SYNTHESIS AND CHARACTERIZATION OF 1,3,4-OXADIAZOLES BEARING AN INDOLE RING

By

NG YU XUAN

A project report submitted to the Department of Chemical Science

Faculty of Science

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirement for the degree of

Bachelor of Science (Honours) Chemistry

October 2020

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF 1,3,4-OXADIAZOLES BEARING AN INDOLE RING

NG YU XUAN

1,3,4-oxadiazoles are important in various fields and have been involved in many studies by researchers. 1,3,4-oxadiazoles have many biological activities, for example, antifungal, antibacterial and anti-oxidant activities. A carboxylic acid hydrazide was synthesized from the reaction between an indole ester and a hydrazine hydrate and used as a starting material of 1,3,4-oxadiazole derivatives. There were four 1,3,4-oxadiazoles being synthesized in this project. The 1,3,4-oxadiazole derivatives were synthesized from carboxylic acid hydrazide reacted with different benzoic acid derivatives with the presence of POCl₃. The percentage yields for the synthesized 1,3,4-oxadiazoles were between 8% to 70%. For the characterization of the carboxylic acid hydrazide and the 1,3,4-oxadiazoles were using various instruments such as melting point apparatus, FT-IR, ¹H NMR, ¹³C NMR , DEPT, HMQC, and HMBC.

ABSTRAK

SINTESIS DAN KARAKTERISASI 1,3,4-OXADIAZOLES DENGAN INDOLE RING

NG YU XUAN

1,3,4-oxadiazoles penting dalam pelbagai bidang dan telah terlibat dalam banyak kajian oleh penyelidik. 1,3,4-oxadiazoles mempunyai banyak aktiviti biologi, misalnya aktiviti antijamur, antibakteria dan anti-oksidan. Hidrazida asid karboksilik disintesis dari tindak balas antara ester indol dan hidrat hidrazin dan digunakan sebagai bahan permulaan turunan 1,3,4-oksadiazol. Terdapat empat 1,3,4-oksadiazol yang disintesis dalam projek ini. Derivatif 1,3,4-oksadiazol disintesis dari hidrazida asid karboksilik yang bertindak balas dengan turunan asid benzoat yang berbeza dengan adanya POCl₃. Hasil peratusan untuk 1,3,4-oksadizol yang disintesis adalah antara 8% hingga 70%. Untuk pencirian hidrazida asid karboksilik dan 1,3,4-oksadiazol menggunakan pelbagai instrumen seperti alat lebur, FT-IR, ¹H NMR, ¹³C NMR, DEPT, HMQC, dan HMBC.

ACKNOWLEDGEMENT

Firstly, I would like to take this opportunity to thank my supervisor, Dr. Sim Kooi Mow, who gave me a lot of help, advice, and guidance on the research. Besides that, I would like to express my gratitude to him on the time that he had provided valuable sights, guidance and patience throughout the project period.

Apart from that, I sincerely thank my university, Universiti Tunku Abdul Rahman for providing the necessary instruments and a conducive environment to conduct my research. Furthermore, I am grateful towards the assistance of the lab officers of Department of Chemical Science for providing me with the necessities and advice whenever I need them.

Lastly, I would like to thank my family members for their moral and physical support throughout my three years in Universiti Tunku Abdul Rahman.

DECLARATION

I hereby declare that the project report is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

NG YU XUAN

APPROVAL SHEET

This project entitled "SYNTHESIS AND CHARACTERIZATION OF 1,3,4-OXADIAZOLES BEARING AN INDOLE RING" was prepared by NG YU XUAN and submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Honours) in Chemistry at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Sim Kooi Mow)

Supervisor

Department of Chemical Science

Faculty of Science

Universiti Tunku Abdul Rahman

Date:

FACULTY OF SCIENCE

UNIVERISITI TUNKU ABDUL RAHMAN

Date:_____

PERMISSION SHEET

It is hereby certified that NG YU XUAN (ID No: 16ADB02896) has completed this final year project entitled "SYNTHESIS AND CHARACTERIZATION OF 1,3,4-OXADIAZOLES BERAING AN INDOLE RING" under the supervision of Dr. Sim Kooi Mow from the Department of Chemical Science, Faculty of Science.

I hereby to give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(NG YU XUAN)

TABLE OF CONTENTS

	Page
ABSTRACT	I
ABSTRAK	II
ACKNOWLEDGEMENT	III
DECLARATION	IV
APPROVAL SHEET	V
PERMISSION SHEET	VI
TABLE OF CONTENTS	VII-IX
LIST OF FIGURES	X-XII
LIST OF TABLES	XIII-XIV
LIST OF REACTION SCHEME	XV
LIST OF ABBREVIATIONS	XVI-XVII

Contents

INTRODUCTION		1
	1.1 Indole	1
	1.1.1 Fischer Indole Synthesis	5
	1.2 Hydrazine and Hydrazide	8
	1.3 Oxadiazoles	12
	1.4 1,3,4-oxadiazoles	13
	1.5 Objectives	15
LITEF	RATURE REVIEWS	16
	2.1 Synthesis of Hydrazide	16

2.2 Synthesis of 1,3,4-Oxadiazoles	21
MATERIALS AND METHODS	27
3.1 Chemicals	27
3.2 Instruments	30
3.3 Methodology	31
3.3.1 Methodology of indole ester	31
3.3.2 Methodology of carboxylic acid hydrazide	32
3.3.3 Methodology of 1,3,4-oxadiazole	33
3.4 Characterization of carboxylic acid hydrazide and	
1,3,4-oxadiazole derivatives	34
3.4.1 Thin Layer Chromatography	34
3.4.2 Fourier-Transform Infrared Spectroscopy	36
3.4.3 Nuclear Magnetic Resonance	36
3.4.4 Melting Point Apparatus	37
3.5 Calculations	38
RESULTS AND DISCUSSION	39
4.1 Physical appearance of indole ester	42
4.2 Synthesis of carboxylic acid hydrazide	42
4.2.1 Physical Properties of carboxylic hydrazide	43
4.3 Characterizations of carboxylic acid hydrazide	44
4.4 Synthesis of 1,3,4-oxadiazoles	51
4.4.1 Proposed mechanism of 1,3,4-oxadiazoles	52
4.4.2 Physical properties of 1,3,4-oxadiazole derivatives	53

