

IoT BASED HEALTH MONITORING SYSTEM

LIM CHEE YUAN

A project report submitted in partial fulfillment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2019

 i

DECLARATION

I hereby declare that this project report is based on my original work except for citations

and quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Signature :

Name : LIM CHEE YUAN

ID No. : 1501917

Date : 23/4/2020

 ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “IoT BASED HEALTH MONITORING

SYSTEM” was prepared by LIM CHEE YUAN has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Honours) Electrical and Electronic Engineering at Universiti Tunku Abdul

Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

 iii

The copyright of this report belongs to the author under the terms of the

Copyright Act 1987 as qualified by the Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgment shall always be made of the use of any material

contained in, or derived from, this report.

© 2019, Lim Chee Yuan. All right reserved.

 iv

ABSTRACT

Health is wealth. Wealth and happiness are earned by having a healthy mind and body.

However, people nowadays do not have much free time to keep track of their health status.

Thus, a health monitoring system that automatically tracks and alarm the users about their

health status is needed. Rapid improvement of the internet and technology, such as the

Internet of Things allows the health monitoring system to be improved. The internet of

things allows communication between machines and programmed actions to be triggered

automatically, which makes the system to be more efficient. The traditional health

monitoring system requires regular visitation of patients to doctors to check their health

status. However, with the implementation of the internet of things in the health monitoring

system, the health monitoring processes can be automated and helps the patient to save

their precious time. Besides, the cloud that revolutionized data changing aids in the efforts

of making a better and more reliable health monitoring system. The health data can be

stored and visualized in real-time. In this project, a NodeMCU is used as a gateway to

collect the health data of the user, and a Raspberry Pi 3 Model B+ broker is used as the

central processing unit that processes all the received data. The broker receives health

data from the gateway and process the data. The system is capable of tracking the location

of the user by using the Google geolocation service. The health data and location of the

user are visualized in the Thingsboard visualization platform in real-time. Several

experiments and tests, such as accuracy test and error analysis were conducted on the

proposed system, and encouraging results were obtained.

 v

TABLE OF CONTENTS

DECLARATION

APPROVAL FOR SUBMISSION

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS

LIST OF APPENDICES

CHAPTER

1 INTRODUCTION

1.1 General Introduction 1

1.2 Problem Statement 1-2

1.3 Aims and Objectives 2-3

1.4 Scope and Limitations 3

2 LITERATURE REVIEW

2.1 Introduction 4

2.2 Cloud Computing

 2.2.1 Software as a Service (SaaS) 4-5

 2.2.2 Infrastructure as a Service (IaaS) 5

 2.2.3 Platform as a Service (PaaS) 5-6

2.3 Edge Computing

 2.3.1 Edge Computing and Cloud Computing 7

 2.3.2 Proof of Concept that Closer Distance Reduce Latency8

 vi

 2.4 Cloud Computing On Healthcare System 9-12

 2.5 Edge Computing-based System 12-16

 2.6 Cardiac Cycle 17-18

2.7 Heart Rate of Human in Different Ages 18-19

2.8 Room Temperature in Malaysia 19-20

2.9 Human Body Temperature 20-21

3 METHODOLOGY AND WORK PLAN

3.1 Introduction 22

3.2 System Design

3.2.1 System Overview 22-25

3.2.2 System Communication Model 26

3.3 Tools

 3.3.1 Platform and Services 26-27

 3.3.2 Software 28-30

 3.3.3 Messaging Protocol 30

 3.3.4 Hardware Tools 31-35

 3.4 Implementation Phase

 3.4.1 Thingsboard Platform Setup 36-38

 3.4.2 Node-RED Setup 38-39

4 RESULTS AND DISCUSSIONS

4.1 Results of the prototype system

 4.1.1 Real-time data visualization in Thingsboard 40-42

 4.1.2 Flow of the health system in Node-Red 42-43

 4.1.3 Data storing in PHPMyAdmin database 43-45

 4.1.4 Action triggered during emergency 45-46

4.2 Discussion

 4.2.1 Thingsboard as the data visualization platform 47

 vii

 4.2.2 Node-Red 47-52

4.3 Experiment

4.3.1 LM35 Temperature Sensor 53-54

4.3.2 LM35 Error Analysis 54-56

4.3.3 Body Temperature Measurement by LM35 and

thermometer 56-58

4.3.4 SEN-11574 Pulse Sensor Experiment 58-60

4.3.5 Accuracy of SEN-11574 Pulse Sensor 60-63

4.4 Schematic diagram of the proposed system 63-64

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 65

5.2 Recommendations for future work 65

REFERENCES 66-68

APPENDICES 69-75

 1

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Revolution and rapid improvement of the internet, technology such as the Internet of

Things has emerged and is snowballing. Internet of Things with cloud computing and

edge computing realizes a new and more efficient way of data sharing and transmitting.

The Internet of things will remodel the healthcare sector and improves the health and

wellbeing of humanity (Rahmani et al., 2018). The traditional healthcare system requires

patients to visit the clinic or hospital for medical checkups which is time-consuming and

inefficient. The Internet of Things is capable of realizing a real-time health monitoring

system that involves sensors to measure heart rate and body temperature of patients and

visualize the data in real-time. By such, people can have better control of their health

condition. Instead of relying on infrequent visits to clinics or hospitals for various tests,

people can access their health data through the internet and start to track their health

conditions. The Internet of Things that realizes the connection between devices (Tao et

al., 2014) allows activities such as sending an alert email and messages during an

emergency to be possible by making use of open source services such as google assistance

and IFTTT. Besides, the location of the user can be tracked by using geolocation.

1.2 Problem Statement

In the traditional healthcare system, people are required to visit clinics or medical centres

regularly for medical checkups, which is less effective and time-consuming. The high

medical cost and long waiting will discourage people from performing medical checkups

 2

regularly. A health monitoring system that collects and monitors the health status of the

user in real-time will benefits the people by saving their money and time of visiting clinics

and medical centres unless there is a need for it.

Besides, the security of the health system is vital to safeguard the privacy of the user.

People may avoid healthcare in sensitive areas due to health information privacy concerns

(Bansal and Gefen, 2010). Smart wearable gadgets such as Apple Watch and Samsung

Galaxy Watch are storing the collected health data in the cloud. Cloud storage allows

users to enjoy high-quality services without any burden of storage maintenance (Wang et

al., 2011). However, cloud users are more vulnerable to issues such as theft,

confidentiality, and information leaked to the third party compared to local storage users

(Romero, 2012). Storing confidential health information in the health system itself will

help reduce the chance of information leakage, as the health information will only be

accessible by authorized users which improves the security and privacy of the system.

The location tracking function plays a vital role in the health monitoring system as it

allows people to track the whereabouts of the user. Besides, the coordinate of the user

should be recorded as it allows people to trace the whereabouts of the user. The function

will come in handy when there is a need to track down a person, such as the COVID-19

outbreak. The whereabouts of the patients are useful to trace the source of the disease.

Besides, the information will aid in the prevention and evacuation works that will prevent

or reduce the spreading of the disease.

Aim and Objective

The project aims to develop a wearable health monitoring system that tracks the user’s

location, monitors the user’s heart rate and body temperature, and visualizes the data in

real-time. Authorized users will have access to the collected data stored in the database

to keep track of the patient’s health data. The system is capable of sending alert

notifications to phones and emails when the person wearing the health system is having

abnormal body temperature or sudden changes in heart rate. Thus, the objectives of the

project are to propose an Internet of Things (IoT) based health monitoring system that

collects and monitors the user’s body temperature and heart rate in real-time. To propose

 3

a system that visualizes and stores the health data in the database while tracking the

location of the user by using geolocation.

1.3 Scope and Limitations

The project focuses on the development of an IoT based health monitoring system that

involves both hardware and software. The prototype system consists of sensors and a data

processing broker. The prototype allows authorized users to monitor the health data and

the location of the health system user through the internet. Besides, the authorized user

can easily trace back to the previous health data by accessing to the database that stores

all the user’s health data.

Since the focus of this project is on the implementation and involvement of IoT in the

health monitoring system and due to budget limitation, the accuracy of the sensors used

in this system will not be taken into consideration as the sensors used in this system are

not medically verified and are not suitable to be used for any serious medical analysis by

any means.

 4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides the reviews of different types of healthcare system related to this

project. The reviews include the smart functions and methods used by researchers in their

projects.

2.2 Cloud Computing

Cloud computing delivers computing services such as servers, storage, analytics and,

intelligence over the internet or cloud (JoSEP et al., 2010) to provide a faster and flexible

data exchange process, which helps to reduce the operating cost and increase the

efficiency of the infrastructure. Cloud computing realizes a situation where the

infrastructures, data or program that customarily installed in desktop PC and server rooms

can now be installed in a cloud (Hayes, 2008). Users can perform different tasks by using

services provided by the data centres of the cloud through the internet and access the

virtualized resources (hardware and services) provided by the cloud anytime and

anywhere as long as there is active internet connectivity.

Fig.2.1: Cloud Computing Paradigm (Shi et al., 2016)

 5

Fig.2.1 shows the paradigm of cloud computing. The data consumers are the end devices

that send a request for data consuming to the cloud, and the cloud will respond by sending

the raw data from data producer to the consumer. Cloud computing services are

categorized as software as a service (SaaS), infrastructure as a service (IaaS), and

Platform as a service (PaaS) based on the type of capability provided by the clouds.

