
   
  
   

 

  

IoT BASED HEALTH MONITORING SYSTEM 

 

 

 

LIM CHEE YUAN 

 

 

 

 

A project report submitted in partial fulfillment of the  

requirements for the award of Bachelor of Engineering 

(Honours) Electrical and Electronic Engineering 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

May 2019 



   
  
  i 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for citations 

and quotations which have been duly acknowledged.  I also declare that it has not been 

previously and concurrently submitted for any other degree or award at UTAR or other 

institutions. 

 

 

 

 

Signature : 

 

Name : LIM CHEE YUAN 

ID No. : 1501917 

Date : 23/4/2020 

 

 



   
  
  ii 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “IoT BASED HEALTH MONITORING 

SYSTEM” was prepared by LIM CHEE YUAN has met the required standard for 

submission in partial fulfilment of the requirements for the award of Bachelor of 

Engineering (Honours) Electrical and Electronic Engineering at Universiti Tunku Abdul 

Rahman. 

 

 

Approved by, 

 

 

Signature :  

Supervisor :  

Date :  

 

 

 

Signature :  

Co-Supervisor :  

Date :  



   
  
  iii 

 

 

The copyright of this report belongs to the author under the terms of the 

Copyright Act 1987 as qualified by the Intellectual Property Policy of Universiti Tunku 

Abdul Rahman. Due acknowledgment shall always be made of the use of any material 

contained in, or derived from, this report. 

 

 

© 2019, Lim Chee Yuan. All right reserved. 

 

 

 



   
  
  iv 

 

 

ABSTRACT 

 

Health is wealth. Wealth and happiness are earned by having a healthy mind and body. 

However, people nowadays do not have much free time to keep track of their health status. 

Thus, a health monitoring system that automatically tracks and alarm the users about their 

health status is needed. Rapid improvement of the internet and technology, such as the 

Internet of Things allows the health monitoring system to be improved. The internet of 

things allows communication between machines and programmed actions to be triggered 

automatically, which makes the system to be more efficient. The traditional health 

monitoring system requires regular visitation of patients to doctors to check their health 

status. However, with the implementation of the internet of things in the health monitoring 

system, the health monitoring processes can be automated and helps the patient to save 

their precious time. Besides, the cloud that revolutionized data changing aids in the efforts 

of making a better and more reliable health monitoring system. The health data can be 

stored and visualized in real-time. In this project, a NodeMCU is used as a gateway to 

collect the health data of the user, and a Raspberry Pi 3 Model B+ broker is used as the 

central processing unit that processes all the received data. The broker receives health 

data from the gateway and process the data. The system is capable of tracking the location 

of the user by using the Google geolocation service. The health data and location of the 

user are visualized in the Thingsboard visualization platform in real-time. Several 

experiments and tests, such as accuracy test and error analysis were conducted on the 

proposed system, and encouraging results were obtained. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1          General Introduction 

 

Revolution and rapid improvement of the internet, technology such as the Internet of 

Things has emerged and is snowballing. Internet of Things with cloud computing and 

edge computing realizes a new and more efficient way of data sharing and transmitting. 

The Internet of things will remodel the healthcare sector and improves the health and 

wellbeing of humanity (Rahmani et al., 2018). The traditional healthcare system requires 

patients to visit the clinic or hospital for medical checkups which is time-consuming and 

inefficient. The Internet of Things is capable of realizing a real-time health monitoring 

system that involves sensors to measure heart rate and body temperature of patients and 

visualize the data in real-time. By such, people can have better control of their health 

condition. Instead of relying on infrequent visits to clinics or hospitals for various tests, 

people can access their health data through the internet and start to track their health 

conditions. The Internet of Things that realizes the connection between devices (Tao et 

al., 2014) allows activities such as sending an alert email and messages during an 

emergency to be possible by making use of open source services such as google assistance 

and IFTTT. Besides, the location of the user can be tracked by using geolocation. 

 

1.2         Problem Statement 

 

In the traditional healthcare system, people are required to visit clinics or medical centres 

regularly for medical checkups, which is less effective and time-consuming. The high 

medical cost and long waiting will discourage people from performing medical checkups 
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regularly. A health monitoring system that collects and monitors the health status of the 

user in real-time will benefits the people by saving their money and time of visiting clinics 

and medical centres unless there is a need for it.  

Besides, the security of the health system is vital to safeguard the privacy of the user. 

People may avoid healthcare in sensitive areas due to health information privacy concerns 

(Bansal and Gefen, 2010). Smart wearable gadgets such as Apple Watch and Samsung 

Galaxy Watch are storing the collected health data in the cloud. Cloud storage allows 

users to enjoy high-quality services without any burden of storage maintenance (Wang et 

al., 2011). However, cloud users are more vulnerable to issues such as theft, 

confidentiality, and information leaked to the third party compared to local storage users 

(Romero, 2012). Storing confidential health information in the health system itself will 

help reduce the chance of information leakage, as the health information will only be 

accessible by authorized users which improves the security and privacy of the system. 

The location tracking function plays a vital role in the health monitoring system as it 

allows people to track the whereabouts of the user. Besides, the coordinate of the user 

should be recorded as it allows people to trace the whereabouts of the user. The function 

will come in handy when there is a need to track down a person, such as the COVID-19 

outbreak. The whereabouts of the patients are useful to trace the source of the disease. 

Besides, the information will aid in the prevention and evacuation works that will prevent 

or reduce the spreading of the disease.  

 

Aim and Objective 

The project aims to develop a wearable health monitoring system that tracks the user’s 

location, monitors the user’s heart rate and body temperature, and visualizes the data in 

real-time. Authorized users will have access to the collected data stored in the database 

to keep track of the patient’s health data. The system is capable of sending alert 

notifications to phones and emails when the person wearing the health system is having 

abnormal body temperature or sudden changes in heart rate. Thus, the objectives of the 

project are to propose an Internet of Things (IoT) based health monitoring system that 

collects and monitors the user’s body temperature and heart rate in real-time. To propose 
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a system that visualizes and stores the health data in the database while tracking the 

location of the user by using geolocation. 

 

1.3 Scope and Limitations 

The project focuses on the development of an IoT based health monitoring system that 

involves both hardware and software. The prototype system consists of sensors and a data 

processing broker. The prototype allows authorized users to monitor the health data and 

the location of the health system user through the internet. Besides, the authorized user 

can easily trace back to the previous health data by accessing to the database that stores 

all the user’s health data.  

Since the focus of this project is on the implementation and involvement of IoT in the 

health monitoring system and due to budget limitation, the accuracy of the sensors used 

in this system will not be taken into consideration as the sensors used in this system are 

not medically verified and are not suitable to be used for any serious medical analysis by 

any means.   
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1          Introduction 

This chapter provides the reviews of different types of healthcare system related to this 

project. The reviews include the smart functions and methods used by researchers in their 

projects. 

 

2.2   Cloud Computing 

Cloud computing delivers computing services such as servers, storage, analytics and, 

intelligence over the internet or cloud (JoSEP et al., 2010) to provide a faster and flexible 

data exchange process, which helps to reduce the operating cost and increase the 

efficiency of the infrastructure. Cloud computing realizes a situation where the 

infrastructures, data or program that customarily installed in desktop PC and server rooms 

can now be installed in a cloud (Hayes, 2008). Users can perform different tasks by using 

services provided by the data centres of the cloud through the internet and access the 

virtualized resources (hardware and services) provided by the cloud anytime and 

anywhere as long as there is active internet connectivity.  

 

Fig.2.1: Cloud Computing Paradigm (Shi et al., 2016) 
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Fig.2.1 shows the paradigm of cloud computing. The data consumers are the end devices 

that send a request for data consuming to the cloud, and the cloud will respond by sending 

the raw data from data producer to the consumer. Cloud computing services are 

categorized as software as a service (SaaS), infrastructure as a service (IaaS), and 

Platform as a service (PaaS) based on the type of capability provided by the clouds.  

 

2.2.1    Software as a Service (SaaS) 

 SaaS is a type of cloud computing that distributes an application to a wide variety of 

users through the browser (Knorr and Gruman, 2008), which serves as an alternative to 

the locally hosted application. SaaS provides access to the software or application through 

the internet, where license and installation of the software are not required. Customers 

who pay for the usage fee will have secured access to the SaaS application via the internet. 

Hosted software is software that “owned” by the company itself, the software can be 

obtained through licensing, and the software needs to be downloaded and installed in the 

hosting centre. SaaS is reliable and cost-saving since no licensing and installation of 

software required. Users could access the software through the internet anytime and 

anywhere.  

 

2.2.2    Infrastructure as a Service (IaaS) 

IaaS is a type of cloud computing that provides infrastructures such as processing, storage, 

networks, and other fundamental computing resources (Mell and Grance, 2011) in a 

virtual environment. IaaS can split, assign, and resize these resources to build a system as 

demanded by users through virtualization (Vaquero et al., 2008). Arbitrary software such 

as the operating system and infrastructures can be deployed and run by the users.  

 

2.2.3    Platform as a Service (PaaS) 

PaaS is a type of cloud computing that provides development environments as a service 

(Knorr and Gruman, 2008). The users can build their applications by using programming 
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languages, libraries, and tools supported by the provider and run the applications on the 

infrastructure provided by the PaaS service provider. Multiple authorized users can access 

the applications from the provider’s server through the internet, where the deployed 

applications and configuration settings for the application-hosting environment are 

controlled by the developer (Mell and Grance, 2011).    

