

PATH OPTIMIZATION FOR COOPERATIVE

MULTI-HEAD 3D PRINTING

CHEONG KAH JUN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2020

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Cheong Kah Jun

ID No. : 1600422

Date : 5th September 2020

APPROVAL FOR SUBMISSION

I certify that this project report entitled “PATH OPTIMIZATION FOR

COOPERATIVE MULTI-HEAD 3D PRINTING” was prepared by

CHEONG KAH JUN has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering at Universiti Tunku Abdul

Rahman.

Approved by,

Signature :

Supervisor : See Yuen Chark

Date : 7th September 2020

Signature :

Co-Supervisor :

Date :

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, Cheong Kah Jun. All rights reserved.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Dr. See Yuen Chark for his invaluable advice, guidance and his enormous

patience throughout the development of the research. I am deeply grateful to

him for imparting his knowledge and lending his expertise to me.

In addition, I would also like to express my gratitude to my loving family

and friends who had helped and given me encouragement throughout the course

of the project. Without them, I would not have the strength and determination

to see the whole thing through.

ABSTRACT

In 3D printing, reducing the time needed to print an object is desirable. The print

time of an object is largely influenced by the length of the path that the nozzle

of the 3D printer takes for each layer (also called the travel distance). Hence,

finding the best path for the nozzle is termed as the Layer Path Optimization

Problem (LPOP). Previous authors have shown that the LPOP can be defined in

terms of the Undirected Rural Postman Problem (URPP), a known problem in

graph theory. Two well-known algorithms for solving a closely related graph

theory problem known as the Travelling Salesman Problem (TSP) are the Ant

System (AS) and Ant Colony System (ACS) algorithms. Therefore, to solve the

LPOP, two algorithms are proposed, the modified AS algorithm and the

modified ACS algorithm. These two proposed algorithms have been modified

from the original algorithms in order to solve the URPP instead of the TSP. The

performance of the two proposed algorithms is compared against Cura, which

is a commonly used software for generating the nozzle path. The obtained

results show that both the modified AS and ACS algorithms were able to

perform better than Cura in terms of both travel distance and print time for a

variety of different 3D models.

i

TABLE OF CONTENTS

TABLE OF CONTENTS i

LIST OF TABLES iii

LIST OF FIGURES v

LIST OF SYMBOLS / ABBREVIATIONS vii

LIST OF APPENDICES viii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 4

1.5 Scope and Limitation of the Study 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Definitions and Representations of the LPOP 5

2.2.1 Travelling Salesman Problem (TSP) 7

2.2.2 Undirected Rural Postman Problem (URPP) 7

2.3 Algorithms for Solving the LPOP 9

2.3.1 Tour Construction Algorithms 9

2.3.2 Improvement Algorithms 15

2.3.3 Application-specific Methods 16

2.4 Summary 20

3 METHODOLOGY AND WORK PLAN 22

3.1 Introduction 22

3.2 Cura 22

3.3 G-code 23

3.4 Parser Program and Conversion Back to G-code 25

3.5 Algorithms to be Tested 29

3.5.1 ACO Algorithm Variants 29

ii

3.5.2 Modifying AS and ACS Algorithms to solve

the URPP 31

3.6 Implementation of the Parser and Algorithms 34

3.7 G-code Simulator 35

3.8 Summary 36

4 RESULTS AND DISCUSSION 37

4.1 Introduction 37

4.1.1 Testing Process 37

4.1.2 Explanation of Terminology Used 39

4.2 Preliminary Parameter Testing Phase 40

4.2.1 Setup for Varying the Number of Iterations 41

4.2.2 Results for Varying the Number of

Iterations 41

4.2.3 Discussion for Varying the Number of

Iterations 45

4.2.4 Setup for Varying 𝝆 for Modified AS and

𝝆, 𝝋, 𝒒𝟎 for Modified ACS 46

4.2.5 Results for Varying 𝝆 for Modified AS and

𝝆, 𝝋, 𝒒𝟎 for Modified ACS 47

4.2.6 Discussion for Varying 𝝆 for Modified AS and

𝝆, 𝝋, 𝒒𝟎 for Modified ACS 49

4.3 Main Testing Phase 50

4.3.1 Setup for Main Testing Phase 50

4.3.2 Main Testing Phase Results 52

4.3.3 Comparison of Results with State-of-the-

Art 61

4.3.4 State-of-the-art Discussion 64

4.4 Summary 65

5 CONCLUSIONS AND RECOMMENDATIONS 66

5.1 Conclusions 66

5.2 Recommendations for Future Work 67

REFERENCES 68

APPENDICES 71

iii

LIST OF TABLES

Table 3.1: Parameters for G0 and G1 24

Table 3.2: Examples of G0 and G1 commands 25

Table 3.3: Initial G-code for the first layer 26

Table 3.4: Coordinates of each node 27

Table 3.5: Data matrix for the edges 27

Table 3.6: Elements of 𝑉, 𝐸 and 𝐸𝑟 28

Table 3.7: Optimized G-code 29

Table 3.8: Algorithms to be tested 29

Table 4.1: Definitions of terminology used 39

Table 4.2: Default parameters for original AS 40

Table 4.3: Default parameters for original ACS 40

Table 4.4: Graphs of print time against travel distance for the modified AS and

ACS algorithms when applied to the sample set of 3D models 42

Table 4.5: Graphs of travel distance against processing time for the modified

AS and ACS algorithms when applied to the sample set of 3D

models 43

Table 4.6: Graphs of print time against processing time for the modified AS and

ACS algorithms when applied to the sample set of 3D models 44

Table 4.7: Parameters for varying the 𝜌 for the modified AS algorithm 46

Table 4.8: Parameters for varying the 𝜌, 𝜑, 𝑞0 for the modified ACS

algorithm 47

Table 4.9: Parameters resulting in shortest travel distance for modified AS and

ACS algorithms when applied to the sample set of 3D models 48

Table 4.10: Parameters resulting in shortest print time for modified AS and ACS

algorithms when applied to the sample set of 3D models 48

Table 4.11: Standard deviations of travel distance and print time for the range

of configurations tested for the AS and ACS algorithms 49

iv

Table 4.12: Parameters for modified AS algorithm used in main testing

phase 50

Table 4.13: Parameters for modified ACS algorithm used in main testing

phase 50

Table 4.14: Settings for Cura used in main testing phase 51

Table 4.15: Procedure for the main testing phase 52

Table 4.16: Travel distance of G-code produced by Cura, modified AS and

modified ACS in the main testing phase 53

Table 4.17: Percentage travel distance reduced by modified AS and ACS

relative to Cura in the main testing phase 54

Table 4.18: Print time of G-code produced by Cura, modified AS and modified

ACS in the main testing phase 56

Table 4.19: Percentage print time reduced by modified AS and ACS relative to

Cura in the main testing phase 57

Table 4.20: Processing time of modified AS and ACS algorithm in the main

testing phase 59

Table 4.21: Print times reported by Fok, et al. (2018) for the “Torture test” 3D

model 61

Table 4.22: Comparison between percentage print time reduced for modified

AS, modified ACS and Fok, et al. (2018) for the “Torture test”

3D model 62

Table 4.23: Print times reported by Fok, et al. (2019) for the “Clamp” and

“Lowest poly thinker” 3D models 63

Table 4.24: Comparison between percentage print time reduced for modified

AS, modified ACS and Fok, et al. (2019) for the “Clamp” and

“Lowest poly thinker” 3D models 63

v

LIST OF FIGURES

Figure 1.1: Print nozzle and print bed of a FFF printer 1

Figure 1.2: (a) Example of a LPOP, (b) Example of a possible solution 3

Figure 2.1: Two nodes connected by an edge 5

Figure 2.2: (a) Undirected edge, (b) Directed edge 6

Figure 2.3: (𝑖, 𝑗) ∈ 𝐸𝑟 and the three replacement nodes 8

Figure 2.4: Complete graph 10

Figure 2.5: Minimum spanning tree 𝑇 11

Figure 2.6: Minimum-length perfect matching 𝑀 11

Figure 2.7: Euler tour in 𝑀 ∪ 𝑇 12

Figure 2.8: TSP tour obtained by taking shortcuts 12

Figure 2.9: (a) Initial graph, (b) After 2-opt move 15

Figure 2.10: (a) Initial graph, (b) & (c) Two possible 3-opt moves 16

Figure 2.11: Transition without retraction (A), and with retraction (B) 19

Figure 3.1: Flowchart of the process to evaluate LPOP algorithms 22

Figure 3.2: Cura user interface 23

Figure 3.3: Output of the slicer program for the first layer 26

Figure 3.4: Optimized solution 28

Figure 3.5: (a) Original URPP, (b) After transformed to TSP 31

Figure 3.6: Modified AS algorithm for solving URPP 33

Figure 3.7: Modified ACS algorithm for solving URPP 34

Figure 3.8: Screenshot from gCodeViewer 35

Figure 3.9: Screenshot from Gcode Analyser 35

Figure 4.1: Bar graph of travel distance results in the main testing phase 53

vi

Figure 4.2: Bar graph of percentage travel distance reduced in the main testing

phase 54

Figure 4.3: Bar graph of print time results in the main testing phase 56

Figure 4.4: Bar graph of percentage print time reduced in the main testing phase

 57

Figure 4.5: Bar graph of processing time results in the main testing phase 59

Figure 4.6: Scatter plot of processing time against Cura print time for modified

AS and ACS algorithm in the main testing phase 60

Figure 4.7: Bar chart for percentage print time reduced comparison with Fok, et

al. (2018) for the “Torture test” 3D model 62

Figure 4.8: Bar chart for percentage print time reduced comparison with Fok, et

al. (2019) for the “Clamp” and “Lowest poly thinker” 3D models

 64

vii

LIST OF SYMBOLS / ABBREVIATIONS

3D three-dimensional

CNC computer numerical control

FFF fused filament fabrication

FDM fused deposition modelling

LPOP layer path optimization problem

TSP traveling salesman problem

URPP undirected rural postman problem

ACO ant colony optimization

AS ant system

ACS ant colony system

viii

LIST OF APPENDICES

APPENDIX A: Graphs 71

APPENDIX B: Tables 72

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In the field of rapid prototyping, additive manufacturing, or more commonly

known as 3D printing, is quickly gaining traction. As the name implies, the

process involves the fabrication of an object layer by layer, in contrast to

subtractive manufacturing such as CNC milling. This allows for greater control

of the build process, and complex objects can be created that would be difficult

or impossible through traditional methods.

 There are a number of 3D printing technologies currently available which

use different techniques. These technologies are listed below.

 Fused filament fabrication (FFF)

 Resin printing (SLA, DLP)

 Selective laser sintering (SLS)

 Inkjet printing

 FFF, or otherwise termed fused deposition modelling (FDM), is currently

one of the most popular methods of 3D printing. Generally, a FFF 3D printer

can be visualized as having a print bed and a print nozzle, as shown in Figure

1.1. The print bed is the platform on which the object is printed on, while the

print nozzle is the point at which the material, or filament is extruded from

(Ganganath, et al., 2016).

Figure 1.1: Print nozzle and print bed of a FFF printer

2

 Usually the printer is set up such that the print bed can move in the Z-axis,

while the print nozzle can move in the X and Y axes, allowing movement in all

three axes. To print an object, the nozzle moves to extrude material in such a

way as to construct the desired object. Once the first layer is completed, the print

bed is lowered to allow printing of the next layer. This process repeats layer

after layer until the print job is completed.

 The set of instructions telling the 3D printer how to move and extrude

material is called G-code, and is generated by a program known as a slicer. The

slicer takes a 3D model and ‘slices’ it into thin layers. Each layer is made up of

many print segments where material needs to be extruded to build the 3D object.

The slicer then determines the path, velocity and acceleration of the nozzle as

well as the amount of material extruded based on the print segments for each

layer.

1.2 Importance of the Study

One of the main issues with FFF is that it takes a significant amount of time to

print a complex object, requiring several hours or even days (Lensgraf and

Mettu, 2016). Thus, the reduction of printing time is highly desirable.

 The printing speed is determined by several factors, such as:

 Dimensions and shape of the object

 Infill pattern

 Path taken by the print nozzle

 Velocity and acceleration of the print nozzle

 Mechanical limitations of the 3D printer

 This report will focus on optimizing the path travelled by the print nozzle.

When printing a layer, there will be certain areas or segments where material

needs to be deposited in order to build the object. In other words, the print nozzle

will need to travel to these areas to print the object. If the path that the nozzle

needs to travel along is shortened, the time required to print the object will be

reduced as well.

3

1.3 Problem Statement

The layer path optimization problem (LPOP) can be visualized mathematically

as a graph, where each print segment is an edge connecting two nodes on both

ends (Ganganath, et al., 2016). The task is then to find the shortest path that

connects all the required edges, traversing each edge only once.

 Figure 1.2 (a) shows an example of a LPOP, where three segments that

need to be printed are represented as edges. Figure 1.2 (b) shows a possible

solution (may not be the best solution) to the problem in Figure 1.2 (a). The

dotted lines represent the transition segments, which are edges that the nozzle

traverses along to travel from one print segment to another. In summary, the

total length of the path travelled is the sum of all the edges, including the print

segments and transition segments.

Figure 1.2: (a) Example of a LPOP, (b) Example of a possible solution

 This situation is similar to the widely-known travelling salesman problem

(TSP). For TSP, a graph is given, and the objective is to find the shortest path

or tour that visits every node exactly once, then returns to the starting node.

However, the difference between the LPOP and TSP is that the former focuses

on connecting required edges, while the latter needs to connect all nodes.

 According to Fok, et al. (2018), the LPOP can actually be represented as

the undirected rural postman problem (URPP). The definition of the URPP is

that given a set of edges 𝐸 (meaning the print segments and possible transition

segments), and another set of required edges 𝐸𝑟 ⊆ 𝐸 (the print segments only),

the goal is to find the shortest path that travels along every edge in 𝐸𝑟 exactly

once.

