
 

 

 

DETERMINATION OF ROLLING RETURNS 

FROM A RASTERIZED GRAPH USING IMAGE 

PROCESSING 

 

 

 

 

 

 

CHEW JIA HAO 

 

 

 

 

 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 

 



 

 

 

DETERMINATION OF ROLLING RETURNS FROM A RASTERIZED 

GRAPH USING IMAGE PROCESSING 

 

 

 

 

 

 

 

CHEW JIA HAO 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Engineering 

(Honours) Electrical and Electronic Engineering 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

 

May 2020 

 

 



1 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except 

for citations and quotations which have been duly acknowledged.  I also 

declare that it has not been previously and concurrently submitted for any 

other degree or award at UTAR or other institutions. 

 

 

 

 

Signature :  

Name : CHEW JIA HAO 

ID No. : 1502778 

Date : 16/5/2020 

 

  



2 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “DETERMINATION OF 

ROLLING RETURNS FROM A RASTERIZED GRAPH USING 

IMAGE PROCESSING” was prepared by CHEW JIA HAO has met the 

required standard for submission in partial fulfilment of the requirements for 

the award of Bachelor of Engineering (Honours) Electrical and Electronic 

Engineering at Universiti Tunku Abdul Rahman. 

 

 

 

Approved by, 

 

 

 

Signature :  

Supervisor : MR NG CHOON BOON 

Date :  

 

 

 

 

 

 

 

 

 

16/5/2020



3 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of 

the copyright Act 1987 as qualified by Intellectual Property Policy of 

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be 

made of the use of any material contained in, or derived from, this report. 

 

 

© 2020, Chew Jia Hao. All right reserved. 

  



4 

ACKNOWLEDGEMENTS 

 

 

 

 

 

I would like to thank everyone who had contributed to the successful 

completion of this project. I would like to express my gratitude to my research 

supervisor, Mr. Ng Choon Boon for his invaluable advice, guidance and his 

enormous patience throughout the development of the research. 

 

In addition, I would also like to express my gratitude to my loving 

parents and friends who had helped and given me encouragement. 

 

 

  



5 

ABSTRACT 

 

This project is to develop a software application that is able to extract raw data 

from a rasterized performance graph of a mutual fund using image processing. 

The extracted raw data are the percentage return of mutual fund with the date. 

The software is able to calculate rolling return of mutual fund using the 

extracted raw data. This software application will make investor’s work 

becomes easier and also provides them better insight into the mutual fund 

performance. The main programming language used in this project is Python. 

OpenCV and Tkinter are used in this program as image processing library and 

graphical user interface library respectively. Users will get raw data in an 

excel file and graph of rolling return of mutual fund after users insert the graph 

image and some inputs into the software application. Validation of results was 

carried out after every simulation during developing the program. The average 

percentage difference obtained by comparing actual value with calculated 

value is 1.84% for one-year, 2.09% for three-year return and 2.22% for five-

year return. There are more works and efforts needed on improving the 

accuracy of results while reducing the number of inputs provided by users so 

that the software application will become more efficient and effective. 

  



6 

TABLE OF CONTENTS 

 

 

 

DECLARATION 1 

APPROVAL FOR SUBMISSION 2 

ACKNOWLEDGEMENTS 4 

ABSTRACT 5 

TABLE OF CONTENTS 6 

LIST OF TABLES 9 

LIST OF FIGURES 10 

LIST OF SYMBOLS / ABBREVIATIONS 12 

LIST OF APPENDIX 13 

 

 

CHAPTER 

1 INTRODUCTION 14 

1.1 General Introduction 14 

1.2 Importance of the Study 14 

1.3 Problem Statement 15 

1.4 Aims and Objectives 15 

1.5 Scope and Limitation of the Study 16 

1.6 Contribution of the Study 16 

1.7 Outline of the Report 16 

2 LITERATURE REVIEW 18 

2.1 Digital Image Formation 18 

2.1.1 Pixel of image 19 

2.1.2 Colour Image 19 

2.2 Digital Image Processing 20 

2.2.1 Image Filtering 21 



7 

2.2.2 Conversion of Colour Image to Grayscale 

Image 23 

2.2.3 Thresholding 26 

2.3 Relationship between Investment and Image 

Processing 28 

2.3.1 Absolute Return 28 

2.3.2 Compound annual growth rate (CAGR) 29 

2.3.3 Rolling Return 30 

2.3.4 Summary 30 

2.4 Review on others similar software 31 

2.4.1 WebPlotDigitizer 31 

2.4.2 Graphreader 32 

2.4.3 Digitizelt 33 

2.4.4 Comparison of software and Conclusion 33 

3 METHODOLOGY AND WORK PLAN 35 

3.1 Introduction 35 

3.2 Programming tools 36 

3.2.1 OpenCV 36 

3.2.2 Tkinter 37 

3.3 Image pre-processing 38 

3.4 Determine the pixel location of the line 39 

4 RESULTS AND DISCUSSIONS 42 

4.1 Introduction 42 

4.2 User Interface 42 

4.3 Results 44 

4.3.1 Example - Dana Makmur Pheim 44 

4.3.2 Example - AmBond Fund 47 

4.3.3 Example - Apex Dynamic Fund 50 

4.3.4 Example - CIMB Principal Strategy Bond 

Fund 53 

4.4 Discussion 56 



8 

5 CONCLUSIONS AND RECOMMENDATIONS 60 

5.1 Conclusion 60 

5.2 Recommendation 60 

REFERENCES 62 

APPENDIX 64 

 

  



9 

 

LIST OF TABLES 

 

Table 2-1: Colour and its pixel value 20 

Table 2-2: Colour and their wavelength 25 

Table 2-3: Comparison of software 34 

Table 4-1: Comparison between actual value and 

calculated value (Dana Makmur Pheim) 46 

Table 4-2: Comparison between actual value and 

calculated value (AmBond Fund) 50 

Table 4-3: Comparison between actual value and 

calculated value (Apex Dynamic Fund) 53 

Table 4-4: Comparison between actual value and 

calculated value (CIMB Principal Strategy 

Bond Fund) 56 

 

 

 

 

 

 

 

 

  



10 

LIST OF FIGURES 

 

Figure 2.1: Image projected onto a CCD array 18 

Figure 2.2: Results of image after sampling 18 

Figure 2.3: Grayscale image with different shades 19 

Figure 2.4: Image after filtering 21 

Figure 2.5: Grayscale Image after Conversion 24 

Figure 2.6: Result image after Thresholding 27 

Figure 2.7: User Interface for the WebPlotDigitizer 31 

Figure 2.8: User interface of Graphreader 32 

Figure 2.9: Screenshot from Digitizelt software 33 

Figure 3.1: Flowchart of the extraction data 35 

Figure 3.2: Example of GUI using Tkinter 37 

Figure 3.3: HSV in 2-Dimension 39 

Figure 4.1: User Interface 43 

Figure 4.2: Error window 43 

Figure 4.3: Output window 43 

Figure 4.4: Original image of Dana Mukmur Fund 45 

Figure 4.5: Segmentation of line (Dana Makmur Fund) 45 

Figure 4.6: 1-Year Rolling Return of Dana Makmur Fund 46 

Figure 4.7: 3-Year Rolling Return of Dana Makmur Fund 47 

Figure 4.8: 5-Year Rolling Return of Dana Makmur Fund 47 

Figure 4.9:  Original Image of AmBond Fund 48 

Figure 4.10: Segmentation of line (AmBond Fund) 48 

Figure 4.11 : 1-Year Rolling Return of AmBond Fund 49 



11 

Figure 4.12 : 3-Year Rolling Return of AmBond Fund 49 

Figure 4.13 : 5-Year Rolling Return of AmBond Fund 50 

Figure 4.14: Original Image of Apex Dynamic Fund 51 

Figure 4.15: Segmentation of line (Apex Dynamic Fund) 51 

Figure 4.16: 1-Year Rolling Return of Apex Dynamic 

Fund 52 

Figure 4.17: 3-Year Rolling Return of Apex Dynamic 

Fund 52 

Figure 4.18: 5-Year Rolling Return of Apex Dynamic 

Fund 53 

Figure 4.19: Original Image CIMB Principal Strategy 

Bond Fund 54 

Figure 4.20: Segmentation of line (CIMB Principal 

Strategy Bond Fund) 54 

Figure 4.21: 1-Year Rolling Return of CIMB Principal 

Strategy Bond Fund 55 

Figure 4.22: 3-Year Rolling Return of CIMB Principal 

Strategy Bond Fund 55 

Figure 4.23: 5-Year Rolling Return of CIMB Principal 

Strategy Bond Fund 56 

Figure 4.24: Two Y-axis Pixels with same X-axis Pixel 

Location 57 

Figure 4.25: Tail part of line 58 

 

 

 

 

  



12 

LIST OF SYMBOLS / ABBREVIATIONS 

 

𝜎  Standard deviation of the distribution 

CCD                Charge-coupled device 

RBG                Red, Blue, Green 

HSV                Hue, Saturation, Value 

OCR                Optical Character Recognition 

CAGR  Compound Annual Growth Rate 

 

 

  



13 

LIST OF APPENDIX 

 

Appendix A: Tables 64 

Appendix B: Source Code 69 

  



14 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Introduction 

In the modern era, data have become one of the most important resources. 

Important information can be analysed from the data by using proper analytics 

tools and techniques (Basavaprasad, B. and Ravi, M., 2014). Data collection 

and analytics are commonly used in the business field to obtain valuable 

insight for better business decisions. With proper analytics method, 

information extracted from data can be used to predict the future market and 

best area for new investment. Therefore, data collection and analytics 

techniques become important for getting a better investment and profit. 

 In this project, a data analytics software was developed for 

determination of rolling return of mutual funds from a rasterized line using 

image processing. Users can insert an image of rasterized graph of mutual 

fund performance to the software. Data such as the price will be extracted by 

using image processing techniques. This software will focus on determination 

of rolling return, so the data extracted will go through a specific algorithm to 

calculate the desired output.  

 

1.2 Importance of the Study 

Image processing has become very common in this century. It has been used 

in many fields such as medical, financial, and industry. Huge amounts of 

digital images are produced from these fields. For example, the medical field 

has x-rays of patients and the performance graph from mutual fund. Human 

requires things to be faster and more accurate. Studying image processing can 

create more effective, efficient and innovative applications. 

 In this project, image processing is used to extract the data from 

performance graphs of mutual fund. The data extracted must be very accurate 

so that a better insight of investment can be provided to the investor. Therefore, 

researching and understanding the image processing techniques become very 

important in order to develop a good program. 



15 

1.3 Problem Statement 

In financial services such as stocks market and mutual funds, bulks of data are 

generated daily. It is impossible for Investors to read and observe for each 

stock and mutual fund. Investors might need to spend a lot of time on 

investigating the market price of funds but still have high chances to lose 

money. 

 Mutual Fund is also known as Unit Trust in Malaysia. Fact sheet of 

Unit Trust is a document that provides an overview of a mutual fund retails. 

Investors usually will read the document before investing in the fund. Fact 

sheet will provide information such as price and returns over the last 10 years. 

However, rolling return is not provided in the fact sheet. Some investors might 

need this information to have a better insight. Calculating rolling return 

required data of each month over a few years. Investor need to spend time or 

pay on collecting all the data from the historical price of fund. The graph of 

the historical price of funds can be captured as an image and the data can be 

extracted easily by using image processing. Once the data is extracted, it can 

be used to perform mathematical operation to get the rolling return.  

