

IMAGE STITCHING OF AERIAL FOOTAGE

NG WEI HAEN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2021

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Ng Wei Haen

ID No. : 1602039

Date : 16/4/2021

APPROVAL FOR SUBMISSION

I certify that this project report entitled “IMAGE STITCHING OF AERIAL

FOOTAGE” was prepared by NG WEI HAEN has met the required standard

for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Honours) Electrical and Electronic at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ng Oon-Ee

Date : 16 April 2021

Signature :

Co-Supervisor : See Yuen Chark

Date : 17 April 2021

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, Ng Wei Haen. All right reserved.

iv

ABSTRACT

With the advent of modern drones or unmanned aerial vehicles (UAVs), it is

used in the application of infrastructure, agriculture monitoring, disaster

assessment, etc. It has simplified and automated the site assessment and

monitoring procedure. A lot of well-known image stitching software or

applications, including Image Composite Editor (ICE), Adobe Photoshop and

AutoStitch have been developed to allow users to stitch the images for

monitoring or assessment purposes. However, the problems arise when the input

data is aerial footage as these software are only taking images as input data. In

this project, an image stitching framework is proposed to take aerial footage as

input data. The proposed algorithm extracts the frames of the aerial footage and

undistorts the bird-eye-effect of the images to remove the noises. Scale-

Invariant Feature Transform (SIFT) approach is used to detect and describe the

feature points of the extracted frames. The randomized k-d tree of FLANN

matcher is utilized to match the feature point pairs between the images. The

Lowe’s ratio test is applied to discard the mismatched point pairs. RANSAC is

exploited in the homograhy estimation to calculate the corresponding

homography matrix and remove the outliers. The images are warped to the key

frame of the footage to generate a stitched image by using the computed

homography. The algorithm performance is evaluated using the Orchard

datasets, consisting of L-shape flight pattern and lawnmower flight pattern. The

implemented method successfully stitched the frames extracted from the aerial

footage to generate a large scene image beyond the normal resolution.

v

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of Report 3

2 LITERATURE REVIEW 4

2.1 Introduction of Image Stitching 4

2.2 Pixel-Based (Direct) Approaches 6

2.2.1 Gradient domain-based Method 6

2.2.2 Graph-based Method 8

2.2.3 Depth-based Method 9

2.2.4 Summary and Comparison 11

2.3 Feature-based Approaches 12

2.3.1 Sparse Feature-based Method 12

2.3.2 Binary Descriptor-based Method 14

2.3.3 Mesh-based Alignment Method 17

vi

2.3.4 Summary and Comparison 19

3 METHODOLOGY AND WORK PLAN 21

3.1 Overview of Project Work Plan 21

3.2 Introduction 22

3.3 Dataset 23

3.4 Frame Extraction from Aerial Footage 24

3.5 Camera Calibration 24

3.6 Image Pre-processing 26

3.7 Feature Representation 27

3.7.1 Scale-Invariant Feature Transform (SIFT) 27

3.8 Feature Matching 33

3.8.1 Randomized K-D Tree Algorithm of FLANN

 34

3.8.2 Feature Match Filtering 34

3.9 Robust Homography Estimation 36

3.9.1 Random Sample Consensus (RANSAC) 38

3.10 Image Warping and Black Edges Removal 39

3.11 Project Planning and Resource Allocation 40

3.12 Summary of Methodology 41

4 RESULTS AND DISCUSSIONS 42

4.1 Introduction 42

4.2 Frame Extraction and Camera Calibration 42

4.3 The Pre-processing Phase 43

4.3.1 Image Resize and Grayscale Conversion 43

4.3.2 Gaussian Noise Removal 44

4.4 Feature Representation 47

4.4.1 Comparison Results of Sparse Feature-based

and Binary-based Feature Representation 47

4.5 Feature Matching 50

4.5.1 Comparison Results of FLANN Matcher and

Brute-Force Matcher in Feature Matching 50

4.5.2 Comparison Results of LR, GMS and LR-

GMS in Feature Match Filtering 53

4.6 Robust Homography Estimation using RANSAC 60

vii

4.7 Image Warping and Black Edges Removal 61

4.8 Dataset with Lawnmower Flight Pattern 62

4.9 Finalization of Parameters 64

5 CONCLUSION AND RECOMMENDATIONS 66

5.1 Conclusion 66

5.2 Recommendations for Future Work 66

REFERENCES 68

APPENDICES 71

viii

LIST OF TABLES

Table 2.1: The comparison of direct methods 12

Table 2.2: The comparison of feature-based methods 20

Table 3.1: Details of aerial footage from the dataset 24

Table 4.1: Study of the effect of Gaussian blur on average
feature match rate, average inlier ratio and time
taken 46

Table 4.2: Comparison results of feature representation with
FLANN matching method on the orchard dataset 49

Table 4.3: Comparison results of SIFT with FLANN and
Brute-Force matcher 52

Table 4.4: Comparison results of LR, GMS and LR-GMS 54

Table 4.5: Study of the effect of various ratios on the feature
match rate and inlier ratio 58

Table 4.6: Summarized parameter settings of orchard dataset 64

ix

LIST OF FIGURES

Figure 2.1: Image Stitching (Levin et al., 2004) 7

Figure 2.2: (Upper) Image stitching of moving-face in three
images. (Bottom) Corresponding RODs affected
by motion in the upper image. (Uyttendaele, Eden
and Szeliski, 2001) 9

Figure 2.3: Demonstration of plane sweep algorithm (Zhi and
Cooperstock, 2012) 10

Figure 2.4: Demonstration of foreground-background
segmentation. Original input image (a). Color
segmented image (b). Foreground layer’s raw mask
(c). Final mask (d). (Zhi and Cooperstock, 2012) 10

Figure 2.5: Schematic diagram for UAV taking images in crop
growth monitoring. In (a), the flight trajectory is
represented with the orange; the captured image is
represented with the blue; and the overlap of images
is represented with the shaded-blue rectangles. (b)
denotes the transverse overlap with 70%, whereas (c)
indicates the longitudinal overlap with 75%. (Zhao et
 al., 2019) 14