4

1.4 Aim and Objectives

This report aims to reduce the 3D printing time by utilizing algorithms to solve

the LPOP such that the path length is reduced.

 The first objective is to extract the layer data from the G-code output of a

slicer program using a parser program, then transform the obtained layer data

into the LPOP. The next objective is to solve the LPOP using various algorithms.

Finally, the last objective to convert the obtained solution back into G-code, so

that a G-code simulator can be used to analyse and compare the initial G-code

and the optimized G-code.

1.5 Scope and Limitation of the Study

The report will only focus on reducing the path length based on the print

segments generated by the original slicer program (Cura). It will not take into

account the speed and acceleration of the nozzle when trying to optimize the

path.

 Retraction will also not be factored into the optimization process. The

retraction setting in Cura is disabled when generating the G-code for the 3D

objects.

 The reason for setting these limitations is to reduce the number of factors

that need to be taken into account, thereby simplifying the optimization process.

These ignored factors may be further explored in future works.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The topic of this report is admittedly very specific and niche, and as such there

is a limited amount of prior research regarding the topic. It is however not a

major surprise since additive manufacturing has only gained popularity in the

past decade, despite having already existed for a few decades.

 Nevertheless, there has been substantial progress in the field throughout

the last few years. In addition, advances made in the related fields of graph

theory as well as agent and multiagent systems may prove useful in helping to

solve the problem.

2.2 Definitions and Representations of the LPOP

The layer path optimization problem (LPOP) is broadly defined as the best path

that the nozzle of a 3D printer should take to print all the print segments of a

layer. In order to discuss the problem in a formal manner, the LPOP is usually

represented in terms of a graph, which is a mathematical construct originating

from graph theory.

 A graph, 𝐺 is made up of two parts, 𝑉 and 𝐸, such that 𝐺 = (𝑉, 𝐸). 𝑉 is

the set of nodes or vertices, while 𝐸 is the set of edges or connections. The graph

can be visualized as nodes being points, and as edges being lines that link the

nodes together. Figure 2.1 shows an example where nodes 𝐴 and 𝐵 are

connected by the edge 𝑟.

Figure 2.1: Two nodes connected by an edge

6

 Each edge has a cost attributed to it, which is the cost incurred when

travelling along it. Usually the cost of an edge is simply the distance between

the nodes that it links, or in other words its length. However, it may represent

other parameters, or even a combination of them.

 Edges can also be divided into two types, undirected and directed edges.

Take Figure 2.2 as an example. Figure 2.2 (a) has an undirected edge 𝑠, which

means that travelling from node 𝐶 to 𝐷 and vice-versa would both be allowed.

However, Figure 2.2 (b) has a directed edge 𝑡, also called an arc, which means

that travel would only be limited to one direction, from node 𝐹 to 𝐸.

Figure 2.2: (a) Undirected edge, (b) Directed edge

 Ganganath, et al. (2016) stated the LPOP problem as the following. If a

print segment is defined as an undirected edge connecting two nodes, the task

is to find a fast path from a predetermined start point to a predetermined end

point that travels through all print segments.

 However, the problem definition differs slightly from author to author.

While Ganganath, et al. (2016) defines the cost of each edge as the duration

taken for the nozzle to travel along it based on their model (not directly

proportional to length), Fok, et al. (2016) instead defines it simply as the length

of the segment.

 Meanwhile, for start and end points, Fok, et al. (2016) requires that the

start and end point be the same, meaning that the nozzle needs to return to the

start point after visiting all the print segments. On the other hand, Ganganath, et

al. (2016) allows for the start and end point to be located separately.

 Since the problem definition may have a significant impact on the

approach and solution to the LPOP, it is vital that the problem is clearly defined

before any further progress is made.

7

2.2.1 Travelling Salesman Problem (TSP)

The travelling salesman problem (TSP) is a well-known problem in graph

theory. Given an undirected graph 𝐺, the objective is to find a tour (i.e. a cycle)

of minimum cost that visits each node exactly once (Held and Karp, 1970).

Alternatively, if stated in layman’s terms, given a set of cities (represented by

nodes) and the distances between them (edges and their respective cost), the

salesman needs to search for the shortest path that visits each city once, then

returns to the starting city. The TSP is a NP-hard problem.

 According to Ganganath, et al. (2016), the LPOP is closely related to the

TSP, but differs in three ways. First, the problem focuses on linking existing

edges, not nodes. Second, it does not need to return to the starting node, meaning

the solution is not a cycle. Third, the goal is to reduce the total time taken to

traverse the path, not the total length of the path.

 However, as noted earlier, Fok, et al. (2016) reports a different definition

of the LPOP that disagrees with the second and third points.

 Nevertheless, due to the similarities between the LPOP and TSP, both

Ganganath, et al. (2016) and Fok, et al. (2016) studied algorithms that were

originally used to solve the TSP, then modified them to solve the LPOP instead.

Namely, the nearest-neighbour algorithm and Christofides’ algorithm.

2.2.2 Undirected Rural Postman Problem (URPP)

The undirected rural postman problem (URPP), a derivative of the TSP, was

first formulated by Orloff (1974). An undirected graph 𝐺 = (𝑉, 𝐸) is given,

where 𝑉 is the set of nodes and 𝐸 is the set of edges. There also exists 𝐸𝑟 ⊆ 𝐸,

where 𝐸𝑟 is the set of required edges. The goal is then to find a tour that visits

all the edges in 𝐸𝑟 while minimizing the total cost. The URPP has been proven

to be NP-hard given that 𝐸𝑟 ≠ 𝐸.

 Fok, Cheng and Tse (2017) noted that the LPOP could be represented in

terms of the URPP by making the print segments the required edges. Meanwhile,

the possible transition segments that linked print segments would make up the

remaining edges. Thus, they were able to use Frederickson’s algorithm, an

algorithm for solving the URPP, to solve the LPOP instead.

 Later on, Fok, et al. (2018) cited a paper by Pérez-Delgado (2010) that

reported the URPP could be transformed into a TSP. From the original graph 𝐺

8

(representing the URPP), a new graph 𝐺′ = (𝑉′, 𝐸′) is built (in the form of the

TSP).

 Each required edge (𝑖, 𝑗) ∈ 𝐸𝑟 is replaced by three nodes, 𝑠𝑖𝑗 and 𝑠𝑗𝑖

which are the side nodes, and 𝑚𝑖𝑗 which is the middle node. They can be

visualized as being placed at equal intervals, as shown in Figure 2.3. The new

set of nodes, 𝑉′ is then defined as shown in Equation 2.1.

Figure 2.3: (𝑖, 𝑗) ∈ 𝐸𝑟 and the three replacement nodes

 𝑉′ = ⋃ {𝑠𝑖𝑗, 𝑠𝑗𝑖, 𝑚𝑖𝑗}

(𝑖,𝑗)∈𝐹

(2.1)

 The new set of edges, 𝐸′, is thus based on the new set of nodes formed in

𝑉′. Equation 2.2 determines the cost between side nodes, where 𝑑(𝑖, 𝑘) is the

cost of the shortest path from node 𝑖 to node 𝑘 in the original graph 𝐺. It is

important to note that there are no edges present that link any pair of side nodes

directly, i.e. there is no edge linking 𝑠𝑖𝑗 and 𝑠𝑗𝑖 directly. They must pass through

the middle node 𝑚𝑖𝑗.

𝑐′(𝑠𝑖𝑗, 𝑠𝑘𝑙) = {

1

4
(𝑐𝑖𝑗 + 𝑐𝑘𝑙) + 𝑑(𝑖, 𝑘) if (𝑖, 𝑗) ≠ (𝑘, 𝑙)

0 if (𝑖, 𝑗) = (𝑘, 𝑙)
 (2.2)

 Equation 2.3 then determines the cost between the middle node and

another node. The cost will only be a finite value if the other node is one of the

side nodes belonging to the same original edge (𝑖, 𝑗). This ensures that the

middle node 𝑚𝑖𝑗 can only be accessed through its side nodes 𝑠𝑖𝑗 and 𝑠𝑗𝑖.

9

𝑐′(𝑚𝑖𝑗, 𝑣) = {

1

4
𝑐𝑖𝑗 if 𝑣 = 𝑠𝑖𝑗 or 𝑣 = 𝑠𝑗𝑖

∞ otherwise

 (2.3)

 When the TSP is solved for the transformed graph 𝐺′, any reasonable

solution will have a sequence of node triplets, where the node triplet corresponds

to the sequence 𝑠𝑖𝑗 → 𝑚𝑖𝑗 → 𝑠𝑗𝑖 or 𝑠𝑗𝑖 → 𝑚𝑖𝑗 → 𝑠𝑖𝑗. Since it is known that each

node triplet has an associated edge (𝑖, 𝑗), the TSP solution can be converted back

into a URPP solution by replacing each node triplet with its corresponding edge.

If the first node of the node triplet is 𝑠𝑖𝑗, the path is from 𝑖 to 𝑗; otherwise if it is

𝑠𝑗𝑖, the path is from 𝑗 to 𝑖.

 This transformation process is a significant discovery, since it means that

TSP algorithms are able to be used to solve the LPOP by transforming the

problem, instead of the complicated process of modifying the algorithm. Since

far more research has been done on the TSP compared to the URPP, recent

advances in the TSP could hold great potential for further optimizing the LPOP.

2.3 Algorithms for Solving the LPOP

As demonstrated previously, the LPOP is closely related to the TSP, and can be

represented in the form of the URPP. Unfortunately, since the TSP and URPP

are NP-hard, this implies that the LPOP is NP-hard as well. Thus, heuristic

algorithms have to be used to tackle the LPOP, which do not focus on checking

all possibilities for the best solution, but instead give a good approximation that

is usually within a certain percentage of the optimal solution.

2.3.1 Tour Construction Algorithms

Tour construction algorithms are algorithms that generate or construct a solution

to the particular graph problem (e.g. TSP or URPP).

2.3.1.1 Nearest neighbour

Arguably the most intuitive heuristic for the TSP is the nearest neighbour

algorithm. The algorithm can be visualized as a salesman whose rule of thumb

for choosing the next destination is to select the nearest location that has not yet

been visited (Johnson, 1990).

10

 An ordering 𝑐𝜋(1), ⋯ , 𝑐𝜋(𝑁) of the nodes is constructed, with the starting

location 𝑐𝜋(1) chosen arbitrarily. Generally, 𝑐𝜋(𝑖+1) is selected as the node 𝑐𝑘

that minimizes the cost function {𝑑(𝑐𝜋(𝑖), 𝑐𝑘): 𝑘 ≠ 𝜋(𝑗), 1 ≤ 𝑗 ≤ 𝑖} . The

solution is obtained by traversing the nodes in the order generated, then

returning to 𝑐𝜋(1) after having visiting node 𝑐𝜋(𝑁).

 Since nearest neighbour is simple to implement and is able to obtain

solutions relatively quickly, it is currently used in the open-source slicer

software Cura to solve the LPOP (Fok, et al., 2016). However, other methods

have been shown to obtain better solutions in practice, such as Christofides’

algorithm.

2.3.1.2 Christofides

A popular algorithm for solving the TSP is an algorithm devised by Christofides

(1976), now commonly called Christofides’ algorithm, The Christofides

heuristic is as follows. As can be seen in Figure 2.4, the graph to be solved is

assumed to be a complete graph, in which every pair of nodes is connected by a

unique edge.

Figure 2.4: Complete graph

 First, a minimum spanning tree 𝑇 is constructed for the set of nodes,

shown in Figure 2.5. This is the set of edges that connects all the nodes without

forming a cycle and with the minimum total edge cost. It is noted that the cost,

or length of this tree cannot be longer than the optimum TSP solution, OPT(𝐼),

since removing an edge from the optimal tour will result in a spanning tree.

11

Figure 2.5: Minimum spanning tree 𝑇

 Next, a minimum-length perfect matching 𝑀 is computed on the nodes of

odd degree in 𝑇, where the degree of a node is the number of edges it is incident

(linked) to. The resultant matching is shown in Figure 2.6. A matching is the set

of edges which do not share any nodes. Subsequently, a perfect matching is a

matching that includes all the nodes. It can be shown through a simple argument

that by assuming the triangle inequality, the matching will not be longer than

OPT(𝐼)/2. The triangle inequality states that the shortest path to travel from

node A to B is always the edge linking them directly.

Figure 2.6: Minimum-length perfect matching 𝑀

 By combining 𝑀 with 𝑇, a connected multigraph is obtained in which

every node has an even degree. A multigraph is a graph where edges are allowed

to have the same start and end node. This graph must necessarily contain an

Eulerian tour, which is a tour that traverses each edge exactly once but allows

for nodes to be revisited. Figure 2.7 shows the graph of 𝑀 ∪ 𝑇 and its Eulerian

tour.

12

Figure 2.7: Euler tour in 𝑀 ∪ 𝑇

 A TSP tour (also known as a Hamiltonian tour) of equal or shorter length

can be constructed from the multigraph by following the Euler tour and taking

shortcuts where appropriate to avoid previously visited nodes. For example, if

part of the Euler path is 𝐴 → 𝐵 → 𝐶 but 𝐵 had already been visited, the path

𝐴 → 𝐶 is taken instead. Following the triangle inequality, this new path is equal

to or shorter than the path it had replaced. However, care must be taken when

choosing which shortcuts to take, as there may be several different possibilities.

Figure 2.8 shows one such possible shortcut taken to get a TSP tour.

Figure 2.8: TSP tour obtained by taking shortcuts

 As demonstrated previously, the worst-case solution for Christofides’

algorithm is OPT(𝐼) + OPT(𝐼)/2 = 3 OPT(𝐼)/2, or in other words a worst-

case ratio of 1.5, which is one of the best for TSP heuristics. It also performs

better than the nearest neighbour algorithm on average when solving the LPOP,

as reported by Fok, et al. (2016) and Ganganath, et al. (2016).

