter of user location initially, as time changes, context is applied more

flexibly with mobile users especially with smartphone users. Any data that can be

collected and analysed from the surrounding, environment such as temperature,

location, object existence, voice, etc. can be regarded as context. Cameras, sensors,

microphones, GPS receivers, etc. are all potential sources for context.

In short, context-aware systems emphasises three key phases: the acquisition of

context, then understand the context, and finally adaption of application behaviour

according to the recognised context (Context awareness 2019).

5
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 2: LITERATURE REVIEW

This chapter firstly reviews the similar existing food journal apps about the UI and

functionalities of logging journal and reminder. Then, to know what tools can be used

to build a context-aware reminder, several Google Android APIs, smartphone sensors

and mobile device location detection technologies are reviewed. Lastly, this chapter

also reviews an approach of building context-based reminder system using smartphone

accelerometer.

2.1 Review of Similar Existing Apps to Log Food Journal

2.1.1 Bitesnap

Bitesnap is a food journal application that uses Artificial Intelligence to log a meal by

taking a photo and key in a few details such as food name and serving size, to save user

time and make it simple to build healthy eating habits. It analyses the image, and

automatically calculates the calories and nutrients of the food. As users log meals, this

app displays an Instagram-style feed of pictures, each with nutritional facts (Bite AI

2019).

Besides image-based food recognition, user can add entries into his food journal

by scanning barcode of a packaged product, or search through Bitesnap food datasets.

In this context, user can add new food type with custom calories, nutritional contents

to his own food dataset to be searched. Bitesnap also provides a daily nutrient card that

shows nutritional breakdown of what user has eaten, in a pie chart format depicting how

much carbohydrate, protein, and fat is in the food, and a bar chart depicting adjustable

target to guide user on how much of each nutrient to eat. Bitesnap provides reminders

by showing app icon in notification bar that remind user to eat at customisable time for

four mealtime categories: Breakfast, Lunch, Dinner, End of Day (Bite AI 2019).

6
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 2.1 - Bitesnap UI of homepage, logging a journal, and reminder (Bite AI

2019).

Strengths:

• Simple and intuitive user interface design that makes it easy to capture and see what

users eat in a day

• Export the log of food journal as CSV or JSON file and share it with professionals

Weaknesses:

• The food journal is presented in the form of ‘Instagram-style feed of photos’, which

means users have to keep scrolling and scrolling to get to a meal information from

a few days ago

• The food logged that presented on the homepage are not categorised into any

mealtime category: Breakfast, Lunch and Dinner, which causes users difficult to

identify the specific mealtime taken

2.1.2 Lose It!

Lose It! is a calorie-counter app and website that includes an easy-to-use food diary and

exercise log. When users first log in to the app, they are asked to fill up personal details

and specify target weight to be lost each week, which will affect the calorie totals

suggested by the app. Then, the app will display a bar graph showing users’ daily calorie

7
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

budget on the homepage - how many calories are left to eat throughout the day, deduct

any exercise users recorded (FitNow, Inc. 2019).

Users add foods to their log through searching by keyword, or barcode scanner

for products. The app has comprehensive food database complete with well-known

brand-name foods, grocery stores, restaurants that verified by team of experts, but in

case it is lacking something, user can also add the food with custom details created by

themselves manually. Lose It! provides reminders by showing app icon in notification

bar that remind user to eat at customisable time for four mealtime categories: Breakfast,

Lunch, Dinner, End of Day (FitNow, Inc. 2019).

Figure 2.2 - LoseIt! UI of homepage, logging a journal, and reminder (FitNow, Inc.

2019).

Strength:

- The user can retrieve any daily meal info logged easily using calendar on the

homepage to navigate

Weaknesses:

- The app user interface is somehow complicated, quite tricky to navigate.

- The app does not allow user to take photo of food for when logging, instead can only

select specified meal from database or through manual typing only

8
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2 Google Android APIs

2.2.1 Fused Location Provider API

This API combines multiple signals to deliver the location information to an app by

managing the underlying location technologies like GPS, and provides a simple

interface to allow user to select the required quality of service. The API is commonly

used for requesting the last known location of the user's device, and also delivering

location updates to an app at specific intervals. In this context, the API also allows user

to change location settings, such as specifying the desired update interval, required level

of accuracy and power consumption (Fused Location Provider API 2020).

2.2.2 Geofencing API

This API allows user to define a circular region - geofences, that surround the areas of

interest by specifying its latitude, longitude, radius and transition type. The transition

types indicate the events that trigger the geofence: when user enters or exit a geofence,

stay in the geofence for certain interval. Then, the app shall handle the event by doing

certain action (Geofencing API 2020).

Figure 2.3 - Geofencing API trigger event according to transition type (Geofencing

API 2020).

9
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.3 Awareness API

Awareness API unifies five location and context signals in a single API, enable user to

create an app which intelligently react to the user's current situation, with minimal

impact on system resources (What's the Awareness API 2020).

The five different context types exposed:

Figure 2.4 - Awareness API context types (What's the Awareness API 2020).

The Awareness API provides some benefits:

• Ease of implementation - The user only needs to add a single API, which utilise a

group of location and context signals, for creating a context-aware app. This greatly

simplifies integration and improves the productivity (What's the Awareness API

2020).

• Better context data - Intelligently process and combine raw signals from multiples

sources for maximum accuracy and efficiency. Advanced algorithms are used to

recognise the user's activity accurately (What's the Awareness API 2020).

• Optimal system health - Automatically optimise memory usage and power

consumption to maximise memory capacity and battery life on the users' device

(What's the Awareness API 2020).

The Awareness API consists of two distinct APIs:

• Snapshot API - Get instant details about the user's current situation, by accessing

those five signals from single API surface (What's the Awareness API 2020).

• Fence API – Building on top of the concept of Geofencing API to include other four

context signals besides only using ‘location’ context type, to create a geofence that

reacts to the user's environment changes (What's the Awareness API 2020).

10
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.4 Fence API

Fence API can be used to create five types of AwarenessFence, three of which are

TimeFence, LocationFence, and ActivityFence which are very convenient in building

a context-aware app that is able to track user device location and recognise user activity

within certain time interval (Fence API overview 2019).

TimeFence

Unlike Alarm which trigger time-based operation at specific time set by user, the

TimeFence does not trigger anything, but it functions more like time interval condition

checking (Fence API overview 2019).