Figure 2.6: Mesh-based image alignment. (a) Input image (b)
Meshed input image (c) Warped and aligned images.
(d) Histogram of number of weights for each cell.
(Zaragoza et al., 2014) 18

Figure 3.1: Flowchart for Project Workflow 21

Figure 3.2: Flowchart of the proposed framework 22

Figure 3.3: Examples of aerial footage of orchard 23

Figure 3.4: Image Pre-processing Flow Diagram 27

Figure 3.5: The major steps of SIFT framework 28

Figure 3.6: Octaves of image pyramid (Younes, Romaniuk
and Bittar, 2012) 28

Figure 3.7: Sixteen 8-direction histogram concatenation of
descriptor (Younes, Romaniuk and Bittar, 2012) 33

Figure 3.8: Matches between a base image and query image 35

x

Figure 3.9: Example of categorizing inliers (Baid, 2015) 38

Figure 3.10: Gantt Chart of Task List Project Planning 40

Figure 4.1: Example of an extracted frame with fish-eye effect
(left) and calibrated frame (right) 43

Figure 4.2: Grayscale conversion of aerial image 44

Figure 4.3: Effect of gaussian blur (left = before, right = after) 44

Figure 4.4: Graph of feature match rate between image stitching
with Gaussian blur and without Gaussian blur 45

Figure 4.5: Graph of inlier ratio between image stitching with
Gaussian blur and without Gaussian blur 45

Figure 4.6: Stitched image of orchard without Gaussian blur
(left) and with Gaussian blur (right) 46

Figure 4.7: Graph of feature match rate between SIFT,
randomized k-d tree and ORB, locality-sensitive
hashing 48

Figure 4.8: Graph of inlier ratio between SIFT, randomized
k-d tree and ORB, locality-sensitive hashing 48

Figure 4.9: Stitched image using SIFT, FLANN (randomized k-d
tree) (left) and ORB, FLANN (locality-sensitive
hashing) (right). The red bounding box shows the
misaligned frame. 49

Figure 4.10: Graph of feature match rate between FLANN (
randomized k-d tree) and brute-force matcher 51

Figure 4.11: Graph of inlier ratio between FLANN (randomized
k-d tree) and brute-force matcher 51

Figure 4.12: Stitched image using SIFT, FLANN (randomized
k-d tree) (left) and SIFT, Brute-Force (right) 52

Figure 4.13: Graph of feature match rate among LR, GMS and
LR-GMS 53

Figure 4.14: Graph of inlier ratio among LR, GMS and LR-GMS 54

Figure 4.15: Stitched image using GMS (top-left), LR (top-right)
and LR-GMS (bottom) 55

xi

Figure 4.16: Graph of average inlier count among LR, GMS and
LR-GMS 56

Figure 4.17: Graph of feature match rate over the Lowe’s ratios 57

Figure 4.18: Graph of inlier ratio over the Lowe’s ratios 57

Figure 4.19: Graph of average inlier count over the Lowe’s ratio 58

Figure 4.20: Stitched image using 0.5 ratio (top-left), 0.6 ratio
(top-right), 0.7 (bottom-left) and 0.8 (bottom-right) 59

Figure 4.21: Stitched image without using RANSAC algorithm
(left) and using RANSAC algorithm(right) 61

Figure 4.22: Example of sequential order image wrapping 61

Figure 4.23: Black edge removal of the stitched image 62

Figure 4.24: Stitched image of the dataset with lawnmower flight
pattern 63

Figure 4.25: Final stitched result 65

xii

LIST OF SYMBOLS / ABBREVIATIONS

APAP As-Projective-As-Possible

BRIEF Binary Robust Independent Elementary Features

DBM Depth Estimation Method

DLT Direct Linear Transformation

DoG Difference of Gaussian

FAST Features from Accelerated Segment Test

FLANN Fast Approximate Nearest Neighbor Searches

GMS Grid-based Motion Statistics

GPS Global Positioning System

ICE Image Composite Editor

IMU Inertial Measurement Unit

k-d k-dimensional

LoG Laplacian of Gaussian

LR Lowe’s Ratio

LSH Locality Sensitive Hashing

NIR Near-Infrared

ORB Oriented FAST and rotated BRIEF

RANSAC Random Sample Consensus

RGB Red, Green, Blue

ROD Region of Difference

ROI Region of Interest

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

UAV Unmanned Aerial Vehicle

VFC Vector Field Consensus

2D 2-Dimensional

3D 3-Dimensional

xiii

LIST OF APPENDICES

APPENDIX A: Computer Specification 71

APPENDIX B: Python Codes 71

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In recent years, unmanned aerial vehicles (UAVs) or drones are no longer

exclusive to the military domain. They have been commercialized for leisure

and industrial domain, causing skyrocketing usage of the commercial and

domestic drone. With the advantages of the capability to fly at low altitude and

convenience, UAVs have been widely employed in various fields for remote

sensing purposes. Nonetheless, the advancements of GPS, IMU, RGB, NIR and

video camera unit installed in small drones have made it becomes the primary

device to the aerial applications that require high resolution, low-cost solutions

and high portability.

 During the flight of the UAV, the camera’s location is constantly varying

and producing images with various view angles. Generally, the UAV image

acquisition modes are divided into three types, including manual acquisition

mode (manually triggers to capture aerial images), fixed-point mode (stops at

its location to capture aerial images along the predefined flight route) and cruise

acquisition mode (takes the aerial images without stopping flying) (Eisenbeiss

and Sauerbier, 2011). All three modes mentioned can obtain images over large

area coverage and are often applied in the application of environment,

infrastructure and agriculture monitoring as well as disaster assessment. Hence,

an image stitching technique is needed to stitch the aerial images or footage.

Image stitching, also known as image mosaicing is a process that combines

numerous images with the overlapped areas to generate a large scene image

beyond the normal aspect ratio and resolution. It has been utilized in the daily

lives of people, such as artistic photography, medical imaging, etc. Furthermore,

it has simplified the assessment and monitoring procedure. Many well-known

applications, such as AutoStitch, Image Composite Editor (ICE) and Adobe

Photoshop have the functionality to stitch overlapped images to produce a

stitched image with wide-angle view.