4.4.3 Characterization of the 1,3,4-oxadiazole derivatives	54
CONCLUSION	79
FURTHER STUDY	80
REFERENCES	81
APPENDICES	86

LIST OF FIGURES

Figure		Page
1.1	Structure of indole	1
1.2	General Reaction Scheme of Fischer Indole Reaction	7
1.3	Robinson's mechanism	8
1.4	Hydrazine structure	9
1.5	Hydrazide structure	9
1.6	Isomers of oxadiazoles	12
1.7	Synthesis methods of 1,3,4-oxadiazoles	14
2.1	Reaction between dimethyl cinchomeronate and hydrazine	17
	hydrate in methanol	
2.2	Reaction between 3-methylthiazolo[3,2- <i>a</i>]benzimidazole-2- carboxylic acid ethyl ester and hydrazine hydrate	18
		10
2.3	Outline synthesis by using pyrazine-2-carboxylic acid hydrazide	19
2.4	Hydrazinolysis of (7-hydroxy-2-oxo-2 <i>H</i> -chromen-4-yl)-acetic	19
	acid ethyl ester	
2.5	Synthesis of 5-fluoro-3-phenyl-1 <i>H</i> -indole-2-carbohydrazide	20

2.6	1,3,4-Oxadizoles synthesis scheme	
2.7	Formation of 1,3,4-oxadiazole.	22
2.8	Synthesis of 1,3,4-oxadiazoles and 1,3,4-thiodiazoles	23
2.9	Synthesis of 1,3,4-oxadiazole tagged thieno[2,3- <i>d</i>]pyrimidine derivatives	
2.10	Formation of 2-(phenoxymethyl)-1-[(5-substituted-1,3,4- oxadiazol-2-yl)methyl]-1 <i>H</i> - benzimidazole	25
2.11	Formation of 5-benzyl-1,3,4-oxadiazole-2-thiol	26
3.1	Synthesis pathway of indole ester	
3.2	Synthesis pathway of carboxylic acid hydrazide	
3.3	Synthesis pathway of 1,3,4-oxadiazole derivatives with the presence of phosphorus oxychloride	
4.1	Structure of indole ester	39
4.2	Structure of carboxylic acid hydrazide	43
4.3	FTIR spectrum of carboxylic acid hydrazide.	
4.4	¹ H NMR spectrum (400MHz) of carboxylic acid hydrazide	41
4.5	¹³ C NMR spectrum (400MHz) of carboxylic acid hydrazide	42
4.6	FT-IR spectrum of compound I	47

4.7	FT-IR spectrum of compound II	48
4.8	FT-IR spectrum of compound III	49
4.9	FT-IR spectrum of compound IV	50
4.10	¹ H NMR spectrum (400MHz) of compound I	56
4.11	¹ H NMR spectrum(400MHz) of compound I (aromatic region)	57
4.12	¹³ C NMR spectrum (100MHz) of compound I	58
4.13	¹ H NMR spectrum (400MHz) of compound II	60
4.14	¹ H NMR spectrum (400MHz) of compound II (aromatic	61
	region)	
4.15	¹³ C NMR spectrum (100MHz) of compound II	62
4.16	¹ H NMR spectrum (400MHz) of compound III	64
4.17	¹ H NMR spectrum (400MHz) of compound III (aromatic	65
	region)	
4.18	¹³ C NMR spectrum (100MHz) of compound III.	66
4.19	¹ H NMR spectrum (400MHz) of compound IV	68
4.20	¹ H NMR spectrum (400MHz) of compound IV (aromatic	69
	region).	
4.21	¹³ C NMR spectrum (100MHz) of compound	70

xii

LIST OF TABLES

Table		Page
1.1	Indole drugs in Pharmaceutical field	3-5
1.2	The methods of indole synthesis	6-7
1.3	Properties of hydrazine drivatives	10-11
3.1	Chemicals that used to synthesis indole ester	27
3.2	Chemicals that used to synthesis carboxylic hydrazide	28
3.3	Chemicals that used to synthesis 1,3,4-oxadiazole	28
3.4	Solvents used in TLC	29
3.5	Solvents used in NMR	29
3.6	Types of instrument used	30
4.1	Physical properties of indole ester	42
4.2	Physical properties of carboxylic acid hydrazide	43
4.3	FT-IR spectrum of carboxylic acid	44
4.4	NMR spectral data of carboxylic acid hydrazide	48
4.5	Physical properties of 1,3,4-oxadiazole derivatives	53
4.6	FT-IR spectrum of 1,3,4-oxadiazole derivatives	54

4.7	Structure of 1,3,4-oxadiazole derivatives	59
4.8	Summary of ¹ H NMR (400MHz) and ¹³ C NMR (100MHz)	63
	spectral data of compound I	

- **4.9** Summary of ¹H NMR (400MHz) and ¹³C NMR (100MHz) **67** spectral data of compound II
- 4.10 Summary of ¹H NMR (400MHz) and ¹³C NMR (100MHz) 71 spectral data of compound III
- 4.11 Summary of ¹H NMR (400MHz) and ¹³C NMR (100MHz) 75
 spectral data of compound IV

LIST OF SCHEMES

scheme		page
4.1	Synthesis pathway of indole ester	40
4.2	Proposed mechanism of indole ester	41
4.3	Proposed mechanism of carboxylic acid hydrazide	43
4.4	Proposed synthesis pathway of 1,3,4-oxadiazoles	51
4.5	Proposed mechanism of 1,3,4-oxadiazoles	52

LIST OF ABBREVIATIONS

%	Percentage
°C	Celsius
δ	Chemical shiff(ppm)
$^{1}\mathrm{H}$	Proton
¹³ C	Carbon-13
DEPT	Distortionless Enchancement by polarization Transfer
DMSO	Dimethylsulfate
EA	Ethyl acetate
EtOH	Ethanol
FTIR	Fourier Transform Infrared
G	Gram
H ₂ O	Water
HCl	Hydrochloric acid
HMBC	Heteronuclear Multiple Bond Coherence
HMQC	Heteronuclear Multiple Quantum Coherence
Hz	Herz

mg	Milligram
mL	Milliliter
mmol	Millimole
Mol	Mole
NMR	Nuclear Magnetic Resonance
POCl ₃	Phosphorous oxychloride
TLC	Thin Layer Chromatography