The accuracy of the data extracted is also the difficulty of this project. 

Users might provide a different quality of image. The lower the quality of 

images will result in lower accuracy of data extracted. Users are required to 

provide at least two values within the graph in order to estimate the rest of the 

value in the graph. However, users would prefer to make the process fully 

automated when using the software in order to save their time. It is hard to 

estimate the value from graph without any input information from users. Text 

recognition technique might need to be performed in order to make the process 

easier. 

The study of image processing techniques become the core to 

overcome the problem statement stated above.  

 

1.4 Aims and Objectives 

The project is developing software that is able to calculate the rolling rate of 

return or gain from a rasterized line using image processing with minimal 

human input. The aims and objectives of the project are: 



16 

1. Extract data from a rasterized graph using image processing with 

minimal user input  

2. Able to determine the rolling return from extracted data. 

3. Develop a graphical user interface that is user-friendly for the software. 

 

1.5 Scope and Limitation of the Study 

The project focuses on extraction data from the graph based on the image 

provided by the user. In this project, the images are obtained from an online 

unit trust distribution platform. Images with different resolution and pattern 

are used as data for testing. Only a few techniques of image processing are 

studied for this application. 

Humans always seek for fully automated technology to reduce their 

burden. However, it is hard to implement on this project due to limitations on 

computer vision and time. Additional study on text recognition needs to be 

done in the future so that the objective of minimizing the user input can be 

achieved. 

 

1.6 Contribution of the Study 

There is some similar software for data extraction from images. Some of this 

existing software required users to insert different kinds of input in order to 

estimate the output value. This project intends to develop a software that can 

extract the data with minimal the user input. The data are used to perform 

specific tasks such as determine the rolling return of a mutual funds. The 

reason for using image processing is because there are too many mutual funds 

exists in the market. The software can improve the efficient compare to hand 

calculation.  

 

1.7 Outline of the Report 

Chapter 1 is the introduction of the project. It will explain the concept, 

problem statement, aim, and objectives of the project.  

 Chapter 2 is the literature review. It will explain theory about image 

processing and rolling return. Some similar software is review and compare. 

 Chapter 3 is the methodology. It will explain the software and image 

processing techniques used in the project. 



17 

 Chapter 4 is the result and discussion. It will show and explain the 

result. It also will discuss the problems encountered in this project. 

 Chapter 5 is the conclusion and recommendation. It will explain how 

the aims and objectives will be achieved. It will also recommend for future 

work. 

  

 



18 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Digital Image Formation 

A digital image can be formed by a digital camera or created by a computer. In 

digital cameras, any object can be captured as an image if there is a light 

source such as sunlight or lighting hit on the object. There is an image sensor 

called charge-coupled device (CCD) inside a digital camera. CCD has a two-

dimensional array of cells to sense the intensity of light reflected by the object 

and convert it into different voltage levels (Felber, 2002). Figure 1 

demonstrates image projected onto a CCD array. The value of voltages level 

for each cell will be sampled and converted into a digital signal. A complete 

digital image can be formed throughout this process. Figure 2 shows the 

digital image after sampling.  

 

 

Figure 2.1: Image projected onto a CCD array 

 

 

Figure 2.2: Results of image after sampling 



19 

 

2.1.1 Pixel of image 

Pixel, also known as picture element, is the smallest element of an image. 

Pixel can be represented as the two-dimensional array of cells of CCD. Each 

pixel contains the intensity level of the light hit on the CCD array. The value 

of each pixel can be represented using binary number with different number of 

bits. The larger the number of bits per pixel will result in a larger number of 

different colour. For example, the black and white image has 1 bit per pixel 

where the pixel value of 1 represents white colour and the pixel value of 0 

represents black colour. Greyscale image has the value from 0 to 255 for each 

pixel. Figure 3 shows the grayscale image with different shades. Value of 0 

represents black colour, value of 255 represents white colour, while the value 

between 1 and 254 represent different shades of grey. Therefore, pixel value 

can be expressed as a function, 𝑓(𝑥, 𝑦) , where 𝑥 and 𝑦 represents the pixel 

position. 

 

 

Figure 2.3: Grayscale image with different shades 

 

2.1.2 Colour Image 

For a colour image, the pixel contains a vector of three numbers. Each 

numbers represent the value for red, green and blue colour (RGB). The 

common pixel format is 24 bits colour format. 24 bits is equally divided on 

RGB. So, each RGB will be represented by 8 bits. Now the image function, 𝑓 

can be expressed as: 

 



20 

𝑓(𝑥, 𝑦) = [

𝑟(𝑥, 𝑦)
𝑔(𝑥, 𝑦)
𝑏(𝑥, 𝑦)

] 

 

For the pixel matrix has the value of (255 0 0), the pixel will be 

represented as red colour. Pixel matrix with the value of (0 255 0), the 

pixel will be represented as green colour and blue colour for the pixel matrix 

with the value of  (0 0 255) . Some other colours can be shown by 

changing the pixel value in the matrix. Table 1 shows the colour and its pixel 

value. 

  

Table 2-1: Colour and its pixel value 

Colour Pixel Value 

Cyan (0 255 255) 

Magenta (255 0 255) 

Yellow (255 255 0) 

Black (0 0 0) 

White (255 255 255) 

 

2.2 Digital Image Processing 

Digital Image Processing is the programming algorithms used to analyse 

image in order to extract the useful information or data in the image. These 

data can be further analysed to estimate the trends or patterns of an event. 

Applications of image processing are getting wider as the techniques of using 

image processing are getting more mature. For instance, medical diagnosis, 

robot visions, intelligent transporting systems, and face recognition.  

 A digital image is a two-dimensional discrete signal converted from 

analog signal through sampling and quantization. A two-dimensional signal 

can be represented as the mathematical function 𝑓(𝑥, 𝑦)  where 𝑥  and 𝑦 

represented as horizontal and vertical coordinates respectively. The magnitude 

of the function 𝑓 is the pixel value of an image, however, the pair of 𝑥 and 𝑦 

coordinates is the pixel of an image. Therefore, image processing can be done 

by using different mathematical methods. For example, image filter can be 

done by using convolution, turn image into grayscale can be done by using the 



21 

weighted method, and edge detection in an image can be done by using 

Laplacian operator. Since digital image processing involve in complex 

mathematic calculations and algorithms, the best way to perform digital image 

processing is using programming.  

 

2.2.1 Image Filtering 

Since images are considered as signals, it might consist of different type of 

noises. Image Filtering is one of the most important techniques in image 

processing to smooth the image by reducing the noise and improve the quality 

of the image. Kernel is used with a filter that performs average smoothing. 

Figure 2.4 shows the image after filtering. Another purpose of using an image 

filter is to detect the edge or sharpness of images. There are different types of 

image filtering algorithms with different kernels available. Each algorithm can 

be studied in order to understand their effect so that the proper technique is 

used in specific applications to ensure an efficient process.  

 

 

Figure 2.4: Image after filtering 

  



22 

2.2.1.1 Moving Average Filters 

Moving average filters is the most common and simple filter in digital signal 

processing.  It used with a square kernel that contains equal coefficient: 

 

𝐾𝑒𝑟𝑛𝑒𝑙 =
1

9
 [

1
1
1

1
1
1

1
1
1

]  

 (2-1) 

 

 The equation for the moving average filter can be expressed as: 

 

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]𝑀−1

𝑗=0    (2-2) 

 The concept of implementation of moving average filter is shown 

below: 

 

[
0 0 0
0 0 0

90 90 90
] → [ 30 ] 

 

It calculates and replaces each pixel with average pixel value of the 

surrounding pixel. In this example, the pixel value surrounds by the middle 

pixel is sum up and divide with the total number of pixels to get the average 

value. The middle pixel now replaced with the average value. This process 

repeated for every pixel and results in a smooth and blurred image. 

 

2.2.1.2 Gaussian Filter 

Gaussian Filter is a low pass filter that used to reduce the noise of image and 

blur the image by reducing the high-frequency component. The Gaussian 

function for one dimension can be expressed by the equation below: 

 

𝐺(𝑥) =
1

√2𝜋𝜎2
𝑒

−
𝑥2

2𝜎2      (2-3) 

 

where 

𝐺(𝑥) is the Gaussian Function 



23 

𝜎 is the standard deviation of the distribution 

 

 Gaussian function with two-dimension is the product of two one-

dimensional Gaussian functions which decomposed into a series of one-

dimensional filtering for rows and columns. It can be expressed by the 

equation below: 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2   (2-4) 

 

 Convolution of a kernel is expressed by a Gaussian function in 

Gaussian Filter (Tyagi, T. and Mishra, V., 2016). The two-dimensional 

Gaussian function is used to generate the kernel. Convolution kernel is used to 

approximate the Gaussian distribution. The kernel is rotationally symmetric 

with no directional bias. Example of the Gaussian kernel is shown below: 

 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 =
1

16
[
1 2 1
2 4 2
1 2 1

]   (2-5) 

 

Convolution matrix can be obtained by using the value from Gaussian 

distribution. The weighted average of the pixel neighbourhood is replaced for 

each pixel as a new value respectively. Thus, the original pixel’s value is 

replaced with the larger Gaussian value and neighbourhood pixels is replaced 

with smaller Gaussian value as their distance refer to the original pixel become 

further (Gedraite and Hadad, 2011). The standard deviation of the Gaussian 

function is used to define the filter since the kernel coefficients depend on it.  

 

2.2.2 Conversion of Colour Image to Grayscale Image 

Conversion of colour image to grayscale image usually used by different 

applications. For example, printing a grayscale image from a colour image. As 

discussed above, colour image is a function of a vector with 3 numbers 

however, the grayscale image is a function consist of only one-pixel value. 

Figure 2.5 shows the grayscale image after converted from colour image. 

Conversion of colour image to grayscale image helps to simplify and make the 



24 

computation easier. Tasks like edge detection will be easier to perform in 

grayscale image. However, some information will be lost during the 

conversion (Saravanan, 2010). The quality of the grayscale image will be 

affected. Therefore, a good algorithm needs to be used for the conversion to 

maintain the good quality of grayscale image in order to perceive the 

information as in colour image. 

 

 

Figure 2.5: Grayscale Image after Conversion 

 

2.2.2.1 Average Method 

The average method is the basic algorithm used to convert colour image to 

grayscale image. The average value of three colour in a pixel is calculated and 

become the latest value of the pixel. The algorithm is demonstrated and shown 

below: 

 

𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑐𝑜𝑙𝑜𝑢𝑟 𝑖𝑚𝑎𝑔𝑒, 𝑓(𝑥, 𝑦) = [

𝑟(𝑥, 𝑦)

𝑔(𝑥, 𝑦)

𝑏(𝑥, 𝑦)
] = [

255
255

0

] (2-6) 

 

 

 

 

 

Taking the average value of three colour, 



25 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
255+255+0

3
= 170 (2-7) 

  

Therefore, the new value of the pixel become: 

 

𝑓(𝑥, 𝑦) = [170] 

 

 Where value of 170 can be referred to one of the intensities of 

grayscale. 

 This method is the easiest method but not an effective method. Since 

the average is taken from the three colours, each colour will contribute around 

33%. However, different colour has different wavelength contribution in 

formation of image. The result of grayscale image will become very dim and 

the information in colour image cannot be perceived. 

