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ABSTRACT 

With the advent of modern drones or unmanned aerial vehicles (UAVs), it is 

used in the application of infrastructure, agriculture monitoring, disaster 

assessment, etc. It has simplified and automated the site assessment and 

monitoring procedure. A lot of well-known image stitching software or 

applications, including Image Composite Editor (ICE), Adobe Photoshop and 

AutoStitch have been developed to allow users to stitch the images for 

monitoring or assessment purposes. However, the problems arise when the input 

data is aerial footage as these software are only taking images as input data. In 

this project, an image stitching framework is proposed to take aerial footage as 

input data. The proposed algorithm extracts the frames of the aerial footage and 

undistorts the bird-eye-effect of the images to remove the noises. Scale-

Invariant Feature Transform (SIFT) approach is used to detect and describe the 

feature points of the extracted frames. The randomized k-d tree of FLANN 

matcher is utilized to match the feature point pairs between the images. The 

Lowe’s ratio test is applied to discard the mismatched point pairs. RANSAC is 

exploited in the homograhy estimation to calculate the corresponding 

homography matrix and remove the outliers. The images are warped to the key 

frame of the footage to generate a stitched image by using the computed 

homography. The algorithm performance is evaluated using the Orchard 

datasets, consisting of L-shape flight pattern and lawnmower flight pattern. The 

implemented method successfully stitched the frames extracted from the aerial 

footage to generate a large scene image beyond the normal resolution. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In recent years, unmanned aerial vehicles (UAVs) or drones are no longer 

exclusive to the military domain. They have been commercialized for leisure 

and industrial domain, causing skyrocketing usage of the commercial and 

domestic drone. With the advantages of the capability to fly at low altitude and 

convenience, UAVs have been widely employed in various fields for remote 

sensing purposes. Nonetheless, the advancements of GPS, IMU, RGB, NIR and 

video camera unit installed in small drones have made it becomes the primary 

device to the aerial applications that require high resolution, low-cost solutions 

and high portability.  

 During the flight of the UAV, the camera’s location is constantly varying 

and producing images with various view angles. Generally, the UAV image 

acquisition modes are divided into three types, including manual acquisition 

mode (manually triggers to capture aerial images), fixed-point mode (stops at 

its location to capture aerial images along the predefined flight route) and cruise 

acquisition mode (takes the aerial images without stopping flying) (Eisenbeiss 

and Sauerbier, 2011). All three modes mentioned can obtain images over large 

area coverage and are often applied in the application of environment, 

infrastructure and agriculture monitoring as well as disaster assessment. Hence, 

an image stitching technique is needed to stitch the aerial images or footage. 

Image stitching, also known as image mosaicing is a process that combines 

numerous images with the overlapped areas to generate a large scene image 

beyond the normal aspect ratio and resolution. It has been utilized in the daily 

lives of people, such as artistic photography, medical imaging, etc. Furthermore, 

it has simplified the assessment and monitoring procedure. Many well-known 

applications, such as AutoStitch, Image Composite Editor (ICE) and Adobe 

Photoshop have the functionality to stitch overlapped images to produce a 

stitched image with wide-angle view.  

There are two types of image stitching approaches. The two commonly 

employed image stitching approaches are pixel-based (direct) approaches and 
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feature-based approaches. These methods will be further discussed in        

Chapter 2. 

 

1.2 Importance of the Study 

Nowadays, image stitching software mainly aims to process images to produce 

a large scene image. Before utilizing these software or application to perform 

image stitching with the input of aerial footage, manual keyframe selection is a 

necessary prerequisite to image stitching. Generally, this always brings 

inconvenience to the users. Therefore, this project shows the implementation of 

automated image stitching algorithm for aerial footage. 

 

1.3 Problem Statement 

Most image stitching software or application can stitch multiple aerial images 

with adequate overlapping field of view to generate a panoramic image or 

stitched image. However, those image stitching software are meant to take only 

images as input data rather than the footage to generate stitched image. Manual 

keyframe selection of the aerial footage before using the software is essential 

and cause the inconvenience to the end-users.  

Furthermore, UAVs used in the monitoring process usually perform at 

low flight altitudes, and the neigboring frames of aerial footage often have a 

high degree of overlap. Zhao et al. (2019) mentioned that the quality of stitched 

image is profoundly affected by the texture features, overlap, and structure 

content of the aerial images. These aspects significantly affect the number of 

matched feature points in image stitching algorithm. Meanwhile, many 

mismatched point pairs are generated when the images' structure contains high 

degrees of similarity (ie. orchard or farm), causing the failure of aerial image 

stitching.  

Afterward, Moussa and El-Sheimy (2016) stated that large number of 

input images is one of the factors that cause the failure of image stitching. 

Meanwhile, aerial footage usually consists of large number of continuous 

frames, and the image stitching algorithm has difficulty stitching the frames of 

the footage. Therefore, aerial image stitching is not straightforward and 

challenging. 
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1.4 Aim and Objectives 

The main objective of this project is to develop an image stitching program for 

aerial footage. The details of the objectives are: 

(i) To implement an automated image stitching algorithm for aerial 

footage 

(ii) To automate the keyframe selection process for image stitching 

 

1.5 Scope and Limitation of the Study 

This project focuses on stitch multiple aerial input images from aerial footage 

to produce a large scene image. Therefore, the resolution of the stitched image 

will not be taken into consideration.  

 

1.6 Contribution of the Study 

There are many publications and research work on image stitching. This project 

intends to apply an automated image stitching algorithm for aerial footage to 

address the inconvenience of manual keyframe selection and stitch multiple 

frames extracted from aerial footage to produce a large scene image. 

 

1.7 Outline of Report 

Chapter 1 provides an overview of the importance of the image stitching 

technique and the problems of conventional image stitching software. The aim 

and objectives of the project are described in Chapter 1 as well. 

 The literature review in Chapter 2 highlights the types of image stitching 

techniques, including pixel-based (direct) approaches and feature-based 

approaches. The methodology in Chapter 3 explains the framework proposed 

for stitching the aerial footage. 

 The results and discussion in Chapter 4 shows the result generated and 

the discussions involved. Afterward, the results among various algorithms are 

compared and discussed. Graphs and tables were generated to visualize the data. 

 Chapter 5 concludes the results of image stitching of aerial footage and 

provides suggestions on future methodology improvement and future research 

directions. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction of Image Stitching 

Image stitching is the process of merging multiple images with overlapping 

regions to generate a large scene image or panoramic image. In recent years, a 

lot of research works have been conducted to produce a large view for 

applications in the realm of surveillance, reconstruction, monitoring, medical 

imaging, etc. Image stitching approaches are generally categorized into two 

classes, namely pixel-based(direct) approaches and feature-based approaches.  

In the early days, the effectiveness and efficiency of the direct methods 

were sufficient and widely being implemented in professional applications (Lyu 

et al., 2019). Existing direct approaches are primarily focused on tackling the 

problems caused by the image properties, including the brightness difference 

between the overlapping images. Many useful research works have been 

presented in the topic of image stitching, using the pixel information of the 

image, including depth, color, geometry and gradient. Deforming and aligning 

the overlapped images using global estimated image transformation. However, 

direct-based matching is inefficient and limited in addressing images with 

multiple planes. It is also inadequate to be implemented in stitching images with 

complex properties, such as motion change, parallax change and non-planar 

scene. 

Due to the limitation of the pixel-based methods, a lot of research papers 

introduce feature-based methods to stitch images. Generally, feature-based 

image stitching pipeline is divided into several algorithmic stages: 

(i) Feature Representation 

(ii) Image Matching 

(iii) Outliers Removal and Robust Estimation 

(iv) Image Transform Estimation 

 

The feature representation is used to identify and describe the image 

patches with high repeatability and distinctiveness. Normally, in the framework 

and algorithm of image stitching, the process of feature detection and feature 
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descriptor is executed consecutively. The feature detector is to detect the 

repeatable feature points, also known as interest point, salient point or keypoint 

based on some criterion, such as the local maximum of some functions in the 

image (Li et al., 2014). The feature descriptor is usually a vector of values, 

which describes the image patches around the feature point detected by the 

detector. It would be interpreted as simple as the raw pixel values, yet it can be 

as complex as a histogram of gradient orientation. The invariant feature-based 

approach presented by Brown and Lowe is the most popular method, which is 

robust and reliable on stitching single planar model and some properties 

difference among the images such as illumination changes and zoom in. The 

typical invariant feature-based approaches that are used include SURF, SIFT, 

ORB and BRIEF, etc. In term of robustness and distinctiveness in solving 

photometric transformations, a performance evaluation (Hossain and Alsharif, 

2007) shows that the SIFT feature outperform others. Yet, the major drawback 

of this feature is that it imposes high computational burden caused by the scale-

invariant feature point detection and the spatial histogram feature description. 

Other than the complex SIFT float descriptors, the binary feature descriptors, 

including ORB and BRIEF have become the first selection for the fast 

processing application due to its fast computations and less storage space 

needed (Li et al., 2014). However, binary feature descriptors are slightly weaker 

compared to SIFT-like descriptor in terms of distinctiveness and robustness.  

Image matching or feature matching is to match the registered feature 

points between the images. Two commonly utilized methods, namely brute-

force searching methods and tree-based methods. Tree-based methods are 

formulated to get the k nearest neighbors in the indexing tree efficiently. But it 

is much more time-consuming as indexing tree set up is necessary before the 

feature searching process. On the other hand, brute-force searching is much 

more simple strategy to search the most identical feature correspondence.  

Removing outliers from initial feature correspondence is a crucial step 

in image stitching. Currently, Random Sample Consensus (RANSAC) is the 

most popular and widely employed robust approach to remove the outlier from 

the feature correspondence (Li et al., 2014). It is a robust estimation method. It 

utilizes a minimal set of randomly sampled data to produce image 
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transformation parameters and determine a candidate solution of homography 

that has the best consensus with the entire feature dataset. 

 Image transform estimation is usually divided into two classes of method, 

which are global estimated image transformation and local estimated image 

transformation. Global estimated image transformation is to deform the image, 

identify the best-estimated transformation matrix from a particular frame to the 

reference image, and align the overlapped images globally. Yet, it is limited on 

a single planar model only. Hence, local estimated image transformation is 

introduced to solve the limitation. Local estimated image transformation is 

generally deforming the image into uniform grids, warp the grid, and aligned 

the image with the estimated transformation matrix (Lyu et al., 2019). 

 

2.2 Pixel-Based (Direct) Approaches 

Pixel-based approaches, also known as direct approaches, register multiple 

images by minimizing pixel-to-pixel dissimilarities in image stitching. Multiple 

researchers proposed their method by applying the information of the image 

such as color, gradient, geometry and depth to stitch the images to obtain large 

stitched image. In this section, multiple pixel-based approaches are discussed. 

 

2.2.1 Gradient domain-based Method 

Gradient information is responsive to high-level features, such as edges, lines 

and contours in the images and conducive to the understanding of image scenes. 

Levin et al. (2004) proposed an image stitching method in gradient domain 

(GIST) to perform seamless image stitching, each technique corresponding to a 

cost function. The outcome and quality of various formal cost function were 

valued and compared by authors. They aimed to mitigate a cost function based 

on dissimilarity to each of the input images to overcome the geometric 

misalignments and photometric inconsistencies between the input images. From 

the performance evaluation (Levin et al., 2004), the methods under a feathered 

cost function L1  optimization on the original image gradients (GIST1) was 

recommended as the standard stitching algorithm in this paper. The utilization 

of L1 norm is crucial in solving geometrical misalignments of the input images. 

GIST1 is denoted as the minimum of Ep corresponding to Î: 
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Ep�Î; I1, I2, W� = dp�∇Î;∇I1, τ1 ∪ ω, W� + dp�∇Î;∇I2, τ2 ∪ ω, U − W� (2.1) 

 

where  

I1, I2  = two aligned original images, τ1  corresponding to a region viewed in 

image Ii  

ω = overlapping region  

U = uniform image and set to 1 

W = weighting mask 

dp = weighted distance between two regions 

Ep = cost function 

 

Furthermore, Levin et al. (2004) optimized the L1 norm by iterating the 

algorithm to converge the cost functions and mitigate the edge duplication along 

the seam and seam artifacts between two input images. The image stitching is 

shown in Figure 2.1. The 𝜔𝜔 indicates the overlap region. Moveover, the top-

right image shows a image is simply being pasted onto another. Whereas, the 

bottom-right image is the stitching result of GIST1 framework. 

 

 
Figure 2.1: Image Stitching (Levin et al., 2004) 
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 Based on the approach proposed, gradient domain-based method can 

successfully reduce the global inconsistencies in the overlapping region caused 

by illumination differences between images. The seam artifacts and edge 

duplication of the stitched image can be reduced by optimization over the image 

gradient. But, this method has difficulty coping with the image structure with 

huge misalignment (Zhi and Cooperstock, 2012). The input images must be 

well-aligned, and it is sensitive to the orientation of the images, which makes 

this method not suitable for practical application. 

  

2.2.2 Graph-based Method 

Ghosting effect is observed when movement occurred in the overlapping region 

of the stitched image. The method proposed by Levin et al. (2004) may not be 

able to find a solution when the ghosting caused by object motion in the 

overlapping region. Hence, Uyttendaele, Eden and Szeliski (2001) proposed a 

method of constructing a graph to stitch the original images when moving 

objects presents in the overlapping area among the images. Region of Difference 

(RODs) assumed to be vertices in a graph and the edges linked the 

corresponding RODs, as shown in Figure 2.2. Higher weight is appointed to 

have more central and larger RODs, to discard the low weight vertices, avoiding 

the moving object discontinuities arising from selected either of the side image. 

Nevertheless, to further remove the exposure artifacts, they divide each image 

into blocks, each block corresponding to a quadratic transfer function. They 

were averaging the functions in each patch with those of their neighbors, further 

blending the resulting pixel with corresponding transfer function to eliminate 

the exposure artifacts. 
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Figure 2.2: (Upper) Image stitching of moving-face in three images. (Bottom) 

Corresponding RODs affected by motion in the upper image. (Uyttendaele, 

Eden and Szeliski, 2001) 

 

 According to the method proposed by Uyttendaele, Eden and Szeliski 

(2001), it can eliminate the ghosting effect caused by the moving objects in the 

overlapping region with further dealing exposure artifacts. However, the 

complicated calculation caused by pixel blending with the corresponding 

transfer function is a significant drawback.  

