

SMART SECURITY CAMERA WITH DEEP LEARNING

WONG YEE CHENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2020

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : WONG YEE CHENG

ID No. : 15UEB05621

Date : 26th April 2020

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SECURITY CAMERA WITH DEEP

LEARNING” was prepared by WONG YEE CHENG has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Honours) Electrical and Electronic Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : DR. THAM MAU LUEN

Date : 26th April 2020

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, Wong Yee Cheng. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Dr. Tham Mau Luen for his invaluable advice, guidance and his enormous

patience throughout the development of the research. In every phase of the

project, his supervision and guidance shaped this project to be completed

perfectly.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me full support in this project. I

appreciate the encouragement given by my supervisor, loving parents, and

friends.

v

ABSTRACT

Recent statistics indicate that home burglary remains to be one of the most

common property crimes. Video surveillance is one of the mainstream crime

prevention measures used around the globe. Driven by the success of machine

learning, this study aims to develop a real-time smart security camera system.

Different from existing works, the designed deep learning model is deployed on

a resource limited Raspberry Pi 3 B+, inference of which is handled by an

accelerator called Intel Movidius Neural Compute Stick 2 (NCS2). Darknet-53

of YOLO v3 is selected as the feature extractor and it undergoes transfer

learning and fine tuning, in order to detect three types of weapons, namely, gun,

helmet, and knife. Furthermore, data augmentation is applied to overcome the

scarcity of datasets, which is collected and labelled via LabelImg. The training

platform is Google Colab whereas the testing environment using NCS2 requires

the pre-trained model to be converted into TensorFlow and subsequently

intermediate representation (IR). The performance of crime detection is

evaluated in terms of precision, recall, mean average precision (mAP) and frame

per second (FPS). Experimental results confirm the effectiveness of using NCS2

in an embedded platform.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.1.1 Artificial Intelligence (AI) 1

1.1.2 Introduction of Deep Learning (DL) 2

1.1.3 Application of Deep Learning 6

1.2 Importance of the Study 7

1.3 Problem Statement 9

1.4 Aim and Objectives 9

1.5 Scope and Limitation of the Study 10

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Applications using CNNs 11

2.3 A Searching Process in 3D Space for Human Detection

using Camera and Scene Knowledge 16

2.4 Applications using YOLO v3 Algorithm 20

2.5 Summary 24

3 METHODOLOGY AND WORK PLAN 25

3.1 Introduction 25

3.2 Design Requirements 25

vii

3.2.1 Hardware Requirements 25

3.2.2 Software Requirements 27

3.3 Setup of Operating System (OS), Dependencies and

Software into a RP3 28

3.4 Model Selection for Training Dataset 29

3.5 Procedures for Training and Testing YOLO v3

Model 31

3.6 Conversion of YOLO v3 model into Intermediate

Representation (IR) to load in Inference Engine (IE) 35

3.7 Flowchart of System Operation 37

3.8 Evaluation Performance of the Model 38

3.8.1 Measurement of Precision, Recall and Mean

Average Precision 38

3.8.2 Measurement of Object Detection and FPS 40

3.9 Summary 40

4 RESULTS AND DISCUSSION 41

4.1 Introduction 41

4.2 System Overview 41

4.3 Evaluation Precision and Recall of the Model 42

4.4 Evaluation Average Precision (AP), Mean Average

Precision (mAP) and Intersection over Union Threshold

(IoU) of the Model 46

4.5 Crime Detections 50

4.6 Real-time and Input Video Performance 52

4.7 Summary 52

5 CONCLUSIONS AND FUTURE WORK 53

5.1 Conclusions 53

5.2 Future Work 53

REFERENCES 54

APPENDICES 56

viii

LIST OF TABLES

Table 1.1: Crime rate by type of crimes in Malaysia, 2016-2018 (Department

of Statistics Malaysia, 2019). 8

Table 2.1: Comparison of different deep learning architecture and their

performance (Norouzzadeh et al., 2018). 14

Table 2.2: Comparison of mLeNet and mAlexNet in CNN architecture (Amato

et al., 2016). 15

Table 2.3: Experiment Results of a single camera and multi-camera in mLeNet

and mAlexNet (Amato et al., 2016). 16

Table 2.4: Failure modes and Colours for 3D search on CAVIAR INRIA

datasheet. 19

Table 2.5: mAP and speed of detection for PCB component detection using

Different methods (Li et al., 2019). 21

Table 2.6: Comparison of the Performance of the System using Different

Methods (Shakil, Rajjak and Kureshi, 2020). 23

Table 2.7: Comparison of Accuracy of System in Different Methods (Shakil,

Rajjak and Kureshi, 2020). 23

Table 4.1: Precision and Recall for All Classes and Gun Detection in Different

Confidence Scores. 42

Table 4.2: Precision and Recall for Helmet and Knife Detection in Different

Confidence Score. 43

Table 4.3: mAP or AP for Overall System, Gun, Helmet and Knife Detection

in Different IoU thresholds. 46

Table 4.4: Testing FPS with Different Devices in Input Video and Real-

time. 52

ix

LIST OF FIGURES

Figure 1.1: Sample Case of AI in the Automotive Industry. 2

Figure 1.2: A simple Venn diagram illustrates DL is a subset of ML

(Goodfellow, Bengio and Courville, 2016). 2

Figure 1.3: Comparison between different parts of AI system with their own

different disciplines (Goodfellow, Bengio and Courville, 2016). 3

Figure 1.4: Deep Neural Network (DNN). 4

Figure 1.5: A CNN Sequence to categorize the handwritten digits. 5

Figure 1.6: Pet and Human Detection using AI Security Camera. 6

Figure 1.7: Smart Security Camera System from Athena Security identify guns

using AI and Cloud Technology. 7

Figure 1.8: Crime rate per 100,000 population between the states of Malaysia,

2016-2018 (Department of Statistics Malaysia, 2019). 8

Figure 1.9: Crime rate per 100,000 population in Singapore, 2016-2018 (R.

Hirschmann, 2020). 8

Figure 2.1: A CNN architecture (Krizhevsky, Sutskever and Hinton, 2017). 11

Figure 2.2: Eight tested images with Top Five Predictions. 12

Figure 2.3: A CNN architecture proceed with an input layer to an output layer

(Willi et al., 2019). 13

Figure 2.4: Animals can be identified, counted, and described in camera-trap

images successfully using DNN (Norouzzadeh et al., 2018). 14

Figure 2.5: Pedestrian Detection Results in 2D search and 3D search (Li, Wu

and Nevatia, 2008). 17

Figure 2.6: An Approach Overview (Li, Wu and Nevatia, 2008). 17

Figure 2.7: A searching process using 3D Search Grid from datasheet (PETS

2007) (Li, Wu and Nevatia, 2008). 18

Figure 2.8: Sample detection results for 2D search and 3D search on datasheet

(PETS 2007)(Li, Wu and Nevatia, 2008). 18

Figure 2.9: Sample detection results for 2D search and 3D search on datasheet

(CAVIAR INRIA)(Li, Wu and Nevatia, 2008). 19

x

Figure 2.10: General Flowchart of PCB detection (Li et al., 2019). 20

Figure 2.11: Implementation of System using YOLO v3 pre-trained model

(Shakil, Rajjak and Kureshi, 2020). 22

Figure 2.12: Object Detection and Tracking as cars (Shakil, Rajjak and Kureshi,

2020) 22

Figure 3.1: Raspberry Pi 3 Model B+ (RP3) 26

Figure 3.2: Intel Movidius Neural Compute Stick 2 (NCS2) 26

Figure 3.3: Camera Board for RP3 with 5MP 26

Figure 3.4: Micro SD Card with 128GB and 100MB/s 27

Figure 3.5: Model of Darknet-53 (Redmon and Farhadi, 2018). 29

Figure 3.6: Comparison of Backbone (Redmon and Farhadi, 2018). 30

Figure 3.7: COCO Dataset Testing with mAP@0.5 (Redmon and Farhadi, 2018)