 

2.3   Edge Computing 

Edge computing is a technology that combines cloud computing, grid computing, and IoT, 

where it acts as an additional layer between end devices and cloud. Edge computing 

relocates the computational power closer to the end devices (Gezer et al., 2018), where it 

improves the quality of service (QoS) of applications and reduces the latency of the tasks 

(Chen et al., 2018). Edge computing aims to make use of computational resources at the 

edge of the network that keeps increasing and brings data processing closer to where data 

are generated (Rausch et al., 2018).   

 

Fig.2.2: Edge Computing Paradigm (Shi et al., 2016) 

Fig.2.2 shows the paradigm of edge computing where the edge can act as a data producer 

and data consumer. The edge can request data from the cloud and perform the computing 

tasks of the cloud, such as data storing and data caching. With edge computing, the tasks’ 

computing processes can be offloaded to the edge which reduces the response time and 

increases the efficiency of the system.  
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2.3.1       Edge Computing and Cloud Computing 

Edge computing process data at the edge while the cloud computing process the data in 

the cloud. The reason edge computing is introduced to the community is to aid the 

inefficiency of cloud computing in data processing (Shi et al., 2016). Cloud computing is 

an efficient way of data processing, where it carries out all the computing tasks in the 

cloud. Cloud computing has superior computing power compared to edge computing. 

However, when a large number of end devices that generate a large quantity of data are 

connecting to the cloud, the bandwidth for data transmission between the cloud and end 

devices will be insufficient and leads to a bottleneck situation. The cloud will need a 

longer time to process a large amount of data which increases the response time. Edge 

computing provides private and secured services to the users since the data collected are 

processed at the edge without sending it to the cloud, which provides users with better 

privacy protection. Cloud computing reduces the costs of computation by saving the cost 

of purchasing hardware and provide flexibility, but long-distance between the cloud and 

end devices will reduce the QoS (Gezer et al., 2018) and increase the latency. The edge 

that situated between cloud and end devices is closer to the end devices, which can reduce 

the latency and keep the QoS as high as possible. In cloud computing, the cloud 

communicates directly with the end devices, while the end devices communicate with 

intermediate edge components in edge computing as shown in Fig.2.3.  

 

Fig.2.3: Simplified topology of Edge Computing network (Gezer et al., 2018) 
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2.3.2        Proof of concept that closer distance reduces latency 

In edge computing, computation and end devices are placed closer to each other. Yi, Hao 

et al. built a platform to perform a face recognition application. The response time for the 

application to recognize the face photo from 1521 photos was reduced from 900ms to 

169ms by relocating computational to the edge from the cloud. In the project, Yi and Hao 

compared the latency and bandwidth of fog and cloud and the results obtained are as 

shown in Fig.2.4. 

 

 

Fig.2.4: Latency and bandwidth comparison (Yi et al., 2015) 

A face recognition application was developed to test the performance of cloud and fog. 

The application installed in a smartphone captures a face photo and transmits the photo 

to a server located in a fog or cloud. The face photo was matched with 1521 face photos 

stored in a local database by the remote server. The same task was run on Amazon EC2 

cloud and fog. The results obtained are as shown in Fig.2.5. 

 

 

Fig.2.5: Fog-based face recognition performance (Yi et al., 2015) 

Response time includes the duration from the time the smartphone uploads the face photo 

until the time it receives the result from the server. The time taken to recognize the face 

is almost. However, the response time taken by the cloud is 731.201ms longer than the 

fog due to limited network bandwidth in the cloud.  
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2.4      Cloud computing on the healthcare system 

Rolim et al. (2010) proposed a healthcare system that utilizes cloud computing to collect 

the patients’ data in a healthcare institution. The system automates the process of 

collecting, distributing, and processing the patient’s data which are done manually in the 

traditional healthcare system. Rolim et al. (2010) suggest that the current manual note-

taking approach in the healthcare system as shown in Fig.2.6 is inefficient where medical 

staff need to collect patient’s data and record the data manually. The recorded data are 

then typed into the data entry terminal that sends the data to the cloud for data processing 

and storing. The authorized user in the healthcare institution can access the data stored in 

the database server.  

 

Fig.2.6: The typical smart healthcare system’s paradigm (Rolim et al., 2010) 

The system proposed by Rolim et al. (2010) is capable of collecting data by using mobile 

sensors connected to medical devices. The collected data and information are delivered 

to the medical centre’s cloud server where the data will be processed, stored, and 

distributed as shown in Fig.2.7. 
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Fig.2.7: Proposed healthcare system’s paradigm  (Rolim et al., 2010) 

In the system, sensor nodes with software installed are placed close to the patients to 

collect, encode, and transmit data. The data are transmitted via wireless communication 

channels and stored in the cloud. The system involves sensors to collect data and uses a 

broker to direct the received data to appropriate storage that hosted on the cloud. Medical 

staff can retrieve data from cloud service by interacting with the cloud’s applications 

through content service. 

Another similarly designed healthcare system that utilizes IoT and cloud computing was 

proposed by Doukas, C et al. (2012). It is a wearable healthcare system with mobile 

sensors that capable of collecting and manages sensor data such as heart rate, ECG, and 

body temperature of users. The data collected can be sent to a smartphone or the cloud 

infrastructure. The system involves a gateway that capable of communicating with the 

internet such as a smartphone or Wi-Fi enabled microcontroller. The gateway is used to 

collect data from the mobile sensors, sends them to the cloud via the internet, and retrieves 

information from the internet. Cloud will communicate with the gateway with API key 

provided by the cloud platform and performs data processing, alert management, and 

billing processes. The system provides real-time data visualization by using a web-based 

managing application hosted by the cloud which plots the patient’s information such as 

location and activity status in a graph. Fig.2.8 shows the proposed system’s architecture.  
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Fig.2.8: The proposed healthcare system architecture (Doukas and Maglogiannis, 2012) 

All the data in the healthcare system are secured. Authentication and data encryption are 

applied where sensors are authenticated by unique id while data are encrypted using 

symmetric encryption techniques. The system is scalable thanks to the on-demand cloud 

infrastructure that provides resources based on utilization and demand where the addition 

of users and sensors will not affect the functionality of the system. In the prototype, 

microcontrollers and sensors are sewed in a sock where sensors are used to measure user’s 

data while an Android-based smartphone is used as a gateway that sends the data to the 

cloud as shown in Fig.2.9. A textile version of Arduino, Lilypad and Polar HearRate 

Module are used. Lilypad collects data from sensor modules and transmits them to an 

Android-based smartphone via Bluetooth module. The data will then be sent to the cloud 

by the Android smartphone through an appropriate application developed by Doukas, C 

et al. (2010) for data analysis. 
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Fig.2.9: The prototype of the cloud-based healthcare system, “CloudSensorSock” 

(Doukas and Maglogiannis, 2012) 

 

2.5     Edge computing-based system 

Edge computing that brings data processing closer to end devices is one way to reduce 

latencies in the healthcare system. Rausch et al. (2018) proposed a system called EMMA 

that utilizes MQTT middleware that acts as an intermediate layer between cloud and end 

devices for edge computing application that improves the QoS of the system. Rausch 

mentions that many modern IoT systems that utilize cloud-based middleware with 

pub/sub-model are routing all messages to the cloud, which is impractical in a particular 

scenario such as the healthcare system due to the latencies. Thus, brokers that are closer 

to the end devices can be deployed in the edge layer to reduce the latencies and improve 

the QoS. EMMA is a system that utilizes MQTT protocol in data transmission and is 

capable of relocating its MQTT clients to a nearby broker based on the situation of clients 

and resources of brokers to optimize QoS of the system. Proper distribution of edge 

resources in the system is required since the MQTT clients may leave or enter the system 

unexpectedly. 
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Fig.2.10: Overview of EMMA architecture (Rausch et al., 2018) 

EMMA consists of four main components: gateways, broker, controller, and network 

monitoring protocol as shown in Fig.8. In the system, clients are connected to the 

gateways which act as a middleman between clients and brokers. It reconfigures the 

connections between clients and brokers, which allows the clients to move around freely 

without having to worry about disconnecting from the system. Brokers implement MQTT 

server protocol that manages sub/pub tasks and acts as topics’ bridges that transmit 

information to other brokers that have the same topics subscription. The controller 

monitors and distributes edge resources between brokers, and reconfigures gateways and 

brokers based on network latency. If the latency is high, the controller will direct the 

gateways to disconnect from the current broker and reconnect to a broker with more 

resources to improve the QoS of the system as shown in Fig.2.11. 

 

Fig.2.11: Connect and reconnect procedure in EMMA (Rausch et al., 2018) 
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EMMA architecture realizes a balanced load between brokers, which fits perfectly in the 

healthcare system where latency is a critically undesired factor. The EMMA architecture 

is capable of reducing the latency and improve the QoS of the system by effectively 

separating the load between brokers in the system. By such, paramedics will have access 

to more accurate data and respond better during an emergency.  

On another similar approach, Chen, Li et al. (2018) proposed an edge cognitive 

computing (ECC) based smart healthcare system. The proposed system is capable of 

monitoring and analyzing the physical health of users via a cognitive computing network. 