 

2.2.3 Depth-based Method 

Other than the graph-based method, Zhi and Cooperstock (2012) took advantage 

of a smooth transition criterion and depth cues to achieve image stitching. They 

proposed a Depth Estimation Method (DBM) to solve parallax-related issues 

and object motion between the images. The static background scenes are divided 

into overlapping region and non-overlapping region with the use of multiple 

input cameras. In synthesizing overlapping regions, plane sweep algorithm is 

used to divide space into layered depth levels. Figure 2.3 illustrates the plane 

sweep algorithm. The two images (a) and (b) are wrapped onto the parallel 

sampling planes, where the planes are stacked at different depth levels (d, e and 

f). Then, a virtual image (c) located at a spot between the input images is 

synthesized. 
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Figure 2.3: Demonstration of plane sweep algorithm (Zhi and Cooperstock, 

2012) 

 

Furthermore, to synthesize non-overlapping region, the color 

segmentation of the input images is to be done first, followed by the depth to be 

transmitted to neighboring color segments, preserving smooth-appearance 

connection among them in a stitched result. The demonstration of foreground-

background segmentation is shown in Figure 2.4.  

 

 
Figure 2.4: Demonstration of foreground-background segmentation. Original 

input image (a). Color segmented image (b). Foreground layer’s raw mask (c). 

Final mask (d). (Zhi and Cooperstock, 2012) 
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Nevertheless, their method also targeted on solving the dynamic scene 

caused by the moving object, such as human walking or running, by introducing 

optimization of various energy functions for corresponding scenes.  

In this paper, the DBM technique can dramatically overcome the 

parallax problem. On the other hand, the authors mentioned that when the 

position and orientation of the virtual stitching camera are different from the 

source camera will results in holes due to occlusion in the non-overlapping 

region and cause parallax effect (Zhi and Cooperstock, 2012). Their method 

requires complicated calculations to distinguish non-overlapping and 

overlapping regions, which leads to high computational burden. 

 

2.2.4 Summary and Comparison 

From the direct methods discussed previously, they were mainly targeted on 

solving the problems affected by the properties of the input images itself, for 

example, illuminance difference mentioned in Levin et al. (2004). However, 

these methods perform computation for each pixel on input images, becoming 

computational intensive if the algorithm is complex or the input dataset is huge, 

such as frames of aerial footage (Pravenaa and Menaka, 2016). Hence, these 

methods are not adopted by commercial image stitching software and not an 

effective and suitable approach to stitch aerial images. Moreover, the existing 

direct approaches are constrained to stitch the image with single planar and 

parallax-free scene. These limitations make direct matching is generally 

inefficient on stitching images with complex properties, such as aerial images. 

The comparison between different direct methods is shown in Table 2.1. 
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Table 2.1: The comparison of direct methods 

Approach Principal Strength Drawback 

Levin et al. 

(2004) 

Gradient 

Weighting 
• Seamless • Only aligned 

input image 

Uyttendaele, 

Eden and 

Szeliski (2001) 

Graph 

Structure 
• Remove 

ghosting 
caused by 
motion 

• Complicated 
Calculation 

Zhi and 

Cooperstock 

(2012) 

Depth and 

Color 
• Solve certain 

degree of 
depth 
discontinuity 

• Limited 
orientation 
of input 
images 

• Complicated 
calculation 

 

2.3 Feature-based Approaches 

Unlike Pixel-based (Direct) approaches, feature-based approaches are able to 

evaluate the 2D motion model by adopting the sparse feature points. Several 

researchers proposed different optimization strategies on stitching the images to 

obtain huge stitched image. As mentioned early in this chapter, feature-based 

method is generally divided into several processes, including feature 

representation, image matching, outliers removal and robust estimation, and 

image transform estimation. Feature-based methods are discussed in this section. 

 

2.3.1 Sparse Feature-based Method 

In the early years, sparse feature-based method had been nominated image 

stitching. A traditional approach was first introduced by Brown and Lowe 

(2007), using local invariant feature approach to produce a panoramic image. A 

well-known image stitching software tool, AutoStitch was designed based on 

their approach. Despite the rotation, illumination change and zoom in the input 

images, their algorithm can provide a reliable matching of the panoramic image 

in an unordered dataset. Scale-Invariant Feature Transform (SIFT), a notable 

feature detector and descriptor was developed by Brown and Lowe and 

presented in this paper. SIFT algorithm is one of the state-of-the-art algorithms. 

It utilizes the difference of Gaussians (DoG) to build the difference of Gaussian 

scale-space. The feature points are extracted when different spatial scales are 
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detected on images, and the unstable feature points are removed. Then, the 

principal direction of the feature points is identified. Once the principle direction 

is determined, the SIFT feature descriptor is generated to prevent the mismatch 

caused by noise, rotation, scale and illumination. In terms of feature matching, 

Brown and Lowe matched the sparse feature between the input images and 

employed probabilistic model for image match verification. It can estimate the 

global homography transformation using RANSAC to deform and align the 

overlapped images. Brown and Lowe further introduced a robust bundle 

adjustment and performed automatic panorama straightening on stitched view. 

Nevertheless, multi-band blending and gain compensation were applied to 

generate a seamless stitched image.  

 The approach proposed by Brown and Lowe (2007) was limited to single 

homography transformation. Thus, Brown presented an improved model, dual-

homography model to solve the problem by aligning the images involving 

numerous planes in the overlapping area (Gao, Kim and Brown, 2011). Two 

dominant planes, namely background plane and foreground plane were obtained 

by dividing the input image, and homography transformation estimation was 

performed to each plane.  

 In aerial application, Zhao et al. (2019) exploited the scale-invariant 

feature transform (SIFT) to perform fast aerial image stitching for crop growth 

monitoring. To reduce the high computational burden in image stitching when 

using the standard SIFT algorithm, they proposed a simple and improved sparse-

feature based method to increase the accuracy and efficiency of aerial image 

stitching in crop growth monitoring. Their framework is to optimize the 

dynamic setting of the contrast threshold in the DoG scale-space in SIFT to 

enhance the efficiency of the algorithm. The optimization is done by evaluating 

the image contrast that can express the difference in image details and 

calculating the new contrast threshold in the DoG scale-space. Meanwhile, the 

local features of the aerial image are retained. Furthermore, the mismatched 

point pairs in the non-overlapping region are deleted to enhance the stitching 

accuracy and reduce the processing period according to the relative positional 

relationships of the aerial image. The algorithm eliminates the mismatch point 

pairs by evaluating the longitudinal overlap and transverse overlap between the 
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images. Figure 2.5 shows the schematic diagram for UAV taking images in crop 

growth monitoring.  

 

 
Figure 2.5: Schematic diagram for UAV taking images in crop growth 

monitoring. In (a), the flight trajectory is represented with the orange; the 

captured image is represented with the blue; and the overlap of images is 

represented with the shaded-blue rectangles. (b) denotes the transverse overlap 

with 70%, whereas (c) indicates the longitudinal overlap with 75%. (Zhao et al., 

2019) 

 

 In the method presented by Brown and Lowe (2007), it assumes that the 

camera motion is purely rotational and the group of transformations that the 

input images may undergo is a special group of homographies. In reality, it is 

very rare to obtain such an ideal dataset (Chen et al., 2019). Usually, aerial 

images captured by UAV are hard to fulfill such a perfect situation, where the 

images might not be on a single plane, except the aerial input data used by Zhao 

et al. (2019). Because the aerial crop field images are generally planar compared 

to other aerial images, such as buildings. Thus, it might be difficult to produce 

good stitched results when nonrigid input images are applied. Nevertheless, 

SIFT-liked feature detector and descriptor imposes a large computational 

burden and not suitable for real-time systems (Rublee et al., 2011). 

 

2.3.2 Binary Descriptor-based Method 

Apart of SIFT-liked feature detector and feature descriptor, Rublee et al. (2011) 

proposed a scheme of binary-based feature detector and descriptor, known as 
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Oriented Fast and Rotated BRIEF (ORB), where it is built on the FAST feature 

point detector and BRIEF feature descriptor. It is much more robust against the 

rotational problem compared with purely BRIEF algorithm (Li et al., 2014). 

This scheme was built to address the limitations imposed in SIFT, such as large 

computational burden. The feature points identified in the images is described 

in binary string instead of spatial histogram. For the requirement of the high-

quality image stitching system with low computational time, Adel, Elmogy and 

Elbakry (2015) made an in-depth comparative study on the feature detector and 

descriptor. It concluded that ORB algorithm is the best among others, including 

SIFT, SURF, FAST and HARRIS.  

 Furthermore, Li et al. (2014) developed a high-speed aerial video 

stitching scheme. They employed the ORB algorithm to find the feature point 

and describe it. Some modification had been made on the algorithm by rescaling 

a scaling factor to √2  on the extracted feature points in five scale images 

separately to produce multi-scale features. Nonetheless, the algorithm can 

generate the keyframe dynamically to mitigate accumulation errors. In terms of 

outlier removal, RANSAC is often being used, yet, the major drawback it 

imposed is high processing time in relation to the additional outlier. Thus, an 

motion- and appearance-based spatial and temporal filter was implemented to 

eliminate most of the outliers before RANSAC to improve the processing time 

efficiency. They used the scale of the feature point in calculating the appearance 

coherence and motion coherence in the filter: 

 

   𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐾𝐾𝑡𝑡,𝐾𝐾𝑎𝑎𝑎𝑎𝑟𝑟′ � = �1 𝑖𝑖𝑖𝑖 𝑚𝑚𝑖𝑖𝑚𝑚�𝑆𝑆𝑡𝑡 − 𝜆𝜆𝑡𝑡−11 𝑆𝑆𝑎𝑎𝑎𝑎𝑟𝑟′ , 𝑆𝑆𝑡𝑡 − 𝜆𝜆𝑡𝑡−12 𝑆𝑆𝑎𝑎𝑎𝑎𝑟𝑟′ � ≤ 𝑇𝑇𝑠𝑠
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

�    

(2.2) 

 

          𝜙𝜙𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑎𝑎�𝐾𝐾𝑡𝑡 ,𝐾𝐾𝑎𝑎𝑎𝑎𝑟𝑟′ � = �1 𝑖𝑖𝑖𝑖 �𝑋𝑋𝑡𝑡 − 𝐻𝐻𝑡𝑡−1,𝑎𝑎𝑎𝑎𝑟𝑟
−1 𝑋𝑋𝑎𝑎𝑎𝑎𝑟𝑟′ �

2
≤ 𝑇𝑇𝑑𝑑𝑚𝑚𝑠𝑠

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
�             (2.3) 

 

               𝜙𝜙�𝐾𝐾𝑡𝑡,𝐾𝐾𝑎𝑎𝑎𝑎𝑟𝑟′ � = 𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐾𝐾𝑡𝑡 ,𝐾𝐾𝑎𝑎𝑎𝑎𝑟𝑟′ ) .  𝜙𝜙𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑎𝑎�𝐾𝐾𝑡𝑡,𝐾𝐾𝑎𝑎𝑎𝑎𝑟𝑟′ �               (2.4) 

 

where 

𝑇𝑇𝑠𝑠 = difference of maximal scale between the 𝐾𝐾𝑎𝑎𝑎𝑎𝑟𝑟′  and keypoint K 
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𝜆𝜆𝑡𝑡−11  and 𝜆𝜆𝑡𝑡−12  = scale of inliers  

Tdis = distance threshold between two adjacent frames 

Xt, Ht−1,ref
−1 , Xref′  = transform matrix of image from the initial image at time t −

1 to the reference image, 𝑒𝑒𝑒𝑒𝑖𝑖 

 

 De Lima and Martinez-Carranza (2017) proposed a real-time based 

aerial image stitching method by using the characteristics of ORB binary 

descriptor along with a feature matching approach based on Locality-Sensitive 

Hashing (LSH) technique. ORB descriptor is the most widely employed binary 

feature as it offers some advantages, including fast comparison, ease to compute, 

robustness to affine transformations and low memory footprint (De Lima and 

Martinez-Carranza, 2017). The characteristics of ORB, including invariant to 

in-plane rotation and binary string-based descriptor, help the ORB vectors good 

to be organized through a hash table. The low memory footprint used by ORB 

vector can prevent the increase of memory resources. Nonetheless, it is 

processing time efficient in storing and fetching data from memory as the 

feature correspondence is found in the hamming space. Hashing technique is 

divided into two main algorithmic steps, which are using hashing function to fill 

and search the tables consecutively. For the filling step, hashing keys is chosen 

by using the consecutive subset of bits, which allow the descriptors can be 

rapidly stored into different tables. The process proceeds for searching the tables 

to match the feature between the current frame and reference frame once the 

tables were filled. For searching the tables, it is divided into four algorithmic 

steps:  

(i) Search the hashing keys against different tables 

(ii) Determine the hamming distance for all the descriptors in the 

bucket for each table 

(iii) Determine the minimum distance given for each table 

(iv) It considered match if the minimum distance does not exceed a 

preset threshold 

Next, they employed RANSAC to remove the additional outlier and compute 

the best homography matrix to perform global homography transformation on 

the images to produce a stitched image. 
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 According to the methods proposed by Li et al. (2014) and De Lima and 

Martinez-Carranza (2017), both can significantly reduce the processing time of 

image stitching. Nevertheless, Li et al. (2014) method can reduce the 

accumulation error by generating the keyframe dynamically to prevent ghosting 

effect. However, it was only targeted on the high-altitude input images. Thus, it 

might be challenging to produce a good stitched result when input aerial images 

are taken in low altitude or huge parallax shown in the images. For De Lima and 

Martinez-Carranza method, although the real-time performance was 

accomplished, yet, the overlapping region between the input images cannot be 

aligned accurately.  

 

2.3.3 Mesh-based Alignment Method 

Mesh-based alignment method produced an outstanding result in image 

stitching in the early days. Due to excellent results, the mesh-based alignment 

method is deemed as one of the state-of-the-art methods until today (Lyu et al., 

2019). The images are split into uniform meshes, and each mesh corresponding 

to a transformation. This method was first proposed by Zaragoza et al. in 2014. 

Then, more and more research works adopted this method in their optimization 

method on various prior problems. 

To solve the misalignment artifacts or ghosting produced during the 

single planar wrap and transformation of image stitching as well as expensive 

postprocessing algorithm, Zaragoza et al. (2014) proposed a method, known as 

as-projective-as-possible (APAP) image alignment to dramatically reduced the 

ghosting without jeopardizing the geometric realism of the stitched image. The 

input images were divided into uniform meshes, and each mesh undergoes a 

local homography estimation with a Moving Direct Linear Transformation 

(Moving DLT) and RANSAC. Moreover, a simultaneous refinement of bundle 

adjustment proposed in the research paper (Brown and Lowe, 2007) was 

employed to align multiple images accurately to obtain large panoramic scene. 