2.2.1 Software as a Service (SaaS)

 SaaS is a type of cloud computing that distributes an application to a wide variety of

users through the browser (Knorr and Gruman, 2008), which serves as an alternative to

the locally hosted application. SaaS provides access to the software or application through

the internet, where license and installation of the software are not required. Customers

who pay for the usage fee will have secured access to the SaaS application via the internet.

Hosted software is software that “owned” by the company itself, the software can be

obtained through licensing, and the software needs to be downloaded and installed in the

hosting centre. SaaS is reliable and cost-saving since no licensing and installation of

software required. Users could access the software through the internet anytime and

anywhere.

2.2.2 Infrastructure as a Service (IaaS)

IaaS is a type of cloud computing that provides infrastructures such as processing, storage,

networks, and other fundamental computing resources (Mell and Grance, 2011) in a

virtual environment. IaaS can split, assign, and resize these resources to build a system as

demanded by users through virtualization (Vaquero et al., 2008). Arbitrary software such

as the operating system and infrastructures can be deployed and run by the users.

2.2.3 Platform as a Service (PaaS)

PaaS is a type of cloud computing that provides development environments as a service

(Knorr and Gruman, 2008). The users can build their applications by using programming

 6

languages, libraries, and tools supported by the provider and run the applications on the

infrastructure provided by the PaaS service provider. Multiple authorized users can access

the applications from the provider’s server through the internet, where the deployed

applications and configuration settings for the application-hosting environment are

controlled by the developer (Mell and Grance, 2011).

2.3 Edge Computing

Edge computing is a technology that combines cloud computing, grid computing, and IoT,

where it acts as an additional layer between end devices and cloud. Edge computing

relocates the computational power closer to the end devices (Gezer et al., 2018), where it

improves the quality of service (QoS) of applications and reduces the latency of the tasks

(Chen et al., 2018). Edge computing aims to make use of computational resources at the

edge of the network that keeps increasing and brings data processing closer to where data

are generated (Rausch et al., 2018).

Fig.2.2: Edge Computing Paradigm (Shi et al., 2016)

Fig.2.2 shows the paradigm of edge computing where the edge can act as a data producer

and data consumer. The edge can request data from the cloud and perform the computing

tasks of the cloud, such as data storing and data caching. With edge computing, the tasks’

computing processes can be offloaded to the edge which reduces the response time and

increases the efficiency of the system.

 7

2.3.1 Edge Computing and Cloud Computing

Edge computing process data at the edge while the cloud computing process the data in

the cloud. The reason edge computing is introduced to the community is to aid the

inefficiency of cloud computing in data processing (Shi et al., 2016). Cloud computing is

an efficient way of data processing, where it carries out all the computing tasks in the

cloud. Cloud computing has superior computing power compared to edge computing.

However, when a large number of end devices that generate a large quantity of data are

connecting to the cloud, the bandwidth for data transmission between the cloud and end

devices will be insufficient and leads to a bottleneck situation. The cloud will need a

longer time to process a large amount of data which increases the response time. Edge

computing provides private and secured services to the users since the data collected are

processed at the edge without sending it to the cloud, which provides users with better

privacy protection. Cloud computing reduces the costs of computation by saving the cost

of purchasing hardware and provide flexibility, but long-distance between the cloud and

end devices will reduce the QoS (Gezer et al., 2018) and increase the latency. The edge

that situated between cloud and end devices is closer to the end devices, which can reduce

the latency and keep the QoS as high as possible. In cloud computing, the cloud

communicates directly with the end devices, while the end devices communicate with

intermediate edge components in edge computing as shown in Fig.2.3.

Fig.2.3: Simplified topology of Edge Computing network (Gezer et al., 2018)

 8

2.3.2 Proof of concept that closer distance reduces latency

In edge computing, computation and end devices are placed closer to each other. Yi, Hao

et al. built a platform to perform a face recognition application. The response time for the

application to recognize the face photo from 1521 photos was reduced from 900ms to

169ms by relocating computational to the edge from the cloud. In the project, Yi and Hao

compared the latency and bandwidth of fog and cloud and the results obtained are as

shown in Fig.2.4.

Fig.2.4: Latency and bandwidth comparison (Yi et al., 2015)

A face recognition application was developed to test the performance of cloud and fog.

The application installed in a smartphone captures a face photo and transmits the photo

to a server located in a fog or cloud. The face photo was matched with 1521 face photos

stored in a local database by the remote server. The same task was run on Amazon EC2

cloud and fog. The results obtained are as shown in Fig.2.5.

Fig.2.5: Fog-based face recognition performance (Yi et al., 2015)

Response time includes the duration from the time the smartphone uploads the face photo

until the time it receives the result from the server. The time taken to recognize the face

is almost. However, the response time taken by the cloud is 731.201ms longer than the

fog due to limited network bandwidth in the cloud.

 9

2.4 Cloud computing on the healthcare system

Rolim et al. (2010) proposed a healthcare system that utilizes cloud computing to collect

the patients’ data in a healthcare institution. The system automates the process of

collecting, distributing, and processing the patient’s data which are done manually in the

traditional healthcare system. Rolim et al. (2010) suggest that the current manual note-

taking approach in the healthcare system as shown in Fig.2.6 is inefficient where medical

staff need to collect patient’s data and record the data manually. The recorded data are

then typed into the data entry terminal that sends the data to the cloud for data processing

and storing. The authorized user in the healthcare institution can access the data stored in

the database server.

Fig.2.6: The typical smart healthcare system’s paradigm (Rolim et al., 2010)

The system proposed by Rolim et al. (2010) is capable of collecting data by using mobile

sensors connected to medical devices. The collected data and information are delivered

to the medical centre’s cloud server where the data will be processed, stored, and

distributed as shown in Fig.2.7.

 10

Fig.2.7: Proposed healthcare system’s paradigm (Rolim et al., 2010)

In the system, sensor nodes with software installed are placed close to the patients to

collect, encode, and transmit data. The data are transmitted via wireless communication

channels and stored in the cloud. The system involves sensors to collect data and uses a

broker to direct the received data to appropriate storage that hosted on the cloud. Medical

staff can retrieve data from cloud service by interacting with the cloud’s applications

through content service.

Another similarly designed healthcare system that utilizes IoT and cloud computing was

proposed by Doukas, C et al. (2012). It is a wearable healthcare system with mobile

sensors that capable of collecting and manages sensor data such as heart rate, ECG, and

body temperature of users. The data collected can be sent to a smartphone or the cloud

infrastructure. The system involves a gateway that capable of communicating with the

internet such as a smartphone or Wi-Fi enabled microcontroller. The gateway is used to

collect data from the mobile sensors, sends them to the cloud via the internet, and retrieves

information from the internet. Cloud will communicate with the gateway with API key

provided by the cloud platform and performs data processing, alert management, and

billing processes. The system provides real-time data visualization by using a web-based

managing application hosted by the cloud which plots the patient’s information such as

location and activity status in a graph. Fig.2.8 shows the proposed system’s architecture.

 11

Fig.2.8: The proposed healthcare system architecture (Doukas and Maglogiannis, 2012)

All the data in the healthcare system are secured. Authentication and data encryption are

applied where sensors are authenticated by unique id while data are encrypted using

symmetric encryption techniques. The system is scalable thanks to the on-demand cloud

infrastructure that provides resources based on utilization and demand where the addition

of users and sensors will not affect the functionality of the system. In the prototype,

microcontrollers and sensors are sewed in a sock where sensors are used to measure user’s

data while an Android-based smartphone is used as a gateway that sends the data to the

cloud as shown in Fig.2.9. A textile version of Arduino, Lilypad and Polar HearRate

Module are used. Lilypad collects data from sensor modules and transmits them to an

Android-based smartphone via Bluetooth module. The data will then be sent to the cloud

by the Android smartphone through an appropriate application developed by Doukas, C

et al. (2010) for data analysis.

 12

Fig.2.9: The prototype of the cloud-based healthcare system, “CloudSensorSock”

(Doukas and Maglogiannis, 2012)

2.5 Edge computing-based system

Edge computing that brings data processing closer to end devices is one way to reduce

latencies in the healthcare system. Rausch et al. (2018) proposed a system called EMMA

that utilizes MQTT middleware that acts as an intermediate layer between cloud and end

devices for edge computing application that improves the QoS of the system. Rausch

mentions that many modern IoT systems that utilize cloud-based middleware with

pub/sub-model are routing all messages to the cloud, which is impractical in a particular

scenario such as the healthcare system due to the latencies. Thus, brokers that are closer

to the end devices can be deployed in the edge layer to reduce the latencies and improve

the QoS. EMMA is a system that utilizes MQTT protocol in data transmission and is

capable of relocating its MQTT clients to a nearby broker based on the situation of clients

and resources of brokers to optimize QoS of the system. Proper distribution of edge

resources in the system is required since the MQTT clients may leave or enter the system

unexpectedly.

 13

Fig.2.10: Overview of EMMA architecture (Rausch et al., 2018)

EMMA consists of four main components: gateways, broker, controller, and network

monitoring protocol as shown in Fig.8. In the system, clients are connected to the

gateways which act as a middleman between clients and brokers. It reconfigures the

connections between clients and brokers, which allows the clients to move around freely

without having to worry about disconnecting from the system. Brokers implement MQTT

server protocol that manages sub/pub tasks and acts as topics’ bridges that transmit

information to other brokers that have the same topics subscription. The controller

monitors and distributes edge resources between brokers, and reconfigures gateways and

brokers based on network latency. If the latency is high, the controller will direct the

gateways to disconnect from the current broker and reconnect to a broker with more

resources to improve the QoS of the system as shown in Fig.2.11.