The system tends to improve the current smart healthcare system by allocating the edge 

resources in the system according to the health status and risk level of the users, which 

provides users a better user experience while increasing the survival rates of the user 

during an emergency. According to Chen, Li et al. (2018), the current smart healthcare 

system can be divided into three layers, the data collected in the collection layer are sent 

to the analysis layer through the internet via the gateway or base station in the 

transmission layer. The health data will be stored and analyzed in the cloud by using 

machine learning and data mining algorithms. The results that sent back to the system 

will be analyzed and generate the corresponding medical actions  

Chen, Li et al. (2018) mentions that the current smart healthcare system fails to 

discover the true messages and values that are hiding in a large amount of data because 

of the inefficiency of traditional machine learning and data mining methods. Besides, the 

utilization of cloud computing to perform data processing increases the latency, which 

leads to inaccurate medical analysis during an emergency. Network resources that lack 

flexibility cause a waste of resources. Thus, cognitive computing can be used in the 

modern healthcare system. Cognitive computing with smart technologies, such as 

machine learning, artificial intelligence, and natural language processing (Hou et al., 2016) 

can determine the relationship and behaviour of the disease from the data. With such 

technology, medical professionals can learn the disease better and find the cure of the 

disease faster. Edge computing deploys data processing closer to end devices, which 

improves the QoS, reduces latency, and improves the reliability of the healthcare system. 

The proposed healthcare system involves a cognitive data engine and cognitive resource 
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engine which reacts differently during a normal situation and emergency, as shown in 

Fig.2.12.  

 

Fig.2.12: ECC-based smart healthcare system (Chen et al., 2018) 

The proposed healthcare system is capable of improving itself through its data cognitive 

engine, where the system learns from resources such as computing and communication 

resources. Resource cognitive engines will collect and integrate the resources and send 

them to the cognitive data engine for data analysis and processing via machine learning 

and deep learning in real-time. The results obtained from data analysis will be sent back 

to the cognitive resource engine, which used as a guidance in resource allocation and 

optimization. Besides, the system is capable of relocating the resources according to the 

priority. Users are categorized based on the risk level faced by users, and the system will 

automatically relocate the cloud edge resources to serve the user with the highest priority 

during an emergency.  
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The system is divided into three major layers, which are the user layer, the cognitive edge 

layer, and the cloud platform layer. The user layer consists of users, smart clothing, and 

smartphone, where smart clothing is used to collect the health data of the users such as 

ECG, body temperature, and blood oxygen saturation in real-time while the smartphone 

is used to receive health analysis results from edge computing node. On the cognitive 

edge side, the computing nodes will process and analyze the users’ data and distributes 

the edge resources based on the users’ health condition. An alarm will be sent to the 

hospital by the computing nodes so that medical staff can carry out accurate medical 

diagnoses. On the cloud platform side, the hospital will manage the cloud that stores 

user’s health data, personal information, and medical history of certain diseases of the 

user. The cloud plbothatform will call up the user’s information and sends them to the 

edge-computing node for analyzation during an emergency, as shown in Fig.2.13. 

 

Fig.2.13: Flowchart of the edge node processing healthcare (Rausch et al., 2018) 
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2.6  Cardiac Cycle 

The cardiac cycle is a sequence of the human heart that counts from the beginning of one 

beat to the beginning of the next beat. The cardiac cycle consists of two periods which 

are the systole(filling) and diastole(pumping) that form a complete heartbeat(Athanasiou 

et al., 2017). During the diastole period, the superior and inferior vena cava receives the 

returning blood from both the upper and lower human body, which then flows into the 

right atrium. As the blood filling up the right atrium, the pressure in the atrium increases. 

When the pressure of the right atrium surpasses the pressure of the right ventricle, the 

tricuspid valve that situated between the right atrium and right ventricle will open, which 

allows the blood to flow into the right ventricle. At the same time, the oxygenated blood 

will flow from the lung into the left atrium through the pulmonary veins, which increases 

the pressure in the left atrium as the blood flowing in. When the pressure in the left atrium 

surpasses the left ventricle, the mitral valve will open and allows oxygenated blood to 

flow from the left atrium to the left ventricle.  

In the systole period, the blood in the left and right atrium will be forced to flow into the 

respective ventricle due to the depolarization of the atria as the result of the atrial muscle 

contraction while the pulmonary valves are closed. During the ventricular systole, the 

right and left ventricular muscle contracts. The tricuspid valve and mitral valve are closed 

while the pulmonary and aortic valve will be opened and the high-pressure blood will be 

pumped out from the heart to the body and lung through the aorta and the pulmonary 

artery. The heart muscle will then relax and starts the diastole phase again. The diastole 

and systole will repeat again and again which makes up the cardiac cycle. The Fig.2.14 

shows the complete cardiac cycle.  
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Fig.2.14: The complete the cardiac cycle(Athanasiou et al., 2017). 

 

2.7  Heart Rate of Human in Different Ages 

Heart rate measures the number of human heartbeats per minute. The research to study 

the variability of heart rate in infants, children, and young adults was done by (Finley, J. 

P., & Nugent, S. T. 1995). The study found that the heart rate and respiratory rate of 

humans will be different depending on the age and the activity that is doing by the human 

as shown in Fig.2.15. From the result, it can be seen that the heart rate and respiratory 

rate of the human will decrease as the age increases. Besides, the heart rate and the 

respiratory rate are affected by the activity that is done by the human as the heart rate and 

respiratory rate are lower in quiet sleep compared to awake. According to Finley and 

Nugent, the primary finding of the research is that the variability of the heart rate in 

normal subjects depends on the age. This is proven right in both sleep state and awake. 

Besides, cardiac volume that changes with the growth of humans is one of the possible 

influences on the heart rate variability (Finley et al., 1987). The volume of heart chambers 

changes from infancy to adulthood, where infants may have a smaller heart that is more 
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responsive to respiratory changes. As a result, the heart may experience more significant 

fluctuation of right atrial stretch and causes a more significant influence on the heart 

variability compared to the adult heart.    

 

Fig.2.15: Typical heart rate for quiet sleep, active sleep and awake state(Finley, J. P., & 

Nugent, S. T. 1995) 

2.8  Room Temperature in Malaysia (Kuala Lumpur and Kuching) 

Room temperature is the temperature that is normal inside a building, and it is neither 

very cold or very hot (Dictionary, 2016). Malaysia is a tropical country with an annual 

mean temperature of 26.4 degrees Celsius. The average of daily maximum temperature 

in Malaysia is 34 degrees Celsius, while the average of daily minimum temperature is 23 

degrees Celcius (Al-Tamimi & Syed Fadzil, 2011). A research was done by Jamaludin, 

Mohammed et al. (2015) to investigate the level of the thermal environment of the 

residential building in Kuala Lumpur, Bayan Lepas, and Kuching. Residential building 

with typical designed in Malaysia was simulated and the room temperature of the living 

space in the building was determined. The experiment found that the master bedroom has 

the highest room temperature of 32.6°C in Kuala Lumpur, and followed Bayan Lepas and 

Kuching with a room temperature of 31.6°C and 31.1°C. Fig.2.16 shows the average 

indoor temperature under Kuala Lumpur climate is around 29°C to 33°C.  
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Fig.2.16: Indoor temperature in Kuala Lumpur Climate(Jamaludin, Mohammed et al. 

2015) 

 

2.9    Human Body Temperature 

Human body temperature is used as an indicator of a person’s health condition and 

illnesses, where abnormal body temperature is often one of the many symptoms of 

illnesses. For example, people who caught a cold or having fever will have abnormal body 

temperature. Thus, constant body temperature monitoring is vital to make sure that the 

person stays healthy. In 1851, the mercurial axillary thermometer was introduced by 

Wunderlich, where he used to measure the axillary temperature of 25000 people (Sund‐

Levander et al., 2002). In his book, Wunderlich stated that the average human body 

temperature to be 37.0°C with a range of around 36.2°C to 37.5°C. He defined 

temperature above 37.5°C as ‘the territory of fever’ while the temperature of ≥

38.0°C as fever  (Mackowiak et al., 1992). A study was done by Sund‐Levander, 

Forsberg et al. (2002) to determine the average body temperature of adult men and women. 

The result found was as shown in the Fig.2.17.  
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Fig.2.17: The results from 20 studies with strong or fairly strong evidence of normal 

oral, rectal, and tympanic temperature (°C) in adult men and women. (Sund‐Levander, 

Forsberg et al. 2002) 

 

The bolded line in Fig.2.17 above shows the mean of the data collected while the thin line 

represents the range of the data. The mean value of the temperature measured from 

axillary, oral, rectal, and tympanic was 36.3°C, 36.4°C, 36.9°C, and 36.5°C with ±2 as 

the range respectively. Sund‐Levander, Forsberg et al. (2002) mentioned that gender to 

be one of the many factors that will affect body temperature measurement as there was a 

slight difference between the mean values of adult men and women as shown in Fig.2.18. 

The axillary temperature was not included in the table due to lacking evidence or fairy 

strong evidence reported to prove that axillary temperature affected by the gender.  

 

Fig.2.18: The mean (m) and range/m ± 2 SD (°C ) of studies with strong or fairly strong 

evidence in normal oral, rectal and tympanic body temperature in men and women 

(Sund‐Levander, Forsberg et al. 2002) 
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CHAPTER 3 

 

METHODOLOGY 

3.1    Introduction 

This chapter outlines the methods used in this project. The overview, setups, and design 

of this project are covered in this chapter. Besides, the hardware and software used in this 

project will be listed and explained. The flowchart, block diagram and communication 

model of the proposed system are shown in Fig.3.1, Fig.3.2 and Fig.3.3, respectively. The 

details of Fig.3.1, Fig.3.2 are discussed in section 3.2, while Fig.3.3 are discussed in 

section 3.3. 