CHAPTER 1

INTRODUCTION

1.1 Indole

Indole is a heterocyclic compound made up of two cyclic compounds. The two compounds are benzene and a pyrrole ring which the pyrrole nucleus located at 2, 3 positions in the ring. Indole is a non-basic nitrogenous compound and it has molecular formula is C₈H₇N. The indole was named by combining indigo and oleum. Indigo is a natural blue dye that was popular in ancient civilizations. Indigo can modify to form isatin and oxindole. Adolf von Baeyer investigated indole by reducing the oxindole using zinc dust in 1866. The chemical structure of indole

(Figure 1.1) was proposed by Adolf von Baeyer in 1869.

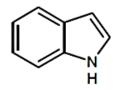


Figure 1.1: Structure of indole

The indole derivatives can be found in natural products form in animals, plants, and microbial. Serotonin is considered as an indole derivative converted from tryptophan. Serotonin act as a neurotransmitter and widely involved brain activity (Hamid et al., 2017). Dragmacidin is extracted from marine natural product and it has properties of cytotoxicity (Gul and Hamann, 2005). Ajmaline and Reserpine are used to treat high blood pressure and mental disorder.

Indole derivatives have many biological activities including antimicrobial activity, anti-inflammatory, anticonvulsant, anticancer, antipsychotics, and antiviral activity. These biological activities make the indole derivatives play an important role in the pharmaceutical field.

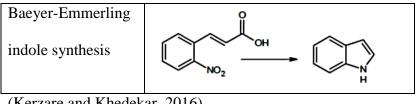
Name	Chemical structure	Biological activities
		or treatment
Sumatriptan	H ₃ C-N-CH ₃ N-CH ₃	Antimigraine
Naratriptan	H_3C_N	Antimigraine
Fluvastin		Treatment of Hypercholesterolemi a & lipoproteinemia
Tadalafil		Used to treat erectile dysfunction or pulmonary arterial hypertension
		nypertension

Table 1.1: Indole drugs in Pharmaceutical field

Sildenafil		used to treat erectile
		dysfunction and pulmonary arterial
		hypertension
Vardenafil	<u>0</u> ,	used for
		treating erectile
		dysfunction
Ondansetron		Antiemetic caused
		by cancer
	N	chemotherapy,
	,	radiation therapy, or
		surgery
Alosetron		Antiemetic
Tegaserod	~0	To treat
		chronic idiopathic
	н́м—″ йн	constipation

Zafirlukast	used for the chronic
	treatment of asthma
Sertindole	Antipsychotics

(Buvana et al., 2018)


1.1.1 Fischer Indole Synthesis

There are many methods to synthesis indole derivatives. According to Kerzarea and Khedekar (2016) the methods for indole synthesis are Leimgruber-Batcho indole synthesis, Fischer indole synthesis, Bartoli indole synthesis, Bischler-Mohlau indole synthesis, Fukuyama indole synthesis, Gassman indole synthesis, Hemetsberger indole synthesis, Larock indole synthesis, Madelung indole synthesis and Baeyer-Emmerling indole synthesis. Table 1.2 shown that the methods for synthesis indole derivatives.

Table 1. 2: The methods of indole synthesis.

Method	Reaction

Leimgruber-Batcho	CH ₃
indole synthesis	
Fischer indole	
synthesis	
Bartoli indole	
synthesis	
Bischler-Mohlau	
indole synthesis	
Fukuyama indole	R ₃ H R ₃ R ₅
synthesis	$\begin{array}{c} R_1 \\ R_2 \\ R_2 \\ R_4 \\ R_6 \end{array}$
Gassman indole	
synthesis	
Hemetsberger	
indole synthesis	$\bigcup_{N_3} \xrightarrow{OR} \bigcup_{H} \xrightarrow{O}_{H} \xrightarrow{O}_{OR}$
Larock indole	
synthesis	
Madelung indole	$R_3 H$ $R_3 R_5$ $H L$ $R_1 L$
synthesis	$\begin{array}{c} R_1 \\ \hline \\ R_2 \\ \hline \\ R_4 \\ O \\ \hline \\ R_6 \end{array}$

(Kerzare and Khedekar, 2016)

Fischer Indole synthesis is one of the method for indole synthesis. Fischer Indole reaction is the reaction between equimolar of arylhydrazone and aldehyde or ketone with acid as catalyst. Fischer Indole was developed by Fischer and Jourden in 1883. The mechanism was proposed by Robinson and Robinson in 1918 (Van.Order and Lindwal, 1942).

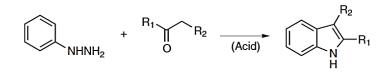


Figure 1.2: General Reaction Scheme of Fischer Indole Reaction (Wang, 2010).

The mechanism of Fischer Indole start with the hydrazone undergo tautomerization to form unsaturated hydrazine with the aid of acid.

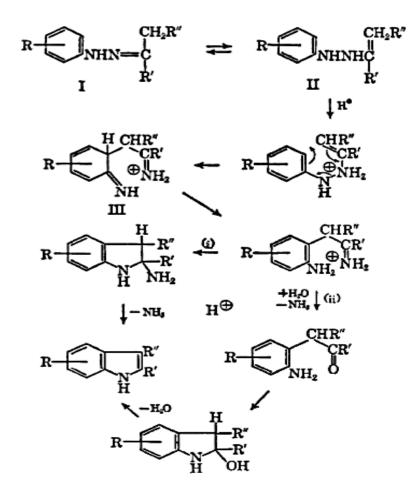


Figure 1.3: Robinson's mechanism (Robinson, 1963)

1.2 Hydrazine and Hydrazide

Hydrazine is a highly polar, colourless and flammable liquid in room temperature. Hydrazine has an ammonia like-odor. Hydrazine is known as a hazardous chemical. Hydrazine can absorb by human through inhalation, ingestion and through dermal. The symptoms of exposure to hydrazine can be classified into short-term exposure and long-term exposure. For short-term exposure symptoms, people normally will feel dizziness, nausea, irritation, and skin burns. Other than that, irritation of eyes, nose and throat are one of the symptoms of short-term exposure to hydrazine. Longterm exposure to hydrazine will cause vomiting and itching of eyes. Hydrazine is known as a potential carcinogen (CDC - Immediately Dangerous to Life or Health Concentrations (IDLH): Hydrazine - NIOSH Publications and Products, 2020). Hydrazine also can cause central nervous depression, and damage internal organs such as kidneys and central nervous system.