Fig.2.11: Connect and reconnect procedure in EMMA (Rausch et al., 2018)

 14

EMMA architecture realizes a balanced load between brokers, which fits perfectly in the

healthcare system where latency is a critically undesired factor. The EMMA architecture

is capable of reducing the latency and improve the QoS of the system by effectively

separating the load between brokers in the system. By such, paramedics will have access

to more accurate data and respond better during an emergency.

On another similar approach, Chen, Li et al. (2018) proposed an edge cognitive

computing (ECC) based smart healthcare system. The proposed system is capable of

monitoring and analyzing the physical health of users via a cognitive computing network.

The system tends to improve the current smart healthcare system by allocating the edge

resources in the system according to the health status and risk level of the users, which

provides users a better user experience while increasing the survival rates of the user

during an emergency. According to Chen, Li et al. (2018), the current smart healthcare

system can be divided into three layers, the data collected in the collection layer are sent

to the analysis layer through the internet via the gateway or base station in the

transmission layer. The health data will be stored and analyzed in the cloud by using

machine learning and data mining algorithms. The results that sent back to the system

will be analyzed and generate the corresponding medical actions

Chen, Li et al. (2018) mentions that the current smart healthcare system fails to

discover the true messages and values that are hiding in a large amount of data because

of the inefficiency of traditional machine learning and data mining methods. Besides, the

utilization of cloud computing to perform data processing increases the latency, which

leads to inaccurate medical analysis during an emergency. Network resources that lack

flexibility cause a waste of resources. Thus, cognitive computing can be used in the

modern healthcare system. Cognitive computing with smart technologies, such as

machine learning, artificial intelligence, and natural language processing (Hou et al., 2016)

can determine the relationship and behaviour of the disease from the data. With such

technology, medical professionals can learn the disease better and find the cure of the

disease faster. Edge computing deploys data processing closer to end devices, which

improves the QoS, reduces latency, and improves the reliability of the healthcare system.

The proposed healthcare system involves a cognitive data engine and cognitive resource

 15

engine which reacts differently during a normal situation and emergency, as shown in

Fig.2.12.

Fig.2.12: ECC-based smart healthcare system (Chen et al., 2018)

The proposed healthcare system is capable of improving itself through its data cognitive

engine, where the system learns from resources such as computing and communication

resources. Resource cognitive engines will collect and integrate the resources and send

them to the cognitive data engine for data analysis and processing via machine learning

and deep learning in real-time. The results obtained from data analysis will be sent back

to the cognitive resource engine, which used as a guidance in resource allocation and

optimization. Besides, the system is capable of relocating the resources according to the

priority. Users are categorized based on the risk level faced by users, and the system will

automatically relocate the cloud edge resources to serve the user with the highest priority

during an emergency.

 16

The system is divided into three major layers, which are the user layer, the cognitive edge

layer, and the cloud platform layer. The user layer consists of users, smart clothing, and

smartphone, where smart clothing is used to collect the health data of the users such as

ECG, body temperature, and blood oxygen saturation in real-time while the smartphone

is used to receive health analysis results from edge computing node. On the cognitive

edge side, the computing nodes will process and analyze the users’ data and distributes

the edge resources based on the users’ health condition. An alarm will be sent to the

hospital by the computing nodes so that medical staff can carry out accurate medical

diagnoses. On the cloud platform side, the hospital will manage the cloud that stores

user’s health data, personal information, and medical history of certain diseases of the

user. The cloud plbothatform will call up the user’s information and sends them to the

edge-computing node for analyzation during an emergency, as shown in Fig.2.13.

Fig.2.13: Flowchart of the edge node processing healthcare (Rausch et al., 2018)

 17

2.6 Cardiac Cycle

The cardiac cycle is a sequence of the human heart that counts from the beginning of one

beat to the beginning of the next beat. The cardiac cycle consists of two periods which

are the systole(filling) and diastole(pumping) that form a complete heartbeat(Athanasiou

et al., 2017). During the diastole period, the superior and inferior vena cava receives the

returning blood from both the upper and lower human body, which then flows into the

right atrium. As the blood filling up the right atrium, the pressure in the atrium increases.

When the pressure of the right atrium surpasses the pressure of the right ventricle, the

tricuspid valve that situated between the right atrium and right ventricle will open, which

allows the blood to flow into the right ventricle. At the same time, the oxygenated blood

will flow from the lung into the left atrium through the pulmonary veins, which increases

the pressure in the left atrium as the blood flowing in. When the pressure in the left atrium

surpasses the left ventricle, the mitral valve will open and allows oxygenated blood to

flow from the left atrium to the left ventricle.

In the systole period, the blood in the left and right atrium will be forced to flow into the

respective ventricle due to the depolarization of the atria as the result of the atrial muscle

contraction while the pulmonary valves are closed. During the ventricular systole, the

right and left ventricular muscle contracts. The tricuspid valve and mitral valve are closed

while the pulmonary and aortic valve will be opened and the high-pressure blood will be

pumped out from the heart to the body and lung through the aorta and the pulmonary

artery. The heart muscle will then relax and starts the diastole phase again. The diastole

and systole will repeat again and again which makes up the cardiac cycle. The Fig.2.14

shows the complete cardiac cycle.

 18

Fig.2.14: The complete the cardiac cycle(Athanasiou et al., 2017).

2.7 Heart Rate of Human in Different Ages

Heart rate measures the number of human heartbeats per minute. The research to study

the variability of heart rate in infants, children, and young adults was done by (Finley, J.

P., & Nugent, S. T. 1995). The study found that the heart rate and respiratory rate of

humans will be different depending on the age and the activity that is doing by the human

as shown in Fig.2.15. From the result, it can be seen that the heart rate and respiratory

rate of the human will decrease as the age increases. Besides, the heart rate and the

respiratory rate are affected by the activity that is done by the human as the heart rate and

respiratory rate are lower in quiet sleep compared to awake. According to Finley and

Nugent, the primary finding of the research is that the variability of the heart rate in

normal subjects depends on the age. This is proven right in both sleep state and awake.

Besides, cardiac volume that changes with the growth of humans is one of the possible

influences on the heart rate variability (Finley et al., 1987). The volume of heart chambers

changes from infancy to adulthood, where infants may have a smaller heart that is more

 19

responsive to respiratory changes. As a result, the heart may experience more significant

fluctuation of right atrial stretch and causes a more significant influence on the heart

variability compared to the adult heart.

Fig.2.15: Typical heart rate for quiet sleep, active sleep and awake state(Finley, J. P., &

Nugent, S. T. 1995)

2.8 Room Temperature in Malaysia (Kuala Lumpur and Kuching)

Room temperature is the temperature that is normal inside a building, and it is neither

very cold or very hot (Dictionary, 2016). Malaysia is a tropical country with an annual

mean temperature of 26.4 degrees Celsius. The average of daily maximum temperature

in Malaysia is 34 degrees Celsius, while the average of daily minimum temperature is 23

degrees Celcius (Al-Tamimi & Syed Fadzil, 2011). A research was done by Jamaludin,

Mohammed et al. (2015) to investigate the level of the thermal environment of the

residential building in Kuala Lumpur, Bayan Lepas, and Kuching. Residential building

with typical designed in Malaysia was simulated and the room temperature of the living

space in the building was determined. The experiment found that the master bedroom has

the highest room temperature of 32.6°C in Kuala Lumpur, and followed Bayan Lepas and

Kuching with a room temperature of 31.6°C and 31.1°C. Fig.2.16 shows the average

indoor temperature under Kuala Lumpur climate is around 29°C to 33°C.

 20

Fig.2.16: Indoor temperature in Kuala Lumpur Climate(Jamaludin, Mohammed et al.

2015)

2.9 Human Body Temperature

Human body temperature is used as an indicator of a person’s health condition and

illnesses, where abnormal body temperature is often one of the many symptoms of

illnesses. For example, people who caught a cold or having fever will have abnormal body

temperature. Thus, constant body temperature monitoring is vital to make sure that the

person stays healthy. In 1851, the mercurial axillary thermometer was introduced by

Wunderlich, where he used to measure the axillary temperature of 25000 people (Sund‐

Levander et al., 2002). In his book, Wunderlich stated that the average human body

temperature to be 37.0°C with a range of around 36.2°C to 37.5°C. He defined

temperature above 37.5°C as ‘the territory of fever’ while the temperature of ≥

38.0°C as fever (Mackowiak et al., 1992). A study was done by Sund‐Levander,

Forsberg et al. (2002) to determine the average body temperature of adult men and women.

The result found was as shown in the Fig.2.17.

 21

Fig.2.17: The results from 20 studies with strong or fairly strong evidence of normal

oral, rectal, and tympanic temperature (°C) in adult men and women. (Sund‐Levander,

Forsberg et al. 2002)

The bolded line in Fig.2.17 above shows the mean of the data collected while the thin line

represents the range of the data. The mean value of the temperature measured from

axillary, oral, rectal, and tympanic was 36.3°C, 36.4°C, 36.9°C, and 36.5°C with ±2 as

the range respectively. Sund‐Levander, Forsberg et al. (2002) mentioned that gender to

be one of the many factors that will affect body temperature measurement as there was a

slight difference between the mean values of adult men and women as shown in Fig.2.18.