3.2  Overview of the System Design 

This IoT based health monitoring system consists of three primary layers which are the 

gateway layer, the broker layer, and the data visualization and storing layer. The gateway 

layer consists of the LM35 temperature sensor, SEN-11574 pulse sensor, Arduino UNO 

and ESP8266 NodeMCU gateway, as shown in Fig.3.2. The pulse sensor is connected to 

the Arduino UNO that sends the heart rate data to ESP8266 via serial communication, 

and the LM35 temperature sensor that collects the body temperature of the user is 

connected to the ESP8266 directly. The sensors will collect the body temperature and 

heart rate of the user and send those data to the ESP8266 gateway. Then, the ESP8266 

gateway will send the health data to the broker via Message Queuing Telemetry Transport 

(MQTT) communication protocol.  

The broker layer consists of a broker that acts as the central processing unit in the system.  

The main processing unit used in this project is a Raspberry Pi 3 Model B+ with Raspbian 

Lite operating system (OS) running on it. Raspbian Lite is a simpler version of the 

standard Raspbian operating system that has less software installed in it which consumes 

fewer operating system resources. Besides, Mosquitto broker, Node-RED and 

PHPMyAdmin database are installed in the Raspberry Pi 3. Mosquitto broker is an open-

source and lightweight message broker that implements MQTT protocol with low power 
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consumption. Node-RED, which is a programming tool, is used to program the health 

monitoring system and communicate with various services such as IFTTT, Thingsboard, 

and PHPMyAdmin database. The health data collected by the broker will be visualized 

on the Node-RED and Thingsboard dashboard in real-time. At the same time, the health 

data will be stored in the PHPMyAdmin local database that allows the authorized user to 

keep track of the user’s health data. The Raspberry Pi 3 broker will process all the data 

and direct every action programmed in the Node-Red. Alarm notifications and emails will 

be sent to assigned users during an emergency (Sudden changes in heart rate or abnormal 

body temperature) using If This Then That (IFTTT) services. The notification sent will 

direct the assigned users to the Thingsboard dashboard interface when clicked, and the 

users can track the health system’s user location and health data from the Thingsboard 

dashboard.  

The data visualization and storing layer consists of Thingsboard as the data visualization 

platform and PHPMyAdmin database. The health data of the user will be visualized in 

the Thingsboard and updated in real-time. Only authorized users will have access to view 

the data. At the same time, the health data will be stored in the PHPMyAdmin local 

database for tracking purposes.  

The flowchart of the proposed system is shown in Fig.3.1. The system starts by collecting 

the health data in the ESP8266 gateway. The gateway then sends the data to the Raspberry 

Pi 3 broker. Then, the broker will process the data received based on the system’s program. 

The health data will be sent to Thingsboard and PHPMyAdmin database for real-time 

data visualization and storage. The health data collected will be analyzed by the broker. 

If there is a sudden change in heart rate or abnormal body temperature 

(temperature >38°C or < 35°C), the broker will trigger the IFTTT to send the alarm 

notifications and emails to the assigned users. Then, the whole process will start all over 

again.  
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Fig.3.1: Flowchart of the proposed system 
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3.2.1 Block diagram of the proposed system 

Fig.3.2 shows the block diagram of the proposed health monitoring system. The figure 

is discussed in section 3.2. 

 

Fig.3.2:  Block diagram of the health monitoring system 
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3.2.2 System communication model 

Fig.3.3 shows the communication model of the proposed system. Serial 

communication and Message Queuing Telemetry Transport (MQTT) communication 

protocol are used in this system. Heart rate is calculated in Beats per Minute (BPM), 

and body temperature is measured in degree celsius (°C) in this project. Arduino UNO 

that receives the BPM from the pulse sensor, sends the data to ESP8266 NodeMCU 

via serial communication. The BPM and body temperature data will be “publish” to 

the broker via the MQTT communication protocol. Then, all data in this system (BPM, 

body temperature, coordinate, accuracy of the coordinate) will be “publish” to Node-

RED for data processing. The “publish” process is similar to any data transferring 

process. Details of the MQTT communication protocol is discussed in section 3.3.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3: System communication model 

3.3     Tools  

3.3.1 Platform and services 

• Thingsboard 

Thingsboard is an open-source IoT data visualization platform. The data collected 

by the broker will be sent to Thingsboard via the internet for real-time 

pub(HMS/BPM, BPM) 

pub(HMS/TEMP, temp) 

pub(HMS/latitude, 

latitude) 

pub(HMS/longitude, 

longitude) 

 

 

pub(HMS/BPM, BPM) 

pub(HMS/TEMP, temp) 

 

ESP8266 

NodeMCU 
Broker Node-RED Arduino 

UNO 

“BPM” via serial 

communication 
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visualization. Thingsboard allows users to perform real-time data monitoring 

through the internet (ThingsBoard Architecture, 2018). The data sent to the 

Thingsboard will be received by a hub with a unique access token. In this project, 

the unique access token of the hub will be used to identify the destination of the 

data sent by the Raspberry Pi 3 broker. Thingsboard consists of customizable 

dashboards that visualize the data. In this system, body temperature, BPM, and 

location of the user are displayed in the dashboard.  

 

• Google Cloud SQL 

Google Cloud SQL is a SQL based database that stores the users’ health data in 

this project. Google SQL is one of the many services provided in the Google 

Cloud Platform. Google SQL database allows data to be stored in the cloud and 

reduces the risk of data loss. The database is automatically scaled up when the 

limit is near (Cloud SQL: Relational Database Service  |  Google Cloud, 2020). 

However, the service is not free of charge where the user will be charged monthly 

based on the usage of the database.  

 

• PHPMyAdmin 

PHPMyAdmin is an open-source administration for MySQL. PHPMyAdmin 

offers complete web-based management of MySQL servers and data, where it 

provides a basic MySQL database and table operations and internal relational 

system that maintain metadata for advanced features (Delisle, 2009). The health 

data collected by the broker will be stored in the PHPMyAdmin database. 

PHPMyAdmin acts as the platform to manage and view the data recorded in the 

database. Besides, PHPMyAdmin can be connected to Google MySQL instances 

and allow the user to manage the Google MySQL database locally. PHPMyAdmin 

and MySQL are installed in the raspberry pi.  
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3.3.2  Software 

• Node-RED 

Node-RED is an open-source vision tool that makes the programming process 

easier by wiring different devices together. It simplifies the programming process 

by using different nodes without requiring lots of programming knowledge, as 

shown in the red circle of Fig.3.8. Node-RED consists of two main components 

as follow: 

1. Nodes 

Nodes carry out their process based on their assigned function. Nodes can be 

installed from the Node-RED library easily. Nodes are written in node.js 

format. 

2. Flow 

A Node-RED flow diagram is made up of the integration of different nodes.  

The user needs to configure the required nodes and wire them together to complete 

a flow. Every node in the Node-RED has its own function and purpose. Node-

RED is installed in the Raspberry Pi in this project. The flow editor of Node-RED 

can be accessed through the browser via the Internet Protocol (IP) address of the 

Raspberry Pi. The project flows can be deployed by clicking the deploy button on 

the top right corner of the editor interface. 

 

Fig.3.8: Node-RED browser-based flow editor 
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Besides, Node-RED allows users to make and manage their user interface (UI). 

The data collected by Node-RED can be displayed on the dashboard as shown in 

Fig.3.9. The user interface is accessible through the browser which enables the 

user to monitor and control the system remotely via the internet.  

 

Fig.3.9: Node-RED user interface 

 

• Mosquitto broker 

Mosquitto is an open-source MQTT broker developed by Eclipse Foundation. 

Mosquitto broker is suitable to be used in this project since it provides a 

lightweight method of transmitting the messages with a sub/pub model which 

helps in power saving. Mosquitto broker is installed in the Raspberry Pi 3 with 

the communication architecture as shown in Fig.3.11. 

 

 

 

 

      

Fig.3.11: Communication architecture 

In this project, the Raspberry Pi 3 broker subscribes to the gateway's topics. Once 

the gateway publishes something to the subscribed topics, the broker will receive 

the published data. The data received is then sent to the visualization tools for 

real-time data visualization.  

 

sub 
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• IFTTT (If This Then That) 

IFTTT is an open-source web-based service that allows different conditional 

statements to be chained together. IFTTT is used to send alarm notifications and 

emails during an emergency by using Applets that link various services together 

to perform a task, as shown in Fig.3.13. 

 

 

Fig.3.13: Applets created to send alarm notifications 

 

3.3.3  Messaging Protocols 

• MQTT (Message Queuing Telemetry Transport) 

MQTT protocol is one of the oldest M2M communication protocol, which is 

lightweight and energy-saving  (MQTT Version 3.1.1, 2020). MQTT has a small 

data packet which transfers the data without consuming much power. MQTT 

protocol requires a low amount of bandwidth in data transmitting which decreases 

the latency of the process. MQTT is suitable to be used in this project since the 

healthcare system requires reliable real-time data, which can be realized with low 

latency MQTT protocol. MQTT is a publish/subscribe based protocol. MQTT 

connection involves MQTT clients which can be either publisher or subscriber. 

The publishers and subscribers will exchange data based on the topics. 

