

DESIGNING A GAME ON FPGA USING VERILOG

LOH YI QHI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2020

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

Loh

LOH YI QHI

1700781

13th September 2020

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled "DESIGNING A GAME ON FPGA

USING VERILOG" was prepared by LOH YI QHI has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Honours) Electrical and Electronic Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Dr. Khaw Mei Kum

13th September 2020

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universit i

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, LOH YI QHI. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Dr. Khaw Mei Kum for her invaluable advice, guidance and her enormous

patience throughout the development of the research.

In addition, I would like to express my appreciation to the lab assistant, Mr.

Teo Gee Man, who borrowed the equipment to me and helped in the completion of

this project.

Lastly, I would also like to express my gratitude to my loving parents and

friends who had helped and given me supports and encouragement.

v

ABSTRACT

As the rate of technological advancement increases with time, the market of

FPGA has grown dramatically and becomes popular among the field of ASIC.

Ease of creation and maintenance lead FPGA to become an attractive solution

to high speed and efficient applications. From a simple interface circuit to a

complex state machine, even to the extent of System on Chip (SOC), the

importance of FPGA chips cannot be ignored. Several testings were carried out

in this project before the start of specific technical design in order to avoid any

unwanted syntax errors and equipment wiring errors.

This project mainly focused on the design and implementation of an

FPGA-based Ping Pong game, consisting of both the hardware and software

design working coherently. For hardware-wise, the host computer was used to

program and configure the design; FPGA was implemented for operating the

game, and the VGA monitor for display. At the same time, the software part

included the design of the overall system, input key module, VGA display

module, as well as the game control module.

The game design focused on "Double Player Mode", which simulates the

real-life ping-pong game. The movement of the paddles was controlled by

pressing the push buttons of FPGA. The difficulty level of the game was

increased by adding the extra features, which includes the speed control of the

ball and the size control of the paddles. The judgment of victory and defeat was

done by comparing the accumulated points of the players. If one of the paddles

unable to catch the ball and reflect it, the ball will continue to move and touch

the up or down borderline of the rectangular frame, then the opponent will earn

fifteen points, and the next round began. The game-winner is who first

accumulated to 90 points. The game will restart again if the player inputs the

RESET key.

At the end of the project, the compilation of the game design is found to

be successful. The game can be displayed and functioned smoothly without any

delay. Thus, this project is considered successful as the objectives were

achieved.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Formulation 3

1.4 Aim and Objectives 4

1.5 Scope and Limitation of the Study 5

1.6 Contribution of the Study 5

1.7 Outline of the Report 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Evolution of Programmable Logic Devices (PLDs) 9

2.3 Strengths of FPGA 14

2.4 Computer-Aided Design (CAD) Flow for FPGA 15

2.5 Application of FPGA 16

2.6 Game Development on FPGA 17

2.6.1 Dice Game Development on FPGA 17

2.6.2 Tetris Game Development on FPGA 22

2.7 Summary 27

3 METHODOLOGY AND WORK PLAN 28

3.1 Introduction 28

3.2 Project Planning 29

vii

3.2.1 Scope Planning 29

3.2.2 Schedule Planning 30

3.3 Equipment Learning 31

3.3.1 Block Diagram of FPGA DE2-115 31

3.3.2 USB-Blaster 31

3.3.3 Quartus II software 32

3.4 Experimental Planning and Setup 33

3.5 Preliminary Testing and Verification 33

3.5.1 Testing of CAD Tool 34

3.5.2 Testing of FPGA board 39

3.5.3 Testing of VGA monitor 42

3.6 Experiment on Game Development: Ping Pong

Game 42

3.6.1 System Overall Design 43

3.6.2 Design of input key module 44

3.6.3 Design of VGA module 45

3.6.4 Design of Game Control module 49

3.7 Summary 55

4 RESULTS AND DISCUSSION 56

4.1 Introduction 56

4.2 Result of Preliminary Testing 56

4.2.1 Testing of CAD Tool 56

4.2.2 Testing of FPGA 59

4.2.3 Testing of VGA monitor 61

4.3 Experiment on Game Development: Ping Pong

Game 61

4.3.1 Pin Assignment 61

4.3.2 Compilation Result 62

4.3.3 JTAG Configuration 63

4.3.4 VGA Display 64

4.3.5 Results of Game Control Module 66

4.4 Summary 70

5 CONCLUSIONS AND RECOMMENDATIONS 71

5.1 Conclusions 71

viii

5.2 Recommendations for future work 72

REFERENCES 73

APPENDICES 75

ix

LIST OF TABLES

Table 2.6.1 Function of the core program modules 24

Table 2.6.2 Game key function table 24

Table 2.6.3 Game state machine description 25

Table 3.2.1 Project tasks with the estimated duration 29

Table 3.6.1 List of Input Keys with its corresponded command 45

Table 3.6.2 Truth table to show the change of paddle color 48

Table 3.6.3 Truth table to show the change of ball color 49

Table 3.6.4 Speed control of the ball 52

Table 3.6.5 Size of the paddle according to its respective binary state 53

Table 4.2.1 Comparison of theoretical and practical result 58

Table 4.2.2 Summarized result to show the runtime behaviour of FPGA 60

Table 4.3.1 Display of paddle color according to their respective binary state

 64

Table 4.3.2 Display of the ball color according to their respective binary

state 65

Table 4.3.3 Display of the paddle size according to their respective binary

state 67

x

LIST OF FIGURES

Figure 1.1.1 DE2-115 FPGA board - Top view 1

Figure 1.1.2 DE2-115 FPGA board - Bottom view 2

Figure 1.3.1 Planned experimental setup 4

Figure 2.1.1 Types of ASICs 8

Figure 2.2.1 Block Diagram of a PROM 9

Figure 2.2.2 Block Diagram of a PLA 10

Figure 2.2.3 Block Diagram of a PAL 10

Figure 2.2.4 Block Diagram of GAL 11

Figure 2.2.5 Categorization of SPLDs 11

Figure 2.2.6 Architecture of CPLD 12

Figure 2.2.7 Architecture of FPGA 13

Figure 2.6.1 Flow chart of VHDL design 19

Figure 2.6.2 Flow chart of VHDL design 20

Figure 2.6.3 System implementation flow 21

Figure 2.6.4 The display on the DE2-115 board when the user wins 21

Figure 2.6.5 The display on the DE2-115 board when the computer

wins 22

Figure 2.6.6 Categorization of the main body of the Tetris game 23

Figure 2.6.7 Structure of the program module 23

Figure 2.6.8 Transition diagram of the game state. 24

Figure 2.6.9 Graphic display method 26

Figure 2.6.10 Character display method 26

Figure 2.6.11 Dividing of the area of game and feature. 26

Figure 3.1.1 Design flow of the project 28

xi

Figure 3.2.1 Gantt chart of the project 30

Figure 3.3.1 Block diagram of DE2-115 31

Figure 3.3.2 Block Diagram of the DE2-115 Control Panel 32

Figure 3.3.3 Interface of Quartus II 32

Figure 3.4.1 Experimental Setup 33

Figure 3.5.1 CAD Flow for FPGA 34

Figure 3.5.2 Logic Circuit Design 35

Figure 3.5.3 Device Assignment 35

Figure 3.5.4 Design Entry using Verilog Code 36

Figure 3.5.5 Process of compiling the project 36

Figure 3.5.6 The result of compilation 37

Figure 3.5.7 Message window of Quartus II 37

Figure 3.5.8 Message box showing "Error" 38

Figure 3.5.9 Pin Assignment (Testing of CAD Tool) 38

Figure 3.5.10 Interface of Modelsim 39

Figure 3.5.11 Design Entry in Verilog (.v) 40

Figure 3.5.12 Design Entry in Block Design File (.bdf) 40

Figure 3.5.13 Creating PLL Megafunction using MegaWizard Plug-In

Manager 41

Figure 3.5.14 Creating Multiplexer using MegaWizard Plug-In Manager 41

Figure 3.5.15 Overall Block Design File 42

Figure 3.5.16 Pin Assignment (Testing of FPGA) 42

Figure 3.6.1 Design flow of a Ping-pong game 43

Figure 3.6.2 Overall System design of Ping-pong game 44

Figure 3.6.3 Input keys of the game on DE2-115 45

Figure 3.6.4 Connections between FPGA and VGA 46

file:///D:/UTAR/LYQ/3E_1700781_FYP.docx%23_Toc50980643

xii

Figure 3.6.5 VGA interface with resolution 640x480 47

Figure 3.6.6 Code fragment to design the VGA display (640x480) 47

Figure 3.6.7 Resolution setting of monitor (640x480) 47

Figure 3.6.8 Code fragment to change the paddle color (Player A) 48

Figure 3.6.9 Code fragment to change the paddle color (Player B) 48

Figure 3.6.10 Code fragment to change the ball color 49

Figure 3.6.11 Code fragment to assign the command to the input key 50

Figure 3.6.12 Code fragment to indicate the initial location of the ball and

paddles 50

Figure 3.6.13 Code fragment to indicate the movement of the ball and

paddles 51

Figure 3.6.14 Code fragment to control the speed of the ball 52

Figure 3.6.15 Code fragment to change the paddle size (Player A) 53

Figure 3.6.16 Code fragment to change the paddle size (Player B) 53

Figure 3.6.17 Code fragment to indicate the points accumulation 54

Figure 3.6.18 Design of seven segment display module 54

Figure 3.6.19 Design of LCD module 55

Figure 4.2.1 Compilation Result in Quartus II 56

Figure 4.2.2 Compilation Result in Modelsim 56

Figure 4.2.3 Simulation Result in Modelsim 57

Figure 4.2.4 Process of loading the configuration data into FPGA

(successful) 57

Figure 4.2.5 Compilation Report (Successful) 59

Figure 4.2.6 FPGA configuration (successful) 59

Figure 4.2.7 Display on VGA monitor when connected to the host computer

 61

Figure 4.3.1 Pin Planner (Ping Pong Game) 62

xiii

Figure 4.3.2 Compilation Result (Successful) 62

Figure 4.3.3 Process of loading configuration data into FPGA

(Successful) 63

Figure 4.3.4 Initial location of the ball and paddles 66

Figure 4.3.5 Start of the game 68

Figure 4.3.6 Player B gained 45 points 68

Figure 4.3.7 Player A gained 30 points while Player B gained 60 points 68

Figure 4.3.8 Display on the DE2-115 board when Player A wins 69

Figure 4.3.9 Display on the DE2-115 board when Player B wins 69

xiv

LIST OF SYMBOLS / ABBREVIATIONS

FPGA Field Programmable Gate Array

SOC System On Chip

IC Integrated Circuit

ASIC Application Specific Integrated Circuit

PLD Programmable Logic Device

SPLD Simple Programmable Logic Device

CPLD Complex Programmable Logic Device

PAL Programmable Array Logic

PLA Programmable Logic Array

PROM Programmable Read-Only Memory

MPGA Mask-Programmable Gate Array

VGA Video Graphic Array

AI Artificial Intelligence

DNN Deep Neural Network

CPU Computer Processing Unit

GPU Graphics Processing Unit

SOP Sum of Product

CAD Computer Aided Design

LED Light Emitting Diode

ROM Read-Only Memory

RAM Random Access Memory

BCD Binary Coded Decimal

I/O Input / Output

PLL Phase-Locked Loops

LE Logic Element

xv

LIST OF APPENDICES

APPENDIX A 75

APPENDIX B 84

APPENDIX C 89

APPENDIX D 90

APPENDIX E 92

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In the field of engineers, besides the required research work, the development

of games is always in the mind of engineers for entertainment. With the

expansion of electronics evolution, engineers can explore and add more

creativity to the design of games.

 As the rate of technological advancement increases with time, the market

of Field Programmable Gate Array (FPGA) has grown dramatically and

becomes popular among the field of Application Specific Integrated Circuit

(ASIC). Ease of creation and maintenance leads FPGA to become an attractive

solution to high speed and efficient applications. There are various models of

FPGA available in the market, in which the two biggest manufacturers are

Xilinx and Altera (Intel). The project implemented an Altera DE2-115 FPGA

development board with the usage of Verilog as the hardware description

language. The architecture of DE2-115 is illustrated in Figure 1.1.1 and Figure

1.1.2 for the top view and bottom view, respectively.

Figure 1.1.1 DE2-115 FPGA board - Top view (Altera Corporation, 2010)

2

Figure 1.1.2 DE2-115 FPGA board - Bottom view (Altera Corporation, 2010)

The primary purpose of this project is to explore the world of FPGA by

developing a Ping-pong game. It was one of the earliest arcade video games

developed by Allan Alcorn. The game emulates the well-known ping-pong

game and its rules. The game was designed to have "Double Player Mode". The

system design was mainly focused on hardware and software design. The

hardware part involved the host computer for design configuring and

programming, FPGA for game operating as well as the VGA monitor for display.