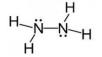


Figure 1.4: Hydrazine structure

Hydrazine is used as a chemical blowing agents to produce rigid or flexible polymer through thermal decomposition and polymer formulation (Mason and Sinha, 2014). Many hydrazine derivatives are useful in agriculture. Maleic hydrazide is used as plant growth regulator of potatoes and onions. It can inhibit the growth of sucker of tobacco. Hydrazine derivatives also apply in water treatment for removing corrosion. Hydrazine has the ability to scavenge oxygen in cooling system of the engines. Hydrazine fuels are mainly for bipropellant.

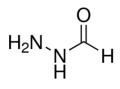


Figure 1.5: Hydrazide structure

In pharmaceutical field, hydrazine is the precursor of developing new drugs. Cefazolin (thiadiazole tetrazole derivative) has the properties of antibacterial. Carbidopa (alkylhydrazine) is use in treatment Parkinson disease. The other examples of hydrazine derivatives are Apresoline (hydrazine phthalazine) is used as reduce blood pressure and Furacin (nitrofurfuraldehyde semicarbasone) is used to treat coccidiocis of poultry (Troyan, 1953).

Hydrazine derivative	Properties
	ropenues
1) Hydralazine	As a vasodilator drug in high
	blood pressure treatment. It has
	the property of restrain DNA
	methyltransferrase 1 (it inhibits
	mothyl group transfor in concor
	methyl group transfer in cancer
	cell).
	It can induce hypoxia-induced
	for the second s
	factor (HIF α) which important in
	cancer chemotherapy.
	cancer enemotierapy.
	Hydrazine can cause DNA
	damage which induce lung tumor
	in mice.

Table 1.3: Properties of hydrazine drivatives

2) Isoniazid	It is an anti-tuberculosis drug.
	But it is hepatotoxicity (can
	cause liver cancer).
3) Iproniazid	Iproniazid has the property to
	inhibit monoamine oxidase and
	used as antidepressant.
	It is forbid to use as
	antidepressant because of its
	hepatotoxicity.
4) Procarbazine	It is an anticancer drug.
	It is using to treat Hodgkin's
	lymphoma, malignant melanoma
	and brain tumors in adolescent.
	It is mutagenic to mammalian
	and bacterial.

(Mason and Sinha, 2014)

1.3 Oxadiazoles

Oxadiazole is a 5-membered heterocyclic ring which consists of two carbons, two nitrogens and one oxygen atom. There are four types of isomers of oxadiazole are 1,2,3-oxadiazoles, 1,2,4-oxadiazoles, 1,2,5-oxadiazoles and 1,3,4-oxadiazoles.

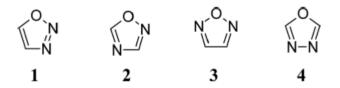
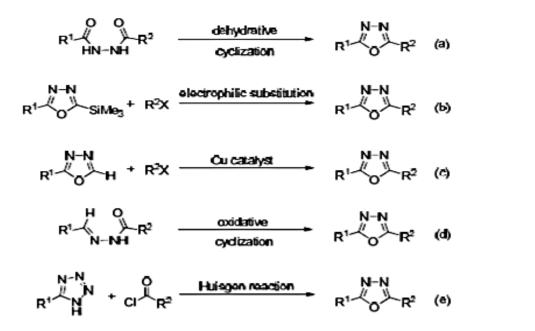


Figure 1.6: Isomers of oxadiazoles (Patel et al., 2014)


The oxadiazoles was found by Ticmann and Krugar in 1884. The oxadiazoles was named as furo[*ab*] diazoles (Patel et al., 2014). Oxadiazole is a weak base and has an inductive effect. The nitrogen of oxadizoles reduce the aromaticity of the ring and lead the oxadizoles to have conjugated diene character (Sanchit and Pandeya, 2011) .Carbon atoms of the oxadiazoles rarely occur reaction with electrophilic substitutions. This is because of the carbon is less electron density. For the electron substitutions occur in nitrogen, the electron-releasing group have to present in the oxadiazole ring. The oxadiazole moiety which carry the nitrogen atoms show various biological activities such as antibacterial, antimalarial, anti-inflammatory, antifungal, anticancer, antiretroviral, and as drugs for cardiovascular, central nervous system disorder and metabolicillnesses (Pitasse-Santos et al., 2018). Besides pharmaceutical field, oxadiazole moieties also show properties in luminescent applications,

herbicides, electron-transport materials, polymer and corrosion inhibitors (Pitasse-Santos et al., 2018).

1.4 1,3,4-oxadiazoles

Ainsworth synthesized 1,3,4-oxadiazoles in 1965 through thermolysis of ethylformate, formally hydrazine at atmospheric pressure. 1,3,4-Oxadiazole was known as oxybiazole, diazole, furro[*bb*'] diazole and biozole. The IUPAC name as 1,3,4-oxadiazole was used to replace the common names. The derivatives of 1,3,4-oxadiazole with amine and alkyl chains are important as electroluminescent materials (Mochizuki et al., 2000).

The traditional methods to synthesis 1,3,4-oxadiazole are dehydrative cyclization, electrophilic substitution, copper-mediated coupling reaction of aryl halides, oxidative cyclization with the presence of catalyst or oxidizing agents and Huisgen 1,3,4-oxadiazole synthesis (Wang et al., 2015).