 31

Figure 3.8: Example of Labelling Image using LabelImg. 32

Figure 3.9: Annotation in Text File Format. 32

Figure 3.10: Data file, weapon.data. 32

Figure 3.11: Command for training the dataset. 33

Figure 3.12: Process Flow Diagram of Training and Testing YOLO v3

model. 34

Figure 3.13: Overview of the structure of OpenVINO in DL (Intel, 2019). 35

Figure 3.14: Conversion of YOLO v3 into IR, then loads into IE. 36

Figure 3.15: Flowchart of System Operation. 37

Figure 4.1: Overall System 41

Figure 4.2: Prototype of RP3 with NCS2 and Pi Camera 42

Figure 4.3: Precision vs Recall Curve for All Classes. 43

Figure 4.4: Precision vs Recall Curve for Gun Detection. 44

Figure 4.5: Precision vs Recall Curve for Helmet Detection. 44

xi

Figure 4.6: Precision vs Recall Curve for Knife Detection. 45

Figure 4.7: Overall Precision vs Recall Curve in Trained Model. 45

Figure 4.8: mAP against IoU Threshold for All Classes. 47

Figure 4.9: AP against IoU Threshold for Gun Detection. 47

Figure 4.10: AP against IoU Threshold for Helmet Detection. 48

Figure 4.11: AP against IoU Threshold for Knife Detection. 48

Figure 4.12: Overall mAP or AP against IoU Threshold in Trained Model. 49

Figure 4.13: IoU calculation (Rosebrock, 2016). 49

Figure 4.14: Gun Detection 50

Figure 4.15: Helmet Detection 51

Figure 4.16: Knife Detection 51

xii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

AP Average Precision

API Application Programming Interface

CC Camera CATalogue

CCTV Closed-Circuit Television

CLI Command-line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

D53 Darknet-53

DL Deep Learning

DNN Deep Neural Network

Drive Google Drive

EE Elephant Expedition

FN False Negative

FP False Positive

FPGA Field-programmable Gate Array

FPS Frame per Second

GC Google Colab

GPU Graphic Processing Unit

GUI Graphic User Interface

IE Inference Engine

ImgNet ImageNet

IoU Intersection over Union

IR Intermediate Representation

KL Kuala Lumpur

LRN Local Response Normalization

mAN mAlexNet

mAP Mean Average Precision

ML Machine Learning

mLN mLeNet

MO Model Optimiser

xiii

NCS2 Intel Movidius Neural Compute Stick 2

NCSDK2 Software Development Kit for Neural Compute Stick 2

OpenCV Open Source Computer Vision

OpenVINO Open Visual Inference and Neural Network Optimization

OS Operating System

P Precision

PCB Printed Circuit Board

R Recall

RaspSL Raspbian Stretch Lite

ReLU Linear Rectification

RP3 Raspberry Pi 3 Model B+

SD Secure Digital

SDK Software Development Kit

SS Snapchat Serengeti

SW Snapshot Wisconsin

TF TensorFlow

TP True Positive

USB Universal Serial Bus

VMware VMware Workstation Player

VNC Virtual Network Computing

VPU Visual Processing Unit

VPU Visual Processing Unit

Win32 Win32 Disk Imager

YOLO v2 You Only Look Once Version 2

YOLO v3 You Only Look Once Version 3

xiv

LIST OF APPENDICES

APPENDIX A: Python Script 56

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In this section, concept, applications and some related terms of deep learning

are discussed shortly. Also, the concept and applications of artificial intelligence

(AI) are roughly discussed.

1.1.1 Artificial Intelligence (AI)

John McCarthy stated the term AI in 1955 and defined as “artificial intelligence

is science and engineering of making intelligent machines”(McCarthy, 2007;

Dash and Subudhi, 2016). The definition of AI for nowadays is defined as “the

study and design of intelligent agents”, which means an intelligent agent is a

system that detects its environment and then maximizes its success rate (Dash

and Subudhi, 2016).

Besides, these processes consist of learning, reasoning, and self-

correction. Furthermore, the term “artificial intelligence” was officially

invented in 1956. After developing the first programmable computers, people

wondered the machines might become intelligent (Lovelace, 1842). The

applications of the AI are divided into five categories, which are reasoning,

knowledge, planning, communication, and perception. In addition, the AI trends

involve in various sectors such as data security, manufacturing, finance,

automotive industry and so on. Figure 1.1 shows a sample of AI in the

automotive industry.

2

Figure 1.1: Sample Case of AI in the Automotive Industry.

1.1.2 Introduction of Deep Learning (DL)

In this section, deep learning (DL) will be briefed. DL is a part of machine

learning (ML) that learn the features and task directly from data, and the ANN

which is the function of the brain (Lecun, Bengio and Hinton, 2015). A Venn

diagram is shown in Figure 1.2. Also, DL is referred to as “deep neural

networks”, or DNN, which means numerous layers are involved. Besides, a

neural network has only a single layer of data. On the other hand, DNN consists

of two or more layers.

Figure 1.2: A simple Venn diagram illustrates DL is a subset of ML

(Goodfellow, Bengio and Courville, 2016).

3

The computers are trained to work naturally as same as humans are

defined as DL. For example, the classification tasks from images, sound or text

can be performed using DL. Moreover, a stop sign can be detected or a

pedestrian and a lamppost can be recognized by driverless cars using DL. In

addition, an enormous number of data and neural network architectures that

consist of several layers are used to train the models. DL is able to achieve high

accuracy in recognition. Figure 1.3 illustrates the comparison between different

parts of AI system with their own different disciplines.

Figure 1.3: Comparison between different parts of AI system with their own

different disciplines (Goodfellow, Bengio and Courville, 2016).

4

 Google Brain that finally brought about the productization of DL

technologies over numerous Google services was officially established by

Andrew Ng. In the talk titled “Deep Learning, Self-taught Learning, and

Unsupervised Feature Learning”, Andrew defined the concept of DL as “Using

brain simulations, hope to make learning algorithms much better and easier to

use; make revolutionary advances in machine learning and AI” (Ng, 2013).

1.1.2.1 Artificial Neural Networks (ANN)

In ML, artificial neural networks (ANN) are the main tools to be used. Haykin

described ANN as “An extremely parallel combination of the simple processing

unit which can obtain knowledge from the environment through a learning

process and store the knowledge in its connections” (Haykin, 1999). ANNs have

input, input layer, processing layers, processing element, output layer, and

output and an entry (Guresen and Kayakutlu, 2011). Figure 1.4 shows a deep

neural network.

Figure 1.4: Deep Neural Network (DNN).

 Additionally, there are various types of learning which are reinforcement

learning, supervised learning and unsupervised learning. Meanwhile, there are

various types of neural networks which have their own specific functions and

5

levels of complexity such as feedforward neural network, recurrent neural

network, Hopfield networks, convolutional neural networks, and a variety of

others.

1.1.2.2 Convolutional Neural Network (CNN)

The convolutional neural networks (CNNs) are a kind of neural network and

considered the most popular among all the types of DNNs, as they process data

that contain a known grid like topology (Goodfellow, Bengio and Courville,

2016). Besides, CNN eliminates the requirement for manual feature extraction.

The feature extraction is automated to build the DL models to become high

accuracy computer vision task such as object classification. For example, Figure

1.5 shows classifying handwritten digits using the CNN sequence. Examples

can be found in LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, and ZFNet

(Wani et al., 2020).

Figure 1.5: A CNN Sequence to categorize the handwritten digits.

6

1.1.3 Application of Deep Learning

There are a few applications for DL that will rule the world in 2020 and beyond.

For example, self-driving cars, deep learning in healthcare, voice recognition,

image recognition, automatic colourization, and other applications.

 Have you heard about an AI security camera? An AI security camera

analyses the images from video surveillance cameras by utilizing computer

software programs to recognize vehicles, humans or objects. The advantages of

AI home security cameras can provide people and pet detection, facial

recognition, unusual behaviour detection, object tracking, and video recognition.

Figure 1.6 shows the pet and human detection using a smart home AI security

camera. Moreover, smart security camera system also can detect the weapon

such as guns as shown in Figure 1.7. This results in that the smart security

camera system can identify criminal behaviours with weapons such as guns and

knives. Hence, polices can search the crimes much easier than the traditional

security system.

 In short, the applications in DL bring a lot of benefits and make our life

smart and easier. However, applications in deep learning still can be improved.

Figure 1.6: Pet and Human Detection using AI Security Camera.