For the software-wise, the design included the design of overall system, input

key module, VGA display module, and the game control module.

1.2 Importance of the Study

The main intention of this project is to explore the versatility of FPGA. One of

the interesting applications of FPGA is game development. During the game

design, a deeper understanding of FPGA is acquired. The main importance of

this research is to introduce improvements based on previous works.

In other researchers' works, it may require lengthy scripts and loop to code

the design; however, simplification could be done by shortening the scripts. This

demonstrates the next importance of the study.

There are several PLDs available in the market that could be used in game

development, for example, CPLD. To find out the most suitable approach and

the rationale behind FPGA being chosen for most of the game design is also

considered as one of the importance of the study.

https://en.wikipedia.org/wiki/Arcade_game#Arcade_video_games
https://en.wikipedia.org/wiki/Allan_Alcorn

3

Furthermore, it is vital to have improved from the previous work in terms

of its game complexity. This project modified the "Single Player Mode" or so-

called "Robot Mode" of Ping-pong game from other researcher's work and was

enhanced to become "Double Player Mode". Also, instead of using the seven

segments displays of FPGA, the improvements were made by the

implementation of VGA for the game display.

The knowledge gained in this project is meant to be helpful in the future

as FPGA has an enormous potential in the electronic field due to its wide range

of applications including from equipment for imaging and video to computer

circuitry, aerospace, automobile, and military applications, in addition to

electronics for specified processing.

The world is now proceeding to the Fourth Industrial Revolution. More

industries are emerging into the implementation of Artificial Intelligence (AI).

The research on FPGA can be further implied in the future work, including

application with high potential, AI since FPGA is gaining prominence in deep

neural networks (DNN) that are applied for AI. (Touger, 2018) As the demand

for AI is increasing, the demand for FPGA will be boosted accordingly.

Therefore, it can be concluded that the learning of FPGA is significant, and it

will be helpful for the future FPGA engineer.

1.3 Problem Formulation

This project is to remodel one of the pioneers of computer gaming history,

which is the Ping-pong game. In order to make this project to be a little more

complicated, the game was implemented on FPGA. The FPGA was

programmed using the Verilog hardware description language.

The ping-pong game is a simple game application, but with many rooms

for improvement. This project encourages the enhancement of the game from a

single-player (Robot Mode) to double players (Double Mode). Also, the scoring

system is one of the most critical steps to decide the winner of the game, and it

has to be well-planned. Next, the graphic display of the game acts as the first

image to the users, which means a well-designed graphic display is a crucial

element to attract the users. Therefore, an improvement in graphic design is also

4

one of the expected targets for this project, for example, the color of the paddles

and ball. This project was also planned to increase the difficulty of the game by

allowing the player to change the size of the paddles as well as increase the

speed of the ball.

The hardware-implemented in this project is the Altera DE2-115 FPGA

board, as shown in Figure 1.1.1. The game can be controlled by using the

pushbuttons and slide switches from the FPGA board to key in the input for

game operation. Moreover, a monitor was included in the design for game

display through VGA cable. The experimental setup was planned, as illustrated

in Figure 1.3.1.

Figure 1.3.1 Planned experimental setup

1.4 Aim and Objectives

The main objectives of this project are:

1. To design a game on FPGA using Verilog.

2. To imply a relevant theory of FPGA to real-life application.

3. To highlight the benefits of FPGA by increasing the complexity of the

game with creativity.

5

1.5 Scope and Limitation of the Study

This project mainly focused on the design of the Ping-pong game on FPGA.

Nevertheless, some limitations are not covered in the scope of the project.

Firstly, the game design only covered the graphic design module, the input

control module, and the game control module. However, the design does not

involve the audio module, which means that the game is without music or sound.

Next, the design was specified to be controlled by the pushbuttons and

slide switches of FPGA only, meaning that the other controllers will not take

into consideration.

Besides, the VGA setting was set to be 60 Hz with a resolution of 640 x

480. Therefore, the resolution of the monitor also has to be set at 640 x 480 to

meet the requirement. The specification and preliminary setting might limit the

flexibility of the development. However, it will not bring a significant impact

on the game application. The modification of code can be done to change the

resolution setting.

1.6 Contribution of the Study

This project contributes to different design applications of FPGA, which is not

only limited to the game design. The necessary information regarding FPGA

can be found from this project, such as the evolution of PLDs, working principle,

features, CAD tool, FPGA's strengths, design considerations as well as the

interesting applications.

Besides that, this project introduced the Verilog HDL in the design.

Throughout the project, there are limited sources of code examples. Therefore,

this project could be helpful and acts as a reference and the contribution for

future engineers who are interested in the FPGA design, especially for the

beginners.

1.7 Outline of the Report

Chapter 1 provided a brief introduction of the project by discussing the

importance of the study, problem formulation, aim, and objectives of the project,

scope, and limitations of the study as well as the contribution of the study.

6

In Chapter 2, the literature review introduced the evolution of PLDs,

highlighted the strength of FPGA, and discussed the CAD flow as well as the

application of FPGA. It also described what others have done for the game

development, justifying the use of specific techniques or problem-solving

procedures and hence sets a benchmark for the current project.

Chapter 3 focused on the evidence of planning and organization to achieve

milestones and demonstrate problem-solving skills by providing the

experimental methods and solutions to achieve the objectives of the project.

Various tests will be performed before carrying out the actual experiment to

avoid any unnecessary works.

Chapter 4 mainly focused on demonstrating the results obtained from the

experiment and discussed in detail to answer the problem stated in Chapter 1.

In Chapter 5, the overall conclusion will be provided as well as the

recommendation for future work so that the project can be enhanced and

improved by other researchers in the future.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The concept of the Fourth Industrial Revolution declares that the transformation

of technologies is the critical element that drives society to be more digitized,

organized, and enhanced in the aspect of productivity in manufacturing. One of

the technologies that brought the idea of the Fourth Industrial Revolution in the

production of electronics is the Integrated Circuit (IC). This technology

diminished the size of the electronic products by enlarging the density of logic

gates per chip. Certain types of IC are reprogrammable and can be applied in

various applications, whereas some IC can only be implemented for one specific

application, which is known as the Application Specific Integrated Circuit

(ASIC). ASIC is a silicon chip that was created solely for a specific purpose, as

opposed to a general-purpose chip that performs a wide range of functions but

operates with lower efficiency (Elprocus, 2019). ASIC is said to be

advantageous over general-purpose chip due to its tiny size, high-speed

response, and low power consumption, which drives it to a higher chance for

complex larger systems application. The uniqueness of ASIC makes it more

preferred in high-level applications, which is usually employed in private data

centers, public clouds, and shared devices around the world.

According to the research, ASIC can be categorized into three categories:

full custom, semi-custom, and programmable. (Elprocus, 2019) Figure 2.1.1

shows the categorization of ASIC.

8

Figure 2.1.1 Types of ASICs

In full custom design, all the mask layers for interconnection are

customized, while in semi-custom design, masks are partially customized, and

the rest was taken from the pre-designed library. Customized design chips

provide low flexibility for programming since they cannot be re-programmed

and modified once they are manufactured. This problem can be substantially

reduced by using Programmable ASIC, which is called a Programmable Logic

Device (PLD). (Elprocus, 2019)

PLD is an integrated circuit with a large number of flip-flops and gates

that can be configured with basic software to execute the logic for a specific

function or perform a complex logic function. PLD provides high flexibility

during the design cycle since it can be programmed or reconfigured to define

the function based on the design considerations, unlike the logic gate, which has

only a fixed function. The design changes can also be shown instantaneously in

the working parts. In addition, lower power consumption, as well as fewer

interconnections and packages significantly improve the reliability of the

system and reduce the system complexity by simplifying the testing procedures.

PLD offers reusable characteristics as it grants both design updating and error

correction by re-programming. Since PLD is field programmable, it allows the

user to program outside of the manufacturing area and thus increase the user

flexibility. There are three types of PLD, namely Simple PLD (SPLD), Complex

PLD (CPLD), and Field Programmable Gate Array (FPGA).

9

2.2 Evolution of Programmable Logic Devices (PLDs)

This topic covered the evolution of PLDs from the start of the revolution until

today in terms of their type, architecture, functions, strengths, and drawbacks.

According to the research of Brown, S., and Rose, J. (2002), Programmable

Read-Only Memory (PROM) was the first development of a user-

programmable chip that employed logic circuits, which provides the user the

flexibility to program the binary information electrically. The address lines can

be assigned as the inputs of logic circuits and the data lines as outputs. Figure

2.2.1 shows the block diagram of a PROM. PROM is built up of a fixed non-

programmable AND array acted as a full decoder for its address inputs and a

programmable OR array. PROM is used to store information at addressable

locations, but it is inefficient for realizing logic circuits due to its hardware

wastage issues and limited application. The limitations of PROM can be

overcome in PLA and PAL.

Figure 2.2.1 Block Diagram of a PROM (Brown, S. and Rose, J., 2002)

In the early 1970s, Field-Programmable Logic Array (FPLA or PLA) is

developed specifically for implementing logic circuits. A PLA has two levels of

logic gates, which include a programmable AND array followed by a

programmable OR array, and it can be shown in Figure 2.2.2. PLA has been

designed using the logic gates AND, OR, and NOT which was fabricated on the

chip, making every input and its complement can be obtained toward every

AND gate. PLA is well-suited for implying the logic functions in the sum of

product (SOP) form by connecting the output of the AND gate to the OR gate

while the OR gate output is used to generate the chip output. PLA is considered

10

as an adaptable device because both the AND and OR terms is allowed to have

multiple inputs.

Figure 2.2.2 Block Diagram of a PLA (Brown, S. and Rose, J., 2002)

The main disadvantages of PLA were that they require high

manufacturing costs and inadequate speed performance. Both drawbacks were

caused by the two levels of programmable logic. The configurable logic planes

directly increase the difficulty in manufacturing and hence lead to a significant

increase in propagation delays. (Brown, S. and Rose, J., 2002) In order to

overcome these limitations, Programmable Array Logic (PAL) devices were

established. As illustrated in Figure 2.2.3, PAL is built by using a programmable

AND array that feeds fixed OR gates, which consists of only a single level of

programmability. PAL usually contains flip-flops connected to the outputs of

the OR gate, compensating for the lack of generality incurred due to the fixed

OR gates are used. PAL had a philosophical impact on the design of digital

hardware and served as the foundation for some of the beginner and matured

constitutions.

Figure 2.2.3 Block Diagram of a PAL (Brown, S. and Rose, J., 2002)

11

An improvement on the PAL was the Generic Array Logic (GAL). GAL

comprises one AND array (reconfigurable) and one OR array (fixed) with

programmable output logic, as shown below. Unlike the AND array of PAL that

can only be programmed once, the reprogrammable AND array allows GAL to

be programmed multiple times. As referred to the research of Brown, S. and

Rose, J. (2002), Electrically Erasable CMOS is implemented in GAL rather than

using fusible links and Bipolar technology. GAL uses AND arrays followed by

OR arrays, and thus, it also allows the employment of the Boolean expressions

SOP (sum of product).

Figure 2.2.4 Block Diagram of GAL (Brown, S. and Rose, J., 2002)

The small size of PLDs, including PROMs, PALs, PLAs, and GALs are

categorized as Simple PLDs (SPLDs), whose main strengths are low power

consumption, more straightforward tracing process due to its smaller pin as well

as high flexibility as the logic circuit designs can be altered without rewiring.

The categorization of SPLDs can be shown in Figure 2.2.5.

Figure 2.2.5 Categorization of SPLDs

12

However, the implementation of SPLD is only suitable for small digital

circuits, which supports a mutual number of inputs and outputs of not more than

32. For designing a complex circuit, which requires more inputs and outputs,

either combine multiple SPLDs onto a single chip or choose to implement a

Complex Programmable Logic Device (CPLD).

CPLDs were first launched by Altera, three families of chips named MAX

5000, MAX 7000, and MAX 9000 were developed as mentioned by Brown, S.

and Rose, J. (2002). With the recent advancements of technology, the demand

for sizeable FPDs experience exponential growth. Other manufacturers start to

invest in the development of devices in the CPLD category to cope with the

complexity, and hence there are now many models available in the market.