31

Figure 1.7: Synthesis methods of 1,3,4-oxadiazoles (Wang et al., 2015)

1.5 Objectives

- I. To synthesis a carboxylic acid hydrazide and a series of 1,3,4-oxadiazoles bearing an indole ring.
- II. To characterize the structure of the carboxylic acid hydrazide and 1,3,4oxadizoles by using FTIR, ¹NMR, ¹³NMR, DEPT, HMQC and HMBC.

CHAPTER 2

LITERATURE REVIEW

2.1 Synthesis of Hydrazide

According to Yale (1952), hydrazine salt can be obtained from the reflux of dimethyl cinchomeronate and hydrazine hydrate in methanol. Firstly to produce the hydrazine hydrate, 48 g. (0.24 mole) of dimethyl cinchomeronate in 960mL of methanol was reacted with hydrazine by adding the 85% of hydrazine hydrate dropwise into it. The mixture was reflux for 6 hours. After 6 hours, the solution was cooled to room temperature and the solid was being filtered. The solid was recrystallized using ethanol as 95% solvent. The recrystallized solids was the hydrazine salts. Hydrazine salts was then dissolved in water and acidified using acetic acid. The solution will undergo separation then proceed to filtration. The filtrated solids will be recrystallized using dimethylformamide. Around 80% of percentage yield of hydrazine hydrate will be produced.

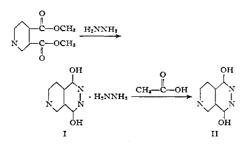


Figure 2.1: Reaction between dimethyl cinchomeronate and hydrazine hydrate in methanol (Yale et al., 1953)

Abdel-Aziz (2007) stated that 3-methylthiazolo[3,2-*a*]benzimidazole-2-carboxylic acid ethyl ester reacts with hydrazine hydrate enable the hydrazide to be synthesized. 2.6 g of 3-methylthiazolo[3,2-*a*]benzimidazole-2-carboxylic acid ethyl ester will react with 0.6 mL of 99% of hydrazine hydrate in 50 mL of absolute ethanol solution. The mixture was refluxed for 5 hours. After refluxing, the solution was being cooled to room temperature. Filtration was used to separate the white solid in the solution then the solid was being recrystallized. Recrystallization solution can be used are ethanol or dimethylformamide. The final product which is hydrazide will be white colour solid with 76% percentage yield.

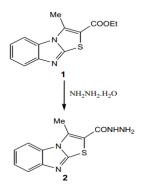


Figure 2.2: Reaction between 3-methylthiazolo[3,2-*a*]benzimidazole-2carboxylic acid ethyl ester and hydrazine hydrate (Abdel-Aziz et al., 2007)

Abdel-Aziz and Abdel-Rahman (2010) reported that pyrazine-2-carboxylic acid hydrazide synthesized from esterification and hydrazinolysis of pyrazine-2carboxylic acid. 0.124 g (1.0 mmol) of pyrazine-2-carboxylic acid in 30 mL of chloroform at 10°C. An equal mole of triethylamine was added to the stirred solution follow by an equal mole of ethyl chloroformate was added dropwise with 10 minutes of nitrogen flow. The mixture was allowed to stir for 30 minutes. Over 15 minute's period, 10 mmol of methanol was added and stirred the solution for 12 hours at room temperature. An oily crude product will be obtained by evaporating the solvent. The crude product will dissolve in 30 mL of methanol. 5 mmol of hydrazine monohydrate was added in the solution and then reflux for 6 hours. The solution was allowed to cool and undergo filtration to obtain the precipitates. The product was being recrystallized using ethanol as the solvent. A yellowish solid was produced with 80% yield.

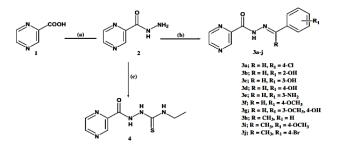


Figure 2.3 : Outline synthesis by using pyrazine-2-carboxylic acid hydrazide (Abdel-Aziz and Abdel-Rahman, 2010)

Cacic et al. (2006) stated that (7-hydroxy-2-oxo-2*H*-chromen-4-yl)-acetic acid ethyl ester undergo hydrazinolysis will produce (7-hydroxy-2-oxo-2*H*-chromen-4-yl)-acetic acid hydrazide. The reaction between (7-hydroxy-2-oxo-2*H*-chromen-4-yl)-acetic acid ethyl ester in 120 mL of methanol added with 12 mL of 100 % hydrazine hydrate. The mixture put at room temperature for 24 hours. The desired product undergo separation, vaccum filtration and recrystallization. During vaccum filtration, the product need to wash with methanol and light petroleum. The solvent that used in recrystallization is water or diluted acetic acid. The (7-hydroxy-2-oxo-2*H*-chromen-4-yl) acetic acid hydrazide will have 70 % yield.

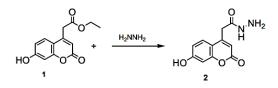
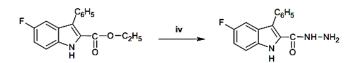



Figure 2.4 : Hydrazinolysis of (7-hydroxy-2-oxo-2*H*-chromen-4-yl)-acetic acid ethyl ester (Cacic et al., 2006)

According to Cihan-Üstündağ et al. (2016), ethyl 5-fluoro-3-phenyl-1*H*-indole-2carboxylate react with 98 % of hydrazine hydrate can synthesis 5-fluoro-3-phenyl-1*H*-indole-2-carbohydrazide. Firstly, the 0.02 mol of ethyl 5-fluoro-3-phenyl-1*H*indole-2-carboxylate in 20 mL of ethanol react with 98 % hydrazine hydrate in the reflux condition. The reflux duration is 6 hours. After refluxing, the mixture was cooled and being filtered. The brown solid will be obtained from the recrystallization using ethanol-chloroform.

