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ABSTRACT 

 

 

 

 

 

The development of soft sensors with high sensitivities and good response time 

is currently researched in great interest, especially in healthcare and soft robotics 

systems. However, there is a lack of study to equip the soft sensors with a smart 

feature. Therefore, this study proposes a smart glove that can recognise objects 

using a support vector machine (SVM), a supervised machine learning 

algorithm. The input to the smart glove is obtained from the integrated resistive 

strain-based flexible sensors. The characterisation of the resistive sensor was 

done, and the sensitivity was found to be 0.0145 kΩ/°. The glove is able to 

recognise three distinct object shapes with an accuracy of up to 92%. Through 

AI-based object recognition and its high accuracy, this glove provides a 

promising solution for a low-cost soft sensor solution for the area of soft robotics. 
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1 INTRODUCTION 

 

1.1 Background 

Soft robotic manipulators such as soft grippers are a growing area of research. 

A fully developed soft gripper allows for increased adaptability and compliance 

for the gripper in less well-defined environments in which the traditional rigid 

robotics are not suitable (Kier & Stella, 2007). This allows for higher flexibility 

in the area of manufacturing or logistics. 

 

However, with a less defined environment for the soft gripper to work 

with, there has to  be a continual feedback system for the accurate control of the 

gripper and obtaining real-time information from its environment. This poses a 

significant current challenge as soft systems do not have a limited and 

constrained degree of freedom (Hughes et al., 2016). Thus, soft sensors are 

usually integrated within the gripper to ensure a continual feedback system. 

 

With the world shifting towards the brink of the Fourth Industrial 

Revolution, the field of predictive modelling and artificial intelligence has 

advanced to the point that it can be applied to almost all situations with relative 

ease. In addition, with the digitisation of data and open-source licensed training 

models, the data needed to train a neural network can be easily obtained online 

with minimal cost. Thus, with the benefits that a predictive model can provide 

for a system, there would be no reason not to integrate predictive modelling with 

soft sensors for object recognition. 

 

Therefore, this report discusses a potential feedback system using a 

resistive based approach for the applications that can be applied in several 

industries, including the soft robotics and healthcare industry. On top of that, a 

machine learning algorithm will be implemented for object recognition. 
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1.2 Problem Statement 

In the next few years, an increased number of broadly-connected devices are 

expected to be deployed; the main trend towards automation and the Internet of 

Things era. More and more technological devices are expected to be automated 

with minimal human input. These new inter-connected devices will be the 

evolution of traditional existing devices and will ease with the sharing of data 

between devices and processing them. However, an increased amount of 

automation will consequently produce a large set of data. The data obtained has 

to be processed are crucial to improving an automated system. Traditionally, 

large amounts of data are processed by statistics and manually finding patterns 

within the data set and making a generalisation for the data which is time and 

resource intensive. Therefore, a solution would be to use a self-learning 

algorithm which automatically finds generalisations based on its inputs and has 

the potential to be improved with more data, also known as artificial intelligence 

or machine learning. 

 

1.3 Aims and Objectives 

The main aim of this project was to fabricate a prototype glove using soft 

sensors that has the ability for object recognition based on the resistive strain 

mechanism; with the sensor being used to detect flexing and angle changes of 

the finger. 

 

The following objectives were set to achieve the aim: 

 

• To characterise resistive based sensor at different bending angles. 

• To fabricate a smart glove prototype based on a resistive strain principle. 

 

• To integrate an AI algorithm into the smart glove to recognise the shape 

of an object. 
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1.4 Report Overview 

In the following chapter, the overall literature review of existing flexible sensor 

solutions, the pros and cons of existing solutions, and the existing design and 

parameters used for the sensors were discussed. The different AI methods that 

can be used for object recognition and the pros and cons were also understood 

and studied. Finally, the different types of kirigami structure and ways of 

improving the stress-strain relationship was explained. 

 

In chapter 3, the methodology of this study, the FEA simulation and the 

structural design of the kirigami structure were explained. On top of that, the 

characterisation of the resistive flex sensor and the training and modelling steps 

of the machine learning algorithm was done and visualised in this chapter. The 

results were then presented in chapter 4 of this paper. 

 

Finally, a conclusion was drawn in chapter 5, with the recommendations 

and suggested future works about different ways that the current prototype can 

be achieved. 
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(a) (b) 

 

(c) 

 

 

 

2 LITERATURE REVIEW 

 
2.1 Methods of Transduction 

2.1.1 Capacitive Strain Sensors 

Capacitive soft strain sensors are used to detect elongation strains. Capacitive 

sensors usually consist of two conductive layers with a dielectric layer in 

between. The thickness changes in response to an applied deformation. With a 

change in the thickness, the resultant capacitance of the strain sensor changes 

(Frutiger et al., 2015). These sensors have the advantage of minimal hysteresis, 

which usually occurs due to changes in electrical resistance due to high strain 

situations. Carbon nanotubes capacitive strain gauges are able to measure strain 

as large as 300% with high sensitivity (Cai et al., 2013). However, due to their 

difficult manufacturing processes, they are not as economical to produce as the 

other types. They are difficult to apply in the case of object recognition, as the 

morphology of the sensors is limited. Figure 2.1(a) shows a capacitive soft strain 

sensor (CS3) with silver wires sewn through the end caps to inhibit connection 

loss and the signal produced (Figure 2.1(c)) while the subject is walking at a 

different pace when the sensor is attached as shown in Figure 2.1(b). 

 

 

 

 

 

 

 

 
 

Figure 2.1:Capacitive Sensor (a) Moulded Capacitive Sensor with 
Protruding Silver Wires. (b) Sensor Mounted on a Textile Attached Across 
the Knee. (c) Signal Measured with Different Walking Speed (Frutiger et 
al., 2015) 
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(e) 

2.1.2 Soft Strain Ionic Sensors 

Soft strain ionic sensors are silicon-based resistive strain gauges that can 

achieve more than 10% flexibility(Keulemans et al., 2014, Park et al., 2012). 

These sensors are composed of an elastomer which has channels within the 

material, and the channels are filled with electrically conductive liquid such as 

an eutectic gallium-indium (EGaIn) alloy, as shown in Figure 2.2(a-d) (Park et 

al., 2012) or sodium chloride(NaCl) solution (Cheung et al., 2008). When force 

is applied axially, the thin elastomer deforms and the liquid within the elastomer 

changes in length and cross-sectional area, resulting in minute changes in 

resistance. With this characteristic, multiple sensors can be layered on top of 

each other to form 3-dimensional sensing, as shown in Figure 2.2(e). Due to 

their linearity of output over a wide range of strain, ionic strain gauges are a 

good candidate for soft robotics applications (Chossat et al., 2013). These 

sensors must be carefully and accurately designed to ensure the ionic channels 

measures a particular degree of freedom(Hughes et al., 2016).  