Figure 2.2.6 shows the architecture of CPLD that combines numerous circuit

blocks (SPLD type devices) into one single chip, which is interconnected with

each other by the global interconnection matrix. Each of its circuit blocks

includes 8-16 macro-cells, and every logic block is responsible for a specific

function. CPLD has been designed to handle knowingly higher complexity of

logical functions and contributes to the logic capacity, which is equivalent to 50

standard SPLD devices. (Krazytech, 2015) Nevertheless, CPLD reached the

maximum, and tough to extend these architectures to higher densities.

Therefore, in order to create PLDs with very high logic capacity, another

method should be implemented.

Figure 2.2.6 Architecture of CPLD (Brown, S. and Rose, J., 2002)

13

The highest capacity logic chips with general-purpose available nowadays

are Mask-Programmable Gate Arrays (MPGA). It is structured by an array of

pre-fabricated transistors, allowing the logic circuit to be customizable by

joining the transistors with specific wires. The customization is actualized by

specifying the metal interconnection during the chip fabrication process. It can

be observed that the customization process will take a longer time in

manufacturing, and hence the production cost will increase correspondingly.

MPGAs are not classified under the category of field-programmable devices;

however, the design of MPGA is motivated and carried to Field Programmable

Gate Arrays (FPGA).

As similar to MPGAs, FPGAs consist of an array of separate circuit

elements, including logic blocks and interconnected resources. However, it is

different from MPGAs. The configuration of FPGA is executed through

programming by the end-user. Figure 2.2.7 illustrates the architecture of a

typical FPGA. CPLDs comprises of feature logic resources with a large number

of inputs (AND planes), whereas FPGAs provide more narrow logic resources.

(Keim, 2018) FPGA provides the advantage of having a higher ratio of flip-

flops to logic resources as compared to CPLDs. Besides these reasons, FPGA is

also considered as the most efficient device among all types of PLD, and its

advantages will be discussed deeply in Chapter 2.3.

Figure 2.2.7 Architecture of FPGA (Keim, 2018)

14

2.3 Strengths of FPGA

Under this topic, the reason why FPGA is chosen among PLDs will be clearly

stated. The strengths of FPGA makes it to be more attractive in higher speed

and higher efficiency applications as compared to SPLD and CPLD.

Firstly, a candidate is said to be effective and exceptional for

implementation in FPGA is the circuits that can handle a large number of logic

gates and require only less number of flip-flops. This is the strong reason that is

making FPGA have a large growth in the electronic market. As opposed to

conventional computer chips, FPGA is fully programmable, and thus the

updates, as well as the adaptations, can be carried out even after sold out to

customers. FPGA allows the user to alter the design easily through re-

programming, and without rewiring, even the FPGA is running. While in CPLD,

it has to de-energize first, then only can re-program for the modification of the

design functionality. (Center, 2017)

Next, FPGA provides long-term availability as the functionality is not

from the module itself but mainly in the configuration. Therefore, it can be

programmed in such a way without any modifications and adjustments on

different FPGA models. (Inventions, 2017) In addition, the implementation of

FPGA accelerates the development of prototypes. It is because a part of the

hardware development mainly lies in the design of the IP cores. Hence, FPGA

can perform time-consuming operations such as troubleshooting and

commission at the same time.

Furthermore, FPGA offers the opportunity of modeling systems that are

precisely tailored to the intended task, which able to work efficiently.

(Inventions, 2017) The flexibility of FPGA can be clearly shown in its massively

parallel data processing. FPGA is customarily used to solve complex tasks via

parallelization and adaption to the application. As shown in Figure 2.2.7, the

architecture of FPGA mainly consists of three parts, which include the

configurable logic blocks, programmable interconnects, and programmable I/O

blocks. (WatElectronics, 2019) The logic blocks are separated into smaller

modules, and hence providing a significantly scalable solution through the

15

parallel processing of data. In short, FPGA is ideal for real-time applications

and offers a significant speed advantage as compared to SPLD and CPLD. For

instance, the complicated calculations can be performed in a short time.

In a nutshell, FPGA is much more capable among all the PLDs, and so it

is the most suitable PLD to carry out the game developments, which consist of

many different complex tasks and able to handle them at the same time.

Therefore, FPGA can be more expensive as well and consume a little bit of

higher idle power consumption. The uses of FPGA in other game developments

will be discussed in Chapter 2.6 in detail.

2.4 Computer-Aided Design (CAD) Flow for FPGA

This topic will target the Computer-Aided Design (CAD) Flow for FPGA, as

referred to as the research work of Brown, S. and Rose, J. (2002). CAD is an

approach using a computer to aid in the creation, modification, and simulation.

It is employed to design circuits for implementation in FPGA.

Generally, the CAD system of an FPGA would be comprised of software

for tasks, such as initial design entry, logic optimizing, device fitting, system

simulating, and device configuring.

Initially, the execution of design entry can be done by constructing a

schematic diagram with a graphical CAD tool, which describes the design by

using a text-based system in a hardware description language (HDL) such as

VHDL and Verilog, or with a mix of different design entry methods. Algorithms

are suggested to implement in the circuits to optimize the circuits since the initial

logic entry is not always optimized.

After this, additional methods are needed for interpretation of the resulting

logic equations and "fitting" them into FPGA. The "device fitter" step falls

between the simulation and logic optimization, which involves three steps for

the circuit implementation in FPGAs, which are mapping the basic logic gate

into the logic blocks of FPGA, choosing the customized logic blocks to apply

in FPGA, and wire segments allocation in FPGA for logic blocks

interconnection.

16

Next, simulation is used to ensure the operation is running accurately, and

if there are any errors detected which interrupt the process, the feedback signal

is sent to the design entry step, fixing the errors. If the simulation runs

successfully without error, it can be downloaded into a programming unit,

which completes the configuration of an FPGA.

It is noted that the first design entry step has to be performed manually by

the executor, and the rest is carried out automatically by the CAD systems. With

the increased complexity, the CAD tools might require a longer time (usually

more than an hour) to finish their tasks.

2.5 Application of FPGA

This topic will discuss the application of FPGA in real life. Due to the

advantages of FPGA discussed in Chapter 2.3, FPGAs have gained recognition

and acceptance by society, leading to rapid growth in the market due to their

vast range of applications.

FPGA provides high speeds and a range of capacities, making it

applicable to random logic, device controllers, filtering and encoding of

communication, multiple SPLDs integration, and small to medium systems with

SRAM blocks. (Touger, 2018) It is ideal for high performance, critical control

applications, and can be used in digital designs.

Also, FPGA can perform different intricate designs. FPGA is usually

implemented in prototyping ASIC or processor. FPGA can be reconfigured and

re-programmed until the ASIC and processor design is completed and bug-free,

then the final version of ASIC will be manufactured and mass-produced. For

example, Intel implements FPGA in prototyping new chips due to the reason of

cost-effectiveness. (Touger, 2018) After the prototyping, it can be later used for

execution in gate arrays, as well as simulation of large hardware systems. All

these applications can either employ only a single large FPGA or involve a

quantity of FPGAs which are interconnected to each other. For instance, the

hardware emulation, QuickTurn, has produced goods that comprehend many

FPGAs and the required software to map and segregate circuits. (Wolff, 1990)

Another interesting FPGA application is handling FPGA as custom computing

17

machines. Instead of using regular CPU to compile the software for execution,

FPGA comprises the configurable parts to "execute" software.

FPGA is not left behind as it is gaining prominence in deep neural

networks (DNN) that are implied for AI. (Touger, 2018) Operating DNN

interference models consume significant processing power. Initially, Graphics

Processing Units (GPUs) are often applied for accelerating the interference

processing. Nevertheless, in some cases, FPGA is more preferred and

outperforms GPU in interpreting massive data for machine learning.

The performance of FPGA depends on how CAD programs map the

designed circuits into the chip. During the designs mapping into CPLD, the

design pieces will map instinctively to the SPLD type blocks. Nevertheless, the

designs that mapped with FPGA are split into block-sized logic pieces and

assigned across the FPGA. Each of the logic function blocks is interconnected

with each other, and the interconnection may associate various delays.

2.6 Game Development on FPGA

This project is mainly focused on game development, taking a real-world

problem from the stage of hardware design. This research reviewed on two game

designs, which are the Dice game (Toonsi S. Corporation, 2017) and the Tetris

game (Liu, K. Corporation, 2012). Both of them differ in terms of the design

complexity; Dice game is a simple game design with a lower complexity while

the Tetris game is with higher design complexity. The idea and relevant

information gathered from the literature review, such as improvements, design

modules, system implementation flow, will be later applied in this project,

which aimed to develop a Ping-pong Game on FPGA. The pros and cons of

FPGA can be validated and studied during the game designing process with the

implementation hardware description language and also the porting to real

hardware, FPGA.

2.6.1 Dice Game Development on FPGA

The research work on Dice Game development with the implementation of

FPGA is simple game design. The reason for discussing the dice game is

because the basic design flow of the game and working principles of FPGA can

18

be learned and easy to understand. Also, the principles can later be applied to

Ping-pong game development, which is explained in Chapter 3.

In this project, a complex FPGA board, Altera DE2-115 from Terasic, is

implemented. The board composes a set of Cyclone-IV FPGA, SRAM,

SDRAM, Flash memories, seven-segment displays, Light Emitting Diodes

(LEDs), switches, pushbuttons, and LCD screen. (Altera Corporation, 2006) For

projects that involve processor and simple I/O interfaces, the Altera Nios II

processor can be instantiated and also the implementation of standard embedded

interface drivers like Ethernet, SPI, RS-232, USB, I2C, and so on. (Altera

Corporation, 2006) In addition, for a project that involves video or audio signals,

the board provides basic connectors that allow graphical display and sound

audition. All of these peripherals allows for developing several types of the

game based on the DE2-115 board.

As mentioned in Chapter 1, VHDL is one of the hardware description

languages for demonstrating digital electronic systems. It can be adopted for

many applications such as creation, simulation, and hardware description. In

order to synthesize the VHDL, there are various CAD tools available for the

implementation of FPGA as well as ASIC. (Kleitz, 2006) A VHDL code can be

distributed into two parts, which are an entity description that declares all I/O

ports and their types, and architecture that declare the functionality along with

all functions and operations.

To design a dice game for single player, the game flow was coded in

VHDL according to the flow chart attached in Figure 2.6.1. After the system is

energized and initialized, the pushbuttons, Game1, Game2, and Game3 should

be pressed to execute the game. Once the Game1 is triggered, new numbers are

generated randomly for the computer and user. The new dice numbers will be

displayed on the two different seven-segment displays, which are driven by the

Computer_Score and User_Score ports. Furthermore, the circuit has to decide

whether the computer or user has a larger dice number to determine the winner

of the game. The score for the winner (who gets a larger dice number) is

incremented to one, and the score for the loser (who gets a smaller dice number)

remains at zero for each round of the game. If it is a drawn game, both user and

19

computer's scores remain no change. Another two seven-segment displays are

implemented to display the results, which are directed by the ports of

User_Total and Computer_Total. This process flow has three iterations,

indicating that the game has three rounds. After three rounds, the system will

indicate the winner of the games by comparing the total scores earned by both

the user and the computer. If the user earned a higher total score than the

computer, the green LED is turned, indicating the overall game winner is the

user, while the red LED is triggered if the overall winner is the computer, which

has a higher total score than the user. (Toonsi S. Corporation, 2017)

Figure 2.6.1 Flow chart of VHDL design (Toonsi S. Corporation, 2017)

The system VHDL is coded, and the entity ports description is labeled as

Figure 2.6.2. It portrays that the entity "DiceGame" consists of two control

ports, namely, Reset and Clk. 'Reset' is implemented to initialize the system after

the system is powered on. Its control port in the system has the highest priority,

20

which makes it asynchronous and cannot be triggered with other commands at

the same time. While 'Clk' has the second-highest priority control port, which

takes over the system once 'Reset' is deserted. (Toonsi S. Corporation, 2017)

The system functions when the 'Clk' is set to 1, where is the rising edge of the

clock.