Information will be published to the topics by the publisher, and the subscriber 

that subscribed to that particular topic will receive the information. 
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3.3.4  Hardware  

• LM35 Temperature Sensor 

LM35 shown in Fig.3.14 is a temperature sensor used to measure the user’s body 

temperature in this project. The pinout consists of the positive terminal, negative 

terminal, and digital output pin. The pinout descriptions and specifications of 

LM35 are shown in Table 3.1 and Table 3.2, respectively.  

  

Fig.3.14: LM35 Temperature Sensor 

Table 3.1: LM35 Pinout Description 

Pin Number Description  

1 Power supply (4V – 20V) 

2 Analogue output 

3 Connected to the ground 

 

Table 3.2: LM35 Specifications 

Specifications 

Operating Voltage 4V- 20V 

Operating Current 60µA 

Temperature Range -55°C - 150°C 

Accuracy below 25 °C +
−

 0.5°C 

Accuracy above 25°C +
−

 1.0°C 

Temperature Slope 10mV/°C 
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• Pulse Sensor (SEN-11574) 

The pulse sensor shown in Fig.3.15 is used to measure the user’s heart rate of the 

user in Beats per Minute (BPM). The pinout consists of the positive terminal, 

negative terminal, and digital output pin, as shown in Table 3.3. The pulse sensor 

consists of a photosensor and an LED that emits green light. The green light and 

photosensor are used to detect the variation of blood flow caused by the heartbeat. 

Fig.3.16 shows the working principle of the pulse sensor. The LED on the pulse 

sensor emits green light while the photosensor detects the reflected green light. 

The amount of light reflected depends on the volume of the blood vessel in the 

artery. A high volume of blood vessel will absorb more light and causes a weaker 

light reflection.  

  

Fig.3.15: SEN-11574 Pulse Sensor 

 

Fig.3.16: Working principle of SEN-11574 Pulse Sensor 

Table 3.3: Pulse Sensor Pinout Descriptions 

Pin Colour Descriptions 

Black Power supply 

Red Connected to ground 

Purple Output 
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• ESP8266 NodeMCU 

 

Nodemcu is used as a gateway that collects the health data from the connecting 

sensors in this project. The gateway communicates with the broker and Arduino 

UNO via MQTT protocol and UART serial communication. It sends the collected 

data to the broker for data processing. NodeMCU is used to track the user location 

with geolocation. With the help of geolocation, the GPS tracker is no longer 

needed as the geolocation function can track the location of the user through the 

available wifi connection surrounding the user. The pinouts and specifications of 

the NodeMCU are shown in Fig.3.17 and Table 3.4, respectively.  

 

Fig.3.17: ESP8266 NodeMCU Pinouts 

 

Table 3.4: ESP8266 NodeMCU Specifications 

Specifications 

Operating Voltage 3.3V 

Operating Current 10µA – 170mA 

Input Voltage 7V – 12V 

Processor Tensilica L106 32-bit 

Processor Speed 80 – 160MHz 

GPIO 17 

RAM 32K + 80K 

ADC Pin One input with 1024 resolution 
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• Raspberry Pi 3 B+ 

 

Raspberry Pi 3 is used as a broker with the mosquito broker installed in it. The 

broker acts as a central processing unit that directs the flow of the data from the 

source to the topic’s subscriber via the pub/sub-model. The broker will send the 

health data to the PHPMyAdmin database for storage and Thingsboard for real-

time data visualization. The pinouts and specifications of the Raspberry Pi 3 are 

shown in Fig.3.18 and Table 3.5, respectively.  

 

Fig.3.18: Raspberry Pi 3 Model B+ Pinouts  

 

Table 3.5: Raspberry Pi 3 Model B+ Specifications 

Specifications 

Operating Voltage 5V 

Operating Current 2.5A 

Processor  Broadcom BCM2837B0 quad-core A53 (ARMv8) 

64-bit @ 1.4GHz 

Networking Gigabit Ethernet (via USB channel), 2.4GHz and 

5GHz 802.11b/g/n/ac Wi-Fi 

RAM 1GB LPDDR2 SDRAM 

Storage Mirco-SD 

GPIO 40 

Dimensions 82mm x 56mm x 19.5mm 

Weights 50g 
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• Arduino UNO 

 

Arduino UNO is an open-source microcontroller board developed by Arduino.cc. 

The board equipped with analogue and digital input/output pins which are used to 

interact with other circuit boards and components. In this project, Arduino UNO 

is used to collect the data from the pulse sensor and send the data to the Nodemcu 

via serial communication. The pinouts and specifications of Arduino UNO are 

shown in Fig.3.19 and Table 3.6, respectively.  

 

Fig.3.19: Arduino UNO Pinouts 

 

Table 3.6: Arduino UNO specifications 

Specifications 

Microcontroller ATmega328 

Operating Voltage  5V 

Input Voltage 7V – 12V 

Digital I/O Pins 14 

Analogue I/O Pins 6 

DC Current per I/O Pin 40mA 

DC Current for 3.3V Pin 50mA 

SRAM 2Kb 

EEPROM 1Kb 

Clock Speed  16MHz 
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3.4  Implementation Phase 

3.4.1  Thingsboard platform setup 

Thingsboard allows the user to customize their data visualization environment. The main 

interface of Thingsboard after logging in is shown in Fig.3.20.  

 

Fig.3.20: Thingsboard main interface 

Users can set up hubs that receive all the data sent to the Thingsboard by clicking the 

“devices” button on the left side of the interface. “Devices” can be created and named 

based on user preferences. Each of the devices has a unique key known as the access 

token for identification purposes, as shown in the Fig.3.21. The data received by the 

Thingsboard will be distributed based on the access token.  

 

Fig.3.21: “Devices” in the Thingsboard platform with the unique access token 
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Fig.3.22 shows a hub with the name of “coordinate”. The hub receives the coordinate data 

sent by the Raspberry Pi 3 broker in real-time. The coordinate data consist of longitude, 

latitude, and accuracy of the coordinate, as shown in Fig.3.22. 

 

Fig.3.22: The data received by the “coordinate” device. 

In this project, data collected by the sensors will be sent from the broker to Thingsboard 

for real-time data visualization. Each of the data will be sent to different hubs with a 

different name and access token.  

The user’s health data and location are displayed on the dashboard interface that is 

customizable by the user. Fig.3.23 shows the dashboard that visualizes the temperature, 

BPM, and location of the user.  
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Fig.3.23: Dashboard of the health monitoring system 

The admin can assign the authorization to view the dashboard to other users via email 

by clicking the “customer” on the left side of the Thingsboard main interface, as shown 

in Fig.3.20. The authorized users can log in to the dashboard to keep track of the user's 

condition.  

3.4.2   Node-Red setup 

Node-Red is installed in the broker that serves as an intermediate layer between the end 

devices and the cloud. Node-Red is used to connects several processes to form a complete 

system. Different nodes are wired together to form a complete “flow,” as shown in the 

Fig.3.24.  

 

Fig.3.24: Sample flow to measure the time elapsed for a process 
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The sample flow shown in Fig.3.24 is used to measure the time elapsed for the “Http 

request” node. The average time for the “Http request” node to complete the request 

process is around 200ms. The time elapsed function measures the time elapsed by 

counting the start and stop time of the “Http request” node. The time elapsed is the interval 

between the start time and the stop time.  

Node-Red consists of different types of nodes that are available on the left side of the 

Node-Red interface, as shown in Fig.3.8. The nodes can be linked together to form a 

process. Since the default nodes that available after installation of the Node-Red is often 

not enough to form a complicated flow or process, thus some extra nodes can be installed 

manually by clicking the “manage palette” button in the setting as shown in the Fig.3.25. 

 

Fig.3.25: “Manage palette” button to configure the nodes in Node-Red 

With the extra nodes installed, the user can link different nodes together to form several 

flows that carry out different actions. In this health system, function node with conditions 

statements will connect to the IFTTT nodes to trigger actions such as messaging, email, 

and calling the related personnel during an emergency. When the user experience sudden 

changes in heart rate or the body temperature falls below 35°C or exceeds 38°C, the 

broker will send a signal to inform IFTTT to carry out the actions. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Results of the prototype system 

The results of the prototype system will be discussed in the following sections.  

4.1.1 Real-time data visualization in Thingsboard 

Health data receives by the system are displayed and updated on the Thingsboard in real-

time, as shown in Fig.4.1. The data displayed are the body temperature, BPM, and the 

location of the user.  

 

Fig.4.1: Thingsboard’s dashboard with health data 

The health system is capable of tracking the user location through geolocation service, 

and the coordinate of the user is displayed on the Thingsboard. The interface shown in 

Fig.4.1 is in the administrator mode, where the admin has access to make any changes in 

the Thingsboard. Besides, “view only” access is assigned to other users through customer 

service and email addresses. The assigned users can view the data assigned by the admin. 

The customer service provided by Thingsboard enables the assigned users to keep track 
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of the user’s health condition. Fig.4.2 shows the email address of the assigned user, 

Fig.4.3 shows the login interface of the assigned user and Fig.4.4 shows the assigned 

user’s “view-only” interface. 

 

Fig.4.2: Assigned user with “view only” access 

 

Fig.4.3: Login with the assigned user account 
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Fig.4.4: Assigned user’s “view-only” Thingsboard interface. 

 

4.1.2 Flow of the health system in Node-Red  

In this system, Node-Red is used to program and connect all the processes in the system. 

