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ABSTRACT 

 

 

Natural disasters occur frequently around the world. Internet of Things (IoT) 

sensors such as video cameras can detect such cataclysmic events, track the 

number of victims and subsequently initiate rescue actions. How to disseminate 

the critical information, however, remains an open issue especially when there 

are communication breakdowns. This project aims to develop a regional disaster 

response platform using NerveNet, which is a mesh networking technology 

provided by Japan NICT. By utilising NerveNet Hearsay daemon, images can 

be wirelessly synchronized in multiple NerveNet nodes’ database. To facilitate 

the emergency management, a cloud monitoring dashboard to visualize multiple 

regional response and monitoring networks has been designed and developed. 

Serving as a proof of concept, a NerveNet testbed consisting of two base stations 

and one gateway has been implemented. Experimental results validate the 

feasibility of the proposed platform from two perspectives, namely network and 

data synchronization performance. The former measures throughput, delay, and 

jitter, whereas the latter focuses on analysing the latency of image 

synchronization. The project findings can serve as the guideline for designing a 

disaster response and monitoring platform in not only Malaysia but also other 

ASEAN countries. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

The resilience of a network is always an issue in deploying a fault-tolerant 

network. In places like the United States, China and Indonesia where there is a 

high risk of natural disasters, a resilient network consisting of various sensor 

devices is required to provide crucial information during a disaster strike. On 

March 11, 2011, the East Japan Great Earthquake has damaged approximately 

29000 cellular towers (DoCoMo, 2011). These damages have restricted families 

and friends to communicate, halted the broadcast of evacuation notice and most 

importantly prevented collections of recent and historical information for the 

rescue teams. 

 This problem cannot be avoided by the current tree topology 

communication architecture. The network will not be functioning from the 

lower part of the hierarchy if a higher component or service has a fault or 

malfunction. This makes our current network architecture vulnerable to faults. 

For example, in the 4G LTE architecture, if the Packet Data Network Gateway 

(PGW) is damaged, the area connectivity to the Internet will be affected. This 

causes trouble for disaster victims to contact their families or rescue authorities 

and also to rescue authorities to retrieve data about the affected areas. 

 To overcome this problem, a mesh network can be used rather than a 

tree topology network. A mesh network is a network topology that allows 

devices to be connected directly and allows re-transmission of data packets to 

other members of the network. Mesh topology can be utilized to create a 

resilient network as it can transmit data through multiple routes.  

 During a disaster, information on the condition and number of victims 

in the disaster area is crucial for the rescue team to execute their jobs. 

Evacuation notice broadcast is also important to minimize the damage caused 

by a disaster. However, a network that allows victims to communicate with the 

community service and rescue applications directly without connecting to the 

Internet does not currently exist in Malaysia. Fortunately, there is a solution for 

a disaster-resilient mesh-topological network called NerveNet, which is 
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provided by Japan NICT. In NerveNet, each node is independent of the other 

and it is tolerant to link disconnections and system failures because of its mesh 

structure and fast route switching on layer 2. 

  Information availability during a disaster can be provided by either 

implementing an application-specific Application Programming Interface (API) 

or synchronizing the application database. However, it will be troublesome to 

create an application-specific API just to have information in multiple locations 

as it would require modifying the code of the publishing node to add a broadcast 

destination and require the receiving node to have the API to receive the data. 

Rather than pushing the data directly from the application, it is much easier to 

synchronize the application database passively. This can be done by using the 

database replication provided in most of the modern Database Management 

Systems (DBMS) such as MySQL and MongoDB. In NerveNet, it can be simply 

done using the Hearsay Protocol. 

 

1.2 Importance of the Study 

Although Malaysia is located in a geologically stable region, Malaysia is still 

often vulnerable to floods and other disasters. The damages caused by the floods 

can be devastating as seen in the 2014-15 Malaysian flood. This shows the 

importance to have a resilient network for emergency use in Malaysia. For the 

emergency response authorities to easily broadcast emergency or evacuation 

notices to a public notice board, vending machines and smart advertisement 

boards, a broadcasting mechanism must be incorporated in the regional network. 

This can be achieved by having a database synchronization feature in the 

regional network to synchronize the databases of the regional emergency 

response authorities with the notice application databases. Database 

synchronization feature is also used for data collection of regional data by 

emergency response authorities. The data collection allows the regional 

emergency response authorities to monitor the conditions of the region and 

provide guides and notice for evacuation during pre- and post-disaster. To allow 

nationwide monitoring and control, a cloud monitoring and control dashboard 

is essential to visualize and provide signals for multiple regional mesh networks. 
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1.3 Problem Statement 

The absence of a regional resilient network topology and architecture for 

emergency use is one of the shortcomings of the current network in Malaysia. 

With a resilient network, a database synchronization feature must also be set in 

place in the network. The database synchronization feature allows applications 

to pull data from each other natively in the regional resilient network. A cloud-

based monitoring dashboard is also required to obtain insights from multiple 

regional networks and to provide nationwide responses.  

 

1.4 Aim and Objectives 

This study aims to design and develop a NerveNet mesh network for regional 

disaster response applications. The objectives of this study are: 

 

(i) To deploy a NerveNet mesh network testbed with data synchronization 

(ii) To design and deploy a cloud monitoring dashboard for the regional 

disaster monitoring network  

(iii) To evaluate the performance of the NerveNet testbed in terms of its 

network and database synchronization efficiency 

 

1.5 Scope and Limitation of the Study 

Since this project is in collaboration with Japan NICT under the funding of 

ASEAN IVO, the focus is to deploy the NerveNet for regional disaster response 

applications. The deployment, however, can be done only on a small-scale 

testbed due to the ongoing pandemic issue. Besides that, the project 

development progress was affected by the delay of technical support from the 

NICT side such as incomplete documentations of NerveNet OS installation. 

Nevertheless, the small-scale testbed has been successfully implemented and 

thorough analysis has been conducted. 

 

1.6 Contribution of the Study 

A three-node NerveNet mesh network testbed is deployed and worked as a 

network of disaster monitoring cluster in this study. Data between the disaster 

monitoring base stations are synchronized within the mesh network and to the 

cloud for data resiliency. A cloud monitoring dashboard has been designed, 
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developed and deployed for monitoring and visualization of disaster and 

network situations in multiple NerveNet networks. Since this project is funded 

by NICT ASEAN IVO, the outcome of this case study will serve as the guideline 

for NerveNet deployment in other countries such as Thailand and Myanmar. 

 

1.7 Outline of the Report 

This report consists of five major chapters. The first chapter provides an 

overview of the project’s topic, aim and objectives. Chapter 2 uncovers some 

computer networking and web development knowledge related to this project. 

Chapter 3 includes the detailed work schedule and methodology of the project. 

Chapter 4 shows the implementation of the deployed system as well as the result 

of a network performance analysis on the system. Some remarks, future 

recommendations and possible enhancements are covered in the final chapter. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

A computer network is a cluster of connected computers. The connection can 

be either wired together in terms of copper wires and fiber optics or connected 

wirelessly via Wi-Fi and radio waves (Sandberg, 2015). There are two kinds of 

networks, Local Area Network (LAN) and Wide Area Network (WAN). LAN 

allows devices within an organization to communicate with each other. On the 

other hand, WAN allows devices from different organizations to communicate 

with each other. WAN covers a wider area which usually spans across one or 

multiple regions and even continents. 

 Network resilience is defined as “the ability of a network to defend 

against and maintain an acceptable level of service in the presence of such 

challenges” (Smith et al., 2011). According to Sterbenz et al. (2010), the 

resilience of a network is enabled by seven principles which are: 

 

(i) Self-protection and security 

(ii) Connectivity and association 

(iii) Redundancy 

(iv) Diversity 

(v) Multilevel resilience 

(vi) Context Awareness 

(vii) Translucency 

 

Self-protection and security are the capabilities of the network to protect 

itself from challenges. Connectivity and association are the capabilities of the 

network to continue the communication even without a stable end-to-end 

connection between the devices. Redundancy can be achieved by having 

replication of entities in the network. In terms of information redundancy, 

copies of the data are stored in multiple network nodes to provide fault-tolerant 

data availability. Diversity focuses on providing alternatives to avoid operations 

within the network to degrade. Multilevel resilience enables resilient features at 
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different protocol layers. Context-awareness is the network feature to sense the 

network condition and provide remedial actions. Translucency is the visibility 

between layers against the degree of abstraction within the network. With most 

of the seven principles enabled in the network, the network can be considered 

resilient, but it also depends on the possible risk faced by the network. 

 A disaster tolerant network utilizes distributed applications and 

resources on a resilient network to provide emergency and communications 

services during and after a disaster. These networks work independently to 

prevent network congestions, especially at the network core level. It provides 

local applications for emergency response and community service applications 

such as data collection, rescue requests and emergency notice broadcastings. As 

disaster cannot be accurately predicted, a data synchronization feature is 

required in these networks provided by any protocol layer to have a constant 

update of the regional condition. 