There are two types of image stitching approaches. The two commonly

employed image stitching approaches are pixel-based (direct) approaches and

2

feature-based approaches. These methods will be further discussed in

Chapter 2.

1.2 Importance of the Study

Nowadays, image stitching software mainly aims to process images to produce

a large scene image. Before utilizing these software or application to perform

image stitching with the input of aerial footage, manual keyframe selection is a

necessary prerequisite to image stitching. Generally, this always brings

inconvenience to the users. Therefore, this project shows the implementation of

automated image stitching algorithm for aerial footage.

1.3 Problem Statement

Most image stitching software or application can stitch multiple aerial images

with adequate overlapping field of view to generate a panoramic image or

stitched image. However, those image stitching software are meant to take only

images as input data rather than the footage to generate stitched image. Manual

keyframe selection of the aerial footage before using the software is essential

and cause the inconvenience to the end-users.

Furthermore, UAVs used in the monitoring process usually perform at

low flight altitudes, and the neigboring frames of aerial footage often have a

high degree of overlap. Zhao et al. (2019) mentioned that the quality of stitched

image is profoundly affected by the texture features, overlap, and structure

content of the aerial images. These aspects significantly affect the number of

matched feature points in image stitching algorithm. Meanwhile, many

mismatched point pairs are generated when the images' structure contains high

degrees of similarity (ie. orchard or farm), causing the failure of aerial image

stitching.

Afterward, Moussa and El-Sheimy (2016) stated that large number of

input images is one of the factors that cause the failure of image stitching.

Meanwhile, aerial footage usually consists of large number of continuous

frames, and the image stitching algorithm has difficulty stitching the frames of

the footage. Therefore, aerial image stitching is not straightforward and

challenging.

3

1.4 Aim and Objectives

The main objective of this project is to develop an image stitching program for

aerial footage. The details of the objectives are:

(i) To implement an automated image stitching algorithm for aerial

footage

(ii) To automate the keyframe selection process for image stitching

1.5 Scope and Limitation of the Study

This project focuses on stitch multiple aerial input images from aerial footage

to produce a large scene image. Therefore, the resolution of the stitched image

will not be taken into consideration.

1.6 Contribution of the Study

There are many publications and research work on image stitching. This project

intends to apply an automated image stitching algorithm for aerial footage to

address the inconvenience of manual keyframe selection and stitch multiple

frames extracted from aerial footage to produce a large scene image.

1.7 Outline of Report

Chapter 1 provides an overview of the importance of the image stitching

technique and the problems of conventional image stitching software. The aim

and objectives of the project are described in Chapter 1 as well.

 The literature review in Chapter 2 highlights the types of image stitching

techniques, including pixel-based (direct) approaches and feature-based

approaches. The methodology in Chapter 3 explains the framework proposed

for stitching the aerial footage.

 The results and discussion in Chapter 4 shows the result generated and

the discussions involved. Afterward, the results among various algorithms are

compared and discussed. Graphs and tables were generated to visualize the data.

 Chapter 5 concludes the results of image stitching of aerial footage and

provides suggestions on future methodology improvement and future research

directions.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction of Image Stitching

Image stitching is the process of merging multiple images with overlapping

regions to generate a large scene image or panoramic image. In recent years, a

lot of research works have been conducted to produce a large view for

applications in the realm of surveillance, reconstruction, monitoring, medical

imaging, etc. Image stitching approaches are generally categorized into two

classes, namely pixel-based(direct) approaches and feature-based approaches.

In the early days, the effectiveness and efficiency of the direct methods

were sufficient and widely being implemented in professional applications (Lyu

et al., 2019). Existing direct approaches are primarily focused on tackling the

problems caused by the image properties, including the brightness difference

between the overlapping images. Many useful research works have been

presented in the topic of image stitching, using the pixel information of the

image, including depth, color, geometry and gradient. Deforming and aligning

the overlapped images using global estimated image transformation. However,

direct-based matching is inefficient and limited in addressing images with

multiple planes. It is also inadequate to be implemented in stitching images with

complex properties, such as motion change, parallax change and non-planar

scene.

Due to the limitation of the pixel-based methods, a lot of research papers

introduce feature-based methods to stitch images. Generally, feature-based

image stitching pipeline is divided into several algorithmic stages:

(i) Feature Representation

(ii) Image Matching

(iii) Outliers Removal and Robust Estimation

(iv) Image Transform Estimation

The feature representation is used to identify and describe the image

patches with high repeatability and distinctiveness. Normally, in the framework

and algorithm of image stitching, the process of feature detection and feature

5

descriptor is executed consecutively. The feature detector is to detect the

repeatable feature points, also known as interest point, salient point or keypoint

based on some criterion, such as the local maximum of some functions in the

image (Li et al., 2014). The feature descriptor is usually a vector of values,

which describes the image patches around the feature point detected by the

detector. It would be interpreted as simple as the raw pixel values, yet it can be

as complex as a histogram of gradient orientation. The invariant feature-based

approach presented by Brown and Lowe is the most popular method, which is

robust and reliable on stitching single planar model and some properties

difference among the images such as illumination changes and zoom in. The

typical invariant feature-based approaches that are used include SURF, SIFT,

ORB and BRIEF, etc. In term of robustness and distinctiveness in solving

photometric transformations, a performance evaluation (Hossain and Alsharif,

2007) shows that the SIFT feature outperform others. Yet, the major drawback

of this feature is that it imposes high computational burden caused by the scale-

invariant feature point detection and the spatial histogram feature description.

Other than the complex SIFT float descriptors, the binary feature descriptors,

including ORB and BRIEF have become the first selection for the fast

processing application due to its fast computations and less storage space

needed (Li et al., 2014). However, binary feature descriptors are slightly weaker

compared to SIFT-like descriptor in terms of distinctiveness and robustness.

Image matching or feature matching is to match the registered feature

points between the images. Two commonly utilized methods, namely brute-

force searching methods and tree-based methods. Tree-based methods are

formulated to get the k nearest neighbors in the indexing tree efficiently. But it

is much more time-consuming as indexing tree set up is necessary before the

feature searching process. On the other hand, brute-force searching is much

more simple strategy to search the most identical feature correspondence.

