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ABSTRACT 

 

Recent statistics indicate that home burglary remains to be one of the most 

common property crimes. Video surveillance is one of the mainstream crime 

prevention measures used around the globe. Driven by the success of machine 

learning, this study aims to develop a real-time smart security camera system. 

Different from existing works, the designed deep learning model is deployed on 

a resource limited Raspberry Pi 3 B+, inference of which is handled by an 

accelerator called Intel Movidius Neural Compute Stick 2 (NCS2). Darknet-53 

of YOLO v3 is selected as the feature extractor and it undergoes transfer 

learning and fine tuning, in order to detect three types of weapons, namely, gun, 

helmet, and knife. Furthermore, data augmentation is applied to overcome the 

scarcity of datasets, which is collected and labelled via LabelImg. The training 

platform is Google Colab whereas the testing environment using NCS2 requires 

the pre-trained model to be converted into TensorFlow and subsequently 

intermediate representation (IR). The performance of crime detection is 

evaluated in terms of precision, recall, mean average precision (mAP) and frame 

per second (FPS). Experimental results confirm the effectiveness of using NCS2 

in an embedded platform. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In this section, concept, applications and some related terms of deep learning 

are discussed shortly. Also, the concept and applications of artificial intelligence 

(AI) are roughly discussed. 

  

1.1.1 Artificial Intelligence (AI) 

John McCarthy stated the term AI in 1955 and defined as “artificial intelligence 

is science and engineering of making intelligent machines”(McCarthy, 2007; 

Dash and Subudhi, 2016). The definition of AI for nowadays is defined as “the 

study and design of intelligent agents”, which means an intelligent agent is a 

system that detects its environment and then maximizes its success rate (Dash 

and Subudhi, 2016).  

Besides, these processes consist of learning, reasoning, and self-

correction. Furthermore, the term “artificial intelligence” was officially 

invented in 1956. After developing the first programmable computers, people 

wondered the machines might become intelligent (Lovelace, 1842). The 

applications of the AI are divided into five categories, which are reasoning, 

knowledge, planning, communication, and perception. In addition, the AI trends 

involve in various sectors such as data security, manufacturing, finance, 

automotive industry and so on. Figure 1.1 shows a sample of AI in the 

automotive industry. 
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Figure 1.1: Sample Case of AI in the Automotive Industry. 

 

1.1.2 Introduction of Deep Learning (DL) 

In this section, deep learning (DL) will be briefed. DL is a part of machine 

learning (ML) that learn the features and task directly from data, and the ANN 

which is the function of the brain (Lecun, Bengio and Hinton, 2015). A Venn 

diagram is shown in Figure 1.2. Also, DL is referred to as “deep neural 

networks”, or DNN, which means numerous layers are involved. Besides, a 

neural network has only a single layer of data. On the other hand, DNN consists 

of two or more layers. 

 

 

Figure 1.2: A simple Venn diagram illustrates DL is a subset of ML 

(Goodfellow, Bengio and Courville, 2016). 
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The computers are trained to work naturally as same as humans are 

defined as DL. For example, the classification tasks from images, sound or text 

can be performed using DL. Moreover, a stop sign can be detected or a 

pedestrian and a lamppost can be recognized by driverless cars using DL. In 

addition, an enormous number of data and neural network architectures that 

consist of several layers are used to train the models. DL is able to achieve high 

accuracy in recognition. Figure 1.3 illustrates the comparison between different 

parts of AI system with their own different disciplines. 

 

 

Figure 1.3: Comparison between different parts of AI system with their own 

different disciplines (Goodfellow, Bengio and Courville, 2016).  



4 

 

 Google Brain that finally brought about the productization of DL 

technologies over numerous Google services was officially established by 

Andrew Ng. In the talk titled “Deep Learning, Self-taught Learning, and 

Unsupervised Feature Learning”, Andrew defined the concept of DL as “Using 

brain simulations, hope to make learning algorithms much better and easier to 

use; make revolutionary advances in machine learning and AI” (Ng, 2013).  

 

1.1.2.1 Artificial Neural Networks (ANN) 

In ML, artificial neural networks (ANN) are the main tools to be used. Haykin 

described ANN as “An extremely parallel combination of the simple processing 

unit which can obtain knowledge from the environment through a learning 

process and store the knowledge in its connections” (Haykin, 1999). ANNs have 

input, input layer, processing layers, processing element, output layer, and 

output and an entry (Guresen and Kayakutlu, 2011). Figure 1.4 shows a deep 

neural network.  

 

 

Figure 1.4: Deep Neural Network (DNN). 

 

 Additionally, there are various types of learning which are reinforcement 

learning, supervised learning and unsupervised learning.  Meanwhile, there are 

various types of neural networks which have their own specific functions and 
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levels of complexity such as feedforward neural network, recurrent neural 

network, Hopfield networks, convolutional neural networks, and a variety of 

others. 

 

1.1.2.2 Convolutional Neural Network (CNN) 

The convolutional neural networks (CNNs) are a kind of neural network and 

considered the most popular among all the types of DNNs, as they process data 

that contain a known grid like topology (Goodfellow, Bengio and Courville, 

2016). Besides, CNN eliminates the requirement for manual feature extraction. 

The feature extraction is automated to build the DL models to become high 

accuracy computer vision task such as object classification. For example, Figure 

1.5 shows classifying handwritten digits using the CNN sequence.  Examples 

can be found in LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, and ZFNet 

(Wani et al., 2020). 

 

 

Figure 1.5: A CNN Sequence to categorize the handwritten digits. 
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1.1.3 Application of Deep Learning 

There are a few applications for DL that will rule the world in 2020 and beyond. 

For example, self-driving cars, deep learning in healthcare, voice recognition, 

image recognition, automatic colourization, and other applications.  

           Have you heard about an AI security camera? An AI security camera 

analyses the images from video surveillance cameras by utilizing computer 

software programs to recognize vehicles, humans or objects. The advantages of 

AI home security cameras can provide people and pet detection, facial 

recognition, unusual behaviour detection, object tracking, and video recognition. 

Figure 1.6 shows the pet and human detection using a smart home AI security 

camera. Moreover, smart security camera system also can detect the weapon 

such as guns as shown in Figure 1.7. This results in that the smart security 

camera system can identify criminal behaviours with weapons such as guns and 

knives. Hence, polices can search the crimes much easier than the traditional 

security system.  

           In short, the applications in DL bring a lot of benefits and make our life 

smart and easier. However, applications in deep learning still can be improved. 

 

 

Figure 1.6: Pet and Human Detection using AI Security Camera. 
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Figure 1.7: Smart Security Camera System from Athena Security identify guns 

using AI and Cloud Technology. 

 

1.2 Importance of the Study 

According to the Crime Statistics, Malaysia, 2019, the first publication of the 

Department of Statistics Malaysia, the crime rate per 100,000 population 

between the states of Malaysia, from 2016-2018 is shown in Figure 1.8. 