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Soft Strain Ionic Sensor (a) No stimulus. (b) Contact Pressure. 
(c) x-axis strain. (d) y-axis strain. (e) Three sensors layered to detect x, y 
and z strains. (Park et al., 2012) 
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(a) 

(b) 

2.1.3 Optical Sensors 

This sensor contacts objects with a moulded silicon rubber dome filled with 

clear silicone gel. The inside of the tip comprises of a series of geometrically 

arranged white-tipped pins as shown in Figure 2.3(a-b) (Winstone et al., 2013). 

Deformation from device-object interaction is then measured with a camera by 

tracking the movement of the white-tipped pins inside the rubber dome. Optical 

sensors work based on the principles of deformation of the epidermal layers of 

the human skin and is able to measure greater displacements compared to 

conventional sensors(Chossat et al., 2013). However, optical sensors are not 

suitable for soft robotics due to their bulkiness and difficulty of integration into 

soft structures (Chossat et al., 2013). Other alternatives of optical sensors 

include a differential optical-fiber displacement sensor which uses fiber optics 

and a laser diode light source to estimate a measurement (Suganuma et al., 1999). 

 

 

   

 

 

 

 

 

 

Figure 2.3:Optical sensor  (a)Cross section of an optical-based sensor. 
(b)raw image from the camera inside the sensor showing white tipped pins 
(Winstone et al., 2013). 
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(a) 
(b) 

2.1.4 Strain Sensitive Fibers 

Strain fibers and textiles have been developed to sense user activities with many 

applications, such as in physiotherapy and sports. These sensors are attached to 

textiles such as clothing to be able to detect body postures with a measurement 

range of 100% strain, as shown in Figure 2.4(a) (Tognetti et al., 2005). These 

sensors are fiber-shaped and consist of a thermoplastic elastomer (TPE) filled 

with carbon powder which changes its resistivity with length (Mattmann et al., 

2007). There are also other types that are printed directly onto fabric (Calvert et 

al., 2008). One disadvantage of using these sensors is that the strains measured 

by these sensors are significantly lower than measured ionic strain sensors 

(Hughes et al., 2016). Figure 2.4(b) shows a conductive sensor printed on cotton 

with PEDOT-PPS material (Calvert et al., 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 2.4:Strain Sensitive Fibers (a) Sensors attached to fabric (Mattmann 
et al., 2007). (b) Conductive Sensor printed on cotton (Calvert et al., 2008). 
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(c) 

2.1.5 Flexible Electronics 

Field-effect transistors (FETs) have been increasingly used in flexible 

electronics applications due to their size. FETs combined with rugged, 

lightweight plastics and elastomers can provide a low-cost, high mechanical 

flexibility electrical circuit.(Rogers et al., 2001). These applications are widely 

studied in the field of flexible display but can create a high-performance 

pressure sensor by arranging pentacene FETs in an active matrix layer. These 

sensors are made with polyimide precursors and silver nanoparticles patterned 

on a polyimide film using an ink-jet printing system (Noguchi et al., 2006). 

Figure 2.5(a) and 2.5(c) show an overview of the working mechanisms that form 

a FET pressure sensor, and Figures 2.5(b) shows the active matrix of the 

mechanism. Figure 2.5(d) shows the schematic diagram of a single pressure-

sensitive FET module. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Flexible Electronics (a) Cross section of pressure sensor (b) 
Pressure sensing mat consisting of organic FET active matrix. (c) One cell 
of pentacene FETs. (d) circuit diagram of a stand-alone FET cell. 
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(b) (a) 

2.1.6 Carbon-nanotube Resistive Strain Sensor 

Carbon is often formed into a matrix and integrated into thermoplastics and 

elastomers such as silicone to produce highly flexible sensors. For example, 

Carbon-nanotubes are used to provide ‘skin-like’ sensors, but there has been 

limited integration of these sensors in the robotics application (Lipomi et al., 

2011). Due to the high density and the minute size of the carbon nanotubes, a 

more conductive network within the sensor(Shaffer et al., 1998) may increase 

the efficiency of these sensors. However, these sensor types might be easily 

influenced by mechanical disturbances, like stress or shear(Pham et al., 2016). 

Figure 2.6(a) shows a stitched carbon nanotube strain sensor. Figure 2.6(b) 

shows the nanotube lines in an electron microscope. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Carbon Nanotube Resistive Strain  (a) Lines of nanotube shown 
in a high contrast photograph (Lipomi et al., 2011). (b) Scanning Electron 
Microscope (SEM) of the surface of a nanotube film (Shaffer et al., 1998). 
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2.1.7 Piezoeletric Strain Sensor 

Several types of piezoelectric sensors have been developed using 

nanotechnologies such as using a single ZnO piezoelectric fine wire (Zhou et 

al.,2008) and hybrid carbon fiber structures and ZnO (Liao et al., 2013). The I-

V characteristics scale linearly and are highly sensitive to strain (Zhou et al., 

2008), but the range of strains these sensors can handle is low(Hughes et al., 

2016). Flexible and cheap paper-based piezoresistive sensors were also 

developed which uses MEMs technology (Liu et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7:Piezoelectric Strain Sensor (a)Schematic diagram of a carbon 
fiber-ZnO hybrid structure (Liao et al., 2013). (b) Cutaway view SEM 
image of the hybrid structure (Liao et al., 2013). (c) Schematic diagram of 
a paper-based piezoresistive sensor (Liu et al.,2011) 
 

 

  

(a) (b) 

(c) (d) 
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2.1.8 Triboelectric Generators 

The triboelectric effect or contact-electrification is where some materials can 

store charge after contacting with a different material. Numerous studies on the 

workings of this phenomena include theories such as the correlation between 

the charge amount with bandgaps, the ion densities, and work functions (Xu et 

al., 2018). Usually, charges induced in this process is considered wasted energy 

(Fan et al., 2012). However, triboelectric nano generators were discovered back 

in 2012 (Wang., 2012), and further development on the technology was done to 

create a flexible power source (Wang et al., 2017). A triboelectric generator 

(TEG) consists of multiple different polymers stacked alternatively with a thin 

layer (100nm) of Au alloy film-coated to the top and bottom layer (Fan et al., 

2012). TEGs can produce an electrical potential as the material separates (Wang 

et al., 2017). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.7: (a) The structure of a TEG in bending and releasing process 
and the related electrical measurements (Fan et al., 2012).(b) Theoretical 
model of dielectric sandwiching (Wang et al., 2017). (c) Proposed 
mechanism of a TEG (Fan et al., 2012). (d)TEG Prototype (Fan et al., 2012). 
 

