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ABSTRACT 

 

Single Pixel Imaging (SPI) is an imaging framework that utilises only one light 

detector instead of detector arrays required by conventional imaging sensors. This is 

achieved by sequentially applying a series of mask patterns and measures the light 

intensity using the single light detector. The measurements correspond to the mask 

patterns can then be used to reconstruct the image. SPI is inherently encrypted, since 

the light intensity collected cannot be related to the original image in any way or 

form, and can only be reconstructed based on the mask patterns used. Thus, the 

collected light intensities can be perceived as the ciphertext and the configuration of 

mask patterns is the key.  

Due to the inherent property of SPI, its encryption security and performance 

were studied. The image acquisition and reconstruction are essentially optical 

encoding and decoding process. Various SPI encoding and decoding schemes were 

investigated, which include Hadamard, random, Fourier, and Chaotic. The findings 

from the analysis of these existing schemes suggest the need of a new encryption 

method. The proposed method is essentially a double encryption that utilises the 

mixing of logistic chaotic maps using random index map at the first phase and 

Double Random Phase Encoding (DRPE) or Rivest–Shamir–Adleman Encryption 

(RSA) at the second phase. Assessment was performed from the perspectives of 

reconstruction quality and security analysis. Besides, the proposed method was also 

compared to the existing encryption schemes. The results show that the proposed 

method has average performance in term of image reconstruction quality at low 

sampling rate but has significant improvement in term of security. Therefore, the 

proposed method is able to overcome the shortcomings regarding the security of 

conventional SPI encoding schemes. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Single Pixel Imaging (SPI) is an optical imaging method where image acquisition is 

done by only a single pixel detector. In comparison with modern digital cameras, 

silicon focal point array (FPA) sensor is used to detect an image which is made up of 

millions of pixels (Edgar, Gibson and Padgett, 2019). One might ask how can a 

single pixel detects and reconstruct an image when the pixel can only detect the 

intensity of light. This is done by illuminating the target image with arrays of 

patterned light, and then recording the array of intensity of light with a single pixel 

detector. The light pattern and the light intensity array recorded can be used to 

reconstruct the image based on algorithms and principles of compressed sensing (CS). 

Based on the image reconstruction method stated just now, it is observed that 

SPI imaging is basically going through an encoding and decoding process. For every 

image acquisition and reconstruction, the key is the pattern array. Thus, SPI is 

inherently more secure compared to conventional imaging methods. Encoding or 

encryption is the recording of information with the intention of hiding its true 

information and only authorise the true information to the intended or authorised 

person with the decoding key. Encryption of information can be dated back to 

ancient times where secret information are being transmitted as symbols and sketches. 

Thus, this project will study the optical encoding based on SPI to further improve the 

security of the SPI scheme. 

 

1.2 Importance of the Study 

SPI method is a fast-growing field that is studied by many researchers. The reason 

for this is that industrial application requires low costing cameras, SPI provides this 

advantage as only one-pixel sensor is needed to record the image. This advantage is 

further amplified when recording non-visible light spectrum images as light detector 

that is outside of the visible spectrum is significantly more expensive than the normal 

detectors. It is also notable that SPI is able to sense compressively, therefore 

reducing the data storage and data transferring requirements (Edgar, Gibson and 

Padgett, 2019). 
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In this study, the main focus is on the encoding of SPI. The inherent 

advantage of SPI can be further enhanced. By improving the security of the SPI 

scheme, SPI scheme might become the leading optical imaging method for secret 

image transfer. Thus, studies are to be done on the performance of encryption 

methods in order to evaluate its feasibility so that it can be referenced to in the future 

when developing a more secured, cost effective and high-performance SPI encoding 

scheme. 

 

1.3 Problem Statement 

Encryption of information needs to be updated and new encryption methods need to 

be introduced as new attacking methods are developed. Thus, to make sure that the 

secret image is secured, new SPI encoding method can be studied. Besides security, 

the performance of the encoding scheme must also be considered. Most encoding 

method will cause some alteration to the image when the image is encoded and 

decoded. Thus, performance analysis is needed to identify the quality of the image 

retrieved. Although there are multiple studies regarding SPI encoding methods, there 

is lack of comprehensive security analysis as they are mainly focus on quality 

analysis. For instance, “A Novel Compressive Optical Encryption via Single-Pixel 

Imaging” by Zhang et al. (2019a). Therefore, multiple security analysis is done to fill 

in this research gap. 

 

1.4 Aims and Objectives 

In order to solve the problem statement mentioned above, three objectives for this 

project have been identified.  

1. To review the SPI and different encoding and decoding schemes. This is 

important to establish a comprehensive understanding on SPI as well as 

different encoding methods. 

2. Design a novel encryption method based on SPI to improve the security of 

encryption. 

3. To analyse the performance of the designed method and available methods. 

This validated and proves the feasibility of the method. 
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1.5 Scope and Limitation of the Study 

The scope of this study includes the literature review of SPI, image performance 

analysis, encryption security and multiple encryption methods. In particular, 

encoding and decoding process of SPI were investigated. It is hoped to propose a 

secure double encryption method as part of the study. Accordingly, the proposed 

method was compared with other SPI encryption methods to compare its 

performance using suitable metrics. 

In this study, MATLAB was used as the main tool to simulate the results. 

Selected datasets that are adequate for the study were used and analysed. No physical 

test bench will be constructed. Thus, there will be limitation to the result as some 

real-world conditions might not be considered in the simulations.  

 

1.6 Contribution of the Study 

The project will contribute to the research gap of the security evaluation of SPI 

encoding framework. Many data in information on the SPI encoding, its strengths 

and weaknesses will be explored and revealed. Besides that, a more secure SPI based 

encryption framework is developed in order to overcome the shortcoming of 

available SPI encoding methods. Through this project, further understanding is 

gained in terms of the security and the potential of SPI in image cryptography. 

 

1.7 Outline of the Report 

This report is divided into five chapters. The first chapter introduces the problem 

statement and objectives of the project. Chapter 2 reviews SPI and other encoding 

frameworks. It also reviews the Mathematic theory that is often used in encryption. 

Besides, similar studies that are relevant to this project is also studied. Next, Chapter 

3 presents the work flow of the simulation, the software used for the simulation, 

security and quality evaluation metrics used, and the methodology of the proposed 

encryption method. Chapter 4 displays the result and discussion of the project. It is 

separated into available SPI encoding method simulations and proposed encryption 

method simulation results and comparisons. Finally, Chapter 5 concludes the whole 

project and gives insight to what can be improved and the limitation of the project. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The most popular image acquisition method in the market right now is based on 

sensor arrays, and pixel counts in cameras nowadays have become a performance 

metric as well as marketing strategy. Though, the developing SPI method is found to 

have some competitive advantages compared to the conventional cameras.  

The working principle of SPI inherently encodes the image, thus presents 

better security compared to conventional image acquisition methods. The image is 

illuminated with spatially modulated light patterns and the reflected light is detected 

and recorded with a single pixel detector as intensity array. The key in this process 

for the encoding and decoding is the illumination pattern array. The ciphertext is then 

the array of light intensity recorded with a single pixel detector, hence SPI. The 

typical process of encoding and decoding of SPI is shown in Figure 2.1 below. 

 

 

 SPI generally makes use of Compressed Sensing (CS) technique. CS is a 

digital signal processing method to obtain and reconstruct a signal efficiently from an 

undetermined system of linear equation. It is highly advantageous as it can 

reconstruct signals when the signal collected is below the Nyquist rate. For example, 

for a 50x50 pixel image, SPI system does not need to collect 50x50 set of intensity 

readings to reconstruct the image fully. It can reconstruct the image with less 

light source 

spatially 

modulated 

patterns 

single pixel 

detector 

Figure 2.1: Illustration of SPI system 
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readings. The condition to use CS is that the signal is inherently sparse in some 

domain. In a natural image, this criterion is fulfilled as its wavelet domain is sparse 

(Rani, Dhok and Deshmukh, 2018). 

 In the literature review, details of SPI and CS will be discussed. Besides, 

studies that have similar objectives as this project is reviewed. 

 

2.2 Single Pixel Imaging 

SPI is an image acquisition and reconstruction method that utilizes CS concepts to 

reconstruct the image. As mentioned before, the image acquisition method is using 

masked patterns to form illumination patterns onto the target image and the light 

intensity is recorded. To cater the compressed sensing reconstruction, the masks 

pattern used are considered.  

It is generally common to use a method that does not match the spatial 

properties of the image, such as random pattern (Edgar, Gibson and Padgett, 2019). 

Though, this method usually takes more time and can make the reconstruction time 

to greatly exceed the acquisition time. Thus, this method is not suitable for 

applications that requires real time performance.  

The other approach on the mask pattern is to use pattern that are not totally 

incoherent with the spatial properties of the image, such as the Hadamard or Fourier 

masks. This method trades some image quality for speed, thus are more suitable for 

real time applications (Edgar, Gibson and Padgett, 2019).  

Mathematically, image, denoted as x can be considered as a 𝑁 × 1 matrix of 

N unknown intensities. The mask pattern basis is denoted as ∅, which is a 𝑀 × 𝑁 

matrix of 0 and 1 to represent the transmitted and blocked light. The measured signal 

is y, which is the product of x and ∅, which is expressed in the Eq. (2.1). 

 𝑦 = ∅𝑥  (2.1) 

 

 The image x is sparse in nature, thus are represented by a sparse basis 𝜑 and 

its coefficient which are the uncompressed image denoted by 𝛼 which is K-sparse. 

This means that only K number of coefficients in 𝛼 are non-zero. The equation of x 

is shown in Eq. (2.2). 

 𝑥 = 𝜑𝛼 (2.2) 
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Thus, the equation of the measured signal becomes 

 y=∅φα (2.3) 

 

 The measurement basis matrix ∅ should be maximally incoherent with the 

sparse basis 𝜑, such as using random binary pattern (Edgar, Gibson and Padgett, 

2019). In order to reconstruct the image when the number of measurements is less 

than pixels M < N some CS algorithms are used. The image in the transform domain 

can be reconstructed when the number of sampling patterns used is 𝑀 ≥

𝑂(𝐾𝑙𝑜𝑔 (
𝑁

𝐾
)) by solving an optimization problem (Edgar, Gibson and Padgett, 2019). 

One of the optimization methods that can be used are the ℓ1 minimization, which can 

be expressed as  

 𝛼∗ = arg 𝑚𝑖𝑛||𝛼||1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 = ∅𝜑𝛼  (2.4) 

 

where the pixel domain representation of image 𝑥∗ can be calculated through 

 𝑥∗ = 𝜑𝛼∗  (2.5) 

 

There are also other optimization methods that can be used such as the total variation 

(TV) minimization and the total curvature (TC) minimization. 

 For real life practice, the data measured will be suspected to noise 𝜎 which 

comes from the instability of light source and electronic readout noise from the 

detector. Thus, the equation considering the noise are represented by 

 𝛼∗ = arg 𝑚𝑖𝑛||𝛼||1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝑦 − ∅𝜑𝛼||2 ≤ 𝜎  (2.6) 

 

 

2.3 Compressed Sensing (CS) 

CS is developed and introduced by Donoho, Candes, Romberg and Tao in 2004 and 

is used for the acquisition of sparse or compressible signals (Rani, Dhok and 

Deshmukh, 2018). Sparsity means that the signal has only few significant parts, 

where most of the data is equal or close to zero. This method saves data storage as 

most traditional signal acquisition methods need to follow the Nyquist criterion, 

causes too many redundant data is recorded when the signal is sparse. CS enable 

signal acquisition and deconstruction that discards the non-significant data, thus 

taking fewer measurements.  
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 The image acquisition algorithm in 2.2 is essentially the compressed sensing 

signal acquisition algorithm. Number of measurement matrix M is less than the 

length of input signal N. Due the sparse property of natural image, the complete 

reconstruction can be done using CS with M proportional with sparsity of image K. 

Figure 2.2 shows the acquisition process based on CS. 

 

Figure 2.2: Signal acquisition process based on CS (Rani, Dhok and Deshmukh, 

2018) 

 

 

2.4 Optical Image Encryption 

Optical encoding takes advantage of the coherent nature of the laser beam to obtain 

efficient encrypted data as well as high speed decryption through parallel processing 

(Glückstad and Palima, 2009). It is also able to encrypt information in multiple 

dimensions.  

 

2.4.1 Double Random Phase Encoding 

One very important optical encryption technique that serves as the basis for many 

optical encryption methods now is the double random phase encoding (DRPE) 

(Alfalou and Brosseau, 2009).  

The general idea of this technique is encrypting the image into a stationary 

white noise by altering its spectrum. In DRPE, both amplitude and phase spectrum 

are altered to encrypt the information securely, since there are ways to reconstruct 

the image with only phase or amplitude information (Alfalou and Brosseau, 2009). 

The process can be mathematically explained as follows. the image represented by 

I(x, y) are to be multiplied with a first key which is a random phase mask RP1. RP1 

can be expressed as  

 𝑅𝑃1 = exp(𝑖2𝜋𝑛(𝑥, 𝑦))  (2.7) 

where  
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n(x, y) = white noise that are uniformly distributed in [0, 1]  

 

After that, it is multiplied by a second encryption key which is a second random 

phase mask in Fourier domain. The key is expressed as  

 𝑅𝑃2 = exp(𝑖2𝜋𝑏(𝑣, 𝜇))  (2.8) 

where  

𝑏(𝑣, 𝜇) = white noise that is uniformly distributed in [0, 1] independent of 𝑛(𝑥, 𝑦)  

 

In this way, the image is encrypted. The encryption process that fully represents the 

process is  

 𝐼𝑐(𝑥, 𝑦) = (𝐼(𝑥, 𝑦) exp(𝑖2𝜋𝑛(𝑥, 𝑦)))⨂ℎ(𝑥, 𝑦)  (2.9) 

where  

⨂ = convolution  

ℎ(𝑥, 𝑦) = 𝐹𝑇−1[𝑅𝑃2] 

 

This method can be implemented optically through a setup illustrated in Figure 2.3 

below, where the lenses perform Fourier transform (FT) optically. 

 

Figure 2.3: Optical implementation of DRP (Alfalou and Brosseau, 2009) 

 

 To decode the encrypted image, FT of Ic(x, y) is multiplied with conjugate of 

RP2. Then, its inverse FT will be |𝐼(𝑥, 𝑦) exp(𝑖2𝜋𝑛(𝑥, 𝑦)) |2 = |𝐼(𝑥, 𝑦)|2. 