For instance, the user creates a combined AwarenessFence from TimeFence of

2 - 3 pm and ActivityFence of detecting user walking. When the device system time

reaches 2 pm, nothing will be triggered. Instead, if that ActivityFence is triggered, then

Fence API check if current system time is within 2 - 3 pm, if yes then only trigger the

AwarenessFence event. Figure 2.5 shows how the TimeFence works (Fence API

overview 2019).

Figure 2.5 - Flow chart of working theory of TimeFence (Fence API overview 2019).

11
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Since TimeFence does not trigger anything, it has no meaning to be used alone but can

only cooperate with other types of AwarenessFence for time interval condition

checking purpose.

LocationFence

LocationFence acts just like Geofencing API. It uses only Wi-Fi and cell tower

positioning for tracking user device location. LocationFence delivers location update

once every 2-3 minutes on average. The location update interval may decrease to less

than 2 minutes if user device is detected moving, and increases up to 6 minutes if user

device is detected stationary for long period of time (Create and monitor geofences

2020).

However, LocationFence cannot change the priority of the location update

request to use GPS sensor, which may cause poor performance of user device location

tracking in indoor position without Wi-Fi available, and in outdoor position without

strong signal from cell tower. Besides, LocationFence cannot change the update interval

of the location update request (Create and monitor geofences 2020).

ActivityFence

ActivityFence acts just like another Android API - Activity Recognition API, which

automatically detects user activities by utilising device built-in sensors. It periodically

applies machine learning models to process short bursts of sensor data read. If the

device has been still for a while, the API may stop activity reporting and only resumes

reporting using low power sensors when it detects movement, for the sake of resource

optimisation (Activity Recognition API 2020).

 However, since the exact period of ActivityFence to process the sensor data read

is not known, the activity recognition result tends to be not accurate (Activity

Recognition API 2020). For instance, an ActivityFence of detecting if user is walking

is created. In this case, two situations might happen:

i. The ActivityFence is not processing the sensors data when the user is walking,

but only after the user stopped walking (Activity Recognition API 2020).

ii. Once the ActivityFence is triggered, it might not be triggered again next time

when user stops and walks again (Activity Recognition API 2020).

12
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Critical Remarks

ActivityFence Proposed method using step counter

sensor

Once the ActivityFence of detecting user is

being still is triggered, it might not be

triggered again, even user walks for few

minutes then sits again.

When the user walks for certain seconds, the

step counter increases, and reminder can

confirm user is moving. In contrast, when

user is not moving, step counter remains, and

reminder can confirm user is not moving.

According to developer, he decides the

duration of unchanged step counter value

that will assume user is sitting.

TimeFence Proposed method using Alarm

TimeFence does not trigger anything. It can

be only combined with another type of

AwarenessFence created by Fence API to

perform condition checking.

Alarm is used to trigger time-based operation

of user device location tracking.

LocationFence Proposed method using Fused Location

Provider API

Cannot change priority and update interval of

location update request.

LocationFence uses only Wi-Fi and cell

tower positioning for tracking user device

location - performs poorly in indoor position

without Wi-Fi available, and outdoor

position without good signal from cell tower.

Can change the priority and update interval

of location update request.

Table 2.1 - Comparison Between Fence API and Proposed Method for Building

Context-Aware Reminder.

The developer has no control of the implementation details using Fence API (of

Awareness API) - unable to set the exact time of alarms to trigger an operation, unable

to configure the location services accuracy or location update interval, unable to

determine and make any configuration to the period of Fence API applying machine

learning models to process short bursts of sensor data. These situations cause

unreliability on the accuracy aspect of a context-aware system to be built.

13
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.3 Smartphone Sensors

Most Android smartphones have sensors that are able to measure motion,

orientation, and various environmental conditions (Sensors 2019). Android provides

API from which the user can derive precise and accurate raw data. There are three broad

categories of sensors:

Sensors Type Measurement Value Examples

Motion
Acceleration and rotational forces

along three axes
Accelerometers, gyroscopes

Environmental
Ambient air temperature and

pressure, humidity, illumination
Barometers, thermometers

Position Physical position of device Orientation sensors, magnetometers

Table 2.2 - Android Smartphones Sensor Categories (Sensors 2019).

2.3.1 Motion sensors

Motion sensors can be divided into:

• Hardware-based sensors, such as accelerometer and gyroscope sensors.

• Software-based sensors, such as linear accelerator, rotation vector, step counter and

gravity sensors.

An accelerometer sensor measures the tilting motion and orientation of a device

by measuring acceleration values along the x, y and z axis, while a gyroscope sensor is

used for measuring, maintaining angular velocity and orientation (Sensors 2019).

Software-based sensors are sometimes known as virtual sensors. Unlike

hardware-based sensors which report results directly, this type of sensors derives the

data of one or more hardware-based sensors by specific computation formula. For

example, linear accelerator data is derived from accelerometer. Step counter is one of

the software-based motion sensors that used by this project for activity recognition

purposes. It provides the number of user steps taken since the last reboot of device. The

step counter has latency up to 10 seconds (Sensors 2019).

14
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.4 Mobile Device Location Detection Technologies

2.4.1 A-GPS/ GPS

A-GPS (Assisted Global Positioning System) is a system extensively employed

in GPS-capable cellular phones initially, to significantly improve the start-up

performance of GPS, so that emergency call dispatchers can get cell phone location

data easily (Assisted GPS 2020).

GPS works by communicating with satellites through trilateration - a process

that obtains the intersection points from three (usually four) or above of the radius

coverage of satellites to determine device location information. On the other hand, A-

GPS has done the improvement on GPS which reduces the response delay, by

determining location information from base transceiver station (BTS) using technology

of CDMA, GSM or LTE employed in the mobile terminal. The BTS in turn

communicate with the satellites (GPS vs A-GPS 2012).

Figure 2.6 - Implementation theory of A-GPS (Assisted GPS 2020).

 Since GPS devices are communicating with satellite, it can get information only

when satellite is reachable without any interference, for example under clear sky

conditions or outdoor area. Also, it is slower in requesting information from satellite.

While A-GPS devices are communicating with BTS instead of satellites, it gets

information even when the sky condition is cloudy, but not during network is

unreachable. In this context, A-GPS devices will fall back and work as regular GPS.

Also, A-GPS devices are generally faster in getting response (GPS vs A-GPS 2012).