13

2.3.1.3 Frederickson

Frederickson’s algorithm was first proposed by Frederickson (1979) to solve the

URPP. It shares many similarities with Christofides’ algorithm for the TSP,

which has already been explained previously in Section 2.3.1.2. Thus,

Frederickson’s algorithm will be elaborated upon more briefly.

 An undirected graph 𝐺 = (𝑉, 𝐸) and 𝐸𝑟 ⊆ 𝐸 , where 𝐸𝑟 is the set of

required edges, are given. A minimum spanning tree 𝑇 is then constructed to

link all the edges in 𝐸𝑟, and the edges used in the construction form a new set

𝐸𝑇.

 Next, a minimum cost perfect matching 𝑀 is conducted on the nodes in

the graph 𝐸𝑟 ∪ 𝐸𝑇 with an odd degree. The edges added in this process produce

another new set 𝐸𝑀.

 An Eulerian tour that visits all the edges in 𝐸𝑟 can then be easily found for

the graph 𝐸𝑟 ∪ 𝐸𝑇 ∪ 𝐸𝑀 . The tour can be further optimized by replacing

consecutive edges on the tour that are not in 𝐸𝑟 with shortcuts.

 Fok, Cheng and Tse (2017) showed that by representing the LPOP as a

URPP, Frederickson’s algorithm could be applied to solve the LPOP. Similar to

Christofides’ algorithm, it was found that Frederickson’s algorithm

outperformed the built-in nearest neighbour algorithm in Cura when solving the

LPOP.

2.3.1.4 Ant Colony Optimization (ACO)

The ant colony optimization (ACO) algorithm is inspired by the behaviour of

ants in nature. ACO is widely used to solve the TSP, and is also capable of

solving the URPP by transforming it into the TSP first (Pérez-Delgado, 2010).

 In real life, ants communicate through the use of a substance called

pheromone. This substance is deposited on the ground as they walk to serve as

a sort of marking. Ants will tend to follow the path with more pheromone,

depositing more of their own pheromone at the same time. Since pheromone

evaporates over time, less visited paths will become even less likely to be visited

in the future.

 The version of the ACO algorithm that will be explained is taken from

Fok, et al. (2018). Here, 𝜏𝑖,𝑗 signifies the pheromone level for an edge (𝑖, 𝑗), in

14

which 𝑖 and 𝑗 are the two nodes connected by that edge. Heuristic information

is also taken into account through 𝜂𝑖,𝑗, which is inversely proportional to the

cost of the edge (𝑖, 𝑗).

 If the 𝑘th ant is now at node 𝑖, the probability of the ant to take the edge

(𝑖, 𝑗) is expressed in Equation 2.4. 𝑁𝑖
𝑘 is the set of valid nodes that are directly

linked by a single edge to node 𝑖 and have not yet been visited by the 𝑘th ant.

Meanwhile, the parameters 𝛼 and 𝛽 are used for manipulating the behaviour of

the ants.

𝑝𝑖,𝑗
𝑘 (𝑡) =

[𝜏𝑖,𝑗(𝑡)]
𝛼

[𝜂𝑖,𝑗]
𝛽

∑ [𝜏𝑖,𝑙(𝑡)]
𝛼

[𝜂𝑖,𝑙]
𝛽

𝑙∈𝑁𝑖
𝑘

 (2.4)

 In order to avoid premature convergences and local optimum points, the

evaporation concept is implemented into ACO. At the end of each iteration, the

pheromone level of all the edges is reduced proportionally based on the factor

𝜌 ∈ (0,1). Consequently, the pheromone level 𝜏𝑖,𝑗 is updated at the end of the

𝑡th iteration as shown in Equation 2.5.

𝜏𝑖,𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖,𝑗(𝑡) + ∑ ∆𝜏𝑖,𝑗

𝑘 (𝑡)

𝑚

𝑘=1

 (2.5)

 In the equation, 𝑚 represents the number of ants used in each iteration of

the ACO. Next, ∆𝜏𝑖,𝑗
𝑘 (𝑡) signifies the amount of pheromone that is deposited by

the 𝑘th ant on edge (𝑖, 𝑗) in the 𝑡th iteration. As the process continues iteratively,

the evaporation factor 𝜌 will cause edges included in poor solutions to be

eliminated in the long run.

 The process is repeated until the prefixed number of iterations has been

reached or the solution converges. Fok, et al. (2018) first demonstrated the

effectiveness of the ACO algorithm when applied to the LPOP. However, an

inherent flaw of the ACO not present in previously discussed algorithms is that

due to the presence of randomness, the solution obtained may be different each

time the ACO algorithm is used on the same problem.

15

2.3.2 Improvement Algorithms

Improvement algorithms use complete solutions generated by tour construction

algorithms as a base to improve upon. That is to say; their job is to further

optimize existing solutions.

2.3.2.1 k-opt

k-opt is part of the group of improvement algorithms known as local search

algorithms. Local search algorithms work by repeatedly performing operations

that shorten the length of the current solution until no operation results in an

improvement, generating what is called a locally optimal tour.

 Croes (1958) first proposed the 2-opt algorithm. The operation in this

algorithm removes two edges from the tour, thus splitting it into two separate

paths. Those paths are then reconnected in the other possible way. If the new

tour is shorter than the old tour, the new connections are kept; otherwise the

substitution is not performed. Figure 2.9 shows an example of this process. First,

in Figure 2.9 (a), the edges (𝐴, 𝐷) and (𝐶, 𝐵) are removed, then in Figure 2.9 (b)

the nodes are reconnected with the edges (𝐴, 𝐵) and (𝐶, 𝐷) to form a new cycle.

Since the new tour is shorter than the old tour, the new tour is kept.

 Subsequently, 3-opt replaces up to three edges, as demonstrated in Figure

2.10 (Bock, 1958; Lin, 1965). Initially, Figure 2.10 (a) shows three pairs of

edges that can be removed; namely edges (𝐴, 𝐹), (𝐵, 𝐷) and (𝐶, 𝐸). Figure 2.10

(b) shows one way of reconnecting the nodes by using edges (𝐴, 𝐵), (𝐶, 𝐷) and

(𝐸, 𝐹). On the other hand, Figure 2.10 (c) shows another way of joining back

the nodes by using edges (𝐴, 𝐵), (𝐶, 𝐹) and (𝐷, 𝐸). This demonstrates that for

3-opt, it is possible to replace the edges in more than one way.

Figure 2.9: (a) Initial graph, (b) After 2-opt move

16

Figure 2.10: (a) Initial graph, (b) & (c) Two possible 3-opt moves

 By following this line of logic, any integer value k could theoretically be

used to implement k-opt, but practically only 2-opt and 3-opt are used due to the

rapidly growing complexity of the operations as k increases.

 Although k-opt is simple to implement, its weakness which is shared by

all local search algorithms is that it may become stuck in a local minima, and is

unable to search for better solutions that may exist globally. Nevertheless,

several papers have shown the effectiveness of using k-opt algorithms to

improve upon LPOP solutions (Ganganath, et al., 2016; Fok, Cheng and Tse,

2017; Fok, et al., 2019).

2.3.3 Application-specific Methods

In literature, there have been a number of proposed methods that are specifically

tailored for solving the LPOP. These methods generally build on existing

algorithms while exploiting the unique properties of the LPOP to achieve

improved solutions.

2.3.3.1 Refinement Process

The refinement process was proposed by Fok, Cheng and Tse (2017). It focuses

on exploiting two characteristics of the LPOP as defined by the authors.

 The first is that even though zero cost transitions are uncommon in the

ordinary URPP, they are necessary in the LPOP, as curves are made of many

straight print segments with zero cost transitions between them since they are

connected directly. The second characteristic is that the printing nozzle does not

need to return to its starting point after it has completed all the print segments

on a layer.

17

 The LPOP is formulated as an URPP, and is subsequently solved by

Frederickson’s algorithm. The solution obtained is then put through the

proposed refinement process. To take advantage of the first characteristic, a

priority list is created for the k-opt heuristic, such that transitions with higher

priority will be evaluated first. Since it is very unlikely that performing k-opt on

the zero cost transitions would yield an improvement, they are given lower

priorities on the list.

 The second part of the process changes the order of the path by removing

the requirement to return to the starting node. The initial cycle is first split at the

node in the cycle that is closest to the starting node, such that a chain 𝐶 =

{(𝑣𝑎1, 𝑣𝑏1), (𝑣𝑎2, 𝑣𝑏2), ⋯ , (𝑣𝑎𝑖, 𝑣𝑏𝑖), ⋯ , (𝑣𝑎𝑛, 𝑣𝑏𝑛)} is formed, where

(𝑣𝑎𝑖, 𝑣𝑏𝑖) are the nodes of the 𝑖th print segment in the chain. Then, in the 𝑝th

iteration of this process, 𝐶 is divided into two subchains 𝐶1 =

{(𝑣𝑎1, 𝑣𝑏1), ⋯ , (𝑣𝑎𝑝+1, 𝑣𝑏𝑝+1)} and 𝐶2 = {(𝑣𝑎𝑝+2, 𝑣𝑏𝑝+2), ⋯ , (𝑣𝑎𝑛, 𝑣𝑏𝑛)}. If

the joint cost of 𝐶1 and 𝐶2 flipped = {(𝑣𝑏𝑛, 𝑣𝑎𝑛), ⋯ , (𝑣𝑏𝑝+2, 𝑣𝑎𝑝+2)} is less than

𝐶, the order of 𝐶 is updated such that 𝐶 ← {𝐶1, 𝐶2 flipped}, otherwise 𝐶 remains

unchanged. This process then continues for each iteration until the end of the

chain.

 It was reported by the authors that by using the proposed refinement

process, performance was increased significantly compared to Frederickson’s

algorithm followed by 2-opt. The total transition length of the solution obtained

was always shorter, while the post-processing time was reduced by about 34.50%

on average. This paper is one of the first to demonstrate the importance of

considering the unique properties of the LPOP to further increase performance.

2.3.3.2 Extended ACO

Fok, et al. (2018) proposed the extended ACO method to exploit a unique

property of typically sliced 3D models. In the 3D printing process, the desired

3D model is first sliced by a slicer program into very thin slices, and each slice

is then transformed into a layer with print segments. Due to this, adjacent layers

will usually have similar structures in terms of the locations and orientations of

print segments.

18

 Before further discussion, a few terms that will be used must be made

clear. Typically in ACO, the number of iterations to be executed, which is

termed as 𝑁ite, is defined beforehand by the user and is fixed throughout the

entire optimization process. Since ACO uses a stochastic mechanism to check

for improvements, it is possible that for some of the iterations, no further

improvement can be found. For convenience’s sake, the authors have coined the

term effective iteration to mean an iteration in which improvements can still be

found. Thus, the total number of effective iterations of a sliced model on its 𝑖th

layer is denoted as 𝑁eff
𝑖 ∈ [0, 𝑁ite].

 Empirical studies that were conducted by the authors on various 3D

models suggested that 𝑁eff
𝑖 usually approximates to 𝑁eff

(𝑖−1)
, and that ACO is

usually unable to achieve further improvement on the 𝑖th layer when 𝑁eff
𝑖 >

𝑁eff
(𝑖−1)

. These properties can then be utilized to adaptively adjust the number of

iterations used. However, there exist exceptional cases whereby there is a large

deviation between 𝑁eff
𝑖 and 𝑁eff

(𝑖−1)
, implying that the number of iterations for

each of the two layers should be different in this case to optimize the ACO

process.

 The extended ACO begins by checking for the condition 𝑁eff
𝑖 > 𝑁eff

(𝑖−1)
 on

the 𝑖th layer. If the condition is met and no improvement is made on the current

iteration, the process will terminate early. When the process terminates early,

meaning 𝑁ite
𝑖 < 𝑁ite, the extra iterations are stored in a global reverse 𝑁res.

 However, if the condition is met and there is improvement for the current

iteration, the optimization process for the 𝑖th layer is allowed to continue as long

as improvement is achieved for the current iteration. The number of iterations

is only allowed past 𝑁ite if 𝑁res > 0 , and every subsequent iteration will

consume one iteration in 𝑁res.

 The idea behind such a design is to adaptively allocate the iteration

numbers across the layers, such that less complex layers use up less iterations,

while the surplus computational resources can be used for the more complex

layers.

 When the performance of extended ACO was compared to the generic

ACO, Fok, et al. (2018) reported very similar build times for both the solutions,

19

while the extended ACO saved on average 8.20% of post-processing time. In

other words, the extended ACO was able to cut down on post-processing time

without comprising on the quality of the solution.

2.3.3.3 Detour Searching Algorithm with Modified k-opt

One of the most recent approaches was proposed by Fok, et al. (2019), which

exploits a particular property of 3D printing. Retraction is an important feature

in FFF 3D printers. It involves retracting the filament a short distance to

minimize the oozing of material when transitioning from one print segment to

another.

 However, as will soon be explained, retraction is not always necessary for

every transition move. Transition segments can be divided into two groups,

those with retraction and those without, as can be seen in Figure 2.11. Since

transition A in the figure lies wholly within the model, retraction is not

necessary, as the oozing will occur on the inside, and will not be visible from

the outside after the model has been completed. On the other hand, a portion of

transition B passes through the outside of the model, thus retraction is required

to minimize the visible oozing.

Figure 2.11: Transition without retraction (A), and with retraction (B)

 As the retraction process takes up time and only minimizes the oozing but

does not prevent it entirely, it is desirable to reduce the number of transition

moves with retraction wherever possible.

 Two algorithms were proposed by the authors to reduce the printing time.

The first is a detour searching algorithm, which is a heuristic algorithm that uses

20

detours to replace unnecessary transitions that contain retraction. These

transitions are prioritized based on their respective cost, such that higher cost

transitions are considered first. As the detour searching algorithm itself is fairly

complex, it will not be further elaborated upon here. Those interested in the

details of the algorithm may refer to the original paper published by Fok, et al.

(2019).