 Besides using FT for DRP, different types of transforms such as fractional 

Fourier transform (FRT), Fresnel transform (FST), linear Canonical transform (LCT), 

Gyrator transform (GT), and Hartley transform (HT) can also be used (Liu, Guo and 

Sheridan, 2014). 
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2.5 Rivest–Shamir–Adleman Encryption (RSA) 

Rivest-Shamir-Adleman Encryption (RSA) is a public key cryptosystem which is 

named after its developers. A public key cryptosystem, also known as asymmetric 

cryptosystem, is done by using two different keys. The two keys are the public key 

and the private key. The private key cannot be derived from the public key, which 

makes it safe to publish the encryption key without risking the leak of the private key. 

RSA cryptosystem utilises the property of field of number theory, where it is simple 

to multiply two large prime numbers to generate a composite number, but it is very 

hard to do the reverse (Zhao, et al., 2010). There is still no effective algorithm to do 

an efficient decomposition yet.  

 In order to perform RSA, there are a few steps that need to be followed. First, 

two distinct prime numbers, p and q are chosen and their product, n is calculated as 

shown in Eq. (2.10) 

 𝑛 = 𝑝𝑞  (2.10) 

 

Next, encryption key, e is generated where it should be less than the Euler’s totient 

function 𝜑(𝑛) and more than 1. e must also be the coprime of 𝜑(𝑛). The Euler 

totient function 𝜑(𝑛) is expressed as 

 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)  (2.11) 

 

Finally, the decryption key, d is calculated. The calculation is shown in Eq. (2.12) 

 𝑑 = 𝑒−1𝑚𝑜𝑑 𝜑(𝑛)  (2.12) 

 

The public key is (e, n) while the private key is (d, n). The private key, d must be 

kept secret. The values of p, q, and 𝜑(𝑛) should also be kept secret because it is 

possible to calculate the private key using these values. 

 After preparing the keys, the encryption and decryption process can be 

performed. The encryption and decryption process can be represented by Eq. (2.13) 

and Eq. (2.14) respectively. 

 𝑐 =  𝑚𝑒(𝑚𝑜𝑑 𝑛) (2.13) 

 𝑚 =  𝑐𝑑(𝑚𝑜𝑑 𝑛) (2.14) 

where 
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c = ciphertext 

m = plaintext 

 

 The security of RSA relies on the difficulty to factorize integers. In this case, 

the difficulty to factorise n. Factorising n to p and q is the most obvious way to attack 

the cryptosystem. But as mentioned before, this is a very hard problem to be solved. 

This is especially true when n is large. Thus, p and q should be large enough so that 

it is more secure, subjecting to the specific usage of the encryption (Zhou and Tang, 

2011).  

 

2.6 Chaotic Maps 

Chaotic map is a mapping that exhibits chaotic characteristics. It is derived from 

chaos theory which is a branch of mathematics that handles nonlinear dynamical 

systems (Boeing, 2016). The term nonlinear indicates that the change in the system 

output is not proportional to the input due to feedback or multiplicative effects. 

Meanwhile, dynamical systems indicates that the system changes over time 

depending on the current state. Chaotic systems exhibit random like behaviour. It 

may be derived from a simple looking equation with few interactive parts but it is 

very sensitive to initial conditions and can result in a completely different sequence 

when a very small change is applied to it. Despite their deterministic simplicity, as 

the system changes over time the output can become extremely unpredictable and 

divergent.  

 The unpredictable, random, and sensitivity to key nature of the chaotic 

systems makes it a highly studied and applied technique for encryption (Agarwal, 

2018). There are many kinds of different chaotic maps that are utilised for encryption. 

Here, we will discuss about a simple one-dimensional chaotic map – the Logistic 

map. The equation that defines the logistic map is shown in Eq. (2.15). 

 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) (2.15) 

where 

x = population 

n = number of iterations 

r = growth rate 
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Growth rate is a very important parameter as the population might not be 

chaotic at certain growth rate. For instance, with growth rate of 0.5, the population 

will settle to 0 after many iterations. The relationship between the population and 

generations of iteration based on different growth rate are shown in Figure 2.4. Note 

that the population starts with 0.5 in this example.  

 

Figure 2.4: Logistic model result, by growth rate. (Boeing, 2016) 

 

 Attractor is the value where the system settles toward after many iterations. In 

the case where growth rate is 0.5, the system will have one point attractor at 0. When 

the growth rate is less than 3.5, the logistic system is not yet chaotic since it only has 

limited number of attractor that the system oscillates around. When growth rate is 

more than 3.5, the system will have a strange attractor where the system will oscillate 

forever and will not repeat or settle to a steady state. A bifurcation diagram shows 

this more clearly as it plots the relationship between the attractor and the growth rate. 

The bifurcation diagram of logistic map is shown in Figure 2.5. 
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Figure 2.5: Bifurcation diagram of logistic map. (Boeing, 2016) 

 

2.7 Similar Studies 

2.7.1 A Novel Compressive Optical Encryption via Single-Pixel Imaging 

Zhang et al. (2019a) proposed a novel compressive optical encryption via SPI. The 

study involves the theory of their encryption and results, both in simulation and real-

life experiment with an optical setup.  

 The key of their proposed SPI encryption lies in the random index map (RIM) 

which consists of 0 and 1s. The RIM  is generated as the secret key. The column and 

row index of the 1s in the RIM corresponds to a Fourier basis subset which forms the 

measurement matrix ∅ mentioned in the SPI explanation. Thus, we can say that the 

RIM has the information of illumination pattern encrypted. The illustration of the 

system is shown in Figure 2.6. 
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Figure 2.6: (a)RIM. (b)Cosine fringe corresponding to a value of 1 in the RIM. 

(c)Optical encryption system based on SPI. (Zhang, et al., 2019a) 

  

To explain the relationship between the pattern and RIM, assume that a 

256x256 RIM is generated with 16000 1s. The row index is denoted as r and column 

index as c. When there is a 1 in the RIM, its row and column index will be used to 

formulate the cosine and sine fringes in the Fourier basis. It is expressed as 

 𝑝𝑐(𝜇, 𝑣) = cos[2𝜋𝑐𝜇 + 2𝜋𝑟𝑣]  (2.16) 

 𝑝𝑠(𝜇, 𝑣) = sin[2𝜋𝑐𝜇 + 2𝜋𝑟𝑣]  (2.17) 

where  

𝑝𝑐(𝜇, 𝑣) = cosine fringe 

𝑝𝑠(𝜇, 𝑣) = sine fringe  

 

The fringes are then generated by computer and the light with fringes pattern are 

projected to the target image. Its resulting signal can be expressed as 

 𝐼(𝜇, 𝑣) = 𝑝(𝜇, 𝑣)𝑥(𝜇, 𝑣) (2.18) 

where  

𝑝(𝜇, 𝑣) = ps or pc  

𝐼(𝜇, 𝑣) = reflectance function of the target image  
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By recording all of the signals with a single pixel detector, the result can be 

expressed as  

 𝑦(𝑖) ∫ 𝑝𝑖(𝜇, 𝑣)𝑥(𝜇, 𝑣)𝑑𝜇𝑑𝑣
Ω

  (2.19) 

 

This is analogous to the SPI scheme expressed in equation (2.1), where x is the 

column vector reshaped from 𝑥(𝜇, 𝑣), ∅ represents the measurement matrix whose 

rows is the fringe 𝑝(𝜇, 𝑣) that are reshaped to a row. In this case, ∅ will be a 32000 x 

65536 matrix while y will be a 32000 x 1 column matrix.  

 The decryption method used in this study utilizes TV minimization. The 

decryption process can be expressed as Eq. (2.3).  

 The result obtained from simulation and experiment are compared using a 

metric called correlation coefficient (CC). The result of CC ranges from 0 to 1 where 

0 is the worst and 1 is the best. Zhang et al. (2019a) experimented with the number of 

sampling done, denoted by M. The results of simulation and experiment are shown in 

Figure 2.7. 

 

Figure 2.7: Relationship between M and CC for simulation and experiment (Zhang, 

et al., 2019a) 

 

 Besides quality analysis, the writer also analysed their cryptosystem by 

attempting to crack the ciphertext in 3 ways, namely the inverse FT of ciphertext, 

using counterfeit RIM and brute force search of the correct RIM. For the first two 

methods, the ciphertext cannot be decrypted and gives out a noise pattern result. For 
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brute search of known RIM, the number of permutations is too large that the 

ciphertext cannot be decoded in short time.  

 To conclude the study, Zhang et al. (2019a) has successfully designed a SPI 

encryption method that is secure and has high reconstruction quality. 

 

2.7.2 Compressive optical steganography via single-pixel imaging 

Zhang, He et al. (2019) has suggested compressive optical steganography via SPI.  

Steganography is a method whereby the secret information is hidden inside another 

source of data that is not suspicious. In this study, Zhang et al. (2019b) designed a 

steganography technique via SPI, and made simulations and experiments to analyse 

the performance of the technique. 

 The steganography proposed by Zhang et al. (2019b) can be explained in two 

parts, the embedding and extraction of information. In the embedding process, an 

image secret image is concealed inside a host image. The host image can be decoded 

by anyone with inverse FT. The secret image can only be accessed using the correct 

key. The overall look on the system is shown in Figure 2.8. 

 

Figure 2.8: Overall look of the steganography system (Zhang, et al., 2019) 

 

 The secret image is first undergone FT. To embed the secret image, an index 

map (IM) of 180x180 pixels is generated. In the IM there are 5265 1s. Indices of the 

IM is used to form a 10530x32400 measurement matrix denoted by ∅. The secret 

image is sparse sampled with ∅ just like the SPI method shown in equation 2.1. The 

resulting data is compressed, where the compressed data is denoted as y.  

 After that, y is embedded into the Fourier spectrum of the host image which 

has a resolution of 256x256 pixels. The embedding process is done according to a 
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RIM which represents the secret key. Modulated patterns (MP) need to be 

constructed to embed the host image using the SPI system. The MP which contains 

the information to the secret image is used to illuminate the host image to enable the 

image to be acquired by a SPI system. The result of the acquired signal can be 

expressed as Eq. (2.20). 

 𝑦(𝑖) = ∫ ℎ(𝜇, 𝑣)𝑀𝑃(𝜇, 𝑣)𝑑𝜇𝑑𝑣
Ω

  (2.20) 

where  

𝑀𝑃(𝜇, 𝑣) = modulated patterns  

ℎ(𝜇, 𝑣) =host image.  

 

Based on the integral property of FT, Eq. (2.19) can be expressed as  

 𝑦(𝑖) = 𝐹𝑇[ℎ(𝜇, 𝑣)𝑀𝑃(𝜇, 𝑣)](𝜉, 𝜂)|𝜉=0,𝜂=0  (2.21)

The MP can be found by using a generalized phase retrieval algorithm (GPRA). The 

algorithm is repeated until the MP converges. The algorithm is done in 3 steps. 

Firstly, a MPk is generated for initialization. Then FT is performed on 

ℎ(𝜇, 𝑣)𝑀𝑃𝑘(𝜇, 𝑣) and the constrain shown in Eq. (2.21) is imposed. Lastly, inverse 

FT is done on the result in step 2 to get hmupdate. It will be used to calculate the new 

MP. The update calculation can be expressed as  

 𝑀𝑃𝑘+1 =
ℎ𝑚𝑢𝑝𝑑𝑎𝑡𝑒

ℎ(𝑢,𝑣)+𝑒𝑝𝑠
  (2.22) 

where  

eps = minimum to prevent zero error 

 

The flowchart of the steganography is shown in Figure 2.9. 
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Figure 2.9: Flowchart of the steganography(Zhang, et al., 2019) 

 

 For extraction of secret image from stegoimage, the spectrum of the secret 

image can be obtained from the stegoimage according to RIM. Then, ∅ is produced 

with IM and the secret image can be reconstructed using the CS method. TV 

minimization is used to reconstruct the image. It is noted that this reconstruction is 

same as the SPI reconstruction method, as both are based on CS.  

 The results obtained from simulation are evaluated with CC. The relationship 

between image reconstruction quality and the size of the embedded image is studied. 

The reconstructed test secret image obtained a CC of 0.9956 when compared with 

the original secret image. This shows that the reconstruction quality is very good and 

will not affect the quality of the secret image. The CC of host image and stegoimage 

is also very high, which is 0.9776. This shows that the host image undergoes minimal 

changes after embedded with the secret image. It is found that when the pixel number 

of the secret image increase while the size of the host image remains the same, the 

CC between host image and stegoimage decreases. The CC between the retrieved 

image and secret image remains almost identical. Therefore, to increase the 

embedding capacity while maintain the quality of stegoimage, the size of the 

stegoimage need to be increased. 

 For optical experiments, the CC between secret image and retrieved image is 

still at a very high level, which indicates that the steganography system is very robust. 

However, the signal to noise ratio (SNR) is not very good, and as the detection 

distance increase, the SNR becomes worse. 
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2.8 Attacks on Encrypted Single Pixel Imaging 

In order to understand more about the security of SPI encoding, the attack method on 

SPI is studied. In this section, a study done by Jiao et al. (2019) titled “Known-

Plaintext Attack and Ciphertext-Only Attack for Encrypted Single-Pixel Imaging” is 

reviewed.  

 The usual attacks on image encryption are the chosen-plaintext attack (CPA), 

known-plaintext attack (KPA) and ciphertext-only attack (COA). In terms of CPA, 

assumption is made that the attacker is able to access to the encryption system and 

dictate the input plaintext. Key can be recovered by selecting a few pair of ciphertext 

and plaintext and analyse it. This attack is not analysed because the situation where 

the attacker can access to the encryption system is not likely. For KPA, the attacker 

has a few random plaintext-ciphertext pairs. This situation happens more in real life 

situations and can poses higher threat. For COA, the attacker only has a few 

ciphertext and does not have any information on plaintext. COA analysis on an 

encryption system is very important because it can reveal serious problem on the 

cryptography system as it indicates that the system only needs very few information 

to be cracked. This method is the hardest to implement for an attacker.  