Node-Red is installed in the Raspberry Pi 3 broker in the system. The broker receives data 

from the gateway and process those data locally. The complete flow of the proposed 

health system in the Node-Red is as shown in Fig.4.5 

 

Fig.4.5: Complete flow of the proposed health system in Node-Red 
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The nodes in the Node-Red links and integrates all the processes and form a complete 

system. The function nodes in this system consist of simple JSON programming with if-

else statements and conditions that trigger different types of actions such as sending data 

to Thingsboard, storing data to the database, and sending alarm notification to the user’s 

phone and email. Besides, the admin can track the health data in real-time through the 

Node-Red User Interface (UI) as shown in Fig.4.6. . Details of the flows are discussed in 

section 4.2. 

 

 

Fig.4.6: The Node-Red dashboard displaying the data 

 

4.1.3  Data storing in PHPMyAdmin database 

The health system allows the system’s admin to keep track of the health record of the 

users, where the health data receives by the broker will be saved in PHPMyAdmin local 

database. Storing the health data in the local database will reduce the risk of having the 

health data exposed and leaked, which increases the privacy and security of the health 

system. The health data are stored in the SQL format, as shown in Fig.4.7. 
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Fig.4.7: PHPMyAdmin local database with the data stored in SQL format 

If the system’s admin wishes to store the health data in the cloud, such as the google cloud 

platform that provides various types of database services, the PHPMyAdmin database can 

act as a platform to view the health data. One of the many services provided by the google 

cloud platform is the MySQL database that stores data in SQL format. PHPMyAdmin is 

capable of connecting itself to the google MySQL database where the system’s admin 

can easily switch between the local database and the google MySQL database, as shown 

in Fig.4.8. The database can switch between the localhost database and the Google 

MySQL database with an IP-address of 35.187.229.248. 

 

Fig.4.8:  Switching between the local database and google MySQL database in 

PHPMyAdmin 
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The system’s admin can easily export the data stored in the database through the 

PHPMyAdmin database. The PHPMyAdmin is capable of exporting the data in several 

formats such as CSV, PDF, SQL, and OpenDocument Spreadsheet. Fig.4.9 shows an 

example of data exported from the database in the OpenDocument Spreadsheet format 

and viewed in Microsoft excel.  

 

Fig.4.9: Data exported from the PHPMyAdmin database 

 

4.1.4 Action triggered during emergency 

When there are abnormal heart rate and body temperature, the health system will send 

alarm notifications to the assigned phone number and email addresses through IFTTT. 

The notification consists of alarm messages. The alarm notification will direct the user to 

the Thingsboard interface shown in Fig.4.11 when clicked. Fig.4.10 shows the alarm 

notifications sent to the phone when the user has an abnormal body temperature.  
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Fig.4.10: Alarm notification sent to the phone 

 

 

Fig.4.11: Thingsboard dashboard interface 
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4.2 Discussion 

4.2.1 Thingsboard as the data visualization platform 

Thingsboard meets the needs of this health system by visualizing the health data in real-

time with a very short delay. As soon as the Node-Red receives the health data via MQTT 

from the gateway and sensors, the function nodes that send the health data to the 

Thingsboard in the Node-Red will be triggered, and the data displayed on the Thingsboard 

will be updated immediately. The time taken to update the data in the Thingsboard is 

measured using the flow, as shown in Fig.4.11: 

  

Fig.4.11: Flow used to calculate the time interval 

The timestamp node will act as the MQTT node that outputs the health data in this sample 

flow. The flow starts measuring the time elapsed as soon as the health data receives by 

the MQTT nodes and stops after the health data is sent to the Thingsboard. Twenty 

reading was taken, and the average time calculated is 563ms.  

 

4.2.2 Node-Red 

Node-Red allows this health monitoring system to be programmed without requiring any 

complicated coding. Different types of nodes are used in the health system to form 

different flows that carry out different processes and actions. All the flows are then linked 

together to form a complete system.  
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Fig.4.12: MQTT input nodes that receive data from esp8266 gateway 

The MQTT input nodes shown in the Fig.4.12 are the MQTT nodes that receive the 

health data sent by the gateway. Each of the MQTT nodes will subscribe to a different 

topic, and the topic will determine the type of data that the node will receive. After 

receiving the data from the gateway, the MQTT nodes will pass the data to the next 

node.  

 

Fig.4.13: Function nodes that execute the code and assign the data into variables 

The function nodes shown in Fig.4.13 are the nodes that will execute the function when 

they receive the data from the previous MQTT nodes. The function nodes are used to run 

the JavaScript code and process the receiving data. Function nodes are useful, especially 

when the user tries to include some conditions or if-else statements into the system to 
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control the output of the nodes or to determine the next actions that will be taken by the 

system.  

 

Fig.4.14: Sample code of function node 

 

Fig.4.14 shows the simple coding of a function node that receives the heart rate value 

from the MQTT node. This function node will execute the code that sends the payload it 

receives from the MQTT node to the next node as output. The heart rate values will be 

stored in a BPM variable that will be received by the Thingsboard. The other four function 

nodes consist of similar coding with different variables. The reason for using these 

function nodes is to assign different data into separate variables so that the Thingsboard 

can recognize the data easily.   

 

Fig.4.15: “HTTP request” node that connects to the Thingsboard 
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Fig.4.15 shows the flow with the timestamp node, HTTP request node, and the 

msg.payload node. The flow will send the payload that the HTTP request node receives 

to the Thingsboard. The HTTP request node consists of several types of methods as shown 

in the Fig.4.16. The “POST” mode is selected in this health system, where the node sends 

HTTP requests based on the URL provided and returns the response by sending the health 

data it receives from the previous node to the Thingsboard. The URL used in this node 

consists of a unique API key provided by the Thingsboard.  

 

Fig.4.16: “HTTP request” node configuration 

 

The HTTP request node can be used to obtain the data from the Thingsboard as well. This 

can be done by swapping the method to the “GET” method, and the node will make 

requests to the URL provided and get the data based on the API key that included in the 

URL. The URL requires the correct format to works properly where the format will be 

different for different websites and services. Table 4.1 shows the URL format of the 

Thingsboard and the IFTTT that are different from each other. Thus, it is crucial to obtain 

the correct format from the website for the node to works.  
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Table 4.1: Sample URL of Thingsboard and IFTTT 

Service Sample URL 

Thingsboard http://demo.thingsboard.io:80/api/v1/67dGbyRYMf8reGlmrw7m/tele

metry 

IFTTT https://maker.ifttt.com/trigger/(Bansal and 

Gefen)}/with/key/b0_aKoThVlTQ6XnLvDNvyuUDIU5FNlDlrEBk

MjooxUL 

 

The msg.payload node is the node that shows the result of the flow after debugging in 

the Node-Red. Fig.4.17 shows the debug messages in the Node-Red. 

 

Fig.4.17: Debug messages in Node-Red 

 

Fig.4.18 shows the IFTTT flow that triggers the alarm notification during abnormal 

temperatures. The function node in this flow consists of if-else statements that determine 

the output of the function node. If the temperature is abnormal, the function node will 

output a msg.event that triggers the IFTTT to send the alarm notification to the user. The 

flow is set to be triggered every one minute to avoid the IFTTT from spamming the user 

with alarm notifications. Aside from sending alarm notification, the IFTTT provides 
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many more other services such as sending emails, calling the user, and many more. Thus, 

the system’s admin has lots of rooms to further improve the system by adding more 

services and actions.  

 

Fig.4.18: IFTTT flow that triggers alarm notification 

Fig.4.19 shows the flow that sends BPM and temperature values to the PHPMyAdmin 

database every ten seconds. The BPM and Temp function nodes convert the BPM and 

temperature values into global variables that make them accessible by every flow in 

Node-Red. The BPM and temperature values are sent to the next function node that saves 

the values into the database. The database node requires credential information such as 

the database IP address, name of the database, username, and password to works. Since 

the local database is used in this system, the IP address used is 127.0.0.1 with a 3306 port. 

Aside from saving the data in the local database, a similar flow as shown in the Fig.4.19 

can be used to save the data into the cloud, such as the Google cloud platform that 

provides various database services. However, the user will be charged according to the 

usage of the Google cloud platform services. The user requires to change the credential 

information to connect to the Google cloud database.  

The advantages of saving the data into the cloud are high data accessibility and backup 

purposes. The user can access their data anywhere and anytime through the Google cloud 

platform without worrying about the data loss. If the user wishes to develop their health 

system in the Google environment, the data stored in the Google cloud database can be 

easily transferred between Google services as well. This will make the user's life easier 

by skipping the data importing process in the Google cloud. 

 

Fig.4.19: Flow that sends data to the PHPMyAdmin database.  
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4.3 Experiment 

The functions of the health monitoring system were tested. The details of the experiments 

are discussed in the following sections. LM35 temperature sensor and SEN-11574 pulse 

sensor were tested. A 23 years old male was chosen as the test subject in the experiments. 

The formula that converts the output of the LM35 to degree Celsius was tested and 

discussed in section 4.2.1. Besides, error analysis to determine the margin error of the 

LM35 was carried out and discussed in section 4.2.2. Data comparison between the LM35 

temperature sensor and thermometer was carried out, and the results are discussed in 

section 4.2.3. 

An experiment to test the functionality of the pulse sensor was done and discussed in 

section 4.2.4. The experiment was carried out in a resting condition and active condition. 