Figure 2.6 demonstrates the image stitching using APAP image alignment 

strategy. 
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Figure 2.6: Mesh-based image alignment. (a) Input image (b) Meshed input 

image (c) Warped and aligned images. (d) Histogram of number of weights for 

each cell. (Zaragoza et al., 2014) 

 

  Then, Liu and Chin (2016) developed a mesh-based alignment 

optimization algorithm to automatically identify the misaligned overlapping 

regions and add correct point correspondences to improve the alignment of the 

composition image and enhance the flexibility of the warp. They encapsulated 

their technique in a scheme called data-driven warp adaption scheme, which 

repeatedly inserts new appropriate points in the overlap area. In this paper, the 

comparison of the result for APAP and their method (APAP + Correspondence 

Insertion) has been shown, and it can be concluded that their method produces 

better results compare to pure APAP method in terms of the alignment of 

overlap regions. 

 

2.3.3.1 Image Differentiating Technique for Aerial Image Stitching 

In the traditional image stitching method, single planar perspective 

transformation with bundle adjustment is leading to ghosting error. Inspired by 

the mesh-based alignment method introduced by Zaragoza et al. (2014), Chen 
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et al. (2019) employed the image differentiating technique with Moving DLT  

to diminish the error and tolerate the parallax in the image. Moreover, they 

introduced a nonrigid matching algorithm to enhance the accuracy of feature 

matching and improve the bundle adjustment proposed by Brown and Lowe to 

make the system applicable for aerial image stitching effect. At the feature 

matching stage, a SIFT-based nonrigid matching algorithm using Vector Field 

Consensus (VFC) is employed to obtain the corresponding relationship of 

feature point between images with further filtering of outliers from the inliers. 

Chen et al. (2019) mentioned that global homography could not efficiently 

match the two aerial images. Thus, they introduced a location-dependent 

homography with moving DLT to simultaneously improve the projection 

functions and mitigate the cumulative error when stitching numerous input 

images.  

 

2.3.3.2 Summary of Mesh-based Alignment Method 

By evaluating the results based on the strategies proposed by Chen et al. (2019), 

the ghosting effect is efficiently reduced when only two aerial images are 

involved in the stitching process. In the paper, the algorithm that robust against 

parallax change, noise and blurriness has been proved. However, when stitching 

multiple images, the stiffness of the stitched image has to be sacrificed (Chen et 

al., 2019). The distortion and the misalignment on the overlapping region are 

observed when the parallax of the input images is particularly huge, such as the 

buildings in low-altitude images. 

 

2.3.4 Summary and Comparison 

Sparse feature-based approaches have dominated the stitching technique. It 

performs well on standard datasets and numerous challenging datasets. These 

works are primarily focussed on producing better results than time efficiency, 

resulting in that they are not suitable for real-time applications. They deform 

and align the images with global homography estimation. Unlike the mesh-

based alignment method, they do not categorize non-overlapping and 

overlapping regions, resulting in ghosting and distortion. Furthermore, binary 

descriptor-based methods are concerned with designing a processing time-

efficient system to stitch the images. However, it is often relatively weak in 
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terms of distinctiveness and robustness during the image stitching process. 

Mesh-based alignment methods can eliminate some prior limitations to improve 

the alignment, while local distortion is still inevitable due to the coupling 

relationships between different constraints. Table 2.2 shows the comparison of 

feature-based methods. 

 

Table 2.2: The comparison of feature-based methods 

Approach Principal Strength Drawback 

(Brown and 

Lowe, 2007) 

Simple 

Sparse 

feature 

matching 

• Automatic • Limited 
to single 
plane 
model 

(Zhao et al., 

2019) 

Modified 

Sparse 

feature 

matching 

• Fast  • Limited 
to single 
plane 
model 
and rigid 
input 
images 

(Li et al., 2014) Binary 

descriptor 
• Real-time 

performance 
• Limited 

to high 
altitude 
image 

(De Lima and 

Martinez-

Carranza, 

2017) 

Hashing-

based 

matching 

• Real-time 
performance 

• Poor 
alignment 
accuracy  

(Zaragoza et 

al., 2014) 

Mesh-based • Multiple 
transformations 

• Local 
distortion 

(Chen et al., 

2019) 

location-

dependent 

homography 

with moving 

DLT 

• Reduce 
cumulative 
error 

• Multiple 
transformations 

• Limited 
to small 
parallax 
images 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Overview of Project Work Plan 

Figure 3.1 shows the general flow of the project work plan. One aerial footage 

dataset (UMN Horticulture Field Station) that is publicly available is chosen for 

this project. The algorithms of the feature representation methods (SIFT and 

ORB), feature point matchers (FLANN and Brute-Force Searching) and feature 

match filtering technique (LR and GMS) are used for the evaluation. The details 

of the work plan are discussed in the subsequent chapters. 

 

 
Figure 3.1: Flowchart for Project Workflow 

 

Evaluate type of Feature 
Representation 

Evaluate type of Image 
Matching 

Feature Representation 
Selection

Image Matching Selection

Aerial Footage Acquisition 
and Image Extraction

Develop Program Flowchart

Image Stitching Program 
CodingProgram Testing

Program Improvement
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3.2 Introduction 

The proposed framework’s flow chart is shown in Figure 3.2.  

 

 
Figure 3.2: Flowchart of the proposed framework 

Extracting frames from 
aerial footage

Calibrating the frames

Loading key frame Loading adjacent image

Resizing image Resizing image

Converting image in 
grayscale

Applying Gaussian Blur to the 
image

Performing feature extraction and 
feature description using SIFT

Feature matching using FLANN 
(randomized k-d tree)

Storing good matches using Lowe’s ratio test

Computing homography matrix using RANSAC 
(remove outliers)

Warping the adjacent image onto key frame

Converting image in 
grayscale

Applying Gaussian Blur to the 
image

Performing feature extraction and 
feature description using SIFT

Calculating feature match rate

Calculating inlier ratio

Finish warping all frames?
NO

Cropping the black edge of the stitched image

Stitched image

Aerial footage
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 The method's performance in every subchapters, such as feature 

representation, feature matching and feature match filtering is evaluated by 

analyzing the feature match rate and inlier ratio. Moreover, the capability of 

stitching images is the primary concern of the proposed framework. The 

observation on the alignment of the frames in the stitched images is recorded in 

this project. Further information about the performance evaluation will be 

discussed in Chapter 4. 

 

3.3 Dataset 

Table 3.1 shows the details of aerial footage from the dataset. And Figure 3.3 

illustrates the examples of aerial footage of orchard in the dataset. The aerial 

footage provided in the dataset was shot by a downward-pointing camera, 

GoPro Hero 3. Meanwhile, the dataset contains the GoPro Hero 3 camera 

information, including focal length, pixel error, skew, distortion coefficient, and 

principal point. 

 

 
Figure 3.3: Examples of aerial footage of orchard 
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Table 3.1: Details of aerial footage from the dataset 

Location UMN Horticulture Field Station (Orchard) 

Area Covered 800 m2 

Camera GoPro Hero 3 

Flying Height (altitude) 13 m 

Flying Speed 1 m/s 

Flight Pattern L-shape Flight Pattern 

Video Type MP4 

Length 00:00:40 

Frame Width 1920 

Frame Height 1080 

Frame rate 30 fps 

 

3.4 Frame Extraction from Aerial Footage 

The aerial footage undergoes frame extraction in the first place to extract the 

frames from the video.  The drone used in the dataset moved at one meter per 

second and generated thirty frames per second recorded footage. Since the video 

was shot at low altitude, extracting one image every fifty frames is sufficient to 

obtain at least sixty percent of the overlapping region.  

 

3.5 Camera Calibration 

Images captured or recorded from the camera are required to be calibrated. This 

is because the captured images or videos are inevitably being distorted by the 

camera’s lens itself. Ju and Kang (2010) mentioned that it is challenging to find 

the correspondence between images directly or linearly during image stitching 

as the lens distortion is impossible to be linearly represented. The authors also 

stated that the lens distortions is the main cause that induce the mismatches of 

image stitching (Ju and Kang, 2014).  

In this project, Zhang’s arithmetic of camera calibration in OpenCV is 

applied. The approach of Zhang (2000) can remove two major distortions in 

images, including radial distortion and tangential distortion. These distortions 

are caused by the limitation of artificiality in camera production. The radial 



25 
 

distortion and tangential distortion can be solved by using the following 

formulas (Yuan, Zhu and Su, 2011): 

 

𝑥𝑥𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑑𝑑,   𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑟𝑟 =  𝑥𝑥(1 + 𝑘𝑘1𝑒𝑒2 + 𝑘𝑘2𝑒𝑒4 + 𝑘𝑘3𝑒𝑒6) (3.1) 

𝑦𝑦𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑑𝑑,   𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑟𝑟 =  𝑦𝑦(1 + 𝑘𝑘1𝑒𝑒2 + 𝑘𝑘2𝑒𝑒4 + 𝑘𝑘3𝑒𝑒6) (3.2) 

 

𝑥𝑥𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑑𝑑,   𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑟𝑟 =  𝑥𝑥 + [2𝑝𝑝1𝑥𝑥𝑦𝑦 + 𝑝𝑝2(𝑒𝑒2 + 2𝑥𝑥2)] (3.3) 

𝑦𝑦𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑑𝑑,   𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑟𝑟 =  𝑦𝑦 + [𝑝𝑝1(𝑒𝑒2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑦𝑦] (3.4) 

 

Where, 

𝑒𝑒 = (𝑥𝑥 − 𝑐𝑐𝑥𝑥)2 + �𝑦𝑦 − 𝑐𝑐𝑦𝑦�
2
  

�𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦� is the optical center 

(𝑥𝑥,𝑦𝑦) is the real plane offset coordinate caused by lens distortion 

𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3 are radial distortion parameters 

𝑝𝑝1, 𝑝𝑝2 are tangential distortion parameters 

 

The combination of radial distortion and tangential distortion parameters is 

known as distortion coefficients (𝑘𝑘1, 𝑘𝑘2, 𝑝𝑝1, 𝑝𝑝2,𝑘𝑘3). 

Apart from the distortion coefficient, the camera's intrinsic and extrinsic 

parameters are crucial parameters to obtain the transformation of certain points 

from 3D space into image coordinates. The intrinsic parameters contain 

information such as focal length and optical center to form the camera intrinsic 

matrix. It is denoted as a 3x3 matrix: 

 

𝑐𝑐𝑐𝑐𝑚𝑚𝑒𝑒𝑒𝑒𝑐𝑐 𝑖𝑖𝑚𝑚𝑜𝑜𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑖𝑖𝑐𝑐 𝑚𝑚𝑐𝑐𝑜𝑜𝑒𝑒𝑖𝑖𝑥𝑥 =  �
𝑖𝑖𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑖𝑖𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� (3.5) 

 

Where, 

�𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦� is the optical center of the camera 

�𝑖𝑖𝑥𝑥,𝑖𝑖𝑦𝑦� is the focal length of the camera 
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The extrinsic parameters contain information such as rotation and translation 

vectors to form camera’s extrinsic matrix. It is denoted as a 2x2 matrix: 

 

𝑐𝑐𝑐𝑐𝑚𝑚𝑒𝑒𝑒𝑒𝑐𝑐 𝑒𝑒𝑥𝑥𝑜𝑜𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑖𝑖𝑐𝑐 𝑚𝑚𝑐𝑐𝑜𝑜𝑒𝑒𝑖𝑖𝑥𝑥 =  � 𝑅𝑅 𝑜𝑜
0𝑇𝑇 1� 

(3.6) 

 

where R is rotation vector and t is translation vector. 

 

3.6 Image Pre-processing 

In the image pre-processing stage, the size of input images with Red, Green and 

Blue (RGB) scale are scaled-down by three size ratios, which means scaling 

down 1920x1080 images into 640x360 images.  

After that, the images are converted into grayscale to speed up the 

computational process. Converting images to grayscale is one of the frequently 

used image enhancement techniques. RGB image represents the intensity levels 

of image in 24 bits as it contains three channels (red, green and blue). Whereas, 

the grayscale image has one channel and represents the intensity levels in 8 bits. 

For the application in this project, feature extraction in Chapter 3.7 does not 

require the RGB color information to extract the features of image. Thus, the 

complex RGB color information is the noise to the image and will decelerate 

the algorithm's computation period. Hence, converting the image to grayscale 

can reduce the image to one channel to obtain a quicker computation process. 

Upon completing the conversion process, Gaussian blur is then applied 

to denoise the grayscale image. Gaussian blur, also known as Gaussian 

smoothing, is used to blur the image, reducing image’s Gaussian noise by a 

Gaussian filter. Figure 3.4 illustrates the image pre-processing flow diagram. 
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Figure 3.4: Image Pre-processing Flow Diagram 

 

3.7 Feature Representation 

The details about the sparse feature-based method and binary descriptor-based 

method have been explained in Chapter 2. In this project, Scale Invariant 

Feature Transform (SIFT) is used in feature representation due to its robustness 

to the geometric changes and properties difference of the image. 

 

3.7.1 Scale-Invariant Feature Transform (SIFT) 

In this step, the feature detection and the feature description on the image are 

executed consecutively. The image undergoes feature representation using SIFT 

algorithm framework developed by Lowe (2004). SIFT possesses the capability 

of invariance against image rotation, scaling transformations and image 

translation. It exhibits excellent robustness to light changes, affines 

transformation and noise. The framework is generally divided into four major 

steps, namely scale-space extrema detection, keypoints localization, orientation 

assignment and descriptor computation. Figure 3.5 shows the flow of four main 

steps of SIFT framework. 
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Scale-space 
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Orientation 
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Figure 3.5: The major steps of SIFT framework 

 

3.7.1.1 Scale-space Extrema Detection 

In order to detect the candidate feature points that are scale invariance, the image 

is resized with uniformly increasing scale factors in the first place to construct 

an image pyramid. Figure 3.6 illustrated the combination of images at different 

scales to form octaves. 