 Now, KPA on encrypted SPI system will be analysed. Plaintext can only be 

retrieved from the ciphertext with the correct key. It is high risk when the same key 

is repeatedly used to encrypt an image. The attacker can find out the key from 

analysing the cyphertext intensity sequences and collect its plaintext pair. The way of 

finding the key which is the illumination pattern similar to the way of reconstruction 

of SPI image. Assume the “illumination patterns” are plaintext images and the 

“plaintext image” as an illumination pattern. This can be illustrated in Eq. (2.23) 

  (2.23) 

where  

OQ = plaintext, Q = 1, 2, …, M 

Km = illumination pattern 

CQ = ciphertext.  
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This is analogous to Eq. (2.1). Thus, the mth illumination pattern can be found using 

SPI reconstruction method. Once all illumination pattern from m = 1 to m = M is 

found, the illumination patterns are put combined together to form ∅ which is the 

MxN SPI measurement matrix, the key to the encryption system. 

 For COA on encrypted SPI system, only the ciphertext are known. Recovery 

using that little information is extremely hard. In the experiment done by Jiao et al. 

(2014), they only found an algorithm to crack the SPI encoding key when under 

certain conditions. The conditions are that the pixel values of illumination patterns 

before permutation are known, and assumption is made that the same category of 

images are repetitively encrypted with SPI. The attacker can collect many example 

images that are similar to the actual encrypted image. To find the original 

illumination pattern permutation sequence, the attacker can use the example images 

and use the known illumination pattern to illuminate the image and record its 

intensity. After finishing this process with all known illumination pattern, the 

intensities data recorded is compared with its ciphertext counterpart. The 

illumination pattern will be arranged based on the best fitting match. Thus, the key is 

retrieved. 

 The key cracked using KPA is very accurate as based on the experiment done 

by Jiao et at. (2014), the key recovered shows very high similarity that exceeds 99.8% 

compared to the original key. When using the cracked key to decode the test image, 

the reconstructed image has acceptable quality with a peak signal to noise ratio 

(PSNR) of over 16dB. This KPA scheme can only be successfully done when the 

plaintext-ciphertext pairs are enough, which is equal to M. When encrypted image is 

decrypted using a random key, noise like image is retrieved. Thus, it can be said that 

the SPI system has good security when the key is not known.  

 For the key cracked with COA, the scheme proposed by Jiao et al. (2014) 

produces key in which its effectiveness decreases as the image size increases. When 

the ciphertext and example image pair increase, the quality of the key retrieved from 

the scheme will increase. In the proposed COA scheme, the plaintext must be similar 

and belong to the same category in order to successfully find out the key. if the 

plaintext is totally of different category, none of the illumination pattern will be 

recovered in the correct order (Jiao, et al., 2019) . 
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2.9 Summary 

In this literature review, many important information related to SPI encoding and 

optical encryption are studied. The mathematics part of SPI, CS, DRPE, RSA, and 

chaotic systems are studied in order to fully understand and implement the 

information in this study. Besides that, a few studies related to the project are 

discussed. Literatures are reviewed to get a fundamental background and improve 

planning in this project. The security of SPI is also analysed by analysing the attack 

method and effectiveness to fully understand the security of SPI. The research gap 

noticed when studying the literature is the lack of in-depth encryption system studies 

on SPI. This is the reason that this project will try to tackle the under researched area 

by developing a new SPI based encryption system and analyse its performance.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, the simulation framework for our investigation is explained. Besides, 

the steps done to compare different SPI encoding methods are explained. The quality 

and security measurement method are also presented. Furthermore, the proposed new 

SPI based encryption method is explained clearly in order to enable future 

reproduction of results. Lastly, the planning of this project, is shown through the 

Gantt chart. 

 

3.2 Simulation Tool 

The development of double encryption method and the experiment to evaluate its 

performance are done fully through simulation. MATLAB is used because of its 

powerful numerical computation functions especially on matrices, which involved 

heavily in image processing. The SPI encoding schemes that are commonly used, 

namely Hadamard, Fourier and random sampling can be simulated by functions 

available in MATLAB. For instance, N Hadamard masks can be produced by using 

hadamard(N) function easily. 

For CS reconstruction schemes, some common approaches such as L1 

optimization, TV optimization and matching pursuit can also be performed easily 

with MATLAB. The libraries for the optimization methods are available in 

MATLAB, thus simplifying the process. For instance, l1dantzig_pd function is used 

as a L1 minimization method to reconstruct the final image. 

 

3.3 Investigation of SPI Encoding Methods 

Four existing SPI encoding methods namely Hadamard, random, Fourier and chaotic 

logistic are chosen and simulated using MATLAB, which are explained in the next 

section. Four different images are used as test image for SPI encoding. The images 

that are used for simulation is shown in Figure 3.1. Each image is simulated four 

times with sampling ratio of 0.25, 0.5, 0.75, and 1. This is to evaluate the 

performance of the encryption at different sampling ratio, as one of the advantages of 
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SPI is it utilises CS so that image can be reconstructed with less information than 

conventional imaging framework.  

 

Figure 3.1: Images used for simulation. 

 

3.3.1 Process Flow 

The methods investigated in this project are Hadamard, random, Fourier, and chaotic. 

The process flow of the simulation of these methods are shown in Figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, an image is encoded with SPI method using the patterns stated. Subsequently, 

security analysis is performed on the ciphertext to evaluate its security. The metrics 

used for the security measurement are further explained in Section 3.3.2. After that, 

the image is reconstructed through L1 optimisation. L1 optimisation is chosen 

because it has the best security as compared to TV minimization and OMP (Xiong, et 

Sampling ratio: 
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Figure 3.2: Flowchart of the simulation 
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al., 2020). Finally, performance analysis is done on the reconstructed image by using 

the original image as the reference. That is further explained in Section 3.3.2.  

 

3.3.2 Evaluation Metrics 

Data obtained from experiments must be evaluated quantitatively in order to give 

unbiased results and justify the performance comparison. 

Our key concerns are efficiency, quality, robustness towards noise and 

security. Efficiency can be quantified through the image reconstruction time. Quality 

of image produced can be evaluated by using root mean square error (RMSE), 

structural similarity index (SSIM), peak signal to noise ratio (PSNR), and correlation 

coefficient (CC).  

In RMSE, mean square error (MSE) is square rooted. MSE is the average 

difference of pixel between the original image and a processed image. Therefore, 

RMSE measures the accuracy of the processed image compared to the original image. 

The equation of RMSE is shown below 

 𝑅𝑀𝑆𝐸 = ∑ [
(𝑧𝑓𝑖−𝑧𝑜𝑖)

2

𝑁
]

0.5
𝑁
𝑖=1   (3.1) 

where 

𝑧𝑓𝑖 = processed value 

𝑧𝑜𝑖 = original value 

 

SSIM is a perceptual metric that measures the deterioration of image from the 

original image. Similar to RMSE, values of original image and processed image are 

needed to calculated SSIM. SSIM evaluates the visible structure of the image, and 

thus are closer to human perception of similarity. The equation of SSIM in shown 

below 

 𝑆𝑆𝐼𝑀 = [𝑙(𝑥, 𝑦)𝑎. 𝑐(𝑥, 𝑦)𝑏. 𝑠(𝑥, 𝑦)𝑐] (3.2) 

where  

𝑙(𝑥, 𝑦) = luminance 

𝑐(𝑥, 𝑦) = contrast 

𝑠(𝑥, 𝑦) = structure 

𝑎, 𝑏, 𝑐 = weightage of l, c and s respectively 
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PSNR represents the ratio of maximum possible power of a signal and the 

power of noise in the signal. This means that the higher the PSNR, the better 

reconstructed image is. PSNR is represented in decibels. The equation representing 

PSNR is shown below. 

 𝑃𝑆𝑁𝑅 = 20 log(𝑀𝐴𝑋𝐼) − 10log (𝑀𝑆𝐸)  (3.3) 

where 

𝑀𝐴𝑋𝐼 = maximum value of pixel of the image 

 

CC is a measure of the relationship between two signals. It tries to calculate 

the probability of linear relationship between two signals. This is metric is not only 

used in signal processing but also statistics. The equation of CC is shown below  

 𝐶𝐶 =
∑ ∑ (𝐴𝑟𝑐−𝐴̅)(𝐵𝑟𝑐−𝑐𝑟 𝐵̅)

√(∑ ∑ (𝐴𝑟𝑐−𝐴̅)2
𝑐 )(∑ ∑ (𝐵𝑟𝑐−𝐵̅)2

𝑐 )𝑟𝑟
 (3.4) 

where  

A, B = two different 2D distributions 

r, c = indexes of the rows and columns respectively 

 

 Next, security measurement metrics are discussed. The methods selected to 

measure the security of the encryption are histogram analysis, key space analysis, 

and differential attack analysis. These methods can be visualised and quantified, thus 

are selected for the security analysis. 

 Histogram analysis shows the histogram of pixel intensity values. It counts 

the number of pixels at different intensities that are found in the image. For an 8-bit 

grayscale image, there are 256 different intensity values. The intensity histogram 

displays the distribution of pixel intensity in the image based on the 256 intensity 

values. In a secure encryption, the intensity of the ciphertext should be evenly 

distributed and different from the histogram of the original image in order to not leak 

any information to potential attackers (Jiao, et al., 2020). The example the histogram 

of a secure cryptosystem is shown in Figure 3.3. 
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Figure 3.3: Histogram of secure cryptosystem: (a)plaintext, (b)ciphertext 

 

Histogram analysis is also quantifiable. This is possible by calculating the variance 

distribution of the histogram. Small variance means that the histogram is distributed 

evenly, hence more secure. 

 Next measurement of security used is the key space analysis. Key space 

analysis is performed by calculating all the possible set of keys for the encryption. 

The higher the key space value, the stronger the cryptosystem is against brute force 

attacks. Key space calculation does not have a specific formula and depends on the 

cryptosystem itself. For instance, an encryption uses 2 keys and the values of the 

keys are discrete values that ranges from 1 to 100. Then, the key space of that 

encryption will be 100 × 100 = 10000. A cryptosystem needs at least a key space 

of 1030 in order to be considered as robust (Heucheun Yepdia, Tiedeu and Kom, 

2021). 

 The last security measurement method used in this project is the differential 

attack analysis. Differential attack analysis is done by changing the plaintext slightly 

and compare its ciphertext with respect to the original plaintext’s ciphertext. In a 

good cryptosystem, the slightest change of plaintext should cause a large change in 

the ciphertext. There are two metrics that can measure the effect of a slight change of 

the plaintext over the ciphertext, which are the number of pixel change rate (NPCR) 

and the unified average change intensity (UACI). The equation of these is shown in 

Eq. (3.5) and Eq. (3.6) respectively. 

 𝑁𝑃𝐶𝑅 =
∑ 𝐷(𝑖,𝑗)𝑖,𝑗

𝑀×𝑁
× 100%,  (3.5) 

𝑤ℎ𝑒𝑟𝑒 𝐷(𝑖, 𝑗) = 1 𝑤ℎ𝑒𝑛 𝐶(𝑖, 𝑗) ≠ 𝐶′(𝑖, 𝑗), 𝑒𝑙𝑠𝑒 𝐷(𝑖, 𝑗) = 0 

 𝑈𝐴𝐶𝐼 =
1

𝑀×𝑁
[∑

|𝐶(𝑖,𝑗)−𝐶′(𝑖,𝑗)|

255𝑖,𝑗 ] × 100  (3.6) 

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(b) 

 

(b) 

 

(b) 
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where 

C = ciphertext before slight change 

C’ = ciphertext after slight change 

(i, j) = pixel index of the image 

M, N = length and width of the image, in pixel count 

 

NPCR measures the rate of change of pixel values in the ciphertext when one pixel 

of the plaintext is changed. UACI measures the average change of the intensity value 

of ciphertext when one pixel of plaintext is changed. The expected value of NPCR 

and UACI are 99.6094070 and 33.463507 respectively (Liu and Ding, 2020). This 

means that good cryptosystem is expected to have NPCR and UACI that are close to 

those values. 

  

3.4 Proposed New Encryption Method 

The proposed new encryption method consists of two encryption process. The first 

phase encryption is an SPI encoding that utilises a mixed logistic chaotic map as its 

mask pattern. Second phase of encryption uses either DRPE or RSA encryption. 

Both of them are tested and compared. The overall flow of the encryption and 

decryption process is shown in Figure 3.4.  

 

Figure 3.4: Overall flow of encryption and decryption of the proposed system 
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3.4.1 First Phase 

The first phase is the SPI encoding phase. The mask patterns used as the key is 

derived from a bipolar logistic map. Since the logistic map produces values that 

ranges from 0 to 1, the system is made bipolar by following the condition 𝑥 = 1 

when 𝑥 ≥ 0.5 and 𝑥 = 0 when 𝑥 < 0.5. Two bipolar logistic maps with two different 

initial condition of size 𝑀 × 𝑁  is created where M is the number of sampling 

measurements and N is the number of pixels of the image. Next, another bipolar 

logistic map of length M is created and is used as a random index map (RIM) to mix 

the first two logistic map. The first logistic map A is first chosen as the current map. 

The first row of the current logistic map is used as the first mask pattern array. The 

subsequent mask pattern is determined by RIM. If the value of RIM = 1, it continues 

to take the next row from the current map. If the value of RIM = 0, the current map 

switches to the another logistic map and the rows are taken from it. This process 

continues for M iterations. After M rows are taken, the measurement matrix is 

completed. Each row of the measurement matrix is the mask pattern. The illustration 

of the mixing of logistic maps to form the measurement matrix and the flowchart of 

the mixing algorithm are shown in Figure 3.5 and 3.6 respectively. 

 

 

 

 

 

 

 

 

 

 

 

Logistic 

map A 

 

Logistic 

map A 

 

Logistic 

map A 

 

Logistic 

map A 

Logistic 

map B 

 

Logistic 

map B 

 

Logistic 

map B 

 

Logistic 

map B 

Mixed logistic 

matrix 

(measurement 

matrix) 

 

Mixed logistic 

matrix 

(measurement 

matrix) 

 

Mixed logistic 

matrix 

(measurement 

matrix) 

 

Mix the rows 

according to RIM 

 

Mix the rows 

according to RIM 

 

Mix the rows 

according to RIM 

 

Mix the rows 

according to RIM 

Chaotic 

mask 

pattern 

 

Chaotic 

mask 

pattern 

 

Chaotic 

mask 

pattern 

 

Chaotic 

mask 

pattern 

Take each row 

 

Take each row 

 

Take each row 

 

Take each row 

Figure 3.5: Mixing process of the logistic map 
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Figure 3.6: Flowchart of the mixing algorithm 
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3.4.2 Second Phase 

The second phase of the encryption either uses DRPE or RSA. 

