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ABSTRACT 

 

In 3D printing, reducing the time needed to print an object is desirable. The print 

time of an object is largely influenced by the length of the path that the nozzle 

of the 3D printer takes for each layer (also called the travel distance). Hence, 

finding the best path for the nozzle is termed as the Layer Path Optimization 

Problem (LPOP). Previous authors have shown that the LPOP can be defined in 

terms of the Undirected Rural Postman Problem (URPP), a known problem in 

graph theory. Two well-known algorithms for solving a closely related graph 

theory problem known as the Travelling Salesman Problem (TSP) are the Ant 

System (AS) and Ant Colony System (ACS) algorithms. Therefore, to solve the 

LPOP, two algorithms are proposed, the modified AS algorithm and the 

modified ACS algorithm. These two proposed algorithms have been modified 

from the original algorithms in order to solve the URPP instead of the TSP. The 

performance of the two proposed algorithms is compared against Cura, which 

is a commonly used software for generating the nozzle path. The obtained 

results show that both the modified AS and ACS algorithms were able to 

perform better than Cura in terms of both travel distance and print time for a 

variety of different 3D models.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In the field of rapid prototyping, additive manufacturing, or more commonly 

known as 3D printing, is quickly gaining traction. As the name implies, the 

process involves the fabrication of an object layer by layer, in contrast to 

subtractive manufacturing such as CNC milling. This allows for greater control 

of the build process, and complex objects can be created that would be difficult 

or impossible through traditional methods. 

 There are a number of 3D printing technologies currently available which 

use different techniques. These technologies are listed below. 

 Fused filament fabrication (FFF) 

 Resin printing (SLA, DLP) 

 Selective laser sintering (SLS) 

 Inkjet printing 

 FFF, or otherwise termed fused deposition modelling (FDM), is currently 

one of the most popular methods of 3D printing. Generally, a FFF 3D printer 

can be visualized as having a print bed and a print nozzle, as shown in Figure 

1.1. The print bed is the platform on which the object is printed on, while the 

print nozzle is the point at which the material, or filament is extruded from 

(Ganganath, et al., 2016).  

 

 

Figure 1.1: Print nozzle and print bed of a FFF printer 
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 Usually the printer is set up such that the print bed can move in the Z-axis, 

while the print nozzle can move in the X and Y axes, allowing movement in all 

three axes. To print an object, the nozzle moves to extrude material in such a 

way as to construct the desired object. Once the first layer is completed, the print 

bed is lowered to allow printing of the next layer. This process repeats layer 

after layer until the print job is completed. 

 The set of instructions telling the 3D printer how to move and extrude 

material is called G-code, and is generated by a program known as a slicer. The 

slicer takes a 3D model and ‘slices’ it into thin layers. Each layer is made up of 

many print segments where material needs to be extruded to build the 3D object. 

The slicer then determines the path, velocity and acceleration of the nozzle as 

well as the amount of material extruded based on the print segments for each 

layer. 

 

1.2 Importance of the Study 

One of the main issues with FFF is that it takes a significant amount of time to 

print a complex object, requiring several hours or even days (Lensgraf and 

Mettu, 2016). Thus, the reduction of printing time is highly desirable. 

 The printing speed is determined by several factors, such as: 

 Dimensions and shape of the object 

 Infill pattern 

 Path taken by the print nozzle 

 Velocity and acceleration of the print nozzle 

 Mechanical limitations of the 3D printer 

 This report will focus on optimizing the path travelled by the print nozzle. 

When printing a layer, there will be certain areas or segments where material 

needs to be deposited in order to build the object. In other words, the print nozzle 

will need to travel to these areas to print the object. If the path that the nozzle 

needs to travel along is shortened, the time required to print the object will be 

reduced as well. 
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1.3 Problem Statement 

The layer path optimization problem (LPOP) can be visualized mathematically 

as a graph, where each print segment is an edge connecting two nodes on both 

ends (Ganganath, et al., 2016). The task is then to find the shortest path that 

connects all the required edges, traversing each edge only once.  

 Figure 1.2 (a) shows an example of a LPOP, where three segments that 

need to be printed are represented as edges. Figure 1.2 (b) shows a possible 

solution (may not be the best solution) to the problem in Figure 1.2 (a). The 

dotted lines represent the transition segments, which are edges that the nozzle 

traverses along to travel from one print segment to another. In summary, the 

total length of the path travelled is the sum of all the edges, including the print 

segments and transition segments. 

 

 

Figure 1.2: (a) Example of a LPOP, (b) Example of a possible solution 

 

 This situation is similar to the widely-known travelling salesman problem 

(TSP). For TSP, a graph is given, and the objective is to find the shortest path 

or tour that visits every node exactly once, then returns to the starting node. 

However, the difference between the LPOP and TSP is that the former focuses 

on connecting required edges, while the latter needs to connect all nodes. 

 According to Fok, et al. (2018), the LPOP can actually be represented as 

the undirected rural postman problem (URPP). The definition of the URPP is 

that given a set of edges 𝐸 (meaning the print segments and possible transition 

segments), and another set of required edges 𝐸𝑟 ⊆ 𝐸 (the print segments only), 

the goal is to find the shortest path that travels along every edge in 𝐸𝑟 exactly 

once. 
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1.4 Aim and Objectives 

This report aims to reduce the 3D printing time by utilizing algorithms to solve 

the LPOP such that the path length is reduced. 

 The first objective is to extract the layer data from the G-code output of a 

slicer program using a parser program, then transform the obtained layer data 

into the LPOP. The next objective is to solve the LPOP using various algorithms. 

Finally, the last objective to convert the obtained solution back into G-code, so 

that a G-code simulator can be used to analyse and compare the initial G-code 

and the optimized G-code.  

 

1.5 Scope and Limitation of the Study 

The report will only focus on reducing the path length based on the print 

segments generated by the original slicer program (Cura). It will not take into 

account the speed and acceleration of the nozzle when trying to optimize the 

path. 

 Retraction will also not be factored into the optimization process. The 

retraction setting in Cura is disabled when generating the G-code for the 3D 

objects. 

 The reason for setting these limitations is to reduce the number of factors 

that need to be taken into account, thereby simplifying the optimization process. 

These ignored factors may be further explored in future works. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The topic of this report is admittedly very specific and niche, and as such there 

is a limited amount of prior research regarding the topic. It is however not a 

major surprise since additive manufacturing has only gained popularity in the 

past decade, despite having already existed for a few decades.  

 Nevertheless, there has been substantial progress in the field throughout 

the last few years. In addition, advances made in the related fields of graph 

theory as well as agent and multiagent systems may prove useful in helping to 

solve the problem.  

 

2.2 Definitions and Representations of the LPOP 

The layer path optimization problem (LPOP) is broadly defined as the best path 

that the nozzle of a 3D printer should take to print all the print segments of a 

layer. In order to discuss the problem in a formal manner, the LPOP is usually 

represented in terms of a graph, which is a mathematical construct originating 

from graph theory. 

 A graph, 𝐺 is made up of two parts, 𝑉 and 𝐸, such that 𝐺 = (𝑉, 𝐸). 𝑉 is 

the set of nodes or vertices, while 𝐸 is the set of edges or connections. The graph 

can be visualized as nodes being points, and as edges being lines that link the 

nodes together. Figure 2.1 shows an example where nodes 𝐴  and 𝐵  are 

connected by the edge 𝑟.  

 

 

Figure 2.1: Two nodes connected by an edge 
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 Each edge has a cost attributed to it, which is the cost incurred when 

travelling along it. Usually the cost of an edge is simply the distance between 

the nodes that it links, or in other words its length. However, it may represent 

other parameters, or even a combination of them.  

 Edges can also be divided into two types, undirected and directed edges. 

Take Figure 2.2 as an example. Figure 2.2 (a) has an undirected edge 𝑠, which 

means that travelling from node 𝐶 to 𝐷 and vice-versa would both be allowed. 

However, Figure 2.2 (b) has a directed edge 𝑡, also called an arc, which means 

that travel would only be limited to one direction, from node 𝐹 to 𝐸.  

 

 

Figure 2.2: (a) Undirected edge, (b) Directed edge 

 

 Ganganath, et al. (2016) stated the LPOP problem as the following. If a 

print segment is defined as an undirected edge connecting two nodes, the task 

is to find a fast path from a predetermined start point to a predetermined end 

point that travels through all print segments. 

 However, the problem definition differs slightly from author to author. 

While Ganganath, et al. (2016) defines the cost of each edge as the duration 

taken for the nozzle to travel along it based on their model (not directly 

proportional to length), Fok, et al. (2016) instead defines it simply as the length 

of the segment. 

 Meanwhile, for start and end points, Fok, et al. (2016) requires that the 

start and end point be the same, meaning that the nozzle needs to return to the 

start point after visiting all the print segments. On the other hand, Ganganath, et 

al. (2016) allows for the start and end point to be located separately. 

 Since the problem definition may have a significant impact on the 

approach and solution to the LPOP, it is vital that the problem is clearly defined 

before any further progress is made. 
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2.2.1 Travelling Salesman Problem (TSP) 

The travelling salesman problem (TSP) is a well-known problem in graph 

theory. Given an undirected graph 𝐺, the objective is to find a tour (i.e. a cycle) 

of minimum cost that visits each node exactly once (Held and Karp, 1970). 

Alternatively, if stated in layman’s terms, given a set of cities (represented by 

nodes) and the distances between them (edges and their respective cost), the 

salesman needs to search for the shortest path that visits each city once, then 

returns to the starting city. The TSP is a NP-hard problem. 

 According to Ganganath, et al. (2016), the LPOP is closely related to the 

TSP, but differs in three ways. First, the problem focuses on linking existing 

edges, not nodes. Second, it does not need to return to the starting node, meaning 

the solution is not a cycle. Third, the goal is to reduce the total time taken to 

traverse the path, not the total length of the path. 

 However, as noted earlier, Fok, et al. (2016) reports a different definition 

of the LPOP that disagrees with the second and third points. 

 Nevertheless, due to the similarities between the LPOP and TSP, both 

Ganganath, et al. (2016) and Fok, et al. (2016) studied algorithms that were 

originally used to solve the TSP, then modified them to solve the LPOP instead. 

Namely, the nearest-neighbour algorithm and Christofides’ algorithm. 

 

2.2.2 Undirected Rural Postman Problem (URPP) 

The undirected rural postman problem (URPP), a derivative of the TSP, was 

first formulated by Orloff (1974). An undirected graph 𝐺 = (𝑉, 𝐸) is given, 

where 𝑉 is the set of nodes and 𝐸 is the set of edges. There also exists 𝐸𝑟 ⊆ 𝐸, 

where 𝐸𝑟 is the set of required edges. The goal is then to find a tour that visits 

all the edges in 𝐸𝑟 while minimizing the total cost. The URPP has been proven 

to be NP-hard given that 𝐸𝑟 ≠ 𝐸. 

 Fok, Cheng and Tse (2017) noted that the LPOP could be represented in 

terms of the URPP by making the print segments the required edges. Meanwhile, 

the possible transition segments that linked print segments would make up the 

remaining edges. Thus, they were able to use Frederickson’s algorithm, an 

algorithm for solving the URPP, to solve the LPOP instead. 

 Later on, Fok, et al. (2018) cited a paper by Pérez-Delgado (2010) that 

reported the URPP could be transformed into a TSP. From the original graph 𝐺 
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(representing the URPP), a new graph 𝐺′ = (𝑉′, 𝐸′) is built (in the form of the 

TSP).  

 Each required edge (𝑖, 𝑗) ∈ 𝐸𝑟  is replaced by three nodes, 𝑠𝑖𝑗  and 𝑠𝑗𝑖 

which are the side nodes, and 𝑚𝑖𝑗  which is the middle node. They can be 

visualized as being placed at equal intervals, as shown in Figure 2.3. The new 

set of nodes, 𝑉′ is then defined as shown in Equation 2.1.  