 

2.2 Network Topology 

Network topology has a direct impact on network resilience. There are four 

basic kinds of network topologies in computer networking which are point-to-

point topology, bus topology, ring topology and star topology. Additionally, two 

advanced network topologies namely mesh topology and tree topology can be 

formed based on the extension of point-to-point topology and star topology, 

respectively. 

 

2.2.1 Point-to-Point Topology Network 

Figure 2.1 shows a point-to-point topology network where two devices connect 

directly with each other through a wired or wireless communication interface. 

An example of point-to-point communication is Bluetooth and Wi-Fi ad-hoc 

mode. 
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Figure 2.1: Point-to-Point Topology. 

 

2.2.2 Bus Topology Network 

Figure 2.2 shows a bus topology network that connects all devices using one 

single cable. Bus topology networks only allow unidirectional communications. 

This network topology is seldom used in computer networking nowadays, but it 

is popular in industrial device communication. Controller Area Network (CAN) 

bus protocol, Modbus protocol and Process Field Bus (PROFIBUS) protocol 

are some of the communication protocols that use this network topology. 

 

 

Figure 2.2: Bus Topology. 

 

2.2.3 Ring Topology Network 

Devices in a ring topology network connect to two neighbouring devices 

forming ring-shaped connectivity. This allows devices within the network to 

communicate with each other without direct connection. Ring topology network 

is a subset of partial mesh topology networks. If the hub of a star topology 

network is connected with other hubs in a ring topology fashion, it is called a 

token ring topology network. MOXA’s Turbo Ring redundancy protocol is a 

protocol that utilizes a ring topology. A ring topology is shown in Figure 2.3. 
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Figure 2.3: Ring Topology. 

 

2.2.4 Star Topology Network 

Star topology is the most common network topology used in computer 

networking. Star topology network requires a central hub to connect all the 

devices. The central hub relays the data packet from one device to the other 

based on the destination of the data packet. As it is very dependent on the central 

hub, failure on the hub will cause the whole network to fail. A common use of 

this topology is the wireless access point (AP) which forms the Wireless LAN 

(WLAN) of most organizations. An example of a star topology network is 

shown in Figure 2.4. 

 

 

Figure 2.4: Star Topology. 
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2.2.5 Mesh Topology Network 

Figure 2.5 depicts a mesh topology network where all devices are connected and 

are able to relay data packets from one device to the other. If all devices are 

directly connected, this kind of mesh network is called a full mesh network. On 

the other hand, if not all devices are directly connected but still able to 

communicate through relaying of data packets, this network is called a partial 

mesh network. Mesh network is very advantageous in terms of the resilience of 

the network as there is still an alternative routing path to route its packets even 

if an intermediate node has failed in the original path. However, a mesh network 

is often much more difficult to set up. Mesh networks are currently common for 

home automation, Internet of Things (IoT) and computer networking in remote 

areas.   

 

 

Figure 2.5: Mesh Topology. 

 

2.2.6 Tree Topology Network / Extended Star Network 

When the hub of the star topology networks is connected to another hub, this 

forms an extended star network which is also called a tree topology network due 

to its tree-like hierarchy architecture. Tree topology networks are very suitable 

for larger networks as they can be segregated into multiple branches for simple 

management. However, the main disadvantage of a tree topology is that it is 

very dependent on the central hub of the network. If there is any failure on any 

higher-level hubs, all its child networks cannot communicate with each other 

and any network above the failed hub’s network. The hubs are said to be the 
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single-point failure of the network. The use of this topology is to segregate large 

networks into smaller star networks. This network can be set up using network 

devices such as network switches and routers. An example of a tree topology is 

shown in Figure 2.6. 

 

 

Figure 2.6: Tree Topology. 

 

2.2.7 Hybrid Topology Network 

When various network topologies are joined together to form a larger network, 

this network forms a hybrid network. Figure 2.7 shows a hybrid topology 

network of a mesh network and star network. 
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Figure 2.7: Hybrid Topology of Mesh Topology and Star Topology. 

 

2.3 Wireless Mesh Network (WMN) 

Wireless Mesh Network (WMN) is a network where devices are connected 

wirelessly in a mesh topology. This type of mesh network is different as wireless 

interfaces have more considerations compared to wired mesh networks. As 

wireless medium tends to introduce more interference and there is no physical 

connection, it is a challenge to detect a failure at other nodes. Special routing 

protocols are developed to manage package routing, member discovery and 

other challenges of a wireless mesh network. Some wireless mesh routing 

protocols are BATMAN, NerveNet, Ad hoc On-Demand Distance Vector 

(AODV) and Optimized Link State Routing Protocol (OLSR). 

 

2.4 Database 

A computer database is a collection of digital data and is manageable through 

software called a Database Management System (DBMS). There are many 

distributions of databases, but they can be generally divided into two major 

categories which are relational database (SQL) and non-relational database 

(NoSQL).  

 

2.4.1 Relational Database (SQL) 

Relational databases store their data as rows in a table. A SQL DBMS can hold 

multiple databases. Each database will hold multiple tables and each row in the 
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table represents a data entry. Fields of the data are represented as columns in the 

SQL table. This can be illustrated in the stacked Venn diagram as shown in 

Figure 2.8. Examples of SQL databases are MySQL, PostgreSQL and SQLite. 

 

 

Figure 2.8: Stacked Venn Diagram of a Typical SQL Database Architecture. 

 

2.4.2 Non-relational Database (NoSQL) 

NoSQL databases store data in a form that it does not require to define the data 

structure first and sometimes could not do so either. There are many types of 

NoSQL databases which include Document store databases, Key-value store 

databases, Column-oriented databases and graph databases. NoSQL DBMS can 

usually hold multiple databases. The unique features of NoSQL databases 

simplify many data storage problems and render big data analysis possible. As 

NoSQL is still considerably new, there is no standardized query language. Thus, 

this makes migration between different databases much more challenging (SQL 

Vs NoSQL Exact Differences And Know When To Use NoSQL And SQL, 

2021).  

 

2.4.2.1 Document Store Database 

Document store NoSQL databases store their data as documents in a collection. 

Each database in its DBMS can hold multiple collections and each document 

represents the data in the collection. Documents are data that have a JavaScript 

Object Notation (JSON) like format (Drake, 2019). This can be illustrated in the 

stacked Venn diagram as shown in Figure 2.9. MongoDB, CouchDB and Azure 

Cosmos DB are three common Document store NoSQL databases. 

 

Database

Table

Row



13 

 

Figure 2.9: Stacked Venn Diagram of a Typical Document Store NoSQL 

Database Architecture. 

 

2.4.2.2 Key-Value Store Database 

Key-value store NoSQL databases are similar to document store databases. 

However, it has only a single collection and only stores its values as an opaque 

blob. This type of data storage model is usually used for non-persistent storage 

such as caching, queueing and session storage due to its simplicity, scalability 

and performance (Drake, 2019). Examples for key-value store databases are 

Redis, Memcached and Riak. 

 

2.4.2.3 Column-Oriented Database 

Column-oriented databases or columnar databases are databases that store data 

in terms of columns. Unlike SQL databases, it groups data in terms of columns 

rather than tables. It stores the data in the column in record order, which means 

the index of a specific record in one column is the same for the other column. 

This allows queries to only retrieve data from selected columns rather than 

reading all rows and remove the unselected column of data. However, the 

drawback of this type of database is that it requires more time to insert a new 

record as separate write operations are required for all columns (Barnhill and 

David, 2021). Apache Cassandra is a popular example of NoSQL DBMS 

utilising this data storage model. 

 

2.4.2.4 Graph Database 

Graph databases are considered a subcategory of document store databases. A 

graph database stores its data in documents and does not require a predefined 

Database

Collection

Document
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schema for its data. However, graph databases add another abstraction layer to 

allow relationships between their documents. Additional concepts are 

introduced in graph databases to augment the capabilities of document store 

databases which include nodes, edge and properties. Nodes are independent 

records that can hold properties. A node is synonymic to the concept of a 

document in a document store database. The nodes relations are stored using 

edges. Edges represent how two nodes are related to each other (Vázquez, 2019). 

In some DBMS, edges can also have properties to store the unique 

characteristics of the relationship. Edges can be undirected or directed to 

indicate the direction of the relationship. Labels are also introduced in some 

graph databases to allow users to group nodes and edges by categories. Due to 

its capability to clean and simple ways of defining relations, graph databases are 

widely used for fraud detection, network routing, identity and access 

management (IAM) and full-text search applications. As of April 2021, Neo4j 

is the most popular graph modelled NoSQL database (Solid IT, 2021). 

 

2.5 Database Synchronization 

The process of synchronizing data to achieve consistency among different data 

sources is called data synchronization (Shodiq et al., 2015). Database 

synchronization is the synchronization of data in a database. There are two 

categories of data synchronization techniques which are unidirectional 

synchronization and bidirectional synchronization (Jindal, 2016). 

Unidirectional data synchronization copies and replace the data in the 

destination database from a source database. Bidirectional data synchronization 

merges the data from both source and destination databases. Conflict in the 

source and destination data will cause bidirectional data synchronization to fail.  