 DRPE is reviewed in Section 2.4.1. Let us assume that the result from the 

first phase encryption is the plaintext here. In this application, the process is done by 

multiplying the plaintext with a random phase mask RP1 that is expressed in Eq. 

(2.7). The size of n(x,y) in Eq. (2.7) must match the size of the plaintext. After that, 

the result undergoes a fast Fourier transform (FFT). Next, it is multiplied by a second 

random phase mask RP2 that is expressed as in Eq. (2.8). Similarly, the size of  

𝑏(𝑣, 𝜇) must be the same as the size of the plaintext. Finally, it undergoes inverse 

FFT to get the final ciphertext. For the decryption, the final ciphertext undergoes 

FFT and then it is multiplied with the conjugate of RP2. Next, it undergoes inverse 

FFT and then the magnitude of the result will be the plaintext. The encryption and 

decryption process of DRPE is depicted in Figure 3.7. 

 

Figure 3.7: (a)Encryption process of DRPE, (b)Decryption process of DRPE 
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 For RSA encryption, the cryptosystem is initially designed for encrypting 

strings in ASCII code. Some modifications are needed in order to perform RSA on 

an image. Note that all the multiplication done here is element wise multiplication.  

First, the two initial prime numbers p and q are randomly chosen for each 

pixel of the plaintext (result from first phase encryption). The prime numbers are 

limited to the 3rd prime to the 30th prime only and their product, n must be larger than 

255. This is because the calculation of the encryption and decryption of RSA 

involves getting the remainder when divided by n. Since image intensity values range 

from 0 to 255, n must be at least 256 to obtain the correct reconstructed value will be 

correct. After the selection of suitable prime numbers, all the needed parameters are 

calculated for each pixel based on Eq. (2.10), (2.11), and (2.12). The encryption 

considers complete. The public key, private key and n for RSA image encryption are 

expressed as in Eq. (3.7). 

    𝑒 = [

𝑒1,1 𝑒1,2 …
𝑒2,1 𝑒2,2 …
… … 𝑒𝑖,𝑗

],  𝑑 = [

𝑑1,1 𝑑1,2 …

𝑑2,1 𝑑2,2 …

… … 𝑑𝑖,𝑗

], 𝑛 = [

𝑛1,1 𝑛1,2 …
𝑛2,1 𝑛2,2 …
… … 𝑛𝑖,𝑗

] (3.7) 

where 

e = public key 

d = private key 

n = modulus 

i, j = plaintext size in pixel 

 

 The encryption and decryption are done by following Eq. (2.13) and (2.14) 

for each of the pixel of the plaintext. Before encryption, the result from the first 

phase encryption needs to be converted from 0-1 to 0-255. This is done by 

multiplying it by 255 and obtaining the integer part. Its decimal part is recorded into 

an array. The array is added after the decryption process to prevent information loss. 

The final ciphertext are expressed as grayscale intensities. Since the encryption 

process may produce ciphertext that are more than 255, some modifications need to 

be done in order to keep the ciphertext below 256 without information loss. This is 

done by utilising Eq. (3.8) 

    𝑐 = 256𝑘 + 𝑟 (3.8) 

where 

c = original ciphertext 
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k = multiple constant 

r = remainder 

 

The remainder will be used as the final result of the encryption. Eq. (3.8) is used to 

retrieve the original ciphertext without losing any information. Due to this, c and k 

need to be passed along with the decryption key d in order to decrypt r. 

 

3.5 Project Planning 

The project planning is done by creating a Gantt chart shown in Figure 3.8 to ensure 

that improtant milestones are achieved in time so that good results can be produced 

in time. The Gantt chart shows the time allocated for each important milestone 

throughout the 14 week time span. 

 

Figure 3.8: Gantt chart 

 

3.6 Summary 

The process flow of SPI encoding methods such as Hadamard, random, Fourier, and 

logistic chaotic is presented. The newly proposed encryption method is also 

explained in detail. The new encryption method is a double encryption which utilises 

SPI at the first phase and DRPE or RSA at the second phase. For the first phase, the 

mixing of logistic maps with RIM as the measurement matrix of the SPI is the 

modification to improve the encoding security. In the second phase, DRPE or RSA is 

used. For RSA which is initially designed for encrypting strings in ASCII code, it is 

modified to suit image encryption. Overall performance will be evaluated using CC, 
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RMSE, PSNR, and SSIM in term of image quality. Meanwhile histogram analysis, 

key space analysis, and differential attack analysis will be performed to evaluate its 

security capability. The Gantt chart is also made to plan work ahead of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

In this chapter, the results of the simulation of different SPI encoding methods will 

be presented and discussed. The SPI encoding methods will be evaluated based on its 

reconstruction quality and security. The advantage of each method will be examined. 

After that, the results of the proposed method will be presented and reviewed. Since 

there are two different encryption method in the second phase, the performance 

based on quality and security will be compared and discussed. Issues presented by 

the method will also be assessed. Finally, the proposed method will be compared 

with the of the conventional SPI encoding methods in order to visualise and discuss 

the advantages and potential drawbacks of the proposed methods. 

 

4.2 Comparisons Between Present Methods 

Methods that are compared are Hadamard, random, Fourier and chaotic logistic. The 

results of the reconstruction for image A, 0, 7, and cameraman are shown in Table 

4.1, 4.2, 4.3, and 4.4 respectively. Via visual observation of the reconstructed images, 

we can see that the image reconstruction quality becomes better as the sampling ratio 

increases. This is because there is more information that are available to reconstruct 

the image. All images are still recognisable at all sampling ratio. It is notable that the 

Hadamard method has the worst reconstruction quality at sampling ratio of 1. It is 

also noticeable that the Fourier method has the best reconstruction quality at lower 

sampling ratio. All of these observations are only based on visual inspection and will 

be further verified by using the proper quality measurement methods. 
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Table 4.1: Reconstruction results for image A 
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Table 4.2: Reconstruction results for image 0 
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Table 4.3: Reconstruction results for image 7 
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Table 4.4: Reconstruction results for image cameraman 

 

4.2.1 Reconstruction Quality 

In this section, the reconstruction quality of the studied methods is discussed by 

using RMSE, PSNR, SSIM, and CC. The data is tabulated in Table 4.5 for all 

measuring metrics for different sampling ratio.  
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Table 4.5: Tabulated reconstruction quality metrics for different SPI encoding 

schemes 

Method Image M/N RMSE PSNR SSIM CC 

Hadamard 

A 

1 0.10781 19.347 0.3739 0.84816 

0.75 0.13834 17.181 0.31773 0.801 

0.5 0.22272 13.045 0.25882 0.66705 

0.25 0.30048 10.444 0.18743 0.50954 

0 

1 0.35003 9.1178 0.18247 0.74565 

0.75 0.35575 8.9771 0.15967 0.68542 

0.5 0.43398 7.2507 0.13348 0.58513 

0.25 0.43745 0.71814 0.082424 0.45747 

7 

1 0.34052 9.3573 0.15393 0.75023 

0.75 0.31519 10.029 0.12889 0.69167 

0.5 0.37772 8.4566 0.10867 0.6274 

0.25 0.47769 6.4171 0.090723 0.47802 

cameraman 

1 0.21778 13.239 0.43648 0.85303 

0.75 0.21004 13.554 0.39565 0.78479 

0.5 0.21974 13.162 0.35618 0.6789 

0.25 0.19836 14.051 0.3 0.5858 

Method Image M/N RMSE PSNR SSIM CC 

random 

A 

1 0.060912 24.306 0.89809 0.99987 

0.75 0.10662 19.443 0.33747 0.84129 

0.5 0.17773 15.005 0.22867 0.6948 

0.25 0.26677 11.477 0.15214 0.50325 

0 

1 0.075699 22.418 0.31885 0.99995 

0.75 0.33858 9.4068 0.15742 0.82113 

0.5 0.39093 8.158 0.11679 0.6515 

0.25 0.44904 6.9543 0.078919 0.46348 

7 

1 0.079563 21.986 0.26204 0.99995 

0.75 0.29743 10.532 0.153 0.80839 

0.5 0.37138 8.6037 0.115 0.64459 

0.25 0.43028 7.325 0.078264 0.44939 

cameraman 

1 0.028755 30.826 0.99075 0.99985 

0.75 0.15753 16.053 0.36772 0.85763 

0.5 0.18631 14.595 0.26721 0.70891 

0.25 0.21413 13.386 0.17599 0.50224 

Method Image M/N RMSE PSNR SSIM CC 

Fourier 

A 

1 0.065313 23.7 0.88235 0.99998 

0.75 0.031104 30.144 0.78243 0.97578 

0.5 0.04528 26.882 0.64543 0.94977 

0.25 0.087619 21.148 0.45295 0.81109 

0 

1 0.074616 22.543 0.31981 1 

0.75 0.14613 16.705 0.27547 0.98785 

0.5 0.16697 15.547 0.25987 0.97421 

0.25 0.27096 11.342 0.20241 0.92225 
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7 

1 0.076676 22.307 0.26425 1 

0.75 0.12369 18.153 0.23551 0.99038 

0.5 0.16445 15.679 0.21487 0.97697 

0.25 0.23953 12.413 0.17501 0.94022 

cameraman 

1 0.024467 32.228 0.99688 0.99998 

0.75 0.094526 20.489 0.73102 0.98608 

0.5 0.14614 16.705 0.57709 0.96603 

0.25 0.21395 13.394 0.4046 0.91632 

Method Image M/N RMSE PSNR SSIM CC 

Chaotic 
logistic 

A 

1 0.064677 23.785 0.87992 0.99974 

0.75 0.12777 17.872 0.29166 0.77607 

0.5 0.21606 13.308 0.18746 0.56623 

0.25 0.2717 11.318 0.10996 0.36424 

0 

1 0.080016 21.936 0.31548 0.99988 

0.75 0.35836 8.9136 0.14158 0.72006 

0.5 0.45584 6.8237 0.096935 0.50814 

0.25 0.4596 6.7524 0.056585 0.31911 

7 

1 0.080415 21.893 0.26118 0.99983 

0.75 0.37708 8.4713 0.11729 0.70163 

0.5 0.43974 7.1362 0.085395 0.49758 

0.25 0.53995 5.3529 0.04589 0.3181 

cameraman 

1 0.031873 29.932 0.98816 0.99973 

0.75 0.1543 16.233 0.32587 0.77657 

0.5 0.19574 14.166 0.22396 0.56164 

0.25 0.22 13.152 0.15883 0.35995 

 

Figure 4.1 shows the average RMSE for all encoding methods at different 

sampling ratio. RMSE for all measuring methods are decreasing when sampling rate 

is increased. This is expected as the accuracy of the reconstruction should be 

increased when the sampling rate is increased. Ideally, RMSE should be as low as 

possible. Based on Figure 4.1, random and chaotic logistic encoding method have 

comparable RMSE performance at all sampling rates while Hadamard method has 

the worst result especially at the sampling ratio of 1. The best performing encoding 

method is the Fourier method as it has a low RMSE at low sampling rate. 
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Figure 4.1: Average RMSE of all reconstructed images at different sampling ratio 

 

 Figure 4.2 shows the average PSNR for all encoding methods at different 

sampling ratio. The higher the PSNR, the better the reconstruction image is. In terms 

of PSNR, the performance has a similar trend as RMSE where random and chaotic 

logistic method has average performance, Fourier method has the best performance 

while Hadamard method has the worst performance.  

 

Figure 4.2: Average PSNR of all reconstructed images at different sampling ratio 

 

 Figure 4.3 shows the average SSIM for all encoding methods at different 

sampling ratio. SSIM is a perceptual metric that measures the structural similarity of 

the image with respect to the original image. SSIM ranges from 0 to 1, with 1 being 
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the ideal value. The trend of the quality of the reconstructed image is similar to the 

ones for RMSE and PSNR. The SSIM of Hadamard method is very low across all 

sampling ratio, and performs the worst in this metric. 

 

Figure 4.3: Average SSIM of all reconstructed images at different sampling ratio 

 

 Figure 4.3 shows the average CC for all encoding methods at different 

sampling ratio. CC measures the relationship between two images. Value of CC 

ranges from 0 to 1 where 1 is the best. Fourier performs the best at all sampling ratio 

in this metric. The second-best performing encoding method is the random method. 

Overall, chaotic logistic method has better CC than Hadamard method. However, 

Hadamard method outperforms the chaotic logistic method at lower sampling ratios, 

and even outperform the random method at sampling ratio of 0.25. The Hadamard 

method has better performance when measured in this metric when compared with 

RMSE, PSNR, and SSIM. 
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Figure 4.4: Average CC of all reconstructed images at different sampling ratio 

 

 After going through all the performance metrics for the encoding methods, 

Fourier method has the best overall performance, followed by random method and 

chaotic logistic method. The clear worst performer is the Hadamard method. This is 

consistent with the result of the visual evaluation done in section 4.2. However, do 

note that the performance of random and chaotic logistic method may fluctuate a 

little depending on the seed used.  
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Table 4.6: Security measurement metric values of all encoding methods 

Method Image M/N 
Histogram 
variance 

NPCR UACI Key space 

Hadamard 

A 

1 

5.96 × 104 1.269531 0.004979 

40964096 
0 5.30 × 104 1.953125 0.007659 

7 5.47 × 104 1.733398 0.006798 

cameraman 4.31 × 104 3.466797 0.013595 

random 

A 

1 

3.65 × 104 2.246094 0.008808 

24096×4096 
0 2.35 × 104 3.369141 0.013212 

7 2.87 × 104 2.758789 0.010819 

cameraman 1.71 × 104 0.976563 0.00383 

Fourier 

A 

1 

5.93 × 104 0.90332 0.003542 

1 
0 5.37 × 104 2.001953 0.007851 

7 5.55 × 104 1.464844 0.005744 

cameraman 4.09 × 104 3.515625 0.013787 

chaotic 

A 

1 

5.52 × 104 2.978516 0.01168 

3 × 1031 
0 4.32 × 104 4.125977 0.018095 

7 4.58 × 104 4.614258 0.018095 

cameraman 2.93 × 104 2.001953 0.007851 

 

 First, results of histogram analysis will be evaluated. As observed from the 

histograms in Figure 4.5, 4.6, 4.7, and 4.8, the ciphertext has intensity that is 

concentrated on a certain value. Besides that, the concentration tends to follow a 

similar pattern as the plaintext. The variance of all the histograms is in the order of 

104, which indicates that the histogram is very concentrated around a few values only. 