Figure 2.5: Synthesis of 5-fluoro-3-phenyl-1*H***-indole-2-carbohydrazide** (Cihan-Üstündağ et al., 2016)

2.2 Synthesis of 1,3,4-Oxadiazoles

According to Frohlichova et al. (2009), The 1,3,4-oxadiazole derivatives were synthesized from acylthiosemicarbazides. 0.4 mmol of acylthiosemicarbazides in 4 mL of absolute ethanol solution react with 0.09 mmol of mercuric oxide. The mercuric oxide was distributed adding into the solution in 30 minutes period. The mixture have to reflux for 2 hours and then filter when it is warm. The black solid was washed with 3 mL of hot ethanol for 3 times. The solutions was concentrated into small volume and leave overnight at room temperature. The solution then will undergo filtration to get the solid. Drying and recrystallization were necessary for the purification of the product. This synthesis method can get 13 % yield of 1,3,4-oxadiazoles.

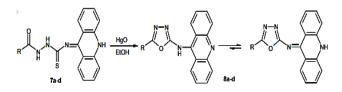


Figure 2.6 : 1,3,4-oxadizoles synthesis scheme(Frohlichova et al., 2009).

For the stirring 2-(2-chlorophenoxy)benzoic acid hydrazide solution, a 60 mL solution that made up from 25.8 mmol sodium bicarbonate and 25.9 mmol of dioxane in 40 mL of water were mixed together. The solution was allowed to stir at 25 °C for 5 minutes. After stirring for 5 minutes, about 26 mmol of cyanogen bromide was

added. The solution will add with 200 mL of water after 3 hours. The product formed will collect through filtration and recrystallize using ethanol. The oxadiazoles produced through this method is around 80% yield.

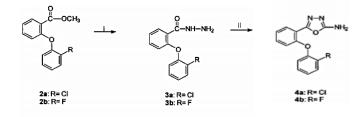
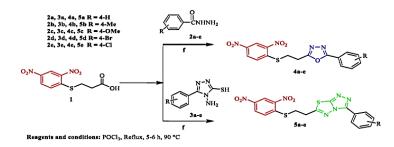



Figure 2.7 : Formation of 1,3,4-Oxadiazole (Rad et al., 2004).

Triloknadh et al. (2018) stated that reaction of 3-((2,4-dinitrophenyl)thio)propanoic acid and hydrazide acid with the aid of phosphorus oxychloride can produce 1,3,4-oxadiazole derivatives. Equimolar (0.36 mmol) of 3-((2,4-dinitrophenyl)thio)propanoic acid and hydrazide acid with 4 mL of phosphorus oxychloride will reflux for 5 to 6 hours at 90 °C. After reaching the time of reflux, the solution was then poured into 50 mL of chilled water dropwised. The ammonia solution was used as neutralizing agent. The 1,3,4-oxadizoles produced can up to 75 % yield.

Figure 2.8 : Synthesis of 1,3,4-oxadiazoles and 1,3,4-thiodiazoles (Triloknadh et al., 2018)

For the synthesis of 1,3,4-oxadiazole tagged thieno[2,3-*d*] pyrimidine derivatives, Harikrishna et al. (2012) proposed the reaction of 4-(substituted phenylamino)-5methylthieno[2,3-*d*]pyrimidine-6-carboxylic acids and carboxylic acid hydrazide. A mixture that made up from 0.01 mol of 4-(substituted phenylamino)-5methylthieno[2,3-*d*]pyrimidine-6-carboxylic acids and carboxylic acid hydrazide and 20 mL phosphorus oxychloride was being refluxed for 5 hours. The mixture was cooled to room temperature after 5 hours. When it reached to room temperature, the mixture was poured into crushed ice and keep stirring it. The solution was need to leave for 24 hours then proceed to filtration to get the crude oxadiazole. During filtration, the sodium hydroxide was used to neutralize the acid and the product was washed with cold water. The crude 1,3,4-oxadiazole was allowed to dry. The dried 1,3,4-oxadiazole was proceed to recrystallization using chloroform and hexane. The purified 1,3,4-oxadiazole will be in around 80 % yield.

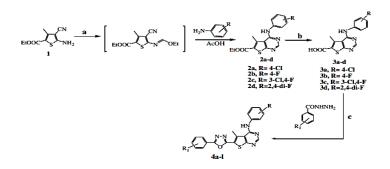


Figure 2.9 : Synthesis of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives (Kotaiah et al., 2012).

2-(phenoxymethyl)-1*H*-benzimidazole was synthesized from o-phenylenediamine and phenoxyacetic acid first. Then a hydrazide (2-[2-(phenoxymethyl)-1*H*benzimidazol-1-yl]acetohydrazide) will be produced by adding hydrazine hydrate with the anhydrous potassium carbonate dissolve in dry acetone. The present of POCl₃ will cause condensation with the temperature increase to 110-120 °C. The final product will be 2-(phenoxymethyl)-1-[(5-substituted-1,3,4-oxadiazol-2-yl)methyl]-1*H*-benzimidazole by using this synthesis method (Shaharyar et al., 2017).

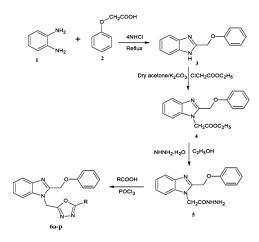


Figure 2.10 : Formation of 2-(phenoxymethyl)-1-[(5-substituted-1,3,4-oxadiazol-2-yl)methyl]-1*H*- benzimidazole (Shaharyar et al., 2017).

Siddiqui (2013) reported 1,3,4-oxadiazole can be synthesized through cyclization via CS₂ of hydrazide. For synthesis 5-benzyl-1,3,4-oxadiazole-2-thiol, 0.3 moles of KOH was added to 0.1 moles of phenylacetic acid hydrazide in 25 mL ethanol was heated with stirring. When all KOH was dissolved, 0.1 moles of carbon disulfide was then introduced into the reaction. The mixture have to reflux for 4 hours. During refluxing, the H₂S(hydrogen sulfide) will be released. After 4 hours, the mixture was had been acidified to pH 3 by adding diluted HCl. The mixture was then being filtrate to get the yellow precipitate. The crude 1,3,4-oxadiazole was rinsed using distilled water and allow it to dry. Ethanol was used as the recrystallize solvent for the crude 1,3,4-oxadiazole. The purity of the purified 1,3,4-oxadiazole can be checked with TLC by using ethyl acetate and hexane as solvent. The ratio of ethyl acetate and hexane is 60:40. The pure product will give single spot under UV lamp as result. The 5-benzyl-1,3,4-oxadiazole-2-thiol can be get through this reaction is 87% yield.