 

2.6 BATMAN-ADV 

BATMAN is a proactive routing protocol and system for a mesh network. 

BATMAN-ADV is a newer implementation of BATMAN. on layer 2. 

BATMAN uses an efficient algorithm that avoids redundant knowledge of the 

network and reduces overheads caused by network signalling (Pinto et al., 2010). 

BATMAN-ADV supplies user with a command-line interface (CLI) called 

batctl which helps users to set up a BATMAN-ADV network easily. BATMAN-
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ADV nodes have three possible roles which are the routers, gateway and bridge. 

As BATMAN-ADV is a layer 2 protocol, it will not assign Internet Protocol (IP) 

address to the BATMAN-ADV interface, manual assignment or Dynamic Host 

Configuration Protocol (DHCP) server hosting must be done by the developer. 

 Routers in BATMAN-ADV is the basic node of the system. Any node 

in the mesh network is at least a router. Routers in BATMAN-ADV is 

responsible for re-transmitting or relay data packet to its destination within the 

mesh network. Routers will flood the network with originator messages (OMGs) 

to announce non-mesh clients, determine link quality and discover existing 

nodes (Abdalla et al., 2015). Applications can be hosted in the router itself. 

 When a router is configured into a gateway, it is capable to forward 

messages from the mesh network to other networks. This is commonly used to 

connect the network to the Internet. BATMAN-ADV gateway can include a 

DHCP server to provide an IP address for every newly joined mesh nodes 

dynamically. 

 For non-mesh devices to connect to BATMAN-ADV nodes, a bridge is 

needed. Bridges in BATMAN-ADV can be hosted on any interface of the router 

except for the interface used to connect to the BATMAN-ADV network. 

Bridges work as an AP for the non-mesh client to connect to the mesh nodes 

and also the networks connected to the mesh network via gateways. A DHCP 

server can be included to provide dynamic IP addresses to its associated non-

mesh clients. An example of a BATMAN-ADV architecture is shown in Figure 

2.10. 
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Figure 2.10: Example of a BATMAN-ADV Architecture. 

 

2.6.1 Database Synchronization 

There is no native database synchronization service in BATMAN-ADV. 

However, multiple database synchronization methods can be performed on the 

application layer. 

 

2.7 NerveNet 

NerveNet is first proposed to prepare a network infrastructure for the New 

Generation Network (NWGN) (Owada, Inoue and Ohnishi, 2011). Developed 

by Japan’s National Institute of Information and Communications Technology 

(NICT), NerveNet works as a regional information sharing platform and 

network which is disaster-resilient without depending on cloud applications on 

the Internet (Owada et al., 2019). NerveNet targets to migrate regional 

applications from the cloud to the local region and convert the current regional 

tree topology network to a mesh topology network to increase the resilience of 

the network (Inoue and Owada, 2017). The components of the NerveNet are 

network base station (BS), gateway (GW) and network manager (NM). 
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NerveNet nodes can connect to each other via wireless interfaces like Wi-Fi or 

LoRa or wired interfaces such as Ethernet or fibre optics. 

 NerveNet base station is the basic member of the mesh network which 

is responsible to work as a wireless AP. Non-mesh devices are able to connect 

to the NerveNet application by connecting to the nearest base station. 

Applications can be hosted in the NerveNet base station itself or hosting on its 

dedicated hardware and connect to a NerveNet base station. 

 During the initial setup of the network or when there is severe damage 

to the network, NerveNet’s network manager will be responsible for the initial 

settings and handover logic of the whole network (Owada, Inoue and Ohnishi, 

2011). To connect NerveNet to another network such as the Internet, NerveNet’s 

gateway is used. Multiple gateways can be established in the network to avoid 

single-point failure. If there is at least one gateway node setup in the NerveNet, 

all the nodes and clients can connect to the other network. An example of a 

NerveNet architecture is shown in Figure 2.11. 

 

 

Figure 2.11: Example of a NerveNet Architecture. 
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2.7.1 Database Synchronization 

Database synchronization in NerveNet is native and automatic for its base 

station. NerveNet comes with two databases that store routing information and 

application data, respectively. The database which stores application data can 

be used by application developers to synchronize its database throughout the 

whole NerveNet. The synchronization process is handled by the NerveNet 

Operating System (OS). Non-mesh application servers can also connect to the 

NerveNet by using an API developed to push data to the nearest base station’s 

database. 

 NerveNet database is synchronized via the hearsay daemon which 

compares the hash of other databases with its node’s database. Hearsay daemon 

synchronizes the MySQL database shipped within the NerveNet distribution. 

However, the Hearsay daemon only synchronizes Insert and Update actions in 

existing tables. To create a custom table, an Extensible Markup Language 

(XML) file must be created in the directory ‘/writable/etc/tables.d/’. The XML 

file defines the fields (or column) of the table as well as the naming of the table. 

To synchronize files such as images and documents, a special table is predefined 

in the MySQL database called ‘shbt_boxshare’. This predefined table can be 

used to synchronize file by using the ‘attached’ field. At the receiving end, the 

file will have a different unique name and the path is shown in the synchronized 

database of the receiving node. 

 

2.8 Communication Protocols 

Communications in a computer system are often very complex and require high 

levels of encapsulations. To simplify the process of sending data from one 

process to another process or from one device to another device, the Open 

Systems Interconnections (OSI) model is created to standardize the concepts of 

different communication functions in telecommunication, computing system 

and machines. Communication protocols define a format and rules for two 

network entities to exchange digital information with each other. The OSI model 

generalizes and categorizes various communication protocol into 7 abstraction 

layers which include the application layer, presentation layer, session layer, 

transport layer, network layer, data link layer and last but not least, the physical 

layer which can be seen in Figure 2.12. 
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Figure 2.12: An Illustration of the OSI Abstraction Model. 

 

Each layer in the OSI model serves different purposes in computer 

communication. All higher layer in the OSI model depends on its next lower 

layer to perform primitive functions. The OSI model can be further grouped into 

two separate groups divided by the transport layer. The software layer consists 

of all of the upper layers such as the application layer, presentation layer and 

session layer while the hardware layers consist of all of the lower layers 

including the network layer, data link layer and physical layer. The software 

layer protocols are implemented solely by software. These protocols mainly 

handle application issues such as preparing the data to transmit, track on 

application session and securing the data from malicious access and alteration 

of communicated data. On the other hand, the hardware layer protocols deal 

with problems related to the actual data transfer. Except for the network layer 

protocols, the hardware layer protocols are implemented using a combination of 

software and hardware standards. The transport layer is the centre of the OSI 

model. It provides functions that ensure a reliable link by providing packet 

segmentation, controlling the packet flow and handling network errors (Layers 

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer
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of OSI Model Explained, 2021). Common protocols for each OSI model layers 

are shown in Table 2.1. 

 

Table 2.1: List of Common Protocols for Each OSI Model Layers 

OSI Layer Protocols 

Application HTTP, MQTT, SMTP, FTP, DHCP 

Presentation TLS, SSL, SSH 

Session RPC, SDP, SOCKS, ZIP 

Transport TCP, UDP, DCCP 

Network ICMP, OSPF, AODV, ARP 

Data Link batman-adv, PPP, IEEE 802.11, 

Ethernet  

Physical Ethernet, USB, CAN bus, SPI, I2C  

 

2.9 Scalability 

The scalability of a software or application is the capability of the system to 

maintain its performance at a steep increase in workload without refactoring the 

system. Scalability is a crucial factor to applications that handle multiple 

simultaneous users and concurrent requests and will determine the adoption rate 

of the application. When the system is not scalable enough, it will place huge 

stress on the current application architecture and plummet its performance. This 

directly affects the experience of the application users.  

If scalability is considered at the beginning of the development stage, it 

is much easier and requires lesser resources to implement an efficient system. 

There are a few limiting factors that affect the scalability of an application which 

includes the maximum stored data, code quality and processing capabilities 

(Concepta, 2019). For applications that require storage of increasing size 

persistent data, the maximum data storage capacity of the application must be 

put into consideration. There are a few existing strategies to improve the 

scalability of databases, which include query optimization, vertical scaling, 

database replication, partitioning and database sharding (Nath, 2019). 

Scalability must also be incorporated in the code architecture by 

ensuring simple integration of future features. The code of a scalable system 
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must also stick to the “Don’t Repeat Yourself” (DRY) principle and avoid 

“spaghetti code” (Arya, 2017). To further improve the application process, 

asynchronous processing can allow your application to fully utilize its resources 

(Manandhar, 2020). 

Processors and random-access memory (RAM) of the server or 

application host are also two potential bottlenecks when it comes to multiuser 

applications. There are two methods of scaling processing resources of 

applications which include vertical scaling (scale-up) and horizontal scaling 

(scale-out). In terms of vertical scaling, in event of resource deficiencies, 

additional or stronger hardware is used to increase the performance of the 

existing machine. On the other hand, horizontal scaling increases its capability 

by adding additional machines to the system and replicating its existing system 

to the newly added machines (Manandhar, 2020). A load balancer is then used 

in horizontal scaling to distribute the workload between all its machines. 

