

DISASTER RESILIENT MESH NETWORK WITH DATA

SYNCHRONIZATION USING NERVENET

LIM WEI SEAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong China Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2021

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Lim Wei Sean

ID No. : 1702106

Date : 9 April 2021

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DISASTER RESILIENT MESH

NETWORK WITH DATA SYNCHRONIZATION USING NERVENET”

was prepared by LIM WEI SEAN has met the required standard for submission

in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Honours) Electrical and Electronic Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Tham Mau Luen

3/5/2021

Dr. Lee Ying Loong

3/5/2021

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, Lim Wei Sean. All right reserved.

iv

ACKNOWLEDGEMENTS

This fruitful project can only be accomplished with the advice and guidance

from my supervisor, Ir Ts Dr Tham Mau Luen and my co-supervisor, Dr Lee

Ying Loong. Their dedicated bits of advice have provided me with many insights

while making challenging decisions throughout the project. I would like to

express my gratitude for what they have contributed to the project and what have

done for me.

 Additionally, I would like to convey my sincere gratitude to Dr Owada

Yasunori from Japan’s National Institute of Communication and Information

Technology for providing pieces of advice and information regarding NerveNet.

His clear guides and documents regarding NerveNet provided by him and his

team have led the project through like a breeze.

 Furthermore, I would like to thank my supportive parents and elder

brother that cares for me through the research project. Their support keeps my

spirits up for all the difficult times throughout the project.

 Finally, I would also like to show my appreciation to all my supportive

friends and coursemates. Their support and presence themselves have

continuously given me inspiration and motivation that led to the success of this

project.

v

ABSTRACT

Natural disasters occur frequently around the world. Internet of Things (IoT)

sensors such as video cameras can detect such cataclysmic events, track the

number of victims and subsequently initiate rescue actions. How to disseminate

the critical information, however, remains an open issue especially when there

are communication breakdowns. This project aims to develop a regional disaster

response platform using NerveNet, which is a mesh networking technology

provided by Japan NICT. By utilising NerveNet Hearsay daemon, images can

be wirelessly synchronized in multiple NerveNet nodes’ database. To facilitate

the emergency management, a cloud monitoring dashboard to visualize multiple

regional response and monitoring networks has been designed and developed.

Serving as a proof of concept, a NerveNet testbed consisting of two base stations

and one gateway has been implemented. Experimental results validate the

feasibility of the proposed platform from two perspectives, namely network and

data synchronization performance. The former measures throughput, delay, and

jitter, whereas the latter focuses on analysing the latency of image

synchronization. The project findings can serve as the guideline for designing a

disaster response and monitoring platform in not only Malaysia but also other

ASEAN countries.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Network Topology 6

2.2.1 Point-to-Point Topology Network 6

2.2.2 Bus Topology Network 7

2.2.3 Ring Topology Network 7

2.2.4 Star Topology Network 8

2.2.5 Mesh Topology Network 9

2.2.6 Tree Topology Network / Extended Star

Network 9

vii

2.2.7 Hybrid Topology Network 10

2.3 Wireless Mesh Network (WMN) 11

2.4 Database 11

2.4.1 Relational Database (SQL) 11

2.4.2 Non-relational Database (NoSQL) 12

2.5 Database Synchronization 14

2.6 BATMAN-ADV 14

2.6.1 Database Synchronization 16

2.7 NerveNet 16

2.7.1 Database Synchronization 18

2.8 Communication Protocols 18

2.9 Scalability 20

2.10 Monolithic Architecture and Microservice Architecture

 21

2.11 Server and Cloud 22

2.12 Cloud Computing and Edge Computing 24

2.13 Digital Twin 24

2.14 User Interfaces 25

2.15 Summary 25

3 METHODOLOGY AND WORK PLAN 26

3.1 Introduction 26

3.2 Work Plan 26

3.3 Mesh Network 28

3.4 NerveNet Testbed Application 28

3.5 Proof of Concept 29

3.5.1 Network Design 29

3.5.2 Database Synchronization Methods 31

3.6 NerveNet 34

3.6.1 Hardware Selection 34

3.6.2 Wireless Mesh Network 35

3.6.3 Testbed Network Architecture 35

3.7 Database Synchronization 37

3.8 Cloud Dashboard 38

3.8.1 Backend Development 38

viii

3.8.2 Frontend 40

3.9 Performance Test 43

3.9.1 Network Metric 43

3.9.2 Network Performance Test 45

3.9.3 Database Synchronization Test 47

3.10 Summary 48

4 RESULTS AND DISCUSSION 49

4.1 Introduction 49

4.2 Network Benchmark 50

4.2.1 Single Hop Benchmark 50

4.2.2 Direct Link Against Two Hop Link 53

4.3 Database Synchronization Benchmark 56

4.4 Platform Design Feasibility 58

4.4.1 Annex B.5: Network Requirements 59

4.4.2 Annex B.6: Portable Radio Relay Node 59

4.4.3 Annex B.10: Service Platform Requirements in

the Local Private Network 59

4.4.4 Annex B.7, B.8 and B.9 60

4.5 Summary 60

5 CONCLUSION AND RECOMMENDATIONS 61

5.1 Conclusion 61

5.2 Recommendations for Future Work 61

REFERENCES 63

ix

LIST OF TABLES

Table 2.1: List of Common Protocols for Each OSI Model Layers 20

Table 3.1: Disaster Sensor Application Hearsay Table Schema. 37

Table 3.2: The Table Fields of ‘shbt_boxshare’. 38

Table 3.3: Technology Stack of All Backend Services and Tools in the Cloud

Monitoring Server. 40

Table 3.4: Performance Metrics for NerveNet Network Performance Evaluation

and the Tools and Protocol Used for the Measurement. 45

Table 3.5: NerveNet Network Performance Test, its Fixed Parameters and

Obtained Metrics. 46

Table 3.6: Test Phases and its Corresponding Configurations. 47

Table 4.1: Distance Between Each Node During Network and Database

Synchronization Benchmark. 50

Table 4.2: Image Resolution and File Size Used for Hearsay File

Synchronization Performance Benchmarking. 57

Table 4.3: Average, Maximum and Minimum Estimated Database

Synchronization Throughput. 58

x

LIST OF FIGURES

Figure 2.1: Point-to-Point Topology. 7

Figure 2.2: Bus Topology. 7

Figure 2.3: Ring Topology. 8

Figure 2.4: Star Topology. 8

Figure 2.5: Mesh Topology. 9

Figure 2.6: Tree Topology. 10

Figure 2.7: Hybrid Topology of Mesh Topology and Star Topology. 11

Figure 2.8: Stacked Venn Diagram of a Typical SQL Database Architecture. 12

Figure 2.9: Stacked Venn Diagram of a Typical Document Store NoSQL

Database Architecture. 13

Figure 2.10: Example of a BATMAN-ADV Architecture. 16

Figure 2.11: Example of a NerveNet Architecture. 17

Figure 2.12: An Illustration of the OSI Abstraction Model. 19

Figure 2.13: An Illustration of Client-Server Model Application Architecture.

 23

Figure 3.1: Flow Chart of the Work Plan for the Final Year Project. 27

Figure 3.2: An Illustration of the NerveNet based Disaster Response and

Monitoring Platform. 28

Figure 3.3: Simple BATMAN-ADV Deployment. 31

Figure 3.4: Client-Server Model Database Synchronization System Architecture.

 32

Figure 3.5: Source Broker Publish-Subscribe Model Database Synchronization.

 33

Figure 3.6: Receiver Broker Publish-Subscribe Model Database Synchronization.

 34

Figure 3.7: Network Architecture Diagram of the NerveNet Testbed. 36

xi

Figure 3.8: Service Architecture of the Cloud Monitoring Application. 39

Figure 3.9: Sitemap of the Cloud Monitoring Dashboard. 41

Figure 3.10: Wireframe of the Cloud Monitoring Dashboard. 42

Figure 3.11: Visual Design of the Cloud Monitoring Dashboard. 42

Figure 4.1: Prototype of the NerveNet Testbed. 49

Figure 4.2: Average-Max-Min Chart of (a) the TCP Throughput and (b) TCP

Retransmission Count for All Single Hop Links. 51

Figure 4.3: Average-Max-Min Chart of the (a) UDP Upload Throughput, (b)

PDR and (c) Jitter for All Single Hop Links. 52

Figure 4.4: Average-Max-Min Chart of the Network Latency for All Single Hop

Links. 53

Figure 4.5: Average-Max-Min Chart of (a) the TCP Throughput and (b) TCP

Retransmission count for All Measured Two Hop Links. 54

Figure 4.6: Average-Max-Min Chart of the (a) UDP Upload Throughput, (b)

PDR and (c) Jitter for All Measured Two Hop Links. 55

Figure 4.7: Average-Max-Min Chart of the Network Latency for All Measured

Two Hop Links. 56

Figure 4.8: The Image Used for Synchronization (img_small.jpg). 57

Figure 4.9: Time Taken for Different Sized Images to Be Synchronized from GW

to BS1 and BS2 Respectively. 57

xii

LIST OF SYMBOLS / ABBREVIATIONS

PGW Packet Data Network Gateway

API Application Programming Interface

DBMS Database Management System

LAN Local Area Network

WAN Wide Area Network

CAN Controller Area Network

PROFIBUS Process Field Bus

WLAN Wireless Local Area Network

IoT Internet of Things

WMN Wireless Mesh Network

AODV Ad Hoc On-Demand Distance Vector

OLSR Optimized Link State Routing Protocol

SQL Relational Database

MySQL Non-Relational Database

JSON JavaScript Object Notation

IAM Identity and Access Management

CLI Command Line Interface

IP Internet Protocol

DHCP Dynamic Host Configuration Protocol

OMG Originator Message

NWGN New Generation Network

NICT National Institute of Information and Communications

Technology, Japan

BS Base Station

GW Gateway

NM Network Manager

AP Access Point

OS Operating System

XML Extensible Markup Language

PDR Packet Delivery Ratio

RTT Round-Trip Time

PDV Packet Delay Variation

xiii

VoIP Voice Over Internet Protocol

OSI Open Systems Interconnections

DRY “Don’t Repeat Yourself”

RAM Random-Access Memory

AWS Amazon Web Services

GCP Google Cloud Platform

SSH Secure Shell

SCP Secure Copy Protocol

SFTP Secure File Transfer Protocol

DTDL Digital Twin Definition Language

HTML Hypertext Markup Language

CSS Cascading Style Sheets

JS JavaScript

HTTP Hypertext Transfer Protocol

MQTT Message Queuing Telemetry Transport

WAP Wireless Access Point

ERB Ethernet Remote Bridge

STA Station

REST Representational State Transfer

TCP Transmission Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

MTU Maximum Transmission Unit

UAV Unmanned Aerial Vehicle

xiv

LIST OF APPENDICES

APPENDIX A: TP-Link AC1300 Archer T4U USB Adapter Specification 67

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

The resilience of a network is always an issue in deploying a fault-tolerant

network. In places like the United States, China and Indonesia where there is a

high risk of natural disasters, a resilient network consisting of various sensor

devices is required to provide crucial information during a disaster strike. On

March 11, 2011, the East Japan Great Earthquake has damaged approximately

29000 cellular towers (DoCoMo, 2011). These damages have restricted families

and friends to communicate, halted the broadcast of evacuation notice and most

importantly prevented collections of recent and historical information for the

rescue teams.