Meanwhile, Table 1.1 illustrates the crime rate by type of crimes in Malaysia 

over these three years. The total number of cases among these three years are 

300,184. 

With the crime rates of  906.5, 716.9 and 642.6 per 100,000 population, 

Kuala Lumpur (KL) ranks first for crime among the states of Malaysia in these 

three years. However, KL has a greater crime index than Singapore from 2016-

2018 as shown in Figure 1.9. Therefore, this study aims to develop a smart 

security camera system that detects crime and alert owners. 
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Figure 1.8: Crime rate per 100,000 population between the states of Malaysia, 

2016-2018 (Department of Statistics Malaysia, 2019). 

 

Table 1.1:  Crime rate by type of crimes in Malaysia, 2016-2018 (Department 

of Statistics Malaysia, 2019). 

 

 

 

Figure 1.9: Crime rate per 100,000 population in Singapore, 2016-2018 (R. 

Hirschmann, 2020).  
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1.3 Problem Statement  

A smart security camera consists of the object or human detection and also 

image classification using deep learning. The smart security camera also can 

detect crimes through their behaviours. The false alarms are raised in the event 

of blocking, brightness change, false detection of criminal behaviour and huge 

storage for footage is required due to the camera is recording continually. In 

addition, the error of detection in weapon also causes false alarms. Hence, the 

objectives of this project are to increase the accuracy and speed of detection of 

the system. 

 The size of a camera is suggested to be small enough but provides good 

performance and low cost. Besides, the CNN application generally is applied on 

the computer (PC) or laptop, but the required computational power is high. 

Hence, a single-board computer is considered to utilize a CNN application due 

to it has low power consumption and small in size. 

 

1.4 Aim and Objectives 

The purposes of this project are: 

 To develop a crime detection model using transfer learning and fine 

tuning 

 To integrate the trained model into an embedded security camera system 

 To evaluate the performance of crime detection in terms of speed and 

accuracy 
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1.5 Scope and Limitation of the Study 

The study is focused on crime detection on the smart security camera. The 

process of developing this system consists of a combination of hardware and 

software. The hardware used are Raspberry Pi 3 Model B+ (RP3), micro SD 

card, camera board for RP3 with 5MP, and Intel Movidius Neural Compute 

Stick 2 (NCS2). Meanwhile, the software used are Ubuntu 18.04 Operating 

System, PuTTY, Raspbian Operating System with Stretch Lite (RaspSL), 

OpenCV, Caffe, and Software Development Kit for NCS2 (NCSDK2).  

 The limitations are the camera provides a low quality of the image and it 

is difficult to detect the distant objects or targets due to the low megapixel. 

Additionally, switch socket outlet and adapter are required to provide power 

supply for the single-board computer (RP3). 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The examples and applications of image classification using deep learning are 

discussed in this chapter. 

 

2.2 Applications using CNNs 

In the paper titled “ImageNet Classification with Deep Convolutional Neural 

Networks”, a large set of high-resolution images with the total of 1.2 million in 

the ImageNet LSVRC-2010 contest were categorised using deep CNN into the 

1000 distinct classes (Krizhevsky, Sutskever and Hinton, 2017). A dataset of 

beyond 15 million high quality labelled images are categorised into around 

22,000 categories is called ImageNet (ImgNet).  

 The outputs of adjacent groups of neurons in the similar kernel map can 

be concluded using pooling layers in CNNs. Figure 2.1 illustrates the 

architecture of CNN which consists of eight layers in total, five in which are 

convolutional while the following three are fully connected. 

 

 

Figure 2.1: A CNN architecture (Krizhevsky, Sutskever and Hinton, 2017). 

 

 There were two types of data augmentation that involved in generation 

image translations and horizontal reflections, and alteration the intensities of the 

RGB channels to train the images.  

 Figure 2.2 shows the eight tested images with the top five predictions. The 

red colour bar resulted in the correct label. 
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Figure 2.2: Eight tested images with Top Five Predictions. 

 

 A camera trap images with DL was introduced in the papers titled 

“ Identifying animal species in camera trap images using deep learning and 

citizen science”, and “Automatically identifying, counting, and describing wild 

animals in camera-trap imaged with deep learning”.  

 The characteristics of the cameras must be independent gadgets, portable, 

activated by movement, and infrared sensors for the passing animals (Willi et 

al., 2019). Based on Figure 2.3, a convolutional layer is converted from an input 

layer, then an output layer is generated through the end of the process of a CNN 

architecture. The final output can be obtained from the output layer.  
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Figure 2.3: A CNN architecture proceed with an input layer to an output layer 

(Willi et al., 2019). 

 

 The four camera datasets used were Camera CATalogue (CC), Snapshot 

Serengeti (SS), Elephant Expedition (EE), and Snapshot Wisconsin (SW) (Willi 

et al., 2019). Moreover, transfer-learning was applied to improve the model to 

become more accurate essentially for small datasets and deduct the training time 

of the model. However, the classification can be improved in the future due to 

the less accurate for rare species.  

 There were four tasks for animal detection. The first step was to identify 

images that consisted of animals that were animal or empty. The second step 

was identifying the species of the animal with the top five predictions. After that, 

the number of animals in the images was counted using DL. And, the last step 

was defining the additional animal attributes and their behaviours. Figure 2.4 

shows the animals can be identified, counted, and described in camera-trap 

images successfully using DNN. Table 2.1 illustrates different deep learning 

architectures has different performances.  
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Figure 2.4: Animals can be identified, counted, and described in camera-trap 

images successfully using DNN (Norouzzadeh et al., 2018). 

 

Table 2.1: Comparison of different deep learning architecture and their 

performance (Norouzzadeh et al., 2018). 

 

 

 In the paper titled “Age and Gender Classification using Convolutional 

Neural Network”, it described age and gender were classified automatically 

using deep CNN was introduced. The face recognition techniques can be 

proceeded using deep CNN (LeCun et al., 1989). Besides, the unfiltered face 
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images for gender and age can be classified using Adience benchmark (Eidinger, 

Enbar and Hassner, 2014). Hence, the accuracy of CNN design was tested using 

Adience benchmark.  The age classification errors mostly were affected by 

occlusions, blur and low resolution of the system while the gender estimation 

errors were the group of babies and young children due to the gender were no 

visibility at these stages of age. 

 In the paper titled “Car Parking Occupancy Detection Using Smart 

Camera Networks and Deep Learning”, a detection for car parking occupancy 

using CNN. The two CNN architectures were tested which were mAlexNet 

(mAN) and mLeNet (mLN). The difference between mAN and mLN was that the 

mAN was based on Alexnet while mLN was based on LeNet-5 in the CNN 

architecture. The max pooling (MP) and linear rectification (ReLU) were 

included in the first three convolutional layers of mAN. However, local response 

normalization (LRN) was included in the first two convolutional layers only. 