 

2.2.2.2 Luminosity Method 

Since the average method is not an effective method for converting colour 

image to grayscale image, another method called Luminosity Method is used. 

The luminosity method has a better consideration in the contribution of 

wavelength of each colour. It also takes the average value of three colours but 

a weighted average is formed to account for human perception.  

 

Table 2-2: Colour and their wavelength 

Colour Wavelength 

Red 700 

Green 530 

Blue 470 

  

 Based on Table2-2, red colour has a larger wavelength while blue 

colour has a shorter wavelength among the three colours. Therefore, the 

weight of the colour needs to be adjusted. Humans are more sensitive to green 

colour. Green colour gives a soothing effect to human eyes compare to other 



26 

colours (Cook, 2009). So, the new equation for the conversion is expressed as 

below: 

 

𝑓(𝑥, 𝑦) = (0.3 ∗ 𝑟(𝑥, 𝑦) + 0.59 ∗ 𝑔(𝑥, 𝑦) + 0.11 ∗ 𝑏(𝑥, 𝑦))           (2-8) 

 

 The grayscale image using the luminosity method will result in a 

brighter image and higher quality. Further application on the grayscale image 

can be carried on with better efficiency.  

 

2.2.3 Thresholding 

Thresholding is a method used to produce a black and white image from 

grayscale image. The meaning of Thresholding is to assign the pixel value to 

either one or zero if the pixel value is greater than a threshold value (Sezgin, 

M. and Sankur, B, 2004). This approach can be expressed as the equation 

below: 

 

𝑓(𝑥, 𝑦) = {
0, 𝑥 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

255, 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
  (2-9) 

  

 For grayscale image, the grayscale level of the object is substantially 

different from the background. Thresholding becomes important in this 

situation to extract the object from the background. Figure 2.6 shows the 

results image after Thresholding. Some common applications of Thresholding 

are document image analysis, map processing, and x-ray computed 

tomography. The purpose of using the Thresholding is to extract the important 

object from the image and separate it with the background. Therefore, the 

threshold value needs to be selected properly in order to get the desired object 

from the image. There are six groups of Thresholding method are categorized 

based on the information they are exploiting. Four groups among the six 

groups will be discussed in the following paragraph. 

 



27 

 

Figure 2.6: Result image after Thresholding 

 

The first category of the Thresholding method is Histogram Shape-

Based Thresholding. The value of threshold is choose based on the peaks, 

valleys, and curvatures of the smoothed histogram. Image histogram needs to 

be analysed and studied to get a proper threshold value. 

 The second category of the Thresholding method is clustering-based 

methods. Clustering-based methods cluster the pixel into object and 

background based on the grayscale level. Each cluster corresponds to a lobe of 

the image histogram. There are several clustering methods can be further sub-

classified. For example, iterative-based method, Otsu’s method, minimum 

error Thresholding, and fuzzy clustering Thresholding. 

 The third category of the Thresholding method is the Entropy-based 

method. The Entropy-based method is used to measures spontaneous 

distributing energy based on the second law of Thermodynamics. It was used 

in the communications field for measuring the effectiveness in data 

transmission through a channel with noises. Great information transfer 

indicated by high entropy. Minimizing cross-entropy between input grayscale 

image and binary output image can achieve the preservation of information. 

 The forth category of the Thresholding method is Local Adaptive 

Thresholding. Depend on attribute quality, local parameters, or similarity 

measure, the threshold of each pixel is selected. This method works well on 

unequal illumination because each pixel has its own threshold (Chandel, R. 



28 

and Gupta, G., 2013). One of the common sub-categories of local adaptive 

Thresholding is the Local Variance method. The threshold is selected based on 

the mean, standard deviation, and local window size. This method widely used 

in Optical Character recognition tasks because it performs effectively in these 

tasks. 

 

2.3 Relationship between Investment and Image Processing 

Image processing technology becomes very important nowadays. Multiple 

transformations on the image can be done by using image processing 

techniques. The purpose of performing image processing is to mine the data 

and the data can be analysed to predict the outcome. Image processing steps 

are shown as: 

1. Image pre-processing 

2. Extraction of pattern or features 

3. Image clustering and classification 

4. Analysis and data mining 

Mutual Fund Company usually just provide a graph of the percentage 

growth. Therefore, image processing becomes important to extract the data 

from the graph for further analysis in order to find out the performance of it 

and any future insight for investment. There are several methods to find out 

the performance of stocks or mutual funds such as absolute return, rolling 

return, and compound annual growth rate. These methods will be discussed 

later to determine which method has a better insight for investors. 

 

2.3.1 Absolute Return 

Absolute return can be explained as the return calculated based on specific 

period of time (Chen, 2019). However, the calculation of absolute return does 

not consider the time frame. For example, Investor bought a stock with 1000 

units at a price of RM 1. After one week, the stock price rises to RM 1.2. The 

absolute return can be calculated using the formula as shown below: 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝐸𝑛𝑑𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒−𝐵𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒

𝐵𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒
× 100%  (2-10) 

 



29 

Calculation of absolute return is much more simple compare to the 

calculation of rolling return. It shows the investor the total return gained for a 

certain period but not a clear insight for investment. False appearance might 

be given by the absolute return. Sometimes the absolute return shows 

impressive results when the stock price rises rapidly (Maheshwari, 2017). The 

value of the absolute return calculated based on the time period of its rising 

might be very high but when it comes to measure the other returns such as 

rolling return, compound annual growth rate (CAGR), and trailing return, the 

value might be not that impressive. 

 

2.3.2 Compound annual growth rate (CAGR) 

The compound annual growth rate is not an actual rate of return compared to 

the absolute return. CAGR calculates the annual return of an investment for a 

certain period. An example is illustrated to have a better understand on CAGR. 

An investor invests RM 10000 on a mutual fund on Jan 1, 2016. On next year, 

Jan 1, 2017, the fund grows to RM 12000 and reached RM 13000 on Jan 1, 

2018. The equation to calculate CAGR is expressed as: 

 

𝐶𝐴𝐺𝑅 (%) = (
𝐸𝑛𝑑𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒

𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒
)

1

𝑛 − 1 × 100% (2-11) 

                        = (
13000

10000
)

1

2
− 1 × 100% = 14.10% 

 

This shows that the mutual fund grows at an average rate of 14.10% 

year on year. The estimation of CAGR spoke to the rate at which a speculation 

would have developed on the off chance that it had developed a similar rate 

each year and the benefits were reinvested toward the part of the bargain. It 

tends to be utilized to smooth returns with the goal that they might be all the 

more effectively comprehended when contrasted with elective speculations. 

 There are some limitations on CAGR. First, the volatility of the mutual 

fund is ignored. CAGR assumes that the mutual fund growing steadily year on 

year. The second limitation is the growth of the mutual fund might not grow as 

the CAGR. Another limitation is it might not be that accurate and wrong 



30 

insight might provide since it only considers the ending value and beginning 

value through the tenure (Murphy, 2019).  

 

2.3.3 Rolling Return 

Rolling return is also known as rolling period return which is the annualized 

average return for a certain period such as days, months, and years at a given 

starting date to the latest date. Rolling return provides more accurate insight 

into a portfolio’s performance for investors to evaluate. Sunil Subramaniam, a 

managing director of Sundaram mutual fund said that “Rolling returns is a 

bullet proof method to understand market volatility as against trailing return. 

This method helps you make the decision by looking at the probability of the 

past by looking at the probability of future” (Kaur, 2018).  

Steps to calculate the rolling return for a mutual fund are described 

below: 

1. Select a starting date and interval period (day, month, or year). 

2. Calculate the return percentage for the interval period. 

3. Repeat the calculation for every interval until latest date. 

4. Rolling return is plotted on a graph for analysis. 

Equation of calculate return percentage is: 

 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑌−𝑋

𝑋
× 100%       (2-12) 

 

Where 

Y is the end of the period’s price 

X is the beginning of the period’s price 

 

2.3.4 Summary 

In this project, image processing techniques are used to extract data from the 

graph of mutual funds. The data is analyses by computing some calculation 

such as rolling return to let the investor has a better insight and decide whether 

it is worth to invest in the fund. Mutual fund is one of the investment. Mutual 

Fund Company pool money from the investor and use that money to invest on 

a number of securities such as stocks and bonds. The manager of the Mutual 



31 

Fund Company will do the research and monitor the performance of the 

securities. The performance of the portfolio is the main factor that investors 

will refer to. 

 The reason for choosing rolling return as a method to determine the 

performance of mutual fund is because the return is calculated at different 

intervals of time in detail. Any bias due to the return can be avoided. 

Therefore, the determination of rolling return from the graph of mutual funds 

is more reliable on giving better insight into investment. 

 

2.4 Review on others similar software 

There are some similar software available in the internet which are used to 

extract value from the graph. The concept from these software can be used to 

develop for this project. 

 

2.4.1 WebPlotDigitizer 

WebPlotDigitizer was developed by a student at the University of Notre Dame. 

This software can be download from the URL: 

https://automeris.io/WebPlotDigitizer/. 

Basic image processing techniques are used to develop an automatic 

detection algorithm. HTML5 APIs are used in this software to create a web-

based software. Thousand people used this software every day and the 

developer is still continued to maintain and upgrade the software (Rohatgi, 

2015). 

 

 

Figure 2.7: User Interface for the WebPlotDigitizer 



32 

 

 Figure 2.4 shows the user interface for the software. Users are required 

to upload or load the image into the software and it can be done by several 

methods such as drag & drop operation, browse a file on a hard disk, copy-

paste from clipboard, and webcam capture. It is able to support different image 

formats like JPEG, PNG, BMP, and GIF. This software is able to extract the 

value from a graph, bar chart, polar diagram, ternary diagram and maps. Users 

are required to insert input based on their image. For example, the x-axis and 

y-axis scale, colour of the line, data points. 

 There are two modes in this software, one is the manual mode and 

another one is the automatic mode. In manual mode, users required insert 

point one by one or draw a line along the graph on the image using the tools in 

the software. Data will be extracted based on the x-axis and y-axis scale and it 

can be exported to excel file or CSV file. In automatic mode, Users required to 

select the two x-axis points and two y-axis points. Value for these points need 

to be inserted too. After that, users need to select the colour of the object in the 

image so that the software can recognize the desired object. As manual mode, 

output data can be exported to the CSV file.  

 

2.4.2 Graphreader 

Graphreader is also a software used to extract the data from a graph. The steps 

to extract the data is almost the same as the manual mode of WebPlotDigitizer. 

Users need to upload an image file, draw a blue rectangle to set a ruler for axis 

scaling, insert the value for the x-axis and y-axis, and click on the image to 

insert the curve-fix point.  

 

 

Figure 2.8: User interface of Graphreader 



33 

 

 Figure 2.5 shows the user interface of the Graphreader. It is a web-

based software and developed using web-programming and python (Larsen, 

n.d.). It available on URL: http://www.graphreader.com/. This software does 

not have the ability to automatic detection of a line in the graph. User required 

to insert the curve-fix points one by one and it is time-consuming. 

 

2.4.3 Digitizelt 

Another similar software named Digitizelt is available on the internet. It has 

the same function as other software mentioned above. This software has two 

digitizing modes which are automatic and manual digitizing mode (Bormann, 

2012). In manual mode, users required to select data using mouse clicks. For 

automatic mode, line or scatter plots will be detected automatically. Data 

extracted will be exported in CSV file also.  

