WILL ECONOMY GET SICK WHEN THE WEATHER IS TOO HOT?

 $\mathbf{B}\mathbf{Y}$

DARREN KHAW ZHI HOU GOH BO WEI LIAN WEI SHIEN TAN HONG XIU TIEW WEI JIAN

A research project submitted in partial fulfilment of the requirement for the degree of

BACHELOR OF FINANCE (HONS)

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF BUSINESS AND FINANCE DEPARTMENT OF FINANCE

MAY 2020

Copyright@2020

ALL RIGHTS RESERVED. No part of this research may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, graphic, electronic, mechanical, photocopying, recording, scanning, or otherwise, without the prior consent of the authors.

DECLARATION

We hereby declare that:

- (1) This undergraduate FYP is the end result of our own work and that due acknowledgement has been given in the references to ALL sources of information be they printed, electronic, or personal.
- (2) No portion of this FYP has been submitted in support of any application for any other degree or qualification of this or any other university, or other institutes of learning.
- (3) Equal contribution has been made by each group member in completing the FYP.
- (4) The word count of this research report is 17799.

	Name of Student:	Student ID:
1.	Darren Khaw Zhi Hou	16ABB01686
2.	Goh Bo Wei	16ABB03049
3.	Lian Wei Shien	16ABB05109
4.	Tan Hong Xiu	17ABB03510
5.	Tiew Wei Jian	16ABB02111
5.	Tiew Wei Jian	16ABB02111

Signature:

Date:

ACKNOWLEDGEMENT

We are honoured to have this golden opportunity to carry out this research as well as accomplished it with the help of various personnel. This research would not have been possible without the guidance, assistance, and encouragement from them. Therefore, we would like to take this opportunity to show our deepest and sincere appreciation to the individuals who have made contributions towards the completion of this research.

First and foremost, we would like to thank our university, Universiti Tunku Abdul Rahman (UTAR) for giving us this opportunity to conduct this research and providing us all the resources throughout the study. The excellent facilities and study environment in the campus have assisted us in our performance of this research. Also, we are able to access the journals as well as reading materials easily from the library with the assistance of the staffs.

At the same time, we would like to express our deepest gratitude to our supervisor, Dr. Yiew Thian Hee, who gave us the precious chance to work with him. We feel very grateful for his guidance, suggestion, motivation, and determination all the time when we are in progress of this research. In addition, we indebted as he has been patiently answering our inquiries regardless of during or after working hours. This research would not be a success without her supervision and enlightenment.

Besides, we would like to deliver our gratefulness to our examiner, Dr. Ng Chee Pung, for the direction, assistance, and comment on our final year project. His comments and advice are useful to us in order to improve and enhance our research project. Also, the contribution of our project coordinator, En. Ahmad Harith Ashrofie Bin Hanafi should be appreciated as he is the one who providing guidelines and updating the latest information to us. Without his support, we would not be able to complete this research.

Furthermore, we are grateful for the knowledge that delivered by all the lecturers and tutors in Universiti Tunku Abdul Rahman (UTAR) throughout our duration of the study. Because of this, we are able to complete this research with the knowledge learned in the class. Last but not least, a special thanks to all our group members who unveil their efforts, hard work, and corporation in accomplishing this research.

TABLE OF CONTENT

Copyright Page			ii
Declaration		iii	
Acknowledgemen	nt		iv
Table of Content.			vi
List of Tables	• • • • • • • • • • • • • • • •		ix
List of Figures			xi
List of Abbreviat	ions		xii
List of Appendice	es		xiii
Preface			xiv
Abstract			XV
CHAPTER 1 RESEARCH OVERVIEW		CH OVERVIEW	1
1.0	Introduct	ion	1
1.1	Backgrou	and of Study	1
1.2	Research	Problem	10
1.3	Research	Question	12
	1.3.1	General Research Question	12
1.4	General	Objectives	12
	1.4.1	General Research Objectives	13
	1.4.2	Specific Research Objectives	13
1.5	Significa	nce of Study	14
1.6	Chapter Layout		15
1.7	Conclusi	on	15
CHAPTER 2	LITERATURE REVIEW		16
2.0	Introduction		16
2.1	Theoretical Review		16
	2.1.1	Cobb Douglas Production Function	16
	2.1.2	Dynamic Integrated Climate Economy Model	17
	2.1.3	Solow Model	17

2.2	Empirica	al Review for Control Variables	18
	2.2.1	Gross Fixed Capital Formation and Economic	18
		Growth	
	2.2.2	Trade Openness and Economic Growth	20
	2.2.3	Labour Force and Economic	21
		Growth	
2.3	Empirica	al Review for Climate Change	22
	2.3.1	Temperature and Economic Growth	22
	2.3.2	Precipitation and Economic Growth	24
	2.3.3	Carbon Dioxide Emission and Economic Growth	25
2.4	Conclus	ion	26
CHAPTER 3	METHC	DDOLOGY	27
3.0	Introduc	ction	27
3.1	Source of	of Data	29
3.2	Data De	escription	29
	3.2.1	Economic Growth	30
	3.2.2	Gross Fixed Capital Formation	30
	3.2.3	Trade Openness	30
	3.2.4	Labour	31
		Force	
	3.2.5	Temperature	31
	3.2.6	Precipitation	31
	3.2.7	Carbon Dioxide Emission	32
3.3	Model		33
	3.3.1	Linear Model	33
	3.3.2	Non-Linear Model	33
3.4	Generali	ized Method of Moments	34
	3.4.1	Efficiency	36
	3.4.2	Feasibility	37
	3.4.3	Estimating Standard Error	38
	3.4.4	Difference GMM and System GMM	39
3.5	GMM D	Diagnostic Test	42

	3.5.1	Arellano-Bond Test	42
	3.5.2	Sargan/Hansen Test	43
	3.5.3	Threshold Function	43
3.6	Conclus	ion	44
CHAPTER 4	DATA ANALYSIS		45
4.0	Introduc	tion	45
4.1	Result f	rom Dynamic Panel GMM Estimation	46
	4.1.1	Linear and Non-Linear Overall	48
	4.1.2	Linear and Non-Linear Developed	59
	4.1.3	Linear and Non-Linear Developing	68
4.2	Diagnos	tic Checking	78
4.3	Conclus	ion	79
CHAPTER 5	DISCUS	SSION, CONCLUSION AND IMPLICATION	80
5.0	Introduc	ction	80
5.1	Summar	ry of Study	80
5.2	Policy In	mplication	82
5.3	Limitati	on	84
5.4	Recomm	nendation	85
5.5	Conclus	ion	86
6.0	Referen	ces	87

LIST OF TABLES

	Page
Table 3.1: Summary of variables	28
Table 3.2: Expected sign of variables	29
Table 4.1: Results of dynamic panel GMM estimation in overall countries for temperature (linear)	46
Table 4.2: Results of dynamic panel GMM estimation in overall countries for temperature (non-linear)	49
Table 4.3: Results of dynamic panel GMM estimation in overall countries for precipitation (linear)	51
Table 4.4: Results of dynamic panel GMM estimation in overall countries for precipitation (non-linear)	53
Table 4.5: Results of dynamic panel GMM estimation in overall countries for carbon dioxide emission (linear)	55
Table 4.6: Results of dynamic panel GMM estimation in overall countries for carbon dioxide emission (non-linear)	57
Table 4.7: Results of dynamic panel GMM estimation in developed countries for temperature (linear)	59
Table 4.8: Results of dynamic panel GMM estimation in developed countries for precipitation (linear)	61

Undergraduate FYP

Table 4.9: Results of dynamic panel GMM estimation in developed countries for carbon dioxide emission (linear)	62
Table 4.10: Results of dynamic panel GMM estimation in developed countries for temperature (non-linear)	64
Table 4.11: Results of dynamic panel GMM estimation in developed countries for precipitation (non-linear)	65
Table 4.12: Results of dynamic panel GMM estimation in developed countries for carbon dioxide emisssion (non-linear)	66
Table 4.13: Results of dynamic panel GMM estimation in developing countries for temperature (linear)	68
Table 4.14: Results of dynamic panel GMM estimation in developing countries for temperature (non-linear)	70
Table 4.15: Results of dynamic panel GMM estimation in developing countries for precipitation (linear)	72
Table 4.16: Results of dynamic panel GMM estimation in developing countries for precipitation (non-linear)	73
Table 4.17: Results of dynamic panel GMM estimation in developing countries for carbon dioxide emission (linear)	75
Table 4.18: Results of dynamic panel GMM estimation in developing countries for carbon dioxide emission (non-linear)	77

LIST OF FIGURES

Figure 1.1 The impact of temperature on economic growth in overall countries 3 (166 countries)

Figure 1.2 The impact of temperature on economic growth in developed 3 countries (31 countries)

Figure 1.3 The impact of temperature on economic growth in developing 4 countries (135 countries)

Figure 1.4 The impact of precipitation on economic growth in overall countries 5 (166 countries)

Figure 1.5 The impact of precipitation on economic growth in developed 5 countries (31 countries)

Figure 1.6 The impact of precipitation on economic growth in developing 6 countries (135 countries)

Figure 1.7 The impact of carbon dioxide emission on economic growth in 7 overall countries (166 countries)

Figure 1.8 The impact of carbon dioxide emission on economic growth in 7 developed countries (31 countries)

Figure 1.9 The impact of carbon dioxide emission on economic growth in 8 developing countries (135 countries)

Figure 1.10: Developing and Developed Countries Affected by Climate Change 9

LIST OF ABBREVIATIONS

2SLS	Two-Stage Least Squares
ARDL	Autoregressive Distributed Lag
AR (1)	Arellano-Bond test (1)
AR (2)	Arellano-Bond test (2)
CO_2	Carbon Dioxide
DICE	Dynamic Integrated model of Climate Economy
FDMA	Fire and Disaster Management Agency
FEM	Fixed Effect Model
EGMM	Effective Generalized Method of Moments
GDP	Gross Domestic Product
GFCF	Gross Fixed Capital Formation
GHG	Green House Gas
GMM	Generalized Method of Moments
IAM	Integrated Assessment Model
LAB	Labour Force
LCA	Life Cycle Assessment
MIC	Ministry of Internal Affairs and Communications
OLS	Ordinary Least Square
PREC	Precipitation
R&D	Research and Development
SSA	Sub-Saharan Africa
ТО	Trade Openness
TEMP	Temperature
VECM	Vector Error Correction Model
WDI	World Development Indicator

Undergraduate FYP

LIST OF APPENDICES

Page

Temperature linear model 1-6 (overall)	98
Temperature non-linear model 7-12 (overall)	104
Precipitation linear model 13-18 (overall)	110
Precipitation non-linear model 19-24 (overall)	117
Carbon dioxide emission linear model 25-30 (overall)	123
Carbon dioxide emission non-linear model 31-36 (overall)	129
Temperature linear model 37-42 (developed)	135
Precipitation linear model 43-48 (developed)	141
Carbon dioxide emission linear model 49-54 (developed)	147
Temperature non-linear model 55-60 (developed)	153
Precipitation non-linear model 61-66 (developed)	159
Carbon dioxide emission non-linear model 67-72 (developed)	166
Temperature linear model 73-78 (developing)	173
Temperature non-linear model 79-84 (developing)	179
Precipitation linear model 85-90 (developing)	185
Precipitation non-linear model 91-96 (developing)	191
Carbon dioxide emission linear model 97-102 (developing)	197
Carbon dioxide emission non-linear model 103-108 (developing)	203

PREFACE

This research is submitted to partially fulfil the requirement of Bachelor of Finance (HONS). This research is supervised by Dr. Yiew Thian Hee.

Extreme climate change can cause some disaster which might bring huge losses to economic growth. On the other hand, climate change also brings benefit towards the economic growth. Therefore, climate change becomes one of the factors that influence the economic growth and it must be investigated.

This research will determine the impact of climate change towards economic growth. The major findings for this research show non-linear impact of climate change towards economic growth in overall and developing countries. Meanwhile, the developed countries do not have non-linear impact of climate change towards economic growth.

ABSTRACT

The purpose of this research is to determine the impact of climate change towards economic growth in overall, developed and developing countries which total are 166 countries from year 1990 to 2016. This research applies GMM estimator to capture the dynamic effect of data and deal with endogeneity problem. System and Difference GMM apply in this research to run the empirical test. The result shows mixed impact of climate change towards economic growth in overall, developed and developing countries. The major findings for this research show non-linear impact of climate change towards economic growth in overall and developing countries. Meanwhile, the developed countries do not have non-linear impact of climate change towards economic growth.

CHAPTER 1: RESEARCH OVERVIEW

1.0 Introduction

Chapter one provided an outline of the research. Research background, problem statement, research objectives, research questions and significance of study are included in this chapter. The main objective of this research is to examine the impact of climate change which are temperature, precipitation and carbon dioxide emission on economic growth in overall, developed and developing countries. In this research, overall countries are combination of developed and developing countries. Besides, the controlled variables used are gross fixed capital formation, trade openness and total labour.

1.1 Research Background

The air, water and land as the natural resources of our planet are all related to climate change, as these factors are the indicators to determine the Earth's climate (Dell, Jones & Olken, 2008). In simple words, climate change referred to a long term significant alteration in global climate. For instance, climate change in a country can be illustrated from rising temperature, changing the pattern of precipitation and the amount of carbon dioxide emission. Generally, one of the most discussed climate change is global warming. Global warming is defined as a gradual increase in temperature in the Earth's atmosphere and it is one of the greatest concern by the climate scientists and they found out that economic growth has been affected (Ali, Ying, Nazir, Ishaq, Shah, Ilyas & Tariq, 2019). This is because extra heat energy has added into the system of global climate and it has caused several significant effects. For example, the glacier melted in Himalaya due to increasing in temperature and sea level will increase which was predicted to increase river swelling, flooding and rock avalanches (Sharma & Sharma, 2008). Moreover, an increase in the temperatures will lead to potential storms due to warmer sea-surface temperatures (Chen, Wilson & Tapley, 2013). As a result, climate change has always become the greatest environmental threat toward humanity and it has been categorized as the "mother" of all problems (Griffin, 2003).

Notably, the pace of climate change is accelerating in the most recent decades (Zhang, Lee, Wang, Li, Pei, Zhang & An, 2011). In recent years, more and more climate scientists have pointed out that the problems of climate change are non-negligible and the impacts on economic growth are getting more serious. Thus, what evidence showed that economic growth is affected by climate change? The scatter plots below have shown the impact of climate change on economic growth visually and obtained a brief expectation on the impact of climate change.

Figure 1.1:

Note. Adapted from World Development Indicator (2020)

Figure 1.2:

The impact of temperature on economic growth in developed countries (31 countries)

Note. Adapted from World Development Indicator (2020)

Figure 1.3:

The impact of temperature on economic growth in developing countries (135 countries)

Note. Adapted from World Development Indicator (2020)

The scatter plots in Figures 1.1, 1.2, 1.3, showed that higher temperature countries have lower GDP per capita. Besides, the results showed that as the temperature increases, GDP per capita will decrease. It demonstrated that temperature has significant negative impact on economic growth (Jones & Olken, 2010).

Figure 1.4:

The impact of precipitation on economic growth in overall countries (166 countries)

Note. Adapted from World Development Indicator (2020)

Figure 1.5:

The impact of precipitation on economic growth in developed countries (31 countries)

Note. Adapted from World Development Indicator (2020)

Figure 1.6:

Note. Adapted from World Development Indicator (2020)

The scatter plots in Figures 1.4, 1.5, 1.6, showed that higher precipitation countries have higher GDP per capita. The scatter plots showed that precipitation has a positive impact on GDP per capita because it facilitated the agriculture production (Guo, Xu, Gong, 2014).

Figure 1.7:

The impact of carbon dioxide emission on economic growth in overall countries (166 countries)

Note. Adapted from World Development Indicator (2020)

Figure 1.8:

The impact of carbon dioxide emission on economic growth in developed countries (31 countries)

Note. Adapted from World Development Indicator (2020)

Figure 1.9:

The impact of carbon dioxide emission on economic growth in developing countries (135 countries)

Note. Adapted from World Development Indicator (2020)

The scatter plots in Figures 1.7, 1.8, 1.9, showed higher carbon dioxide emission countries will result to higher GDP per capita. It showed that carbon dioxide emission has positive impact on GDP per capita, as higher carbon dioxide emission signified that higher industrial production and leads to higher economic growth (Bozkurt & Akan, 2014).

Basically, climate change affected the nation's sustainable development in many aspects such as economic, social, environment and potential development footpath. Specifically, the economic growth in both developed and developing countries have been significantly affected by the climate change such as rising temperature and increasing amount of precipitation (Ali et al., 2019). Therefore, which countries experience the greatest impact from the climate change?

Figure 1.10:

Developing and Developed Countries Affected by Climate Change

Note. Adapted from Center and Global Development (2020)

Based on figure 1.10, it showed the impact of climate change on both developed and developing countries in 2015. The figure showed that climate change such as extreme weather and storms brought approximately 7% and 8% impact to the United States and European Union economy respectively. The impact of climate change has the least effect on Russia and Eurasia which was 1% compared to other developed countries. As for the developing countries, it showed that China was the country that was most affected by climate change. This is because climate change will damage infrastructure assets such as power plants, transport systems and water treatment centres, which all these assets are essential services that provide to a large number of individuals and industries. Besides, the damages caused by climate change in Sub-Saharan Africa was up to 16%. This is consistent with the finding of Sub-Saharan Africa (SSA) which was the most affected by climate change as SSA is merely specialized in agriculture related business (Alagidede, Adu & Frimpong, 2012). In conclusion, it showed that developing countries are affected most by climate change compared to developed countries. the The Intergovernmental Panel on Climate Change said that climate change hits the poor hardest. The reason behind is that the housing structure and the infrastructure in developing countries are vulnerable to storms and extreme weather. On the other hand, developed countries experienced a lower impact compared to developing countries because they have advanced technology that minimized the damages to the economy that are caused by climate change.

Many economic researchers merely focused on the macroeconomic determinants that affected economic growth but they ignored the consequences of climate change. However, climate change is one of the vital factors that triggered the economy to become fluctuated (Pei, Zhang, Li, Foret & Lee, 2016). This research aims to examine the economic growth from developed and developing countries as both of them are experiencing significant impact from climate change.

1.2 Research Problem

In recent years, climate change has become a global issue that everyone should be concerned about as it has caused a lot of disastrous problems to economic growth, human health as well as biodiversity. Besides, climate change has affected economic growth especially in agriculture production in developing and developed countries (Ali et al., 2019). For example, extreme weather has brought several disasters such as drought and heat wave which reduced the agriculture production, increased the cost to import agriculture crops and eventually affect economic growth. Drought and heat wave has destroyed more than 2.5 billion tons of rice, wheat and other crops production in many countries (Zhang et al., 2011). Besides, extreme precipitation increased the soil erosion by changing the amount of soil temperature and the organic input matter from soil. Since the soil has lost its organic matter from soil and it unable to support the crop yields which will impact the GDP of the agriculture sector in the developing countries. In serious cases, extreme precipitation may cause floods and it will destroy and drown most of the agriculture and the livestock. The incoming flood will impact the food supply. When the food supply decreases, the demand remains the same. Eventually, the price for relative goods will increase and it disrupts the marketplace (Renee Cho, 2019). Agriculture production in developed countries is also heavily affected by climate change due to maximizing profit with big monoculture farms compared to developing countries. The reason behind is when disasters bring impact to the agriculture area, developed countries will face huge losses compared to developing countries which try to minimize losses with smaller yield of agriculture production (Mcdonnel, 2016).

Climate change is not only impacted agriculture production, but it also has significant impact on non-agriculture production. Besides, the non-agricultural production loss approximately 2.4% compared to agricultural production that lost about 0.1% (Hsiang, 2010). Moreover, extreme weather such as winter and summer has also affected the housing industry by delaying the construction process and increasing the depreciation rate for the outdoor buildings (Hsiang, 2010). Moreover, there are mainly 2 categories of export goods such as agricultural goods and light manufacturing goods are negatively affected by the rise in temperature (Jones & Olken, 2010). Not only that, the wool production fell when the temperature increased. There is evidence that Australian wool industry has reported both the price and production of wool have dropped due to climate change and affected the economic growth of the country since the year 1987 (Kumar & Yalew, 2012).

On the other hand, climate change acts as a significant factor that affect the demand for tourism across the globe. Evidence showed that precipitation has a positive impact on the United State of America tourism demand while temperature has a negative impact towards the tourism demand in the United State of America from other countries (Ridderstaat, Oduber, Croes, Nijkamp & Martens, 2014). Hence, extreme climate change such as rising temperature has impacted tourism in a country which leads to a decrease in GDP from the tourism sector. Apart from that, in January of 2020, Australia had experienced one of the worst bushfires which are caused by climate change with abnormal high temperature which leads to extreme drought and eventually flamed up by the lightning strike. More than 1 billion living creatures, 3000 homes and 25 innocent lives died due to the blazes. Besides, a total of 6.3 million hectares has been wiped out and Australia's economy is expected to lose more than \$4.4billion through critical air pollution and direct harm to tourism and farming industries (Katrina, 2020). Tourism had taken a big hit as the number of tourists experienced a drastic plunge due to the significant air pollution in the hot spots. Notably, this showed that the calamitous impact towards the economy which caused by climate change is non-negligible (Dell, Jones & Olken, 2008).

Based on the previous studies, there are contradictory results from different researchers. The results showed that there is a positive relationship between climate change and economic growth (Pei et al., 2016). However, Ali et al. (2019) criticized the arguments by stating that climate change has a negative effect toward economic growth. Therefore, the impact between climate change and economic growth remains ambiguous. Thus, this research not only aims to examine the linear impact but also non-linear impact of climate change on economic growth in developed and developing countries in order to fill up the gap of this research topic.

1.3 Research Question

1.3.1 General Research Question

- 1. Does gross fixed capital formation have impact on economic growth?
- 2. Does trade openness have on economic growth?
- 3. Does labour force have impact on economic growth?
- 4. Does climate change have impact on economic growth?

1.4 Research Objectives

The general objective of this research is to examine the existence of any significant impact between climate change and economic growth. If climate change has a significant impact on economic growth, then it needs to further discern whether it is a positive impact or a negative impact.

1.4.1 General Research Objectives

- 1. To examine the impact of gross fixed capital formation on economic growth.
- 2. To examine the impact of trade openness on economic growth.
- 3. To examine the impact of labour force on economic growth.
- 4. To examine the impact of climate change on economic growth.

1.4.2 Specific Objectives

- 1. To examine the linear impact of climate change on economic growth in overall countries.
- 2. To examine the linear impact of climate change on economic growth in developed countries.
- 3. To examine the linear impact of climate change on economic growth in developing countries.
- 4. To examine the non-linear impact of climate change on economic growth in overall countries.
- 5. To examine the non-linear impact of climate change on economic growth in developed countries.
- 6. To examine the non-linear impact of climate change on economic growth in developing countries.

- 7. To determine the threshold level of climate change on economic growth in overall countries.
- 8. To determine the threshold level of climate change on economic growth in developed countries.
- 9. To determine the threshold level of climate change on economic growth in developing countries.

1.5 Significance of Study

This research aims to examine the impact of independent variables which are temperature, precipitation, carbon dioxide emission, gross fixed capital formation, trade openness and labour force against the dependent variable which is economic growth. Considering the detrimental consequences of inconsistent climate change that bring a calamitous impact toward the economic growth. By conducting this research, it stipulated much useful information to policymakers, investors, firms, communities and the governments. As a result, they unable to have deeper understanding on how climate change impacted the economic growth.

Besides, this research helps and guides the policymakers to have a clearer view and more knowledge about the consequences of climate change toward economic growth. Furthermore, this research focused on determining the non-linear impact of temperature, precipitation, carbon dioxide emission on economic growth. With this knowledge, policymakers are able to take some actions to minimize the impact of climate change toward the economy. In addition, policymakers are able to raise awareness about the ways to prevent the consequences that caused by climate change.

By knowing this concept of the research, investors should consider climate change as one of the potential risks that could affect their investment portfolio and make wiser decisions by analyzing the effects of climate change on economic growth. Furthermore, the government is able to know the consequences before implementing a new policy by implementing a new policy. In addition, the government could provide useful knowledge regarding the prevention of natural disaster to raise public awareness by serving this research as references. Thus, this research has made a major contribution by examining the impact of climate change on economic growth.

1.6 Chapter Layout

There are total 5 chapters will be discussed in this research which are research overview, literature review, methodology, data analysis and conclusion. Chapter 1 mainly consists of the background of study and contribution of the research. Followed by chapter 2 which will discuss the previous literature and theoretical model. Besides, the chapter 3 and 4 will discuss the data collection and analysis of the result. Lastly, chapter 5 will cover the conclusion and the implication of study.

1.7 Conclusion

This chapter has discussed the overall impact of climate change on economic growth. Climate change not only directly affected agricultural production but also affected the non-agriculture sector such as tourism and housing sector. Besides, this research has stipulated many information to policymakers, investors and government in order to have better understanding on the impact of climate change on economic growth. Next, past literature review and theoretical review will be discussed in chapter 2.

Undergraduate FYP

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

In chapter 2, this research describes about theoretical review which were Cobb Douglas, Dynamic Integrated model of Climate Economy (DICE) model and Solow model. In addition, this research also examined the relationship of economic growth towards each variable which were labour, gross fixed capital formation, trade openness and climate change with 3 proxies as temperature, precipitation and carbon dioxide emission.

2.1 Theoretical Review

2.1.1 Cobb Douglas Production Function

The very first study on the production function was contributed by Knut Wicksell in 1906. In 1928, Charles and Paul developed a Cobb Douglas production function and it was widely used by many economics' researchers. The 2 major factors in this production function were labour and capital. Q = (K, L) where total production (the monetary value of all goods produced in a year), (usually use GDP). *K* is investment capital input which is represent by the total investment in fixed assets (the monetary worth of all machinery, equipment and buildings) and *L* is the quantity of the labour input (the total number of person - hours worked in a year) (Cobb & Douglas, 1928). Parameter α and β are the output elasticities to capital and labour, respectively. Cobb Douglas production function is applied in this study. This research used total labour force and gross fixed capital formation (GFCF) as a proxy of labour and capital.

2.1.2 Dynamic Integrated Climate Economy Model (DICE)

Integrated Assessment Model (IAM) was used by many researchers to evaluate the impact of climate change toward the global economy. This model was used by the government to evaluate the impact of climate policy such as forecasting the Social Cost of Carbon from this model (Schwanitz, 2013). Based on Nordhaus (1994), the researcher had developed Dynamic Integrated model of Climate and Economy (DICE) which this model had included economic growth functions and geophysical functions. The main mechanism for DICE model by including damages functions which was affected by adaptation to climate change. Below is the original damage function in DICE model:

$$\frac{D_t}{Y_t} = a_1 T E_t + a_2 T E_t \tag{1}$$

Where D_t represent the net damages, Y_t represent the output and TE_t represent the temperature changes compared to the 1900 temperature. The Protection cost (which is used to invest in adaptation for climate change) and residual damages (damages that done by climate change) is the mix combination for the above damage function (Nordhaus, 1994).

2.1.3 Solow Model

So, this approach was adjusted to the standard Solow Growth model which to study the relationship between economic growth and climate impact. Below are the functions of Solow Growth model which it was modified from Cobb Douglas production function (Cobb & Douglas, 1928):

$$Y_t = A_t K_t^{\alpha} \tag{2}$$

Where Y_t will be represent as output per worker; A_t will represent technology while K_t^{α} will represent the capital. This model is used by many researchers for their own purpose to determine the climate change. After

that, the production function in the model is slightly altered to be the following:

$$Y_t = D_t A_t K_t^{\alpha} \tag{3}$$

Where $D_t = 1/(1 + \theta_1 T_t^{\theta_2}) \le 1$ which is represent the damage function and T_t is the temperature irregularity in year t. When temperature increases, then the output per worker will be reduced, by holding another variable constant. Hence, this paper has added trade openness and climate change as new variables to the above functions. The model above has highlighted in 2 aspect which it predicts that future generations are better off despite climate change and it is consistent with other IAMs. This theory explains that the carbon emission growth because affluence along a stable state because it offset the impact of growth from damages growing over time with population growth, growth in total factors productivity and growth of capital per worker. Moreover, this theory also explains the model will produces an inverted u-shape emission in long-run due to affection by the emission intensity. In addition, this theory can be used to teach the controversy over how damages from an increase in temperature and the implication approach to evaluate the 2-degree Celsius target which the government should control the carbon dioxide emission. Hence, this paper had chosen Solow model because it is more suitable for this paper model.

2.2 Empirical review for Control Variables (Gross Fixed Capital Formation, Trade Openness, Labour Force)

2.2.1 Gross Fixed Capital Formation (GFCF) and Economic Growth

Numerous researches had been done by researchers to examine the relationship between gross fixed capital formation and economic growth.

Studies had proved that there were mixed results among gross fixed capital formation and economic growth.

There were varieties of research examining the effect of gross fixed capital formation on economic growth which were done by the past researchers. According to Bakare (2011), the research studied the relationship of capital formation and economic growth by applying Ordinary Least Square (OLS) multiple regression analytical method and found that capital formation has a positive impact on economic growth. The result is consistent with the research done by Mehta (2011) which studied the short-term relationship between capital formation and economic growth and the results had shown that capital formation has a positive relationship on economic growth. Based on Lach (2010), it showed that there is a positive long-term effect of gross fixed capital on GDP. A research tested the effect of capital formation on economic development in Nigeria. The research has showed that there is a positive and significant effect on the economic development for the investment period in developing countries (Ugochukwu & Chinyere, 2013). The researchers analyzed the developments in the stock market, the capital formation and economic growth and the result was shown a positive sign between the variables (Ajao, 2011). The main reason was to build capital equipment on a sufficient scale to increase productivity for the creation of economic and social overhead capital. Besides, capital formation helped to remove the market imperfection by breaking the viciousness of poverty by increasing economic spending (Emmanuel & Andrew, 2014).

In contrast, Carrol and Veil (1994) studied the effects of fixed capital on economic growth and similar conclusions from a similar analysis of 64 countries. However, the result showed a negative sign due to fixed capital not increasing growth and causing the economic slowdown. Furthermore, Ghali (1998) examined a developing country and showed that the capital formation had a negative impact on economic growth. One of the factors that led to the negative relationship is the government has been misallocating their resources in developing countries (Lach, 2010).

2.2.2 Trade Openness and Economic Growth

Past researchers had conducted numerous researches to examine the relationship between trade openness and economic growth and the results provided evidence on trade openness had a mixed result on economic growth. Sachs and Warner (1997); Adhikary (2011); Karras (2003) they found that economies were more open to trade will generate faster revenues and quicker economic growth, largely due to the role of opening up trade in capital movements and advanced technology. Trade openness helped to reduce monopolies and enhanced market competition by fully utilizing the country's resources. This is consistent with Wacziarg and Welch (2008) where they found the economy was growing faster when there were more countries widely used open trade policies. Surprising results had been found and the results stated that trade openness had a positive relationship on economic growth in developed countries and it showed a consistent result with the finding of Bibi, Ahmad & Rashid (2014). According to the research of Hye, Wizarat, and Lau (2016), it showed that trade openness has a positive relationship on economic growth in developing countries. This was because decline of trade openness led to an increased in competition among the local producers, then the economic growth increased too.

In contrast, Rigobon & Rodrik (2005) stated that there is an adverse impact of labour on economic growth. Besides, the openness of trade has a negative impact on the economic growth of countries that specialize in producing low quality products (Haussmann, Hwang & Rodrik, 2007). Based on Cooke, (2010); Samimi, Ghaderi, Hosseinzadeh and Nademi, (2012), they stated that increase in trade openness will harm economic growth by increasing inflation and reducing exchange rates. Other than that, the relationship of trade openness and economic growth is negative probably because of highly import and depreciation of exchange rate which created a negative trade balance (Adhikary, 2011). The main factors that affects the economic growth are the devaluation of currency and adverse balance of payment. According to Bibi et al., (2014), they showed that the cross-sectional relationship between economic growth and trade openness is negative in developing countries due to depreciation currency and increases of import.

2.2.3 Labour Force and Economic Growth

There were numerous past studies that aim to estimate the relationship and impact of the labour force on economic growth. Most of these studies have shown mixed findings of the relationship between climate change and economic growth.

Based on Ali et al. (2019), researchers found that the labour force has a positive significant effect on economic growth by using unit root test and bounds test. The results are supported by Hossain (2012), he claimed that there is a positive sign among labour force and economic growth in Bangladesh from 2002 to 2009. Besides, Al-Mulali (2014) found that labour force has a unidirectional positive short run and long run relationship with GDP growth by studying 30 developed and developing countries from 1990-2010. In addition, Kargi (2014) had studied Turkey data from 2000 to 2013 and deduced that the labour force has a positive relationship on economic growth. Amir, Khan and Bilal (2015) they implied Cobb-Douglas production function in the research and examined a positive relationship between labour force and economic growth. The main reason is because higher education of labour has fully utilized physical capital. As a result, it accelerated the productivity and boosted the country's economic growth.

However, Shahid (2014) argued that labour force participation has a significant negative relationship against economic growth in the short run in Pakistan country by using vector error correction model (VECM). Yakubu, Akanegbu and Jelilov (2020) chose Nigeria and 3 representative provinces as their sample to examine the effect of labour force on economic growth by using Johannsen's Cointegration model and VECM model. The finding showed that the labour force is one of the important factors for
Nigeria's economy, but the research showed labour force participation is negatively significant on economic growth. The reason for the result is due to the used of cheap labour as comparative advantages and labour may led to loss of ability to innovate which caused the economic growth to decline (Amir et al., 2015).

2.3 Empirical Review for Climate Change (Temperature, Precipitation, Carbon Dioxide Emission)

2.3.1 Temperature and Economic growth

There were numerous researches that aimed to examine the climate change affected on economic growth in different areas around the globe since climate change is one of the global problems that had been discussed in recent years. Most of these researches had shown mixed results of the impact on temperature and economic growth.

According to Guo, Xu and Gong (2014), they found that temperature is positively significant to the GDP growth rate using Granger-causality in short-term. According to Pei et al. (2016), they found that there is a positive relationship between temperature and real GDP per capita by using regression analysis. Sufficient exposure to sunlight and suitable temperature in the surrounding area increased the arable land which is beneficial for economic growth (Akram, 2013).

However, Ali et al. (2019) criticized the arguments by stating that the temperature has significantly adverse effects on economic development. Not only that, they found that the effect of temperature not only reduced the growth rates in production of agriculture but also industrial production, and political stability. The reason is because higher temperature has magnified the problem of water shortage by reducing the runoff from water rich areas

to arid land (Lanzafame, 2014). Besides, Jones and Olken (2010) stated that every one degree Celsius increased would reduced the growth rate of export of agricultural and light-weight industry; slight impact on heavy industry and raw materials production. In addition, lower economic growth rate is observed in developing countries when the average global temperature is increasing tremendously (Bowen et al., 2012). Furthermore, Abidoye and Odusola (2015) concluded that the economic growth decreased by approximately 0.67 percentage point when the temperature increased in one degree Celsius. Moreover, according to Colacito, Hoffman and Phan (2019), the rising temperature in summer is claimed to have a significant negative impact toward gross state production.

On the other hand, according to Burke, Hsiang and Miguel (2015) found that annual mean temperature and log GDP per capita had a global nonlinear relationship. The cold country's productivity increased when the annual temperature increased until a threshold level, the productivity started to decline gradually and accelerate when temperature increased further. Furthermore, they also found that the agriculture and non-agricultural aggregate production have non-linear relationships in average temperature for developing and developed countries (Burke et al., 2015). Besides, the findings showed that historical temperature has non-linear responses towards economic productivity of 168 countries in 1960-2014 (Lee, Villaruel & Gaspar 2016). Moreover, Schlenker and Robert (2008) discovered a robust and significant non-linear relationship between temperature and crop yields such as corn, soybean and cotton. When the temperature reached a certain threshold level, the temperature is harmful to these yields. There is also a journal supported that the impact of climate variation on economic growth is intrinsically non-linear (Alagidede, Adu & Frimpong, 2016). Below a specific extreme point of annual average temperature had stimulated the growth performance in the long-run. On the other hand, increased in mean annual temperature tends to reduce the growth performance after the threshold on long-run. Furthermore, according to Zhao, Gerety and Kuminoff (2018), there is sufficient evidence that it had stronger non-linear effect between temperature and economic growth at all cell levels in developing countries.

2.3.2 Precipitation and Economic Growth

Several researches had determined the relationship in climate change and economic growth in different areas throughout the world. Most of these studies had shown mixed results of the relationship between precipitation and economic growth.

Based on the research of Pei et al. (2016), they stated that precipitation had a significant positive effect on GDP per capita. The finding is further supported by (Ali et al, 2019), they demonstrated that precipitation showed a positive sign on economic growth using the ARDL model. This is further supported by the research of Akram (2013); Lanzafame (2014), they indicated a significant positive relationship between precipitation on economic growth. Nevertheless, Guo, Xu, Gong (2014) stated that short term changes in minimum relative precipitation has a positive effect on GDP growth, when daily precipitation is less than 30mm, it benefited production of agriculture rather than causing storm and flood.

In contrast, the result of past researches showed a negative relationship between precipitation and economic growth. As stated by Ali (2012), he found that an agrarian economy which highly depend on precipitation will have a long-term growth drag effect caused by the variability in precipitation. This is further supported by Akram (2013), stating that change in precipitation has a negative impact towards the country's economic growth by applying various tests such as Hausman test and Fixed Effect Model (FEM). Furthermore, Ali et al. (2019), researchers said that heavy precipitation has the damaging effect on the agrarian economy but it is unaffected to the economic situation in developed countries. Evidence showed that the heavy precipitation caused the agriculture production to be damaged by increasing the soil erosion and damaging the crop yield (Mollah & Cook, 1996). As found by Grey and Sadoff (2007), they found that extreme precipitation has a negative impact on economic development. They found that the floods caused more than 33% of damage to the GDP growth (Grey & Sadoff, 2007).

2.3.3 Carbon Dioxide Emissions and Economic Growth

There are numerous researches that had studied the impacts of climate change on economic growth all around the globe. However, some researchers found that carbon dioxide emissions were the main cause that inflicting the degradation of the environment. Most of these studies had shown mixed results of the relationship between temperature and economic growth.

Based on Chang (2010), he stated that the used of energy and carbon dioxide emission positively affected the economic growth. The finding showed that higher energy used and carbon dioxide emissions boosted the economy. According to Bozkurt and Akan (2014), the research was done at the period of 1990–2011 to examine the relationship between economic growth, carbon dioxide emissions and energy structure. It showed a positive significant on the economic growth in China in short and long run. This is further supported by the research of Khan, Khan and Rehan (2020), they stated that carbon emissions has a positive impact on Pakistan's economy in both long run and short run. Hence, Long, Naminse, Du and Zhuang (2015) stated that the carbon dioxide emission and economic growth were bidirectional affected each other.

In the research conducted by Ghosh (2010), it showed that the carbon dioxide emissions and economic growth has bidirectional short-term causality. In short run, he concluded that the declined in carbon dioxide emissions caused the economy to follow an inclined. Based on the research

done by Kumar (2011), he found that carbon dioxide emission has an adverse relationship with the GDP. This is because the composition of the energy had been shifted away from coal which produced lots of carbon dioxide emission and towards natural gas, nuclear and etc (Tsigaris & Wood, 2016). The result further supported by Borhan, Ahmed and Hitam (2012); Gul, Zou, Hassan, Azam and Zaman (2015) they found that carbon dioxide emission has an opposite impact on GDP. Besides, according to Ali et al. (2019) indicated a significant negative relationship between carbon emissions on economic growth.

2.4 Conclusion

This chapter had discussed the relationship and impact of climate change on economic growth. Some researchers had found that climate change has a positive significant impact on economic growth. However, some researchers had criticized the findings by stating that climate change has a negative impact towards economic growth. As the impact of climate change on economic growth remained ambiguous, therefore this research will further examine whether climate change has a non-linear impact on economic growth. Next section will be chapter 3 which discusses the methodology of this research.

CHAPTER 3: METHODOLOGY

3.0 Introduction

This chapter presents about the source of data, data description, research model and Generalized Method of Moment (GMM). In source of data and data description, variables' definition, measurement unit, abbreviation, source of data and expected sign will be described. Next, the GMM will be used in this research and efficiency, feasibility, estimating standard error, difference GMM, system GMM and diagnostic test will be explained.

3.1 Source of Data

This research can access the data of all 31 developed countries and 135 out of 158 developing countries from World Population Review. The data period that include in this study is from year 1990 to year 2016, thus total observations account for this research will be 4482. However, some data is unavailable for certain countries during the first few years and recent year; therefore, the data include in this research consider as unbalanced panel data. However, Generalized Method of Moments (GMM) is able to encounter the problem of missing values in an unbalance panel data (Roodman, 2006). The result of this research which is the impact of climate change on economic growth will be largely dependent on the selected sample observations. In additions, Table 3.1 presents summary of variables.

Table 1	3.1:
---------	------

Summary of	variables
------------	-----------

Variables	Abbreviation	Unit	Definition	Sources
		Measurement		
Economic	GDP	USD	GDP per	WDI
growth			capita	
Gross Fixed	GFCF	USD	A component	WDI
Capital			expenditure	
Formation			of GDP	
Trade	ТО	Percentage	Total trade	WDI
Openness		(%)	percentage to	
			GDP	
Labour	LAB	Individual	Employed	WDI
Force			plus	
			unemployed	
Temperature	TEMP	Celsius (°C)	Annual	WDI
			temperature	
			by countries	
Precipitation	PREC	Millimeter	Annual	WDI
		(mm)	precipitation	
			by countries	
Carbon	CO ₂	Kiloton(kt)	Annual	WDI
Dioxide			carbon	
Emission			dioxide	
			emissions by	
			countries	

Note. Adapted from World Development Indicator (2020)

Table	3.2:
-------	------

Expected	sign	of v	variables
----------	------	------	-----------

Variables	Expected Sign						
	Overall	Developed	Developing				
Economic	-	-	-				
growth							
Gross Fixed	Positive	Positive	Positive				
Capital							
Formation							
Trade	Positive	Positive	Positive				
Openness							
Labour	Positive	Positive	Positive				
Force							
Temperature	Negative	Negative	Negative				
Precipitation	Positive	Positive	Positive				
Carbon	Positive	Positive	Positive				
Emission							

3.2 Data Description

For the data description, definition of each variables which are economic growth, gross fixed capital formation, trade openness, labour force, temperature, precipitation and carbon dioxide emission will be discussed.