The heart rate is measured in beats per minute (BPM). Besides, the accuracy test of the 

pulse sensor was carried out by comparing the BPM between the pulse sensor and manual 

measurement. The results are discussed in section 4.2.5.  

 

4.3.1 LM35 temperature sensor  

The body temperature of the system user is measured by using the LM35 temperature 

sensor. The formula used to obtain the temperature in Celsius (°C) is as follow: 

𝑁

1024
 × 𝐿𝑀35 𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝐿𝑀35 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝐴0) 

       N = “ADC Value” as shown in Fig.4.20 

The value of “N” is determined by the resolution of the Analog-Digital Converter (ADC) 

of the NodeMCU. According to the NodeMCU datasheet, the resolution of the A0 pin of 

NodeMCU is 10 bit or 1024 steps. In the system setup, the input voltage of the LM35 is 

supplied by the 3.3V pin of the NodeMCU. In order to find out the input voltage of the 

A0 pin of NodeMCU, the “N” value is obtained from the Arduino IDE, and the LM35 

input voltage is assigned to 3.3V as follow: 

𝑁 𝑓𝑟𝑜𝑚 𝐴𝑟𝑑𝑢𝑖𝑛𝑜 𝐼𝐷𝐸

1024
 × 3.3𝑉 = 𝐿𝑀35 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝐴0) 
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Assuming the value of “N” is 14, the input voltage of the A0 pin in NodeMCU will be 

equal to 0.045117V after calculation. According to the LM35 datasheet, each increment 

of 10mV equals one degree Celsius (°C) which makes the 0.045117V (45.117mV) equals 

to 4.5117 degrees Celsius (°C).  

 

Fig.4.20: Outputs of LM35 temperature sensor in Arduino IDE 

 

4.3.2 LM35 error analysis 

Ideally, the input voltage of LM35 supplied by the NodeMCU should be fixed at 3.3V. 

However, there are fluctuations in the voltage supply that fluctuates the value of the 

temperature in practical cases. The voltage fluctuation may occur due to the long jumper 

wire that may introduce a small number of resistances into the system. As a result, the 

accuracy of the results is affected.  

 

Fig.4.20: Measured ESP8266 3.3v pin output voltage 

Besides, there is a margin error in the LM35 temperature sensor. Ideally, the temperature 

reading obtained in the Arduino IDE should be zero when the LM35 temperature sensor 

“N” 
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is disconnected from the system. However, some voltages are received by the NodeMCU 

A0 pin when the LM35 temperature sensor is disconnected from the system. The results 

of the Arduino IDE are as shown in the Fig.4.22.  

 

Fig.4.22: Temperature displayed in Arduino IDE with LM35 disconnected 

In order to determine the average margin error of the LM35 temperature sensor, ten 

readings are sampled, and the average of those readings is calculated. The results obtained 

are shown in table 4.2. 

Table 4.2: Ten sampled LM35 temperature sensor readings. 

No. “ADC” values The temperature in Celsius 

(°C)   

1 13 4.19 

2 14 4.52 

3 14 4.52 

4 13 4.19 

5 7 2.26 

6 7 2.26 

7 14 4.52 

8 13 4.19 

9 14 4.52 

10 14 4.52 

Average Value 3.97 
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The average margin error of the LM35 temperature sensor found is 3.97 degrees Celsius 

(°C). Thus, the outputs of the LM35 temperature sensor should be deducted by the margin 

error for better results.  

 

4.3.3 Body temperature measurement by LM35 and thermometer 

The LM35 temperature sensor and a thermometer are used to determine the axillary 

temperature. Both of the LM35 temperature sensor and the thermometer is placed under 

the armpit for temperature measurement. In this experiment, a 23 years old male was 

chosen as the test subject.  

The body temperature of the subject was measured. The measurement was repeated three 

times, and the average of the three data was calculated. Ten readings were taken, and the 

results obtained are as shown in Table 4.3 and Table 4.4. 

 

Table 4.3: Body temperature measured by the LM35 temperature sensor 

No. Temperature reading in Celsius (°C)   Average 

1 36.0 34.3 36.3 35.5 

2 36.3 36.3 36.3 36.3 

3 36.3 36.3 36.3 36.3 

4 36.6 36.6 36.6 36.6 

5 36.9 35.2 36.6 36.2 

6 36.9 36.9 35.2 36.3 

7 36.9 35.5 34.6 35.8 

8 36.0 36.0 36.2 36.1 

9 36.5 36.5 36.5 36.5 

10 36.3 36.6 36.6 36.5 

Total Average 36.2 
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The measuring processes were repeated on the same subject by using a thermometer. The 

obtained results are as shown in Table 4.4. 

Table 4.4: Body temperature measured by a thermometer 

No. Temperature reading in Celsius (°C)   Average 

1 35.8 36.1 35.9 35.9 

2 36.2 36.2 36.3 36.2 

3 36.2 36.1 36.1 36.1 

4 36.2 36.2 36.1 36.2 

5 36.1 36.3 36.2 36.2 

6 36.2 36.2 36.2 36.2 

7 36.4 36.4 36.3 36.4 

8 36.1 36.1 36.3 36.2 

9 36.2 36.1 36.3 36.2 

10 36.2 36.4 36.4 36.3 

Total Average 36.2 

 

The graph of Table 4.3 and 4.4 are plotted, as shown in Fig.4.22.  

 

Fig.4.23: Comparison of average temperature measured using LM35 and thermometer 
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The body temperature measured by a thermometer is stable, while the body temperature 

measured by the LM35 shows some fluctuation in the graph shown in Fig.4.23. The 

inaccuracy of the LM35 mentioned in section 4.2.2 causes the fluctuation in the body 

temperature reading. The temperature readings are based on the voltage output of the 

LM35. The temperature reading obtained will fluctuate if there is fluctuation in the output 

voltage of the LM35. As a result, false alarms may be triggered from time to time due to 

the inaccuracy of the body temperature sensor. Thus, a better temperature sensor with IoT 

capabilities can be used in the future to improve the reliability of this system. From 

Fig.4.23, the margin error of the body temperature measured using LM35 is around 

±3 °C, with a percentage error of 7.69%. 

 

4.3.4 SEN-11574 pulse sensor experiment 

The heart rate is measured in beats per minute (BPM) in this project. BPM of the user is 

measured by using the SEN-11574 pulse sensor. The pulse sensor can be clipped on the 

user's fingertips or earlobe. 

 

Fig.4.24: Pulse Sensor clipped on the fingertip  

 

The SEN-11574 pulse sensor was clipped on the fingertip of the test subject during the 

experiment, as shown in Fig.4.24. The resting BPM of the test subject was measured. The 

measuring process was repeated three times, and the average of the three data is calculated. 

Ten sets of readings were taken. The obtained results are as shown in Table 4.5. 
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Table 4.5: Resting heart rate measured using the pulse sensor 

No. Resting heart rate (Beats Per Minute) Average 

1 66 65 66 65.7 

2 67 66 65 66.0 

3 68 67 65 66.7 

4 67 65 66 66.0 

5 66 67 66 66.3 

6 66 68 65 66.3 

7 65 64 66 65.0 

8 65 66 67 66.0 

9 66 68 65 66.3 

10 66 67 66 66.3 

Total Average 66.1 

 

The measuring process was repeated on the same subject for active heart measurement. 

BPM of the test subject after performing twenty push-ups was measured. Each set of 

readings was taken with ten minutes resting interval. The results obtained are as shown 

in Table 4.6.  
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Table 4.6: Active heart rate after twenty push-ups measured using the pulse sensor 

No. Active heart rate after 20 push-ups (Beats Per Minute)   Average 

1 115 115 115 115.0 

2 114 114 115 114.3 

3 113 113 114 113.3 

4 113 114 115 114.0 

5 113 114 113 113.3 

6 112 113 113 112.7 

7 113 113 114 113.3 

8 113 113 113 113.0 

9 112 114 114 113.3 

10 113 114 115 114.0 

Total Average 113.6 

 

The heart rate of the test subject shows a significant increase after performing twenty 

push-ups. The results obtained in Table 4.5 and Table 4.6 shows that the SEN-11574 heart 

rate sensor is capable of detecting the rise of the heart rate. Small fluctuations in the BPM 

obtained was caused by the pressure applied by the fingertip on the pulse sensor. The 

pulse sensor uses the LED light and photosensor to detect the variation of the blood flow 

in the fingertip to measure the BPM. Pressure applied by the fingertip onto the pulse 

sensor will affect the blood flow and causes the fluctuation in the BPM measurement. 

The fluctuation obtained in Table 4.5 and Table 4.6 was around ±2 beats.  

 

4.3.5  Accuracy of SEN-11574 Pulse Sensor 

The accuracy of the pulse sensor was determined by comparison with the manual pulse 

rate measurement. The manual measurement was performed by pressing index and 

middle fingers on the opposite wrist, as shown in Fig.4.27. The BPM of the pulse sensor 

was compared to the BPM measured from the wrist.   
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Fig.4.27: BPM measured from the wrist 

The BPM measurement process was repeated three times, and the average of the values 

was calculated. Ten sets of readings were taken. The experiment was done in both 

active and resting conditions. The obtained results are shown in Table 4.7 and Table 

4.8. 