 The second algorithm is a modified k-opt heuristic. The edges that do not

have retraction are divided into two subsets of 𝐸 , namely 𝐸𝐵 and 𝐸𝐶 . 𝐸𝐵

contains the transitions with distance greater than zero, while 𝐸𝐶 contains the

transitions with zero distance. Based on two theorems developed by the authors,

any combinations which are either made up of one transition in 𝐸𝐵 and (𝑘 − 1)

transitions in 𝐸𝐶, or only made up of transitions in 𝐸𝐶 are not considered in the

k-opt process, as they will yield no improvement. This idea is similar to part of

the refinement process proposed by Fok, Cheng and Tse (2017) that has been

discussed in Section 2.3.3.1.

 Since the two proposed algorithms are improvement algorithms, they

require an initial solution to improve on. In the paper, it is stated that the

complete proposed method begins with Frederickson’s algorithm first, followed

by the detour searching algorithm, and finally the modified k-opt algorithm.

 When the results of the proposed method were compared with an

extensive number of other algorithms, it was found that the proposed method

always obtained the shortest print time, while requiring significantly less post-

processing time than most of the other algorithms which obtained similarly short

print times. In terms of the final print quality, the proposed method performed

better than Cura when they were compared qualitatively, due to the stark

decrease in transitions with retraction.

 These results make it the first paper (to the knowledge of this report’s

author) of a proposed method that managed to demonstrate improvement both

in terms of print time and the final print quality.

2.4 Summary

The LPOP can be formally expressed using graph theory, and thus can be

represented as an URPP, which is closely related to the well-known TSP. Since

it has been shown that an URPP can be converted into a TSP, and the solution

21

obtained can be converted back into a URPP solution, algorithms for solving

the TSP and URPP could both potentially be used to solve the LPOP.

 While there exists a variety of tour construction algorithms and

improvement algorithms, the approach with the most promise appears to be

developing or modifying improvement algorithms that exploit the unique

properties present in the LPOP. A number of papers have demonstrated that this

approach yields better solutions when compared with generic algorithms, as can

be observed in Section 2.3.3.

 However, a noticeable gap in the literature is research into the application

of some commonly-used metaheuristic algorithms such as simulated annealing

and tabu search for solving the LPOP. Thus, future research into these untested

algorithms is a possible path forward.

22

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

A process must be formulated to test the algorithms and compare their

performance in order to achieve the aim of this report, which is to reduce the 3D

printing time by utilizing algorithms to solve the LPOP. This process is

illustrated in Figure 3.1. The details of the process will be further explained in

the subsequent portion of this chapter.

Figure 3.1: Flowchart of the process to evaluate LPOP algorithms

3.2 Cura

Cura is a popular open-source slicer software developed and distributed by

Ultimaker and is available to download for free on Ultimaker’s website

(Ultimaker, n.d.). Due to its widespread use, it is a useful baseline to compare

the performance of the algorithms used.

 A slicer software is a piece of software used to process a 3D model in

order to obtain the corresponding G-code for that model. Countless parameters

are available for tweaking within the slicer software. Such parameters include

the dimensions and specifications of the 3D printer, the scaling and orientation

of the 3D model, layer height, supports, etc. In general, the tuning of these

parameters will affect the final appearance and quality of the print, as well as

the duration of the 3D printing process. A sample of the user interface in Cura

is shown in Figure 3.2.

23

Figure 3.2: Cura user interface

 For this report, Cura version 4.4 was used with the default settings, but

with some minor adjustments. The infill was set to 20%, the layer height was

set to 0.2 mm, and the relative extrusion mode was enabled. The first two

adjustments are to create a standard for the testing procedure, while the last

setting modifies the way the G-code is written to make it easier to post-process,

as will be explained in Section 3.3. Meanwhile, the retraction setting is also

disabled as stated in the scope and limitations of the study.

3.3 G-code

G-code is the language used to program the motion of computer numerical

control (CNC) machines. It has long been in use for subtractive manufacturing

CNC machines such as lathes and drills, but has only recently been adapted for

use in additive manufacturing CNC machines, also known as 3D printers.

 3D printing technology had been commercially available for many

decades, but it was restricted to mostly industrial use due to the high costs

associated with it. This changed circa 2010, when the RepRap project, an open-

source effort to develop consumer 3D printers, gained public attention (Jones,

et al., 2011). Since then, many 3D printing related open-source projects have

taken off, with 3D printing start-up companies using technology and code from

these open-source projects as a starting point for developing their own products.

24

 As a result of this unusual origin of consumer 3D printing technology,

most consumer-level and even some commercial-level 3D printers use modified

open-source firmware. Thus, for this report, two open-source 3D printer

firmware projects, namely RepRap and Marlin, will be referred to for the

definition of the G-code commands (Marlin Firmware, n.d.; RepRap, n.d.). The

RepRap source shows a comparison of the different definitions of the G-code

according to various firmware, while Marlin is a widely-used firmware.

Fortunately, the G-code definitions are generally consistent between firmware,

but in the case of any discrepancy the definition from Marlin will be used.

 Although there are many commands in the G-code language, only two of

them will be used throughout the vast majority of the printing process, which

are G0 and G1. Both of these are move commands and perform the same action,

but by convention G0 means a rapid move (i.e. non-extruding) while G1 means

a linear move (i.e. extruding) (Marlin Firmware, n.d.). Parameters as shown in

Table 3.1 are added behind G0/G1. At least one parameter is required, but a

G0/G1 command may include all of them.

Table 3.1: Parameters for G0 and G1

Parameter Description

F<rate>

The movement rate, also known as feedrate, from

the start to end point. The value set here will apply

to subsequent moves that do not have this

parameter.

X<pos> The X-coordinate of the position to move to.

Y<pos> The Y-coordinate of the position to move to.

Z<pos> The Z-coordinate of the position to move to.

E<pos>
The length of filament extruded from the start to

end point.

 Some examples of G0 and G1 code are given in Table 3.2. Note that text

after a semicolon means a comment. Coordinates will be discussed in the format

(x, y).

25

Table 3.2: Examples of G0 and G1 commands

Example Code

A
G0 F1200 X3.4 Y15.3

G0 X50.6 Y84

B

G0 F1600

G0 X23.1 Y56.7

G1 X34 Y67.1 E10.5

C

G0 F1600 X45.3 Y55

G1 X33.1 Y68.8 E5.4

G1 F1000 E-5 ; retraction move

G0 F1600 X12 Y45

 In example A, the first line tells the nozzle to move to the coordinates (3.4,

15.3) in mm at a feedrate of 1200 mm/minute. The second line then moves the

nozzle to (50.6, 84). Since this line has no F parameter, it will retain the same

feedrate of 1200 mm/minute.

 In example B, the first line sets the feedrate of subsequent moves to 1600

mm/minute. The second line moves the nozzle to (23.1, 56.7). The third line

then moves the nozzle to (34, 67.1) while extruding 10.5 mm of filament evenly

between the two points. The feedrate of the extrusion itself is calculated by the

firmware to ensure that an even amount of material is deposited along the path.

 In example C, the first line moves the nozzle to (45.3, 55) at a feedrate of

1600 mm/minute, then the second line moves the nozzle to (33.1, 68.8) at the

same feedrate while extruding 5.4 mm of filament. Next, the third line retracts

5 mm of filament at a feedrate of 1000 mm/minute, since it has a negative sign

in the E parameter. This type of move is termed as a retraction move, and its

purpose is briefly explained in Section 2.3.3.3. Lastly, the nozzle moves to (12,

45) at a feedrate of 1600 mm/minute.

 In summary, understanding G0 and G1 instructions will be sufficient

enough to construct the parser program.

3.4 Parser Program and Conversion Back to G-code

The job of the parser program is to extract the layer data from the initial G-code

and convert it into the LPOP. As an example, say that the output given by the

26

slicer program for the first layer is as shown in Figure 3.3. Solid lines represent

the print segments, while the dotted lines represent the transition segments.

Figure 3.3: Output of the slicer program for the first layer

 The corresponding G-code may be something similar to the code shown

in Table 3.3, where <xA> and <yA> are the respective X-coordinate and Y-

coordinate of node A. Meanwhile, <eAB> is the length of filament extruded from

node A to node B and is equivalent to <eBA>. A transition move is the same as

a non-extruding move.

Table 3.3: Initial G-code for the first layer

G0 X<xA> Y<yA> ; move to node A

G1 F1500 X<xB> Y<yB> E<eAB> ; move to node B while extruding

G1 X<xC> Y<yC> E<eBC> ; move to node C while extruding

G0 F3200 X<xD> Y<yD> ; do a transition move to node D

G1 F1200 X<xE> Y<yE> E<eDE> ; move to node E while extruding

G0 F3200 X<xA> Y<yA> ; do a transition move to node A

 The parser first needs to identify all the nodes and their coordinates, which

is then stored in a table as shown in Table 3.4. Using this information, the

Euclidean distance is calculated for all possible pairs of nodes using the

Pythagorean theorem. For example, the distance between node A and B is

denoted as <dAB> or <dBA>. In other words, the distance of each possible edge

is calculated.

27

Table 3.4: Coordinates of each node

Node X-coordinate Y-coordinate

A <xA> <yA>

B <xB> <yB>

C <xC> <yC>

D <xD> <yD>

E <xE> <yE>

 Next, the feedrate and extrusion length for each edge has to be extracted

from the G-code. Generally, all transition moves will have the same feedrate, so

the value of the transition feedrate used in the G-code will be applied to all the

other possible transition segments.

 All the data regarding the edges is then formatted as a matrix, as shown in

Table 3.5. The data is ordered as distance, feedrate and extrusion length. A dash

symbol (-) means that the particular parameter is not applicable. For example,

non-extrusion moves will not have any extrusion length.

Table 3.5: Data matrix for the edges

Edge A B C D E

A

0,

-,

-

<dAB>,

1500,

<eAB>

<dAC>,

3200,

-

<dAD>,

3200,

-

<dAE>,

3200,

-

B

<dAB>,

1500,

<eAB>

0,

-,

-

<dBC>,

1500,

<eBC>

<dBD>,

3200,

-

<dBE>,

3200,

-

C

<dAC>,

3200,

-

<dBC>,

1500,

<eBC>

0,

-,

-

<dCD>,

3200,

-

<dCE>,

3200,

-

D

<dAD>,

3200,

-

<dBD>,

3200,

-

<dCD>,

3200,

-

0,

-,

-

<dDE>,

1200,

<eDF>,

E

<dAE>,

3200,

-

<dBE>,

3200,

-

<dCE>,

3200,

-

<dDE>,

1200,

<eDF>,

0,

-,

-

28

 Using Table 3.4 and Table 3.5, the LPOP for this layer can be represented

as a URPP, as discussed in Section 2.2.2. For this example, given that 𝐺 =

(𝑉, 𝐸) and 𝐸𝑟 ⊆ 𝐸, the elements of the sets are described in Table 3.6, where

(A, B) is an edge connecting node A and B.

Table 3.6: Elements of 𝑉, 𝐸 and 𝐸𝑟

Set Elements

𝑉 A, B, C, D, E

𝐸 (A, B), (A, C), (A, D), (A, E), (B, C), (B, D), (B, E), (C, D),

(C, E), (D, E)

𝐸𝑟 (A, B), (B, C), (D, E)

 Since the length of each edge can be obtained from Table 3.5, the URPP

can now be solved by the selected algorithm. As explained in Section 2.2.2, the

URPP is able to be converted into the TSP and the solution can be converted

back into a URRP solution, thus TSP algorithms can be used as well by utilizing

this property.

 Now suppose that the optimized solution obtained by the algorithm is

shown in Figure 3.4. The parser program then needs to use information from the

solution in Table 3.4 and Table 3.5 to construct the corresponding G-code. An

example of the optimized G-code is shown in Table 3.7. A G-code simulator

can then be used to analyse and compare various parameters of the initial G-

code and optimized G-code.

Figure 3.4: Optimized solution

29

Table 3.7: Optimized G-code

G0 X<xA> Y<yA>

G1 F1500 X<xB> Y<yB> E<eAB>

G1 X<xC> Y<yC> E<eBC>

G0 F3200 X<xE> Y<yE>

G1 F1200 X<xD> Y<yD> E<eDE>

G0 F3200 X<xA> Y<yA>

3.5 Algorithms to be Tested

Since the nearest neighbour algorithm is used in Cura as reported by Fok, et al.

(2016), it will be excluded from the list of algorithms to be tested. The list of

proposed algorithms to be tested is given in Table 3.8. The details of the

algorithms will be elaborated in the subsequent sections.

Table 3.8: Algorithms to be tested

No. Algorithm

1 Modified AS algorithm for solving URPP

2 Modified ACS algorithm for solving URPP

3.5.1 ACO Algorithm Variants

The basis behind the ACO algorithm has been stated previously in Section

2.3.1.4. However, ACO actually refers to a family of algorithms that share the

same ant-based idea, but use different techniques. The specific version of the

ACO algorithm elaborated upon in Section 2.3.1.4 is the earliest version, first

conceived by M. Dorigo, V. Maniezzo and A. Colorni (1996) and is known as

the Ant System (AS).

 Later, M. Dorigo and L. M. Gambardella (1997) proposed another ACO

algorithm called the Ant Colony System (ACS). ACS differs from AS in three

significant ways: the state transition rule, the local pheromone update and the

global pheromone update. These differences will be discussed using the

terminology used in Section 2.3.1.4.

 The state transition rule is given in Equation 3.1. When the 𝑘th ant is at

node 𝑖, the next node 𝑠 is decided by the following rule. If 𝑞 ≤ 𝑞0, where 𝑞 is a

30

random number that is evenly distributed in [0…1] and 𝑞0 is a parameter

between 0 and 1, then the node 𝑙 that maximises the argument {[𝜏𝑖,𝑙] ∙ [𝜂𝑖,𝑙]
𝛽

} is

chosen as the next node (called exploitation). Otherwise, if 𝑞 > 𝑞0, the same

rule as in AS is used to choose the next node (called biased exploration). This

state transition rule is known as the pseudo-random-proportional rule. The

parameter 𝑞0 balances exploitation and biased exploration.