3.2.1 Economic Growth

Economic growth defines as an increase in the output of a nation in the result of production of goods and services over a specific period by excluding the effects of inflation. The data collect in this research is GDP per capita of all nations from year 1990 to 2016 on annual basis. Based on Ali et al. (2019), they used GDP per capita as dependent variable to measure the economic growth.

3.2.2 Gross Fixed Capital Formation

Gross fixed capital formation defines as the net investment in fixed capital and it excluded the effects of depreciation and the purchases of land. The data obtain in this research is the gross fixed capital formation (GFCF) of all nations from year 1990 to 2016 on annual basis. The expected impact of GFCF to economic growth in overall countries is positive. In the study of Ali et al. (2019), they found that GFCF has a positive impact on the economic growth in both long run and short run.

3.2.3 Trade Openness

Trade openness defines as sum of export and import per GDP. According to Wacziarg and Welch (2008), they found the economy was growing faster when there were more countries widely used open trade policies. The data use to represent trade openness in this research is total trade percentage to GDP of 31 developed countries and 135 developing countries from year 1990 to 2016 in annual basis. Besides, the expected sign for trade openness is positive impact on economic growth in overall countries as Hye, Wizarat, and Lau (2016) found that the trade openness has positive impact on economic growth in long run and short run.

3.2.4 Labour force

Labour force is described as the number of individuals who are officially employed plus the number of individuals who are unemployed but actively looking for job. The data that obtained in this research is total labour force of all nations from year 1990 to 2016 on annual basis. The expected impact of labour force is positive to the economic growth in overall countries as numeral studies have found that the total labour force has a positive impact to the economic growth (Ali et al., 2019).

3.2.5 Temperature

According to Nordhaus (2008), temperature is used as one of the proxies to represent the climate change in the DICE model. The data used in this research is temperature in degree Celsius (°C) of 31 developed and 135 developing countries from year 1990 to 2016 in annual basis. Besides, the expected sign of temperature is negative impact on economic growth in overall countries as Ali, Ying, Nazir, Ishaq, Shah, Ilyas, and Tariq (2019); Abidoye and Odusola (2015); Moore and Diaz (2015) found that the temperature is negatively correlated to the economic growth.

3.2.6 Precipitation

Precipitation defines as one of the proxies to represent the climate change. The data used in this research is precipitation in milli meter (mm) of 31 developed countries and 135 developing countries from year 1990 to 2016 in annual basis. Besides, the expected sign of precipitation is positive impact on economic growth in overall countries. According to Pei, Zhang, Li, Forêt, and Lee (2016), precipitation is positively correlated to the real GDP per capita.

3.2.7 Carbon Dioxide Emission

According to Nordhaus (2008), carbon dioxide emission uses as one of the variables to define climate change in DICE model. The data used in this research is carbon dioxide emission in Kiloton (kt) of 31 developed countries and 135 developing countries from year 1990 to 2016 in annual basis. Besides, the expected sign of carbon dioxide emission is positive impact on economic growth in overall countries. According to Bozkurt and Akan (2014), the carbon dioxide emission increases will leads to an increase in the GDP due to higher energy consumption. Besides, carbon emissions have a positive impact on Pakistan's economy in both long run and short run (Khan, Khan & Rehan, 2020).

3.3 Model

The linear model and non-linear model in overall, developed and developing countries are showed as below.

3.3.1 Linear model

$$GDP_{it} = \hat{\beta}_0 + \hat{\beta}_1 GDP_{it-1} + \hat{\beta}_2 GFCF_{it} + \hat{\beta}_3 TO_{it} + \hat{\beta}_4 LAB_{it} + \hat{\beta}_5 TEMP_{it} + \varepsilon_{it}$$
(4)

$$GDP_{it} = \hat{\beta}_0 + \hat{\beta}_1 GDP_{it-1} + \hat{\beta}_2 GFCF_{it} + \hat{\beta}_3 TO_{it} + \hat{\beta}_4 LAB_{it} + \hat{\beta}_5 PREC_{it} + \varepsilon_{it}$$
(5)

$$GDP_{it} = \hat{\beta}_0 + \hat{\beta}_1 GDP_{it-1} + \hat{\beta}_2 GFCF_{it} + \hat{\beta}_3 TO_{it} + \hat{\beta}_4 LAB_{it} + \hat{\beta}_5 CO2_{it} + \varepsilon_{it}$$
(6)

3.3.2 Non-Linear model

$$GDP_{it} = \hat{\beta}_0 + \hat{\beta}_1 GDP_{it-1} + \hat{\beta}_2 GFCF_{it} + \hat{\beta}_3 TO_{it} + \hat{\beta}_4 LAB_{it} + \hat{\beta}_5 TEMP_{it} + \hat{\beta}_6 TEMP_{it}^2 + \varepsilon_{it}$$
(7)

$$GDP_{it} = \hat{\beta}_0 + \hat{\beta}_1 GDP_{it-1} + \hat{\beta}_2 GFCF_{it} + \hat{\beta}_3 TO_{it} + \hat{\beta}_4 LAB_{it} + \hat{\beta}_5 PREC_{it} + \hat{\beta}_6 PREC_{it}^2 + \varepsilon_{it}$$
(8)

$$GDP_{it} = \hat{\beta}_0 + \hat{\beta}_1 GDP_{it-1} + \hat{\beta}_2 GFCF_{it} + \hat{\beta}_3 TO_{it} + \hat{\beta}_4 LAB_{it} + \hat{\beta}_5 CO2_{it} + \hat{\beta}_6 CO2_{it}^2 + \varepsilon_{it}$$
(9)

Where GDP represents GDP per capita, GFCF represents gross fixed capital formation, TO represents trade openness, PREC represents precipitation, LAB represents labour force, TEMP represents temperature, CO₂ represents carbon dioxide emission and ε represents error term, i = 1, 2, 3... refers to countries, and t = 1990, 1991, 1992... 2016 T refers to period of time. All the data are computed in natural logarithm.

Undergraduate FYP

3.4 Generalized Method of Moments (GMM)

GMM is a dynamic panel data estimator which is use for estimating parameters in multivariate analysis. GMM is one of the statistical methods widely apply by researchers to estimate the unknown parameters in an equation. GMM was developed by Lars Peter Hansen in the year 1982, which was suitable for the limiting of economic models and no additional restrictions will be imposed. It originates estimates of the unknown parameters by integrating observed economic data with the information in population moment conditions (Zsohar, 2010). Xtabond2 command which implement the estimators by using Stata will automatically test the validity of instrument subsets. Moreover, it also assists for observation weights, and the forward orthogonal deviations transform which come out by Arellano and Bover (1995) that conserve sample size in panels with gaps by using Sargan/Hansen test. On the other hand, xtabond2 provide unique features such as the "collapse" to limit instrument proliferation.

GMM is use as a tool in this research compare to OLS and 2SLS. One of the main reasons that we choose GMM is because GMM is often apply by many researchers to account for dynamics in the model. For instance, dynamic panel models that contain the lagged dependent variable will produce biased result by using OLS. In this case, the GDP includes the lagged term in model which it is consider as lagged dependent variable. In simple term, it indicates that the previous GDP in previous year will affect in current year. Moreover, it also is an estimator that can naturally solve the potential of endogeneity issues which OLS cannot solve the problem with endogenous regressors.

Sample data, where information is collect from the population sample size, and it could be very similar to the population data. An illustration provided by Zsohar (2010) is the linkage between sample mean and population expected value. By applying the same principle, sample equivalents are generated by using population moment conditions as below:

Undergraduate FYP

Population moment condition:
$$E[\varkappa_i] = \mu$$

Sample analogue $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n x_i = \hat{\mu}$ (10)

The equation of unidentified parameter can explain by sample analogue. Thus, the sample moments follow the rule of central limit theorem that is approaching normal distribution as the sample size increase.

Parameters, β are crucial in quantifying how a variable influence another. Though there are many estimations available; however, the quantification of parameters should not impose additional restrictions on the statistical behaviour of variables that are stated by economic models, because imposition of additional restrictions triggers more assumptions, which may put ourselves at the risk of invalidity (Zsohar, 2010). Zsohar (2010) mentions that the statistical estimation method should just involve the restrictions of the economic models. Most often, the restrictions that economic theories impose is known as "population moment conditions", it is a set of mathematical equation that is form in consistent with economic theories. Although the population moment conditions demonstrate information of unknown parameters; however, such information is not always accurate (Zsohar, 2010).

In Zsohar (2010)'s article, the motivation of GMM is that Method of Moments (MM) cannot estimate unknown parameters if the number of moment conditions, q is more than the number of unknown parameters, p. When q < p, multiple solutions are available to the equations systems, meaning that there will be no exact solution to all of the moment conditions, the estimation of parameters is therefore not possible (Brown & Newey, 2002). The principle of GMM is that q must be greater than or equal to p (q \ge p). When q = p, GMM and MM are the same. In the case of q > p, it is called over-identification which we do not have any solution to the equation system; nevertheless, we can still find the GMM estimator. Instead of coming up with an exact solution, GMM allows us to estimate $\hat{\beta}$ that the value is closest to solving the sample moment conditions (Zsohar, 2010); in other words, $\hat{\beta}$ will make sample moments become more closer to zero as possible (Brown & Newey, 2007).

3.4.1 Efficiency

GMM comes out with the ideas of expected values and averages sample. In term of true value, moment condition is expected values that specify the model parameters. If instrument is more than the regressor, then the equations outnumber are unknowns and an ambiguity will appear by using 2SLS to solve moment condition. Thus, the moments conditions true asymptotically by expecting moment condition cannot hold perfectly in finite sample. For efficiency, A which suggest a different linear, consistent estimator of β , must in effect weight moment in inverse proportion to their variances and covariances. According to Rodman (2009), the research view matrices Z and E as components of infinite sequences indexed by N since efficient represent asymptotic notion. So, the efficient GMM moment weighting matrix is shown below:

$$\hat{\beta}_{EGGM} = \{X'Z \, Var \, (z\varepsilon)^{-1}Z'X\}^{-1}X'Z \, Var(z\varepsilon)^{-1}Z'Y \tag{11}$$

Where EGMM is not feasible unless the $Var(z\varepsilon)$ is known.

The researcher demonstrates that the estimators become efficient before making estimator become feasible and need to assume the model is suitable for Law of Large Number hold. The result shows that the EGGM estimators is asymptotically orthogonal to the latter and the assertion is efficient.

According to Roodman (2009), GMM estimator which defines by A will remodel as $|| (1/N) Z'W\hat{E} ||_A$ with different alternatives of weighting matrix. Under certain criteria being fulfilled, the GMM estimators will be consistent by converting in probability to β as a sample size increase to infinity (Hansen, 1982). Unlike 2LS, the result will become biased because limited samples of the instruments are slightly correlate with the endogenous component of the instrumented regressor which correlation coefficient between the regressor are not equal to 0.

Based on another derivation of EGGM for greater insight, a direct OLS evaluate of $Y=X\beta+E$ is biase. The error term still will not be independent and identical

distribution which cannot be assume scalar although apply Z-moment of both sides. To solve this problem, Roodman (2009) transformed the model to become:

$$Avar\left(\frac{1}{N}E^*\right) = \lim_{n \to \infty} N \, Var(z\varepsilon)^{-1/2} \, Var\left(\frac{1}{N}Z'E\right)(z\varepsilon)^{-1/2} \tag{12}$$

If $Var(z\varepsilon)$ happen to be spherical, then the efficient projection is orthogonal based on Gauss Markov theorem. It indicates that there is no reweighting of moment is needed for efficiency.

3.4.2 Feasibility

To make the EGGM practical, it requires a feasible estimator for the optimal weighting matrix which are Var $(z\epsilon)^{-1}$. By observing that this group is the limit of the expression built around Ω to achieve optimal objective:

$$Var(z\varepsilon) = \lim_{n \to \infty} \frac{1}{N} E(Z'\Omega Z)$$
(13)

In this case, we assume that the errors are assumed to be homoscedastic, with Ω of the form $\sigma^2 I$. Next, the EGGM weighting matrix is contrary of $\sigma^2 \lim_{n \to \infty} \left(\frac{1}{N}\right) E(Z'Z)$ based on the last expression. Roodman (2009) suggested that we can use sandwich estimator, which also known as Kernel-based estimator from Stata estimation commands with robust and cluster options when the error term is suspected with more-complicated pattern of variance. GMM weighting matrix will be changed to become optimal matrix by using effective algorithm as N increases. According to a minimal arbitrary assumption, select $A = (Z'HZ)^{-1}$, where arbitrary H is an "estimate" of Ω . Up to one-step GMM, we will only set, where H is the estimated Ω based on minimally arbitrary assumption regarding the errors. One of the possible assumptions could be homoscedasticity. Roodman (2009) said that the replacement $\widehat{\Omega}$ by arbitrary H, yielding $\widehat{\beta}_1$ allow to obtain the residuals from the estimation by using one-step GMM. Then, it will use to build sandwich proxy for Ω in the second step, notating it as $\widehat{\Omega}_{\beta_1}$. The two-step estimator, $\widehat{\beta}_2$ is efficient and robust. However, downward bias will exist in standard errors of one-step and two-step result.

Undergraduate FYP

3.4.3 Estimating Standard Error

There is complication of result in developing feasible result for both one-step and two-step GMM. For first step GMM, it used optimal weighting matrix, $A = (Z'HZ)^{-1}$ to replace the weighting matrix $A = (Z'\Omega Z)^{-1}$. Below model are the sub-optimal weighting matrix:

$$\hat{\beta}_1 = (X'Z(Z'HZ)^{-1}Z'X)^{-1}X'Z(Z'HZ)^{-1}Z'Y$$
(14)

By inserting the sub-optimal weighting matrix, it will minimize the function above. The result which denoted as $\hat{\beta}_1$ is consistent but the standard errors estimate would not be robust. Based on Roodman (2009), he said that it can solved the problem above by replacing $Var(z\epsilon)$ with sandwich type proxy of one-step residual. By doing this, the result will be feasible and the estimator for one-step standard error will be robust. In second step, estimate of $\hat{\beta}_1$ is compulsory for obtaining the optimal weighting matrix, $(Z'\hat{\Omega}_{\hat{\beta}_1}Z)^{-1}$, which then could be used to estimate $\hat{\beta}_2$ efficiently (Zsohar, 2010). To simplify, two-step GMM uses first step estimate parameter to estimate the parameter in the second step (Roodman, 2006)

$$\hat{\beta}_2 = \left(X'Z(Z'\widehat{\Omega}_{\widehat{\beta}_1}Z)^{-1}Z'X\right)^{-1}X'Z(Z'\widehat{\Omega}_{\widehat{\beta}_1}Z)^{-1}Z'Y$$
(15)

As for two step GMM, this paper use $\hat{\beta}_1$ to create optimal weighting matrix, $(Z'\hat{\Omega}_{\hat{\beta}_1}Z)^{-1}$ by setting $A = (Z'\hat{\Omega}_{\hat{\beta}_1}Z)^{-1}$ to minimize the function of $\hat{\beta}_2$. The result obtained will be denoted as $\hat{\beta}_2$ and the estimate will be consistent and efficient. Based on Windmeijer (2005), he found that two-step EGMM can outperforms one-step GMM in estimating coefficient with lower standard error. However, when the number of instruments is large, the standard errors will be downward biased. The downward biased is caused by the weighting matrix in one-step GMM is independent of estimated parameters whereas the weighting matrix in two-step GMM is dependent to initial consistent estimated parameters. According to Windmeijer (2005), he found that finite-sample correction able to minimize the downward bias in two-step.

Undergraduate FYP

3.4.4 Difference GMM & System GMM

The Difference and System GMM made lesser assumptions throughout the history trend in econometric practices. Moreover, GMM also need to isolate value information by using complicate method under data generating process; nevertheless, the computation of software that use GMM is very popular nowadays and many researchers are using this. These estimators are design for the panel analysis with sample size, N must be larger than the time period, T, and have few assumptions in data generating process (Roodman 2009). Below are the assumptions for GMM:

- i. There may be an arbitrary distribution of fixed individual effects. This crosssection regressions should basically assume the absence of fixed effect and support the panel settings where changes over time can be used to identify parameters.
- ii. The process can be characterized by constant change, with current realizations of the DV that affect by the previous one.
- iii. Certain regressors may be endogenous regressor.
- iv. The individual models of heteroscedasticity and autocorrelation could be arising among idiosyncratic error term (those that do not have fixed effect).
- v. There is no interaction among idiosyncratic disturbances.
- vi. Some regressor are not strictly exogenous but it can be predetermined, it indicates that the regressor can be affected by previous one but not depending on current disturbances. The dependent variable that included lagged are one of the examples.
- vii. The sample size, N must be larger than the time period, T

viii. Available instruments are based on "internal" - instrument lag variable.

Based on above assumption, the estimator allows inclusion of external instrument and the estimators are designed for general use. Below is the general model for generating data process:

$$\Delta y_{it} = (\alpha - 1)y_{i,t-1} + x'_{it}\beta + \varepsilon_{it}$$
⁽¹⁶⁾

By applying the OLS into this equation, it will create dynamic panel bias which it indicates that $y_{i,t-1}$ is correlate with the fixed effects in the error term. The correlation between independent variable and error, μ_i will violates the basic assumption of OLS. There are 2 ways to solve the endogeneity problem. First, we can use first-difference transform which called as "different GMM" to remove the fixed effect by transforming the data. Next, the second way is called "System GMM" to instrument $y_{i,t-1}$ and any other similarly endogenous variables which are uncorrelated with the fixed effects.

For Difference GMM, fixed effect will eliminate but the lagged dependent variable can still be endogenous. Any predetermined variables in x had the potential to become endogenous although they are strictly exogenous. First-difference transform also had its own weakness that tends to magnify gap in unbalanced panels. For instance, both Δy_{it} and Δy_{it+1} will disappear in the transformed data if some y_{it} is missing. This is what had to create the second transformation which called as "forward orthogonal deviation". Forward orthogonal deviation able to reduce more missing data by computing all observation except the last for every individual. Forward orthogonal deviation subtracts the average of all future available observation of a variable unlike the first-difference transformation which minus last year observation with this year observation (Roodman 2006).

First-difference transform from:

$$y_{it} = \beta_0 + \alpha y_{i,t-1} + x'_{it}\beta + \varepsilon_{it}$$
(17)

$$\Delta y_{it} = \alpha \Delta y_{i,t-1} + \Delta x'_{it}\beta + \Delta v_{it}$$
(18)

Undergraduate FYP

The fixed effects, μ_i will be remove but the lagged dependent variable, $\Delta y_{i,t-1}$ can still be endogenous because $\Delta y_{i,t-1} = y_{i,t-1} - y_{i,t-2}$ is correlated with $\Delta v_{it} = v_{it} - v_{i,t-1}$. The independent variables will potentially become endogenous even though exogenous problem had been solved. This is because predetermined variables in x may related to $v_{i,t-1}$. First-difference transformation had its own disadvantages which will magnify gap in unbalanced panels. For instance, if y_{it} is missing, both Δy_{it} and $\Delta y_{i,t+1}$ will also disappear in panel data. This above situation had led to a second transformation which is called "forward orthogonal deviation". Forward orthogonal deviation able to compute the missing data which it subtracts the previous observations of variable except the last for each individual variable (Roodman, 2009).

The difference GMM estimator will produce a biased and inefficient estimate in finite samples if the dependent variable was persistent and close to be a random walk. According to Blundell and Bond (1998), they propose use of a system GMM estimator to increase efficiency due to poor performance of difference GMM. Instead of changing the regressor to eliminate fixed effect, it can transform the instruments to make them exogenous to the fixed effect. According to Roodman (2009), the system GMM got include time-invariant regressor which made all instruments for all level are expected to be orthogonal to fixed effect. Assume changes in any instrumental variable, *w* are not correlate with fixed effect where $E(\Delta w_{i,t-1}\mu_{it})$ is equal to 0 for all *i* and *t* and $E(w_{it}\mu_i)$ is time-invariant. If the assumption holds, then $\Delta w_{i,t-1}$ will be a valid instrument for variable:

$$E(\Delta w_{i,t-1}\varepsilon_{it}) = E(\Delta w_{i,t-1}\mu_{it}) + E(\Delta w_{i,t-1}v_{it}) - E(\Delta w_{i,t-2}v_{it}) = 0 + 0 - 0$$
(19)

To simplify, Difference GMM is to remove the fixed effects while System GMM is to transform the instruments by making the instrument exogenous to the fixed effects. Assuming the instruments and fixed effects are uncorrelated, then it allows more instruments to be introduced and can enhance the efficiency. Hence, this research will be using xtabond2 instead of xtabond to make the finite-sample correction available to the standard errors in two-step estimation in stata (Roodman, 2009).

3.5 GMM Diagnostic Test

In this chapter, this research will highlight in few diagnostic checking which are Arellano-Bond test, Sargan test and Hansen Test since this research is using GMM model for dynamic panel. This is to ensure that the instrument is independent form the error term which the instrument variable is exogenous toward GMM model.

3.5.1 Arellano-Bond test

This research applies Arellano-Bond test for AR (1) and the Arellano-Bond test for AR (2) to detect autocorrelation in idiosyncratic disturbance term, v_{it} (Roodman, 2006).

$$\varepsilon_{it} = \mu_i + \nu_{it} \tag{20}$$

where μ_i is the fixed effect, v_{it} is the idiosyncratic shocks

Full disturbance is the combination of fixed effects and idiosyncratic shocks. Therefore, full disturbance is often assuming auto-correlated because of the fixed effects. However, Arellano-Bond test is to detect autocorrelation for idiosyncratic shocks, excluding fixed effects.

 H_0 : There is no serial correlation

 H_1 : There is serial correlation

Failure to reject the null hypothesis implies that autocorrelation problem does not exist. The first-order serial correlation, AR (1) is taken to remove the fixed effect. After that, it also includes the lag term in the model which t would affect the period. However, this paper will focus more AR (2) rather than AR (1) because AR (2) got include error term in AR (1).

Undergraduate FYP

3.5.2 Sargan/ Hansen Test

The Sargan/ Hansen test are test for the validity for the instrument variable. In simple term, it tests for over-identifying restriction to ensure there are no endogenous between the instrumental variable. Below is the hypothesis statement of Sargan/Hansen test:

 H_0 : The instruments are valid

 H_1 : The instruments are not valid

Failure to reject the null hypothesis means that the instruments are valid.

3.5.3 Threshold Function

The turning point of this marginal effect is obtained by solving for:

$$\frac{dy}{dx} = \beta_1 + 2\beta_2 X = 0$$

$$X = -\frac{\beta_1}{2\beta_2}$$
(21)

Where β_1 = independent variable

 β_2 = independent variable squared

All threshold level for climate variables (temperature, precipitation, and carbon dioxide emission) will calculating by using this equation. This model gives a quadratic relationship between climate change and economic growth. Noted that both level and squared terms (x and x^2) must statistically significant in order to have U-shape or inverse U-shape relationship (Bollobás, & Thomason, 1987). In the next chapter, analysis of the results will be discussed.

Undergraduate FYP

3.6 Conclusion

In this chapter, all the data are described and it is collected from World Development Indicators at year 1990 to 2016. The model from (4) to (6) showed linear climate change impact towards economic growth while model from (7) to (9) shows non-linear climate change impact towards economic growth in overall, developed and developing countries. Lastly, GMM is applied in this research and the result is showed in chapter 4.

CHAPTER 4: DATA ANALYSIS

4.0 Introduction

In this chapter, hypothesis testing and robustness checking are to determine the relationship between climate change and economic growth. This chapter has included the result of Difference and System GMM for all the control variables which are gross fixed capital formation (GFCF), trade openness (TO), labour force (LAB), temperature (TEMP), precipitation (PREC) and carbon dioxide emission (CO₂). There are few diagnostic checks included in this data analysis which are Hansen test, Sargan test and Arellano-Bond Serial Correlation test.

4.1 Results from Dynamic Panel GMM Estimation

Table 4.1:

Results of dynamic panel GMM estimation in overall countries for temperature (linear)

	Model	Model	Model	Model	Model	Model
	(1)	(2)	(3)	(4)	(5)	(6)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.453***	0.453***	0.453***	0.480***	0.480***	0.480***
	(43.45)	(576.81)	(5.71)	(57.61)	(336.91)	(6.37)
GFCF	0.405^{***}	0.404***	0.404***	0.492***	0.493***	0.493***
	(42.27)	(730.82)	(4.29)	(57.16)	(467.96)	(6.12)
ТО	0.011	0.011***	0.011	0.007	0.007^{***}	0.007
	(0.83)	(12.54)	(1.11)	(0.48)	(8.22)	(0.62)
LAB	-0.001	0.001	0.001	-0.444***	-0.446***	-0.446***
	(-0.04)	(0.27)	(0.01)	(-25.32)	(-187.90)	(-4.68)
TEMP	0.321***	0.319***	0.319*	-0.243***	-0.240***	-0.240***
	(6.42)	(120.86)	(1.89)	(-19.02)	(-51.06)	(-4.12)
cons				0.541**	0.553***	0.553
				(2.45)	(25.31)	(0.93)
No. of obv	4482	4482	4482	4482	4482	4482
No. of	166	166	166	166	166	166
countries						
AR(1)	-19.030***	-2.357**	-2.351**	-19.480***	-1.901*	-1.896*
AR(2)	-0.785	-0.440	-0.425	-0.220	-0.102	-0.100
Hansen		148.6	148.6		148.1	148.1
Sargan	1947.7***	1947.7***	1947.7***	2310.6***	2310.6***	2310.6***

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

Based on table 4.1, it represents the results of the estimations by using dynamic panel GMM and using STATA software to generate the results. The results generate are Difference GMM and System GMM. The interpretation of the results only focus on the System GMM because Difference GMM has large downward bias and highly inaccurate estimates when the time series sample is short and persistent whereas estimator of System GMM has more precise estimates and much minor bias (Blundell and Bond, 1998). This is because System GMM has include additional moment restriction which is able to remove the biases and the problem of weak instruments in the estimations of first difference GMM. Therefore, the result analysis only interpret on the Two-step System GMM with robustness checking which will be demonstrated in Model 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102 and 108.

Based on table 4.1, it shows that labour force has negative impact on economic growth at 1 percent of significance level. This result is consistent with the research done by Kirigia, Oluwole, Mwabo, Gatwiri, & Kainyu (2006) which stated that the labour force has a significant negative effect on the GDP per capita. For the second control variable, gross fixed capital formation has positive impact on economic growth at 1 percent significance level. For every 1 percent increase in gross fixed capital formation, GDP per capita increases by 0.480 percent, on average, ceteris paribus. This result is consistent with the one of the findings of Ali, Ying, Nazir, Ishaq, Shah, Ilyas and Tariq (2019), they found that gross fixed capital formation has a significant positive impact with the economic growth. The third control variable is trade openness, it is statistically insignificant at 1 percent. According to Sharma (2010), he also found that trade openness has a statistically insignificant effect on economic growth.

4.1.1 Linear and Non-Linear Overall (Temperature, Precipitation and Carbon Dioxide Emission)

The core objective of this research is to examine the linear and non-linear relationship of climate change toward economic. Temperature, precipitation and carbon dioxide emission are used as proxies to represent the climate change.

Based on the table 4.1, the result shows that the temperature has negative impact on economic growth at 1 percent significance level. An increase of 1 percent in temperature leads to a decrease of 0.240 percent in economic growth, on average, ceteris paribus. Rising temperature could give negative impact to the total factor productivity due to the capital has switch away from research and development (R&D) towards reconstruction or maintenance of capital due to the impact of climate change (Moore and Diaz, 2015). Besides, temperature has minor negative impact on the international trades of raw material and heavy weight production and higher negative impact on light-weight and agricultural sector (Jones & Olken, 2010).

Table 4.2:

	Model	Model	Model	Model	Model	Model
	(7)	(8)	(9)	(10)	(11)	(12)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.462***	0.462***	0.462***	0.496***	0.496***	0.496***
	(44.45)	(434.40)	(5.52)	(60.39)	(567.02)	(6.63)
GFCF	0.417***	0.417***	0.417***	0.475***	0.474^{***}	0.474***
	(44.14)	(414.25)	(4.47)	(55.19)	(752.48)	(5.98)
ТО	0.011	0.011***	0.011	0.008	0.008^{***}	0.008
	(0.81)	(9.21)	(1.07)	(0.53)	(9.40)	(0.72)

LAB	-0.078***	-0.081***	-0.081	-0.435***	-0.434***	-0.434***
	(-3.02)	(-11.86)	(-0.59)	(-26.28)	(-294.42)	(-4.69)
TEMP	0.086**	0.086***	0.086*	0 132***	0 131***	0 131***
I LIVII	(2, 32)	(35.68)	(1.78)	(4.36)	(30.31)	(2.76)
	(2.32)	(55.00)	(1.70)	(4.50)	(37.31)	(2.70)
TEMP^2	0.031**	0.031***	0.031	-0.065***	-0.065***	-0.065***
	(2.37)	(34.18)	(1.53)	(-11.33)	(-45.80)	(-4.52)
cons				0.149	0.145***	0.145
				(0.70)	(5.29)	(0.27)
No. of	4482	4482	4482	4482	4482	4482
obv						
No. of	166	166	166	166	166	166
countries						
AR(1)	-18.490***	-2.170**	-2.165**	-18.900***	-1.926*	-1.921*
AR(2)	-1.028	-0.535	-0.520	-0.917	-0.441	-0.432
Hansen		149.6	149.6		148.9	148.9
Sargan	1982.9***	1982.9***	1982.9***	2260.6***	2260.6***	2260.6***

Results of dynamic panel GMM estimation in overall countries for temperature (non-linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

However, the result in table 4.2 shows that temperature has inverted Ushape impact on economic growth at 1 percent significance level. The threshold level for temperature is computed by using equation (18), and anti-In is apply to get the threshold level in degree Celsius. Firstly, when the temperature increases, it leads to an increase in economic growth. However, when the temperature rise above the threshold level of 1.008 $\left(-\frac{0.131}{2(-0.065)} \times e\right)$ degree Celsius, the economic growth starts to decrease. The current result is consistent with the findings of Burke, Hsiang & Miguel (2015); Alagidede, Adu & Frimpong (2016). The reason behind is because below a threshold temperature, the increasing temperature generally boost the production of agriculture sector. However, when the temperature rise above the threshold level, it starts to damage the crops and hence lead to a decrease in output of agriculture. As a consequences, the industrial growth and job available in the agriculture sector will be reduced (Alagidede, Adu & Frimpong, 2016). Furthermore, extreme high temperature has also impacted the tourism in a country which eventually leads to a decrease in GDP from the tourism sector (Ridderstaat, Oduber, Croes, Nijkamp, & Martens, 2014).

Table 4.3:

	Model	Model	Model	Model	Model	Model
	(13)	(14)	(15)	(16)	(17)	(18)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	1.078***	1.079***	1.079***	1.165***	1.165***	1.165***
	(33.82)	(454.26)	(28.43)	(62.14)	(701.77)	(9.84)
GFCF	-0.216***	-0.215***	-0.215***	-0.268***	-0.268***	-0.268***
	(-8.44)	(-82.15)	(-6.82)	(-14.22)	(-140.37)	(-3.15)
ТО	0.119	0.117^{***}	0.117	0.268^{***}	0.273***	0.273
	(1.21)	(15.59)	(0.92)	(2.75)	(34.30)	(1.09)
LAB	0.680^{***}	0.665***	0.665***	0.592^{***}	0.584^{***}	0.584^{***}
	(11.19)	(51.39)	(7.22)	(11.96)	(70.36)	(4.40)
PREC	-0.136**	-0.138***	-0.138**	-0.204***	-0.204***	-0.204**
	(-2.10)	(-39.35)	(-2.48)	(-3.27)	(-98.15)	(-1.97)
cons				-5.656***	-5.598***	-5.598**
				(-5.60)	(-80.66)	(-2.10)
No. of	4482	4482	4482	4482	4482	4482
obv						
No. of	166	166	166	166	166	166
countries						
AR(1)	-16.020***	-4.731***	-4.494***	-16.630***	-4.731***	-3.689***
AR(2)	-0.282	-0.116	-0.113	0.388	0.145	0.135
Hansen		146.5	146.5		146.8	146.8
Sargan	751.2***	751.2***	751.2***	1205.2***	1205.2***	1205.2***

Results of dynamic panel GMM estimation in overall countries for precipitation (linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

Next, the result in table 4.3 showed that precipitation has negative impact on economic growth at 5 percent significance level. Furthermore, an increase of 1 percent in precipitation, leads to a decrease of 0.204 percent in GDP per capita, on average, ceteris paribus. The changes in precipitation has a negative impact on economic growth, more specifically it damages the agriculture as it causes flood and storms (Guo, Xu, Gong, 2014).

Table 4.4:

(non-lined	ar)					
	Model	Model	Model	Model	Model	Model
	(19)	(20)	(21)	(22)	(23)	(24)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM
	Step	Step	Step Robust	Step	Step	Two Step
						Robust
GDP	0.433***	0.433***	0.433***	0.539***	0.539***	0.539***
	(41.92)	(328.10)	(5.92)	(69.35)	(377.11)	(8.12)
GFCF	0.382***	0.383***	0.383***	0.462***	0.462***	0.462***
	(41.16)	(244.60)	(4.25)	(54.15)	(429.82)	(6.27)
ТО	0.013	0.013***	0.013	0.011	0.011***	0.011
	(1.00)	(10.60)	(1.41)	(0.75)	(9.23)	(1.04)
LAB	0.207***	0.199***	0.199	-0.405***	-0.404***	-0.404***
	(6.67)	(29.51)	(1.27)	(-22.48)	(-75.59)	(-4.47)
PREC	-0.197***	-0.196***	-0.196	0.291***	0.293***	0.293***
	(-3.74)	(-44.80)	(-1.49)	(7.60)	(41.00)	(2.84)
PREC^2	0.026***	0.026***	0.026	-0.038***	-0.038***	-0.038***
	(3.79)	(51.55)	(1.62)	(-7.81)	(-46.94)	(-2.87)
cons				-1.163***	-1.182***	-1.182**
				(-5.47)	(-16.26)	(-1.98)
No. of	4482	4482	4482	4482	4482	4482
obv						
No. of	166	166	166	166	166	166
countries						
AR(1)	-18.910***	-2.403**	-2.394**	-19.800***	-2.154**	-2.148**
AR(2)	-1.182	-0.689	-0.659	-0.652	-0.333	-0.325
Hansen		148.1	148.1		148.9	148.9
Sargan	1933.6***	1933.6***	1933.6***	2677.8***	2677.8***	2677.8**

Results of dynamic panel GMM estimation in overall countries for precipitation (non-linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

However, table 4.4 shows that precipitation has inverted U-shape impact on economic growth at 1 percent significance level. The threshold level for precipitation is computed by using equation (18), and anti-ln is applied to get the threshold level in millimetre. When the precipitation below threshold level of $3.855 \left(-\frac{0.293}{2(-0.038)}xe\right)$ millimetre (mm), the precipitation has positive impact to the economic growth. However, when the precipitation rose above the threshold level, it started to damage the economic growth. A normal precipitation below a threshold level boosts the corps output but extreme heavy rain causes flood and storm which harms the overall agriculture production (Guo, Xu, Gong, 2014).

Table 4.5:

	Model	Model	Model	Model	Model	Model
	(25)	(26)	(27)	(28)	(29)	(30)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.384***	0.383***	0.383***	0.600***	0.599***	0.599***
	(19.19)	(265.40)	(6.51)	(41.49)	(447.95)	(12.65)
GFCF	0.569***	0.569***	0.569***	0.407***	0.408^{***}	0.408***
	(29.37)	(1190.83)	(10.65)	(28.49)	(454.39)	(9.03)
ТО	-0.017	-0.017***	-0.017	-0.016	-0.016***	-0.016
	(-1.08)	(-28.16)	(-1.41)	(-1.12)	(-25.54)	(-1.42)
LAB	-0.0619	-0.0545***	-0.0545	-0 556***	-0 557***	-0 557***
	(-1.05)	(-5.00)	(-0.33)	(-24.07)	(-224.79)	(-7.47)
CO_2	-0 249***	-0 249***	-0 249***	0.068***	0 069***	0.069**
002	(-10.45)	(-131.89)	(-3.68)	(12.95)	(76.63)	(2.55)
cons				2 000***	2.010***	2 010***
cons				(9.13)	(65.59)	(2.92)
No. of	4482	4482	4482	4482	4482	4482
obv						
No. of	166	166	166	166	166	166
countries						
AR(1)	-15.94***	-1.446	-1.443	-18.44***	-2.451**	-1.677**
AR(2)	-0.070	-0.026	-0.026	-1.677**	-0.945	-0.934
Hansen		145.3	145.3		149.2	149.2
Sargan	416.2***	416.2***	416.2***	1074.7^{***}	1074.7^{***}	1074.7***

Results of dynamic panel GMM estimation in overall countries for carbon dioxide emission (linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

Table 4.5 shows that carbon dioxide emission has positive impact on economic growth at 5 percent significance level. For every 1 percent increase of carbon dioxide emission leads to an increase of 0.069 percent in GDP per capita, on average, ceteris paribus. The results is consistent with the finding of Bozkurt (2014), where the research showed that carbon dioxide emission has positively significant impact on the economic growth. In simple words, higher carbon dioxide emission which means higher industrial production (Chang, 2010).

Table 4.6:

	Model	Model	Model	Model	Model	Model
	(31)	(32)	(33)	(34)	(35)	(36)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.347***	0.348***	0.348***	0.558***	0.559***	0.559***
	(16.84)	(355.74)	(6.00)	(37.56)	(754.41)	(13.04)
GFCF	0.571***	0.571***	0.571***	0.444^{***}	0.444^{***}	0.444^{***}
	(30.15)	(1958.56)	(11.38)	(29.98)	(967.40)	(10.88)
ТО	-0.009	-0.009***	-0.009	-0.008	-0.008***	-0.008
	(-0.68)	(-25.24)	(-1.22)	(-0.67)	(-41.36)	(-1.02)
LAB	-0.212***	-0.213***	-0.213*	-0.552***	-0.553***	-0.553***
	(-4.26)	(-42.60)	(-1.65)	(-27.17)	(-212.07)	(-9.16)
CO_2	-0.450***	-0.450***	-0.450**	-0.191***	-0.193***	-0.193*
	(-9.57)	(-88.89)	(-2.54)	(-6.07)	(-21.02)	(-1.77)
CO_2^2	0.021***	0.021***	0.021**	0.013***	0.013***	0.013**
	(7.38)	(77.37)	(2.13)	(8.37)	(27.55)	(2.28)
cons				2.514***	2.536***	2.536***
				(12.74)	(47.16)	(3.51)
No. of	4482	4482	4482	4482	4482	4482
obv						
No. of	166	166	166	166	166	166
countries						
AR(1)	-16.160***	-1.369	-1.394	-17.730***	-2.109**	-2.107**
AR(2)	0.306	0.120	0.120	-1.227	-0.649	-0.644
Hansen		148.2	148.2		148.3	148.3
Sargan	460.7***	460.7***	460.7***	901.1***	901.1***	901.1***

Results of dynamic panel GMM estimation in overall countries for carbon dioxide emission (non-linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.
However, table 4.6 shows that carbon dioxide emission has U-shape impact on economic growth at 5 percent significance level. The threshold level for carbon dioxide emission is computed by using equation (18), and anti-ln is applied to get the threshold level in kilotons. Carbon dioxide emission has negative impact on economic growth below the threshold level of $7.423 \left(-\frac{0.193}{2(-0.013)}x e\right)$ kilotons (kt). However, the carbon dioxide emission started to have positive effect on economic growth above the threshold level. The result is inconsistent with the result of the Wang & Li (2019) which shows that the carbon dioxide emissions exhibits an inverted U-shape with economic growth. The reason is because of the mixed impact on developed countries and developing countries which lead to this unexpected impact.

4.1.2 Linear and Non-Linear Developed (Temperature, Precipitation and Carbon Dioxide Emission)

Table 4.7:

Results of dynamic panel GMM estimation in developed countries for temperature (linear)

	Model	Model	Model	Model	Model	Model
	(37)	(38)	(39)	(40)	(41)	(42)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	-0.007	-0.006***	-0.006	0.260***	0.238***	0.238***
	(-0.36)	(-2.63)	(-0.21)	(4.51)	(20.03)	(4.80)
GFCF	0.781^{***}	0.782^{***}	0.782^{***}	0.785^{***}	0.804^{***}	0.804^{***}
	(39.05)	(185.72)	(29.65)	(12.14)	(73.05)	(18.75)
ТО	0.005	0.005^{***}	0.005	0.007	0.008^{***}	0.008
	(0.80)	(2.93)	(1.47)	(0.22)	(2.85)	(1.11)
LAB	-0.126	-0.119**	-0.119	-0.668***	-0.690***	-0.690***
	(-0.79)	(-2.08)	(-0.72)	(-9.68)	(-19.48)	(-6.57)
	0.022	0.021	0.021	0.110	0 1 1 0***	0.1.40*
TEMP	0.022	0.021	0.021	0.118	0.140	0.140
	(1.04)	(1.21)	(0.63)	(1.13)	(5.56)	(1.90)
cons				-2.044**	-2.050***	-2.050
				(-2.13)	(-5.63)	(-1.60)
No. of	837	837	837	837	837	837
obv						
No. of	31	31	31	31	31	31
countries						
AR(1)	6.424***	3.353***	3.313***	0.785	2.202**	2.172**
AR(2)	0.651	0.595	0.588	-0.473	-1.382	-1.334
Hansen		29.91	29.91		26.91	26.91
Sargan	186.2***	186.2***	186.2***	31.50	31.50	31.50

Based on the table 4.7, the result shows that temperature has positive impact on economic growth at 10 percent significance level. An increase in 1 percent in temperature leads to an increase of 0.140 percent in GDP per capita, on average, ceteris paribus. Higher temperature has benefited the crops production which leads to higher real GDP in agriculture sector (Pei et al., 2016).