 This problem cannot be avoided by the current tree topology

communication architecture. The network will not be functioning from the

lower part of the hierarchy if a higher component or service has a fault or

malfunction. This makes our current network architecture vulnerable to faults.

For example, in the 4G LTE architecture, if the Packet Data Network Gateway

(PGW) is damaged, the area connectivity to the Internet will be affected. This

causes trouble for disaster victims to contact their families or rescue authorities

and also to rescue authorities to retrieve data about the affected areas.

 To overcome this problem, a mesh network can be used rather than a

tree topology network. A mesh network is a network topology that allows

devices to be connected directly and allows re-transmission of data packets to

other members of the network. Mesh topology can be utilized to create a

resilient network as it can transmit data through multiple routes.

 During a disaster, information on the condition and number of victims

in the disaster area is crucial for the rescue team to execute their jobs.

Evacuation notice broadcast is also important to minimize the damage caused

by a disaster. However, a network that allows victims to communicate with the

community service and rescue applications directly without connecting to the

Internet does not currently exist in Malaysia. Fortunately, there is a solution for

a disaster-resilient mesh-topological network called NerveNet, which is

2

provided by Japan NICT. In NerveNet, each node is independent of the other

and it is tolerant to link disconnections and system failures because of its mesh

structure and fast route switching on layer 2.

 Information availability during a disaster can be provided by either

implementing an application-specific Application Programming Interface (API)

or synchronizing the application database. However, it will be troublesome to

create an application-specific API just to have information in multiple locations

as it would require modifying the code of the publishing node to add a broadcast

destination and require the receiving node to have the API to receive the data.

Rather than pushing the data directly from the application, it is much easier to

synchronize the application database passively. This can be done by using the

database replication provided in most of the modern Database Management

Systems (DBMS) such as MySQL and MongoDB. In NerveNet, it can be simply

done using the Hearsay Protocol.

1.2 Importance of the Study

Although Malaysia is located in a geologically stable region, Malaysia is still

often vulnerable to floods and other disasters. The damages caused by the floods

can be devastating as seen in the 2014-15 Malaysian flood. This shows the

importance to have a resilient network for emergency use in Malaysia. For the

emergency response authorities to easily broadcast emergency or evacuation

notices to a public notice board, vending machines and smart advertisement

boards, a broadcasting mechanism must be incorporated in the regional network.

This can be achieved by having a database synchronization feature in the

regional network to synchronize the databases of the regional emergency

response authorities with the notice application databases. Database

synchronization feature is also used for data collection of regional data by

emergency response authorities. The data collection allows the regional

emergency response authorities to monitor the conditions of the region and

provide guides and notice for evacuation during pre- and post-disaster. To allow

nationwide monitoring and control, a cloud monitoring and control dashboard

is essential to visualize and provide signals for multiple regional mesh networks.

3

1.3 Problem Statement

The absence of a regional resilient network topology and architecture for

emergency use is one of the shortcomings of the current network in Malaysia.

With a resilient network, a database synchronization feature must also be set in

place in the network. The database synchronization feature allows applications

to pull data from each other natively in the regional resilient network. A cloud-

based monitoring dashboard is also required to obtain insights from multiple

regional networks and to provide nationwide responses.

1.4 Aim and Objectives

This study aims to design and develop a NerveNet mesh network for regional

disaster response applications. The objectives of this study are:

(i) To deploy a NerveNet mesh network testbed with data synchronization

(ii) To design and deploy a cloud monitoring dashboard for the regional

disaster monitoring network

(iii) To evaluate the performance of the NerveNet testbed in terms of its

network and database synchronization efficiency

1.5 Scope and Limitation of the Study

Since this project is in collaboration with Japan NICT under the funding of

ASEAN IVO, the focus is to deploy the NerveNet for regional disaster response

applications. The deployment, however, can be done only on a small-scale

testbed due to the ongoing pandemic issue. Besides that, the project

development progress was affected by the delay of technical support from the

NICT side such as incomplete documentations of NerveNet OS installation.

Nevertheless, the small-scale testbed has been successfully implemented and

thorough analysis has been conducted.

1.6 Contribution of the Study

A three-node NerveNet mesh network testbed is deployed and worked as a

network of disaster monitoring cluster in this study. Data between the disaster

monitoring base stations are synchronized within the mesh network and to the

cloud for data resiliency. A cloud monitoring dashboard has been designed,

4

developed and deployed for monitoring and visualization of disaster and

network situations in multiple NerveNet networks. Since this project is funded

by NICT ASEAN IVO, the outcome of this case study will serve as the guideline

for NerveNet deployment in other countries such as Thailand and Myanmar.

1.7 Outline of the Report

This report consists of five major chapters. The first chapter provides an

overview of the project’s topic, aim and objectives. Chapter 2 uncovers some

computer networking and web development knowledge related to this project.

Chapter 3 includes the detailed work schedule and methodology of the project.

Chapter 4 shows the implementation of the deployed system as well as the result

of a network performance analysis on the system. Some remarks, future

recommendations and possible enhancements are covered in the final chapter.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

A computer network is a cluster of connected computers. The connection can

be either wired together in terms of copper wires and fiber optics or connected

wirelessly via Wi-Fi and radio waves (Sandberg, 2015). There are two kinds of

networks, Local Area Network (LAN) and Wide Area Network (WAN). LAN

allows devices within an organization to communicate with each other. On the

other hand, WAN allows devices from different organizations to communicate

with each other. WAN covers a wider area which usually spans across one or

multiple regions and even continents.

 Network resilience is defined as “the ability of a network to defend

against and maintain an acceptable level of service in the presence of such

challenges” (Smith et al., 2011). According to Sterbenz et al. (2010), the

resilience of a network is enabled by seven principles which are:

(i) Self-protection and security

(ii) Connectivity and association

(iii) Redundancy

(iv) Diversity

(v) Multilevel resilience

(vi) Context Awareness

(vii) Translucency

Self-protection and security are the capabilities of the network to protect

itself from challenges. Connectivity and association are the capabilities of the

network to continue the communication even without a stable end-to-end

connection between the devices. Redundancy can be achieved by having

replication of entities in the network. In terms of information redundancy,

copies of the data are stored in multiple network nodes to provide fault-tolerant

data availability. Diversity focuses on providing alternatives to avoid operations

within the network to degrade. Multilevel resilience enables resilient features at

6

different protocol layers. Context-awareness is the network feature to sense the

network condition and provide remedial actions. Translucency is the visibility

between layers against the degree of abstraction within the network. With most

of the seven principles enabled in the network, the network can be considered

resilient, but it also depends on the possible risk faced by the network.

 A disaster tolerant network utilizes distributed applications and

resources on a resilient network to provide emergency and communications

services during and after a disaster. These networks work independently to

prevent network congestions, especially at the network core level. It provides

local applications for emergency response and community service applications

such as data collection, rescue requests and emergency notice broadcastings. As

disaster cannot be accurately predicted, a data synchronization feature is

required in these networks provided by any protocol layer to have a constant

update of the regional condition.

2.2 Network Topology

Network topology has a direct impact on network resilience. There are four

basic kinds of network topologies in computer networking which are point-to-

point topology, bus topology, ring topology and star topology. Additionally, two

advanced network topologies namely mesh topology and tree topology can be

formed based on the extension of point-to-point topology and star topology,

respectively.

2.2.1 Point-to-Point Topology Network

Figure 2.1 shows a point-to-point topology network where two devices connect

directly with each other through a wired or wireless communication interface.

An example of point-to-point communication is Bluetooth and Wi-Fi ad-hoc

mode.

7

Figure 2.1: Point-to-Point Topology.

2.2.2 Bus Topology Network

Figure 2.2 shows a bus topology network that connects all devices using one

single cable. Bus topology networks only allow unidirectional communications.

This network topology is seldom used in computer networking nowadays, but it

is popular in industrial device communication. Controller Area Network (CAN)

bus protocol, Modbus protocol and Process Field Bus (PROFIBUS) protocol

are some of the communication protocols that use this network topology.

Figure 2.2: Bus Topology.

2.2.3 Ring Topology Network

Devices in a ring topology network connect to two neighbouring devices

forming ring-shaped connectivity. This allows devices within the network to

communicate with each other without direct connection. Ring topology network

is a subset of partial mesh topology networks. If the hub of a star topology

network is connected with other hubs in a ring topology fashion, it is called a

token ring topology network. MOXA’s Turbo Ring redundancy protocol is a

protocol that utilizes a ring topology. A ring topology is shown in Figure 2.3.

8

Figure 2.3: Ring Topology.

2.2.4 Star Topology Network

Star topology is the most common network topology used in computer

networking. Star topology network requires a central hub to connect all the

devices. The central hub relays the data packet from one device to the other

based on the destination of the data packet. As it is very dependent on the central

hub, failure on the hub will cause the whole network to fail. A common use of

this topology is the wireless access point (AP) which forms the Wireless LAN

(WLAN) of most organizations. An example of a star topology network is

shown in Figure 2.4.

Figure 2.4: Star Topology.

9

2.2.5 Mesh Topology Network

Figure 2.5 depicts a mesh topology network where all devices are connected and

are able to relay data packets from one device to the other. If all devices are

directly connected, this kind of mesh network is called a full mesh network. On

the other hand, if not all devices are directly connected but still able to

communicate through relaying of data packets, this network is called a partial

mesh network. Mesh network is very advantageous in terms of the resilience of

the network as there is still an alternative routing path to route its packets even

if an intermediate node has failed in the original path. However, a mesh network

is often much more difficult to set up. Mesh networks are currently common for

home automation, Internet of Things (IoT) and computer networking in remote

areas.

Figure 2.5: Mesh Topology.

2.2.6 Tree Topology Network / Extended Star Network

When the hub of the star topology networks is connected to another hub, this

forms an extended star network which is also called a tree topology network due

to its tree-like hierarchy architecture. Tree topology networks are very suitable

for larger networks as they can be segregated into multiple branches for simple

management. However, the main disadvantage of a tree topology is that it is

very dependent on the central hub of the network. If there is any failure on any

higher-level hubs, all its child networks cannot communicate with each other

and any network above the failed hub’s network. The hubs are said to be the

10

single-point failure of the network. The use of this topology is to segregate large

networks into smaller star networks. This network can be set up using network

devices such as network switches and routers. An example of a tree topology is

shown in Figure 2.6.