 

2.10 Monolithic Architecture and Microservice Architecture 

Application architecture involves the design pattern and structure of the 

application. Selecting the suitable application architecture is important for the 

scalability, performance and development efficiency of the system. However, 

there is an overwhelming amount of software architecture that can be used and 

sometimes a union of architecture is required to achieve the application 

requirements. Among all architectures, the two most discussed architectures are 

monolithic architecture and microservice architecture. 

 Monolithic architecture structures all its components in a single entity. 

Its code is structured into modules within one single code base. Deployment of 

monolithic applications is also very simple as it only requires executing a single 

set of command. The downside of monolithic architectures is that it can be very 

expensive to scale the system. When scaling monolithic applications, replication 

of the whole system is needed even if only one function requires scaling. Large 

monolithic programs also get very challenging to manage. As monolithic 

applications are tightly coupled, it can get hard to understand for new members 

of the team. It is also hard to modify tightly coupled components.  

 Microservice architecture segregates the application into smaller 

components, each handling one or more functions of the application. These 
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smaller components are deployed in separate services and communicate with 

each other using a previously agreed set of protocol and messaging format. 

Scaling for microservice is easier compared to a monolithic application as each 

service can be individually deployed and scaled horizontally. Deployment of 

microservice application can be difficult due to their number of services. With 

the aid of Docker and Kubernetes, microservice deployment is getting much 

simpler. It is also much easier to understand and modify microservice 

applications as each service is rather small. Another benefit of microservice 

architecture is the capability for multiple development teams to work on 

different parts of the application concurrently. 

 

2.11 Server and Cloud 

In a client-server model distributed architecture, the application distributes its 

workload to individual clients or users to reduce the stress of a central service 

called a server. The individual client shares the resources and services provided 

by the server. A server can be a single machine or a cluster of machines that run 

a server program. A server program is software that listens to requests from a 

set of clients using protocols such as HTTP, FTP and SMTP. An illustration of 

a client-server model software architecture is shown in Figure 2.13. 
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Figure 2.13: An Illustration of Client-Server Model Application Architecture. 

 

In a client-server model, codes that are executed on the client-side is called the 

frontend code base while codes that are executed on the server-side is said to be 

the backend code base. Data are usually stored in the server to allow cross-

device access. Data are also pre-processed on the server-side before sending it 

to the client. 

 Cloud is a server that managed by companies in data centres and is 

rented to other companies or individuals. Traditional servers are deployed in 

dedicated servers which require constant maintenance and management. With 

cloud services, software companies and individual developers do not need to 

manage the hardware maintenance. Common cloud service providers and 

platforms are Digital Ocean, Amazon Web Services (AWS), Microsoft Azure 

and Google Cloud Platform (GCP). The user accesses and deploys their services 

into the rented server through the Internet via protocols such as Secure Shell 

(SSH) Protocol, Secure Copy Protocol (SCP) and Secure File Transfer Protocol 

(SFTP). 

 



24 

2.12 Cloud Computing and Edge Computing 

As discussed in the previous section, cloud computing is a rented server hosted 

by cloud service providers on the Internet. This allows fast deployment of 

servers on the Internet which allow worldwide use of its services. However, 

there are some delay-sensitive cases where cloud computing is not suitable. To 

meet such requirements, the service must be deployed in the client itself or an 

in-premise server near the source of the data. Such computing distribution is 

called edge computing. Other use cases that require edge computing is when the 

service must still be available during a network failure to the Internet such as 

disaster response applications, evacuation systems and security systems (Arora, 

2021). A mix of cloud services and services in the edge is called a hybrid cloud 

strategy. 

 

2.13 Digital Twin 

A digital twin is a virtual copy or model of a process, service or device (Marr, 

2017). Digital twining maps the interfaces of the physical entity such as 

commands, properties, components, telemetries and relationships of the 

physical entity to a digital version, bridging the gap between the physical and 

digital world. With a digital twin, cloud services can simply interface with the 

physical device using the digital twin services. Some of these services are 

provided by cloud service providers such as AWS Device Shadow service, 

Microsoft Azure Digital Twin and digital twin service from GCP IoT Core. 

There are also open-source versions of such services like Eclipse Ditto. Some 

of these services use descriptive language to define the mapping of the interfaces 

such as Digital Twins Definition Language (DTDL) for Azure and Vorto 

language for Eclipse Ditto. These descriptive languages can be used by smart 

sensor manufacturers, machine maker and system integrator to define the digital 

twin interfaces of their products. These predefined configurations can then be 

used by software developers to integrate cloud services into the existing system 

and allow simple integration of smart services into existing systems. Thus, 

digital twins are very important in IoT, smart cities and smart manufacturing 

developments.  
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2.14 User Interface 

The user interface is a set of components that allow human to interact with 

machines and software. It includes the hardware where the human can interact 

with such as touch screens, monitors, keyboards and software. The software user 

interfaces can be developed using various technologies depending on the OS 

and the hardware of the devices. Three common user interface categories in 

computer software development include native application, hybrid applications 

and web applications. A native application is an application that is built 

specifically for a certain OS. This includes developing android applications in 

Java and building iOS applications using Objective-C or Swift. Web 

applications are developed using web technologies such as Hypertext Markup 

Language (HTML), Cascading Style Sheets (CSS) and JavaScript (JS). It 

requires clients to have a web browser to view its interface. However, due to the 

popularity of web technologies, most of the devices have certain web browsers 

which makes it good for situations that require cross-platform integrations. For 

hybrid applications, it is developed using web technologies and is packaged in 

a native wrapper (YML, 2020). Examples of hybrid application frameworks are 

Ionic, Flutter and React Native. Some hybrid frameworks like Flutter can even 

access native elements such as the location and camera function of devices. 

Hybrid application frameworks are very powerful as it allows developers to 

reuse most of the code for all platforms. 

 

2.15 Summary 

Disaster tolerant networks need to be redundant and resilient to faults. To 

accomplish that, mesh topology can provide resilience to the network. 

Redundancy can be provided by data synchronization and backup in all nodes 

or selected nodes in the mesh network. Two mesh network options are listed 

which include NerveNet and BATMAN-ADV. The advantage of NerveNet over 

BATMAN-ADV is that it has native support of data synchronization. For a 

regional disaster response network, a cloud monitoring dashboard is needed to 

allow nationwide monitoring and control. For a reliable nationwide monitoring 

cloud, the design of the server-side architecture must consider the scalability 

and performance of the server while remaining relatively simple. All these 

considerations lead to the design done in this project. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

A hypothetical regional disaster-resilient network for disaster data propagation 

and backup is developed using NerveNet. Disaster sensor data (which includes 

camera images, victim count and disaster detected) is synchronized throughout 

the network and also published to a cloud monitoring server. The purpose of 

having a cloud monitoring service is to prepare for larger catastrophic events 

that span more than just a region. The capability of each single-hop link will be 

analysed. 

 

3.2 Work Plan 

The part 1 of the final year project consists of four stages, namely literature 

review and related knowledge studies, system architecture design and model 

testing using BATMAN-ADV with client-server MongoDB database 

replication, deployment of MongoDB database replication in BATMAN-ADV 

mesh network and deployment of NICT’s NerveNet network. In the initial stage 

of the project, a literature review on networking has been done. At the stage of 

system architectural design and model testing using BATMAN-ADV with 

client-server MongoDB database synchronization database replication method, 

a database replication system in the BATMAN-ADV network is developed. 

Deployment of MongoDB database replication in BATMAN-ADV mesh 

network will then take place to test the database replication of MongoDB. Lastly, 

NICT’s NerveNet is to be deployed on a small scale for knowledge verification 

purposes. However, the deployment of NICT’s NerveNet cannot be done on 

time and have to be delayed to the second part of this final year project. This is 

due to the delay from Japan’s NICT on providing the required resources and 

support. 

Similarly, there are four stages in the second and final part of the final 

year project which include NerveNet testbed setup, development of the cloud 

dashboard’s digital twin service, development of the cloud dashboard data API 

and frontend, and the NerveNet testbed’s data synchronization feature. At the 
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first stage, guidelines and documentations for a simple setup of a three-node 

NerveNet testbed are provided from Japan’s NICT. The documents are studied 

and applied to set up a three-node NerveNet mesh network. At the second stage, 

a simple device twin service is created for the cloud server to collect node 

statuses, which will be stored in a database for monitoring use. The monitoring 

server API and frontend are then created to provide a human-readable dashboard. 

While developing the API and web application, the data synchronization feature 

of NerveNet is studied and deployed concurrently. The flow chart of the work 

plan for the final year project is shown in Figure 3.1. 

 

 

Figure 3.1: Flow Chart of the Work Plan for the Final Year Project. 
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3.3 Mesh Network 

NICT’s NerveNet is selected for the use case of the disaster response network. 

NerveNet is advantageous for this use case as it provides a database 

synchronization feature off the bat. For preliminary studies on mesh network 

with database synchronization, BATMAN-ADV is chosen due to its popularity 

and setup simplicity. 