𝑠 = {arg max

𝑙∈𝑁𝑖
𝑘 {[𝜏𝑖,𝑙] ∙ [𝜂𝑖,𝑙]

𝛽
} if 𝑞 ≤ 𝑞0

𝑆 otherwise
 (3.1)

 In AS, the path generation for each ant can be done sequentially or in

parallel, since the pheromone is only updated after all the ants have completed

their tours. However, in ACS the pheromone values change dynamically as the

ants generate their path, so the path generation must be done in parallel. After

each ant has added a new node to their path, the local pheromone update takes

place according to Equation 3.2. In the equation, 𝑟 is the current number of

nodes in each ant’s path, 𝜑 is the local evaporation factor, and 𝜏0 is the initial

pheromone value. The reasoning behind the local pheromone update is to

diversify the solutions obtained by evaporating a small amount of pheromone

from an edge every time it is traversed by an ant, making that edge less desirable

to be used by other ants later on within the same iteration. Without local

updating, the ants would only explore paths very similar to the shortest previous

tour.

 𝜏𝑖,𝑗(𝑟 + 1) = (1 − 𝜑) ∙ 𝜏𝑖,𝑗(𝑟) + 𝜑 ∙ 𝜏0 (3.2)

 Other than the local pheromone update, ACS also has the global

pheromone update which happens at the end of every iteration 𝑡, shown in

Equation 3.3. In the equation, 𝛼 is the global evaporation factor. Meanwhile, if

the edge (𝑖, 𝑗) is part of the globally best path, then ∆𝜏𝑖,𝑗 is the inverse of the

best length (i.e. inverse length of the globally best path), otherwise ∆𝜏𝑖,𝑗 is zero.

Put another way, pheromone will evaporate from all edges and only the best ant

is allowed to deposit pheromone along the path it travelled.

31

 𝜏𝑖,𝑗(𝑡 + 1) = (1 − 𝛼) ∙ 𝜏𝑖,𝑗(𝑡) + 𝛼 ∙ ∆𝜏𝑖,𝑗 (3.3)

3.5.2 Modifying AS and ACS Algorithms to solve the URPP

The AS and ACS algorithms were originally designed to solve the TSP. To use

these algorithms to solve the URPP, previous authors such as Pérez-Delgado

(2010) and Fok, et al. (2018) have used a transformation process to convert the

original URPP into a TSP, and then to convert the obtained TSP solution into

the URPP solution. This transformation process has been explained previously

in Section 2.2.2.

 In this report, a new method is proposed to solve the URPP by modifying

the AS and ACS algorithms directly. In the original algorithms that solved for

the TSP, the set of possible nodes that the ant could travel to next was simply

𝐴′, given that the universal set, 𝑈 is the set containing all the nodes in the

problem and 𝐴 is the set of nodes that the ant has already visited. However, in

the proposed method, the logic for determining the possible next nodes for the

ant is changed.

 As an example, say that the graph in Figure 3.5 (a) is the original URPP,

where the solid lines are the required edges. When solving for any URPP, the

assumption is made that each node is connected to a maximum of two required

edges. Thus, each node can have zero, one, or two required edges. Nodes with

zero required edges can be ignored, since the goal of the URPP is to connect all

the required edges. This leaves the nodes with one or two required edges.

Figure 3.5: (a) Original URPP, (b) After transformed to TSP

32

 To begin the modified AS/ACS algorithm, an ant randomly chooses a

node with only one required edge. From Figure 3.5 (a), this means that the ant

can start from node A, C, D, E, F, or I. Say that the ant starts at node C. Next,

the ant will immediately choose node B, since it is connected to node C by a

required edge. After that, the ant sees that node B is connected to both node A

and C by required edges, but since node C has already been visited, the ant goes

to node A. Now, at node A, it randomly chooses the next node according to the

rules of the normal AS/ACS algorithm, where the set of possible next nodes are

those with only one required edge that have not been visited, which is node D,

E, I, and F. This process repeats until all the nodes have been visited, then the

ant returns to the starting node. In other words, the ant will always follow a path

made of required edges, then when it reaches the end of that path, it will

randomly choose the start of another path of required edges according to the

AS/ACS algorithm. This method of traversing the graph guarantees that all the

required edges will be included in the final tour.

 For the URPP in Figure 3.5 (a), it can be observed that if the modified

AS/ACS algorithm is used as described above, the ant only has to make a

random decision on which node to go next two times. On the other hand, Figure

3.5 (b) shows the graph after the URPP has been transformed to its TSP

equivalent according to Section 2.2.2, where each required edge is represented

as a node triplet. If the conventional AS/ACS algorithm is applied to the graph

in Figure 3.5 (b), the ant would need to make a random decision on which node

to go next 17 times.

 Therefore, it can be clearly seen that the proposed modified AS/ACS

algorithm requires significantly less processing to solve the URPP compared to

using the original AS/ACS algorithm to solve the TSP equivalent of the URPP.

Practically, this translates into a significant reduction in processing time. This

improvement is even more apparent when the processing required to perform

the initial transformation and the transformation of the obtained solution is taken

into account.

 Figure 3.6 illustrates the logic of the AS algorithm after it has been

modified to solve the URPP, while Figure 3.7 shows the modified ACS

algorithm instead.

33

1. Initialize pheromone data

2. for each iteration in all_iterations do

3. for each ant in all_ants do

4. starting_node ← random node with only one required edge

5. current_node ← starting_node

6. Append starting_node to ant_tour

7. repeat

8. if current_node has two required edges

9. next_node ← the node connected by a required edge that is not

in ant_tour

10. if current_node has one required edge

11. if node connected by required edge not in ant_tour

12. next_node ← the node connected by required edge

13. else

14. possible_next_nodes ← nodes with only one required edge

that are not in ant_tour

15. next_node ← random node chosen from

possible_next_nodes according to AS rule

16. Append next_node to ant_tour

17. current_node ← next_node

18. until all nodes are in ant_tour

19. best_tour ← globally shortest ant_tour so far

20. Perform global pheromone update according to AS rule

21. return best_tour

Figure 3.6: Modified AS algorithm for solving URPP

1. Initialize pheromone data

2. for each iteration in all_iterations do

3. for each ant in all_ants do

4. starting_node[ant] ← random node with only one required edge

5. current_node[ant] ← starting_node[ant]

6. Append starting_node[ant] to ant_tour[ant]

34

7. repeat

8. for each ant do

9. if current_node[ant] has two required edges

10. next_node[ant] ← the node connected by a required edge that

is not in ant_tour

11. if current_node[ant] has one required edge

12. if node connected by required edge not in ant_tour[ant]

13. next_node[ant] ← the node connected by required edge

14. else

15. possible_next_nodes[ant] ← nodes with only one required

edge that are not in ant_tour

16. next_node[ant] ← random node chosen from

possible_next_nodes according to ACS rule

17. Append next_node[ant] to ant_tour[ant]

18. current_node[ant] ← next_node[ant]

19. Perform local pheromone update according to ACS rule

20. until all nodes are in ant_tour for all ants

21. best_tour ← globally shortest ant_tour so far

22. Perform global pheromone update according to ACS rule

23. return best_tour

Figure 3.7: Modified ACS algorithm for solving URPP

3.6 Implementation of the Parser and Algorithms

The parser and algorithms to be tested were written in the Python programming

language due to its ease of use and natural data-handling capabilities.

Preliminary testing showed that the code for the parser and algorithm took a

long time to process a single G-code file, usually around a few hours. It was

expected that since Python is an interpreted language, it would have worse

performance compared to compiled languages such as C and C++.

 To decrease the processing time of the code, Numba, which is a Just-In-

Time (JIT) compiler for Python, was integrated into the code so that it could

achieve speeds similar to compiled languages. After Numba was added, the

processing time of the code dropped by about 20 times, such that a G-code file

could now be processed in a matter of minutes.

35

3.7 G-code Simulator

A G-code simulator is a software that virtually simulates each G-code command,

allowing the user to see visualizations of each layer in detail as well as obtain

useful metrics for the entire print process, such as the total distance travelled,

the printing time, etc.

 Two G-code simulators will be used, which are gCodeViewer and Gcode

Analyser (hudbrog, 2018; syue87, 2018). The former is used to visualize the

printing process for each layer since it shows the transition moves, while the

latter is used to obtain useful metrics. Figure 3.8 shows the gCodeViewer user

interface, while Figure 3.9 shows a screenshot from Gcode Analyser.

Figure 3.8: Screenshot from gCodeViewer

Figure 3.9: Screenshot from Gcode Analyser

36

3.8 Summary

Before the testing can be carried out, the parser program and the part of the

program that reconstructs the G-code have to be coded first. Subsequently, all

the combinations of algorithms to be tested have to be written in code as well.

 Once the coding is finished, a range of 3D models will be needed to serve

as the sample set. Some 3D models used in prior research such as those by Fok,

Cheng and Tse (2017), Fok, et al. (2018) and Fok, et al. (2019) will form part

of the sample set, while the rest will be 3D models that can be easily obtained

online.

 The testing procedure can begin after the coding is completed and the

sample set of models are chosen. The selected model is first processed through

Cura to generate the initial G-code. The initial G-code is then parsed and

optimized by the chosen algorithm to obtain the optimized G-code. Finally, the

initial and optimized G-code are analysed by using the G-code simulators and

the corresponding data is recorded. This is repeated for every algorithm in the

list. After all the algorithms have been tested for the selected model, another

model is chosen from the sample set of models. The process repeats until it has

gone through the entire sample set.

37

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

The purpose of this report is to investigate the use of improved algorithms to

solve the layer path optimization problem (LPOP) in 3D printing to reduce the

time needed to print an object. The LPOP is defined as finding the shortest path

that the nozzle of the 3D printer should traverse in order to print the desired

object.

 The main hypothesis is that by reducing the path length of the nozzle, the

time taken to traverse the nozzle path (i.e. time taken to print the object) will be

decreased as well.

 In Section 2.2.2, it was shown that the LPOP could be represented

formally as the undirected rural postman problem (URPP), a known problem in

graph theory. Another closely related graph theory problem is the travelling

salesman problem (TSP).

 Thus to solve the URPP, two algorithms that were previously created to

solve the TSP, namely the ant system (AS) and ant colony system (ACS)

algorithms, were modified to solve the URPP instead. The modifications were

explained in Section 3.5.2.

 To compare the performance of the modified AS and ACS algorithms with

the widely-used 3D printing software (also known as a ‘slicer program’) Cura,

a testing procedure was devised.

4.1.1 Testing Process

Cura produces a file called a G-code file from a 3D model. The G-code file

contains instructions on how the printer should print out the 3D model. To

enable the modified AS and ACS algorithms to optimize the G-code file, a

parser program was written.

 The job of the parser program is to extract the relevant data from the G-

code file and convert it into the URPP form, where it can be solved by the

modified AS and ACS algorithms. Following that, the parser program uses the

obtained solution to produce the optimized G-code.

38

 By using the parser program, the performance of the modified AS and

ACS algorithms can be compared with Cura. This is done by comparing the

optimized G-code with the original G-code. A G-code simulator is used to

analyse both the optimized and original G-code.

 The first part of the testing procedure is the preliminary parameter testing

phase in Section 4.2. The objective of this phase is to determine the best settings

or parameters to be used for the modified AS and ACS algorithms.

 The second part of the testing procedure is the main testing phase in

Section 4.3. The best parameters for the algorithms that were determined in the

first part will be used in the algorithms here. The objective of this phase is to

compare the performance of the modified AS and ACS algorithms with Cura

across a wide range of 3D models.

 All processing and simulations were done on a computer with Intel i7-

4720HQ processors, 8 GB RAM, Windows 10, Python 3.7.6, and Numba 0.48.0.

39

4.1.2 Explanation of Terminology Used

The definitions of some of the terminology that will be used later on are

explained in Table 4.1.

Table 4.1: Definitions of terminology used

Term Definition

Cura A widely-used 3D printing software, the standard

by which the other algorithms are compared to,

explained in Section 3.2

Modified AS

algorithm

The algorithm that was modified from the original

AS algorithm in order to solve the URPP and

hence the LPOP, explained in Section 3.5.2

Modified ACS

algorithm

The algorithm that was modified from the original

ACS algorithm in order to solve the URPP and

hence the LPOP, explained in Section 3.5.2

G-code Instructions or code sent to the 3D printer in order

to print out an object, explained in Section 3.3.

Parser program The program that converts the original G-code into

the optimized G-code using the chosen algorithm,

explained in Section 3.4

Print time Time taken for the entire object to be printed by

the 3D printer

Travel distance Distance of the path travelled by the nozzle of the

3D printer to print the entire object

Processing time Time taken for the parser program and selected

algorithm to optimize the original G-code file

Total time taken The sum of the print time and processing time, i.e.

the total time taken to optimize the G-code and

print the object

Percentage travel

distance reduced

The percentage that the travel distance was

reduced by relative to the travel distance of Cura

Percentage print time

reduced

The percentage that the print time was reduced by

relative to the print time of Cura

40

4.2 Preliminary Parameter Testing Phase

The objective of this phase is to determine the best settings or parameters to be

used for the modified AS and ACS algorithms.

 The default parameters for the original AS algorithm are shown in Table

4.2. The number of iterations and ants are half of those used by Fok, et al. (2018),

while the other parameters are obtained from M. Dorigo, V. Maniezzo and A.

Colorni (1996).

Table 4.2: Default parameters for original AS

Parameter Value

Number of iterations 50

Number of ants 50

Pheromone factor, 𝛼 1

Heuristic factor, 𝛽 2

Global evaporation factor, 𝜌 0.1

 Meanwhile, the default parameters for the original ACS algorithm are

shown in Table 4.3. The number of iterations and ants are half of those used by

Fok, et al. (2018), while the other parameters are obtained from M. Dorigo and

L. M. Gambardella (1997).

Table 4.3: Default parameters for original ACS

Parameter Value

Number of iterations 50

Number of ants 50

Pheromone factor, 𝛼 1

Heuristic factor, 𝛽 2

Global evaporation factor, 𝜌 0.1

Local evaporation rate, 𝜑 0.1

Pseudorandom parameter, 𝑞0 0.9

41

 These default parameters were used as a starting point to determine the

best parameters to use for the modified AS and ACS algorithms respectively.