 

 

Figure 2.3: (𝑖, 𝑗) ∈ 𝐸𝑟 and the three replacement nodes 

 

 𝑉′ = ⋃ {𝑠𝑖𝑗, 𝑠𝑗𝑖, 𝑚𝑖𝑗}

(𝑖,𝑗)∈𝐹

 
(2.1) 

 

 The new set of edges, 𝐸′, is thus based on the new set of nodes formed in 

𝑉′. Equation 2.2 determines the cost between side nodes, where 𝑑(𝑖, 𝑘) is the 

cost of the shortest path from node 𝑖 to node 𝑘 in the original graph 𝐺. It is 

important to note that there are no edges present that link any pair of side nodes 

directly, i.e. there is no edge linking 𝑠𝑖𝑗 and 𝑠𝑗𝑖 directly. They must pass through 

the middle node 𝑚𝑖𝑗. 

 

 

𝑐′(𝑠𝑖𝑗, 𝑠𝑘𝑙) = {

1

4
(𝑐𝑖𝑗 + 𝑐𝑘𝑙) + 𝑑(𝑖, 𝑘) if (𝑖, 𝑗) ≠ (𝑘, 𝑙)

0 if (𝑖, 𝑗) = (𝑘, 𝑙)
  (2.2) 

 

 Equation 2.3 then determines the cost between the middle node and 

another node. The cost will only be a finite value if the other node is one of the 

side nodes belonging to the same original edge (𝑖, 𝑗). This ensures that the 

middle node 𝑚𝑖𝑗 can only be accessed through its side nodes 𝑠𝑖𝑗 and 𝑠𝑗𝑖. 
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𝑐′(𝑚𝑖𝑗, 𝑣) = {

1

4
𝑐𝑖𝑗 if 𝑣 = 𝑠𝑖𝑗  or 𝑣 = 𝑠𝑗𝑖

∞ otherwise

 (2.3) 

 

 When the TSP is solved for the transformed graph 𝐺′, any reasonable 

solution will have a sequence of node triplets, where the node triplet corresponds 

to the sequence 𝑠𝑖𝑗 → 𝑚𝑖𝑗 → 𝑠𝑗𝑖 or 𝑠𝑗𝑖 → 𝑚𝑖𝑗 → 𝑠𝑖𝑗. Since it is known that each 

node triplet has an associated edge (𝑖, 𝑗), the TSP solution can be converted back 

into a URPP solution by replacing each node triplet with its corresponding edge. 

If the first node of the node triplet is 𝑠𝑖𝑗, the path is from 𝑖 to 𝑗; otherwise if it is 

𝑠𝑗𝑖, the path is from 𝑗 to 𝑖. 

 This transformation process is a significant discovery, since it means that 

TSP algorithms are able to be used to solve the LPOP by transforming the 

problem, instead of the complicated process of modifying the algorithm. Since 

far more research has been done on the TSP compared to the URPP, recent 

advances in the TSP could hold great potential for further optimizing the LPOP. 

 

2.3 Algorithms for Solving the LPOP 

As demonstrated previously, the LPOP is closely related to the TSP, and can be 

represented in the form of the URPP. Unfortunately, since the TSP and URPP 

are NP-hard, this implies that the LPOP is NP-hard as well. Thus, heuristic 

algorithms have to be used to tackle the LPOP, which do not focus on checking 

all possibilities for the best solution, but instead give a good approximation that 

is usually within a certain percentage of the optimal solution. 

 

2.3.1 Tour Construction Algorithms 

Tour construction algorithms are algorithms that generate or construct a solution 

to the particular graph problem (e.g. TSP or URPP). 

 

2.3.1.1 Nearest neighbour 

Arguably the most intuitive heuristic for the TSP is the nearest neighbour 

algorithm. The algorithm can be visualized as a salesman whose rule of thumb 

for choosing the next destination is to select the nearest location that has not yet 

been visited (Johnson, 1990). 
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 An ordering 𝑐𝜋(1), ⋯ , 𝑐𝜋(𝑁) of the nodes is constructed, with the starting 

location 𝑐𝜋(1)  chosen arbitrarily. Generally, 𝑐𝜋(𝑖+1)  is selected as the node 𝑐𝑘 

that minimizes the cost function {𝑑(𝑐𝜋(𝑖), 𝑐𝑘): 𝑘 ≠ 𝜋(𝑗), 1 ≤ 𝑗 ≤ 𝑖} . The 

solution is obtained by traversing the nodes in the order generated, then 

returning to 𝑐𝜋(1) after having visiting node 𝑐𝜋(𝑁). 

 Since nearest neighbour is simple to implement and is able to obtain 

solutions relatively quickly, it is currently used in the open-source slicer 

software Cura to solve the LPOP (Fok, et al., 2016). However, other methods 

have been shown to obtain better solutions in practice, such as Christofides’ 

algorithm. 

 

2.3.1.2 Christofides 

A popular algorithm for solving the TSP is an algorithm devised by Christofides 

(1976), now commonly called Christofides’ algorithm, The Christofides 

heuristic is as follows. As can be seen in Figure 2.4, the graph to be solved is 

assumed to be a complete graph, in which every pair of nodes is connected by a 

unique edge. 

 

 

Figure 2.4: Complete graph 

 

 First, a minimum spanning tree 𝑇  is constructed for the set of nodes, 

shown in Figure 2.5. This is the set of edges that connects all the nodes without 

forming a cycle and with the minimum total edge cost. It is noted that the cost, 

or length of this tree cannot be longer than the optimum TSP solution, OPT(𝐼), 

since removing an edge from the optimal tour will result in a spanning tree.  
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Figure 2.5: Minimum spanning tree 𝑇 

 

 Next, a minimum-length perfect matching 𝑀 is computed on the nodes of 

odd degree in 𝑇, where the degree of a node is the number of edges it is incident 

(linked) to. The resultant matching is shown in Figure 2.6. A matching is the set 

of edges which do not share any nodes. Subsequently, a perfect matching is a 

matching that includes all the nodes. It can be shown through a simple argument 

that by assuming the triangle inequality, the matching will not be longer than 

OPT(𝐼)/2. The triangle inequality states that the shortest path to travel from 

node A to B is always the edge linking them directly.  

 

 

Figure 2.6: Minimum-length perfect matching 𝑀 

 

 By combining 𝑀 with 𝑇, a connected multigraph is obtained in which 

every node has an even degree. A multigraph is a graph where edges are allowed 

to have the same start and end node. This graph must necessarily contain an 

Eulerian tour, which is a tour that traverses each edge exactly once but allows 

for nodes to be revisited. Figure 2.7 shows the graph of 𝑀 ∪ 𝑇 and its Eulerian 

tour. 
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Figure 2.7: Euler tour in 𝑀 ∪ 𝑇 

 

 A TSP tour (also known as a Hamiltonian tour) of equal or shorter length 

can be constructed from the multigraph by following the Euler tour and taking 

shortcuts where appropriate to avoid previously visited nodes. For example, if 

part of the Euler path is 𝐴 → 𝐵 → 𝐶 but 𝐵 had already been visited, the path 

𝐴 → 𝐶 is taken instead. Following the triangle inequality, this new path is equal 

to or shorter than the path it had replaced. However, care must be taken when 

choosing which shortcuts to take, as there may be several different possibilities. 

Figure 2.8 shows one such possible shortcut taken to get a TSP tour. 

 

 

Figure 2.8: TSP tour obtained by taking shortcuts 

 

 As demonstrated previously, the worst-case solution for Christofides’ 

algorithm is OPT(𝐼) + OPT(𝐼)/2 = 3 OPT(𝐼)/2, or in other words a worst-

case ratio of 1.5, which is one of the best for TSP heuristics. It also performs 

better than the nearest neighbour algorithm on average when solving the LPOP, 

as reported by Fok, et al. (2016) and Ganganath, et al. (2016). 
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2.3.1.3 Frederickson 

Frederickson’s algorithm was first proposed by Frederickson (1979) to solve the 

URPP. It shares many similarities with Christofides’ algorithm for the TSP, 

which has already been explained previously in Section 2.3.1.2. Thus, 

Frederickson’s algorithm will be elaborated upon more briefly. 

 An undirected graph 𝐺 = (𝑉, 𝐸)  and 𝐸𝑟 ⊆ 𝐸 , where 𝐸𝑟  is the set of 

required edges, are given. A minimum spanning tree 𝑇 is then constructed to 

link all the edges in 𝐸𝑟, and the edges used in the construction form a new set 

𝐸𝑇.  

 Next, a minimum cost perfect matching 𝑀 is conducted on the nodes in 

the graph 𝐸𝑟 ∪ 𝐸𝑇 with an odd degree. The edges added in this process produce 

another new set 𝐸𝑀.  

 An Eulerian tour that visits all the edges in 𝐸𝑟 can then be easily found for 

the graph 𝐸𝑟 ∪ 𝐸𝑇 ∪ 𝐸𝑀 . The tour can be further optimized by replacing 

consecutive edges on the tour that are not in 𝐸𝑟 with shortcuts. 

 Fok, Cheng and Tse (2017) showed that by representing the LPOP as a 

URPP, Frederickson’s algorithm could be applied to solve the LPOP. Similar to 

Christofides’ algorithm, it was found that Frederickson’s algorithm 

outperformed the built-in nearest neighbour algorithm in Cura when solving the 

LPOP. 

 

2.3.1.4 Ant Colony Optimization (ACO) 

The ant colony optimization (ACO) algorithm is inspired by the behaviour of 

ants in nature. ACO is widely used to solve the TSP, and is also capable of 

solving the URPP by transforming it into the TSP first (Pérez-Delgado, 2010). 

 In real life, ants communicate through the use of a substance called 

pheromone. This substance is deposited on the ground as they walk to serve as 

a sort of marking. Ants will tend to follow the path with more pheromone, 

depositing more of their own pheromone at the same time. Since pheromone 

evaporates over time, less visited paths will become even less likely to be visited 

in the future. 

 The version of the ACO algorithm that will be explained is taken from 

Fok, et al. (2018). Here, 𝜏𝑖,𝑗 signifies the pheromone level for an edge (𝑖, 𝑗), in 
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which 𝑖 and 𝑗 are the two nodes connected by that edge. Heuristic information 

is also taken into account through 𝜂𝑖,𝑗, which is inversely proportional to the 

cost of the edge (𝑖, 𝑗).  

 If the 𝑘th ant is now at node 𝑖, the probability of the ant to take the edge 

(𝑖, 𝑗) is expressed in Equation 2.4. 𝑁𝑖
𝑘 is the set of valid nodes that are directly 

linked by a single edge to node 𝑖 and have not yet been visited by the 𝑘th ant. 

Meanwhile, the parameters 𝛼 and 𝛽 are used for manipulating the behaviour of 

the ants. 

 

 

𝑝𝑖,𝑗
𝑘 (𝑡) =

[𝜏𝑖,𝑗(𝑡)]
𝛼

[𝜂𝑖,𝑗]
𝛽

∑ [𝜏𝑖,𝑙(𝑡)]
𝛼

[𝜂𝑖,𝑙]
𝛽

𝑙∈𝑁𝑖
𝑘

 (2.4) 

 

 In order to avoid premature convergences and local optimum points, the 

evaporation concept is implemented into ACO. At the end of each iteration, the 

pheromone level of all the edges is reduced proportionally based on the factor 

𝜌 ∈ (0,1). Consequently, the pheromone level 𝜏𝑖,𝑗 is updated at the end of the 

𝑡th iteration as shown in Equation 2.5. 

 

 
𝜏𝑖,𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖,𝑗(𝑡) + ∑ ∆𝜏𝑖,𝑗

𝑘 (𝑡)

𝑚

𝑘=1

 (2.5) 

 

 In the equation, 𝑚 represents the number of ants used in each iteration of 

the ACO. Next, ∆𝜏𝑖,𝑗
𝑘 (𝑡) signifies the amount of pheromone that is deposited by 

the 𝑘th ant on edge (𝑖, 𝑗) in the 𝑡th iteration. As the process continues iteratively, 

the evaporation factor 𝜌  will cause edges included in poor solutions to be 

eliminated in the long run.  

 The process is repeated until the prefixed number of iterations has been 

reached or the solution converges. Fok, et al. (2018) first demonstrated the 

effectiveness of the ACO algorithm when applied to the LPOP. However, an 

inherent flaw of the ACO not present in previously discussed algorithms is that 

due to the presence of randomness, the solution obtained may be different each 

time the ACO algorithm is used on the same problem. 
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2.3.2 Improvement Algorithms 

Improvement algorithms use complete solutions generated by tour construction 

algorithms as a base to improve upon. That is to say; their job is to further 

optimize existing solutions. 