 

b 

c d 
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2.1.9 Ionic Polymer Metal Composite 

Ionic Polymer Metal Composite (IPMC) is a synthetic material that can show 

large deformations when an electric field is applied that behaves similarly to 

biological muscles for biomechanics operations as shown in Figure 

2.8(a)(Shahinpoor et al., 1998). Conversely, when the electroactive polymer is 

mechanically bent or deformed, an output voltage can be measured based on the 

Poisson-Nernst-Planck field theories (Pugal et al., 2011). IPMC usually consists 

of two metal electrodes and free cations dissolved in pockets of solvent (e.g. 

water) with polymer membranes sandwiched within, as shown in Figure 2.8(b). 

When a voltage is applied, cations travel to the cathode electrode, followed by 

the water. This movement cause a hydrophilic expansion which results in the 

bending of the polymer, as shown in Figure 2.8(c & d) (Madden et al., 2004). 

IPMCs have advantages such as lightweight, good flexibility, silent operation, 

and low actuation voltage (Chen., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Ionic Polymer Metal Composite  (a) IPMC Prototype in 
actuation (Hunt et al., 2018). (b, c and d) Mechanical actuation of an IPMC 
mechanism (Madden et al., 2004). 
 

 

 

 

 

(a) 
(b) 

(c) (d) 



13 

2.2 Object Recognition Techniques 

 

2.2.1 Hopfield Network 

Hopfield Neural Networks can be used as a 2D object recognition technique due 

to their fast and more robust object recognition method by reducing 

computational costs(Young et al., 1994). This technique matches all the objects 

against all the object models within the model database simultaneously by 

taking advantage of the parallelism of the neural network where the objects can 

be touching or overlapping(Nasrabadi et al., 1991). A Hybrid Hopfield Network 

(HNN), which combines the advantages of a Continuous Hopfield Network 

(CHN) and a Discrete Hopfield Network (DHN) can also be applied. It provides 

high fault tolerance and better occlusion or edge detection(Kim et al., 1996). 

Occlusion occurs when two or more objects overlap or touch in an image, as 

shown in Figures 2.9. Hopfield Networks are also used as a high-resolution 

technique in acoustic imaging(Winters, 1988) and microwave imaging(Farhat, 

1989). 

 
 
 
 

 
 
 
 

 
 
 

  
 
 
 
 
 
 
Figure 2.9: Hopfield Network (a)Occluded test scenario with three 
overlapping objects, feature points are marked by ‘+’ . (b)-(d) The 
coordinate transformation of each recognised models is evaluated and 
superimposed on the input image by applying a Hopfield Neural network 
(Kim et al., 1996). 

a) b) 

d) c) 
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2.2.2 Support Vector Machines (SVM) 

The Support-Vector network is a supervised learning network used for high 

generalisation group classification problems (Cortes et al., 1995). SVMs have 

been a standard tool to use when solving classification problems because they 

can learn any training set perfectly given an appropriate choice of kernel 

parameters and their loss function is convex making it easier to reach a global 

minimum (Huang et al., 2006). However, SVM training and testing is 

computationally intensive and tuning the kernel parameter is a complicated 

procedure (Zaidi et al., 2010). SVMs can also be combined with other neural 

network algorithms such as K Nearest Neighbour (KNN) to create a hybrid and 

more efficient algorithm (Muralidharan et al., 2011). 

 
 
 
 

 
 
  
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
Figure 2.10:Support Vector Machine (a) Performance of each neural 
network algorithm and the hybrid of both algorithms (b) Model flowchart 
for an SVM + KNN object recognition (c) Example images of trained 
objects (Muralidharan et al., 2011). 

a) b) 

c) 
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2.2.3 Recurrent Neural Network 

Recurrent Neural Networks (RNN) are widely used to model sequential data 

such as text and sound (Visin et al., 2015). This is because RNN can store a state 

(memory) of previous inputs and can process them sequentially. However, 

computer vision through light and sound data (LIDAR and ultrasonic) to 

recognise 3D objects have been achieved with an RNN (Prokhorov, 2009 & 

Watanabe et al., 1992). RNN can be trained by using gradient descent, which 

finds the minimum of a function. This can be used to minimise the error of the 

function. Gradient descent works by changing neuron’s weights in proportion 

to the differential error with respect to each neuron’s weight in each iteration. 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

Figure 2.11:Recurrent Neural Network (a) 3 Dimensional images using 
acoustic imaging (left) and improved images using RNN processing (right) 
(Watanabe, 1992). (b) 3 Dimensional images obtained using LIDAR 
imaging of a vehicle and a non-vehicle structure (left) and the RNN 
prediction model of vehicle classification, where values above 0 indicate a 
vehicle and values below 0 indicates  a non-vehicle (right) (Prokhorov, 
2009). 

(a) 

(b) 
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(a) (b) 

(c) 

2.2.4 Constrain-Satisfaction Approach 

To recognise objects requires satisfying both object-rigidity and scene-data 

constraints to features extracted from a test model and a model object (Boshra 

et al., 1999). By integrating different types of scene features or data types of 

different dimensions (visual and tactile), a Constraint-Satisfaction Problem 

(CSP) can be formulated to unify the different data sets (Boshra, et al., n.d.). 

This problem can be solved by applying a data drive tree search by using local 

constraints (Boshra et al., 1999) as well as a local-consistency enforcing (LCE) 

technique which reduces the uncertainty between the scene and model features 

(Boshra, et al., n.d.). Constraints such as visual, tactile unary, and visual/tactile 

binary are applied to the scene constraint network to ensure that the visual/tactile 

feedback is bounded. Examples of visual constraints include (Boshra, et al., 

n.d.): 

1. Same Edge Constraints: Points that corresponds to collinear edges. 

2. Parallel- Edge constraint: Points corresponding to edges that are parallel. 

3. Same-Junction Constraints: Visual edges that belong to the non-T 

junction. 

4. Same-Object Constraints: Points that are perceived to belong to the same 

object. 

  

 

 

 

 

 

 

 

 

 

Figure 2.12:Constrain-Satisfaction Approach (a) 3 synthetic objects and 
the extracted perceptual structures (b) Illustration of an object-occupancy 
constraint (c) An Illustration of LCE, where the left diagram shows a CSP 
and the right diagram shows a CSP after one iteration of LCE (Boshra et 
al., 1999). 
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(a) 

(b) 

(c) 

2.2.5 Convolutional Neural Network 

Convolutional Neural Networks (CNN) have been widely used to analyse visual 

imagery (Valueva et al., 2020). A convolutional neural network has a similar 

architecture as other neural networks in which they contain an input layer, an 

output layer, and sometimes multiple hidden layers. Convolution networks use 

convolution instead of matrix multiplication in at least one of their layers 

(Goodfellow et al., 2016). CNNs can realise the features and the extraction of 

visual signs in an object with minimal human interactions, which is why CNN 

is mainly used in image recognition and object detection (Valueva et al., 2020). 

CNN works by convoluting features within a set of data and applying a local or 

global pooling algorithm to improve the underlying computation efficiency. 