7

Figure 1.7: Smart Security Camera System from Athena Security identify guns

using AI and Cloud Technology.

1.2 Importance of the Study

According to the Crime Statistics, Malaysia, 2019, the first publication of the

Department of Statistics Malaysia, the crime rate per 100,000 population

between the states of Malaysia, from 2016-2018 is shown in Figure 1.8.

Meanwhile, Table 1.1 illustrates the crime rate by type of crimes in Malaysia

over these three years. The total number of cases among these three years are

300,184.

With the crime rates of 906.5, 716.9 and 642.6 per 100,000 population,

Kuala Lumpur (KL) ranks first for crime among the states of Malaysia in these

three years. However, KL has a greater crime index than Singapore from 2016-

2018 as shown in Figure 1.9. Therefore, this study aims to develop a smart

security camera system that detects crime and alert owners.

8

Figure 1.8: Crime rate per 100,000 population between the states of Malaysia,

2016-2018 (Department of Statistics Malaysia, 2019).

Table 1.1: Crime rate by type of crimes in Malaysia, 2016-2018 (Department

of Statistics Malaysia, 2019).

Figure 1.9: Crime rate per 100,000 population in Singapore, 2016-2018 (R.

Hirschmann, 2020).

9

1.3 Problem Statement

A smart security camera consists of the object or human detection and also

image classification using deep learning. The smart security camera also can

detect crimes through their behaviours. The false alarms are raised in the event

of blocking, brightness change, false detection of criminal behaviour and huge

storage for footage is required due to the camera is recording continually. In

addition, the error of detection in weapon also causes false alarms. Hence, the

objectives of this project are to increase the accuracy and speed of detection of

the system.

 The size of a camera is suggested to be small enough but provides good

performance and low cost. Besides, the CNN application generally is applied on

the computer (PC) or laptop, but the required computational power is high.

Hence, a single-board computer is considered to utilize a CNN application due

to it has low power consumption and small in size.

1.4 Aim and Objectives

The purposes of this project are:

 To develop a crime detection model using transfer learning and fine

tuning

 To integrate the trained model into an embedded security camera system

 To evaluate the performance of crime detection in terms of speed and

accuracy

10

1.5 Scope and Limitation of the Study

The study is focused on crime detection on the smart security camera. The

process of developing this system consists of a combination of hardware and

software. The hardware used are Raspberry Pi 3 Model B+ (RP3), micro SD

card, camera board for RP3 with 5MP, and Intel Movidius Neural Compute

Stick 2 (NCS2). Meanwhile, the software used are Ubuntu 18.04 Operating

System, PuTTY, Raspbian Operating System with Stretch Lite (RaspSL),

OpenCV, Caffe, and Software Development Kit for NCS2 (NCSDK2).

 The limitations are the camera provides a low quality of the image and it

is difficult to detect the distant objects or targets due to the low megapixel.

Additionally, switch socket outlet and adapter are required to provide power

supply for the single-board computer (RP3).

11

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The examples and applications of image classification using deep learning are

discussed in this chapter.

2.2 Applications using CNNs

In the paper titled “ImageNet Classification with Deep Convolutional Neural

Networks”, a large set of high-resolution images with the total of 1.2 million in

the ImageNet LSVRC-2010 contest were categorised using deep CNN into the

1000 distinct classes (Krizhevsky, Sutskever and Hinton, 2017). A dataset of

beyond 15 million high quality labelled images are categorised into around

22,000 categories is called ImageNet (ImgNet).

 The outputs of adjacent groups of neurons in the similar kernel map can

be concluded using pooling layers in CNNs. Figure 2.1 illustrates the

architecture of CNN which consists of eight layers in total, five in which are

convolutional while the following three are fully connected.

Figure 2.1: A CNN architecture (Krizhevsky, Sutskever and Hinton, 2017).

 There were two types of data augmentation that involved in generation

image translations and horizontal reflections, and alteration the intensities of the

RGB channels to train the images.

 Figure 2.2 shows the eight tested images with the top five predictions. The

red colour bar resulted in the correct label.

12

Figure 2.2: Eight tested images with Top Five Predictions.

 A camera trap images with DL was introduced in the papers titled

“ Identifying animal species in camera trap images using deep learning and

citizen science”, and “Automatically identifying, counting, and describing wild

animals in camera-trap imaged with deep learning”.

 The characteristics of the cameras must be independent gadgets, portable,

activated by movement, and infrared sensors for the passing animals (Willi et

al., 2019). Based on Figure 2.3, a convolutional layer is converted from an input

layer, then an output layer is generated through the end of the process of a CNN

architecture. The final output can be obtained from the output layer.

13

Figure 2.3: A CNN architecture proceed with an input layer to an output layer

(Willi et al., 2019).

 The four camera datasets used were Camera CATalogue (CC), Snapshot

Serengeti (SS), Elephant Expedition (EE), and Snapshot Wisconsin (SW) (Willi

et al., 2019). Moreover, transfer-learning was applied to improve the model to

become more accurate essentially for small datasets and deduct the training time

of the model. However, the classification can be improved in the future due to

the less accurate for rare species.

 There were four tasks for animal detection. The first step was to identify

images that consisted of animals that were animal or empty. The second step

was identifying the species of the animal with the top five predictions. After that,

the number of animals in the images was counted using DL. And, the last step

was defining the additional animal attributes and their behaviours. Figure 2.4

shows the animals can be identified, counted, and described in camera-trap

images successfully using DNN. Table 2.1 illustrates different deep learning

architectures has different performances.

14

Figure 2.4: Animals can be identified, counted, and described in camera-trap

images successfully using DNN (Norouzzadeh et al., 2018).

Table 2.1: Comparison of different deep learning architecture and their

performance (Norouzzadeh et al., 2018).

 In the paper titled “Age and Gender Classification using Convolutional

Neural Network”, it described age and gender were classified automatically

using deep CNN was introduced. The face recognition techniques can be

proceeded using deep CNN (LeCun et al., 1989). Besides, the unfiltered face

15

images for gender and age can be classified using Adience benchmark (Eidinger,

Enbar and Hassner, 2014). Hence, the accuracy of CNN design was tested using

Adience benchmark. The age classification errors mostly were affected by

occlusions, blur and low resolution of the system while the gender estimation

errors were the group of babies and young children due to the gender were no

visibility at these stages of age.

 In the paper titled “Car Parking Occupancy Detection Using Smart

Camera Networks and Deep Learning”, a detection for car parking occupancy

using CNN. The two CNN architectures were tested which were mAlexNet

(mAN) and mLeNet (mLN). The difference between mAN and mLN was that the

mAN was based on Alexnet while mLN was based on LeNet-5 in the CNN

architecture. The max pooling (MP) and linear rectification (ReLU) were

included in the first three convolutional layers of mAN. However, local response

normalization (LRN) was included in the first two convolutional layers only.

Meanwhile, mLN consisted of two convolutional layers and following by MP

and two fully connected layers which were based on LeNet-5. The comparison

of mLeNet and mAlexNet in CNN architecture is shown in Table 2.2.

Table 2.2: Comparison of mLeNet and mAlexNet in CNN architecture (Amato

et al., 2016).

 The two datasheets used were PKLot and CNRPark. Table 2.3 indicates

the experimental results of a single camera and multi-camera in mLN and mAN.

It showed the accuracy of mAN was higher than the mLN in single-camera and

multi-camera experiments, which was 0.996 or 99.6 %. Hence, the car parking

space occupancy can be detected and classified using CNN.

16

Table 2.3: Experiment Results of a single camera and multi-camera in mLeNet

and mAlexNet (Amato et al., 2016).

2.3 A Searching Process in 3D Space for Human Detection using

Camera and Scene Knowledge

In the paper titled “Human Detection by searching in 3D Space Using Camera

and Scene Knowledge”, human detection using the 3D search method instead

of the 2D search method. A single camera can estimate the 3D target position.

The objective of human detection was to find all the humans in a single image.

 A significant category with a large number of high-performance

representative human detection systems is known as sub-window classification

(Li, Wu and Nevatia, 2008). Moreover, the detection was completed by

computing all potential sub-windows in the 2D image. However, the detection

performance may be affected by different camera settings. Hence, the new

strategy was proposed.