15
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 2.7 - Comparison between A-GPS and GPS (A-GPS vs GPS 2011).

2.4.2 Wi-Fi Positioning System

Wi-Fi positioning system is a geolocation system that measures the RSSI of

nearby Wi-Fi hotspots and also other wireless access points to determine the device

location. It is mainly used where satellite navigation like GPS is not performing well

due to various conditions such as signal blockage indoors, or taking too long time to

acquire a satellite response (Wi-Fi positioning system 2020).

The accuracy of this system depends on how many nearby access points whose

positions that are identified by a device SSID and MAC address, have been saved into

the database. In this context, using these known points as reference, trilateration

algorithms can be applied to further improve the accuracy (Wi-Fi positioning system

2020).

While Wi-Fi positioning system performs much better for tracking position in

indoor compared to GPS, its accuracy is much lower than GPS.

16
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

2.5 Review of ‘Context Based Reminder System: Supporting Persons using

Smartphone Accelerometer Data’

This thesis proposed an alarm system that based on activity recognition, which

can be recognised as a context-aware reminder system, that can be identified from built-

in smartphone accelerometer. An experiment using an activity recognition algorithm

was devised to identify a particular activity. In this study the activities were walking

and sitting. These two activities were recognised by calculating standard deviation of

raw accelerometer data (Khan & Khan 2013).

Data Collection

A simple data recording application was developed to collect users’ walking activity

data using smartphone sensor: accelerometer which returns the acceleration values

along x, y, z axis in the units of m/s2 and stored in a data file. Data acquisition rate was

10 samples per second. After that, this project invited 10 participants, then installed the

data recording application in the smartphone and asked them to use that application

during walking, by putting the smartphone inside their pocket for 100 seconds.

Eventually, for each participant, total of 10 x 100 = 1000 samples of raw accelerometer

data were collected (Khan & Khan 2013).

Data Processing

Then those data files collected from 10 participants were processed using mathematical

formulas defined in Figure 2.2 to get SdrAcc, the standard deviation of resultant

accelerometer values (Khan & Khan 2013).

Figure 2.8 - Mathematical formulas to process raw accelerometer data (Khan & Khan

2013).

17
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Participant Walking Activity Plots

For each participant, a line graph with y-axis: SdrAcc was plotted against x-axis: 100

seconds, as the experiment is conducted by 100 seconds using MATLAB (Khan &

Khan 2013).

Figure 2.9 - SdrAcc over 100 seconds from a participant (Khan & Khan 2013).

Experiment Result

The line graph plotted was used to determine to lower bound and upper bound of SdrAcc

over 100 seconds for each participant. As there were 10 participants, the minimum

lower bound and maximum upper bound were identified among these participants.

Lastly, this minimum lower bound of SdrAcc for walking activity was identified to be

0.1316, which represents the threshold value between sitting and walking activity

(Khan & Khan 2013).

Activity Recognition

The threshold value, produced by the activity recognition algorithm is used by the

proposed alarm system to identify activity performing by a user, and then to decide for

alarm prompting. If SdrAcc calculated from user smartphone accelerometer sensor was

less than threshold value (sitting), alarm will be activated otherwise (walking), alarm

will be turned off (Khan & Khan 2013).

Analysis and Performance of Activity Recognition Algorithm

3 algorithms: Naive bayes, Decision Trees (C4.5) and Multilayer perceptron were used

to test the activity recognition algorithm accuracy (Khan & Khan 2013).

Figure 2.10 - Accuracy of activity recognition (Khan & Khan 2013).

18
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Critical Remarks

The accuracy of activity recognition algorithm is very high, and can be used for

reminder of other system/ apps to identify human sitting or walking other than the

proposed alarm system. However, this alarm system proposed does not have location-

based feature which decrease the practicability because it might trigger at any location.

19
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 3: SYSTEM DESIGN

This chapter defines the methodology for realising this project, and the design of

building the food journal app with context-aware reminder from the perspective of use

case diagram, use case descriptions, activity diagrams and class diagram.

3.1 Methodologies

The methodology for realising this project will be the Throwaway Prototyping,

as development of context-aware reminder are not well understood. Therefore, the app

development is examined by analysing, designing then building a design prototype

which allow user to evaluate the proposal by trying the reminder and give feedback.

• Planning: Discuss title with FYP supervisor, study the related background

information, define problem statement, project scope and objectives to achieve.

• Analysis: Do literature review on similar existing apps in the market, mobile device

location detection technologies, Android APIs, similar solution proposed by others.

• Design: Define the use case diagram and class diagram for the app, use case

descriptions and activity diagrams.

• Implementation: Realising system design by start coding, sketching UI, testing and

debugging.

Then, this methodology repeatedly performs the three phases: analysis, design,

implementation concurrently in a cycle until the design prototypes are thrown away –

context-aware reminder is built. Finally, the project progresses into design and

implementation phases for developing the food journal mobile application.

20
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3.2 System Design/ Overview

3.2.1 Use Case Diagram

Figure 3.1 - Use case diagram of food journal mobile application.

This food journal mobile application contains five use cases:

i. Set Reminder: User can set the context-aware reminder for specific mealtime:

Breakfast, Lunch, Dinner. The reminder creates time-based alarm, which will

trigger the app to start tracking user device location and step counter. When the

user is assumed to be sitting in a restaurant within specific mealtime, the app

vibrates the phone and shows a notification in notification bar. By clicking the

notification, the user will be prompted to camera screen to take photo and enter

details for logging a food journal.

ii. Take Photo to Log Food Journal: Besides using the reminder to log a food journal,

user can do the same thing on the app main screen. The food journal photo and

details will be saved into app-specific storage, local Room database respectively.

iii. Edit Food Journal: User can update the food journal details stored in local Room

database.

iv. Delete Food Journal: User can delete the food journal details stored in local Room

database.

21
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

v. Navigate and View Food Journal: User can view the food journal logged on certain

date on the app main screen with the aid of a calendar interface.

3.2.2 Use Case Descriptions

Use Case Set Reminder Use Case ID 1

Actor User

Description To remind user by vibrating device and showing notification when user is

sitting in a restaurant during specific mealtime.

Trigger User toggles on the switch for specific mealtime.

Precondition User device must have location service including GPS enabled.

Normal flow

of events

1. User selects certain time interval for specific mealtime: Breakfast,

Lunch or Dinner, for instance 2 – 3 pm for Breakfast.