This shows the weakness in the security of SPI encoding as attacker can get clues on 

the key and plaintext based on the concentrated values. The ideal histogram is evenly 

distributed and different from the histogram of the plaintext. None of these methods 

on any images provides a safe encryption in terms of histogram analysis. The 

purpose of proposing a new method is to solve this problem. 

 



44 

 

 

 

Figure 4.5: Histogram of ciphertext and plaintext when using Hadamard method for 

image: (a) A, (b) 0, (c) 7, (d) cameraman 
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Figure 4.6: Histogram of ciphertext and plaintext when using random method for 

image: (a) A, (b) 0, (c) 7, (d) cameraman 
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Figure 4.7: Histogram of ciphertext and plaintext when using Fourier method for 

image: (a) A, (b) 0, (c) 7, (d) cameraman 
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Figure 4.8: Histogram of ciphertext and plaintext when using chaotic logistic method 

for image: (a) A, (b) 0, (c) 7, (d) cameraman 

 

 Next, the results of differential attack analysis are discussed. For the 
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sampling ratio is 1 is 24096×4096. Next, the key space for Fourier method is only one 

since the Fourier map is used as it is for the encoding. For chaotic logistic method, 

there are two element that dictates the map, which is the initial condition that ranges 

from 0 to 1 and the growth rate that ranges from 3.7 to 4. Assuming the computer has 

a precision of 10-16, the key space will be 1016 × 1016 × 0.3 = 3 × 1031. 

 The size of key space for all encoding methods except Fourier method meets 

the minimum size to be considered robust which is 1030. The key space of Hadamard 

and random method may seem extremely large but in reality, it is actually smaller. 

The calculation assumes that random number generation in MATLAB is truly 

random when in reality it is not. The random number generation in MATLAB is 

pseudorandom and depend on some algorithm and seed which has smaller key space 

than the key space calculated here. 

 In summary, the security of available SPI encoding method is not enough as 

there are some drawbacks such as concentrated histogram and vulnerable to 

differential attack. 

 

4.3 Comparisons Between Proposed Method 

Two methods have been proposed to improve the security of the SPI encoding 

scheme. They are the mixed logistic map SPI-DRPE and mixed logistic map SPI-

RSA. They will be mentioned as SPI-DRPE and SPI-RSA in this section. Their 

reconstruction quality and security will be compared. 

 

4.3.1 Reconstruction Quality 

Table 4.7 shows the tabulated reconstruction quality measurement metrics for all 

tested images. From Table 4.7, we can observe that the value of all the quality 

measurement metrics is the same for all the images and sampling ratios. This is 

because the second phase encryption, DRPE and RSA returns perfect results when 

decryption is done. Thus, the part that is actually evaluated is the first phase 

encryption, which is the same for both methods. 
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Table 4.7: Quality metrics for SPI-DRPE and SPI-RSA 

Method Image M/N RMSE PSNR SSIM CC 

SPI-
DRPE 

A 

1 0.061144 24.273 0.89434 0.99971 

0.75 0.18623 14.599 0.27264 0.76519 

0.5 0.24394 12.254 0.17833 0.58183 

0.25 0.27833 11.109 0.11665 0.37295 

0 

1 0.074794 22.523 0.31931 0.99987 

0.75 0.36545 8.7434 0.14003 0.71758 

0.5 0.43895 7.1517 0.10301 0.51739 

0.25 0.48464 6.2916 0.060181 0.3323 

7 

1 0.078934 22.055 0.26218 0.99983 

0.75 0.37735 8.4651 0.11591 0.7124 

0.5 0.39017 8.175 0.081261 0.50318 

0.25 0.52503 5.5963 0.043772 0.29502 

cameraman 

1 0.030737 30.247 0.98832 0.99974 

0.75 0.16091 15.868 0.33319 0.77954 

0.5 0.19661 14.128 0.23415 0.57045 

0.25 0.25633 11.824 0.16569 0.35731 

SPI-RSA 

A 

1 0.061144 24.273 0.89434 0.99971 

0.75 0.18623 14.599 0.27264 0.76519 

0.5 0.24394 12.254 0.17833 0.58183 

0.25 0.27833 11.109 0.11665 0.37295 

0 

1 0.074794 22.523 0.31931 0.99987 

0.75 0.36545 8.7434 0.14003 0.71758 

0.5 0.43895 7.1517 0.10301 0.51739 

0.25 0.48464 6.2916 0.060181 0.3323 

7 

1 0.078934 22.055 0.26218 0.99983 

0.75 0.37735 8.4651 0.11591 0.7124 

0.5 0.39017 8.175 0.081261 0.50318 

0.25 0.52503 5.5963 0.043772 0.29502 

cameraman 

1 0.030737 30.247 0.98832 0.99974 

0.75 0.16091 15.868 0.33319 0.77954 

0.5 0.19661 14.128 0.23415 0.57045 

0.25 0.25633 11.824 0.16569 0.35731 

 

4.3.2 Security 

The security analysis done are the histogram analysis, differential attack analysis, 

and key space analysis. The security analysis is done only for sampling ratio of 1 

because the security analysis for different sampling ratio is redundant.  
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Table 4.8: Results of security analysis 

Method Image M/N 
Histogram 
variance 

NPCR UACI Key space 

SPI-
DRPE 

A 

1 

8.97E+02 3.686523 0.014457 2.7 ×
1094 (first 

phase),  

(40961016
)2 

(second 
phase) 

0 1.17E+03 3.735352 0.014648 

7 1.79E+03 3.881836 0.015223 

cameraman 2.40E+02 1.318359 0.00517 

SPI-RSA 

A 

1 

1.40E+02 100 47.10445 

2.7 × 1094 
(first phase) 

0 1.23E+02 100 47.89199 

7 1.77E+02 100 48.69221 

cameraman 1.29E+02 100 47.35618 

 

 First, histogram analysis is discussed. Figure 4.9 and 4.10 shows the 

histogram of the final ciphertext and plaintext of all images for SPI-DRPE and SPI-

RSA respectively at sampling ratio of 1. For SPI-DRPE, it is observed that the 

histogram of final ciphertext is slightly spread out compared to the histogram of 

conventional SPI encoding. However, it still slightly resembles the original image 

histogram and is still too focused on one spot. The average variance of the histogram 

is still high with a value of 1030. For SPI-RSA, the histograms of the final ciphertext 

are spread out over the intensity spectrum. Although the histograms do not appear 

uniform, they do not resemble the original image histogram. The average variance of 

the histogram is 140 which is low compared to SPI-DRPE. This means that the 

histogram of SPI-RSA is more spread out compared to SPI-DRPE. Therefore, SPI-

RSA is more secure compared to SPI-DRPE when analysed with histogram as it is 

harder to derive any clues from the histogram of SPI-RSA compared with SPI-DRPE.  



51 

 

 

 

Figure 4.9: Histogram of final ciphertext and plaintext when using SPI-DRPE 

method for image: (a) A, (b) 0, (c) 7, (d) cameraman 
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Figure 4.10: Histogram of final ciphertext and plaintext when using SPI-RSA 

method for image: (a) A, (b) 0, (c) 7, (d) cameraman 

 

 Next, differential attack analysis is discussed. For the encryption to be good 

against differential attack, its NPCR and UACI should be close to 99.6094070 and 

33.463507 respectively (Liu and Ding, 2020). Higher value of NPCR and UACI is 

better. Based on Table 4.8, the NPCR and UACI of SPI-DRPE is still low and not 

close to the ideal value. This means that there is only a little change in the final 

ciphertext when one pixel of plaintext is altered. On the other hand, SPI-RSA boasts 

an average NPCR and UACI of 100 and 47.8 respectively. They are closer to the 

ideal value and higher. NPCR of 100 means that all the pixels in the final ciphertext 

will change when one pixel of the plaintext is altered. Thus, SPI-RSA is very 

resistant to differential attack, unlike its SPI-DRPE counterpart. 

 Finally, the key space analysis is discussed. Assume the precision of the 

computer is up to 10-16. For the first phase encryption, the key space is calculated as 

(1016 × 1016 × 0.3)3 = 2.7 × 1094 . The calculation is done so because there are 

three logistic maps used in this encryption and the key space of one logistic map is 

1016 × 1016 × 0.3. The key space of the second phase encryption for SPI-DRPE at 
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the sampling ratio of 1 is calculated as (40961016
)2 . This is because there are 2 

random number arrays created to form RP1 and RP2. and the random number ranges 

from 0 to 1 with precision assumed to be 10-16. 4096 is the number of pixels of the 

first ciphertext when sampling ratio is 1. The key space of the second phase 

encryption for SPI-RSA is hard to find because the key space of asymmetric 

cryptosystem is less studied, thus it is not discussed here. The total key space of the 

proposed systems is found by adding phase 1 and phase 2 key space. The phase 2 key 

space of DRPE is extremely large, though in reality it is smaller due to the random 

number generator being not truly random. The key space of the first phase alone is 

2.7 × 1094  which is much larger than 1030. This makes both proposed method a 

robust encryption method against brute force attacks. 

 

4.4 Overall Comparisons 

The proposed methods are compared with the conventional SPI encoding methods. 

The SPI encoding method chosen to be compared with the proposed methods are the 

chaotic logistic method and Fourier method. Chaotic logistic method is chosen 

because the first phase of the proposed methods is derived from the logistic map. 

Fourier method is chosen because it has the best quality performance out of all of the 

studied SPI encoding methods. First, visual evaluation is done based on Table 4.9, 

4.10, 4.11, and 4.12. 

 

Table 4.9: Reconstructed images for image A 

Sampling ratio 

(M/N) 

0.25 0.5 0.75 1 

Original image 

 

Reconstructed 

image 

(Fourier) 
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Table 4.10: Reconstructed images for image 0 
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image (Chaotic 
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Reconstructed 

image (SPI-

DRPE and SPI-
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Sampling ratio 

(M/N) 
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image (Chaotic 

logistic) 

    

Reconstructed 

image (SPI-

DRPE and SPI-
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Table 4.11: Reconstructed images for image 7 

 

Table 4.12: Reconstructed images for image cameraman 

Sampling ratio 

(M/N) 

0.25 0.5 0.75 1 

Original image 

 

Reconstructed 

image 

(Fourier) 

    

Reconstructed 

image (Chaotic 

logistic) 

    

Reconstructed 

image (SPI-

DRPE and SPI-

RSA)     

Sampling ratio 

(M/N) 

0.25 0.5 0.75 1 

Original image 

 

Reconstructed 

image 

(Fourier) 
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 The method that produces the reconstruction quality visually is the Fourier 

method. The proposed methods and the chaotic logistic method look extremely 

similar. 

 Next, we will evaluate the quality quantitatively. The average RMSE, PSNR, 

SSIM, and CC for the studied methods are plotted against the sampling ratio in 

Figure 4.11, 4.12, 4.13, and 4.14. The quality evaluation metrics shows an improving 

trend when sampling ratio is increased. The Fourier method reigns superior in terms 

of reconstruction quality for all metrics at low sampling rate. Chaotic logistic method 

has similar quality performance across the board with the proposed methods. This 

trend matches the visual evaluation. 

 

Figure 4.11: Average RMSE for different sampling ratio 
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Figure 4.12: Average PSNR for different sampling ratio 

 

 

Figure 4.13: Average SSIM for different sampling ratio 
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Figure 4.14: Average CC for different sampling ratio 

 

 In terms of security, the SPI-DRPE and SPI-RSA has larger key spaces 

compared to Fourier and chaotic logistic method. Thus, they are more resistant to 

brute force attacks. For histogram analysis, SPI-RSA has by far the best histogram 

which is very spread out and has the lowest variance. It also looks totally different 

compared to the histogram of the plaintext. SPI-DRPE has slightly better histogram 

than the other two methods since the results is slightly spread out and its variance is 

lower. In terms of differential attack analysis, SPI-RSA is by far the strongest against 

differential attack due to its superb NPCR and UACI which is high and close to the 

ideal value.  

 

4.5 Summary 

This chapter discussed the comparison between the conventional SPI encoding 

methods in terms of quality and security. It is found that Fourier method has best 

quality performance overall and Hadamard method has the worst. In terms of 

security, all of the conventional SPI encoding methods have sufficient key space to 

resist brute force attacks, but are very weak when evaluated with histogram analysis 

and differential attack analysis. Their ciphertext gives away information to the 

attacker. 

 For the proposed methods, both SPI-DRPE and SPI-RSA has the same image 

reconstruction quality. The quality evaluation shows that it has extremely similar 

performance as the chaotic logistic method, which is average. In terms of security, 
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SPI-RSA is the best with good histogram spread that does not give away information, 

lowest histogram variance, great resistance against differential attack and very good 

resistance against brute force attack. SPI-DRPE method is inferior in every way 

when compared with SPI-RSA except the key space. Its security is a slight 

improvement compared with the conventional SPI encoding methods in this study. 

Thus, SPI-RSA is a very good foundation for better SPI based encryption framework. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this project, many SPI and non-SPI encoding and decoding schemes are reviewed. 

The reviewed SPI encoding and decoding strengthened the foundation in order to 

develop a better encoding scheme. The analysis of DRPE and RSA encryption 

framework have helped in developing the proposed SPI based encryption method 

that are more secure.  

A novel encryption method based on SPI is successfully developed and have 

overcome the security problems of SPI encoding using the knowledge of DRPE, 

RSA and chaotic theory.  

Besides, the performance of the designed method and available SPI based 

encoding method are evaluated based on its quality and security using quantifiable 

metrics. The designed method is also compared with the available SPI encoding 

method. Through the comparisons, the strengths and weaknesses of the proposed 

method are found. It is found that the proposed mixed logistic map SPI-RSA has 

greatly improved the security of the SPI encoding method. 

 

5.2 Recommendations for future work 

The proposed methods, namely mixed logistic map SPI-DRPE and SPI-RSA 

encryption framework can be further improved, especially the SPI-DRPE method. 

For instance, the first ciphertext can be padded in order to get a more uniform 

histogram distribution.  

 Since this project is done through simulation using MATLAB, it is hoped that 

this project can be done physically so that the implication of real-world conditions 

such as noise on the proposed methods can be studied. One of the suggestions is that 

a DMD can be used as the light pattern modulator of the SPI setup.  

 The encryption and decryption time analysis of the proposed methods can be 

done in the future as time is a very important factor when encryption and decryption 

need to be done in real time. However, there is a limitation on the proposed method 

in terms of encryption and decryption time. Since the proposed method is a double 
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encryption, two encryption processes need to be done in order to encrypt an image. 