Table 4.8:

	Model	Model	Model	Model	Model	Model
	(43)	(44)	(45)	(46)	(47)	(48)
	Difference GMM One Step	Difference GMM Two Step	Difference GMM Two Step Robust	System GMM One Step	System GMM Two Step	System GMM Two Step Robust
GDP	0.309***	0.285^{***}	0.285^{***}	0.355***	0.339***	0.339***
	(7.66)	(16.94)	(3.78)	(12.95)	(16.91)	(3.32)
GFCF	0.735***	0.738***	0.738***	0.712***	0.734***	0.734***
	(21.41)	(44.34)	(10.82)	(22.51)	(47.31)	(9.18)
ТО	0.019	0.010	0.010	0.076	0.070^{*}	0.070
	(0.33)	(0.56)	(0.22)	(1.52)	(1.84)	(0.65)
LAB	-0.584***	-0.439***	-0.439	-0.700***	-0.714***	-0.714***
	(-3.50)	(-3.53)	(-1.52)	(-20.24)	(-15.87)	(-3.36)
PREC	0.537***	0.419***	0.419**	0.660***	0.627***	0.627***
	(4.80)	(5.30)	(2.23)	(7.03)	(12.25)	(3.89)
cons				-3.681***	-3.677***	-3.677
				(-7.21)	(-4.45)	(-1.14)
No. of obv	837	837	837	837	837	837
No. of countries	31	31	31	31	31	31
AR(1)	-4.097***	-2.709***	-1.703*	-5.533***	-2.85 ^{.***}	-2.338**
AR(2)	-1.949*	-1.586	-1.545	-1.981**	-1.684*	-1.645
Hansen		27.08	27.08		28.39	28.39
Sargan	86.53***	86.53***	86.53***	145.0***	145.0***	145.0***

Results of dynamic panel GMM estimation in developed countries for precipitation (linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

However, the table 4.8 shows that precipitation has positive impact on economic growth in developed countries at 1 percent significance level. An increase of 1 percent in precipitation, leads to an increase of 0.627 percent in GDP per capita, on average, ceteris paribus. In short, higher amount of precipitation leads to higher economic growth (Ali et al, 2019). In addition, the findings stated that higher amounts of precipitation causes higher real GDP (Pei et al., 2016)

Table 4.9:

Results of dynamic panel GMM estimation in developed countries for carbon dioxide emission (linear)

	Model	Model	Model	Model	Model	Model
	(49)	(50)	(51)	(52)	(53)	(54)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.079***	0.076^{***}	0.076**	0.282***	0.270***	0.270***
	(5.06)	(10.00)	(2.08)	(16.74)	(31.50)	(3.94)
GFCF	0.724***	0.732***	0.732***	0.698***	0.702^{***}	0.702^{***}
	(45.96)	(69.11)	(13.39)	(41.12)	(60.64)	(12.12)
ТО	0.001	0.001**	0.001	-0.003	-0.003***	-0.003
	(0.26)	(2.02)	(0.34)	(-0.38)	(-2.85)	(-0.75)
LAB	0.529***	0.470^{***}	0.470^{**}	-0.0587**	-0.0767***	-0.0767
	(10.11)	(8.57)	(1.96)	(-2.72)	(-3.05)	(-0.45)
CO2	-0.0999***	-0.108	-0.108	-0.688	-0.654	-0.654
	(-2.96)	(-6.60)	(-1.02)	(-22.21)	(-24.50)	(-4.25)
				1 210***	1 20 4***	1 204
cons				-1.219	-1.294	-1.294
No. of	027	9 27	927	(-9.74)	(-7.01)	(-1.42)
NO. OI	857	837	837	837	857	857
No. of	31	31	31	31	31	31
no. or	51	51	51	51	51	51
	4 154***	2 054***	2 /20**	2 702***	2 /22**	2 078**
AR(1)	4.134	2.934	2.420	-3.725	-2.432	-2.076
AR(2)	0.0137	0.0392	0.0579	-3.003	-1.075	-1.034
Sorgen	102 0***	21.23 402 8***	21.23 402 8***	5 11 6 ***	20.47	20.47
Sargan	492.8	492.8	492.8	311.0	311.0	511.0

Undergraduate FYP

Faculty of Business and Finance

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

Besides, based on the table 4.9, carbon dioxide emission has negative impact on economic growth at 1 percent significance level. An increase in 1 percent carbon dioxide emission leads to a decrease of 0.654 percent in GDP per capita, on average, ceteris paribus. According to Ejuvbekpokpo (2014), higher carbon dioxide emission causes the global mean temperature to increase which is known as global warming. Global warming then increases the probability of human conflict (Hsiang, Burke, Miguel, 2013). As a result, it has reduced the growth rate in total factor productivity as it causes negative impact to the institution that protect property rights.

Table 4.10:

	Model	Model	Model	Model	Model	Model
	(55)	(56)	(57)	(58)	(59)	(60)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.011	0.013**	0.013	0.194**	0.195***	0.195***
	(0.55)	(2.52)	(0.50)	(2.34)	(31.83)	(3.30)
GFCF	0.677^{***}	0.685^{***}	0.685^{***}	0.881***	0.869***	0.869^{***}
	(19.37)	(84.62)	(16.11)	(8.65)	(99.80)	(13.40)
ТО	0.004	0.003***	0.003	0.001	0.006^{***}	0.006
	(0.90)	(8.24)	(1.24)	(0.19)	(5.75)	(1.09)
LAB	0.239	0.200^{***}	0.200	-0.722***	-0.727***	-0.727***
	(1.42)	(5.35)	(1.10)	(-7.34)	(-36.24)	(-5.74)
TEMP	0.032	0.036***	0.036	0.067	0.090^{***}	0.090^{*}
	(1.01)	(7.57)	(0.77)	(0.35)	(5.15)	(1.73)
TEMP^2	0.001	0.001	0.001	0.016	0.016***	0.016^{*}
	(0.22)	(1.10)	(0.10)	(0.45)	(7.04)	(1.77)
cons				-2.885**	-2.629***	-2.629
				(-2.09)	(-8.74)	(-1.52)
No. of	837	837	837	837	837	837
obv						
No. of	31	31	31	31	31	31
countries						
AR(1)	6.751***	3.705***	3.402***	1.024	2.404**	2.363**
AR(2)	0.335	0.339	0.333	-0.0707	-0.203	-0.190
Hansen		29.49	29.49		28.24	28.24
Sargan	96.24***	96.24***	96.24***	12.98	12.98	12.98

Results of dynamic panel GMM estimation in developed countries for temperature (non-linear)

Table 4.11:

	Model	Model	Model	Model	Model	Model
	(61)	(62)	(63)	(64)	(65)	(66)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.300***	0.303***	0.303***	0.367***	0.369***	0.369***
	(7.35)	(15.51)	(4.07)	(21.34)	(22.66)	(3.94)
GFCF	0.699***	0.700^{***}	0.700^{***}	0.677^{***}	0.682^{***}	0.682***
	(24.76)	(55.06)	(12.47)	(34.65)	(73.01)	(10.22)
ТО	-0.105**	-0.104***	-0.104	-0.052	-0.046*	-0.046
	(-2.10)	(-9.16)	(-1.15)	(-1.40)	(-1.89)	(-0.78)
LAB	-0.306**	-0.288***	-0.288	-0.600***	-0.610***	-0.610***
	(-2.19)	(-6.43)	(-1.63)	(-34.31)	(-16.02)	(-3.74)
PREC	0.421***	0.375***	0.375**	0.452***	0.404***	0.404***
	(4.14)	(6.36)	(2.48)	(7.44)	(9.58)	(3.09)
PREC^2	-0.001	-0.002**	-0.002	0.010^{***}	0.009^{***}	0.009^{**}
	(-0.33)	(-2.51)	(-0.72)	(4.43)	(8.11)	(2.08)
cons				-2.819***	-2.650***	-2.650
				(-7.14)	(-5.34)	(-1.04)
No. of	837	837	837	837	837	837
obv						
No. of	31	31	31	31	31	31
countries						
AR(1)	-3.686***	-2.431**	-1.574	-5.637***	-2.929***	-2.143**
AR(2)	-1.743*	-1.999**	-1.923*	0.575	0.295	0.253
Hansen		26.76	26.76		28.78	28.78
Sargan	121.1***	121.1***	121.1***	328.7***	328.7***	328.7***

Results of dynamic panel GMM estimation in developed countries for precipitation (non-linear)

Table 4.12:

	Model	Model	Model	Model	Model	Model
	(67)	(68)	(69)	(70)	(71)	(72)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	-0.001	-0.003	-0.003	0.208^{*}	0.205***	0.205***
	(-0.05)	(-0.36)	(-0.06)	(1.73)	(11.97)	(3.92)
GFCF	0.731***	0.733***	0.733***	0.771^{***}	0.779^{***}	0.779^{***}
	(40.01)	(97.22)	(21.16)	(6.87)	(37.92)	(13.58)
ТО	0.021	0.012^{*}	0.019	0.129	0.119**	0.119
	(1.46)	(1.67)	(0.83)	(0.97)	(2.20)	(0.85)
LAB	0.640^{***}	0.623***	0.623***	0.086	0.076	0.076
	(4.30)	(13.28)	(3.02)	(0.35)	(0.81)	(0.24)
CO_2	-0.143***	-0.149***	-0.149	-0.614*	-0.616***	-0.616**
	(-2.89)	(-4.13)	(-1.64)	(-1.91)	(-13.85)	(-3.12)
CO ₂ ^2	0.000	0.001	0.001	-0.013	-0.012***	-0.012*
	(0.20)	(0.53)	(0.21)	(-0.82)	(-4.87)	(-1.75)
cons				-4.682	-4.651***	-4.651*
				(-1.55)	(-5.02)	(-1.95)
No. of	837	837	837	837	837	837
obv						
No. of	31	31	31	31	31	31
countries						
AR(1)	3.626***	2.760***	2.431**	-0.628	-2.239*	-1.706*
AR(2)	0.465	0.418	0.392	0.269	1.525	0.847
Hansen		30.34	30.34		30.28	30.28
Sargan	225.6***	225.6***	225.6***	11.94	11.94	11.94

Results of dynamic panel GMM estimation in developed countries for carbon dioxide emission (non-linear)

Based on table 4.10, 4.11, and 4.12, all three climate variables (temperature, precipitation and carbon dioxide emission) do not have non-linear impact on economic growth. One of the reasons is because developed countries acquire advanced technology such as cloud seeding and ionization process to mitigate the extreme climate damage such as high temperature and heavy precipitation. Furthermore, the agriculture sector in developed countries have acquire advanced biotechnologies which increase the adaptability of crops in the extreme situation such as drought and salinity. Hence, the output of agriculture are not being affected and the impacts is remain positive (Olmstead & Rhode, 2010; Barreca, Clay, Deschenes, Greenstone & Shapiro, 2016)

4.1.3 Linear and Non-Linear Developing (Temperature, Precipitation and Carbon Dioxide Emission)

Table 4.13:

Results of dynamic panel	GMM	estimation	in (devei	loping	countries j	for
temperature (linear)							

<u> </u>	Model	Model	Model	Model	Model	Model
	(73)	(74)	(75)	(76)	(77)	(78)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.342***	0.342***	0.342***	0.501***	0.500^{***}	0.500^{***}
	(13.54)	(219.36)	(6.53)	(27.76)	(349.42)	(10.31)
GFCF	0.569***	0.569***	0.569***	0.457***	0.457***	0.457***
	(25.23)	(956.76)	(12.21)	(26.45)	(572.59)	(10.09)
ТО	0.040	0.039***	0.039	0.012	0.013***	0.013
	(0.53)	(12.52)	(0.53)	(0.17)	(4.79)	(0.19)
LAB	-0.369***	-0.367***	-0.367***	-0.359***	-0.359***	-0.359***
	(-9.05)	(-41.34)	(-3.70)	(-9.89)	(-53.51)	(-3.91)
TEMP	0.231*	0.225***	0.225	-0.268***	-0.268***	-0.268**
	(1.67)	(27.38)	(0.96)	(-14.27)	(-37.44)	(-2.45)
cons				-0.0888	-0.110	-0.110
				(-0.12)	(-1.24)	(-0.09)
No. of	3645	3645	3645	3645	3645	3645
obv			105			
No. of	135	135	135	135	135	135
countries	·				**	**
AR(1)	-15.07***	-1.451	-1.449	-16.32***	-2.026**	-2.024**
AR(2)	0.898	0.382	0.381	0.00539	0.00427	0.00425
Hansen		118.3***	118.3***	4 44	118.0***	118.0***
Sargan	311.2***	311.2***	311.2***	508.6***	508.6***	508.6***

Base on the table 4.13, temperature has negative impact on economic growth at 5 percent significance level. An increase in 1 percent in temperature leads to a decrease of 0.268 percent in GDP per capita, on average, ceteris paribus. This result is similar to the overall result in which temperature is a negative relationship with economic growth. Basically, climate change such as increasing temperature could impact the durability and accelerate the depreciation of stock of capital (Stern and Nicholas, 2013). Besides, necessary resources to oppose the warming impact would decline investment in economic as well as the physical framework, research development and human capital thus minimizing growth (Ali et al, 2019).

Table 4.14:

	Model	Model	Model	Model	Model	Model
	(79)	(80)	(81)	(82)	(83)	(84)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.472***	0.470***	0.470***	0.523***	0.523***	0.523***
	(39.46)	(207.04)	(5.36)	(54.10)	(192.90)	(6.50)
GFCF	0.407***	0.409^{***}	0.409***	0.432***	0.432***	0.432***
	(38.85)	(274.71)	(4.52)	(46.94)	(239.35)	(5.40)
ТО	0.014	0.013***	0.013	0.001	0.007^{***}	0.007
	(0.91)	(9.70)	(1.29)	(0.57)	(4.05)	(0.61)
LAB	-0.085***	-0.075***	-0.075	-0.362***	-0.362***	-0.362***
	(-3.13)	(-9.23)	(-0.62)	(-22.11)	(-34.58)	(-4.03)
TEMP	0.198***	0.203***	0.203***	0.352***	0.352***	0.352**
	(3.30)	(19.87)	(3.85)	(5.64)	(28.20)	(2.20)
	0.000	0.001	0.001	0 11 4***	0 1 1 4***	0 11 1***
TEMP ⁷ 2	-0.000	-0.001	-0.001	-0.116	-0.114	-0.114
	(-0.01)	(-0.43)	(-0.05)	(-9.96)	(-32.09)	(-3.28)
cons				-0 440**	-0 447***	-0 447
cons				(-2,00)	(-2.87)	(-0.73)
No. of	3645	3645	3645	3645	3645	3645
obv						
No. of	135	135	135	135	135	135
countries						
AR(1)	-16.54***	-2.150**	-2.147**	-16.99***	-2.130**	-2.128**
AR(2)	-0.368	-0.200	-0.197	-0.124	-0.0728	-0.0719
AR(2) Hansen	-0.368	-0.200 116.9	-0.197 116.9	-0.124	-0.0728 115.8	-0.0719 115.8

Results of dynamic panel GMM estimation in developing countries for temperature (non-linear)

However, based on table 4.14, it shows that there is an inverted U-shape impact of temperature on economic growth at 1 percent significance level. The threshold level for temperature is computed by using equation (18), and anti-ln is apply to get the threshold level in degree Celsius. The temperature has positive impact on the economic growth below the threshold level of $4.200 \ (-\frac{0.352}{2(-0.114)} \ x \ e)$ degree Celsius. However, temperature above the threshold level decreases the economic growth. Basically, extremely high temperature damages most of the crops such as wheat and maize. As a consequences, the crops yield has plunged and the affected the GDP from agriculture sector (Alagidede, Adu & Frimpong, 2016)

Table 4.15:

	Model	Model	Model	Model	Model	Model
	(85)	(86)	(87)	(88)	(89)	(90)
	Difference	Difference	Difference	System	System	System
	GMM	GMM	GMM	GMM	GMM	GMM
	One Step	Two Step	Two Step	One Step	Two Step	Two Step
			Robust			Robust
GDP	0.313***	0.314***	0.314***	0.656***	0.654***	0.654***
	(11.74)	(181.05)	(5.28)	(38.45)	(179.59)	(14.13)
GFCF	0.553***	0.554***	0.554***	0.327***	0.329***	0.329***
	(24.01)	(442.56)	(10.36)	(18.51)	(103.43)	(9.28)
ТО	0.145	0.143***	0.143	0.110	0.108^{***}	0.108
	(1.57)	(36.08)	(1.00)	(1.31)	(22.45)	(0.87)
IAD	0.102***	0.205***	0.205*	0.290***	0 284***	0 294***
LAD	-0.192	-0.203	-0.203	-0.260	-0.204	-0.204
	(-3.09)	(-14.00)	(-1.03)	(-3.94)	(-32.31)	(-3.91)
PREC	0.042^{*}	0.042***	0.042	0.090***	0.089***	0.089**
	(1.67)	(28.82)	(0.95)	(3.99)	(27.22)	(1.96)
cons				-1.661	-1.621***	-1.621
				(-1.80)	(-15.35)	(-1.10)
No. of	3645	3645	3645	3645	3645	3645
obv						
No. of	135	135	135	135	135	135
countries	***			***	- ***	
AR(1)	-13.75	-1.520	-1.513	-16.63	-3.556	-3.518
AR(2)	0.811	0.362	0.361	-1.205	-0.893	-0.878
Hansen		117.6	117.6		118.4	118.4
Sargan	279.8^{***}	279.8^{***}	279.8^{***}	721.1***	721.1***	721.1***

Results of dynamic panel GMM estimation in developing countries for precipitation (linear)

Table 4.16:

	Model	Model	Model	Model	Model	Model
	(91)	(92)	(93)	(94)	(95)	(96)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.211***	0.212***	0.212***	0.517***	0.519***	0.519***
	(5.17)	(83.08)	(3.26)	(14.95)	(200.25)	(10.10)
GFCF	0.515***	0.513***	0.513***	0.481^{***}	0.480^{***}	0.480^{***}
	(17.45)	(352.30)	(7.44)	(15.47)	(249.84)	(10.74)
ТО	0.006	0.010^{**}	0.010	0.005	0.006	0.006
	(0.10)	(2.19)	(0.17)	(0.06)	(1.12)	(0.09)
LAB	-0.032	-0.031**	-0.031	-0.516***	-0.523***	-0.523***
	(-0.21)	(-2.78)	(-0.27)	(-5.47)	(-77.82)	(-4.50)
PREC	-0.034	-0.028***	-0.028	0.194**	0.195***	0.195**
	(-0.58)	(-2.76)	(-0.66)	(2.54)	(14.99)	(2.46)
PREC^2	0.004	0.004^{***}	0.004	-0.025***	-0.025***	-0.025***
	(0.61)	(3.44)	(0.71)	(-2.68)	(-15.44)	(-2.62)
cons				0.464	0.570^{***}	0.570
				(0.34)	(6.07)	(0.44)
No. of	3645	3645	3645	3645	3645	3645
obv						
No. of	135	135	135	135	135	135
countries						
AR(1)	-13.60***	-1.343	-1.339	-11.89	-1.869*	-1.859*
AR(2)	0.838	0.308	0.307	-0.0138	-0.0128	-0.0128
Hansen		116.2	116.2		116.8	116.8
Sargan	222.4***	222.4***	222.4***	255.8***	255.8***	255.8***

Results of dynamic panel GMM estimation in developing countries for precipitation (non-linear)

Besides, table 4.15 shows that precipitation has positive impact on economic growth at 5 percent significance level. An increase of 1 percent in precipitation, leads to an increase of 0.089 percent in GDP per capita, on average, ceteris paribus. This can be explained by higher amount of precipitation benefits the growth of crops and eventually helps the agriculture sector (Pei et al, 2016). However, table 4.16 shows that the precipitation has inverted U-shape impact on economic growth. The threshold level for precipitation is computed by using equation (18), and anti-ln is apply to get the threshold level in millimetre. Increasing precipitation benefits the economic growth but when the amount of precipitation exceeded the threshold level of 10.601 $\left(-\frac{0.195}{2(-0.025)} \times e\right)$ millimetre (mm), it starts to decrease the economic growth. Extremely high amount of precipitation damages the infrastructure and it delays the construction process. As a result, precipitation has caused negative impact on the construction industry which leads to a decrease the growth rate of GDP in construction sector (Hsiang, 2010).

Table 4.17:

	Model	Model	Model	Model	Model	Model
	(97)	(98)	(99)	(100)	(101)	(102)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.417***	0.417***	0.417***	0.573***	0.572***	0.572***
	(17.66)	(671.21)	(6.88)	(30.90)	(558.38)	(11.77)
GFCF	0.530***	0.530***	0.530***	0.410***	0.410***	0.410^{***}
	(24.10)	(1162.76)	(9.75)	(22.30)	(731.54)	(9.65)
ТО	-0.016	-0.016***	-0.016	-0.017	-0.018***	-0.018
	(-0.71)	(-9.35)	(-1.29)	(-0.78)	(-10.13)	(-1.18)
LAB	-0.227***	-0.218***	-0.218	-0.561***	-0.560***	-0.560***
	(-3.90)	(-23.53)	(-1.61)	(-15.46)	(-157.96)	(-6.09)
CO_2	-0.119***	-0.122***	-0.122***	0.086^{***}	0.087^{***}	0.087^{***}
	(-5.87)	(-52.69)	(-2.88)	(13.56)	(103.54)	(3.04)
cons				2.062^{***}	2.057***	2.057^{**}
				(6.03)	(52.61)	(2.03)
No. of	3645	3645	3645	3645	3645	3645
obv						
No. of	135	135	135	135	135	135
countries						
AR(1)	-15.11***	-1.544	-1.541	-16.78***	-2.270**	-2.264**
AR(2)	0.254	0.117	0.116	-0.507	-0.301	-0.299
Hansen		116.5	116.5		116.6	116.6
Sargan	380.9***	380.9***	380.9***	727.8***	727.8***	727.8***

Results of dynamic panel GMM estimation in developing countries for carbon dioxide emission (linear)

Notes: t statistics are shown in parentheses. *, **, and *** are representing the significant level at 10 percent, 5 percent, and 1 percent, respectively.

Besides, table 4.17 showed that carbon dioxide emission has positive impact on economic growth at 1 percent significance level. An increase in 1 percent carbon dioxide emission leads to an increase of 0.068 percent in GDP per capita, on average, ceteris paribus. In short, higher carbon dioxide emission which indicates that higher industrial production which leads to a higher economic growth (Chang, 2010).

Table 4.18:

	Model	Model	Model	Model	Model	Model
	(103)	(104)	(105)	(106)	(107)	(108)
	Difference	Difference	Difference	System	System	System
	GMM One	GMM Two	GMM Two	GMM One	GMM Two	GMM Two
	Step	Step	Step	Step	Step	Step
			Robust			Robust
GDP	0.980^{***}	0.981***	0.981***	1.095***	1.097***	1.097***
	(42.12)	(451.63)	(26.84)	(58.14)	(518.86)	(31.02)
GFCF	-0.060***	-0.060***	-0.060**	-0.101***	-0.102***	-0.102***
	(-3.37)	(-67.99)	(-2.36)	(-5.69)	(-68.25)	(-2.94)
ТО	0.042	0.042^{***}	0.042	0.031	0.031***	0.031
	(0.88)	(35.81)	(0.91)	(0.60)	(21.09)	(0.78)
LAB	0.458***	0.457^{***}	0.457***	0.114***	0.118***	0.118**
	(5.72)	(64.82)	(4.51)	(4.30)	(17.98)	(2.33)
CO_2	0.114**	0.114^{***}	0.114	0.261***	0.258***	0.258***
	(2.04)	(50.10)	(1.61)	(6.36)	(63.59)	(5.30)
CO ₂ ^2	-0.007***	-0.007***	-0.007**	-0.013***	-0.013***	-0.013***
	(-3.27)	(-43.07)	(-2.13)	(-6.42)	(-110.37)	(-4.93)
cons				-1.695***	-1.733***	-1.733***
				(-3.51)	(-23.54)	(-3.12)
No. of	3645	3645	3645	3645	3645	3645
obv						
No. of	135	135	135	135	135	135
countries						
AR(1)	-15.44***	-4.225***	-4.049***	-16.23***	-4.183***	-4.007***
AR(2)	-1.754*	-0.887	-0.860	-1.723*	-0.800	-0.774
Hansen		116.3	116.3		115.1	115.1
Sargan	562.8***	562.8***	562.8***	539.5***	539.5***	539.5***

Results of dynamic panel GMM estimation in developing countries for carbon dioxide emission (non-linear)

However, table 4.18 shows that carbon dioxide emission has an inverse U-shape impact on economy growth at 5 percent significance level. The threshold level for carbon dioxide emission is computed by using equation (18), and anti-ln is apply to get the threshold level in kilotons. The threshold level for carbon dioxide emission is $26.974 \ (-\frac{0.258}{2(-0.013)} x e)$ kilotons (kt) which indicates that the carbon dioxide emission could increase the economic growth below the threshold level. However, it causes negative impact on economic growth when the carbon dioxide emission exceeded the threshold level. This can explained by when the carbon dioxide emission is increasing in the early stage, it signified that the industrial production is booming. However, increasing the emission of carbon dioxide will lead to increase in temperature which is known as global warming. Global warming will then cause disastrous impacts to the economy. One of the impacts can be extremely high temperature which cause unexpected damage to the agriculture production (Alagidede, Adu & Frimpong, 2016).

4.2 Diagnostic Checking

The diagnostic test include in the models are Arellano-Bond test for AR (1), Arellano-Bond test for AR (2), Hansen and Sargan test. AR(1) is to detect the first order serial correlation while AR(2) is to detect the second order serial correlation. The result of AR (2) is more valid compared to AR(1) because error terms is taken into account. Based on the empirical results, each p-value of AR(1) are less than 0.1 respectively. This result is expected to happened, because dynamic panel data capture the lagged one effect. Hence, lagged one term (t-1) would affect the present term (t). However, the conclusion from the result of AR(2) which show that all the models has no autocorrelation and model misspecification error. Furthermore, Hansen/Sargan test is to determine the validity of instrument used and the overall Hansen test p-value are more than 0. It signifies that all the independent variables are valid in the model.

Undergraduate FYP

4.3 Conclusion

In this chapter, the results for three climate variables (temperature, precipitation and carbon dioxide emission) show that there is only linear relationship between climate change and economic growth in developed countries but does not contain non-linear relationship. In short, the temperature and precipitation show positive relationship with economic growth whereas carbon dioxide emission shows negative relationship with economic growth due to the advanced technology in developed countries which unable the to mitigate the climate damage (Olmstead & Rhode, 2010; Barreca, Clay, Deschenes, Greenstone & Shapiro, 2016).

However, the results conclude that all three climate variables (temperature, precipitation and carbon dioxide emission) have a non-linear relationship (inverted U-shaped) with economic growth in developing countries. This shows that the rising climate variables are able to increase the economic growth until a threshold level, after the threshold level all climate variables will start to cause an adverse impact on the economic growth in the developing countries. Our threshold level for temperature, precipitation and carbon dioxide emission are 4.200 degree Celsius, 10.601 millimeter and 26.974 kilotons respectively. In conclusion, climate change will cause negative impact on economic growth in many different aspects. The climate damage cause to the sector could range from tourism, agriculture and construction sector. Apart from that, it could also increase the depreciation rate of infrastructure as well as human conflicts. A summary of major findings, conclusion, limitation and recommendation will be discussed in the following chapter.

<u>CHAPTER 5: DISCUSSION, CONCLUSION AND</u> <u>IMPLICATION</u>

5.0 Introduction

The purpose of this research is to examine the impact of climate change on economic growth in overall countries. This research uses GMM as our methodology to examine the impact of climate change on economic growth. In this chapter, this research discuss about the summary of study, policy implications, limitations and recommendations.

5.1 Summary of Study

In the twenty first century, climate change identifies as a threat towards the environmental (Abidoye & Odusola, 2015). The aspiration of this research is to examine the impact of climate change on economic growth in overall, developed and developing countries. This research also intends to determine non-linear impact of climate change on the economic growth in overall, developed and developing countries. Besides, gross fixed capital formation, labour force and trade openness also include as independent variable. This research uses 31 developed countries and 135 out of 158 developing countries from World Population Review. The data period in this research is 27 years which is from year 1990 until year 2016.

All independent variables are significant to the dependent variable except for the trade openness. As for labour force and gross fixed capital formation are consistent with this research's expectation which the total labour shows a negative impact towards economic growth while gross fixed capital formation shows a positive impact towards economic growth. This is due to the use of cheap labour as comparative advantages and labour may lead to loss of ability to innovate which cause the economic growth to decline (Amir et al., 2015). On the other hand, gross

fixed capital formation shows positive impact towards economic growth is because build capital equipment on an enough scale to increase productivity for the creation of economic and social overhead capital. Besides, capital formation helps to remove the market imperfection by breaking the viciousness of poverty by increasing economic spending (Emmanuel & Andrew, 2014).

As for linear impact of climate change towards economic growth, there are mixed result in overall, developing and developed countries. Besides, the major findings for this research is the non-linear impact of climate change towards economic growth in overall, developed and developing countries. All the independent variables such as temperature, precipitation and carbon dioxide emission for climate change shows inverse U-shape impact on economic growth. Schlenker and Robert (2008) found that rising in temperature helps the economic growth before it reached to the threshold level. However, the temperature will harm the agriculture when it exceeds the threshold point. In addition, Zhao et al., (2018) said that developing countries has a stronger non-linear relationship between climate change and economic growth. Nevertheless, this research shows that climate change only has linear impact towards economic growth in developed countries. The reason is because developed countries use advanced technology or infrastructure to control the growth of agriculture which climate change does not affect much on economic growth. Ali et al. (2017) found that extreme precipitation has the damaging effect on economy but it was unaffected to the economic growth in developed countries. Hence, this research can conclude that climate change shows inverted U-shape impact towards economic growth in developing countries whereas climate change do not have non-linear impact on economic growth in developed countries which the result is consistent with (Zhao et al., 2018).

5.2 Policy Implication

This research identifies non-linear impact of the climate change on the developing countries' economic growth. The results present that climate change shows inverse U-shape impact on economic growth in developing countries. The policymaker shall aware that an increase in temperature show positive impact on economic growth at the beginning but it might cause harm when it exceeded certain level. According to Colacito et al. (2019) said that some industries such as utilities and mining can benefit from increasing energy consumption when temperature increase. However, as the temperature continue to rise, it brings negative impact towards human health and economy growth. Human health will be affected which in resulting in hospitalization. However, the insurance sector will be affected which insurer face increase claim from insurance companies as health becomes worsen due to climate change (Colacito et al, 2019).

Therefore, the policymaker shall consider this research as a reference to implement new policy as this research provides threshold point for all countries. Before the temperature reach to certain threshold point, the policymaker can consider cloud seeding as a method to supervise the climate fluctuation. Cloud seeding is a method of weather modification that focuses on altering the precipitation falls from the cloud by releasing substances into the air that will form as ice nuclei to reduce the surrounding temperature. Moreover, the policymakers can consider WeatherTec Ionization Technology which will enhance precipitation in semi-arid regions. Ionization process can increase natural precipitation development by mirroring the sun's ionization and this process is environment-friendly which does not make pollution to Earth. Thus, the policymakers can prevent the countries' economic growth to decline by using two methods above in order to mitigate the impact that cause by climate change.

Climate change can reduce countries' economic growth if it is not controlled effectively (Akram, 2013). It highlight that Asian countries alone cannot do too much on mitigating climate change risk because their proportion of Green House Gas (GHG) emissions is small compare to developed countries. Carbon dioxide makes up the vast majority of the GHG emission. Based on this research, the nonlinear impact for carbon dioxide emission and economic growth is inverse u-shape in developing countries. As the carbon dioxide increase at beginning, it brings positive effect to economic growth. The industry needs to scale up its productivity to boost the economy through increasing the carbon dioxide emission. Once carbon dioxide reaches threshold point, it starts to bring negative impact on economic growth. For example, some species of fish have low tolerance on the extremely high concentration of carbon dioxide as it negatively impacts the ecosystem and eventually harm the fisheries market (Heuer & Grosell, 2014)

Due to the above situation, the policymaker shall consider carbon emission trading policy. This policy enable the companies to trade government-granted allotments of carbon dioxide output. It indicates that the companies can only release certain amount of carbon dioxide emission which are called "cap". This policy aims to restrict the total level of carbon dioxide emission in the result of industry activities. In addition, the optimal path of economic growth with an emphasis on carbon emission efficiencies and the attendant market system. Huge portion of emissions that are emit to the environment is cause by the transportation system. Thus, government and firms shall try to find alternative resources to replace carbon dioxide. For instance, the government can consider practicing bioethanol life cycle assessment (LCA) to reduce the emissions by replace the usage of conventional fuel into bioethanol fuel which are more environmentally friendly (Blottnitz & Curran, 2007). Hence, government can take consideration on creating regional policy by referring to the differences of various aspects among the three economic regions. Important factors such as economic development, technological levels, and industrial structure shall consider on the emission reduction target. Reasonable policies can be practices such as carbon emissions trading in order to motivate industries and society to reduce carbon emissions.

Besides that, climate change is one of the vital determinants to determine economy growth. Therefore, the firms and investor shall consider to include climate change risk into their portfolio investment and risk management. Firms and investors can consider weather derivative which is a financial instrument to hedge against the risk of weather-related losses. There is evidence showed from Woodard and Garcia

(2007) that firms and investor may consider using exchange traded weather derivatives to hedge for climate change risk. Furthermore, the government can establish disaster-prevention plan and knowledge to enhance the awareness of community. The reason is because disaster remediation can be costly to rebuild the city. Supposing the source of funds that utilized for business to enhance the economic growth. The government can consider Japan as a reference for disaster prevention plan such as Fire and Disaster Management Agency (FDMA) and Ministry of Internal Affairs and Communications (MIC) which Japan's local residents has a strong awareness of disaster prevention and can evacuate on their own volition (Nakamura, Umeki &Kato, 2017).

Therefore, an empirical study is necessary to notify the policymakers, investors, firms, communities and government to place all countries properly in an effort directed to mitigate the consequence of climate change toward economic growth.

5.3 Limitation

In this chapter, there are several limitations face by this research which may affect the accuracy of the result. Thus, the results obtain may not able to fully reflect the impact of climate change towards economic growth.

First, the number of observations that use in this research are 27 observations from year 1990 to year 2016. The reason that this research use only 27 observations is because there are few countries got many missing data for each respective variable which are labour force, gross fixed capital formation, trade openness, temperature, precipitation and carbon dioxide emission. In addition, this research also excludes some of the countries as several groups in these results. This is because the countries that have been omitted do not have enough data for this research.

Next, the model in this research do not include human capital but only include gross fixed capital formation as capital variables. Human capital can serve as one of the important variables to assess the long-term sustainability of a country's output and productivity of education sector. However, this research does not include human capital because many countries does not have complete data for human capital in education sector. This research also does not include natural disaster into model because data for natural disaster hard to obtain. Moreover, there are some researcher use natural disaster damage function to represent extreme climate change. Unfortunately, there are many countries do not have insufficient data for natural disaster damage function, hence it omits this variable into the model. Hence, the above limitation that include for this research is due to insufficient data from WDI.

5.4 Recommendation

In this chapter, this research provides some recommendations for future researchers to explore further for this topic. First, the researcher can include a larger sample size which can improve the accuracy and consistency of the result. Based on the limitation above, there are only 27 observations for each country. This research recommends for future researchers to increase the number of observations for future research. On the other hand, there are a total of 189 countries in the World today. However, this research just uses 166 countries for this research. This research omits 23 countries due to insufficient data. Thus, this research hope WDI can fill all the missing data so that the future researcher can get more accurate result. Moreover, the future researcher can do future study for each specific country to find the non-linear climate change impact towards economic growth and the threshold point for each country.

For the capital variable, the future researcher can include human capital for future study which can increase the accuracy of the result. Moreover, the researcher shall consider natural disasters such as hurricane, earthquake or tsunami to represent climate variables for future research since this research just includes average climate change in the model. Natural disasters have a higher possibility of affecting economic growth. The reason behind is higher changes in climate can boost the severity and frequency of climate-related disasters such as cyclones or tsunami. According to Bregholt and Lujala (2012), they found that natural disasters will have

a negative effect on economic growth in short-run effect. The companies and government need to repair the damages and enhance policy to prevent future disaster. Therefore, all of the actions above may carry a direct effect on economic growth.

5.5 Conclusion

In this chapter, this research shows non-linear impact of climate change towards economic growth in overall and developing countries. Meanwhile, the developed countries do not have non-linear impact towards economic growth. As for policy implication, the policy maker can consider cloud seeding, WeatherTec Ionization, alternative resources and carbon emission trading policy to minimize the climate change impact on economic growth; the firms and investor can consider weather derivative for their risk management and portfolio investment; the government and community can consider disaster prevention plan and knowledge to enhance the awareness. The limitation for this research is insufficient data for number of observation and each respective variables. In conclusion, this research recommends increasing sample size and include human capital and natural disaster to improve the accuracy of the result.

References

- Abidoye, B. O., & Odusola, A. F. (2015). Climate change and economic growth in Africa: an econometric analysis. *Journal of African Economies*, 24(2), 277-301
- Adhikary, B. K. (2011). FDI, trade openness, capital formation, and economic growth in Bangladesh: a linkage analysis. *International Journal of Business* and Management, 6(1), 16.
- Ajao, M. G. (2011). Stock market development, capital formation and growth in Nigeria. *International Journal of Current Research*, 33(6), 382-388.
- Akram, N. (2013). Is climate change hindering economic growth of Asian economies? *Asia Pacific Development Journal*, *19*(2), 1-18.
- Alagidede, P., Adu, G., & Frimpong, P. B. (2016). The effect of climate change on economic growth: evidence from Sub-Saharan Africa. *Environmental Economics and Policy Studies*, 18(3), 417-436.
- Ali, S. N. (2012). Climate Change and Economic Growth in a Rain-fed Economy: How Much Does Rainfall Variability Cost Ethiopia? February 2012. Available at SSRN 2018233.
- Ali, S., Ying, L., Nazir, A., Ishaq, M., Shah, T., Ilyas, A., & Tariq, A. (2019). The effect of climate change on economic growth: evidence from Pakistan. *Pacific International Journal*, 2(2), 21-30.
- Al-Mulali, U. (2014). Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: A panel data analysis. *Progress in Nuclear Energy*, 73, 172-178.

- Amir, H., Khan, M., & Bilal, K. (2015). Impact of educated labour force on economic growth of Pakistan: a human capital perspective. *Eur Online J Nat Soc Sci*, 4, 814-31.
- Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. *Journal of econometrics*, 68(1), 29-51.
- Arslan, H., & Demir, Y. (2013). Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. *Environmental monitoring and assessment*, 185(2), 1027-1040.
- Azam, M., Khan, A. Q., Abdullah, H. B., & Qureshi, M. E. (2015). The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies. *Environmental Science and Pollution Research*, 23(7), 6376–6389.
- Bakare, A. S. (2011). The Impact of capital formation on the growth of Nigerian economy: Causality approach. *Far East Journal of Psychology and Business*, 13(1), 2-13.
- Barreca, A., Clay, K., Deschenes, O., Greenstone, M., & Shapiro, J. S. (2016). Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century. *Journal of Political Economy*, 124(1), 105–159.
- Bergholt, D., & Lujala, P. (2012). Climate-related natural disasters, economic growth, and armed civil conflict. *Journal of Peace Research*, 49(1), 147-162.
- Bibi, S., Ahmad, S. T., & Rashid, H. (2014). Impact of trade openness, FDI, exchange rate and inflation on economic growth: A case study of Pakistan. *International Journal of Accounting and Financial Reporting*, 4(2), 236.

- Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel models. *Journal of econometrics*, 87(1), 115-143.
- Borhan, H., Ahmed, E. M., & Hitam, M. (2012). The impact of CO2 on economic growth in ASEAN 8. *Procedia-Social and Behavioral Sciences*, *35*, 389-397.
- Bowen, A., Cochrane, S., & Fankhauser, S. (2012). Climate change, adaptation and economic growth. *Climatic change*, *113*(2), 95-106.
- Bozkurt, C., & Akan, Y. (2014). Economic growth, CO2 emissions and energy consumption: the Turkish case. *International Journal of Energy Economics* and Policy, 4(3), 484-494.
- Brown, B. W., & Newey, W. K. (2002). Generalized method of moments, efficient bootstrapping, and improved inference. *Journal of Business & Economic Statistics*, 20(4), 507-517.
- Brown, C., & Lall, U. (2006, November). Water and economic development: The role of variability and a framework for resilience. In *Natural resources forum*, 30(4), 306-317
- Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. *Nature*, 527(7577), 235-239.
- Cai, X., McKinney, D. C., & Rosegrant, M. W. (2003). Sustainability analysis for irrigation water management in the Aral Sea region. *Agricultural systems*, 76(3), 1043-1066.
- Carroll, C. D., & Weil, D. N. (1994, June). Saving and growth: a reinterpretation. In *Carnegie Rochester conference series on public policy*, 40, 133-192. North-Holland.

- Chang, C. C. (2010). A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. *Applied Energy*, 87(11), 3533–3537.
- Chen, J. L., Wilson, C. R., & Tapley, B. D. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise. *Nature Geoscience*, *6*(7), 549.
- Cho, R., & Scott, S. (2019, June 20). How Climate Change Impacts the Economy. Retrieved from https://blogs.ei.columbia.edu/2019/06/20/climate-changeeconomy-impacts/
- Cobb, C. W., & Douglas, P. H. (1928). A theory of production. *The American Economic Review*, 18(1), 139-165.
- Colacito, R., Hoffmann, B., & Phan, T. (2019). Temperature and Growth: A Panel Analysis of the United States. *Journal of Money, Credit and Banking*, *51*, 2-3
- Cooke, D. (2010). Openness and inflation. *Journal of Money, Credit and Banking*, 42(2-3), 267-287.
- Dell, M., Jones, B. F., & Olken, B. A. (2008). Climate shocks and economic growth: Evidence from the last half century. *Nber working paper*, 14132.
- Ejuvbekpokpo, S. A. (2014). Impact of carbon emissions on economic growth in Nigeria. *Asian Journal of Basic and Applied Sciences*, *1*(1).
- Enting, I. G., Wigley, T. M. L., & Heimann, M. (1994). Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses, 31 120. *Australia: CSIRO*.
- Ghali, K. H. (1998). Public investment and private capital formation in a vector error-correction model of growth. *Applied economics*, *30*(6), 837-844.