Figure 2.6.2 Flow chart of VHDL design (Toonsi S. Corporation, 2017)

The system implementation is summarized in Figure 2.6.3. In this project,

Altera-Quartus is used as the CAD tool for the implementation of VHDL on the

DE2-115 Board. Once the dice game design was coded, the next step is creating

a new project in Quartus II and add the dice game VHDL description into the

new project. Before compilation and verification, the user has to select the

model of the device which suits the real FPGA board used. Next, syntax

verification is required to remove syntax errors, ensuring that the project can

later be compiled successfully. After checking the syntax, the compilation has

to be done to generate the circuit netlist. Then through the Quartus-Pin Planner,

pins assignment is done by assigning the circuit ports to the physically FPGA

pins on the DE2-115 board according to their respective functions as taking the

DE2-115 hardware design manual as reference. Hence, the circuit is computed,

and a file of binary configuration is created for the Cyclone-IV FPGA. Lastly,

the final step is to configure the Cyclone-IV FPGA by completing the setup of

USB-Blaster and the chosen binary configuration file. (Altera Corporation,

2006)

21

Figure 2.6.3 System implementation flow

 Figure 2.6.4 indicates the user wins, while Figure 2.6.5 illustrates the

computer wins. Both of the test trails proof the functionality of the developed

system. It is recommended that the performance of the system can be enhanced

by improving the random number generator. (Toonsi S. Corporation, 2017)

Nevertheless, this approach may increase the power consumption,

computational complexity, and the designation effort.

Figure 2.6.4 The display on the DE2-115 board when the user wins (Toonsi S.

Corporation, 2017)

22

Figure 2.6.5 The display on the DE2-115 board when the computer wins

(Toonsi S. Corporation, 2017)

2.6.2 Tetris Game Development on FPGA

After discussing a simple game design (Dice Game), a more complex design of

the game has to be deliberated in order to have a better understanding and gain

experience in the creation of games. Tetris Game is chosen to be represented the

higher complexity of the game since the design process involves more

complicated steps, and the steps will be briefly highlighted under this topic.

 The Tetris game is mainly built up by logic control. It is researching

mainly on the development of a Tetris Game based on FPGA with the

implementation of VHDL. The setting of the game allows the players to move

or rotate blocks by controlling the PS/2 interface keyboard, and the game is

displayed in a monitor through the VGA module.

There are several functions of the game, which are control of the

movement, blocks rotation, random up-coming blocks generation, row

elimination, scores accumulation, and speed acceleration. Besides that, it also

composes of two modes which differ in the amount of blocks type, namely

"normal mode" (seven types) and "expert mode" (11 types). The achievement

of transplanting the Tetris game provides a fundamental template for the design

of similar visual control systems based on FPGA. (Liu, K. Corporation, 2012)

23

The game consists of three core parts, as shown in the block diagram

shown in Figure 2.6.6 clearly explain the related hardware and the

corresponding function of these three main parts.

Figure 2.6.6 Categorization of the main body of the Tetris game

There are seven modules involved in the game design, where the

relationship between each module structure is as shown in Figure 2.6.7. The

VGA control is shared by the graphic and text display module via the

multiplexing units. Also, the data exchange between the game control modules

together with the graphic and text display module is completed via the storage

units. (Liu, K. Corporation, 2012)

Figure 2.6.7 Structure of the program module (Liu, K. Corporation, 2012)

24

 The main functions of the core program modules are illustrated and

summarized in Table 2.6.1. The pre-set condition and description are also

clearly stated.

Table 2.6.1 Function of the core program modules

Program

module Description

Keyboard

control module

1. It is recognized by the identification of the keyboard and key-

value filter.

2. One-way communication from the PS/2 keyboard to FPGA

is done via the keyboard identification part.

3. Pre-set the input keys, and the module will only respond to

the respective key.

4. The key inputs are pre-set as below:

Table 2.6.2 Game key function table

Game control

module

1. The process of the game is illustrated through the "State

Machine," as presented in Figure 2.6.8.

2. There are 15 states in the game, as described in Table 2.6.3.

3. The blocks have consisted of four sub-blocks for both of the

game modes. All operations of blocks can be done by altering

the sub-blocks coordinate.

4. The game state transition diagram is pre-set as below:

Figure 2.6.8 Transition diagram of the game state. (Liu, K.

Corporation, 2012)

25

5. The game state machine is described as below:

Table 2.6.3 Game state machine description (Toonsi S.

Corporation, 2017)

Graphics and

text display

module

1. The module allows the communication of text information

and pixel graphics with dual-port block memory (BRAM).

2. The display signal is created by writing the respective

memory address and feedback to the game control module by

obtaining the respective address of the memory location.

3. It is mainly targeted on the display of blocks graphics and

text character, as shown in Figure 2.6.9 and Figure 2.6.10,

respectively.

26

Figure 2.6.9 Graphic display method (Toonsi S. Corporation, 2017)

Figure 2.6.10 Character display method (Toonsi S. Corporation,

2017)

VGA module 1. VGA module is applied for coordinate and pixel settings

information translation, which is obtained from the text

display module and the graphic display module, then

depicting the image information correctly by a monitor.

2. This module also helps in dividing the area of the game and

feature on the screen.

3. HC represents the synchronizing signal of VGA Line, while

VC represents the VGA Field synchronizing signal.

Figure 2.6.11 Dividing of the area of game and feature. (Toonsi S.

Corporation, 2017)

27

2.7 Summary

This chapter began with the evolution of PLDs as well as an introduction to

PLDs in terms of their basic technology with the programmability it provides

and a short illustration of the PLD architectures. The first generation of PLD

inventions such as PROM, PLA, PAL, and GAL can be grouped into the small

category, namely SPLD. With the advancements of technology, the newly

developed modern systems are designed with increased complexity due to the

increment in market demand. In order to encounter this complexity, while

maintaining the efficiency of the system in terms of power consumption and

resources, CPLD and FPGA are then invented. The discussion in this chapter

also highlighted the important issue and implementation flow of CAD tools for

FPGA.

Furthermore, this chapter also pinpoints the application of FPGA,

especially the implementation of game development. In order to learn the game

design flow and basic working principles of FPGA, a classical Dice game is

discussed. The dice game is a simple game development, which as a reference

for further design enhancement as well as a more sophisticated game design. In

order to get to know the higher complexity of the FPGA application, another

game design is studied, which is the Tetris Game.

Both the Dice game and Tetris game are designed with the implementation

of VHDL. The system implementation flow for both game design is similar and

is further applied in the Ping-pong game. Besides the rules of the games, both

of them differ in terms of their design modules such as controlling method and

displaying method. In the Dice game design, the game is controlled by the push

buttons of FPGA, and the game is displayed on the seven segments display of

FPGA. While in the Tetris game, the game control is improved with the use of

a PS/2 keyboard, and the game display is upgraded to the implementation of the

VGA monitor. The enhancements from the researched works are encouraged to

imply in this project by upgrading the use of internal components of FPGA to

the implementation of external hardware such as VGA. The design approaches

will be covered deeply in Chapter 3.

28

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The proposed project is to design a game on FPGA with the implementation of

hardware description language. The flowchart, as shown in Figure 3.1.1,

illustrates the design flow of the project.

Figure 3.1.1 Design flow of the project

29

3.2 Project Planning

The scope and schedule of the project have to be planned and organized

carefully in order to ensure that the project can be completed on time, and most

crucially, that the final project outcome will meet the requirements and fulfill

the objectives of the project.

3.2.1 Scope Planning

A task-based approach will be implied for project planning in order to pinpoint

the required tasks. The project was separated into small tasks and activities

which subscribe to the fulfillment of the project requirements and objectives,

with an estimated duration being appointed to each of them, as illustrated in

Table 3.2.1.

Table 3.2.1 Project tasks with the estimated duration

Phase Activities Description
Duration

(Days)

1

A Problem Identification 7

B Project Planning 7

C Literature review 35

D Equipment Learning 28

E Experimental Planning and Setup 7

F First stage of Product development & Testing 28

G Report Writing & Presentation 28

2

H Project Planning 7

I Preliminary Testing and Verification 21

J Actual Experiment: Game Development 49

K Results discussion, conclusion and recommendation 14

L Report Writing & Presentation 28

30

3.2.2 Schedule Planning

Next, the project flow is presented in a Gantt chart, as shown in Figure 3.2.1.

Figure 3.2.1 Gantt chart of the project

Phase No. Project Activities W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 W28

M1 Problem formulation

M2 Project planning

M3 Literature review

M4 Equipment Learning

M5 Experiment Planning and Setup

M6 First stage of product development & Testing

M7 Report writing & presentation

M1 Project planning

M4 Results discussion, conclusion and recommendation

M5 Report Writing & Presentation

1

2

M2

Preliminary Testing and Verification

-Testing of CAD Tool

-Testing of FPGA board

-Testing of VGA monitor

M3

Actual Experiment: Game Development

-System Overall Design

-Design of input key module

-Design of VGA module

-Design of game control module

31

3.3 Equipment Learning

Equipment learning is required before the specific design stage of the game, and

it is crucial to ensure the design flow to be carried out smoothly.

3.3.1 Block Diagram of FPGA DE2-115

The block diagram of DE2-115 is illustrated in Figure 3.3.1 and as a reference

for the further designation. The features of DE2-115 can be found from

APPENDIX E.

Figure 3.3.1 Block diagram of DE2-115 (Altera Corporation, 2010)

3.3.2 USB-Blaster

The Control Panel of DE2-115 relied on the Nios II SOPC system, which

instantiated in the Cyclone IV E DE2-115 FPGA, with the on-chip memory being

used for the software to operate. (Altera Corporation, 2010) Figure 3.3.2 shows the

architecture of the Control Panel. Nios II Processor integrated into the FPGA chip

supervised each I/O device. The role of the USB Blaster link is to handle the

communication between the host computer and the DE2-115 board; hence the

installation of Altera USB Blaster driver software is necessary. (Altera Corporation,

2010) The Nios II analyses the signal sent from the PC and actuates the

corresponding actions. The USB cable provided by the host computer should be

32

connected to the USB Blaster connector of the DE2-115 board to complete the

installation. (Altera Corporation, 2010)

Figure 3.3.2 Block Diagram of the DE2-115 Control Panel (Altera Corporation,

2010)

3.3.3 Quartus II software

Figure 3.3.3 depicts the interface of the Quartus II software. The design entry

of Quartus II can be done in different file types such as VHDL, Verilog HDL,

Block Design File, Qsys System File, State Machine File and so on. Thus, it can

be implemented in many different tasks, which include creation, simulation,

compilation, as well as configuration.

Figure 3.3.3 Interface of Quartus II

33

3.4 Experimental Planning and Setup

Equipment required:

Altera's DE2-115 FPGA board

Host Computer

VGA monitor

VGA cable

USB Blaster

Power Cable for DE2-115

Figure 3.4.1 shows the experimental setup in this project, which is the same as

the planned experimental setup provided in Figure 1.3.1. The configuration data

will be loaded from the host computer to the FPGA device and display the result

on the monitor.

Figure 3.4.1 Experimental Setup

3.5 Preliminary Testing and Verification

General testing has to be done before carrying out a specific task to verify

whether the equipment used in this project works. Three simple tests, including

testing of CAD Tool, FPGA board, and VGA monitor, were carried out to

determine if they can function well in order for them to be implemented in the

game design.

34

3.5.1 Testing of CAD Tool

As discussed in Section 2.4, Computer-Aided Design (CAD) Flow for FPGA,

the necessary knowledge and theory of CAD was studied. CAD is known as an

approach using a computer to aid in the creation, modification, and simulation.

Under this section, the assignment will firmly be focused on the study of

performing the CAD tool shown in Figure 3.5.1 to complete the design. The

following CAD flow for FPGA can be applied in every task using the Quartus

II software. The main objective of this testing is to ensure that there is no

missing steps while developing the design.

Figure 3.5.1 CAD Flow for FPGA

35

 For this testing, a simple circuit for two-way light control, as shown in

Figure 3.5.2, was designed by following the step by step stated in the CAD flow.

Quartus II works on one project at a time, storing all the data for that project in

a single directory. Therefore, in order to start a project, the initial step is to create

a new directory to hold its files. Next, device assignments have to be done to

specify the type of device in which the configured circuit will be applied. In this

project, the device name was specified as EP4CE115F29C7, as presented in

Figure 3.5.3.

Figure 3.5.2 Logic Circuit Design

Figure 3.5.3 Device Assignment

The proposed circuit was described in Verilog code, as shown in Figure

3.5.4. One point that needs to be highlighted is that the module name must be

matched with the name specified in the first step when the project was created.

Otherwise, the compilation will stop, and the error occurs, showing that "Error:

top-level design entity "file_name" is undefined".

36

Figure 3.5.4 Design Entry using Verilog Code

The Verilog code in Figure 3.5.4 will be processed by Quartus II tools,

including the coding analysis, circuit synthesizing, and generate an

implementation of it according to the corresponded target chip. These tools are

controlled under the application program called the "Compiler". The

compilation will move through various stages and verifies the syntax. Figure

3.5.5 shows the process of compiling the project; this process might take the

time of a few minutes.