 The camera setting were assumed to perform an object search in the 3D

world space rather than the 2D image space. All potential positions of objects

in the view were included using 3D scanning grid. The detection results are

shown in Figure 2.5(b) and Figure 2.5(c).

17

Figure 2.5: Pedestrian Detection Results in 2D search and 3D search (Li, Wu

and Nevatia, 2008).

 By eliminating the detection errors, a scene knowledge was applied. Then,

to obtain a subset of foot positions, the homography was combined with

background deduction for detection with the purpose of reducing the search

space during detection. An approach overview is shown in Figure 2.6.

Figure 2.6: An Approach Overview (Li, Wu and Nevatia, 2008).

 Figure 2.7 shows the searching process was performed using a 3D search

grid. The yellow lines estimated a person at a grid point. Moreover, it also can

be improved by appending scene knowledge. Typically, human detectors were

practised on images with constant size and humans’ sight from a distant camera

depending on sub-window classification.

18

Figure 2.7: A searching process using 3D Search Grid from datasheet (PETS

2007) (Li, Wu and Nevatia, 2008).

The same detector was used to determine the rate of detection and false

alarm for 2D and 3D from PETS 2007. The red colour labels indicated the false

alarm in the 3D, reflecting the fact that the 3D search was stronger than the 2D

search as shown in Figure 2.8 and Figure 2.9. It can be observed that the 3D

search was stronger than the 2D search.

Figure 2.8: Sample detection results for 2D search and 3D search on datasheet

(PETS 2007)(Li, Wu and Nevatia, 2008).

 Figure 2.9 shows the sample detection results for 2D search and 3D search

from datasheet CAVIAR INRIA. In addition, the different failure modes were

labelled with different colours as shown in Table 2.4.

19

Figure 2.9: Sample detection results for 2D search and 3D search on datasheet

(CAVIAR INRIA)(Li, Wu and Nevatia, 2008).

Table 2.4: Failure modes and Colours for 3D search on CAVIAR INRIA

datasheet.

Failure Modes Colour (Circles)

Walking posture Yellow

Blocking in crowds White

Top-down view Blue

Crouching and Bending Orange

 The overall detection rate was low because of the occlusion, pose

variation and low contrast.

 In short, there were a lot of benefits to this model. It could approximate

an object position in 3D. Moreover, the adversary effect of camera view was

deducted on detection performance using image rectification, and it was flexible

to combine with any patched-based detector (Li, Wu and Nevatia, 2008).

20

2.4 Applications using YOLO v3 Algorithm

In the paper titled “Application Research of Improved YOLO V3 Algorithm in

PCB Electronic Component Detection”, it described the advancement of the

algorithm using YOLO v3 with a real and virtual picture of PCB for the training

process. The YOLO v3 network structure and the layer of YOLO were extended

by removing the features of the network layer to detect the small objects. Figure

2.10 shows the flowchart of PCB detection.

Figure 2.10: General Flowchart of PCB detection (Li et al., 2019).

21

 The backbone network of YOLOv3 was Darknet-53 (D53). The anchor

box size ratio of YOLO v3 to detect the object was predicted using K-means

clustering. Moreover, the bounding box prediction was completed by the anchor

box to define the object in terms of height and width. Before training, the input

pictures were resized to 416 × 416 using YOLOv3. Next, the performance of

this PCB component detection was evaluated using different network structures

as displayed in Table 2.5. The mean average precision (mAP) and the speed of

object detection were recorded for the performance. The mAP of category F was

greater than others as shown in Table 2.5 which was 93.07 %.

Table 2.5: mAP and speed of detection for PCB component detection using

Different methods (Li et al., 2019).

 In the paper titled “Object Detection and Tracking using YOLO v3

Framework for Increased Resolution Video”, the pre-trained model YOLO v3

was applied for vehicle detection and tracking purpose. Besides, a powerful

GPU system was required to support YOLO v3 in increasing the accuracy and

speed of object detection.

 Furthermore, the implementation of the system was planned to work in

the online and offline process using the YOLO v3 pre-trained model as shown

in Figure 2.11. After training, a YOLO v3 weights file was generated.

22

Figure 2.11: Implementation of System using YOLO v3 pre-trained model

(Shakil, Rajjak and Kureshi, 2020).

 In YOLO v3, the network architecture used was D53 and the libraries used

were OpenCV and TensorFlow. The results of the experiment show that the

object can be identified as a car and tracked as indicated in Figure 2.12.

Figure 2.12: Object Detection and Tracking as cars (Shakil, Rajjak and Kureshi,

2020)

23

 Next, the results for mAP, execution time, and frame per second (FPS)

were compared using different methods as shown in Table 2.6. Although the

YOLO v3 model was not the highest in each part result, it obtained good results

in general. At the same time, the accuracy of the system was measured in

different methods. According to Table 2.7, YOLO v3 had a high accuracy which

was 80 %.

Table 2.6: Comparison of the Performance of the System using Different

Methods (Shakil, Rajjak and Kureshi, 2020).

Table 2.7: Comparison of Accuracy of System in Different Methods (Shakil,

Rajjak and Kureshi, 2020).

 In summary, the object detection can be improved using YOLO v3 model

because the speed of detection and accuracy were performed in good results.

The mAP for PCB detection and vehicle detection were 93.07 % and 76.7 %

respectively.

24

2.5 Summary

To summarise the reviews, there are many applications using CNN nowadays.

However, the classification methods using CNN can be further improved to rise

the accuracy of the model or system. There are also different CNN architectures

that are used for classification. Moreover, the searching or classifying process

can be enhanced into the 3D search method instead of 2D search method in the

future as shown in Section 2.3. Furthermore, the YOLO v3 model is applied in

object detection due to the high accuracy and speed of detection.

25

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the software and hardware used in this project are listed out

clearly. The procedures of this project are shown step by step.

3.2 Design Requirements

The design requirements are split into two groups that are hardware and

software requirements. Integration of hardware and software is to work well in

the system.

3.2.1 Hardware Requirements

The hardware required for this project are Raspberry Pi 3 Model B+ (RP3), Intel

Movidius Neural Compute Stick 2 (NCS2), Camera Board for RP3 with 5MP,

and micro SD Card with 128GB and 100MB/s

Raspberry Pi 3 Model B+ or RP3 is a single board computer with low

cost, small in size that connects into a computer monitor or TV, a mouse, and a

keyboard. The laptop has a built-in keyboard and can connect with a mouse

through the USB port. Therefore, the work for RP3 can be observed and

controlled through the laptop. RP3 provides USB ports, WIFI support, and

Bluetooth connection. It is ideal to be implemented in this project because it

consumes low power. Besides, it has small in size and affordable in price. Figure

3.1 shows a RP3.

In addition, NCS2 is a plug and play hardware with a USB-thumb-drive-

sized. The NCS2 is a visual processing unit (VPU) on a USB stick. It consumes

low power but has high performance on real-time interference and user-friendly.

Any single-board computers can be paired with the NCS2. RP3 is paired with

the NCS2 in this project. Figure 3.2 shows an Intel Movidius NCS2.

The camera board for RP3 with 5MP is chosen for this project. Although

the size of the camera is small, the performance of the camera is satisfactory and

26

it is reasonable in price. The camera is used to capture images or record moving

images. Figure 3.3 shows a 5MP camera board.

A micro SD card with 128GB and 100MB/s is chosen due to its large

storage and high read speed. A micro SD Card with 128GB and 100MB/s is

shown in Figure 3.4.

Figure 3.1: Raspberry Pi 3 Model B+ (RP3)

Figure 3.2: Intel Movidius Neural Compute Stick 2 (NCS2)

Figure 3.3: Camera Board for RP3 with 5MP

27

Figure 3.4: Micro SD Card with 128GB and 100MB/s

3.2.2 Software Requirements

The software required for this project are VMware Workstation Player (Virtual

Machine), Ubuntu 18.04 (Operating System), Raspbian Stretch Lite (RaspSL),

Win32 Disk Imager (Win32), PuTTY, Open Source Computer Vision

(OpenCV), Neural Compute Software Development Kit 2 (NCSDK2), Open

Visual Inference and Neural Network Optimization (OpenVINO), VNC viewer

and TensorFlow (TF).