 

  
Figure 3.6: Octaves of image pyramid (Younes, Romaniuk and Bittar, 2012) 

 

 Each octave is further applied with Gaussian smoothing by carrying out 

convolution operation in 𝑥𝑥  and 𝑦𝑦 , which formulated as the equation at the 

following below: 
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𝐺𝐺(𝑥𝑥, 𝑦𝑦,𝜎𝜎) =
1

2𝜋𝜋𝜎𝜎2
𝑒𝑒−

�𝑥𝑥2+𝑦𝑦2�
2𝜎𝜎2  

(3.7) 

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) =  𝐺𝐺(𝑥𝑥, 𝑦𝑦,𝜎𝜎) ∗ 𝐼𝐼(𝑥𝑥, 𝑦𝑦) (3.8) 

 

Where, 

𝜎𝜎 = Scaling factor. The bigger the value, the greater the blur 

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) = Smoothed image of its octave 

𝐺𝐺(𝑥𝑥, 𝑦𝑦,𝜎𝜎) = Gaussian smoothing 

𝐼𝐼(𝑥𝑥,𝑦𝑦) = Image at different scale factor, 𝜎𝜎 

 

Lowe (2004) suggested that 𝜎𝜎0  = 1.6, where the value is obtained from the 

equation below: 

 

𝜎𝜎0 =  �𝜎𝜎12 + 𝜎𝜎22 (3.9) 

 

Where 𝜎𝜎1  equal to 1 while 𝜎𝜎2  equal to 1.26. This equation is applied 

consecutively to the images to build the octaves. In Lowe (2004) paper, he 

suggested that the 𝑘𝑘 =  √2 and the number of scale levels = 5 as optimal values. 

In short, each octave contains five scale levels which contain 

𝜎𝜎0,𝑘𝑘𝜎𝜎0,𝑘𝑘2𝜎𝜎0,𝑘𝑘3𝜎𝜎0 and 𝑘𝑘4𝜎𝜎0. Then, the image is rescaled to its half for the next 

octave. He also advised that three-octave is the optimal number for each image. 

 The SIFT algorithm utilizes the Difference of Gaussians (DoG), which 

is an approximation of Laplacian of Gaussian (LoG) to detect the scale-space 

extrema. The pyramid of DoG is calculated from the image pyramid, 

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑎𝑎𝜎𝜎). The result of each DoG is obtained as the subtraction of adjacent 

Gaussian smoothed images at different scales (𝑘𝑘𝑎𝑎𝜎𝜎0 𝑐𝑐𝑚𝑚𝑎𝑎 𝑘𝑘𝑎𝑎+1𝜎𝜎0)  in the 

pyramid. It is formulated as: 

 

𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) =  𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑘𝑘𝜎𝜎) − 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) (3.10) 
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 Upon the DoG are found, the corresponding local extrema are identified 

over three consecutive DoG images within one octave. For instance, a pixel in 

a DoG image is compared with its eight neighbors pixel as well as the nine 

neighbors at inferior and superior scales, as shown in Figure 3.6 (circles).  

 

3.7.1.2 Keypoints Localization 

Once the candidate feature points' locations are found, refinement of the feature 

points is needed to accurately localize the points by rejecting those low 

contrasted keypoints and edge keypoints. In SIFT framework, a second-order 

Taylor approximation is utilized to calculate the local extremum of the scale-

space function  𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) in the sample keypoint: 

 

𝐷𝐷(𝑥𝑥) = 𝐷𝐷 +  
𝜕𝜕𝐷𝐷𝑇𝑇

𝜕𝜕𝑥𝑥
𝑥𝑥 +

1
2
𝑥𝑥𝑇𝑇

𝜕𝜕2𝐷𝐷
𝜕𝜕𝑥𝑥2

𝑥𝑥 (3.11) 

 

where 𝑥𝑥 = (𝑥𝑥,𝑦𝑦,𝜎𝜎)𝑇𝑇 is the offset from the sample keypoint, while the D and its 

derivatives are computed at the sample keypoint. The location of the extremum, 

𝑥𝑥� is equal to zero, where it is determined by taking the derivative of the function 

𝐷𝐷(𝑥𝑥): 

 

𝑥𝑥� = �
𝑥𝑥�
𝑦𝑦�
𝜎𝜎�
� = −

𝜕𝜕2𝐷𝐷−1

𝜕𝜕𝑥𝑥2
𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

 (3.12) 

 

 As suggested by Brown and Lowe (2002), the derivative of D and the 

Hessian are approximated by the difference of Gaussian (DoG) in the 

neighborhood of the sample keypoint. When the offset, 𝑥𝑥  is larger than the 

threshold in any one of the three dimensions, it indicates that the extremum lies 

closer to a neighbor of sample keypoint than sample keypoint itself. In this case, 

the sample keypoint is changed and the computation is performed again from 

the new point. It then computes the value of DoG at the extremum, 𝑥𝑥� after the 

sample keypoint is changed. The keypoint is discarded to reject the unstable 

extrema with low contrast if the value of |𝐷𝐷(𝑥𝑥�)| less than contrast threshold. 



31 
 

 Since the DoG has a strong response to the edges, the candidate keypoint 

localized along the edges of small curvature needs to be rejected as these edges 

act as the noises to the DoG function. Thus, the only point on huge-curved edges, 

such as corners, will be selected as the final keypoint. To only keep the DoG of 

obvious-curved edges, the principal curvatures of D is computed. It is computed 

from a 2x2 Hessian matrix, 𝐻𝐻 at localized keypoint. These are proportional to 

the eigenvalues 𝛼𝛼 and 𝛽𝛽 of Hessian matrix, 𝐻𝐻: 

 

𝐻𝐻 = �
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑦𝑦
𝐷𝐷𝑥𝑥𝑦𝑦 𝐷𝐷𝑦𝑦𝑦𝑦

� (3.13) 

 

 To avoid the explicit computation of the eigenvalues, the determinant 

and trace values of the matrix are used. Let 𝑒𝑒 be the ratio between the largest 

and smallest eigenvalue, 𝛼𝛼 = 𝑒𝑒𝛽𝛽. Afterward, the ratio between the square of 

sum and the product of the eigenvalues is computed: 

 

𝑇𝑇𝑒𝑒(𝐻𝐻)2

𝐷𝐷𝑒𝑒𝑜𝑜(𝐻𝐻)
=

�𝐷𝐷𝑥𝑥𝑥𝑥 + 𝐷𝐷𝑥𝑥𝑦𝑦�
2

𝐷𝐷𝑥𝑥𝑥𝑥𝐷𝐷𝑦𝑦𝑦𝑦 − (𝐷𝐷𝑥𝑥𝑦𝑦)2
=

(𝛼𝛼 + 𝛽𝛽)2

𝛼𝛼𝛽𝛽
=

(𝑒𝑒𝛼𝛼 + 𝛽𝛽)2

𝑒𝑒𝛼𝛼𝛽𝛽
=

(𝑒𝑒 + 1)2

𝑒𝑒
 (3.14) 

 

Lowe (2004) suggested that the edge threshold is set to 10 as the optimal value 

to discard any candidate keypoints’ ratio that is greater than the edge threshold.  

 

3.7.1.3 Orientation Assignment 

Subsequently, consistent orientation is assigned to every detected keypoints to 

achieve invariance against the image rotation. The magnitude, 𝑚𝑚(𝑥𝑥,𝑦𝑦) and the 

orientation, 𝜃𝜃(𝑥𝑥, 𝑦𝑦) of the gradient are computed using the selected closest scale 

factor, 𝜎𝜎 for each keypoint, (𝑥𝑥,𝑦𝑦) and the Gaussian-smoothed image, 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) 

at this scale: 

 

𝑚𝑚(𝑥𝑥,𝑦𝑦) = �𝐿𝐿𝑥𝑥2 + 𝐿𝐿𝑦𝑦2  (3.15) 

𝜃𝜃(𝑥𝑥, 𝑦𝑦) = 𝑜𝑜𝑐𝑐𝑚𝑚−1
𝐿𝐿𝑦𝑦
𝐿𝐿𝑥𝑥

 (3.16) 
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Where, 

𝐿𝐿𝑥𝑥 =  𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦) 

𝐿𝐿𝑦𝑦 =  𝐿𝐿(𝑥𝑥, 𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥, 𝑦𝑦 − 1) 

 

 Based on the calculated gradient magnitude and the direction in the 

region around the keypoint, a histogram of orientation is formed from the image, 

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) . The established orientation histogram consists of thirty-six bins 

covering a three hundred and sixty degrees range of orientations. It is weighted 

by its magnitude of gradient and a Gaussian-weighted circular window with a 

scale factor, 𝜎𝜎 that is 1.5 times bigger than the scale of feature point: 

 

𝜔𝜔𝑚𝑚(𝑥𝑥,𝑦𝑦) = 𝑚𝑚(𝑥𝑥,𝑦𝑦)
1

2𝜋𝜋(1.5𝜎𝜎)2
𝑒𝑒−

𝑑𝑑𝑥𝑥2+𝑑𝑑𝑦𝑦2

2(1.5𝜎𝜎)2  (3.17) 

 

Where, 

𝜔𝜔𝑚𝑚(𝑥𝑥,𝑦𝑦) = weighted magnitude of the gradient at location (𝑥𝑥,𝑦𝑦) 

𝑚𝑚(𝑥𝑥,𝑦𝑦) = magnitude of the gradient at location (𝑥𝑥,𝑦𝑦) 

𝑎𝑎𝑥𝑥 = distance in 𝑥𝑥 to the feature point 

𝑎𝑎𝑦𝑦 = distance in 𝑦𝑦 to the feature point 

𝜎𝜎 =  scale factor 

 

The keypoint's dominant direction is characterized by finding the maximal value 

of bins in the orientation histogram. Any bins greater than eighty percent of the 

maximal value is also associated with its computed orientation. Therefore, 

additional keypoints will be created at the same location and scale but with 

different orientations. Identifying the orientation among the feature points 

provides stability in matching and invariance to the image rotation. 

 

3.7.1.4 Descriptor Computation 

The numerical descriptor is expressed in vector and it is computed from the 

orientations and magnitudes of the gradients around the location of the localized 

keypoint. The gradient magnitudes in each keypoint are weighted by a Gaussian 

weighting function of standard deviation, one-half the width of descriptor 
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window. This would give less emphasis to gradients that are far from the 

descriptor’s center. Thus, the descriptor window's gradient orientations can 

rotate to its dominant orientation to provide rotational invariance capability to 

the descriptor, as shown in Figure 3.7.  

 

 
Figure 3.7: Sixteen 8-direction histogram concatenation of descriptor (Younes, 

Romaniuk and Bittar, 2012) 

 

Eight bin histogram of orientations is computed for the 4x4 sample regions of 

the descriptor window. The product of the weighted magnitude of the keypoint 

multiplied with an additional coefficient contributes to the bin of the histogram 

corresponding to its gradient orientation: 

 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝜔𝜔𝑚𝑚(𝑥𝑥,𝑦𝑦)(1 − 𝑎𝑎) (3.18) 

 

where,  𝑎𝑎 is the distance between the central orientation of the histogram bin 

and gradient orientation. The 8-direction histograms containing the product 

value of the 16 sample regions are concatenated in a 4 x 4 x 8 = 128-dimensional 

vector, producing feature points with their unique identification. 

 

3.8 Feature Matching 

Upon accomplishing the feature detection and feature description of the base 

image and query image, the best candidate matches for every keypoints between 
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two images are computed in this phase. In this project, the image matching 

method named Fast Library for Approximate Nearest Neighbors (FLANN) 

proposed by  Muja and Lowe (2014) is applied. FLANN is preferred over the 

brute-force searching method as it provides the ability and efficacy of stitching 

large datasets. 

 

3.8.1 Randomized K-D Tree Algorithm of FLANN 

The randomized k-d tree algorithm of the FLANN is used to find the best 

matches between the base image and query image. The randomized k-d tree 

framework is worked by building numerous randomized k-d trees and searching 

the nearest neighbor candidates in parallel. The split dimension of the k-d trees 

is found from the top 𝑁𝑁𝑑𝑑  dimensions with the highest variance in random 

manner, where the 𝑁𝑁𝑑𝑑  = 5 is suggested by Muja and Lowe. During the 

randomized k-d forest searching, a single priority queue is preserved across the 

randomized k-d tree. The priority queue is organized based on the increase of 

the distance to the decision boundary of each branch in the queue. Hence, the 

search process will start to explore at the closest leaves from all the trees. During 

the process, the data points that have been compared to the query points inside 

a tree are marked to avoid the data points from being re-examined in other trees. 

The nearest neighbors approximation level is defined based on the maximum 

leaves number to be explored across all the k-d trees, resulting in the best nearest 

candidates. 

 

3.8.2 Feature Match Filtering 

During image matching between two images, the finest candidate matches for 

every point are found by searching their nearest neighbor candidates using the 

randomized k-d tree in the database of feature points from the base image. The 

nearest neighbor feature correspondence is identified when the feature point 

with minimum Euclidean distance for the descriptor vector is computed in 

Subchapter 3.7.1.4. However, a lot of false matches exist among the feature 

points. This is due to background clutter or the feature points not being detected 

in database of the base image during the matching. Therefore, a ratio test 

suggested by Lowe (2004), Lowe’s ratio test is used to identify and remove the 
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features that do not have any good match to the database of the base image. The 

test works by comparing the distance of the closest invariant descriptor between 

the two images to that of the second-closest invariant descriptor between the 

two images. The second-closest candidate match can estimate the density of the 

feature space's false matches and find the specific feature ambiguity. Figure 3.8 

illustrate the example of the match of the descriptor, 𝑖𝑖𝑎𝑎 in query image to the 

closest descriptor, 𝑖𝑖𝑏𝑏1 and second-closest descriptor, 𝑖𝑖𝑏𝑏2 in the database of base 

image.  

 

 
Figure 3.8: Matches between a base image and query image 

 

If the Euclidean distance between the descriptor in the query image and the 

closest descriptor in the base image is smaller than the product of that to the 

second closest descriptor in base image with distance ratio factor, 𝑅𝑅 the match 

will be kept and vice versa. The values of 𝑅𝑅 used to investigate the quality of 

the match are 0.5, 0.6, 0.7 and 0.8 (to be discussed in Chapter 4). The quality of 

feature point matches is defined by evaluating the relationship at the following 

below: 

 

𝑎𝑎(𝑖𝑖𝑎𝑎,𝑖𝑖𝑏𝑏1) < 𝑎𝑎(𝑖𝑖𝑎𝑎,𝑖𝑖𝑏𝑏2) ∗ 𝑅𝑅 (3.19) 

 

Where, 

𝑎𝑎(𝑖𝑖𝑎𝑎, 𝑖𝑖𝑏𝑏1) = Euclidean distance between the descriptor, 𝑖𝑖𝑎𝑎 in the query image 

and closest descriptor, 𝑖𝑖𝑏𝑏1 in base image 
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𝑎𝑎(𝑖𝑖𝑎𝑎, 𝑖𝑖𝑏𝑏2) = Euclidean distance between the descriptor, 𝑖𝑖𝑎𝑎 in the query image 

and second closest descriptor, 𝑖𝑖𝑏𝑏1 in base image 

𝑅𝑅 = Constant distance ratio factor 

 

3.9 Robust Homography Estimation 

The extracted aerial images are always not well-aligned due to the aerial motion 

drift and several geometric transformations, including translation, rotation and 

scaling. Thus, calculating a robust homography transformation matrix is 

necessary to deal with these transformations to warp the query image to the base 

image. The transformation is formulated as follows: 

 

𝑋𝑋′ = 𝐻𝐻𝑋𝑋 (3.20) 

 

where 𝑋𝑋′ represents the warped current image, 𝐻𝐻 is the transformation matrix 

and 𝑋𝑋 is the current image. 