Figure 3.5.5 Process of compiling the project

Once the compilation is completed, a window will pop up and shows the

result of the compilation, such as successful or unsuccessful. The example can

be seen from Figure 3.5.6.

37

Figure 3.5.6 The result of compilation

However, Figure 3.5.6 only displays the final result. If there are any

syntax errors, it may take a very long time to find out the errors or bugs. Hence,

if looking for detail information on each line of code, the message window will

take the responsibility to explain in detail. For example, the system warned that

"the timing characteristic of the device EP4CE115F29C7 are preliminary", as

shown in Figure 3.5.7; while in the case of errors, the error type will be stated

in the message box as shown in Figure 3.5.8.

Figure 3.5.7 Message window of Quartus II

38

Figure 3.5.8 Message box showing "Error"

After the successful compilation, the pin assignment is required to assign

the function to the targeted pins. It is the process of reflecting and connecting

the software coding to the physical hardware. The Quartus II user was free to

select any pins on the FPGA to serve as inputs and outputs. Nevertheless, the

DE2-115 board has hardwired connections between the FPGA pins and the

other components on the board. Pin assignments were made by using the

Assignment Editor, as shown in Figure 3.5.9. The inputs of the designed circuit,

x1, and x2, were represented by the two toggle switches on the development

board, which are SW0 and SW1, respectively. As referred to the "DE2-115 User

Manual" (APPENDIX D), the two inputs were assigned to the FPGA pins AB28

and AC28, respectively. And lastly, the output f was connected to the green

light-emitting diode with the label of LEDG0, which was hardwired to the

FPGA pin E21.

Figure 3.5.9 Pin Assignment (Testing of CAD Tool)

It is vital to verify the correctness of the design before implementing the

designed circuit in the FPGA chip. Modelsim software was implemented to

39

simulate and verify the behavior of a designed circuit. Figure 3.5.10 shows the

interface of Modelsim, and the compilation result will display in the transcript,

which is placed at the bottom of the figure.

The FPGA must be programmed and configured in order to execute the

designed circuit. The configuration file was created by the Quartus II Compiler's

Assembler module. The configuration of Altera's DE2-115 can be done through

JTAG mode. JTAG stands for Joint Test Action Group, which introduces a

simple way for testing the digital circuits and loading the configured data into

the development, which became an IEEE standard. The configuration data was

transferred from the host computer (which runs the Quartus II software) to the

board through a cable that connects a USB port on the host computer to the

leftmost USB connector on the board. Hence, it is necessary to have the USB-

Blaster driver installed to complete the connection. In the JTAG mode, the

configuration data was loaded directly into the FPGA device. If the FPGA was

configured in this manner, it would retain its configuration as long as the power

remains turned on. The configuration information is lost when the power is

turned off. The result of this testing will be further discussed in Section 4.2.1.

3.5.2 Testing of FPGA board

The main intention of testing the FPGA board is to ensure all the components

are functioned and can be configured, outputting a corresponded design without

any delays. During the test, a simple design was coded in Verilog (.v) as shown

in Figure 3.5.11, to cause LEDs on the FPGA to blink at a speed that is under

the control of an input key. It gives direct visual feedback to determine whether

Figure 3.5.10 Interface of Modelsim

40

the development board works. The design involved a 32-bit counter, a 2-input

multiplexer megafunction, and a phase-locked loop (PLL) megafunction acts as

the clock source. A Block Design File (.bdf) can be created by updating the file

from .v to .bdf. The corresponded "simple counter" in the Verilog file will be

generated automatically in the Block Design File, as shown in Figure 3.5.12.

Figure 3.5.11 Design Entry in Verilog (.v)

Figure 3.5.12 Design Entry in Block Design File (.bdf)

 PLL Megafunction is a pre-designed module available in the LPM that the

user can implement in FPGA designs. These megafunctions provided by Altera

have optimized for speed, area as well as the device family. The efficiency can

be boosted by employing a megafunction instead of coding the function

manually. For this design, a PLL clock source was applied to drive a simple

counter. A PLL used the on-board oscillator to generate a constant clock

frequency acts as the input to the counter, as shown in Figure 3.5.13.

41

Figure 3.5.13 Creating PLL Megafunction using MegaWizard Plug-In

Manager

A multiplexer was applied in this design to route the simple_counter

output to the LED pins on the FPGA board. The MegaWizard Plug-In Manager

was used to add the multiplexer, lpm_mux, as shown in Figure 3.5.14. The

design multiplexed two alterations of the counter bus to four LEDs on the DE2-

115 development board.

Figure 3.5.14 Creating Multiplexer using MegaWizard Plug-In Manager

All the components were connected as well as the input pins and output

pins. The overall schematic diagram was drawn and presented in Figure 3.5.15.

42

Figure 3.5.15 Overall Block Design File

The next step is conducting the pin assignment according to APPENDIX

D. Figure 3.5.16 represents the pin planner of this design. The last step is to

compile the project and load the configured data into the FPGA board, and the

result will be further analyzed in Section 4.2.2.

Figure 3.5.16 Pin Assignment (Testing of FPGA)

3.5.3 Testing of VGA monitor

The main aim of this test is to determine whether the VGA monitor can correctly

display the design on the screen through the VGA cable. A simple test was

carried out by connecting the monitor directly to the host computer through

VGA cable.

3.6 Experiment on Game Development: Ping Pong Game

The game to be developed in this project is a Ping-pong game as it is one of the

most common games that created using FPGA. Ping-pong game is a simple

game application; however, it still has considerable space for improvement.

Therefore, it is an opportunity to learn the basics and foundation from the simple

game application and explore deeper when enhancing the game to a higher level

43

of complexity. The FPGA kit is fully utilized in developing the Ping-pong game.

There are several steps to be taken to design a Ping-pong game. Figure 3.6.1

shows the design flow of the game, which includes the design of the overall

system module, input key module, VGA module, and the game control module.

Figure 3.6.1 Design flow of a Ping-pong game

3.6.1 System Overall Design

In order to design a game on FPGA, the overall system design included the

designed functions, and the defined rules have to be set preliminary before the

design of the specific module.

The overall game functions and game rules were set as follows:

1. The ping pong game was designed to be played in "Double-player

Mode".

2. The game interface simulated the ping-pong table with a hidden net in

the middle to separate the table equally into two sides; each side consists

of a paddle near the border. The upper part was assigned to Player B,

whereas the bottom part was assigned to Player A. The player's scores

were accumulated and displayed on the seven segment display on top of

the FPGA device while the winner will be displayed in the LCD module

of FPGA.

44

3. The ping pong ball will move in a straight line until it strikes on the left

and right border of the rectangular frame or the paddle. It will be

reflected and continue its motion in the opposite direction. However,

when the ball is moving, if one of the paddles unable to catch the ball

and bounce it, the ball will continue to move and until it touches the up

or down borderline of the rectangular frame, then the opponent will earn

fifteen points, and the next round began. The game-winner is who first

accumulated to 90 points. The movement of the paddles was controlled

by the pushbuttons of FPGA.

The Block diagram, as shown in Figure 3.6.2, indicates that the main

modules of the overall system design include the VGA module, input key

module, seven-segment display module, LCD module, and game control

module. The game control module was the core module that used to handle the

received signal from different ports and hence drive the functional modules for

controlling and responding to the respective signals.

Figure 3.6.2 Overall System design of Ping-pong game

3.6.2 Design of input key module

The core function of the input key module is to receive the input scan code from

the pushbuttons or slide switches of FPGA then converted to the corresponding

key values. This design received four inputs from the pushbuttons and 18 inputs

from the slide switches. All the input keys were summarized in Table 3.6.1. The

design was coded in Verilog to assign the command to each of the respective

input keys. The input keys were illustrated clearly in Figure 3.6.3.

45

Table 3.6.1 List of Input Keys with its corresponded command

Command Input Key (Player A) Input Key (Player B)

Move to Left KEY0 KEY2

Move to Right KEY1 KEY3

Start/Pause SW0

Reset SW1

Control the paddle size
SW4 SW2

SW5 SW3

Speed control of the

ball

SW6

SW7

SW8

Alter the colour of

paddle

SW12 SW9

SW13 SW10

SW14 SW11

Alter the colour of ball

SW15

SW16

SW17

*Remarks: Other keys will be ignored by the system.

Figure 3.6.3 Input keys of the game on DE2-115

3.6.3 Design of VGA module

VGA display module mainly included the "game graphics" display function.

Figure 3.6.4 demonstrates the connections between FPGA and VGA. The

circuit implementation of the VGA connector are as follows:

1. Pins 13 (HS) and 14 (VS) are digital signals which are driven directly

from two of the FPGA pins.

46

2. Pins 1, 2, and 3, which represents R, G, and B, are analog signals with a

nominal value of 0.7V. Alteration of two states (0 and 1) between these

three pins will output up to eight different colors.

3. The other pins (5, 6, 7, 8, and 10) are all connected to the ground.

Figure 3.6.4 Connections between FPGA and VGA (Altera

Corporation, 2010)

a) Resolution Setting of VGA

For this game design, the game was set to be displayed with a resolution

of 640 x 480 . Figure 3.6.5 portrays the VGA interface with a resolution

of 640 x 480, explaining the theory of resolution, such as front porch and back

porch for horizontal and vertical. This basic theory will be further used for the

design in the Verilog code. Figure 3.6.6 illustrates the designed Verilog code

for the VGA display. However, in order to display the selected resolution

(640 x 480), one more step that has to be done is that the setting of the monitor

has to be adjusted from 1600 x 900 to 640 x 480 to match the design, as

depicted in Figure 3.6.7.

47

Figure 3.6.5 VGA interface with resolution 640x480

Figure 3.6.6 Code fragment to design the VGA display (640x480)

Figure 3.6.7 Resolution setting of monitor (640x480)

48

b) Color of Paddle

Alteration of two states (0 and 1) between R, G, and B will change the color of

the paddle up to eight different colors, as summarized in Table 3.6.2. The

designed Verilog codes were presented in Figure 3.6.8 and Figure 3.6.9 for

Player A and B, respectively.

Table 3.6.2 Truth table to show the change of paddle color

SW14 SW13 SW12 Colour of the

paddle

(Player A)

SW11 SW10 SW9 Colour of

the paddle

(Player B)

0 0 0 Black 0 0 0 Black

0 0 1 Red 0 0 1 Red

0 1 0 Green 0 1 0 Green

0 1 1 Yellow 0 1 1 Yellow

1 0 0 Blue 1 0 0 Blue

1 0 1 Purple 1 0 1 Purple

1 1 0 Turquoise 1 1 0 Turquoise

1 1 1 White 1 1 1 White

Figure 3.6.8 Code fragment to change the paddle color (Player A)

Figure 3.6.9 Code fragment to change the paddle color (Player B)

49

c) Color of Ball

In order to change the color of the ball, the same concept of altering the two

states (0 and 1) between R, G, and B was applied in this design. Table 3.6.3

summarized the truth table and its corresponded color. The designed Verilog

codes were presented in Figure 3.6.10, showing the function of changing the

ball color by controlling the slide switches SW15, SW16, and SW17.

Table 3.6.3 Truth table to show the change of ball color

SW17 SW16 SW15 Colour of the ball

0 0 0 Black

0 0 1 Red

0 1 0 Green

0 1 1 Yellow

1 0 0 Blue

1 0 1 Purple

1 1 0 Turquoise

1 1 1 White

Figure 3.6.10 Code fragment to change the ball color

3.6.4 Design of Game Control module

According to the block diagram of the overall system design, as shown in Figure

3.6.2, the game control module received several input signals, wherefrom input

key module, reset signal, and some control signals from the external circuit. The

output signals included the location of ball and paddles (VGA), game scores

(seven-segment display), and the winner (LCD display). The game control

module was the main module block of the game system; its main functions

include:

50

a. The movement control of start, pause, and stop

b. The initial location of the ball and paddles

c. The movement control of the ball and paddles

d. The speed control of the ball

e. The size control of the paddle

f. The point's accumulation and calculation

g. The judgment of victory and defeat

a) The movement control of start, pause, and stop

Figure 3.6.11 depicts the code that assigned the command to the respective input

key of FPGA to control the movement of start, pause, and stop.

Figure 3.6.11 Code fragment to assign the command to the input key

b) The initial location of the ball and paddles

Figure 3.6.12 represents the code when fixing the initial location of the ball and

paddles at the start of the game. The location of the ball and paddles were

determined by the coordinate of the X-axis and Y-axis. When the RESET is

pressed, the ball and paddles will revert to their original position.