Figure 2.6: Tree Topology.

2.2.7 Hybrid Topology Network

When various network topologies are joined together to form a larger network,

this network forms a hybrid network. Figure 2.7 shows a hybrid topology

network of a mesh network and star network.

11

Figure 2.7: Hybrid Topology of Mesh Topology and Star Topology.

2.3 Wireless Mesh Network (WMN)

Wireless Mesh Network (WMN) is a network where devices are connected

wirelessly in a mesh topology. This type of mesh network is different as wireless

interfaces have more considerations compared to wired mesh networks. As

wireless medium tends to introduce more interference and there is no physical

connection, it is a challenge to detect a failure at other nodes. Special routing

protocols are developed to manage package routing, member discovery and

other challenges of a wireless mesh network. Some wireless mesh routing

protocols are BATMAN, NerveNet, Ad hoc On-Demand Distance Vector

(AODV) and Optimized Link State Routing Protocol (OLSR).

2.4 Database

A computer database is a collection of digital data and is manageable through

software called a Database Management System (DBMS). There are many

distributions of databases, but they can be generally divided into two major

categories which are relational database (SQL) and non-relational database

(NoSQL).

2.4.1 Relational Database (SQL)

Relational databases store their data as rows in a table. A SQL DBMS can hold

multiple databases. Each database will hold multiple tables and each row in the

12

table represents a data entry. Fields of the data are represented as columns in the

SQL table. This can be illustrated in the stacked Venn diagram as shown in

Figure 2.8. Examples of SQL databases are MySQL, PostgreSQL and SQLite.

Figure 2.8: Stacked Venn Diagram of a Typical SQL Database Architecture.

2.4.2 Non-relational Database (NoSQL)

NoSQL databases store data in a form that it does not require to define the data

structure first and sometimes could not do so either. There are many types of

NoSQL databases which include Document store databases, Key-value store

databases, Column-oriented databases and graph databases. NoSQL DBMS can

usually hold multiple databases. The unique features of NoSQL databases

simplify many data storage problems and render big data analysis possible. As

NoSQL is still considerably new, there is no standardized query language. Thus,

this makes migration between different databases much more challenging (SQL

Vs NoSQL Exact Differences And Know When To Use NoSQL And SQL,

2021).

2.4.2.1 Document Store Database

Document store NoSQL databases store their data as documents in a collection.

Each database in its DBMS can hold multiple collections and each document

represents the data in the collection. Documents are data that have a JavaScript

Object Notation (JSON) like format (Drake, 2019). This can be illustrated in the

stacked Venn diagram as shown in Figure 2.9. MongoDB, CouchDB and Azure

Cosmos DB are three common Document store NoSQL databases.

Database

Table

Row

13

Figure 2.9: Stacked Venn Diagram of a Typical Document Store NoSQL

Database Architecture.

2.4.2.2 Key-Value Store Database

Key-value store NoSQL databases are similar to document store databases.

However, it has only a single collection and only stores its values as an opaque

blob. This type of data storage model is usually used for non-persistent storage

such as caching, queueing and session storage due to its simplicity, scalability

and performance (Drake, 2019). Examples for key-value store databases are

Redis, Memcached and Riak.

2.4.2.3 Column-Oriented Database

Column-oriented databases or columnar databases are databases that store data

in terms of columns. Unlike SQL databases, it groups data in terms of columns

rather than tables. It stores the data in the column in record order, which means

the index of a specific record in one column is the same for the other column.

This allows queries to only retrieve data from selected columns rather than

reading all rows and remove the unselected column of data. However, the

drawback of this type of database is that it requires more time to insert a new

record as separate write operations are required for all columns (Barnhill and

David, 2021). Apache Cassandra is a popular example of NoSQL DBMS

utilising this data storage model.

2.4.2.4 Graph Database

Graph databases are considered a subcategory of document store databases. A

graph database stores its data in documents and does not require a predefined

Database

Collection

Document

14

schema for its data. However, graph databases add another abstraction layer to

allow relationships between their documents. Additional concepts are

introduced in graph databases to augment the capabilities of document store

databases which include nodes, edge and properties. Nodes are independent

records that can hold properties. A node is synonymic to the concept of a

document in a document store database. The nodes relations are stored using

edges. Edges represent how two nodes are related to each other (Vázquez, 2019).

In some DBMS, edges can also have properties to store the unique

characteristics of the relationship. Edges can be undirected or directed to

indicate the direction of the relationship. Labels are also introduced in some

graph databases to allow users to group nodes and edges by categories. Due to

its capability to clean and simple ways of defining relations, graph databases are

widely used for fraud detection, network routing, identity and access

management (IAM) and full-text search applications. As of April 2021, Neo4j

is the most popular graph modelled NoSQL database (Solid IT, 2021).

2.5 Database Synchronization

The process of synchronizing data to achieve consistency among different data

sources is called data synchronization (Shodiq et al., 2015). Database

synchronization is the synchronization of data in a database. There are two

categories of data synchronization techniques which are unidirectional

synchronization and bidirectional synchronization (Jindal, 2016).

Unidirectional data synchronization copies and replace the data in the

destination database from a source database. Bidirectional data synchronization

merges the data from both source and destination databases. Conflict in the

source and destination data will cause bidirectional data synchronization to fail.

2.6 BATMAN-ADV

BATMAN is a proactive routing protocol and system for a mesh network.

BATMAN-ADV is a newer implementation of BATMAN. on layer 2.

BATMAN uses an efficient algorithm that avoids redundant knowledge of the

network and reduces overheads caused by network signalling (Pinto et al., 2010).

BATMAN-ADV supplies user with a command-line interface (CLI) called

batctl which helps users to set up a BATMAN-ADV network easily. BATMAN-

15

ADV nodes have three possible roles which are the routers, gateway and bridge.

As BATMAN-ADV is a layer 2 protocol, it will not assign Internet Protocol (IP)

address to the BATMAN-ADV interface, manual assignment or Dynamic Host

Configuration Protocol (DHCP) server hosting must be done by the developer.

 Routers in BATMAN-ADV is the basic node of the system. Any node

in the mesh network is at least a router. Routers in BATMAN-ADV is

responsible for re-transmitting or relay data packet to its destination within the

mesh network. Routers will flood the network with originator messages (OMGs)

to announce non-mesh clients, determine link quality and discover existing

nodes (Abdalla et al., 2015). Applications can be hosted in the router itself.

 When a router is configured into a gateway, it is capable to forward

messages from the mesh network to other networks. This is commonly used to

connect the network to the Internet. BATMAN-ADV gateway can include a

DHCP server to provide an IP address for every newly joined mesh nodes

dynamically.

 For non-mesh devices to connect to BATMAN-ADV nodes, a bridge is

needed. Bridges in BATMAN-ADV can be hosted on any interface of the router

except for the interface used to connect to the BATMAN-ADV network.

Bridges work as an AP for the non-mesh client to connect to the mesh nodes

and also the networks connected to the mesh network via gateways. A DHCP

server can be included to provide dynamic IP addresses to its associated non-

mesh clients. An example of a BATMAN-ADV architecture is shown in Figure

2.10.

16

Figure 2.10: Example of a BATMAN-ADV Architecture.

2.6.1 Database Synchronization

There is no native database synchronization service in BATMAN-ADV.

However, multiple database synchronization methods can be performed on the

application layer.

2.7 NerveNet

NerveNet is first proposed to prepare a network infrastructure for the New

Generation Network (NWGN) (Owada, Inoue and Ohnishi, 2011). Developed

by Japan’s National Institute of Information and Communications Technology

(NICT), NerveNet works as a regional information sharing platform and

network which is disaster-resilient without depending on cloud applications on

the Internet (Owada et al., 2019). NerveNet targets to migrate regional

applications from the cloud to the local region and convert the current regional

tree topology network to a mesh topology network to increase the resilience of

the network (Inoue and Owada, 2017). The components of the NerveNet are

network base station (BS), gateway (GW) and network manager (NM).

17

NerveNet nodes can connect to each other via wireless interfaces like Wi-Fi or

LoRa or wired interfaces such as Ethernet or fibre optics.

 NerveNet base station is the basic member of the mesh network which

is responsible to work as a wireless AP. Non-mesh devices are able to connect

to the NerveNet application by connecting to the nearest base station.

Applications can be hosted in the NerveNet base station itself or hosting on its

dedicated hardware and connect to a NerveNet base station.

 During the initial setup of the network or when there is severe damage

to the network, NerveNet’s network manager will be responsible for the initial

settings and handover logic of the whole network (Owada, Inoue and Ohnishi,

2011). To connect NerveNet to another network such as the Internet, NerveNet’s

gateway is used. Multiple gateways can be established in the network to avoid

single-point failure. If there is at least one gateway node setup in the NerveNet,

all the nodes and clients can connect to the other network. An example of a

NerveNet architecture is shown in Figure 2.11.

Figure 2.11: Example of a NerveNet Architecture.

18

2.7.1 Database Synchronization

Database synchronization in NerveNet is native and automatic for its base

station. NerveNet comes with two databases that store routing information and

application data, respectively. The database which stores application data can

be used by application developers to synchronize its database throughout the

whole NerveNet. The synchronization process is handled by the NerveNet

Operating System (OS). Non-mesh application servers can also connect to the

NerveNet by using an API developed to push data to the nearest base station’s

database.

 NerveNet database is synchronized via the hearsay daemon which

compares the hash of other databases with its node’s database. Hearsay daemon

synchronizes the MySQL database shipped within the NerveNet distribution.

However, the Hearsay daemon only synchronizes Insert and Update actions in

existing tables. To create a custom table, an Extensible Markup Language

(XML) file must be created in the directory ‘/writable/etc/tables.d/’. The XML

file defines the fields (or column) of the table as well as the naming of the table.

To synchronize files such as images and documents, a special table is predefined

in the MySQL database called ‘shbt_boxshare’. This predefined table can be

used to synchronize file by using the ‘attached’ field. At the receiving end, the

file will have a different unique name and the path is shown in the synchronized

database of the receiving node.

2.8 Communication Protocols

Communications in a computer system are often very complex and require high

levels of encapsulations. To simplify the process of sending data from one

process to another process or from one device to another device, the Open

Systems Interconnections (OSI) model is created to standardize the concepts of

different communication functions in telecommunication, computing system

and machines. Communication protocols define a format and rules for two

network entities to exchange digital information with each other. The OSI model

generalizes and categorizes various communication protocol into 7 abstraction

layers which include the application layer, presentation layer, session layer,

transport layer, network layer, data link layer and last but not least, the physical

layer which can be seen in Figure 2.12.