 

2.3.2.1 k-opt  

k-opt is part of the group of improvement algorithms known as local search 

algorithms. Local search algorithms work by repeatedly performing operations 

that shorten the length of the current solution until no operation results in an 

improvement, generating what is called a locally optimal tour. 

 Croes (1958) first proposed the 2-opt algorithm. The operation in this 

algorithm removes two edges from the tour, thus splitting it into two separate 

paths. Those paths are then reconnected in the other possible way. If the new 

tour is shorter than the old tour, the new connections are kept; otherwise the 

substitution is not performed.  Figure 2.9 shows an example of this process. First, 

in Figure 2.9 (a), the edges (𝐴, 𝐷) and (𝐶, 𝐵) are removed, then in Figure 2.9 (b) 

the nodes are reconnected with the edges (𝐴, 𝐵) and (𝐶, 𝐷) to form a new cycle. 

Since the new tour is shorter than the old tour, the new tour is kept. 

 Subsequently, 3-opt replaces up to three edges, as demonstrated in Figure 

2.10 (Bock, 1958; Lin, 1965). Initially, Figure 2.10 (a) shows three pairs of 

edges that can be removed; namely edges (𝐴, 𝐹), (𝐵, 𝐷) and (𝐶, 𝐸). Figure 2.10 

(b) shows one way of reconnecting the nodes by using edges (𝐴, 𝐵), (𝐶, 𝐷) and 

(𝐸, 𝐹). On the other hand, Figure 2.10 (c) shows another way of joining back 

the nodes by using edges (𝐴, 𝐵), (𝐶, 𝐹) and (𝐷, 𝐸). This demonstrates that for 

3-opt, it is possible to replace the edges in more than one way. 

 

 

Figure 2.9: (a) Initial graph, (b) After 2-opt move 
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Figure 2.10: (a) Initial graph, (b) & (c) Two possible 3-opt moves 

 

 By following this line of logic, any integer value k could theoretically be 

used to implement k-opt, but practically only 2-opt and 3-opt are used due to the 

rapidly growing complexity of the operations as k increases.  

 Although k-opt is simple to implement, its weakness which is shared by 

all local search algorithms is that it may become stuck in a local minima, and is 

unable to search for better solutions that may exist globally. Nevertheless, 

several papers have shown the effectiveness of using k-opt algorithms to 

improve upon LPOP solutions (Ganganath, et al., 2016; Fok, Cheng and Tse, 

2017; Fok, et al., 2019).   

 

2.3.3 Application-specific Methods 

In literature, there have been a number of proposed methods that are specifically 

tailored for solving the LPOP. These methods generally build on existing 

algorithms while exploiting the unique properties of the LPOP to achieve 

improved solutions. 

   

2.3.3.1 Refinement Process 

The refinement process was proposed by Fok, Cheng and Tse (2017). It focuses 

on exploiting two characteristics of the LPOP as defined by the authors.  

 The first is that even though zero cost transitions are uncommon in the 

ordinary URPP, they are necessary in the LPOP, as curves are made of many 

straight print segments with zero cost transitions between them since they are 

connected directly. The second characteristic is that the printing nozzle does not 

need to return to its starting point after it has completed all the print segments 

on a layer. 
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 The LPOP is formulated as an URPP, and is subsequently solved by 

Frederickson’s algorithm. The solution obtained is then put through the 

proposed refinement process. To take advantage of the first characteristic, a 

priority list is created for the k-opt heuristic, such that transitions with higher 

priority will be evaluated first. Since it is very unlikely that performing k-opt on 

the zero cost transitions would yield an improvement, they are given lower 

priorities on the list. 

 The second part of the process changes the order of the path by removing 

the requirement to return to the starting node. The initial cycle is first split at the 

node in the cycle that is closest to the starting node, such that a chain 𝐶 =

{(𝑣𝑎1, 𝑣𝑏1), (𝑣𝑎2, 𝑣𝑏2), ⋯ , (𝑣𝑎𝑖, 𝑣𝑏𝑖), ⋯ , (𝑣𝑎𝑛, 𝑣𝑏𝑛)}  is formed, where 

(𝑣𝑎𝑖, 𝑣𝑏𝑖) are the nodes of the 𝑖th print segment in the chain. Then, in the 𝑝th 

iteration of this process, 𝐶  is divided into two subchains 𝐶1 =

{(𝑣𝑎1, 𝑣𝑏1), ⋯ , (𝑣𝑎𝑝+1, 𝑣𝑏𝑝+1)} and 𝐶2 = {(𝑣𝑎𝑝+2, 𝑣𝑏𝑝+2), ⋯ , (𝑣𝑎𝑛, 𝑣𝑏𝑛)}. If 

the joint cost of 𝐶1 and 𝐶2 flipped = {(𝑣𝑏𝑛, 𝑣𝑎𝑛), ⋯ , (𝑣𝑏𝑝+2, 𝑣𝑎𝑝+2)} is less than 

𝐶, the order of 𝐶 is updated such that 𝐶 ← {𝐶1, 𝐶2 flipped}, otherwise 𝐶 remains 

unchanged. This process then continues for each iteration until the end of the 

chain. 

 It was reported by the authors that by using the proposed refinement 

process, performance was increased significantly compared to Frederickson’s 

algorithm followed by 2-opt. The total transition length of the solution obtained 

was always shorter, while the post-processing time was reduced by about 34.50% 

on average. This paper is one of the first to demonstrate the importance of 

considering the unique properties of the LPOP to further increase performance. 

 

2.3.3.2 Extended ACO 

Fok, et al. (2018) proposed the extended ACO method to exploit a unique 

property of typically sliced 3D models. In the 3D printing process, the desired 

3D model is first sliced by a slicer program into very thin slices, and each slice 

is then transformed into a layer with print segments. Due to this, adjacent layers 

will usually have similar structures in terms of the locations and orientations of 

print segments.  
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 Before further discussion, a few terms that will be used must be made 

clear. Typically in ACO, the number of iterations to be executed, which is 

termed as 𝑁ite, is defined beforehand by the user and is fixed throughout the 

entire optimization process. Since ACO uses a stochastic mechanism to check 

for improvements, it is possible that for some of the iterations, no further 

improvement can be found. For convenience’s sake, the authors have coined the 

term effective iteration to mean an iteration in which improvements can still be 

found. Thus, the total number of effective iterations of a sliced model on its 𝑖th 

layer is denoted as 𝑁eff
𝑖 ∈ [0, 𝑁ite]. 

 Empirical studies that were conducted by the authors on various 3D 

models suggested that 𝑁eff
𝑖  usually approximates to 𝑁eff

(𝑖−1)
, and that ACO is 

usually unable to achieve further improvement on the 𝑖th  layer when 𝑁eff
𝑖 >

𝑁eff
(𝑖−1)

. These properties can then be utilized to adaptively adjust the number of 

iterations used. However, there exist exceptional cases whereby there is a large 

deviation between 𝑁eff
𝑖  and 𝑁eff

(𝑖−1)
, implying that the number of iterations for 

each of the two layers should be different in this case to optimize the ACO 

process.  

 The extended ACO begins by checking for the condition 𝑁eff
𝑖 > 𝑁eff

(𝑖−1)
 on 

the 𝑖th layer. If the condition is met and no improvement is made on the current 

iteration, the process will terminate early. When the process terminates early, 

meaning 𝑁ite
𝑖 < 𝑁ite, the extra iterations are stored in a global reverse 𝑁res.  

 However, if the condition is met and there is improvement for the current 

iteration, the optimization process for the 𝑖th layer is allowed to continue as long 

as improvement is achieved for the current iteration. The number of iterations 

is only allowed past 𝑁ite  if 𝑁res > 0 , and every subsequent iteration will 

consume one iteration in 𝑁res. 

 The idea behind such a design is to adaptively allocate the iteration 

numbers across the layers, such that less complex layers use up less iterations, 

while the surplus computational resources can be used for the more complex 

layers. 

 When the performance of extended ACO was compared to the generic 

ACO, Fok, et al. (2018) reported very similar build times for both the solutions, 
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while the extended ACO saved on average 8.20% of post-processing time. In 

other words, the extended ACO was able to cut down on post-processing time 

without comprising on the quality of the solution. 

 

2.3.3.3 Detour Searching Algorithm with Modified k-opt 

One of the most recent approaches was proposed by Fok, et al. (2019), which 

exploits a particular property of 3D printing. Retraction is an important feature 

in FFF 3D printers. It involves retracting the filament a short distance to 

minimize the oozing of material when transitioning from one print segment to 

another. 

 However, as will soon be explained, retraction is not always necessary for 

every transition move. Transition segments can be divided into two groups, 

those with retraction and those without, as can be seen in Figure 2.11. Since 

transition A in the figure lies wholly within the model, retraction is not 

necessary, as the oozing will occur on the inside, and will not be visible from 

the outside after the model has been completed. On the other hand, a portion of 

transition B passes through the outside of the model, thus retraction is required 

to minimize the visible oozing. 

 

 

Figure 2.11: Transition without retraction (A), and with retraction (B) 

 

 As the retraction process takes up time and only minimizes the oozing but 

does not prevent it entirely, it is desirable to reduce the number of transition 

moves with retraction wherever possible.  

 Two algorithms were proposed by the authors to reduce the printing time. 

The first is a detour searching algorithm, which is a heuristic algorithm that uses 
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detours to replace unnecessary transitions that contain retraction. These 

transitions are prioritized based on their respective cost, such that higher cost 

transitions are considered first. As the detour searching algorithm itself is fairly 

complex, it will not be further elaborated upon here.  Those interested in the 

details of the algorithm may refer to the original paper published by Fok, et al. 

(2019). 

 The second algorithm is a modified k-opt heuristic. The edges that do not 

have retraction are divided into two subsets of 𝐸 , namely 𝐸𝐵  and 𝐸𝐶 . 𝐸𝐵 

contains the transitions with distance greater than zero, while 𝐸𝐶 contains the 

transitions with zero distance. Based on two theorems developed by the authors, 

any combinations which are either made up of one transition in 𝐸𝐵 and (𝑘 − 1) 

transitions in 𝐸𝐶, or only made up of transitions in 𝐸𝐶 are not considered in the 

k-opt process, as they will yield no improvement. This idea is similar to part of 

the refinement process proposed by Fok, Cheng and Tse (2017) that has been 

discussed in Section 2.3.3.1. 

 Since the two proposed algorithms are improvement algorithms, they 

require an initial solution to improve on. In the paper, it is stated that the 

complete proposed method begins with Frederickson’s algorithm first, followed 

by the detour searching algorithm, and finally the modified k-opt algorithm. 

 When the results of the proposed method were compared with an 

extensive number of other algorithms, it was found that the proposed method 

always obtained the shortest print time, while requiring significantly less post-

processing time than most of the other algorithms which obtained similarly short 

print times. In terms of the final print quality, the proposed method performed 

better than Cura when they were compared qualitatively, due to the stark 

decrease in transitions with retraction. 

 These results make it the first paper (to the knowledge of this report’s 

author) of a proposed method that managed to demonstrate improvement both 

in terms of print time and the final print quality.  

 

2.4 Summary 

The LPOP can be formally expressed using graph theory, and thus can be 

represented as an URPP, which is closely related to the well-known TSP. Since 

it has been shown that an URPP can be converted into a TSP, and the solution 
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obtained can be converted back into a URPP solution, algorithms for solving 

the TSP and URPP could both potentially be used to solve the LPOP. 

 While there exists a variety of tour construction algorithms and 

improvement algorithms, the approach with the most promise appears to be 

developing or modifying improvement algorithms that exploit the unique 

properties present in the LPOP. A number of papers have demonstrated that this 

approach yields better solutions when compared with generic algorithms, as can 

be observed in Section 2.3.3. 