Removing outliers from initial feature correspondence is a crucial step

in image stitching. Currently, Random Sample Consensus (RANSAC) is the

most popular and widely employed robust approach to remove the outlier from

the feature correspondence (Li et al., 2014). It is a robust estimation method. It

utilizes a minimal set of randomly sampled data to produce image

6

transformation parameters and determine a candidate solution of homography

that has the best consensus with the entire feature dataset.

 Image transform estimation is usually divided into two classes of method,

which are global estimated image transformation and local estimated image

transformation. Global estimated image transformation is to deform the image,

identify the best-estimated transformation matrix from a particular frame to the

reference image, and align the overlapped images globally. Yet, it is limited on

a single planar model only. Hence, local estimated image transformation is

introduced to solve the limitation. Local estimated image transformation is

generally deforming the image into uniform grids, warp the grid, and aligned

the image with the estimated transformation matrix (Lyu et al., 2019).

2.2 Pixel-Based (Direct) Approaches

Pixel-based approaches, also known as direct approaches, register multiple

images by minimizing pixel-to-pixel dissimilarities in image stitching. Multiple

researchers proposed their method by applying the information of the image

such as color, gradient, geometry and depth to stitch the images to obtain large

stitched image. In this section, multiple pixel-based approaches are discussed.

2.2.1 Gradient domain-based Method

Gradient information is responsive to high-level features, such as edges, lines

and contours in the images and conducive to the understanding of image scenes.

Levin et al. (2004) proposed an image stitching method in gradient domain

(GIST) to perform seamless image stitching, each technique corresponding to a

cost function. The outcome and quality of various formal cost function were

valued and compared by authors. They aimed to mitigate a cost function based

on dissimilarity to each of the input images to overcome the geometric

misalignments and photometric inconsistencies between the input images. From

the performance evaluation (Levin et al., 2004), the methods under a feathered

cost function L1 optimization on the original image gradients (GIST1) was

recommended as the standard stitching algorithm in this paper. The utilization

of L1 norm is crucial in solving geometrical misalignments of the input images.

GIST1 is denoted as the minimum of Ep corresponding to Î:

7

Ep�Î; I1, I2, W� = dp�∇Î;∇I1, τ1 ∪ ω, W� + dp�∇Î;∇I2, τ2 ∪ ω, U − W� (2.1)

where

I1, I2 = two aligned original images, τ1 corresponding to a region viewed in

image Ii

ω = overlapping region

U = uniform image and set to 1

W = weighting mask

dp = weighted distance between two regions

Ep = cost function

Furthermore, Levin et al. (2004) optimized the L1 norm by iterating the

algorithm to converge the cost functions and mitigate the edge duplication along

the seam and seam artifacts between two input images. The image stitching is

shown in Figure 2.1. The 𝜔𝜔 indicates the overlap region. Moveover, the top-

right image shows a image is simply being pasted onto another. Whereas, the

bottom-right image is the stitching result of GIST1 framework.

Figure 2.1: Image Stitching (Levin et al., 2004)

8

 Based on the approach proposed, gradient domain-based method can

successfully reduce the global inconsistencies in the overlapping region caused

by illumination differences between images. The seam artifacts and edge

duplication of the stitched image can be reduced by optimization over the image

gradient. But, this method has difficulty coping with the image structure with

huge misalignment (Zhi and Cooperstock, 2012). The input images must be

well-aligned, and it is sensitive to the orientation of the images, which makes

this method not suitable for practical application.

2.2.2 Graph-based Method

Ghosting effect is observed when movement occurred in the overlapping region

of the stitched image. The method proposed by Levin et al. (2004) may not be

able to find a solution when the ghosting caused by object motion in the

overlapping region. Hence, Uyttendaele, Eden and Szeliski (2001) proposed a

method of constructing a graph to stitch the original images when moving

objects presents in the overlapping area among the images. Region of Difference

(RODs) assumed to be vertices in a graph and the edges linked the

corresponding RODs, as shown in Figure 2.2. Higher weight is appointed to

have more central and larger RODs, to discard the low weight vertices, avoiding

the moving object discontinuities arising from selected either of the side image.

Nevertheless, to further remove the exposure artifacts, they divide each image

into blocks, each block corresponding to a quadratic transfer function. They

were averaging the functions in each patch with those of their neighbors, further

blending the resulting pixel with corresponding transfer function to eliminate

the exposure artifacts.

9

Figure 2.2: (Upper) Image stitching of moving-face in three images. (Bottom)

Corresponding RODs affected by motion in the upper image. (Uyttendaele,

Eden and Szeliski, 2001)

 According to the method proposed by Uyttendaele, Eden and Szeliski

(2001), it can eliminate the ghosting effect caused by the moving objects in the

overlapping region with further dealing exposure artifacts. However, the

complicated calculation caused by pixel blending with the corresponding

transfer function is a significant drawback.

2.2.3 Depth-based Method

Other than the graph-based method, Zhi and Cooperstock (2012) took advantage

of a smooth transition criterion and depth cues to achieve image stitching. They

proposed a Depth Estimation Method (DBM) to solve parallax-related issues

and object motion between the images. The static background scenes are divided

into overlapping region and non-overlapping region with the use of multiple

input cameras. In synthesizing overlapping regions, plane sweep algorithm is

used to divide space into layered depth levels. Figure 2.3 illustrates the plane

sweep algorithm. The two images (a) and (b) are wrapped onto the parallel

sampling planes, where the planes are stacked at different depth levels (d, e and

f). Then, a virtual image (c) located at a spot between the input images is

synthesized.

10

Figure 2.3: Demonstration of plane sweep algorithm (Zhi and Cooperstock,

2012)

Furthermore, to synthesize non-overlapping region, the color

segmentation of the input images is to be done first, followed by the depth to be

transmitted to neighboring color segments, preserving smooth-appearance

connection among them in a stitched result. The demonstration of foreground-

background segmentation is shown in Figure 2.4.

Figure 2.4: Demonstration of foreground-background segmentation. Original

input image (a). Color segmented image (b). Foreground layer’s raw mask (c).

Final mask (d). (Zhi and Cooperstock, 2012)

11

Nevertheless, their method also targeted on solving the dynamic scene

caused by the moving object, such as human walking or running, by introducing

optimization of various energy functions for corresponding scenes.