Meanwhile, mLN consisted of two convolutional layers and following by MP 

and two fully connected layers which were based on LeNet-5. The comparison 

of mLeNet and mAlexNet in CNN architecture is shown in Table 2.2.  

 

Table 2.2: Comparison of mLeNet and mAlexNet in CNN architecture (Amato 

et al., 2016). 

 

 

 The two datasheets used were PKLot and CNRPark. Table 2.3 indicates 

the experimental results of a single camera and multi-camera in mLN and mAN. 

It showed the accuracy of mAN was higher than the mLN in single-camera and 

multi-camera experiments, which was 0.996 or 99.6 %. Hence, the car parking 

space occupancy can be detected and classified using CNN.  
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Table 2.3: Experiment Results of a single camera and multi-camera in mLeNet 

and mAlexNet (Amato et al., 2016). 

 

 

2.3 A Searching Process in 3D Space for Human Detection using 

Camera and Scene Knowledge 

In the paper titled “Human Detection by searching in 3D Space Using Camera 

and Scene Knowledge”, human detection using the 3D search method instead 

of the 2D search method. A single camera can estimate the 3D target position. 

The objective of human detection was to find all the humans in a single image.  

 A significant category with a large number of high-performance 

representative human detection systems is known as sub-window classification 

(Li, Wu and Nevatia, 2008). Moreover, the detection was completed by 

computing all potential sub-windows in the 2D image. However, the detection 

performance may be affected by different camera settings. Hence, the new 

strategy was proposed.  

 The camera setting were assumed to perform an object search in the 3D 

world space rather than the 2D image space. All potential positions of objects 

in the view were included using 3D scanning grid. The detection results are 

shown in Figure 2.5(b) and Figure 2.5(c).   
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Figure 2.5: Pedestrian Detection Results in 2D search and 3D search (Li, Wu 

and Nevatia, 2008). 

 

 By eliminating the detection errors, a scene knowledge was applied. Then, 

to obtain a subset of foot positions, the homography was combined with 

background deduction for detection with the purpose of reducing the search 

space during detection.  An approach overview is shown in Figure 2.6. 

 

 

Figure 2.6: An Approach Overview (Li, Wu and Nevatia, 2008). 

 

 Figure 2.7 shows the searching process was performed using a 3D search 

grid. The yellow lines estimated a person at a grid point. Moreover, it also can 

be improved by appending scene knowledge. Typically, human detectors were 

practised on images with constant size and humans’ sight from a distant camera 

depending on sub-window classification. 
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Figure 2.7: A searching process using 3D Search Grid from datasheet (PETS 

2007) (Li, Wu and Nevatia, 2008).  

 

The same detector was used to determine the rate of detection and false 

alarm for 2D and 3D from PETS 2007. The red colour labels indicated the false 

alarm in the 3D, reflecting the fact that the 3D search was stronger than the 2D 

search as shown in Figure 2.8 and Figure 2.9. It can be observed that the 3D 

search was stronger than the 2D search. 

 

 

Figure 2.8: Sample detection results for 2D search and 3D search on datasheet 

(PETS 2007)(Li, Wu and Nevatia, 2008). 

 

 Figure 2.9 shows the sample detection results for 2D search and 3D search 

from datasheet CAVIAR INRIA. In addition, the different failure modes were 

labelled with different colours as shown in Table 2.4.   
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Figure 2.9: Sample detection results for 2D search and 3D search on datasheet 

(CAVIAR INRIA)(Li, Wu and Nevatia, 2008). 

 

Table 2.4: Failure modes and Colours for 3D search on CAVIAR INRIA 

datasheet. 

Failure Modes Colour (Circles) 

Walking posture Yellow 

Blocking in crowds White 

Top-down view Blue 

Crouching and Bending Orange 

 

 The overall detection rate was low because of the occlusion, pose 

variation and low contrast.  

 In short, there were a lot of benefits to this model. It could approximate 

an object position in 3D. Moreover, the adversary effect of camera view was 

deducted on detection performance using image rectification, and it was flexible 

to combine with any patched-based detector (Li, Wu and Nevatia, 2008).  
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2.4 Applications using YOLO v3 Algorithm 

In the paper titled “Application Research of Improved YOLO V3 Algorithm in 

PCB Electronic Component Detection”, it described the advancement of the 

algorithm using YOLO v3 with a real and virtual picture of PCB for the training 

process. The YOLO v3 network structure and the layer of YOLO were extended 

by removing the features of the network layer to detect the small objects. Figure 

2.10 shows the flowchart of PCB detection. 

  

 

Figure 2.10: General Flowchart of PCB detection (Li et al., 2019). 
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 The backbone network of YOLOv3 was Darknet-53 (D53). The anchor 

box size ratio of YOLO v3 to detect the object was predicted using K-means 

clustering. Moreover, the bounding box prediction was completed by the anchor 

box to define the object in terms of height and width. Before training, the input 

pictures were resized to 416 × 416 using YOLOv3. Next, the performance of 

this PCB component detection was evaluated using different network structures 

as displayed in Table 2.5. The mean average precision (mAP) and the speed of 

object detection were recorded for the performance. The mAP of category F was 

greater than others as shown in Table 2.5 which was 93.07 %. 

 

Table 2.5: mAP and speed of detection for PCB component detection using 

Different methods (Li et al., 2019). 

 

 

 In the paper titled “Object Detection and Tracking using YOLO v3 

Framework for Increased Resolution Video”, the pre-trained model YOLO v3 

was applied for vehicle detection and tracking purpose. Besides, a powerful 

GPU system was required to support YOLO v3 in increasing the accuracy and 

speed of object detection.  

 Furthermore, the implementation of the system was planned to work in 

the online and offline process using the YOLO v3 pre-trained model as shown 

in Figure 2.11. After training, a YOLO v3 weights file was generated.  
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Figure 2.11: Implementation of System using YOLO v3 pre-trained model 

(Shakil, Rajjak and Kureshi, 2020). 

 

 In YOLO v3, the network architecture used was D53 and the libraries used 

were OpenCV and TensorFlow. The results of the experiment show that the 

object can be identified as a car and tracked as indicated in Figure 2.12. 

 

 

Figure 2.12: Object Detection and Tracking as cars (Shakil, Rajjak and Kureshi, 

2020) 
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 Next, the results for mAP, execution time, and frame per second (FPS) 

were compared using different methods as shown in Table 2.6. Although the 

YOLO v3 model was not the highest in each part result, it obtained good results 

in general. At the same time, the accuracy of the system was measured in 

different methods. According to Table 2.7, YOLO v3 had a high accuracy which 

was 80 %.  

 

Table 2.6: Comparison of the Performance of the System using Different 

Methods (Shakil, Rajjak and Kureshi, 2020). 