- Ghosh, S. (2010). Status of thermal power generation in India—Perspectives on capacity, generation and carbon dioxide emissions. *Energy Policy*, *38*(11), 6886-6899.
- Grey, D., & Sadoff, C. W. (2007). Sink or swim? Water security for growth and development. *Water policy*, *9*(6), 545-571.
- Griffin, J. M. (Ed.). (2003). Global climate change: the science, economics and politics. Edward Elgar Publishing.
- Gul, S., Zou, X., Hassan, C. H., Azam, M., & Zaman, K. (2015). Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach. *Environmental Science and Pollution Research*, 22(24), 19773-19785
- Guo, C., Xu, X., & Gong, Z. (2014). Co-integration analysis between GDP and meteorological catastrophic factors of Nanjing city based on the buffer operator. *Natural hazards*, 71(2), 1091-1105.
- Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. *Econometrica: Journal of the Econometric Society*, 1029-1054.
- Hausmann, R., Hwang, J., & Rodrik, D. (2007). What you export matters. *Journal* of economic growth, 12(1), 1-25.
- Heuer, R. M., & Grosell, M. (2014). Physiological impacts of elevated carbon dioxide and ocean acidification on fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(9)
- Hossain, M. I. (2012). Total labour force and GDP of Bangladesh: an analysis in between the year.

- Hsiang, S. M. (2010). Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. *Proceedings of the National Academy of sciences*, 107(35), 15367-15372.
- Hsiang, S. M., Burke, M., & Miguel, E. (2013). Quantifying the Influence of Climate on Human Conflict. Science, 341(6151), 1235367–1235367. doi:10.1126/science.1235367
- Hye, Q. M., Wizarat, S., & Lau, W. Y. (2016). The impact of trade openness on economic growth in China: An empirical analysis. *The Journal of Asian Finance, Economics and Business*, 3(3), 27-37.
- Jafari Samimi, A., Ghaderi, S., Hosseinzadeh, R., & Nademi, Y. (2012). *Openness* and inflation: New empirical panel data evidence. Economics Letters, 117(3), 573–577.
- Jones, B. F., & Olken, B. A. (2010). Climate Shocks and Exports. American Economic Review, 100(2), 454–459
- Kargi, B. (2014). Labour force participation rate and economic growth: observations for Turkey. Universal Journal of Management and Social Sciences, 4(4), 46-54.
- Karras, G. (2003) 'Trade openness and economic growth: can we estimate the precise effect?' Applied Econometrics and International Development, 3(1), 7 - 25.
- Katrina, E. (2020). Australia's Bushfires: The Economic Costs. Retrieved from https://www.economy.com/economicview/analysis/377681
- Khan, M. K., Khan, M. I., & Rehan, M. (2020). The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. *Financial Innovation*, 6(1), 1-13.

- Kirigia, J. M., Oluwole, D., Mwabo, G. M., Gatwiri, D., & Kainyu, L. H. (2006). Effects of maternal mortality on gross domestic product (GDP) in the WHO African region. *African journal of health sciences*, 13(1), 86-95.
- Kumar, S., & Yalew, A. W. (2012). Economic impacts of climate change on secondary activities: *A literature review*.
- Lach, L. (2010). Fixed capital and long run economic growth: evidence from Poland.
- Lanzafame, M. (2014). Temperature, rainfall and economic growth in Africa. *Empirical Economics*, 46(1), 1-18.
- Lee, M., Villaruel, M. L., & Gaspar, R. E. (2016). Effects of temperature shocks on economic growth and welfare in Asia. Asian Development Bank Economics Working Paper Series, (501).
- Long, X., Naminse, E. Y., Du, J., & Zhuang, J. (2015). Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. *Renewable and Sustainable Energy Reviews*, 52, 680-688.
- McDonnell, T. (2016, January 6). Climate change could have a bigger impact on developed countries' food systems. Retrieved from https://grist.org/article/climate-change-could-have-a-bigger-impact-ondeveloped-countries-food-systems/
- Mehta, R. (2011). Short-run and long-run relationship between capital formation and economic growth in India. *Indian Journal of Management and Technology*, 19(2), 170-180.
- Mollah, W. S., & Cook, I. M. (1996). Rainfall variability and agriculture in the semi-arid tropics—the Northern Territory, Australia. *Agricultural and Forest Meteorology*, 79(1-2), 39–60.
- Moore, F. C., & Diaz, D. B. (2015). Temperature impacts on economic growth warrant stringent mitigation policy. *Nature Climate Change*, *5*(2), 127.
- Nakamura, H., Umeki, H., & Kato, T. (2017). Importance of communication and knowledge of disasters in community-based disaster-prevention meetings. *Safety Science*, 99, 235-243
- Nordhaus WD (1992a) An optimal transition path for controlling greenhouse gases. Science 258:1315–1319
- Nordhaus, W. D. (1994). Managing the global commons: the economics of climate change (Vol. 31). *Cambridge, MA: MIT press.*
- Nordhaus, W. D. (2007). A review of the Stern review on the economics of climate change. *Journal of economic literature*, *45*(3), 686-702
- Nordhaus, W. D. (2008). Baumol's diseases: a macroeconomic perspective. *The BE Journal of Macroeconomics*, 8(1).
- Olmstead, A. L., & Rhode, P. W. (2010). Adapting North American wheat production to climatic challenges, 1839-2009. Proceedings of the *National Academy of Sciences*, 108(2), 480–485. doi:10.1073/pnas.1008279108
- Ongo, E. N., & Vukenkeng, A. W. (2014). Does gross capital formation matter for economic growth in the CEMAC sub-region?. *EuroEconomica*, *33*(2).
- Pei, Q., Zhang, D. D., Li, G., Forêt, P., & Lee, H. F. (2016). Temperature and precipitation effects on agrarian economy in late imperial China. *Environmental Research Letters*, 11(6), 064008.
- Ridderstaat, J., Oduber, M., Croes, R., Nijkamp, P., & Martens, P. (2014). Impacts of seasonal patterns of climate on recurrent fluctuations in tourism demand: Evidence from Aruba. *Tourism Management*, 41, 245-256.

- Rigobon, R., & Rodrik, D. (2005). Rule of law, democracy, openness, and income: Estimating the interrelationships1. *Economics of transition*, *13*(3), 533-564.
- Roodman, D. (2006). How to do xtabond2: an introduction to 'difference' and 'system. In GMM in STATA', *Center for Global Development Working Paper* 103.
- Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. *The stata journal*, 9(1), 86-136.
- Sachs, J. D., & Warner, A. M. (1997). Sources of slow growth in African economies. *Journal of African economies*, 6(3), 335-376.
- Schlenker, W., & Roberts, M. J. (2008). Estimating the impact of climate change on crop yields: *The importance of nonlinear temperature effects* (No. w13799).
- Schwanitz, V. J. (2013). Evaluating integrated assessment models of global climate change. *Environmental modelling & software*, *50*, 120-131.
- Shahid, M. (2014). Impact of labour force participation on economic growth in Pakistan. *Journal of Economics and Sustainable Development*, 5(11), 89-93
- Sharma, B., & Sharma, D. (2008). Impact of climate change on water resources and glacier melt and potential adaptations for Indian agriculture. New Dehli: International Water Management Institute.
- Sharma, S. S. (2010). The relationship between energy and economic growth: empirical evidence from 66 countries. *Applied energy*, 87(11), 3565-3574.
- Tsigaris, P., & Wood, J. (2016). A simple climate-Solow model for introducing the economics of climate change to undergraduate students. *International Review of Economics Education*, 23, 65-81.

- Ugochukwu, U. S., & Chinyere, U. P. (2013). The impact of capital formation on the growth of Nigerian economy. *Research journal of finance and accounting*, 4(9), 36-42.
- Von Blottnitz, H., & Curran, M. A. (2007). A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. *Journal of cleaner production*, 15(7), 607-619.
- Wacziarg, R. and Welch, K. H. (2008) 'Trade liberalization and growth: new evidence.' *The World*
- Wang, Z. X., & Li, Q. (2019). Modelling the nonlinear relationship between CO2 emissions and economic growth using a PSO algorithm-based grey Verhulst model. *Journal of cleaner production*, 207, 214-224.
- Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. *Journal of econometrics*, *126*(1), 25-51.
- Woodard, J. D., & Garcia, P. (2007). Basis risk and weather hedging effectiveness (No. 686-2016-47123).
- Yakubu, M. M., Akanegbu, B. N., & Jelilov, G. (2020). Labour Force Participation and Economic Growth in Nigeria. Advances in Management and Applied Economics, 10(1), 1-14
- Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J., & An, Y. (2011). The causality analysis of climate change and large-scale human crisis. *Proceedings* of the National
- Zhao, X., Gerety, M., & Kuminoff, N. V. (2018). Revisiting the temperatureeconomic growth relationship using global subnational data. *Journal of environmental management*, 223, 537-544.

Zsohar, P. (2010). Short introduction to the generalized method of moments. *Hungarian statistical review*, 16, 150-170.

Appendices

Temperature linear model 1 (overall)

xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(1 .)collapse) iv(i.time) nolevel

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	: code : time ruments = 155 = 62247.57 = 0.000			Number Number Obs per	of obs = of groups = c group: min = avg = max =	3400 150 2 22.67 25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.4526741	.0104173	43.45	0.000	.4322565	.4730917
lx1	.4049298	.0095794	42.27	0.000	.3861546	.4237051
lx2	.0112586	.0135942	0.83	0.408	0153855	.0379027
lx3	000982	.0267802	-0.04	0.971	0534701	.0515062
lx4	.3211129	.0500179	6.42	0.000	.2230797	.4191461
2011.time GMM-type (mi L(1/26).(1	2012.time 201 ssing=0, sepa y lx1 lx2 lx3	3.time 2014 rate instru: lx4) colla	.time 201 ments for psed 	15.time 2 c each pe	2016.time) eriod unless co	ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	ces: z = ces: z =	-19.03 Pr > 2 -0.79 Pr > 2	z = 0.000 z = 0.432
Sargan test of (Not robust,	overid. rest but not weak	rictions: c	 hi2(150) y instrum	=1947.7 nents.)	71 Prob > chi2	2 = 0.000
Difference-in- gmm(ly lx1 l Sargan tes Difference iv(1990b.tim 7.time 1998.tim > 02.time 2003	Sargan tests x2 lx3 lx4, c t excluding g (null H = ex te 1991.time 1 e 1999.time 2 .time 2004.ti	of exogenei ollapse lag roup: c ogenous): c 992.time 19 000.time 20 me 2005.tim	ty of ins (1 .)) hi2(20) hi2(130) 93.time 1 01.time 2 e 2006.ti	= 68.6 =1879.0 1994.time 20 ime 2007.	subsets: 58 Prob > chi2 04 Prob > chi2 e 1995.time 199 time 2008.time	2 = 0.000 2 = 0.000 96.time

2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(125) =1858.19 Prob > chi2 = 0.000

Difference (null H = exogenous): chi2(25) = 89.52 Prob > chi2 = 0.000

Temperature linear model 2 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(1 .)collapse) iv(i.time) nolevel two Favoring space over speed. To switch, type or click on mata: mata set

matafavor speed, perm. Warning: Number of instruments may be large relative to number of

observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable: Time variable : Number of instr Wald chi2(5) = Prob > chi2 =	code time ruments = 155 2.12e+07 0.000	5		Number Number Obs per	of obs of group group:	= min = avg = max =	3400 150 22.67 25
ly	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
ly L1. 1x1 1x2 1x3 1x4	.4531573 .4044394 .011227 .0011199 .3189362	.0007856 .0005534 .0008954 .0042241 .002639	576.81 730.82 12.54 0.27 120.86	0.000 0.000 0.000 0.791 0.000	.4516 .4033 .0094 0071 .3137	5175 3548 4721 1592 7639	.4546971 .4055241 .012982 .009399 .3241085

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4) collapsed _____ _____ Arellano-Bond test for AR(1) in first differences: z = -2.36 Pr > z = 0.018Arellano-Bond test for AR(2) in first differences: z = -0.44 Pr > z = 0.660_____ Sargan test of overid. restrictions: chi2(150) =1947.71 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(150) = 148.60 Prob > chi2 = 0.517 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets:

gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 .))
Hansen test excluding group: chi2(20) = 64.04 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(130) = 84.56 Prob > chi2 = 0.999
iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(125) = 142.93 Prob > chi2 = 0.130
Difference (null H = exogenous): chi2(25) = 5.67 Prob > chi2 = 1.000

Temperature linear model 3 (overall)

xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4, lag(1 .)collapse) iv(i.time) nolevel two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ Group variable: code Number of obs = 3400 150 Number of groups = Time variable : time Number of instruments = 155 Obs per group: min = 2 avg = 22.67 max = 25 Wald chi2(5) = 5200.62Prob > chi2 = 0.000 Corrected Coef. Std. Err. z P>|z| [95% Conf. Interval] lv I ly | .4531573 .0793493 5.71 0.000 .2976356 .608679 L1. | 1x1 |.4044394.09436654.290.000.2194846.58939431x2 |.011227.0101281.110.268-.0086234.03107741x3 |.0011199.15023220.010.994-.2933298.2955697 lx4 | .3189362 .1689905 1.89 0.059 -.0122791 .6501515 _____ Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.35 Pr > z = 0.019Arellano-Bond test for AR(2) in first differences: z = -0.42 Pr > z = 0.671_____ Sargan test of overid. restrictions: chi2(150) =1947.71 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(150) = 148.60 Prob > chi2 = 0.517 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 .)) Hansen test excluding group: chi2(20) = 64.04 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(130) = 84.56 Prob > chi2 = 0.999 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(125) = 142.93 Prob > chi2 = 0.130 Hansen test excluding group: Difference (null H = exogenous): chi2(25) = 5.67 Prob > chi2 = 1.000

Temperature linear model 4 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(1 .)collapse) iv(i.time)

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of

observations.

Dynamic panel-data estimation, one-step system GMM

Group variable: code			Number	of obs =	3551			
Time variable : time			Number	of groups =	150			
Number of instruments = 161			Obs per	aroup: min =	. 3			
Wald chi2(5) = 140964.89				ava =	23.67			
Prob > chi2 = 0.000				may =	20.07			
					20			
ly Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
+								
ly								
L1. .4804666	.00834	57.61	0.000	.4641206	.4968126			
I								
lx1 .4924618	.0086153	57.16	0.000	.475576	.5093475			
1x2 .0070977	.0148298	0.48	0.632	0219681	.0361635			
1x3 4444522	.0175538	-25.32	0.000	4788569	4100475			
1x4 2425195	.0127522	-19.02	0.000	2675135	2175256			
cons .5407316	.2211081	2.45	0.014	.1073678	.9740955			
<pre>Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time </pre>								
Arellano-Bond test for AR(1		differenc		-1948 Pr >	7 = 0 000			
Arellano-Bond test for AR(2) in first	differenc	es: z =	-0.22 Pr >	z = 0.826			
Sargan test of overid. rest (Not robust, but not weak Difference-in-Sargan tests	rictions: c ened by mar of exogenei	chi2(155) ny instrum ty of ins	=2310.5 ents.) trument	55 Prob > chi subsets:	2 = 0.000			

GMM instruments for levels Sargan test excluding group: chi2(150) =1831.01 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(5) = 479.54 Prob > chi2 = 0.000 gmm(ly lxl lx2 lx3 lx4, collapse lag(1 .)) Sargan test excluding group: chi2(20) = 71.10 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(135) =2239.45 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(130) =2203.73 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(25) = 106.82 Prob > chi2 = 0.000

Temperature linear model 5 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(1 .)collapse) iv(i.time) two

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl	e: c	ode			Number	of obs	=	3551
Time variable	: t	ime			Number	of group	ps =	150
Number of ins	strum	ents = 16	1		Obs per	r group:	min =	3
Wald chi2(5)	=	9.11e+06					avg =	23.67
Prob > chi2	=	0.000					max =	26
ly	1	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
	+							
ly	1							
L1.	1	.4799186	.0014245	336.91	0.000	.477	1268	.4827105
	1							
lx1	1	.4929416	.0010534	467.96	0.000	.490	0877	.4950062
lx2	1	.0068182	.000829	8.22	0.000	.0051	L934	.0084429
lx3	-	.4461356	.0023744	-187.90	0.000	450	7893	4414819
lx4	1	23958	.0046924	-51.06	0.000	2487	7771	230383
_cons		.5531367	.0218574	25.31	0.000	.5102	2969	.5959765

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -1.90 Pr > z = 0.057Arellano-Bond test for AR(2) in first differences: z = -0.10 Pr > z = 0.919_____ Sargan test of overid. restrictions: chi2(155) =2310.55 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(155) = 148.06 Prob > chi2 = 0.641 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(150) = 148.26 Prob > chi2 = 0.525 Difference (null H = exogenous): chi2(5) = -0.21 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 .)) Hansen test excluding group: chi2(20) = 50.94 Prob > chi2 = 0.000Difference (null H = exogenous): chi2(135) = 97.12 Prob > chi2 = 0.994iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim

> e 2015.time 2016.time)
Hansen test excluding group: chi2(130) = 145.70 Prob > chi2 = 0.164
Difference (null H = exogenous): chi2(25) = 2.36 Prob > chi2 = 1.000

Temperature linear model 6 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(1 .)collapse) iv(i.time) two robust

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl Time variable Number of ins Wald chi2(5)	e: code : time truments = 163 = 6609.98	1		Number Number Obs pe:	of obs = of groups = r group: min = avg =	3551 150 3 23.67
Prob > Chiz	= 0.000				max =	20
ly	 Coef.	Corrected Std. Err.	Z	P> z	[95% Conf.	Interval]
ly 1.1	 4799186	0753217	6 37	0 000	3322908	6275465
±1.		.0,0021,	0.07	0.000	.0022000	.0270100
lx1	.4929416	.0805933	6.12	0.000	.3349815	.6509016
lx2	.0068182	.010978	0.62	0.535	0146984	.0283347
lx3	4461356	.0954106	-4.68	0.000	6331369	2591342
lx4	23958	.0581467	-4.12	0.000	3535455	1256146
_cons	.5531367	.5966303	0.93	0.354	6162372	1.722511

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time

2011.time 2012.time 2013.time 2014.time 2015.time 2016.time _cons GMM-type (missing=0, separate instruments for each period unless collapsed)

D.(ly lx1 lx2 lx3 lx4) collapsed Arellano-Bond test for AR(1) in first differences: z = -1.90 Pr > z = 0.058

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(150) = 148.26 Prob > chi2 = 0.525 Difference (null H = exogenous): chi2(5) = -0.21 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 .)) Hansen test excluding group: chi2(20) = 50.94 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(135) = 97.12 Prob > chi2 = 0.994 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(130) = 145.70 Prob > chi2 = 0.164
Difference (null H = exogenous): chi2(25) = 2.36 Prob > chi2 = 1.000

Temperature non-linear model 7 (overall)

xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM _____ Number of obs = 3280 Group variable: code Number of groups = Time variable : time 150 Number of instruments = 180 Obs per group: min = 2 21.87 Wald chi2(6) = 59391.25 avg = 9 = max = Prob > chi2 = 0.000 24 _____ Coef. Std. Err. z P>|z| [95% Conf. Interval] ly | _____ ly | .462139 .010397 44.45 0.000 L1. | .4417612 .4825169 .4355744 lx2 | .0109753 .0135708 0.81 0.419 -.015623 .0375737 lx3 | -.0782737 .0259545 -3.02 0.003 -.1291436 -.0274039 1x4 | .0859732 .0370659 2.32 0.020 .0133254 L2. | .1586211 1x4s | .0306301 .0129405 2.37 0.018 .0052671 .0559931 _____ Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time

2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Sargan test excluding group: chi2(l8) = 57.44 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(l56) =1925.47 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(l50) =1946.23 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(24) = 36.68 Prob > chi2 = 0.047

Temperature non-linear model 8 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel two h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-

step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable	: code : time			Number Number	of obs = of groups =	= 3280 = 150
Number of inst:	ruments = 18	0		Obs per	r group: min =	= 2
Wald chi2(6) =	= 1.43e+07			Ŧ	avg =	= 21.87
Prob > chi2 =	= 0.000				max =	= 24
ly	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
ly						
L1.	.4618786	.0010633	434.40	0.000	.4597946	.4639625
lx1	.4174829	.0010078	414.25	0.000	.4155077	.4194582
lx2	.0106147	.0011531	9.21	0.000	.0083546	.0128748
1x3	0808659	.0068207	-11.86	0.000	0942341	0674976
1×4						
L2.	.0859548	.0024092	35.68	0.000	.0812327	.0906768
lx4s	.0305825	.0008946	34.18	0.000	.028829	.0323359

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Arellano-Bond test for AR(1) in first differences: z = -2.17 Pr > z = 0.030 Arellano-Bond test for AR(2) in first differences: z = -0.53 Pr > z = 0.593 Sargan test of overid. restrictions: chi2(174) =1982.91 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(174) = 149.64 Prob > chi2 = 0.909 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(18) = 54.36 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(156) = 95.28 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(150) = 148.83 Prob > chi2 = 0.512 Difference (null H = exogenous): chi2(24) = 0.81 Prob > chi2 = 1.000

Temperature non-linear model 9 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel two robust h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ Group variable: code Number of obs = 3280 150 Number of groups = Time variable : time Number of instruments = 180 Obs per group: min = 2 avg = 21.87 max = 24 Wald chi2(6) = 5976.82Prob > chi2 = 0.000

ly		Coef.	Corrected Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly							
L1.		.4618786	.083609	5.52	0.000	.2980079	.6257492
lx1	Ì	.4174829	.0933121	4.47	0.000	.2345946	.6003712
lx2		.0106147	.0099312	1.07	0.285	00885	.0300794
lx3		0808659	.1372379	-0.59	0.556	3498472	.1881155
lx4							
L2.		.0859548	.048357	1.78	0.075	0088233	.1807328
lx4s		.0305825	.0199584	1.53	0.125	0085353	.0697002

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Arellano-Bond test for AR(1) in first differences: z = -2.17 Pr > z = 0.030Arellano-Bond test for AR(2) in first differences: z = -0.52 Pr > z = 0.603

Sargan test of overid. restrictions: chi2(174) =1982.91 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(174) = 149.64 Prob > chi2 = 0.909
(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(18) = 54.36 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(156) = 95.28 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(150) = 148.83 Prob > chi2 = 0.512 Difference (null H = exogenous): chi2(24) = 0.81 Prob > chi2 = 1.000

Temperature non-linear model 10 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time truments = 187 = 147379.19 = 0.000	7		Number Number Obs pe	of obs of groups r group: mi av ma	= n = g = .x =	3431 150 3 22.87 25
ly	Coef.	Std. Err.	z	₽> z	[95% Cc	nf.	Interval]
ly L1.	.4961194	.0082157	60.39	0.000	.480016	9	.5122219
1x1 1x2 1x3	.4747951 .0077139 .4346687	.0086034 .0145094 .0165392	55.19 0.53 -26.28	0.000 0.595 0.000	.457932 020724 467084	8 1 9	.4916575 .0361518 4022525
lx4 L2.	 .1318442 	.0302156	4.36	0.000	.072622	7	.1910657
lx4s _cons	0655286 .1489286	.0057815 .2119886	-11.33 0.70	0.000 0.482	0768 266561	6 4	0541971 .5644185

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly 1x1 1x2 1x3 1x4 1x4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -18.90 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -0.92 Pr > z = 0.359_____ Sargan test of overid. restrictions: chi2(180) =2260.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(174) =1890.52 Prob > chi2 = 0.000 Sargan test excluding group: Difference (null H = exogenous): chi2(6) = 370.08 Prob > chi2 = 0.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Sargan test excluding group: chi2(18) = 62.18 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(162) =2198.41 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(156) =2174.13 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(24) = 86.46 Prob > chi2 = 0.000

Temperature non-linear model 11 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) two h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl Time variable Number of ins Wald chi2(6) Prob > chi2	e: : tru = =	code time ments = 187 2.30e+07 0.000			Number Number Obs pe:	of obs of group r group:	= min = avg = max =	3431 150 3 22.87 25
ly		Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
ly L1. 1x1 1x2 1x3	 	.4964153 .4744192 .0076481 4342276	.0008755 .0006305 .0008137 .0014748	567.02 752.48 9.40 -294.42	0.000 0.000 0.000 0.000	.4946 .4731 .0060 4371	994 835 533 183	.4981313 .4756549 .009243 431337
lx4 L2. lx4s		.1309106 064714	.00333 .0014131 .0273742	39.31 -45.80	0.000	.1243 0674	839 836 439	.1374373 0619443
	<u>'</u>							• = 9 0 0 19

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -1.93 Pr > z = 0.054Arellano-Bond test for AR(2) in first differences: z = -0.44 Pr > z = 0.659Sargan test of overid. restrictions: chi2(180) =2260.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(180) = 148.93 Prob > chi2 = 0.956 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(174) = 149.09 Prob > chi2 = 0.914 Hansen test excluding group: Difference (null H = exogenous): chi2(6) = -0.16 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(18) = 47.85 Prob > chi2 = 0.000Difference (null H = exogenous): chi2(162) = 101.08 Prob > chi2 = 1.000

iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(156) = 148.98 Prob > chi2 = 0.643
Difference (null H = exogenous): chi2(24) = -0.05 Prob > chi2 = 1.000

Temperature non-linear model 12 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) two robust h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins Wald chi2(6) Prob > chi2	e: code : time truments = 187 = 7670.81 = 0.000	,		Number Number Obs pe:	of obs = of groups = r group: min = avg = max =	3431 150 3 22.87 25
		Corrected				
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
lv	+ 					
L1.	.4964153	.0748678	6.63	0.000	.3496772	.6431535
lx1	.4744192	.0793161	5.98	0.000	.3189624	.629876
lx2	.0076481	.0106754	0.72	0.474	0132752	.0285715
lx3	4342276	.0925238	-4.69	0.000	6155709	2528844
lx4	I					
L2.	.1309106	.0475011	2.76	0.006	.0378102	.224011
lx4s	064714	.0143268	-4.52	0.000	092794	036634
_cons	.1448964	.5424791	0.27	0.789	918343	1.208136

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ ------Arellano-Bond test for AR(1) in first differences: z = -1.92 Pr > z = 0.055Arellano-Bond test for AR(2) in first differences: z = -0.43 Pr > z = 0.666_____ Sargan test of overid. restrictions: chi2(180) =2260.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(180) = 148.93 Prob > chi2 = 0.956 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(174) = 149.09 Prob > chi2 = 0.914 Hansen test excluding group: Difference (null H = exogenous): chi2(6) = -0.16 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(18) = 47.85 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(162) = 101.08 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(156) = 148.98 Prob > chi2 = 0.643 Hansen test excluding group: Difference (null H = exogenous): chi2(24) = -0.05 Prob > chi2 = 1.000

Precipitation linear model 13 (overall)

. xtabond2 ly l.ly l2.lx1 lx2 l2.lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(4 .)collapse) iv(i.time) nolevel h(2) Favoring space over speed. To switch, type or click on mata: mata set

matafavor speed, perm.

Dynamic panel-data estimation, one-step difference GMM

Group variable	e: code			Number	of obs	=	3244
Time variable	: cime			Number	or group	s =	150
Number of inst	truments = 13	9		Obs pe	r group:	min =	1
Wald chi2(5)	= 28027.26					avg =	21.63
Prob > chi2	= 0.000					max =	24
ly	Coef.	Std. Err.	z	₽> z	[95%	Conf.	Interval]
ly							
L1.	1.077882	.0318735	33.82	0.000	1.015	411	1.140353
lx1							
L2.	2160075	.0256062	-8.44	0.000	2661	946	1658203
lx2	.1189837	.0982551	1.21	0.226	0735	929	.3115602
lx3	I						
L2.	.6795561	.060711	11.19	0.000	.5605	648	.7985475
	l						
lx4							
т.2.	I1358621	.0647297	-2.10	0.036	2627	301	0089942

Instruments for first differences equation

Standard
D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time
2004.time 2005.time 2006.time 2007.time 2008.time 2010.time
2011.time 2012.time 2013.time 2014.time 2015.time 2016.time)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(4/26).(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(4 .)) Sargan test excluding group: chi2(19) = 582.19 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(115) = 169.05 Prob > chi2 = 0.001 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim

```
> e 2015.time 2016.time)
Sargan test excluding group: chi2(110) = 716.97 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(24) = 34.27 Prob > chi2 = 0.080
```

Precipitation linear model 14 (overall)

. xtabond2 ly l.ly l2.lx1 lx2 l2.lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(4 .)collapse) iv(i.time) nolevel two h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable	e: code : time			Number Number	of obs = of groups =	3244 150
Number of inst	$r_{iiments} = 130$	•		Ohs ne	r group min =	1
Wald chi2(5)	= 513255 07			obb pc.	ava =	21 63
Prob > chi2	- 0.000				may -	21.05
1100 > 0112	- 0.000					
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
lv						
т.1	1 079254	0023759	454 26	0 000	1 074597	1 08391
• ±	1.079234	.0023733	101.20	0.000	1.0/100/	1.000001
lx1						
L2.	2154559	.0026229	-82.15	0.000	2205966	2103152
lx2	.1167049	.0074882	15.59	0.000	.1020283	.1313814
lx3						
L2.	.6645623	.0129327	51.39	0.000	.6392146	.6899101
lx4						
L2.	1378764	.0035041	-39.35	0.000	1447444	1310084

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(4/26).(ly lx1 lx2 lx3 lx4) collapsed

```
Difference-in-Hansen tests of exogeneity of instrument subsets:
    gmm(ly lxl lx2 lx3 lx4, collapse lag(4 .))
    Hansen test excluding group: chi2(19) = 110.47 Prob > chi2 = 0.000
    Difference (null H = exogenous): chi2(115) = 36.01 Prob > chi2 = 1.000
    iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
    > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
    > e 2015.time 2016.time)
    Hansen test excluding group: chi2(110) = 136.75 Prob > chi2 = 0.043
    Difference (null H = exogenous): chi2(24) = 9.73 Prob > chi2 = 0.996
```

Precipitation linear model 15 (overall)

. xtabond2 ly l.ly 12.lx1 lx2 12.lx3 12.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(4 .)collapse) iv(i.time) nolevel two robust h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ _____ Number of obs = 3244 Number of groups = 150 Group variable: code 150 Time variable : time Number of instruments = 139 Obs per group: min = 1 Wald chi2(5) = 7122.29avg = 21.63 Prob > chi2 = 0.000 max = 24 _____ Corrected _____ ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] ly | 1.079254 .0379556 28.43 0.000 1.004862 1.153645 L1. | lx1 | -.2154559 .0316091 -6.82 0.000 -.2774086 -.1535032 L2. | lx2 | .1167049 .1262832 0.92 0.355 -.1308057 .3642155 1x3 | L2. | .6645623 .0920365 7.22 0.000 .484174 .8449507 lx4 | L2. | -.1378764 .0555398 -2.48 0.013 -.2467325 -.0290203 Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(4/26).(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -4.49 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -0.11 Pr > z = 0.910_____ Sargan test of overid. restrictions: chi2(134) = 751.24 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(134) = 146.48 Prob > chi2 = 0.218 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(4 .)) Hansen test excluding group: chi2(19) = 110.47 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(115) = 36.01 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(110) = 136.75 Prob > chi2 = 0.043 Difference (null H = exogenous): chi2(24) = 9.73 Prob > chi2 = 0.996

Precipitation linear model 16 (overall)

. xtabond2 ly l.ly l2.lx1 lx2 l2.lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(4 .)collapse) iv(i.time) h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-	Dynamic panel-data estimation, one-step system GMM									
Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 145 = 73490.80 = 0.000	5		Number Number Obs per	of obs = of groups = c group: min = avg = max =	3395 150 2 22.63 25				
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]				
ly L1.	 1.164561 	.0187398	62.14	0.000	1.127831	1.20129				
lx1 L2.	2684852	.0188758	-14.22	0.000	3054811	2314892				
lx2	.2679242	.0975633	2.75	0.006	.0767038	.4591447				
lx3 L2.	.5922111	.0495262	11.96	0.000	.4951415	.6892807				
lx4 L2.	2040328	.0623613	-3.27	0.001	3262588	0818068				
_cons	-5.656336	1.009869	-5.60	0.000	-7.635642	-3.677029				
Instruments for first differences equation Standard D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time										

1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(4/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL3.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -16.63 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = 0.39 Pr > z = 0.698_____ Sargan test of overid. restrictions: chi2(139) =1205.21 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(134) =1169.91 Prob > chi2 = 0.000 Sargan test excluding group: Difference (null H = exogenous): chi2(5) = 35.30 Prob > chi2 = 0.000 gmm(ly lx1 lx2 lx3 lx4, collapse lag(4 .)) Sargan test excluding group: chi2(19) = 825.44 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(120) = 379.77 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(115) = 621.49 Prob > chi2 = 0.000

Difference (null H = exogenous): chi2(24) = 583.72 Prob > chi2 = 0.000

Precipitation linear model 17 (overall)

1

m

S

x4,1 E ataf V tep	A xtabond2 ly ag(4 .)collar Favoring space Favor speed, p Jarning: Two-s Using a gene estimation. Difference- Dynamic panel-	1.ly 12.lx1 i ose) iv(i.time e over speed. berm. step estimated eralized inver in-Sargan/Hans -data estimat:	<pre>lx2 l2.lx3 e) two h(2) To switch, d covarianc rse to calc sen statist ion, two-st</pre>	12.1x4, gr type or o e matrix o ulate opt: ics may be ep system	nm(ly lx: click on of momen imal weig e negati GMM	1 lx2 lx3 mata: mata se ts is singular ghting matrix ve.	t for two-
- C I V E	Group variable Cime variable Number of inst Nald chi2(5) Prob > chi2	e: code : time truments = 145 = 747588.82 = 0.000	5		Number Number Obs pe:	of obs = of groups = r group: min = avg = max =	3395 150 2 22.63 25
-	ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
-	ly L1.	 1.165037	.0016602	701.77	0.000	1.161784	1.168291
	lx1 L2.	 2675746	.0019062	-140.37	0.000	2713107	2638384
	lx2	.2727641	.0079515	34.30	0.000	.2571795	.2883488
	1x3 L2.	 .584113 	.0083022	70.36	0.000	.567841	.6003851
	1 × 4	1					

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(4/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL3.(ly lx1 lx2 lx3 lx4) collapsed ____ ____ Arellano-Bond test for AR(1) in first differences: z = -4.73 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = 0.14 Pr > z = 0.885------Sargan test of overid. restrictions: chi2(139) =1205.21 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(139) = 146.77 Prob > chi2 = 0.309 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(134) = 144.47 Prob > chi2 = 0.253 = 2.30 Prob > chi2 = 0.807 Difference (null H = exogenous): chi2(5) gmm(ly lx1 lx2 lx3 lx4, collapse lag(4 .))

chi2(19)

Undergraduate FYP

Hansen test excluding group:

Faculty of Business and Finance

= 99.16 Prob > chi2 = 0.000

Difference (null H = exogenous): chi2(120) = 47.61 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(115) = 139.65 Prob > chi2 = 0.059 Difference (null H = exogenous): chi2(24) = 7.12 Prob > chi2 = 1.000

Precipitation linear model 18 (overall)

. xtabond2 ly l.ly l2.lx1 lx2 l2.lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(4 .)collapse) iv(i.time) two robust h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable: Time variable : Number of instr Wald chi2(5) = Prob > chi2 =	code time uuments = 145 2407.57 0.000			Number of Number of Obs per g	obs = groups = roup: min = avg = max =	3395 150 2 22.63 25
 ly	Coef.	Corrected Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	1.165037	.1183866	9.84	0.000	.9330039	1.397071
1x1 L2.	2675746	.0850375	-3.15	0.002	434245	1009042
lx2	.2727641	.2512557	1.09	0.278	2196879	.7652162
1x3 L2.	.584113	.1326488	4.40	0.000	.3241261	.8440999
lx4 L2.	2042012	.103687	-1.97	0.049	4074239	0009785
_cons	-5.597718	2.666352	-2.10	0.036	-10.82367	3717652
Instruments for Standard D.(1990b.ti	first diffe me 1991.time	rences equa 1992.time	ation 1993.time	1994.time	1995.time	1996.time

1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(4/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL3.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -3.69 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = 0.13 Pr > z = 0.893_____ Sargan test of overid. restrictions: chi2(139) =1205.21 Prob > chi2 = 0.000

Undergraduate FYP

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(139) = 146.77 Prob > chi2 = 0.309 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(134) = 144.47 Prob > chi2 = 0.253 Hansen test excluding group: Difference (null H = exogenous): chi2(5) = 2.30 Prob > chi2 = 0.807 gmm(ly lx1 lx2 lx3 lx4, collapse lag(4 .)) = 99.16 Prob > chi2 = 0.000 chi2(19) Hansen test excluding group: Difference (null H = exogenous): chi2(120) = 47.61 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(115) = 139.65 Prob > chi2 = 0.059 Hansen test excluding group: Difference (null H = exogenous): chi2(24) = 7.12 Prob > chi2 = 1.000

Precipitation non-linear model 19 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable: Time variable : Number of instr Wald chi2(6) = Prob > chi2 =	code time cuments = 18 = 66852.57 = 0.000	1		Number Number Obs pe	of obs = of groups = r group: min = avg = max =	3400 150 22.67 25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1. x1 x2 x3 x4 x4s	.4332639 .3817167 .0132856 .2066772 1970697 .0259256	.0103357 .0092735 .0132317 .0309843 .0526419 .0068377	41.92 41.16 1.00 6.67 -3.74 3.79	0.000 0.315 0.000 0.000 0.000	.4130062 .3635409 0126481 .1459491 3002458 .0125239	.4535215 .3998926 .0392193 .2674053 0938935 .0393272

Instruments for first differences equation Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

```
Difference-in-Sargan tests of exogeneity of instrument subsets:
  gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .))
  Sargan test excluding group: chi2(19) = 54.53 Prob > chi2 = 0.000
  Difference (null H = exogenous): chi2(156) =1879.07 Prob > chi2 = 0.000
  iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
  > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2013.time 2014.tim
  > e 2015.time 2016.time)
  Sargan test excluding group: chi2(150) =1875.43 Prob > chi2 = 0.000
```

Sargan test excluding group:	chi2(150)	=1875.43	Prob > chi2 =	0.000
Difference (null H = exogenous):	chi2(25)	= 58.17	Prob > chi2 =	0.000

Precipitation non-linear model 20 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel two Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ Group variable: code Number of obs = 3400 Number of groups = 150 Time variable : time Number of instruments = 181 Obs per group: min = 2 Wald chi2(6) = 1.39e+07avg = 22.67 = 0.000 Prob > chi2 max = 25 ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] ly | .4329225 .0013195 328.10 0.000 .4303364 .4355086 L1. | 1x1.3831927.0015666244.600.000.38012221x2.0128043.001207510.600.000.01043751x3.198995.006742829.510.000.1857793 .3862633 .015171 .015171 lx4 | -.1960133 .0043749 -44.80 0.000 -.204588 -.1874386 1x4s | .0258652 .0005017 51.55 0.000 .0248818 .0268485 .0248818 .0268485 Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.40 Pr > z = 0.016Arellano-Bond test for AR(2) in first differences: z = -0.69 Pr > z = 0.491_____ Sargan test of overid. restrictions: chi2(175) =1933.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(175) = 148.09 Prob > chi2 = 0.931 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(19) = 56.30 Prob > chi2 = 0.000Difference (null H = exogenous): chi2(156) = 91.79 Prob > chi2 = 1.000iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time)

Hansen test excluding group: chi2(150) = 148.44 Prob > chi2 = 0.521 Difference (null H = exogenous): chi2(25) = -0.36 Prob > chi2 = 1.000

Precipitation non-linear model 21 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ 3400 Number of obs = Group variable: code 150 Number of groups = Time variable : time Number of instruments = 181 Obs per group: min = 2 Wald chi2(6) = 3883.47 avg = 22.67 Prob > chi2 = max = 0.000 2.5 _____ Corrected Coef. Std. Err. ly | z P>|z| [95% Conf. Interval] _____ ly | .2895037 .4329225 .0731742 5.92 0.000 .5763412 L1. |
 1x1
 .3831927
 .0901645
 4.25
 0.000
 .2064735

 1x2
 .0128043
 .0090883
 1.41
 0.159
 -.0050084

 1x2
 .100005
 .1500514
 1.27
 0.005
 .10050084
 .2064735 .5599119 .030617 1x3 |.198995.15695141.270.205-.10862411x4 |-.1960133.1318116-1.490.137-.45435931x4s |.0258652.01601181.620.106-.0055173 .5066142 .0623327 .0572477 _____ Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.39 Pr > z = 0.017Arellano-Bond test for AR(2) in first differences: z = -0.66 Pr > z = 0.510_____ Sargan test of overid. restrictions: chi2(175) =1933.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(175) = 148.09 Prob > chi2 = 0.931 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(19) = 56.30 Prob > chi2 = 0.000Difference (null H = exogenous): chi2(156) = 91.79 Prob > chi2 = 1.000iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(150) = 148.44 Prob > chi2 = 0.521 Difference (null H = exogenous): chi2(25) = -0.36 Prob > chi2 = 1.000

Precipitation non-linear model 22 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable: Time variable : Number of instr Wald chi2(6) = Prob > chi2 =	code time uments = 188 142398.14 0.000			Number c Number c Obs per	of obs = of groups = group: min = avg = max =	3551 150 3 23.67 26
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1. 1x1 1x2 1x3 1x4 1x4s _cons	.5392548 .4619905 .0111397 4053482 .2911192 0380647 -1.162876	.0077756 .008532 .0147888 .0180325 .038295 .0048729 .2126209	69.35 54.15 0.75 -22.48 7.60 -7.81 -5.47	0.000 0.451 0.000 0.000 0.000 0.000	.5240149 .4452681 0178459 4406913 .2160623 0476153 -1.579605	.5544947 .4787128 .0401252 .3700052 .3661761 028514 7461463

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time

cons

GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed

(Not robust, but not weakened by many instruments.)

Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(175) =1854.03 Prob > chi2 = 0.000 Sargan test excluding group: Difference (null H = exogenous): chi2(6) = 823.82 Prob > chi2 = 0.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) = 50.25 Prob > chi2 = 0.000 Sargan test excluding group: chi2(19) Difference (null H = exogenous): chi2(162) =2627.59 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(156) = 2444.74 Prob > chi2 = 0.000Difference (null H = exogenous): chi2(25) = 233.11 Prob > chi2 = 0.000

Precipitation non-linear model 23 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) two Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM -------_____ Number of obs = 3551 Group variable: code 150 Number of groups = Time variable : time Number of instruments = 188 Obs per group: min = 3 avg = 23.67 max = 26 Wald chi2(6) = 2.69e+06= 0.000 26 Prob > chi2 max = ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] ly | .5394253 .0014304 377.11 0.000 .5366218 .5422289 L1. | lx1.4616327.001074429.820.000.4595277lx2.011044.00119669.230.000.0086986lx3-.4040442.0053451-75.590.000-.4145204 .4637377 .0133894 -.393568 1x4 | .2931862 .0071506 41.00 0.000 .2791712 .3072012 lx4s | -.0381633 .0008129 -46.94 0.000 -.0397567 -.03657 _cons | -1.182085 .0727073 -16.26 0.000 -1.324589 -1.039581 -----Warning: Uncorrected two-step standard errors are unreliable. Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.15 Pr > z = 0.031Arellano-Bond test for AR(2) in first differences: z = -0.33 Pr > z = 0.739_____ Sargan test of overid. restrictions: chi2(181) =2677.85 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(181) = 148.90 Prob > chi2 = 0.961 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(175) = 148.91 Prob > chi2 = 0.924 Hansen test excluding group: Difference (null H = exogenous): chi2(6) = -0.02 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) = 29.87 Prob > chi2 = 0.053 Hansen test excluding group: chi2(19) Difference (null H = exogenous): chi2(162) = 119.02 Prob > chi2 = 0.995 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20

```
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
   > e 2015.time 2016.time)
                                      chi2(156) = 148.54 Prob > chi2 = 0.652
       Hansen test excluding group:
       Difference (null H = exogenous): chi2(25) = 0.36 Prob > chi2 = 1.000
```

Precipitation non-linear model 24 (overall)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins Wald chi2(6) Prob > chi2	le: str = =	code time uments = 18 7363.20 0.000	8		Number Number Obs pe:	of obs of group r group:	= min = avg = max =	3551 150 3 23.67 26
ly		Coef.	Corrected Std. Err.	Z	P> z	[95%	Conf.	Interval]
ly L1.		.5394253	.0664679	8.12	0.000	.4091	507	.6697
1x1 1x2 1x3 1x4 1x4s _cons		.4616327 .011044 4040442 .2931862 0381633 -1.182085	.0735895 .0106094 .0904358 .1033145 .0132866 .5968596	6.27 1.04 -4.47 2.84 -2.87 -1.98	0.000 0.298 0.000 0.005 0.004 0.048	.3173 00 5812 .0906 0642 -2.351	3999 975 2951 5934 2046 1908	.6058656 .031838 2267933 .495679 0121221 0122617

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed Arellano-Bond test for AR(1) in first differences: z = -2.15 Pr > z = 0.032Arellano-Bond test for AR(2) in first differences: z = -0.33 Pr > z = 0.745-----Sargan test of overid. restrictions: chi2(181) =2677.85 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(181) = 148.90 Prob > chi2 = 0.961 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(175) = 148.91 Prob > chi2 = 0.924 : chi2(6) = -0.02 Prob > chi2 = 1.000 Hansen test excluding group:

Undergraduate FYP

Difference (null H = exogenous): chi2(6)

gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .))
Hansen test excluding group: chi2(19) = 29.87 Prob > chi2 = 0.053
Difference (null H = exogenous): chi2(162) = 119.02 Prob > chi2 = 0.995
iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(156) = 148.54 Prob > chi2 = 0.652
Difference (null H = exogenous): chi2(25) = 0.36 Prob > chi2 = 1.000

Carbon dioxide emission linear model 25 (overall)

xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(i.time) nolevel h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, one-step difference GMM _____ Group variable: code Number of obs = 3213 149 Number of groups = Time variable : time Number of instruments = 144 Obs per group: min = 0 avg = Wald chi2(5) = 43975.67 Prob > chi2 = 0.000 21.56 max = 24 _____ ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ _____ ly | L1. | .3844974 .0200397 19.19 0.000 .3452203 .4237745 lx1 | .5687416 .0193637 29.37 0.000 .5307895 .6066936 lx2 | L2. | -.0168413 .0155283 -1.08 0.278 -.0472763 .0135936 lx3 | -.0618595 .0588791 -1.05 0.293 -.1772604 .0535415 1x4 | L2. | -.2485589 .0237906 -10.45 0.000 -.2951876 -.2019301 _____ Instruments for first differences equation Standard D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed _____ _____ Arellano-Bond test for AR(1) in first differences: z = -15.94 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -0.07 Pr > z = 0.944_____ -----Sargan test of overid. restrictions: chi2(139) = 416.25 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Difference-in-Sargan tests of exogeneity of instrument subsets: gmm(ly lxl lx2 lx3 lx4, collapse lag(3 .)) Sargan test excluding group: chi2(19) = 54.65 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(120) = 361.60 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(115) = 393.73 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(24) = 22.51 Prob > chi2 = 0.549

Carbon dioxide emission linear model 26 (overall)

Wald chi2(5) Prob > chi2	=	1.11e+07 0.000			per	avg = max =	21.56 24
ly		Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.		.3827541	.0014422	265.40	0.000	.3799275	.3855808
lx1		.5692447	.000478	1190.83	0.000	.5683078	.5701816
lx2 L2.		0168047	.0005967	-28.16	0.000	0179742	0156353
lx3		0544747	.0109042	-5.00	0.000	0758467	0331028
lx4 L2.	Ì	2491583	.0018891	-131.89	0.000	2528608	2454558

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed ------_____ Arellano-Bond test for AR(1) in first differences: z = -1.45 Pr > z = 0.148Arellano-Bond test for AR(2) in first differences: z = -0.03 Pr > z = 0.979_____ Sargan test of overid. restrictions: chi2(139) = 416.25 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(139) = 145.28 Prob > chi2 = 0.341 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(3 .)) = 38.13 Prob > chi2 = 0.006 Hansen test excluding group: chi2(19) Difference (null H = exogenous): chi2(120) = 107.15 Prob > chi2 = 0.793 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(115) = 134.45 Prob > chi2 = 0.104

Difference (null H = exogenous): chi2(24) = 10.83 Prob > chi2 = 0.990

Carbon dioxide emission linear model 27 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(i.time) nolevel two robust h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ Group variable: code Number of obs = 3213 Number of groups = 149 Obs per group: min = 0 Time variable : time Number of instruments = 144 avg = 21.56 Wald chi2(5) = 3403.19

Prob > chi2	= 0.000				max =	24
ly	 Coef.	Corrected Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.3827541	.0587887	6.51	0.000	.2675303	.4979779
lx1	.5692447	.0534371	10.65	0.000	.4645099	.6739795
lx2 L2.	 0168047	.011916	-1.41	0.158	0401597	.0065502
lx3	 0544747 	.163801	-0.33	0.739	3755189	.2665694
lx4 L2.	 2491583	.0676993	-3.68	0.000	3818464	1164702

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lxl lx2 lx3 lx4, collapse lag(3 .)) Hansen test excluding group: chi2(19) = 38.13 Prob > chi2 = 0.006 Difference (null H = exogenous): chi2(120) = 107.15 Prob > chi2 = 0.793 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(115) = 134.45 Prob > chi2 = 0.104 Difference (null H = exogenous): chi2(24) = 10.83 Prob > chi2 = 0.990

Carbon dioxide emission linear model 28 (overall)

lx4, mata	. xtabond2 ly lag(3 .)collap Favoring space afavor speed, p	l.ly lx1 12.l; se) iv(i.time) over speed. ; erm.	x2 1x3 12.1) h(3) To switch,	lx4, gmm(l type or c	y lx1 lx2	2 lx3 mata: mata se	t
	Dynamic panel-	data estimatio	on, one-ste	ep system	GMM		
	Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	: code : time ruments = 150 = 135728.50 = 0.000			Number o Number o Obs per	of obs = of groups = group: min = avg = max =	3364 150 1 22.43 25
	ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
	ly L1.	.6000807	.0144635	41.49	0.000	.5717326	.6284287
	 x1	.4069373	.0142853	28.49	0.000	.3789386	.434936
	1x2 L2.	0158055	.0141263	-1.12	0.263	0434926	.0118817
	1x3	5559441	.0230998	-24.07	0.000	601219	5106693
	1x4 L2.	.0680064	.0052523	12.95	0.000	.057712	.0783008
	_cons	1.999923	.2190315	9.13	0.000	1.570629	2.429217
	2004.time 2001.time GMM-type (mi L(3/26).(1 Instruments fc Standard 1990b.time 2004.time 2004.time 2011.time cons GMM-type (mi DL2.(1v 1x	2005.time 1999 2012.time 2001 2012.time 2011 ssing=0, sepan y 1x1 1x2 1x3 r levels equat 1991.time 1991 2005.time 2001 2012.time 2011 ssing=0, sepan 1 1x2 1x3 1x4	9.time 2000 6.time 2004 rate instru 1x4) colla tion 92.time 199 9.time 2000 6.time 2007 3.time 2014 rate instru	7.time 200 7.time 200 4.time 201 aments for apsed 93.time 19 0.time 200 7.time 200 4.time 201 aments for 1	094.time 20 094.time 20 094.time 20 01.time 20 08.time 20 5.time 20 c each per	009.time 2003 009.time 2010 016.time) riod unless c 1995.time 199 002.time 2010 009.time 2010 016.time riod unless c	<pre>.time .time ollapsed) 6.time .time .time ollapsed)</pre>
	Arellano-Bond	test for AR(1)) in first	differenc		 -18.44 Pr >	z = 0.000
	Arellano-Bond	test for AR(2)) in first	differenc	ces: z =	-1.68 Pr >	z = 0.093
	Sargan test of (Not robust,	overid. rest but not weak	rictions: c ened by mar	chi2(144) ny instrum	=1074.7(nents.)) Prob > chi	2 = 0.000
1997	Difference-in- GMM instrume Sargan tes Difference gmm(ly lx1 l Sargan tes Difference iv(1990b.tim 7.time 1998.tim > 02.time 2003	Sargan tests of nts for levels t excluding g (null H = exc x2 1x3 1x4, co t excluding g (null H = exc te 1991.time 19 e 1999.time 20 .time 2004.tim	of exogenes s roup: (ogenous): (ollapse lag roup: (ogenous): (992.time 19 000.time 20 me 2005.tir	ty of ins chi2(139) chi2(5) g(3 .)) chi2(19) chi2(125) 093.time 1 001.time 2 ne 2006.ti	= 636.48 = 438.22 = 92.89 = 981.89 2994.time 20 ime 2007.1	subsets: 8 Prob > chi 1 Prob > chi 5 Prob > chi 5 Prob > chi 1995.time 19 time 2008.tim	2 = 0.000 2 = 0.000 2 = 0.000 2 = 0.000 96.time e
2009	<pre>e 2010.tim > e 2015.time Sargan tes </pre>	e 2011.time 20 2016.time) t excluding gr	D12.time 20)13.time 2 chi2(120)	2014.tim = 994.34	4 Prob > chi	2 = 0.000
	Ullierence	(IIUII H = exc	Juenous): (JNIZ (Z4)	= 80.36	o rrop > chi	z = 0.000

Carbon dioxide emission linear model 29 (overall)

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time truments = 15 = 5.44e+06 = 0.000	0		Number Number Obs pe	of obs = of groups = r group: min = avg = max =	3364 150 1 22.43 25
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.5992502	.0013378	447.95	0.000	.5966283	.6018722
lx1	.4075147	.0008968	454.39	0.000	.4057569	.4092725
lx2						
L2.	0156039	.000611	-25.54	0.000	0168014	0144063
lx3	5574257	.0024797	-224.79	0.000	5622858	5525655
lx4						
L2.	.0685003	.0008939	76.63	0.000	.0667482	.0702523
_cons	2.009518	.0306372	65.59	0.000	1.94947	2.069566

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL2.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.45 Pr > z = 0.014Arellano-Bond test for AR(2) in first differences: z = -0.94 Pr > z = 0.345Sargan test of overid. restrictions: chi2(144) =1074.70 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(144) = 149.22 Prob > chi2 = 0.366 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(139) = 147.89 Prob > chi2 = 0.287 Hansen test excluding group: Difference (null H = exogenous): chi2(5) = 1.33 Prob > chi2 = 0.932 gmm(ly lx1 lx2 lx3 lx4, collapse lag(3 .)) Hansen test excluding group: chi2(19) = 48.67 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(125) = 100.55 Prob > chi2 = 0.947

iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(120) = 143.84 Prob > chi2 = 0.068
Difference (null H = exogenous): chi2(24) = 5.38 Prob > chi2 = 1.000

Carbon dioxide emission linear model 30 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(i.time) two robust h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 15 = 5230.11 = 0.000	0		Number Number Obs pe	of obs of group r group:	= min = avg = max =	3364 150 1 22.43 25
ly	Coef.	Corrected Std. Err.	Z	₽> z	[95%	Conf.	Interval]
ly L1.	.5992502	.0473774	12.65	0.000	.5063	3922	.6921083
lx1	.4075147	.0451455	9.03	0.000	.3190)312	.4959983
lx2 L2.	0156039	.0109846	-1.42	0.155	0371	1333	.0059256
lx3	5574257	.0746114	-7.47	0.000	7036	5613	4111901
lx4 L2.	.0685003	.0268403	2.55	0.011	.0158	3943	.1211063
_cons	2.009518	.6870661	2.92	0.003	.6628	3932	3.356143

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL2.(ly lx1 lx2 lx3 lx4) collapsed -----------Arellano-Bond test for AR(1) in first differences: z = -2.45 Pr > z = 0.014Arellano-Bond test for AR(2) in first differences: z = -0.93 Pr > z = 0.350_____ Sargan test of overid. restrictions: chi2(144) =1074.70 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(144) = 149.22 Prob > chi2 = 0.366 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(139) = 147.89 Prob > chi2 = 0.287 Difference (null H = exogenous): chi2(5) = 1.33 Prob > chi2 = 0.932 gmm(ly lxl lx2 lx3 lx4, collapse lag(3 .)) Hansen test excluding group: chi2(19) = 48.67 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(125) = 100.55 Prob > chi2 = 0.947 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2015.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(120) = 143.84 Prob > chi2 = 0.068 Difference (null H = exogenous): chi2(24) = 5.38 Prob > chi2 = 1.000

Carbon dioxide emission non-linear model 31 (overall)

xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(time) nolevel Favoring space over speed. To switch, type or click on mata: mata set

matafavor speed, perm. Warning: Number of instruments may be large relative to number of

observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable: Time variable : Number of instr Wald chi2(6) = Prob > chi2 =	code time cuments = 151 = 46451.09 = 0.000			Number Number Obs pei	of obs = of groups = r group: min = avg = max =	3213 149 0 21.56 24
ly	Coef.	Std. Err.	. Z	P> z	[95% Conf.	Interval]
ly L1.	.3474087	.0206338	16.84	0.000	.3069672	.3878503
lx1	.5711237	.0189431	30.15	0.000	.533996	.6082514
1x2 L2.	0091889	.0134545	-0.68	0.495	0355593	.0171815
1x3	2124216	.04986	-4.26	0.000	3101454	1146977
1x4 L2.	449728	.0469791	-9.57	0.000	5418053	3576506
1x4s L2.	.0204986	.0027794	7.38	0.000	.015051	.0259463
Instruments for Standard D.time GMM-type (mis L(2/26).(ly	first diffe ssing=0, sepa / lx1 lx2 lx3	rences equ rate instr lx4 lx4s)	uation ruments for collapsed	each pe	eriod unless c	collapsed)
Arellano-Bond t Arellano-Bond t	test for AR(1) test for AR(2)) in first) in first	difference difference	es: z = es: z =	-16.16 Pr > 0.31 Pr >	z = 0.000 z = 0.760
Sargan test of (Not robust,	overid. rest but not weak	rictions: ened by ma	chi2(145) any instrum	= 460.0 ents.)	68 Prob > chi	2 = 0.000
Difference-in-S iv(time) Sargan test	Sargan tests o	of exogene	chi2(144)	trument = 449.9	subsets: 98 Prob > chi	2 = 0.000
Carbon dioxide emission non-linear model 32 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(time) nolevel two Favoring space over speed. To switch, type or click on mata: mata set

matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variabl Time variable Number of ins Wald chi2(6) Prob > chi2	e: code : time truments = 15 = 1.27e+07 = 0.000	1		Number Number Obs pe	of obs = of groups = r group: min = avg = max =	3213 149 0 21.56 24
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.3475196	.0009769	355.74	0.000	.345605	.3494343
lx1	.57114	.0002916	1958.56	0.000	.5705685	.5717116
1x2 L2.	0090696	.0003593	-25.24	0.000	0097738	0083654
lx3	2126133	.0049913	-42.60	0.000	2223961	2028305
lx4 L2.	 4499796	.0050623	-88.89	0.000	4599015	4400576
lx4s L2.	 .0204906	.0002648	77.37	0.000	.0199715	.0210097

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard

D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Arellano-Bond test for AR(1) in first differences: z = -1.40 Pr > z = 0.163Arellano-Bond test for AR(2) in first differences: z = 0.12 Pr > z = 0.904

Sargan test of overid. restrictions: chi2(145) = 460.68 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(145) = 148.25 Prob > chi2 = 0.410
(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time) Hansen test excluding group: chi2(144) = 148.25 Prob > chi2 = 0.387 Difference (null H = exogenous): chi2(1) = -0.00 Prob > chi2 = 1.000

Carbon dioxide emission non-linear model 33 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(time) nolevel two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of

warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable	: code			Number	of obs =	3213
Time variable	: time			Number	of groups =	149
Number of inst	ruments = 151			Obs per	group: min =	0
Wald chi2(6)	= 3601.48				avg =	21.56
Prob > chi2	= 0.000				max =	24
		Corrected				
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
+						
т.1 I	3475196	0579055	6 00	0 000	234027	4610123
. I	. 347 31 90	.0379033	0.00	0.000	.234027	.4010123
lx1	.57114	.0502071	11.38	0.000	.4727359	.6695441
i i						
1x2						
L2.	0090696	.0074151	-1.22	0.221	0236029	.0054636
1x3	2126133	.1291938	-1.65	0.100	4658285	.0406018
lx4						
L2.	4499796	.17748	-2.54	0.011	797834	1021251
lx4s						
L2.	.0204906	.009636	2.13	0.033	.0016043	.0393769
Instruments fo Standard	r first diffe	rences equat	ion			
D.time						
GMM-type (mi	ssing=0, sepa	rate instru	ments for	each pe	riod unless c	ollapsed)
L(2/26).(1	y 1x1 1x2 1x3	lx4 lx4s) (collapsed	1		
Arellano-Bond	test for AR(1) in first (differenc	es: z =	-1.39 Pr > :	z = 0.163
Arellano-Bond	test for AR(2) in first (differenc	es: z =	0.12 Pr > 1	z = 0.905

Sargan test of overid. restrictions: chi2(145) = 460.68 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(145) = 148.25 Prob > chi2 = 0.410

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time) Hansen test excluding group: chi2(144) = 148.25 Prob > chi2 = 0.387 Difference (null H = exogenous): chi2(1) = -0.00 Prob > chi2 = 1.000

Carbon dioxide emission non-linear model 34 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(time) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 158 = 144486.20 = 0.000			Number Number Obs per	of obs = of groups = r group: min = avg = max =	3364 150 1 22.43 25
ly	Coef.	Std. Err	. Z	₽> z	[95% Conf.	Interval]
ly L1.	.5584581	.01487	37.56	0.000	.5293134	.5876027
lx1	.4440793	.0148109	29.98	0.000	.4150506	.4731081
1x2 L2.	0084837	.0125711	-0.67	0.500	0331227	.0161553
lx3	5517149	.0203037	-27.17	0.000	5915095	5119203
lx4 L2.	1906316	.0314315	-6.06	0.000	2522362	1290271
lx4s L2.	.0136055	.001626	8.37	0.000	.0104187	.0167924
_cons	2.513611	.1972702	12.74	0.000	2.126969	2.900254
Instruments for Standard D.time GMM-type (mi L(2/26).(1) Instruments for Standard time 	or first diffe ssing=0, sepa y lx1 lx2 lx3 or levels equa ssing=0, sepa lx2 lx3 lx4	rate instr 1x4 1x4s) tion rate instr 1x4s) col	uation ruments for collapsed ruments for lapsed	r each pe d r each pe	eriod unless co	ollapsed) ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differend differend	ces: z = ces: z =	-17.73 Pr > : -1.23 Pr > :	z = 0.000 z = 0.220
Sargan test of (Not robust,	overid. rest but not weak	rictions: ened by ma	chi2(151) any instrum	= 901.1 ments.)	.1 Prob > chi2	2 = 0.000
Difference-in- GMM instrume Sargan tes	Sargan tests ents for level	of exogene s	eity of in:	strument = 516 °	subsets:	2 = 0 000
Difference iv(time)	e (null H = ex	ogenous):	chi2(143)	= 384.5	57 Prob > chi	2 = 0.000
Sargan tes Difference	st excluding g e (null H = ex	roup: ogenous):	chi2(150) chi2(1)	= 824.7 = 76.4	0 Prob > chi 1 Prob > chi	2 = 0.000 2 = 0.000

Carbon dioxide emission non-linear model 35 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(time) two

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 158 = 5.02e+07 = 0.000	1		Number Number Obs pe:	of obs = of groups = r group: min = avg = max =	3364 150 1 22.43 25
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly						
L1.	.5585839	.0007404	754.41	0.000	.5571326	.5600351
lx1	.444162	.0004591	967.39	0.000	.4432621	.4450619
lx2						
L2.	0083798	.0002026	-41.37	0.000	0087769	0079828
lx3	5526974	.0026062	-212.07	0.000	5578054	5475894
lx4						
L2.	1933588	.0092	-21.02	0.000	2113905	1753272
lx4s						
L2.	.0137514	.0004992	27.55	0.000	.012773	.0147299
_cons	2.53598	.0537749	47.16	0.000	2.430583	2.641376

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation
 Standard
   D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(2/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed
Instruments for levels equation
 Standard
   time
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   DL.(ly lx1 lx2 lx3 lx4 lx4s) collapsed
               _____
Arellano-Bond test for AR(1) in first differences: z = -2.11 Pr > z = 0.035
Arellano-Bond test for AR(2) in first differences: z = -0.65 Pr > z = 0.516
Sargan test of overid. restrictions: chi2(151) = 901.11 Prob > chi2 = 0.000
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(151) = 148.27 Prob > chi2 = 0.548
 (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
 GMM instruments for levels
                                  chi2(145) = 148.26 Prob > chi2 = 0.409
   Hansen test excluding group:
   Difference (null H = exogenous): chi2(6) = 0.01 Prob > chi2 = 1.000
 iv(time)
                                 chi2(150) = 148.27 Prob > chi2 = 0.525
   Hansen test excluding group:
                                             = 0.00 Prob > chi2 = 0.998
   Difference (null H = exogenous): chi2(1)
```

Carbon dioxide emission non-linear model 36 (overall)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(time) two robust

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl Time variable Number of ins	e: code : time truments = 158		Number of obs=336Number of groups=15Obs per group: min =				
Wald chi2(6) Prob > chi2	= 4977.00 = 0.000				avg = max =	= 22.43 = 25	
		Corrected					
ly	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]	
ly	+						
L1.	.5585839	.0428306	13.04	0.000	.4746375	.6425302	
lx1	.444162	.0408324	10.88	0.000	.364132	.524192	
lx2							
L2.	0083798	.00818	-1.02	0.306	0244123	.0076527	
lx3	 5526974	.0603694	-9.16	0.000	6710192	4343755	
lx4							
L2.	1933588	.1090361	-1.77	0.076	4070657	.020348	
lx4s							
L2.	.0137514	.0060286	2.28	0.023	.0019355	.0255673	
_cons	2.53598	.7219183	3.51	0.000	1.121046	3.950913	
Instruments f Standard	or first diffe	erences equa	tion				
GMM-type (m L(2/26).(issing=0, sepa ly lx1 lx2 lx3	arate instru 1x4 lx4s)	ments for collapsed	each p	eriod unless o	collapsed)	
Instruments f Standard time	or levels equa	ition					
_cons	inninn 0			aaah -		11	
GMM-type (m	issing=u, sepa	irate instru	uments for	eacn p	erioa uniess (corrapsed)	

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(145) = 148.26 Prob > chi2 = 0.409 Difference (null H = exogenous): chi2(6) = 0.01 Prob > chi2 = 1.000 iv(time) Hansen test excluding group: chi2(150) = 148.27 Prob > chi2 = 0.525 Difference (null H = exogenous): chi2(1) = 0.00 Prob > chi2 = 0.998

Temperature linear model 37 (developed)

iv(i	xtabond2 ly l .time) noleve	.ly lx1 lx2 lx l h(1)	x3 12.1x4, g	mm(ly lx1	l lx2 lx3	lx4,lag	(6 1) (colla -	apse)
mata	favor speed, j	perm.	io Switchi,	cype or c	JIICK ON I	llata, illa	la sei	-	
obse	Warning: Numbervations	er of instrume	ents may be	large rel	lative to	number	of		
0.000	Dynamic panel	-data estimat:	ion, one-ste	p differe	ence GMM				
	Current and all l								
	Time variable	: time			Number (of group	s =		740 31
	Number of ins	truments = 54			Obs per	group:	min =		22
	Wald chi2(5)	= 2015.20					avg =		23.87
	Prob > ch12	= 0.000					max =		24
	ly	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Inte	erval]
	ly	I							
	L1.	0069634	.0195447	-0.36	0.722	0452	702	.03	313434
	lx1	.7806859	.0199905	39.05	0.000	.7415	052	.81	198667
	lx2	.0048777	.0061071	0.80	0.424	007	092	.01	168474
	lx3	1255194	.159523	-0.79	0.431	4381	788	.18	871401
	lx4	1							
	L2.	.0215328	.0206451	1.04	0.297	0189	307	.00	619964
	<pre>Instruments f Standard D.(1990b. 1997.time 2004.time 2011.time GMM-type (m L(1/6).(1)</pre>	or first diffe time 1991.time 1998.time 199 2005.time 200 2012.time 201 issing=0, sepa y 1x1 1x2 1x3	erences equa e 1992.time 99.time 2000 06.time 2007 13.time 2014 arate instru 1x4) collap	tion 1993.time .time 200 .time 200 ments for sed	e 1994.tin 01.time 20 08.time 20 15.time 20 c each pe:	me 1995. 002.time 009.time 016.time riod unl	time 2 2003 2010) ess co	1996 .time .time ollar	.time e e osed)
	Arellano-Bond Arellano-Bond	test for AR(2 test for AR(2	l) in first 2) in first	differenc differenc	ces: z = ces: z =	6.42 0.65	Pr > 2 Pr > 2	z = z =	0.000 0.515
	Sargan test o (Not robust	f overid. rest , but not weal	crictions: c kened by man	hi2(49) y instrum	= 186.1	6 Prob	> chi2	2 =	0.000
1997 2009	Difference-in gmm(ly lxl) Sargan te Differenc iv(1990b.tin 2.time 1998.tin > 02.time 2010.tin > e 2015.time Sargan te	-Sargan tests lx2 lx3 lx4, o st excluding o e (null H = ex me 1991.time 1 me 1999.time 2 3.time 2004.tr 2016.time) st excluding o	of exogenei collapse lag group: c kogenous): c 1992.time 19 2000.time 20 ime 2005.tim 2012.time 20 group: c	ty of ins (1 6)) hi2(19) hi2(30) 93.time 1 01.time 2 e 2006.ti 13.time 2 hi2(25)	= 119.3 = 66.7 1994.time 0 ime 2007.1 2014.tim = 81.7	subsets: 9 Prob 7 Prob 1995.ti time 200 6 Prob	<pre>> chi2 > chi2 me 199 8.time > chi2</pre>	2 = 2 = 96.t: 2 =	0.000 0.000 ime 0.000
	Differenc	e (null H = ez	kogenous): c	hi2(24)	= 104.3	9 Prob	> chi2	2 =	0.000

Temperature linear model 38 (developed)

1)cc mata obse step	. xtabond2 ly bllapse) iv(i.t Favoring space favor speed, p Warning: Numbe ervations. Warning: Two-s Using a gene o estimation. Difference-:	<pre>1.ly lx1 lx2 time) nolevel e over speed. perm. er of instrume step estimated eralized inver in-Sargan/Hans</pre>	<pre>lx3 l2.lx4, two h(l) To switch, ents may be d covariance cse to calcu sen statisti</pre>	gmm(ly l type or o large rel matrix o late opt: .cs may be	1x1 1x2 1 click on lative to of moment imal weig e negativ	x3 lx4,lag(6 mata: mata se number of s is singular hting matrix e.	t for two-
	Dynamic panel·	-data estimati	lon, two-ste	p differe	ence GMM		
	Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 54 = 136385.41 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	740 31 22 23.87 24
	ly	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval]
		+					
	LY L1.	 006225	.002365	-2.63	0.008	0108604	0015896
	lx1	.7823108	.0042123	185.72	0.000	.7740548	.7905667
	lx2	.0050186	.0017112	2.93	0.003	.0016647	.0083724
	lx3	1188451	.0570644	-2.08	0.037	2306893	0070009
	1 v 4						
	L2.	.0208313	.0171605	1.21	0.225	0128027	.0544653
	Warning: Uncor Instruments for Standard D.(1990b.t 1997.time 2004.time 2011.time GMM-type (m: L(1/6).(1)	rected two-st or first diffe 1998.time 199 2005.time 200 2012.time 201 issing=0, sepa y 1x1 1x2 1x3	erences equa 9.time 2000 06.time 2007 3.time 2014 arate instru 1x4) collap	l errors a tion 1993.time 1.time 200 1.time 200 1.time 201 1.time 201 1.time 201 1.time 201	are unrel e 1994.ti D1.time 2 D8.time 2 I5.time 2 r each pe	iable. me 1995.time 002.time 2003 009.time 2010 016.time) riod unless c	1996.time .time .time ollapsed)
	Arellano-Bond	test for AR(1) in first	differend	ces: z =	3.35 Pr >	z = 0.001
	Arellano-Bond	test for AR(2	2) in first	alfferend	ces: z =	0.60 Pr >	z = 0.552
	Sargan test of (Not robust, Hansen test of	f overid. rest but not weak	crictions: c cened by mar	hi2(49) y instrum	= 186.1 ments.) = 29 9	6 Prob > chi 1 Prob > chi	2 = 0.000 2 = 0.986
	(Robust, but	weakened by	many instru	ments.)			
1997 2009	Difference-in- gmm(ly lx1) Hansen tes Difference iv(1990b.tir 2.time 1998.tir > 02.time 2000.tir 0.time 2010.tir	-Hansen tests $1 \times 2 \ 1 \times 3 \ 1 \times 4$, c st excluding g e (null H = ex- ne 1991.time 1 ne 1999.time 2 3.time 2004.time 2011.time 2	of exogenei collapse lag group: c cogenous): c 2992.time 19 2000.time 20 me 2005.tim 2012.time 20	ty of ins (1 6)) thi2(19) thi2(30) 993.time 1 01.time 2 ne 2006.ti 13.time 2	= 27.9 = 1.9 1994.time 20 ime 2007. 2014.tim	subsets: 6 Prob > chi 4 Prob > chi 1995.time 19 time 2008.tim	2 = 0.084 2 = 1.000 96.time
	Hansen tes	st excluding c	group: c	:hi2(25)	= 26.9	1 Prob > chi	2 = 0.360
	Difference	e (null H = ex	kogenous): c	:hi2(24)	= 2.9	9 Prob > chi	2 = 1.000

Temperature linear model 39 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(6
1)collapse) iv(i.time) nolevel two robust h(1)
Favoring space over speed. To switch, type or click on mata: mata set
matafavor speed, perm.
Warning: Number of instruments may be large relative to number of
observations.
Warning: Two-step estimated covariance matrix of moments is singular.

warning: two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM _____ _____ Number of obs = Group variable: code 740 Number of groups = 31 22 Time variable : time Number of instruments = 54 Obs per group: min = Wald chi2(5) = 1499.01avg = 23.87 Prob > chi2 = max = 0.000 2.4 _____ Corrected Coef. Std. Err. ly | z P>|z| [95% Conf. Interval] _____ ly | -.006225 .0296855 -0.21 0.834 -.0644075 .0519575 L1. | .7823108 .0263852 29.65 0.000 lx1 | .7305967 .8340249 1x2 | .0050186 .0034114 1.47 0.141 -.0016676 .0117047 lx3 | -.1188451 .1642555 -0.72 0.469 -.4407798 .2030897 lx4 | L2. | .0208313 .0330434 0.63 0.528 -.0439327 .0855953 _____ Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/6).(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = 3.31 Pr > z = 0.001Arellano-Bond test for AR(2) in first differences: z = 0.59 Pr > z = 0.557_____ Sargan test of overid. restrictions: chi2(49) = 186.16 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(49) = 29.91 Prob > chi2 = 0.986 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 6)) Hansen test excluding group: chi2(19) = 27.96 Prob > chi2 = 0.084Difference (null H = exogenous): chi2(30) = 1.94 Prob > chi2 = 1.000iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(25) = 26.91 Prob > chi2 = 0.360 Difference (null H = exogenous): chi2(24) = 2.99 Prob > chi2 = 1.000

Temperature linear model 40 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(6
1)collapse) iv(i.time) h(1)
Favoring space over speed. To switch, type or click on mata: mata set
matafavor speed, perm.
Warning: Number of instruments may be large relative to number of
observations.

Dynamic pane	l-data	estimation,	one-step	system	GMM
--------------	--------	-------------	----------	--------	-----

Group variable Time variable Number of inst	: code : time ruments = 60		Number o Number o Obs per	f obs = f groups = group: min =	772 31 23	
Wald chi2(5)	= 1302.38				avg =	24.90
Prob > chi2	= 0.000				max =	25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly						
L1.	.2598137	.0576635	4.51	0.000	.1467953	.372832
lx1	.7851973	.0646811	12.14	0.000	.6584246	.91197
lx2	.0065353	.0295688	0.22	0.825	0514184	.064489
1x3	6677367	.0690104	-9.68	0.000	8029947	5324787
lx4						
L2.	.1183567	.1050149	1.13	0.260	0874688	.3241822
_cons	-2.043958	.9605692	-2.13	0.033	-3.926639	1612773

Instruments for first differences equation

```
Standard
```

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/6).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = 0.79 Pr > z = 0.432Arellano-Bond test for AR(2) in first differences: z = -0.47 Pr > z = 0.636_____ Sargan test of overid. restrictions: chi2(54) = 31.50 Prob > chi2 = 0.994 (Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(49) = 18.31 Prob > chi2 = 1.000 Sargan test excluding group: Difference (null H = exogenous): chi2(5) = 13.19 Prob > chi2 = 0.022 gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 6)) = 14.02 Prob > chi2 = 0.782 = 17.48 Prob > chi2 = 0.994 Sargan test excluding group: chi2(19) Difference (null H = exogenous): chi2(35) iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time)

Sargan test excluding group: chi2(30) = 7.66 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(24) = 23.85 Prob > chi2 = 0.470

Temperature linear model 41 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(6 1)collapse) iv(i.time) two h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM _____ _____ Number of obs = 772 Number of groups = 31 Obs per group: min = 23 Group variable: code Time variable : time Number of instruments = 60

Wald chi2(5) Prob > chi2	=	87624.23 0.000				avg = max =	24.90 25
ly		Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.		.2383271	.0118977	20.03	0.000	.215008	.2616462
lx1 lx2 lx3		.80404 .0075947 6897539	.0110067 .0026648 .0354044	73.05 2.85 -19.48	0.000 0.004 0.000	.7824673 .0023719 7591452	.8256127 .0128175 6203627
lx4 L2.		.1400708	.0252007	5.56	0.000	.0906782	.1894633
_cons	T	-2.050034	.3641271	-5.63	0.000	-2.76371	-1.336358

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/6).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4) collapsed Arellano-Bond test for AR(1) in first differences: z = 2.20 Pr > z = 0.028Arellano-Bond test for AR(2) in first differences: z = -1.38 Pr > z = 0.167Sargan test of overid. restrictions: chi2(54) = 31.50 Prob > chi2 = 0.994 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(54) = 26.91 Prob > chi2 = 0.999 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(49) = 28.78 Prob > chi2 = 0.991 Hansen test excluding group:

Difference (null H = exogenous):	chi2(5)	-	-1.88	Prob >	> chi2 =	1.000
gmm(ly lx1 lx2 lx3 lx4, collapse la	ag(1 6))					
Hansen test excluding group:	chi2(19)	=	29.03	Prob >	> chi2 =	0.065
Difference (null H = exogenous):	chi2(35)	=	-2.12	Prob >	> chi2 =	1.000

Undergraduate FYP

iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(30) = 28.28 Prob > chi2 = 0.556
Difference (null H = exogenous): chi2(24) = -1.37 Prob > chi2 = 1.000

Temperature linear model 42 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4, lag(6 1)collapse) iv(i.time) two robust h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM _____ Group variable: code Number of obs = 772 Number of groups = Time variable : time 3⊥ 23 31 Number of instruments = 60 Obs per group: min = Wald chi2(5) = 1752.16 Prob > chi2 = 0.000 avg = 24.90 max = 2.5 1 Corrected Coef. Std. Err. ly | z P>|z| [95% Conf. Interval] _____ lv | .2383271 .0496352 4.80 0.000 .1410439 L1. | .3356103 lx1 | .80404 .0428713 18.75 0.000 .7200138 .8880661 .0075947 .0068126 1.11 0.265 -.6897539 .1049429 -6.57 0.000 1x2 | -.0057578 .0209472 -.8954382 -.4840697 lx3 | 1x4 | .1400708 .073622 1.90 0.057 -.0042258 .2843673 L2. | cons | -2.050034 1.282338 -1.60 0.110 -4.56337 .4633022

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/6).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4) collapsed _____ ------Arellano-Bond test for AR(1) in first differences: z = 2.17 Pr > z = 0.030Arellano-Bond test for AR(2) in first differences: z = -1.33 Pr > z = 0.182_____ Sargan test of overid. restrictions: chi2(54) = 31.50 Prob > chi2 = 0.994 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(54) = 26.91 Prob > chi2 = 0.999 (Robust, but weakened by many instruments.)

Undergraduate FYP

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(49) = 28.78 Prob > chi2 = 0.991 Hansen test excluding group: = -1.88 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(5) gmm(ly lx1 lx2 lx3 lx4, collapse lag(1 6)) Hansen test excluding group: chi2(19) = 29.03 Prob > chi2 = 0.065 = -2.12 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(35) iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(30) = 28.28 Prob > chi2 = 0.556 Hansen test excluding group: Difference (null H = exogenous): chi2(24) = -1.37 Prob > chi2 = 1.000

Precipitation linear model 43 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 5)collapse) iv(i.time) nolevel h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, one-step difference GMM

Group variable:	code			Number	of obs	=	740
Time variable :	: time			Number	of group	os =	31
Number of instr	cuments = 29			Obs per	group:	min =	22
Wald chi2(5) =	= 10601.34					avg =	23.87
Prob > chi2 =	- 0.000					max =	24
ly	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
+-							
⊥y I							
L1.	.3088851	.0403479	7.66	0.000	.2298	3046	.3879656
lx1	.7353564	.0343459	21.41	0.000	.6680)398	.8026731
lx2	.0185203	.0560642	0.33	0.741	0913	3636	.1284041
1x3	5841314	.1666613	-3.50	0.000	9107	7816	2574812
1.27							
1X4							
L2.	.5371742	.1119378	4.80	0.000	.3177	1801	.7565682

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L5.(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(5 5)) Sargan test excluding group: chi2(19) = 82.23 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(5) = 4.30 Prob > chi2 = 0.507 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(0) = 0.00 Prob > chi2 = . Difference (null H = exogenous): chi2(24) = 86.53 Prob > chi2 = 0.000

Precipitation linear model 44 (developed)

. xtabond2 ly 5)collapse) iv(i.t Favoring space matafavor speed, p Warning: Two-s Using a gene step estimation. Difference-s	<pre>1.ly lx1 lx2 time) nolevel e over speed. perm. step estimate eralized inve in-Sargan/Han</pre>	<pre>lx3 l2.lx4, two h(2) To switch, d covariance rse to calcu sen statisti</pre>	gmm(ly i type or o matrix o late opt: cs may be	<pre>lx1 lx2 l click on of moment imal weig e negativ</pre>	x3 lx4,lag(5 mata: mata se s is singular hting matrix e.	t for two-
Dynamic panel Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	-data estimat e: code : time truments = 29 = 21391.33 = 0.000	ion, two-ste	p differe	Number Number Number Obs per	of obs = of groups = group: min = avg = max =	740 31 22 23.87 24
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.2845498	.0167943	16.94	0.000	.2516336	.3174659
lx1 lx2 lx3	.738393 .0100933 4389798	.0166538 .0179681 .1242357	44.34 0.56 -3.53	0.000 0.574 0.000	.7057522 0251237 6824773	.7710337 .0453102 1954824

L2. | .4192683 .0791145 5.30 0.000 .2642067 .5743298

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard

lx4 |