In this paper, the DBM technique can dramatically overcome the

parallax problem. On the other hand, the authors mentioned that when the

position and orientation of the virtual stitching camera are different from the

source camera will results in holes due to occlusion in the non-overlapping

region and cause parallax effect (Zhi and Cooperstock, 2012). Their method

requires complicated calculations to distinguish non-overlapping and

overlapping regions, which leads to high computational burden.

2.2.4 Summary and Comparison

From the direct methods discussed previously, they were mainly targeted on

solving the problems affected by the properties of the input images itself, for

example, illuminance difference mentioned in Levin et al. (2004). However,

these methods perform computation for each pixel on input images, becoming

computational intensive if the algorithm is complex or the input dataset is huge,

such as frames of aerial footage (Pravenaa and Menaka, 2016). Hence, these

methods are not adopted by commercial image stitching software and not an

effective and suitable approach to stitch aerial images. Moreover, the existing

direct approaches are constrained to stitch the image with single planar and

parallax-free scene. These limitations make direct matching is generally

inefficient on stitching images with complex properties, such as aerial images.

The comparison between different direct methods is shown in Table 2.1.

12

Table 2.1: The comparison of direct methods

Approach Principal Strength Drawback

Levin et al.

(2004)

Gradient

Weighting
• Seamless • Only aligned

input image

Uyttendaele,

Eden and

Szeliski (2001)

Graph

Structure
• Remove

ghosting
caused by
motion

• Complicated
Calculation

Zhi and

Cooperstock

(2012)

Depth and

Color
• Solve certain

degree of
depth
discontinuity

• Limited
orientation
of input
images

• Complicated
calculation

2.3 Feature-based Approaches

Unlike Pixel-based (Direct) approaches, feature-based approaches are able to

evaluate the 2D motion model by adopting the sparse feature points. Several

researchers proposed different optimization strategies on stitching the images to

obtain huge stitched image. As mentioned early in this chapter, feature-based

method is generally divided into several processes, including feature

representation, image matching, outliers removal and robust estimation, and

image transform estimation. Feature-based methods are discussed in this section.

2.3.1 Sparse Feature-based Method

In the early years, sparse feature-based method had been nominated image

stitching. A traditional approach was first introduced by Brown and Lowe

(2007), using local invariant feature approach to produce a panoramic image. A

well-known image stitching software tool, AutoStitch was designed based on

their approach. Despite the rotation, illumination change and zoom in the input

images, their algorithm can provide a reliable matching of the panoramic image

in an unordered dataset. Scale-Invariant Feature Transform (SIFT), a notable

feature detector and descriptor was developed by Brown and Lowe and

presented in this paper. SIFT algorithm is one of the state-of-the-art algorithms.

It utilizes the difference of Gaussians (DoG) to build the difference of Gaussian

scale-space. The feature points are extracted when different spatial scales are

13

detected on images, and the unstable feature points are removed. Then, the

principal direction of the feature points is identified. Once the principle direction

is determined, the SIFT feature descriptor is generated to prevent the mismatch

caused by noise, rotation, scale and illumination. In terms of feature matching,

Brown and Lowe matched the sparse feature between the input images and

employed probabilistic model for image match verification. It can estimate the

global homography transformation using RANSAC to deform and align the

overlapped images. Brown and Lowe further introduced a robust bundle

adjustment and performed automatic panorama straightening on stitched view.

Nevertheless, multi-band blending and gain compensation were applied to

generate a seamless stitched image.

 The approach proposed by Brown and Lowe (2007) was limited to single

homography transformation. Thus, Brown presented an improved model, dual-

homography model to solve the problem by aligning the images involving

numerous planes in the overlapping area (Gao, Kim and Brown, 2011). Two

dominant planes, namely background plane and foreground plane were obtained

by dividing the input image, and homography transformation estimation was

performed to each plane.

 In aerial application, Zhao et al. (2019) exploited the scale-invariant

feature transform (SIFT) to perform fast aerial image stitching for crop growth

monitoring. To reduce the high computational burden in image stitching when

using the standard SIFT algorithm, they proposed a simple and improved sparse-

feature based method to increase the accuracy and efficiency of aerial image

stitching in crop growth monitoring. Their framework is to optimize the

dynamic setting of the contrast threshold in the DoG scale-space in SIFT to

enhance the efficiency of the algorithm. The optimization is done by evaluating

the image contrast that can express the difference in image details and

calculating the new contrast threshold in the DoG scale-space. Meanwhile, the

local features of the aerial image are retained. Furthermore, the mismatched

point pairs in the non-overlapping region are deleted to enhance the stitching

accuracy and reduce the processing period according to the relative positional

relationships of the aerial image. The algorithm eliminates the mismatch point

pairs by evaluating the longitudinal overlap and transverse overlap between the

14

images. Figure 2.5 shows the schematic diagram for UAV taking images in crop

growth monitoring.

Figure 2.5: Schematic diagram for UAV taking images in crop growth

monitoring. In (a), the flight trajectory is represented with the orange; the

captured image is represented with the blue; and the overlap of images is

represented with the shaded-blue rectangles. (b) denotes the transverse overlap

with 70%, whereas (c) indicates the longitudinal overlap with 75%. (Zhao et al.,

2019)

 In the method presented by Brown and Lowe (2007), it assumes that the

camera motion is purely rotational and the group of transformations that the

input images may undergo is a special group of homographies. In reality, it is

very rare to obtain such an ideal dataset (Chen et al., 2019). Usually, aerial

images captured by UAV are hard to fulfill such a perfect situation, where the

images might not be on a single plane, except the aerial input data used by Zhao

et al. (2019). Because the aerial crop field images are generally planar compared

to other aerial images, such as buildings. Thus, it might be difficult to produce

good stitched results when nonrigid input images are applied. Nevertheless,

SIFT-liked feature detector and descriptor imposes a large computational

burden and not suitable for real-time systems (Rublee et al., 2011).