 However, a noticeable gap in the literature is research into the application 

of some commonly-used metaheuristic algorithms such as simulated annealing 

and tabu search for solving the LPOP. Thus, future research into these untested 

algorithms is a possible path forward. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

A process must be formulated to test the algorithms and compare their 

performance in order to achieve the aim of this report, which is to reduce the 3D 

printing time by utilizing algorithms to solve the LPOP. This process is 

illustrated in Figure 3.1. The details of the process will be further explained in 

the subsequent portion of this chapter. 

 

 

Figure 3.1: Flowchart of the process to evaluate LPOP algorithms 

 

3.2 Cura 

Cura is a popular open-source slicer software developed and distributed by 

Ultimaker and is available to download for free on Ultimaker’s website 

(Ultimaker, n.d.). Due to its widespread use, it is a useful baseline to compare 

the performance of the algorithms used. 

 A slicer software is a piece of software used to process a 3D model in 

order to obtain the corresponding G-code for that model. Countless parameters 

are available for tweaking within the slicer software. Such parameters include 

the dimensions and specifications of the 3D printer, the scaling and orientation 

of the 3D model, layer height, supports, etc. In general, the tuning of these 

parameters will affect the final appearance and quality of the print, as well as 

the duration of the 3D printing process. A sample of the user interface in Cura 

is shown in Figure 3.2. 
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Figure 3.2: Cura user interface 

 

 For this report, Cura version 4.4 was used with the default settings, but 

with some minor adjustments. The infill was set to 20%, the layer height was 

set to 0.2 mm, and the relative extrusion mode was enabled. The first two 

adjustments are to create a standard for the testing procedure, while the last 

setting modifies the way the G-code is written to make it easier to post-process, 

as will be explained in Section 3.3. Meanwhile, the retraction setting is also 

disabled as stated in the scope and limitations of the study. 

 

3.3 G-code 

G-code is the language used to program the motion of computer numerical 

control (CNC) machines. It has long been in use for subtractive manufacturing 

CNC machines such as lathes and drills, but has only recently been adapted for 

use in additive manufacturing CNC machines, also known as 3D printers. 

 3D printing technology had been commercially available for many 

decades, but it was restricted to mostly industrial use due to the high costs 

associated with it. This changed circa 2010, when the RepRap project, an open-

source effort to develop consumer 3D printers, gained public attention (Jones, 

et al., 2011). Since then, many 3D printing related open-source projects have 

taken off, with 3D printing start-up companies using technology and code from 

these open-source projects as a starting point for developing their own products. 
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 As a result of this unusual origin of consumer 3D printing technology, 

most consumer-level and even some commercial-level 3D printers use modified 

open-source firmware. Thus, for this report, two open-source 3D printer 

firmware projects, namely RepRap and Marlin, will be referred to for the 

definition of the G-code commands (Marlin Firmware, n.d.; RepRap, n.d.). The 

RepRap source shows a comparison of the different definitions of the G-code 

according to various firmware, while Marlin is a widely-used firmware. 

Fortunately, the G-code definitions are generally consistent between firmware, 

but in the case of any discrepancy the definition from Marlin will be used. 

 Although there are many commands in the G-code language, only two of 

them will be used throughout the vast majority of the printing process, which 

are G0 and G1. Both of these are move commands and perform the same action, 

but by convention G0 means a rapid move (i.e. non-extruding) while G1 means 

a linear move (i.e. extruding) (Marlin Firmware, n.d.). Parameters as shown in 

Table 3.1 are added behind G0/G1. At least one parameter is required, but a 

G0/G1 command may include all of them. 

 

Table 3.1: Parameters for G0 and G1 

Parameter Description 

F<rate> 

The movement rate, also known as feedrate, from 

the start to end point. The value set here will apply 

to subsequent moves that do not have this 

parameter.  

X<pos> The X-coordinate of the position to move to. 

Y<pos> The Y-coordinate of the position to move to. 

Z<pos> The Z-coordinate of the position to move to. 

E<pos> 
The length of filament extruded from the start to 

end point. 

 

 Some examples of G0 and G1 code are given in Table 3.2. Note that text 

after a semicolon means a comment. Coordinates will be discussed in the format 

(x, y).  
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Table 3.2: Examples of G0 and G1 commands 

Example Code 

A 
G0 F1200 X3.4 Y15.3 

G0 X50.6 Y84 

B 

G0 F1600 

G0 X23.1 Y56.7 

G1 X34 Y67.1 E10.5 

C 

G0 F1600 X45.3 Y55 

G1 X33.1 Y68.8 E5.4 

G1 F1000 E-5 ; retraction move 

G0 F1600 X12 Y45 

 

 In example A, the first line tells the nozzle to move to the coordinates (3.4, 

15.3) in mm at a feedrate of 1200 mm/minute. The second line then moves the 

nozzle to (50.6, 84). Since this line has no F parameter, it will retain the same 

feedrate of 1200 mm/minute. 

 In example B, the first line sets the feedrate of subsequent moves to 1600 

mm/minute. The second line moves the nozzle to (23.1, 56.7). The third line 

then moves the nozzle to (34, 67.1) while extruding 10.5 mm of filament evenly 

between the two points. The feedrate of the extrusion itself is calculated by the 

firmware to ensure that an even amount of material is deposited along the path. 

 In example C, the first line moves the nozzle to (45.3, 55) at a feedrate of 

1600 mm/minute, then the second line moves the nozzle to (33.1, 68.8) at the 

same feedrate while extruding 5.4 mm of filament. Next, the third line retracts 

5 mm of filament at a feedrate of 1000 mm/minute, since it has a negative sign 

in the E parameter. This type of move is termed as a retraction move, and its 

purpose is briefly explained in Section 2.3.3.3. Lastly, the nozzle moves to (12, 

45) at a feedrate of 1600 mm/minute. 

 In summary, understanding G0 and G1 instructions will be sufficient 

enough to construct the parser program. 

 

3.4 Parser Program and Conversion Back to G-code 

The job of the parser program is to extract the layer data from the initial G-code 

and convert it into the LPOP. As an example, say that the output given by the 
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slicer program for the first layer is as shown in Figure 3.3. Solid lines represent 

the print segments, while the dotted lines represent the transition segments. 

 

 

Figure 3.3: Output of the slicer program for the first layer 

 

 The corresponding G-code may be something similar to the code shown 

in Table 3.3, where <xA> and <yA> are the respective X-coordinate and Y-

coordinate of node A. Meanwhile, <eAB> is the length of filament extruded from 

node A to node B and is equivalent to <eBA>. A transition move is the same as 

a non-extruding move. 

 

Table 3.3: Initial G-code for the first layer 

G0 X<xA> Y<yA> ; move to node A 

G1 F1500 X<xB> Y<yB> E<eAB> ; move to node B while extruding 

G1 X<xC> Y<yC> E<eBC> ; move to node C while extruding 

G0 F3200 X<xD> Y<yD> ; do a transition move to node D 

G1 F1200 X<xE> Y<yE> E<eDE> ; move to node E while extruding 

G0 F3200 X<xA> Y<yA> ; do a transition move to node A 

  

 The parser first needs to identify all the nodes and their coordinates, which 

is then stored in a table as shown in Table 3.4. Using this information, the 

Euclidean distance is calculated for all possible pairs of nodes using the 

Pythagorean theorem. For example, the distance between node A and B is 

denoted as <dAB> or <dBA>. In other words, the distance of each possible edge 

is calculated. 
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Table 3.4: Coordinates of each node 

Node X-coordinate Y-coordinate 

A <xA> <yA> 

B <xB> <yB> 

C <xC> <yC> 

D <xD> <yD> 

E <xE> <yE> 

 

 Next, the feedrate and extrusion length for each edge has to be extracted 

from the G-code. Generally, all transition moves will have the same feedrate, so 

the value of the transition feedrate used in the G-code will be applied to all the 

other possible transition segments.  

 All the data regarding the edges is then formatted as a matrix, as shown in 

Table 3.5. The data is ordered as distance, feedrate and extrusion length. A dash 

symbol (-) means that the particular parameter is not applicable. For example, 

non-extrusion moves will not have any extrusion length. 

 

Table 3.5: Data matrix for the edges 

Edge A B C D E 

A 

0, 

-, 

- 

<dAB>, 

1500, 

<eAB> 

<dAC>, 

3200, 

- 

<dAD>, 

3200, 

- 

<dAE>, 

3200, 

- 

B 

<dAB>, 

1500, 

<eAB> 

0, 

-, 

- 

<dBC>, 

1500, 

<eBC> 

<dBD>, 

3200, 

- 

<dBE>, 

3200, 

- 

C 

<dAC>, 

3200, 

- 

<dBC>, 

1500, 

<eBC> 

0, 

-, 

- 

<dCD>, 

3200, 

- 

<dCE>, 

3200, 

- 

D 

<dAD>, 

3200, 

- 

<dBD>, 

3200, 

- 

<dCD>, 

3200, 

- 

0, 

-, 

- 

<dDE>, 

1200, 

<eDF>, 

E 

<dAE>, 

3200, 

- 

<dBE>, 

3200, 

- 

<dCE>, 

3200, 

- 

<dDE>, 

1200, 

<eDF>, 

0, 

-, 

- 
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 Using Table 3.4 and Table 3.5, the LPOP for this layer can be represented 

as a URPP, as discussed in Section 2.2.2. For this example, given that 𝐺 =

(𝑉, 𝐸) and 𝐸𝑟 ⊆ 𝐸, the elements of the sets are described in Table 3.6, where 

(A, B) is an edge connecting node A and B. 

 

Table 3.6: Elements of 𝑉, 𝐸 and 𝐸𝑟 

Set Elements 

𝑉 A, B, C, D, E 

𝐸 (A, B), (A, C), (A, D), (A, E), (B, C), (B, D), (B, E), (C, D), 

(C, E), (D, E)  

𝐸𝑟 (A, B), (B, C), (D, E) 

 

 Since the length of each edge can be obtained from Table 3.5, the URPP 

can now be solved by the selected algorithm. As explained in Section 2.2.2, the 

URPP is able to be converted into the TSP and the solution can be converted 

back into a URRP solution, thus TSP algorithms can be used as well by utilizing 

this property. 

 Now suppose that the optimized solution obtained by the algorithm is 

shown in Figure 3.4. The parser program then needs to use information from the 

solution in Table 3.4 and Table 3.5 to construct the corresponding G-code. An 

example of the optimized G-code is shown in Table 3.7. A G-code simulator 

can then be used to analyse and compare various parameters of the initial G-

code and optimized G-code. 

 

 

Figure 3.4: Optimized solution 
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Table 3.7: Optimized G-code 

G0 X<xA> Y<yA>  

G1 F1500 X<xB> Y<yB> E<eAB> 

G1 X<xC> Y<yC> E<eBC>  

G0 F3200 X<xE> Y<yE> 

G1 F1200 X<xD> Y<yD> E<eDE>  

G0 F3200 X<xA> Y<yA>  

 

3.5 Algorithms to be Tested 

Since the nearest neighbour algorithm is used in Cura as reported by Fok, et al. 

(2016), it will be excluded from the list of algorithms to be tested. The list of 

proposed algorithms to be tested is given in Table 3.8. The details of the 

algorithms will be elaborated in the subsequent sections. 

 

Table 3.8: Algorithms to be tested 

No. Algorithm 

1 Modified AS algorithm for solving URPP 

2 Modified ACS algorithm for solving URPP 

 

3.5.1 ACO Algorithm Variants 

The basis behind the ACO algorithm has been stated previously in Section 

2.3.1.4. However, ACO actually refers to a family of algorithms that share the 

same ant-based idea, but use different techniques. The specific version of the 

ACO algorithm elaborated upon in Section 2.3.1.4 is the earliest version, first 

conceived by M. Dorigo, V. Maniezzo and A. Colorni (1996) and is known as 

the Ant System (AS).  

 Later, M. Dorigo and L. M. Gambardella (1997) proposed another ACO 

algorithm called the Ant Colony System (ACS). ACS differs from AS in three 

significant ways: the state transition rule, the local pheromone update and the 

global pheromone update. These differences will be discussed using the 

terminology used in Section 2.3.1.4. 