 

 

Figure 2.9: Screenshot from Digitizelt software 

 

2.4.4 Comparison of software and Conclusion 

The software mentioned above are compared with each other. Table 2.3 shows 

the comparison of these software. 

  



34 

Table 2-3: Comparison of software 

 WebPlotDigitizer Graphreader Digitizelt 

Image 

format 

JPEG, PNG, BMP, GIF PNG, JPG INCL, GIF, PNG, 

TIFF, JPEG, BMP 

Plot 

Type 

Graph, Bar Chart, Plot 

diagram, Ternary 

Diagram, Maps 

Graph Graph 

Output 

method 

CSV files CSV file CSV file 

Price Free Free Free trial version for 

21days.  

Features  -Manual and automatic 

mode 

-Able to work with 

different type of chart 

-Open source and cross-

platform 

-Simple and 

easy to use 

 

-Manual and 

automatic mode 

-Accept for all 

common image 

format 

-Different axes 

system: linear, 

logarithmic and 

reciprocal 

  

Each software has its own features and advantages. Based on the table, 

WebPlotDigitizer and Digitizelt has more features compare to Graphreader.  

WebPlotDigitizer has the capability for more plot type compares with the 

other two software.   Although Digitizelt is only capable of line graph, but it 

has different features to make the extraction data from the graph more 

complete. Both WebPlotDigitizer and Digitizelt has been cited by publications 

in their works. Therefore, this two software will have better reliable and trusty.   



35 

 

CHAPTER 3 

 

METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The flowchart of extraction data from image is shown in figure 3.1.  

 

 

Figure 3.1: Flowchart of the extraction data  

 

In this project, data from graph of the mutual funds need to be 

extracted for calculation of rolling return. Image processing techniques are 



36 

 

required to develop the software. Graphical user interface also needs to be 

developed to achieve a user-friendly environment. User load a graph of the 

mutual fund into the program and it able to calculate the rolling return of the 

mutual fund based on the user’s requirement such as the period of rolling 

return, rolled for how many years, and the interval period of every rolling.  

  

3.2 Programming tools 

There are different programming languages available for image processing in 

the market. For example,  python, MATLAB, C++, and Java. However, 

the most commonly used programming languages for image processing are 

python and MATLAB.  

MATLAB is a Math-and matrix-oriented language and also a high-

level language. It provides matrix manipulations, function, and data plotting. It 

also has the features for creation of a user interface. It is commonly used 

because of its high performance of scientific computing especially on matrix 

calculation since every digital image consists of a matrix of colour and colour 

intensity. 

Python is categorized as a high-level and general-purpose 

programming language. It can be used for web applications, scientific 

computing, and numeric operation. It supports extensive library, open-source, 

and community development. OpenCV is one of the most popular libraries 

used in python to compute image processing.  

In this project, Python is used for developing the program, and the 

OpenCV library is used for image processing because it is easier to learn, 

open-source, and free.  

 

3.2.1 OpenCV 

OpenCV also known as OPEN source Computer vision library and acquired 

by Intel now. This library is written in C++ programming languages. However, 

it has bindings with Python, Java, and MATLAB. The purpose of OpenCV is 

to provide the tools for solving computer vision problems. High-level 

algorithms and low-level image processing functions are included in this 

library. These functions are useful for face and pedestrian detection as well as 



37 

 

matching and tracking of features. With the aids of this library, image 

processing techniques such as the Thresholding, filtering, and contour 

detection. Therefore, OpenCV is the core of this project for developing a 

software that can determine the rolling return of mutual funds using image 

processing. 

 

3.2.2 Tkinter 

Another library used in this project is Tkinter. Tkinter is a standard Graphical 

User Interface (GUI) library for Python. An easy and effective way to create 

GUI applications is provided by this library when using python because it is a 

powerful object-oriented interface to the Tk GUI toolkit. 

 Tkinter module can be downloaded in any python IDE. After 

downloaded and installed the Tkinter module, a GUI application main window 

can be created by typing the initializing code. Any event or widget can be 

added to the main window. 

 Some of the Tkinter widgets will be used commonly in this project 

such as button widget, entry widget, and list box widget. All the widgets can 

be placed at any desired location within the created window. Fonts, colour, 

and sizes of the widgets can be changed as wanted.  

 Figure 3.2 shows the example of GUI using Tkinter. Users can select 

input, load graph, and generate the results in this window providing 

convenience to users. This is the basic structure of the GUI.  

 

  

Figure 3.2: Example of GUI using Tkinter 



38 

 

3.3 Image pre-processing 

Image pre-processing in this project involved filtering and image segmentation. 

Filtering is used to remove the noise of the image or blur the image. In this 

project, the Gaussian filter is used. The original image is a colour image. The 

colour Image will go through the Gaussian filter and the output image from 

the filter will be blurred. The function in OpenCV that performs Gaussian 

filtering is called GaussianBlur (). The function requires 3 parameters which is 

input image, kernel size and sigmaX. SigmaX is the standard deviation in X 

direction. In this case, sigmaX is equal to 0 which means it will be calculated 

from kernel size.  

 Image segmentation is a process that segment the object in the image. 

In this project, the main object needs to be segmented is the line that 

represents the percentage growth of fund in the image. The graph of mutual 

funds usually contains two lines. One of the lines is the benchmark of 

percentage growth of fund and another line is the actual value of the 

percentage growth. These two lines will be represented as two different 

colours. Image segmentation needs to differentiate these two lines and 

segment the line of the actual value of the percentage growth. First, the colour 

of the line needs to be identified. When users insert the image, first point, and 

last point into the software, the original image will pop out in a new window, 

user is able to click on the line that needed to segment. At the same time when 

user click on the line, the colour of the line are read in the form of Hue, 

Saturation, and Value (HSV). The X and Y pixel locations are also recorded. 

The operation is done by using a function called setMouseCallBack(). This 

function has two parameters which are window name and function name to be 

called when click event detected. Once the HSV value of the line graph is get 

from the click event, then Hue in HSV will go through a series of if-else 

conditions in order to get values of lower and upper boundaries for the 

filtering process afterward. According to the Figure 3.3, Hue represented as X-

axis and Saturation represented as Y-axis while Value keeps at 255. 



39 

 

 

Figure 3.3: HSV in 2-Dimension 

 

Different ranges of Hue represent for different colours. For instance, 

Hue value gets from the click event is 60, it is located in range of green colour 

where green colour has range between 36 and 83. The lower boundary is 36 

and the upper boundary is 83 for green colour. Both boundary will be used as 

parameters in the function called inRange(). It contains three parameters 

which is input image, lower boundary, and upper boundary. This function is 

used to generate a mask that segmented object is white colour while others are 

black colour. The logic of this function is it compares all pixel value in the 

input image with the boundaries, if the pixel value is inside the boundaries 

then the pixel value will reset as 255 which is white colour, else, will be reset 

as 0 which is black colour. Therefore, the mask will become a black and white 

image with only the segmented line in white colour. 

  

3.4 Determine the pixel location of the line  

After the selected line in the graph has been segmented, the pixel location of 

along the line can be found by finding the contours of the line. Contours are 

commonly used for applications such as shape detection and recognition. 

Contours are the curve along the boundary of the lines. OpenCV has a 

function called findCountours() that can find out the contours of the object and 

store the pixel location of every contours point in an array. The function takes 

three parameters which are input source, mode, and method. In this case, the 

input source used is the mask generated earlier during the segmentation 

process. CV_RETR_TREE had been chosen for the mode. This mode means all 



40 

 

contours along the line will be retrieved based on the hierarchy of nested 

contours. CV_CHAIN_APPROX_NONE is used for the method which it will 

stores absolutely all the contour points. Therefore, all pixel locations of the 

line can be obtained continuously by using this function and parameters.  

 The pixel locations from the contours are stored in the form of an array. 

Now the input values given by the user can be mapped to the array. The first 

element and last element in the array will mapped to the first point and last 

point that provided by user respectively. The remaining value along the lines 

can be determined by calculation. The steps of the calculation are shown as 

below: 

1. Find Y-interval (Percentage return per pixel) by dividing the total 

percentage return within the date with the total number of Y-axis 

pixels in contours array. The formula is shown in equation 3-1. 

2. Find X-interval (Days per pixel) by dividing the total days within the 

date with the total number of X-axis pixels in contours array. The 

formula is shown in equation 3-2. 

3. Estimate the percentage return and date for each pixel in contours array 

by multiplying pixel location with the intervals. The formula is shown 

in equation 3-3 and 3-4. 

 

𝑌 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝐿𝑎𝑠𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑡𝑢𝑟𝑛−𝐹𝑖𝑠𝑟𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑡𝑢𝑟𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦−𝑎𝑥𝑖𝑠 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 𝑎𝑟𝑟𝑎𝑦.
                 (3-1) 

 

𝑋 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝐿𝑎𝑠𝑡 𝐷𝑎𝑡𝑒−𝐹𝑖𝑠𝑟𝑡 𝐷𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥−𝑎𝑥𝑖𝑠 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 𝑎𝑟𝑟𝑎𝑦.
                  (3-2) 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑜𝑟 𝑌𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 = ((𝑌𝑇𝐻 − 𝑌0) ∗ 𝑌𝑖𝑛𝑡) ∗ 100%) + 𝑃0  (3-3) 

 

where 

𝑌𝑇𝐻 = Y th Y-axis Pixel Location 

𝑌0 = First Y-axis Pixel Location 

𝑌𝑖𝑛𝑡 = Y-Interval 

𝑃0 = Initial Percentage Return 

 



41 

 

𝐷𝑎𝑡𝑒 𝑓𝑜𝑟 𝑋𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 = ((𝑋𝑇𝐻 − 𝑋0) ∗ 𝑋𝑖𝑛𝑡) + 𝐷0                 (3-4) 

where 

𝑋𝑇𝐻 = X th X-axis Pixel Location 

𝑋0 = First X-axis Pixel Location 

𝑋𝑖𝑛𝑡 = X-Interval 

𝐷0 = Initial Percentage Return 

 

 The next step after extraction of data is calculating the rolling return. 

The step of calculating rolling return is explained earlier in Chapter 2.3.3. The 

software program is designed to calculate rolling return for one, three, and five 

years. It depends on the available data of the mutual fund. For example, the 

graph of mutual fund starts from 2014 to 2020 where there are total six years 

data available. The program will calculate the rolling return for one, three, and 

five years. However, if the mutual fund has data for four years only, the 

program will only calculate the rolling return for one and three years. All 

graphs of rolling return will be plotted and shown in a new window. 

Matplotlib library is used to plot all graphs. One of the most common 

functions in Matplotlib to plot graph is plot (). This function takes few 

parameters but only three parameters are used in this case which are x-axis 

data, y-axis data, and colour of line.  

  



42 

 

CHAPTER 4  

 

RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

The application can detect the line of graph and convert pixel location of the 

line into each of the data. Each data consists of date and price/percentage 

return. An excel file will be exported by the application. There are few tables 

can refer in Appendix A. First table consists of all the converted date and 

price/percentage return. Second table consists of one-year rolling returns for 

the period selected by user. Third table and fourth table will be three-year and 

five-year rolling return respectively if available. Graph of rolling return will be 

plotted out and user can make use of these graphs for references. Every part of 

the program from user interface to output will be discussed as below. 