2.3.2 Binary Descriptor-based Method

Apart of SIFT-liked feature detector and feature descriptor, Rublee et al. (2011)

proposed a scheme of binary-based feature detector and descriptor, known as

15

Oriented Fast and Rotated BRIEF (ORB), where it is built on the FAST feature

point detector and BRIEF feature descriptor. It is much more robust against the

rotational problem compared with purely BRIEF algorithm (Li et al., 2014).

This scheme was built to address the limitations imposed in SIFT, such as large

computational burden. The feature points identified in the images is described

in binary string instead of spatial histogram. For the requirement of the high-

quality image stitching system with low computational time, Adel, Elmogy and

Elbakry (2015) made an in-depth comparative study on the feature detector and

descriptor. It concluded that ORB algorithm is the best among others, including

SIFT, SURF, FAST and HARRIS.

 Furthermore, Li et al. (2014) developed a high-speed aerial video

stitching scheme. They employed the ORB algorithm to find the feature point

and describe it. Some modification had been made on the algorithm by rescaling

a scaling factor to √2 on the extracted feature points in five scale images

separately to produce multi-scale features. Nonetheless, the algorithm can

generate the keyframe dynamically to mitigate accumulation errors. In terms of

outlier removal, RANSAC is often being used, yet, the major drawback it

imposed is high processing time in relation to the additional outlier. Thus, an

motion- and appearance-based spatial and temporal filter was implemented to

eliminate most of the outliers before RANSAC to improve the processing time

efficiency. They used the scale of the feature point in calculating the appearance

coherence and motion coherence in the filter:

 𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐾𝐾𝑡𝑡,𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟′ � = �1 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑡𝑡 − 𝜆𝜆𝑡𝑡−11 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟′ , 𝑆𝑆𝑡𝑡 − 𝜆𝜆𝑡𝑡−12 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟′ � ≤ 𝑇𝑇𝑠𝑠
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

(2.2)

 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐾𝐾𝑡𝑡 ,𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟′ � = �1 𝑖𝑖𝑖𝑖 �𝑋𝑋𝑡𝑡 − 𝐻𝐻𝑡𝑡−1,𝑟𝑟𝑟𝑟𝑟𝑟
−1 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟′ �

2
≤ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� (2.3)

 𝜙𝜙�𝐾𝐾𝑡𝑡,𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟′ � = 𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐾𝐾𝑡𝑡 ,𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟′) . 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐾𝐾𝑡𝑡,𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟′ � (2.4)

where

𝑇𝑇𝑠𝑠 = difference of maximal scale between the 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟′ and keypoint K

16

𝜆𝜆𝑡𝑡−11 and 𝜆𝜆𝑡𝑡−12 = scale of inliers

Tdis = distance threshold between two adjacent frames

Xt, Ht−1,ref
−1 , Xref′ = transform matrix of image from the initial image at time t −

1 to the reference image, 𝑟𝑟𝑟𝑟𝑟𝑟

 De Lima and Martinez-Carranza (2017) proposed a real-time based

aerial image stitching method by using the characteristics of ORB binary

descriptor along with a feature matching approach based on Locality-Sensitive

Hashing (LSH) technique. ORB descriptor is the most widely employed binary

feature as it offers some advantages, including fast comparison, ease to compute,

robustness to affine transformations and low memory footprint (De Lima and

Martinez-Carranza, 2017). The characteristics of ORB, including invariant to

in-plane rotation and binary string-based descriptor, help the ORB vectors good

to be organized through a hash table. The low memory footprint used by ORB

vector can prevent the increase of memory resources. Nonetheless, it is

processing time efficient in storing and fetching data from memory as the

feature correspondence is found in the hamming space. Hashing technique is

divided into two main algorithmic steps, which are using hashing function to fill

and search the tables consecutively. For the filling step, hashing keys is chosen

by using the consecutive subset of bits, which allow the descriptors can be

rapidly stored into different tables. The process proceeds for searching the tables

to match the feature between the current frame and reference frame once the

tables were filled. For searching the tables, it is divided into four algorithmic

steps:

(i) Search the hashing keys against different tables

(ii) Determine the hamming distance for all the descriptors in the

bucket for each table

(iii) Determine the minimum distance given for each table

(iv) It considered match if the minimum distance does not exceed a

preset threshold

Next, they employed RANSAC to remove the additional outlier and compute

the best homography matrix to perform global homography transformation on

the images to produce a stitched image.

17

 According to the methods proposed by Li et al. (2014) and De Lima and

Martinez-Carranza (2017), both can significantly reduce the processing time of

image stitching. Nevertheless, Li et al. (2014) method can reduce the

accumulation error by generating the keyframe dynamically to prevent ghosting

effect. However, it was only targeted on the high-altitude input images. Thus, it

might be challenging to produce a good stitched result when input aerial images

are taken in low altitude or huge parallax shown in the images. For De Lima and

Martinez-Carranza method, although the real-time performance was

accomplished, yet, the overlapping region between the input images cannot be

aligned accurately.

2.3.3 Mesh-based Alignment Method

Mesh-based alignment method produced an outstanding result in image

stitching in the early days. Due to excellent results, the mesh-based alignment

method is deemed as one of the state-of-the-art methods until today (Lyu et al.,

2019). The images are split into uniform meshes, and each mesh corresponding

to a transformation. This method was first proposed by Zaragoza et al. in 2014.

Then, more and more research works adopted this method in their optimization

method on various prior problems.

To solve the misalignment artifacts or ghosting produced during the

single planar wrap and transformation of image stitching as well as expensive

postprocessing algorithm, Zaragoza et al. (2014) proposed a method, known as

as-projective-as-possible (APAP) image alignment to dramatically reduced the

ghosting without jeopardizing the geometric realism of the stitched image. The

input images were divided into uniform meshes, and each mesh undergoes a

local homography estimation with a Moving Direct Linear Transformation

(Moving DLT) and RANSAC. Moreover, a simultaneous refinement of bundle

adjustment proposed in the research paper (Brown and Lowe, 2007) was

employed to align multiple images accurately to obtain large panoramic scene.

Figure 2.6 demonstrates the image stitching using APAP image alignment

strategy.