```
D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
       1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time
       2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time
       2011.time 2012.time 2013.time 2014.time 2015.time 2016.time)
     GMM-type (missing=0, separate instruments for each period unless collapsed)
      L5.(ly lx1 lx2 lx3 lx4) collapsed
                                      _____
         _____
   Arellano-Bond test for AR(1) in first differences: z = -2.71 Pr > z = 0.007
   Arellano-Bond test for AR(2) in first differences: z = -1.59 Pr > z = 0.113
    _____
   Sargan test of overid. restrictions: chi2(24) = 86.53 Prob > chi2 = 0.000
     (Not robust, but not weakened by many instruments.)
   Hansen test of overid. restrictions: chi2(24) = 27.08 Prob > chi2 = 0.301
     (Robust, but weakened by many instruments.)
   Difference-in-Hansen tests of exogeneity of instrument subsets:
     qmm(ly lx1 lx2 lx3 lx4, collapse lag(5 5))
       Hansen test excluding group: chi2(19) = 25.83 Prob > chi2 = 0.135
       Difference (null H = exogenous): chi2(5) = 1.25 Prob > chi2 = 0.940
     iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
   > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
   > e 2015.time 2016.time)
       Hansen test excluding group: chi2(0) = 0.00 Prob > chi2 =
       Difference (null H = exogenous): chi2(24) = 27.08 Prob > chi2 = 0.301
```

Precipitation linear model 45 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 5)collapse) iv(i.time) nolevel two robust h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ Group variable: code Number of obs = 740 Number of groups = 31 Time variable : time Number of instruments = 29 Obs per group: min = 22 avg = Wald chi2(5) = 2685.7123.87 Prob > chi2 = max = 0.000 24 _____ Corrected ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____+ ly | 3.78 0.000 .2845498 .0752852 L1. | .1369936 .4321059 1x1.738393.068232110.820.000.6046606.87212541x2.0100933.04558920.220.825-.0792599.09944641x3-.4389798.2881944-1.520.128-1.003831.1258709 lx4 | .0509744 .7875622 L2. | .4192683 .1879085 2.23 0.026 _____ _____ Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L5.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -1.70 Pr > z = 0.089Arellano-Bond test for AR(2) in first differences: z = -1.54 Pr > z = 0.122_____ Sargan test of overid. restrictions: chi2(24) = 86.53 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(24) = 27.08 Prob > chi2 = 0.301 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4, collapse lag(5 5)) = 25.83 Prob > chi2 = 0.135 Hansen test excluding group: chi2(19) Difference (null H = exogenous): chi2(5) = 1.25 Prob > chi2 = 0.940 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(0) = 0.00 Prob > chi2 = Difference (null H = exogenous): chi2(24) = 27.08 Prob > chi2 = 0.301

Ρ

cipitation li	inear model	46 (develo	ped)			
. xtabond2 ly	1.ly lx1 lx2	1x3 12.1x4,	gmm(ly]	lx1 1x2 1	x3 lx4,lag(5	
ollapse) iv(i.t	time) h(2)	The such that		-1:-1		. L
afavoring space	e over speed. Derm.	TO SWITCH,	cype or o	CIICK ON	mata: mata se	e C
Warning: Numbe	er of instrume	ents may be	large re	lative to	number of	
ervations.						
Dynamic panel·	-data estimat:	ion, one-ste	ep system	GMM		
Group variable	e: code			Number	of obs =	772
Time variable	: time			Number	of groups =	- 31
Wald chi2(5)	= 11568 49			obs per	group: min =	= 23 = 24.90
Prob > chi2	= 0.000				max =	= 25
ly	Coef.	Std. Err.	z	P> z	[95% Conf.	[Interval]
ly	+					
L1.	.355004	.0274062	12.95	0.000	.3012889	.4087192
lx1	.7124943	.031659	22.51	0.000	.6504438	.7745448
lx2	.0755709	.0497287	1.52	0.129	0218956	.1730374
lx3	7001722	.0345953	-20.24	0.000	7679777	6323668
lx4						
L2.	.6600692	.0938265	7.03	0.000	.4761726	.8439659
_cons	-3.681203	.5104683	-7.21	0.000	-4.681702	-2.680703
Instruments for	or first diffe	erences equa	tion			
Standard						
D.(1990b.1 1997 time	1998 time 1991.time	e 1992.time 99 time 2000	1993.time) +ime 200	e 1994.tı 11 time 2	me 1995.time 002 time 2003	1996.time
2004.time	2005.time 200	06.time 2007	.time 200)8.time 2	009.time 2010	.time
2011.time	2012.time 202	13.time 2014	.time 201	15.time 2	016.time)	
GMM-type (m:	issing=0, sepa	arate instru	uments for	r each pe	riod unless c	collapsed)
L5.(LY LX. Instruments fo	L 1x2 1x3 1x4, or levels equa) collapsed				
Standard	JI ICVCID CQU					
1990b.time	e 1991.time 1	992.time 199	3.time 19	994.time	1995.time 199	06.time
1997.time	1998.time 19	99.time 2000).time 200	01.time 2	002.time 2003	3.time
2004.time	2005.time 200	06.time 2007	.time 200	08.time 2	009.time 2010).time
2011.time	2012.time 20.	13.time 2014	.cime 20.	is.time 2	016.Cime	
GMM-type (m:	issing=0, sepa	arate instru	ments for	r each pe	riod unless c	collapsed)
DL4.(ly l	x1 1x2 1x3 1x4	4) collapsed	1	-		
Arellano-Bond	test for AR(1) in first	differend	 ces: z =	-5.53 Pr >	z = 0.000
Arellano-Bond	test for AR(2	2) in first	differend	ces: z =	-1.98 Pr >	z = 0.048
Arellano-Bond	test for AR(2) in first	differen	ces: z =	-1.98 Pr >	z = 0

Sargan test of overid. restrictions: chi2(29) = 145.04 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(24) = 85.84 Prob > chi2 = 0.000 : chi2(5) = 59.20 Prob > chi2 = 0.000 Sargan test excluding group: Difference (null H = exogenous): chi2(5) gmm(ly lx1 lx2 lx3 lx4, collapse lag(5 5)) chi2(19) = 80.81 Prob > chi2 = 0.000 Sargan test excluding group: Difference (null H = exogenous): chi2(10) = 64.23 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(5) = 2.07 Prob > chi2 = 0.839 Difference (null H = exogenous): chi2(24) = 142.97 Prob > chi2 = 0.000

Precipitation linear model 47 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 5)collapse) iv(i.time) two h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM -------_____ Group variable: code Number of obs = 772 Number of groups = Time variable : time 31 Number of groups = 31 Obs per group: min = 23 Number of instruments = 35 24.90 avg = Wald chi2(5) = 16316.02Prob > chi2 = 0.000 25 max = ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] ly | .3392382 .020064 16.91 0.000 .2999134 L1. | .378563

 1x1
 .73445
 .0155246
 47.31
 0.000
 .7040224
 .7648776

 1x2
 .0695764
 .0377479
 1.84
 0.065
 -.0044082
 .1435609

 1x3
 -.7141805
 .0450076
 -15.87
 0.000
 -.8023937
 -.6259672

 .7648776 .1435609 1x4 | .6272976 .0512054 12.25 0.000 L2. | .5269368 7276584 cons | -3.676543 .8253463 -4.45 0.000 -5.294192 -2.058894 _____ Warning: Uncorrected two-step standard errors are unreliable. Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L5.(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed)

DL4.(ly lx1 lx2 lx3 lx4) collapsed

Hansen test of overid. restrictions: chi2(29) = 28.39 Prob > chi2 = 0.497
(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(24) = 27.12 Prob > chi2 = 0.299 Difference (null H = exogenous): chi2(5) = 1.27 Prob > chi2 = 0.938 gmm(ly lx1 lx2 lx3 lx4, collapse lag(5 5)) Hansen test excluding group: chi2(19) = 23.68 Prob > chi2 = 0.209 Difference (null H = exogenous): chi2(10) = 4.72 Prob > chi2 = 0.909 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Hansen test excluding group: chi2(5) = 2.82 Prob > chi2 = 0.728
Difference (null H = exogenous): chi2(24) = 25.58 Prob > chi2 = 0.375

Precipitation linear model 48 (developed)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5
5)collapse) iv(i.time) two robust h(2)
Favoring space over speed. To switch, type or click on mata: mata set
matafavor speed, perm.
Warning: Number of instruments may be large relative to number of
observations.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
Group variable: code

						· · =
Time variable	: time			Number	of groups =	31
Number of ins	truments = 35			Obs pe	r aroup: min =	23
Wald chi2(5)	= 1672.70			1	ava =	24,90
Prob > chi2	= 0.000				max =	25
	 	Corrected				
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
lv	+					
т.1	1 3392382	1023027	3 32	0 001	1387287	5397477
• 14		.1023027	5.52	0.001	.1307207	.5557477
lx1	.73445	.0800262	9.18	0.000	.5776015	.8912984
lx2	.0695764	.1070855	0.65	0.516	1403074	.2794601
lx3	7141805	.2123963	-3.36	0.001	-1.13047	2978913
lx4	1					
L2.	.6272976	.1612615	3.89	0.000	.3112309	.9433642
_cons	-3.676543	3.229832	-1.14	0.255	-10.0069	2.653812

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L5.(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL4.(ly lx1 lx2 lx3 lx4) collapsed _____ _____ Arellano-Bond test for AR(1) in first differences: z = -2.34 Pr > z = 0.019Arellano-Bond test for AR(2) in first differences: z = -1.64 Pr > z = 0.100_____ Sargan test of overid. restrictions: chi2(29) = 145.04 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(29) = 28.39 Prob > chi2 = 0.497 (Robust, but weakened by many instruments.)

Undergraduate FYP

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(24) = 27.12 Prob > chi2 = 0.299 Difference (null H = exogenous): chi2(5) = 1.27 Prob > chi2 = 0.938 gmm(ly lxl lx2 lx3 lx4, collapse lag(5 5)) Hansen test excluding group: chi2(19) = 23.68 Prob > chi2 = 0.209 Difference (null H = exogenous): chi2(10) = 4.72 Prob > chi2 = 0.909 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(5) = 2.82 Prob > chi2 = 0.728 Difference (null H = exogenous): chi2(24) = 25.58 Prob > chi2 = 0.375

Carbon dioxide emission linear model 49 (developed)

xtabond2 ly 1.ly lx1 l2.lx2 l2.lx3 lx4, gmm(ly lx1 lx2 lx3 lx4, lag(5 1)collapse) iv(time) nolevel h(3)

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, one-step difference GMM

Group variabl Time variable Number of ins Wald chi2(5)	e: : tru	code time ments = 26 26241 41			Number Number Obs pe	of obs of grou r group:	ps = min = avg =	= 673 = 31 = 18 = 21.71
Prob > chi2	=	0.000					max =	= 22
ly		Coef.	Std. Err.	Z	P> z	[95%	Conf	. Interval]
ly	+							
L1.	i I	.0792828	.0156807	5.06	0.000	.048	5493	.1100163
lx1	i i	.7238629	.0157501	45.96	0.000	.692	9932	.7547326
lx2	i.							
L2.		.001188	.004625	0.26	0.797	007	8769	.0102528
lx3	1							
L2.		.5294768	.0523615	10.11	0.000	.426	8501	.6321034
lx4		09991	.0337723	-2.96	0.003	166	1024	0337175

Instruments for first differences equation

Standard D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: iv(time) Sargan test excluding group: chi2(20) = 488.19 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(1) = 4.63 Prob > chi2 = 0.032

Carbon dioxide emission linear model 50 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 l)collapse) iv(time) nolevel two h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic p	panel-d	ata estimat	ion, two-ste <u>r</u>	o differe	ence GMM		
Group var Time vari Number of Wald chi2 Prob > ch	riable: iable : f instr 2(5) = ni2 =	code time uments = 26 31902.39 0.000			Number Number Obs per	of obs = of groups = r group: min = avg = max =	673 31 18 21.71 22
	ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
	ly L1.	.0756192	.0075604	10.00	0.000	.0608012	.0904373
	lx1	.7315017	.010584	69.11	0.000	.7107576	.7522459
	1x2 L2. 	.000875	.000434	2.02	0.044	.0000244	.0017256
	1x3 L2. 	.4704965	.0549312	8.57	0.000	.3628333	.5781598
	lx4	1081845	.0164036	-6.60	0.000	1403349	076034
Warning:	Uncorr	ected two-s	tep standard	errors a	are unrel	iable.	

Maining. Choolicocoa cho coop coanaara circic are anici

Instruments for first differences equation

```
Standard
D.time
```

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ly lx1 lx2 lx3 lx4) collapsed

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogen	eity of in	stru	ment su	bsets:		
iv(time)						
Hansen test excluding group:	chi2(20)	=	25.97	Prob >	chi2 =	0.167
Difference (null H = exogenous):	chi2(1)	=	1.28	Prob >	chi2 =	0.257

Carbon dioxide emission linear model 51 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 l)collapse) iv(time) nolevel two robust h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of ins Wald chi2(5) Prob > chi2	e: code : time truments = 26 = 672.59 = 0.000			Number Number Obs pe	of obs of groups r group: min avg max	= 673 = 31 = 18 = 21.71 = 22
ly	 Coef.	Corrected Std. Err.	Z	₽> z	[95% Conf	. Interval]
ly L1.	.0756192	.0363077	2.08	0.037	.0044574	.1467811
lx1	.7315017	.0546394	13.39	0.000	.6244105	.8385929
1x2 L2.	 .000875 	.0025522	0.34	0.732	0041273	.0058773
lx3 L2.	.4704965	.2398317	1.96	0.050	.000435	.9405581
lx4	1081845	.1057844	-1.02	0.306	3155181	.0991491

Instruments for first differences equation

D.time CMM-type (missing=0 separate instruments for each

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/5).(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time) Hansen test excluding group: chi2(20) = 25.97 Prob > chi2 = 0.167 Difference (null H = exogenous): chi2(1) = 1.28 Prob > chi2 = 0.257

Standard

Carbon dioxide emission linear model 52 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 l)collapse) iv(time) h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 32 = 29657.44 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	705 31 19 22.74 23
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.2819675	.0168437	16.74	0.000	.2489544	.3149807
lx1	.6979187	.0169736	41.12	0.000	.6646512	.7311863
lx2 L2.	0025825	.0067878	-0.38	0.704	0158863	.0107213
lx3 L2.	0587064	.0216219	-2.72	0.007	1010846	0163282
lx4 _cons	6882394 -1.219261	.0309816 .1251968	-22.21 -9.74	0.000	7489623 -1.464642	6275165 9738797
Instruments for Standard D.time GMM-type (mi L(1/5).(1y Instruments for Standard time 	or first diffe lssing=0, sepa / lx1 lx2 lx3 or levels equa lssing=0, sepa lx2 lx3 lx4)	rences equa rate instru lx4) collap tion rate instru collapsed	tion ments for sed ments for	each pe each pe	riod unless c	ollapsed) ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	es: z = es: z =	-3.72 Pr > -3.06 Pr >	z = 0.000 z = 0.002
Sargan test of (Not robust,	overid. rest but not weak	rictions: c ened by man	 hi2(26) y instrum	= 511.5 ents.)	8 Prob > chi	2 = 0.000

Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(21) = 304.47 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(5) = 207.11 Prob > chi2 = 0.000 iv(time) Sargan test excluding group: chi2(25) = 493.23 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(1) = 18.35 Prob > chi2 = 0.000

Carbon dioxide emission linear model 53 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(5 l)collapse) iv(time) two h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time truments = 32 = 18528.92 = 0.000			Number Number Obs pe	of obs = of groups = r group: min = avg = max =	705 31 19 22.74 23
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.2703862	.0085843	31.50	0.000	.2535613	.2872112
lx1	.7020101	.0115774	60.64	0.000	.6793187	.7247015
lx2 L2.	 0031421 	.0011015	-2.85	0.004	005301	0009832
lx3 L2.	 0767243	.0251178	-3.05	0.002	1259544	0274943
lx4 _cons	6537773 -1.294362	.0266893 .1847203	-24.50 -7.01	0.000	7060874 -1.656408	6014673 9323172

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation
 Standard
   D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
  L(1/5).(ly lx1 lx2 lx3 lx4) collapsed
Instruments for levels equation
 Standard
   time
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
  D.(ly lx1 lx2 lx3 lx4) collapsed
_____
                                   _____
Arellano-Bond test for AR(1) in first differences: z = -2.43 Pr > z = 0.015
Arellano-Bond test for AR(2) in first differences: z = -1.69 Pr > z = 0.091
_____
Sargan test of overid. restrictions: chi2(26) = 511.58 Prob > chi2 = 0.000
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(26)
                                        = 28.47 Prob > chi2 = 0.336
 (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
 GMM instruments for levels
   Hansen test excluding group:
                              chi2(21) = 25.78 Prob > chi2 = 0.215
   Difference (null H = exogenous): chi2(5)
                                         =
                                            2.70 Prob > chi2 = 0.747
 iv(time)
   Hansen test excluding group:
                               chi2(25) = 28.47 Prob > chi2 = 0.287
   Difference (null H = exogenous): chi2(1) = 0.00 Prob > chi2 = 0.970
```

Carbon dioxide emission linear model 54 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 lx4, gmm(ly lx1 lx2 lx3 lx4, lag(5 1)collapse) iv(time) two robust h(3) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM -----_____ Group variable: code Number of obs = 705 Number of groups = Time variable : time Number of groups = 31 Obs per group: min = 19 31 Number of instruments = 32 Wald chi2(5) = 721.73 Prob > chi2 = 0.000 avg = 22.74 max = 23 Corrected Coef. Std. Err. ly | [95% Conf. Interval] z P>|z| _____ ly | .2703862 .0685625 3.94 0.000 .1360061 .4047663 L1. | lx1 | .7020101 .0579258 12.12 0.000 .5884776 .8155426 1x2 | L2. | -.0031421 .004205 -0.75 0.455 -.0113838 .0050996 1x3 | L2. | -.0767243 .1706845 -0.45 0.653 -.4112599 .2578112 lx4 | -.6537773 .1539825 -4.25 0.000 -.9555775 -.3519772 _cons | -1.294362 .9090743 -1.42 0.154 -3.076115 .4873904 _____ Instruments for first differences equation Standard D.time GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.08 Pr > z = 0.038Arellano-Bond test for AR(2) in first differences: z = -1.63 Pr > z = 0.102_____ Sargan test of overid. restrictions: chi2(26) = 511.58 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(26) = 28.47 Prob > chi2 = 0.336 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(21) = 25.78 Prob > chi2 = 0.215 Difference (null H = exogenous): chi2(5) = 2.70 Prob > chi2 = 0.747 iv(time) Hansen test excluding group: chi2(25) = 28.47 Prob > chi2 = 0.287 Difference (null H = exogenous): chi2(1) = 0.00 Prob > chi2 = 0.970

Temperature non-linear model 55 (developed)

xtabond2 ly l.ly lx1 l2.lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 5)collapse) iv(time) nolevel h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic	panel-data	estimation,	one-step	difference	GMM
---------	------------	-------------	----------	------------	-----

Group variabl Time variable Number of ins Wald chi2(6) Prob > chi2	.e: : stru = =	code time ments = 31 887.90 0.000			Number Number Obs pe	of obs of groups r group: ma a ma	= in = vg = ax =	735 31 20 23.71 24
ly		Coef.	Std. Err.	Z	₽> z	[95% C	onf.	Interval]
ly L1.	 	.0111168	.0203177	0.55	0.584	02870	52	.0509388
lx1	' 	.6774402	.0349665	19.37	0.000	.60890	71	.7459732
lx2	1							
L2.		.0036149	.0040225	0.90	0.369	00426	92	.0114989
lx3	1	.2393419	.1689399	1.42	0.157	09177	43	.570458
lx4	1	.0322714	.0321066	1.01	0.315	03065	63	.0951991
lx4s	1							
L2.		.0011579	.0053211	0.22	0.828	00927	13	.011587

Instruments for first differences equation

Standard D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: iv(time) Sargan test excluding group: chi2(24) = 92.92 Prob > chi2 = 0.000

Saryan	lest	excit	ιατης	j group:	CHIZ(24)	-	92.92	PLOD	/	CHIZ -	(.000
Differe	ence	(null	Н =	exogenous):	chi2(1)	=	3.32	Prob	>	chi2 =	().068

Temperature non-linear model 56 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 5)collapse) iv(time) nolevel two h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Group variabl	proup variable: code					- 735
Number of ins	Jumber of instruments = 31					· 31
Wald chi2(6)	Wald chi2(6) = 434678.90					23.71
Prob > chi2	= 0.000				max =	24
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lv	+					
L1.	.0133065	.0052783	2.52	0.012	.0029611	.0236518
lx1	.685177	.0080974	84.62	0.000	.6693063	.7010476
lx2	1					
L2.	.0033952	.0004123	8.24	0.000	.0025872	.0042032
lx3	.1998834	.0373906	5.35	0.000	.1265992	.2731675
lx4	.0361938	.0047781	7.57	0.000	.026829	.0455586
lx4s	1					
L2.	.0006882	.0006262	1.10	0.272	0005391	.0019154

Instruments for first differences equation

Standard D.time GMM-type (missing=0, separate instr L(1/5).(ly lx1 lx2 lx3 lx4 lx4s)	ruments for ea collapsed	ch peri	iod unl	less colla	psed)
Arellano-Bond test for AR(1) in first Arellano-Bond test for AR(2) in first	t differences: t differences:	z = z =	3.71 0.34	Pr > z = Pr > z =	0.000 0.735
Sargan test of overid. restrictions: (Not robust, but not weakened by ma	chi2(25) = any instrument	96.24 s.)	Prob	> chi2 =	0.000
Hansen test of overid. restrictions: (Robust, but weakened by many instr	chi2(25) = ruments.)	29.49	Prob	> chi2 =	0.244
Difference-in-Hansen tests of exogene iv(time)	eity of instru	ment sı	ubsets:	:	
Hansen test excluding group:	chi2(24) =	29.35	Prob	> chi2 =	0.207
Difference (null H = exogenous):	chi2(1) =	0.15	Prob	> chi2 =	0.703

Temperature non-linear model 57 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 5)collapse) iv(time) nolevel two robust h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, two-step difference GMM

Group variabl Time variable	e: code : time			Number Number	of obs	=	735 31
Number of ins	truments = 31			Ohs ne	r group.	min =	20
Wold chi2(6)	- 1177 F6			obs pc	r group.		20
	- 11/7.50					avy –	23.71
Prob > chi2	= 0.000					max =	24
		Corrected					
1 17	l Coef	Std Err	7	P>171	[95%	Conf	Intervall
± y	+						
lv	I						
т.1	I 0133065	0264727	0 50	0 615	- 0385	5792	0651921
			0.00	0.010			
lx1	.685177	.0425399	16.11	0.000	.6018	3003	.7685536
lx2	i						
L2.	.0033952	.0027475	1.24	0.217	0019	9899	.0087802
	Ì						
lx3	.1998834	.1809367	1.10	0.269	1547	7461	.5545129
lx4	.0361938	.0472929	0.77	0.444	0564	1986	.1288862
	i						
lx4s	1						
L2.	.0006882	.0066779	0.10	0.918	0124	1003	.0137766

Instruments for first differences equation

D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Arellano-Bond test for AR(1) in first differences: z = 3.40 Pr > z = 0.001 Arellano-Bond test for AR(2) in first differences: z = 0.33 Pr > z = 0.739 Sargan test of overid. restrictions: chi2(25) = 96.24 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(25) = 29.49 Prob > chi2 = 0.244 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time) Hansen test excluding group: chi2(24) = 29.35 Prob > chi2 = 0.207

Difference (null H = exogenous): chi2(1) = 0.15 Prob > chi2 = 0.703

Standard

Temperature non-linear model 58 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 5)collapse) iv(time) h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	: code : time ruments = 38 = 646.87 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	767 31 21 24.74 25
ly	Coef.	Std. Err	. Z	₽> z	[95% Conf.	Interval]
ly L1.	.194293	.083067	2.34	0.019	.0314847	.3571012
lx1	.8805913	.1017474	8.65	0.000	.6811701	1.080013
1x2						
L2.	.0054081	.0281205	0.19	0.847	0497072	.0605233
1 1 v 3	- 7224696	0984052	-7 34	0 000	- 9153402	- 5295989
1x4	.0674247	.1938027	0.35	0.728	3124216	.4472711
lx4s						
L2.	.015501	.0346472	0.45	0.655	0524064	.0834083
_cons	-2.884876	1.377365	-2.09	0.036	-5.584461	1852906
Instruments fo Standard D.time GMM-type (mi L(1/5).(ly Instruments fo Standard time 	r first diffe ssing=0, sepa lx1 lx2 lx3 r levels equa ssing=0, sepa lx2 lx3 lx4 l	rences equ rate instr lx4 lx4s) tion rate instr x4s) colla	ruments for collapsed ruments for apsed	each pe	eriod unless co	ollapsed) ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	es: z = es: z =	1.02 Pr > : -0.07 Pr > :	z = 0.306 z = 0.944
Sargan test of (Not robust,	overid. rest but not weak	rictions: ened by ma	chi2(31) any instrum	= 12.9 ents.)	98 Prob > chi	2 = 0.998
Difference-in-	Sargan tests	of exogene	eity of ins	trument	subsets:	
Sargan tes	t excluding g	- roup:	chi2(25)	= 3.5	0 Prob > chi	2 = 1.000
Difference	(null H = ex	ogenous):	chi2(6)	= 9.4	18 Prob > chi	2 = 0.148
Sargan tes	t excluding g	roup:	chi2(30)	= 4.4	3 Prob > chi	2 = 1.000
Difference	(null H = ex	ogenous):	chi2(1)	= 8.5	64 Prob > chi	2 = 0.003

Temperature non-linear model 59 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 5)collapse) iv(time) two h(1) Favoring space over speed. To switch, type or click on mata: mata set

matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins Wald chi2(6) Prob > chi2	e: code : time truments = 38 = 89755.55 = 0.000			Number Number Obs pe	r of obs = r of groups = r group: min = avg = max =	= 767 = 31 = 21 = 24.74 = 25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly	+					
L1.	.1954286	.006139	31.83	0.000	.1833963	.2074609
lx1	.869461	.0087121	99.80	0.000	.8523856	.8865364
lx2	I					
L2.	.0057757 	.0010051	5.75	0.000	.0038057	.0077456
lx3	7269447	.0200614	-36.24	0.000	7662642	6876252
lx4	.0895358 	.0173802	5.15	0.000	.0554712	.1236003
lx4s	1					
L2.	.0159701	.0022669	7.04	0.000	.011527	.0204132
_cons	-2.629187	.3008927	-8.74	0.000	-3.218926	-2.039448

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation
 Standard
   D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(1/5).(ly lx1 lx2 lx3 lx4 lx4s) collapsed
Instruments for levels equation
 Standard
   time
   cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
  D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed
_____
Arellano-Bond test for AR(1) in first differences: z = 2.40 Pr > z = 0.016
Arellano-Bond test for AR(2) in first differences: z = -0.20 Pr > z = 0.839
                        _____
-----
Sargan test of overid. restrictions: chi2(31) = 12.98 Prob > chi2 = 0.998
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(31)
                                        = 28.24 Prob > chi2 = 0.609
 (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
 GMM instruments for levels
                               chi2(25) = 29.94 Prob > chi2 = 0.226
  Hansen test excluding group:
   Difference (null H = exogenous): chi2(6) = -1.70 Prob > chi2 = 1.000
 iv(time)
                              chi2(30) = 28.24 Prob > chi2 = 0.558
   Hansen test excluding group:
   Difference (null H = exogenous): chi2(1)
                                       = 0.00 Prob > chi2 = 0.975
```

Temperature non-linear model 60 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 5)collapse) iv(time) two robust h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM -------_____ Group variable: code Number of obs = 767 Number of groups = Time variable : time 31 Number of groups = 31 Obs per group: min = 21 Number of instruments = 38 Wald chi2(6) = 735.14 Prob > chi2 = 0.000 avg = 24.74 max = 25 Corrected Coef. Std. Err. ly | [95% Conf. Interval] z P>|z| _____ ly | .1954286 .0592214 3.30 0.001 .0793569 .3115004 L1. | .869461 .0648741 13.40 0.000 .74231 .996612 lx1 | 1x2 | 1.09 0.277 .0057757 .0053153 -.0046421 .0161934 T.2. I 1x3 | -.7269447 .1265883 -5.74 0.000 -.9750532 -.4788362 1x4 | .0895358 .0518848 1.73 0.084 -.0121565 .191228 lx4s | L2. | .0159701 .0090155 1.77 0.076 -.0016999 .0336402 cons | -2.629187 1.730368 -1.52 0.129 -6.020647 .762272 _____ Instruments for first differences equation Standard D.time GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____

Arellano-Bond test for AR(1) in first differences: z = 2.36 Pr > z = 0.018Arellano-Bond test for AR(2) in first differences: z = -0.19 Pr > z = 0.849-----Sargan test of overid. restrictions: chi2(31) = 12.98 Prob > chi2 = 0.998 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(31) = 28.24 Prob > chi2 = 0.609 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(25) = 29.94 Prob > chi2 = 0.226 Difference (null H = exogenous): chi2(6) = -1.70 Prob > chi2 = 1.000 iv(time) Hansen test excluding group: chi2(30) = 28.24 Prob > chi2 = 0.558Difference (null H = exogenous): chi2(1) = 0.00 Prob > chi2 = 0.975

Precipitation non-linear model 61 (developed)

xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 1)collapse) iv(i.time) nolevel h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, one-step difference GMM

Group variable:	code			Number o	f obs	=	735
Time variable :	time			Number o	f groups	=	31
Number of instr	uments = 30			Obs per	group: mi	n =	20
Wald $chi2(6) =$	11613.07			1	av	τα =	23.71
Prob > chi2 =	0 000				ma	- - x =	24
ly	Coef.	Std. Err.	Z	₽> z	[95% Cc	onf.	Interval]
lv							
± y T 1	2998845	0/0821/	7 35	0 000	219876	1	3798929
1 · 1	.2990049	.0100211	1.55	0.000	.219070) <u> </u>	. 57 50 52 5
1 1 1	6986958	0282147	21 76	0 000	613396	51	7530056
1 1	.0000000	.0202147	24.70	0.000	.0433300) 1	.1555550
12							
IXZ	1047071	0400221	2 10	0 036	202504	10	00696
112 ·	104/2/1	.0499331	-2.10	0.030	202394	ŧΖ	00000
183	2262402	1007000	0 1 0	0 000			0004571
L2.	3063423	.139/399	-2.19	0.028	580227	/ 4	0324571
lx4							
L2.	.4214529	.1017105	4.14	0.000	.222103	39	.6208019
lx4s	0010668	.0032266	-0.33	0.741	007390)7	.0052571
Instruments for	first diffe	rences equat	ion				
Standard							

D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2019.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L. (ly lx1 lx2 lx3 lx4 lx4s) collapsed

```
Difference-in-Sargan tests of exogeneity of instrument subsets:
  gmm(ly lxl lx2 lx3 lx4 lx4s, collapse lag(1 1))
  Sargan test excluding group: chi2(l8) = 85.76 Prob > chi2 = 0.000
  Difference (null H = exogenous): chi2(6) = 35.34 Prob > chi2 = 0.000
  iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
  > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
  > e 2015.time 2016.time)
  Sargan test excluding group: chi2(0) = 0.00 Prob > chi2 = .
  Difference (null H = exogenous): chi2(24) = 121.10 Prob > chi2 = 0.000
```

Precipitation non-linear model 62 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 1)collapse) iv(i.time) nolevel two h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation. Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time truments = 30 = 36569.30 = 0.000			Number Number Obs pe	of obs = of groups = r group: min = avg = max =	735 31 20 23.71 24
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.3033391	.0195515	15.51	0.000	.2650188	.3416594
lx1	.7000328	.0127139	55.06	0.000	.6751139	.7249516
lx2 L2.	 1044746	.0114045	-9.16	0.000	1268271	0821221
lx3 L2.	 2875277	.0447234	-6.43	0.000	3751839	1998715
lx4 L2.	.3750527	.0589487	6.36	0.000	.2595155	.49059
lx4s	0024458	.0009728	-2.51	0.012	0043524	0005392

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L.(1y 1x1 1x2 1x3 1x4 1x4s) collapsed

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lxl lx2 lx3 lx4 lx4s, collapse lag(1 1)) Hansen test excluding group: chi2(18) = 24.96 Prob > chi2 = 0.126 Difference (null H = exogenous): chi2(6) = 1.80 Prob > chi2 = 0.937 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(0) = 0.00 Prob > chi2 =

Hansen test excluding group:chi2(0)=0.00Prob > chi2 =.Difference (null H = exogenous):chi2(24)=26.76Prob > chi2 =0.316

Precipitation non-linear model 63 (developed)

matafavor speed, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-

step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 30 = 2236.59 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	735 31 20 23.71 24
ly	Coef.	Corrected Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.3033391	.074489	4.07	0.000	.1573434	.4493348
lx1	.7000328	.0561249	12.47	0.000	.59003	.8100355
lx2 L2.	1044746	.0909141	-1.15	0.250	2826631	.0737138
lx3 L2.	2875277	.1758628	-1.63	0.102	6322125	.0571571
lx4 L2.	.3750527	.1511943	2.48	0.013	.0787173	.6713881
lx4s	0024458	.0033974	-0.72	0.472	0091046	.0042129
2004.time 2011.time GMM-type (m: L.(ly lx1	2005.time 200 2012.time 201 issing=0, sepa 1x2 1x3 1x4 1	06.time 2000 16.time 2007 13.time 2014 arate instrum 1x4s) collaps	.time 200 .time 200 .time 201 nents for sed	15.time 2 08.time 2 15.time 2 r each pe	009.time 2003. 016.time) riod unless co	time bllapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2	l) in first (2) in first (differend differend	ces: z = ces: z =	-1.57 Pr > 2 -1.92 Pr > 2	z = 0.116 z = 0.054
Sargan test of (Not robust, Hansen test of (Robust, but	f overid. rest , but not weak f overid. rest t weakened by	crictions: cl kened by man crictions: cl many instru	ni2(24) y instrur ni2(24) ments.)	= 121.1 ments.) = 26.7	0 Prob > chi2 6 Prob > chi2	2 = 0.000 2 = 0.316
Difference-in- gmm(ly 1x1 1 Hansen tes Difference iv(1990b.tir 7.time 1998.tin > 02.time 2003 9.time 2010.tim	Hansen tests lx2 lx3 lx4 lx st excluding g e (null H = ex ne 1991.time 1 ne 1999.time 2 3.time 2004.ti ne 2011.time 2 2016 time)	of exogenei (4s, collapse group: cl (ogenous): cl 1992.time 19 2000.time 200 ime 2005.time 2012.time 201	ty of ins = lag(1 1 ni2(18) ni2(6) 93.time 1 01.time 2 = 2006.tr 13.time 2	strument 1)) = 24.9 = 1.8 1994.time 20 ime 2007. 2014.tim	subsets: 6 Prob > chi2 0 Prob > chi2 1995.time 199 time 2008.time	2 = 0.126 2 = 0.937 96.time
Hansen tes Difference	st excluding of (null H = ex	group: cl kogenous): cl	ni2(0) ni2(24)	= 0.0 = 26.7	0 Prob > chi2 6 Prob > chi2	2 = .

Precipitation non-linear model 64 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 1)collapse) iv(i.time) h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(6)	: code : time ruments = 37 = 18300.99			Number o Number o Obs per	f obs = f groups = group: min = avg =	767 31 21 24.74
Prob > chi2	= 0.000				max =	25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lv						
L1.	.3671754	.0172035	21.34	0.000	.3334571	.4008936
lx1	.6769016	.0195347	34.65	0.000	.6386142	.7151889
1x2						
L2.	0521365	.0373585	-1.40	0.163	1253579	.0210849
ا ا 2x3						
L2.	60044	.0174985	-34.31	0.000	6347365	5661434
 x4						
L2.	.4521957	.0607976	7.44	0.000	.3330346	.5713568
lx4s	.0101249	.0022845	4.43	0.000	.0056473	.0146025
_cons	-2.819069	.3949636	-7.14	0.000	-3.593183	-2.044954
Instruments fo Standard	or first diffe:	rences equa	tion			
D.(1990b.t	ime 1991.time	1992.time	1993.time	1994.tim	e 1995.time :	1996.time
1997.time	1998.time 199	9.time 2000	.time 200	1.time 20	02.time 2003	.time
2004.time	2005.time 200	6.time 2007	.time 200	8.time 20	09.time 2010	.time
2011.time	2012.time 2013	3.time 2014	.time 201	5.time 20	16.time)	
GMM-type (mi	ssing=0, sepa	rate instru	ments for	each per	iod unless co	ollapsed)
L. (Ly lxl	IXZ IX3 IX4 1:	x4s) coilap ⊧ior	sed			
THAT FUNETIS TO	I LEVELS EQUA					

Standard

1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons

GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed

```
Arellano-Bond test for AR(1) in first differences: z = -5.64 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = 0.57 Pr > z = 0.565
Sargan test of overid. restrictions: chi2(30) = 328.72 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
```

Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(24) = 166.15 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(6) = 162.57 Prob > chi2 = 0.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 1)) Sargan test excluding group: chi2(18) = 110.97 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(12) = 217.75 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim

Undergraduate FYP

```
> e 2015.time 2016.time)
Sargan test excluding group: chi2(6) = 112.58 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(24) = 216.14 Prob > chi2 = 0.000
```

Precipitation non-linear model 65 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 1)collapse) iv(i.time) two h(2)

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time truments = 37 = 67399.54 = 0.000			Number Number Obs pe	of obs = of groups = r group: min = avg = max =	767 31 21 24.74 25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.3692805	.0162936	22.66	0.000	.3373456	.4012154
lx1	.6821644	.0093438	73.01	0.000	.6638509	.7004779
lx2 L2.	 04623	.0244648	-1.89	0.059	0941801	.0017201
lx3 L2.	 6100909 	.0380806	-16.02	0.000	6847274	5354543
lx4 L2.	.4041868	.0421852	9.58	0.000	.3215053	.4868684
lx4s _cons	.0092037 -2.650491	.0011346 .496	8.11 -5.34	0.000 0.000	.00698 -3.622633	.0114274

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

```
Standard
   D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
   1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time
   2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time
   2011.time 2012.time 2013.time 2014.time 2015.time 2016.time)
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L.(ly lx1 lx2 lx3 lx4 lx4s) collapsed
Instruments for levels equation
 Standard
   1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
   1997.time 1998.time 1999.time 2000.time 2001.time 2002.time
   2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time
   2011.time 2012.time 2013.time 2014.time 2015.time 2016.time
   cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed
         _____
Arellano-Bond test for AR(1) in first differences: z = -2.93 Pr > z = 0.003
Arellano-Bond test for AR(2) in first differences: z = 0.30 Pr > z = 0.768
                          ------
Sargan test of overid. restrictions: chi2(30) = 328.72 Prob > chi2 = 0.000
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(30) = 28.78 Prob > chi2 = 0.529
```

Undergraduate FYP

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogen	eity of ir	nstrur	nent su	bsets:		
GMM instruments for levels						
Hansen test excluding group:	chi2(24)	=	28.64	Prob >	chi2 =	0.234
Difference (null H = exogenous):	chi2(6)	=	0.14	Prob >	chi2 =	1.000
gmm(ly lx1 lx2 lx3 lx4 lx4s, colla	pse lag(1	1))				
Hansen test excluding group:	chi2(18)	=	27.74	Prob >	chi2 =	0.066
Difference (null H = exogenous):	chi2(12)	=	1.03	Prob >	chi2 =	1.000
iv(1990b.time 1991.time 1992.time)	1993.time	1994.	time 1	995.time	e 1996.t	ime
1997.time 1998.time 1999.time 2000.time 2	2001.time	20				
> 02.time 2003.time 2004.time 2005.t	ime 2006.t	time 2	2007.ti	me 2008.	time	
2009.time 2010.time 2011.time 2012.time 2	2013.time	2014.	.tim			
> e 2015.time 2016.time)						
Hansen test excluding group:	chi2(6)	=	11.38	Prob >	chi2 =	0.077
Difference (null H = exogenous):	chi2(24)	=	17.39	Prob >	chi2 =	0.831

Precipitation non-linear model 66 (developed)

. xtabond2 ly l.ly lx1 l2.lx2 l2.lx3 l2.lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 1)collapse) iv(i.time) two robust h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable	: code			Number	of obs	= 767
Time variable	: time			Number	of groups	= 31
Number of inst	ruments = 37			Obs per	r group: min	= 21
Wald chi2(6)	= 1690.39				avg	= 24.74
Prob > chi2	= 0.000				max	= 25
		Corrected				
ly	Coef.	Std. Err.	Z	₽> z	[95% Con:	f. Interval]
+ lv						
L1.	.3692805	.0938187	3.94	0.000	.1853992	.5531618
lx1	.6821644	.0667726	10.22	0.000	.5512924	.8130364
lx2						
L2.	04623	.0591274	-0.78	0.434	1621176	.0696575
1x3						
L2.	6100909	.1631239	-3.74	0.000	9298078	2903739
lx4						
L2.	.4041868	.1307069	3.09	0.002	.148006	.6603677
1x4s	.0092037	.0044324	2.08	0.038	.0005165	.017891
_cons	-2.650491	2.556295	-1.04	0.300	-7.660738	2.359756
Instruments fo	r first diffe	erences equat	tion			

Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L.(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard

1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time

2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.14 Pr > z = 0.032Arellano-Bond test for AR(2) in first differences: z = 0.25 Pr > z = 0.800_____ Sargan test of overid. restrictions: chi2(30) = 328.72 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(30) = 28.78 Prob > chi2 = 0.529 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(24) = 28.64 Prob > chi2 = 0.234 Hansen test excluding group: Difference (null H = exogenous): chi2(6) = 0.14 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 1)) Hansen test excluding group: = 27.74 Prob > chi2 = 0.066 chi2(18) = 1.03 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(12) iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(6) = 11.38 Prob > chi2 = 0.077 Difference (null H = exogenous): chi2(24) = 17.39 Prob > chi2 = 0.831
Carbon Dioxide Emission non-linear model 67 (developed)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(i.time) nolevel h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 154 = 2193.16 = 0.000			Number Number Obs per	of obs of groups f group: min = avg = max =	= 673 = 31 = 19 = 21.71 = 22
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf	. Interval]
ly L1.	0011469	.0238031	-0.05	0.962	0478003	.0455064
1x1 1x2	.7314557 .0205278	.018282 .0140192	40.01 1.46	0.000 0.143	.6956237 0069493	.7672878 .0480048
lx3 L2.	.6404775	.1488941	4.30	0.000	.3486504	.9323046
lx4	1434316	.049657	-2.89	0.004	2407576	0461056
lx4s L2.	.0004485	.0022821	0.20	0.844	0040242	.0049213
Standard D. (1990b.t 1997.time 2004.time 2011.time GMM-type (m: L(3/26).(2)	time 1991.time 1998.time 199 2005.time 200 2012.time 201 Lssing=0, sepa	e 1992.time 99.time 2000 96.time 2007 3.time 2014 grate instru 8 1x4 1x4s)	1993.time .time 200 .time 200 .time 201 ments for collapsed	e 1994.ti 01.time 2 08.time 2 5.time 2 c each pe	ime 1995.time 2002.time 2003 2009.time 2010 2016.time) eriod unless o	1996.time 3.time 0.time collapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	ces: z = ces: z =	3.63 Pr > 0.47 Pr >	z = 0.000 z = 0.642
Sargan test of (Not robust,	overid. rest but not weak	crictions: c	 hi2(148) y instrum	= 225.5 nents.)	59 Prob > ch:	i2 = 0.000
Difference-in- gmm(ly lx1 : Sargan tes Difference iv(1990b.tir .time 1998.tin > 02.time 2007	-Sargan tests Lx2 lx3 lx4 lx st excluding g e (null H = ex ne 1991.time 1 ne 1999.time 2	of exogenei 4s, collaps roup: c ogenous): c 992.time 19 000.time 20 me 2005.tim	ty of ins e lag(3 . hi2(16) hi2(132) 93.time 1 01.time 2 e 2006.ti	strument)) = 83.6 = 141.9 .994.time 20 me 2007.	subsets: 59 Prob > ch: 90 Prob > ch: e 1995.time 1! time 2008.tim	i2 = 0.000 i2 = 0.263 996.time

> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time)