Table 4.7: Resting heart rate measured from the wrist 

No. Resting heart rate (Beats Per Minute) Average 

1 67 66 64 65.7 

2 66 65 66 65.7 

3 66 66 65 65.7 

4 65 65 64 64.7 

5 64 66 65 65.0 

6 64 66 65 65.0 

7 65 66 65 65.3 

8 66 67 65 66.0 

9 64 66 65 65.0 

10 66 67 66 66.3 

Total Average 65.44 

 

The measuring process was repeated on the same subject for active heart rate 

measurement. BPM of the test subject after performing twenty push-ups was measured. 

Each set of readings was taken with ten minutes resting interval. The results obtained are 

as shown in Table 4.8.  
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Table 4.8: Active heart rate after performing 20 push-ups measured from the wrist 

No. Active heart rate after 20 push-ups  (Beats Per Minute) Average 

1 115 114 114 114.3 

2 115 115 113 114.3 

3 113 114 115 114.0 

4 114 115 113 114.0 

5 114 115 114 114.3 

6 115 115 113 114.3 

7 113 114 114 113.7 

8 114 115 113 114.0 

9 115 116 115 115.3 

10 114 113 113 113.3 

Total Average 114.2 

 

A comparison between Table 4.5 and Table 4.7 is plotted in a graph as shown in Fig.4.27 

 

Fig.4.28: Comparison between resting wrist BPM and pulse sensor BPM  

There were ±2 beats fluctuation in the measured pulse sensor and wrist BPM, as shown 

in Fig.4.28. Any movement of the test subject will affect the BPM and led to the 

fluctuations. The results of the experiment show that the SEN-11574 pulse sensor is 
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capable of measuring the heart rate with high accuracy since the fluctuations obtained 

were small and insignificant.  

A comparison between Table 4.6 and Table 4.8 is plotted in a graph, as shown in Fig.2.29. 

 

Fig.4.29: Comparison between active wrist BPM and pulse sensor BPM  

 

4.4 Schematic diagram of the proposed system 

Fig.4.30 shows the schematic diagram of the proposed health system. The diagram 

consists of the Arduino UNO, ESP8266 NodeMCU gateway, LM35 temperature sensor, 

and SEN-11574 pulse sensor. Pin D5 and D6 of both Arduino UNO and ESP8266 

NodeMCU are connected for serial communication between each other. The output of the 

LM35 temperature sensor will be sent to the ESP8266 NodeMCU via serial 

communication. The pulse sensor is connected to 3.3V, ground, and A0 ADC pin of 

Arduino UNO. The LM35 temperature sensor is connected to 3.3V, ground, and A0 ADC 

pin of ESP8266 NodeMCU.  
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Fig.4.30: Schematic diagram of the proposed system 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

The primary objective of this project is to develop an IoT based health monitoring system 

that able to provide real-time health data monitoring of the user. The proposed system is 

able to track the user’s location, send the health data to the visualization platform in real-

time, and sends alarm notifications to phones and emails. The location of the user is 

tracked by using geolocation service while the real-time health data visualization is 

displayed on the Thingsboard. The coordinate of the user location is very useful to track 

down the user during an emergency.  User’s relatives or authorized users are able to view 

the health data of the user through the Thingsboard. The alarm notifications can be sent 

to any related personnel when there are sudden changes in heart rate and abnormal body 

temperature. The health data are stored in a local and cloud database, which allow the 

user to keep track of their health condition by tracking the health data. Experiments are 

conducted to prove the functionality of the sensors and the system.  

 

5.2 Recommendation for Future Work 

The LM35 temperature sensor should be replaced with much reliable and accurate 

temperature sensors. The temperature output of the LM35 temperature sensor is not 

reliable since the outputs of the sensor fluctuates a lot during the experiment. As a result, 

false alarms may be triggered from time to time which reduces the reliability and 

efficiency of the health monitoring system.  

Besides, other medical sensors such as ECG sensors and blood pressure sensors can be 

added into the system to improve the functionality of the system. The users will be able 

to track their health conditions better if the system is capable of tracking more other health 

data accurately.  



   
  
  66 

 

 

REFERENCES 

 

1. European Commission Information Society, Internet of things in 2020: a roadmap 

for the future, 2008. http://www.iot-visitthefuture.eu. 

2. Rolim, C. O., Koch, F. L., Westphall, C. B., Werner, J., Fracalossi, A., & Salvador, 

G. S. (2010). A Cloud Computing Solution for Patient’s Data Collection in Health 

Care Institutions. 2010 Second International Conference on eHealth, 

Telemedicine, and Social Medicine. 

3. Doukas, C., & Maglogiannis, I. (2012). Bringing IoT and Cloud Computing 

towards Pervasive Healthcare. 2012 Sixth International Conference on 

Innovative Mobile and Internet Services in Ubiquitous 

Computing.doi:10.1109/imis.2012.26  

 

4. Chen, M., Li, W., Hao, Y., Qian, Y., & Humar, I. (2018). Edge cognitive 

computing based smart healthcare system. Future Generation Computer Systems, 

86, 403–411.doi:10.1016/j.future.2018.03.054  

5. Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, 

CoAP, AMQP and HTTP. 2017 IEEE International Systems Engineering 

Symposium (ISSE).doi:10.1109/syseng.2017.8088251 

6. Gezer, V., et al. (2018). "An introduction to edge computing and a real-time 

capable server architecture." Int. J. Adv. Intell. Syst.(IARIA) 11(7): 105-114. 

7. Hayes, B. (2008). "Cloud computing." Communications of the ACM 51(7): 9-11. 

8. Hou, X., et al. (2016). "Vehicular fog computing: A viewpoint of vehicles as the 

infrastructures." IEEE Transactions on Vehicular Technology 65(6): 3860-3873. 

9. JoSEP, A. D., et al. (2010). "A view of cloud computing." Communications of the 

ACM 53(4). 

10. Knorr, E. and G. Gruman (2008). "What cloud computing really means." 

InfoWorld 7: 20-20. 

11. Mell, P. and T. Grance (2011). "The NIST definition of cloud computing." 



   
  
  67 

 

12. Rahmani, A. M., et al. (2018). "Exploiting smart e-Health gateways at the edge of 

healthcare Internet-of-Things: A fog computing approach." Future Generation 

Computer Systems 78: 641-658. 

13. Rausch, T., et al. (2018). Emma: Distributed qos-aware mqtt middleware for edge 

computing applications. 2018 IEEE International Conference on Cloud 

Engineering (IC2E), IEEE. 

14. Shi, W., et al. (2016). "Edge computing: Vision and challenges." IEEE Internet of 

Things Journal 3(5): 637-646. 

15. Tao, F., et al. (2014). "CCIoT-CMfg: cloud computing and internet of things-

based cloud manufacturing service system." IEEE Transactions on Industrial 

Informatics 10(2): 1435-1442. 

16. Vaquero, L. M., et al. (2008). "A break in the clouds: towards a cloud definition." 

ACM SIGCOMM Computer Communication Review 39(1): 50-55. 

17. Athanasiou, L. S., et al. (2017). Atherosclerotic Plaque Characterization Methods 

Based on Coronary Imaging, Academic Press. 

18. Dictionary, o. (2016). occupation Meaning in the Cambridge English Dictionary. 

[online] Dictionary.cambridge.org. Available at: 

http://dictionary.cambridge.org/dictionary/english/occupation [Accessed 20 Jan. 

2020]. 

19. Jamaludin, N., et al. (2015). "Thermal comfort of residential building in Malaysia 

at different micro-climates." Procedia-Social and Behavioral Sciences 170: 613-

623. 

20. Sund‐Levander, M., et al. (2002). "Normal oral, rectal, tympanic and axillary body 

temperature in adult men and women: a systematic literature review." 

Scandinavian journal of caring sciences 16(2): 122-128. 

  

21. Yi, S., et al. (2015). Fog computing: Platform and applications. 2015 Third IEEE 

Workshop on Hot Topics in Web Systems and Technologies (HotWeb), IEEE. 

  

22. Finley, J. P., et al. (1987). "Heart-rate variability in children. Spectral analysis of 

developmental changes between 5 and 24 years." Canadian journal of physiology 

and pharmacology 65(10): 2048-2052. 

23. Mackowiak, P. A., et al. (1992). "A critical appraisal of 98.6 F, the upper limit of 

the normal body temperature, and other legacies of Carl Reinhold August 

Wunderlich." Jama 268(12): 1578-1580. 

24. ThingsBoard. n.d. Thingsboard Architecture. [online] Available at: 

<https://thingsboard.io/docs/reference/architecture/> [Accessed 17 March 2020]. 



   
  
  68 

 

25. Google Cloud. 2020. Cloud SQL: Relational Database Service  |  Google 

Cloud. [online] Available at: <https://cloud.google.com/sql> [Accessed 17 

March 2020]. 

 

26. Docs.oasis-open.org. 2020. MQTT Version 3.1.1. [online] Available at: 

<http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html> [Accessed 

19 March 2020]. 

27. DELISLE, M. 2009. Mastering phpMyAdmin 3.1 for effective MySQL 

management, Packt Publishing Ltd. 

 

28. WANG, C., CHOW, S. S., WANG, Q., REN, K. & LOU, W. 2011. Privacy-

preserving public auditing for secure cloud storage. IEEE transactions on 

computers, 62, 362-375. 

 

29. BANSAL, G. & GEFEN, D. 2010. The impact of personal dispositions on 

information sensitivity, privacy concern and trust in disclosing health information 

online. Decision support systems, 49, 138-150. 

 

30. ROMERO, N. L. 2012. “Cloud computing” in library automation: benefits and 

drawbacks. The Bottom Line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