4.2.1 Setup for Varying the Number of Iterations

For the modified AS and ACS algorithms, the parameters in Table 4.2 and Table

4.3 were used respectively, except for the number of iterations, which was set

as a variable. The number of iterations to be tested was 10, 20, 30, 40 and 50 for

both algorithms.

 Three different 3D models were selected as the sample set: “Benchy”,

“Clamp” and “Lowest poly thinker”. The models were selected for their

different unique structures. The “Clamp” and “Lowest poly thinker” models

were rescaled to 50% of their original size due to excessive processing times.

 For each algorithm, 3D model and number of iterations, the optimized G-

code was generated five times. A G-code simulator was used to obtain the travel

distance and print time for each G-code file. The mean travel distance, print time

and processing time of the five trials were recorded.

 According to M. Dorigo, V. Maniezzo and A. Colorni (1996), the number

of iterations significantly affected the processing time. Thus, the processing

time was recorded.

4.2.2 Results for Varying the Number of Iterations

The results were graphed in terms of print time against travel distance, travel

distance against processing time, and print time against processing time.

42

4.2.2.1 Print Time against Travel Distance

Table 4.4 shows the graphs of print time against travel distance for the modified

AS and ACS algorithms when they were applied to the “Benchy”, “Clamp”, and

“Lowest poly thinker” 3D models. The numbers next to the data points indicate

the number of iterations for the particular algorithm.

Table 4.4: Graphs of print time against travel distance for the modified AS and

ACS algorithms when applied to the sample set of 3D models

3D

model
Graph

Benchy

Clamp

Lowest

poly

thinker

10

20
30

40
50

10

20

30
40

50

4200

4205

4210

4215

4220

13600 13620 13640 13660 13680 13700 13720

P
ri

n
t

ti
m

e
(s

)

Travel distance (cm)

Modified AS Modified ACS

10

20
30

4050

10

20

304050

5165

5170

5175

5180

5185

5190

14840 14860 14880 14900 14920 14940

P
ri

n
t

ti
m

e
(s

)

Travel distance (cm)

Modified AS Modified ACS

10

20
3040

50

10

20
30

4050

10510

10520

10530

10540

10550

10560

42400 42450 42500 42550 42600 42650

P
ri

n
t

ti
m

e
(s

)

Travel distance (cm)

Modified AS Modified ACS

43

4.2.2.2 Travel Distance against Processing Time

Table 4.5 shows the graphs of travel distance against processing time for the

modified AS and ACS algorithms when they were applied to the “Benchy”,

“Clamp”, and “Lowest poly thinker” 3D models. The numbers next to the data

points indicate the number of iterations for the particular algorithm.

Table 4.5: Graphs of travel distance against processing time for the modified

AS and ACS algorithms when applied to the sample set of 3D models

3D

model
Graph

Benchy

Clamp

Lowest

poly

thinker

10

20 30
40 50

10

20
30 40

50

13600

13620

13640

13660

13680

13700

13720

0 100 200 300 400 500 600 700

Tr
av

el
 d

is
ta

n
ce

 (
cm

)

Processing time (s)

Modified AS Modified ACS

10

20
30

40 50

10

20
30

40
50

14840

14860
14880

14900
14920
14940

0 100 200 300 400 500 600

Tr
av

el
 d

is
ta

n
ce

 (
cm

)

Processing time (s)

Modified AS Modified ACS

10

20

30 40
50

10

20
30

40
50

42400

42450

42500

42550

42600

42650

0 200 400 600 800 1000

Tr
av

el
 d

is
ta

n
ce

 (
cm

)

Processing time (s)

Modified AS Modified ACS

44

4.2.2.3 Print Time against Processing Time

Table 4.6 shows the graphs of print time against processing time for the

modified AS and ACS algorithms when they were applied to the “Benchy”,

“Clamp”, and “Lowest poly thinker” 3D models. The numbers next to the data

points indicate the number of iterations for the particular algorithm.

Table 4.6: Graphs of print time against processing time for the modified AS

and ACS algorithms when applied to the sample set of 3D models

3D

model
Graph

Benchy

Clamp

Lowest

poly

thinker

10

20
30

40
50

10

20

30
40 50

4200

4205

4210

4215

4220

0 100 200 300 400 500 600 700

P
ri

n
t

ti
m

e
(s

)

Processing time (s)

Modified AS Modified ACS

10

20
30

40
50

10

20

30 40 50

5165

5170

5175

5180

5185

5190

0 100 200 300 400 500 600

P
ri

n
t

ti
m

e
(s

)

Processing time (s)

Modified AS Modified ACS

10

20
30 40

50

10

20
30

40 50

10510

10520

10530

10540

10550

10560

0 200 400 600 800 1000

P
ri

n
t

ti
m

e
(s

)

Processing Time (s)

Modified AS Modified ACS

45

4.2.3 Discussion for Varying the Number of Iterations

First, the print time against travel distance is analysed by referring to Table 4.4.

From the graphs, it can be observed that regardless of the 3D model or algorithm,

the relationship between the print time and travel distance is generally linear.

This finding supports the main hypothesis that by reducing the travel distance,

the print time can be reduced as well.

 However, the interesting finding is that for a given travel distance, the

modified AS algorithm will always have a shorter print time compared to the

modified ACS algorithm. A possible explanation for this is that the modified

ACS algorithm favours path construction in such a way that the nozzle has to

accelerate and decelerate at a frequent rate, thus reducing the average speed and

resulting in a longer print time.

 Next, the travel distance against processing time is analysed by referring

to Table 4.5. From the graphs, there are a few noticeable trends. For a given

number of iterations, the modified ACS algorithm will always have a longer

processing time compared to the modified AS algorithm, and a shorter travel

distance as well. The longer processing time is to be expected, since the ACS

algorithm requires more calculations per iteration.

 However, for a given length of processing time, the performance of the

algorithms with regards to having the shortest travel distance depends on the 3D

model. For the “Benchy” model, the modified ACS is better; for the “Clamp”

model, both algorithms have similar performance; while for the “Lowest poly

thinker” model, the modified AS is better.

 Besides that, the print time against processing time is analysed by

referring to Table 4.6. It can be observed that unlike the travel distance, the

modified AS algorithm will always have a shorter print time than the modified

ACS algorithm regardless of whether the processing time or number of

iterations is fixed.

 From the graphs in Table 4.5 and Table 4.6, it can be seen that the slope

of the graphs generally decreases as the processing time increases. To strike a

balance between the exponential increase in processing time and linear decrease

in travel distance and print time, the number of iterations for both the modified

AS and modified ACS algorithms is chosen to be 30.

46

 It should be noted that some of these observations may change in the main

testing phase in Section 4.3, as tweaking the other parameters may affect the

performance of both the modified AS and ACS algorithms.

4.2.4 Setup for Varying 𝝆 for Modified AS and 𝝆, 𝝋, 𝒒𝟎 for Modified

ACS

For the modified AS algorithm, the parameters in Table 4.7 were used, which is

similar to the default parameters in Table 4.2 except for the number of iterations

and the global evaporation factor, 𝜌. The number of iterations was set to 30 as

mentioned in Section 4.2.3, while 𝜌 was varied in the range 0.1 to 0.9 in steps

of 0.1. The testing range for 𝜌 was chosen because it could only be set more

than 0 but less than 1 (M. Dorigo, V. Maniezzo and A. Colorni, 1996). This

resulted in a total of nine parameter configurations to be tested.

Table 4.7: Parameters for varying the 𝜌 for the modified AS algorithm

Parameter Value Range Step

Number of iterations 30 - -

Number of ants 50 - -

Pheromone factor, 𝛼 1 - -

Heuristic factor, 𝛽 2 - -

Global evaporation factor, 𝜌 - 0.1 – 0.9 0.1

 For the modified ACS algorithm, the parameters in Table 4.8 were used,

which is similar to the default parameters in Table 4.3, except for the number of

iterations, the global evaporation factor, 𝜌, the local evaporation rate, 𝜑, and the

pseudorandom parameter, 𝑞0 . The number of iterations was set to 30 as

mentioned in Section 4.2.3. Meanwhile, for 𝜌 and 𝜑 values of 0.1, 0.2 and 0.3

were chosen, while for 𝑞0 values of 0.7, 0.8 and 0.9 were chosen. These

particular range of values were chosen to be tested so that they did not differ too

greatly from the default parameters. The limited range of values was due to time

constraints. This resulted in a total of 3×3×3 = 27 parameter configurations to

be tested.

47

Table 4.8: Parameters for varying the 𝜌, 𝜑, 𝑞0 for the modified ACS algorithm

Parameter Value Range Step

Number of iterations 30 - -

Number of ants 50 - -

Pheromone factor, 𝛼 1 - -

Heuristic factor, 𝛽 2 - -

Global evaporation factor, 𝜌 - 0.1 – 0.3 0.1

Local evaporation rate, 𝜑 - 0.1 – 0.3 0.1

Pseudorandom parameter, 𝑞0 - 0.7 – 0.9 0.1

 Three different 3D models were selected as the sample set: “Benchy”,

“Clamp” and “Lowest poly thinker”. The models were selected for their

different unique structures. The “Clamp” and “Lowest poly thinker” models

were rescaled to 50% of their original size due to excessive processing times.

 For each algorithm, 3D model and parameter configuration, the optimized

G-code was generated three times. A G-code simulator was used to obtain the

travel distance and print time for each G-code file. The mean travel distance and

print time of the three trials were recorded.

 According to M. Dorigo, V. Maniezzo and A. Colorni (1996), the

parameters that were varied did not significantly affect the processing time, thus

the processing time was not recorded.

4.2.5 Results for Varying 𝝆 for Modified AS and 𝝆, 𝝋, 𝒒𝟎 for Modified

ACS

Since varying 𝜌, 𝜑, 𝑞0 does not significantly affect the processing time of the

algorithms as mentioned in Section 4.2.4, the main objective of this part of the

preliminary parameter testing phase is to find the combination of parameters

that will result in the shortest travel distance and print time for the modified AS

and ACS algorithms.

 The summary of the results is shown in Table 4.9 and Table 4.10 for the

travel distance and print time respectively. The raw data is available in the

Appendix, from Table I to Table VI, where the values highlighted in bold are

the smallest values.

48

Table 4.9: Parameters resulting in shortest travel distance for modified AS and

ACS algorithms when applied to the sample set of 3D models

3D model
Best parameters for shortest travel distance

Modified AS Modified ACS

Benchy 𝜌 = 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7

Clamp 𝜌 = 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7

Lowest poly

thinker
𝜌 = 0.5 and 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7

Table 4.10: Parameters resulting in shortest print time for modified AS and

ACS algorithms when applied to the sample set of 3D models

3D model
Best parameters for shortest print time

Modified AS Modified ACS

Benchy 𝜌 = 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.8

Clamp 𝜌 = 0.3 and 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7

Lowest poly

thinker
𝜌 = 0.8 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.8

 Meanwhile, the standard deviations (SD) of the travel distance and print

time for both the algorithms for the range of configurations tested are shown in

Table 4.11. This information is useful to get a rough idea of how much the

performance of the algorithms are affected by varying the selected parameters.

49

Table 4.11: Standard deviations of travel distance and print time for the range

of configurations tested for the AS and ACS algorithms

3D model

Standard deviation

Modified AS Modified ACS

Travel

distance

(cm)

Print time

(s)

Travel

distance

(cm)

Print time

(s)

Benchy 4.11 1.20 21.20 5.30

Clamp 3.27 1.15 13.12 3.61

Lowest poly

thinker
7.49 1.52 41.07 8.22

4.2.6 Discussion for Varying 𝝆 for Modified AS and 𝝆, 𝝋, 𝒒𝟎 for

Modified ACS

Based on Table 4.9 and Table 4.10, the overall best combination of the

parameters tested for both travel distance and print time for modified AS is 𝜌 =

0.6 , while for modified ACS it is 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 . Thus, these

parameters will be used for their respective algorithms in the main testing phase

in Section 4.3.

 According to Table 4.11, the standard deviation of the travel distance for

the modified ACS is about three to eight times greater than that for the modified

AS, depending on the 3D model. The same observation can be made for the

standard deviation of the print time.

 This suggests that varying 𝜌, 𝜑, 𝑞0 for modified ACS has a greater impact

on performance compared to varying 𝜌 for modified AS. Thus, future testing

should investigate improving the performance of the modified ACS algorithm

by widening the range of 𝜌, 𝜑, 𝑞0 values that are tested.

50

4.3 Main Testing Phase

The objective of this phase is to compare the performance of the modified AS

and ACS algorithms with Cura across a wide range of 3D models.

4.3.1 Setup for Main Testing Phase

The parameters that will be used for the modified AS algorithm are shown in

Table 4.12. These parameters are based on those for the original AS algorithm

in Table 4.2, but they have been tweaked according to the findings in Section

4.2.3 and 4.2.4.

Table 4.12: Parameters for modified AS algorithm used in main testing phase

Parameter Value

Number of iterations 30

Number of ants 50

Pheromone factor, 𝛼 1

Heuristic factor, 𝛽 2

Global evaporation factor, 𝜌 0.6

 Meanwhile, the parameters that will be used for the modified ACS

algorithm are shown in Table 4.13. These parameters are based on those for the

original ACS algorithm in Table 4.3, but they have been tweaked according to

the findings in Section 4.2.3 and 4.2.4.

Table 4.13: Parameters for modified ACS algorithm used in main testing phase

Parameter Value

Number of iterations 30

Number of ants 50

Pheromone factor, 𝛼 1

Heuristic factor, 𝛽 2

Global evaporation factor, 𝜌 0.3

Local evaporation rate, 𝜑 0.1

Pseudorandom parameter, 𝑞0 0.7

51

 Besides that, the settings for Cura are shown in Table 4.14, as previously

mentioned in Section 3.2.