 

3.4 NerveNet Testbed Application 

The testbed is modelled to be used as a regional disaster response and 

monitoring platform. This platform includes applications for disaster response, 

sensor nodes, and broadcast devices. The testbed is developed using NerveNet 

as the OS of its mesh infrastructure. An illustration of the NerveNet based 

disaster response and monitoring platform is shown in Figure 3.2. 

 

 

Figure 3.2: An Illustration of the NerveNet based Disaster Response and 

Monitoring Platform. 

 

When a sensor node detects a threat like high ambient temperature or 

fire in a forest area, it will store its telemetric data in two locations, the cloud 

monitoring server and its local database. Its telemetric data will then be 

synchronized to the other devices that are within the mesh network. This ensures 

the resiliency of the collected data even if the sensor node itself is destroyed. If 

all gateway nodes of the mesh network malfunction, there are still copies of the 
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data in member nodes within the mesh network. A node can have multiple data 

schemas. Member nodes are nodes that have the same data schema. 

 This synchronized data can then be used by relevant emergency response 

agencies to evaluate the threat level and damages as well as to prepare a 

response to the problem. Authorities can then trigger evacuation broadcast and 

notice to certain area devices such as vending machines, billboards and 

evacuation alarm depending on the threat level. At low threat levels, quick 

responses can even mitigate the threat before it becomes a disaster. 

 During a catastrophic disaster, there is a possibility that the whole 

regional network will be interrupted. At such an event, the federal authorities 

must be informed to provide support to the disaster zone. The latest state of the 

disaster zone must be recorded to allocate sufficient rescue resources to the 

location. It is provided by the cloud monitoring server in this disaster response 

and monitoring framework. 

 

3.5 Proof of Concept 

For a better understanding of NerveNet, BATMAN-ADV has been used to study 

the concept of database synchronization in a mesh network. Furthermore, it is a 

layer 2 mesh network that is similar to NerveNet.  

 

3.5.1 Network Design 

A simple BATMAN-ADV network is set up using three raspberry pi 3, model 

B+. The raspberry pis run Raspbian Buster Lite OS and are configured to work 

as a gateway, a basic router with an application server and a bridge respectively. 

The gateway is connected to a local network through a switch and is accessible 

through a 192.168.0.0/24 network which is also connected to the Internet via a 

router. The BATMAN-ADV network is configured to operate with Wi-Fi ad-

hoc mode on the 11th channel of the 2.4GHz wireless band. The channel is 

selected to reduce signal interference from another wireless network. The 

BATMAN-ADV mesh network is configured to be on a 192.168.10.0/24 

network.  

As there is only one wireless interface in-built into the raspberry pi, the 

bridge node is configured to have BATMAN-ADV to operate on Wi-Fi while 

the ethernet port in bridge to the network to allow non-mesh clients to connect 



30 

to the mesh network. However, this limits the bridge node to be able to connect 

to only one non-mesh client which is not ideal. This problem can be solved by 

either using a USB wireless interface extension or using a wireless AP device. 

In this case, the wireless AP device is selected as it is the only option available 

by that time. The wireless AP is connected to the bridge’s ethernet port and is 

configured to provide a DHCP server, and it is on a 192.168.0.0/24 network. 

This may seem like a network overlap with the local network, but it is not the 

case as BATMAN-ADV gateways will only allow outgoing connections from 

the mesh network or its non-mesh nodes and blocks all incoming connections. 

Web applications can be hosted on the router which is neither a gateway 

nor a bridge. This node application can be accessed within the mesh network 

including the non-mesh nodes by referring to its IP address or MAC address. 

The deployment architecture is shown in Figure 3.3. 
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Figure 3.3: Simple BATMAN-ADV Deployment. 

 

3.5.2 Database Synchronization Methods 

There are four proposed architecture and systems for database synchronization 

using BATMAN-ADV. However, only one of the four proposed methods is 

developed and evaluated. The four architecture are listed below.  

 

(i) Client-Server Model Database Synchronization 

(ii) Source Broker Publish-Subscribe Model Database Synchronization 

(iii) Receiver Broker Publish-Subscribe Model Database Synchronization 

(iv) Database Replication Provided by the DBMS 
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The client-server model database synchronization method is created by 

having a Hypertext Transfer Protocol (HTTP) client at the data source and 

having HTTP servers in all receiving nodes. The data source will have an event 

listener to MongoDB’s oplog. This event listener will queue any data changes 

in the database to a queue. The data in the queue will then be sent to all receiving 

nodes by using an updater. At the receiving end, a receiver will accept the update 

request and its relevant fields. The receiver will then perform the changes to its 

local database. The system architecture is shown in Figure 3.4. 

 

 

Figure 3.4: Client-Server Model Database Synchronization System 

Architecture. 

 

 Message Queuing Telemetry Transport (MQTT) protocol is used in the 

design of the publish-subscribe model database synchronization system. When 

there is an update in the source database, threaded listeners will update the 

MongoDB oplog to a queue. The publisher will then publish the data to a topic 

of the MQTT broker. If any nodes subscribed to the same topic, it can then 
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receive the database changes and update the database respectively. The MQTT 

broker can be placed in the source node to form a source broker publish-

subscribe model database synchronization system or placed in the receiving 

nodes to form a receiver broker publish-subscribe model database 

synchronization system. The system architecture is shown in Figure 3.5 and 

Figure 3.6 for source broker publish-subscribe model database synchronization 

and receiver broker publish-subscribe model database synchronization 

respectively. 

 

 

Figure 3.5: Source Broker Publish-Subscribe Model Database 

Synchronization. 
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Figure 3.6: Receiver Broker Publish-Subscribe Model Database 

Synchronization. 

 

By considering the complexity of all methods, the client-server model 

database synchronization method is selected among the four methods. 

 

3.6 NerveNet 

NerveNet is used as the mesh network for the testbed. NerveNet is a closed 

source, powerful mesh network shipped with plenty of useful features such as 

database synchronization. This makes it the best candidate for disaster resilient 

applications as we do not want application engineers to bother implementing 

low-level features and focus on the application itself. NerveNet is relatively new 

compared to other mesh networks and is still in active development by Japan’s 

NICT. 

 

3.6.1 Hardware Selection 

The hardware used for deploying a three-node NerveNet testbed are listed below. 

 

(i) 3 units of Raspberry Pi 3 Model B+  
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(ii) 3 units of TP-Link AC1300 Archer T4U High Gain Wireless MU-

MIMO USB Adapter 

(iii) 3 units of microSD card 

(iv) 1 unit of Cat.5e Ethernet cable 

 

As NerveNet is relatively new, the deployment of NerveNet can only be done 

using the OS provided by NICT which includes the features of NerveNet by the 

time of this project. Fortunately, a Raspbian version of the OS is provided. Thus, 

three units of Raspberry Pi 3 Model B+ are used as the processing unit for the 

NerveNet nodes as well as the sensor node. It is supported by NerveNet and is 

well suited for our use case due to its relatively small size. Three additional USB 

wireless adapters are needed to establish the wireless link as the internal wireless 

interface have been used as the wireless AP of the node. One microSD card is 

required for each node as Raspberry Pi does not have a persistent memory 

inbuilt. A cat.5e ethernet cable is needed for the gateway node to have internet 

connectivity. 

 

3.6.2 Wireless Mesh Network 

There are two methods to establish a wireless mesh network using NerveNet. It 

can either be set up using 4 address mode or Ethernet Remote Bridge (ERB) of 

NerveNet. In this testbed, the ERB method is adopted as the external wireless 

adapter does not support the 4 address mode. 

 

3.6.3 Testbed Network Architecture 

A simple three-node NerveNet testbed is deployed. The network architecture of 

the NerveNet testbed is shown in Figure 3.7. 
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Figure 3.7: Network Architecture Diagram of the NerveNet Testbed. 

 

The NerveNet testbed is designed to have one gateway node and two 

base station nodes. The wireless links of the NerveNet (indicated as a dotted line 

in Figure 3.7) are established using the ERB feature of NerveNet. To establish 

an ERB link between two nodes, one node must have a wireless interface 

configured as a wireless AP while the other node must have a wireless interface 

configured as its client. In ERB, unlike network routers, its wireless AP can only 

accept a connection from one client. Each ERB links are static and is defined 

with a collection of configuration files included in the NerveNet distribution. 

Based on Figure 3.7, the internal wireless interface of Raspberry Pi (labelled as 

“wlm1”) is configured as a wireless AP while the other external interface 

(labelled as “wlu3”) is configured as a client station (STA) of the adjacent 

node’s wireless AP. The gateway is similar to a base station with some 

additional configurations to enable re-routing packets to external networks. The 
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gateway is configured to route external packets to the network at its Ethernet 

interface labelled as “enu11” in Figure 3.7.  

 In default, NerveNet is configured to work in the 172.16.0.0/16 network. 