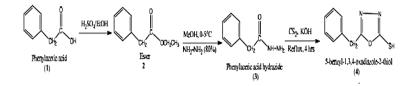


Figure 2.11 : Formation of 5-benzyl-1,3,4-oxadiazole-2-thiol(Siddiqui et al., 2013)

CHAPTER 3

MATERIALS AND METHODS

3.1 Chemicals

Table 3.1: Chemicals that used to synthesis indole ester

CHEMICALS	MANUFACTURER	COUNTRY
Acetic acid	Merck	Cermany
Ethyl acetate	LAB-SCAN	Ireland
Absolute ethanol	Acros Organic	Belgium
Anhydrous sodium sulphate	Fischer Scientific	UK
Concentrated Hydrochloric acid	Fischer Scientific	UK

CHEMICALS	MANUFACTURER	COUNTRY
Hydrazide hydrate	Merck	Germany
Absolute ethanol	Acros Organics	Belgium

Table 3.2: Chemicals that used to synthesis carboxylic hydrazide

Table 3.3: Chemicals that used to synthesis 1,3,4-oxadiazole

CHEMICALS	MANUFACTURER	COUNTRY
Benzoic acid	Merck	Germany
4-chlorobenzoic acid	Merck	Germany
4-methylbenzoic acid	Merck	Germany
2,4-dichlorobenzoic acid	Sisco Research Laboratory	India
Phosphorus	Merck	Germany
oxychloric		

Table 3.4: Solvents used in TLC

CHEMICALS	MANUFACTURER	COUNTRY
Ethyl acetate	LAB-SCN	Ireland
n-hexane	Merck	Germany

Table 3.5: Solvents used in NMR

CHEMICALS	MANUFACTURER	COUNTRY
DMSO-d ₆	Fischer Scientific	UK

3.2 Instruments

Types of Instrument	Model	Table 3.6:
FT-IR spectrophotometry	Perkin Elmer 2000-FTIR	Types of
	Spectrophotometer Spectrum	instrument
	RX I	used
NMR	FT-NMR Spectrometer	
	JEOL JNM ECX-400	
Melting point apparatus	Barnstead Electrothermal	
	9100	

3.3 Methodology

3.4 Characterization of carboxylic acid hydrazide and 1,3,4-oxadiazole derivatives

3.4.1 Thin Layer Chromatography

Thin Layer Chromatography is a plate that coated with silica gel and useful in separation of mixture. Thin Layer Chromatography enable to track the reaction progress, determine the type of compounds in the provided structure and check for the purity of the product (Bele and Khale, 2010). In order to check the reaction progress, the formation of new spot or disappear of the spot of reagent. The Thin Layer Chromatography can be classified into 3 steps: spot the sample, development of the sample movement on the plate, and visualize the spots using UV lamp. Firstly, the dissolved samples were spotted on the TLC plate using a tip of micropipette. Then it will be transfer to a chamber that contain solvents. The coated silica on the plate act as a stationary phase, the solvent act as the mobile phase. The sample will move along with the solvent on the plate. The R_f value were obtained from the formula below. The solvents used for 1,3,4-oxadiazole derivatives are ethyl acetate and hexane in 1:1 ratio.

$$R_f = \frac{Distance \ of \ compound \ traveled \ from \ baseline}{Distance \ of \ solvent \ traveled \ from \ baseline \ (mm)}$$

3.4.2 Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared spectroscopy can use to identify the functional groups present in the samples. A graph of % transmittance against frequency (cm^{-1}) will be shown after testing the sample. We can identify the functional groups by comparing the sample data with the theoretical values. The frequency that used to analysis is 4000 cm⁻¹- 400 cm⁻¹. The sample will be in a pellet form with KBr powder.

3.4.3 Nuclear Magnetic Resonance

Nuclear Magnetic resonance was used to determine the purity and structure of the samples by applying a strong magnetic field to it. There will be the nuclear spin of the sample when it present under a strong magnetic field region. NMR is a non-destructive sample analysis and only required in a small amount of sample.

Around 10 mg of the sample was dissolved in deuterated dimethylsulfoxide in a sample vial. The dissolved sample was then transferred into the NMR tube until 4 cm height. The deuterated solvent is to avoid the interrupt of the proton in the solvent.

3.4.4 Melting Point Apparatus

Melting point apparatus is used to measure the sample melting point. A small amount of the sample was put in a capillary tube. Then the capillary tube was inserted into the melting point apparatus. The temperature has to set at a higher value. As the temperature increase, the changes of the sample can be observed through a magnifying lens on the apparatus. The melting point is measured when the sample starts melting and completely melted.

3.5 Calculations

1. $Mass(g) = number of mole(mol) \times Molar Mass(gmol^{-1})$

Use to calculate the mass of the starting materials.

2. *Volume* = $mass(g) \times density(gcm^{-1})$

Use to convert the mass of starting materials to volume required in synthesis.

3. Percentage yield = $\frac{Actual mass obtained(g)}{Theoretical mass (g)} \times 100\%$

Use to calculate the product percentage yield.

CONCLUSION

From this project the carboxylic acid hydrazide and four type of 1,3,4-oxadiaozles were being synthesized. The carboxylic acid hydrazide was synthesized by reacting the indole ester with the hydrazine hydrate. And the carboxylic acid hydrazide is the starting material of the 1,3,4-oxadiazoles. The percentage yield of carboxylic acid hydrazide synthesized is 35%. By reacting the carboxylic acid hydrazide with various benzoic acid derivatives in the presence of phosphorous oxychloride can synthesis different 1,3,4-oxadiazoles. The characterization methods being used were ¹HNMR, ¹³C NMR, DEPT, HMQC and HMBC.

FURTHER STUDY

Various journals had stated that the 1,3,4-oxadiazoles have many biological and pharmaceutical properties because of their heterocyclic structure. Therefore, we can study biological activities such as antioxidant activity, antibacterial, antifungal or anticancer activity. By reacting the carboxylic acid hydrazide with different substituted benzoic acid, this can produce several different 1,3,4-oxadiazoles.