2. User switches on reminder.

3. System creates two alarms: one to trigger step 4 at the start of mealtime,

another one will stop the services of tracking user device location and

step counter at the end of mealtime.

4. System is delivering the device location updates at specific interval.

5. System checks if the user device stays in a restaurant location circular

region with certain radius within certain period. If so, proceed to step

6.

6. System is delivering the latest device step counter sensor value.

7. System checks if the user current step counter remains same and user

device remains staying in the restaurant location region within certain

period. If so, proceed to step 8.

8. System stops the executing user device location and step counter

tracking.

9. System vibrates the device and shows notification.

10. User taps the notification shown and will be prompted to camera screen

of the app.

11. User takes photo of the food and enter detail.

12. User confirms the logging of journal by clicking ‘SAVE’ button.

13. System saves the logged food journal photo and detail into app-specific

storage and local Room database respectively.

14. System displays the food journal photo on the app main screen.

22
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Subflows 5a. If the user device stays outside restaurant location circular region with

certain radius within certain period, repeat step 5.

7a. If the user current step counter changes within certain period, repeat

step 7.

Alternate

flow

12a. The user does not save the logging of journal, by either clicking

‘return’, or exit the app.

Table 3.1 - Use Case Description for ‘Set Reminder’.

Use Case Take Photo to Log Food Journal Use Case ID 2

Actor User

Description To allow user take photo of the food and enter detail, for logging food

journal.

Trigger Click the ‘+’ button on the top right corner of app main screen.

Normal flow

of events

1. User takes photo of the food and enter detail.

2. User confirms the logging of journal by clicking ‘SAVE’ button.

3. System saves the logged food journal photo and detail into app-

specific storage and local Room database respectively.

4. System displays the food journal photo on the app main screen

Alternate flow 2a. The user does not save the logging of journal, by either clicking

‘return’, or exit the app.

Table 3.2 - Use Case Description for ‘Take Photo to Log Food Journal’.

Use Case Edit Food Journal Use Case ID 3

Actor User

Description To allow user to edit the food journal detail.

Trigger Click the desired food journal photo displayed on the app main screen.

Normal flow

of events

1. User edits the food journal detail.

2. User confirms the change by clicking ‘UPDATE’ button.

3. System updates the modified journal detail in local Room database.

4. System displays the food journal photo on the app main screen.

Alternate flow 2a. The user does not save the changes of journal, by either clicking

‘return’, or exit the app.

Table 3.3 - Use Case Description for ‘Edit Food Journal’.

23
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Use Case Delete Food Journal Use Case ID 4

Actor User

Description To allow user to delete the food journal logged.

Trigger Click the desired food journal photo displayed on the app main screen.

Normal flow

of events

1. User clicks ‘DELETE’ button.

2. System deletes the food journal detail in local Room database

3. System displays the food journal photo on the app main screen.

Alternate flow 1a. The user does not delete the journal, by either clicking ‘return’, or

exit the app.

Table 3.4 - Use Case Description for ‘Delete Food Journal’.

Use Case Navigate and View Food Journal Use Case ID 5

Actor User

Description To allow user view daily food journal logged by selecting certain date on

calendar interface.

Trigger Click the ‘current date’ on the top middle of app main screen, which will

display a calendar interface, then select desired date.

Normal flow 1. User selects certain date on calendar interface.

2. System displays the food journal photo of that date on the app main

screen.

Table 3.5 - Use Case Description for ‘Navigate and View Food Journal’.

24
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3.2.3 Acitvity Diagrams

Figure 3.2 shows activity diagrams of use case ‘Set Reminder’: Given a user set the

reminder for specific mealtime, the reminder creates time-based alarm, which will

trigger the app to start tracking user device location and step counter. If the location is

near to a target restaurant and step counter value remains unchanged within certain

period, the user is assumed to be sitting in a restaurant within specific mealtime, the

app vibrates the phone and shows a notification in notification bar.

Figure 3.2 – Activity diagram of ‘Set Reminder’.

25
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 3.3 shows activity diagram of use case ‘Take Photo to Log Food Journal’: By

clicking ‘+” button on app main screen, user is prompted to take a food photo and enter

detail. Once user confirms the logging, the logged food journal photo and details will

be saved into app-specific storage, local Room database respectively.

Figure 3.3 - Activity diagram of ‘Take Photo to Log Food Journal’.

26
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 3.4 shows activity diagram of use case ‘Edit Food Journal’: By selecting the

desired food journal photo on the app main screen, user is provided option to edit the

journal details. Once user confirm the changes, the edited journal detail is updated in

local Room database.

Figure 3.4 - Activity diagram of ‘Edit Food Journal’.

27
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 3.5 shows activity diagram of use case ‘Delete Food Journal’: By selecting the

desired food journal photo on the app main screen, user is provided option to delete the

journal details stored in local Room database.

Figure 3.5 - Activity diagram of ‘Delete Food Journal’.

Figure 3.6 shows activity diagram of use case ‘Navigate and View Food Journal’: By

selecting desired date using calendar interface, user can view the food journal logged

on that date on the app main screen.

Figure 3.6 - Activity diagram of ‘Navigate and View Food Journal’.

28
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3.2.4 Class Diagram

The Java classes used in this food journal mobile application is divided into three

categories based on the functionality:

• User interface to create, view, update and delete food journal: MainActivity,

UpdateJournal, SaveJournal and Camera.

• Context-awareness of reminder: Reminder, LocationTracking, ActivityRecognition,

StopService

• Data access: FoodJournalDatabase, FoodJournalDao, FoodJournal

29
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

 Figure 3.7 - Class diagram of food journal mobile application.

30
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 4: IMPLEMENTATION

4.1 Tools to Use

Hardware

1. Smartphone – used for testing the food journal mobile application.

Operating System Android 7.0 Nougat

CPU Octa-core (4 × 2.1 GHz Cortex-A57 and 4 × 1.5 GHz Cortex-A53)

GPU Mali-T760MP8

RAM 3GB

WLAN Wi-Fi 802.11 a/b/g/n/ac (dual-band), Wi-Fi hotspot

GPS Yes, with A-GPS, BDS, GLONASS

Sensors Accelerometer, barometer, compass, fingerprint, gyroscope, heart

rate, proximity

Table 4.1 - Smartphone Hardware Specification.