The IP address of each node is 172.16.n.1 where n is the node id of the node 

defined during the installation of the network. For example, the gateway node 

in Figure 3.7 has a node id of 200 (written in parenthesis), thus, it has a NerveNet 

IP of 172.16.200.1.  

 

3.7 Database Synchronization 

In NerveNet, a MySQL database is included. This database is mainly used as 

the data storage for synchronized data, but it can also be used for non-

synchronized data. NerveNet Hearsay daemon synchronizes the data within the 

MySQL database based on the checksum of tables defined in the 

‘/writable/etc/tables.d/’ directory. When a table schema is defined in that 

directory using an XML template, Hearsay will automatically create the defined 

table into the internal MySQL database when initialized. Tables that are not 

defined in the ‘/writable/etc/tables.d’ directory would not be synchronized. All 

member nodes of the table must also contain the same XML definition in its 

own ‘/writable/etc/tables.d’ directory. The table definition for the disaster 

sensor application of the testbed is shown in Table 3.1. 

 

Table 3.1: Disaster Sensor Application Hearsay Table Schema. 

<?xml version="1.0" encoding="utf-8" ?> 

<database> 

    <table id="0x0060" name="application_disaster"> 

        <dummy id="0xff02" label="record_id"/> 

         

        <column id="0x0601" label="disaster_detected"  

        name="disaster_detected" 

        type="char" 

        dbtype="VARCHAR(32)" /> 

 

        <column id="0x0602" label="victim_count"  

        name="victim_count" 

        type="int" size="8" 

        dbtype="BIGINT NOT NULL"/> 

 

    </table> 

</database> 
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For image synchronization, a table, ‘shbt_boxshare’ is predefined by 

NerveNet. The table fields and description are shown in Table 3.2. 

 

Table 3.2: The Table Fields of ‘shbt_boxshare’. 

+----------------+---------------+------+-----+---------+ 

| Field          | Type          | Null | Key | Default |  

+----------------+---------------+------+-----+---------+ 

| attached       | varchar(255)  | YES  |     | NULL    |        

| body           | varchar(255)  | YES  |     | NULL    |        

| flag_invalid   | smallint(6)   | YES  |     | NULL    |        

| id_box         | varbinary(16) | YES  |     | NULL    |        

| id_link        | varbinary(32) | YES  |     | NULL    |        

| id_node_update | varbinary(32) | YES  |     | NULL    |        

| id_record      | varbinary(32) | NO   | PRI | NULL    |        

| time_calibrate | bigint(20)    | YES  |     | NULL    |        

| time_discard   | bigint(20)    | YES  |     | NULL    |        

| time_update    | bigint(20)    | NO   |     | NULL    |        

| timestamp_sync | timestamp     | YES  |     | NULL    |        

| uri_boat       | varchar(32)   | YES  |     | NULL    |        

+----------------+---------------+------+-----+---------+ 

 

To synchronize any file (including images), the full path of the file is 

used as the field value of the field ‘attached’ in the new record. When committed, 

the file will then be synchronized to its member nodes and ‘shbt_boxshare’ table 

if the member nodes are updated with the corresponding local file path in its 

attached field. The file name and path will be different from its source. All 

synchronized file will be stored in the directory ‘/dev/shm/fieldfile/’. 

 

3.8 Cloud Dashboard 

A cloud-based web application is developed to provide sensor data and 

network statuses of multiple NerveNets. The development of the cloud 

dashboard is separated into two major parts which are the backend and frontend 

of the cloud dashboard. The backend development work includes the 

development of a simple digital twin system and a backend API for the 

consumption of the frontend dashboard while the frontend development focuses 

on the visual elements where users interact with. 

 

3.8.1 Backend Development 

The services required for the cloud dashboard are listed below. 
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(i) Digital twin for JSON encodable data 

(ii) Digital twin for files such as images 

(iii) A Database for persistent data storage 

(iv) A Representational State Transfer (REST) API for consumption of 

simple data 

(v) A Websocket API for file streaming 

(vi) A static file server 

(vii) An optional load balancer 

 

A proposed design for the service architecture of the cloud monitoring 

application is shown in Figure 3.8. 

 

Figure 3.8: Service Architecture of the Cloud Monitoring Application. 

 

 The digital twin function is handled by two separate services which 

include an MQTT client for JSON encodable data and an HTTP server for media 

files. Image files can be either base64 encoded and sent via JSON format or sent 

directly in their binary form via HTTP. However, it is not recommended to 

encode media files into its base64 format as it can be very large. Thus, a separate 

endpoint that uses HTTP is created to receive media files. The media file history 

count can be defined in the server configuration file which will limit the number 

of stored media files to save server space. When the media storage limit has 
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been exceeded, the device twin service will replace the oldest stored media data 

with the latest media data. The MQTT client listens to specific topics and format 

of which can be configured in the server. The topic format depends on the master 

template defined in the configuration file of the digital twin service and the topic 

field ‘topic’ of the Node record. All Node, Network and Sensor record are 

configurable via a device management CLI developed in Golang. The database 

used is a graph-based NoSQL database called Neo4j. The data and media 

records will be recorded in the database while the media file itself will be stored 

in the server memory. The data can then be retrieved via a RESTful API or a 

WebSocket API. The RESTful API is used for the retrieval of simple text data 

while the WebSocket API is used for file streaming. As the application is a web 

application, the Nginx static file hosting feature is used to serve the frontend 

static files. The Nginx server can also be configured to provide load balancing 

for all HTTP endpoints if needed. The technology stack of all backend services 

and tools are listed in Table 3.3. 

 

Table 3.3: Technology Stack of All Backend Services and Tools in the Cloud 

Monitoring Server. 

Backend Service Programming 

Languages 

Framework and Tools 

Digital Twin (HTTP) Golang GoFiber, Neo4j 

Digital Twin (MQTT) Golang Mosquitto MQTT 

Broker, Neo4j 

API Server Golang GoFiber, Neo4j 

Static File Server - Nginx 

Load Balancer - Nginx 

Device Management 

CLI 

Golang - 

 

3.8.2 Frontend 

The design phase of the frontend development is separated into three phases, 

namely sitemap designing, wireframing and visual designing. At the first 

sitemap designing phase, the application pages are listed out and connected 



41 

using a simple block diagram. At the wireframing stage, a skeletal structure 

(wireframe) of the application is planned and sketched. The application design 

is finally styled based on the wireframe prepared in the visual design stage 

which can then be implemented using code. The sitemap, wireframe and visual 

design of the cloud monitoring dashboard application are shown in Figures 3.9, 

3.10 and 3.11 respectively. 

 

 

Figure 3.9: Sitemap of the Cloud Monitoring Dashboard. 
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Figure 3.10: Wireframe of the Cloud Monitoring Dashboard. 

 

 

Figure 3.11: Visual Design of the Cloud Monitoring Dashboard. 
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3.9 Performance Test 

An important criterion for efficient disaster response and monitoring platform 

includes a sufficiently performant network and framework. The platform 

consists of three major parts which is the NerveNet network, the Hearsay 

database synchronization function and the cloud monitoring dashboard. The 

cloud monitoring dashboard performance depends on the cloud server location, 

server specifications, and the NerveNet network performance. Thus, the 

performance of the cloud monitoring dashboard does not need testing.  

 

3.9.1 Network Metric 

There are two categories of network metrics, router metrics and performance 

metrics. Router metrics are used by routing devices to make routing decisions. 

Performance metrics, on the other hand, is used by network administrators, 

network managers and network architects to evaluate the network condition and 

performances. Some metrics can be utilized as both router and performance 

metrics. The common network metrics include packet delivery ratio (PDR), 

throughput, latency and jitter. 

  

3.9.1.1 Packet Delivery Ratio (PDR) 

Packet delivery ratio (PDR) is defined as the ratio between the number of 

delivered packets and the total number of packets sent (Khan and Ramesh, 2019). 

A packet is considered delivered if and only if the packet is received in the 

receiving end. PDR value ranges from 0 to 1. A network is considered better if 

it has a higher PDR. This metric can only be used to evaluate the performance 

of the network. The equation of PDR is shown in Equation 3.1. 

 

𝑃𝐷𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 (3.1) 

 

3.9.1.2 Throughput 

Throughput is the measured transmission rate of successfully delivered data. 

Throughput is often confused with bandwidth, but they are two different 

concepts.  Bandwidth is defined as the maximum transmission rate to send data 

to its destination. Bandwidth is calculated theoretically but in a practical 
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situation, the transmission rate would not achieve its rated bandwidth (Cox, 

2020). On the other hand, the throughput is the actual measured transmission 

rate of data. Throughput may fluctuate depending on the network condition and 

may plummet due to network congestion, electromagnetic interference and 

route selection. It can be used for evaluating network performance as well as 

route selection. The equation of throughput is shown in Equation 3.2. 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑏𝑦𝑡𝑒𝑠(𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠) ×
8

𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
  (3.2) 

 

3.9.1.3 Latency 

In networking, latency is the time taken for some data to travel to its destination. 