Range and LiDAR sensors have been used in combination with a CNN 

algorithm to act as a robust object recognition technique by obtaining a 3D point 

cloud data and applying an occupancy grid with a convolutional layer and a 

pooling algorithm to reduce the dimension of the data(Maturana et al., 2015). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13:Convolutional Neural Network (a)Comparisons of different 
recognition methods (UFL+SVM (De Deuge et al., 2013) and 
GFH+SVM(Chen et al., 2014)) with a CNN network (Multi Resolution 
VoxNet) and the average test accuracy (Avg F1) (b) Effects of Rotation 
Augmentation and Voting on the test accuracy on different datasets. (c) A 
CNN based object recognition architecture (VoxNet) (Maturana et al., 
2015). 
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2.3 Kirigami structures 

The art of kirigami consists of folding and cutting paper into highly intricate 

structures. Kirigami patterns have been discovered and implemented in several 

studies due to their special properties that enable great stretchability. For 

example, Hunt et al., 2018 and Rafsanjani et al., 2018 have integrated kirigami 

structures into actuators to allow for a higher strain limit and provide linear 

displacement for the applications of soft robotics. Not only that, Song et al., 

2015 studied the application of stretchable lithium-ion batteries using the 

concept of kirigami; and Li et al., 2020 demonstrated highly stretchable solar 

cells, which is also fundamentally based on the kirigami concept. All these 

applications require carefully designed and optimised kirigami structures to 

ensure maximum stretchability with minimum wear. Hence, the optimum 

cutting patterns are key to determine the property of a kirigami structure. 

 

Several cut designs have been studied. One of the more typical kirigami 

cuts is the linear cut. Figure 2.14(a) shows an example of a linear cut that consist 

of horizontal cuts along a strip of material and Figure 2.14(a)(ii) shows the 

elongated structure of the kirigami pattern. This pattern is characterised by the 

length of each cut, LC, and the distance of the horizontal and vertical (x and y) 

directions of the cuts (Shyu et al., 2015). The cut patterns allow for a higher 

uniaxial strain than an uncut structure, as shown in Figure 2.14(b). 

 

 Figure 2.14(b) also shows the different stages of elongation of a kirigami model. 

The stages are described as (Li et al., 2020): 

- Stage 1: Mechanical deformation of the kirigami structure is similar 

to that of the uncut film and undergoes elastic deformation along the 

loading plane. 

- Stage 2: The kirigami structure converts from a stretching motion to 

a bending motion by rotation of the struts. The new film exceeds its 

critical buckling constant and fractures. 

- Stage 3: When the loading increases, the stresses remain unchanged 

before fracturing as the struts begin to align in the load direction. 
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-  

 
 
 
 
 
 
 

 
Figure 2.14: Kirigami Structures (a)(i) Illustration of a linear cut kirigami 
structure with the defining characteristics labelled LC, X and Y(Li et al., 
2020). (a)(ii) Stress distribution of the elongated kirigami pattern 
(Elongation = 50%) (Li et al., 2020). (b) Stress-strain curves of an 
intact(pristine) and a linearly cut(Kirigami) cellophane substrate. The 
Kirigami structure undergoes three stages of elongation before 
fracturing(Li et al., 2020).  

(a)(i) (a)(ii) (b) 
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2.3.1 Optimisation of Kirigami structures. 

 

2.3.1.1 Manipulation of characteristics 

By manipulating the different characteristics (LC, X and Y) of the typical 

kirigami structure, different stress-strain curves can be plotted, as shown in 

Figure 2.15. Therefore, to achieve a max strain with minimal stresses, the three 

variables may be tweaked to obtain an optimal stress-strain balance. The plots 

in Figure 2.15 was measured based on a typical straight cut kirigami structure. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.15: Manipulation of Characteristics  (a)-(c) Experimental Stress-
strain curve and finite element modelling (FEM) results on the top right 
corner of each main figure. The figures show manipulation of X, Y, and LC, 
respectively. The purpose of the single sided arrow is to show the different 
outcomes when the respective characteristics’ distance is increased (Shyu, 
2015). 
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2.3.1.2 Sharp notch blunting 

In the study of the propagation of cracks in materials, the fractures in ‘V’ 

notches can be hindered or prevented by blunting the notch to allow for a more 

distributed stress around the notch (El Haddad et al., 1979). Therefore, for a 

linearly cut kirigami structure, the vertices experience concentrated stress. The 

addition of a round hole at the vertices can further distribute the stresses more 

evenly, as shown in Figure 2.16(a). The toughness of the material is improved 

as the notch radius increases, as shown in Figure 2.16(b)(ii)(Leguillon et al., 

2007). 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.16: Sharp Notch Blunting (a)Experimental stress-strain curve and 
finite-element modelling (FEM) results on the top right corner of the main 
figure (Shyu et al., 2015). The plot shows the sample with(red) and 
without(black) the blunting of the vertex. (b)(i) The formation of a short 
crack at the V notch’s vertex (Leguillon et al., 2007). (b)(ii) A plot of 
apparent strengthening improvement, R with the notch root radius, d (in 
mm) for different angles of notches (refer to Figure 2.16(b)(i) for 
visualisation)(Leguillon et al., 2007). 
  

(a) 
(b)(i) 

(b)(ii) 
θ 
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2.3.1.3 Shapes of kirigami pattern 

Several studies have proposed different kirigami structure design patterns to 

optimise the strain conditions and maximising elongation. For example, A paper 

published Rafsanjani et al., 2018 reported that a trapezoidal repeating pattern 

inspired by snake scales provides the best pressure-elongation curve (Figure 

2.17(b)) among the different cut patterns as shown in Figure 2.17(a). Chen et al., 

2018 reports that a wave-like cut (Figure 2.17(c)) allows for a higher strain 

before buckling (Figure 2.17(d)(ii)) as compared to a typical straight cut (Figure 

2.17(d)(i)) in both stainless steel structure and the Metallic Glass(MG) structure. 

 

 

 
 

 
 

 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
Figure 2.17: Shape of kirigami pattern (a) Different patterns of cuts that 
allows for different characteristics (Rafsanjani et al., 2018). (b) The 
pressure-elongation plot of the different types of cuts in which the pressure 
is normalised by the shear modulus of the actuator(Rafsanjani et al., 2018). 
(c) Wave-like cut design and its respective characteristics (d1, w1, w2, 
d2)(Chen et al., 2018). (d) Load-strain curve of a typical straight cut 
configuration(i) and the curve of a wave-like cut(ii) (Chen et al., 2018). 
  