 

 

Table 2.7: Comparison of Accuracy of System in Different Methods (Shakil, 

Rajjak and Kureshi, 2020). 

 

 

 In summary, the object detection can be improved using YOLO v3 model 

because the speed of detection and accuracy were performed in good results. 

The mAP for PCB detection and vehicle detection were 93.07 % and 76.7 % 

respectively. 
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2.5 Summary 

To summarise the reviews, there are many applications using CNN nowadays. 

However, the classification methods using CNN can be further improved to rise 

the accuracy of the model or system. There are also different CNN architectures 

that are used for classification. Moreover, the searching or classifying process 

can be enhanced into the 3D search method instead of 2D search method in the 

future as shown in Section 2.3. Furthermore, the YOLO v3 model is applied in 

object detection due to the high accuracy and speed of detection. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, the software and hardware used in this project are listed out 

clearly. The procedures of this project are shown step by step. 

 

3.2 Design Requirements 

The design requirements are split into two groups that are hardware and 

software requirements. Integration of hardware and software is to work well in 

the system. 

 

3.2.1 Hardware Requirements 

The hardware required for this project are Raspberry Pi 3 Model B+ (RP3), Intel 

Movidius Neural Compute Stick 2 (NCS2), Camera Board for RP3 with 5MP, 

and micro SD Card with 128GB and 100MB/s 

Raspberry Pi 3 Model B+ or RP3 is a single board computer with low 

cost, small in size that connects into a computer monitor or TV, a mouse, and a 

keyboard. The laptop has a built-in keyboard and can connect with a mouse 

through the USB port. Therefore, the work for RP3 can be observed and 

controlled through the laptop. RP3 provides USB ports, WIFI support, and 

Bluetooth connection. It is ideal to be implemented in this project because it 

consumes low power. Besides, it has small in size and affordable in price. Figure 

3.1 shows a RP3. 

In addition, NCS2 is a plug and play hardware with a USB-thumb-drive-

sized. The NCS2 is a visual processing unit (VPU) on a USB stick. It consumes 

low power but has high performance on real-time interference and user-friendly. 

Any single-board computers can be paired with the NCS2. RP3 is paired with 

the NCS2 in this project. Figure 3.2 shows an Intel Movidius NCS2.  

The camera board for RP3 with 5MP is chosen for this project. Although 

the size of the camera is small, the performance of the camera is satisfactory and 
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it is reasonable in price. The camera is used to capture images or record moving 

images. Figure 3.3 shows a 5MP camera board. 

A micro SD card with 128GB and 100MB/s is chosen due to its large 

storage and high read speed. A micro SD Card with 128GB and 100MB/s is 

shown in Figure 3.4. 

 

 

Figure 3.1: Raspberry Pi 3 Model B+ (RP3) 

 

 

Figure 3.2: Intel Movidius Neural Compute Stick 2 (NCS2) 

 

 

Figure 3.3: Camera Board for RP3 with 5MP 
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Figure 3.4: Micro SD Card with 128GB and 100MB/s 

 

3.2.2 Software Requirements 

The software required for this project are VMware Workstation Player (Virtual 

Machine), Ubuntu 18.04 (Operating System), Raspbian Stretch Lite (RaspSL), 

Win32 Disk Imager (Win32), PuTTY, Open Source Computer Vision 

(OpenCV), Neural Compute Software Development Kit 2 (NCSDK2), Open 

Visual Inference and Neural Network Optimization (OpenVINO), VNC viewer 

and TensorFlow (TF). 

A virtual machine that can run on a Windows or Linux PC is called 

VMware Workstation Player (VMware). VMware allows users to run multiple 

machines synchronize on a single host computer. Ubuntu 16.04 is installed in 

the VMware Workstation Player. 

An open-source Linux distribution based on Debian is called Ubuntu 

18.04. Ubuntu 18.04 is chosen in this project because it can support NCSDK.  

Raspbian Stretch Lite or RaspSL is selected among the Raspbian 

operating systems. The Raspbian Lite is a minimal version of Raspbian and does 

not contain a graphic user interface (GUI). However, it has a command-line 

interface (CLI) which is shown automatically when it is connected to a monitor 

or TV. The Raspbian Lite version executes faster than other Raspbian operating 

systems due to it does not consist of GUI. 

A simple open-source application is used in this project which is Win32 

Disk Imager (Win32). The image file is written from CD to an SD card using 

Win32, to generate a virtual disk drive. 

PuTTY is an implementation of SSH and Telnet for the Windows 

platform. PuTTY is used to connect RP3 to the laptop with SSH. 
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A library of programming functions generally targeted at real-time 

computer vision is called OpenCV. In short, OpenCV is a library used for image 

processing. 

Intel Movidius Neural Compute software development kit 2, known as 

NCSDK2 is the legacy soft development kit, SDK provided for users of the Intel 

Movidius NCS2. NCS2 is supported by NCSDK2. 

OpenVINO is a toolkit to facilitate the optimization of DL models and 

enable the DL models using an inference engine (IE) in Intel hardware. The Intel 

hardware includes CPU, GPU, NCS2, and FPGA. 

VNC viewer stands for Virtual Network Computing (VNC). VNC 

viewer facilitates remote desktop sharing over a network connection. RP3 can 

be controlled with a laptop when sharing the same network connection. 

TF is an open-source library for the computation of numerical and large 

scale ML. Moreover, DNNs can be trained and run by TF. Python language is 

used in TF due to the ease of learning and implementation processes.  

 

3.3 Setup of Operating System (OS), Dependencies and Software into 

a RP3 

RaspSL will be loaded to the RP3 through a microSD card. Lite version is 

chosen because it does not have a graphic user interface (GUI). After the 

installation of OS, an SSH server uses the secure shell protocol to connect the 

remote computer which is RP3. To enable the SSH server on RaspSL, an empty 

file called “ssh” is created in the micro SD card. The SSH server enables remote 

configuration of the RaspSL OS running the RP3. Next, the Wi-Fi chip on RP3 

connects to a 2.4 GHz network. A file named “wpa_supplicant.conf” is created 

and allocated into the micro SD card. 

 After that, NCSDK2 is installed for the deployment of NCS2.OpenVINO 

supports a lot of DL libraries, for example, TF, Caffe, and mxnet. Therefore, 

OpenVINO and OpenCV dependencies are installed into RP3. A virtual 

environment of OpenVINO is formed on RP3 to support NCS2. The installation 

of TF into RP3 is completed. VNC viewer is installed into RP3 to smoothen the 

process of testing and collecting results. The detections are easy to be seen 
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through the VNC viewer. After installing all the software dependencies, RP3 is 

ready for the project. 

 

3.4 Model Selection for Training Dataset 

The model selection for training the dataset is the You Only Look Once Version 

3, or YOLO v3. YOLO is an algorithm that utilizes CNNs for object detection. 