19

Figure 2.12: An Illustration of the OSI Abstraction Model.

Each layer in the OSI model serves different purposes in computer

communication. All higher layer in the OSI model depends on its next lower

layer to perform primitive functions. The OSI model can be further grouped into

two separate groups divided by the transport layer. The software layer consists

of all of the upper layers such as the application layer, presentation layer and

session layer while the hardware layers consist of all of the lower layers

including the network layer, data link layer and physical layer. The software

layer protocols are implemented solely by software. These protocols mainly

handle application issues such as preparing the data to transmit, track on

application session and securing the data from malicious access and alteration

of communicated data. On the other hand, the hardware layer protocols deal

with problems related to the actual data transfer. Except for the network layer

protocols, the hardware layer protocols are implemented using a combination of

software and hardware standards. The transport layer is the centre of the OSI

model. It provides functions that ensure a reliable link by providing packet

segmentation, controlling the packet flow and handling network errors (Layers

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

20

of OSI Model Explained, 2021). Common protocols for each OSI model layers

are shown in Table 2.1.

Table 2.1: List of Common Protocols for Each OSI Model Layers

OSI Layer Protocols

Application HTTP, MQTT, SMTP, FTP, DHCP

Presentation TLS, SSL, SSH

Session RPC, SDP, SOCKS, ZIP

Transport TCP, UDP, DCCP

Network ICMP, OSPF, AODV, ARP

Data Link batman-adv, PPP, IEEE 802.11,

Ethernet

Physical Ethernet, USB, CAN bus, SPI, I2C

2.9 Scalability

The scalability of a software or application is the capability of the system to

maintain its performance at a steep increase in workload without refactoring the

system. Scalability is a crucial factor to applications that handle multiple

simultaneous users and concurrent requests and will determine the adoption rate

of the application. When the system is not scalable enough, it will place huge

stress on the current application architecture and plummet its performance. This

directly affects the experience of the application users.

If scalability is considered at the beginning of the development stage, it

is much easier and requires lesser resources to implement an efficient system.

There are a few limiting factors that affect the scalability of an application which

includes the maximum stored data, code quality and processing capabilities

(Concepta, 2019). For applications that require storage of increasing size

persistent data, the maximum data storage capacity of the application must be

put into consideration. There are a few existing strategies to improve the

scalability of databases, which include query optimization, vertical scaling,

database replication, partitioning and database sharding (Nath, 2019).

Scalability must also be incorporated in the code architecture by

ensuring simple integration of future features. The code of a scalable system

21

must also stick to the “Don’t Repeat Yourself” (DRY) principle and avoid

“spaghetti code” (Arya, 2017). To further improve the application process,

asynchronous processing can allow your application to fully utilize its resources

(Manandhar, 2020).

Processors and random-access memory (RAM) of the server or

application host are also two potential bottlenecks when it comes to multiuser

applications. There are two methods of scaling processing resources of

applications which include vertical scaling (scale-up) and horizontal scaling

(scale-out). In terms of vertical scaling, in event of resource deficiencies,

additional or stronger hardware is used to increase the performance of the

existing machine. On the other hand, horizontal scaling increases its capability

by adding additional machines to the system and replicating its existing system

to the newly added machines (Manandhar, 2020). A load balancer is then used

in horizontal scaling to distribute the workload between all its machines.

2.10 Monolithic Architecture and Microservice Architecture

Application architecture involves the design pattern and structure of the

application. Selecting the suitable application architecture is important for the

scalability, performance and development efficiency of the system. However,

there is an overwhelming amount of software architecture that can be used and

sometimes a union of architecture is required to achieve the application

requirements. Among all architectures, the two most discussed architectures are

monolithic architecture and microservice architecture.

 Monolithic architecture structures all its components in a single entity.

Its code is structured into modules within one single code base. Deployment of

monolithic applications is also very simple as it only requires executing a single

set of command. The downside of monolithic architectures is that it can be very

expensive to scale the system. When scaling monolithic applications, replication

of the whole system is needed even if only one function requires scaling. Large

monolithic programs also get very challenging to manage. As monolithic

applications are tightly coupled, it can get hard to understand for new members

of the team. It is also hard to modify tightly coupled components.

 Microservice architecture segregates the application into smaller

components, each handling one or more functions of the application. These

22

smaller components are deployed in separate services and communicate with

each other using a previously agreed set of protocol and messaging format.

Scaling for microservice is easier compared to a monolithic application as each

service can be individually deployed and scaled horizontally. Deployment of

microservice application can be difficult due to their number of services. With

the aid of Docker and Kubernetes, microservice deployment is getting much

simpler. It is also much easier to understand and modify microservice

applications as each service is rather small. Another benefit of microservice

architecture is the capability for multiple development teams to work on

different parts of the application concurrently.

2.11 Server and Cloud

In a client-server model distributed architecture, the application distributes its

workload to individual clients or users to reduce the stress of a central service

called a server. The individual client shares the resources and services provided

by the server. A server can be a single machine or a cluster of machines that run

a server program. A server program is software that listens to requests from a

set of clients using protocols such as HTTP, FTP and SMTP. An illustration of

a client-server model software architecture is shown in Figure 2.13.

23

Figure 2.13: An Illustration of Client-Server Model Application Architecture.

In a client-server model, codes that are executed on the client-side is called the

frontend code base while codes that are executed on the server-side is said to be

the backend code base. Data are usually stored in the server to allow cross-

device access. Data are also pre-processed on the server-side before sending it

to the client.

 Cloud is a server that managed by companies in data centres and is

rented to other companies or individuals. Traditional servers are deployed in

dedicated servers which require constant maintenance and management. With

cloud services, software companies and individual developers do not need to

manage the hardware maintenance. Common cloud service providers and

platforms are Digital Ocean, Amazon Web Services (AWS), Microsoft Azure

and Google Cloud Platform (GCP). The user accesses and deploys their services

into the rented server through the Internet via protocols such as Secure Shell

(SSH) Protocol, Secure Copy Protocol (SCP) and Secure File Transfer Protocol

(SFTP).

24

2.12 Cloud Computing and Edge Computing

As discussed in the previous section, cloud computing is a rented server hosted

by cloud service providers on the Internet. This allows fast deployment of

servers on the Internet which allow worldwide use of its services. However,

there are some delay-sensitive cases where cloud computing is not suitable. To

meet such requirements, the service must be deployed in the client itself or an

in-premise server near the source of the data. Such computing distribution is

called edge computing. Other use cases that require edge computing is when the

service must still be available during a network failure to the Internet such as

disaster response applications, evacuation systems and security systems (Arora,

2021). A mix of cloud services and services in the edge is called a hybrid cloud

strategy.

2.13 Digital Twin

A digital twin is a virtual copy or model of a process, service or device (Marr,

2017). Digital twining maps the interfaces of the physical entity such as

commands, properties, components, telemetries and relationships of the

physical entity to a digital version, bridging the gap between the physical and

digital world. With a digital twin, cloud services can simply interface with the

physical device using the digital twin services. Some of these services are

provided by cloud service providers such as AWS Device Shadow service,

Microsoft Azure Digital Twin and digital twin service from GCP IoT Core.

There are also open-source versions of such services like Eclipse Ditto. Some

of these services use descriptive language to define the mapping of the interfaces

such as Digital Twins Definition Language (DTDL) for Azure and Vorto

language for Eclipse Ditto. These descriptive languages can be used by smart

sensor manufacturers, machine maker and system integrator to define the digital

twin interfaces of their products. These predefined configurations can then be

used by software developers to integrate cloud services into the existing system

and allow simple integration of smart services into existing systems. Thus,

digital twins are very important in IoT, smart cities and smart manufacturing

developments.

25

2.14 User Interface

The user interface is a set of components that allow human to interact with

machines and software. It includes the hardware where the human can interact

with such as touch screens, monitors, keyboards and software. The software user

interfaces can be developed using various technologies depending on the OS

and the hardware of the devices. Three common user interface categories in

computer software development include native application, hybrid applications

and web applications. A native application is an application that is built

specifically for a certain OS. This includes developing android applications in

Java and building iOS applications using Objective-C or Swift. Web

applications are developed using web technologies such as Hypertext Markup

Language (HTML), Cascading Style Sheets (CSS) and JavaScript (JS). It

requires clients to have a web browser to view its interface. However, due to the

popularity of web technologies, most of the devices have certain web browsers

which makes it good for situations that require cross-platform integrations. For

hybrid applications, it is developed using web technologies and is packaged in

a native wrapper (YML, 2020). Examples of hybrid application frameworks are

Ionic, Flutter and React Native. Some hybrid frameworks like Flutter can even

access native elements such as the location and camera function of devices.

Hybrid application frameworks are very powerful as it allows developers to

reuse most of the code for all platforms.

2.15 Summary

Disaster tolerant networks need to be redundant and resilient to faults. To

accomplish that, mesh topology can provide resilience to the network.

Redundancy can be provided by data synchronization and backup in all nodes

or selected nodes in the mesh network. Two mesh network options are listed

which include NerveNet and BATMAN-ADV. The advantage of NerveNet over

BATMAN-ADV is that it has native support of data synchronization. For a

regional disaster response network, a cloud monitoring dashboard is needed to

allow nationwide monitoring and control. For a reliable nationwide monitoring

cloud, the design of the server-side architecture must consider the scalability

and performance of the server while remaining relatively simple. All these

considerations lead to the design done in this project.

26

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

A hypothetical regional disaster-resilient network for disaster data propagation

and backup is developed using NerveNet. Disaster sensor data (which includes

camera images, victim count and disaster detected) is synchronized throughout

the network and also published to a cloud monitoring server. The purpose of

having a cloud monitoring service is to prepare for larger catastrophic events

that span more than just a region. The capability of each single-hop link will be

analysed.

3.2 Work Plan

The part 1 of the final year project consists of four stages, namely literature

review and related knowledge studies, system architecture design and model

testing using BATMAN-ADV with client-server MongoDB database

replication, deployment of MongoDB database replication in BATMAN-ADV

mesh network and deployment of NICT’s NerveNet network. In the initial stage

of the project, a literature review on networking has been done. At the stage of

system architectural design and model testing using BATMAN-ADV with

client-server MongoDB database synchronization database replication method,

a database replication system in the BATMAN-ADV network is developed.

Deployment of MongoDB database replication in BATMAN-ADV mesh

network will then take place to test the database replication of MongoDB. Lastly,

NICT’s NerveNet is to be deployed on a small scale for knowledge verification

purposes. However, the deployment of NICT’s NerveNet cannot be done on

time and have to be delayed to the second part of this final year project. This is

due to the delay from Japan’s NICT on providing the required resources and

support.