2. Laptop – use Android Studio to develop the food journal mobile application.

Operating System Windows 10 64-bit

Processor Intel® Core™ i7-10510U CPU @ 1.80 GHz, 2.30 GHz

RAM 16GB

Graphic Card Nvidia GeForce MX250

Table 4.2 - Laptop Hardware Specification.

Software

1. Android Studio - IDE for Android operating system.

2. Visual Paradigm - UML CASE Tool.

31
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

4.2 User Interface Design

This app contains four user interfaces:

• Main Screen

• Reminder

• Save Journal

• Update Journal

‘Main Screen’ interface

This interface displays the food journal photos logged by current date. If user wants to

view the journal of certain date, he can click the button showing current date on the top

middle of the interface, which will display a calendar interface, then select desired date.

User can click those photos, which navigate the app to ‘Update Journal’

interface for editing or deleting purposes. Besides, there is a ring bell button to navigate

the app to ‘Reminder’ interface. The ‘+’ button will prompt user to camera screen to

take a photo, which will then navigate to ‘Save Journal’ interface.

Figure 4.1 - App ‘Main Screen’ UI.

32
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

‘Reminder’ interface

This interface consists of three buttons and switches that correspond to breakfast, lunch

and dinner, to allow user set reminder for certain time interval according to specific

mealtime.

Figure 4.2 - App ‘Reminder’ UI.

‘Save Journal’ interface

This interface shows the photo after the user takes a food photo using the app. User can

enter the journal detail: food name and description, then confirms the logging of journal

by clicking ‘SAVE’ button.

Figure 4.3 - App ‘Save Journal’ UI.

33
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

‘Update Journal’ interface

This interface shows the photo after the user clicks a food journal photo on the app main

screen. User can edit the journal detail: food name and description, then confirm the

changes by clicking ‘UPDATE’ button. User can also delete the journal detail by

clicking ‘DELETE’ button.

Figure 4.4 - App ‘Update Journal’ UI.

34
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

4.3 App Function/ Module Implementation

This section details the implementation of function or module required to fulfil all the

app use cases.

4.3.1 Set Reminder

1. User clicks the bell ring button on the app main screen, the app navigates to

‘Reminder’ interface.

Figure 4.5 - App ‘Main Screen’ interface.

2. First time launching the app, user has to grant permission for location accessing for

the reminder to function.

Figure 4.6 - User is asked for location accessing permission.

35
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3. When the button for specific mealtime is clicked, it pops up a clock dialog, to let

user select when to trigger the reminder. (If the reminder is enabled already, then it

will be removed and set again to reflect the time changes)

Figure 4.7 - User can set the reminder time using hour, minute hands of popped-up

clock dialog when he clicks button for specific mealtime.

4. When the switch is toggled on, user device is asked to switch on GPS first if GPS

is not enabled, then a reminder for the specific mealtime is set.

Figure 4.8 - User device is asked to switch on GPS first if GPS is not enabled.

36
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

5. The reminder creates two daily repeating alarms: one to trigger Location Tracking

at the start of mealtime, another one to trigger Stop Service at the end of mealtime.

Figure 4.9 - Setting a reminder creates alarms.

6. If the switch is toggled off, the reminder for the specific mealtime is removed, and

triggers Stop Service - Threads and services of executing user device location

tracking and step counter tracking are stopped.

Figure 4.10 - Stop all the executing device location and step counter tracking.

37
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

4.3.2 Location Tracking

1. The longitude and latitude of a target restaurant is defined.

Figure 4.11 - Define longitude and latitude of a target restaurant.

2. A function to track if the user device stays in the target restaurant region (distance

between lower than 60 metre) is defined.

Figure 4.12 - Define function to track if the user device is near to the restaurant.

3. By applying Fused Location Provider API, the app starts receiving location updates

at the interval of 30 seconds, and with priority of high accuracy. Whenever the user

device location receives update, the current location is checked if it is near to the

target restaurant.

Figure 4.13 - Define parameter settings and action to be triggered for location update.

38
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

4. A thread is spawned: within certain period of 90 seconds, if the device distance to

that specific location remains lower than defined radius of 60 metre, then an intent

is sent to Activity Recognition. If not, interval of that period is refreshed to 90

seconds again, and the device location will be kept on tracking until the specific

mealtime finished.

Figure 4.14 - Thread to check if user device is near to a restaurant for certain period.

Figure 4.15 - User device location tracking is running in the background.

39
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

4.3.3 Activity Recognition

1. SensorEventListener is registered with SensorManager which has access to the step

counter sensor. The app starts step counter tracking. Whenever the device

(SensorEventListener) detects if user is walking, the value is recorded.

Figure 4.16 - Record step counter sensor value if user is detected walking.

2. A thread is spawned: within certain period of 20 seconds, if the user current step

counter remains the same and distance to the target restaurant still remains lower

than 60 metre (assumed to be seated in a restaurant), then the user device location

and step counter tracking are stopped, proceed to step 3. If not, interval of that

period is refreshed to 20 seconds again and the user device and current step counter

will be kept on tracking until the specific mealtime finished.

Figure 4.17 - Thread to check if user is sitting in a restaurant for certain period.

40
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3. The device vibrates and a notification is shown in phone notification bar.

Figure 4.18 - App notification is shown in the notification bar.

4.3.4 Take Photo for Logging Journal

1. When the user taps the notification shown, he is prompted to the camera screen.

(The user can also click the ‘+’ button on top right corner of app main screen, to be

prompted to the camera screen)

2. Once the user takes a photo, he is prompted to ‘Save Journal’ interface. He can enter

the journal detail: food name and description. Then, he confirms the logging of

journal by clicking ‘SAVE’ button.

Figure 4.19 - ‘Save Journal’ interface to let user enter journal detail after taking a

photo.

41
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3. The app will navigate to main screen, displaying the logged food journal photos.

Figure 4.20 - ‘Main Screen’ interface display logged food journal photo.

4.3.5 Edit/ Delete Food Journal

1. User clicks the desired food journal photo on the app main screen.

2. The app navigates to ‘Update Journal’ interface.

Figure 4.21 - ‘Update Journal’ interface to let user update existing journal detail

when user clicks a journal photo.

42
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

3. User edits the journal detail, then confirm the changes by clicking ‘UPDATE’

button. User can also delete the food journal detail by clicking ‘DELETE’ button.