(a) 

(b) (c) 

(d)(i) (d)(ii) 
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2.3.1.4 Hybrid structure 

A combination of cuts can be made in order to reduce the stiffness further and 

increase the maximum buckling stress of a material. The addition of minor cuts 

to typical linearly cut kirigami structure as shown in Figure 2.18(a) can reduce 

the stiffness by a factor of 30 as well as the increasing the maximum buckling 

stress by a factor of 2 relative to single-incision patterns as shown in Figure 

2.18(b) (Hwang and Bartlett, 2018). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Figure 2.18: Hybrid Structure (a) kirigami sheets with only major cuts (left) 
and hybrid structure with major and minor cuts (right) (Hwang and 
Bartlett, 2018).(b) Load-strain plot for major cuts(blue) and major and 
minor cuts(red) (Hwang and Bartlett, 2018). 

(a) 

(b) 
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3 METHODOLOGY AND WORK PLAN 

 

3.1 Overview 

The overview of the entire project is visualised in the flow chart as shown in 

Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Illustration of the project flow 
 

Firstly, the development and experimentation of different types of 

sensors were done. Once a responsive sensor was found, the prototype was 

fabricated using the sensor mentioned above. The characterisation and 

sensitivity testing of the sensor was also done. Finally, the sensor’s resultant 

data was then collected and labelled to be used to train a support-vector network 

to recognise different object shapes. 
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3.2 Sensor Development 

Initially, an IPMC based active bend sensor with integrated kirigami cutting was 

planned to be studied and used in this project. Hence, the kirigami structure’s 

dimensions were designed, and the optimisation of the kirigami structure was 

done with Finite Element Analysis (FEA) to observe the stress-strain 

characteristics of the structure. However, due to the imposed movement control 

order caused by the Covid-19 pandemic during the experimental stage of this 

study, further fabrication of the prototype using IPMC compound could not be 

completed in the lab. As a result, this study only provides the FEM simulation 

of the kirigami structures without hardware verifications. 

 

Subsequently, a resistive based flex sensor was used instead as it was 

readily available. The resistive sensor was characterised and its sensitivity was 

investigated. 

 

3.2.1 Structural Design of Kirigami Structure 

A kirigami structure was first designed in Autodesk Fusion 360, a 3D CAD 

software capable of designing complicated 3D models. The design phase went 

through several iterations to make certain that the spacing between each 

structure’s cuts is spaced evenly so that a consistent result can be obtained from 

the Finite Element Analysis in a later stage. In the end, the design is shown in 

Figure 3.2(b) is chosen due to its consistent result when simulating. A wave-cut 

was chosen based on its higher strain capabilities (Chen et al., 2018). Each of 

the wave structure is fully constrained to the model and modelled to be 0.05 mm 

thick. Figure 3.2(a) shows the initial sketch of the cuts before being mirrored 

and ‘rectangular pattern’ to form a repeating pattern along the length of the 

structure. 
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Figure 3.2: Structural Design of Kirigami (a)Initial sketch of kirigami 
structure. (b) 3D view of structure designed in Autodesk Fusion 360. 

 

3.2.1.1 Structure Parameters 

W1 is defined as the length of the center cut for each section; parameter W2 is 

the length of the space between two adjacent cuts; parameter D1 is defined as 

the length between the center cut, and the two adjacent cuts and parameter D2 

is the height of the ‘wave’ of the cut as shown in Figure 3.3. To fully optimize 

the kirigami design characteristics, each of these parameters is manipulated and 

simulated to obtain the minimum possible theoretical stresses. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Illustration of the parameters in the kirigami structure. 
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This structure was designed to be 30 mm x 20 mm x 0.2 mm. The 

parameters for each of the structure in Figure 3.3 were varied three times to find 

the parameter’s relationship to the stresses on the structure. Extra care was taken 

when modifying the parameters that the overall structure and number of cuts 

were not affected to prevent inaccurate results. The variations of lengths that 

were varied are as shown in Table 3.1. 

 

Table 3.1: Variation of the parameters in the kirigami structure. 

Parameters 

W1 W2 D1 D2 

17 mm 

18 mm 

19 mm 

2 mm 

3 mm 

4 mm 

3.5 mm 

4.5 mm 

5.5 mm 

3 mm 

4 mm 

5 mm 

 

3.2.2 Finite Element Analysis 

 

3.2.2.1 Introduction 

Finite Element Analysis (FEA) is a method for solving boundary value 

problems using a numerical method. Typical studies that may fall under the 

boundary value problem may include structural analysis, mass transport, fluid 

flow, and heat transfer (Logan, 2011). A boundary value problem is a 

mathematical problem in which a set of dependant variables must fulfil a 

differential equation everywhere over a known range of independent variables 

(Hutton, 2004).  

 

The analysis can be done by considering the different independent 

variables such as the material properties and geometric properties. The FEA is 

created by breaking down the structure into millions of polygons stitched 

together, known as a mesh. These smaller elements are then calculated 

individually based on the boundary conditions and combined to produce the 

whole structure’s final result. Therefore, this can be used to produce a close 

approximation of loading stresses in our application. 
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3.2.2.2 COMSOL Multiphysics 

In this study, FEA is done through COMSOL Mutiphysics 5.5, a mathematical 

modelling software designed to solving scientific and engineering problems. A 

3D model was first designed through Autodesk Fusion 360, and exported into a 

stereolithography(stl) file format. Then, the file is then imported into COMSOL 

Multiphysics(Figure 3.4(a)), and a mesh is created using the ‘finer’ settings to 

allow for a more accurate analysis shown in Figure 3.4(b). A close-up image is 

shown in Figure 3.4(c) to capture the small polygons that make up the mesh. 

The deformation of the structure is then computed using the solid mechanics 

module in COMSOL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: COMSOL Multiphysics (a) Imported stereolithography(stl) file 
into COMSOL.(b) Mesh created using the ‘finer’ settings. (c) Close-up of 
the mesh. 

 
3.2.2.3 Material and Configuration Properties 

The material used in the COMSOL simulation has a density of 2.2 x 103 kg/m3 

with a yield strength of 2.18 x 107 Pa. Not only that, it has a thermal expansion 

coefficient of 1.7 x 10−4 strain/°c and a Poisson’s ratio of 0.2. A boundary load 

pressure is exerted on one end of the kirigami structure while the other end is 

held constant. This will allow the kirigami structure to elongate perpendicularly 

to the cuts on the structure. 

(a) (b) 

(c) 
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3.2.3 Bend Angle Characterization 

 

3.2.3.1 Experimental Setup 

To test the resistive strain sensor’s bend angle response, a simple voltage divider 

circuit is assembled, as shown in the electrical schematic of Figure 3.5. A 

voltage buffer is added before the output stage to reduce the flex sensor’s source 

impedance error. The resistance change within the flex sensor will cause a 

change in output voltage, Vout according to the voltage divider rule, where: 

 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
(𝑉𝑉𝑑𝑑𝑑𝑑) 

 

R2 is fixed to be 10kΩ in our experimental setup to provide a readable 

range of output voltage to the microcontroller. The output voltage, Vout will be 

connected to an Arduino Uno to read and visualise the data. A C++ 

program(Appendix A) was written to read the analog voltage value from Vout 

and provide a graph to visualise the voltage change. 