YOLO is considered one of the top object detection algorithm among other 

algorithms. Although the accuracy of object detection in YOLO v3 is not the 

highest, it is a great selection for real-time detection due to its loss of accuracy 

is low.  

 The architecture of the feature extractor used in YOLO v3 is Darknet-53 

(D53). D53 consists of 53 convolutional layers. D53 is slower than Darknet-19 

due to the number of convolutional layers in D53 is more than Darknet-19. 

Figure 3.5 shows a model of Darknet-53. Besides, the performance of D53 is 

higher and 1.5 times faster than ResNet-101. The performance of D53 and 

ResNet-152 are similar but D53 is two times faster (Redmon and Farhadi, 2018). 

Figure 3.6 displays the comparison of the backbone. 

 

 

Figure 3.5: Model of Darknet-53 (Redmon and Farhadi, 2018). 
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Figure 3.6: Comparison of Backbone (Redmon and Farhadi, 2018). 

 

 A predefined bounding boxes with specific width and height for multiple 

object detection in a one grid cell, known as anchor boxes. YOLO v3 has 9 

anchor boxes while three of them are for each scale. Nine anchors are generated 

using K-Means clustering. The number of anchor boxes for YOLO v2 is less 

than YOLO v3, so YOLO v3 has higher accuracy as compared to YOLO v2. 

 In YOLO v3, the average precision (AP) for small objects is greater than 

YOLO v2 and Fast RCNN. The mAP is increased when the localization errors 

are reduced. The ratios of the width to the height of an image and different scales 

of predictions for the identical object are enhanced by adding the feature 

pyramid-like method. The overall performance with mAP at 50 % threshold and 

inference time for YOLO v3 is better than other methods as shown in Figure 

3.7. YOLO v3 has faster inference time than other models. For example, FPN 

FRCN has the highest mAP but longer inference time as compared to YOLO v3. 
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Figure 3.7: COCO Dataset Testing with mAP@0.5 (Redmon and Farhadi, 2018) 

 

 In short, YOLO v3 and its feature extraction, D53 are chosen for dataset 

training due to its overall performance. 

 

3.5 Procedures for Training and Testing YOLO v3 Model 

Google Colab (GC) is used for training the YOLO v3 model because it has built-

in free 12GB-RAM GPU and easy to work. Besides, GC is a free cloud service 

and works with Google Drive. The advantages of GC used in this project are an 

environment for deep learning is provided by GC and the data can be saved in 

Drive. However, the disadvantage of GC is the runtime is volatile, the runtime 

must be reconfigured to start training dataset after every twelve hours.  

 A Google account is signed up and then sign in to GC. Next, all the 

software dependencies for training are installed in GC. After that, the Darknet 

environment is set up in GC because the YOLO v3 model is trained using 

Darknet.  

 After setting up GC, a dataset for three classes is collected which are gun, 

helmet, and knife. Data augmentation is a technique that increases the size of 

the dataset. The images in a dataset can be modified by adjusting rotation, 

brightness, flip and other methods. For example, the original dataset of the knife 

only has around three hundred images and then the dataset is expanded to more 

than one thousand images through data augmentation for training. Next, the 

process of labelling the dataset in text format is known as data annotation. All 

the images are labelled using LabelImg and saved in text format as shown in 
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Figure 3.8. After that, all the images and annotations files in .jpg and .txt format 

are saved in the same folder and then upload to Google Drive. Figure 3.9 shows 

the annotations in the text file format. The object-class represents the class id of 

the labelled data. Additionally, x_centre and y_centre represent the centre of the 

bounding box in coordination while width and height represent the image 

dimensions. 

 

 

Figure 3.8: Example of Labelling Image using LabelImg. 

 

 

Figure 3.9: Annotation in Text File Format. 

 

 Next, the dataset is separated into the training set and testing set by 

executing a Python script. After running the Python script, two text files are 

created which are train.txt and test.txt. Furthermore, the weapon.names file and 

the data file, weapon.data are created. Figure 3.10 displays the format of the 

data file, weapon.data. 

 

 

Figure 3.10: Data file, weapon.data. 
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 Next, configuration file, yolov3.cfg is created for the training process. The 

training process is started after done preparation of the data file, configuration 

file, and Darknet. The command is run as shown in Figure 3.11. The training 

process takes around two days to meet a certain accuracy. 

 

 

Figure 3.11: Command for training the dataset. 

 

 Moreover, the testing set only has ten per cent of images from the dataset. 

The testing process depends on the mAP at 0.5 of IoU threshold and tests 

whether the object is detected or not. When both requirements are achieved, the 

pre-trained model of YOLO v3, yolov3.weights can be downloaded. Figure 3.12 

illustrates the flow diagram for the training and testing processes of the YOLO 

v3 pre-trianed model. 
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Figure 3.12: Process Flow Diagram of Training and Testing YOLO v3 model.  
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3.6 Conversion of YOLO v3 model into Intermediate Representation 

(IR) to load in Inference Engine (IE) 

A Python-based command-line tool that converts DL frameworks into an 

intermediate representation (IR) is known as Model Optimiser (MO). The DL 

frameworks include Caffe, TF, MXNet, and ONNX (Intel, 2020). Besides, the 

two main objectives of MO are producing a valid IR and generating an 

optimised IR. The IR is the model with a pair of files that defines the network 

topology and consists of weights and biases binary data which are .xml and .bin 

files respectively.  

 After converting DL frameworks into IR, the IR files are loaded into the 

Inference Engine (IE). IE has a common Application Programming Interface 

(API) that uses to infer input data and perform inference on IR files. The API in 

IE includes C, C++, and Python to execute IR files and perform an optimisation 

on inference. Moreover, IE supports targeted hardware devices based on Intel 

architecture including CPU, GPU, FPGA, and VPU. An overview of the 

structure of OpenVINO in DL is shown in Figure 3.13.  

 

 

Figure 3.13: Overview of the structure of OpenVINO in DL (Intel, 2019). 

 

 First, the YOLO v3 model with configuration and weights files is 

converted into TF. Next, the TF file (.pb) is converted into IR using MO. IR 

includes network topology (.xml) and binary data files (.bin) are generated to 

load into IE. After that, IE optimises the generated IR files and then executes 

with different devices which are CPU and NCS2. The devices are used to test 
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the FPS in real-time object detection. Figure 3.14 shows the summary of the 

conversion into IR and then loads into IE.  

 

 

Figure 3.14: Conversion of YOLO v3 into IR, then loads into IE. 
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3.7 Flowchart of System Operation 

The flowchart of overall system operation in RP3 is shown in Figure 3.15. If the 

camera is not activated, a video file is required to perform the system. NCS2 is 

required for RP3 to support IR files. Next, the frame is read and processed. If 

the classes in the model are detected, the bounding box is drawn and labelled 

relevant classes. If the ‘q’ is pressed, it will exit and shut down the system. The 

system is stopped.  