Table 4.14: Settings for Cura used in main testing phase

Setting Value

Version 4.4

Infill 20 %

Layer height 0.2 mm

Retraction Disabled

 Six different 3D models were selected as the sample set: “Benchy”,

“Clamp”, “Lowest poly thinker”, “Torture test”, “Eiffel tower” and “Spiral

vase”. The models were selected for their different unique structures. They were

obtained through the website Thingiverse, an online open-source repository for

3D models (https://www.thingiverse.com/). The “Clamp” and “Lowest poly

thinker” models were rescaled to 50% of their original size due to excessive

processing times.

 The overall procedure is described in Table 4.15. Cura is only required to

produce the initial G-code file once for each 3D model because according to

Fok, et al. (2018), Cura uses the nearest-neighbour algorithm which is

deterministic. Thus, it will produce the same G-code for a given 3D model no

matter how many times it is repeated.

https://www.thingiverse.com/

52

Table 4.15: Procedure for the main testing phase

Step Process

1 For the “Benchy” 3D model, use Cura to produce the initial

G-code file

2 Put the initial G-code file into the parser program so that it

can be optimized by the modified AS algorithm to produce

the optimized G-code file

3 Record the processing time

4 Repeat step 2 to 3 nine more times to get a total of 10

optimized G-code files for the modified AS algorithm

5 Repeat steps 2 to 4 for the modified ACS algorithm

6 Repeat steps 1 to 5 for all the models in the sample set

7 Analyse all the initial and optimized G-code files using a G-

code simulator to obtain the travel distance and print time

for each file

4.3.2 Main Testing Phase Results

The results are divided into three parts that compare Cura with the modified AS

and ACS algorithms, namely in terms of travel distance, print time and

processing time. The results for Cura will not have mean value or standard

deviation because the G-code file is only generated once for each 3D model as

explained in Section 4.3.1.

4.3.2.1 Travel Distance Results

The results of the travel distance for the different methods when applied to the

sample set of 3D models are tabulated in Table 4.16. Meanwhile, the graph is

shown in Figure 4.1. SD means standard deviation, which is measured to gauge

the consistency of the algorithm.

53

Table 4.16: Travel distance of G-code produced by Cura, modified AS and

modified ACS in the main testing phase

3D

model

Cura Modified AS Modified ACS

Travel

distance

(cm)

Mean

travel

distance

(cm)

Travel

distance

SD (cm)

Mean

travel

distance

(cm)

Travel

distance

SD (cm)

Benchy 15288 13640 3.27 13597 2.74

Clamp 19487 14879 2.83 14840 2.80

Lowest

poly

thinker

45406 42466 5.87 42367 4.22

Torture

test
25499 23295 12.44 23176 7.07

Eiffel

tower
16452 15070 8.00 14901 4.81

Spiral

vase
30240 25570 2.77 25562 2.16

Figure 4.1: Bar graph of travel distance results in the main testing phase

 The percentage travel distance reduced by the modified AS and ACS

algorithms relative to Cura are tabulated in Table 4.17 and graphed in Figure

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

Benchy Clamp Lowest poly
thinker

Torture test Eiffel tower Spiral vase

Tr
av

el
 d

is
ta

n
ce

 (
cm

)

3D models

Cura Modified AS Modified ACS

54

4.2. The percentage travel distance reduced is obtained by using data from Table

4.16 and Equation 4.1.

 Percentage travel distance reduced

=
Cura travel distance − Algorithm travel distance

Cura travel distance

× 100%

(4.1)

Table 4.17: Percentage travel distance reduced by modified AS and ACS

relative to Cura in the main testing phase

3D model

Mean percentage travel distance reduced

(%)

Modified AS Modified ACS

Benchy 10.78 11.06

Clamp 23.65 23.85

Lowest poly thinker 6.47 6.69

Torture test 8.64 9.11

Eiffel tower 8.40 9.43

Spiral vase 15.44 15.47

Figure 4.2: Bar graph of percentage travel distance reduced in the main testing

phase

0

5

10

15

20

25

30

Benchy Clamp Lowest poly
thinker

Torture test Eiffel tower Spiral vase

Tr
av

el
 d

is
ta

n
ce

 r
ed

u
ce

d
 (

%
)

3D models

Modified AS Modified ACS

55

4.3.2.2 Travel Distance Discussion

Based on Figure 4.1, the modified AS and ACS algorithms were able to achieve

shorter travel distances compared to Cura for every 3D model in the sample set.

This demonstrates that both the algorithms were able to optimize the print path

better than Cura in terms of travel distance.

 Taking a closer look at Table 4.16, the modified ACS was able to achieve

shorter travel distances compared to the modified AS for every 3D model in the

sample set. In summary, in terms of the travel distance, the modified ACS

performed the best, followed by the modified AS and lastly Cura.

 According to Table 4.16, for both the algorithms, the standard deviations

of the travel distance are three to four orders of magnitude smaller than their

respective mean values. Since the amount of deviation from the mean is

negligible, thus both the modified AS and ACS algorithms are able to produce

consistent results in terms of travel distance for a given 3D model.

 Besides that, the degree of improvement achieved by the algorithms

compared to Cura in terms of travel distance is not constant, as can be seen in

Figure 4.2. The modified AS algorithm showed a percentage reduction ranging

from 6.47% to 23.65%, while for the modified ACS algorithm it ranged from

6.69% to 23.85%. This suggests that the amount of improvement that can be

achieved for the travel distance is dependent on the unique structure of each 3D

model.

4.3.2.3 Print Time Results

The results of the travel distance for the different methods when applied to the

sample set of 3D models are tabulated in Table 4.18. Meanwhile, the graph is

shown in Figure 4.3. SD means standard deviation, which is measured to gauge

the consistency of the algorithm.

56

Table 4.18: Print time of G-code produced by Cura, modified AS and modified

ACS in the main testing phase

3D model

Cura Modified AS Modified ACS

Print time

(s)

Mean

print time

(s)

Print time

SD (s)

Mean

print time

(s)

Print time

SD (s)

Benchy 4612 4206 0.95 4203 0.71

Clamp 6408 5171 1.49 5167 0.82

Lowest

poly

thinker

11099 10520 1.85 10516 0.966

Torture

test
7404 6853 1.66 6844 1.93

Eiffel

tower
6999 6032 1.77 6014 1.81

Spiral

vase
9841 8328 0.63 8326 0.82

Figure 4.3: Bar graph of print time results in the main testing phase

 The percentage print time reduced by the modified AS and ACS

algorithms relative to Cura are tabulated in Table 4.19 and graphed in Figure

0

2000

4000

6000

8000

10000

12000

Benchy Clamp Lowest poly
thinker

Torture test Eiffel tower Spiral vase

P
ri

n
t

ti
m

e
(s

)

3D models

Cura Modified AS Modified ACS

57

4.4. The percentage print time reduced is obtained by using data from Table

4.18 and Equation 4.2.

Percentage print time reduced

=
Cura print time − Algorithm print time

Cura print time
× 100%

(4.2)

Table 4.19: Percentage print time reduced by modified AS and ACS relative to

Cura in the main testing phase

3D model
Mean percentage print time reduced (%)

Modified AS Modified ACS

Benchy 8.80 8.87

Clamp 19.30 19.37

Lowest poly thinker 5.22 5.25

Torture test 7.44 7.56

Eiffel tower 13.82 14.07

Spiral vase 15.37 15.39

Figure 4.4: Bar graph of percentage print time reduced in the main testing phase

4.3.2.4 Print Time Discussion

Based on Figure 4.3, the modified AS and ACS algorithms were able to achieve

shorter print time compared to Cura for every 3D model in the sample set. This

0

5

10

15

20

25

Benchy Clamp Lowest poly
thinker

Torture test Eiffel tower Spiral vase

P
ri

n
t

ti
m

e
re

d
u

ce
d

 (
%

)

3D models

Modified AS Modified ACS

58

demonstrates that both the algorithms were able to optimize the print path better

than Cura in terms of print time.

 Taking a closer look at Table 4.18, the modified ACS was able to achieve

shorter print times compared to the modified AS for every 3D model in the

sample set. In summary, in terms of the print time, the modified ACS performed

the best, followed by the modified AS and lastly Cura.

 According to Table 4.18, for both the algorithms, the standard deviations

of the print times are three to four orders of magnitude smaller than their

respective mean values. Since the amount of deviation from the mean is

negligible, thus both the modified AS and ACS algorithms are able to produce

consistent results in terms of print time for a given 3D model.

 Besides that, the degree of improvement achieved by the algorithms

compared to Cura in terms of travel distance is not constant, as can be seen in

Figure 4.4. The modified AS algorithm showed a percentage reduction ranging

from 5.22% to 19.30%, while for the modified ACS algorithm it ranged from

5.25% to 19.37%. This suggests that the amount of improvement that can be

achieved for the print time is dependent on the unique structure of each 3D

model.

 Another important point to note is that the results and discussion regarding

the print time are very similar to that for the travel distance. This indicates that

there is a close relationship between the travel distance and print time.

4.3.2.5 Processing Time Results

The results of the processing time for the modified AS and ACS algorithms

when applied to the sample set of different 3D models are tabulated in Table

4.20 and graphed in Figure 4.5.

59

Table 4.20: Processing time of modified AS and ACS algorithm in the main

testing phase

3D model
Mean processing time (s)

Modified AS Modified ACS

Benchy 355 398

Clamp 320 316

Lowest poly thinker 320 504

Torture test 748 932

Eiffel tower 797 1190

Spiral vase 979 681

Figure 4.5: Bar graph of processing time results in the main testing phase

 Figure 4.6 shows the scatter plot of the processing time against the print

time of Cura for the sample set of 3D models. It was plotted using data from

Table 4.18 and Table 4.20. The graph was plotted to investigate if there was any

relationship between the Cura print time and the processing time required by the

modified AS and ACS algorithms, or in other words whether the processing

time could be predicted using the Cura print time.

0

200

400

600

800

1000

1200

1400

Benchy Clamp Lowest poly
thinker

Torture test Eiffel tower Spiral vase

P
ro

ce
ss

in
g

ti
m

e
(s

)

3D models

Modified AS Modified ACS

60

Figure 4.6: Scatter plot of processing time against Cura print time for modified

AS and ACS algorithm in the main testing phase

4.3.2.6 Processing Time Discussion

Since the current method of implementing the algorithms requires Cura to

generate the initial G-code file, the processing time of Cura could be treated as

zero. However, the processing time of both the modified AS and ACS algorithm

are rather significant, as shown in Figure 4.5. The processing time is generally

in the order of hundreds of seconds. This issue needs to be overcome for the

algorithms to have practical use. One possible solution is to use GPU

acceleration to decrease the processing time.

 To compare the two algorithms in terms of processing time, Table 4.20 is

referred to. Based on the table, the modified ACS algorithm usually has

significantly longer processing times compared to the modified AS algorithm,

sometimes up to hundreds of seconds more.

 The only outlier for the sample set tested is the “Spiral vase” 3D model,

in which the processing time for the modified ACS is only 681 seconds, which

is much lower than the 979 seconds for the modified AS. A possible explanation

is that the structure of the “Spiral vase” 3D model is easier to be optimized by

the modified ACS compared to the modified AS. Testing on a wider range of

3D models for the sample set may clarify if the modified ACS will sometimes

have shorter processing times than the modified AS, or if it is unique to the

“Spiral vase” model only.

Benchy
Clamp Lowest poly

thinker

Torture test

Eiffel tower

Spiral vase

Benchy Clamp Lowest poly
thinker

Torture test

Eiffel tower

Spiral vase

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000

P
ro

ce
ss

in
g

ti
m

e
(s

)

Cura print time (s)

Modified AS Modified ACS

61

 An attempt also made was made to investigate the relationship between

the print time obtained by Cura and the required processing time of the modified

AS and ACS algorithms. However, as can be observed from Figure 4.6, there

does not appear to be any clear relationship between the two variables. A

possible hypothesis is that the processing time is influenced by the size and

complexity of the structure of the 3D model. This hypothesis may be

investigated further in future research.

4.3.3 Comparison of Results with State-of-the-Art

The results obtained in this report are compared with results obtained by two

previously published papers authored by Fok, et al. (2018) and Fok, et al. (2019).

 The percentage print time reduced metric will be used in the comparison.

For this report, this metric is tabulated in Table 4.19. For the other papers, the

metric will be calculated by using Equation 4.2 together with their reported Cura

print time and algorithm print time. The metrics are then compared for the same

3D model.

 Since the Cura print time reported by this report and the other papers are

different, this comparison method is used to ensure fairness by comparing the

reduction in print time relative to the respectively reported Cura print times.

4.3.3.1 Comparison with Fok, et al. (2018)

The print times of Cura and the extended ant colony optimization (ACO)

algorithm as reported by Fok, et al. (2018) for the “Torture test” 3D model are

tabulated in Table 4.21. ACO refers to a family of algorithms that the original

AS and ACS algorithms belong to. The extended ACO algorithm was explained

in Section 2.3.3.2.

Table 4.21: Print times reported by Fok, et al. (2018) for the “Torture test” 3D

model

3D model
Print time (s)

Cura Extended ACO

Torture test 9951.90 8835.07

62

 Using Equation 4.2, the percentage print time reduced was calculated. The

obtained result was then tabulated together with the results from modified AS

and ACS in Table 4.22. The data is represented as a bar chart in Figure 4.7.

Table 4.22: Comparison between percentage print time reduced for modified

AS, modified ACS and Fok, et al. (2018) for the “Torture test” 3D model

3D model

Percentage print time reduced (%)

This report
Fok, et al.