18

Figure 2.6: Mesh-based image alignment. (a) Input image (b) Meshed input

image (c) Warped and aligned images. (d) Histogram of number of weights for

each cell. (Zaragoza et al., 2014)

 Then, Liu and Chin (2016) developed a mesh-based alignment

optimization algorithm to automatically identify the misaligned overlapping

regions and add correct point correspondences to improve the alignment of the

composition image and enhance the flexibility of the warp. They encapsulated

their technique in a scheme called data-driven warp adaption scheme, which

repeatedly inserts new appropriate points in the overlap area. In this paper, the

comparison of the result for APAP and their method (APAP + Correspondence

Insertion) has been shown, and it can be concluded that their method produces

better results compare to pure APAP method in terms of the alignment of

overlap regions.

2.3.3.1 Image Differentiating Technique for Aerial Image Stitching

In the traditional image stitching method, single planar perspective

transformation with bundle adjustment is leading to ghosting error. Inspired by

the mesh-based alignment method introduced by Zaragoza et al. (2014), Chen

19

et al. (2019) employed the image differentiating technique with Moving DLT

to diminish the error and tolerate the parallax in the image. Moreover, they

introduced a nonrigid matching algorithm to enhance the accuracy of feature

matching and improve the bundle adjustment proposed by Brown and Lowe to

make the system applicable for aerial image stitching effect. At the feature

matching stage, a SIFT-based nonrigid matching algorithm using Vector Field

Consensus (VFC) is employed to obtain the corresponding relationship of

feature point between images with further filtering of outliers from the inliers.

Chen et al. (2019) mentioned that global homography could not efficiently

match the two aerial images. Thus, they introduced a location-dependent

homography with moving DLT to simultaneously improve the projection

functions and mitigate the cumulative error when stitching numerous input

images.

2.3.3.2 Summary of Mesh-based Alignment Method

By evaluating the results based on the strategies proposed by Chen et al. (2019),

the ghosting effect is efficiently reduced when only two aerial images are

involved in the stitching process. In the paper, the algorithm that robust against

parallax change, noise and blurriness has been proved. However, when stitching

multiple images, the stiffness of the stitched image has to be sacrificed (Chen et

al., 2019). The distortion and the misalignment on the overlapping region are

observed when the parallax of the input images is particularly huge, such as the

buildings in low-altitude images.

2.3.4 Summary and Comparison

Sparse feature-based approaches have dominated the stitching technique. It

performs well on standard datasets and numerous challenging datasets. These

works are primarily focussed on producing better results than time efficiency,

resulting in that they are not suitable for real-time applications. They deform

and align the images with global homography estimation. Unlike the mesh-

based alignment method, they do not categorize non-overlapping and

overlapping regions, resulting in ghosting and distortion. Furthermore, binary

descriptor-based methods are concerned with designing a processing time-

efficient system to stitch the images. However, it is often relatively weak in

20

terms of distinctiveness and robustness during the image stitching process.

Mesh-based alignment methods can eliminate some prior limitations to improve

the alignment, while local distortion is still inevitable due to the coupling

relationships between different constraints. Table 2.2 shows the comparison of

feature-based methods.

Table 2.2: The comparison of feature-based methods

Approach Principal Strength Drawback

(Brown and

Lowe, 2007)

Simple

Sparse

feature

matching

• Automatic • Limited
to single
plane
model

(Zhao et al.,

2019)

Modified

Sparse

feature

matching

• Fast • Limited
to single
plane
model
and rigid
input
images

(Li et al., 2014) Binary

descriptor
• Real-time

performance
• Limited

to high
altitude
image

(De Lima and

Martinez-

Carranza,

2017)

Hashing-

based

matching

• Real-time
performance

• Poor
alignment
accuracy

(Zaragoza et

al., 2014)

Mesh-based • Multiple
transformations

• Local
distortion

(Chen et al.,

2019)

location-

dependent

homography

with moving

DLT

• Reduce
cumulative
error

• Multiple
transformations

• Limited
to small
parallax
images

21

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Overview of Project Work Plan

Figure 3.1 shows the general flow of the project work plan. One aerial footage

dataset (UMN Horticulture Field Station) that is publicly available is chosen for

this project. The algorithms of the feature representation methods (SIFT and

ORB), feature point matchers (FLANN and Brute-Force Searching) and feature

match filtering technique (LR and GMS) are used for the evaluation. The details

of the work plan are discussed in the subsequent chapters.

Figure 3.1: Flowchart for Project Workflow

Evaluate type of Feature
Representation

Evaluate type of Image
Matching

Feature Representation
Selection

Image Matching Selection

Aerial Footage Acquisition
and Image Extraction

Develop Program Flowchart

Image Stitching Program
CodingProgram Testing

Program Improvement

22

3.2 Introduction

The proposed framework’s flow chart is shown in Figure 3.2.

Figure 3.2: Flowchart of the proposed framework

Extracting frames from
aerial footage

Calibrating the frames

Loading key frame Loading adjacent image

Resizing image Resizing image

Converting image in
grayscale

Applying Gaussian Blur to the
image

Performing feature extraction and
feature description using SIFT

Feature matching using FLANN
(randomized k-d tree)

Storing good matches using Lowe’s ratio test

Computing homography matrix using RANSAC
(remove outliers)

Warping the adjacent image onto key frame

Converting image in
grayscale

Applying Gaussian Blur to the
image

Performing feature extraction and
feature description using SIFT

Calculating feature match rate

Calculating inlier ratio

Finish warping all frames?
NO

Cropping the black edge of the stitched image

Stitched image

Aerial footage

YES

23

 The method's performance in every subchapters, such as feature

representation, feature matching and feature match filtering is evaluated by

analyzing the feature match rate and inlier ratio. Moreover, the capability of

stitching images is the primary concern of the proposed framework. The

observation on the alignment of the frames in the stitched images is recorded in

this project. Further information about the performance evaluation will be

discussed in Chapter 4.

3.3 Dataset

Table 3.1 shows the details of aerial footage from the dataset. And Figure 3.3

illustrates the examples of aerial footage of orchard in the dataset. The aerial

footage provided in the dataset was shot by a downward-pointing camera,

GoPro Hero 3. Meanwhile, the dataset contains the GoPro Hero 3 camera

information, including focal length, pixel error, skew, distortion coefficient, and

principal point.