Figure 3.6.12 Code fragment to indicate the initial location of the ball and

paddles

51

c) The movement control of the ball and paddle

The movement of the ball and paddles were controlled through their respective

coordinates. Manually control of the paddles was done by pressing the push

buttons of FPGA. Figure 3.6.13 presents the code fragment that indicated the

movement of the ball and paddles.

Figure 3.6.13 Code fragment to indicate the movement of the ball and paddles

d) The speed control of the ball

During the speed control of the ball, the players can adjust the speed by either

slowing down or increasing it in order to increase the difficulty of the game.

The higher the speed of the ball, the higher the difficulty level of the game. The

speed control module was controlled by the slide switches (SW6, SW7, and

SW8) as presented in Table 3.6.4, while the designed code as illustrated in

Figure 3.6.14.

52

Table 3.6.4 Speed control of the ball

Figure 3.6.14 Code fragment to control the speed of the ball

e) The size control of the paddle

Another task to increase the difficulty of the game is to adjust the size of the

paddles. The smaller the size of the paddles, the higher the difficulty level of the

game. The paddle size can be controlled by changing the binary state of the slide

switches, as summarized in Table 3.6.5. The code fragment of controlling the

paddle size of Player A and Player B was presented in Figure 3.6.15 and Figure

3.6.16, respectively.

53

Table 3.6.5 Size of the paddle according to its respective binary state

Figure 3.6.15 Code fragment to change the paddle size (Player A)

Figure 3.6.16 Code fragment to change the paddle size (Player B)

f) The point's accumulation and calculation

The scoring system was done by applying the method of point's accumulation

with the implementation of BCD code in the total point's calculation and output

it on the seven segment display. The code fragment to indicate the point's

accumulation and calculation were demonstrated in Figure 3.6.17, while the

design of the seven-segment display module, as illustrated in Figure 3.6.18.

54

Figure 3.6.17 Code fragment to indicate the points accumulation

Figure 3.6.18 Design of seven segment display module

g) The judgment of victory and defeat

The judgment of victory and defeat was done by comparing the accumulated

points of the players. The winner will be the first player who obtained 90 points,

and the result will be shown on the LCD. The designed LCD module was

presented in Figure 3.6.19.

55

Figure 3.6.19 Design of LCD module

3.7 Summary

Chapter 3 is mainly targeted on how the project was being carried out, which

included project planning, equipment learning, experimental setup, preliminary

testing, and discuss the module design involved in the game development. A

project is typically distributed into small tasks due to the ease of monitoring.

Each task was given an estimated duration to complete it, and it is vital to

handling the project without any delay. Hence, a task-based approach and Gantt

chart was implemented to ensure that each task can be completed on time and

left no one behind.

 Under this topic, the development steps and ideas of the design were

basically grabbed from the discussion in Chapter 2. The design modules applied

in the Tetris game were further modified and applied in this project. As similar

to the Tetris game, the overall design involved in this project was the VGA

module, input key module as well as the game control module. Each task was

explained in detail, providing the function of the module, the effect of the game,

the method of design, and the communication of the module to FPGA. Besides

that, the system implementation flow that was studied from Dice game was

modified and implied in this research, and all the results obtained will be further

discussed in Chapter 4.

56

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

The tasks described in Chapter 3 have been thoroughly designed and conducted.

In Chapter 4, all the results obtained will be discussed and analyzed in detail.

4.2 Result of Preliminary Testing

The results of testing will be analyzed and further employed in game

development. If there are any problems encountered, the issues can be figured

out and solved at the early stage.

4.2.1 Testing of CAD Tool

During the test, a simple circuit for two-way light control was designed in

Verilog code. Both the compilation in Quartus II and Modelsim was successful,

as shown in Figure 4.2.1 and Figure 4.2.2, respectively.

Figure 4.2.1 Compilation Result in Quartus II

Figure 4.2.2 Compilation Result in Modelsim

57

In Figure 4.2.3, it can be observed that the simulation results in Modelsim

were matched with the proposed truth table provided in Figure 3.5.2, which

means that the accuracy of the designed circuit was verified in the software part.

Figure 4.2.3 Simulation Result in Modelsim

 While it comes to the hardware part, in order to connect both the physical

hardware and simulated software, JTAG mode was used as the configuration

method. The configuration data was loaded from the host computer to the board

through the connection of USB blaster. Figure 4.2.4 depicted that the loading

process was successful without any errors.

Figure 4.2.4 Process of loading the configuration data into FPGA (successful)

After the configuration, the result can be observed and verified through

the visual feedback from the FPGA device. Table 4.2.1 summarized and

58

compared both the theoretical and practical results, and it can be observed that

both the result was matched. It can be concluded that the design was successful,

and the verified CAD flow can be further applied in the technical design.

Table 4.2.1 Comparison of theoretical and practical result

Theoretical Result Practical Result

59

4.2.2 Testing of FPGA

This test involves both types of design entries, which included the Verilog file

(.v) and Block Design File (.bdf). The extra features of PLL Megafunction and

Multiplexer are doing the project to be more challenging. The knowledge

learned will be further applied in the specific design. Figure 4.2.5 shows that the

compilation of the design was successful.

Figure 4.2.5 Compilation Report (Successful)

After compiling and verifying the design, the next step is to configure the

FPGA board by transferring the configuration data into the FPGA through the

USB-Blaster circuitry on the board. The compiled SRAM Object File (.sof) was

loaded onto the FPGA through JTAG mode configuration, and the design was

run successfully, as shown in Figure 4.2.6.

Figure 4.2.6 FPGA configuration (successful)

60

After verifying the design, the runtime behavior of the FPGA hardware

design can be observed to make sure that it is functioning accurately. The design

can be verified through observing the four LEDs in the FPGA board appear to

be changing in a binary count pattern, which was controlled by the

simple_counter bits [26..23]. The LEDs were active low; thus, when counting

starts, all LEDs were turned on (the state of 0000). By pressing and holding

KEY [0], the LEDs advance quicker due to the implementation of the multiplex,

which was handled by the counter bits [24..21]. The runtime behavior of the

FPGA was captured and summarized in Table 4.2.2. However, since the LEDs

are kept blinking, hence it cannot be fully snapshotted and verifying its

correctness in the report. In conclusion, this testing is considered successful as

the compilation and configuration were done with zero error. Besides that, the

runtime behavior of FPGA was studied through the visual feedback from the

LEDs on the FPGA device.

Table 4.2.2 Summarized result to show the runtime behaviour of FPGA

FPGA device before configuration

LEDs are advancing slowly in a binary count

pattern

The LEDs advance quicker when KEY [0] was

pressed and held

The LEDs advance at the quickest rate when

KEY [0] was pressed and held

61

4.2.3 Testing of VGA monitor

The test of the VGA monitor is crucial since the display of the design is the only

way to verify the design by giving the designer direct visual feedback,

determining whether the design works. The test has been carried out by

connecting the monitor directly to the host computer through VGA cable. From

Figure 4.2.7, the result verified that the monitor could be functioned well and

displayed smoothly through VGA.

Figure 4.2.7 Display on VGA monitor when connected to the host computer

4.3 Experiment on Game Development: Ping Pong Game

4.3.1 Pin Assignment

In order to control the game, the key inputs have to be set preliminary. Once the

player pressed on the respective key inputs, the system will respond to it and

display it on the monitor. To connect the preliminary set input from the designed

code to the physical FPGA board, it is necessary to assign the FPGA pins with

the respective function. (Altera Corporation, 2010)

In this design, the key inputs are assigned to FPGA pins like push buttons,

clocks, slide switches, VGA outputs, and LCD. Each pin consists of their

specific PIN and function. Therefore, the pin assignment was done by referring

to APPENDIX D. The overall pin planner was shown in Figure 4.3.1, and the

exported pin assignment in the CSV file can be found in APPENDIX B.

62

Figure 4.3.1 Pin Planner (Ping Pong Game)

4.3.2 Compilation Result

Figure 4.3.2 shows the compilation report of the designed circuit. As shown in

the message box, the design was compiled successfully with zero errors.

Figure 4.3.2 Compilation Result (Successful)

63

4.3.3 JTAG Configuration

During the loading of configuration data into the FPGA device via the JTAG

configuration mode, Figure 4.3.3 shows that the loading progress was successful.

Figure 4.3.3 Process of loading configuration data into FPGA (Successful)

64

4.3.4 VGA Display

This section will show the game display on the VGA monitor. The game graphic

includes the color of paddles as well as the color of the ball.

a) Color of Paddle

The color of the paddle was altered when the binary state changed. The result

was shown in Table 4.3.1. The result obtained was the same as the truth table

provided in Section 3.6.3.

Table 4.3.1 Display of paddle color according to their respective binary state

State Display of paddle color State Display of paddle color

000

100

001

101

010

110

011

111

65

b) Color of ball

The color of the ball was altered when the binary state changed, as illustrated in

Table 4.3.2. It can be observed that the result obtained was the same as the truth

table provided in Section 3.6.3.

Table 4.3.2 Display of the ball color according to their respective binary state

State Display of ball color State Display of ball color

000

100

001

101

010

110

011

111

66

4.3.5 Results of Game Control Module

a) The initial location of the ball and paddles

The initial location of the ball and paddles were set as in Figure 4.3.4, when the

RESET key is inputted, the ball and the paddles will reset back to their original

position, and the game will restart again.

Figure 4.3.4 Initial location of the ball and paddles

67

b) The size control of the paddles

The paddle size can be controlled by the players to enlarge or diminish it

according to their binary state, as shown in Table 4.3.3. It is found that the result

obtained was the same as the truth table provided in Section 3.6.3.

Table 4.3.3 Display of the paddle size according to their respective binary state

State Display of paddle size

00

01

10

11

68

c) The point's accumulation and calculation

As observed from Figure 4.3.5, the game started with 0 points for both players.

The SSD on the right side is displaying the accumulated points of Player A while

the left side of the SSD is displaying the accumulated points of Player B. The

sample display on SSD can be found in Figure 4.3.6 and Figure 4.3.7.

Figure 4.3.5 Start of the game

Figure 4.3.6 Player B gained 45 points

Figure 4.3.7 Player A gained 30 points while Player B gained 60 points

69

d) The judgment of victory and defeat

Figure 4.3.8 illustrated the condition when Player A won the game, while Figure

4.3.9 indicates the condition when Player B won the game. The judgment of

victory and defeat was done by comparing the accumulated points of the players.

The first player earned 90 points will be the winner of the game, and the game

will end immediately. The game will start again only when the RESET key is

inputted.

Figure 4.3.8 Display on the DE2-115 board when Player A wins

Figure 4.3.9 Display on the DE2-115 board when Player B wins

70

4.4 Summary

This chapter mainly focused on the discussion of the result obtained during the

three preliminary testing as well as game development. For the testing of the

CAD tool, FPGA, as well as the VGA monitor, the theoretical result and

practical result were matched and considered successful. After conducting the

test, if there were any problems encountered, the issues can be discovered and

solved during the early stage of the project.

 During the development of the FPGA-based ping-pong game, the game

display on the VGA monitor proved that the practical results were fully

matching with the theoretical results. Firstly, the initial location of the ball and

paddles was set according to the XY-coordinates. The ball and the paddles were

able to be back to their initial location when the RESET key was inputted. Next,

the display results were verified by comparing the game display to the truth table;

for example, the color of the ball and paddles. The color of the ball and paddles

can be altered by changing the binary state of the slide switches. Lastly, the

point's accumulation system and the judicial system were designed successfully

as the FPGA can calculate and compare the points, decide the winner, and then

display on the SSD and LCD.

71

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The project design comes with hardware and software design, where both works

coherently to introduce the development of ping pong game based on FPGA.

The project included the design of input keys, VGA display, location and

movement of the ball and paddles, principle of ball de-bouncing, speed control

of the ball, size control of the paddle, point's accumulation and calculation as

well as the judgment of victory and defeat.

Throughout the game development, the relevant theory of FPGA was

implied in the game application, and hence a more in-depth understanding of

FPGA and Verilog language has been acquired, for instance, the features,

standard, pins connection, as well as the CAD flow of FPGA, were studied.

Besides that, in order to highlight the benefits of FPGA, the difficulty

level of the game was increased by adding the extra features, where the players

can control the speed of the ball and the size of the paddles. More benefits of

FPGA have been discovered and emphasized in this project as compared to

other ASICs.

As observed from the experimental results obtained, the compilation of

the game design is found to be successful. The game can be displayed and

functioned smoothly without any delay. In conclusion, this project is considered

successful as all the objectives were achieved.