The axillary temperature was not included in the table due to lacking evidence or fairy

strong evidence reported to prove that axillary temperature affected by the gender.

Fig.2.18: The mean (m) and range/m ± 2 SD (°C) of studies with strong or fairly strong

evidence in normal oral, rectal and tympanic body temperature in men and women

(Sund‐Levander, Forsberg et al. 2002)

 22

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter outlines the methods used in this project. The overview, setups, and design

of this project are covered in this chapter. Besides, the hardware and software used in this

project will be listed and explained. The flowchart, block diagram and communication

model of the proposed system are shown in Fig.3.1, Fig.3.2 and Fig.3.3, respectively. The

details of Fig.3.1, Fig.3.2 are discussed in section 3.2, while Fig.3.3 are discussed in

section 3.3.

3.2 Overview of the System Design

This IoT based health monitoring system consists of three primary layers which are the

gateway layer, the broker layer, and the data visualization and storing layer. The gateway

layer consists of the LM35 temperature sensor, SEN-11574 pulse sensor, Arduino UNO

and ESP8266 NodeMCU gateway, as shown in Fig.3.2. The pulse sensor is connected to

the Arduino UNO that sends the heart rate data to ESP8266 via serial communication,

and the LM35 temperature sensor that collects the body temperature of the user is

connected to the ESP8266 directly. The sensors will collect the body temperature and

heart rate of the user and send those data to the ESP8266 gateway. Then, the ESP8266

gateway will send the health data to the broker via Message Queuing Telemetry Transport

(MQTT) communication protocol.

The broker layer consists of a broker that acts as the central processing unit in the system.

The main processing unit used in this project is a Raspberry Pi 3 Model B+ with Raspbian

Lite operating system (OS) running on it. Raspbian Lite is a simpler version of the

standard Raspbian operating system that has less software installed in it which consumes

fewer operating system resources. Besides, Mosquitto broker, Node-RED and

PHPMyAdmin database are installed in the Raspberry Pi 3. Mosquitto broker is an open-

source and lightweight message broker that implements MQTT protocol with low power

 23

consumption. Node-RED, which is a programming tool, is used to program the health

monitoring system and communicate with various services such as IFTTT, Thingsboard,

and PHPMyAdmin database. The health data collected by the broker will be visualized

on the Node-RED and Thingsboard dashboard in real-time. At the same time, the health

data will be stored in the PHPMyAdmin local database that allows the authorized user to

keep track of the user’s health data. The Raspberry Pi 3 broker will process all the data

and direct every action programmed in the Node-Red. Alarm notifications and emails will

be sent to assigned users during an emergency (Sudden changes in heart rate or abnormal

body temperature) using If This Then That (IFTTT) services. The notification sent will

direct the assigned users to the Thingsboard dashboard interface when clicked, and the

users can track the health system’s user location and health data from the Thingsboard

dashboard.

The data visualization and storing layer consists of Thingsboard as the data visualization

platform and PHPMyAdmin database. The health data of the user will be visualized in

the Thingsboard and updated in real-time. Only authorized users will have access to view

the data. At the same time, the health data will be stored in the PHPMyAdmin local

database for tracking purposes.

The flowchart of the proposed system is shown in Fig.3.1. The system starts by collecting

the health data in the ESP8266 gateway. The gateway then sends the data to the Raspberry

Pi 3 broker. Then, the broker will process the data received based on the system’s program.

The health data will be sent to Thingsboard and PHPMyAdmin database for real-time

data visualization and storage. The health data collected will be analyzed by the broker.

If there is a sudden change in heart rate or abnormal body temperature

(temperature >38°C or < 35°C), the broker will trigger the IFTTT to send the alarm

notifications and emails to the assigned users. Then, the whole process will start all over

again.

 24

Fig.3.1: Flowchart of the proposed system

 25

3.2.1 Block diagram of the proposed system

Fig.3.2 shows the block diagram of the proposed health monitoring system. The figure

is discussed in section 3.2.

Fig.3.2: Block diagram of the health monitoring system

 26

3.2.2 System communication model

Fig.3.3 shows the communication model of the proposed system. Serial

communication and Message Queuing Telemetry Transport (MQTT) communication

protocol are used in this system. Heart rate is calculated in Beats per Minute (BPM),

and body temperature is measured in degree celsius (°C) in this project. Arduino UNO

that receives the BPM from the pulse sensor, sends the data to ESP8266 NodeMCU

via serial communication. The BPM and body temperature data will be “publish” to

the broker via the MQTT communication protocol. Then, all data in this system (BPM,

body temperature, coordinate, accuracy of the coordinate) will be “publish” to Node-

RED for data processing. The “publish” process is similar to any data transferring

process. Details of the MQTT communication protocol is discussed in section 3.3.3.

Fig.3.3: System communication model

3.3 Tools

3.3.1 Platform and services

• Thingsboard

Thingsboard is an open-source IoT data visualization platform. The data collected

by the broker will be sent to Thingsboard via the internet for real-time

pub(HMS/BPM, BPM)

pub(HMS/TEMP, temp)

pub(HMS/latitude,

latitude)

pub(HMS/longitude,

longitude)

pub(HMS/BPM, BPM)

pub(HMS/TEMP, temp)

ESP8266

NodeMCU
Broker Node-RED Arduino

UNO

“BPM” via serial

communication

 27

visualization. Thingsboard allows users to perform real-time data monitoring

through the internet (ThingsBoard Architecture, 2018). The data sent to the

Thingsboard will be received by a hub with a unique access token. In this project,

the unique access token of the hub will be used to identify the destination of the

data sent by the Raspberry Pi 3 broker. Thingsboard consists of customizable

dashboards that visualize the data. In this system, body temperature, BPM, and

location of the user are displayed in the dashboard.

• Google Cloud SQL

Google Cloud SQL is a SQL based database that stores the users’ health data in

this project. Google SQL is one of the many services provided in the Google

Cloud Platform. Google SQL database allows data to be stored in the cloud and

reduces the risk of data loss. The database is automatically scaled up when the

limit is near (Cloud SQL: Relational Database Service | Google Cloud, 2020).

However, the service is not free of charge where the user will be charged monthly

based on the usage of the database.

• PHPMyAdmin

PHPMyAdmin is an open-source administration for MySQL. PHPMyAdmin

offers complete web-based management of MySQL servers and data, where it

provides a basic MySQL database and table operations and internal relational

system that maintain metadata for advanced features (Delisle, 2009). The health

data collected by the broker will be stored in the PHPMyAdmin database.

PHPMyAdmin acts as the platform to manage and view the data recorded in the

database. Besides, PHPMyAdmin can be connected to Google MySQL instances

and allow the user to manage the Google MySQL database locally. PHPMyAdmin

and MySQL are installed in the raspberry pi.

 28

3.3.2 Software

• Node-RED

Node-RED is an open-source vision tool that makes the programming process

easier by wiring different devices together. It simplifies the programming process

by using different nodes without requiring lots of programming knowledge, as

shown in the red circle of Fig.3.8. Node-RED consists of two main components

as follow:

1. Nodes

Nodes carry out their process based on their assigned function. Nodes can be

installed from the Node-RED library easily. Nodes are written in node.js

format.

2. Flow

A Node-RED flow diagram is made up of the integration of different nodes.

The user needs to configure the required nodes and wire them together to complete

a flow. Every node in the Node-RED has its own function and purpose. Node-

RED is installed in the Raspberry Pi in this project. The flow editor of Node-RED

can be accessed through the browser via the Internet Protocol (IP) address of the

Raspberry Pi. The project flows can be deployed by clicking the deploy button on

the top right corner of the editor interface.

Fig.3.8: Node-RED browser-based flow editor

 29

Besides, Node-RED allows users to make and manage their user interface (UI).

The data collected by Node-RED can be displayed on the dashboard as shown in

Fig.3.9. The user interface is accessible through the browser which enables the

user to monitor and control the system remotely via the internet.

Fig.3.9: Node-RED user interface

• Mosquitto broker

Mosquitto is an open-source MQTT broker developed by Eclipse Foundation.

Mosquitto broker is suitable to be used in this project since it provides a

lightweight method of transmitting the messages with a sub/pub model which

helps in power saving. Mosquitto broker is installed in the Raspberry Pi 3 with

the communication architecture as shown in Fig.3.11.

Fig.3.11: Communication architecture

In this project, the Raspberry Pi 3 broker subscribes to the gateway's topics. Once

the gateway publishes something to the subscribed topics, the broker will receive

the published data. The data received is then sent to the visualization tools for

real-time data visualization.

sub

MQTT Broker

(Raspberry Pi 3)
Gateway

pub

Visualization

Tools

 30

• IFTTT (If This Then That)

IFTTT is an open-source web-based service that allows different conditional

statements to be chained together. IFTTT is used to send alarm notifications and

emails during an emergency by using Applets that link various services together

to perform a task, as shown in Fig.3.13.