 To accomplishing image stitching of the continuous images, a keyframe, 

𝐹𝐹 = 𝑋𝑋0  need to be selected. In this project, the first extracted frame of the 

footage is initialized as the keyframe. The transformation is achieved by 

applying the cumulative homography of the current frame with respect to the 

keyframe. The transformation is calculated by: 

 

⎩
⎨

⎧𝑋𝑋1
′ = 𝐻𝐻10𝑋𝑋0

𝑋𝑋2′ = 𝐻𝐻20𝑋𝑋0
…

𝑋𝑋𝑎𝑎′ = 𝐻𝐻𝑎𝑎0𝑋𝑋0

 (3.21) 

 

where, 

 

⎩
⎨

⎧ 𝐻𝐻20 = 𝐻𝐻21 ∗ 𝐻𝐻10

𝐻𝐻30 = 𝐻𝐻32 ∗ 𝐻𝐻21 ∗ 𝐻𝐻10
…

𝐻𝐻𝑎𝑎0 = 𝐻𝐻𝑎𝑎𝑎𝑎−1 ∗ 𝐻𝐻𝑎𝑎−1𝑎𝑎−2 ∗ … ∗ 𝐻𝐻10
 (3.22) 

 

hence, it can be deduced as: 
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𝑋𝑋𝑎𝑎′ = �𝐻𝐻𝑎𝑎𝑎𝑎−1𝑋𝑋0

𝑎𝑎

1

= �𝐻𝐻𝑎𝑎𝑎𝑎−1𝐹𝐹
𝑎𝑎

1

 (3.23) 

 

 The estimated homography transformation is a linear transformation on 

homogeneous 3-vectors represented by a non-singular 3x3 matrix, 𝑋𝑋′ = 𝐻𝐻𝑋𝑋: 

 

�
𝑒𝑒𝑥𝑥𝑚𝑚′

𝑒𝑒𝑦𝑦𝑚𝑚′
𝑒𝑒
� = �

ℎ00 ℎ01 ℎ02
ℎ10 ℎ11 ℎ12
ℎ20 ℎ21 ℎ22

� �
𝑥𝑥𝑚𝑚
𝑦𝑦𝑚𝑚
1
� (3.24) 

 

The transformation can be expressed in inhomogenous form as: 

 

𝑥𝑥𝑚𝑚′ =
𝑥𝑥𝑚𝑚
𝑒𝑒

=
ℎ00𝑥𝑥𝑚𝑚 + ℎ01𝑦𝑦𝑚𝑚 + ℎ02
ℎ20𝑥𝑥𝑚𝑚 + ℎ21𝑦𝑦𝑚𝑚 + ℎ22

 

𝑦𝑦𝑚𝑚′ =
𝑦𝑦𝑚𝑚
𝑒𝑒

=
ℎ10𝑥𝑥𝑚𝑚 + ℎ11𝑦𝑦𝑚𝑚 + ℎ12
ℎ20𝑥𝑥𝑚𝑚 + ℎ21𝑦𝑦𝑚𝑚 + ℎ22

 
(3.25) 

 

Each feature correspondence produces two equations for the H elements: 

 

 

𝑥𝑥𝑚𝑚′(ℎ20𝑥𝑥𝑚𝑚 + ℎ21𝑦𝑦𝑚𝑚 + ℎ22) = ℎ00𝑥𝑥𝑚𝑚 + ℎ01𝑦𝑦𝑚𝑚 + ℎ02 

𝑦𝑦𝑚𝑚′(ℎ20𝑥𝑥𝑚𝑚 + ℎ21𝑦𝑦𝑚𝑚 + ℎ22) = ℎ10𝑥𝑥𝑚𝑚 + ℎ11𝑦𝑦𝑚𝑚 + ℎ12 
(3.26) 

 

 During the homography estimation, only four feature correspondences 

out of all the feature correspondences are required. However, a question arises 

for which four feature correspondence should be selected. Hence, a robust 

estimation algorithm, named Random Sample Consensus (RANSAC) in 

OpenCV, is utilized to find the best four feature correspondence from the 

database and remove the matches' outliers. The computed homography matrix 

is further refined by using the Levenberg-Marquardt technique on computed 

inliers to mitigate the reprojection error. 
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3.9.1 Random Sample Consensus (RANSAC) 

Random Sample Consensus (RANSAC) algorithm is robust to discard large 

proportion of outliers in the database. Figure 3.9 illustrates the way of 

categorizing inliers by the algorithm. In this framework, two points are 

randomly selected and a line is virtually drawn between them (red point with 

blue line in Figure 3.9). The distance of each point to the line is calculated and 

a distance threshold is defined. The points that lie within the distance threshold 

are constituted as inliers (green point in Figure 3.9). Besides, the black points in 

Figure 3.9 are defined as outliers. The random selection of two points is repeated 

until the line with most of the points is deemed the robust fit.  

 

 
Figure 3.9: Example of categorizing inliers (Baid, 2015) 

 

The algorithm works in this way to compute the homography: 

1. Any four points required to calculate the homography matrix are 

randomly selected. 

2. The homography matrix is computed by using Direct Linear 

Transformation (DLT). 

3. The number of inliers is calculated. 

4. The ratio of inliers to the total number of points in the dataset is 

calculated.  
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5. If the ratio is greater than the predefined reprojection threshold, 𝑇𝑇, the 

homography is re-computed using all the determined inliers and 

terminate. 

6. Else, step 1 to 5 is repeated (for 𝑁𝑁 iterations) 

 

3.10 Image Warping and Black Edges Removal 

Upon the robust homography estimation, all query images in the dataset are 

warped in sequential order with respect to the keyframe by utilizing their 

calculated homography matrix to generate a stitched image. Nonetheless, the 

result usually contains black edges around it. The black edges of the image are 

necessary to remove in order to obtain the image with stitched view only. So, 

the region of interest (ROI) of the stitched image needs to be determined in the 

first place. Then, the black edges are removed by cropping the black region of 

the stitched image automatically. 
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3.11 Project Planning and Resource Allocation 

Figure 3.10 shows the Gantt chart planned for the project based on the project workflow in Figure 3.1. 

 

 
Figure 3.10: Gantt Chart of Task List Project Planning 

 

The image stitching program was scripted in Anaconda Spyder (version 4.1.4) using Python (3.7.6) and ran on Central Processing Unit (CPU). In 

this project, the python binding of the OpenCV library is used. It contains numerous powerful computer vision algorithms such as the SIFT feature 

detector and feature descriptor, FLANN feature macher, RANSAC, numpy, etc.
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3.12 Summary of Methodology 

This chapter has talked about the techniques used in the image stitching program. 

Frame extraction from aerial footage is executed first, followed by camera 

calibration and image pre-processing. Then, SIFT is used as feature 

representation to detect and describe the feature points in the images. Afterward, 

the randomized k-d tree of FLANN matcher is employed to find the feature point 

pairs between the images. The Lowe’s ratio test is implemented to remove the 

mismatch point pairs. To calculate the homography matrix, RANSAC is utilized. 

Finally, the image warping and black edges removal is executed consecutively 

to produce a stitched image. The results are presented in Chapter 4. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

As mentioned in Chapter 3, feature match rate and inlier ratio are calculated to 

measure the performance of the methods. The feature match rate of the system 

is defined as follows: 

 

𝐹𝐹𝑒𝑒𝑐𝑐𝑜𝑜𝐹𝐹𝑒𝑒𝑒𝑒 𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐ℎ 𝑒𝑒𝑐𝑐𝑜𝑜𝑒𝑒 =
𝑀𝑀

(𝐹𝐹𝑝𝑝1 + 𝐹𝐹𝑝𝑝2) 2⁄
 (4.1) 

 

where, M is the number of feature matches, Fp1 is the number of feature points 

extracted from the base image and Fp2 is the number of feature points extracted 

from the query image. 

 The greater the feature match rate, the greater the feature points between 

two images being matched. 

 The inlier ratio of the system is denoted as follows: 

 

𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 𝑒𝑒𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜 =
𝑚𝑚𝐹𝐹𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑖𝑖 𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒

𝑚𝑚𝐹𝐹𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑖𝑖 𝑖𝑖𝑒𝑒𝑐𝑐𝑜𝑜𝐹𝐹𝑒𝑒𝑒𝑒 𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐ℎ𝑒𝑒𝑒𝑒
 (4.2) 

 

 The greater the inlier ratio, the greater the inliers found in the matches. 

 

4.2 Frame Extraction and Camera Calibration 

For this dataset, one frame of every fifty frames is extracted to obtain adequate 

overlapped regions with each other. Therefore, twenty-four images are extracted 

from the Orchard aerial footage dataset with L-shape flight pattern.  

 Figure 4.1 shows the example of the extracted frame with lens distortion 

(fish-eye effect) and the calibrated frame. 
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Figure 4.1: Example of an extracted frame with fish-eye effect (left) and 

calibrated frame (right) 

 

 In this project, the radial distortion parameters and tangential distortion 

parameters are (−0.30409, 0.10001, 0) and (−0.00065,−0.00156) 

respectively. Their combination, which is distortion coefficients 

(−0.30409, 0.10001,−0.00065,−0.00156, 0)  is used. Meanwhile, the 

camera intrinsic matrix is 

�
1237.36828 0 954.79824

0 1275.40537 560.46217
0 0 1

�  . These two crucial calibration 

parameters successfully optimize the lens distortion of the images.  

 

4.3 The Pre-processing Phase 

In the pre-processing stage, the input images are resized and converted to 

grayscale format. Then, the Gaussian blur is applied to the grayscaled images to 

discard the Gaussian noises. 

 

4.3.1 Image Resize and Grayscale Conversion 

Every input images are converted into grayscaled format from the RGB 

complex format to reduce the dimensionality of the color information of images. 

Therefore, the computation burden of the algorithm is reduced. Figure 4.2 shows 

an example of the conversion of the RGB image into grayscaled image. 
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Figure 4.2: Grayscale conversion of aerial image 

 

4.3.2 Gaussian Noise Removal 

As stated in Chapter 3, the Gaussian blur act as the “low-pass filter” to remove 

detail and noise, leaving the majority of the image intact. Thus, the image 

features information are still preserved. The OpenCV’s built-in Gaussian 

smoothing function (Bradski and Kaehler, 2009) is utilized to remove the 

Gaussian noise. The example of the effect of Gaussian smoothing on the aerial 

image is shown in Figure 4.3.  

 

 
Figure 4.3: Effect of gaussian blur (left = before, right = after) 

 

Table 4.1 shows the study of the effect of gaussian blur on average 

feature match rate, average inlier ratio and time taken. Figure 4.4 shows the 

feature match rate graph between image stitching with Gaussian blur and 

without Gaussian blur. Meanwhile, the graph of the inlier ratio between image 

stitching with Gaussian blur and without Gaussian blur is shown in Figure 4.5. 
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Figure 4.4: Graph of feature match rate between image stitching with Gaussian 

blur and without Gaussian blur 

 

 
Figure 4.5: Graph of inlier ratio between image stitching with Gaussian blur 

and without Gaussian blur 
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Table 4.1: Study of the effect of Gaussian blur on average feature match rate, 

average inlier ratio and time taken 

Database Orchard (without 

Gaussian blur) 

Orchard (with 

Gaussian blur) 

Feature representation SIFT SIFT 

Feature matcher FLANN (randomized 

k-d tree) 

FLANN (randomized 

k-d tree) 

Lowe’s ratio test Yes (ratio = 0.8) Yes (ratio = 0.8) 

Outlier removal RANSAC RANSAC 

Average feature match 

rate (23 image pair) 

0.265436 0.32445 

Average inlier ratio (23 

image pair) 

0.861916 0.817921 

Time taken 64.109s 60.875s 

 

Figure 4.6 shows the stitched image of orchard without Gaussian blur 

and with Gaussian blur. 

 

 
Figure 4.6: Stitched image of orchard without Gaussian blur (left) and with 

Gaussian blur (right) 
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 The average feature match rate and average inlier ratio in Table 4.1 are 

calculated based on Figure 4.4 and Figure 4.5 respectively. Based on the 

empirical result shown in Table 4.1, when the Gaussian blur is used, the average 

feature rate rises from 0.265436 to 0.32445, the average inlier ratio reduces from 

0.861916 to 0.817921, time taken reduces from 74.109s to 60.875s. Although 

the average inlier ratio is reduced when the gaussian blur is applied, the 

alignment between the stitched image frames remains excellent with respect to 

the test without Gaussian blur as shown in Figure 4.6. Therefore, the Gaussian 

blur is adopted in the subsequent benchmark tests to investigate the performance 

of image stitching method. 

 
4.4 Feature Representation  

For the feature detection, 3-octave layers with five scale each layer are 

constructed to compute the scale-space local extrema in this project. The sigma 

of Gaussian smoothing, 𝜎𝜎0 is set as 1.6, applying to the octaves pyramid. 

Afterward, the contrast threshold is set to 0.04 in localizing the 

keypoints of the image. The low-contrasted keypoints are removed to avoid the 

existence of low contrast unstable extrema if the local extremum value of the 

scale-space function is less than the predefined contrast threshold, 0.04.  

The edge threshold is set to 10 to reject the keypoints that being detected 

along the edges of the small curvature. 