72

5.2 Recommendations for future work

In this project, a complete framework for the design of an FPGA-based ping pong

game using Verilog has been built. However, there are several things to be

accomplished in the future.

First, the inputting method in this project was done by the input keys from

the development board. Instead of using the internal push buttons and slide

switches, it is recommended to improve it to be controlled by an external keyboard,

for example, a PS/2 keyboard.

Besides, the display of points and winners was done by using the seven

segment display and LCD module, respectively. It is encouraged to enhance it to

be displayed on the VGA monitor, which includes the "game characters" display

functions to display 26 capital letters of English characters (A to Z) and 10

Roman numerals (0 to 9) on the VGA monitor.

Lastly, it is suggested to involve the design of the audio module in order

to enhance the users' experience.

73

REFERENCES

Altera Corporation, 2010. U. Manual, “Altera DE2 Board”, s.l.: Terasic

Technologies.

Altera Corporation, 2006. U. Manual, “Altera DE2 Board”. s.l.:s.n.

Brown, S. and Rose, J., 2002. Architecture of FPGAs and CPLDs: A Tutorial,

Toronto: EECG.

Center, N. L. H., 2017. CPLD vs FPGA: Differences between them and which

one to use?. [Online]

Available at: https://numato.com/kb/cpld-vs-fpga-differences-one-use/

[Accessed 25 March 2020].

Elprocus, 2019. Introduction to Application Specific Integrated Circuit (ASIC).

[Online]

Available at: https://www.elprocus.com/application-specific-integrated-

circuits/

[Accessed 25 March 2020].

England, T. T., n.d. THE BASIC RULES OF TABLE TENNIS. [Online]

Available at: https://www.keepintheloop.uk/rules-of-table-

tennis/?doing_wp_cron=1587803200.2764790058135986328125

[Accessed 02 April 2020].

fpga4fun, n.d. Pong Game. [Online]

Available at: https://www.fpga4fun.com/PongGame.html

[Accessed 2 April 2020].

Inventions, A., 2017. FPGA advantages. [Online]

Available at: https://www.af-inventions.de/en/services/fpga-development/fpga-

advantages.html

[Accessed 18 April 2020].

Keim, R., 2018. What Is an FPGA? An Introduction to Programmable Logic.

[Online]

Available at: https://www.allaboutcircuits.com/technical-articles/what-is-an-

fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/

[Accessed 25 March 2020].

74

Kleitz, W., 2006. Digital Electronics with VHDL. Quartus II Version ed.

s.l.:Pearson Prentice Hall.

Krazytech, 2015. Programmable Logic Devices. [Online]

Available at: https://krazytech.com/technical-papers/programmable-logic-

devices-pld

[Accessed 25 March 2020].

Liu, K. Corporation, 2012. Tetris game design based on the FPGA. IEEE, pp.

2925-2928.

Toonsi S. Corporation, 2017. VHDL Based Circuits Design and Synthesis on

FPGA: A Dice Game Example. 2017 IEEE 2nd International Conference on

Signal and Image Processing, pp. 418-422.

Touger, E., 2018. What Is an FPGA and Why Is It a Big Deal?. [Online]

Available at: https://www.prowesscorp.com/what-is-fpga/

[Accessed 19 April 2020].

WatElectronics, 2019. Basic FPGA Architecture and its Applications. [Online]

Available at: https://www.watelectronics.com/fpga-architecture-applications/

[Accessed 18 April 2020].

Wolff, H., 1990. Electronics. [Online]

Available at: https://researchers.dellmed.utexas.edu/en/publications/how-

quickturn-is-filling-a-gap

[Accessed 25 March 2020].

Zhang, G. and Xie, M., 2010. Design ofVisual Based-FPGA Ping-pang Game

with. IEEE, pp. 31-34.