Fig.3.13: Applets created to send alarm notifications

3.3.3 Messaging Protocols

• MQTT (Message Queuing Telemetry Transport)

MQTT protocol is one of the oldest M2M communication protocol, which is

lightweight and energy-saving (MQTT Version 3.1.1, 2020). MQTT has a small

data packet which transfers the data without consuming much power. MQTT

protocol requires a low amount of bandwidth in data transmitting which decreases

the latency of the process. MQTT is suitable to be used in this project since the

healthcare system requires reliable real-time data, which can be realized with low

latency MQTT protocol. MQTT is a publish/subscribe based protocol. MQTT

connection involves MQTT clients which can be either publisher or subscriber.

The publishers and subscribers will exchange data based on the topics.

Information will be published to the topics by the publisher, and the subscriber

that subscribed to that particular topic will receive the information.

 31

3.3.4 Hardware

• LM35 Temperature Sensor

LM35 shown in Fig.3.14 is a temperature sensor used to measure the user’s body

temperature in this project. The pinout consists of the positive terminal, negative

terminal, and digital output pin. The pinout descriptions and specifications of

LM35 are shown in Table 3.1 and Table 3.2, respectively.

Fig.3.14: LM35 Temperature Sensor

Table 3.1: LM35 Pinout Description

Pin Number Description

1 Power supply (4V – 20V)

2 Analogue output

3 Connected to the ground

Table 3.2: LM35 Specifications

Specifications

Operating Voltage 4V- 20V

Operating Current 60µA

Temperature Range -55°C - 150°C

Accuracy below 25 °C +
−

 0.5°C

Accuracy above 25°C +
−

 1.0°C

Temperature Slope 10mV/°C

 32

• Pulse Sensor (SEN-11574)

The pulse sensor shown in Fig.3.15 is used to measure the user’s heart rate of the

user in Beats per Minute (BPM). The pinout consists of the positive terminal,

negative terminal, and digital output pin, as shown in Table 3.3. The pulse sensor

consists of a photosensor and an LED that emits green light. The green light and

photosensor are used to detect the variation of blood flow caused by the heartbeat.

Fig.3.16 shows the working principle of the pulse sensor. The LED on the pulse

sensor emits green light while the photosensor detects the reflected green light.

The amount of light reflected depends on the volume of the blood vessel in the

artery. A high volume of blood vessel will absorb more light and causes a weaker

light reflection.

Fig.3.15: SEN-11574 Pulse Sensor

Fig.3.16: Working principle of SEN-11574 Pulse Sensor

Table 3.3: Pulse Sensor Pinout Descriptions

Pin Colour Descriptions

Black Power supply

Red Connected to ground

Purple Output

 33

• ESP8266 NodeMCU

Nodemcu is used as a gateway that collects the health data from the connecting

sensors in this project. The gateway communicates with the broker and Arduino

UNO via MQTT protocol and UART serial communication. It sends the collected

data to the broker for data processing. NodeMCU is used to track the user location

with geolocation. With the help of geolocation, the GPS tracker is no longer

needed as the geolocation function can track the location of the user through the

available wifi connection surrounding the user. The pinouts and specifications of

the NodeMCU are shown in Fig.3.17 and Table 3.4, respectively.

Fig.3.17: ESP8266 NodeMCU Pinouts

Table 3.4: ESP8266 NodeMCU Specifications

Specifications

Operating Voltage 3.3V

Operating Current 10µA – 170mA

Input Voltage 7V – 12V

Processor Tensilica L106 32-bit

Processor Speed 80 – 160MHz

GPIO 17

RAM 32K + 80K

ADC Pin One input with 1024 resolution

 34

• Raspberry Pi 3 B+

Raspberry Pi 3 is used as a broker with the mosquito broker installed in it. The

broker acts as a central processing unit that directs the flow of the data from the

source to the topic’s subscriber via the pub/sub-model. The broker will send the

health data to the PHPMyAdmin database for storage and Thingsboard for real-

time data visualization. The pinouts and specifications of the Raspberry Pi 3 are

shown in Fig.3.18 and Table 3.5, respectively.

Fig.3.18: Raspberry Pi 3 Model B+ Pinouts

Table 3.5: Raspberry Pi 3 Model B+ Specifications

Specifications

Operating Voltage 5V

Operating Current 2.5A

Processor Broadcom BCM2837B0 quad-core A53 (ARMv8)

64-bit @ 1.4GHz

Networking Gigabit Ethernet (via USB channel), 2.4GHz and

5GHz 802.11b/g/n/ac Wi-Fi

RAM 1GB LPDDR2 SDRAM

Storage Mirco-SD

GPIO 40

Dimensions 82mm x 56mm x 19.5mm

Weights 50g

 35

• Arduino UNO

Arduino UNO is an open-source microcontroller board developed by Arduino.cc.

The board equipped with analogue and digital input/output pins which are used to

interact with other circuit boards and components. In this project, Arduino UNO

is used to collect the data from the pulse sensor and send the data to the Nodemcu

via serial communication. The pinouts and specifications of Arduino UNO are

shown in Fig.3.19 and Table 3.6, respectively.

Fig.3.19: Arduino UNO Pinouts

Table 3.6: Arduino UNO specifications

Specifications

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage 7V – 12V

Digital I/O Pins 14

Analogue I/O Pins 6

DC Current per I/O Pin 40mA

DC Current for 3.3V Pin 50mA

SRAM 2Kb

EEPROM 1Kb

Clock Speed 16MHz

 36

3.4 Implementation Phase

3.4.1 Thingsboard platform setup

Thingsboard allows the user to customize their data visualization environment. The main

interface of Thingsboard after logging in is shown in Fig.3.20.

Fig.3.20: Thingsboard main interface

Users can set up hubs that receive all the data sent to the Thingsboard by clicking the

“devices” button on the left side of the interface. “Devices” can be created and named

based on user preferences. Each of the devices has a unique key known as the access

token for identification purposes, as shown in the Fig.3.21. The data received by the

Thingsboard will be distributed based on the access token.

Fig.3.21: “Devices” in the Thingsboard platform with the unique access token

 37

Fig.3.22 shows a hub with the name of “coordinate”. The hub receives the coordinate data

sent by the Raspberry Pi 3 broker in real-time. The coordinate data consist of longitude,

latitude, and accuracy of the coordinate, as shown in Fig.3.22.

Fig.3.22: The data received by the “coordinate” device.

In this project, data collected by the sensors will be sent from the broker to Thingsboard

for real-time data visualization. Each of the data will be sent to different hubs with a

different name and access token.

The user’s health data and location are displayed on the dashboard interface that is

customizable by the user. Fig.3.23 shows the dashboard that visualizes the temperature,

BPM, and location of the user.

 38

Fig.3.23: Dashboard of the health monitoring system

The admin can assign the authorization to view the dashboard to other users via email

by clicking the “customer” on the left side of the Thingsboard main interface, as shown

in Fig.3.20. The authorized users can log in to the dashboard to keep track of the user's

condition.

3.4.2 Node-Red setup

Node-Red is installed in the broker that serves as an intermediate layer between the end

devices and the cloud. Node-Red is used to connects several processes to form a complete

system. Different nodes are wired together to form a complete “flow,” as shown in the

Fig.3.24.

Fig.3.24: Sample flow to measure the time elapsed for a process

 39

The sample flow shown in Fig.3.24 is used to measure the time elapsed for the “Http

request” node. The average time for the “Http request” node to complete the request

process is around 200ms. The time elapsed function measures the time elapsed by

counting the start and stop time of the “Http request” node. The time elapsed is the interval

between the start time and the stop time.

Node-Red consists of different types of nodes that are available on the left side of the

Node-Red interface, as shown in Fig.3.8. The nodes can be linked together to form a

process. Since the default nodes that available after installation of the Node-Red is often

not enough to form a complicated flow or process, thus some extra nodes can be installed

manually by clicking the “manage palette” button in the setting as shown in the Fig.3.25.

Fig.3.25: “Manage palette” button to configure the nodes in Node-Red

With the extra nodes installed, the user can link different nodes together to form several

flows that carry out different actions. In this health system, function node with conditions

statements will connect to the IFTTT nodes to trigger actions such as messaging, email,

and calling the related personnel during an emergency. When the user experience sudden

changes in heart rate or the body temperature falls below 35°C or exceeds 38°C, the

broker will send a signal to inform IFTTT to carry out the actions.

 40

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results of the prototype system

The results of the prototype system will be discussed in the following sections.

4.1.1 Real-time data visualization in Thingsboard

Health data receives by the system are displayed and updated on the Thingsboard in real-

time, as shown in Fig.4.1. The data displayed are the body temperature, BPM, and the

location of the user.

Fig.4.1: Thingsboard’s dashboard with health data

The health system is capable of tracking the user location through geolocation service,

and the coordinate of the user is displayed on the Thingsboard. The interface shown in

Fig.4.1 is in the administrator mode, where the admin has access to make any changes in

the Thingsboard. Besides, “view only” access is assigned to other users through customer

service and email addresses. The assigned users can view the data assigned by the admin.

The customer service provided by Thingsboard enables the assigned users to keep track

 41

of the user’s health condition. Fig.4.2 shows the email address of the assigned user,

Fig.4.3 shows the login interface of the assigned user and Fig.4.4 shows the assigned

user’s “view-only” interface.

Fig.4.2: Assigned user with “view only” access

Fig.4.3: Login with the assigned user account

 42

Fig.4.4: Assigned user’s “view-only” Thingsboard interface.

4.1.2 Flow of the health system in Node-Red

In this system, Node-Red is used to program and connect all the processes in the system.