 

 
Figure 3.5: Experimental setup of a resistive strain sensor 

 

The characterisation is done by bending the index finger to which the 

resistive sensor is attached and measuring the output voltage from the voltage 

divider. This allows a characterisation of the resistive range of the sensor and in 

turn allows for an estimated output voltage range. 
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3.3 Prototype Glove 

 

Once the flex sensor was fully characterised, a prototype glove was made from 

a total of 5 flex sensors, one for each finger. The flex sensors are attached to 

each finger’s top and held on by a custom 3D-printed strain relief, allowing it to 

bend and stretch freely. 

 

The glove chosen is a cotton gardening glove shown in Figure 3.6(a) 

which can be sewn to fit the flex sensor. The sensors are first attached on a 3D 

printed strain relief designed in Solidworks shown in Figures 3.6(b) and (c). The 

3D printed strain relief is then sewn on to the glove, as shown in Figure 3.6(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Attachment Methods (a) Cotton glove used as the prototype 
glove.(b)-(c) 3D CAD Drawing of strain relief designed in Solidworks. (c) 
Strain relief being sewn onto the glove to allow the sensor to be attached. 

 

 

 

 

(a) (b) 

(c) (d) 
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Each of the fingers consists of two strain relief clamps – one on the tip 

and another on the finger’s base as shown in Figure 3.7(a) and (b), respectively. 

These clamps serve two purposes: fixing the flex sensor placement on the glove 

and providing strain relief when the sensor is bent. 

 

 

 

 

 

 

 

Figure 3.7: Strain Relieve Clamps (a)-(b) Tip and base of the glove with 
sewn-on strain relieve clamps. 

 

Once the clamps are sewn on, the flex sensors are attached to the clamps 

with two screws and the sensors are then sewn on to the glove, ensuring the 

sensor is as close to the finger as possible length wise as shown in Figure 3.8(a) 

and (b). The procedure is repeated four more times to attach all five sensors to 

each finger to create the glove prototype shown in Figure 3.8(c). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Prototype Glove (a)-(b)Fully sewn on sensor from side and 
front view respectively. (c)Finished prototype 

(a) (b) 

(a) (b) 

(c) 
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3.4 Training Data Collection  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:Programming Flowchart for Training Data Collection 
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Figure 3.9 shows the programming flowchart of the data collection procedure 

used to train the SVM model in this application. The program was written in 

Python language for the PC and C++ for the Arduino (the code is attached in 

Appendix B1 and B2 respectively).  

 

The training was done on three objects with different shapes: a sphere, a 

cuboid, and a cylinder, as shown in Figure 3.10. The objects were designed in 

Solidworks and 3D-printed to ensure dimensional accuracy (Table 3.2) and 

provide a controlled way of collecting training data. The training data was 

obtained by wearing the glove, pushing the push button to enable data logging,  

picking an object up and releasing it to form a dynamically changing time-series 

graph. Each sample consists of 150 data points, and each object was sampled 

200 times for a total of 30,000 data points for each object. The samples are then 

labelled to the shape of the object it belongs to and exported to a CSV file format 

with a distinct name to allow for easy debugging and file navigation in the 

training stages. 

 

 

 

 

 

 

 

Figure 3.10: Objects used for training 
 

Table 3.2: Object Dimensions 
Sphere Cuboid Cylinder 

Radius: 20mm Length: 55mm 

Width: 55mm 

Height: 10mm 

Radius: 23.5mm 

Height: 65mm 
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3.5 SVM Model Training 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Programming flowchart for SVM model fit 
 

After obtaining the training data for the three objects, an SVM classifier is 

implemented using Python’s scikit-learn library. The data is split into two sets: 

a test set and a train set. The data in the train set is used to fit the SVM model 

and hence will contain a majority of the data sample; while the data in the test 

set is used to provide an unbiased evaluation of the performance of the model. 

In this study, the train-test set was split by 80% and 20%, respectively. The data 

was also stratified. The test-train sets consisted of evenly distributed labelled 

data of each object to prevent a biased prediction. The fitted SVM classifier can 

then be used to predict an object’s shape on a real-time basis. The flow is as 

shown in Figure 3.11.  
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4 RESULTS 

 

4.1 Kirigami 

 

4.1.1 FEA Simulation of Kirigami Structure 

The kirigami structure was analysed for its von Mises stress distribution along 

with the structure by varying the prescribed displacement. The von Mises stress 

analysis acts as a quantitative result to show the effective stress distribution of 

the structure when it is stretched, as shown in Figure 4.1(a). It is worth noting 

that according to the FEA, most of the stresses are concentrated on the vertices 

of each cut, as shown in Figure 4.1(b). The FEA results also show that the 

applied stresses are distributed uniformly throughout the structure and not 

concentrated on a single point. 

 

The prescribed displacement constraint allows for a constant 

displacement throughout the simulations. The responding variable is the stress 

exhibited by the different geometries. As the top of the structure has a fixed 

constraint added, the displacement of the structure is pulled down in a y-

direction instead, as shown in Figure 4.1(c). 
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Figure 4.1: FEA Simulation (a)FEA of the kirigami structure. (b)Close-up 
of the notch of the structure to show stress distribution. (c)Prescribed 
displacement of 12mm. 

 
 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 
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4.1.2 Stress-strain plot 

To investigate an optimal kirigami structure’s design, a stress-strain relationship 

can be obtained from the structure. This can be obtained by systematically 

varying the kirigami deformation control parameters, namely W1, W2, D1 and 

D2 as defined in Figure 3.3 in the previous chapter. The stress-strain relationship 

can then be plotted for each of the parameters, as shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Stress-strain Relationship (a)-(d) Stress-strain relationships of 
a curved cut Kirigami structure with varying parameters. 
 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Predictably, the buckling load and the maximum extension of the structure are 

highly affected by the geometrical properties of the structure. The simulated 

results show that the increase of parameters W2, D1 and D2 leads to an upward 

shift in the graph, contributing to a higher buckling load but with a decrease in 

maximum extension.  

 

On the other hand, an increase of parameter W1 responds to a downward 

shift in the strain-stress relationship. This means that as the W1 increases, the 

cuts essentially soften the material, leading to a higher extension of the structure. 

Thus, in general, it can be concluded that as the spacing between each cut 

increases, the structure will have higher rigidity and a higher critical buckling 

load. In contrast, increasing the cut length will make the material more flexible 

and increase its extensibility. 