 

 

Figure 3.15: Flowchart of System Operation.  
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3.8 Evaluation Performance of the Model 

The performance of the model is divided into four parts, which are precision (P) 

and recall (R), mean average precision (mAP), crime detection, and FPS of the 

system. 

 

3.8.1 Measurement of Precision, Recall and Mean Average Precision 

P, R and mAP are recorded in this model. P and R are recorded with different 

confidence scores while mAP is recorded using different intersection over union 

(IoU) thresholds. P is defined as the percentage of accuracy level of prediction 

while R is defined as the percentage of all possible positive results that can be 

found. P and R depend on TP, FP, and FN values. The formula to calculate P 

and R are shown in equations 3.1 and 3.2 respectively.  

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(3.1) 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3.2) 

where 

𝑃 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
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Average Precision (AP) is the average precision at a group of eleven 

recall values from 0 to 1 and the formula is shown in Equation 3.3. The step size 

of the recall values is 0.1. 

 

𝐴𝑃 =
1

11
∑ 𝑃𝑟

𝑟∈{0.0,…,1.0}

 
 

(3.3) 

where 

𝐴𝑃 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑟   = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 

𝑃  = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒𝑠 

 

Next, mAP is the average of AP with the given formula as shown in 

Equation 3.4. 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

 

(3.4) 

 

where 

𝑚𝐴𝑃 = 𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝐴𝑃   = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑖       = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑁     = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 
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3.8.2 Measurement of Object Detection and FPS 

The sample images of the object detection and the frame per second (FPS) of 

the system with different devices are collected.  

 

Sample images are collected in three classes: 

 Gun 

 Helmet 

 Knife 

Testing FPS of the system: 

 CPU 

 CPU + NCS2 

 RP3 + NCS2 

 

3.9 Summary 

In short, the YOLO v3 model is trained in GC with Darknet feature extraction 

and then converted into IR. The performance of the system is evaluated in the 

terms of P, R, mAP, crime detection and FPS of the system. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, results are recorded and discussed. 

 

4.2 System Overview 

In this project, an adapter is required to provide power supply to the RP3. Next, 

the Pi camera and NCS2 are set up and ready to run the detection. SSH connects 

RP3 and laptop to allow detections can be viewed on the screen of a laptop. 

Next, NCS2 is a plugin to accelerate the speed of the detections. The overall 

embedded system is presented in Figure 4.1. Moreover, Figure 4.2 displays the 

prototype with NCS2. 

When the IR files are loaded, there are two input options to be selected 

which are camera or video. After that, the video frame is read. The frame should 

be resized to (416, 416) and provide the shape to a suitable size. Then, the NCS2 

run the inference to process the inferred images. Next, if the relevant object is 

detected, the bounding box is drawn and then label it. The video frame keeps 

running until ‘q’ is pressed to exit the window. Lastly, the NCS2 and the whole 

system are shut down.  

 

 

Figure 4.1: Overall System 
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Figure 4.2: Prototype of RP3 with NCS2 and Pi Camera 

 

4.3 Evaluation Precision and Recall of the Model 

In this section, P and R are evaluated from the testing dataset with different 

confidence scores. There are 400 images from the dataset for the testing process. 

Besides, the data of P and R for all classes, gun detection, helmet detection, and 

knife detection are recorded in Table 4.1 and Table 4.2.  Precision vs Recall 

Curve for all classes refers to Figure 4.3. Furthermore, Figure 4.4 displays 

Precision vs Recall Curve for gun detection. Next, the Precision vs Recall Curve 

for helmet detection is shown in Figure 4.5. The Precision vs Recall Curve or 

knife detection is displayed in Figure 4.6. Meanwhile, Figure 4.7 displays the 

overall Precision vs Recall Curve in this trained model.  

 

Table 4.1: Precision and Recall for All Classes and Gun Detection in Different 

Confidence Scores. 
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Table 4.2: Precision and Recall for Helmet and Knife Detection in Different 

Confidence Score. 

 

 

 

Figure 4.3: Precision vs Recall Curve for All Classes. 
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Figure 4.4: Precision vs Recall Curve for Gun Detection. 

 

 

Figure 4.5: Precision vs Recall Curve for Helmet Detection. 
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Figure 4.6: Precision vs Recall Curve for Knife Detection. 

 

 

Figure 4.7: Overall Precision vs Recall Curve in Trained Model. 
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P and R are plotted using different confidence thresholds from 0.1 to 0.9 

with the step size 0.1.  From these figures, it can be observed that P is inversely 

proportional to R. The pattern of graphs is similar for each graph. Besides, P 

and R represents the accuracy of the model. Each bounding box contains its 

confidence level to give a rank of the output. According to Figure 4.7, knife 

detection has the highest P and R while helmet detection has the lowest P and 

R. This shows that accuracy in knife detection is higher than helmet detection. 

In short, the highest P and R obtained in this model are 0.859 and 0.668 

respectively. 

 

4.4 Evaluation Average Precision (AP), Mean Average Precision 

(mAP) and Intersection over Union Threshold (IoU) of the Model 

In this section, the relationship between mAP or AP and IoU threshold is 

evaluated from the testing dataset and shown in Table 4.3. The mAP against 

IoU for all classes is shown in Figure 4.8. Meanwhile, Figure 4.9 displays AP 

against IoU for gun detection.  According to Figure 4.10, AP against IoU for 

helmet detection is illustrated. Additionally, AP against IoU for knife detection 

is displayed in Figure 4.11. Additionally, overall mAP or AP against IoU in this 

trained model is shown in Figure 4.12. 

 

Table 4.3: mAP or AP for Overall System, Gun, Helmet and Knife Detection in 

Different IoU thresholds. 
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Figure 4.8: mAP against IoU Threshold for All Classes. 

\

 

Figure 4.9: AP against IoU Threshold for Gun Detection. 
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Figure 4.10: AP against IoU Threshold for Helmet Detection. 

 

 

Figure 4.11: AP against IoU Threshold for Knife Detection. 

 

 



49 

 

 

Figure 4.12: Overall mAP or AP against IoU Threshold in Trained Model. 

 

IoU evaluates the accuracy of a detected object in a dataset. The concept 

and formula of IoU can be shown in Figure 4.13. 

 

Figure 4.13: IoU calculation (Rosebrock, 2016). 

 

 In short, AP is for each class while the mAP is average of AP. Next, AP 

and mAP are plotted with different IoU threshold from 0.5 to 0.95 by increasing 

0.05. Based on these figures, AP and IoU threshold are inversely proportional. 
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The pattern of graphs is similar to each other. Moreover, Figure 4.12 indicates 

the AP of knife detection is highest while helmet detection is the lowest AP 

resulting in the accuracy of knife detection is high. The optimum IoU threshold 

in this model is 0.65 which the mAP of 67.3 %. 

 

4.5 Crime Detections 

The best sample crime detections for the gun, helmet, and knife are collected. 