 

4.4.1 Comparison Results of Sparse Feature-based and Binary-based 

Feature Representation 

For feature representation, the comparison between sparse feature-based feature 

representation and binary-based feature representation is obtained. Since the 

ORB binary-based method and SIFT sparse feature-based method both are 

invariant against rotation and scaling changes made by the aerial motion. The 

binary-based feature representation method proposed by De Lima and Martinez-

Carranza is used to compare with the proposed method. The authors 

implemented an aerial image stitching method using ORB feature representation 

and locality-sensitive hashing (LSH) of FLANN matcher. Figure 4.7 and Figure 

4.8 show the graph of the feature match rate and the comparison of the inlier 
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ratio between the method proposed in this project and the method proposed by 

De Lima and Martinez-Carranza. 

 

 
Figure 4.7: Graph of feature match rate between SIFT, randomized k-d tree 

and ORB, locality-sensitive hashing 

 

 
Figure 4.8: Graph of inlier ratio between SIFT, randomized k-d tree and ORB, 

locality-sensitive hashing 

 

Table 4.2 shows the comparison results for feature representation with 

FLANN matching method on the Orchard dataset. Moreover, Figure 4.9 shows 

the generated stitched image using SIFT, FLANN (randomized k-d tree) and 
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ORB, FLANN (locality-sensitive hashing). Furthermore, Figure 4.9 shows the 

stitched image using SIFT feature representation and ORB feature 

representation respectively. 

 

Table 4.2: Comparison results of feature representation with FLANN matching 

method on the orchard dataset 

Column 1 

(Proposed in this 

project) 

2 

(De Lima and Martinez-

Carranza, 2017) 

Feature representation SIFT ORB 

Feature matcher FLANN  

(randomized k-d tree) 

FLANN  

(locality-sensitive 

hashing) 

Lowe’s ratio test Yes (ratio, 0.8) No 

Outlier Removal RANSAC RANSAC 

Average feature match 

rate (23 image pair) 

0.324554 1.0 

Average inlier ratio (23 

image pair) 

0.805587 0.304 

 

 
Figure 4.9: Stitched image using SIFT, FLANN (randomized k-d tree) (left) 

and ORB, FLANN (locality-sensitive hashing) (right). The red bounding box 

shows the misaligned frame. 
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 By referring the Table 4.2, the average feature match rate using SIFT-

based feature representation is weaker than that using ORB-based feature 

representation. Whereas the average inlier ratio using SIFT-based feature 

representation is more significant than that using ORB-based feature 

representation. Even though the average feature match of ORB-based feature 

representation is outperforming compare to that of SIFT-based feature 

representation, some stitched frames do not align well during the image warping 

process as shown in Figure 4.9. This is due to the average amount of inlier 

generated per match of the ORB-based method, which is relatively poor, 152 

compared to 171 produced by SIFT-based feature representation. Hence, poor 

homography estimation is obtained to warp the frame onto the base image, 

resulting in poorly aligned frames in the stitched image. It can deduce that SIFT 

performs better than ORB in this project. 

 

4.5 Feature Matching 

The OpenCV’s randomized k-d tree in FLANN matcher (Bradski and Kaehler, 

2009) is used to pair the extracted feature points between the query image and 

base image. In the randomized k-d tree, the number of trees is set as 5 in 

constructing the forest. Each tree is established independently, and each tree 

chooses randomly among the five split dimensions at each level. 

In OpenCV, there is another widely used feature matcher, brute-force 

searching matcher. Therefore, the performance of the brute-force searching 

matcher and the randomized k-d tree of FLANN matcher is investigated and 

discussed.  

 

4.5.1 Comparison Results of FLANN Matcher and Brute-Force 

Matcher in Feature Matching  

The feature match rate and inlier ratio between the FLANN matcher and brute-

force matcher are compared. Figure 4.10 and Figure 4.11 show the graph of 

feature match rate and inlier ratio between FLANN (randomized k-d tree) and 

brute-force matcher. 
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Figure 4.10: Graph of feature match rate between FLANN (randomized k-d 

tree) and brute-force matcher 

 

 
Figure 4.11: Graph of inlier ratio between FLANN (randomized k-d tree) and 

brute-force matcher 

 

Table 4.3 shows the comparison result of SIFT with FLANN and Brute-

Force matcher. Figure 4.12 shows the stitched image using SIFT with FLANN 

and Brute-Force matcher respectively. 
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Table 4.3: Comparison results of SIFT with FLANN and Brute-Force matcher 

Column 1 2 

Feature representation SIFT SIFT 

Feature matcher FLANN (randomized 

k-d tree) 

Brute-Force  

Lowe’s ratio test Yes (ratio, 0.8) Yes (ratio, 0.8) 

Outlier Removal RANSAC RANSAC 

Average feature match 

rate (23 image pair) 

0.324554 0.324475 
 

Average inlier ratio (23 

image pair) 

0.805587 0.809046 
 

 

 

 
Figure 4.12: Stitched image using SIFT, FLANN (randomized k-d tree) (left) 

and SIFT, Brute-Force (right) 

 

 By comparing the average feature match rate and inlier ratio in Table 

4.3, the average feature match rate and the inlier ratio of FLANN matcher are 

slightly more significant than those of the brute-force matcher. Moreover, the 

stitched frames' alignment in the stitched image obtained by using brute-force 

matcher is equally great compared to that by using FLANN matcher as shown 

in Figure 4.12. According to Li et al., (2014), the authors stated that tree-based 
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methods, such as k-d tree, are relatively more efficient in the application 

involving large image dataset retrieval (aerial images) than brute-force 

searching method to stitch images. Hence, the FLANN matcher is preferred as 

it may provide repeatability and efficacy on stitching large aerial image dataset 

(>1000) in future work. 

 

4.5.2 Comparison Results of LR, GMS and LR-GMS in Feature Match 

Filtering  

The generated feature match pairs usually contain a lot of false matches. Thus, 

match pairs filtering is necessarily applied to mitigate the number of false 

matches and reduce the chance of resulting poor homography. In this project, 

the effect of using Lowe’s ratio test (LR), Grid-Based Motion Statistic (GMS) 

(Bian et al., 2020), and the combination of LR and GMS on feature match rate, 

inlier ratio is studied as well as the efficacy of stitching aerial image is observed. 

The feature match rate graph and the inlier ratio among LR, GMS, and LR-GMS 

are shown in Figure 4.13 and Figure 4.14 respectively.  

 

 
Figure 4.13: Graph of feature match rate among LR, GMS and LR-GMS 
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Figure 4.14: Graph of inlier ratio among LR, GMS and LR-GMS 

 

Table 4.4 shows the comparison results of LR, GMS and LR-GMS. Figure 4.15 

shows the stitching image using LR, GMS and LR-GMS. The graph of the 

average inlier count among LR, GMS and LR-GMS is shown in Figure 4.16. 

 

Table 4.4: Comparison results of LR, GMS and LR-GMS 

Column 1 2 3 

Feature 

representation 

SIFT SIFT SIFT 

Feature matcher FLANN 

(randomized k-d 

tree) 

FLANN 

(randomized k-d 

tree) 

FLANN 

(randomized k-d 

tree) 

Lowe’s ratio test Yes (ratio, 0.8) No Yes (ratio, 0.8) 

GMS No Yes Yes 

Outlier Removal RANSAC RANSAC RANSAC 

Average feature 

match rate (23 

image pair) 

0.32445 
 

0.080801 
 

0.058421 
 

Average inlier 

ratio (23 image 

pair) 

0.817921 
 

0.90861 
 

0.911442 
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Figure 4.15: Stitched image using GMS (top-left), LR (top-right) and LR-

GMS (bottom) 

 

 By comparing the average feature match rate in Table 4.4, it is found 

that the average feature match rate of GMS is the highest among them 

(0.080801), followed by LR-GMS (0.58421) and then LR (0.32445). 

Nonetheless, by comparing the average inlier ratio, the average inlier ratio of 

LR-GMS is the highest (0.911442), followed by GMS (0.90861) and then LR 

(0.817921). Despite the fact that the average inlier ratio of LR-GMS and GMS 

are more significant than that of LR, both methods are failed to stitch the aerial 

images, as shown in Figure 4.15. This is because the GMS failed to strike an 

optimal balance between keeping good matches and discarding bad matches, 

resulting in overly removing the good matches. Moreover, the RANSAC further 
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removes the outlier in the matches and induces a low count of inlier, where the 

average inlier count per image pair is less than 100, as shown in Figure 4.16. 

The inlier number is crucial in estimating a good homography to warp the query 

image onto the base image. Based on Figure 4.16, it is shown that the inlier 

count using GMS and LR-GMS are much lower than that of the LR, which cause 

the failure in stitching aerial images. Therefore, GMS is not suitable to be 

implemented in this orchard dataset. 

 

 
Figure 4.16: Graph of average inlier count among LR, GMS and LR-GMS 

 

4.5.2.1 The Effect of Lowe’s Ratio on Feature Match Rate and Inlier Ratio 

Figure 4.17 and Figure 4.18 show the graph of feature match rate and inlier ratio 

over the Lowe’s Ratio. The study of the effect of various ratios on the feature 

match rate and inlier ratio is shown in Table 4.5. Figure 4.19 shows the average 

inlier count over Lowe’s ratios. 
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Figure 4.17: Graph of feature match rate over the Lowe’s ratios 

 

 
Figure 4.18: Graph of inlier ratio over the Lowe’s ratios 
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Table 4.5: Study of the effect of various ratios on the feature match rate and 

inlier ratio 

Column 1 2 3 4 

Feature 

representation 

SIFT SIFT SIFT SIFT 

Feature 

matcher 

FLANN 

(randomized 

k-d tree) 

FLANN 

(randomized 

k-d tree) 

FLANN 

(randomized 

k-d tree) 

FLANN 

(randomized 

k-d tree) 

Lowe’s ratio 

test 

Yes (ratio, 

0.5) 

Yes (ratio, 

0.6) 

Yes (ratio, 

0.7) 

Yes (ratio, 

0.8) 

GMS No No No No 

Outlier 

Removal 

RANSAC RANSAC RANSAC RANSAC 

Average 

feature match 

rate (23 image 

pair) 

0.186405 0.23189 
 

0.274729 
 

0.32445 
 

Average inlier 

ratio (23 

image pair) 

0.937371 
 

0.9139 
 

0.880527 
 

0.817921 
 

 

 
Figure 4.19: Graph of average inlier count over the Lowe’s ratio 
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 Based on Figure 4.17 and Table 4.5, it is found that the greater the 

Lowe’s ratio, the greater the feature match rate. This is because fewer nearest 

neighbor descriptor is discarded when the Lowe’s ratio is high. By comparing 

the average inlier ratio recorded in Table 4.5 and Figure 4.18, the inlier ratio is 

the highest when the Lowe’s ratio is set to 0.5, followed by 0.6, 0.7 and 0.8. 

However, a better-stitched view is observed when the average inlier count is 

more than 160 empirically. The stitched images generated by using 0.5, 0.6 and 

0.7 Lowe’s ratio induce slight skewness as shown in Figure 4.20. Hence, this 

proves that Lowe’s ratio at 0.8 is optimal to generate a well-aligned stitched 

image. 

 

 
Figure 4.20: Stitched image using 0.5 ratio (top-left), 0.6 ratio (top-right), 0.7 

(bottom-left) and 0.8 (bottom-right) 
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4.6 Robust Homography Estimation using RANSAC 

During the homography calculation using RANSAC, the RANSAC reprojection 

threshold is set to 5. It is a maximum allowed reprojection error to treat the 

match as an inlier. Any computed values greater than five are treated as outliers. 

The relationship is express as following below: 

 

𝐶𝐶(𝑎𝑎𝑒𝑒𝑜𝑜) − 𝐶𝐶[𝐻𝐻 ∗ 𝐶𝐶(𝑜𝑜𝑒𝑒𝑖𝑖)] < 𝑇𝑇 (4.3) 

 

Where,  

𝐶𝐶(𝑎𝑎𝑒𝑒𝑜𝑜) = The coordinates of the points in the target plane 

𝐶𝐶[𝐻𝐻 ∗ 𝐶𝐶(𝑜𝑜𝑒𝑒𝑖𝑖)]  = The converted homogenous points from the points of the 

original plane 

𝑇𝑇 = RANSAC reprojection error. 

  

 Furthermore, the iteration of the RANSAC algorithm, 𝑁𝑁 is set to 2000, 

which is the maximum value that the OpenCV library allows. The RANSAC 

algorithm iterates 2000 times to discard any match exceeding the RANSAC 

reprojection error and use the inliers to estimate the homography matrix. The 

greater the iteration, the greater the number of outliers or noises being removed. 

 Figure 4.21 shows the stitched image without using RANSAC algorithm 

and using RANSAC algorithm. 
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Figure 4.21: Stitched image without using RANSAC algorithm(left) and using 

RANSAC algorithm(right) 

 

 According to Figure 4.21, it is found that the images failed to stitch when 

bypassing the RANSAC algorithm. This is due to the noises present in the 

images. The noises are taken as correct matches to estimate the homography 

matrix, resulting in bad homography estimation and causing the misalignment 

between the frames. Therefore, RANSAC is necessary to be implemented to 

remove the outliers embedded in the matches. 

 

4.7 Image Warping and Black Edges Removal 

Figure 4.22 shows the example of sequential order image wrapping. The 

keyframe is warped in the middle of the image with a black background. Then, 

the adjacent images are warped onto the keyframe using the computed 

accumulative homography matrix in sequential order 

 

 
Figure 4.22: Example of sequential order image wrapping 

 



62 
 

 Figure 4.23 shows the black edge removal of the stitched image. The 

algorithm detects the region of interest (ROI) of the image and the black region 

is automatically being cropped out. 

 

 
Figure 4.23: Black edge removal of the stitched image 

 

4.8 Dataset with Lawnmower Flight Pattern 

Figure 4.24 shows the stitched image of dataset with lawnmover flight pattern. 

Based on the observation in Figure 4.24, the proposed framework is able to 

stitched the aerial frames of the footage. However, there is visible skewness and 

several frames that are misaligned with each other in the stitched image. This is 

because the homography estimation is very sensitive to the cumulative 

homography error during the homography matrix computation. The cumulative 

homoprahy error is caused by the interframe homography error, where the 

interframe homography error is made up of the camera reprojection error 

between the frames. One of the alignment optimization approaches, named 

Bundle Adjustnment is widely used by researchers to optimize the cumulative 

homography error. However, it is a costly and high complexity algorithm to 

develop.  
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Figure 4.24: Stitched image of the dataset with lawnmower flight pattern
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4.9 Finalization of Parameters 

The summarized parameters are set in Table 4.6. 