 The state transition rule is given in Equation 3.1. When the 𝑘th ant is at 

node 𝑖, the next node 𝑠 is decided by the following rule. If 𝑞 ≤ 𝑞0, where 𝑞 is a 
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random number that is evenly distributed in [0…1] and 𝑞0  is a parameter 

between 0 and 1, then the node 𝑙 that maximises the argument {[𝜏𝑖,𝑙] ∙ [𝜂𝑖,𝑙]
𝛽

} is 

chosen as the next node (called exploitation). Otherwise, if 𝑞 > 𝑞0, the same 

rule as in AS is used to choose the next node (called biased exploration). This 

state transition rule is known as the pseudo-random-proportional rule. The 

parameter 𝑞0 balances exploitation and biased exploration. 

 

 
𝑠 = {arg max

𝑙∈𝑁𝑖
𝑘 {[𝜏𝑖,𝑙] ∙ [𝜂𝑖,𝑙]

𝛽
} if 𝑞 ≤ 𝑞0 

𝑆 otherwise
 (3.1) 

 

 In AS, the path generation for each ant can be done sequentially or in 

parallel, since the pheromone is only updated after all the ants have completed 

their tours. However, in ACS the pheromone values change dynamically as the 

ants generate their path, so the path generation must be done in parallel. After 

each ant has added a new node to their path, the local pheromone update takes 

place according to Equation 3.2. In the equation, 𝑟 is the current number of 

nodes in each ant’s path, 𝜑 is the local evaporation factor, and 𝜏0 is the initial 

pheromone value. The reasoning behind the local pheromone update is to 

diversify the solutions obtained by evaporating a small amount of pheromone 

from an edge every time it is traversed by an ant, making that edge less desirable 

to be used by other ants later on within the same iteration. Without local 

updating, the ants would only explore paths very similar to the shortest previous 

tour. 

 

 𝜏𝑖,𝑗(𝑟 + 1) = (1 − 𝜑) ∙ 𝜏𝑖,𝑗(𝑟) + 𝜑 ∙ 𝜏0 (3.2) 

 

 Other than the local pheromone update, ACS also has the global 

pheromone update which happens at the end of every iteration 𝑡, shown in 

Equation 3.3. In the equation, 𝛼 is the global evaporation factor. Meanwhile, if 

the edge (𝑖, 𝑗) is part of the globally best path, then ∆𝜏𝑖,𝑗 is the inverse of the 

best length (i.e. inverse length of the globally best path), otherwise ∆𝜏𝑖,𝑗 is zero. 

Put another way, pheromone will evaporate from all edges and only the best ant 

is allowed to deposit pheromone along the path it travelled. 
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 𝜏𝑖,𝑗(𝑡 + 1) = (1 − 𝛼) ∙ 𝜏𝑖,𝑗(𝑡) + 𝛼 ∙ ∆𝜏𝑖,𝑗 (3.3) 

 

3.5.2 Modifying AS and ACS Algorithms to solve the URPP 

The AS and ACS algorithms were originally designed to solve the TSP. To use 

these algorithms to solve the URPP, previous authors such as Pérez-Delgado 

(2010) and Fok, et al. (2018) have used a transformation process to convert the 

original URPP into a TSP, and then to convert the obtained TSP solution into 

the URPP solution. This transformation process has been explained previously 

in Section 2.2.2. 

 In this report, a new method is proposed to solve the URPP by modifying 

the AS and ACS algorithms directly. In the original algorithms that solved for 

the TSP, the set of possible nodes that the ant could travel to next was simply 

𝐴′, given that the universal set, 𝑈 is the set containing all the nodes in the 

problem and 𝐴 is the set of nodes that the ant has already visited. However, in 

the proposed method, the logic for determining the possible next nodes for the 

ant is changed. 

 As an example, say that the graph in Figure 3.5 (a) is the original URPP, 

where the solid lines are the required edges. When solving for any URPP, the 

assumption is made that each node is connected to a maximum of two required 

edges. Thus, each node can have zero, one, or two required edges. Nodes with 

zero required edges can be ignored, since the goal of the URPP is to connect all 

the required edges. This leaves the nodes with one or two required edges.  

 

 

Figure 3.5: (a) Original URPP, (b) After transformed to TSP 
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 To begin the modified AS/ACS algorithm, an ant randomly chooses a 

node with only one required edge. From Figure 3.5 (a), this means that the ant 

can start from node A, C, D, E, F, or I. Say that the ant starts at node C. Next, 

the ant will immediately choose node B, since it is connected to node C by a 

required edge. After that, the ant sees that node B is connected to both node A 

and C by required edges, but since node C has already been visited, the ant goes 

to node A. Now, at node A, it randomly chooses the next node according to the 

rules of the normal AS/ACS algorithm, where the set of possible next nodes are 

those with only one required edge that have not been visited, which is node D, 

E, I, and F. This process repeats until all the nodes have been visited, then the 

ant returns to the starting node. In other words, the ant will always follow a path 

made of required edges, then when it reaches the end of that path, it will 

randomly choose the start of another path of required edges according to the 

AS/ACS algorithm. This method of traversing the graph guarantees that all the 

required edges will be included in the final tour. 

 For the URPP in Figure 3.5 (a), it can be observed that if the modified 

AS/ACS algorithm is used as described above, the ant only has to make a 

random decision on which node to go next two times. On the other hand, Figure 

3.5 (b) shows the graph after the URPP has been transformed to its TSP 

equivalent according to Section 2.2.2, where each required edge is represented 

as a node triplet. If the conventional AS/ACS algorithm is applied to the graph 

in Figure 3.5 (b), the ant would need to make a random decision on which node 

to go next 17 times.  

 Therefore, it can be clearly seen that the proposed modified AS/ACS 

algorithm requires significantly less processing to solve the URPP compared to 

using the original AS/ACS algorithm to solve the TSP equivalent of the URPP. 

Practically, this translates into a significant reduction in processing time. This 

improvement is even more apparent when the processing required to perform 

the initial transformation and the transformation of the obtained solution is taken 

into account. 

 Figure 3.6 illustrates the logic of the AS algorithm after it has been 

modified to solve the URPP, while Figure 3.7 shows the modified ACS 

algorithm instead. 
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1. Initialize pheromone data 

2. for each iteration in all_iterations do 

3.     for each ant in all_ants do 

4.         starting_node ← random node with only one required edge 

5.         current_node ← starting_node 

6.         Append starting_node to ant_tour 

7.         repeat 

8.             if current_node has two required edges 

9.                 next_node ← the node connected by a required edge that is not 

in ant_tour 

10.             if current_node has one required edge 

11.                 if node connected by required edge not in ant_tour 

12.                     next_node ← the node connected by required edge 

13.                 else 

14.                     possible_next_nodes ← nodes with only one required edge 

that are not in ant_tour 

15.                     next_node ← random node chosen from 

possible_next_nodes according to AS rule 

16.             Append next_node to ant_tour 

17.             current_node ← next_node 

18.         until all nodes are in ant_tour 

19.     best_tour ← globally shortest ant_tour so far 

20.     Perform global pheromone update according to AS rule 

21. return best_tour 

Figure 3.6: Modified AS algorithm for solving URPP 

 

1. Initialize pheromone data 

2. for each iteration in all_iterations do 

3.     for each ant in all_ants do 

4.         starting_node[ant] ← random node with only one required edge 

5.         current_node[ant] ← starting_node[ant] 

6.         Append starting_node[ant] to ant_tour[ant] 
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7.     repeat 

8.         for each ant do 

9.             if current_node[ant] has two required edges 

10.                 next_node[ant] ← the node connected by a required edge that 

is not in ant_tour 

11.             if current_node[ant] has one required edge 

12.                 if node connected by required edge not in ant_tour[ant] 

13.                     next_node[ant] ← the node connected by required edge 

14.                 else 

15.                     possible_next_nodes[ant] ← nodes with only one required 

edge that are not in ant_tour 

16.                     next_node[ant] ← random node chosen from 

possible_next_nodes according to ACS rule 

17.             Append next_node[ant] to ant_tour[ant] 

18.             current_node[ant] ← next_node[ant] 

19.         Perform local pheromone update according to ACS rule 

20.     until all nodes are in ant_tour for all ants 

21.     best_tour ← globally shortest ant_tour so far 

22.     Perform global pheromone update according to ACS rule 

23. return best_tour 

Figure 3.7: Modified ACS algorithm for solving URPP 

 

3.6 Implementation of the Parser and Algorithms 

The parser and algorithms to be tested were written in the Python programming 

language due to its ease of use and natural data-handling capabilities. 

Preliminary testing showed that the code for the parser and algorithm took a 

long time to process a single G-code file, usually around a few hours. It was 

expected that since Python is an interpreted language, it would have worse 

performance compared to compiled languages such as C and C++. 

 To decrease the processing time of the code, Numba, which is a Just-In-

Time (JIT) compiler for Python, was integrated into the code so that it could 

achieve speeds similar to compiled languages. After Numba was added, the 

processing time of the code dropped by about 20 times, such that a G-code file 

could now be processed in a matter of minutes. 
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3.7 G-code Simulator 

A G-code simulator is a software that virtually simulates each G-code command, 

allowing the user to see visualizations of each layer in detail as well as obtain 

useful metrics for the entire print process, such as the total distance travelled, 

the printing time, etc.  

 Two G-code simulators will be used, which are gCodeViewer and Gcode 

Analyser (hudbrog, 2018; syue87, 2018). The former is used to visualize the 

printing process for each layer since it shows the transition moves, while the 

latter is used to obtain useful metrics. Figure 3.8 shows the gCodeViewer user 

interface, while Figure 3.9 shows a screenshot from Gcode Analyser. 

 

 

Figure 3.8: Screenshot from gCodeViewer 

 

 

Figure 3.9: Screenshot from Gcode Analyser 
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3.8 Summary 

Before the testing can be carried out, the parser program and the part of the 

program that reconstructs the G-code have to be coded first. Subsequently, all 

the combinations of algorithms to be tested have to be written in code as well.  

 Once the coding is finished, a range of 3D models will be needed to serve 

as the sample set. Some 3D models used in prior research such as those by Fok, 

Cheng and Tse (2017), Fok, et al. (2018) and Fok, et al. (2019) will form part 

of the sample set, while the rest will be 3D models that can be easily obtained 

online. 

  The testing procedure can begin after the coding is completed and the 

sample set of models are chosen. The selected model is first processed through 

Cura to generate the initial G-code. The initial G-code is then parsed and 

optimized by the chosen algorithm to obtain the optimized G-code. Finally, the 

initial and optimized G-code are analysed by using the G-code simulators and 

the corresponding data is recorded. This is repeated for every algorithm in the 

list. After all the algorithms have been tested for the selected model, another 

model is chosen from the sample set of models. The process repeats until it has 

gone through the entire sample set. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The purpose of this report is to investigate the use of improved algorithms to 

solve the layer path optimization problem (LPOP) in 3D printing to reduce the 

time needed to print an object. The LPOP is defined as finding the shortest path 

that the nozzle of the 3D printer should traverse in order to print the desired 

object.  

 The main hypothesis is that by reducing the path length of the nozzle, the 

time taken to traverse the nozzle path (i.e. time taken to print the object) will be 

decreased as well. 

 In Section 2.2.2, it was shown that the LPOP could be represented 

formally as the undirected rural postman problem (URPP), a known problem in 

graph theory. Another closely related graph theory problem is the travelling 

salesman problem (TSP). 

 Thus to solve the URPP, two algorithms that were previously created to 

solve the TSP, namely the ant system (AS) and ant colony system (ACS) 

algorithms, were modified to solve the URPP instead. The modifications were 

explained in Section 3.5.2. 

 To compare the performance of the modified AS and ACS algorithms with 

the widely-used 3D printing software (also known as a ‘slicer program’) Cura, 

a testing procedure was devised. 

 

4.1.1 Testing Process 

Cura produces a file called a G-code file from a 3D model. The G-code file 

contains instructions on how the printer should print out the 3D model. To 

enable the modified AS and ACS algorithms to optimize the G-code file, a 

parser program was written.  

 The job of the parser program is to extract the relevant data from the G-

code file and convert it into the URPP form, where it can be solved by the 

modified AS and ACS algorithms. Following that, the parser program uses the 

obtained solution to produce the optimized G-code. 
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 By using the parser program, the performance of the modified AS and 

ACS algorithms can be compared with Cura. This is done by comparing the 

optimized G-code with the original G-code. A G-code simulator is used to 

analyse both the optimized and original G-code. 