It is often measured using the total time taken to travel to the destination and 

back to the source, also known as the round-trip time (RTT). Latency affects the 

throughput of the network and may even cause network packets to drop more 

often. Network latency may be affected by the distance between the sending and 

receiving end (Čandrlić, 2015) as well as network traffics. It can be used to rate 

the network’s quality of service as well as determining the routing path to use 

in a router. 

 

3.9.1.4 Jitter 

Network packet jitter also called packet delay variation (PDV) is the expected 

absolute value of the one-way delay variation between each sample packets as 

shown in Equation 3.3 (Dahmouni, Girard and Sansò, 2012). Assuming that 𝑇𝑗 

is the one-way delay of the jth packet received in the receiving node, the jitter, J 

is then, 

 

𝐽 = 𝐸[|𝑇𝑗+1 − 𝑇𝑗|] (3.3) 

 

However, since measuring one-way delay requires time synchronization, 

a method to estimate the interarrival jitter using RTT is defined in RFC 3550 

section 6.4.1 and appendix A.8 (Schulzrinne et al., 2003). Assuming that 𝑇𝑖 is 

the RTT of the ith packet, where 𝑖 = 2,3,4, …, the approximated jitter from the 

first packet to the ith packet, Ji can be written as 
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𝐽𝑖 = 𝐽𝑖−1 +
1

16
(|𝑇𝑖 − 𝑇𝑖−1| − 𝐽𝑖−1) (3.4) 

 

This alternative method is used in tools such as iperf which does not 

require time synchronization between nodes. A high jitter value means the 

network will have a huge spike of latency, which will cause real-time 

application such as voice over internet protocol (VoIP), live video streaming 

and video conferencing to have data distortions, low PDR and bad overall 

quality of service.  

 

3.9.2 Network Performance Test 

The performance of the NerveNet base network is evaluated by measuring the 

following performance metrics in section 3.9.1. The tools and protocols used for 

measuring the metrics are shown in Table 3.4. 

 

Table 3.4: Performance Metrics for NerveNet Network Performance 

Evaluation and the Tools and Protocol Used for the Measurement. 

Performance Metrics Tools Used and Protocol 

Latency ping (ICMP) 

TCP Throughput iperf3 (TCP) 

TCP Retransmission Count iperf3 (TCP) 

UDP Throughput iperf3 (UDP) 

UDP Jitter iperf3 (UDP) 

Packet Delivery Ratio (PDR) iperf3 (UDP) 

 

  The performance metrics are measured manually. Three tests are 

executed in order which includes an iperf3 Transmission Control Protocol (TCP) 

test, an iperf3 User Datagram Protocol (UDP) test and an Internet Control 

Message Protocol (ICMP) ping test. The parameters of all tests and the metrics 

obtained for all tests are listed in Table 3.5. Two phases of tests are to be done 

which are the single-hop and two-hop configurations. Each phase consists of 6 

independent configurations and 5 iterations of the three tests are to be done. The 

phases and their configurations are shown in Table 3.6. For two-hop 
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configuration, one link of the mesh network can be interrupted by removing the 

external wireless adapter of the link.  

 

Table 3.5: NerveNet Network Performance Test, its Fixed Parameters and 

Obtained Metrics. 

Test Parameters Metrics Obtained 

iperf3 TCP 

Processes = 1 

Test Duration = 30 

seconds 

• TCP Throughput 

• TCP Retransmission 

Count 

iperf3 

UDP 

Processes = 1 

Test Duration = 30 

seconds 

• UDP Throughput 

• UDP Jitter 

• Packet Delivery Ratio 

ping Payload Size = 56 bytes • Network Latency 
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Table 3.6: Test Phases and its Corresponding Configurations. 

Phases Configurations 

Single-Hop Configuration 

Phase 

Sender: GW, Receiver: BS1, Deactivated 

Node: BS2 

Sender: GW, Receiver: BS2, Deactivated 

Node: BS1 

Sender: BS1, Receiver: GW, Deactivated 

Node: BS2 

Sender: BS1, Receiver: BS2, Deactivated 

Node: GW 

Sender: BS2, Receiver: GW, Deactivated 

Node: BS1 

Sender: BS2, Receiver: BS1, Deactivated 

Node: GW 

Two-Hop Configuration 

Phase 

Sender: BS1, Receiver: BS2, Intermediate 

Node: GW 

Sender: BS2, Receiver: BS1, Intermediate 

Node: GW 

Sender: GW, Receiver: BS2, Intermediate 

Node: BS1 

Sender: BS2, Receiver: GW, Intermediate 

Node: BS1 

Sender: GW, Receiver: BS1, Intermediate 

Node: BS1 

Sender: BS1, Receiver: GW, Intermediate 

Node: BS2 

 

3.9.3 Database Synchronization Test 

The telemetric data of sensors in a disaster response platform consists of text 

data and file data. To ensure the feasibility of NerveNet as disaster response and 

monitoring platform, its database synchronization latency must be sufficiently 

low for both file synchronization and simple text data. However, as 

synchronizing text data only requires Hearsay to synchronize the table fields, it 
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is comparably requiring way lesser data transfer and resources than 

synchronizing file data. Due to time limitations, a latency test for file data 

synchronization is only required. The file data synchronization latency test is 

done by measuring the average delay time required for four different sized 

images to synchronize from GW to BS1 and BS2. The record is inserted into 

the local database of GW in order of the image size and the test is done for three 

iterations. The subsequent record is only inserted when the data is ensured to be 

successfully synchronized in BS1 and BS2. These tests are done manually and 

the average delay time of all data for each base station is recorded. 

 

3.10 Summary 

The mesh network used for the disaster response and monitoring platform is 

NerveNet. A proof of concept for database synchronization in mesh networks is 

performed using BATMAN-ADV with one of four proposed database 

synchronization strategies. The wireless links of the NerveNet mesh network 

are established using NerveNet’s ERB. Data synchronization of the disaster 

response and monitoring platform is done using Hearsay and boxshare services 

from NerveNet. A cloud monitoring dashboard is designed to allow multiple 

regions multiple network monitoring. The performance and the feasibility of the 

network as well as the disaster response and monitoring framework as a whole 

is discussed in the next chapter. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

Figure 4.1 shows the prototype of the NerveNet testbed. The performance of the 

prototype is analysed from two perspectives, namely performance and database 

synchronization. Besides that, the feasibility of the disaster response and 

monitoring platform is analysed based on standard requirements.  

 

 

Figure 4.1: Prototype of the NerveNet Testbed. 

 

To reduce electromagnetic interference between nodes, the nodes are 

distanced at least 1 meter from each other. The exact distances between each 

node are shown in Table 4.1. 
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Table 4.1: Distance Between Each Node During Network and Database 

Synchronization Benchmark. 

Node 1 Node 2 Distance (m) 

GW BS1 1 

BS1 BS2 2.1 

BS2 GW 2.35 

 

4.2 Network Benchmark 

The network is benchmarked using iperf3 and ICMP ping. The network is 

benchmarked based on its UDP throughput, TCP throughput, TCP 

retransmission count, PDR, jitter and latency. The benchmark tests encompass 

all single-hop links and all two-hop links. The benchmark between single hop 

and two-hop links are compared.  

 

4.2.1 Single Hop Benchmark 

The TCP throughput and TCP retransmission count average-max-min chart for 

all single-hop links are shown in Figure 4.2. 
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(a) 

 

(b) 

Figure 4.2: Average-Max-Min Chart of (a) the TCP Throughput and (b) TCP 

Retransmission Count for All Single Hop Links. 

 

 From Figure 4.2, communications between BS1 and BS2 have better 

TCP performance. This is because the links between BS1 and BS2 are less busy 

as compared to communications with the GW that is both the Internet Gateway 

and Network Manager of the network. Links that sourced from an STA (wlu3) 

sender to an AP (wlm1) receiver is also found to have a higher TCP throughput 

and lower TCP retransmission count. The plausible cause of such phenomena is 

that the STA utilizes a much performant wireless interface (wlu3) while the AP 

only utilizes the internal wireless interface of Raspberry Pi 3 Model B+ (wlm1) 

(Vouzis, 2018). These two conditions also explain why the link from BS2 to 
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BS1 has the highest TCP throughput and lowest TCP retransmission from all 

links. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.3: Average-Max-Min Chart of the (a) UDP Upload Throughput, (b) 

PDR and (c) Jitter for All Single Hop Links. 
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 The performance result in Figure 4.3 is consistent with the TCP 

performance test results in Figure 4.2. From the effect of the higher network 

traffic in the links between GW with the other nodes and the connection 

direction of the links, a lower PDR value can be observed in the GW to BS1 and 

BS2 to GW links. The high jitter in the BS2 to GW link may be further justified 

by its distance between the nodes.  

 The latency of all single-hop links is measured using ICMP pings. The 

average, maximum and minimum latency of all single-hop links is shown in 

Figure 4.4. 

 

 

Figure 4.4: Average-Max-Min Chart of the Network Latency for All Single 

Hop Links. 