A virtual machine that can run on a Windows or Linux PC is called

VMware Workstation Player (VMware). VMware allows users to run multiple

machines synchronize on a single host computer. Ubuntu 16.04 is installed in

the VMware Workstation Player.

An open-source Linux distribution based on Debian is called Ubuntu

18.04. Ubuntu 18.04 is chosen in this project because it can support NCSDK.

Raspbian Stretch Lite or RaspSL is selected among the Raspbian

operating systems. The Raspbian Lite is a minimal version of Raspbian and does

not contain a graphic user interface (GUI). However, it has a command-line

interface (CLI) which is shown automatically when it is connected to a monitor

or TV. The Raspbian Lite version executes faster than other Raspbian operating

systems due to it does not consist of GUI.

A simple open-source application is used in this project which is Win32

Disk Imager (Win32). The image file is written from CD to an SD card using

Win32, to generate a virtual disk drive.

PuTTY is an implementation of SSH and Telnet for the Windows

platform. PuTTY is used to connect RP3 to the laptop with SSH.

28

A library of programming functions generally targeted at real-time

computer vision is called OpenCV. In short, OpenCV is a library used for image

processing.

Intel Movidius Neural Compute software development kit 2, known as

NCSDK2 is the legacy soft development kit, SDK provided for users of the Intel

Movidius NCS2. NCS2 is supported by NCSDK2.

OpenVINO is a toolkit to facilitate the optimization of DL models and

enable the DL models using an inference engine (IE) in Intel hardware. The Intel

hardware includes CPU, GPU, NCS2, and FPGA.

VNC viewer stands for Virtual Network Computing (VNC). VNC

viewer facilitates remote desktop sharing over a network connection. RP3 can

be controlled with a laptop when sharing the same network connection.

TF is an open-source library for the computation of numerical and large

scale ML. Moreover, DNNs can be trained and run by TF. Python language is

used in TF due to the ease of learning and implementation processes.

3.3 Setup of Operating System (OS), Dependencies and Software into

a RP3

RaspSL will be loaded to the RP3 through a microSD card. Lite version is

chosen because it does not have a graphic user interface (GUI). After the

installation of OS, an SSH server uses the secure shell protocol to connect the

remote computer which is RP3. To enable the SSH server on RaspSL, an empty

file called “ssh” is created in the micro SD card. The SSH server enables remote

configuration of the RaspSL OS running the RP3. Next, the Wi-Fi chip on RP3

connects to a 2.4 GHz network. A file named “wpa_supplicant.conf” is created

and allocated into the micro SD card.

 After that, NCSDK2 is installed for the deployment of NCS2.OpenVINO

supports a lot of DL libraries, for example, TF, Caffe, and mxnet. Therefore,

OpenVINO and OpenCV dependencies are installed into RP3. A virtual

environment of OpenVINO is formed on RP3 to support NCS2. The installation

of TF into RP3 is completed. VNC viewer is installed into RP3 to smoothen the

process of testing and collecting results. The detections are easy to be seen

29

through the VNC viewer. After installing all the software dependencies, RP3 is

ready for the project.

3.4 Model Selection for Training Dataset

The model selection for training the dataset is the You Only Look Once Version

3, or YOLO v3. YOLO is an algorithm that utilizes CNNs for object detection.

YOLO is considered one of the top object detection algorithm among other

algorithms. Although the accuracy of object detection in YOLO v3 is not the

highest, it is a great selection for real-time detection due to its loss of accuracy

is low.

 The architecture of the feature extractor used in YOLO v3 is Darknet-53

(D53). D53 consists of 53 convolutional layers. D53 is slower than Darknet-19

due to the number of convolutional layers in D53 is more than Darknet-19.

Figure 3.5 shows a model of Darknet-53. Besides, the performance of D53 is

higher and 1.5 times faster than ResNet-101. The performance of D53 and

ResNet-152 are similar but D53 is two times faster (Redmon and Farhadi, 2018).

Figure 3.6 displays the comparison of the backbone.

Figure 3.5: Model of Darknet-53 (Redmon and Farhadi, 2018).

30

Figure 3.6: Comparison of Backbone (Redmon and Farhadi, 2018).

 A predefined bounding boxes with specific width and height for multiple

object detection in a one grid cell, known as anchor boxes. YOLO v3 has 9

anchor boxes while three of them are for each scale. Nine anchors are generated

using K-Means clustering. The number of anchor boxes for YOLO v2 is less

than YOLO v3, so YOLO v3 has higher accuracy as compared to YOLO v2.

 In YOLO v3, the average precision (AP) for small objects is greater than

YOLO v2 and Fast RCNN. The mAP is increased when the localization errors

are reduced. The ratios of the width to the height of an image and different scales

of predictions for the identical object are enhanced by adding the feature

pyramid-like method. The overall performance with mAP at 50 % threshold and

inference time for YOLO v3 is better than other methods as shown in Figure

3.7. YOLO v3 has faster inference time than other models. For example, FPN

FRCN has the highest mAP but longer inference time as compared to YOLO v3.

31

Figure 3.7: COCO Dataset Testing with mAP@0.5 (Redmon and Farhadi, 2018)

 In short, YOLO v3 and its feature extraction, D53 are chosen for dataset

training due to its overall performance.

3.5 Procedures for Training and Testing YOLO v3 Model

Google Colab (GC) is used for training the YOLO v3 model because it has built-

in free 12GB-RAM GPU and easy to work. Besides, GC is a free cloud service

and works with Google Drive. The advantages of GC used in this project are an

environment for deep learning is provided by GC and the data can be saved in

Drive. However, the disadvantage of GC is the runtime is volatile, the runtime

must be reconfigured to start training dataset after every twelve hours.

 A Google account is signed up and then sign in to GC. Next, all the

software dependencies for training are installed in GC. After that, the Darknet

environment is set up in GC because the YOLO v3 model is trained using

Darknet.

 After setting up GC, a dataset for three classes is collected which are gun,

helmet, and knife. Data augmentation is a technique that increases the size of

the dataset. The images in a dataset can be modified by adjusting rotation,

brightness, flip and other methods. For example, the original dataset of the knife

only has around three hundred images and then the dataset is expanded to more

than one thousand images through data augmentation for training. Next, the

process of labelling the dataset in text format is known as data annotation. All

the images are labelled using LabelImg and saved in text format as shown in

32

Figure 3.8. After that, all the images and annotations files in .jpg and .txt format

are saved in the same folder and then upload to Google Drive. Figure 3.9 shows

the annotations in the text file format. The object-class represents the class id of

the labelled data. Additionally, x_centre and y_centre represent the centre of the

bounding box in coordination while width and height represent the image

dimensions.

Figure 3.8: Example of Labelling Image using LabelImg.

Figure 3.9: Annotation in Text File Format.

 Next, the dataset is separated into the training set and testing set by

executing a Python script. After running the Python script, two text files are

created which are train.txt and test.txt. Furthermore, the weapon.names file and

the data file, weapon.data are created. Figure 3.10 displays the format of the

data file, weapon.data.

Figure 3.10: Data file, weapon.data.

33

 Next, configuration file, yolov3.cfg is created for the training process. The

training process is started after done preparation of the data file, configuration

file, and Darknet. The command is run as shown in Figure 3.11. The training

process takes around two days to meet a certain accuracy.

Figure 3.11: Command for training the dataset.

 Moreover, the testing set only has ten per cent of images from the dataset.

The testing process depends on the mAP at 0.5 of IoU threshold and tests

whether the object is detected or not. When both requirements are achieved, the

pre-trained model of YOLO v3, yolov3.weights can be downloaded. Figure 3.12

illustrates the flow diagram for the training and testing processes of the YOLO

v3 pre-trianed model.

34

Figure 3.12: Process Flow Diagram of Training and Testing YOLO v3 model.

35

3.6 Conversion of YOLO v3 model into Intermediate Representation

(IR) to load in Inference Engine (IE)

A Python-based command-line tool that converts DL frameworks into an

intermediate representation (IR) is known as Model Optimiser (MO). The DL

frameworks include Caffe, TF, MXNet, and ONNX (Intel, 2020). Besides, the

two main objectives of MO are producing a valid IR and generating an

optimised IR. The IR is the model with a pair of files that defines the network

topology and consists of weights and biases binary data which are .xml and .bin

files respectively.