 

4.2 User Interface 

Figure 4.1 shows the user interface of the software application. Users are 

required to insert the initial date, initial rate, final date, and final rate. Rate is 

the price or percentage return on the specific date. The unit for extracted data 

will be converted to percentage return if the input unit is “RM”. The minimum 

duration of the date that allows the users to insert is 2 years. If the users insert 

dates with duration less than two years, an “Error” window will pop up and 

require users to re-insert the date again. Figure 4.2 shows the “Error window” 

that alerts users for invalid input. Users can insert the image by clicking the 

“Browse” button and clicking “Exit” button to terminate the application. After 

users insert all the inputs, a new window with the original image will be pop 

up. Users are required to left-click on the line that user want to extract. Once 

the data extracted from the image, a window will pop up to tell the user the 

data is exported to excel file. Figure 4.3 shows the “Output” window that 

mentions excel file is exported. 

 



43 

 

 

 

Figure 4.1: User Interface 

 

 

Figure 4.2: Error window 

 

 

Figure 4.3: Output window 

 



44 

 

4.3 Results 

There are 30 samples tested using the software application. The image size of 

these samples are selected at around 600 pixels for its width and any value for 

its height. Rolling returns for different years will be calculated and recorded. 

The results will be compared with the actual value from the fact sheet in order 

to determine the accuracy of the software application. A sample mutual fund 

named “Dana Makmur Pheim” is used to demonstrate the details procedure of 

getting results and the remaining samples are focus on percentage differences. 

Outputs of the program are the excel file and graph of rolling return. Excel file 

contains a few tables as mentioned in the introduction of this chapter. In the 

sub chapter, it will show some of the problems encounter in the simulation 

results. 

 

4.3.1 Example - Dana Makmur Pheim 

The example of the output excel file is shown in Appendix A. Graph of rolling 

return will pop up after an excel file is exported. After users insert image a 

window that shows the original image will pop up. User left-click on the line 

need to be extract and the output excel file will be exported. Figure 4.4 shows 

the original image that users inserted. For study purposes, a window named 

“mask” will be pop up after user left-click the line on the image. This mouse 

click event will retrieve the HSV value of that particular pixel. The mask is the 

segmentation of the selected line by using the HSV value. In this example, 

users clicked on the green line and all of the green color pixels will be 

segmented as white color while other pixels as black color. Figure 4.5 shows 

the segmentation of the line.  

 



45 

 

 

Figure 4.4: Original image of Dana Mukmur Fund 

 

Figure 4.5: Segmentation of line (Dana Makmur Fund) 

 

 Rolling return will be calculated after all of these processes. The graph 

of rolling return will be plotted using matplotlib function. Figure 4.6 shows the 

one-year rolling return of the mutual fund. For experienced investors, they can 

understand the performance of the mutual fund based on the rolling return. 

Rolling return provide a more visual and accurate information for investors 

rather than annualized return.  

 



46 

 

 

Figure 4.6: 1-Year Rolling Return of Dana Makmur Fund 

 

 The accuracy of this application can determine by comparing the 1-

year return in the excel file with the actual value in the factsheet. In this 

example, the actual 1-year return mentioned in the factsheet is +4.73% 

(28/2/19 – 29/02/20) and the calculated one-year return in the excel file is 

8.83%. If the duration of the mutual fund is more than three or five years, the 

application will also calculate the rolling return for three years and five years. 

So, three years and five years annualized return can be obtained for 

comparison. These values are tabulated in Table 4.1 and the three-year and 

five-year rolling return are shown in Figure 4.7 and 4.8 respectively. 

 

Table 4-1: Comparison between actual value and calculated value (Dana 

Makmur Pheim) 

 1-year Percentage 

Return (%) 

3-year 

Percentage 

Return (%) 

5-year 

Percentage 

Return (%) 

Actual  4.73 19.29 31.38 

Calculated 12.33 26.10 39.9 

Percentage Different 

Between Both 

7.6% 6.81 8.52 

 



47 

 

 

Figure 4.7: 3-Year Rolling Return of Dana Makmur Fund 

 

 

Figure 4.8 : 5-Year Rolling Return of Dana Makmur Fund 

 

4.3.2 Example - AmBond Fund 

Figure 4.9 shows the original image of AmBond Fund. Figure 4.10 shows 

segmentation of line. Figure 4.11 shows the 1-year rolling return of AmBond 

Fund. Figure 4.12 shows the 3-year rolling return of AmBond Fund. Figure 

4.13 shows the 5-year rolling return of AmBond Fund. 

 



48 

 

 

Figure 4.9:  Original Image of AmBond Fund 

 

 

Figure 4.10: Segmentation of line (AmBond Fund) 

 



49 

 

 

Figure 4.11: 1-Year Rolling Return of AmBond Fund 

 

Figure 4.12: 3-Year Rolling Return of AmBond Fund 

 



50 

 

 

Figure 4.13: 5-Year Rolling Return of AmBond Fund 

 

Table 4-2: Comparison between actual value and calculated value (AmBond 

Fund) 

 1-year Percentage 

Return (%) 

3-year 

Percentage 

Return (%) 

5-year 

Percentage 

Return (%) 

Actual  11.41 22.06 33.40 

Calculated 10.65 20.76 32.59 

Percentage Different 

Between Both 

0.76 1.30 0.81 

 

4.3.3 Example - Apex Dynamic Fund 

Figure 4.14 shows the original image of Apex Dynamic Fund. Figure 4.15 

shows segmentation of line. Figure 4.16 shows the 1-year rolling return of 

Apex Dynamic Fund. Figure 4.17 shows the 3-year rolling return of Apex 

Dynamic Fund. Figure 4.18 shows the 5-year rolling return of Apex Dynamic 

Fund.  



51 

 

 

Figure 4.14: Original Image of Apex Dynamic Fund 

 

 

Figure 4.15: Segmentation of line (Apex Dynamic Fund) 

 



52 

 

 

Figure 4.16: 1-Year Rolling Return of Apex Dynamic Fund 

 

 

Figure 4.17: 3-Year Rolling Return of Apex Dynamic Fund 



53 

 

 

Figure 4.18: 5-Year Rolling Return of Apex Dynamic Fund 

 

Table 4-3: Comparison between actual value and calculated value (Apex 

Dynamic Fund) 

 1-year Percentage 

Return (%) 

3-year 

Percentage 

Return (%) 

5-year 

Percentage 

Return (%) 

Actual  -0.74 -11.26 -26.01 

Calculated 6.38 -7.47 -21.73 

Percentage Different 

Between Both 

7.12 3.79 4.28 

  

4.3.4 Example - CIMB Principal Strategy Bond Fund 

Figure 4.19 shows the original image of CIMB Principal Strategy Bond Fund. 

Figure 4.20 shows segmentation of line. Figure 4.21 shows the 1-year rolling 

return of CIMB Principal Strategy Bond Fund. Figure 4.22 shows the 3-year 

rolling return of CIMB Principal Strategy Bond Fund. Figure 4.23 shows the 

5-year rolling return of CIMB Principal Strategy Bond Fund.  

 



54 

 

 

Figure 4.19: Original Image CIMB Principal Strategy Bond Fund 

 

 

Figure 4.20: Segmentation of line (CIMB Principal Strategy Bond Fund) 



55 

 

 

Figure 4.21: 1-Year Rolling Return of CIMB Principal Strategy Bond Fund 

 

 

Figure 4.22: 3-Year Rolling Return of CIMB Principal Strategy Bond Fund 



56 

 

 

Figure 4.23: 5-Year Rolling Return of CIMB Principal Strategy Bond Fund 

  

Table 4-4: Comparison between actual value and calculated value (CIMB 

Principal Strategy Bond Fund) 

 1-year Percentage 

Return (%) 

3-year 

Percentage 

Return (%) 

5-year 

Percentage 

Return (%) 

Actual  9.15 15.96 25.68 

Calculated 8.66 15.57 25.49 

Percentage Different 

Between Both 

0.49 0.39 0.19 

 

4.4 Discussion 

Total of thirty samples were tested by using the software application. Four 

samples were shown above as representative of the major situation 

encountered. Other samples were shown in Appendix B. Percentage different 

between both actual and calculated value was calculated in order to determine 

the accuracy of the software application. The summary of the percentage 

difference is shown in Table A-3 to Table A-5 in Appendix A. These tables 

also contain actual value and the calculated value of these samples. The 

average of the percentage difference is used to determine the accuracy of the 

software application. Based on the table, the average percentage difference for 



57 

 

one-Year Return is 1.84%, 2.09% for three-Year Return, and 2.22% for five-

Year Return. The larger the number of years, the higher the percentage 

difference. This shows that the application becomes inaccurate when due with 

higher number of years. 

  There are few possible problems that cause inaccurate of results. The 

first problem is incomplete of segmentation. For example, the segmented line 

is incomplete and discontinuous compare with the original image which shows 

in Figure 4.14 and Figure 4.15. When this kind of problem happened, the 

software will determine the missing or discontinuous value by using 

interpolation. Interpolation is a mathematical calculation for estimating a value 

between two values. Since interpolation is used for estimation, it might cause 

some variation when compared with the original value. 

The next problem is misidentifying other objects with the same colour 

as the line. This happened in the samples shown in Figure 4.10. The object in 

the image such as legend will have the same colour as the line. When 

performing segmentation, the legend will be segmented together with the line 

which shown in Figure 4.24 as an example where it will be two y-axis pixels 

in one x-axis pixel.  

Figure 4.24: Two Y-axis Pixels with same X-axis Pixel Location 

 

  According to the segmentation algorithm in the software, it will select 

the higher pixel location as one of the pixels of the line since the majority of 

the lower pixel location usually will be pixels of legend. Therefore, 

misidentify of pixels will occur when the pixel of the line did not segment 

completely and lead to select the pixel at lower location as the pixel of the line. 



58 

 

It will cause a glitch in the extracted data and also affected the graph of rolling 

return. Figure 4.11 shows one of the examples of the problem.  

  However, in some cases, even though the line is almost completely 

segmented, the percentage difference results in high value. For example in 

Figure 4.5, the line looks perfectly segmented but the percentage different for 

one, three, five years returns are 7.6 %, 6.81 %, 8.52 % respectively which is 

higher than the average percentage different. This is due to the pattern of line. 

In figure 4.25, the tail part of the line consists of pixels that arrange in vertical. 

As mentioned above, the software part will select the highest pixel location as 

the pixel of the line and ignore the others at a lower pixel location. In this 

situation, the pixel label as “2” in Figure 4.25 should has 367.49 % return but 

the software will select the pixel label as “1” as 367.49 % return. Therefore, 

this causes the high percentage difference between actual and calculated value 

even though it is completely segmented. 

 

 

Figure 4.25: Tail part of line 

   

 Besides, the most challenging parts of this project are minimizing the 

user input and improving the accuracy of results. In this project, users are 

required to insert six inputs which are first date, first price, last date, last price, 

image, and HSV of the line. All the inputs are necessary in order to estimate 

and extract the data, none of them can be excluded in the process. Low 

accuracy of result is very critical for user or investor. Even though the 

1 

2 



59 

 

percentage difference of the results are around 1 to 2 %, it will also affect 

decision of the user or investor. There are too many different types and 

patterns of graphs. It is very hard to consider every situation at the same time 

when improving the accuracy.  



60 

 

CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

As conclusion, image processing act as a reverse-engineer solution to extract 

the raw data from the image and perform further analysis or calculation to 

achieve certain goals in this project. It reduces the work done by the users or 

investors in getting raw data or information that is not for free in the market. 