 

The FEA analysis of these models does not fully describe the material’s 

entire property, such as the tearing and breaking of these models. Hence, the 

results obtained from the simulation merely acts as a validation of the 

experimental results. 
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° ° °

4.2 Resistive Strain Sensor Characterisation 

The characterisation of the sensor is done by bending the index finger in a series 

of angles to produce a resultant output voltage on the serial plotter. Figure 4.3 

shows the resultant voltage from four different bending angles of the index 

finger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Resistive Strain Sensor Characterization. Demonstration of 
finger bending motion and the resultant resistance change 
 

Motion (1) shows the finger in a straight manner, providing no bending 

motion on the sensor. With no bending motion, the sensor has a resistance of 

around 2.82 kΩ. Motion (2) is the index finger bending at a 45-degree angle 

with a corresponding resistance of around 1.71 kΩ. Similarly, Motion (3) and 

(4) has an average resistance of around 1.236 kΩ and 0.799 kΩ, corresponding 

to a bending angle of 90 and 135 degrees, respectively. 

 

 

 

 

Resistance (kΩ) 
3.228 

2.438 

1.710 

1.086 

0.504 
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Figure 4.4: Relationship of resistance change with the bending angle. 
 

From Figure 4.4, it is clear that the full range of the index finger 

movement corresponds to a change in resistance that ranges linearly from 

0.799 kΩ to 2.82 kΩ with a resistive sensitivity of 0.0145 kΩ/° . 

 

4.3 SVM Training 

The data collection for training the SVM model consists of collecting the output 

voltage from five fingers and compiling it into a CSV format. The cuboid and 

the cylinder consist of multiple ways to be held, so the training data was 

separated into the number of ways each object is held. The total number of 

samples of each object is then divided equally into each grasping position. For 

example, for the cuboid, which consists of two ways it can be held, each 

grasping position is recorded 100 times for a total of 200 training samples of 

that object. 

 

Figure 4.5 shows one of the samples of each object and the number of 

ways the object can be grasped. The y-axis on each output graph is a 10-bit 

analog value ranging from 0-1023. It can be mapped into a corresponding 

voltage by: 

 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎

1023
(5) 
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Figure 4.5:Sample output data of each shape. 
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4.4 SVM Fitting 

The SVM classifier used in this model is a C-support Vector Classification 

which supports multiclass classification. The confusion matrix of the SVM 

models in Figure 4.6 shows that this model can assist the glove in achieving 

more than 91% accuracy in recognising the shape of objects. The kernel 

parameter, C, which is used to determine the possibilities of misclassification, 

was remained at the default and not optimised. Each object has 160 training 

samples and a testing sample of 40 samples (80% to 20% split). The baseline 

(not holding any objects) has a 100% prediction rate and the highest error 

appears to be the cuboid with 82.5% true predictions with 7 samples being 

predicted wrongly. This can be attributed to the lack of training samples and the 

accuracy might increase with higher training samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Confusion Matrix. Confusion matrix derived from the SVM 
model with 40 tests for each object, including the baseline 
 

 

 

 

 

 

SVM Accuracy: 91.88% 
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92.5% 
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0.0% 

0.0% 

0.0% 0.0% 0.0% 



43 
 

4.5 Real-time prediction 

The real-time prediction of the glove can be made by incorporating real-time 

input from the sensor into the trained SVM model. A button is pushed, sending 

a signal to the Arduino to start reading the sensor output and transmitting it to 

the Python program via serial communication. The SVM then takes the input 

data, parses it, and makes a prediction based on the trained samples. There are 

four possible outputs depending on the inputs, as shown in Figure 4.7. The 

Python program can be found in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Real-time Prediction (a)-(d) Raw real-time data provided by the 
glove with the correct corresponding predicted object shape. 
  

(a) (b) 

(c) (d) 
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5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

In conclusion, this study presented a prototype of an object recognition glove 

based on soft sensors. It was found that the resistance of the resistive flex sensor 

has an effective range of  0.799 kΩ to 2.82 kΩ with a sensitivity of 0.0145 kΩ/° 

when attached on a finger and bound to finger movements. Moreover, a 

prototype glove was fabricated using these flex resistive sensors, and an SVM 

model was applied to recognise the shape of an object. The SVM model 

successfully predicted the test set with a 91.88% accuracy. Hence, the objectives 

and the aim outlined in this project were achieved. 

 

5.2 Future Works and Recommendations 

To enhance the performance of the machine learning model, hyperparameter 

tuning can be applied to the SVM to allow for a higher accuracy prediction. Not 

only that, more training data can be provided to the model to enhance the 

categorisation capabilities of the model. This is evident in a study done by Zhu 

et al. in which they were able to obtain up to 96% accuracy with shape 

recognition by providing more training samples and tuning the penalty 

parameter(Zhu et al., 2020). 

 

Moreover, a self-powered IPMC sensor could be used to substitute the 

resistive flex sensor used in this project. Due to the Covid-19 pandemic and the 

mandatory lockdown imposed within the country, the use of IPMC in this study 

was halted as it wasn’t freely available and had to be fabricated in the lab. The 

change to an IPMC-based sensor with introduced kirigami cutting would bring 

several advantages, including a self-powered nature of the sensor and the 

increased stretching ability of the sensor. 
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APPENDICES 

 

APPENDIX A: Bend Characterization Code 
 

int sensor = A0; //Defining sensor pin 
int sensorValue = 0;  // variable to store the value coming from the sensor 
 
void setup() { 
  Serial.begin(9600); 
  pinMode(sensor, OUTPUT); 
} 
void loop() { 
 sensorValue = analogRead(sensor); //Read sensor value 
 Serial.print("SensorValue= "); //print sensor value to serial 
     Serial.println(sensorValue);  
}  
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APPENDIX B1: Obtaining Training Samples (Python) 
import serial 
import time 
import numpy as np 
from matplotlib import pyplot as plt 
import pandas as pd 
import csv 
 
ser = serial.Serial('COM3', 9600)#timeout = 5 
ser.flushInput() 
time.sleep(3) 
emp = [] 
val1 = [] 
DATASET = 150 #number of datapoints/set 
FILE = "data_1_1_" 
data = np.zeros(shape=(DATASET,5)) 
output = 0 
filecount=0 #changing sample number 
dataset_dict = { 
    'shape': { 
        0: 'Rectangular',  
        1: 'Cylinder',  
        2: 'Pyramid',  
        3: 'Sphere',  
    } 
} 
 
while True: 
    while True: #determine when the button is pressed, send '1' when button pushed 
        print("Push button to read data") 
        startBit = ser.readline() 
        if startBit == b'1\r\n': 
            print("Button Pushed!") 
            ser.write(b'1') 
            break; 
 