Besides, Figure 4.14 shows a person is holding a gun and the gun is detected. 

Moreover, Figure 4.15 indicates a person with a helmet and the helmet is 

detected. Based on Figure 4.16, a knife is detected successfully.  

The confidence score or accuracy of the gun, helmet, and knife 

detections 84.4 %, 99.97 %, and 95.32 % respectively. The detections prove that 

the model can detect the gun, helmet, and knife successfully. 

 

 

Figure 4.14: Gun Detection 
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Figure 4.15: Helmet Detection 

 

 

Figure 4.16: Knife Detection 

 

  



52 

 

4.6 Real-time and Input Video Performance 

The real-time and input video performance for the testing frame per second (FPS) 

with different devices is recorded in Table 4.4. FPS also refers to the speed of 

detection. 

The CPU used is Intel Core-i5. Besides, the FPS of the model is 

relatively low. Moreover, the FPS for the integration of CPU and NCS2 is higher 

as compared to the testing of CPU and a combination of RP3 with NCS2. 

However, RP3 is chosen because it is lightweight and affordable in price. Hence, 

the model requires further improvement for the speed of detection or FPS. 

 

Table 4.4: Testing FPS with Different Devices in Input Video and Real-time. 

Devices CPU CPU + NCS2 RP3 + NCS2 

FPS 2.48 3.40 2.30 

 

 

4.7 Summary 

In a nutshell, the performance of the model is evaluated. The Precision vs Recall 

curve and graph of mAP against IoU threshold are plotted and analysed. Besides, 

P is inversely proportional to R. The highest P and R obtained in this model are 

0.859 and 0.668 respectively. Moreover, mAP and IoU threshold are inversely 

proportional. The optimum IoU threshold in this model is 0.65 which the mAP 

for the overall system is 67.3 %. Furthermore, the gun, helmet, and knife are 

detected successfully. However, the FPS of the model is relatively low when 

testing on different devices in real-time or input video.  
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CHAPTER 5 

 

5 CONCLUSIONS AND FUTURE WORK  

 

5.1 Conclusions 

In short, the model is trained in Darknet architecture and then converted into IR 

files to support NCS2. The time for training and testing processes is needed in 

this project.  Besides, the crime detection model is developed and integrated into 

an embedded security camera system. The system can be performed in real-time 

or input video.  

The confidence score affects the results of P and R. P is inversely 

proportional to R. Moreover, the figures of mAP against IoU threshold show 

that the mAP and IoU threshold are inversely proportional. The mAP of the 

system is 67.3% with the 0.65 optimum IoU threshold. The gun, helmet, and 

knife are detected successfully. Although the FPS of the model in real-time 

performance is low, the accuracy of the model is satisfied. The system is 

unstable to perform in real-time. 

 

5.2 Future Work  

In order to process the video, the system should work well in real-time. 

According to the FPS results of the system, the FPS is quite low and less 

efficient in real-time performance. The FPS of the model is needed to be 

enhanced.  Besides, the accuracy of the system is considered to be improved. 

The source of the dataset is limited because the current training dataset only has 

3300 images. Therefore, the size of the training dataset can be increased to as 

much as possible. The collected images are increased for the training process to 

rise the accuracy for crime detection of the model. Future work is more 

concentrated to increase the detection speed and accuracy of the system so that 

it can work well in real-time performance.  

 The other suggestion is to integrate the system to the Internet of Things 

(IoT) so that it can send notifications for alerting owners. The system can be 

modified into the CCTV system in the future.  
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5 APPENDICES 

 

APPENDIX A: Python Script 

 

 

  

# **************************************************************************** 
# Copyright(c) 2018 Intel Corporation. 
# License: MIT See LICENSE file in root directory. 
# **************************************************************************** 
 
#import necessary packages 
from imutils.video import VideoStream 
from imutils.video import FPS 
import sys, os, cv2, time 
import numpy as np, math 
from argparse import ArgumentParser 
 
#for Raspbian OS 
try: 
    from armv7l.openvino.inference_engine import IENetwork, IEPlugin 
except: 
    from openvino.inference_engine import IENetwork, IEPlugin 
 
# input size of model 
m_input_size = 416 
 
#network of YOLO layer 
yolo_scale_13 = 13 
yolo_scale_26 = 26 
yolo_scale_52 = 52 
 
# initialization 
classes = 3 #3 classes in this model 
coords = 4 
num = 3 
anchors = [10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326] 
 
# initialize the list of class 
LABELS = ("gun", "helmet","knife") 
 
# bouding box and label color 
label_text_color = (255, 255, 255) 
label_background_color = (125, 175, 75)f 
box_color = (255, 128, 0) 
box_thickness = 1 
 
# construct the argument parse and parse the arguments 
#load plugin for Inference Engine 
def build_argparser(): 
    parser = ArgumentParser() 
    parser.add_argument("-d", "--device", help="Specify the target device to infer on; CPU, 
GPU, FPGA or MYRIAD is acceptable. \ 
                                                Sample will look for a suitable plugin for device specified 
(CPU by default)", default="CPU", type=str) 
    return parser 
 

def EntryIndex(side, lcoords, lclasses, location, entry): 
    n = int(location / (side * side)) 
    loc = location % (side * side) 
    return int(n * side * side * (lcoords + lclasses + 1) + entry * side * side + loc) 
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# Confidence 
class DetectionObject(): 
    xmin = 0 
    ymin = 0 
    xmax = 0 
    ymax = 0 
    class_id = 0 
    confidence = 0.0 
 
    def __init__(self, x, y, h, w, class_id, confidence, h_scale, w_scale): 
        self.xmin = int((x - w / 2) * w_scale) 
        self.ymin = int((y - h / 2) * h_scale) 
        self.xmax = int(self.xmin + w * w_scale) 
        self.ymax = int(self.ymin + h * h_scale) 
        self.class_id = class_id 
        self.confidence = confidence 
 
#Load IoU threshold function 
def IntersectionOverUnion(box_1, box_2): 
    width_of_overlap_area = min(box_1.xmax, box_2.xmax) - max(box_1.xmin, 
box_2.xmin) 
    height_of_overlap_area = min(box_1.ymax, box_2.ymax) - max(box_1.ymin, 
box_2.ymin) 
    area_of_overlap = 0.0 
    if (width_of_overlap_area < 0.0 or height_of_overlap_area < 0.0): 
        area_of_overlap = 0.0 
    else: 
        area_of_overlap = width_of_overlap_area * height_of_overlap_area 
    box_1_area = (box_1.ymax - box_1.ymin)  * (box_1.xmax - box_1.xmin) 
    box_2_area = (box_2.ymax - box_2.ymin)  * (box_2.xmax - box_2.xmin) 
    area_of_union = box_1_area + box_2_area - area_of_overlap 
    retval = 0.0 
    if area_of_union <= 0.0: 
        retval = 0.0 
    else: 
        retval = (area_of_overlap / area_of_union) 
    return retval 
 