 After converting DL frameworks into IR, the IR files are loaded into the

Inference Engine (IE). IE has a common Application Programming Interface

(API) that uses to infer input data and perform inference on IR files. The API in

IE includes C, C++, and Python to execute IR files and perform an optimisation

on inference. Moreover, IE supports targeted hardware devices based on Intel

architecture including CPU, GPU, FPGA, and VPU. An overview of the

structure of OpenVINO in DL is shown in Figure 3.13.

Figure 3.13: Overview of the structure of OpenVINO in DL (Intel, 2019).

 First, the YOLO v3 model with configuration and weights files is

converted into TF. Next, the TF file (.pb) is converted into IR using MO. IR

includes network topology (.xml) and binary data files (.bin) are generated to

load into IE. After that, IE optimises the generated IR files and then executes

with different devices which are CPU and NCS2. The devices are used to test

36

the FPS in real-time object detection. Figure 3.14 shows the summary of the

conversion into IR and then loads into IE.

Figure 3.14: Conversion of YOLO v3 into IR, then loads into IE.

37

3.7 Flowchart of System Operation

The flowchart of overall system operation in RP3 is shown in Figure 3.15. If the

camera is not activated, a video file is required to perform the system. NCS2 is

required for RP3 to support IR files. Next, the frame is read and processed. If

the classes in the model are detected, the bounding box is drawn and labelled

relevant classes. If the ‘q’ is pressed, it will exit and shut down the system. The

system is stopped.

Figure 3.15: Flowchart of System Operation.

38

3.8 Evaluation Performance of the Model

The performance of the model is divided into four parts, which are precision (P)

and recall (R), mean average precision (mAP), crime detection, and FPS of the

system.

3.8.1 Measurement of Precision, Recall and Mean Average Precision

P, R and mAP are recorded in this model. P and R are recorded with different

confidence scores while mAP is recorded using different intersection over union

(IoU) thresholds. P is defined as the percentage of accuracy level of prediction

while R is defined as the percentage of all possible positive results that can be

found. P and R depend on TP, FP, and FN values. The formula to calculate P

and R are shown in equations 3.1 and 3.2 respectively.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3.1)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3.2)

where

𝑃 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

39

Average Precision (AP) is the average precision at a group of eleven

recall values from 0 to 1 and the formula is shown in Equation 3.3. The step size

of the recall values is 0.1.

𝐴𝑃 =
1

11
∑ 𝑃𝑟

𝑟∈{0.0,…,1.0}

(3.3)

where

𝐴𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟 = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒

𝑃 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒𝑠

Next, mAP is the average of AP with the given formula as shown in

Equation 3.4.

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

(3.4)

where

𝑚𝐴𝑃 = 𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐴𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

40

3.8.2 Measurement of Object Detection and FPS

The sample images of the object detection and the frame per second (FPS) of

the system with different devices are collected.

Sample images are collected in three classes:

 Gun

 Helmet

 Knife

Testing FPS of the system:

 CPU

 CPU + NCS2

 RP3 + NCS2

3.9 Summary

In short, the YOLO v3 model is trained in GC with Darknet feature extraction

and then converted into IR. The performance of the system is evaluated in the

terms of P, R, mAP, crime detection and FPS of the system.

41

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, results are recorded and discussed.

4.2 System Overview

In this project, an adapter is required to provide power supply to the RP3. Next,

the Pi camera and NCS2 are set up and ready to run the detection. SSH connects

RP3 and laptop to allow detections can be viewed on the screen of a laptop.

Next, NCS2 is a plugin to accelerate the speed of the detections. The overall

embedded system is presented in Figure 4.1. Moreover, Figure 4.2 displays the

prototype with NCS2.

When the IR files are loaded, there are two input options to be selected

which are camera or video. After that, the video frame is read. The frame should

be resized to (416, 416) and provide the shape to a suitable size. Then, the NCS2

run the inference to process the inferred images. Next, if the relevant object is

detected, the bounding box is drawn and then label it. The video frame keeps

running until ‘q’ is pressed to exit the window. Lastly, the NCS2 and the whole

system are shut down.

Figure 4.1: Overall System

42

Figure 4.2: Prototype of RP3 with NCS2 and Pi Camera

4.3 Evaluation Precision and Recall of the Model

In this section, P and R are evaluated from the testing dataset with different

confidence scores. There are 400 images from the dataset for the testing process.

Besides, the data of P and R for all classes, gun detection, helmet detection, and

knife detection are recorded in Table 4.1 and Table 4.2. Precision vs Recall

Curve for all classes refers to Figure 4.3. Furthermore, Figure 4.4 displays

Precision vs Recall Curve for gun detection. Next, the Precision vs Recall Curve

for helmet detection is shown in Figure 4.5. The Precision vs Recall Curve or

knife detection is displayed in Figure 4.6. Meanwhile, Figure 4.7 displays the

overall Precision vs Recall Curve in this trained model.

Table 4.1: Precision and Recall for All Classes and Gun Detection in Different

Confidence Scores.

43

Table 4.2: Precision and Recall for Helmet and Knife Detection in Different

Confidence Score.

Figure 4.3: Precision vs Recall Curve for All Classes.

44

Figure 4.4: Precision vs Recall Curve for Gun Detection.

Figure 4.5: Precision vs Recall Curve for Helmet Detection.

45

Figure 4.6: Precision vs Recall Curve for Knife Detection.

Figure 4.7: Overall Precision vs Recall Curve in Trained Model.

46

P and R are plotted using different confidence thresholds from 0.1 to 0.9

with the step size 0.1. From these figures, it can be observed that P is inversely

proportional to R. The pattern of graphs is similar for each graph. Besides, P

and R represents the accuracy of the model. Each bounding box contains its

confidence level to give a rank of the output. According to Figure 4.7, knife

detection has the highest P and R while helmet detection has the lowest P and

R. This shows that accuracy in knife detection is higher than helmet detection.

In short, the highest P and R obtained in this model are 0.859 and 0.668

respectively.

4.4 Evaluation Average Precision (AP), Mean Average Precision

(mAP) and Intersection over Union Threshold (IoU) of the Model

In this section, the relationship between mAP or AP and IoU threshold is

evaluated from the testing dataset and shown in Table 4.3. The mAP against

IoU for all classes is shown in Figure 4.8. Meanwhile, Figure 4.9 displays AP

against IoU for gun detection. According to Figure 4.10, AP against IoU for

helmet detection is illustrated. Additionally, AP against IoU for knife detection

is displayed in Figure 4.11. Additionally, overall mAP or AP against IoU in this

trained model is shown in Figure 4.12.

Table 4.3: mAP or AP for Overall System, Gun, Helmet and Knife Detection in

Different IoU thresholds.

47

Figure 4.8: mAP against IoU Threshold for All Classes.

\

Figure 4.9: AP against IoU Threshold for Gun Detection.

48

Figure 4.10: AP against IoU Threshold for Helmet Detection.

Figure 4.11: AP against IoU Threshold for Knife Detection.

49

Figure 4.12: Overall mAP or AP against IoU Threshold in Trained Model.

IoU evaluates the accuracy of a detected object in a dataset. The concept

and formula of IoU can be shown in Figure 4.13.

Figure 4.13: IoU calculation (Rosebrock, 2016).

 In short, AP is for each class while the mAP is average of AP. Next, AP

and mAP are plotted with different IoU threshold from 0.5 to 0.95 by increasing

0.05. Based on these figures, AP and IoU threshold are inversely proportional.

50

The pattern of graphs is similar to each other. Moreover, Figure 4.12 indicates

the AP of knife detection is highest while helmet detection is the lowest AP

resulting in the accuracy of knife detection is high. The optimum IoU threshold

in this model is 0.65 which the mAP of 67.3 %.

4.5 Crime Detections

The best sample crime detections for the gun, helmet, and knife are collected.

Besides, Figure 4.14 shows a person is holding a gun and the gun is detected.

Moreover, Figure 4.15 indicates a person with a helmet and the helmet is

detected. Based on Figure 4.16, a knife is detected successfully.

The confidence score or accuracy of the gun, helmet, and knife

detections 84.4 %, 99.97 %, and 95.32 % respectively. The detections prove that

the model can detect the gun, helmet, and knife successfully.