```
Sargan test excluding group: chi2(126) = 215.20 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(22) = 10.39 Prob > chi2 = 0.982
```

Carbon Dioxide Emission non-linear model 68 (developed)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(i.time) nolevel two h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of

observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst	: code : time ruments = 15	4		Number Number Obs pe	of obs of groups r group: min	= 673 = 31 n = 19
Wald chi2(6) Prob > chi2	= 56907.58 = 0.000				avç max	y = 21.71 z = 22
ly	Coef.	Std. Err.	Z	₽> z	[95% Cor	nf. Interval]
ly						
L1.	0025286	.0070461	-0.36	0.720	0163387	.0112816
lx1	.732547	.007535	97.22	0.000	.7177787	.7473153
1x2	.0187213	.0112248	1.67	0.095	003279	.0407215
lx3						
L2.	.6225454	.0468859	13.28	0.000	.5306508	.7144401
lx4	1493159	.0361885	-4.13	0.000	220244	0783877
lx4s						
L2.	.0006453	.0012227	0.53	0.598	0017512	.0030418

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ _____

Arellano-Bond test for AR(1) in first differences: z = 2.76 Pr > z = 0.006Arellano-Bond test for AR(2) in first differences: z = 0.42 Pr > z = 0.676_____ Sargan test of overid. restrictions: chi2(148) = 225.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(148) = 30.34 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(3 .)) = 27.09 Prob > chi2 = 0.041 Hansen test excluding group: chi2(16) Difference (null H = exogenous): chi2(132) = 3.25 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group:

chi2(126) = 30.34 Prob > chi2 = 1.000 : chi2(22) = 0.00 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(22) =

Carbon Dioxide Emission non-linear model 69 (developed)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(i.time) nolevel two robust h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-

step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time :ruments = 154 = 1112.19 = 0.000			Number Number Obs per	of obs of groups group: min avg max	= (= = = 21 =	573 31 19 .71 22
ly	Coef.	Corrected Std. Err.	Z	₽> z	[95% Conf	. Interva	al]
ly L1.	0025286	.043716	-0.06	0.954	0882103	.08315	531
 x1 x2	.732547 .0187213	.0346134 .0225639	21.16 0.83	0.000 0.407	.6647061 0255031	.8003 .06294	388 457
1x3 L2.	.6225454	.206343	3.02	0.003	.2181206	1.026	597
lx4	1493159	.0911025	-1.64	0.101	3278735	.02924	117
lx4s L2.	.0006453	.003031	0.21	0.831	0052953	.00658	359
2011.time GMM-type (mi L(3/26).(1 	2012.time 201 .ssing=0, sepa .y 1x1 1x2 1x3 test for AR(1 test for AR(2	3.time 2014 arate instru b 1x4 1x4s) 	.time 201 ments for collapsed difference difference	15.time 2 r each pe d ces: z = ces: z =	2016.time) eriod unless 	<pre>collapsed z = 0.0 z = 0.0</pre>	1) 015 695
Sargan test of (Not robust, Hansen test of (Robust, but	overid. rest but not weak overid. rest weakened by	crictions: c cened by man crictions: c many instru	hi2(148) y instrum hi2(148) ments.)	= 225.5 nents.) = 30.3	9 Prob > ch 4 Prob > ch	i2 = 0.0 i2 = 1.0)00
							JUC
Difference-in- gmm(ly lx1) Hansen tes Difference iv(1990b.tim '.time 1998.tim > 02.time 2003 .time 2010.tim > e 2015.time	Hansen tests x2 1x3 1x4 1x st excluding g e (null H = ex he 1991.time 1 he 1999.time 2 3.time 2004.time 2011.time 2 2016.time)	of exogenei 44s, collaps group: c cogenous): c 992.time 19 000.time 20 me 2005.tim 012.time 20	ty of ins e lag(3 , hi2(16) hi2(132) 93.time 1 01.time 2 e 2006.ti 13.time 2	strument .)) = 27.0 = 3.2 1994.time 20 ime 2007. 2014.tim	subsets: 9 Prob > ch 5 Prob > ch 1995.time 1 time 2008.ti	i2 = 0.(i2 = 1.(996.time me)41)0(

Carbon Dioxide Emission non-linear model 70 (developed)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(i.time) h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Time variable Number of ins Wald chi2(6) Prob > chi2	e: code : time truments = 163 = 558.12 = 0.000	1		Number Number Obs per	of groups = of groups = group: min = avg = max =	22.74 22.74
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval
lv	+ 					
L1.	.2083413	.1203235	1.73	0.083	0274885	.4441713
lx1	.7712171	.1122538	6.87	0.000	.5512036	.991230
1x2	.1293743 	.1338543	0.97	0.334	1329752	.3917238
lx3 L2.	 .0857938	.2430991	0.35	0.724	3906718	.562259
1 4	 	2017071	1 01	0 057	1 044101	017005
1X4	0135476 	.321/2/1	-1.91	0.057	-1.244121	.01/0253
lx4s L2.	 0126602	.0155071	-0.82	0.414	0430535	.017733
cons	 -4.682129	3.012981	-1.55	0.120	-10.58746	1.223200
Standard D. (1990b. 1997.time 2004.time 2011.time GMM-type (m. L (3/26).()	time 1991.tim 1998.time 199 2005.time 200 2012.time 201 issing=0, sep ly 1x1 1x2 1x: pr levels com	e 1992.time 99.time 2000 06.time 2007 13.time 2014 arate instru 3 lx4 lx4s) ation	1993.time 2.time 200 2.time 200 2.time 201 2.time 201 2.time 201 2.time 201	e 1994.ti 01.time 2 08.time 2 15.time 2 r each pe d	me 1995.time 2002.time 2003 2009.time 2010 2016.time) eriod unless c	1996.time .time .time ollapsed)
Standard D. (1990b.' 1997.time 2004.time GMM-type (m. L (3/26).() Instruments fo Standard 1990b.time 1997.time 2004.time 2011.time _cons	time 1991.time 1998.time 199 2005.time 200 2012.time 200 issing=0, sepa by 1x1 1x2 1x3 or levels equa e 1991.time 199 2005.time 200 2012.time 200	e 1992.time 99.time 2000 06.time 2007 13.time 2014 arate instru 3 1x4 1x4s) ation 992.time 199 99.time 2000 06.time 2007 13.time 2014	1993.time 2.time 200 2.time 201 ments for collapsed 93.time 19 2.time 200 2.time 200 2.time 201	e 1994.ti 01.time 2 08.time 2 15.time 2 c each pe d 994.time 01.time 2 08.time 2	me 1995.time 2002.time 2003 2009.time 2010 2016.time) eriod unless c 1995.time 199 2002.time 2003 2009.time 2010	1996.time .time ollapsed) 6.time .time
Standard D. (1990b.' 1997.time 2004.time GMM-type (m. L (3/26).() Instruments fo Standard 1990b.time 2004.time 2011.time _cons GMM-type (m. DL2.(ly 1:	time 1991.time 1998.time 199 2005.time 200 2012.time 200 issing=0, sepa by 1x1 1x2 1x3 or levels equa e 1991.time 199 2005.time 200 2012.time 200 issing=0, sepa x1 1x2 1x3 1x3	e 1992.time 99.time 2000 06.time 2007 13.time 2014 arate instru 3 1x4 1x4s) ation 992.time 199 99.time 2000 06.time 2007 13.time 2014 arate instru 4 1x4s) coll	1993.time 2.time 200 2.time 201 ments for collapsed 0.time 200 2.time 200 2.time 200 2.time 201 ments for apsed	e 1994.ti 01.time 2 08.time 2 15.time 2 c each pe d 094.time 01.time 2 08.time 2 15.time 2 c each pe	me 1995.time 2002.time 2003 2009.time 2010 2016.time) eriod unless c 1995.time 199 2002.time 2003 2009.time 2010 2016.time eriod unless c	1996.time .time ollapsed) 6.time .time .time ollapsed)
Standard D. (1990b. 1997.time 2004.time 2011.time GMM-type (m. L(3/26).() Instruments for Standard 1990b.time 2004.time 2004.time 2011.time 	time 1991.time 1998.time 199 2005.time 200 2012.time 201 issing=0, sepa ly 1x1 1x2 1x3 or levels equa e 1991.time 199 2005.time 200 2012.time 201 issing=0, sepa x1 1x2 1x3 1x3 test for AR(1)	e 1992.time 99.time 2000 06.time 2007 13.time 2014 arate instru 3 lx4 lx4s) ation 992.time 199 99.time 2000 06.time 2014 arate instru 4 lx4s) coll 	1993.time 20.time 200 2.time 201 ments for collapsed 2.time 200 2.time 200 2.time 200 ments for apsed difference difference	e 1994.ti 01.time 2 08.time 2 15.time 2 15.time 2 c each pe d 094.time 2 08.time 2 15.time 2 c each pe ces: z = ces: z =	<pre>me 1995.time 2002.time 2003 2009.time 2010 2016.time) eriod unless c 2009.time 2003 2009.time 2010 2016.time eriod unless c -0.63 Pr > 0.27 Pr ></pre>	1996.time .time ollapsed) 6.time .time .time ollapsed) z = 0.53(z = 0.78)
Standard D. (1990b.' 1997.time 2004.time GMM-type (m. L(3/26).() Instruments fo Standard 1990b.time 2004.time 2011.time cons GMM-type (m. DL2.(ly l: 	time 1991.time 1998.time 199 2005.time 200 2012.time 200 2012.time 200 issing=0, sepa by 1x1 1x2 1x3 or levels equa e 1991.time 199 2005.time 200 2012.time 200 issing=0, sepa x1 1x2 1x3 1x3 test for AR (1 test for AR (2 test for AR (2) test for AR (2) test for AR (2) test for AR (2) test for AR (2)	e 1992.time 99.time 2000 06.time 2007 13.time 2014 arate instru 3 1x4 1x4s) ation 992.time 199 99.time 2000 06.time 2007 13.time 2014 arate instru 4 1x4s) coll 	1993.time 2.time 200 2.time 201 ments for collapsed 3.time 10 2.time 200 2.time 200 2.time 200 2.time 201 ments for apsed difference difference thi2(154) y instrum	e 1994.ti 01.time 2 08.time 2 15.time 2 15.time 2 15.time 2 10.time 2	<pre>me 1995.time 2002.time 2003 2009.time 2010 2016.time) eriod unless c 1995.time 199 2002.time 2010 2016.time eriod unless c -0.63 Pr > 0.27 Pr > -0.63 Pr > -0.63 Pr > 0.27 Pr > -0.63 Pr > -0.63 Pr > 0.27 Pr > -0.63 Pr > -0.63 Pr > 0.27 Pr > -0.64 Prob > chi</pre>	1996.time .time ollapsed) 6.time .time ollapsed) z = 0.53 z = 0.78 2 = 1.00

> e 2015.time 2016.time)

Sargan test excluding group: chi2(132) = 7.19 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(22) = 4.75 Prob > chi2 = 1.000

Carbon Dioxide Emission non-linear model 71 (developed)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(i.time) two h(1) Favoring space over speed. To switch, type or click on mata: mata set

matafavor speed, perm.
Warning: Number of instruments may be large relative to number of
observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for twostep estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time truments = 161 = 11605.93 = 0.000	L		Number Number Obs pe:	of obs = of groups = r group: min = avg = max =	705 31 21 22.74 23
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.2046158	.0170993	11.97	0.000	.1711019	.2381298
lx1 lx2	.7787567 .118856	.0205378 .0539736	37.92 2.20	0.000 0.028	.7385033 .0130697	.8190102 .2246423
lx3 L2.	.0757243	.0931374	0.81	0.416	1068217	.2582703
lx4	6160005	.0444609	-13.85	0.000	7031423	5288587
lx4s L2.	 0120112	.0024661	-4.87	0.000	0168447	0071777
_cons	-4.651056	.9265456	-5.02	0.000	-6.467052	-2.83506

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL2.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -2.24 Pr > z = 0.025Arellano-Bond test for AR(2) in first differences: z = 1.53 Pr > z = 0.127_____ Sargan test of overid. restrictions: chi2(154) = 11.94 Prob > chi2 = 1.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(154) = 30.28 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(148) = 27.98 Prob > chi2 = 1.000 : chi2(6) = 2.30 Prob > chi2 = 0.891 Hansen test excluding group: Difference (null H = exogenous): chi2(6) gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(3 .)) Hansen test excluding group: chi2(16) = 23.68 Prob > chi2 = 0.097 Difference (null H = exogenous): chi2(138) = 6.60 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(132) = 30.28 Prob > chi2 = 1.000 Hansen test excluding group: Difference (null H = exogenous): chi2(22) = -0.00 Prob > chi2 = 1.000

Carbon Dioxide Emission non-linear model 72 (developed)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(i.time) two robust h(1)

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, $\ensuremath{\mathsf{perm}}$.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-

step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable	e: code			Number	of obs =	705
Time variable	: time			Number	of groups =	31
Number of inst	cruments = 161			Obs per	group: min =	21
Wald chi2(6)	= 744.00				avg =	22.74
Prob > chi2	= 0.000				max =	23
		Corrected				
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	+					
ly						
L1.	.2046158	.0521947	3.92	0.000	.102316	.3069156
lx1	.7787567	.05736	13.58	0.000	.6663331	.8911803
lx2	.118856	.1391071	0.85	0.393	1537888	.3915008
lx3						
L2.	.0757243	.3219767	0.24	0.814	5553384	.7067869
lx4	6160005	.1973239	-3.12	0.002	-1.002748	2292527
lx4s						
L2.	0120112	.0068665	-1.75	0.080	0254692	.0014468
_cons	-4.651056	2.387429	-1.95	0.051	-9.330331	.0282191
Instruments fo	or first diffe	rences equa	 tion			
Standard		1				
D.(1990b.t	time 1991.time	1992.time	1993.time	1994.ti	me 1995.time	1996.time
1997.time	1998.time 199	9.time 2000	.time 200	1.time 2	002.time 2003	.time
2004.time	2005.time 200	6.time 2007	.time 200	8.time 2	009.time 2010	.time
2011.time	2012.time 201	3.time 2014	.time 201	5.time 2	016.time)	
GMM-type (mi	issing=0, sepa	rate instru	ments for	each pe	riod unless c	ollapsed)
L(3/26).(]	ly 1x1 1x2 1x3	lx4 lx4s)	collapsed	-		
Instruments fo	or levels equa	tion				
Standard						
1990b.time	e 1991.time 19	92.time 199	3.time 19	94.time	1995.time 199	6.time
1997.time	1998.time 199	9.time 2000	.time 200	1.time 2	002.time 2003	.time
2004 time	2005 time 200	6 time 2007	time 200	8 time 2	009 time 2010	time

2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.t 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time

cons

(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(154) = 30.28 Prob > chi2 = 1.000
(Robust, but weakened by many instruments.)

```
Difference-in-Hansen tests of exogeneity of instrument subsets:
     GMM instruments for levels
                                      chi2(148) = 27.98 Prob > chi2 = 1.000
       Hansen test excluding group:
       Difference (null H = exogenous): chi2(6)
                                                 -
                                                    2.30 Prob > chi2 = 0.891
     gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(3 .))
       Hansen test excluding group: chi2(16) = 23.68 Prob > chi2 = 0.097
       Difference (null H = exogenous): chi2(138) = 6.60 Prob > chi2 = 1.000
     iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
   > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time
2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim
   > e 2015.time 2016.time)
                                      chi2(132) = 30.28 Prob > chi2 = 1.000
       Hansen test excluding group:
       Difference (null H = exogenous): chi2(22) = -0.00 Prob > chi2 = 1.000
```

Temperature linear model 73 (developing)

xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse)
iv(time) nolevel h(2)
Favoring space over speed. To switch, type or click on mata: mata set
matafavor speed, perm.
Warning: Number of instruments may be large relative to number of
observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable: Time variable : Number of instru Wald chi2(5) = Prob > chi2 =	code time ments = 126 36539.83 0.000	5		Number Number Obs per	of obs of group group:	= min = avg = max =	2630 119 2 22.10 25
ly	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
ly L1. 1x1 1x2 1x3 1x4	.34225 .5690137 .0398887 3688609 .2305028	.0252862 .0225503 .0755041 .0407594 .1378686	13.54 25.23 0.53 -9.05 1.67	0.000 0.000 0.597 0.000 0.095	.292 .52 108 448 039	6899 4816 0965 7478 7147	.39181 .6132115 .187874 288974 .5007203

Instruments for first differences equation

```
Standard
```

D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4) collapsed

Arellano-Bond test for AR(1) in first differences: z = -15.07 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = 0.90 Pr > z = 0.369

Sargan test of overid. restrictions: chi2(121) = 311.24 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Difference-in-Sargan tests of exogeneity of instrument subsets:

iv(time)				
Sargan test excluding group:	chi2(120)	= 310.63	Prob > chi2 =	0.000
Difference (null H = exogenous):	chi2(1)	= 0.61	Prob > chi2 =	0.435

Temperature linear model 74 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) nolevel two h(2)

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 12 = 8.23e+06 = 0.000	6		Number Number Obs pe	of obs = of groups = r group: min = avg = max =	2630 119 22.10 25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1. 1x1 1x2 1x3 1x4	.341829 .5689508 .0385227 3673582 .225129	.0015583 .0005947 .0030779 .0088861 .0082228	219.36 956.76 12.52 -41.34 27.38	0.000 0.000 0.000 0.000 0.000	.3387748 .5677853 .0324901 3847746 .2090127	.3448832 .5701163 .0445553 3499419 .2412454

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation

```
Standard
D.time
```

iv(time)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4) collapsed

Arellano-Bond test for AR(1) in first differences: z = -1.45 Pr > z = 0.147Arellano-Bond test for AR(2) in first differences: z = 0.38 Pr > z = 0.703Sargan test of overid. restrictions: chi2(121) = 311.24 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(121) = 118.30 Prob > chi2 = 0.552
(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

Hansen test	excluding group	chi2(120)	= 118.30	Prob > chi2 =	0.527
Difference	(null H = exogene	ous): chi2(1)	= 0.00	Prob > chi2 =	1.000

Temperature linear model 75 (developing)

. xtabond2 ly iv(time) nolevel f Favoring space matafavor speed, p Warning: Numbe observations. Warning: Two- Using a gene step estimation. Difference-	<pre>1.ly lx1 lx2 two robust h(2 e over speed. perm. er of instrume step estimated eralized inven in-Sargan/Hans</pre>	1x3 1x4, gm To switch, ents may be d covariance rse to calcu sen statisti	m(ly lx1 type or c large rel matrix c late opti cs may be	<pre>lx2 lx3 click on lative tc of moment imal weig e negativ</pre>	<pre>lx4,lag(2 .) mata: mata s o number of cs is singula hting matrix re.</pre>	collapse) et r. for two-
Dynamic panel	-data estimat:	ion, two-ste	p differe	ence GMM		
Group variable Time variable Number of ins Wald chi2(5) Prob > chi2	e: code : time truments = 120 = 3771.91 = 0.000	5		Number Number Obs per	of obs of groups group: min avg max	= 2630 = 119 = 2 = 22.10 = 25
ly	 Coef.	Corrected Std. Err.	Z	P> z	[95% Conf	. Interval]
ly L1.	.341829	.0523788	6.53	0.000	.2391685	.4444895
1x1 1x2 1x3 1x4	.5689508 .0385227 3673582 .225129	.046597 .0720463 .0993974 .2333234	12.21 0.53 -3.70 0.96	0.000 0.593 0.000 0.335	.4776224 1026855 5621736 2321765	.6602792 .1797309 1725429 .6824346
Instruments for Standard D.time GMM-type (m. L(2/26).() Arellano-Bond Arellano-Bond	or first diffe issing=0, sepa ly lx1 lx2 lx3 test for AR(1 test for AR(1	erences equa arate instru 3 lx4) colla 	ments for psed difference	ceach pe ces: z =	-1.45 Pr >	collapsed) z = 0.147 z = 0.703
Sargan test o: (Not robust, Hansen test o:	f overid. rest but not weak overid. rest	crictions: c crictions: c cened by man	hi2(121) y instrum hi2(121)	= 311.2 nents.) = 118.3	24 Prob > ch	i2 = 0.000 i2 = 0.552

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogene	eity of ins	trument	subsets:		
iv(time)					
Hansen test excluding group:	chi2(120)	= 118.3	80 Prob >	chi2 =	0.527
Difference (null H = exogenous):	chi2(1)	= 0.0	0 Prob >	chi2 =	1.000

Temperature linear model 76 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4, lag(2 .)collapse) iv(time) h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Dynamic panel-data estimation, one-step system GMM _____ Number of obs = 2749 Group variable: code Number of groups = Time variable : time 119 Number of instruments = 132 Obs per group: min = 3 23.10 Wald chi2(5) = 95964.24 avg = Prob > chi2 = 0.000 max = 26 _____ ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] ______ ly | .5009808 .018048 27.76 0.000 .4656074 .5363542 T.1. I 1x1.4571792.017282126.450.000.4233069.49105161x2.0116188.06935780.170.867-.1243199.14755751x3-.3594095.036355-9.890.000-.4306639-.2881551 .4910516

 lx4 |
 -.267835
 .0187677
 -14.27
 0.000
 -.3046189

 _cons |
 -.088763
 .7322416
 -0.12
 0.904
 -1.52393

 -.231051 1.346404 _____ Instruments for first differences equation Standard D.time GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4) collapsed Instruments for levels equation Standard time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(ly lx1 lx2 lx3 lx4) collapsed _____ _____ Arellano-Bond test for AR(1) in first differences: z = -16.32 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = 0.01 Pr > z = 0.996_____ Sargan test of overid. restrictions: chi2(126) = 508.61 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(121) = 364.95 Prob > chi2 = 0.000 Sargan test excluding group: Difference (null H = exogenous): chi2(5) = 143.66 Prob > chi2 = 0.000 iv(time) Sargan test excluding group: chi2(125) = 507.15 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(1) = 1.46 Prob > chi2 = 0.227

Temperature linear model 77 (developing)

iv(t mata obse step	. xtabond2 ly ime) two h(2) Favoring space favor speed, p Warning: Numbe rvations. Warning: Two-s Using a gene estimation. Difference-: Dynamic panel-	<pre>1.ly lx1 lx2 e over speed. perm. er of instrume step estimated eralized inver in-Sargan/Hans -data estimati</pre>	1x3 1x4, o To switch, ents may be covariand se to calc en statist	gmm(ly lx1 type or c e large rel ce matrix o culate opti cics may be cep system	1x2 1x3 1 click on m ative to of moments mal weigh e negative GMM	x4,lag(nata: ma number s is sin ting ma	2 .)c ta se of gular trix	olla t for	pse) two-
	Group variable	e: code			Number o	of obs	=		2749
	Time variable	: time			Number o	of group	s =		119
	Number of inst	truments = 132			Obs per	group:	min =		3
	Wald chi2(5)	= 3.93e+06					avg =		23.10
	Prob > chi2	= 0.000					max =		26
	ly	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Int	erval]
	 l v	+ 							
	L1.	.5004964	.0014324	349.42	0.000	.497	689	.5	033038
	lx1	.45724	.0007986	572.59	0.000	.4556	748	.4	588051
	lx2	.0130298	.002718	4.79	0.000	.0077	026		018357
	lx3	3587685	.0067049	-53.51	0.000	3719	098	3	456272
	lx4	2676621	.0071486	-37.44	0.000	281	673	2	536511
	_cons	1102958	.0892814	-1.24	0.217	2852	842	.0	646926
	Instruments for Standard D.time GMM-type (m: L(2/26).(1 Instruments for Standard time 	or first diffe issing=0, sepa ly lx1 lx2 lx3 or levels equa issing=0, sepa l lx2 lx3 lx4)	rate instr (1x4) coll tion rate instr collapsed	nation ruments for apsed ruments for	each per	riod unl	ess c ess c	olla olla	psed) psed)
	Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc	ces: z =	-2.03 0.00	Pr > Pr >	z = z = 	0.043
	(Not robust	e overid. rest	rictions:	CD12(126)	= 508.61	. Prob	> chi	∠ =	0.000
	Hansen test o: (Robust, but	f overid. rest t weakened by	rictions: many inst	chi2(126) ruments.)	= 118.03	8 Prob	> chi	2 =	0.681
	Difference-in GMM instrume	-Hansen tests ents for level	of exogene .s	eity of ins	strument s	subsets:			
	Hansen tes	st excluding a	roup:	chi2(121)	= 118.09) Prob	> chi	2 =	0.558
	Difference iv(time)	e (null H = ex	ogenous):	chi2(5)	= -0.06	5 Prob	> chi	2 =	1.000
	Hansen te:	st excluding g	roup:	chi2(125)	= 118.03	8 Prob	> chi	2 =	0.658
	Difference	e (null H = ex	ogenous):	chi2(1)	= 0.00) Prob	> chi	2 =	0.973

Temperature linear model 78 (developing)

iv(t	. xtabond2 ly ime) two robus Favoring space	<pre>l.ly lx1 lx2 st h(2) e over speed.</pre>	lx3 lx4, c To switch,	gmm(ly lx1 type or c	lx2 lx3 l	lx4,lag mata: ma	(2 .)c ata se	olla t	ipse)
mata	favor speed, p	perm.							
obse	Warning: Numbervations.	er of instrume	ents may be	e large rel	ative to	number	of		
	Warning: Two-: Using a gene	step estimated eralized inver	d covariand se to calc	ce matrix o culate opti	f moments mal weigh	s is sir nting ma	ngular atrix	for	two-
step	estimation.	51411204 1.1.VOI	00 00 0410	Julueo opol	mar norgi	101119 1		101	0110
	Difference-:	in-Sargan/Hans	sen statist	ics may be	negative	۶.			
	Dynamic panel·	-data estimati	lon, two-st	tep system	GMM				
	Group variable	e: code			Number o	of obs	=		2749
	Time variable	: time			Number o	of group	ps =		119
	Number of inst Wald chi2(5)	truments = 132 - 1926 95	2		Obs per	group:	min =		3 23 10
	Prob > chi2	= 0.000					max =	:	23.10
	,		Corrected	1		1050	G + + C	T . 1	
	Y	Coer. +	Sta. Err.	. z	P> Z	[95% 	Conr.	1nt	erval]
	ly								
	L1.	.5004964	.0485652	10.31	0.000	.4053	3104	• 5	956823
	lx1	.45724	.0453332	10.09	0.000	.3683	3885	.5	5460914
	lx2	.0130298	.0682092	0.19	0.849	1200	6577	.1	467173
	lx3	3587685	.0918013	-3.91	0.000	5386	6958	1	788413
	lx4	2676621	.1090644	-2.45	0.014	4814	4244	0	538997
		1102958	1.210945	-0.09	0.927	-2.483	3705	2.	263114
	Instruments for Standard D.time GMM-type (m: L(2/26).(1 Instruments for Standard time cons	or first diffe issing=0, sepa ly lx1 lx2 lx3 or levels equa	erences equ arate instr 3 1x4) coll ation	uation ruments for Lapsed	each pei	riod unl	less c	olla	apsed)
	GMM-type (m: DL.(ly lx)	issing=0, sepa 1 lx2 lx3 lx4)	arate instr collapsed	ruments for 1	each pei	riod unl	less c	olla	psed)
		£ 37 /3	· · · · · · · ·						0.040
	Arellano-Bond	test for AR()	l) in first 2) in first	differenc	es: z =	-2.02	Pr >	z =	0.043
	Sargan test of	f overid. rest	crictions:	chi2(126)	= 508.61	Prob	> chi	2 =	0.000
	(Not robust,	, but not weak	ened by ma	any instrum	ents.)			0	0 601
	(Robust, but	t overid. rest t weakened by	many inst	chi2(126) cuments.)	= 118.03	S Prob	> chi	2 =	0.681
	Difference-in GMM instrume	-Hansen tests ents for level	of exogene	eity of ins	trument s	subsets:	:		
	Hansen tes	st excluding o	group:	chi2(121)	= 118.09) Prob	> chi	2 =	0.558
	Difference iv(time)	e (null H = ex	(ogenous):	chi2(5)	= -0.00	5 Prob	> chi	2 =	1.000
	Hansen tes Difference	st excluding o e (null H = ex	group: kogenous):	chi2(125) chi2(1)	= 118.03	B Prob D Prob	> chi > chi	2 =	0.658 0.973

Temperature non-linear model 79 (developing)

xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of ins Wald chi2(6) Prob > chi2	.e: e: stru = =	code time ments = 18 46615.72 0.000	0		Number Number Obs pe:	of obs of group r group:	= min = avg = max =	2540 119 2 21.34 24
ly		Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
ly L1. lx1	 	.4720722	.0119621 .0104866	39.46 38.85	0.000	. 4486	5268 3177	.4955176
lx2 lx3		.013457	.0148032	0.91	0.363	0155	5567	.0424708
lx4 lx4s		.1979155 0001982	.0599991	-3.13 3.30 -0.01	0.002 0.001 0.994	1373 .0803 0553	3194 3738	.3155117 .0549773

Instruments for first differences equation

Standard

D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Arellano-Bond test for Arellano-Bond test for	AR(1) in first differences AR(2) in first differences	s: $z = -16.54$ s: $z = -0.37$	Pr > z = Pr > z =	0.000 0.713
Sargan test of overid.	restrictions: chi2(174) =	=1529.87 Prob	> chi2 =	0.000
(Not robust, but not	weakened by many instrumer	nts.)		

Difference-in-Sargan tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Sargan test excluding group: chi2(18) = 56.29 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(156) =1473.58 Prob > chi2 = 0.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim

> e 2015.time 2016.time)

Sargan test excluding group: chi2(150) =1494.66 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(24) = 35.20 Prob > chi2 = 0.065

Temperature non-linear model 80 (developing)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel two Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variabl	e:	code			Number	of obs	= 2540 = 119
	•	CTINC 400			IN UNIDEL	or groups	110
Number of ins	tru	uments = 180)		Obs pei	r group: min	= 2
Wald chi2(6)	=	1.32e+07				avg	= 21.34
Prob > chi2	=	0.000				max	= 24
ly		Coef.	Std. Err.	Z	₽> z	[95% Conf	. Interval]
ly	+						
L1.	i.	.4699273	.0022698	207.04	0.000	.4654787	.474376
	i						
lx1	1	.4087191	.0014878	274.71	0.000	.405803	.4116352
lx2		.0132314	.0013636	9.70	0.000	.0105588	.0159039
	1						
lx3	1						
L2.		0749162	.0081147	-9.23	0.000	0908207	0590117
lx4		.2025089	.0101901	19.87	0.000	.1825366	.2224811
lx4s	1	0014178	.0033137	-0.43	0.669	0079125	.0050768

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) ${\rm L\,}(1/26)\,.\,(ly~lx1~lx2~lx3~lx4~lx4s)$ collapsed -----_____ Arellano-Bond test for AR(1) in first differences: z = -2.15 Pr > z = 0.032Arellano-Bond test for AR(2) in first differences: z = -0.20 Pr > z = 0.841_____ Sargan test of overid. restrictions: chi2(174) =1529.87 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(174) = 116.92 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) = 42.33 Prob > chi2 = 0.001 Hansen test excluding group: chi2(18) Difference (null H = exogenous): chi2(156) = 74.60 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(150) = 116.92 Prob > chi2 = 0.979 Difference (null H = exogenous): chi2(24) = -0.00 Prob > chi2 = 1.000

Temperature non-linear model 81 (developing)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) nolevel two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference $\ensuremath{\mathsf{GMM}}$

Group variable	: code			Number	of obs =	2540
Time variable	: time			Number	of groups =	. 119
Number of inst	ruments = 180			Obs per	group: min =	- 2
Wald chi2(6)	= 5326.34				avg =	21.34
Prob > chi2	= 0.000				max =	24
		Corrected				
lv l	Coef.	Std. Err.	Z	P> z	[95% Conf.	Intervall
+						
ly						
L1.	.4699273	.0877	5.36	0.000	.2980385	.6418161
 x1	.4087191	.090435	4.52	0.000	.2314697	.5859685
1x2	.0132314	.0102734	1.29	0.198	0069041	.0333668
1x3						
L2.	0749162	.1201732	-0.62	0.533	3104513	.1606189
lx4	.2025089	.0525676	3.85	0.000	.0994783	.3055395
lx4s	0014178	.0313447	-0.05	0.964	0628522	.0600166
2011.time GMM-type (mi L(1/26).(1	2012.time 201 ssing=0, sepa y 1x1 1x2 1x3	3.time 2014 rate instrum 1x4 1x4s) of	time 201 nents for collapsed	l5.time 2 c each pe d	016.time) riod unless c	collapsed)
Arellano-Bond	test for AR(1) in first (differenc	ces: z =	-0.20 Pr >	z = 0.032 z = 0.844
Sargan test of	overid. rest	rictions: ch	ni2(174)	=1529.8	7 Prob > chi	2 = 0.000
(Not robust, Hansen test of (Robust, but	but not weak overid. rest weakened by	ened by many rictions: ch many instrur	y instrur ni2(174) nents.)	nents.) = 116.9	2 Prob > chi	.2 = 1.000
Difference-in- gmm(ly lx1 l	Hansen tests x2 1x3 1x4 1x	of exogeneit 4s, collapse	cy of ins e lag(1 .	strument .))	subsets:	
Hansen tes	t excluding g	roup: ch	ni2(18)	= 42.3	3 Prob > chi	2 = 0.001
Difference	(null H = ex	ogenous): ch	ni2(156)	= 74.6	0 Prob > chi	2 = 1.000
1007 time 1000	le 1991.time 1	992.time 199	3.time 1	1994.time	1995.time 19	96.time
> 02 time 2003	.time 1999.ti	me 2000.time	2001.CI	ime 2007	time 2008 tim	0 2009 time
2010 time 2003	time 2004.01	me 2013.time	2000.L	im	CTHE 2000.CTH	C 2009.CINE
> e 2015.time	2016.time)					
Hansen tes	t excluding a	roup: ch	ni2(150)	= 116.9	2 Prob > chi	2 = 0.979
Difference	e (null H = ex	ogenous): ch	ni2(24)	= -0.0	0 Prob > chi	2 = 1.000

Temperature non-linear model 82 (developing)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable	e: code : time			Number Number	of obs = of groups =	= 2659 = 119
Number of inst	cruments = 187			Obs per	group: min =	= 3
Wald chi2(6)	= 65706.09				avg =	22.34
Prob > chi2	= 0.000				max =	= 25
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
1 lv						
L1.	.5228982	.009666	54.10	0.000	.5039531	.5418433
lx1	.4322457	.0092075	46.94	0.000	.4141994	.4502921
1x2	.0087966	.0154328	0.57	0.569	0214512	.0390443
lx3						
L2.	3617299	.0163616	-22.11	0.000	3937981	3296618
lx4	.3524202	.0624829	5.64	0.000	.2299558	.4748845
lx4s	1157276	.0116173	-9.96	0.000	1384972	0929581
_cons	4402121	.2205728	-2.00	0.046	8725269	0078973
Instruments fo	or first diffe:	rences equa	tion			
Standard						
D.(1990b.t 1997.time 2004.time 2011.time	1991.time 1998.time 1999 2005.time 2009 2012.time 2013	1992.time 9.time 2000 5.time 2007 3.time 2014	1993.time .time 200 .time 200 .time 201	e 1994.tı 01.time 2 08.time 2 .5.time 2	me 1995.time 2002.time 2003 2009.time 2010 2016.time)	1996.time 8.time 0.time
GMM-type (mi	ssing=0, sepa:	rate instru	ments for	each pe	riod unless c	collapsed)
L(1/26).(1	y 1x1 1x2 1x3	lx4 lx4s)	collapsed	l		
Instruments ic	or levels equat	lon				
1990b time	1991 +ima 19	92 +ime 190	13 time 19	94 + ima	1995 + ima 190	16 time
1997.time	1998.time 199	9.time 2000	.time 200)1.time 2	002.time 2003	.time
2004.time	2005.time 200	5.time 2007	.time 200	8.time 2	009.time 2010	.time
2011.time	2012.time 2013	3.time 2014	.time 201	5.time 2	016.time	
_cons						
GMM-type (mi D.(ly lx1	.ssing=0, sepa: lx2 lx3 lx4 l:	rate instru «4s) collap	ments for sed	each pe	eriod unless c	collapsed)
Arellano-Bond	test for AR(1)) in first	differenc	es: z =	-16.99 Pr >	z = 0.000
Arellano-Bond	test for AR(2)	in first	differenc	es: z =	-0.12 Pr >	z = 0.902
Sargan test of (Not robust,	overid. rest but not weak	rictions: c ened by man	hi2(180) y instrum	=1890.4 ments.)	.2 Prob > chi	.2 = 0.000
Difference-in-	-Sargan tests o	of exogenei	ty of ins	strument	subsets:	
Sargan tes	st excluding g	ຸດແດງ	hi2(174)	=1590.0	4 Prob > chi	2 = 0.000
Difference	e (null H = exc	ogenous): c	hi2(6)	= 300.3	8 Prob > chi	2 = 0.000
gmm(ly lx1 l	.x2 lx3 lx4 lx4	4s, collaps	e lag(1 .))		
Sargan tes	st excluding g	roup: c	hi2(18)	= 74.5	9 Prob > chi	2 = 0.000
Difference	e (null H = exc	ogenous): c	hi2(162)	=1815.8	3 Prob > chi	2 = 0.000
iv(1990b.tin	ne 1991.time 1	992.time 19	93.time 1	.994.time	1995.time 19	96.time
> 02 time 2003	3.time 1999.tii 8 time 2004 tiv	ne 2000.t1m ne 2005 +;∞	ue ∠UUI.ti ue 2006 +;	.IIIE ∠U me 2007	+ime 2008 +im	a 2009 +ima
2010.time 2011		ne 2003.tin ne 2013.tin	le 2000.ti	.m. 2007.	CIME 2000.CIN	.c 2007.cille

> e 2015.time 2016.time)

Sargan test excluding group: chi2(156) =1749.39 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(24) = 141.03 Prob > chi2 = 0.000

Temperature non-linear model 83 (developing)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) two Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variabl Time variable Number of ins Wald chi2(6) Prob > chi2	e: code : time truments = 18' = 3.53e+06 = 0.000	7		Number Number Obs pei	of obs = of groups = r group: min = avg = max =	2659 119 3 22.34 25
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	 .5234194 	.0027134	192.90	0.000	.5181013	.5287375
lx1 lx2	.4321822 .0072658 	.0018056 .0017951	239.35 4.05	0.000 0.000	.4286433 .0037475	.4357212 .0107841
lx3 L2.	 3620263	.0104705	-34.58	0.000	382548	3415045
lx4 lx4s _cons	.3517996 1137261 4466506	.0124741 .0035439 .1557931	28.20 -32.09 -2.87	0.000 0.000 0.004	.3273507 120672 7519994	.3762484 1067802 1413018

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(ly lx1 lx2 lx3 lx4 lx4s) collapsed ------Arellano-Bond test for AR(1) in first differences: z = -2.13 Pr > z = 0.033Arellano-Bond test for AR(2) in first differences: z = -0.07 Pr > z = 0.942_____ Sargan test of overid. restrictions: chi2(180) =1890.42 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(180) = 115.81 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(174) = 115.71 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(6) = 0.10 Prob > chi2 = 1.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) = 37.34 Prob > chi2 = 0.005 Hansen test excluding group: chi2(18) Difference (null H = exogenous): chi2(162) = 78.47 Prob > chi2 = 1.000

```
iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time
2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
    Hansen test excluding group: chi2(156) = 117.96 Prob > chi2 = 0.990
    Difference (null H = exogenous): chi2(24) = -2.15 Prob > chi2 = 1.000
```

Temperature non-linear model 84 (developing)

. xtabond2 ly l.ly lx1 lx2 l2.lx3 lx4 lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(1 .)collapse) iv(i.time) two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 187 = 5864.74 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	2659 119 3 22.34 25			
ly	Coef.	Corrected Std. Err.	Z	₽> z	[95% Conf.	Interval]			
ly L1.	.5234194	.0805875	6.50	0.000	.3654709	.6813679			
lx1 lx2	.4321822 .0072658	.0799802 .0118498	5.40 0.61	0.000 0.540	.2754239 0159594	.5889406 .030491			
lx3 L2.	3620263	.0897976	-4.03	0.000	5380263	1860262			
lx4 lx4s _cons	.3517996 1137261 4466506	.159847 .0346213 .6108227	2.20 -3.28 -0.73	0.028 0.001 0.465	.0385053 1815826 -1.643841	.6650938 0458695 .7505398			
<pre></pre>									

Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(174) = 115.71 Prob > chi2 = 1.000 Hansen test excluding group: = 0.10 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(6) gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(1 .)) Hansen test excluding group: chi2(18) = 37.34 Prob > chi2 = 0.005 Difference (null H = exogenous): chi2(162) = 78.47 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(156) = 117.96 Prob > chi2 = 0.990 Hansen test excluding group: Difference (null H = exogenous): chi2(24) = -2.15 Prob > chi2 = 1.000

Precipitation linear model 85 (developing)

xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(time) nolevel h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variabl	le:	code time			Number Number	of obs	= 0.5 =	2630 119
Number of in	- ·		1		Oba por	· · · · · · ·		
Number of the	SLI	uments - 12	1		obs pe	r group:	mii –	Z
Wald chi2(5)	=	34497.28					avg =	22.10
Prob > chi2	=	0.000					max =	25
ly		Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
	-+							
ly								
L1.	1	.3129438	.0266453	11.74	0.000	.2	6072	.3651677
	i.							
lx1		.5534465	.0230521	24.01	0.000	.508	2651	.5986278
lx2	1	.1447222	.0921859	1.57	0.116	035	9589	.3254033
1x3	i.	1924164	.0521809	-3.69	0.000	- 294	6891	0901436
14	1	041027	0250495	1 67	0.004	007	1671	0010212
1X4	 	.041927	.0230485	1.0/	0.094	007		.0910212

Instruments for first differences equation

Standard D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: iv(time) Sargan test excluding group: chi2(115) = 273.41 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(1) = 6.42 Prob > chi2 = 0.011

Precipitation linear model 86 (developing)

xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(time) nolevel two h(2)
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
Warning: Number of instruments may be large relative to number of observations.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step

estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group vai	riable:	code			Number o	of obs =	2630		
Time var:	iable :	time			Number of groups = 11				
Number of	f instru	ments = 121		Obs per	group: min =	2			
Wald chi2	2(5) =	7.31e+06				avg =	22.10		
Prob > cł	ni2 =	0.000				max =	25		
	ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]		
	+								
	ly								
	L1.	.3140349	.0017345	181.05	0.000	.3106353	.3174345		
	lx1	.5536804	.0012511	442.56	0.000	.5512283	.5561324		
	lx2	.1428325	.0039587	36.08	0.000	.1350736	.1505915		
	lx3	204892	.0139776	-14.66	0.000	2322877	1774963		
	lx4	.0418408	.0014518	28.82	0.000	.0389953	.0446863		
Warning:	Uncorre	cted two-st	ep standard	errors a	are unrel:	iable.			

Instruments for first differences equation Standard

D.time

GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time)