 

Table 4.6: Summarized parameter settings of orchard dataset 

Dataset UMN Horticulture Field Station 

(Orchard) 

Resolution after resize (pixels) 640 x 360 

Convert to grayscale Yes 

Gaussian blur Yes 

Feature representation SIFT 

 Octave layer 3.0 

 Scale of each layer 5.0 

 Sigma of Gaussian, 𝝈𝝈𝟎𝟎 1.6 

 Contrast threshold 0.04 

 Edge threshold 10.0 

Feature matcher FLANN (Randomized k-d tree) 

 Number of trees 5 

Lowe’s ratio test Yes 

 Lowe’s ratio 0.8 

GMS No 

Outlier Removal RANSAC 

 Reprojection threshold 5.0 

 Iteration, 𝑁𝑁 2000 

 
With the use of parameters shown in Table 4.6, final stitched result is shown in 
Figure 4.25. The interframe alignment of the stitched image is great. The 
Orchard is visualized clearly. 
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Figure 4.25: Final stitched result  
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

This project has managed to stitch the aerial footage’s frames to generate a well-

aligned stitched image with a large scene view. It has successfully dealt with the 

concern of manual keyframe selection. The framework has managed to undistort 

the image to remove the bird-eye effect and prevent image stitching failure.   

 This project utilized the sparse feature-based feature representation 

method, SIFT for feature point detection and description. The generated results 

between the SIFT and binary-based feature representation, ORB is evaluated. 

The result of using SIFT performs better than ORB. For the feature matching, 

the randomized k-d tree of FLANN matcher is implemented in the proposed 

project and successfully stitches the images of aerial footage. Its performance is 

compared with that of brute-force searching method and found that their results 

are equally great. Yet, FLANN matcher is better in terms of efficiency in 

processing large dataset. Besides, the effect of feature match filtering methods 

is investigated. It is demonstrated that the use of Lowe’s ratio test is the 

appropriate method to be employed in this project. The proposed framework has 

managed to stitch the aerial footage of the Orchard dataset with an L-shape flight 

pattern and high degree of similarity in term of structure content of the images.  

The proposed framework successfully stitches the aerial footage of 

orchard dataset with the lawnmower flight pattern. However, the misalignment 

of the frames in the stitched image is observed when the Orchard dataset with 

the lawnmower flight pattern is inserted. Therefore, the alignment optimization 

method shall be implemented in future work.  

 

5.2 Recommendations for Future Work 

The future work of this project can be expanded with the following 

recommendations: 

1. It is suggested to implement bundle adjustment to mitigate the camera 

reprojection error and reduce the cumulative homography error. Bundle 
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adjustment is a state-of-the-art approach on optimizing the alignment of 

the frames in the stitched image.  

2. It is recommended to enable the image stitching program to execute in 

graphical processing unit (GPU) instead of the conventional central 

processing unit (CPU). Parallel computing can be done by using GPU 

and it has optimized memory bandwidth. Hence, fast image processing 

speed is provided in large memory operation. 

3. It is suggested to adopt 3D reconstruction method, such as Simultaneous 

Localization and Mapping (SLAM) or Structure from Motion (SfM) to 

register images. It would allow the reconstruction of the ground plane of 

the flight trajectory, improve the alignment, and prevent the visible 

skewness of the stitched image. 

4. It is recommended to employ deep learning based semantic image 

matching. The trained CNN features can provide invariant capability 

against geometric deformations and illumination change of the images. 

Therefore, it can accurately detect the feature points of the images. 
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APPENDICES 

 

APPENDIX A: Computer Specification 

 

 

 
 

APPENDIX B: Python Codes 

 

footageProcessing.py 

# -*- coding: utf-8 -*- 

""" 
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Frame Extraction and Saving from Video 

""" 

''' 

~ MATLAB ~ 

Focal Length:          fc = [ 1237.36828   1275.40537 ] ± [ 5.56050   5.78613 ] 

Principal point:       cc = [ 954.79824   560.46217 ] ± [ 3.16465   3.22632 ] 

Skew:             alpha_c = [ -0.00099 ] ± [ 0.00039  ]   => angle of pixel axes = 

90.05701 ± 0.02233 degrees 

Distortion:            kc = [ -0.30409   0.10001   -0.00065   -0.00156  0.00000 ] ± 

[ 0.00525   0.00635   0.00062   0.00059  0.00000 ] 

Pixel error:          err = [ 0.20609   0.21830 ] 

 

~ openCV ~ 

Camera Matrix:   K = [1237.36828, 0, 954.79824],[0, 

1275.40537, 560.46217],[0, 0, 1] 

Distortion Coefficient d = [-0.30409, 0.10001, -0.00065, -0.00156, 0]  

 

(Reference: https://www.graceunderthesea.com/thesis/camera-calibration-to-

undistort-images) 

''' 

import os 

import cv2 

import argparse 

import numpy as np 

import glob 

 

print ("[PACKAGE] openCV version: " + cv2.__version__) 

pathIN = "F:/CourseSubject/FYP/FYP 2 

Progress/imstCode/ImageStitch/video/GOPROHERO3.mp4" 

pathOUT = "F:/CourseSubject/FYP/FYP 2 

Progress/imstCode/ImageStitch/image/ExtImg" 

pathOUT2 = "F:/CourseSubject/FYP/FYP 2 

Progress/imstCode/ImageStitch/image/ExtImg/ProcessedImg" 
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# copy parameters to arrays 

K = np.array([[1237.36828, 0, 954.79824],[0, 1275.40537, 560.46217],[0, 0, 1]]) 

d = np.array([-0.30409, 0.10001, -0.00065, -0.00156, 0]) # just use first two 

terms 

 

def extImages(pathIN, pathOUT): 

    # grab the paths to the input video and starts extracting 

    print("[INFO] loading video...") 

    vidObj = cv2.VideoCapture(pathIN) 

     

    # measure fps of the video 

    fps = int(vidObj.get(cv2.CAP_PROP_FPS)) 

    print("[INFO] video FPS...", fps) 

     

     

    # Used as couter variable 

    cnt = 0 

    IMGcounter = 1 

     

    # checks whether frames were extracted 

    success = 1 

     

    while success: 

            # videoObj object calls read 

            # function extract frames 

            success, image = vidObj.read() 

            # save 1 frame out of 50 frame 

            if cnt%50 == 0: 

                print("[INFO] extracting frame %d ..." % IMGcounter) 

                cv2.imwrite(os.path.join(pathOUT, "frame%d.jpg" % IMGcounter), 

image) 

                #saves the frames with fram-count 
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                h, w = image.shape[:2] 

                # undistort the images 

                newCamera, roi = cv2.getOptimalNewCameraMatrix(K, d, (w,h), 0) 

                undistort_img = cv2.undistort(image, K, d, None, newCamera) 

                 

                # crop the image 

                x, y, w, h = roi 

                undistort_img = undistort_img[y:y+h, x:x+w] 

                cv2.imwrite(os.path.join(pathOUT2, "frame%d.jpg" % IMGcounter), 

undistort_img) 

                IMGcounter += 1 

            cnt += 1 

    print("[INFO] Done extracting...") 

    

""""""""""""""""""""""""""""""""""""""""""""" MAIN FUNCTION 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 

if __name__=="__main__": 

    ''' 

    # construct the argument parser and parse the arguments 

    ap = argparse.ArgumentParser() 

    ap.add_argument("-v", "--video", type=str, required=True, 

     help="Path to input directory of video to extract") 

    ap.add_argument("-o", "--output", type=str, required=True, 

     help="Path to the extracted images") 

    args = vars(ap.parse_args()) 

    extImages(args["video"], args["output"]) 

    ''' 

extImages(pathIN, pathOUT) 

 

imageStitcher.py 

# -*- coding: utf-8 -*- 

""" 

Author: Ng Wei Haen 
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Topic: Image Stitching of Aerial Footage 

Start Date: 17 Dec 2020 

""" 

 

import cv2 

import numpy as np 

import glob 

import os 

import time 

#import math 

from colorama import Style, Back 

import xlsxwriter as xls 

""" 

Important Parameter 

------------------- 

detector_type (string): type of determine, "sift" or "orb" 

                        Defaults to "sift". 

matcher_type (string): type of determine, "flann" or "bf" 

                       Defaults to "flann". 

resize_ratio (int) = number needed to decrease the input images size 

output_height_times (int): determines the output height based on input image 

height.  

                           Defaults to 2. 

output_width_times (int): determines the output width based on input image 

width.  

                           Defaults to 4. 

             

""" 

detector_type = "sift" 

matcher_type = "flann" 

resize_ratio = 3 

output_height_times = 20 

output_width_times = 15 
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gms = False 

visualize = True 

 

image_dir = "image/testsetORI" 

key_frame = "image/testsetORI/frame1.jpg" 

output_dir = "image/TestSIFT" 

     

class ImageStitching: 

    def __init__(self, first_image,  

                 output_height_times = output_height_times,  

                 output_width_times = output_width_times,  

                 detector_type = detector_type,  

                 matcher_type = matcher_type): 

        """This class processes every frame and generates the panorama 

 

        Args: 

            first_image (image for the first frame): first image to initialize the output 

size 

            output_height_times (int, optional): determines the output height based 

on input image height. Defaults to 2. 

            output_width_times (int, optional): determines the output width based 

on input image width. Defaults to 4. 

            detector_type (str, optional): the detector for feature detection. It can be 

"sift" or "orb". Defaults to "sift". 

        """ 

        self.detector_type = detector_type 

        self.matcher_type = matcher_type 

        if detector_type == "sift": 

            # SIFT feature detector 

            self.detector = cv2.xfeatures2d.SIFT_create(nOctaveLayers = 3, 

                                                        contrastThreshold = 0.04, 

                                                        edgeThreshold = 10, 

                                                        sigma = 1.6) 
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            if matcher_type == "flann": 

                # FLANN: the randomized kd trees algorithm 

                FLANN_INDEX_KDTREE = 1 

                flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 

5) 

                search_params = dict (checks=200) 

                self.matcher = cv2.FlannBasedMatcher(flann_params,search_params) 

                 

            else: 

                # Brute-Force matcher 

                self.matcher = cv2.BFMatcher() 

        elif detector_type == "orb": 

            # ORB feature detector 

            self.detector = cv2.ORB_create() 

            self.detector.setFastThreshold(0) 

            if matcher_type == "flann": 

                FLANN_INDEX_LSH = 6 

                flann_params= dict(algorithm = FLANN_INDEX_LSH, 

                                   table_number = 6, # 12 

                                   key_size = 12,     # 20 

                                   multi_probe_level = 1) #2 

                search_params = dict (checks=200) 

                self.matcher = cv2.FlannBasedMatcher(flann_params,search_params) 

            else: 

                # Brute-Force-Hamming matcher 

                self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING, 

crossCheck=True) 

 

        self.record = [] 

        self.visualize = visualize 

        self.output_img = np.zeros(shape=(int(output_height_times * 

first_image.shape[0]),  

                                          int(output_width_times*first_image.shape[1]),  
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                                          first_image.shape[2])) 

 

        self.process_first_frame(first_image) 

 

        # output image offset 

        self.w_offset = int(self.output_img.shape[0]/2 - first_image.shape[0]/2) 

        self.h_offset = int(self.output_img.shape[1]/2 - first_image.shape[1]/2) 

 

        self.output_img[self.w_offset:self.w_offset+first_image.shape[0], 

                        self.h_offset:self.h_offset+first_image.shape[1], :] = first_image 

        a = self.output_img 

        heightM, widthM = a.shape[:2] 

        a = cv2.resize(a, (int(widthM / 4),  

                           int(heightM / 4)),  

                       interpolation=cv2.INTER_AREA) 

        # cv2.imshow('output', a) 

        self.H_old = np.eye(3) 

        self.H_old[0, 2] = self.h_offset 

        self.H_old[1, 2] = self.w_offset 

 

    def process_first_frame(self, first_image): 

        """processes the first frame for feature detection and description 

 

        Args: 

            first_image (cv2 image/np array): first image for feature detection 

        """ 

        self.base_frame_rgb = first_image 

        base_frame_gray = cv2.cvtColor(first_image, cv2.COLOR_BGR2GRAY) 

        base_frame = cv2.GaussianBlur(base_frame_gray, (5,5), 0) 

        self.base_features, self.base_desc = 

self.detector.detectAndCompute(base_frame, None) 

     

    def process_adj_frame(self, next_frame_rgb): 



79 
 

        """gets an image and processes that image for mosaicing 

 

        Args: 

            next_frame_rgb (np array): input of current frame for the mosaicing 

        """ 

        self.next_frame_rgb = next_frame_rgb 

        next_frame_gray = cv2.cvtColor(next_frame_rgb, 

cv2.COLOR_BGR2GRAY) 

        next_frame = cv2.GaussianBlur(next_frame_gray, (5,5), 0) 

        self.next_features, self.next_desc = 

self.detector.detectAndCompute(next_frame, None) 

         

         

        self.matchingNhomography(self.next_desc, self.base_desc) 

         

        if len(self.matches) < 4: 

            return 

         

        print ("\n") 

        self.warp(self.next_frame_rgb, self.H) 

         

        # For record purpose: save into csv file later 

        self.record.append([len(self.base_features), len(self.next_features),  

                            self.no_match_lr, self.no_GMSmatches, self.inlier, 

self.inlierRatio, self.reproError]) 

         

        # loop preparation 

        self.H_old = self.H 

        self.base_features = self.next_features 

        self.base_desc = self.next_desc 

        self.base_frame_rgb = self.next_frame_rgb 

 

    def matchingNhomography(self, next_desc, base_desc): 
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        """matches the descriptors 

 

        Args: 

            next_desc (np array): current frame descriptor 

            base_desc (np array): previous frame descriptor 

 

        Returns: 

            array: and array of matches between descriptors 

        """ 

        # matching 

        if self.detector_type == "sift": 

            pair_matches = self.matcher.knnMatch(next_desc, trainDescriptors = 

base_desc,  

                                                 k = 2) 

 

            """ 

                Store all the good matches as per Lowe's ratio test' 

                The Lowe's ratio is refer to the journal "Distinctive  

                Image Features from Scale-Invariant Keypoints" by  

                David G. Lowe. 