Figure 4.14: Gun Detection

51

Figure 4.15: Helmet Detection

Figure 4.16: Knife Detection

52

4.6 Real-time and Input Video Performance

The real-time and input video performance for the testing frame per second (FPS)

with different devices is recorded in Table 4.4. FPS also refers to the speed of

detection.

The CPU used is Intel Core-i5. Besides, the FPS of the model is

relatively low. Moreover, the FPS for the integration of CPU and NCS2 is higher

as compared to the testing of CPU and a combination of RP3 with NCS2.

However, RP3 is chosen because it is lightweight and affordable in price. Hence,

the model requires further improvement for the speed of detection or FPS.

Table 4.4: Testing FPS with Different Devices in Input Video and Real-time.

Devices CPU CPU + NCS2 RP3 + NCS2

FPS 2.48 3.40 2.30

4.7 Summary

In a nutshell, the performance of the model is evaluated. The Precision vs Recall

curve and graph of mAP against IoU threshold are plotted and analysed. Besides,

P is inversely proportional to R. The highest P and R obtained in this model are

0.859 and 0.668 respectively. Moreover, mAP and IoU threshold are inversely

proportional. The optimum IoU threshold in this model is 0.65 which the mAP

for the overall system is 67.3 %. Furthermore, the gun, helmet, and knife are

detected successfully. However, the FPS of the model is relatively low when

testing on different devices in real-time or input video.

53

CHAPTER 5

5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In short, the model is trained in Darknet architecture and then converted into IR

files to support NCS2. The time for training and testing processes is needed in

this project. Besides, the crime detection model is developed and integrated into

an embedded security camera system. The system can be performed in real-time

or input video.

The confidence score affects the results of P and R. P is inversely

proportional to R. Moreover, the figures of mAP against IoU threshold show

that the mAP and IoU threshold are inversely proportional. The mAP of the

system is 67.3% with the 0.65 optimum IoU threshold. The gun, helmet, and

knife are detected successfully. Although the FPS of the model in real-time

performance is low, the accuracy of the model is satisfied. The system is

unstable to perform in real-time.

5.2 Future Work

In order to process the video, the system should work well in real-time.

According to the FPS results of the system, the FPS is quite low and less

efficient in real-time performance. The FPS of the model is needed to be

enhanced. Besides, the accuracy of the system is considered to be improved.

The source of the dataset is limited because the current training dataset only has

3300 images. Therefore, the size of the training dataset can be increased to as

much as possible. The collected images are increased for the training process to

rise the accuracy for crime detection of the model. Future work is more

concentrated to increase the detection speed and accuracy of the system so that

it can work well in real-time performance.

 The other suggestion is to integrate the system to the Internet of Things

(IoT) so that it can send notifications for alerting owners. The system can be

modified into the CCTV system in the future.

54

REFERENCES

Amato, G., Carrara, F., Falchi, F., Gennaro, C. and Vairo, C., 2016. Car parking

occupancy detection using smart camera networks and Deep Learning.

Proceedings - IEEE Symposium on Computers and Communications, 2016-

Augus(Dl), pp.1212–1217.

Dash, S. and Subudhi, B., 2016. Handbook of research on computational

intelligence applications in bioinformatics. Handbook of Research on

Computational Intelligence Applications in Bioinformatics. IGI Global.

Department of Statistics Malaysia, 2019. Crime Statistics, 2019. [online]

Available at:

<https://www.dosm.gov.my/v1/index.php/index.php?r=column/cthemeByCat

&cat=455&bul_id=MEs4QzNxWkNZZDEyM08yM0Jsd05vQT09&menu_id=

U3VPMldoYUxzVzFaYmNkWXZteGduZz09> [Accessed 23 Apr. 2020].

Eidinger, E., Enbar, R. and Hassner, T., 2014. Age and gender estimation of

unfiltered faces. IEEE Transactions on Information Forensics and Security,

9(12), pp.2170–2179.

Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. [online]

Healthcare Informatics Research, Available at:

<https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd

&pg=PR5&dq=Ian+Goodfellow+and+Yoshua+Bengio+and+Aaron+Courville

&ots=MLU59rozNU&sig=YHYf6iAwhmFAQkBFuLnHAgrkMts> [Accessed

17 Aug. 2019].

Guresen, E. and Kayakutlu, G., 2011. Definition of Artificial Neural Networks

with comparison to other networks. In: Procedia Computer Science. pp.426–

433.

Haykin, S.S., 1999. Neural networks : a comprehensive foundation. Prentice

Hall.

Intel, 2019. Model Optimizer Concept | OpenVINOTM toolkit | Ep.08 | Intel

Software - YouTube. [online] Available at:

<https://www.youtube.com/watch?v=Kl1ptVb7aI8&list=PLDKCjIU5YH6jMz

cTV5_cxX9aPHsborbXQ&index=8> [Accessed 24 Apr. 2020].

Intel, 2020. Deep Learning Inference | Intel® Distribution of OpenVINOTM

Toolkit | Intel® Software. [online] Available at: <https://software.intel.com/en-

us/openvino-toolkit/deep-learning-inference> [Accessed 20 Apr. 2020].

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. ImageNet classification

with deep convolutional neural networks. Communications of the ACM, [online]

60(6), pp.84–90. Available at:

<http://dl.acm.org/citation.cfm?doid=3098997.3065386> [Accessed 18 Aug.

2019].

55

Lecun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553),

pp.436–444.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.

and Jackel, L.D., 1989. Backpropagation Applied to Handwritten Zip Code

Recognition. Neural Computation, 1(4), pp.541–551.

Li, J., Gu, J., Huang, Z. and Wen, J., 2019. Application research of improved

YOLO V3 algorithm in PCB electronic component detection. Applied Sciences

(Switzerland), 9(18).

Li, Y., Wu, B. and Nevatia, R., 2008. Human detection by searching in 3d space

using camera and scene knowledge. Proceedings - International Conference on

Pattern Recognition.

Lovelace, A.K., 1842. Sketch of the analytical engine invented by Charles

Babbage.

McCarthy, J., 2007. What Is Artificial Intelligence? American Scientist, 73(3),

p.258.

Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S.,

Packer, C. and Clune, J., 2018. Automatically identifying, counting, and

describing wild animals in camera-trap images with deep learning. Proceedings

of the National Academy of Sciences of the United States of America, 115(25),

pp.E5716–E5725.

R. Hirschmann, 2020. Singapore: Crime Rate 2019. [online] Statista. Available

at: <https://www.statista.com/statistics/628339/crime-rates-in-singapore/>

[Accessed 23 Apr. 2020].

Redmon, J. and Farhadi, A., 2018. YOLOv3: An Incremental Improvement.

[online] Available at: <http://arxiv.org/abs/1804.02767>.

Rosebrock, A., 2016. Intersection over Union (IoU) for object detection -

PyImageSearch. [online] www.pyimagesearch.com. Available at:

<https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-

for-object-detection/> [Accessed 24 Apr. 2020].

Shakil, S., Rajjak, A. and Kureshi, A.K., 2020. Object Detection and Tracking

using YOLO v3 Framework for Increased Resolution Video. (6), pp.118–125.

Wani, M.A., Bhat, F.A., Afzal, S. and Khan, A.I., 2020. Advances in Deep

Learning. [online] Available at: <http://link.springer.com/10.1007/978-981-13-

6794-6> [Accessed 18 Aug. 2019].

Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A.,

Veldthuis, M. and Fortson, L., 2019. Identifying animal species in camera trap

images using deep learning and citizen science. Methods in Ecology and

Evolution, 10(1), pp.80–91.