Similarly, there are four stages in the second and final part of the final

year project which include NerveNet testbed setup, development of the cloud

dashboard’s digital twin service, development of the cloud dashboard data API

and frontend, and the NerveNet testbed’s data synchronization feature. At the

27

first stage, guidelines and documentations for a simple setup of a three-node

NerveNet testbed are provided from Japan’s NICT. The documents are studied

and applied to set up a three-node NerveNet mesh network. At the second stage,

a simple device twin service is created for the cloud server to collect node

statuses, which will be stored in a database for monitoring use. The monitoring

server API and frontend are then created to provide a human-readable dashboard.

While developing the API and web application, the data synchronization feature

of NerveNet is studied and deployed concurrently. The flow chart of the work

plan for the final year project is shown in Figure 3.1.

Figure 3.1: Flow Chart of the Work Plan for the Final Year Project.

28

3.3 Mesh Network

NICT’s NerveNet is selected for the use case of the disaster response network.

NerveNet is advantageous for this use case as it provides a database

synchronization feature off the bat. For preliminary studies on mesh network

with database synchronization, BATMAN-ADV is chosen due to its popularity

and setup simplicity.

3.4 NerveNet Testbed Application

The testbed is modelled to be used as a regional disaster response and

monitoring platform. This platform includes applications for disaster response,

sensor nodes, and broadcast devices. The testbed is developed using NerveNet

as the OS of its mesh infrastructure. An illustration of the NerveNet based

disaster response and monitoring platform is shown in Figure 3.2.

Figure 3.2: An Illustration of the NerveNet based Disaster Response and

Monitoring Platform.

When a sensor node detects a threat like high ambient temperature or

fire in a forest area, it will store its telemetric data in two locations, the cloud

monitoring server and its local database. Its telemetric data will then be

synchronized to the other devices that are within the mesh network. This ensures

the resiliency of the collected data even if the sensor node itself is destroyed. If

all gateway nodes of the mesh network malfunction, there are still copies of the

29

data in member nodes within the mesh network. A node can have multiple data

schemas. Member nodes are nodes that have the same data schema.

 This synchronized data can then be used by relevant emergency response

agencies to evaluate the threat level and damages as well as to prepare a

response to the problem. Authorities can then trigger evacuation broadcast and

notice to certain area devices such as vending machines, billboards and

evacuation alarm depending on the threat level. At low threat levels, quick

responses can even mitigate the threat before it becomes a disaster.

 During a catastrophic disaster, there is a possibility that the whole

regional network will be interrupted. At such an event, the federal authorities

must be informed to provide support to the disaster zone. The latest state of the

disaster zone must be recorded to allocate sufficient rescue resources to the

location. It is provided by the cloud monitoring server in this disaster response

and monitoring framework.

3.5 Proof of Concept

For a better understanding of NerveNet, BATMAN-ADV has been used to study

the concept of database synchronization in a mesh network. Furthermore, it is a

layer 2 mesh network that is similar to NerveNet.

3.5.1 Network Design

A simple BATMAN-ADV network is set up using three raspberry pi 3, model

B+. The raspberry pis run Raspbian Buster Lite OS and are configured to work

as a gateway, a basic router with an application server and a bridge respectively.

The gateway is connected to a local network through a switch and is accessible

through a 192.168.0.0/24 network which is also connected to the Internet via a

router. The BATMAN-ADV network is configured to operate with Wi-Fi ad-

hoc mode on the 11th channel of the 2.4GHz wireless band. The channel is

selected to reduce signal interference from another wireless network. The

BATMAN-ADV mesh network is configured to be on a 192.168.10.0/24

network.

As there is only one wireless interface in-built into the raspberry pi, the

bridge node is configured to have BATMAN-ADV to operate on Wi-Fi while

the ethernet port in bridge to the network to allow non-mesh clients to connect

30

to the mesh network. However, this limits the bridge node to be able to connect

to only one non-mesh client which is not ideal. This problem can be solved by

either using a USB wireless interface extension or using a wireless AP device.

In this case, the wireless AP device is selected as it is the only option available

by that time. The wireless AP is connected to the bridge’s ethernet port and is

configured to provide a DHCP server, and it is on a 192.168.0.0/24 network.

This may seem like a network overlap with the local network, but it is not the

case as BATMAN-ADV gateways will only allow outgoing connections from

the mesh network or its non-mesh nodes and blocks all incoming connections.

Web applications can be hosted on the router which is neither a gateway

nor a bridge. This node application can be accessed within the mesh network

including the non-mesh nodes by referring to its IP address or MAC address.

The deployment architecture is shown in Figure 3.3.

31

Figure 3.3: Simple BATMAN-ADV Deployment.

3.5.2 Database Synchronization Methods

There are four proposed architecture and systems for database synchronization

using BATMAN-ADV. However, only one of the four proposed methods is

developed and evaluated. The four architecture are listed below.

(i) Client-Server Model Database Synchronization

(ii) Source Broker Publish-Subscribe Model Database Synchronization

(iii) Receiver Broker Publish-Subscribe Model Database Synchronization

(iv) Database Replication Provided by the DBMS

32

The client-server model database synchronization method is created by

having a Hypertext Transfer Protocol (HTTP) client at the data source and

having HTTP servers in all receiving nodes. The data source will have an event

listener to MongoDB’s oplog. This event listener will queue any data changes

in the database to a queue. The data in the queue will then be sent to all receiving

nodes by using an updater. At the receiving end, a receiver will accept the update

request and its relevant fields. The receiver will then perform the changes to its

local database. The system architecture is shown in Figure 3.4.

Figure 3.4: Client-Server Model Database Synchronization System

Architecture.

 Message Queuing Telemetry Transport (MQTT) protocol is used in the

design of the publish-subscribe model database synchronization system. When

there is an update in the source database, threaded listeners will update the

MongoDB oplog to a queue. The publisher will then publish the data to a topic

of the MQTT broker. If any nodes subscribed to the same topic, it can then

33

receive the database changes and update the database respectively. The MQTT

broker can be placed in the source node to form a source broker publish-

subscribe model database synchronization system or placed in the receiving

nodes to form a receiver broker publish-subscribe model database

synchronization system. The system architecture is shown in Figure 3.5 and

Figure 3.6 for source broker publish-subscribe model database synchronization

and receiver broker publish-subscribe model database synchronization

respectively.

Figure 3.5: Source Broker Publish-Subscribe Model Database

Synchronization.

34

Figure 3.6: Receiver Broker Publish-Subscribe Model Database

Synchronization.

By considering the complexity of all methods, the client-server model

database synchronization method is selected among the four methods.

3.6 NerveNet

NerveNet is used as the mesh network for the testbed. NerveNet is a closed

source, powerful mesh network shipped with plenty of useful features such as

database synchronization. This makes it the best candidate for disaster resilient

applications as we do not want application engineers to bother implementing

low-level features and focus on the application itself. NerveNet is relatively new

compared to other mesh networks and is still in active development by Japan’s

NICT.

3.6.1 Hardware Selection

The hardware used for deploying a three-node NerveNet testbed are listed below.

(i) 3 units of Raspberry Pi 3 Model B+

35

(ii) 3 units of TP-Link AC1300 Archer T4U High Gain Wireless MU-

MIMO USB Adapter

(iii) 3 units of microSD card

(iv) 1 unit of Cat.5e Ethernet cable

As NerveNet is relatively new, the deployment of NerveNet can only be done

using the OS provided by NICT which includes the features of NerveNet by the

time of this project. Fortunately, a Raspbian version of the OS is provided. Thus,

three units of Raspberry Pi 3 Model B+ are used as the processing unit for the

NerveNet nodes as well as the sensor node. It is supported by NerveNet and is

well suited for our use case due to its relatively small size. Three additional USB

wireless adapters are needed to establish the wireless link as the internal wireless

interface have been used as the wireless AP of the node. One microSD card is

required for each node as Raspberry Pi does not have a persistent memory

inbuilt. A cat.5e ethernet cable is needed for the gateway node to have internet

connectivity.

3.6.2 Wireless Mesh Network

There are two methods to establish a wireless mesh network using NerveNet. It

can either be set up using 4 address mode or Ethernet Remote Bridge (ERB) of

NerveNet. In this testbed, the ERB method is adopted as the external wireless

adapter does not support the 4 address mode.

3.6.3 Testbed Network Architecture

A simple three-node NerveNet testbed is deployed. The network architecture of

the NerveNet testbed is shown in Figure 3.7.

36

Figure 3.7: Network Architecture Diagram of the NerveNet Testbed.

The NerveNet testbed is designed to have one gateway node and two

base station nodes. The wireless links of the NerveNet (indicated as a dotted line

in Figure 3.7) are established using the ERB feature of NerveNet. To establish

an ERB link between two nodes, one node must have a wireless interface

configured as a wireless AP while the other node must have a wireless interface

configured as its client. In ERB, unlike network routers, its wireless AP can only

accept a connection from one client. Each ERB links are static and is defined

with a collection of configuration files included in the NerveNet distribution.

Based on Figure 3.7, the internal wireless interface of Raspberry Pi (labelled as

“wlm1”) is configured as a wireless AP while the other external interface

(labelled as “wlu3”) is configured as a client station (STA) of the adjacent

node’s wireless AP. The gateway is similar to a base station with some

additional configurations to enable re-routing packets to external networks. The

37

gateway is configured to route external packets to the network at its Ethernet

interface labelled as “enu11” in Figure 3.7.

 In default, NerveNet is configured to work in the 172.16.0.0/16 network.

The IP address of each node is 172.16.n.1 where n is the node id of the node

defined during the installation of the network. For example, the gateway node

in Figure 3.7 has a node id of 200 (written in parenthesis), thus, it has a NerveNet

IP of 172.16.200.1.

3.7 Database Synchronization

In NerveNet, a MySQL database is included. This database is mainly used as

the data storage for synchronized data, but it can also be used for non-

synchronized data. NerveNet Hearsay daemon synchronizes the data within the

MySQL database based on the checksum of tables defined in the

‘/writable/etc/tables.d/’ directory. When a table schema is defined in that

directory using an XML template, Hearsay will automatically create the defined

table into the internal MySQL database when initialized. Tables that are not

defined in the ‘/writable/etc/tables.d’ directory would not be synchronized. All

member nodes of the table must also contain the same XML definition in its

own ‘/writable/etc/tables.d’ directory. The table definition for the disaster

sensor application of the testbed is shown in Table 3.1.

Table 3.1: Disaster Sensor Application Hearsay Table Schema.