 The first part of the testing procedure is the preliminary parameter testing 

phase in Section 4.2. The objective of this phase is to determine the best settings 

or parameters to be used for the modified AS and ACS algorithms. 

 The second part of the testing procedure is the main testing phase in 

Section 4.3. The best parameters for the algorithms that were determined in the 

first part will be used in the algorithms here. The objective of this phase is to 

compare the performance of the modified AS and ACS algorithms with Cura 

across a wide range of 3D models. 

 All processing and simulations were done on a computer with Intel i7-

4720HQ processors, 8 GB RAM, Windows 10, Python 3.7.6, and Numba 0.48.0. 
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4.1.2 Explanation of Terminology Used  

The definitions of some of the terminology that will be used later on are 

explained in Table 4.1. 

 

Table 4.1: Definitions of terminology used 

Term Definition 

Cura A widely-used 3D printing software, the standard 

by which the other algorithms are compared to, 

explained in Section 3.2 

Modified AS 

algorithm 

The algorithm that was modified from the original 

AS algorithm in order to solve the URPP and 

hence the LPOP, explained in Section 3.5.2 

Modified ACS 

algorithm 

The algorithm that was modified from the original 

ACS algorithm in order to solve the URPP and 

hence the LPOP, explained in Section 3.5.2 

G-code Instructions or code sent to the 3D printer in order 

to print out an object, explained in Section 3.3. 

Parser program The program that converts the original G-code into 

the optimized G-code using the chosen algorithm, 

explained in Section 3.4 

Print time Time taken for the entire object to be printed by 

the 3D printer 

Travel distance Distance of the path travelled by the nozzle of the 

3D printer to print the entire object 

Processing time Time taken for the parser program and selected 

algorithm to optimize the original G-code file 

Total time taken The sum of the print time and processing time, i.e. 

the total time taken to optimize the G-code and 

print the object 

Percentage travel 

distance reduced 

The percentage that the travel distance was 

reduced by relative to the travel distance of Cura 

Percentage print time 

reduced 

The percentage that the print time was reduced by 

relative to the print time of Cura 



40 

 

4.2 Preliminary Parameter Testing Phase 

The objective of this phase is to determine the best settings or parameters to be 

used for the modified AS and ACS algorithms. 

 The default parameters for the original AS algorithm are shown in Table 

4.2. The number of iterations and ants are half of those used by Fok, et al. (2018), 

while the other parameters are obtained from M. Dorigo, V. Maniezzo and A. 

Colorni (1996). 

 

Table 4.2: Default parameters for original AS 

Parameter Value 

Number of iterations 50 

Number of ants 50 

Pheromone factor, 𝛼 1 

Heuristic factor, 𝛽 2 

Global evaporation factor, 𝜌 0.1 

 

 Meanwhile, the default parameters for the original ACS algorithm are 

shown in Table 4.3. The number of iterations and ants are half of those used by 

Fok, et al. (2018), while the other parameters are obtained from M. Dorigo and 

L. M. Gambardella (1997). 

 

Table 4.3: Default parameters for original ACS 

Parameter Value 

Number of iterations 50 

Number of ants 50 

Pheromone factor, 𝛼 1 

Heuristic factor, 𝛽 2 

Global evaporation factor, 𝜌 0.1 

Local evaporation rate, 𝜑 0.1 

Pseudorandom parameter, 𝑞0 0.9 
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 These default parameters were used as a starting point to determine the 

best parameters to use for the modified AS and ACS algorithms respectively. 

 

4.2.1 Setup for Varying the Number of Iterations 

For the modified AS and ACS algorithms, the parameters in Table 4.2 and Table 

4.3 were used respectively, except for the number of iterations, which was set 

as a variable. The number of iterations to be tested was 10, 20, 30, 40 and 50 for 

both algorithms.  

 Three different 3D models were selected as the sample set: “Benchy”, 

“Clamp” and “Lowest poly thinker”. The models were selected for their 

different unique structures. The “Clamp” and “Lowest poly thinker” models 

were rescaled to 50% of their original size due to excessive processing times. 

 For each algorithm, 3D model and number of iterations, the optimized G-

code was generated five times. A G-code simulator was used to obtain the travel 

distance and print time for each G-code file. The mean travel distance, print time 

and processing time of the five trials were recorded. 

 According to M. Dorigo, V. Maniezzo and A. Colorni (1996), the number 

of iterations significantly affected the processing time. Thus, the processing 

time was recorded. 

 

4.2.2 Results for Varying the Number of Iterations 

The results were graphed in terms of print time against travel distance, travel 

distance against processing time, and print time against processing time.  
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4.2.2.1 Print Time against Travel Distance 

Table 4.4 shows the graphs of print time against travel distance for the modified 

AS and ACS algorithms when they were applied to the “Benchy”, “Clamp”, and 

“Lowest poly thinker” 3D models. The numbers next to the data points indicate 

the number of iterations for the particular algorithm. 

 

Table 4.4: Graphs of print time against travel distance for the modified AS and 

ACS algorithms when applied to the sample set of 3D models 
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4.2.2.2 Travel Distance against Processing Time 

Table 4.5 shows the graphs of travel distance against processing time for the 

modified AS and ACS algorithms when they were applied to the “Benchy”, 

“Clamp”, and “Lowest poly thinker” 3D models. The numbers next to the data 

points indicate the number of iterations for the particular algorithm. 

 

Table 4.5: Graphs of travel distance against processing time for the modified 

AS and ACS algorithms when applied to the sample set of 3D models 
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4.2.2.3 Print Time against Processing Time 

Table 4.6 shows the graphs of print time against processing time for the 

modified AS and ACS algorithms when they were applied to the “Benchy”, 

“Clamp”, and “Lowest poly thinker” 3D models. The numbers next to the data 

points indicate the number of iterations for the particular algorithm. 

 

Table 4.6: Graphs of print time against processing time for the modified AS 

and ACS algorithms when applied to the sample set of 3D models 
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4.2.3 Discussion for Varying the Number of Iterations 

First, the print time against travel distance is analysed by referring to Table 4.4. 

From the graphs, it can be observed that regardless of the 3D model or algorithm, 

the relationship between the print time and travel distance is generally linear. 

This finding supports the main hypothesis that by reducing the travel distance, 

the print time can be reduced as well. 

 However, the interesting finding is that for a given travel distance, the 

modified AS algorithm will always have a shorter print time compared to the 

modified ACS algorithm. A possible explanation for this is that the modified 

ACS algorithm favours path construction in such a way that the nozzle has to 

accelerate and decelerate at a frequent rate, thus reducing the average speed and 

resulting in a longer print time. 

 Next, the travel distance against processing time is analysed by referring 

to Table 4.5. From the graphs, there are a few noticeable trends. For a given 

number of iterations, the modified ACS algorithm will always have a longer 

processing time compared to the modified AS algorithm, and a shorter travel 

distance as well. The longer processing time is to be expected, since the ACS 

algorithm requires more calculations per iteration.  

 However, for a given length of processing time, the performance of the 

algorithms with regards to having the shortest travel distance depends on the 3D 

model. For the “Benchy” model, the modified ACS is better; for the “Clamp” 

model, both algorithms have similar performance; while for the “Lowest poly 

thinker” model, the modified AS is better. 

 Besides that, the print time against processing time is analysed by 

referring to Table 4.6. It can be observed that unlike the travel distance, the 

modified AS algorithm will always have a shorter print time than the modified 

ACS algorithm regardless of whether the processing time or number of 

iterations is fixed. 

 From the graphs in Table 4.5 and Table 4.6, it can be seen that the slope 

of the graphs generally decreases as the processing time increases. To strike a 

balance between the exponential increase in processing time and linear decrease 

in travel distance and print time, the number of iterations for both the modified 

AS and modified ACS algorithms is chosen to be 30. 
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 It should be noted that some of these observations may change in the main 

testing phase in Section 4.3, as tweaking the other parameters may affect the 

performance of both the modified AS and ACS algorithms. 

 

4.2.4 Setup for Varying 𝝆 for Modified AS and 𝝆, 𝝋, 𝒒𝟎 for Modified 

ACS 

For the modified AS algorithm, the parameters in Table 4.7 were used, which is 

similar to the default parameters in Table 4.2 except for the number of iterations 

and the global evaporation factor, 𝜌. The number of iterations was set to 30 as 

mentioned in Section 4.2.3, while 𝜌 was varied in the range 0.1 to 0.9 in steps 

of 0.1. The testing range for 𝜌 was chosen because it could only be set more 

than 0 but less than 1 (M. Dorigo, V. Maniezzo and A. Colorni, 1996). This 

resulted in a total of nine parameter configurations to be tested. 

 

Table 4.7: Parameters for varying the 𝜌 for the modified AS algorithm 

Parameter Value Range Step 

Number of iterations 30 - - 

Number of ants 50 - - 

Pheromone factor, 𝛼 1 - - 

Heuristic factor, 𝛽 2 - - 

Global evaporation factor, 𝜌 - 0.1 – 0.9 0.1 

 

 For the modified ACS algorithm, the parameters in Table 4.8 were used, 

which is similar to the default parameters in Table 4.3, except for the number of 

iterations, the global evaporation factor, 𝜌, the local evaporation rate, 𝜑, and the 

pseudorandom parameter, 𝑞0 . The number of iterations was set to 30 as 

mentioned in Section 4.2.3. Meanwhile, for 𝜌 and 𝜑 values of 0.1, 0.2 and 0.3 

were chosen, while for 𝑞0  values of 0.7, 0.8 and 0.9 were chosen. These 

particular range of values were chosen to be tested so that they did not differ too 

greatly from the default parameters. The limited range of values was due to time 

constraints. This resulted in a total of 3×3×3 = 27 parameter configurations to 

be tested. 
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Table 4.8: Parameters for varying the 𝜌, 𝜑, 𝑞0 for the modified ACS algorithm 

Parameter Value Range Step 

Number of iterations 30 - - 

Number of ants 50 - - 

Pheromone factor, 𝛼 1 - - 

Heuristic factor, 𝛽 2 - - 

Global evaporation factor, 𝜌 - 0.1 – 0.3 0.1 

Local evaporation rate, 𝜑 - 0.1 – 0.3 0.1 

Pseudorandom parameter, 𝑞0 - 0.7 – 0.9 0.1 

 

 Three different 3D models were selected as the sample set: “Benchy”, 

“Clamp” and “Lowest poly thinker”. The models were selected for their 

different unique structures. The “Clamp” and “Lowest poly thinker” models 

were rescaled to 50% of their original size due to excessive processing times. 

 For each algorithm, 3D model and parameter configuration, the optimized 

G-code was generated three times. A G-code simulator was used to obtain the 

travel distance and print time for each G-code file. The mean travel distance and 

print time of the three trials were recorded. 

 According to M. Dorigo, V. Maniezzo and A. Colorni (1996), the 

parameters that were varied did not significantly affect the processing time, thus 

the processing time was not recorded. 

 

4.2.5 Results for Varying 𝝆 for Modified AS and 𝝆, 𝝋, 𝒒𝟎 for Modified 

ACS 

Since varying 𝜌, 𝜑, 𝑞0 does not significantly affect the processing time of the 

algorithms as mentioned in Section 4.2.4, the main objective of this part of the 

preliminary parameter testing phase is to find the combination of parameters 

that will result in the shortest travel distance and print time for the modified AS 

and ACS algorithms.  