REFERENCES

Abdel-Aziz, HA., Hamdy, NA., Farag, AM. and Fakhr, IM. 2007. Synthesis and reactions of 3-methylthiazolo [3, 2-*a*] benzimidazole-2-carboxylic acid hydrazide: synthesis of some new pyrazole, 1, 3-thiazoline, 1, 2, 4-triazole and 1, 2, 4-triazolo [3, 4-*b*]-1, 3, 4-thiadiazine derivatives pendant to thiazolo [3, 2-*a*] benzimidazole moiety. *Journal of the Chinese Chemical Society*, 54(6), pp.1573-1582.

Abdel-Aziz, M., and Abdel-Rahman, HM. 2010. Synthesis and anti-mycobacterial evaluation of some pyrazine-2-carboxylic acid hydrazide derivatives. *European Journal of Medicinal Chemistry*, 45(8), pp.3384-3388.

Bele, AA., and Khale, A. 2010. An overview on thin layer chromatography. *International Journal of Pharmaceutical Sciences and Research*, 2(2), p.256.

Buvana, C., Suresh, R., Haribabu, Y. and Manna, PK. 2018. Indoles as therapeutics of interest in medicinal chemistry. *Indo American Journal Of Pharmaceutical Sciences*, 5(3), pp. 1585-1602.

Cacic, M., Trkovnik, M., Cacic, F. and Has-Schon, E., 2006. Synthesis and antimicrobial activity of some derivatives on the basis (7-hydroxy-2-oxo-2*H*-chromen-4-yl)-acetic acid hydrazide. *Molecules*, 11(2), pp.134-147.

Cdc.gov. 2020. CDC.Immediately dangerous to life or health concentrations (idlh): hydrazine .NIOSH Publications And Products. [online] Available at: <https://www.cdc.gov/niosh/idlh/302012.html> [Accessed 10 August 2020].

Cihan-Üstündağ, G., Şatana, D., Özhan, G. and Çapan, G., 2016. Indole-based hydrazide-hydrazones and 4-thiazolidinones: synthesis and evaluation as antitubercular and anticancer agents. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 31(3), pp.369-380.

Kerzare, DR., and Khedekar, PB. 2016. Indole Derivatives acting on Central Nervous System *Journal of Pharmaceutical Science and Bioscientific Research*, 6(1), pp. 144-156.

Frohlichova, Z., Tomascikova, J., Imrich, J., Kristian, P., Danihel, I., Bohm, S., Sabolová, D., Kozurkova, M. and Klika, K.D., 2009. Synthesis and properties of novel biologically interesting polycyclic 1, 3, 4-oxadiazoles containing acridine/acridone moieties. *Heterocycles*, 77(2), pp.1019. Gul, W and Hamann, TM. 2005. Indole alkaloid marine natural products: *An established source of. Life Sciences*, 78, pp. 442 – 453.

Hamid, HA., Ramli, ANM. and Yusoff, MM. 2017. Indole Alkaloids from Plants as Potential Leads for Antidepressant Drugs: *A Mini Review. Frontiers in Pharmacology*, 8, pp. 1-7.

Kotaiah, Y., Harikrishna, N., Nagaraju, K. and Rao, C.V., 2012. Synthesis and antioxidant activity of 1, 3, 4-oxadiazole tagged thieno [2, 3-*d*] pyrimidine derivatives. *European Journal of Medicinal Chemistry*, 58, pp.340-345.

Mason, PR. and Sinha, BK., 2014. Biotransformation of hydrazine derivatives in the mechanism of toxicity. *Journal of Drug Metabolism & Toxicology*, 5(2), pp.1-6.

Mochizuki, H., Hasui, T., Kawamoto, M., Shiono, T., Ikeda, T., Adachi, C., Taniguchi, Y., Shirota, Y. *Chemical Communications*. 2000, 19, 1923–1924

Patel,KD., Prajapat, SM., Pancha, SN and Patel, HD. 2014. Review of synthesis of 1,3,4-oxadiazole. *Synthetic Communications*, 44, pp. 1859–1875.

Pitasse-Santos, P., Sueth-Santiago. F and Lima .MEF., 2018. 1,2,4- and 1,3,4oxadiazoles as scaffolds in the development of antiparasitic agents. *Journal of the Brazilian Chemical Society*. 29(3), pp. 435-456.

Rad, AA., Sheikhha, M., Hosseini, R., Tabatabaic, SA. and Shafiee, A., 2004. Synthesis and morphine enhancement activity of *N*- [5- (2-phenoxyphenyl)-1, 3, 4oxadiazole-2-yl]-*N*'-phenylurea derivatives. *Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry*, 337(4), pp.193-200.

Robinson, B., 1963. The Fischer Indole Synthesis. *Chemical Reviews*, 63(4), pp. 373-401.

Sanchit, S and Pandeya, SN . 2011. Various approaches for synthesis of oxadiazole derivatives. *International Journal of Research in Ayurveda & Pharmacy*, 2(2), pp. 459-468.

Shaharyar, M., Mazumder, A. and Abdullah, M.M., 2017. Synthesis, characterization and antimicrobial activity of 1, 3, 4-oxadiazole bearing 1*H*-benzimidazole derivatives. *Arabian Journal of Chemistry*, 10, pp.S503-S508.

Siddiqui, S.Z., Rehman, A., Abbasi, M.A., Abbas, N., Khan, K.M., Ashraf, M. and Ejaz, S.A., 2013. Synthesis, characterization and biological screening of N-substituted derivatives of 5-benzyl-1, 3, 4-oxadiazole-2yl-2 ' ' -sulfanyl acetamide. *Pakistan Journal of Pharmaceutical Sciences*, 26(3), pp.455-463.

Triloknadh, S., Rao, C.V., Nagaraju, B., Balaji, H. and Balaji, M., 2018. Design and synthesis of novel 1, 3, 4-oxadiazole and 1, 2, 4-triazolo [3, 4-b] 1, 3, 4-thiadiazole derivatives and their antimicrobial studies. *European Journal of Biomedical*, 5(7), pp.575-587