<?xml version="1.0" encoding="utf-8" ?>

<database>

 <table id="0x0060" name="application_disaster">

 <dummy id="0xff02" label="record_id"/>

 <column id="0x0601" label="disaster_detected"

 name="disaster_detected"

 type="char"

 dbtype="VARCHAR(32)" />

 <column id="0x0602" label="victim_count"

 name="victim_count"

 type="int" size="8"

 dbtype="BIGINT NOT NULL"/>

 </table>

</database>

38

For image synchronization, a table, ‘shbt_boxshare’ is predefined by

NerveNet. The table fields and description are shown in Table 3.2.

Table 3.2: The Table Fields of ‘shbt_boxshare’.

+----------------+---------------+------+-----+---------+

| Field | Type | Null | Key | Default |

+----------------+---------------+------+-----+---------+

| attached | varchar(255) | YES | | NULL |

| body | varchar(255) | YES | | NULL |

| flag_invalid | smallint(6) | YES | | NULL |

| id_box | varbinary(16) | YES | | NULL |

| id_link | varbinary(32) | YES | | NULL |

| id_node_update | varbinary(32) | YES | | NULL |

| id_record | varbinary(32) | NO | PRI | NULL |

| time_calibrate | bigint(20) | YES | | NULL |

| time_discard | bigint(20) | YES | | NULL |

| time_update | bigint(20) | NO | | NULL |

| timestamp_sync | timestamp | YES | | NULL |

| uri_boat | varchar(32) | YES | | NULL |

+----------------+---------------+------+-----+---------+

To synchronize any file (including images), the full path of the file is

used as the field value of the field ‘attached’ in the new record. When committed,

the file will then be synchronized to its member nodes and ‘shbt_boxshare’ table

if the member nodes are updated with the corresponding local file path in its

attached field. The file name and path will be different from its source. All

synchronized file will be stored in the directory ‘/dev/shm/fieldfile/’.

3.8 Cloud Dashboard

A cloud-based web application is developed to provide sensor data and

network statuses of multiple NerveNets. The development of the cloud

dashboard is separated into two major parts which are the backend and frontend

of the cloud dashboard. The backend development work includes the

development of a simple digital twin system and a backend API for the

consumption of the frontend dashboard while the frontend development focuses

on the visual elements where users interact with.

3.8.1 Backend Development

The services required for the cloud dashboard are listed below.

39

(i) Digital twin for JSON encodable data

(ii) Digital twin for files such as images

(iii) A Database for persistent data storage

(iv) A Representational State Transfer (REST) API for consumption of

simple data

(v) A Websocket API for file streaming

(vi) A static file server

(vii) An optional load balancer

A proposed design for the service architecture of the cloud monitoring

application is shown in Figure 3.8.

Figure 3.8: Service Architecture of the Cloud Monitoring Application.

 The digital twin function is handled by two separate services which

include an MQTT client for JSON encodable data and an HTTP server for media

files. Image files can be either base64 encoded and sent via JSON format or sent

directly in their binary form via HTTP. However, it is not recommended to

encode media files into its base64 format as it can be very large. Thus, a separate

endpoint that uses HTTP is created to receive media files. The media file history

count can be defined in the server configuration file which will limit the number

of stored media files to save server space. When the media storage limit has

40

been exceeded, the device twin service will replace the oldest stored media data

with the latest media data. The MQTT client listens to specific topics and format

of which can be configured in the server. The topic format depends on the master

template defined in the configuration file of the digital twin service and the topic

field ‘topic’ of the Node record. All Node, Network and Sensor record are

configurable via a device management CLI developed in Golang. The database

used is a graph-based NoSQL database called Neo4j. The data and media

records will be recorded in the database while the media file itself will be stored

in the server memory. The data can then be retrieved via a RESTful API or a

WebSocket API. The RESTful API is used for the retrieval of simple text data

while the WebSocket API is used for file streaming. As the application is a web

application, the Nginx static file hosting feature is used to serve the frontend

static files. The Nginx server can also be configured to provide load balancing

for all HTTP endpoints if needed. The technology stack of all backend services

and tools are listed in Table 3.3.

Table 3.3: Technology Stack of All Backend Services and Tools in the Cloud

Monitoring Server.

Backend Service Programming

Languages

Framework and Tools

Digital Twin (HTTP) Golang GoFiber, Neo4j

Digital Twin (MQTT) Golang Mosquitto MQTT

Broker, Neo4j

API Server Golang GoFiber, Neo4j

Static File Server - Nginx

Load Balancer - Nginx

Device Management

CLI

Golang -

3.8.2 Frontend

The design phase of the frontend development is separated into three phases,

namely sitemap designing, wireframing and visual designing. At the first

sitemap designing phase, the application pages are listed out and connected

41

using a simple block diagram. At the wireframing stage, a skeletal structure

(wireframe) of the application is planned and sketched. The application design

is finally styled based on the wireframe prepared in the visual design stage

which can then be implemented using code. The sitemap, wireframe and visual

design of the cloud monitoring dashboard application are shown in Figures 3.9,

3.10 and 3.11 respectively.

Figure 3.9: Sitemap of the Cloud Monitoring Dashboard.

42

Figure 3.10: Wireframe of the Cloud Monitoring Dashboard.

Figure 3.11: Visual Design of the Cloud Monitoring Dashboard.

43

3.9 Performance Test

An important criterion for efficient disaster response and monitoring platform

includes a sufficiently performant network and framework. The platform

consists of three major parts which is the NerveNet network, the Hearsay

database synchronization function and the cloud monitoring dashboard. The

cloud monitoring dashboard performance depends on the cloud server location,

server specifications, and the NerveNet network performance. Thus, the

performance of the cloud monitoring dashboard does not need testing.

3.9.1 Network Metric

There are two categories of network metrics, router metrics and performance

metrics. Router metrics are used by routing devices to make routing decisions.

Performance metrics, on the other hand, is used by network administrators,

network managers and network architects to evaluate the network condition and

performances. Some metrics can be utilized as both router and performance

metrics. The common network metrics include packet delivery ratio (PDR),

throughput, latency and jitter.

3.9.1.1 Packet Delivery Ratio (PDR)

Packet delivery ratio (PDR) is defined as the ratio between the number of

delivered packets and the total number of packets sent (Khan and Ramesh, 2019).

A packet is considered delivered if and only if the packet is received in the

receiving end. PDR value ranges from 0 to 1. A network is considered better if

it has a higher PDR. This metric can only be used to evaluate the performance

of the network. The equation of PDR is shown in Equation 3.1.

𝑃𝐷𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 (3.1)

3.9.1.2 Throughput

Throughput is the measured transmission rate of successfully delivered data.

Throughput is often confused with bandwidth, but they are two different

concepts. Bandwidth is defined as the maximum transmission rate to send data

to its destination. Bandwidth is calculated theoretically but in a practical

44

situation, the transmission rate would not achieve its rated bandwidth (Cox,

2020). On the other hand, the throughput is the actual measured transmission

rate of data. Throughput may fluctuate depending on the network condition and

may plummet due to network congestion, electromagnetic interference and

route selection. It can be used for evaluating network performance as well as

route selection. The equation of throughput is shown in Equation 3.2.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑏𝑦𝑡𝑒𝑠(𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠) ×
8

𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
 (3.2)

3.9.1.3 Latency

In networking, latency is the time taken for some data to travel to its destination.

It is often measured using the total time taken to travel to the destination and

back to the source, also known as the round-trip time (RTT). Latency affects the

throughput of the network and may even cause network packets to drop more

often. Network latency may be affected by the distance between the sending and

receiving end (Čandrlić, 2015) as well as network traffics. It can be used to rate

the network’s quality of service as well as determining the routing path to use

in a router.

3.9.1.4 Jitter

Network packet jitter also called packet delay variation (PDV) is the expected

absolute value of the one-way delay variation between each sample packets as

shown in Equation 3.3 (Dahmouni, Girard and Sansò, 2012). Assuming that 𝑇𝑗

is the one-way delay of the jth packet received in the receiving node, the jitter, J

is then,

𝐽 = 𝐸[|𝑇𝑗+1 − 𝑇𝑗|] (3.3)

However, since measuring one-way delay requires time synchronization,

a method to estimate the interarrival jitter using RTT is defined in RFC 3550

section 6.4.1 and appendix A.8 (Schulzrinne et al., 2003). Assuming that 𝑇𝑖 is

the RTT of the ith packet, where 𝑖 = 2,3,4, …, the approximated jitter from the

first packet to the ith packet, Ji can be written as

45

𝐽𝑖 = 𝐽𝑖−1 +
1

16
(|𝑇𝑖 − 𝑇𝑖−1| − 𝐽𝑖−1) (3.4)

This alternative method is used in tools such as iperf which does not

require time synchronization between nodes. A high jitter value means the

network will have a huge spike of latency, which will cause real-time

application such as voice over internet protocol (VoIP), live video streaming

and video conferencing to have data distortions, low PDR and bad overall

quality of service.

3.9.2 Network Performance Test

The performance of the NerveNet base network is evaluated by measuring the

following performance metrics in section 3.9.1. The tools and protocols used for

measuring the metrics are shown in Table 3.4.

Table 3.4: Performance Metrics for NerveNet Network Performance

Evaluation and the Tools and Protocol Used for the Measurement.

Performance Metrics Tools Used and Protocol

Latency ping (ICMP)

TCP Throughput iperf3 (TCP)

TCP Retransmission Count iperf3 (TCP)

UDP Throughput iperf3 (UDP)

UDP Jitter iperf3 (UDP)

Packet Delivery Ratio (PDR) iperf3 (UDP)

 The performance metrics are measured manually. Three tests are

executed in order which includes an iperf3 Transmission Control Protocol (TCP)

test, an iperf3 User Datagram Protocol (UDP) test and an Internet Control

Message Protocol (ICMP) ping test. The parameters of all tests and the metrics

obtained for all tests are listed in Table 3.5. Two phases of tests are to be done

which are the single-hop and two-hop configurations. Each phase consists of 6

independent configurations and 5 iterations of the three tests are to be done. The

phases and their configurations are shown in Table 3.6. For two-hop

46

configuration, one link of the mesh network can be interrupted by removing the

external wireless adapter of the link.

Table 3.5: NerveNet Network Performance Test, its Fixed Parameters and

Obtained Metrics.

Test Parameters Metrics Obtained

iperf3 TCP

Processes = 1

Test Duration = 30

seconds

• TCP Throughput

• TCP Retransmission

Count

iperf3

UDP

Processes = 1

Test Duration = 30

seconds

• UDP Throughput

• UDP Jitter

• Packet Delivery Ratio

ping Payload Size = 56 bytes • Network Latency

47

Table 3.6: Test Phases and its Corresponding Configurations.