 The summary of the results is shown in Table 4.9 and Table 4.10 for the 

travel distance and print time respectively. The raw data is available in the 

Appendix, from Table I to Table VI, where the values highlighted in bold are 

the smallest values. 
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Table 4.9: Parameters resulting in shortest travel distance for modified AS and 

ACS algorithms when applied to the sample set of 3D models 

3D model 
Best parameters for shortest travel distance  

Modified AS Modified ACS 

Benchy 𝜌 = 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 

Clamp 𝜌 = 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 

Lowest poly 

thinker 
𝜌 = 0.5 and 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 

 

Table 4.10: Parameters resulting in shortest print time for modified AS and 

ACS algorithms when applied to the sample set of 3D models 

3D model 
Best parameters for shortest print time 

Modified AS Modified ACS 

Benchy 𝜌 = 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.8 

Clamp 𝜌 = 0.3 and 0.6 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 

Lowest poly 

thinker 
𝜌 = 0.8 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.8 

 

 Meanwhile, the standard deviations (SD) of the travel distance and print 

time for both the algorithms for the range of configurations tested are shown in  

Table 4.11. This information is useful to get a rough idea of how much the 

performance of the algorithms are affected by varying the selected parameters. 
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Table 4.11: Standard deviations of travel distance and print time for the range 

of configurations tested for the AS and ACS algorithms 

3D model 

Standard deviation 

Modified AS Modified ACS 

Travel 

distance 

(cm) 

Print time 

(s) 

Travel 

distance 

(cm) 

Print time 

(s) 

Benchy 4.11 1.20 21.20 5.30 

Clamp 3.27 1.15 13.12 3.61 

Lowest poly 

thinker 
7.49 1.52 41.07 8.22 

 

4.2.6 Discussion for Varying 𝝆  for Modified AS and 𝝆, 𝝋, 𝒒𝟎  for 

Modified ACS 

Based on Table 4.9 and Table 4.10, the overall best combination of the 

parameters tested for both travel distance and print time for modified AS is 𝜌 =

0.6 , while for modified ACS it is 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 . Thus, these 

parameters will be used for their respective algorithms in the main testing phase 

in Section 4.3. 

 According to Table 4.11, the standard deviation of the travel distance for 

the modified ACS is about three to eight times greater than that for the modified 

AS, depending on the 3D model. The same observation can be made for the 

standard deviation of the print time.  

 This suggests that varying 𝜌, 𝜑, 𝑞0 for modified ACS has a greater impact 

on performance compared to varying 𝜌 for modified AS. Thus, future testing 

should investigate improving the performance of the modified ACS algorithm 

by widening the range of 𝜌, 𝜑, 𝑞0 values that are tested. 
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4.3  Main Testing Phase 

The objective of this phase is to compare the performance of the modified AS 

and ACS algorithms with Cura across a wide range of 3D models. 

 

4.3.1 Setup for Main Testing Phase 

The parameters that will be used for the modified AS algorithm are shown in 

Table 4.12. These parameters are based on those for the original AS algorithm 

in Table 4.2, but they have been tweaked according to the findings in Section 

4.2.3 and 4.2.4. 

 

Table 4.12: Parameters for modified AS algorithm used in main testing phase 

Parameter Value 

Number of iterations 30 

Number of ants 50 

Pheromone factor, 𝛼 1 

Heuristic factor, 𝛽 2 

Global evaporation factor, 𝜌 0.6 

 

 Meanwhile, the parameters that will be used for the modified ACS 

algorithm are shown in Table 4.13. These parameters are based on those for the 

original ACS algorithm in Table 4.3, but they have been tweaked according to 

the findings in Section 4.2.3 and 4.2.4. 

 

Table 4.13: Parameters for modified ACS algorithm used in main testing phase 

Parameter Value 

Number of iterations 30 

Number of ants 50 

Pheromone factor, 𝛼 1 

Heuristic factor, 𝛽 2 

Global evaporation factor, 𝜌 0.3 

Local evaporation rate, 𝜑 0.1 

Pseudorandom parameter, 𝑞0 0.7 
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 Besides that, the settings for Cura are shown in Table 4.14, as previously 

mentioned in Section 3.2. 

 

Table 4.14: Settings for Cura used in main testing phase 

Setting Value 

Version 4.4 

Infill 20 % 

Layer height 0.2 mm 

Retraction Disabled 

 

 Six different 3D models were selected as the sample set: “Benchy”, 

“Clamp”, “Lowest poly thinker”, “Torture test”, “Eiffel tower” and “Spiral 

vase”. The models were selected for their different unique structures. They were 

obtained through the website Thingiverse, an online open-source repository for 

3D models (https://www.thingiverse.com/). The “Clamp” and “Lowest poly 

thinker” models were rescaled to 50% of their original size due to excessive 

processing times. 

 The overall procedure is described in Table 4.15. Cura is only required to 

produce the initial G-code file once for each 3D model because according to 

Fok, et al. (2018), Cura uses the nearest-neighbour algorithm which is 

deterministic. Thus, it will produce the same G-code for a given 3D model no 

matter how many times it is repeated. 

  

https://www.thingiverse.com/
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Table 4.15: Procedure for the main testing phase 

Step Process 

1 For the “Benchy” 3D model, use Cura to produce the initial 

G-code file 

2 Put the initial G-code file into the parser program so that it 

can be optimized by the modified AS algorithm to produce 

the optimized G-code file 

3 Record the processing time 

4 Repeat step 2 to 3 nine more times to get a total of 10 

optimized G-code files for the modified AS algorithm 

5 Repeat steps 2 to 4 for the modified ACS algorithm 

6 Repeat steps 1 to 5 for all the models in the sample set 

7 Analyse all the initial and optimized G-code files using a G-

code simulator to obtain the travel distance and print time 

for each file 

 

4.3.2 Main Testing Phase Results 

The results are divided into three parts that compare Cura with the modified AS 

and ACS algorithms, namely in terms of travel distance, print time and 

processing time. The results for Cura will not have mean value or standard 

deviation because the G-code file is only generated once for each 3D model as 

explained in Section 4.3.1. 

 

4.3.2.1 Travel Distance Results 

The results of the travel distance for the different methods when applied to the 

sample set of 3D models are tabulated in Table 4.16. Meanwhile, the graph is 

shown in Figure 4.1. SD means standard deviation, which is measured to gauge 

the consistency of the algorithm.  
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Table 4.16: Travel distance of G-code produced by Cura, modified AS and 

modified ACS in the main testing phase 

3D 

model 

Cura Modified AS Modified ACS 

Travel 

distance 

(cm) 

Mean 

travel 

distance 

(cm) 

Travel 

distance 

SD (cm) 

Mean 

travel 

distance 

(cm) 

Travel 

distance 

SD (cm) 

Benchy 15288 13640 3.27 13597 2.74 

Clamp 19487 14879 2.83 14840 2.80 

Lowest 

poly 

thinker 

45406 42466 5.87 42367 4.22 

Torture 

test 
25499 23295 12.44 23176 7.07 

Eiffel 

tower 
16452 15070 8.00 14901 4.81 

Spiral 

vase 
30240 25570 2.77 25562 2.16 

 

 

Figure 4.1: Bar graph of travel distance results in the main testing phase 
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4.2. The percentage travel distance reduced is obtained by using data from Table 

4.16 and Equation 4.1. 

 

 Percentage travel distance reduced

=
Cura travel distance −  Algorithm travel distance

Cura travel distance

× 100% 

(4.1) 

 

Table 4.17: Percentage travel distance reduced by modified AS and ACS 

relative to Cura in the main testing phase 

3D model 

Mean percentage travel distance reduced 

(%) 

Modified AS Modified ACS 

Benchy 10.78 11.06 

Clamp 23.65 23.85 

Lowest poly thinker 6.47 6.69 

Torture test 8.64 9.11 

Eiffel tower 8.40 9.43 

Spiral vase 15.44 15.47 

 

 

Figure 4.2: Bar graph of percentage travel distance reduced in the main testing 

phase 
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4.3.2.2 Travel Distance Discussion 

Based on Figure 4.1, the modified AS and ACS algorithms were able to achieve 

shorter travel distances compared to Cura for every 3D model in the sample set. 

This demonstrates that both the algorithms were able to optimize the print path 

better than Cura in terms of travel distance. 

 Taking a closer look at Table 4.16, the modified ACS was able to achieve 

shorter travel distances compared to the modified AS for every 3D model in the 

sample set. In summary, in terms of the travel distance, the modified ACS 

performed the best, followed by the modified AS and lastly Cura. 

 According to Table 4.16, for both the algorithms, the standard deviations 

of the travel distance are three to four orders of magnitude smaller than their 

respective mean values. Since the amount of deviation from the mean is 

negligible, thus both the modified AS and ACS algorithms are able to produce 

consistent results in terms of travel distance for a given 3D model. 

  Besides that, the degree of improvement achieved by the algorithms 

compared to Cura in terms of travel distance is not constant, as can be seen in 

Figure 4.2. The modified AS algorithm showed a percentage reduction ranging 

from 6.47% to 23.65%, while for the modified ACS algorithm it ranged from 

6.69% to 23.85%. This suggests that the amount of improvement that can be 

achieved for the travel distance is dependent on the unique structure of each 3D 

model. 

 

4.3.2.3 Print Time Results 

The results of the travel distance for the different methods when applied to the 

sample set of 3D models are tabulated in Table 4.18. Meanwhile, the graph is 

shown in Figure 4.3. SD means standard deviation, which is measured to gauge 

the consistency of the algorithm. 
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Table 4.18: Print time of G-code produced by Cura, modified AS and modified 

ACS in the main testing phase 

3D model 

Cura Modified AS Modified ACS 

Print time 

(s) 

Mean 

print time 

(s) 

Print time 

SD (s) 

Mean 

print time 

(s) 

Print time 

SD (s) 

Benchy 4612 4206 0.95 4203 0.71 

Clamp 6408 5171 1.49 5167 0.82 

Lowest 

poly 

thinker 

11099 10520 1.85 10516 0.966 

Torture 

test 
7404 6853 1.66 6844 1.93 

Eiffel 

tower 
6999 6032 1.77 6014 1.81 

Spiral 

vase 
9841 8328 0.63 8326 0.82 

 

 

Figure 4.3: Bar graph of print time results in the main testing phase 
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4.4. The percentage print time reduced is obtained by using data from Table 

4.18 and Equation 4.2. 

 

 

Percentage print time reduced

=
Cura print time −  Algorithm print time

Cura print time
× 100% 

(4.2) 

 

Table 4.19: Percentage print time reduced by modified AS and ACS relative to 

Cura in the main testing phase 

3D model 
Mean percentage print time reduced (%) 

Modified AS Modified ACS 

Benchy 8.80 8.87 

Clamp 19.30 19.37 

Lowest poly thinker 5.22 5.25 

Torture test 7.44 7.56 

Eiffel tower 13.82 14.07 

Spiral vase 15.37 15.39 

 

 

Figure 4.4: Bar graph of percentage print time reduced in the main testing phase 
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demonstrates that both the algorithms were able to optimize the print path better 

than Cura in terms of print time. 

 Taking a closer look at Table 4.18, the modified ACS was able to achieve 

shorter print times compared to the modified AS for every 3D model in the 

sample set. In summary, in terms of the print time, the modified ACS performed 

the best, followed by the modified AS and lastly Cura. 

 According to Table 4.18, for both the algorithms, the standard deviations 

of the print times are three to four orders of magnitude smaller than their 

respective mean values. Since the amount of deviation from the mean is 

negligible, thus both the modified AS and ACS algorithms are able to produce 

consistent results in terms of print time for a given 3D model. 

  Besides that, the degree of improvement achieved by the algorithms 

compared to Cura in terms of travel distance is not constant, as can be seen in 

Figure 4.4. The modified AS algorithm showed a percentage reduction ranging 

from 5.22% to 19.30%, while for the modified ACS algorithm it ranged from 

5.25% to 19.37%. This suggests that the amount of improvement that can be 

achieved for the print time is dependent on the unique structure of each 3D 

model. 

 Another important point to note is that the results and discussion regarding 

the print time are very similar to that for the travel distance. This indicates that 

there is a close relationship between the travel distance and print time. 