4. App updates the modified journal detail or delete the journal detail in local Room

database.

4.3.6 Navigate and View Food Journal

1. User clicks the current date on the top middle of app main screen, which will pop

up a calendar interface, then select desired date.

Figure 4.22 - User can view the logged food journal of certain date using popped-

up calendar interface when he clicks button showing current date.

2. The app displays the food journal photos of that date on the app main screen.

43
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 5: TESTING & RESULTS

5.1 Operational Testing of Context-Aware Reminder

After the implementation was done, operational testing is done to make sure when a

reminder is set by user, it is working as the expected outcome in different conditions as

shown in Table 5.1, without disrupting its functionality. According to testing results,

all the expectations are met.

Test Cases Tested Conditions Expected Outcome

Reminder: ON Change the reminder time The reminder updates the time change

Switch off, then switch on the

reminder

No effect on the reminder, working

well

Turn off the phone screen, exit the

app (onDestroy() function called)

No effect on the reminder, working

well

The device system time reaches

time set by reminder

User device location tracking starts

within 2 minutes

Reminder: ON

Device

location /step

counter

tracking

service: ON

Switch off the reminder The executing user device location or

step counter tracking service stop

During user device location

tracking, user is not near to a

target restaurant

The executing user device location

tracking service continues until user

device is near to a target restaurant for

90 seconds /mealtime ends

During user step counter tracking,

user is walking

The executing user step counter

tracking service continues until user

stops walking for 20 seconds

/mealtime ends

Switch off another reminder

(other than current switched on

reminder)

No effect on current reminder, the

executing user device location or step

counter tracking service continue.

(Reminders of breakfast, lunch,

dinner are independent of each other)

Turn off the phone screen, exit the

app (onDestroy() function called)

No effect on the reminder, the

executing user device location or step

counter tracking service continue in

the background

Table 5.1 - Operational Testing of Context-Aware Reminder in Different Conditions.

44
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

5.2 Responsiveness Testing of the Context-Aware Reminder

The responsiveness testing of context-aware reminder is conducted to measure the time

taken to trigger context-aware reminder in a given situation. This testing is conducted

5 times to observe if there is outlier result of expected time taken interval. Table 5.2

shows the testing details.

Testing 1

Prerequisite An observer is staying around 10 - 15 meters outside the 60-metre radius

circular region of target restaurant location, according to the implementation

done in section 4.2.

(The circular region border is estimated using Fused Location Provider API

to check if observer stays in the area or not)

Steps 1. Starts the stopwatch when alarm triggers.

2. Walks to the target restaurant at speed as constant as possible.

3. Stop walking after reach inside the restaurant.

4. Stop the stopwatch once the phone vibrates (reminder triggered) and

record the time taken.

Expected

Time Taken

Interval to

Trigger

Reminder

In between 2 minutes 20 seconds and 2 minutes 30 seconds.

When alarm triggers, user device location is updated but observer is outside

the circular region. After 30 seconds, location is updated, and observer has

already reached inside the region. Then, the context-aware reminder takes 90

seconds to detect if observer is staying in a restaurant, and another 20 seconds

for additional step counter tracking. These situations sum up to 2 minutes 20

seconds. Figure 5.1 shows brief explanation using flow chart.

The expected time taken is increased 10 more seconds due to several issues:

• 30 seconds of location update interval may delay few seconds.

• Observer manually record the time taken using stopwatch on hand.

Table 5.2 - Responsiveness Testing 1 Details.

45
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 5.1 - Flowchart showing how to get expected time taken to trigger the

reminder in Responsiveness Testing 1.

Since the 60-metre radius is not big, the observer will reach inside the restaurant and

stop walking before step counter tracking starts. Therefore, Testing 2 (with minor step

detail changes to Testing 1) is conducted to make sure step counter is detecting if

observer is moving inside restaurant.

Testing 2

Prerequisite An observer is staying around 10 - 15 meters outside the 60-metre radius

circular area of target restaurant location, according to the implementation

done in section 4.2.

(The circular area border is estimated using Fused Location Provider API to

check if observer stays in the area or not)

Step 1. Starts the stopwatch when alarm triggers

2. Walks to the target restaurant at speed as constant as possible.

3. Continue walking after reach inside the restaurant.

4. Once the step counter tracking starts, continue walking for around

10 seconds then stop.

5. Stop the stopwatch once the phone vibrates and record the time taken.

Expected

Time Taken

Interval to

Trigger

Reminder

In between 2 minutes 30 seconds and 2 minutes 40 seconds.

For the expected time taken interval in Testing 2, just add 10 more seconds

to the expected time taken interval in Testing 1 since observer continues

walking for around 10 seconds when he reaches restaurant.

Table 5.3 - Responsiveness Testing 2 Details.

46
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

5.3 Responsiveness Testing Results

Figure 5.2 shows the results of Responsiveness Testing 1 and 2.

Figure 5.2 - Box-and-whisker plot showing time taken to trigger context-aware

reminder in Testing 1 and 2.

The result showing time taken to trigger the context-aware reminder in Testing

1 and 2 are within expected interval. In each testing, the five results only differ by few

seconds. The responsiveness of the reminder is satisfied and desired.

47
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 6: DISCUSSION

This chapter discusses some experiences or observations when using Alarm, Fused

Location Provider API and step counter sensor to build the context-aware reminder in

this project.

6.1 Trigger Time of Alarm (for Time-based Operations)

The context-aware reminder uses ‘setRepeating’ Alarm to trigger time-based operation

of user device location tracking. However, the Alarm may delay up to 2 minutes to

trigger. According to Android Developer official documentation, all repeating alarms

are inexact as of Android 4.4. Therefore, if the app needs very precise delivery times,

one-time exact alarms must be used instead (AlarmManager 2020).

The minor time delay does not really affect the responsiveness of context-aware

reminder, unless the user is having a meal instantly when his mealtime starts. If that is

the case, the user can just set reminder few minutes earlier.

6.2 Location Update Interval and Battery Consumption of Fused Location

Provider API (for User Device Location Tracking)

The context-aware reminder in this project implements Fused Location Provider API

to request location updates for the purpose of user device location tracking. The request

is set to high priority and 30 seconds of update interval, to ensure reminder is accurate

in detecting if user stays in a restaurant. The issue of concern arises in this context is

whether this setting consumes a lot of battery, and how much battery can be saved if it

is changed to medium priority or longer update interval.