Node-Red is installed in the Raspberry Pi 3 broker in the system. The broker receives data

from the gateway and process those data locally. The complete flow of the proposed

health system in the Node-Red is as shown in Fig.4.5

Fig.4.5: Complete flow of the proposed health system in Node-Red

 43

The nodes in the Node-Red links and integrates all the processes and form a complete

system. The function nodes in this system consist of simple JSON programming with if-

else statements and conditions that trigger different types of actions such as sending data

to Thingsboard, storing data to the database, and sending alarm notification to the user’s

phone and email. Besides, the admin can track the health data in real-time through the

Node-Red User Interface (UI) as shown in Fig.4.6. . Details of the flows are discussed in

section 4.2.

Fig.4.6: The Node-Red dashboard displaying the data

4.1.3 Data storing in PHPMyAdmin database

The health system allows the system’s admin to keep track of the health record of the

users, where the health data receives by the broker will be saved in PHPMyAdmin local

database. Storing the health data in the local database will reduce the risk of having the

health data exposed and leaked, which increases the privacy and security of the health

system. The health data are stored in the SQL format, as shown in Fig.4.7.

 44

Fig.4.7: PHPMyAdmin local database with the data stored in SQL format

If the system’s admin wishes to store the health data in the cloud, such as the google cloud

platform that provides various types of database services, the PHPMyAdmin database can

act as a platform to view the health data. One of the many services provided by the google

cloud platform is the MySQL database that stores data in SQL format. PHPMyAdmin is

capable of connecting itself to the google MySQL database where the system’s admin

can easily switch between the local database and the google MySQL database, as shown

in Fig.4.8. The database can switch between the localhost database and the Google

MySQL database with an IP-address of 35.187.229.248.

Fig.4.8: Switching between the local database and google MySQL database in

PHPMyAdmin

 45

The system’s admin can easily export the data stored in the database through the

PHPMyAdmin database. The PHPMyAdmin is capable of exporting the data in several

formats such as CSV, PDF, SQL, and OpenDocument Spreadsheet. Fig.4.9 shows an

example of data exported from the database in the OpenDocument Spreadsheet format

and viewed in Microsoft excel.

Fig.4.9: Data exported from the PHPMyAdmin database

4.1.4 Action triggered during emergency

When there are abnormal heart rate and body temperature, the health system will send

alarm notifications to the assigned phone number and email addresses through IFTTT.

The notification consists of alarm messages. The alarm notification will direct the user to

the Thingsboard interface shown in Fig.4.11 when clicked. Fig.4.10 shows the alarm

notifications sent to the phone when the user has an abnormal body temperature.

 46

Fig.4.10: Alarm notification sent to the phone

Fig.4.11: Thingsboard dashboard interface

 47

4.2 Discussion

4.2.1 Thingsboard as the data visualization platform

Thingsboard meets the needs of this health system by visualizing the health data in real-

time with a very short delay. As soon as the Node-Red receives the health data via MQTT

from the gateway and sensors, the function nodes that send the health data to the

Thingsboard in the Node-Red will be triggered, and the data displayed on the Thingsboard

will be updated immediately. The time taken to update the data in the Thingsboard is

measured using the flow, as shown in Fig.4.11:

Fig.4.11: Flow used to calculate the time interval

The timestamp node will act as the MQTT node that outputs the health data in this sample

flow. The flow starts measuring the time elapsed as soon as the health data receives by

the MQTT nodes and stops after the health data is sent to the Thingsboard. Twenty

reading was taken, and the average time calculated is 563ms.

4.2.2 Node-Red

Node-Red allows this health monitoring system to be programmed without requiring any

complicated coding. Different types of nodes are used in the health system to form

different flows that carry out different processes and actions. All the flows are then linked

together to form a complete system.

 48

Fig.4.12: MQTT input nodes that receive data from esp8266 gateway

The MQTT input nodes shown in the Fig.4.12 are the MQTT nodes that receive the

health data sent by the gateway. Each of the MQTT nodes will subscribe to a different

topic, and the topic will determine the type of data that the node will receive. After

receiving the data from the gateway, the MQTT nodes will pass the data to the next

node.

Fig.4.13: Function nodes that execute the code and assign the data into variables

The function nodes shown in Fig.4.13 are the nodes that will execute the function when

they receive the data from the previous MQTT nodes. The function nodes are used to run

the JavaScript code and process the receiving data. Function nodes are useful, especially

when the user tries to include some conditions or if-else statements into the system to

 49

control the output of the nodes or to determine the next actions that will be taken by the

system.

Fig.4.14: Sample code of function node

Fig.4.14 shows the simple coding of a function node that receives the heart rate value

from the MQTT node. This function node will execute the code that sends the payload it

receives from the MQTT node to the next node as output. The heart rate values will be

stored in a BPM variable that will be received by the Thingsboard. The other four function

nodes consist of similar coding with different variables. The reason for using these

function nodes is to assign different data into separate variables so that the Thingsboard

can recognize the data easily.

Fig.4.15: “HTTP request” node that connects to the Thingsboard

 50

Fig.4.15 shows the flow with the timestamp node, HTTP request node, and the

msg.payload node. The flow will send the payload that the HTTP request node receives

to the Thingsboard. The HTTP request node consists of several types of methods as shown

in the Fig.4.16. The “POST” mode is selected in this health system, where the node sends

HTTP requests based on the URL provided and returns the response by sending the health

data it receives from the previous node to the Thingsboard. The URL used in this node

consists of a unique API key provided by the Thingsboard.

Fig.4.16: “HTTP request” node configuration

The HTTP request node can be used to obtain the data from the Thingsboard as well. This

can be done by swapping the method to the “GET” method, and the node will make

requests to the URL provided and get the data based on the API key that included in the

URL. The URL requires the correct format to works properly where the format will be

different for different websites and services. Table 4.1 shows the URL format of the

Thingsboard and the IFTTT that are different from each other. Thus, it is crucial to obtain

the correct format from the website for the node to works.

 51

Table 4.1: Sample URL of Thingsboard and IFTTT

Service Sample URL

Thingsboard http://demo.thingsboard.io:80/api/v1/67dGbyRYMf8reGlmrw7m/tele

metry

IFTTT https://maker.ifttt.com/trigger/(Bansal and

Gefen)}/with/key/b0_aKoThVlTQ6XnLvDNvyuUDIU5FNlDlrEBk

MjooxUL

The msg.payload node is the node that shows the result of the flow after debugging in

the Node-Red. Fig.4.17 shows the debug messages in the Node-Red.

Fig.4.17: Debug messages in Node-Red

Fig.4.18 shows the IFTTT flow that triggers the alarm notification during abnormal

temperatures. The function node in this flow consists of if-else statements that determine

the output of the function node. If the temperature is abnormal, the function node will

output a msg.event that triggers the IFTTT to send the alarm notification to the user. The

flow is set to be triggered every one minute to avoid the IFTTT from spamming the user

with alarm notifications. Aside from sending alarm notification, the IFTTT provides

 52

many more other services such as sending emails, calling the user, and many more. Thus,

the system’s admin has lots of rooms to further improve the system by adding more

services and actions.

Fig.4.18: IFTTT flow that triggers alarm notification

Fig.4.19 shows the flow that sends BPM and temperature values to the PHPMyAdmin

database every ten seconds. The BPM and Temp function nodes convert the BPM and

temperature values into global variables that make them accessible by every flow in

Node-Red. The BPM and temperature values are sent to the next function node that saves

the values into the database. The database node requires credential information such as

the database IP address, name of the database, username, and password to works. Since

the local database is used in this system, the IP address used is 127.0.0.1 with a 3306 port.

Aside from saving the data in the local database, a similar flow as shown in the Fig.4.19

can be used to save the data into the cloud, such as the Google cloud platform that

provides various database services. However, the user will be charged according to the

usage of the Google cloud platform services. The user requires to change the credential

information to connect to the Google cloud database.

The advantages of saving the data into the cloud are high data accessibility and backup

purposes. The user can access their data anywhere and anytime through the Google cloud

platform without worrying about the data loss. If the user wishes to develop their health

system in the Google environment, the data stored in the Google cloud database can be

easily transferred between Google services as well. This will make the user's life easier

by skipping the data importing process in the Google cloud.

Fig.4.19: Flow that sends data to the PHPMyAdmin database.

 53

4.3 Experiment

The functions of the health monitoring system were tested. The details of the experiments

are discussed in the following sections. LM35 temperature sensor and SEN-11574 pulse

sensor were tested. A 23 years old male was chosen as the test subject in the experiments.

The formula that converts the output of the LM35 to degree Celsius was tested and

discussed in section 4.2.1. Besides, error analysis to determine the margin error of the

LM35 was carried out and discussed in section 4.2.2. Data comparison between the LM35

temperature sensor and thermometer was carried out, and the results are discussed in

section 4.2.3.

An experiment to test the functionality of the pulse sensor was done and discussed in

section 4.2.4. The experiment was carried out in a resting condition and active condition.

The heart rate is measured in beats per minute (BPM). Besides, the accuracy test of the

pulse sensor was carried out by comparing the BPM between the pulse sensor and manual

measurement. The results are discussed in section 4.2.5.