```
      Hansen test excluding group:
      chi2(115)
      = 118.28
      Prob > chi2 = 0.398

      Difference (null H = exogenous):
      chi2(1)
      = -0.69
      Prob > chi2 = 1.000
```

Precipitation linear model 87 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4, lag(3 .)collapse) iv(time) nolevel two robust h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step difference GMM _____ Number of obs = 2630 Group variable: code 119 Time variable : time Number of groups = Number of instruments = 121 Obs per group: min = 2 Wald chi2(5) = 2280.34 avg = 22.10 Prob > chi2 = 0.000 max = 25 _____ _ _ _ _ Corrected _____ ly | Coef. Std. Err. z P>|z| [95% Conf. Interval] ly | .3140349 .0594606 5.28 0.000 .1974943 .4305756 L1. | lx1 |.5536804.05345310.360.000.4489144.6584463lx2 |.1428325.14293391.000.318-.1373128.4229778lx3 |-.204892.1241699-1.650.099-.4482606.0384766lx4 |.0418408.04416440.950.343-.0447199.1284015 Instruments for first differences equation Standard D.time GMM-type (missing=0, separate instruments for each period unless collapsed) L(3/26).(ly lx1 lx2 lx3 lx4) collapsed ------_____

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time)

Hansen test excluding group:	chi2(115)	= 118.28	Prob > chi2 =	0.398
Difference (null H = exogenous):	chi2(1)	= -0.69	Prob > chi2 =	1.000

Precipitation linear model 88 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(time) h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable: Time variable : Number of instru Wald chi2(5) = Prob > chi2 =	code time uments = 127 95215.75 0.000			Number Number Obs pe	of obs of groups r group: min avg max	= 2749 = 119 = 3 = 23.10 = 26
ly	Coef.	Std. Err.	Z	P> z	[95% Con:	f. Interval]
ly L1.	.6564464	.0170714	38.45	0.000	. 622987	.6899058
1x1 1x2	.3265872	.0176459	18.51 1.31	0.000	.2920018	.3611726
1x3 1x4 _cons	2802844 .0898327 -1.660823	.0225061 .9236002	-5.94 3.99 -1.80	0.000 0.000 0.072	3726886 .0457216 -3.471047	1878602 .1339439 .1493998
Instruments for Standard D.time GMM-type (miss L(3/26).(ly Instruments for Standard time 	first differ sing=0, separ lx1 lx2 lx3 levels equat sing=0, separ lx2 lx3 lx4)	rences equa rate instruu lx4) collay tion rate instruu) collapsed	tion ments for psed ments for	each p each p	eriod unless eriod unless	collapsed) collapsed)
Arellano-Bond to	est for AR(1) est for AR(2)	in first	difference difference	es: z = es: z =	-16.63 Pr 2 -1.21 Pr 2	> z = 0.000 > z = 0.228

Sarqan test of overid. restrictions: chi2(121) = 721.11 Prob > chi2 = 0.000

Difference (null H = exogenous): chi2(5) = 392.45 Prob > chi2 = 0.000

Sargan test excluding group: chi2(120) = 716.15 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(1) = 4.97 Prob > chi2 = 0.026

chi2(116) = 328.66 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.)

GMM instruments for levels

iv(time)

Sargan test excluding group:

Difference-in-Sargan tests of exogeneity of instrument subsets:

Precipitation linear model 89 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(time) two h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins Wald chi2(5) Prob > chi2	le: str = =	code time uments = 12 682245.00 0.000	7		Number Number Obs pe:	of obs = of groups = r group: min = avg = max =	2749 119 3 23.10 26
ly		Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.		.6539951	.0036416	179.59	0.000	.6468576	.6611326
1x1 1x2 1x3 1x4 _cons		.3287906 .1082731 2839099 .0891105 -1.621298	.003179 .0048234 .0087859 .0032738 .1056555	103.43 22.45 -32.31 27.22 -15.35	0.000 0.000 0.000 0.000 0.000	.3225598 .0988194 30113 .0826939 -1.828379	.3350213 .1177268 2666898 .0955271 -1.414217

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation
 Standard
   D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(3/26).(ly lx1 lx2 lx3 lx4) collapsed
Instruments for levels equation
 Standard
   time
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
  DL2.(ly lx1 lx2 lx3 lx4) collapsed
          _____
Arellano-Bond test for AR(1) in first differences: z = -3.56 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.89 Pr > z = 0.372
_____
Sargan test of overid. restrictions: chi2(121) = 721.11 Prob > chi2 = 0.000
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(121) = 118.41 Prob > chi2 = 0.550
 (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
 GMM instruments for levels
                               chi2(116) = 117.92 Prob > chi2 = 0.433
   Hansen test excluding group:
   Difference (null H = exogenous): chi2(5)
                                        = 0.49 Prob > chi2 = 0.993
```

Difference (null $\pi - exogenous)$:	CHIZ(J)	- 0.49	PLOD / CHIZ -	0.995
iv(time)				
Hansen test excluding group:	chi2(120)	= 118.41	Prob > chi2 =	0.524
Difference (null H = exogenous):	chi2(1)	= 0.00	Prob > chi2 =	0.958

Precipitation linear model 90 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 lx4, gmm(ly lx1 lx2 lx3 lx4,lag(3 .)collapse) iv(time) two robust h(2) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

		·				
Group variable: Time variable : Number of instr Wald chi2(5) =	code time uments = 127 7267.05			Number Number Obs per	of obs = of groups = group: min = avg =	2749 119 3 23.10
Prob > chi2 =	0.000				max =	26
 y	Coef.	Corrected Std. Err	d . z	₽> z	[95% Conf.	Interval]
ly L1.	.6539951	.0462807	14.13	0.000	.5632865	.7447036
1x1 1x2	.3287906 .1082731	.035443 .1245978	9.28 0.87 -3.91	0.000	.2593235 1359342 - 4262138	.3982576 .3524804
1x3 1x4 _cons	.0891105 -1.621298	.0454621 1.468339	1.96 -1.10	0.050	6.37e-06 -4.49919	.1782146
D.time GMM-type (mis L(3/26).(ly Instruments for Standard time cons GMM-type (mis DL2.(ly lx1	sing=0, sepa lx1 lx2 lx3 levels equa sing=0, sepa lx2 lx3 lx4	rate instr 1x4) coll tion rate instr) collapse	ruments fo: Lapsed ruments fo: ed	r each pe r each pe	riod unless c riod unless c	ollapsed) collapsed)
Arellano-Bond t Arellano-Bond t	est for AR(1 est for AR(2) in first) in first	differen differen	ces: z = ces: z =	-3.52 Pr > -0.88 Pr >	z = 0.000 z = 0.380
Sargan test of (Not robust, Hansen test of (Robust, but	overid. rest but not weak overid. rest weakened by	rictions: ened by ma rictions: many insta	chi2(121) any instrum chi2(121) ruments.)	= 721.1 ments.) = 118.4	.1 Prob > chi :1 Prob > chi	2 = 0.000 2 = 0.550
Difference-in-H GMM instrumen Hansen test Difference	ansen tests ts for level excluding g (null H = ex	of exogene s roup: ogenous):	eity of in: chi2(116) chi2(5)	strument = 117.9 = 0.4	subsets: 2 Prob > chi 9 Prob > chi	2 = 0.433 2 = 0.993
iv(time) Hansen test Difference	excluding g (null H = ex	roup: ogenous):	chi2(120) chi2(1)	= 118.4 = 0.0	1 Prob > chi 0 Prob > chi	2 = 0.524 2 = 0.958

Precipitation non-linear model 91 (developing)

xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(i.time) nolevel h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	: code : time ruments = 174 = 699.73 = 0.000			Number Number Obs per	of obs of groups group: min avg max	= 2540 = 119 = 2 = 21.34 = 24
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf	. Interval]
ly L1.	.2105725	.040695	5.17	0.000	.1308118	.2903332
1x1 1x2 1x3	.5145136 .0061642 0324441	.029486 .0603959 .1555222	17.45 0.10 -0.21	0.000 0.919 0.835	.4567221 1122096 3372619	.5723052 .1245381 .2723738
	0339767	.0590155	-0.58	0.565	149645	.0816916
L2.	.0043929	.0071467	0.61	0.539	0096144	.0184001
Instruments fc Standard D.(1990b.t 1997.time 2004.time 2011.time GMM-type (mi L(2/26).(1	r first diffe ime 1991.time 1998.time 199 2005.time 200 2012.time 201 ssing=0, sepa y lx1 lx2 lx3	rences equat 1992.time 2 9.time 2000 6.time 2007 3.time 2014 rate instrum 1x4 1x4s) of	l993.time time 200 time 200 time 201 time 201 nents for collapsed	e 1994.ti)1.time 2)8.time 2 15.time 2 c each pe	me 1995.time 002.time 200 009.time 201 016.time) riod unless	1996.time 3.time 0.time collapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first () in first (differenc differenc	ces: z = ces: z =	-13.60 Pr > 0.84 Pr >	z = 0.000 z = 0.402
Sargan test of (Not robust,	overid. rest but not weak	rictions: cl ened by many	ni2(168) y instrum	= 222.4 nents.)	3 Prob > ch	i2 = 0.003
Difference-in-	Sargan tests	of exogeneit	cy of ins	strument	subsets:	

```
gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(2 .))
Sargan test excluding group: chi2(18) = 67.99 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(150) = 154.44 Prob > chi2 = 0.385
iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time
1997.time 1998.time 1999.time 2000.time 2001.time 20
> 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time
2010.time 2011.time 2012.time 2013.time 2014.tim
> e 2015.time 2016.time)
Sargan test excluding group: chi2(144) = 211.06 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(24) = 11.37 Prob > chi2 = 0.986
```

Precipitation non-linear model 92 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(i.time) nolevel two h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	: code : time ruments = 174 = 1.15e+06 = 0.000	4		Number Number Obs pe:	of obs = of groups = r group: min = avg = max =	2540 119 2 21.34 24
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.2121991	.0025542	83.08	0.000	.207193	.2172052
lx1	.5130492	.0014563	352.30	0.000	.5101949	.5159035
lx2	.0102115	.0046578	2.19	0.028	.0010824	.0193405
1x3 	0306899	.0110567	-2.78	0.006	0523607	0090192
lx4						
L2.	028029	.0101705	-2.76	0.006	0479628	0080953
lx4s						
L2.	.0037442	.0010877	3.44	0.001	.0016123	.005876

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard

D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(2 .)) Hansen test excluding group: chi2(l8) = 45.12 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(150) = 71.04 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(144) = 116.16 Prob > chi2 = 0.957 Difference (null H = exogenous): chi2(24) = 0.00 Prob > chi2 = 1.000

Precipitation non-linear model 93 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(i.time) nolevel two robust h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable	: code			Number	of obs =	=	2540
Time variable	: time			Number	of groups =	=	119
Number of inst	ruments = 174			Obs per	group: min =	=	2
Wald chi2(6)	= 1994.12				avg =	-	21.34
Prob > chi2	= 0.000				max =	-	24
		Corrected					
ly	Coef.	Std. Err.	Z	P> z	[95% Conf	. Int	erval]
+							
ly	0101001	0.051.0	2.00	0 0 0 1	0045660	~	200201
LL.	.2121991	.06512	3.26	0.001	.0845662	.3	398321
lx1	.5130492	.0689481	7.44	0.000	.3779134	.6	481849
1x2	.0102115	.0588248	0.17	0.862	105083	.1	255059
lx3	0306899	.1154571	-0.27	0.790	2569816	.1	956018
1X4 12	- 028020	0426220	-0 66	0 511	- 1115603	0	555102
• ZL	020029	.0420229	-0.00	0.511	1113005	.0	555102
lx4s							
L2.	.0037442	.0052681	0.71	0.477	0065811	.0	140694
2004.time 2011.time GMM-type (mi L(2/26).(1	2005.time 200 2012.time 201 ssing=0, sepa y 1x1 1x2 1x3	6.time 2007 3.time 2014 rate instru 1x4 1x4s)	.time 200 .time 201 ments for collapsed	8.time 2 5.time 2 each pe	009.time 2010 016.time) riod unless o).tim colla	ne upsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	es: z = es: z =	-1.34 Pr > 0.31 Pr >	z = z =	0.181 0.759
Sargan test of	overid. rest	rictions: c	hi2(168)	= 222.4	3 Prob > ch:	i2 =	0.003
(Not robust,	overid rest	ened by man	y instrum	ents.)	6 Prob > ch	i 2 -	0 999
(Robust, but	weakened by	many instru	ments.)	110.1	0 1100 / 011	12	0.555
Difference-in- gmm(ly lx1 l Hansen tes Difference iv(1990b.tim 1997.time 1998 > 02.time 2003	Hansen tests x2 1x3 1x4 1x t excluding g (null H = ex e 1991.time 1 .time 1999.ti .time 2004.ti	of exogenei 4s, collaps roup: c ogenous): c 992.time 19 me 2000.tim me 2005.tim	ty of ins e lag(2 . chi2(18) chi2(150) 93.time 1 e 2001.ti e 2001.ti	trument)) = 45.1 = 71.0 994.time me 20 me 2007.	subsets: 2 Prob > ch: 4 Prob > ch: 1995.time 1 time 2008.tim	i2 = i2 = 996.t me 20	0.000 1.000 ime 09.time
> e 2015.time	2016.time)	INC ZUIJ.UIN	. 2014.LI				
Hansen tes	t excluding g	roup: c	hi2(144)	= 116.1	6 Prob > ch:	i2 =	0.957
Difference	(null H = ex	ogenous): c	hi2(24)	= 0.0	0 Prob > ch	i2 =	1.000

Precipitation non-linear model 94 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(i.time) h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system $\ensuremath{\mathsf{GMM}}$

Group variable Time variable Number of ins Wald chi2(6) Prob > chi2	e: code : time truments = 181 = 11828.71 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	2659 119 3 22.34 25	
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
ly L1.	.5174482	.0346086	14.95	0.000	.4496166	.5852799	
1x1 1x2 1x3	, 4808215 .0051137 . 5157751	.0310781 .0920669	15.47 0.06	0.000	.4199097 1753342 - 7004592	.5417334 .1855615	
lx4	 10/2722	0763815	2 54	0.011	0445681	3/30702	
lx4s	.1942732 	.0763613	2.54	0.011	.0443661	.3439762	
L2. _cons	0244919 .4636202	1.352854	-2.68 0.34	0.007	0423936 -2.187925	0065903 3.115166	
<pre>Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 2000.time 2001.time 2002.time 2003.time 2004.time 2015.time 2016.time 2017.time 2018.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time</pre>							
2011.time _cons GMM-type (m. DL.(ly lx)	2012.time 201 issing=0, sepa 1 1x2 1x3 1x4	3.time 2014 rate instrur lx4s) collap	time 201 nents for psed	each pe	col6.time	ollapsed)	
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first (differenc differenc	es: z = es: z =	-11.89 Pr > -0.01 Pr >	z = 0.000 z = 0.989	
Sargan test of (Not robust)	f overid. rest , but not weak	rictions: cl ened by many	ni2(174) y instrum	= 255.7 ents.)	'8 Prob > chi	2 = 0.000	

Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels chi2(168) = 130.28 Prob > chi2 = 0.986 Sargan test excluding group: Difference (null H = exogenous): chi2(6) = 125.50 Prob > chi2 = 0.000 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(2 .)) Sargan test excluding group: chi2(18) = 41.56 Prob > chi2 = 0.001 Difference (null H = exogenous): chi2(156) = 214.22 Prob > chi2 = 0.001 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Sargan test excluding group: chi2(150) = 162.11 Prob > chi2 = 0.236Difference (null H = exogenous): chi2(24) = 93.67 Prob > chi2 = 0.000

Precipitation non-linear model 95 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(i.time) two h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step

estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 18: = 1.08e+06 = 0.000	1		Number Number Obs pei	of obs = of groups = r group: min = avg = max =	2659 119 3 22.34 25
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.5187039	.0025902	200.25	0.000	.5136272	.5237807
lx1 lx2	.4800445	.0019214	249.84	0.000	.4762786	.4838104
1x3	5227187	.0067172	-77.82	0.000	5358841	5095533
lx4 L2.	.19482	.0130003	14.99	0.000	.1693399	.2203001
lx4s L2.	0245278	.0015884	-15.44	0.000	0276411	0214146
_cons	.5696237	.0939075	6.07	0.000	.3855685	.753679

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard D.(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(ly lx1 lx2 lx3 lx4 lx4s) collapsed Arellano-Bond test for AR(1) in first differences: z = -1.86 Pr > z = 0.062Arellano-Bond test for AR(2) in first differences: z = -0.01 Pr > z = 0.990_____ Sargan test of overid. restrictions: chi2(174) = 255.78 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(174) = 116.79 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels chi2(168) = 115.16 Prob > chi2 = 0.999 Hansen test excluding group: Difference (null H = exogenous): chi2(6) = 1.63 Prob > chi2 = 0.950 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(2 .)) 35.57 Prob > chi2 = 0.008 Hansen test excluding group: chi2(18)

Difference (null H = exogenous): chi2(156) = 81.22 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) Hansen test excluding group: chi2(150) = 116.79 Prob > chi2 = 0.979 Difference (null H = exogenous): chi2(24) = 0.00 Prob > chi2 = 1.000

Precipitation non-linear model 96 (developing)

. xtabond2 ly l.ly lx1 lx2 lx3 l2.lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(2 .)collapse) iv(i.time) two robust h(1) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable	: code			Number	of obs =	2659
Time variable	: time			Number	of groups =	119
Number of inst	ruments = 181	L		Obs per	r group: min =	3
Wald chi2(6)	= 3530.08			_	avg =	22.34
Prob > chi2	= 0.000				max =	25
		Corrected				
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
+						
ly						
L1.	.5187039	.0513695	10.10	0.000	.4180216	.6193863
lx1	.4800445	.044703	10.74	0.000	.3924282	.5676608
lx2	.0055088	.0630496	0.09	0.930	1180661	.1290837
lx3	5227187	.1162678	-4.50	0.000	7505994	2948381
lx4						
L2.	.19482	.0792952	2.46	0.014	.0394043	.3502357
1						
lx4s						
L2.	0245278	.0093602	-2.62	0.009	0428735	0061822
_cons	.5696237	1.30682	0.44	0.663	-1.991697	3.130945
Instruments fo	or first diffe	erences equat	cion			

Standard

D. (1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time) GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed Instruments for levels equation Standard 1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 2002.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.time 2015.time 2016.time cons GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(ly lx1 lx2 lx3 lx4 lx4s) collapsed _____ Arellano-Bond test for AR(1) in first differences: z = -1.86 Pr > z = 0.063Arellano-Bond test for AR(2) in first differences: z = -0.01 Pr > z = 0.990_____ Sargan test of overid. restrictions: chi2(174) = 255.78 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(174) = 116.79 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(168) = 115.16 Prob > chi2 = 0.999 Difference (null H = exogenous): chi2(6) = 1.63 Prob > chi2 = 0.950 gmm(ly lx1 lx2 lx3 lx4 lx4s, collapse lag(2 .)) Hansen test excluding group: chi2(18) = 35.57 Prob > chi2 = 0.008 Difference (null H = exogenous): chi2(156) = 81.22 Prob > chi2 = 1.000 iv(1990b.time 1991.time 1992.time 1993.time 1994.time 1995.time 1996.time 1997.time 1998.time 1999.time 2000.time 2001.time 20 > 02.time 2003.time 2004.time 2005.time 2006.time 2007.time 2008.time 2009.time 2010.time 2011.time 2012.time 2013.time 2014.tim > e 2015.time 2016.time) chi2(150) = 116.79 Prob > chi2 = 0.979 Hansen test excluding group: Difference (null H = exogenous): chi2(24) = 0.00 Prob > chi2 = 1.000

Carbon dioxide emission linear model 97 (developing)

xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) nolevel Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 126 = 35839.62 = 0.000	j		Number Number Obs per	of obs = of groups = group: min = avg = max =	= 2481 = 118 = 0 = 21.03 = 24
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.4171582	.0236199	17.66	0.000	.3708641	.4634523
lx1	.5296726	.0219762	24.10	0.000	.4866001	.5727451
1x2 L2.	0160316	.0224857	-0.71	0.476	0601027	.0280395
lx3	2265613	.0580935	-3.90	0.000	3404223	1127002
lx4 L2.	1194513	.0203368	-5.87	0.000	1593107	0795919
Instruments fo Standard D.time GMM-type (mi L(2/26).(1	or first diffe .ssing=0, sepa .y lx1 lx2 lx3	erences equa arate instru 3 1x4) colla	ation uments for apsed	each pe	riod unless c	collapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first 2) in first	differenc differenc	es: z = es: z =	-15.11 Pr > 0.25 Pr >	z = 0.000 z = 0.799
Sargan test of (Not robust,	overid. rest but not weak	crictions: c	chi2(121) ny instrum	= 380.8 ents.)	8 Prob > chi	2 = 0.000
Difference-in- iv(time) Sargan tes Difference	-Sargan tests st excluding g e (null H = ex	of exogened group: co	ity of ins chi2(120) chi2(1)	trument = 380.1 = 0.7	subsets: 4 Prob > chi 4 Prob > chi	.2 = 0.000 .2 = 0.389

Carbon dioxide emission linear model 98 (developing)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) nolevel two Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group var Time var Number of Wald chi2 Prob > ch	riable: iable : f instru 2(5) = hi2 =	code time uments = 126 4.00e+06 0.000			Number of Number of Obs per o	f obs f grou group:	= ps = min = avg = max =	2481 118 0 21.03 24
	ly	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
	ly L1.	.417293	.0006217	671.21	0.000	.416	0745	.4185115
	lx1	.5300799	.0004559	1162.76	0.000	.529	1864	.5309734
	lx2							
	L2. 	0156558	.0016746	-9.35	0.000	01	8938	0123737
	1x3	218077	.0092662	-23.53	0.000	236	2385	1999155
	lx4							
	L2.	1216076	.0023081	-52.69	0.000	126	1313	1170839
Warning:	Uncorre	ected two-ste	ep standar	d errors a	re unrelia	able.		

Instruments for first differences equation Standard D.time GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/26).(ly lx1 lx2 lx3 lx4) collapsed ------_____ Arellano-Bond test for AR(1) in first differences: z = -1.54 Pr > z = 0.123Arellano-Bond test for AR(2) in first differences: z = 0.12 Pr > z = 0.907_____

Sargan test of overid. restrictions: chi2(121) = 380.88 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(121) = 116.46 Prob > chi2 = 0.600 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: iv(time) 1. 10 (100) 0 574

Hansen test excluding group:	CH12(120)	= 110.40	Prob > Chiz =	0.5/4
Difference (null H = exogenous):	chi2(1)	= 0.00	Prob > chi2 =	1.000

Carbon dioxide emission linear model 99 (developing)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) nolevel two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 126 = 3065.13 = 0.000			Number o Number o Obs per	of obs = of groups = group: min = avg = max =	2481 118 0 21.03 24
ly	Coef.	Corrected Std. Err.	Z	P> z	[95% Conf.	Interval]
ly L1.	.417293	.060616	6.88	0.000	.2984879	.5360981
 x1	.5300799	.0543437	9.75	0.000	.4235682	.6365915
1x2 L2.	0156558	.012117	-1.29	0.196	0394047	.008093
1x3	218077	.135243	-1.61	0.107	4831484	.0469944
lx4 L2.	1216076	.0422863	-2.88	0.004	2044872	0387279
Instruments fo Standard D.time GMM-type (mi L(2/26).(1	r first diffe ssing=0, sepa y lx1 lx2 lx3	rences equat rate instrur lx4) colla	tion nents for psed	each per	iod unless co	ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first () in first (differenc differenc	es: z = es: z =	-1.54 Pr > : 0.12 Pr > :	z = 0.123 z = 0.908
Sargan test of	overid. rest	rictions: cl	ni2(121)	= 380.88	Prob > chi	2 = 0.000
(Not fobust, Hansen test of (Robust, but	overid. rest weakened by	rictions: cl many instrum	y instrum ni2(121) ments.)	= 116.46	5 Prob > chi	2 = 0.600
Difference-in- iv(time)	Hansen tests	of exogeneit	ty of ins	trument s	subsets:	

Hansen test excluding group:	chi2(120)	= 116	5.46	Prob	> chi2	=	0.574
Difference (null H = exogenous):	chi2(1)	= 0	0.00	Prob	> chi2	=	1.000

Carbon dioxide emission linear model 100 (developing)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system GMM

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time cruments = 132 = 59074.31 = 0.000	2		Number Number Obs per	of obs = of groups = group: min = avg = max =	2600 119 1 21.85 25
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.5727515	.0185385	30.90	0.000	.5364167	.6090863
lx1	.410022	.0183869	22.30	0.000	.3739844	.4460597
1x2 L2.	0164971	.0210172	-0.78	0.432	05769	.0246958
 1x3	560702	.0362733	-15.46	0.000	6317965	4896076
 1x4 L2.	.086355	.006367	13.56	0.000	.073876	.0988341
_cons	2.06225	.3421453	6.03	0.000	1.391657	2.732842
Instruments for Standard D.time GMM-type (mi L(2/26).(1) Instruments for Standard time 	or first diffe ssing=0, sepa y lx1 lx2 lx3 or levels equa ssing=0, sepa lx2 lx3 lx4)	erences equa arate instru 3 1x4) colla ation arate instru collapsed	uments for upsed	e each pe	riod unless c riod unless c	ollapsed) ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first 2) in first	differenc differenc	es: z = es: z =	-16.78 Pr > -0.51 Pr >	z = 0.000 z = 0.612
Sargan test of	overid. rest	rictions: c	 hi2(126)	= 727.8	 0 Prob > chi	2 = 0.000

Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(121) = 435.03 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(5) = 292.77 Prob > chi2 = 0.000 iv(time) Sargan test excluding group: chi2(125) = 708.85 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(1) = 18.95 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.)

Carbon dioxide emission linear model 101 (developing)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) two

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of ins Wald chi2(5) Prob > chi2	e: code : time truments = 13 = 1.30e+06 = 0.000	2		Number Number Obs pe	of obs = of groups = r group: min = avg = max =	2600 119 1 21.85 25
ly	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ly L1.	.5723486	.001025	558.38	0.000	.5703396	.5743576
lx1	.4102303	.0005608	731.54	0.000	.4091312	.4113294
lx2 L2.	 018082 	.0017854	-10.13	0.000	0215813	0145828
lx3	5597896 	.0035438	-157.96	0.000	5667352	5528439
lx4 L2.	 .0868225 	.0008385	103.54	0.000	.085179	.0884661
_cons	2.057423	.039109	52.61	0.000	1.980771	2.134075

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation
 Standard
   D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(2/26).(ly lx1 lx2 lx3 lx4) collapsed
Instruments for levels equation
 Standard
   time
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   DL.(ly lx1 lx2 lx3 lx4) collapsed
_____
                                    _____
Arellano-Bond test for AR(1) in first differences: z = -2.27 Pr > z = 0.023
Arellano-Bond test for AR(2) in first differences: z = -0.30 Pr > z = 0.764
_____
Sargan test of overid. restrictions: chi2(126) = 727.80 Prob > chi2 = 0.000
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(126) = 116.62 Prob > chi2 = 0.714
 (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
 GMM instruments for levels
   Hansen test excluding group: chi2(121) = 114.34 Prob > chi2 = 0.653
                                            2.27 Prob > chi2 = 0.810
   Difference (null H = exogenous): chi2(5)
                                         -
 iv(time)
   Hansen test excluding group:
                               chi2(125) = 116.62 Prob > chi2 = 0.692
   Difference (null H = exogenous): chi2(1) = -0.00 Prob > chi2 = 1.000
```
Carbon dioxide emission linear model 102 (developing)

. xtabond2 ly l.ly lx1 l2.lx2 lx3 l2.lx4, gmm(ly lx1 lx2 lx3 lx4,lag(2 .)collapse) iv(time) two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor

speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system $\ensuremath{\mathsf{GMM}}$

Group variable Time variable Number of inst Wald chi2(5) Prob > chi2	e: code : time truments = 132 = 4156.98 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	2600 119 1 21.85 25
ly	Coef.	Corrected Std. Err.	l z	₽> z	[95% Conf.	Interval]
ly I1.	.5723486	.0486191	11.77	0.000	.4770568	.6676404
	.0,20100	.0100101		0.000	• • • • • • • • • • • •	
lx1	.4102303	.0425312	9.65	0.000	.3268707	.4935899
lx2 L2.	018082	.0153719	-1.18	0.239	0482105	.0120464
lx3	5597896	.0919101	-6.09	0.000	7399301	379649
lx4 L2.	.0868225	.0285836	3.04	0.002	.0307997	.1428454
_cons	2.057423	1.011019	2.04	0.042	.0758631	4.038983
Standard D.time GMM-type (mi L(2/26).(1) Instruments for Standard time 	lssing=0, sepa Ly lx1 lx2 lx3 Dr levels equa Lssing=0, sepa L lx2 lx3 lx4)	rate instr lx4) coll tion rate instr collapsec	ruments for apsed ruments for	each pe	riod unless c riod unless c	ollapsed) ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	es: z = es: z =	-2.26 Pr > -0.30 Pr >	z = 0.024 z = 0.765
Sargan test of (Not robust, Hansen test of	overid. rest but not weak overid. rest	rictions: ened by ma rictions:	chi2(126) any instrum chi2(126)	= 727.8 ents.) = 116.6	0 Prob > chi 2 Prob > chi	2 = 0.000 2 = 0.714
Difference-in- GMM instrume	-Hansen tests	of exogene	eity of ins	trument	subsets:	
Hansen tes Difference iv(time)	st excluding g e (null H = ex	roup: ogenous):	chi2(121) chi2(5)	= 114.3 = 2.2	4 Prob > chi 7 Prob > chi	2 = 0.653 2 = 0.810
Hansen tes Difference	st excluding g e (null H = ex	roup: ogenous):	chi2(125) chi2(1)	= 116.6 = -0.0	2 Prob > chi 0 Prob > chi	2 = 0.692 2 = 1.000

Carbon dioxide emission non-linear model 103 (developing)

xtabond2 ly l.ly l2.lx1 lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(time) nolevel Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step difference $\ensuremath{\mathsf{GMM}}$

Number of obs = 2274
Number of groups = 117
Obs per group: min = 1
avg = 19.44
max = 22
P> z [95% Conf. Interval]
0.000 .9344847 1.025695
0.00109533790252098
0.3820517028 .1351004
0.000 .3011235 .6151849
0.042 .0043309 .2244103
0.00101155810028887
or each period unless collapsed)

L(3/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed

Difference-in-Sargan tests of exogeneity of instrument subsets: iv(time) Sargan test excluding group: chi2(126) = 561.63 Prob > chi2 = 0.000

Salyan test	. excruaring	group.	CIIIZ (IZ 0)		JOI.0J	TTOD	/ CIIIZ -	0.000
Difference	(null H = e	exogenous):	chi2(1)	=	1.13	Prob	> chi2 =	0.289

Carbon dioxide emission non-linear model 104 (developing)

```
. xtabond2 ly l.ly lx1 l2.lx2 lx3 lx5 l2.lx5s, gmm(ly lx1 lx2 lx3 lx5
lx5s,lag(3 .)collapse) iv(time) nolevel two
variable 1x5 not found
r(111);
. xtabond2 ly l.ly 12.lx1 lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4
lx4s,lag(3 .)collapse) iv(time) nolevel two
Favoring space over speed. To switch, type or click on mata: mata set matafavor
speed, perm.
Warning: Number of instruments may be large relative to number of observations.
Warning: Two-step estimated covariance matrix of moments is singular.
 Using a generalized inverse to calculate optimal weighting matrix for two-step
estimation.
 Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step difference GMM
Group variable: code
                                      Number of obs = 2274
                                      Number of groups =
                                                          117
1
Time variable : time
Number of instruments = 133
                                      Obs per group: min =
Wald chi2(6) = 4.15e+06
                                               avg =
                                                         19.44
                                                  max =
              0.000
Prob > chi2 =
                                                           22
_____
                                                            ____
      ly |
              Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____
       ly |
       L1. | .9807681 .0021716 451.63 0.000 .9765117 .9850244
       1x1 |
       L2. | -.0603048 .000887 -67.99 0.000
                                             -.0620434 -.0585663
      1x2 |.0417461.001165735.810.000.03946131x3 |.4574218.007057264.820.000.443591x4 |.1144612.002284550.100.000.1099837
                                                        .044031
                                                       .4712536
                                                        .1189387
      lx4s |
      L2. | -.0073016 .0001695 -43.07 0.000 -.0076339 -.0069693
Warning: Uncorrected two-step standard errors are unreliable.
Instruments for first differences equation
 Standard
  D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
  L(3/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed
_____
Arellano-Bond test for AR(1) in first differences: z = -4.22 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.89 Pr > z = 0.375
_____
```

Sargan test of overid. restrictions: chi2(127) = 562.76 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(127) = 116.26 Prob > chi2 = 0.743
(Robust, but weakened by many instruments.)

```
Difference-in-Hansen tests of exogeneity of instrument subsets:
    iv(time)
    Hansen test excluding group: chi2(126) = 116.26 Prob > chi2 = 0.722
    Difference (null H = exogenous): chi2(1) = -0.00 Prob > chi2 = 1.000
```

Carbon dioxide emission non-linear model 105 (developing)

. xtabond2 ly l.ly l2.lx1 lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(time) nolevel two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	: code : time ruments = 133 = 11895.91 = 0.000			Number o Number o Obs per	of obs of groups group: min avg max	= = = = =	2274 117 1 19.44 22
 ly	Coef.	Corrected Std. Err.	Z	P> z	[95% Con:		erval]
ly L1.	.9807681	.0365349	26.84	0.000	.909161	1.	052375
L2.	0603048	.0255849	-2.36	0.018	1104503	0	101594
Ix2 Ix3 Ix4 Ix4s I	.0417461 .4574218 .1144612 0073016 	.0458675 .1015151 .0710937 .0034354 	0.91 4.51 1.61 -2.13 	0.363 0.000 0.107 0.034 each per	0481525 .2584558 02488 0140349	.1 .6 .2 0	316448 563878 538024 005683
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	es: z = es: z =	-4.05 Pr 2 -0.86 Pr 2	> z = > z =	0.000
Sargan test of (Not robust, Hansen test of (Robust, but	overid. rest but not weak overid. rest weakened by	rictions: c ened by man rictions: c many instru	hi2(127) y instrum hi2(127) ments.)	= 562.76 ents.) = 116.26	6 Prob > cl 6 Prob > cl	ni2 = ni2 =	0.000
Difference-in- iv(time) Hansen tes	Hansen tests	of exogenei	ty of ins [.] hi2(126)	trument s	subsets:	ni2 =	0.722

Hansen test excluding group: chi2(126) = 116.26 Prob > chi2 = 0.722Difference (null H = exogenous): chi2(1) = -0.00 Prob > chi2 = 1.000

Carbon dioxide emission non-linear model 106 (developing)

. xtabond2 ly l.ly l2.lx1 lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(time) Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Dynamic panel-data estimation, one-step system $\ensuremath{\mathsf{GMM}}$

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time cruments = 140 = 29560.17 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	2391 117 2 20.44 23
ly	Coef.	Std. Err.	. Z	₽> z	[95% Conf.	Interval]
ly L1.	1.09462	.0188289	58.14	0.000	1.057716	1.131524
lx1 L2.	1013514	.0178203	-5.69	0.000	1362785	0664243
1x2 1x3 1x4	.0305626 .1143914 .2610592	.0510528 .0265871 .0410652	0.60 4.30 6.36	0.549 0.000 0.000	0694991 .0622816 .1805729	.1306242 .1665012 .3415454
lx4s L2.	0126929	.0019774	-6.42	0.000	0165686	0088172
_cons	-1.695009	.4827383	-3.51	0.000	-2.641159	7488595
Instruments for Standard D.time GMM-type (m: L(3/26).(2) Instruments for Standard time 	or first diffe lssing=0, sepa ly lx1 lx2 lx3 or levels equa lssing=0, sepa x1 lx2 lx3 lx4	rences equ rate instr lx4 lx4s) tion rate instr lx4s) col	uation collapsed cuments for llapsed	c each pe 1 c each pe	riod unless c riod unless c	ollapsed) ollapsed)
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differend differend	ces: z = ces: z =	-16.23 Pr > -1.72 Pr >	z = 0.000 z = 0.085
Sargan test of (Not robust,	e overid. rest but not weak	rictions: ened by ma	chi2(133) any instrur	= 539.5 nents.)	1 Prob > chi	2 = 0.000
Difference-in- GMM instrume Sargan tes Difference iv(time)	-Sargan tests ents for level st excluding g e (null H = ex	of exogene s roup: ogenous):	chi2(127) chi2(6)	= 487.1 = 52.3	subsets: 4 Prob > chi 8 Prob > chi	2 = 0.000 2 = 0.000
Sargan tes Difference	e (null H = ex	roup: ogenous):	cni2(132) chi2(1)	= 531.9 = 7.5	/ Prop > chi 5 Prob > chi	2 = 0.000 2 = 0.006

Carbon dioxide emission non-linear model 107 (developing)

. xtabond2 ly l.ly l2.lx1 lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(time) two Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	: code : time ruments = 14 = 1.04e+06 = 0.000	0		Number Number Obs per	of obs = of groups = c group: min = avg = max =	= 2391 = 117 = 2 = 20.44 = 23
ly	Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
ly L1.	1.09668	.0021136	518.86	0.000	1.092537	1.100823
1x1 L2.	1023939	.0015002	-68.25	0.000	1053342	0994536
1x2 1x3 1x4	.0312217 .1181423 .2584684	.0014802 .0065713 .0040649	21.09 17.98 63.59	0.000 0.000 0.000	.0283206 .1052628 .2505013	.0341228 .1310219 .2664354
lx4s L2.	0126465	.0001146	-110.37	0.000	0128711	012422
_cons	-1.732867	.0736069	-23.54	0.000	-1.877134	-1.5886

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation
 Standard
   D.time
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(3/26).(ly lx1 lx2 lx3 lx4 lx4s) collapsed
Instruments for levels equation
 Standard
   time
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
  DL2.(ly lx1 lx2 lx3 lx4 lx4s) collapsed
_____
Arellano-Bond test for AR(1) in first differences: z = -4.18 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.80 Pr > z = 0.424
_____
Sargan test of overid. restrictions: chi2(133) = 539.51 Prob > chi2 = 0.000
 (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(133) = 115.08 Prob > chi2 = 0.867
 (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
 GMM instruments for levels
   Hansen test excluding group: chi2(127) = 114.09 Prob > chi2 = 0.787
   Difference (null H = exogenous): chi2(6)
                                        =
                                           0.99 Prob > chi2 = 0.986
 iv(time)
   Hansen test excluding group:
                               chi2(132) = 115.09 Prob > chi2 = 0.853
   Difference (null H = exogenous): chi2(1) = -0.00 Prob > chi2 = 1.000
```

Carbon dioxide emission non-linear model 108 (developing)

. xtabond2 ly l.ly l2.lx1 lx2 lx3 lx4 l2.lx4s, gmm(ly lx1 lx2 lx3 lx4 lx4s,lag(3 .)collapse) iv(time) two robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Warning: Number of instruments may be large relative to number of observations.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system $\ensuremath{\mathsf{GMM}}$

Group variable Time variable Number of inst Wald chi2(6) Prob > chi2	e: code : time truments = 140 = 22913.40 = 0.000			Number Number Obs per	of obs = of groups = group: min = avg = max =	2391 117 2 20.44 23	
ly	Coef.	Corrected Std. Err.	d . z	₽> z	[95% Conf.	Interval]	
ly	 						
L1.	1.09668	.0353574	31.02	0.000	1.027381	1.165979	,
lx1							
L2.	1023939	.0348216	-2.94	0.003	170643	0341448	;
lx2	.0312217	.0402356	0.78	0.438	0476387	.1100821	_
lx3	.1181423	.0508131	2.33	0.020	.0185504	.2177343	3
lx4	.2584684	.0487276	5.30	0.000	.1629641	.3539726	5
lx4s	0100405	0005650	4 0 0	0 000	0176756	0076175	
ШΖ.	U126465	.0025659	-4.93	0.000	01/6/56	00/61/5	•
_cons	-1.732867	.5545226	-3.12	0.002	-2.819711	6460227	1
D.time GMM-type (m: L(3/26).(1) Instruments for Standard time cons GMM-type (m: DL2.(1y 1z)	issing=0, sepa ly lx1 lx2 lx3 pr levels equa issing=0, sepa x1 lx2 lx3 lx4	rate instr lx4 lx4s) tion rate instr lx4s) col	ruments for collapsed ruments for llapsed	each pe	riod unless c riod unless c	ollapsed) ollapsed)	
Arellano-Bond Arellano-Bond	test for AR(1 test for AR(2) in first) in first	differenc differenc	es: z = es: z =	-4.01 Pr > -0.77 Pr >	z = 0.000 z = 0.439))
Sargan tost of	forwarid roat	riationa.			1 Drob > chi	2 - 0 000	•
(Not robust	, but not weak	ened by ma	anv instrum	ents.)		2 - 0.000	'
Hansen test of (Robust, but	f overid. rest weakened by	rictions: many instr	chi2(133) cuments.)	= 115.0	8 Prob > chi	2 = 0.867	/
Difference-in- GMM instrume	-Hansen tests ents for level	of exogene s	eity of ins	trument	subsets:		
Hansen tes	st excluding q	roup:	chi2(127)	= 114.0	9 Prob > chi	2 = 0.787	1
Difference	e (null H = ex	ogenous):	chi2(6)	= 0.9	9 Prob > chi	2 = 0.986)
Hansen tes	st excluding a	roup:	chi2(132)	= 115.0	9 Prob > chi	2 = 0.853	3
Difference	e (null H = ex	ogenous):	chi2(1)	= -0.0	0 Prob > chi	2 = 1.000)