 

 The average round trip latency of transmitting a 56 bytes payload using 

ICMP is at most 200 ms. Assume the link to be symmetric, the one-way latency 

is approximately 100 ms. This meets the requirement set for VoIP application 

networks by Cisco (Cisco Press, 2004). 

 

4.2.2 Direct Link Against Two Hop Link 

The TCP throughput and TCP retransmission count average-max-min chart for 

all measured two-hop links are shown in Figure 4.5. The UDP throughput, PDR 

and jitter average-max-min chart for all measured two-hop links are shown in 

Figure 4.6. The average, maximum and minimum latency of all measured two-

hop links is shown in Figure 4.7. 
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(a) 

 

(b) 

Figure 4.5: Average-Max-Min Chart of (a) the TCP Throughput and (b) TCP 

Retransmission count for All Measured Two Hop Links.  
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(a) 

 

(b) 

 

(c) 

Figure 4.6: Average-Max-Min Chart of the (a) UDP Upload Throughput, (b) 

PDR and (c) Jitter for All Measured Two Hop Links. 
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Figure 4.7: Average-Max-Min Chart of the Network Latency for All Measured 

Two Hop Links. 

 

 In a two-hop configuration, the effect of the connection direction is 

further amplified as the links are formed from two links with the same direction. 

The effect on a two-hop link is very obvious and can be seen in the measured 

TCP and UDP throughput performance. For example, the 𝐵𝑆2 → 𝐺𝑊 → 𝐵𝑆1, 

𝐺𝑊 → 𝐵𝑆1 → 𝐵𝑆2 and 𝐵𝑆1 → 𝐵𝑆2 → 𝐺𝑊 links consist of only AP to STA 

links. However, despite the bigger impact from the link directions, the TCP and 

UDP throughput of other links remain similar or even better to their single-hop 

counterpart. This is because the previously AP to STA single-hop link is now 

consisting of two separate STA to AP single-hop links which may have a better 

overall network performance. There is also no significant increase in TCP 

retransmission count and decrease in PDR between the two-hop configuration 

and its single-hop counterpart. The average latency of all two-hop links also 

remains below 200 ms. 

 

4.3 Database Synchronization Benchmark 

Four similar images with different sizes and resolution are used to measure the 

file synchronization latency of the Hearsay daemon. The image resolution and 

file sized is shown in Table 4.2. The image sent is shown in Figure 4.8 and the 

time taken for the images to be synchronized in each base station is shown in 

Figure 4.9. 
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Table 4.2: Image Resolution and File Size Used for Hearsay File 

Synchronization Performance Benchmarking. 

Image File Name Image Resolution File Size 

img_small.jpg 640 × 360 px 108 KB 

img_mid.jpg 1920 × 1080 px 950 KB 

img_large.jpg 2400 × 1350 px 1.41 MB 

img_xl.jpg 7679 × 4320 px 10.6 MB 

 

 

Figure 4.8: The Image Used for Synchronization (img_small.jpg). 

 

 

Figure 4.9: Time Taken for Different Sized Images to Be Synchronized from 

GW to BS1 and BS2 Respectively. 
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 From Figure 4.9, the time taken for each image to be synchronized in 

both BS1 and BS2 increases as the size of the file increases. Based on the test 

results, the maximum time taken for an image with a file size equal to or lesser 

than 1.4 MB in a three nodes configuration requires at most 2 minutes and 6 

seconds for it to be fully synchronized depending on the network condition. 

However, as the system only requires transmitting low-resolution images of the 

scene, this is sufficient for disaster response and monitoring platform. The 

estimated database synchronization throughput for GW to BS1 and GW to BS2 

can be by calculating the average number of bits synchronized in a second. The 

average, maximum and minimum database synchronization throughput for GW 

to BS1 and GW to BS2 are shown in Table 4.3.  

 

Table 4.3: Average, Maximum and Minimum Estimated Database 

Synchronization Throughput. 

Source Destination Maximum 

(Kbps) 

Average 

(Kbps) 

Minimum 

(Kbps) 

GW BS1 473.6552 173.8300 12.0000 

GW BS2 1154.2659 498.2454 13.9355 

 

From Table 4.3, the average throughput of the data synchronization is 

comparably lower than the actual TCP and UDP throughput of the network. This 

is due to an extra delay introduced by the synchronization polling duration to 

verify the checksum of each table between the source and synchronized node. 

This reduces the based bandwidth used for database synchronization and only 

synchronize the database when needed. As the link between GW and BS1 is an 

AP to STA link while the link between GW and BS2 is an STA to AP link, the 

overall synchronization performance of BS1 is significantly weaker compared 

to that of BS2.  

 

4.4 Platform Design Feasibility 

In the year 2014, the International Telecommunication Union has released a 

standard regarding the requirements for network resilience and recovery. Annex 

B of the standard lists the requirements for improvement of network resilience 
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and recovery using local wireless mesh network based on de-centralized mesh 

architecture. The compliance of the disaster response and monitoring platform 

is discussed to ensure its feasibility and capability as a disaster resilient system. 

 

4.4.1 Annex B.5: Network Requirements 

Based on Annex B.5, the network must be able to resume its communication 

using surviving nodes when parts of the network are damaged or overloaded. 

This holds for the platform as it uses a mesh topology and is able to send network 

packets through other paths even if its original path is temporary or permanently 

interrupted. The platform also complies with the standard in terms of mobility, 

address resolution and multicast feature even in an event of connection 

interruption to the Internet. NerveNet is also able to re-route packets and restore 

the network by its Network Manager even if a majority of the network is 

damaged (Inoue and Owada, 2017). 

 

4.4.2 Annex B.6: Portable Radio Relay Node 

This annex requires the relay nodes of the network to be portable. Antennas for 

both connections between relay nodes and terminal devices are required. The 

relay nodes must also be physically portable. As NerveNet can be deployed in 

microcomputers such as Raspberry Pi and Intel NUC, it is portable. NerveNet 

also supports connections for both relay nodes and terminal devices. Thus, the 

platform complies with the requirements in Annex B.6 by using NerveNet as its 

local mesh network. 

 

4.4.3 Annex B.10: Service Platform Requirements in the Local Private 

Network  

Annex B.10 provides the requirements of the software services within the local 

private network of the platform. The testbed includes an example application of 

a constant human counting system, it can provide the first level of emergency 

response information. Additional applications can also be developed to provide 

refuge instruction, safety confirmation and relief request features as required in 

the standard. All applications can utilize the Hearsay daemon provided by 
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NerveNet to have a synchronized and distributed database in multiple nodes 

and/or terminals before, during or after a disaster. 

 

4.4.4 Annex B.7, B.8 and B.9 

Annex B.7 states the requirement of aerial nodes that used unmanned aerial 

vehicle (UAV) to provide connectivity through the platform in isolated locations. 

Annex B.8 also states that some gateway node should be connected through a 

satellite connection to provide a more reliable connection to the wide-area 

network. Annex B.9 further require the network to have gateway nodes that 

utilize satellite connection to be mounted on vehicles to provide higher mobility. 

Fortunately, NerveNet has supports for such connections as stated in their 2017 

paper titled “NerveNet Architecture and Its Pilot Test in Shirahama for Resilient 

Social infrastructure”. 

 

4.5 Summary 

From the study, the testbed deployed is considered to have an acceptable 

network performance for a disaster response and monitoring network. The 

testbed has similar network performance for its two-hop links as compared to 

their single-hop counterparts. Furthermore, the disaster response and monitoring 

platform proposed can meet all the requirements laid out by the International 

Telecommunication Union for improving network resilience and recovery using 

a local wireless mesh network. 
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

In conclusion, a testbed for disaster response and monitoring platform using 

NerveNet has been designed and deployed. The tools such as the Hearsay 

daemon provided in NerveNet has been proven beneficial for application 

services within the regional local private network. The platform design meets 

the requirements set by the International Telecommunication Union. The 

performance of the platform is also within an acceptable range of a regional 

disaster response and monitoring network. The outcome of the real 

implementation can serve as a guideline on designing and deploying a disaster 

response and monitoring platform using NerveNet. It will promote disaster-

resilient telecommunications and distributed application development for 

disaster response. 

 

5.2 Recommendations for Future Work 

Due to time limitation, the network performance analysis has been done on a 

NerveNet deployment with unsolved network issues. To have a better and 

accurate performance study, the issues should first be solved before conducting 

the performance analysis in the network. A better and extensive network 

performance test should be conducted to have a better understanding of the 

feasibility of the platform. 

 Besides, a larger testbed can be deployed by increasing the total 

NerveNet nodes count. Terminal nodes can also be included in the platform 

testbed to provide a simpler connection method for sensors, users and devices. 

Additional disaster response and monitoring application and features can be 

developed and tested using this testbed. 

 Furthermore, LoRa NerveNet deployments can be incorporated into the 

platform to provide long-distance communication between NerveNet nodes. 

The NerveNet deployment can also utilize the latest Docker container 

deployment method rather than manual image write to have a much more 



62 

 

efficient deployment process. Last but not least, improvement in NerveNet user 

documentation is needed to further promote and simplify the process of 

NerveNet deployments. 
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