Changing the request setting to medium priority for battery saving is not

recommended. Without using GPS sensor, this will decrease the accuracy of reminder

in tracking user device location, especially when Wi-Fi is not available when user stays

in indoor location. Therefore, if developer wants to use medium priority, he must ensure

the circular region of restaurant location defined is large enough to compensate the loss

of location tracking accuracy. However, in this case, the reminder will wrongly assume

the user is staying in a restaurant even he is located far from the restaurant. Therefore,

only the option of changing location update interval is considered.

48
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

An observation for phone battery consumption when the user device is receiving

location updates in the background once the alarm triggered, is made. Meanwhile, the

same observation but changing location update interval to 120 seconds is made to

compare with that 30 seconds.

Figure 6.1 - Phone battery consumption when user device is receiving location

updates at 30 seconds and 120 seconds interval.

The phone battery consumes at the rate of about 4 mAh per 2 minutes and

slightly less while requesting location updates at 30 seconds and 120 seconds of interval

respectively. The battery consumption difference will become bigger and obvious if the

user device location tracking is going to run for long period of time. However, usually

mealtime is only 1-hour interval. It is not worth by setting the location update request

to longer interval for this little amount of battery saving, because by doing so, then the

time taken for context-aware reminder to detect user is staying in restaurant also needs

to be set much longer. This will decrease responsiveness of the reminder, such as the

user may already start eating when reminder triggers.

Besides battery consumption, there is one observation regarding the interval of

location update request using Fused Location Provider API. Usually, the interval is not

exact and may delay up to few seconds. This minor time delay is not significant, since

it only causes the context-aware reminder to be late few seconds to trigger when user

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40Ba
tt

er
y

co
ns

um
pt

io
n

(m
Ah

)

Time passed receving location updates (minutes)

Phone Battery Consumption While User Device Is
Receiving Location Updates in Background

30s Update Interval 120s Update Interval

49
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

is sitting in restaurant within specific mealtime, as shown in result of responsiveness

testing conducted in section 5.2.

6.3 Value of Step Counter (for User Sitting Activity Recognition)

The context-aware reminder in this project tracks user step to detect if user is sitting.

When a stationary user starts walking or running, step counter takes around 5 seconds

to increase its value. When a walking or running user stops, step counter takes less than

1 second to stop increasing value and remains same.

While step counter value is not accurate when user is not walking in constant

rate, for example, suddenly walks faster or running, it does not matter. As long as the

value is increasing, the user is confirmed to be moving. Therefore, even step counter

may not be accurate in differentiating whether user is walking, jogging or running, but

it is very suitable for merely recognising whether the user is moving or not. In this

context, it is more accurate and response faster than Awareness API, and simpler to

implement than the method measuring phone accelerometer value reviewed in Chapter

2.

Since step counter remains same when user is being still, the context-aware

reminder built in this project decides if a user is being still for 20 seconds, then he is

assumed to be sitting. Of course, developer can decide himself what is the duration of

user being still that will be considered as sitting. Therefore, tracking step counter sensor

value is simpler yet effective way to detect sitting activity.

50
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 7: CONCLUSION

7.1 Project Review

A food journal app is a great tool to help people in tracking what they eat daily to

achieve several purposes such as weight loss goals, maintain healthy eating habits or

monitor food allergies. However, busy schedules in daily life lead people to forget to

use the apps to log any meal taken daily. While most of those apps provide reminder

functionality to notify users in the phone notification bar to log a meal at specific

mealtime, these time-based reminders, are not efficient. A time-based reminder may be

set to trigger at some arbitrarily selected time, because the users presently scheduling a

reminder may not be able to predict a specific time.

Therefore, this project proposes to develop a context-aware reminder for food

journal mobile application, that utilises factors of time, device location, and user

activity recognition to notify the users in a more efficient way to log every meal they

are taking.

Provided the user has set the context-aware reminder at certain time interval,

for instance 2 - 3 pm for Lunch. At 2 pm, the app will start tracking user device location

using Fused Location Provider API. If the user is detected inside a restaurant circular

region of specified radius for 90 seconds, the app starts tracking step counter sensors

value for activity recognition purposes. Then, if the user current step counter remains

the same and still stay inside the restaurant region for 20 seconds, the app assumes user

is sitting for a meal in a restaurant within specific mealtime. The app then vibrates the

device and shows a notification. Once the user clicked it, he will be prompted to camera

screen of the app for logging the meal he is taking. The logged food journal photo and

detail will be finally saved to app-specific storage, local Room database respectively.

7.2 Project Contribution

Aside from supporting food journal app, the context-aware reminder proposed by this

project can be support for many existing apps in the market. For instance, petrol fuelling

app reminds user to get the member card points when fuelling petrol at the station,

shopping mall app reminds user to buy certain commodities in shopping mall during

51
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

weekend, specific reminder app reminds user to take his personal belongings such as

key and wallet when he leaves home.

Furthermore, this project showed the phone battery consumption when user

device is receiving location updates in the background using Fused Location Provider

API (with highest priority and 30 seconds of update interval settings), which is about 4

mAh per 2 minutes. The same observation is made by changing update interval to 120

seconds for battery saving purposes. The results showed that the difference of battery

consumption is very small within short period of time like interval of one hour, and

only become bigger and obvious if the user device location tracking is going to run for

long period of time.

Lastly, this project showed that in the context of merely recognising user

activity whether he is still or moving, using Android built in step counter sensor is a

very simple yet effective way by just tracking its value compared to other methods such

as using Awareness API, or calculating phone accelerometer value.

7.3 Future Work

The context-aware reminder will become an independent app to remind user of

important things to do by showing notification message. The reminder can let user

choose flexible and different combination of context signals to trigger the message set

by himself. User himself can specify the time (hour and minute interval, specific day,

repeating or trigger once only), user activity (walking, running, driving, still and others),

location (latitude & longitude with the aid of Google Maps, radius of region) will trigger

what the notification message to be shown.

For instance, user can set the reminder: During Saturday 2 - 3 pm, when user is

inside a food court location with 100-metre of radius, then the reminder app will notify

him to go buy out-of-stock dog food in nearby pet shop by showing a notification

message “Remember to buy dog food!”. By doing so, this context-aware reminder app

not only remind user of daily or personal matters, but more significantly it serves as the

universal reminder for all other apps, so that those apps no need to enhance the built-in

reminder itself or purposely add reminder feature. For instance, this context-aware

52
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

reminder app will assist petrol fuelling app to notify user to get the member card points

when fuelling petrol at the station.