Phases Configurations

Single-Hop Configuration

Phase

Sender: GW, Receiver: BS1, Deactivated

Node: BS2

Sender: GW, Receiver: BS2, Deactivated

Node: BS1

Sender: BS1, Receiver: GW, Deactivated

Node: BS2

Sender: BS1, Receiver: BS2, Deactivated

Node: GW

Sender: BS2, Receiver: GW, Deactivated

Node: BS1

Sender: BS2, Receiver: BS1, Deactivated

Node: GW

Two-Hop Configuration

Phase

Sender: BS1, Receiver: BS2, Intermediate

Node: GW

Sender: BS2, Receiver: BS1, Intermediate

Node: GW

Sender: GW, Receiver: BS2, Intermediate

Node: BS1

Sender: BS2, Receiver: GW, Intermediate

Node: BS1

Sender: GW, Receiver: BS1, Intermediate

Node: BS1

Sender: BS1, Receiver: GW, Intermediate

Node: BS2

3.9.3 Database Synchronization Test

The telemetric data of sensors in a disaster response platform consists of text

data and file data. To ensure the feasibility of NerveNet as disaster response and

monitoring platform, its database synchronization latency must be sufficiently

low for both file synchronization and simple text data. However, as

synchronizing text data only requires Hearsay to synchronize the table fields, it

48

is comparably requiring way lesser data transfer and resources than

synchronizing file data. Due to time limitations, a latency test for file data

synchronization is only required. The file data synchronization latency test is

done by measuring the average delay time required for four different sized

images to synchronize from GW to BS1 and BS2. The record is inserted into

the local database of GW in order of the image size and the test is done for three

iterations. The subsequent record is only inserted when the data is ensured to be

successfully synchronized in BS1 and BS2. These tests are done manually and

the average delay time of all data for each base station is recorded.

3.10 Summary

The mesh network used for the disaster response and monitoring platform is

NerveNet. A proof of concept for database synchronization in mesh networks is

performed using BATMAN-ADV with one of four proposed database

synchronization strategies. The wireless links of the NerveNet mesh network

are established using NerveNet’s ERB. Data synchronization of the disaster

response and monitoring platform is done using Hearsay and boxshare services

from NerveNet. A cloud monitoring dashboard is designed to allow multiple

regions multiple network monitoring. The performance and the feasibility of the

network as well as the disaster response and monitoring framework as a whole

is discussed in the next chapter.

49

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

Figure 4.1 shows the prototype of the NerveNet testbed. The performance of the

prototype is analysed from two perspectives, namely performance and database

synchronization. Besides that, the feasibility of the disaster response and

monitoring platform is analysed based on standard requirements.

Figure 4.1: Prototype of the NerveNet Testbed.

To reduce electromagnetic interference between nodes, the nodes are

distanced at least 1 meter from each other. The exact distances between each

node are shown in Table 4.1.

50

Table 4.1: Distance Between Each Node During Network and Database

Synchronization Benchmark.

Node 1 Node 2 Distance (m)

GW BS1 1

BS1 BS2 2.1

BS2 GW 2.35

4.2 Network Benchmark

The network is benchmarked using iperf3 and ICMP ping. The network is

benchmarked based on its UDP throughput, TCP throughput, TCP

retransmission count, PDR, jitter and latency. The benchmark tests encompass

all single-hop links and all two-hop links. The benchmark between single hop

and two-hop links are compared.

4.2.1 Single Hop Benchmark

The TCP throughput and TCP retransmission count average-max-min chart for

all single-hop links are shown in Figure 4.2.

51

(a)

(b)

Figure 4.2: Average-Max-Min Chart of (a) the TCP Throughput and (b) TCP

Retransmission Count for All Single Hop Links.

 From Figure 4.2, communications between BS1 and BS2 have better

TCP performance. This is because the links between BS1 and BS2 are less busy

as compared to communications with the GW that is both the Internet Gateway

and Network Manager of the network. Links that sourced from an STA (wlu3)

sender to an AP (wlm1) receiver is also found to have a higher TCP throughput

and lower TCP retransmission count. The plausible cause of such phenomena is

that the STA utilizes a much performant wireless interface (wlu3) while the AP

only utilizes the internal wireless interface of Raspberry Pi 3 Model B+ (wlm1)

(Vouzis, 2018). These two conditions also explain why the link from BS2 to

52

BS1 has the highest TCP throughput and lowest TCP retransmission from all

links.

(a)

(b)

(c)

Figure 4.3: Average-Max-Min Chart of the (a) UDP Upload Throughput, (b)

PDR and (c) Jitter for All Single Hop Links.

53

 The performance result in Figure 4.3 is consistent with the TCP

performance test results in Figure 4.2. From the effect of the higher network

traffic in the links between GW with the other nodes and the connection

direction of the links, a lower PDR value can be observed in the GW to BS1 and

BS2 to GW links. The high jitter in the BS2 to GW link may be further justified

by its distance between the nodes.

 The latency of all single-hop links is measured using ICMP pings. The

average, maximum and minimum latency of all single-hop links is shown in

Figure 4.4.

Figure 4.4: Average-Max-Min Chart of the Network Latency for All Single

Hop Links.

 The average round trip latency of transmitting a 56 bytes payload using

ICMP is at most 200 ms. Assume the link to be symmetric, the one-way latency

is approximately 100 ms. This meets the requirement set for VoIP application

networks by Cisco (Cisco Press, 2004).

4.2.2 Direct Link Against Two Hop Link

The TCP throughput and TCP retransmission count average-max-min chart for

all measured two-hop links are shown in Figure 4.5. The UDP throughput, PDR

and jitter average-max-min chart for all measured two-hop links are shown in

Figure 4.6. The average, maximum and minimum latency of all measured two-

hop links is shown in Figure 4.7.

54

(a)

(b)

Figure 4.5: Average-Max-Min Chart of (a) the TCP Throughput and (b) TCP

Retransmission count for All Measured Two Hop Links.

55

(a)

(b)

(c)

Figure 4.6: Average-Max-Min Chart of the (a) UDP Upload Throughput, (b)

PDR and (c) Jitter for All Measured Two Hop Links.

56

Figure 4.7: Average-Max-Min Chart of the Network Latency for All Measured

Two Hop Links.

 In a two-hop configuration, the effect of the connection direction is

further amplified as the links are formed from two links with the same direction.

The effect on a two-hop link is very obvious and can be seen in the measured

TCP and UDP throughput performance. For example, the 𝐵𝑆2 → 𝐺𝑊 → 𝐵𝑆1,

𝐺𝑊 → 𝐵𝑆1 → 𝐵𝑆2 and 𝐵𝑆1 → 𝐵𝑆2 → 𝐺𝑊 links consist of only AP to STA

links. However, despite the bigger impact from the link directions, the TCP and

UDP throughput of other links remain similar or even better to their single-hop

counterpart. This is because the previously AP to STA single-hop link is now

consisting of two separate STA to AP single-hop links which may have a better

overall network performance. There is also no significant increase in TCP

retransmission count and decrease in PDR between the two-hop configuration

and its single-hop counterpart. The average latency of all two-hop links also

remains below 200 ms.

4.3 Database Synchronization Benchmark

Four similar images with different sizes and resolution are used to measure the

file synchronization latency of the Hearsay daemon. The image resolution and

file sized is shown in Table 4.2. The image sent is shown in Figure 4.8 and the

time taken for the images to be synchronized in each base station is shown in

Figure 4.9.

57

Table 4.2: Image Resolution and File Size Used for Hearsay File

Synchronization Performance Benchmarking.

Image File Name Image Resolution File Size

img_small.jpg 640 × 360 px 108 KB

img_mid.jpg 1920 × 1080 px 950 KB

img_large.jpg 2400 × 1350 px 1.41 MB

img_xl.jpg 7679 × 4320 px 10.6 MB

Figure 4.8: The Image Used for Synchronization (img_small.jpg).

Figure 4.9: Time Taken for Different Sized Images to Be Synchronized from

GW to BS1 and BS2 Respectively.

58

 From Figure 4.9, the time taken for each image to be synchronized in

both BS1 and BS2 increases as the size of the file increases. Based on the test

results, the maximum time taken for an image with a file size equal to or lesser

than 1.4 MB in a three nodes configuration requires at most 2 minutes and 6

seconds for it to be fully synchronized depending on the network condition.

However, as the system only requires transmitting low-resolution images of the

scene, this is sufficient for disaster response and monitoring platform. The

estimated database synchronization throughput for GW to BS1 and GW to BS2

can be by calculating the average number of bits synchronized in a second. The

average, maximum and minimum database synchronization throughput for GW

to BS1 and GW to BS2 are shown in Table 4.3.

Table 4.3: Average, Maximum and Minimum Estimated Database

Synchronization Throughput.

Source Destination Maximum

(Kbps)

Average

(Kbps)

Minimum

(Kbps)

GW BS1 473.6552 173.8300 12.0000

GW BS2 1154.2659 498.2454 13.9355

From Table 4.3, the average throughput of the data synchronization is

comparably lower than the actual TCP and UDP throughput of the network. This

is due to an extra delay introduced by the synchronization polling duration to

verify the checksum of each table between the source and synchronized node.

This reduces the based bandwidth used for database synchronization and only

synchronize the database when needed. As the link between GW and BS1 is an

AP to STA link while the link between GW and BS2 is an STA to AP link, the

overall synchronization performance of BS1 is significantly weaker compared

to that of BS2.

4.4 Platform Design Feasibility

In the year 2014, the International Telecommunication Union has released a

standard regarding the requirements for network resilience and recovery. Annex

B of the standard lists the requirements for improvement of network resilience

59

and recovery using local wireless mesh network based on de-centralized mesh

architecture. The compliance of the disaster response and monitoring platform

is discussed to ensure its feasibility and capability as a disaster resilient system.

4.4.1 Annex B.5: Network Requirements

Based on Annex B.5, the network must be able to resume its communication

using surviving nodes when parts of the network are damaged or overloaded.

This holds for the platform as it uses a mesh topology and is able to send network

packets through other paths even if its original path is temporary or permanently

interrupted. The platform also complies with the standard in terms of mobility,

address resolution and multicast feature even in an event of connection

interruption to the Internet. NerveNet is also able to re-route packets and restore

the network by its Network Manager even if a majority of the network is

damaged (Inoue and Owada, 2017).

4.4.2 Annex B.6: Portable Radio Relay Node

This annex requires the relay nodes of the network to be portable. Antennas for

both connections between relay nodes and terminal devices are required. The

relay nodes must also be physically portable. As NerveNet can be deployed in

microcomputers such as Raspberry Pi and Intel NUC, it is portable. NerveNet

also supports connections for both relay nodes and terminal devices. Thus, the

platform complies with the requirements in Annex B.6 by using NerveNet as its

local mesh network.