    for datapoint in range(DATASET+1): 
        ser_bytes = ser.readline() 
        if datapoint != 0: #ignore first read (bad data) 
            #decode from bytes to str remove \r\n from end of line, and turn to list 
            decode = ser_bytes.decode("utf-8")[:-2].split() 
            #['sensorValue=', '142', 'sensorValue1=', '935', 'sensorValue2=', '199'] 
            count = 0 
            for ind, val in enumerate(decode): #arrange values to array (row = trials, col= finger) 
                if ind%2: #find odd no. 
                    data[datapoint-1][count] = int(val) 
                    count+=1 
    ser.write(b'S') 
    print("Stop sentinel sent!") 
    filecount+=1 
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    with open(FILE+str(filecount)+'.csv','w') as f: #save data 
        np.savetxt(f, data, delimiter = ',',fmt='%i') 
 
    plt.plot(data) 
    plt.ylabel('bend angle') 
    plt.show() 
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APPENDIX C2: Obtaining Training Samples (Arduino code) 
int thumb = A0; int index = A1; int middle = A2; int ring = A3; int pinky = A4; 
int LED = 13; 
int button = 7; 
int sensorValue = 0; int sensorValue1 = 0; int sensorValue2 = 0; int sensorValue3 = 0; int 
sensorValue4 = 0;  
int buttonState = LOW; 
int prevState = LOW; 
unsigned long lastDebounceTime = 0; 
unsigned long debounceDelay = 60; 
int incomingByte = 0; 
void setup() { 
  Serial.begin(9600); 
} 
 
void loop() { 
  buttonState = digitalRead(button); 
   
  if ((millis() - lastDebounceTime) > debounceDelay){ 
    if(buttonState == HIGH && prevState == LOW){ 
      lastDebounceTime = millis(); 
      prevState = HIGH; 
      Serial.println("1"); //send start sentinel to PC 
    } 
    else if(buttonState == LOW){ 
      prevState = LOW; 
      lastDebounceTime = millis(); 
    } 
  } 
   
  if(Serial.available()>0){ 
    incomingByte = Serial.read(); 
    //Serial.println(incomingByte); 
 
    while(Serial.available() == 0){ 
        if(incomingByte == 49){ //ASCII for 1 
          sensorValue = analogRead(thumb); 
          sensorValue1 = analogRead(index); 
          sensorValue2 = analogRead(middle); 
          sensorValue3 = analogRead(ring); 
          sensorValue4 = analogRead(pinky); 
           
          Serial.print("thumb= "); Serial.print(sensorValue); 
          Serial.print(" "); 
          Serial.print("index= "); Serial.print(sensorValue1); 
          Serial.print(" "); 
          Serial.print("middle= "); Serial.print(sensorValue2);   
          Serial.print(" ");  
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Serial.print("ring= "); Serial.print(sensorValue3);   
          Serial.print(" "); 
          Serial.print("pinky= "); Serial.println(sensorValue4);   
        } 
        else if(incomingByte == 83){ //ASCII for 'S' : Stop sentinel 
          incomingByte = 0; 
          break; 
        } 
      } 
  } 
} 
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APPENDIX C: Real-time Prediction 
 

import tensorflow as tf 
import serial 
import time 
from matplotlib import pyplot as plt 
import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn import svm 
from sklearn import metrics 
import os 
from os.path import isfile, join 
import glob 
import matplotlib.image as mpimg 
from sklearn.datasets import make_classification 
from sklearn.metrics import plot_confusion_matrix 
 
 
DATASET = 150 
dataset_dict = { 
    'shape': { 
        0: 'D:\Studies\FYP\FYP1.5\AI\DATA\CUBOID.png',  
        1: 'D:\Studies\FYP\FYP1.5\AI\DATA\CYLINDER.png',  
        2: 'D:\Studies\FYP\FYP1.5\AI\DATA\\NO_OBJ.png',  
        3: 'D:\Studies\FYP\FYP1.5\AI\DATA\SPHERE.png',  
    } 
} 
 
 
#serial comm 
ser = serial.Serial('COM3', 9600)#timeout = 5 
ser.flushInput() 
time.sleep(3) 
 
fileList = glob.glob("1_DATA COMPILED\*.csv") 
x = [] 
y = [] 
#read train data 
for fileName in fileList: 
    with open(fileName, 'r') as f: 
        data = f.readlines() 
        #convert to float and list 
        data = [list(map(float, i.strip().split(','))) for i in data] 
    x.append(data) 
         
    #get the label from filename and append it to a list 
    y.append(int(fileName.split('_')[2]))  
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x = np.array(x) 
y = np.array(y) 
x = x.reshape((800, 150*5)) 
 
#80% train(160 samples from each object), 20% test(40 samples from each object) 
SEED = 51 
X_train, X_test, Y_train, Y_test = train_test_split(x,y, test_size = 0.2, random_state = 
SEED,stratify = y) 
 
#fitting data to SVM 
clf = svm.SVC(kernel = 'rbf')#, probability = True) 
clf.fit(X_train, Y_train) 
 
y_pred = clf.predict(X_test) 
#prediction accuracy 
print("accuracy", metrics.accuracy_score(Y_test, y_pred)) 
print("Precision:",metrics.precision_score(Y_test, y_pred, average = None)) 
print("Recall:",metrics.recall_score(Y_test, y_pred, average = None)) 
plot_confusion_matrix(clf, X_test, Y_test) 
plt.show() 
def read_real_time_data(DATASET): #read data from glove 
    data = np.zeros(shape=(DATASET,5)) 
    while True: #determine when the button is pressed, send '1' when button pushed 
        print("Push button to read data") 
        startBit = ser.readline() 
        if startBit == b'1\r\n': 
            print("Button Pushed!") 
            ser.write(b'1') 
            break; 
     
    for datapoint in range(DATASET+1): 
        ser_bytes = ser.readline() 
        #print("Received: " + str(ser_bytes)) 
        if datapoint != 0: #ignore first read (bad data) 
            #decode from bytes to str remove \r\n from end of line, and turn to list 
            decode = ser_bytes.decode("utf-8")[:-2].split() 
            #['sensorValue=', '142', 'sensorValue1=', '935', 'sensorValue2=', '199'] 
            count = 0 
            for ind, val in enumerate(decode): #arrange values to array (row = trials, col= finger) 
                if ind%2: #find odd no. 
                    data[datapoint-1][count] = int(val) 
                    count+=1 
    ser.write(b'S') 
    print("Stop sentinel sent!") 
 
    data = np.array(data) 
    return data   



58 
 

 
while True: 
    f, (ax1, ax2) = plt.subplots(1,2) 
    x_rt = read_real_time_data(DATASET) 
    x_rt1 = x_rt.reshape((1, 150*5)) 
    y_rt = clf.predict(x_rt1) 
    print(y_rt) 
    imgLoc = dataset_dict['shape'][int(y_rt)] 
    print(imgLoc) 
    Y_img = mpimg.imread(imgLoc) 
    ax1.plot(x_rt) 
    ax1.set_title("Raw Data") 
    ax2.imshow(Y_img) 
    ax2.set_title("Predicted Object") 
    mng = plt.get_current_fig_manager() 
    mng.window.state('zoomed') 
    plt.show() 
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