Image processing makes human work become more easily and effectively 

especially in the world that generates tons of data daily. Advanced technology 

such as computer vision is developed based on the image processing 

algorithms and brings more benefits to the world. Different kind of 

applications can be created or developed using image processing with more 

creative and innovative ways not only in the financial field.  

 This project is able to achieve the aims and objectives mentioned in 

Chapter 1. The software has a graphical user interface which is user-friendly. 

The steps to use the software are simple and easy. Users only need to insert 

inputs and click on the line of the graph that wanted to extract. The software 

application is able to extract data from a rasterized graph using image 

processing and determine rolling return. The accuracy of the data needs to 

improve in the future in order to provide an accurate insight to users. On the 

other hand, users need to insert 6 inputs to extract the data. User might need to 

take some time to insert the inputs. The number of inputs still can be 

minimized by using more advanced techniques. However, this software is 

considered to have lesser steps for inserting inputs when compared with the 

software discussed before in Chapter 2.4. This software requires users to click 

on the line for segmentation but the other software requires insert as many 

points as possible or highlight the line using tools provided. 

 

5.2 Recommendation  

Recommendation on improving the accuracy of data is to improve the quality 

of the image during image pre-processing. For example, using the image with 



61 

 

higher pixel resolution. The higher the pixel resolution means the larger the 

number of pixels in the image. During the simulation, an input image with 

higher resolution will get better results because high resolution has more 

details of the image. The trade-off of using high pixel resolution is longer 

processing time. It will take longer time to process the image compare with 

low pixel resolution due to the large number of pixels involved in the 

calculation. Moreover, the recommendation on minimizing the user input is 

using text recognition such as Optical Character Recognition (OCR). OCR 

will read and recognize text or word in the image. It can be used to recognize 

the date and percentage return in the input image which will be used as x and 

y-axis. Users no longer need to insert the input date and percentage return if 

the OCR can works well.  However, this method still needs to consider the 

situation that will causes low accuracy due to different types and patterns of 

the image. Machine learning will be able to solve the problem caused by 

different types and patterns of the image. A large number of data set will be 

needed to feed into a program that able to learn the different types and patterns 

of the image. Then, the program can detect the line automatically and extract 

the desired data. The power of machine learning is it able to learn, predict, and 

improve itself.  



62 

 

REFERENCES 

 

Basavaprasad, B. and Ravi, M., 2014. A Study on The Importance of Image 

Processing and Its Application. IJRET: International Journal of Research in 

Engineering and Technology, 03(03), pp. 155-160. 

 

Bormann, I., 2012. Digitizelt. [Online] Available at: https://www.digitizeit.de/ 

[Accessed 22 August 2019]. 

 

Chandel, R. and Gupta, G., 2013. Image Filtering Algorithms and Techniques: 

A review. International Journal of Advanced Research in Computer Science 

and Software Engineering, 3(10). 

 

Chen, J., 2019. Absolute Return. [Online] Available at: 

https://www.investopedia.com/terms/a/absolutereturn.asp 

[Accessed 23 August 2019]. 

 

Cook, J., 2009. Three algorithms for converting color to grayscale. [Online]  

Available at: https://www.johndcook.com/blog/2009/08/24/algorithms-

convert-color-grayscale/ 

[Accessed 20 August 2019]. 

 

Felber, P., 2002. Charged-Coupled Devices. [Online] Available at: 

http://www.ece.iit.edu/~pfelber/ccd/project.pdf 

 

Gedraite, E.S. and Hadad, M., 2011. Investigation on the Effect of a Gaussian 

Blur in Image Filtering and Segmentation. Proceedings ELMAR-2011, pp. 

393-396. 

 

Kaur, A., 2018. Is 'Rolling Return' the Best Way to Measure Performance of 

Mutual Funds?. [Online] Available at: 

https://economictimes.indiatimes.com/mf/analysis/is-rolling-return-the-best-

way-to-measure-performance-of-mutual-

funds/articleshow/66968371.cms?from=mdr 

[Accessed 19 April 2020]. 

 

Larsen, K. P., n.d. Graphreader. [Online] Available at: 

http://www.graphreader.com/ 

[Accessed 22 August 2019]. 

 

Maheshwari, S., 2017. Understanding Absolute, Trailing & Rolling Returns to 

Measure MF Performance. [Online] Available at: 

https://www.moneycontrol.com/news/business/mutual-funds/understanding-

absolute-trailing-rolling-returns-to-measure-mf-performance-3838141.html 

[Accessed 23 August 2019]. 

 

Murphy, C., 2019. Compound Annual Growth Rate. [Online] Available at: 

https://www.investopedia.com/terms/c/cagr.asp 

[Accessed 23 August 2019]. 



63 

 

 

Rohatgi, A., 2015. WebPlotDigitizer. [Online] Available at: 

https://automeris.io/WebPlotDigitizer/index.html 

[Accessed 22 August 2019]. 

 

Saravanan, C., 2010. Color Image to Grayscale Image Conversion. In 2010 

Second International Conference on Computer Engineering and Applications, 

Volume 2, pp. 196-199. 

 

Sezgin, M. and Sankur, B, 2004. Survey over Image Thresholding 

Techiniques and Quantitiative Performance Evaluation. Journal of Electronic 

imaging, 13(1), pp. 146-165. 

 

Tyagi, T. and Mishra, V., 2016. 2D Gaussian Filter for Image Processing: A 

Study. 3(06), pp. 22-24. 



64 

 

APPENDIX 

 

Appendix A: Tables 

 

Table A-1: Sample of extracted data shown in excel file 

X Y Date Price 

83 471 2002-02-17 1 

84 472 2002-02-23 0.986922 

85 471 2002-03-02 1 

86 471 2002-03-09 1 

87 470 2002-03-16 1.013078 

88 469 2002-03-23 1.026156 

89 468 2002-03-29 1.039234 

90 467 2002-04-05 1.052312 

91 466 2002-04-12 1.06539 

92 465 2002-04-19 1.078468 

93 464 2002-04-26 1.091546 

94 465 2002-05-02 1.078468 

95 466 2002-05-09 1.06539 

96 467 2002-05-16 1.052312 

97 467 2002-05-23 1.052312 

98 467 2002-05-30 1.052312 

99 467 2002-06-05 1.052312 

100 467 2002-06-12 1.052312 

101 467 2002-06-19 1.052312 

1031 214 2019-10-15 4.36103 

1032 212 2019-10-22 4.387185 

1033 207 2019-10-29 4.452575 

1034 206 2019-11-05 4.465653 

1038 207 2019-12-02 4.452575 

1039 207 2019-12-09 4.452575 

1040 206 2019-12-16 4.465653 

1041 202 2019-12-22 4.517965 

1042 201 2019-12-29 4.531043 

1043 200 2020-01-05 4.544121 

1044 199 2020-01-12 4.557199 

1045 199 2020-01-19 4.557199 

1046 200 2020-01-25 4.544121 

1047 187 2020-02-01 4.714134 

1048 187 2020-02-08 4.714134 

1049 188 2020-02-15 4.701056 

1050 189 2020-02-22 4.687978 

1051 190 2020-02-29 4.6749 

 



65 

 

Table A-2: Sample of Rolling Return data 

Date Price 1-Year Rolling Return 

2019-02-28 4.196401636 -1.54161687 

2019-03-31 4.295639858 5.084950679 

2019-04-30 4.319551869 4.960834308 

2019-05-31 4.243328114 8.483225424 

2019-06-30 4.28435701 6.220032015 

2019-07-31 4.299647036 2.457747915 

2019-08-31 4.25640605 1.07975315 

2019-09-30 4.317339779 1.248130515 

2019-10-31 4.455394808 6.675811343 

2019-11-30 4.452575089 10.80306538 

2019-12-31 4.533413651 15.2036065 

2020-01-31 4.714133808 10.55342179 

2020-02-29 4.6749 12.33752668 

 

  



66 

 

Table A-3: Summary of Percentage Different for 1 Year 

 

1 - Year Percentage Return 

 
Actual Calculated 

Differenc
e 

Dana Makmur Pheim 4.73 12.33 7.6 

Pheim Income Fund 0.19 3.61 3.42 

Kenaga Bond Fund 5 4.61 0.39 

Kenaga Bond Extra Fund 9.15 8.74 0.41 

Kenaga Premier Fund 15.86 17.54 1.68 

AmSean Equity Fund -0.49 1.51 2 

Am Bond Fund 11.41 10.65 0.76 

Apex Asian(Ex-Japan)Fund -3.64 6.85 10.49 

Apex Dynamic Fund -0.74 6.38 7.12 
EastSpring Investment Asia Pacific(Ex-
Japan) Target Return 8.81 9.45 0.64 

EastSpring Bond Fund 8.66 8.71 0.05 

Pacific Dana Aman 5.05 6.72 1.67 

Pacific Pearl Fund 10.43 11.13 0.71 

Pacific Premier Fund -1.17 0.59 1.76 

United ASEAN Discovery 17.86 21.24 3.38 

United Bond Equity Strategy 13.94 14.22 0.28 
United Global Quality Equity - MYR 
Hedged 21.08 22.39 1.31 

United Gloden Opprtunity MYR Hedged 19.67 18.84 0.83 

United Income Plus 12.02 12.67 0.65 

United Target Income Bond Fund 3.05 2.64 0.41 

Opus Cash Extra Fund 4.1 4.6 0.5 

Opus Dynamic Fund 12.39 9.98 2.41 

Opus Global Income 3.39 2.95 0.44 
Aberdeen Standard Islam Pacific Ex 
Japan Equity 0.19 1.65 1.46 

Affin Hwang Absolute Return Fund 12.8 14.8 2 

Affin huang Growth Fund 2.1 3.97 1.87 

CIMB Principal Strategy Bond Fund 9.15 8.66 0.49 

CIMB Principal Small Cap Fund 17.63 18.56 0.93 
CIMB Islamic PRS Plus Conservative-
Class A 6.44 6.8 0.36 
CIMB Islamic PRS Plus Conservative-
Class C 6.25 6.49 0.14 

Average: 1.872 
 

  



67 

 

Table A-4: Summary of Percentage Different for 3 Year 

 

3 - Year Percentage Return 

 
actual calculated difference 

Dana Makmur Pheim 19.29 26.1 6.81 

Pheim Income Fund 4.91 7.79 2.88 

Kenaga Bond Fund 12.76 12.89 0.13 

Kenaga Bond Extra Fund 19.01 18.84 0.17 

Kenaga Premier Fund 6.8 9.77 2.97 

AmSean Equity Fund 3.06 -1.2 4.26 

Am Bond Fund 22.06 20.76 1.3 

Apex Asian(Ex-Japan)Fund 5.42 3.66 1.76 

Apex Dynamic Fund -11.26 -7.47 3.79 
EastSpring Investment Asia Pacific(Ex-
Japan) Target Return 13.91 13.98 0.07 

EastSpring Bond Fund 17.83 17.53 0.3 

Pacific Dana Aman -11.41 -9.92 1.49 

Pacific Pearl Fund -16 -14.72 1.27 

Pacific Premier Fund -5.11 -4.91 0.2 

United ASEAN Discovery 
   United Bond Equity Strategy 
   United Global Quality Equity - MYR 

Hedged 
   United Gloden Opprtunity MYR 

Hedged 
   United Income Plus 
   United Target Income Bond Fund 
   Opus Cash Extra Fund 10.75 12.56 1.82 