            """ 

            lowe_ratio = 0.8 

            matches = [] 

            for m, n in pair_matches: 

                if m.distance < n.distance * lowe_ratio: 

                    matches.append(m) 

            self.no_match_lr = len(matches) 

            # Rate of matches (Lowe's ratio test) 

            rate = float(len(matches) / ((len(self.base_features) + 

len(self.next_features))/2)) 

            print (f"Rate of matches (Lowe's ratio test): 

{Back.RED}%f{Style.RESET_ALL}" % rate) 
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        elif self.detector_type == "orb": 

            if self.matcher_type == "flann": 

                matches = self.matcher.match(next_desc, base_desc) 

                ''' 

                lowe_ratio = 0.8 

                matches = [] 

                for m, n in pair_matches: 

                    if m.distance < n.distance * lowe_ratio: 

                        matches.append(m) 

                ''' 

                self.no_match_lr = len(matches) 

                # Rate of matches (Lowe's ratio test) 

                rate = float(len(matches) / (len(base_desc) + len(next_desc))) 

                print (f"Rate of matches (Lowe's ratio test): 

{Back.RED}%f{Style.RESET_ALL}" % rate) 

            else: 

                pair_matches = self.matcher.match(next_desc, base_desc) 

                # Rate of matches (before Lowe's ratio test) 

                self.no_match_lr = len(pair_matches) 

                rate = float(len(pair_matches) / (len(base_desc) + len(next_desc))) 

                print (f"Rate of matches: {Back.RED}%f{Style.RESET_ALL}" % 

rate) 

 

         

        # Sort them in the order of their distance. 

        matches = sorted(matches, key=lambda x: x.distance) 

         

        # OPTIONAL: used to remove the unmatch pair match 

        matches = cv2.xfeatures2d.matchGMS(self.next_frame_rgb.shape[:2],  

                                            self.base_frame_rgb.shape[:2],  

                                            self.next_features,  

                                            self.base_features, matches,  
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                                            withScale = False, withRotation = False,  

                                            thresholdFactor = 6.0) if gms else matches 

        self.no_GMSmatches = len(matches) if gms else 0 

        # Rate of matches (GMS) 

        rate = float(self.no_GMSmatches / (len(base_desc) + len(next_desc))) 

        print (f"Rate of matches (GMS): {Back.CYAN}%f{Style.RESET_ALL}" % 

rate) 

 

        # OPTIONAL: Obtain the maximum of 20 best matches 

        # matches = matches[:min(len(matches), 20)] 

         

        # Visualize the matches. 

        if self.visualize: 

            match_img = cv2.drawMatches(self.next_frame_rgb, self.next_features, 

self.base_frame_rgb,  

                                        self.base_features, matches, None, 

                                        

flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) 

            cv2.imshow('matches', match_img) 

         

        self.H, self.status, self.reproError = 

self.findHomography(self.next_features, self.base_features, matches) 

        print ('inlier/matched = %d / %d' % (np.sum(self.status), len(self.status))) 

        self.inlier = np.sum(self.status) 

        self.inlierRatio = float(np.sum(self.status)) / float(len(self.status)) 

        print ('inlierRatio = ', self.inlierRatio) 

        # len(status) - np.sum(status) = number of detected outliers 

         

        '''  

            TODO -  

                To minimize or get rid of cumulative homography error is use block 

bundle adjustnment 
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                Suggested from "Multi View Image Stitching of Planar Surfaces on 

Mobile Devices" 

                Using 3-dimentional multiplication to find cumulative homography is 

very sensitive 

                to homography error. 

        ''' 

        # 3-dimensional multiplication to find cumulative homography to the 

reference keyframe 

        self.H = np.matmul(self.H_old, self.H)  

        self.H = self.H/self.H[2,2] 

        self.matches = matches 

        return matches 

     

    @ staticmethod 

    def findHomography(base_features, next_features, matches): 

        """gets two matches and calculate the homography between two images 

 

        Args: 

            base_features (np array): keypoints of image 1 

            next_features (np_array): keypoints of image 2 

            matches (np array): matches between keypoints in image 1 and image 2 

 

        Returns: 

            np arrat of shape [3,3]: Homography matrix 

        """ 

         

        kp1 = [] 

        kp2 = [] 

        for match in matches: 

            kp1.append(base_features[match.queryIdx]) 

            kp2.append(next_features[match.trainIdx]) 

        p1_array = np.array([k.pt for k in kp1]) 

        p2_array = np.array([k.pt for k in kp2]) 
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        homography, status = cv2.findHomography(p1_array, p2_array, method = 

cv2.RANSAC,  

                                                    ransacReprojThreshold = 5.0, 

                                                    mask = None, 

                                                    maxIters = 2000, 

                                                    confidence = 0.995) 

         

        #### Finding the euclidean distance error #### 

        list1 = np.array(p2_array)     

        list2 = np.array(p1_array) 

        list2 = np.reshape(list2, (len(list2), 2)) 

        ones = np.ones(len(list1)) 

        TestPoints = np.transpose(np.reshape(list1, (len(list1), 2))) 

        print ("Length:", np.shape(TestPoints), np.shape(ones)) 

        TestPointsHom = np.vstack((TestPoints, ones)) 

        print ("Homogenous Points:", np.shape(TestPointsHom)) 

     

        projectedPointsH = np.matmul(homography, TestPointsHom)  # 

projecting the points in test image to collage image using homography matrix     

        projectedPointsNH = 

np.transpose(np.array([np.true_divide(projectedPointsH[0,:], 

projectedPointsH[2,:]), np.true_divide(projectedPointsH[1,:], 

projectedPointsH[2,:])])) 

         

        print ("list2 shape:", np.shape(list2)) 

        print ("NH Points shape:", np.shape(projectedPointsNH)) 

        print ("Raw Error Vector:", np.shape(np.linalg.norm(projectedPointsNH-

list2, axis=1))) 

        Error = int(np.sum(np.linalg.norm(projectedPointsNH-list2, axis=1))) 

        print ("Total Error:", Error) 

        AvgError = np.divide(np.array(Error), np.array(len(list1))) 

        print ("Average Error:", AvgError) 
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        ##################  

        return homography, status, AvgError 

 

    def warp(self, next_frame_rgb, H): 

        """ warps the current frame based of calculated homography H 

 

        Args: 

            next_frame_rgb (np array): current frame 

            H (np array of shape [3,3]): homography matrix 

 

        Returns: 

            np array: image output of mosaicing 

        """ 

        warped_img = cv2.warpPerspective( 

            next_frame_rgb, H, (self.output_img.shape[1], 

self.output_img.shape[0]),  

            flags=cv2.INTER_LINEAR) 

             

        transformed_corners = self.get_transformed_corners(next_frame_rgb, H) 

        warped_img = self.draw_border(warped_img, transformed_corners) 

         

        self.output_img[warped_img > 0] = warped_img[warped_img > 0] 

        output_temp = np.copy(self.output_img) 

        output_temp = self.draw_border(output_temp, transformed_corners, 

color=(0, 0, 255)) 

         

        # Visualize the stitched result 

        if self.visualize: 

            output_temp_copy = output_temp/255. 

            output_temp_copy = cv2.normalize(output_temp_copy, None, 0, 255, 

cv2.NORM_MINMAX, cv2.CV_8U)  # convert float64 to unit8 

            size = 720 
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            heightM, widthM = output_temp_copy.shape[:2] 

            ratio = size / float(heightM) 

            output_temp_copy = cv2.resize(output_temp_copy, (int(ratio * widthM), 

size), interpolation=cv2.INTER_AREA) 

            cv2.imshow('output',  output_temp_copy) 

 

        return self.output_img 

 

    @ staticmethod 

    def get_transformed_corners(next_frame_rgb, H): 

        """finds the corner of the current frame after warp 

 

        Args: 

            next_frame_rgb (np array): current frame 

            H (np array of shape [3,3]): Homography matrix  

 

        Returns: 

            [np array]: a list of 4 corner points after warping 

        """ 

        corner_0 = np.array([0, 0]) 

        corner_1 = np.array([next_frame_rgb.shape[1], 0]) 

        corner_2 = np.array([next_frame_rgb.shape[1], next_frame_rgb.shape[0]]) 

        corner_3 = np.array([0, next_frame_rgb.shape[0]]) 

 

        corners = np.array([[corner_0, corner_1, corner_2, corner_3]], 

dtype=np.float32) 

        transformed_corners = cv2.perspectiveTransform(corners, H) 

 

        transformed_corners = np.array(transformed_corners, dtype=np.int32) 

        # output_temp = np.copy(output_img) 

        # mask = np.zeros(shape=(output_temp.shape[0], output_temp.shape[1], 

1)) 

        # cv2.fillPoly(mask, transformed_corners, color=(1, 0, 0)) 
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        # cv2.imshow('mask', mask) 

 

        return transformed_corners 

 

    def draw_border(self, image, corners, color=(0, 0, 0)): 

        """This functions draw rectancle border 

 

        Args: 

            image ([type]): current mosaiced output 

            corners (np array): list of corner points 

            color (tuple, optional): color of the border lines. Defaults to (0, 0, 0). 

 

        Returns: 

            np array: the output image with border 

        """ 

        for i in range(corners.shape[1]-1, -1, -1): 

            cv2.line(image, tuple(corners[0, i, :]), tuple( 

                corners[0, i-1, :]), thickness=5, color=color) 

        return image 

     

    @staticmethod 

    def stitchedimg_crop(stitched_img): 

        """This functions crop the black edge 

 

        Args: 

            stitched_img (np array): stitched image with black edge 

 

        Returns: 

            np array: the output image with no black edge 

        """ 

        stitched_img = cv2.normalize(stitched_img, None, 0, 255, 

cv2.NORM_MINMAX, cv2.CV_8U)  # convert float64 to unit8 

        # Crop black edges 
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        stitched_img_gray = cv2.cvtColor(stitched_img, 

cv2.COLOR_BGR2GRAY) 

        _, thresh = cv2.threshold(stitched_img_gray, 1, 255, 

cv2.THRESH_BINARY) 

        dino, contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_NONE) 

        print ("Cropping black edge of stitched image ...") 

        print ("Found %d contours...\n" % (len(contours))) 

         

        max_area = 0 

        best_rect = (0,0,0,0) 

     

        for cnt in contours: 

            x,y,w,h = cv2.boundingRect(cnt) 

     

            deltaHeight = h-y 

            deltaWidth = w-x 

            if deltaHeight < 0 or deltaWidth < 0: 

                deltaHeight = h+y 

                deltaWidth = w+x 

             

            area = deltaHeight * deltaWidth 

     

            if ( area > max_area and deltaHeight > 0 and deltaWidth > 0): 

                max_area = area 

                best_rect = (x,y,w,h) 

         

        if ( max_area > 0 ): 

            final_img_crop = stitched_img[best_rect[1]:best_rect[1]+best_rect[3], 

                    best_rect[0]:best_rect[0]+best_rect[2]] 

         

        return final_img_crop 
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def main(): 

    images = sorted(glob.glob(image_dir + "/*.jpg"),  

                    key=lambda x: int(os.path.splitext(os.path.basename(x))[0][5:])) 

    # read the first frame 

    first_frame = cv2.imread(key_frame) 

    heightM, widthM = first_frame.shape[:2] 

    first_frame = cv2.resize(first_frame, (int(widthM / resize_ratio),  

                                            int(heightM / resize_ratio)),  

                              interpolation=cv2.INTER_AREA) 

     

    image_stitching = ImageStitching(first_frame) 

    round = 2 

    for next_img_path in images[1:]: 

        print (f'Reading {Back.YELLOW}%s{Style.RESET_ALL}...' % 

next_img_path) 

        next_frame_rgb = cv2.imread(next_img_path) 

        heightM, widthM = next_frame_rgb.shape[:2] 

        next_frame_rgb = cv2.resize(next_frame_rgb, (int(widthM / resize_ratio),  

                                           int(heightM / resize_ratio)),  

                               interpolation=cv2.INTER_AREA) 

         

        print ("Stitching %d / %d of image ..." % (round,len(images))) 

        # process each frame 

        image_stitching.process_adj_frame(next_frame_rgb) 

         

        round += 1 

        if round > len(images): 

            print ("Please press 'q' to continue the process ...") 

        if cv2.waitKey(1) & 0xFF == ord('q'): 

            break 

 

    cv2.waitKey(0) 

    cv2.destroyAllWindows() 
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    # cv2.imwrite('mosaic.jpg', image_stitching.output_img) 

    final_img_crop = 

image_stitching.stitchedimg_crop(image_stitching.output_img) 

 

    print ("Image stitching done ...") 

    cv2.imwrite("%s/Normal.JPG" % output_dir, final_img_crop) 

     

    # Save important results into csv file 

    tuplelist = tuple(image_stitching.record) 

    workbook = xls.Workbook('Normal.xlsx')  

    worksheet = workbook.add_worksheet("Normal")  

    row = 0 

    col = 0 

    worksheet.write(row, col, 'number_pairs') 

    worksheet.write(row, col + 1, 'basefeature') 

    worksheet.write(row, col + 2, 'nextfeature')  

    worksheet.write(row, col + 3, 'no_match_lr') 

    worksheet.write(row, col + 4, 'match_rate') 

    worksheet.write(row, col + 5, 'no_GMSmatches (OFF)') 

    worksheet.write(row, col + 6, 'gms_match_rate') 

    worksheet.write(row, col + 7, 'inlier') 

    worksheet.write(row, col + 8, 'inlierratio') 

    worksheet.write(row, col + 9, 'reproerror') 

    row += 1 

    number = 1 

    # Iterate over the data and write it out row by row.  

    for basefeature, nextfeature, no_match_lr, no_GMSmatches, inlier, inlierratio, 

reproerror in (tuplelist):  

        worksheet.write(row, col, number)  

        worksheet.write(row, col + 1, basefeature) 

        worksheet.write(row, col + 2, nextfeature)  

        worksheet.write(row, col + 3, no_match_lr) 
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        match_rate = no_match_lr / ((basefeature+nextfeature)/2) 

        worksheet.write(row, col + 4, match_rate) 

        worksheet.write(row, col + 5, no_GMSmatches) 

        gms_match_rate = no_GMSmatches / ((basefeature+nextfeature)/2) 

        worksheet.write(row, col + 6, gms_match_rate) 

        worksheet.write(row, col + 7, inlier) 

        worksheet.write(row, col + 8, inlierratio) 

        worksheet.write(row, col + 9, reproerror) 

        number += 1 

        row += 1 

       

    workbook.close() 

 

""""""""""""""""""""""""""""""""""""""""""""" Main 

""""""""""""""""""""""""""""""""""""""" 

if __name__ == "__main__": 

    program_start = time.process_time() 

    main() 

    program_end = time.process_time() 

    print (f'Program elapsed time: {Back.GREEN}%s s{Style.RESET_ALL}\n' % 

str(program_end-program_start)) 
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