56

5 APPENDICES

APPENDIX A: Python Script

**
Copyright(c) 2018 Intel Corporation.
License: MIT See LICENSE file in root directory.
**

#import necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import sys, os, cv2, time
import numpy as np, math
from argparse import ArgumentParser

#for Raspbian OS
try:
 from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
 from openvino.inference_engine import IENetwork, IEPlugin

input size of model
m_input_size = 416

#network of YOLO layer
yolo_scale_13 = 13
yolo_scale_26 = 26
yolo_scale_52 = 52

initialization
classes = 3 #3 classes in this model
coords = 4
num = 3
anchors = [10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326]

initialize the list of class
LABELS = ("gun", "helmet","knife")

bouding box and label color
label_text_color = (255, 255, 255)
label_background_color = (125, 175, 75)f
box_color = (255, 128, 0)
box_thickness = 1

construct the argument parse and parse the arguments
#load plugin for Inference Engine
def build_argparser():
 parser = ArgumentParser()
 parser.add_argument("-d", "--device", help="Specify the target device to infer on; CPU,
GPU, FPGA or MYRIAD is acceptable. \
 Sample will look for a suitable plugin for device specified
(CPU by default)", default="CPU", type=str)
 return parser

def EntryIndex(side, lcoords, lclasses, location, entry):
 n = int(location / (side * side))
 loc = location % (side * side)
 return int(n * side * side * (lcoords + lclasses + 1) + entry * side * side + loc)

57

Confidence
class DetectionObject():
 xmin = 0
 ymin = 0
 xmax = 0
 ymax = 0
 class_id = 0
 confidence = 0.0

 def __init__(self, x, y, h, w, class_id, confidence, h_scale, w_scale):
 self.xmin = int((x - w / 2) * w_scale)
 self.ymin = int((y - h / 2) * h_scale)
 self.xmax = int(self.xmin + w * w_scale)
 self.ymax = int(self.ymin + h * h_scale)
 self.class_id = class_id
 self.confidence = confidence

#Load IoU threshold function
def IntersectionOverUnion(box_1, box_2):
 width_of_overlap_area = min(box_1.xmax, box_2.xmax) - max(box_1.xmin,
box_2.xmin)
 height_of_overlap_area = min(box_1.ymax, box_2.ymax) - max(box_1.ymin,
box_2.ymin)
 area_of_overlap = 0.0
 if (width_of_overlap_area < 0.0 or height_of_overlap_area < 0.0):
 area_of_overlap = 0.0
 else:
 area_of_overlap = width_of_overlap_area * height_of_overlap_area
 box_1_area = (box_1.ymax - box_1.ymin) * (box_1.xmax - box_1.xmin)
 box_2_area = (box_2.ymax - box_2.ymin) * (box_2.xmax - box_2.xmin)
 area_of_union = box_1_area + box_2_area - area_of_overlap
 retval = 0.0
 if area_of_union <= 0.0:
 retval = 0.0
 else:
 retval = (area_of_overlap / area_of_union)
 return retval

#-----Parsing for YOLO v3 Output
def ParseYOLOV3Output(blob, resized_im_h, resized_im_w, original_im_h,
original_im_w, threshold, objects):

 out_blob_h = blob.shape[2]
 out_blob_w = blob.shape[3]

 side = out_blob_h

anchor_offset = 0

#-----Extracting layer parameters
 if len(anchors) == 18: ## YoloV3
 if side == yolo_scale_13:
 anchor_offset = 2 * 6
 elif side == yolo_scale_26:
 anchor_offset = 2 * 3
 elif side == yolo_scale_52:
 anchor_offset = 2 * 0

58

 else:
 if side == yolo_scale_13:
 anchor_offset = 2 * 6
 elif side == yolo_scale_26:
 anchor_offset = 2 * 3
 elif side == yolo_scale_52:
 anchor_offset = 2 * 0

 side_square = side * side
 output_blob = blob.flatten()

#-----------------Parsing YOLO Region Output------------------#

 for i in range(side_square):
 row = int(i / side)
 col = int(i % side)
 for n in range(num):
 obj_index = EntryIndex(side, coords, classes, n * side * side + i, coords)
 box_index = EntryIndex(side, coords, classes, n * side * side + i, 0)
 scale = output_blob[obj_index]
 if (scale < threshold):
 continue
 x = (col + output_blob[box_index + 0 * side_square]) / side * resized_im_w
 y = (row + output_blob[box_index + 1 * side_square]) / side * resized_im_h
 height = math.exp(output_blob[box_index + 3 * side_square]) *
anchors[anchor_offset + 2 * n + 1]
 width = math.exp(output_blob[box_index + 2 * side_square]) *
anchors[anchor_offset + 2 * n]
 for j in range(classes):
 class_index = EntryIndex(side, coords, classes, n * side_square + i,
coords + 1 + j)
 prob = scale * output_blob[class_index]
 if prob < threshold:
 continue
 obj = DetectionObject(x, y, height, width, j, prob, (original_im_h /
resized_im_h), (original_im_w / resized_im_w))
 objects.append(obj)

return objects

Inference Engine main program
def main_IE_infer():
#initiate the camera setting
 camera_width = 320
 camera_height = 240
 fps = ""
 framepos = 0
 frame_count = 0
 vidfps = 0
 skip_frame = 0
 elapsedTime = 0
 new_w = int(camera_width * m_input_size/camera_width)
 new_h = int(camera_height * m_input_size/camera_height)

59

#-----load IR files, .xml and .bin file
 args = build_argparser().parse_args()
 model_xml = "/home/pi/Desktop/FYP2-v3/obj_detection.xml"
 model_bin = os.path.splitext(model_xml)[0] + ".bin"

#-----this is for input camera (real-time)
initialize the video stream, allow the camera sensor to warmup,
and initialize the FPS counter
 cap = cv2.VideoCapture(0)
 cap.set(cv2.CAP_PROP_FPS, 30)
 cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
 cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)

#-----this is for input video
 #cap = cv2.VideoCapture("data/input/testvideo.mp4")
 #camera_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
 #camera_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
 #frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
 #vidfps = int(cap.get(cv2.CAP_PROP_FPS))
 #print("videosFrameCount =", str(frame_count))
 #print("videosFPS =", str(vidfps))

 time.sleep(1)

#-----load plugin to Inference Engine
 plugin = IEPlugin(device=args.device)
 if "CPU" in args.device:
 plugin.add_cpu_extension("lib/libcpu_extension.so")
 net = IENetwork(model=model_xml, weights=model_bin)
 input_blob = next(iter(net.inputs))
 exec_net = plugin.load(network=net)

 while cap.isOpened():
 t1 = time.time()

 ## Uncomment only when playing video files
 #cap.set(cv2.CAP_PROP_POS_FRAMES, framepos)

 #read frame
 ret, image = cap.read()
 if not ret:
 break

#----Configuring input and output
 #resize frame
 resized_image = cv2.resize(image, (new_w, new_h), interpolation =
cv2.INTER_CUBIC)
 canvas = np.full((m_input_size, m_input_size, 3), 128)
 canvas[(m_input_size-new_h)//2:(m_input_size-new_h)//2 +
new_h,(m_input_size-new_w)//2:(m_input_size-new_w)//2 + new_w, :] =
resized_image
 prepimg = canvas
 prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
 prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
 outputs = exec_net.infer(inputs={input_blob: prepimg})

 objects = []

60

 for output in outputs.values():
 objects = ParseYOLOV3Output(output, new_h, new_w, camera_height,
camera_width, 0.7, objects)

 # Filtering overlapping boxes
 objlen = len(objects)
 for i in range(objlen):
 if (objects[i].confidence == 0.0):
 continue
 for j in range(i + 1, objlen):
 if (IntersectionOverUnion(objects[i], objects[j]) >= 0.4):
 objects[j].confidence = 0

 # Drawing bounding boxes for object detection
 for obj in objects:
 if obj.confidence < 0.2:
 continue
 label = obj.class_id
 confidence = obj.confidence
 if confidence > 0.2:
 label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) +
"%)"
 cv2.rectangle(image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax),
box_color, box_thickness)
 cv2.putText(image, label_text, (obj.xmin, obj.ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, label_text_color, 1)

 cv2.putText(image, fps, (camera_width - 170, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1, cv2.LINE_AA)
 #show output
 cv2.imshow("Result", image)

#---shutdown program
press 'q' to exit
 if cv2.waitKey(1)&0xFF == ord('q'):
 break
 elapsedTime = time.time() - t1
 #show FPS value
 fps = "(Playback) {:.1f} FPS".format(1/elapsedTime)

 ## frame skip, video file only
 #skip_frame = int((vidfps - int(1/elapsedTime)) / int(1/elapsedTime))
 #framepos += skip_frame

---Close window
 cv2.destroyAllWindows()
 del net
 del exec_net
 del plugin

if __name__ == '__main__':
 sys.exit(main_IE_infer() or 0)