Opus Dynamic Fund 22.39 21.18 1.21 

Opus Global Income -1 1.26 2.26 
Aberdeen Standard Islam Pacific Ex 
Japan Equity -4.9 0.1 5 

Affin Hwang Absolute Return Fund 21.1 20.24 0.86 

Affin huang Growth Fund 9.1 1.7 7.4 

CIMB Principal Strategy Bond Fund 15.96 15.57 0.39 

CIMB Principal Small Cap Fund 5.44 7.72 2.28 
CIMB Islamic PRS Plus Conservative-
Class A 13.23 14.08 0.85 
CIMB Islamic PRS Plus Conservative-
Class C 13.1 13.02 0.08 

Average: 
2.1543478

3 

 

  



68 

 

Table A-5: Summary of Percentage Different for 5 Year 

 

5 - Year Percentage Return 

 
actual calculated difference 

Dana Makmur Pheim 31.38 39.9 8.52 

Pheim Income Fund 14.79 18.29 3.5 

Kenaga Bond Fund 20.36 19.76 0.6 

Kenaga Bond Extra Fund 35.29 36.06 0.77 

Kenaga Premier Fund 9.15 11.07 1.92 

AmSean Equity Fund -4.17 -3.83 0.34 

Am Bond Fund 33.4 32.59 0.81 

Apex Asian(Ex-Japan)Fund 15.66 22.06 6.4 

Apex Dynamic Fund -26.01 -21.73 4.28 
EastSpring Investment Asia Pacific(Ex-
Japan) Target Return 19.16 21.73 2.57 

EastSpring Bond Fund 37.28 38.26 0.98 

Pacific Dana Aman -15.42 -14.49 0.93 

Pacific Pearl Fund -27.43 -28.59 1.16 

Pacific Premier Fund -7.59 -8.9 1.31 

United ASEAN Discovery 
   United Bond Equity Strategy 
   United Global Quality Equity - MYR 

Hedged 
   United Gloden Opprtunity MYR Hedged 
   United Income Plus 
   United Target Income Bond Fund 
   Opus Cash Extra Fund 16.75 20.88 4.13 

Opus Dynamic Fund 32.29 32.56 0.17 

Opus Global Income 
   Aberdeen Standard Islam Pacific Ex 

Japan Equity 
   Affin Hwang Absolute Return Fund 
   Affin huang Growth Fund 
   CIMB Principal Strategy Bond Fund 25.68 25.49 0.19 

CIMB Principal Small Cap Fund 4.03 6.09 2.06 
CIMB Islamic PRS Plus Conservative-
Class A 18.26 20.58 2.32 
CIMB Islamic PRS Plus Conservative-
Class C 18.11 17.7 0.41 

Average: 2.28263158 

 

  



69 

 

Appendix B: Source Code 

 

from tkinter import * 

from tkinter import messagebox as mb 

from PIL import Image,ImageTk 

from tkinter import ttk 

from tkinter import filedialog 

import cv2 as cv 

import numpy as np 

from matplotlib import pyplot as plt 

import matplotlib.dates as mdates 

from numpy import array 

import xlsxwriter 

from datetime import datetime 

from datetime import timedelta 

from datetime import date 

from mpl_toolkits.mplot3d import Axes3D 

from sklearn.cluster import KMeans 

import colorsys 

import calendar 

 

window=Tk() 

window.geometry("2048x600")  #size of window 

window.title("FYP") #title of window 

#variable to store the value of first and last point 

fd = StringVar() 

fm = StringVar() 

fy = StringVar() 

fr = StringVar() 

fr_unit = StringVar() 

sd = StringVar() 

sm = StringVar() 

sy = StringVar() 

sr = StringVar() 

sr_unit = StringVar() 

input_img = np.zeros((512, 512, 3),np.uint8) 

upper_RGB = [] 

lower_RGB = [] 

 

def print1(): 

    first_day = int(fd.get()) 

    first_month = int(fm.get()) 

    first_year = int(fy.get()) 

    first_rate = float(fr.get()) 

    first_unit = fr_unit.get() 

    sec_day = int(sd.get()) 

    sec_month = int(sm.get()) 

    sec_year = int(sy.get()) 

    sec_rate = float(sr.get()) 



70 

 

    sec_unit = sr_unit.get() 

    date1 = date(first_year, first_month, first_day) 

    date2 = date(sec_year, sec_month, sec_day) 

    t_days = date2 - date1 

    year_interval = timedelta(days=365) 

    total_year = int(t_days.days / year_interval.days) 

    #print(total_year) 

    if (total_year <= 2): 

        mb.showerror("ERROR","Minimun duration of year is 2 years. 

Please Insert Again.") 

        #print(f"First point is is 

({first_month},{first_year},{first_rate}{first_unit}).") 

        #print(f"Last point is ({sec_month},{sec_year},{sec_rate}{sec_unit}).") 

    else: 

        return (first_rate,sec_rate,first_year, sec_year, first_month, sec_month, 

first_unit, first_day, sec_day, total_year) 

 

def exit1(): 

    exit() 

 

def click_event(event, x, y, flags, params): 

    global lower_RGB 

    global upper_RGB 

    if event == cv.EVENT_LBUTTONDOWN: 

        upper_blue = input_img[y, x, 0] 

        upper_green = input_img[y, x, 1] 

        upper_red = input_img[y, x, 2] 

        #upper_RGB = np.array([upper_red, upper_green, upper_blue]) 

        print(f"UB is {upper_blue}, UG {upper_green},UR {upper_red}") 

    if event == cv.EVENT_RBUTTONDOWN: 

        lower_blue = input_img[y, x, 0] 

        lower_green = input_img[y, x, 1] 

        lower_red = input_img[y, x, 2] 

        #lower_RGB = np.array([lower_blue, lower_green, lower_red]) 

        print(f"LB is {lower_blue}, LG {lower_green},LR {lower_red}") 

        #cv.imshow('Original', input_img) 

        img2 = cv.GaussianBlur(input_img, (7, 7), 0) 

        #cv.imshow('blur filter', img2) 

        gray = cv.cvtColor(img2, cv.COLOR_BGR2GRAY) 

        #cv.imshow('gray', gray) 

        th2 = cv.adaptiveThreshold(gray, 255, 

cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 5, 2) 

        #cv.imshow('th2', th2) 

        hsv = cv.cvtColor(img2, cv.COLOR_BGR2HSV) 

        #cv.imshow('hsv', hsv) 

        RGB_2_HSV = colorsys.rgb_to_hsv(lower_red/255, lower_green/255, 

lower_blue/255) 

        hue = int(RGB_2_HSV[0]*179) 

        #print(hue) 

        if (hue>= 0 and hue <=10): 



71 

 

            hue_low = 0 

            hue_hi = 10 

        elif (hue>= 11 and hue <=25): 

            hue_low = 11 

            hue_hi = 25 

        elif (hue>= 26 and hue <=35): 

            hue_low = 26 

            hue_hi = 35 

        elif (hue>= 36 and hue <=83): 

            hue_low = 36 

            hue_hi = 83 

        elif (hue>= 84 and hue <=105): 

            hue_low = 84 

            hue_hi = 105 

        elif (hue>= 106 and hue <=135): 

            hue_low = 106 

            hue_hi = 135 

        elif (hue>= 136 and hue <=144): 

            hue_low = 136 

            hue_hi = 144 

        elif (hue>= 145 and hue <=158): 

            hue_low = 145 

            hue_hi = 158 

        elif (hue>= 159 and hue <=166): 

            hue_low = 159 

            hue_hi = 166 

        elif (hue>= 167 and hue <=179): 

            hue_low = 167 

            hue_hi = 179 

        red_lower = np.array([hue_low, 100, 10]) 

        red_upper = np.array([hue_hi, 255, 255]) 

        mask2 = cv.inRange(hsv, red_lower, red_upper) 

        new_mask2 = cv.morphologyEx(mask2, cv.MORPH_CLOSE, 

cv.getStructuringElement(cv.MORPH_OPEN, (3, 3))) 

 

        cv.imshow("mask", new_mask2) 

        contours, hierarchy = cv.findContours(new_mask2, cv.RETR_TREE, 

cv.CHAIN_APPROX_NONE) 

        contours = array(contours) 

        #print(len(contours)) 

        new_con = [] 

        area = [] 

        #for hier in range(len(contours)): 

            #area.append(int(cv.contourArea(contours[hier]))) 

        #average = sum(area) / len(contours) 

        #for aa in range(len(contours)): 

            #if (area[aa] >= average): 

                #new_con.append(contours[aa]) 

 

        combined = np.concatenate([contours[p].reshape(-1,2) for p in 



72 

 

range(len(contours))]) 

        #array1 = contours[0].reshape(-1, 2) 

        #array2 = contours[1].reshape(-1, 2) 

        #array3 = contours[2].reshape(-1, 2) 

        #array4 = contours[3].reshape(-1, 2) 

        #array5 = contours[4].reshape(-1, 2) 

        #combined = np.concatenate((array1, array2, array3, array4, array5)) 

        #print(combined) 

        #print(len(combined)) 

        sort_combined = sorted(combined, key=lambda x: x[0]) 

        pixel_location = [] 

        price = [] 

        tdate = [] 

        new_date = [] 

        new_pl = [] 

        pl_xcoor = [] 

        pos_ret = 0 

        neg_ret = 0 

        no_ret = 0 

        total_ret = 0 

        probability_loss = 0 

        # take out the similar point 

        for i in range(len(sort_combined) - 1): 

            if sort_combined[i + 1][0] != sort_combined[i][0]: 

                pixel_location.append(sort_combined[i]) 

        outWorkbook = xlsxwriter.Workbook("imgpixel.xlsx") 

        outSheet = outWorkbook.add_worksheet() 

        # write headers 

        outSheet.write("A1", "X") 

        outSheet.write("B1", "Y") 

        outSheet.write("C1", "Date") 

        outSheet.write("D1", "Price") 

        outSheet.write("F1", "Date") 

        outSheet.write("G1", "Price") 

        outSheet.write("H1", "1-Year Rolling Return") 

        for row in range(len(pixel_location)): 

            outSheet.write(row + 1, 0, pixel_location[row][0]) 

            outSheet.write(row + 1, 1, pixel_location[row][1]) 

        first_rate, sec_rate, first_year, sec_year, first_month, sec_month , 

first_unit, first_day, sec_day, total_year= print1() 

        #print (first_rate,sec_rate) 

        #print(pixel_location[row][0],pixel_location[0][0]) 

        y_interval = abs(((sec_rate - first_rate)/(pixel_location[row][1]-

pixel_location[0][1]))) 

        #print(f"Y_interval is {y_interval}") 

        date1 = date(first_year,first_month,first_day) 

        date2 = date(sec_year,sec_month,sec_day) 

        t_days = date2 - date1 

        #************find total years to calculate for year-rolling return 

        ppd = abs((pixel_location[row][0] - pixel_location[0][0]) / t_days.days) 



73 

 

        #month_interval = timedelta(days = 30) 

        #total_month = abs(t_days.days/month_interval.days) 

        #ppm = month_interval.days * ppd 

 

        #for i in range(int(total_month)): 

            

#new_date.append(datetime.strftime((date1+(month_interval*(i+1))),"%Y-

%m-%d")) 

            #new_pl.append(int(round(new_pl[i]+ppm))) 

        for j in range(len(pixel_location)): 

            pl_xcoor.append(pixel_location[j][0]) 