This will usually take more time compared to a conventional SPI encoding method 

that only encodes the image one time only. A smarter approach is needed in order to 

reduce or fully overcome this limitation.  

 It is hoped that the proposed mixed logistic map SPI-RSA can be a starting 

point in inspiring the development of more secure and robust SPI based encoding 

methods. 
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APPENDICES 

 

APPENDIX A: Simulation codes 

 

singlepix_hadamard.m 

clear all 

addpath(genpath('l1magic'))  

  

% Simulation using test image 

image = rgb2gray(im2double(imread('38.png'))); 

%image = im2double(imread('cameraman.tif')); 

  

res = 64; %set resolution 

N = res^2; %number of pixels = res^2 

M = 1*N; %number of sampling measurements 

phi = zeros(M,N); %phi = measurement matrix A 

y = zeros(M,1);  

  

image = imresize(image, [res,res]); %resize image to 

the mask resolution 

  

%create M res x res hadamard masks by reformatting 

each row of the hadamard matrix 

h = hadamard(N); 

h(h==-1) = 0; 

rng(1); 

randvec = randi([1 N],N,1); % random vector with 

elements 1 to N, used to reorder the hadamard 

patterns 

  

%find y 

startmask = tic; %start stopwatch 

for ip = 1:M 

    %save hadamard mask pattern into measurement 

matrix phi 

    i = randvec(ip); % randomly picks a value from 

randvec 

    H(:,:,ip) = vec2mat(h(i,:),res); 

    mask = H(:,:,ip); 

    phi(ip,:) = h(i,:); 

     

    %reshape each hadamard mask to the size of the 

image 

    %hsamp = imresize(mask,size(image),'nearest'); 
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    hsamp = mask; 

     

    %project pattern sequence to image 

    temp = image; 

    temp(hsamp==0) = 0; 

     

    %record average intensity 

    y(ip) = sum(sum(temp))./numel(temp); 

end 

endmask = toc(startmask); %stop stopwatch and record 

the reading time 

  

%solve and reconstruct image 

% Find x, image represention --> estIm 

% y = Ax 

% x = A-1*y = A\y --> inverse A 

% Note: x = img0/estIm (Nx1), A = phi (MxN), y = 

aver (Mx1) 

startrecon = tic; %start stopwatch 

invphi = pinv(phi);%pinv(A) returns the Moore-

Penrose Pseudoinverse of matrix A. 

im0 = invphi*y;%initial solution, im0 = x, y = phi*x, 

x = (phi^-1)*y 

estIm = l1dantzig_pd(im0, phi, [], y, 0.01, 1e-4,2); 

  

% Reconstruct image 

reconIm = vec2mat(estIm,res); 

reconIm = (reconIm-

min(min(reconIm)))/(max(max(reconIm))-

min(min(reconIm)));%normalize image 

  

endrecon = toc(startrecon); %end stopwatch and 

record reconstruction time 

  

%calculate RMSE 

A = zeros(res,res); 

scaled_image = imresize(image,size(A)); 

o = vec2mat(scaled_image,1); 

o_un = vec2mat(reconIm,1); 

for i = 1:N 

    diff = (o_un(i,1) - o(i,1)); 

    diff_sq(i,:) = diff^2; 

end 

diff_sq_sum = sum(diff_sq,1); 

RMSE = sqrt(diff_sq_sum/N); 

  

%calculate PSNR 
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peaksnr = psnr(reconIm, scaled_image); 

  

%calculate SSIM 

ssimval = ssim(reconIm, scaled_image); 

  

%calculate CC 

ccval = corr2(scaled_image, reconIm); 

  

%calculate M/N 

MNratio = M/N; 

  

%show the rescaled image 

figure;  

subplot(1,2,1);  imshow(scaled_image); 

title('Rescaled image'); 

  

%show the reconstructed image 

subplot(1,2,2); imshow(reconIm); 

title(['Reconstructed image']); 

  

%Security analysis 

%histogram analysis 

figure; subplot(1,2,1); 

imhist(y); title('histogram of y'); 

[ycounts, ybinLocations] = imhist(y); 

subplot(1,2,2); 

imhist(scaled_image); title('histogram of image'); 

[imcounts, imbinLocations] = imhist(scaled_image);% 

title('histogram of image'); 

  

%image entropy 

y_entropy = entropy(y); 

  

%histogram variance 

imdata=reshape(transpose(scaled_image),1,[]); 

v = var(ycounts); 

vim = var(imcounts); 

  

%differential attack analysis: NPCR & UACI 

img_chg = image; 

img_chg(1,1) = 1; 

y_chg = zeros(M,1); 

for ip = 1:M 

    mask = H(:,:,ip); 

     

    hsamp = mask; 
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    %project pattern sequence to image 

    temp = img_chg; 

    temp(hsamp==0) = 0; 

     

    %record average intensity 

    y_chg(ip) = sum(sum(temp))./numel(temp); 

end 

y = round(255.*y); 

y_chg = round(255.*y_chg); 

D = 0; 

diffsum = 0; 

for i=1:M 

    if(y(i)~=y_chg(i)) 

        D = D + 1; 

    end 

    diffsum = diffsum + abs(y(i) - y_chg(i))/255; 

end 

NPCR = (D/M)*100; 

UACI = 100*diffsum/M; 

  

%tabulate results 

T = table(MNratio, RMSE, peaksnr, ssimval, ccval, 

endmask, endrecon); 

disp(T); 

 

singlepix_random.m 

clear all 

addpath(genpath('l1magic'))  

  

% Simulation using test image 

image = rgb2gray(im2double(imread('192.png'))); 

%image = im2double(imread('A.png')); 

  

res = 64; %set resolution 

N = res^2; %number of pixels = res^2 

M = 1*N; %number of sampling measurements 

phi = zeros(M,N); %phi = measurement matrix A 

y = zeros(M,1);  

  

image = imresize(image, [res,res]); %resize image to 

the mask resolution 

  

% Find y, measurement --> average intensity 

startmask = tic; %start stopwatch 

for ip = 1:M 
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rng(ip); %fix the random seed 

randp = randi([0 1],res); %binary pattern generated 

(sqrt(N)xsqrt(N)) 

%randsamp = 

imresize(randp,size(image),'nearest'); %resize 

pattern to image resolution 

randsamp = randp; 

  

phi(ip,:) = randp(:)';%save pattern (sqrt(N)xsqrt(N)) 

into  sampling matrix (MxN) 

  

%project pattern sequence to image (keep only 

datapoints from on pixels) 

temp = image; 

temp(randsamp==0) = 0; 

  

%get average intensity 

y(ip) = sum(sum(temp))./numel(temp); 

end 

endmask = toc(startmask); %stop stopwatch and record 

the reading time 

  

%solve and reconstruct image 

% Find x, image represention --> estIm 

% y = Ax 

% x = A-1*y = A\y --> inverse A 

% Note: x = img0/estIm (Nx1), A = phi (MxN), y = 

aver (Mx1) 

startrecon = tic; %start stopwatch 

invphi = pinv(phi);%pinv(A) returns the Moore-

Penrose Pseudoinverse of matrix A. 

im0 = invphi*y;%initial solution, im0 = x, y = phi*x, 

x = (phi^-1)*y 

estIm = l1dantzig_pd(im0, phi, [], y, 0.01, 1e-4,2); 

  

% Reconstruct image 

reconIm = reshape(estIm,res,res); 

reconIm = (reconIm-

min(min(reconIm)))/(max(max(reconIm))-

min(min(reconIm)));%normalize image 

  

endrecon = toc(startrecon); %end stopwatch and 

record reconstruction time 

  

%calculate RMSE 

A = zeros(res,res); 

scaled_image = imresize(image,size(A)); 
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o = vec2mat(scaled_image,1); 

o_un = vec2mat(reconIm,1); 

for i = 1:N 

    diff = (o_un(i,1) - o(i,1)); 

    diff_sq(i,:) = diff^2; 

end 

diff_sq_sum = sum(diff_sq,1); 

RMSE = sqrt(diff_sq_sum/N); 

  

%calculate PSNR 

peaksnr = psnr(reconIm, scaled_image); 

  

%calculate SSIM 

ssimval = ssim(reconIm, scaled_image); 

  

%calculate CC 

ccval = corr2(scaled_image, reconIm); 

  

%calculate M/N 

MNratio = M/N; 

  

y_entropy = entropy(y); 

  

%show the rescaled image 

figure;  

subplot(1,2,1);  imshow(scaled_image); 

title('Rescaled image'); 

  

%show the reconstructed image 

subplot(1,2,2); imshow(reconIm); 

title(['Reconstructed image']); 

  

%Security analysis 

%histogram analysis 

figure; subplot(1,2,1); 

imhist(y); title('histogram of y'); 

[ycounts, ybinLocations] = imhist(y); 

subplot(1,2,2); 

imhist(scaled_image); title('histogram of image'); 

[imcounts, imbinLocations] = imhist(scaled_image);% 

title('histogram of image'); 

  

%image entropy 

y_entropy = entropy(y); 

  

%histogram variance 

imdata=reshape(transpose(scaled_image),1,[]); 
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v = var(ycounts); 

vim = var(imcounts); 

  

%differential attack analysis: NPCR & UACI 

img_chg = image; 

img_chg(1,1) = 1; 

y_chg = zeros(M,1); 

for ip = 1:M 

    rng(ip); %fix the random seed 

    mask = randi([0 1],res); 

     

    randsamp = mask; 

     

    %project pattern sequence to image 

    temp = img_chg; 

    temp(randsamp==0) = 0; 

     

    %record average intensity 

    y_chg(ip) = sum(sum(temp))./numel(temp); 

end 

y = round(255.*y); 

y_chg = round(255.*y_chg); 

D = 0; 

diffsum = 0; 

for i=1:M 

    if(y(i)~=y_chg(i)) 

        D = D + 1; 

    end 

    diffsum = diffsum + abs(y(i) - y_chg(i))/255; 

end 

NPCR = (D/M)*100; 

UACI = 100*diffsum/M; 

  

%tabulate results 

T = table(MNratio, RMSE, peaksnr, ssimval, ccval, 

endmask, endrecon); 

disp(T); 

 

singlepix_fourier.m 

clear all 

addpath(genpath('l1magic'))  

  

% Simulation using test image 

%image = rgb2gray(im2double(imread('192.png'))); 

image = im2double(imread('cameraman.tif')); 
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res = 64; %set resolution 

N = res^2; %number of pixels = res^2 

M = 1*N; %number of sampling measurements 

phi = zeros(M,N); %phi = measurement matrix A 

y = zeros(M,1);  

  

image = imresize(image, [res,res]); %resize image to 

the mask resolution 

  

%create N res x res Fourier masks by reformatting 

each row of the DCT matrix 

dct = dctmtx(N); 

dct(dct<=0)=0; 

dct(dct>0)=1; 

  

%find y 

startmask = tic; %start stopwatch 

for ip = 1:M 

    %save Fourier mask pattern into measurement 

matrix phi 

    H(:,:,ip) = vec2mat(dct(ip,:),res); 

    mask = H(:,:,ip); 

    phi(ip,:) = dct(ip,:); 

     

    %reshape each Fourier mask to the size of the 

image 

    %dctsamp = imresize(mask,size(image),'nearest'); 

    dctsamp = mask; 

     

    %project pattern sequence to image 

    temp = image; 

    temp(dctsamp==0) = 0; 

     

    %record average intensity 

    y(ip) = sum(sum(temp))./numel(temp); 

end 

endmask = toc(startmask); %stop stopwatch and record 

the reading time 

%y = round(255.*y)./255; 

  

%solve and reconstruct image 

% Find x, image represention --> estIm 

% y = Ax 

% x = A-1*y = A\y --> inverse A  

% Note: x = img0/estIm (Nx1), A = phi (MxN), y = 

aver (Mx1) 

startrecon = tic; %start stopwatch 
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invphi = pinv(phi);%pinv(A) returns the Moore-

Penrose Pseudoinverse of matrix A. 

im0 = invphi*y;%initial solution 

estIm = l1dantzig_pd(im0, phi, [], y, 0.01, 1e-4,2); 

  

% Reconstruct image 

reconIm = vec2mat(estIm,res); 

reconIm = (reconIm-

min(min(reconIm)))/(max(max(reconIm))-

min(min(reconIm)));%normalize image 

  

endrecon = toc(startrecon); %end stopwatch and 

record reconstruction time 

  

%calculate RMSE 

A = zeros(res,res); 

scaled_image = imresize(image,size(A)); 

o = vec2mat(scaled_image,1); 

o_un = vec2mat(reconIm,1); 

for i = 1:N 

    D = (o_un(i,1) - o(i,1)); 

    diff_sq(i,:) = D^2; 

end 

diff_sq_sum = sum(diff_sq,1); 

RMSE = sqrt(diff_sq_sum/N); 

  

%calculate PSNR 

peaksnr = psnr(reconIm, scaled_image); 

  

%calculate SSIM 

ssimval = ssim(reconIm, scaled_image); 

  

%calculate CC 

ccval = corr2(scaled_image, reconIm); 

  

%calculate M/N 

MNratio = M/N; 

  

%show the rescaled image 

figure;  

subplot(1,2,1);  imshow(scaled_image); 

title('Rescaled image'); 

  

%show the reconstructed image 

subplot(1,2,2); imshow(reconIm); 

title(['Reconstructed image']); 
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%Security analysis 

%histogram analysis 

figure; subplot(1,2,1); 

imhist(y); title('histogram of y'); 

[ycounts, ybinLocations] = imhist(y); 

subplot(1,2,2); 

imhist(scaled_image); title('histogram of image'); 

[imcounts, imbinLocations] = imhist(scaled_image);% 

title('histogram of image'); 

  

%image entropy 

y_entropy = entropy(y); 

  

%histogram variance 

imdata=reshape(transpose(scaled_image),1,[]); 

v = var(ycounts); 

vim = var(imcounts); 

  

%differential attack analysis: NPCR & UACI 

img_chg = image; 

img_chg(1,1) = 1; 

y_chg = zeros(M,1); 

for ip = 1:M 

    mask = H(:,:,ip); 

     

    dctsamp = mask; 

     

    %project pattern sequence to image 

    temp = img_chg; 

    temp(dctsamp==0) = 0; 

     

    %record average intensity 

    y_chg(ip) = sum(sum(temp))./numel(temp); 

end 

y = round(255.*y); 

y_chg = round(255.*y_chg); 