4.4.3 Annex B.10: Service Platform Requirements in the Local Private

Network

Annex B.10 provides the requirements of the software services within the local

private network of the platform. The testbed includes an example application of

a constant human counting system, it can provide the first level of emergency

response information. Additional applications can also be developed to provide

refuge instruction, safety confirmation and relief request features as required in

the standard. All applications can utilize the Hearsay daemon provided by

60

NerveNet to have a synchronized and distributed database in multiple nodes

and/or terminals before, during or after a disaster.

4.4.4 Annex B.7, B.8 and B.9

Annex B.7 states the requirement of aerial nodes that used unmanned aerial

vehicle (UAV) to provide connectivity through the platform in isolated locations.

Annex B.8 also states that some gateway node should be connected through a

satellite connection to provide a more reliable connection to the wide-area

network. Annex B.9 further require the network to have gateway nodes that

utilize satellite connection to be mounted on vehicles to provide higher mobility.

Fortunately, NerveNet has supports for such connections as stated in their 2017

paper titled “NerveNet Architecture and Its Pilot Test in Shirahama for Resilient

Social infrastructure”.

4.5 Summary

From the study, the testbed deployed is considered to have an acceptable

network performance for a disaster response and monitoring network. The

testbed has similar network performance for its two-hop links as compared to

their single-hop counterparts. Furthermore, the disaster response and monitoring

platform proposed can meet all the requirements laid out by the International

Telecommunication Union for improving network resilience and recovery using

a local wireless mesh network.

61

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, a testbed for disaster response and monitoring platform using

NerveNet has been designed and deployed. The tools such as the Hearsay

daemon provided in NerveNet has been proven beneficial for application

services within the regional local private network. The platform design meets

the requirements set by the International Telecommunication Union. The

performance of the platform is also within an acceptable range of a regional

disaster response and monitoring network. The outcome of the real

implementation can serve as a guideline on designing and deploying a disaster

response and monitoring platform using NerveNet. It will promote disaster-

resilient telecommunications and distributed application development for

disaster response.

5.2 Recommendations for Future Work

Due to time limitation, the network performance analysis has been done on a

NerveNet deployment with unsolved network issues. To have a better and

accurate performance study, the issues should first be solved before conducting

the performance analysis in the network. A better and extensive network

performance test should be conducted to have a better understanding of the

feasibility of the platform.

 Besides, a larger testbed can be deployed by increasing the total

NerveNet nodes count. Terminal nodes can also be included in the platform

testbed to provide a simpler connection method for sensors, users and devices.

Additional disaster response and monitoring application and features can be

developed and tested using this testbed.

 Furthermore, LoRa NerveNet deployments can be incorporated into the

platform to provide long-distance communication between NerveNet nodes.

The NerveNet deployment can also utilize the latest Docker container

deployment method rather than manual image write to have a much more

62

efficient deployment process. Last but not least, improvement in NerveNet user

documentation is needed to further promote and simplify the process of

NerveNet deployments.

63

REFERENCES

Abdalla, T., Rey-Moreno, C., Tucker, W.D. and Bagula, A., 2015. Clustered

Multi-layer Multi-protocol Wireless Mesh Networks. Southern Africa

Telecommunication Networks & Applications Conference, I, pp.99–104.

Anon 2021. Layers of OSI Model Explained. [online] Available at:

<https://www.guru99.com/layers-of-osi-model.html> [Accessed 5 Apr. 2021].

Anon 2021. SQL Vs NoSQL Exact Differences And Know When To Use NoSQL

And SQL. [online] Available at: <https://www.softwaretestinghelp.com/sql-vs-

nosql/#:~:text=NoSQL Cons%3A,-The benefits of&text=NoSQL offers only

eventual consistency,the case of NoSQL databases.> [Accessed 2 Apr. 2021].

Arora, S., 2021. Webinar Wrap-up: Edge Computing Vs. Cloud Computing.

[online] Available at: <https://www.simplilearn.com/edge-computing-vs-

cloud-computing-article#:~:text=Edge computing is used to,connectivity to a

centralized location.> [Accessed 5 Apr. 2021].

Arya, S., 2017. What the hell is scalable code anyway? [online] Available at:

<https://blog.sarasarya.com/what-the-hell-is-scalable-code-anyway-

f6626ad78227> [Accessed 5 Apr. 2021].

Barnhill, B. and David, M., 2021. Row vs Column Oriented Databases. [online]

Available at: <https://dataschool.com/data-modeling-101/row-vs-column-

oriented-databases/> [Accessed 2 Apr. 2021].

Čandrlić, G., 2015. High Latency vs Low Bandwidth - Impact on Web

Performance. [online] Available at: <https://www.globaldots.com/blog/high-

latency-vs-low-bandwidth-impact-web-performance#:~:text=Latency is also

referred to,measured in milliseconds (ms).&text=Excessive latency creates

bottlenecks that,pipe%2C thus decreasing effective bandwidth.> [Accessed 4

Apr. 2021].

Cisco Press, 2004. Quality of Service Design Overview. [online] Available at:

<https://www.ciscopress.com/articles/article.asp?p=357102#:~:text=Average

one-way jitter should,and Layer 2 media overhead).> [Accessed 10 Apr. 2021].

Concepta, 2019. The Importance of Scalability In Software Design. [online]

Available at: <https://www.conceptatech.com/blog/importance-of-scalability-

in-software-design> [Accessed 5 Apr. 2021].

Cox, J., 2020. What is Network Throughput and How to Measure & Monitor it!

64

[online] Available at: <https://www.ittsystems.com/network-throughput/>

[Accessed 4 Apr. 2021].

Dahmouni, H., Girard, A. and Sansò, B., 2012. An analytical model for jitter in

IP networks. Annales des Telecommunications/Annals of Telecommunications,

67(1–2), pp.81–90.

DoCoMo, N., 2011. Maintaining Communications Capabilities during Major

Natural Disasters and other Emergency Situations Final Report.

Drake, M., 2019. A Comparison of NoSQL Database Management Systems and

Models. [online] Available at:

<https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-

database-management-systems-and-models> [Accessed 2 Apr. 2021].

Inoue, M. and Owada, Y., 2017. NerveNet architecture and its pilot test in

Shirahama for resilient social infrastructure. IEICE Transactions on

Communications, E100B(9), pp.1526–1537.

International Telecomminication Union, 2014. Requirements of Network

Resilience and Recovery. 1st ed. [online] International Telecommunication

Union. Available at: <https://www.itu.int/en/ITU-

T/focusgroups/drnrr/Documents/fg-drnrr-tech-rep-2014-6-NRR-

requirement.pdf>.

Jindal, R., 2016. REVIEW PAPER ON DATABASE SYNCHRONIZATION

BETWEEN LOCAL AND. International Journal of Engineering Sciences and

Research Technology, 5(7), pp.1396–1400.

Khan, M.K.U. and Ramesh, K.S., 2019. Effect on Packet Delivery Ratio (PDR)

& Throughput in Wireless Sensor Networks Due to Black Hole Attack.

International Journal of Innovative Technology and Exploring Engineering,

[online] 8(12S), pp.428–432. Available at: <https://www.ijitee.org/wp-

content/uploads/papers/v8i12S/L110710812S19.pdf>.

Manandhar, G., 2020. 6 dev and operations factors to consider for software

scalability to meet high demands. [online] Available at:

<https://geshan.com.np/blog/2020/12/software-scalability/#:~:text=Software

scalability is an attribute,%2C overhauls%2C and resource reduction.>

[Accessed 5 Apr. 2021].

Marr, B., 2017. What Is Digital Twin Technology - And Why Is It So Important?

[online] Available at:

<https://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-

technology-and-why-is-it-so-important/?sh=40226fc62e2a> [Accessed 5 Apr.

2021].

65

Nath, K., 2019. A guide to understanding database scaling patterns. [online]

Available at: <https://www.freecodecamp.org/news/understanding-database-

scaling-patterns/>.

Owada, Y., Inoue, M. and Ohnishi, M., 2011. Regional wireless network

platform for context-aware services and its implementation. Proceedings - 2011

10th International Symposium on Autonomous Decentralized Systems, ISADS

2011, pp.539–544.

Owada, Y., Sato, G., Temma, K., Kuri, T., Inoue, M. and Nagano, T., 2019. An

Implementation of Layer 2 Overlay Mesh Network and Edge Computing

Platform for IoT. 2019 12th International Conference on Mobile Computing

and Ubiquitous Network, ICMU 2019.

Pinto, R., Lu, D., Rodrigues, E.T. and Oliveira, D.L., 2010. WMM - Wireless

Mesh Monitoring (midterm report).

Sandberg, B., 2015. Networking: The Complete Reference. 3rd ed. McGraw-

Hill Education.

Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V., 2003. RTP: A

transport protocol for real-time applications. [online] RFC Editor. Available at:

<https://www.rfc-editor.org/info/rfc3550>.

Shodiq, M., Wongso, R., Pratama, R.S., Rhenardo, E. and Kevin, 2015.

Implementation of Database Synchronization with Data Marker using Web

Service Data. International Conference on Computer Science and

Computational Intelligence, 59, pp.366–372.

Smith, P., Fessi, A., München, T.U., Lac, C., Telecom, F. and Labs, O., 2011.

Network Resilience : A Systematic Approach. (July).

Solid IT, 2021. DB-Engines Ranking of Graph DBMS. [online] Available at:

<https://db-engines.com/en/ranking/graph+dbms> [Accessed 2 Apr. 2021].

Sterbenz, J.P.G., Hutchison, D., Çetinkaya, E.K., Jabbar, A., Rohrer, J.P.,

Schöller, M. and Smith, P., 2010. Resilience and survivability in communication

networks : Strategies , principles , and survey of disciplines. Computer Networks,

[online] 54(8), pp.1245–1265. Available at:

<http://dx.doi.org/10.1016/j.comnet.2010.03.005>.

Vázquez, F., 2019. Graph Databases. What’s the Big Deal? [online] Available

at: <https://towardsdatascience.com/graph-databases-whats-the-big-deal-

ec310b1bc0ed> [Accessed 2 Apr. 2021].

Vouzis, P., 2018. Raspberry Pi 3B+ iPerf WiFi Performance. [online] Available

66

at: <https://netbeez.net/blog/raspberry-pi-3b-iperf-wifi-

performance/#:~:text=The 3B%2B came with a,802.11n at 2.4GHz).>

[Accessed 14 Apr. 2021].

YML, 2020. Native VS Hybrid Mobile Apps — Here’s How To Choose. [online]

Available at: <https://uxplanet.org/native-vs-hybrid-mobile-apps-heres-how-

to-choose-192ecbf04da8> [Accessed 5 Apr. 2021].

67

APPENDICES

APPENDIX A: TP-Link AC1300 Archer T4U USB Adapter Specification