75

APPENDICES

APPENDIX A

Designed Verilog Code for FPGA-based Ping-Pong Game

76

77

78

79

80

81

82

83

84

APPENDIX B

Pin Assignment for FPGA-based Ping-Pong Game

Node Name Direction Location I/O Bank VREF Group Fitter Location

LCD_D[7] Bidir PIN_M5 1 B1_N2 PIN_M5

LCD_D[6] Bidir PIN_M3 1 B1_N1 PIN_M3

LCD_D[5] Bidir PIN_K2 1 B1_N1 PIN_K2

LCD_D[4] Bidir PIN_K1 1 B1_N1 PIN_K1

LCD_D[3] Bidir PIN_K7 1 B1_N1 PIN_K7

LCD_D[2] Bidir PIN_L2 1 B1_N2 PIN_L2

LCD_D[1] Bidir PIN_L1 1 B1_N2 PIN_L1

LCD_D[0] Bidir PIN_L3 1 B1_N1 PIN_L3

PS2_KBCLK Bidir PIN_G6 1 B1_N0 PIN_G6

PS2_KBDAT Bidir PIN_H5 1 B1_N1 PIN_H5

PS2_MSCLK Bidir PIN_AG25 4 B4_N1 PIN_AG25

PS2_MSDAT Bidir PIN_W4 2 B2_N2 PIN_W4

change[20] Output PIN_D2 1 B1_N0 PIN_D2

change[19] Output PIN_U8 2 B2_N1 PIN_U8

change[18] Output PIN_N25 6 B6_N2 PIN_N25

change[17] Output PIN_B23 7 B7_N0 PIN_B23

change[16] Output PIN_AE26 5 B5_N2 PIN_AE26

change[15] Output PIN_Y15 3 B3_N0 PIN_Y15

change[14] Output PIN_C24 7 B7_N0 PIN_C24

change[13] Output PIN_AH25 4 B4_N1 PIN_AH25

change[12] Output PIN_V2 2 B2_N0 PIN_V2

change[11] Output PIN_AE9 3 B3_N1 PIN_AE9

change[10] Output PIN_Y17 4 B4_N0 PIN_Y17

change[9] Output PIN_AF7 3 B3_N1 PIN_AF7

change[8] Output PIN_D21 7 B7_N0 PIN_D21

change[7] Output PIN_G21 7 B7_N1 PIN_G21

change[6] Output PIN_U6 2 B2_N1 PIN_U6

change[5] Output PIN_AH8 3 B3_N1 PIN_AH8

change[4] Output PIN_AB11 3 B3_N1 PIN_AB11

change[3] Output PIN_E24 7 B7_N1 PIN_E24

change[2] Output PIN_A21 7 B7_N1 PIN_A21

change[1] Output PIN_Y13 3 B3_N0 PIN_Y13

change[0] Output PIN_P1 1 B1_N2 PIN_P1

iCLK_28 Input PIN_C19 7 B7_N1 PIN_C19

iCLK_50 Input PIN_Y2 2 B2_N0 PIN_Y2

iCLK_50_2 Input PIN_C7 8 B8_N2 PIN_C7

iCLK_50_3 Input PIN_AC11 3 B3_N0 PIN_AC11

iCLK_50_4 Input PIN_F14 8 B8_N0 PIN_F14

iEXT_CLOCK Input PIN_D13 8 B8_N0 PIN_D13

85

Node Name Direction Location I/O Bank VREF Group Fitter Location

iKEY[3] Input PIN_R24 5 B5_N0 PIN_R24

iKEY[2] Input PIN_N21 6 B6_N2 PIN_N21

iKEY[1] Input PIN_M21 6 B6_N1 PIN_M21

iKEY[0] Input PIN_M23 6 B6_N2 PIN_M23

iSW[17] Input PIN_Y23 5 B5_N2 PIN_Y23

iSW[16] Input PIN_Y24 5 B5_N2 PIN_Y24

iSW[15] Input PIN_AA22 5 B5_N2 PIN_AA22

iSW[14] Input PIN_AA23 5 B5_N2 PIN_AA23

iSW[13] Input PIN_AA24 5 B5_N2 PIN_AA24

iSW[12] Input PIN_AB23 5 B5_N2 PIN_AB23

iSW[11] Input PIN_AB24 5 B5_N2 PIN_AB24

iSW[10] Input PIN_AC24 5 B5_N2 PIN_AC24

iSW[9] Input PIN_AB25 5 B5_N1 PIN_AB25

iSW[8] Input PIN_AC25 5 B5_N2 PIN_AC25

iSW[7] Input PIN_AB26 5 B5_N1 PIN_AB26

iSW[6] Input PIN_AD26 5 B5_N2 PIN_AD26

iSW[5] Input PIN_AC26 5 B5_N2 PIN_AC26

iSW[4] Input PIN_AB27 5 B5_N1 PIN_AB27

iSW[3] Input PIN_AD27 5 B5_N2 PIN_AD27

iSW[2] Input PIN_AC27 5 B5_N2 PIN_AC27

iSW[1] Input PIN_AC28 5 B5_N2 PIN_AC28

iSW[0] Input PIN_AB28 5 B5_N1 PIN_AB28

oHEX0_D[6] Output PIN_H22 6 B6_N0 PIN_H22

oHEX0_D[5] Output PIN_J22 6 B6_N0 PIN_J22

oHEX0_D[4] Output PIN_L25 6 B6_N1 PIN_L25

oHEX0_D[3] Output PIN_L26 6 B6_N1 PIN_L26

oHEX0_D[2] Output PIN_E17 7 B7_N2 PIN_E17

oHEX0_D[1] Output PIN_F22 7 B7_N0 PIN_F22

oHEX0_D[0] Output PIN_G18 7 B7_N2 PIN_G18

oHEX1_D[6] Output PIN_U24 5 B5_N0 PIN_U24

oHEX1_D[5] Output PIN_U23 5 B5_N1 PIN_U23

oHEX1_D[4] Output PIN_W25 5 B5_N1 PIN_W25

oHEX1_D[3] Output PIN_W22 5 B5_N0 PIN_W22

oHEX1_D[2] Output PIN_W21 5 B5_N1 PIN_W21

oHEX1_D[1] Output PIN_Y22 5 B5_N0 PIN_Y22

oHEX1_D[0] Output PIN_M24 6 B6_N2 PIN_M24

oHEX2_D[6] Output PIN_W28 5 B5_N1 PIN_W28

oHEX2_D[5] Output PIN_W27 5 B5_N1 PIN_W27

oHEX2_D[4] Output PIN_Y26 5 B5_N1 PIN_Y26

oHEX2_D[3] Output PIN_W26 5 B5_N1 PIN_W26

oHEX2_D[2] Output PIN_Y25 5 B5_N1 PIN_Y25

oHEX2_D[1] Output PIN_AA26 5 B5_N1 PIN_AA26

oHEX2_D[0] Output PIN_AA25 5 B5_N1 PIN_AA25

86

Node Name Direction Location I/O Bank VREF Group Fitter Location

oHEX3_D[6] Output PIN_Y19 4 B4_N0 PIN_Y19

oHEX3_D[5] Output PIN_AF23 4 B4_N0 PIN_AF23

oHEX3_D[4] Output PIN_AD24 4 B4_N0 PIN_AD24

oHEX3_D[3] Output PIN_AA21 4 B4_N0 PIN_AA21

oHEX3_D[2] Output PIN_AB20 4 B4_N0 PIN_AB20

oHEX3_D[1] Output PIN_U21 5 B5_N0 PIN_U21

oHEX3_D[0] Output PIN_V21 5 B5_N1 PIN_V21

oHEX4_D[6] Output PIN_AE18 4 B4_N2 PIN_AE18

oHEX4_D[5] Output PIN_AF19 4 B4_N1 PIN_AF19

oHEX4_D[4] Output PIN_AE19 4 B4_N1 PIN_AE19

oHEX4_D[3] Output PIN_AH21 4 B4_N2 PIN_AH21

oHEX4_D[2] Output PIN_AG21 4 B4_N2 PIN_AG21

oHEX4_D[1] Output PIN_AA19 4 B4_N0 PIN_AA19

oHEX4_D[0] Output PIN_AB19 4 B4_N0 PIN_AB19

oHEX5_D[6] Output PIN_AH18 4 B4_N2 PIN_AH18

oHEX5_D[5] Output PIN_AF18 4 B4_N1 PIN_AF18

oHEX5_D[4] Output PIN_AG19 4 B4_N2 PIN_AG19

oHEX5_D[3] Output PIN_AH19 4 B4_N2 PIN_AH19

oHEX5_D[2] Output PIN_AB18 4 B4_N0 PIN_AB18

oHEX5_D[1] Output PIN_AC18 4 B4_N1 PIN_AC18

oHEX5_D[0] Output PIN_AD18 4 B4_N1 PIN_AD18

oHEX6_D[6] Output PIN_AC17 4 B4_N2 PIN_AC17

oHEX6_D[5] Output PIN_AA15 4 B4_N2 PIN_AA15

oHEX6_D[4] Output PIN_AB15 4 B4_N2 PIN_AB15

oHEX6_D[3] Output PIN_AB17 4 B4_N1 PIN_AB17

oHEX6_D[2] Output PIN_AA16 4 B4_N2 PIN_AA16

oHEX6_D[1] Output PIN_AB16 4 B4_N2 PIN_AB16

oHEX6_D[0] Output PIN_AA17 4 B4_N1 PIN_AA17

oHEX7_D[6] Output PIN_AA14 3 B3_N0 PIN_AA14

oHEX7_D[5] Output PIN_AG18 4 B4_N2 PIN_AG18

oHEX7_D[4] Output PIN_AF17 4 B4_N2 PIN_AF17

oHEX7_D[3] Output PIN_AH17 4 B4_N2 PIN_AH17

oHEX7_D[2] Output PIN_AG17 4 B4_N2 PIN_AG17

oHEX7_D[1] Output PIN_AE17 4 B4_N2 PIN_AE17

oHEX7_D[0] Output PIN_AD17 4 B4_N2 PIN_AD17

oLCD_BLON Output PIN_L6 1 B1_N2 PIN_L6

oLCD_EN Output PIN_L4 1 B1_N1 PIN_L4

oLCD_ON Output PIN_L5 1 B1_N1 PIN_L5

oLCD_RS Output PIN_M2 1 B1_N2 PIN_M2

oLCD_RW Output PIN_M1 1 B1_N2 PIN_M1

87

Node Name Direction Location I/O Bank VREF Group Fitter Location

oLEDG[8] Output PIN_AF25 4 B4_N1 PIN_AF25

oLEDG[7] Output PIN_H24 6 B6_N0 PIN_H24

oLEDG[6] Output PIN_AH26 4 B4_N0 PIN_AH26

oLEDG[5] Output PIN_AE11 3 B3_N1 PIN_AE11

oLEDG[4] Output PIN_AA8 3 B3_N1 PIN_AA8

oLEDG[3] Output PIN_AF9 3 B3_N1 PIN_AF9

oLEDG[2] Output PIN_AC7 3 B3_N2 PIN_AC7

oLEDG[1] Output PIN_B22 7 B7_N1 PIN_B22

oLEDG[0] Output PIN_AC15 4 B4_N2 PIN_AC15

oLEDR[17] Output PIN_H15 7 B7_N2 PIN_H15

oLEDR[16] Output PIN_G16 7 B7_N2 PIN_G16

oLEDR[15] Output PIN_G15 7 B7_N2 PIN_G15

oLEDR[14] Output PIN_F15 7 B7_N2 PIN_F15

oLEDR[13] Output PIN_H17 7 B7_N2 PIN_H17

oLEDR[12] Output PIN_J16 7 B7_N2 PIN_J16

oLEDR[11] Output PIN_H16 7 B7_N2 PIN_H16

oLEDR[10] Output PIN_J15 7 B7_N2 PIN_J15

oLEDR[9] Output PIN_G17 7 B7_N1 PIN_G17

oLEDR[8] Output PIN_J17 7 B7_N2 PIN_J17

oLEDR[7] Output PIN_H19 7 B7_N2 PIN_H19

oLEDR[6] Output PIN_J19 7 B7_N2 PIN_J19

oLEDR[5] Output PIN_E18 7 B7_N1 PIN_E18

oLEDR[4] Output PIN_F18 7 B7_N1 PIN_F18

oLEDR[3] Output PIN_F21 7 B7_N0 PIN_F21

oLEDR[2] Output PIN_E19 7 B7_N0 PIN_E19

oLEDR[1] Output PIN_F19 7 B7_N0 PIN_F19

oLEDR[0] Output PIN_G19 7 B7_N2 PIN_G19

oVGA_B[7] Output PIN_D12 8 B8_N0 PIN_D12

oVGA_B[6] Output PIN_D11 8 B8_N1 PIN_D11

oVGA_B[5] Output PIN_C12 8 B8_N0 PIN_C12

oVGA_B[4] Output PIN_A11 8 B8_N0 PIN_A11

oVGA_B[3] Output PIN_B11 8 B8_N0 PIN_B11

oVGA_B[2] Output PIN_C11 8 B8_N1 PIN_C11

oVGA_B[1] Output PIN_A10 8 B8_N0 PIN_A10

oVGA_B[0] Output PIN_B10 8 B8_N0 PIN_B10

oVGA_BLANK_NOutput PIN_F11 8 B8_N1 PIN_F11

oVGA_CLOCK Output PIN_A12 8 B8_N0 PIN_A12

88

Node Name Direction Location I/O Bank VREF Group Fitter Location

oVGA_G[7] Output PIN_C9 8 B8_N1 PIN_C9

oVGA_G[6] Output PIN_F10 8 B8_N1 PIN_F10

oVGA_G[5] Output PIN_B8 8 B8_N1 PIN_B8

oVGA_G[4] Output PIN_C8 8 B8_N1 PIN_C8

oVGA_G[3] Output PIN_H12 8 B8_N1 PIN_H12

oVGA_G[2] Output PIN_F8 8 B8_N2 PIN_F8

oVGA_G[1] Output PIN_G11 8 B8_N1 PIN_G11

oVGA_G[0] Output PIN_G8 8 B8_N2 PIN_G8

oVGA_HS Output PIN_G13 8 B8_N0 PIN_G13

oVGA_R[7] Output PIN_H10 8 B8_N1 PIN_H10

oVGA_R[6] Output PIN_H8 8 B8_N2 PIN_H8

oVGA_R[5] Output PIN_J12 8 B8_N0 PIN_J12

oVGA_R[4] Output PIN_G10 8 B8_N1 PIN_G10

oVGA_R[3] Output PIN_F12 8 B8_N1 PIN_F12

oVGA_R[2] Output PIN_D10 8 B8_N1 PIN_D10

oVGA_R[1] Output PIN_E11 8 B8_N1 PIN_E11

oVGA_R[0] Output PIN_E12 8 B8_N1 PIN_E12

oVGA_SYNC_N Output PIN_C10 8 B8_N0 PIN_C10

oVGA_VS Output PIN_C13 8 B8_N0 PIN_C13

ostate[1] Output PIN_L8 1 B1_N2 PIN_L8

ostate[0] Output PIN_M7 1 B1_N2 PIN_M7

89

APPENDIX C

Connections between the pushbutton and Cyclone IV E FPGA

Connections between the slide switches and Cyclone IV E FPGA

Block diagram of the clock distribution

90

APPENDIX D

Pin Assignments for Push Buttons

Signal Name FPGA Pin No. Description I/O Standard

KEY[0] PIN_M23 Push-button[0] Depending on JP7

KEY[1] PIN_M21 Push-button[1] Depending on JP7

KEY[2] PIN_N21 Push-button[2] Depending on JP7

KEY[3] PIN_R24 Push-button[3] Depending on JP7

Pin Assignments for Slide Switches

Signal Name FPGA Pin No. Description I/O Standard

SW[0] PIN_AB28 Slide Switch[0] Depending on JP7

SW[1] PIN_AC28 Slide Switch[1] Depending on JP7

SW[2] PIN_AC27 Slide Switch[2] Depending on JP7

SW[3] PIN_AD27 Slide Switch[3] Depending on JP7

SW[4] PIN_AB27 Slide Switch[4] Depending on JP7

SW[5] PIN_AC26 Slide Switch[5] Depending on JP7

SW[6] PIN_AD26 Slide Switch[6] Depending on JP7

SW[7] PIN_AB26 Slide Switch[7] Depending on JP7

SW[8] PIN_AC25 Slide Switch[8] Depending on JP7

SW[9] PIN_AB25 Slide Switch[9] Depending on JP7

SW[10] PIN_AC24 Slide Switch[10] Depending on JP7

SW[11] PIN_AB24 Slide Switch[11] Depending on JP7

SW[12] PIN_AB23 Slide Switch[12] Depending on JP7

SW[13] PIN_AA24 Slide Switch[13] Depending on JP7

SW[14] PIN_AA23 Slide Switch[14] Depending on JP7

SW[15] PIN_AA22 Slide Switch[15] Depending on JP7

SW[16] PIN_Y24 Slide Switch[16] Depending on JP7

SW[17] PIN_Y23 Slide Switch[17] Depending on JP7

Pin Assignments for Clock Inputs Signal

Name FPGA Pin No. Description I/O Standard

CLOCK_50 PIN_Y2 50 MHz clock input 3.3V

CLOCK2_50 PIN_AG14 50 MHz clock input 3.3V

CLOCK3_50 PIN_AG15 50 MHz clock input Depending on JP6

SMA_CLKOUT PIN_AE23 External (SMA)

clock output

Depending on JP6

SMA_CLKIN PIN_AH14 External (SMA)

clock input

3.3V

91

Pin Assignments for ADV7123 Signal

Name FPGA Pin No. Description I/O Standard

VGA_R[0] PIN_E12 VGA Red[0] 3.3V

VGA_R[1] PIN_E11 VGA Red[1] 3.3V

VGA_R[2] PIN_D10 VGA Red[2] 3.3V

VGA_R[3] PIN_F12 VGA Red[3] 3.3V

VGA_R[4] PIN_G10 VGA Red[4] 3.3V

VGA_R[5] PIN_J12 VGA Red[5] 3.3V

VGA_R[6] PIN_H8 VGA Red[6] 3.3V

VGA_R[7] PIN_H10 VGA Red[7] 3.3V

VGA_G[0] PIN_G8 VGA Green[0] 3.3V

VGA_G[1] PIN_G11 VGA Green[1] 3.3V

VGA_G[2] PIN_F8 VGA Green[2] 3.3V

VGA_G[3] PIN_H12 VGA Green[3] 3.3V

VGA_G[4] PIN_C8 VGA Green[4] 3.3V

VGA_G[5] PIN_B8 VGA Green[5] 3.3V

VGA_G[6] PIN_F10 VGA Green[6] 3.3V

VGA_G[7] PIN_C9 VGA Green[7] 3.3V

VGA_B[0] PIN_B10 VGA Blue[0] 3.3V

VGA_B[1] PIN_A10 VGA Blue[1] 3.3V

VGA_B[2] PIN_C11 VGA Blue[2] 3.3V

VGA_B[3] PIN_B11 VGA Blue[3] 3.3V

VGA_B[4] PIN_A11 VGA Blue[4] 3.3V

VGA_B[5] PIN_C12 VGA Blue[5] 3.3V

VGA_B[6] PIN_D11 VGA Blue[6] 3.3V

VGA_B[7] PIN_D12 VGA Blue[7] 3.3V

VGA_CLK PIN_A12 VGA Clock 3.3V

VGA_BLANK_N PIN_F11 VGA BLANK 3.3V

VGA_HS PIN_G13 VGA H_SYNC 3.3V

VGA_VS PIN_C13 VGA V_SYNC 3.3V

VGA_SYNC_N PIN_C10 VGA SYNC 3.3V

92

APPENDIX E

Features of DE2-115

Features Characteristics

Cyclone IV EP4CE115F29 device

114,480 LEs

432 M9K memory blocks

3,888 Kbits embedded memory

4 PLLs

JTAG and AS mode configuration

EPCS64 serial configuration device

On-board USB Blaster circuitry

128MB (32Mx32bit) SDRAM

2MB (1Mx16) SRAM

8MB (4Mx16) Flash with 8-bit mode

32Kb EEPROM

SD Card Socket Provides SPI and 4-bit SD mode for SD Card access

Two Ethernet 10/100/1000 Mbps ports

High Speed Mezzanine Card (HSMC)

Configurable I/O standards (voltage levels:3.3/2.5/1.8/1.5V)

DB9 serial connector for RS-232 port with flow control

PS/2 mouse/keyboard

Three 50MHz oscillator clock inputs

SMA connectors (external clock input/output)

24-bit encoder/decoder (CODEC)

Line-in, line-out, and microphone-in jacks

Display 16x2 LCD module

18 slide switches and 4 push-buttons switches

18 red and 9 green LEDs

Eight 7-segment displays

Infrared remote-control receiver module

TV decoder (NTSC/PAL/SECAM) and TV-in connector

USB type A and B

-Provide host and device controllers compliant with USB 2.0

-Support data transfer at full-speed and low-speed

-PC driver available

40-pin expansion port

-Configurable I/O standards (voltage levels:3.3/2.5/1.8/1.5V)

VGA-out connector

-VGA DAC (high speed triple DACs)

Switches and

indicators

Other features

FPGA Device

FPGA Configuration

Memory Device

Connectors

Clock

Audio