D = 0; 

diffsum = 0; 

for i=1:M 

    if(y(i)~=y_chg(i)) 

        D = D + 1; 

    end 

    diffsum = diffsum + abs(y(i) - y_chg(i))/255; 

end 

NPCR = (D/M)*100; 

UACI = 100*diffsum/M; 
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%tabulate results 

T = table(MNratio, RMSE, peaksnr, ssimval, ccval, 

endmask, endrecon); 

disp(T); 

 

singlepix_chaotic_logistic.m 

clear all 

addpath(genpath('l1magic'))  

  

% Simulation using test image 

image = rgb2gray(im2double(imread('192.png'))); 

%image = im2double(imread('cameraman.tif')); 

  

res = 64; %set resolution 

N = res^2; %number of pixels = res^2 

M = 1*N; %number of sampling measurements 

phi = zeros(M,N); %phi = measurement matrix A 

y = zeros(M,1);  

  

image = imresize(image, [res,res]); %resize image to 

the mask resolution 

  

%create M res x res chaotic masks by reformatting 

the logistic map to matrix 

r = 3.8; % r parameter for chaotic regime 

csize = M*N; % size of chaotic array 

x(1)= 0.4; % initial value 

for i=1:csize-1 

   x(i+1) = r*x(i)*(1-x(i)); 

end 

cmat=vec2mat(x, N); 

cmat(cmat<0.5) = 0; 

cmat(cmat>=0.5) = 1; 

  

%find y 

startmask = tic; %start stopwatch 

for ip = 1:M 

    %arrange chaotic mask pattern into res x res 

matrix 

    H(:,:,ip) = vec2mat(cmat(ip,:),res); 

    mask = H(:,:,ip); 

     

    %reshape each chaotic mask to the size of the 

image 

    %csamp = imresize(mask,size(image),'nearest'); 

     

    csamp = mask; 
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    %project pattern sequence to image 

    temp = image; 

    temp(csamp==0) = 0; 

     

    %record average intensity 

    y(ip) = sum(sum(temp))./numel(temp); 

end 

endmask = toc(startmask); %stop stopwatch and record 

the reading time 

  

%solve and reconstruct image 

% Find x, image represention --> estIm 

% y = Ax 

% x = A-1*y = A\y --> inverse A  

% Note: x = img0/estIm (Nx1), A = phi (MxN), y = 

aver (Mx1) 

startrecon = tic; %start stopwatch 

  

%get phi using correct seed 

r = 3.8; % r parameter for chaotic regime 

csize = M*N; % size of chaotic array 

x(1)= 0.4; % initial value (seed) 

for i=1:csize-1 

   x(i+1) = r*x(i)*(1-x(i)); 

end 

cmat=vec2mat(x,N); 

cmat(cmat<0.5) = 0; 

cmat(cmat>=0.5) = 1; 

for ip = 1:M 

    H(:,:,ip) = vec2mat(cmat(ip,:),res); 

    mask = H(:,:,ip); 

    phi(ip,:) = cmat(ip,:); 

end 

  

invphi = pinv(phi);%pinv(A) returns the Moore-

Penrose Pseudoinverse of matrix A. 

im0 = invphi*y;%initial solution 

estIm = l1dantzig_pd(im0, phi, [], y, 0.01, 1e-4,2); 

  

% Reconstruct image 

reconIm = vec2mat(estIm,res); 

reconIm = (reconIm-

min(min(reconIm)))/(max(max(reconIm))-

min(min(reconIm)));%normalize image 
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endrecon = toc(startrecon); %end stopwatch and 

record reconstruction time 

  

%calculate RMSE 

A = zeros(res,res); 

scaled_image = imresize(image,size(A)); 

o = vec2mat(scaled_image,1); 

o_un = vec2mat(reconIm,1); 

for i = 1:N 

    diff = (o_un(i,1) - o(i,1)); 

    diff_sq(i,:) = diff^2; 

end 

diff_sq_sum = sum(diff_sq,1); 

RMSE = sqrt(diff_sq_sum/N); 

  

%calculate PSNR 

peaksnr = psnr(reconIm, scaled_image); 

  

%calculate SSIM 

ssimval = ssim(reconIm, scaled_image); 

  

%calculate CC 

ccval = corr2(scaled_image, reconIm); 

  

%calculate M/N 

MNratio = M/N; 

  

%show the rescaled image 

figure;  

subplot(1,2,1);  imshow(scaled_image); 

title('Rescaled image'); 

  

%show the reconstructed image 

subplot(1,2,2); imshow(reconIm); 

title(['Reconstructed image']); 

  

%Security analysis 

%histogram analysis 

figure; subplot(1,2,1); 

imhist(y); title('histogram of y'); 

[ycounts, ybinLocations] = imhist(y); 

subplot(1,2,2); 

imhist(scaled_image); title('histogram of image'); 

[imcounts, imbinLocations] = imhist(scaled_image);% 

title('histogram of image'); 

  

%image entropy 
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y_entropy = entropy(y); 

  

%histogram variance 

imdata=reshape(transpose(scaled_image),1,[]); 

v = var(ycounts); 

vim = var(imcounts); 

  

%differential attack analysis: NPCR & UACI 

img_chg = image; 

img_chg(1,1) = 1; 

y_chg = zeros(M,1); 

for ip = 1:M 

    mask = H(:,:,ip); 

     

    csamp = mask; 

     

    %project pattern sequence to image 

    temp = img_chg; 

    temp(csamp==0) = 0; 

     

    %record average intensity 

    y_chg(ip) = sum(sum(temp))./numel(temp); 

end 

y = round(255.*y); 

y_chg = round(255.*y_chg); 

D = 0; 

diffsum = 0; 

for i=1:M 

    if(y(i)~=y_chg(i)) 

        D = D + 1; 

    end 

    diffsum = diffsum + abs(y(i) - y_chg(i))/255; 

end 

NPCR = (D/M)*100; 

UACI = 100*diffsum/M; 

  

%tabulate results 

T = table(MNratio, RMSE, peaksnr, ssimval, ccval, 

endmask, endrecon); 

disp(T); 

 

new_chaotic_drpe.m 

clear all 

addpath(genpath('l1magic'))  

  

% Simulation using test image 

image = rgb2gray(im2double(imread('192.png'))); 
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%image = im2double(imread('A.png')); 

  

res = 64; %set resolution 

N = res^2; %number of pixels = res^2 

M = 1*N; %number of sampling measurements 

phi = zeros(M,N); %phi = measurement matrix A 

y = zeros(M,1);  

  

image = imresize(image, [res,res]); %resize image to 

the mask resolution 

  

%create chaotic RIM and 2 chaotic maps with M number 

of rows 

r = 3.8;    %r parameter for chaotic regime 

rim = zeros(1,M); 

map1 = zeros(1,M*N/2); 

map2 = zeros(1,M*N/2); 

rim(1) = 0.8;   %rim initial value 

map1(1) = 0.9;  %map 1 initial value 

map2(1) = 0.7;  %map 2 initial value 

  

for rcount = 1:M-1 

    rim(rcount+1) = r*rim(rcount)*(1-rim(rcount)); 

end 

  

for mapcount = 1:N*M/2-1 

    map1(mapcount+1)=r*map1(mapcount)*(1-

map1(mapcount)); 

    map2(mapcount+1)=r*map2(mapcount)*(1-

map2(mapcount)); 

end 

  

%reshape the maps to M/2 x N matrix 

map1 = vec2mat(map1, N, M/2); 

map2 = vec2mat(map2, N, M/2); 

  

%change the RIM and chaotic maps to bipolar 

rim(rim<0.5) = 0; 

rim(rim>=0.5) = 1; 

map1(map1<0.5) = 0; 

map1(map1>=0.5) = 1; 

map2(map2<0.5) = 0; 

map2(map2>=0.5) = 1; 

  

cmat = zeros(M,N); 

map1_count = 1; 

map2_count = 1; 
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currentmap = 1; 

for count = 1:M 

    if map1_count > M/2 

        cmat(count:M,:)=map2(map2_count:M/2,:); 

        break; 

    elseif map2_count > M/2 

        cmat(count:M,:)=map1(map1_count:M/2,:); 

        break; 

    end 

     

    if rim(count)==1 

       if currentmap == 1 

           cmat(count,:) = map2(map2_count,:); 

           currentmap = 2; 

           map2_count = map2_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map1(map1_count,:); 

           currentmap = 1; 

           map1_count = map1_count+1; 

       end 

    else 

       if currentmap == 1 

           cmat(count,:) = map1(map1_count,:); 

           map1_count = map1_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map2(map2_count,:); 

           map2_count = map2_count+1; 

       end 

    end 

end 

  

%find y 

startmask = tic; %start stopwatch 

for ip = 1:M 

    %arrange chaotic mask pattern into res x res 

matrix 

    H(:,:,ip) = vec2mat(cmat(ip,:),res); 

    mask = H(:,:,ip); 

     

    %reshape each chaotic mask to the size of the 

image 

    csamp = imresize(mask,size(image),'nearest'); 

     

    %project pattern sequence to image 

    temp = image; 

    temp(csamp==0) = 0; 
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    %record average intensity 

    y(ip) = sum(sum(temp))./numel(temp); 

end 

endmask = toc(startmask); %stop stopwatch and record 

the reading time 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

A = transpose(y); 

yy=A; 

rng(2); 

A1=rand(1,M); 

A11=exp(j*2*pi*A1);%mask1 

A111=A.*A11; 

B=fft2(A111); 

rng(4); 

B1=rand(1,M); 

B11=exp(j*2*pi*B1);%mask2 

B111=B.*B11; 

C=ifft2(B111); 

C1=abs(C); 

imC1=vec2mat(C1,46,46); 

figure;imshow(imC1);title('The Encrypted image'); 

  

%decryption 

%     [s1 s2]     = size(C); 

%     sigma       = 10; 

%     Enoise      = zeros(s1,s2); 

%     Enoise(:,:) = normrnd(0,sigma,s1,s2)+ i * 

normrnd(0,sigma,s1,s2);    

%     C          = C + Enoise; 

  

D=fft2(C); 

D1=D.*exp(-j*2*pi*B1); 

D11=ifft2(D1); 

D111=D11.*exp(-j*2*pi*A1); 

F=abs(D11); 

F = transpose(F); 

%figure,imshow(F);title('The decrypted image'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 

%% 

%solve and reconstruct image 

% Find x, image represention --> estIm 

% y = Ax 

% x = A-1*y = A\y --> inverse A  
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% Note: x = img0/estIm (Nx1), A = phi (MxN), y = 

aver (Mx1) 

startrecon = tic; %start stopwatch 

  

%get phi using correct seed 

%create chaotic RIM and 2 chaotic maps with M number 

of rows 

r = 3.8;    %r parameter for chaotic regime 

rim = zeros(1,M); 

map1 = zeros(1,M*N/2); 

map2 = zeros(1,M*N/2); 

rim(1) = 0.8;   %rim initial value 

map1(1) = 0.9;  %map 1 initial value 

map2(1) = 0.7;  %map 2 initial value 

  

for rcount = 1:M-1 

    rim(rcount+1) = r*rim(rcount)*(1-rim(rcount)); 

end 

  

for mapcount = 1:N*M/2-1 

    map1(mapcount+1)=r*map1(mapcount)*(1-

map1(mapcount)); 

    map2(mapcount+1)=r*map2(mapcount)*(1-

map2(mapcount)); 

end 

  

%reshape the maps to M/2 x N matrix 

map1 = vec2mat(map1, N, M/2); 

map2 = vec2mat(map2, N, M/2); 

  

%change the RIM and chaotic maps to bipolar 

rim(rim<0.5) = 0; 

rim(rim>=0.5) = 1; 

map1(map1<0.5) = 0; 

map1(map1>=0.5) = 1; 

map2(map2<0.5) = 0; 

map2(map2>=0.5) = 1; 

  

cmat = zeros(M,N); 

map1_count = 1; 

map2_count = 1; 

currentmap = 1; 

for count = 1:M 

    if map1_count > M/2 

        cmat(count:M,:)=map2(map2_count:M/2,:); 

        break; 

    elseif map2_count > M/2 
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        cmat(count:M,:)=map1(map1_count:M/2,:); 

        break; 

    end 

     

    if rim(count)==1 

       if currentmap == 1 

           cmat(count,:) = map2(map2_count,:); 

           currentmap = 2; 

           map2_count = map2_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map1(map1_count,:); 

           currentmap = 1; 

           map1_count = map1_count+1; 

       end 

    else 

       if currentmap == 1 

           cmat(count,:) = map1(map1_count,:); 

           map1_count = map1_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map2(map2_count,:); 

           map2_count = map2_count+1; 

       end 

    end 

end 

  

for ip = 1:M 

    H(:,:,ip) = vec2mat(cmat(ip,:),res); 

    mask = H(:,:,ip); 

    phi(ip,:) = cmat(ip,:); 

end 

  

invphi = pinv(phi);%pinv(A) returns the Moore-

Penrose Pseudoinverse of matrix A. 

im0 = invphi*F;%initial solution 

estIm = l1dantzig_pd(im0, phi, [], F, 0.01, 1e-4,2); 

  

% Reconstruct image 

reconIm = vec2mat(estIm,res); 

reconIm = (reconIm-

min(min(reconIm)))/(max(max(reconIm))-

min(min(reconIm)));%normalize image 

  

endrecon = toc(startrecon); %end stopwatch and 

record reconstruction time 
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%% 

%calculate RMSE 

A = zeros(res,res); 

scaled_image = imresize(image,size(A)); 

o = vec2mat(scaled_image,1); 

o_un = vec2mat(reconIm,1); 

for i = 1:N 

    diff = (o_un(i,1) - o(i,1)); 

    diff_sq(i,:) = diff^2; 

end 

diff_sq_sum = sum(diff_sq,1); 

RMSE = sqrt(diff_sq_sum/N); 

  

%calculate PSNR 

peaksnr = psnr(reconIm, scaled_image); 

  

%calculate SSIM 

ssimval = ssim(reconIm, scaled_image); 

  

%calculate CC 

ccval = corr2(scaled_image, reconIm); 

  

%calculate M/N 

MNratio = M/N; 

  

%show the rescaled image 

figure;  

subplot(1,2,1);  imshow(scaled_image); 

title('Rescaled image'); 

  

%show the reconstructed image 

subplot(1,2,2); imshow(reconIm); 

title(['Reconstructed image']); 