4.3.1 LM35 temperature sensor

The body temperature of the system user is measured by using the LM35 temperature

sensor. The formula used to obtain the temperature in Celsius (°C) is as follow:

𝑁

1024
 × 𝐿𝑀35 𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝐿𝑀35 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝐴0)

 N = “ADC Value” as shown in Fig.4.20

The value of “N” is determined by the resolution of the Analog-Digital Converter (ADC)

of the NodeMCU. According to the NodeMCU datasheet, the resolution of the A0 pin of

NodeMCU is 10 bit or 1024 steps. In the system setup, the input voltage of the LM35 is

supplied by the 3.3V pin of the NodeMCU. In order to find out the input voltage of the

A0 pin of NodeMCU, the “N” value is obtained from the Arduino IDE, and the LM35

input voltage is assigned to 3.3V as follow:

𝑁 𝑓𝑟𝑜𝑚 𝐴𝑟𝑑𝑢𝑖𝑛𝑜 𝐼𝐷𝐸

1024
 × 3.3𝑉 = 𝐿𝑀35 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝐴0)

 54

Assuming the value of “N” is 14, the input voltage of the A0 pin in NodeMCU will be

equal to 0.045117V after calculation. According to the LM35 datasheet, each increment

of 10mV equals one degree Celsius (°C) which makes the 0.045117V (45.117mV) equals

to 4.5117 degrees Celsius (°C).

Fig.4.20: Outputs of LM35 temperature sensor in Arduino IDE

4.3.2 LM35 error analysis

Ideally, the input voltage of LM35 supplied by the NodeMCU should be fixed at 3.3V.

However, there are fluctuations in the voltage supply that fluctuates the value of the

temperature in practical cases. The voltage fluctuation may occur due to the long jumper

wire that may introduce a small number of resistances into the system. As a result, the

accuracy of the results is affected.

Fig.4.20: Measured ESP8266 3.3v pin output voltage

Besides, there is a margin error in the LM35 temperature sensor. Ideally, the temperature

reading obtained in the Arduino IDE should be zero when the LM35 temperature sensor

“N”

 55

is disconnected from the system. However, some voltages are received by the NodeMCU

A0 pin when the LM35 temperature sensor is disconnected from the system. The results

of the Arduino IDE are as shown in the Fig.4.22.

Fig.4.22: Temperature displayed in Arduino IDE with LM35 disconnected

In order to determine the average margin error of the LM35 temperature sensor, ten

readings are sampled, and the average of those readings is calculated. The results obtained

are shown in table 4.2.

Table 4.2: Ten sampled LM35 temperature sensor readings.

No. “ADC” values The temperature in Celsius

(°C)

1 13 4.19

2 14 4.52

3 14 4.52

4 13 4.19

5 7 2.26

6 7 2.26

7 14 4.52

8 13 4.19

9 14 4.52

10 14 4.52

Average Value 3.97

 56

The average margin error of the LM35 temperature sensor found is 3.97 degrees Celsius

(°C). Thus, the outputs of the LM35 temperature sensor should be deducted by the margin

error for better results.

4.3.3 Body temperature measurement by LM35 and thermometer

The LM35 temperature sensor and a thermometer are used to determine the axillary

temperature. Both of the LM35 temperature sensor and the thermometer is placed under

the armpit for temperature measurement. In this experiment, a 23 years old male was

chosen as the test subject.

The body temperature of the subject was measured. The measurement was repeated three

times, and the average of the three data was calculated. Ten readings were taken, and the

results obtained are as shown in Table 4.3 and Table 4.4.

Table 4.3: Body temperature measured by the LM35 temperature sensor

No. Temperature reading in Celsius (°C) Average

1 36.0 34.3 36.3 35.5

2 36.3 36.3 36.3 36.3

3 36.3 36.3 36.3 36.3

4 36.6 36.6 36.6 36.6

5 36.9 35.2 36.6 36.2

6 36.9 36.9 35.2 36.3

7 36.9 35.5 34.6 35.8

8 36.0 36.0 36.2 36.1

9 36.5 36.5 36.5 36.5

10 36.3 36.6 36.6 36.5

Total Average 36.2

 57

The measuring processes were repeated on the same subject by using a thermometer. The

obtained results are as shown in Table 4.4.

Table 4.4: Body temperature measured by a thermometer

No. Temperature reading in Celsius (°C) Average

1 35.8 36.1 35.9 35.9

2 36.2 36.2 36.3 36.2

3 36.2 36.1 36.1 36.1

4 36.2 36.2 36.1 36.2

5 36.1 36.3 36.2 36.2

6 36.2 36.2 36.2 36.2

7 36.4 36.4 36.3 36.4

8 36.1 36.1 36.3 36.2

9 36.2 36.1 36.3 36.2

10 36.2 36.4 36.4 36.3

Total Average 36.2

The graph of Table 4.3 and 4.4 are plotted, as shown in Fig.4.22.

Fig.4.23: Comparison of average temperature measured using LM35 and thermometer

35.5

36.3 36.3

36.6

36.2
36.3

35.8

36.1

36.5 36.5

35.9

36.2
36.1

36.2 36.2 36.2

36.4

36.2 36.2
36.3

35.4

35.6

35.8

36

36.2

36.4

36.6

36.8

0 1 2 3 4 5 6 7 8 9 10

C
el

si
u

s
(°

C
)

Set of experiment

Body temperature measured using LM35 and
thermometer

LM35 Thermometer

 58

The body temperature measured by a thermometer is stable, while the body temperature

measured by the LM35 shows some fluctuation in the graph shown in Fig.4.23. The

inaccuracy of the LM35 mentioned in section 4.2.2 causes the fluctuation in the body

temperature reading. The temperature readings are based on the voltage output of the

LM35. The temperature reading obtained will fluctuate if there is fluctuation in the output

voltage of the LM35. As a result, false alarms may be triggered from time to time due to

the inaccuracy of the body temperature sensor. Thus, a better temperature sensor with IoT

capabilities can be used in the future to improve the reliability of this system. From

Fig.4.23, the margin error of the body temperature measured using LM35 is around

±3 °C, with a percentage error of 7.69%.

4.3.4 SEN-11574 pulse sensor experiment

The heart rate is measured in beats per minute (BPM) in this project. BPM of the user is

measured by using the SEN-11574 pulse sensor. The pulse sensor can be clipped on the

user's fingertips or earlobe.

Fig.4.24: Pulse Sensor clipped on the fingertip

The SEN-11574 pulse sensor was clipped on the fingertip of the test subject during the

experiment, as shown in Fig.4.24. The resting BPM of the test subject was measured. The

measuring process was repeated three times, and the average of the three data is calculated.

Ten sets of readings were taken. The obtained results are as shown in Table 4.5.

 59

Table 4.5: Resting heart rate measured using the pulse sensor

No. Resting heart rate (Beats Per Minute) Average

1 66 65 66 65.7

2 67 66 65 66.0

3 68 67 65 66.7

4 67 65 66 66.0

5 66 67 66 66.3

6 66 68 65 66.3

7 65 64 66 65.0

8 65 66 67 66.0

9 66 68 65 66.3

10 66 67 66 66.3

Total Average 66.1

The measuring process was repeated on the same subject for active heart measurement.

BPM of the test subject after performing twenty push-ups was measured. Each set of

readings was taken with ten minutes resting interval. The results obtained are as shown

in Table 4.6.

 60

Table 4.6: Active heart rate after twenty push-ups measured using the pulse sensor

No. Active heart rate after 20 push-ups (Beats Per Minute) Average

1 115 115 115 115.0

2 114 114 115 114.3

3 113 113 114 113.3

4 113 114 115 114.0

5 113 114 113 113.3

6 112 113 113 112.7

7 113 113 114 113.3

8 113 113 113 113.0

9 112 114 114 113.3

10 113 114 115 114.0

Total Average 113.6

The heart rate of the test subject shows a significant increase after performing twenty

push-ups. The results obtained in Table 4.5 and Table 4.6 shows that the SEN-11574 heart

rate sensor is capable of detecting the rise of the heart rate. Small fluctuations in the BPM

obtained was caused by the pressure applied by the fingertip on the pulse sensor. The

pulse sensor uses the LED light and photosensor to detect the variation of the blood flow

in the fingertip to measure the BPM. Pressure applied by the fingertip onto the pulse

sensor will affect the blood flow and causes the fluctuation in the BPM measurement.

The fluctuation obtained in Table 4.5 and Table 4.6 was around ±2 beats.

4.3.5 Accuracy of SEN-11574 Pulse Sensor

The accuracy of the pulse sensor was determined by comparison with the manual pulse

rate measurement. The manual measurement was performed by pressing index and

middle fingers on the opposite wrist, as shown in Fig.4.27. The BPM of the pulse sensor

was compared to the BPM measured from the wrist.

 61

Fig.4.27: BPM measured from the wrist

The BPM measurement process was repeated three times, and the average of the values

was calculated. Ten sets of readings were taken. The experiment was done in both

active and resting conditions. The obtained results are shown in Table 4.7 and Table

4.8.

Table 4.7: Resting heart rate measured from the wrist

No. Resting heart rate (Beats Per Minute) Average

1 67 66 64 65.7

2 66 65 66 65.7

3 66 66 65 65.7

4 65 65 64 64.7

5 64 66 65 65.0

6 64 66 65 65.0

7 65 66 65 65.3

8 66 67 65 66.0

9 64 66 65 65.0

10 66 67 66 66.3

Total Average 65.44

The measuring process was repeated on the same subject for active heart rate

measurement. BPM of the test subject after performing twenty push-ups was measured.