53
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

BIBLIOGRAPHY

Access Raw Sensor Data | Google Fit | Google Developers, 2019. Available from:

<https://developers.google.com/fit/android/sensors>. [8 April 2020].

Activity Recognition API | Google Developers, 2020. Available from:

<https://developers.google.com/location-context/activity-recognition>. [9 April 2020].

A-GPS Vs GPS – Difference and Comparison | Diffen, 2011. Available from:

<https://www.diffen.com/difference/A-GPS_vs_GPS>. [8 April 2020].

AlarmManager | Android Developers, 2019. Available from:

<https://developer.android.com/reference/android/app/AlarmManager>. [30 Aug

2020].

Assisted GPS, 2020. Available from: <https://en.wikipedia.org/wiki/Assisted_GPS>.

[8 April 2020].

Azumio, Inc, 2019. Calorie Mama AI: Meal Planner & Food Macro Counter. Mobile

app. Version 5.36.4302. Available from:

https://play.google.com/store/apps/details?id=com.azumio.android.caloriesbuddy&hl

=en. Accessed 15 August 2019.

Bite AI, 2019. Bitesnap: Photo Food Tracker and Calorie Counter. Mobile app.

Version 1.6.3. Available from:

https://play.google.com/store/apps/details?id=ai.bite.biteapp.beta&hl=en. Accessed 15

August 2019.

Build Location-Aware Apps | Android Developers, 2020. Available from:

<https://developer.android.com/training/location>. [9 April 2020].

Context Awareness, 2019. Available from:

<https://en.wikipedia.org/wiki/Context_awareness>. [8 April 2020].

Cordeiro, F., Epstein, D. A., Thomaz, E., Bales, E., Jagannathan, A. K., Abowd, G. D.

& Fogarty, J. 2015, ‘Barriers and Negative Nudges: Exploring Challenges in Food

Journaling’, Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems - CHI 15, pp.1159-1162. Available from: ACM Digital Library [30

Aug 2020].

54
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Create And Monitor Geofences | Android Developers, 2020. Available from:

<https://developer.android.com/training/location/geofencing>. [9 April 2020].

Fence API Overview | Google Awareness API | Google Developers, 2020. Available

from: <https://developers.google.com/awareness/android-api/fence-api-overview>. [8

April 2020].

FitNow, Inc., 2019. Lose It! – Calorie Counter. Mobile app. Version 11.4.601.

Available from:

https://play.google.com/store/apps/details?id=com.fitnow.loseit&hl=en. Accessed 15

August 2019.

Fused Location Provider API | Google Developers, 2020. Available from:

<https://developers.google.com/location-context/fused-location-provider>. [8 April

2020].

Geofencing API | Google Developers, 2020. Available from:

<https://developers.google.com/location-context/geofencing>. [8 April 2020].

Google Awareness API | Google Developers, 2020. Available from:

<https://developers.google.com/awareness>. [8 April 2020].

GPS Vs A-GPS | Difference Between GPS And GPS-A, 2012. Available from:

<https://www.rfwireless-world.com/Terminology/GPS-vs-AGPS.html> [8 April 2020].

Khan, N & Khan, F 2013, Context Based Reminder System Supporting Persons Using

Smart Phone Accelerometer Data. Master thesis, Blekinge Institute of Technology.

MyFitnessPal, Inc., 2019. Calorie Counter - MyFitnessPal. Mobile app. Version 19.80.

Available from:

https://play.google.com/store/apps/details?id=com.myfitnesspal.android&hl=en.

Accessed 15 August 2019.

Penzu, 2020. Available from: <https://penzu.com/food-diary>. [8 April 2020].

Sensors | Android Developers, 2019. Available from:

<https://developer.android.com/guide/topics/sensors>. [9 April 2020].

Ubiquitous Computing, 2020. [online] Available from:

<https://en.wikipedia.org/wiki/Ubiquitous_computing>. [8 April 2020].

55
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

What's The Awareness API? | Google Awareness API, 2020. Available from:

<https://developers.google.com/awareness/overview>. [9 April 2020].

Wi-Fi Positioning System, 2020. Available from: <https://en.wikipedia.org/wiki/Wi-

Fi_positioning_system>. [8 April 2020].

A1
BCS (HONS) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

APPENDICES

Context-Aware Reminder Responsiveness Testing Results

Testing 1 Testing 2
2 min 24 sec 2 min 33 sec
2 min 25 sec 2 min 34 sec
2 min 22 sec 2 min 32 sec
2 min 23 sec 2 min 33 sec
2 min 23 sec 2 min 33 sec

Battery Consumption When User Device is Receiving Location Update
at 30 seconds and 120 seconds Interval

Time running user device

location tracking in the

background (minute)

Battery consumption for

30s location update interval

(mAh)

Battery consumption for

120s location update

interval (mAh)

2 4 4

4 8 7

6 12 11

8 16 15

10 20 18

12 24 21

14 28 25

16 33 28

18 37 31

20 41 34

22 45 38

24 49 41

26 53 45

28 57 48

30 62 51

32 66 54

34 70 57

36 74 61

38 78 64

40 82 67

TURNITIN REPORT FOR PLAGIARISM CHECKING

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

HOE CHIA YONG

ID Number(s) 17ACB05946

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONS)

Title of Final Year Project CONTEXT-AWARE REMINDER FOR FOOD JOURNAL MOBILE
APPLICATION

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 6 %

Similarity by source
Internet Sources:
Publications:
Student Papers:

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

 __
Signature of Supervisor Signature of Co-Supervisor

Name: DR. OOI BOON YAIK Name: __________________________

Date: 9/9/2020 Date: ___________________________

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

4 %
3 %
4 %

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION
TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 17ACB05946
Student Name HOE CHIA YONG
Supervisor Name DR. OOI BOON YAIK

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

√ Front Cover
√ Signed Report Status Declaration Form
√ Title Page
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
 List of Symbols (if applicable)

√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

I, the author, have checked and confirmed
all the items listed in the table are included
in my report.

(Signature of Student)
Date: 9/9/2020

Supervisor verification. Report with
incorrect format can get 5 mark (1 grade)
reduction.

(Signature of Supervisor)
Date: 9/9/2020