#-----Parsing for YOLO v3 Output  
def ParseYOLOV3Output(blob, resized_im_h, resized_im_w, original_im_h, 
original_im_w, threshold, objects): 
 
    out_blob_h = blob.shape[2] 
    out_blob_w = blob.shape[3] 
 
    side = out_blob_h 

anchor_offset = 0 
 

#-----Extracting layer parameters 
    if len(anchors) == 18:   ## YoloV3 
        if side == yolo_scale_13: 
            anchor_offset = 2 * 6 
        elif side == yolo_scale_26: 
            anchor_offset = 2 * 3 
        elif side == yolo_scale_52: 
            anchor_offset = 2 * 0 
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     else:                     
        if side == yolo_scale_13: 
            anchor_offset = 2 * 6 
        elif side == yolo_scale_26: 
            anchor_offset = 2 * 3 
        elif side == yolo_scale_52: 
            anchor_offset = 2 * 0 
 
    side_square = side * side 
    output_blob = blob.flatten() 
 
#-----------------Parsing YOLO Region Output------------------# 
 
    for i in range(side_square): 
        row = int(i / side) 
        col = int(i % side) 
        for n in range(num): 
            obj_index = EntryIndex(side, coords, classes, n * side * side + i, coords) 
            box_index = EntryIndex(side, coords, classes, n * side * side + i, 0) 
            scale = output_blob[obj_index] 
            if (scale < threshold): 
                continue 
            x = (col + output_blob[box_index + 0 * side_square]) / side * resized_im_w 
            y = (row + output_blob[box_index + 1 * side_square]) / side * resized_im_h 
            height = math.exp(output_blob[box_index + 3 * side_square]) * 
anchors[anchor_offset + 2 * n + 1] 
            width = math.exp(output_blob[box_index + 2 * side_square]) * 
anchors[anchor_offset + 2 * n] 
            for j in range(classes): 
                class_index = EntryIndex(side, coords, classes, n * side_square + i, 
coords + 1 + j) 
                prob = scale * output_blob[class_index] 
                if prob < threshold: 
                    continue 
                obj = DetectionObject(x, y, height, width, j, prob, (original_im_h / 
resized_im_h), (original_im_w / resized_im_w)) 
                objects.append(obj) 

return objects 
 
# Inference Engine main program 
def main_IE_infer(): 
#initiate the camera setting 
    camera_width = 320 
    camera_height = 240 
    fps = "" 
    framepos = 0 
    frame_count = 0 
    vidfps = 0 
    skip_frame = 0 
    elapsedTime = 0 
    new_w = int(camera_width * m_input_size/camera_width) 
    new_h = int(camera_height * m_input_size/camera_height) 
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#-----load IR files, .xml and .bin file 
    args = build_argparser().parse_args() 
    model_xml = "/home/pi/Desktop/FYP2-v3/obj_detection.xml"  
    model_bin = os.path.splitext(model_xml)[0] + ".bin" 
 
#-----this is for input camera (real-time) 
# initialize the video stream, allow the camera sensor to warmup, 
# and initialize the FPS counter 
    cap = cv2.VideoCapture(0) 
    cap.set(cv2.CAP_PROP_FPS, 30) 
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) 
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) 
 
#-----this is for input video 
    #cap = cv2.VideoCapture("data/input/testvideo.mp4") 
    #camera_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 
    #camera_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) 
    #frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
    #vidfps = int(cap.get(cv2.CAP_PROP_FPS)) 
    #print("videosFrameCount =", str(frame_count)) 
    #print("videosFPS =", str(vidfps)) 
 
    time.sleep(1) 
 
#-----load plugin to Inference Engine 
    plugin = IEPlugin(device=args.device) 
    if "CPU" in args.device: 
        plugin.add_cpu_extension("lib/libcpu_extension.so") 
    net = IENetwork(model=model_xml, weights=model_bin) 
    input_blob = next(iter(net.inputs)) 
    exec_net = plugin.load(network=net) 
 
    while cap.isOpened(): 
        t1 = time.time() 
 
        ## Uncomment only when playing video files 
        #cap.set(cv2.CAP_PROP_POS_FRAMES, framepos) 
 
 #read frame 
        ret, image = cap.read() 
        if not ret: 
            break 
 
#----Configuring input and output 
 #resize frame 
        resized_image = cv2.resize(image, (new_w, new_h), interpolation = 
cv2.INTER_CUBIC) 
        canvas = np.full((m_input_size, m_input_size, 3), 128) 
        canvas[(m_input_size-new_h)//2:(m_input_size-new_h)//2 + 
new_h,(m_input_size-new_w)//2:(m_input_size-new_w)//2 + new_w,  :] = 
resized_image 
        prepimg = canvas 
        prepimg = prepimg[np.newaxis, :, :, :]     # Batch size axis add 
        prepimg = prepimg.transpose((0, 3, 1, 2))  # NHWC to NCHW 
        outputs = exec_net.infer(inputs={input_blob: prepimg}) 
 
        objects = [] 
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        for output in outputs.values(): 
            objects = ParseYOLOV3Output(output, new_h, new_w, camera_height, 
camera_width, 0.7, objects) 
 
        # Filtering overlapping boxes 
        objlen = len(objects) 
        for i in range(objlen): 
            if (objects[i].confidence == 0.0): 
                continue 
            for j in range(i + 1, objlen): 
                if (IntersectionOverUnion(objects[i], objects[j]) >= 0.4): 
                    objects[j].confidence = 0 
         
        # Drawing bounding boxes for object detection 
        for obj in objects: 
            if obj.confidence < 0.2: 
                continue 
            label = obj.class_id 
            confidence = obj.confidence 
            if confidence > 0.2: 
                label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) + 
"%)" 
                cv2.rectangle(image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax), 
box_color, box_thickness) 
                cv2.putText(image, label_text, (obj.xmin, obj.ymin - 5), 
cv2.FONT_HERSHEY_SIMPLEX, 0.6, label_text_color, 1) 
  
        cv2.putText(image, fps, (camera_width - 170, 15), 
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1, cv2.LINE_AA) 
 #show output          
 cv2.imshow("Result", image) 
 
#---shutdown program 
# press 'q' to exit 
        if cv2.waitKey(1)&0xFF == ord('q'): 
            break 
        elapsedTime = time.time() - t1 
 #show FPS value         
 fps = "(Playback) {:.1f} FPS".format(1/elapsedTime) 
 
        ## frame skip, video file only 
        #skip_frame = int((vidfps - int(1/elapsedTime)) / int(1/elapsedTime)) 
        #framepos += skip_frame 
 
# ---Close window 
    cv2.destroyAllWindows() 
    del net 
    del exec_net 
    del plugin 
 
 
if __name__ == '__main__': 
    sys.exit(main_IE_infer() or 0) 
 