Each set of readings was taken with ten minutes resting interval. The results obtained are

as shown in Table 4.8.

 62

Table 4.8: Active heart rate after performing 20 push-ups measured from the wrist

No. Active heart rate after 20 push-ups (Beats Per Minute) Average

1 115 114 114 114.3

2 115 115 113 114.3

3 113 114 115 114.0

4 114 115 113 114.0

5 114 115 114 114.3

6 115 115 113 114.3

7 113 114 114 113.7

8 114 115 113 114.0

9 115 116 115 115.3

10 114 113 113 113.3

Total Average 114.2

A comparison between Table 4.5 and Table 4.7 is plotted in a graph as shown in Fig.4.27

Fig.4.28: Comparison between resting wrist BPM and pulse sensor BPM

There were ±2 beats fluctuation in the measured pulse sensor and wrist BPM, as shown

in Fig.4.28. Any movement of the test subject will affect the BPM and led to the

fluctuations. The results of the experiment show that the SEN-11574 pulse sensor is

65.7

66

66.7

66

66.3 66.3

65

66

66.3 66.3

65.7 65.7 65.7

64.7

65 65

65.3

66

65

66.3

64.5

65

65.5

66

66.5

67

0 1 2 3 4 5 6 7 8 9 10

B
P

M

Set of experiment

Resting Wrist BPM and Pulse Sensor BPM

Pulse Sensor Wrist

 63

capable of measuring the heart rate with high accuracy since the fluctuations obtained

were small and insignificant.

A comparison between Table 4.6 and Table 4.8 is plotted in a graph, as shown in Fig.2.29.

Fig.4.29: Comparison between active wrist BPM and pulse sensor BPM

4.4 Schematic diagram of the proposed system

Fig.4.30 shows the schematic diagram of the proposed health system. The diagram

consists of the Arduino UNO, ESP8266 NodeMCU gateway, LM35 temperature sensor,

and SEN-11574 pulse sensor. Pin D5 and D6 of both Arduino UNO and ESP8266

NodeMCU are connected for serial communication between each other. The output of the

LM35 temperature sensor will be sent to the ESP8266 NodeMCU via serial

communication. The pulse sensor is connected to 3.3V, ground, and A0 ADC pin of

Arduino UNO. The LM35 temperature sensor is connected to 3.3V, ground, and A0 ADC

pin of ESP8266 NodeMCU.

115

114.3

113.3

114

113.3

112.7

113.3

113

113.3

114

114.3 114.3

114 114

114.3 114.3

113.7

114

115.3

113.3

112.5

113

113.5

114

114.5

115

115.5

0 1 2 3 4 5 6 7 8 9 10

B
P

M

Set of experiment

Active Wrist BPM and Pulse Sensor BPM

Pulse Sensor Wrist

 64

Fig.4.30: Schematic diagram of the proposed system

 65

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The primary objective of this project is to develop an IoT based health monitoring system

that able to provide real-time health data monitoring of the user. The proposed system is

able to track the user’s location, send the health data to the visualization platform in real-

time, and sends alarm notifications to phones and emails. The location of the user is

tracked by using geolocation service while the real-time health data visualization is

displayed on the Thingsboard. The coordinate of the user location is very useful to track

down the user during an emergency. User’s relatives or authorized users are able to view

the health data of the user through the Thingsboard. The alarm notifications can be sent

to any related personnel when there are sudden changes in heart rate and abnormal body

temperature. The health data are stored in a local and cloud database, which allow the

user to keep track of their health condition by tracking the health data. Experiments are

conducted to prove the functionality of the sensors and the system.

5.2 Recommendation for Future Work

The LM35 temperature sensor should be replaced with much reliable and accurate

temperature sensors. The temperature output of the LM35 temperature sensor is not

reliable since the outputs of the sensor fluctuates a lot during the experiment. As a result,

false alarms may be triggered from time to time which reduces the reliability and

efficiency of the health monitoring system.

Besides, other medical sensors such as ECG sensors and blood pressure sensors can be

added into the system to improve the functionality of the system. The users will be able

to track their health conditions better if the system is capable of tracking more other health

data accurately.

 66

REFERENCES

1. European Commission Information Society, Internet of things in 2020: a roadmap

for the future, 2008. http://www.iot-visitthefuture.eu.

2. Rolim, C. O., Koch, F. L., Westphall, C. B., Werner, J., Fracalossi, A., & Salvador,

G. S. (2010). A Cloud Computing Solution for Patient’s Data Collection in Health

Care Institutions. 2010 Second International Conference on eHealth,

Telemedicine, and Social Medicine.

3. Doukas, C., & Maglogiannis, I. (2012). Bringing IoT and Cloud Computing

towards Pervasive Healthcare. 2012 Sixth International Conference on

Innovative Mobile and Internet Services in Ubiquitous

Computing.doi:10.1109/imis.2012.26

4. Chen, M., Li, W., Hao, Y., Qian, Y., & Humar, I. (2018). Edge cognitive

computing based smart healthcare system. Future Generation Computer Systems,

86, 403–411.doi:10.1016/j.future.2018.03.054

5. Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT,

CoAP, AMQP and HTTP. 2017 IEEE International Systems Engineering

Symposium (ISSE).doi:10.1109/syseng.2017.8088251

6. Gezer, V., et al. (2018). "An introduction to edge computing and a real-time

capable server architecture." Int. J. Adv. Intell. Syst.(IARIA) 11(7): 105-114.

7. Hayes, B. (2008). "Cloud computing." Communications of the ACM 51(7): 9-11.

8. Hou, X., et al. (2016). "Vehicular fog computing: A viewpoint of vehicles as the

infrastructures." IEEE Transactions on Vehicular Technology 65(6): 3860-3873.

9. JoSEP, A. D., et al. (2010). "A view of cloud computing." Communications of the

ACM 53(4).

10. Knorr, E. and G. Gruman (2008). "What cloud computing really means."

InfoWorld 7: 20-20.

11. Mell, P. and T. Grance (2011). "The NIST definition of cloud computing."

 67

12. Rahmani, A. M., et al. (2018). "Exploiting smart e-Health gateways at the edge of

healthcare Internet-of-Things: A fog computing approach." Future Generation

Computer Systems 78: 641-658.

13. Rausch, T., et al. (2018). Emma: Distributed qos-aware mqtt middleware for edge

computing applications. 2018 IEEE International Conference on Cloud

Engineering (IC2E), IEEE.

14. Shi, W., et al. (2016). "Edge computing: Vision and challenges." IEEE Internet of

Things Journal 3(5): 637-646.

15. Tao, F., et al. (2014). "CCIoT-CMfg: cloud computing and internet of things-

based cloud manufacturing service system." IEEE Transactions on Industrial

Informatics 10(2): 1435-1442.

16. Vaquero, L. M., et al. (2008). "A break in the clouds: towards a cloud definition."

ACM SIGCOMM Computer Communication Review 39(1): 50-55.

17. Athanasiou, L. S., et al. (2017). Atherosclerotic Plaque Characterization Methods

Based on Coronary Imaging, Academic Press.

18. Dictionary, o. (2016). occupation Meaning in the Cambridge English Dictionary.

[online] Dictionary.cambridge.org. Available at:

http://dictionary.cambridge.org/dictionary/english/occupation [Accessed 20 Jan.

2020].

19. Jamaludin, N., et al. (2015). "Thermal comfort of residential building in Malaysia

at different micro-climates." Procedia-Social and Behavioral Sciences 170: 613-

623.

20. Sund‐Levander, M., et al. (2002). "Normal oral, rectal, tympanic and axillary body

temperature in adult men and women: a systematic literature review."

Scandinavian journal of caring sciences 16(2): 122-128.

21. Yi, S., et al. (2015). Fog computing: Platform and applications. 2015 Third IEEE

Workshop on Hot Topics in Web Systems and Technologies (HotWeb), IEEE.

22. Finley, J. P., et al. (1987). "Heart-rate variability in children. Spectral analysis of

developmental changes between 5 and 24 years." Canadian journal of physiology

and pharmacology 65(10): 2048-2052.

23. Mackowiak, P. A., et al. (1992). "A critical appraisal of 98.6 F, the upper limit of

the normal body temperature, and other legacies of Carl Reinhold August

Wunderlich." Jama 268(12): 1578-1580.

24. ThingsBoard. n.d. Thingsboard Architecture. [online] Available at:

<https://thingsboard.io/docs/reference/architecture/> [Accessed 17 March 2020].

 68

25. Google Cloud. 2020. Cloud SQL: Relational Database Service | Google

Cloud. [online] Available at: <https://cloud.google.com/sql> [Accessed 17

March 2020].

26. Docs.oasis-open.org. 2020. MQTT Version 3.1.1. [online] Available at:

<http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html> [Accessed

19 March 2020].

27. DELISLE, M. 2009. Mastering phpMyAdmin 3.1 for effective MySQL

management, Packt Publishing Ltd.

28. WANG, C., CHOW, S. S., WANG, Q., REN, K. & LOU, W. 2011. Privacy-

preserving public auditing for secure cloud storage. IEEE transactions on

computers, 62, 362-375.

29. BANSAL, G. & GEFEN, D. 2010. The impact of personal dispositions on

information sensitivity, privacy concern and trust in disclosing health information

online. Decision support systems, 49, 138-150.

30. ROMERO, N. L. 2012. “Cloud computing” in library automation: benefits and

drawbacks. The Bottom Line.