 

4.3.2.5 Processing Time Results 

The results of the processing time for the modified AS and ACS algorithms 

when applied to the sample set of different 3D models are tabulated in Table 

4.20 and graphed in Figure 4.5. 
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Table 4.20: Processing time of modified AS and ACS algorithm in the main 

testing phase 

3D model 
Mean processing time (s) 

Modified AS Modified ACS 

Benchy 355 398 

Clamp 320 316 

Lowest poly thinker 320 504 

Torture test 748 932 

Eiffel tower 797 1190 

Spiral vase 979 681 

 

 

Figure 4.5: Bar graph of processing time results in the main testing phase 
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Figure 4.6: Scatter plot of processing time against Cura print time for modified 

AS and ACS algorithm in the main testing phase 
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 An attempt also made was made to investigate the relationship between 

the print time obtained by Cura and the required processing time of the modified 

AS and ACS algorithms. However, as can be observed from Figure 4.6, there 

does not appear to be any clear relationship between the two variables. A 

possible hypothesis is that the processing time is influenced by the size and 

complexity of the structure of the 3D model. This hypothesis may be 

investigated further in future research. 

 

4.3.3 Comparison of Results with State-of-the-Art 

The results obtained in this report are compared with results obtained by two 

previously published papers authored by Fok, et al. (2018) and Fok, et al. (2019). 

 The percentage print time reduced metric will be used in the comparison. 

For this report, this metric is tabulated in Table 4.19. For the other papers, the 

metric will be calculated by using Equation 4.2 together with their reported Cura 

print time and algorithm print time. The metrics are then compared for the same 

3D model. 

 Since the Cura print time reported by this report and the other papers are 

different, this comparison method is used to ensure fairness by comparing the 

reduction in print time relative to the respectively reported Cura print times. 

 

4.3.3.1 Comparison with Fok, et al. (2018) 

The print times of Cura and the extended ant colony optimization (ACO) 

algorithm as reported by Fok, et al. (2018) for the “Torture test” 3D model are 

tabulated in Table 4.21. ACO refers to a family of algorithms that the original 

AS and ACS algorithms belong to. The extended ACO algorithm was explained 

in Section 2.3.3.2. 

 

Table 4.21: Print times reported by Fok, et al. (2018) for the “Torture test” 3D 

model 

3D model 
Print time (s) 

Cura Extended ACO 

Torture test 9951.90 8835.07 
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 Using Equation 4.2, the percentage print time reduced was calculated. The 

obtained result was then tabulated together with the results from modified AS 

and ACS in Table 4.22. The data is represented as a bar chart in Figure 4.7. 

 

Table 4.22: Comparison between percentage print time reduced for modified 

AS, modified ACS and Fok, et al. (2018) for the “Torture test” 3D model 

3D model 

Percentage print time reduced (%) 

This report 
Fok, et al. 

(2018) 

Modified AS 
Modified 

ACS 

Extended 

ACO 

Torture test 7.44 7.56 11.22 

 

 

Figure 4.7: Bar chart for percentage print time reduced comparison with Fok, 

et al. (2018) for the “Torture test” 3D model 

 

4.3.3.2 Comparison with Fok, et al. (2019) 

The print times of Cura, the Frederickson (Fred) algorithm, ACO algorithm and 

detour searching algorithm as reported by Fok, et al. (2019) for the“Clamp” 

and “Lowest poly thinker” 3D models are tabulated in Table 4.23. The Fred 

algorithm was explained in Section 2.3.1.3. Meanwhile, the detour searching 

algorithm was proposed by Fok, et al. (2019) and was explained in Section 

2.3.3.3. 
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Table 4.23: Print times reported by Fok, et al. (2019) for the “Clamp” and 

“Lowest poly thinker” 3D models 

3D model 

Print time (s) 

Cura Fred ACO 
Detour 

searching 

Clamp 8762 7983 7055 6538 

Lowest poly 

thinker 
6408 5857 5502 5475 

 

 Using Equation 4.2, the percentage print time reduced was calculated. The 

obtained result was then tabulated together with the results from modified AS 

and ACS in Table 4.24. The data is also represented as a bar chart in Figure 4.8. 

 

Table 4.24: Comparison between percentage print time reduced for modified 

AS, modified ACS and Fok, et al. (2019) for the “Clamp” and “Lowest poly 

thinker” 3D models 

3D model 

Percentage print time reduced (%) 

This report Fok, et al. (2019) 

Modified 

AS 

Modified 

ACS 
Fred ACO 

Detour 

searching 

Clamp 19.30 19.37 8.89 19.48 25.38 

Lowest 

poly 

thinker 

5.22 5.25 8.60 14.14 14.56 

 

 



64 

 

Figure 4.8: Bar chart for percentage print time reduced comparison with Fok, 

et al. (2019) for the “Clamp” and “Lowest poly thinker” 3D models 

 

4.3.4 State-of-the-art Discussion 

When the modified AS and ACS algorithms were compared with the extended 

ACO algorithm proposed by Fok, et al. (2018) for the “Torture test” 3D model, 

the extended ACO algorithm performed better than both the modified AS and 

ACS algorithms in terms of print time reduced relative to Cura, as shown in 

Figure 4.7. 

 Besides that, the modified AS and ACS algorithms were also compared 

with the Fred algorithm, ACO algorithm and detour searching algorithm 

proposed by Fok, et al. (2019) for the “Clamp” and “Lowest poly thinker” 3D 

models. The results in Figure 4.8 showed that for the “Clamp” 3D model, both 

the modified AS and ACS algorithms performed better than the Fred algorithm, 

similar to the ACO algorithm, and worse than the detour searching algorithms. 

However, for the “Lowest poly thinker” 3D model, both the modified AS and 

ACS algorithms performed worse than the other algorithms. 

 It is important to note that there were many significant differences in the 

experimental setup for this report and the two previous works by Fok, et al. 

(2018) and Fok, et al. (2019), such as the earlier works using an outdated version 

of Cura and enabling the retraction setting. This could help partially explain the 

generally worse performance of the modified AS and ACS algorithms when 

compared to the previous works. 
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4.4 Summary 

The preliminary parameter testing phase showed that 𝜌 = 0.6 was the most 

suitable for the modified AS algorithm, while 𝜌 = 0.3, 𝜑 = 0.1, 𝑞0 = 0.7 was 

the most suitable for the modified ACS algorithm in order to achieve the shortest 

travel distance and print time. 

 In the testing phase, the modified AS and ACS algorithms always 

achieved shorter travel distance and print time compared to Cura for the sample 

set of 3D models tested. The solutions obtained by both the modified AS and 

ACS algorithms were also fairly consistent throughout the ten trials for each 3D 

models, with the standard deviation for print time not exceeding two seconds. 

 Although modified ACS was always able to achieve better solutions in 

terms of travel distance and print time compared to the modified AS, it 

performed worse overall when the processing time was factored in. 

 The performance of the modified AS and ACS algorithms in terms of 

percentage print time reduced relative to Cura was generally worse when 

compared to methods analysed by Fok, et al. (2018) and Fok, et al. (2019). 

However, the worse performance could be partially attributed to the difference 

in the experimental setup. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 In this report, a method for reducing the printing time by using various 

algorithms to reduce the print distance is presented.  

 A parser program was designed and coded in order to extract the relevant 

information from a G-code file such that it could be optimized by the selected 

algorithm, and then reorganized to produce the optimized output G-code file. 

Two algorithms, the AS and ACS algorithms which were originally designed to 

solve the TSP, were modified to solve the URPP representation of the LPOP. 

 Preliminary testing was conducted to determine the most suitable 

parameters for the algorithms. Then in the main testing phase, the list of 

algorithms was used to optimize a sample set of 3D models and the mean 

processing time was recorded. The output G-code files were then analysed by 

simulator software to obtain the print time and print distance. 

 By analysing the data collected, it was shown that the modified AS and 

modified ACS algorithms managed to reduce the travel distance and print time 

of the sample set of 3D models significantly compared to Cura. However when 

the processing time of the algorithms was taken into account, the time reduction 

was less, but it was still an improvement over Cura on average. 

 The modified ACS had shorter print time and print distance than the 

modified AS, but longer overall time taken when the processing time was 

factored in. Thus, the modified AS algorithm is better in practice. 

 When compared with the methods proposed by Fok, et al. (2018) and Fok, 

et al. (2019), the modified AS and ACS algorithms performed worse in terms of 

reducing the print time of Cura. However, the difference in performance could 

be due to the difference in experimental setup. 
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5.2 Recommendations for Future Work 

To improve the performance of the algorithms at reducing the print time, the 

travel speed and acceleration of the nozzle could be factored into the algorithms 

instead of merely the travel distance. The retraction factor could also be included 

in future research. 

 Since there are limitations to improving the print time by optimizing the 

software alone, another solution could be to improve both the hardware and 

software together. A proposal would be to develop a multi-head 3D printer and 

the corresponding algorithm to control the multiple print heads simultaneously, 

then compare its performance with conventional single-head 3D printers. 

 To decrease the processing times for the modified AS and ACS algorithms, 

GPU acceleration could be implemented in the algorithm code to reduce the 

processing time. 

 A more thorough study to compare the performance of the original AS 

and ACS algorithms with transformation method and the modified AS and ACS 

algorithms at solving the URPP could be carried out. If the study shows that the 

modified AS and ACS have better performance, they could be applied to other 

real-world problems that can be represented as the URPP, not just the LPOP.
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APPENDIX A: Graphs 
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APPENDIX B: Tables 

 

Table I: Average print distance and print time of “Benchy” model for different 

parameters of the modified AS algorithm 

Benchy 

Global 

evap rate 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Distance 

(cm) 

13639 13641 13638 13643 13649 13635 13639 13646 13644 

Time (s) 4206 4207 4205 4207 4208 4204 4205 4205 4206 

 

Table II: Average print distance and print time of “Benchy” model for 

different parameters of the modified ACS algorithm 

Benchy 

Global 

evap rate 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Local 

evap rate 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

13655 13632 13625 13671 13640 13625 13678 13639 13628 

Time (s) 4217 4212 4209 4219 4213 4209 4223 4211 4210 

Global 

evap rate 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Local 

evap rate 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

13616 13603 13614 13627 13616 13607 13644 13622 13615 

Time (s) 4205 4204 4205 4210 4208 4205 4214 4210 4208 

Global 

evap rate 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Local 

evap rate 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

13593 13595 13604 13612 13598 13603 13624 13607 13605 

Time (s) 4203 4200 4202 4207 4204 4204 4210 4205 4203 
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Table III: Average print distance and print time of “Clamp” model for 

different parameters of the modified AS algorithm 

Clamp 

Global 

evap rate 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Distance 

(cm) 

14885 14880 14879 14875 14878 14874 14882 14879 14882 

Time (s) 5171 5171 5169 5171 5170 5169 5171 5171 5173 

 

Table IV: Average print distance and print time of “Clamp” model for 

different parameters of the modified ACS algorithm 

Clamp 

Global 

evap rate 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Local 

evap rate 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

14876 14869 14877 14886 14873 14877 14888 14878 14878 

Time (s) 5176 5175 5175 5177 5176 5176 5181 5177 5177 

Global 

evap rate 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Local 

evap rate 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

14852 14847 14859 14859 14857 14865 14863 14857 14871 

Time (s) 5171 5169 5172 5171 5173 5172 5172 5172 5172 

Global 

evap rate 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Local 

evap rate 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

14837 14845 14864 14845 14849 14858 14854 14850 14861 

Time (s) 5165 5166 5169 5168 5170 5172 5171 5169 5172 

 



74 

 

Table V: Average print distance and print time of “Lowest poly thinker” 

model for different parameters of the modified AS algorithm 

Lowest poly thinker 

Global 

evap rate 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Distance 

(cm) 

42464 42470 42474 42472 42453 42453 42463 42462 42472 

Time (s) 10520 10520 10522 10521 10521 10518 10519 10517 10521 

 

Table VI: Average print distance and print time of “Lowest poly thinker” 

model for different parameters of the modified ACS algorithm 

Lowest poly thinker 

Global 

evap 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Local 

evap 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

42479 42456 42469 42511 42476 42484 42521 42490 42487 

Time (s) 10536 10533 10530 10546 10535 10532 10548 10537 10535 

Global 

evap 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Local 

evap 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

42400 42397 42430 42436 42418 42449 42453 42427 42436 

Time (s) 10522 10520 10525 10531 10524 10528 10537 10527 10526 

Global 

evap 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Local 

evap 

0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 

q0 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Distance 

(cm) 

42365 42378 42417 42390 42392 42419 42397 42397 42426 

Time (s) 10515 10514 10522 10521 10519 10524 10528 10522 10525 

 

 