(2018)

Modified AS
Modified

ACS

Extended

ACO

Torture test 7.44 7.56 11.22

Figure 4.7: Bar chart for percentage print time reduced comparison with Fok,

et al. (2018) for the “Torture test” 3D model

4.3.3.2 Comparison with Fok, et al. (2019)

The print times of Cura, the Frederickson (Fred) algorithm, ACO algorithm and

detour searching algorithm as reported by Fok, et al. (2019) for the“Clamp”

and “Lowest poly thinker” 3D models are tabulated in Table 4.23. The Fred

algorithm was explained in Section 2.3.1.3. Meanwhile, the detour searching

algorithm was proposed by Fok, et al. (2019) and was explained in Section

2.3.3.3.

0 2 4 6 8 10 12

Torture test

Percentage print time reduced (%)

3
D

 m
o

d
el

Extended ACO Modified ACS Modified AS

63

Table 4.23: Print times reported by Fok, et al. (2019) for the “Clamp” and

“Lowest poly thinker” 3D models

3D model

Print time (s)

Cura Fred ACO
Detour

searching

Clamp 8762 7983 7055 6538

Lowest poly

thinker
6408 5857 5502 5475

 Using Equation 4.2, the percentage print time reduced was calculated. The

obtained result was then tabulated together with the results from modified AS

and ACS in Table 4.24. The data is also represented as a bar chart in Figure 4.8.

Table 4.24: Comparison between percentage print time reduced for modified

AS, modified ACS and Fok, et al. (2019) for the “Clamp” and “Lowest poly

thinker” 3D models

3D model

Percentage print time reduced (%)

This report Fok, et al. (2019)

Modified

AS

Modified

ACS
Fred ACO

Detour

searching

Clamp 19.30 19.37 8.89 19.48 25.38

Lowest

poly

thinker

5.22 5.25 8.60 14.14 14.56

64

Figure 4.8: Bar chart for percentage print time reduced comparison with Fok,

et al. (2019) for the “Clamp” and “Lowest poly thinker” 3D models

4.3.4 State-of-the-art Discussion

When the modified AS and ACS algorithms were compared with the extended

ACO algorithm proposed by Fok, et al. (2018) for the “Torture test” 3D model,

the extended ACO algorithm performed better than both the modified AS and

ACS algorithms in terms of print time reduced relative to Cura, as shown in

Figure 4.7.

 Besides that, the modified AS and ACS algorithms were also compared

with the Fred algorithm, ACO algorithm and detour searching algorithm

proposed by Fok, et al. (2019) for the “Clamp” and “Lowest poly thinker” 3D

models. The results in Figure 4.8 showed that for the “Clamp” 3D model, both

the modified AS and ACS algorithms performed better than the Fred algorithm,

similar to the ACO algorithm, and worse than the detour searching algorithms.

However, for the “Lowest poly thinker” 3D model, both the modified AS and

ACS algorithms performed worse than the other algorithms.

 It is important to note that there were many significant differences in the

experimental setup for this report and the two previous works by Fok, et al.

(2018) and Fok, et al. (2019), such as the earlier works using an outdated version

of Cura and enabling the retraction setting. This could help partially explain the

generally worse performance of the modified AS and ACS algorithms when

compared to the previous works.

0

5

10

15

20

25

30

Clamp Lowest poly thinkerP
er

ce
n

ta
ge

 p
ri

n
t

ti
m

e
re

d
u

ce
d

 (
%

)

3D model

Modified AS Modified ACS Fred ACO Detour searching

65

4.4 Summary

The preliminary parameter testing phase showed that 𝜌 = 0.6 was the most

suitable for the modified AS algorithm, while 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 was

the most suitable for the modified ACS algorithm in order to achieve the shortest

travel distance and print time.

 In the testing phase, the modified AS and ACS algorithms always

achieved shorter travel distance and print time compared to Cura for the sample

set of 3D models tested. The solutions obtained by both the modified AS and

ACS algorithms were also fairly consistent throughout the ten trials for each 3D

models, with the standard deviation for print time not exceeding two seconds.

 Although modified ACS was always able to achieve better solutions in

terms of travel distance and print time compared to the modified AS, it

performed worse overall when the processing time was factored in.

 The performance of the modified AS and ACS algorithms in terms of

percentage print time reduced relative to Cura was generally worse when

compared to methods analysed by Fok, et al. (2018) and Fok, et al. (2019).

However, the worse performance could be partially attributed to the difference

in the experimental setup.

66

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

 In this report, a method for reducing the printing time by using various

algorithms to reduce the print distance is presented.

 A parser program was designed and coded in order to extract the relevant

information from a G-code file such that it could be optimized by the selected

algorithm, and then reorganized to produce the optimized output G-code file.

Two algorithms, the AS and ACS algorithms which were originally designed to

solve the TSP, were modified to solve the URPP representation of the LPOP.

 Preliminary testing was conducted to determine the most suitable

parameters for the algorithms. Then in the main testing phase, the list of

algorithms was used to optimize a sample set of 3D models and the mean

processing time was recorded. The output G-code files were then analysed by

simulator software to obtain the print time and print distance.

 By analysing the data collected, it was shown that the modified AS and

modified ACS algorithms managed to reduce the travel distance and print time

of the sample set of 3D models significantly compared to Cura. However when

the processing time of the algorithms was taken into account, the time reduction

was less, but it was still an improvement over Cura on average.

 The modified ACS had shorter print time and print distance than the

modified AS, but longer overall time taken when the processing time was

factored in. Thus, the modified AS algorithm is better in practice.

 When compared with the methods proposed by Fok, et al. (2018) and Fok,

et al. (2019), the modified AS and ACS algorithms performed worse in terms of

reducing the print time of Cura. However, the difference in performance could

be due to the difference in experimental setup.

67

5.2 Recommendations for Future Work

To improve the performance of the algorithms at reducing the print time, the

travel speed and acceleration of the nozzle could be factored into the algorithms

instead of merely the travel distance. The retraction factor could also be included

in future research.

 Since there are limitations to improving the print time by optimizing the

software alone, another solution could be to improve both the hardware and

software together. A proposal would be to develop a multi-head 3D printer and

the corresponding algorithm to control the multiple print heads simultaneously,

then compare its performance with conventional single-head 3D printers.

 To decrease the processing times for the modified AS and ACS algorithms,

GPU acceleration could be implemented in the algorithm code to reduce the

processing time.

 A more thorough study to compare the performance of the original AS

and ACS algorithms with transformation method and the modified AS and ACS

algorithms at solving the URPP could be carried out. If the study shows that the

modified AS and ACS have better performance, they could be applied to other

real-world problems that can be represented as the URPP, not just the LPOP.

68

REFERENCES

Bock, F., 1958. An algorithm for solving travelling-salesman and related

network optimization problems. In: INST OPERATIONS RESEARCH

MANAGEMENT SCIENCES 901 ELKRIDGE LANDING RD, STE …

Operations Research, p. 897–897.

Christofides, N., 1976. Worst-case analysis of a new heuristic for the

travelling salesman problem.

Croes, G. A., 1958. A method for solving traveling-salesman problems.

Operations Research, 6(6), pp. 791–812.

Fok, K. Y., Cheng, C. T., Ganganath, N., Lu, H. H. and Tse, C. K., 2018.

Accelerating 3D Printing Process Using an Extended Ant Colony

Optimization Algorithm. In: 2018 IEEE International Symposium on Circuits

and Systems (ISCAS), pp. 1–5.

Fok, K. Y., Cheng, C. T. and Tse, C. K., 2017. A refinement process for

nozzle path planning in 3D printing. In: 2017 IEEE International Symposium

on Circuits and Systems (ISCAS), pp. 1–4.

Fok, K. Y., Ganganath, N., Cheng, C. T., Lu, H. H. and Tse, C. K., 2019. A

Nozzle Path Planner for 3D Printing Applications. IEEE Transactions on

Industrial Informatics, p. 1–1. http://dx.doi.org/10.1109/TII.2019.2962241.

Fok, K. Y., Ganganath, N., Cheng, C. T. and Tse, C. K., 2016. A 3D printing

path optimizer based on Christofides algorithm. In: 2016 IEEE International

Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2.

Frederickson, G. N., 1979. Approximation Algorithms for Some Postman

Problems. J. ACM, [e-journal] 26(3), pp. 538–554.

http://dx.doi.org/10.1145/322139.322150.

Ganganath, N., Cheng, C. T., Fok, K. Y. and Tse, C. K., 2016. Trajectory

planning for 3D printing: A revisit to traveling salesman problem. In:

Proceedings - 2016 the 2nd International Conference on Control, Automation

and Robotics, ICCAR 2016. Department of Electronic and Information

Engineering, Hong Kong Polytechnic University, pp. 287–290.

69

Held, M. and Karp, R. M., 1970. The Traveling-Salesman Problem and

Minimum Spanning Trees. Operations Research, 18(6), p. 1138–1138.

<http://search.ebscohost.com/login.aspx?direct=true&db=edsjsr&AN=edsjsr.1

69411&site=eds-live&scope=site>.

hudbrog, 2018. gCodeViewer. [online] Available at: <http://gcode.ws/>

[Accessed 15-Apr-20].

Johnson, D. S., 1990. Local optimization and the Traveling Salesman Problem.

In: M. S. Paterson. Automata, Languages and Programming. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 446–461.

Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C. and Bowyer,

A., 2011. RepRap – the replicating rapid prototyper. Robotica, [e-journal]

29(1), pp. 177–191. http://dx.doi.org/10.1017/S026357471000069X.

Lensgraf, S. and Mettu, R. R., 2016. Beyond layers: A 3D-aware toolpath

algorithm for fused filament fabrication. In: 2016 IEEE International

Conference on Robotics and Automation (ICRA), pp. 3625–3631.

Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell

System Technical Journal, 44(10), pp. 2245–2269.

M. Dorigo and L. M. Gambardella, 1997. Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transactions on

Evolutionary Computation, 1(1), pp. 53–66.

M. Dorigo, V. Maniezzo and A. Colorni, 1996. Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 26(1), pp. 29–41.

Marlin Firmware, n.d. G-code Index. [online] Available at:

<https://marlinfw.org/meta/gcode/> [Accessed 14-Apr-20].

Orloff, C. S., 1974. A fundamental problem in vehicle routing. Networks, [e-

journal] 4(1), pp. 35–64. http://dx.doi.org/10.1002/net.3230040105.

Pérez-Delgado, M. L., 2010. Solving an Arc-routing problem using artificial

ants with a graph transformation. [e-book].

70

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84982902984&partnerID=40&md5=f65dff9a00a92d750474e69b55ec7f3e>.

RepRap, n.d. G-code. Available at: [Online; accessed 14-April-2020].

<https://reprap.org/mediawiki/index.php?title=G-code&oldid=187649>.

syue87, 2018. Gcode Analyser. [online] Available at:

<https://www.gcodeanalyser.com/> [Accessed 15-Apr-20].

Ultimaker, n.d. Cura. [online] Available at:

<https://ultimaker.com/software/ultimaker-cura> [Accessed 14-Apr-20].

71

APPENDICES

APPENDIX A: Graphs

72

APPENDIX B: Tables

Table I: Average print distance and print time of “Benchy” model for different

parameters of the modified AS algorithm

Benchy

Global

evap rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distance

(cm)

13639 13641 13638 13643 13649 13635 13639 13646 13644

Time (s) 4206 4207 4205 4207 4208 4204 4205 4205 4206

Table II: Average print distance and print time of “Benchy” model for

different parameters of the modified ACS algorithm

Benchy

Global

evap rate

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Local

evap rate

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

13655 13632 13625 13671 13640 13625 13678 13639 13628

Time (s) 4217 4212 4209 4219 4213 4209 4223 4211 4210

Global

evap rate

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Local

evap rate

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

13616 13603 13614 13627 13616 13607 13644 13622 13615

Time (s) 4205 4204 4205 4210 4208 4205 4214 4210 4208

Global

evap rate

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Local

evap rate

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

13593 13595 13604 13612 13598 13603 13624 13607 13605

Time (s) 4203 4200 4202 4207 4204 4204 4210 4205 4203

73

Table III: Average print distance and print time of “Clamp” model for

different parameters of the modified AS algorithm

Clamp

Global

evap rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distance

(cm)

14885 14880 14879 14875 14878 14874 14882 14879 14882

Time (s) 5171 5171 5169 5171 5170 5169 5171 5171 5173

Table IV: Average print distance and print time of “Clamp” model for

different parameters of the modified ACS algorithm

Clamp

Global

evap rate

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Local

evap rate

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

14876 14869 14877 14886 14873 14877 14888 14878 14878

Time (s) 5176 5175 5175 5177 5176 5176 5181 5177 5177

Global

evap rate

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Local

evap rate

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

14852 14847 14859 14859 14857 14865 14863 14857 14871

Time (s) 5171 5169 5172 5171 5173 5172 5172 5172 5172

Global

evap rate

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Local

evap rate

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

14837 14845 14864 14845 14849 14858 14854 14850 14861

Time (s) 5165 5166 5169 5168 5170 5172 5171 5169 5172

74

Table V: Average print distance and print time of “Lowest poly thinker”

model for different parameters of the modified AS algorithm

Lowest poly thinker

Global

evap rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Distance

(cm)

42464 42470 42474 42472 42453 42453 42463 42462 42472

Time (s) 10520 10520 10522 10521 10521 10518 10519 10517 10521

Table VI: Average print distance and print time of “Lowest poly thinker”

model for different parameters of the modified ACS algorithm

Lowest poly thinker

Global

evap

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Local

evap

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

42479 42456 42469 42511 42476 42484 42521 42490 42487

Time (s) 10536 10533 10530 10546 10535 10532 10548 10537 10535

Global

evap

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Local

evap

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

42400 42397 42430 42436 42418 42449 42453 42427 42436

Time (s) 10522 10520 10525 10531 10524 10528 10537 10527 10526

Global

evap

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Local

evap

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Distance

(cm)

42365 42378 42417 42390 42392 42419 42397 42397 42426

Time (s) 10515 10514 10522 10521 10519 10524 10528 10522 10525