            #********change percentage to price 

            if(first_unit == 'Percentage'): 

                price.append(((pixel_location[0][1]-

pixel_location[j][1])*y_interval)*0.01+ (first_rate*0.01+1)) 

            else: 

                price.append(((pixel_location[0][1] - pixel_location[j][1]) * 

y_interval) + first_rate) 

            outSheet.write(j + 1, 3, price[j]) 

            tdelta = timedelta(days=(pixel_location[j][0] - pixel_location[0][0]) / 

ppd) 

            tdate.append(datetime.strftime((date1 + tdelta),"%Y-%m-%d")) 

            outSheet.write(j + 1, 2, tdate[j]) 

 

        # make list with end month date 

        start_month = date1.month 

        end_month = (date2.year - date1.year) * 12 + date2.month 

        #print(start_month, end_month) 

 

        for month in range(start_month, end_month + 1): 

            year = int((month) / 12 + date1.year) 

            month = int((month) % 12 + 1) 

            new_date.append(datetime.strftime(datetime(year, month, 1) - 

timedelta(days=1), "%Y-%m-%d")) 

            diff = (date(year, month, 1) - timedelta(days=1)) - date1 

            new_pl.append(diff.days * ppd + pixel_location[0][0]) 

 

        new_price = [None] * (len(new_pl)) 

        percentage_ret1 = [0] * (len(new_pl)) 

        percentage_ret3 = [0] * (len(new_pl)) 

        percentage_ret5 = [0] * (len(new_pl)) 

 

        for k in range(len(new_pl)): 

            if (new_price[k] == None): 

                #find nearest date index 

                res = min(enumerate(tdate), key = lambda 

x:abs(datetime.strptime(new_date[k], "%Y-%m-%d") - 

datetime.strptime(x[1], "%Y-%m-%d"))) 

                #print(res) 

                delta = datetime.strptime(new_date[k], "%Y-%m-%d") - 



74 

 

datetime.strptime(tdate[res[0]], "%Y-%m-%d") 

                if (delta.days > 0): 

                    interpolation = ((price[res[0] + 1] - price[res[0]]) / 

(pixel_location[res[0] + 1][0] - pixel_location[res[0]][0])) 

                    new_price[k] = ((interpolation*(new_pl[k]-

pixel_location[res[0]][0]))+price[res[0]]) 

                elif (delta.days == 0): 

                    new_price[k] = price[res[0]] 

                elif (delta.days < 0): 

                    interpolation = ((price[res[0] + 1] - price[res[0]]) / 

(pixel_location[res[0] + 1][0] - pixel_location[res[0]][0])) 

                    new_price[k] = (price[res[0]] - (interpolation * 

(pixel_location[res[0]][0] - new_pl[k]))) 

 

            #print(new_date[k], new_pl[k], new_price[k]) 

            outSheet.write(k + 1, 5, new_date[k]) 

            outSheet.write(k + 1, 6, new_price[k]) 

        #1 year rolling return 

        for item in range(len(new_price) - 12): 

            percentage_ret1[item+12] = ((new_price[item+12] - 

new_price[item])/new_price[item])*100 

 

        #3 year rolling return 

        if (total_year >= 4): 

            for item3 in range(len(new_price) - 36): 

                percentage_ret3[item3 + 36] = ((new_price[item3 + 36] - 

new_price[item3]) / new_price[item3]) * 100 

 

            outSheet.write("I1", "3-Year Rolling Return") 

        #5 year rolling reutn 

        if (total_year >= 6): 

            for item5 in range(len(new_price) - 60): 

                percentage_ret5[item5 + 60] = ((new_price[item5 + 60] - 

new_price[item5]) / new_price[item5]) * 100 

 

            outSheet.write("J1", "5-Year Rolling Return") 

 

        for m in range(len(percentage_ret1)): 

            outSheet.write(m + 1, 7, percentage_ret1[m]) 

            outSheet.write(m + 1, 8, percentage_ret3[m]) 

            outSheet.write(m + 1, 9, percentage_ret5[m]) 

        outWorkbook.close() 

        mb.showerror("OUTPUT", "Excel Exported.") 

        plotgraph(new_date, percentage_ret1, percentage_ret3, 

percentage_ret5,new_price) 

        print ('Excel Exported') 

        #cv.waitKey() 

        #cv.destroyAllWindows() 

 

def plotgraph(x, y1, y3, y5, price): 



75 

 

 

    #Plot graph for 1-year return 

    color = 'tab:red' 

    fig1 = plt.figure(num="1-year rolling return") 

    ax1 = fig1.add_subplot() 

    ax1.plot(x, y1, color = color) 

    ax1.set_xlabel('Date') 

    ax1.set_ylabel('Return %',color = color) 

    ax1.xaxis.set_major_locator(plt.MaxNLocator(10)) 

    color = 'tab:blue' 

    ax2 = ax1.twinx() 

    ax2.plot(x, price, color = color) 

    ax2.set_ylabel('Price',color = color) 

    #ax2.xaxis.set_major_formatter(plt.NullFormatter()) 

    ax2.xaxis.set_major_locator(plt.MaxNLocator(10)) 

    fig1.autofmt_xdate() 

 

    #Plot graph for 3-year return 

    color = 'tab:red' 

    fig3 = plt.figure(num="3-year rolling return") 

    ax3 = fig3.add_subplot() 

    ax3.plot(x, y3, color = color) 

    ax3.set_xlabel('Date') 

    ax3.set_ylabel('Return %',color = color) 

    ax3.xaxis.set_major_locator(plt.MaxNLocator (10)) 

    color = 'tab:blue' 

    ax4 = ax3.twinx() 

    ax4.plot(x, price, color = color) 

    ax4.set_ylabel('Price',color = color) 

    ax4.xaxis.set_major_locator(plt.MaxNLocator(10)) 

    fig3.autofmt_xdate() 

 

    #Plot graph for 5-year return 

    color = 'tab:red' 

    fig5 = plt.figure(num="5-year rolling return") 

    ax5 = fig5.add_subplot() 

    ax5.plot(x, y5, color = color) 

    ax5.set_xlabel('Date') 

    ax5.set_ylabel('Return %',color = color) 

    ax5.xaxis.set_major_locator(plt.MaxNLocator(10)) 

    color = 'tab:blue' 

    ax6 = ax5.twinx() 

    ax6.plot(x, price, color = color) 

    ax6.set_ylabel('Price',color = color) 

    ax6.xaxis.set_major_locator(plt.MaxNLocator(10)) 

    fig5.autofmt_xdate() 

    #show all graph 

    plt.show() 

 

def get_image(): 



76 

 

    filename=filedialog.askopenfilename(initialdir="/",title="Select A 

File",filetype=(("jpeg","*.jpg"),("png","*.png"),("All Files","*.*"))) 

    label_dir=Label(text=filename) 

    label_dir.place(x=200,y=500) 

    load=Image.open(filename) 

    render=ImageTk.PhotoImage(load) 

    img=Label(window,image=render) 

    img.image = render 

    #img.place(x=450,y=50) 

    global input_img 

    input_img = cv.imread(filename) 

    testing() 

 

def testing(): 

    cv.namedWindow('Original') 

    cv.setMouseCallback('Original', click_event) 

    while (1): 

        cv.imshow('Original', input_img) 

        if cv.waitKey(20) == 27: 

            break 

    cv.destroyAllWindows() 

 

 

 

def graphical_UI(): 

    label0=Label(window,text="Determination of rolling 

return",fg="blue",bg="yellow",relief="solid",font=("arial",16,"bold")) 

    label0.pack(fill="x") 

    label1=Label(window,text="Please insert your graph 

image",fg="blue",bg="yellow",relief="solid",font=("arial",16,"bold")) 

    label1.place(x=0,y=400) 

 

    #user insert the first point 

    label2=Label(window,text="Insert Date of First 

Point:",fg="blue",bg="yellow",relief="solid",font=("arial",16,"bold")) 

    label2.place(x=0,y=100) 

    #First Month 

    list_month = ['1','2','3','4','5','6','7','8','9','10','11','12'] 

    droplist_fm = OptionMenu(window,fm,*list_month) 

    fm.set("Select Month") 

    droplist_fm.config(width=15) 

    droplist_fm.place(x=450,y=100) 

    #First Year 

    list_year = 

['1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','

2006','2007','2008','2009','2010','2011','2012','2013','2014','2015','2016','2

017','2018','2019','2020'] 

    droplist_fy = OptionMenu(window,fy,*list_year) 

    fy.set("Select Year") 

    droplist_fy.config(width=15) 



77 

 

    droplist_fy.place(x=600,y=100) 

    #First day 

    list_day = 

['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20

','21','22','23','24','25','26','27','28','29','30','31'] 

    droplist_fday = OptionMenu(window, fd, *list_day) 

    fd.set("Select Day") 

    droplist_fday.configure(width=15) 

    droplist_fday.place(x= 300,y=100) 

    #First rate 

    label3 = Label(window, text="Insert rate of First Point:", fg="blue", 

bg="yellow", relief="solid", 

                   font=("arial", 16, "bold")) 

    label3.place(x=0, y=150) 

    entry_fr = Entry(window, textvar=fr) 

    entry_fr.place(x=300, y=150) 

    list_unit = ['RM','Percentage'] 

    droplist_unit = OptionMenu(window,fr_unit,*list_unit) 

    fr_unit.set("Select Unit") 

    droplist_unit.config(width=10) 

    droplist_unit.place(x=450,y=150) 

 

    #user insert last point 

    label4 = Label(window, text="Insert Date of last Point:", fg="blue", 

bg="yellow", relief="solid", 

                   font=("arial", 16, "bold")) 

    label4.place(x=0, y=200) 

    #Last Month 

    droplist_sm = OptionMenu(window, sm, *list_month) 

    sm.set("Select Month") 

    droplist_sm.config(width=15) 

    droplist_sm.place(x=450, y=200) 

    #Second Year 

    droplist_sy = OptionMenu(window,sy,*list_year) 

    sy.set("Select Year") 

    droplist_sy.config(width=15) 

    droplist_sy.place(x=600,y=200) 

    #Last Day 

    droplist_sday = OptionMenu(window, sd, *list_day) 

    sd.set("Select Day") 

    droplist_sday.config(width=15) 

    droplist_sday.place(x=300,y=200) 

    #Last Rate 

    label5 = Label(window, text="Insert rate of last Point:", fg="blue", 

bg="yellow", relief="solid", 

                   font=("arial", 16, "bold")) 

    label5.place(x=0, y=250) 

    entry_sr = Entry(window, textvar=sr) 

    entry_sr.place(x=300, y=250) 

    list_unit = ['RM','Percentage'] 



78 

 

    droplist_unit2 = OptionMenu(window,sr_unit,*list_unit) 

    sr_unit.set("Select Unit") 

    droplist_unit2.config(width=10) 

    droplist_unit2.place(x=450,y=250) 

 

graphical_UI(); 

button1=Button(window,text="Browse",width=12,fg="black",bg="white",

command=get_image) 

button1.place(x=50,y=450) 

button3=Button(window,text="Enter",width=12,fg="black",bg="white",co

mmand=print1) 

button3.place(x=50,y=300) 

button2=Button(window,text="Exit",fg="black",bg="white",command=exi

t1) 

button2.place(x=200,y=450) 

window.mainloop() 

 