%% 

%Security analysis 

%histogram analysis 

figure; subplot(1,2,1); 

imhist(C1); title('histogram of final ciphertext'); 

[ycounts, ybinLocations] = imhist(C1); 

subplot(1,2,2); 

imhist(scaled_image); title('histogram of image'); 

[imcounts, imbinLocations] = imhist(scaled_image);% 

title('histogram of image'); 

  

%image entropy 

%y_entropy = entropy(y); 
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%histogram variance 

imdata=reshape(transpose(scaled_image),1,[]); 

v = var(ycounts); 

vim = var(imcounts); 

  

%differential attack analysis: NPCR & UACI 

img_chg = image; 

img_chg(1,1) = 1; 

y_chg = zeros(M,1); 

for ip = 1:M 

    mask = H(:,:,ip); 

     

    csamp = mask; 

     

    %project pattern sequence to image 

    temp = img_chg; 

    temp(csamp==0) = 0; 

     

    %record average intensity 

    y_chg(ip) = sum(sum(temp))./numel(temp); 

end 

A = transpose(y_chg); 

yy=A; 

rng(2); 

A1=rand(1,M); 

A11=exp(j*2*pi*A1);%mask1 

A111=A.*A11; 

B=fft2(A111); 

rng(4); 

B1=rand(1,M); 

B11=exp(j*2*pi*B1);%mask2 

B111=B.*B11; 

C=ifft2(B111); 

C1_chg=abs(C);  %changed final ciphertext 

  

C1 = round(255.*C1); 

C1_chg = round(255.*C1_chg); 

D = 0; 

diffsum = 0; 

for i=1:M 

    if(C1(i)~=C1_chg(i)) 

        D = D + 1; 

    end 

    diffsum = diffsum + abs(C1(i) - C1_chg(i))/255; 

end 

NPCR = (D/M)*100; 

UACI = 100*diffsum/M; 
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%% 

  

%tabulate results 

T = table(MNratio, RMSE, peaksnr, ssimval, ccval, 

endmask, endrecon); 

disp(T); 

 

new_chaotic_rsa.m 

clear all 

addpath(genpath('l1magic'))  

  

% Simulation using test image 

image = rgb2gray(im2double(imread('192.png'))); 

%image = im2double(imread('A.png')); 

  

res = 64; %set resolution 

N = res^2; %number of pixels = res^2 

M = 1*N; %number of sampling measurements 

phi = zeros(M,N); %phi = measurement matrix A 

y = zeros(M,1);  

  

image = imresize(image, [res,res]); %resize image to 

the mask resolution 

  

%create chaotic RIM and 2 chaotic maps with M number 

of rows 

r = 3.8;    %r parameter for chaotic regime 

rim = zeros(1,M); 

map1 = zeros(1,M*N/2); 

map2 = zeros(1,M*N/2); 

rim(1) = 0.8;   %rim initial value 

map1(1) = 0.9;  %map 1 initial value 

map2(1) = 0.7;  %map 2 initial value 

  

for rcount = 1:M-1 

    rim(rcount+1) = r*rim(rcount)*(1-rim(rcount)); 

end 

  

for mapcount = 1:N*M/2-1 

    map1(mapcount+1)=r*map1(mapcount)*(1-

map1(mapcount)); 

    map2(mapcount+1)=r*map2(mapcount)*(1-

map2(mapcount)); 

end 

  

%reshape the maps to M/2 x N matrix 
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map1 = vec2mat(map1, N, M/2); 

map2 = vec2mat(map2, N, M/2); 

  

%change the RIM and chaotic maps to bipolar 

rim(rim<0.5) = 0; 

rim(rim>=0.5) = 1; 

map1(map1<0.5) = 0; 

map1(map1>=0.5) = 1; 

map2(map2<0.5) = 0; 

map2(map2>=0.5) = 1; 

  

cmat = zeros(M,N); 

map1_count = 1; 

map2_count = 1; 

currentmap = 1; 

for count = 1:M 

    if map1_count > M/2 

        cmat(count:M,:)=map2(map2_count:M/2,:); 

        break; 

    elseif map2_count > M/2 

        cmat(count:M,:)=map1(map1_count:M/2,:); 

        break; 

    end 

     

    if rim(count)==1 

       if currentmap == 1 

           cmat(count,:) = map2(map2_count,:); 

           currentmap = 2; 

           map2_count = map2_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map1(map1_count,:); 

           currentmap = 1; 

           map1_count = map1_count+1; 

       end 

    else 

       if currentmap == 1 

           cmat(count,:) = map1(map1_count,:); 

           map1_count = map1_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map2(map2_count,:); 

           map2_count = map2_count+1; 

       end 

    end 

end 

  

%find y 

startmask = tic; %start stopwatch 
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for ip = 1:M 

    %arrange chaotic mask pattern into res x res 

matrix 

    H(:,:,ip) = vec2mat(cmat(ip,:),res); 

    mask = H(:,:,ip); 

     

    %reshape each chaotic mask to the size of the 

image 

    csamp = imresize(mask,size(image),'nearest'); 

     

    %project pattern sequence to image 

    temp = image; 

    temp(csamp==0) = 0; 

     

    %record average intensity 

    y(ip) = sum(sum(temp))./numel(temp); 

end 

endmask = toc(startmask); %stop stopwatch and record 

the reading time 

  

%solve and reconstruct image 

% Find x, image represention --> estIm 

% y = Ax 

% x = A-1*y = A\y --> inverse A  

% Note: x = img0/estIm (Nx1), A = phi (MxN), y = 

aver (Mx1) 

startrecon = tic; %start stopwatch 

  

%get phi using correct seed 

%create chaotic RIM and 2 chaotic maps with M number 

of rows 

r = 3.8;    %r parameter for chaotic regime 

rim = zeros(1,M); 

map1 = zeros(1,M*N/2); 

map2 = zeros(1,M*N/2); 

rim(1) = 0.8;   %rim initial value 

map1(1) = 0.9;  %map 1 initial value 

map2(1) = 0.7;  %map 2 initial value 

  

for rcount = 1:M-1 

    rim(rcount+1) = r*rim(rcount)*(1-rim(rcount)); 

end 

  

for mapcount = 1:N*M/2-1 

    map1(mapcount+1)=r*map1(mapcount)*(1-

map1(mapcount)); 
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    map2(mapcount+1)=r*map2(mapcount)*(1-

map2(mapcount)); 

end 

  

%reshape the maps to M/2 x N matrix 

map1 = vec2mat(map1, N, M/2); 

map2 = vec2mat(map2, N, M/2); 

  

%change the RIM and chaotic maps to bipolar 

rim(rim<0.5) = 0; 

rim(rim>=0.5) = 1; 

map1(map1<0.5) = 0; 

map1(map1>=0.5) = 1; 

map2(map2<0.5) = 0; 

map2(map2>=0.5) = 1; 

  

cmat = zeros(M,N); 

map1_count = 1; 

map2_count = 1; 

currentmap = 1; 

for count = 1:M 

    if map1_count > M/2 

        cmat(count:M,:)=map2(map2_count:M/2,:); 

        break; 

    elseif map2_count > M/2 

        cmat(count:M,:)=map1(map1_count:M/2,:); 

        break; 

    end 

     

    if rim(count)==1 

       if currentmap == 1 

           cmat(count,:) = map2(map2_count,:); 

           currentmap = 2; 

           map2_count = map2_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map1(map1_count,:); 

           currentmap = 1; 

           map1_count = map1_count+1; 

       end 

    else 

       if currentmap == 1 

           cmat(count,:) = map1(map1_count,:); 

           map1_count = map1_count+1; 

       elseif currentmap == 2; 

           cmat(count,:) = map2(map2_count,:); 

           map2_count = map2_count+1; 

       end 
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    end 

end 

  

for ip = 1:M 

    H(:,:,ip) = vec2mat(cmat(ip,:),res); 

    mask = H(:,:,ip); 

    phi(ip,:) = cmat(ip,:); 

end 

%% RSA 

%change y to 0-255 

ky = 255.*y; 

ky = ky - floor(ky); 

y255 = floor(255.*y); 

%calculate the value of p & q 

rng(3); 

temp=randi([3 30],1,M); 

p=nthprime(temp); 

q = zeros(1,M); 

rng(5); 

for count = 1:M 

    q(count)=nthprime(randi([3 30])); 

    while(p(count)*q(count)<256 || 

p(count)==q(count)) 

        q(count)=nthprime(randi([3 30])); 

    end 

end 

n=p.*q; 

%calculate the value of phi 

Phi = (p-1).*(q-1); 

%calculate the value of e 

e=ones(1,M); 

for count = 1:M 

    x=2; 

    while x > 1 

        e(count)=e(count)+1; 

        x=gcd(Phi(count),e(count)); 

    end 

end 

%calculate the value of d 

d = zeros(1,M); 

for count = 1:M 

    rem=0; 

    while(rem~=1); 

        d(count)=d(count)+1; 

        rem=mod(d(count)*e(count),Phi(count)); 

    end 

end 



91 

 

 

  

% % %Encryption, %c=mod(m.^e,n); 

cr=zeros(1,M); 

for count = 1:M 

   eb=dec2bin_rsa(e(count)); 

   k = 65535; 

   c = y255(count); 

   cf = 1; 

   cf=mod(c*cf,n(count)); 

   for i=k-1:-1:1 

       c = mod(c*c,n(count)); 

       j=k-i+1; 

       if eb(j)==1 

          cf=mod(c*cf,n(count)); 

       end 

   end 

   cr(count)=cf; 

end 

  

%Convert to proper intensity level 

r = mod(cr,256); 

K = (cr-r)./256; 

  

% % %Decryption, %mr=mod(c.^d,n); 

cr1 = 256.*K + r; 

mr = zeros(1,M); 

for count = 1:M 

   db=dec2bin_rsa(d(count)); 

   k = 65535; 

   c  = cr(count); 

   cf = 1; 

   cf=mod(c*cf,n(count)); 

   for i=k-1:-1:1 

       c = mod(c.*c,n(count)); 

       j=k-i+1; 

       if db(j)==1 

          cf=mod(c*cf,n(count)); 

       end 

   end 

   mr(count)=cf; 

end 

y_rec = (transpose(mr)+ky)./255; 

%% 

invphi = pinv(phi);%pinv(A) returns the Moore-

Penrose Pseudoinverse of matrix A. 

im0 = invphi*y_rec;%initial solution 
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estIm = l1dantzig_pd(im0, phi, [], y_rec, 0.01, 1e-

4,2); 

  

% Reconstruct image 

reconIm = vec2mat(estIm,res); 

reconIm = (reconIm-

min(min(reconIm)))/(max(max(reconIm))-

min(min(reconIm)));%normalize image 

  

endrecon = toc(startrecon); %end stopwatch and 

record reconstruction time 

  

%calculate RMSE 

A = zeros(res,res); 

scaled_image = imresize(image,size(A)); 

o = vec2mat(scaled_image,1); 

o_un = vec2mat(reconIm,1); 

for i = 1:N 

    diff = (o_un(i,1) - o(i,1)); 

    diff_sq(i,:) = diff^2; 

end 

diff_sq_sum = sum(diff_sq,1); 

RMSE = sqrt(diff_sq_sum/N); 

  

%calculate PSNR 

peaksnr = psnr(reconIm, scaled_image); 

  

%calculate SSIM 

ssimval = ssim(reconIm, scaled_image); 

  

%calculate CC 

ccval = corr2(scaled_image, reconIm); 

  

%calculate M/N 

MNratio = M/N; 

  

%show the rescaled image 

figure;  

subplot(1,2,1);  imshow(scaled_image); 

title('Rescaled image'); 

  

%show the reconstructed image 

subplot(1,2,2); imshow(reconIm); 

title(['Reconstructed image']); 

  

%% 

%Security analysis 
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%histogram analysis 

figure; subplot(1,2,1); 

imhist(r/255); title('histogram of final 

ciphertext'); 

[ycounts, ybinLocations] = imhist(r/255); 

subplot(1,2,2); 

imhist(scaled_image); title('histogram of image'); 

[imcounts, imbinLocations] = imhist(scaled_image);% 

title('histogram of image'); 

  

%image entropy 

%y_entropy = entropy(y); 

  

%histogram variance 

imdata=reshape(transpose(scaled_image),1,[]); 

v = var(ycounts); 

vim = var(imcounts); 

  

%differential attack analysis: NPCR & UACI 

img_chg = image; 

img_chg(1,1) = 1; 

y_chg = zeros(M,1); 

for ip = 1:M 

    mask = H(:,:,ip); 

     

    csamp = mask; 

     

    %project pattern sequence to image 

    temp = img_chg; 

    temp(csamp==0) = 0; 

     

    %record average intensity 

    y_chg(ip) = sum(sum(temp))./numel(temp); 

end 

% % %Encryption, %c=mod(m.^e,n); 

cr_chg=zeros(1,M); 

for count = 1:M 

   eb=dec2bin_rsa(e(count)); 

   k = 65535; 

   c = y_chg(count); 

   cf = 1; 

   cf=mod(c*cf,n(count)); 

   for i=k-1:-1:1 

       c = mod(c*c,n(count)); 

       j=k-i+1; 

       if eb(j)==1 

          cf=mod(c*cf,n(count)); 
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       end 

   end 

   cr_chg(count)=cf; 

end 

  

%Convert to proper intensity level 

r_chg = mod(cr_chg,256); 

  

D = 0; 

diffsum = 0; 

for i=1:M 

    if(r(i)~=r_chg(i)) 

        D = D + 1; 

    end 

    diffsum = diffsum + abs(r(i) - r_chg(i))/255; 

end 

NPCR = (D/M)*100; 

UACI = 100*diffsum/M; 

%% 

%tabulate results 

T = table(MNratio, RMSE, peaksnr, ssimval, ccval, 

endmask, endrecon); 

disp(T); 

 

dec2bin_rsa.m 

function a = dec2bin_rsa(d) 

i=1; 

a=zeros(1,65535); 

while d >= 2 

    r=rem(d,2); 

    if r==1 

        a(i)=1; 

    else 

        a(i)=0; 

    end 

    i=i+1; 

    d=floor(d/2); 

end 

if d == 2 

    a(i) = 0; 

else 

    a(i) = 1; 

end 

x=[a(16) a(15) a(14) a(13) a(12) a(11) a(10) a(9) 

a(8) a(7) a(6) a(5) a(4) a(3) a(2) a(1)]; 

 