Figure 3.3: Examples of aerial footage of orchard

24

Table 3.1: Details of aerial footage from the dataset

Location UMN Horticulture Field Station (Orchard)

Area Covered 800 m2

Camera GoPro Hero 3

Flying Height (altitude) 13 m

Flying Speed 1 m/s

Flight Pattern L-shape Flight Pattern

Video Type MP4

Length 00:00:40

Frame Width 1920

Frame Height 1080

Frame rate 30 fps

3.4 Frame Extraction from Aerial Footage

The aerial footage undergoes frame extraction in the first place to extract the

frames from the video. The drone used in the dataset moved at one meter per

second and generated thirty frames per second recorded footage. Since the video

was shot at low altitude, extracting one image every fifty frames is sufficient to

obtain at least sixty percent of the overlapping region.

3.5 Camera Calibration

Images captured or recorded from the camera are required to be calibrated. This

is because the captured images or videos are inevitably being distorted by the

camera’s lens itself. Ju and Kang (2010) mentioned that it is challenging to find

the correspondence between images directly or linearly during image stitching

as the lens distortion is impossible to be linearly represented. The authors also

stated that the lens distortions is the main cause that induce the mismatches of

image stitching (Ju and Kang, 2014).

In this project, Zhang’s arithmetic of camera calibration in OpenCV is

applied. The approach of Zhang (2000) can remove two major distortions in

images, including radial distortion and tangential distortion. These distortions

are caused by the limitation of artificiality in camera production. The radial

25

distortion and tangential distortion can be solved by using the following

formulas (Yuan, Zhu and Su, 2011):

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑥𝑥(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6) (3.1)

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6) (3.2)

𝑥𝑥𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑥𝑥 + [2𝑝𝑝1𝑥𝑥𝑥𝑥 + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2)] (3.3)

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑦𝑦 + [𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑥𝑥] (3.4)

Where,

𝑟𝑟 = (𝑥𝑥 − 𝑐𝑐𝑥𝑥)2 + �𝑦𝑦 − 𝑐𝑐𝑦𝑦�
2

�𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦� is the optical center

(𝑥𝑥,𝑦𝑦) is the real plane offset coordinate caused by lens distortion

𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3 are radial distortion parameters

𝑝𝑝1, 𝑝𝑝2 are tangential distortion parameters

The combination of radial distortion and tangential distortion parameters is

known as distortion coefficients (𝑘𝑘1, 𝑘𝑘2, 𝑝𝑝1, 𝑝𝑝2,𝑘𝑘3).

Apart from the distortion coefficient, the camera's intrinsic and extrinsic

parameters are crucial parameters to obtain the transformation of certain points

from 3D space into image coordinates. The intrinsic parameters contain

information such as focal length and optical center to form the camera intrinsic

matrix. It is denoted as a 3x3 matrix:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� (3.5)

Where,

�𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦� is the optical center of the camera

�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦� is the focal length of the camera

26

The extrinsic parameters contain information such as rotation and translation

vectors to form camera’s extrinsic matrix. It is denoted as a 2x2 matrix:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = � 𝑅𝑅 𝑡𝑡
0𝑇𝑇 1�

(3.6)

where R is rotation vector and t is translation vector.

3.6 Image Pre-processing

In the image pre-processing stage, the size of input images with Red, Green and

Blue (RGB) scale are scaled-down by three size ratios, which means scaling

down 1920x1080 images into 640x360 images.

After that, the images are converted into grayscale to speed up the

computational process. Converting images to grayscale is one of the frequently

used image enhancement techniques. RGB image represents the intensity levels

of image in 24 bits as it contains three channels (red, green and blue). Whereas,

the grayscale image has one channel and represents the intensity levels in 8 bits.

For the application in this project, feature extraction in Chapter 3.7 does not

require the RGB color information to extract the features of image. Thus, the

complex RGB color information is the noise to the image and will decelerate

the algorithm's computation period. Hence, converting the image to grayscale

can reduce the image to one channel to obtain a quicker computation process.

Upon completing the conversion process, Gaussian blur is then applied

to denoise the grayscale image. Gaussian blur, also known as Gaussian

smoothing, is used to blur the image, reducing image’s Gaussian noise by a

Gaussian filter. Figure 3.4 illustrates the image pre-processing flow diagram.

27

Remove noise in
the images

Output
images after
preprocessed

Convert to
grayscale

Resize images

Input Images
with RGB

scale

Figure 3.4: Image Pre-processing Flow Diagram

3.7 Feature Representation

The details about the sparse feature-based method and binary descriptor-based

method have been explained in Chapter 2. In this project, Scale Invariant

Feature Transform (SIFT) is used in feature representation due to its robustness

to the geometric changes and properties difference of the image.

3.7.1 Scale-Invariant Feature Transform (SIFT)

In this step, the feature detection and the feature description on the image are

executed consecutively. The image undergoes feature representation using SIFT

algorithm framework developed by Lowe (2004). SIFT possesses the capability

of invariance against image rotation, scaling transformations and image

translation. It exhibits excellent robustness to light changes, affines

transformation and noise. The framework is generally divided into four major

steps, namely scale-space extrema detection, keypoints localization, orientation

assignment and descriptor computation. Figure 3.5 shows the flow of four main

steps of SIFT framework.

28

Scale-space
Extrema Detection

Keypoints
Localization

Orientation
Assignment

Descriptor
Computation

Figure 3.5: The major steps of SIFT framework

3.7.1.1 Scale-space Extrema Detection

In order to detect the candidate feature points that are scale invariance, the image

is resized with uniformly increasing scale factors in the first place to construct

an image pyramid. Figure 3.6 illustrated the combination of images at different

scales to form octaves.

Figure 3.6: Octaves of image pyramid (Younes, Romaniuk and Bittar, 2012)

 Each octave is further applied with Gaussian smoothing by carrying out

convolution operation in 𝑥𝑥 and 𝑦𝑦 , which formulated as the equation at the

following below:

29

𝐺𝐺(𝑥𝑥, 𝑦𝑦,𝜎𝜎) =
1

2𝜋𝜋𝜎𝜎2
𝑒𝑒−

�𝑥𝑥2+𝑦𝑦2�
2𝜎𝜎2

(3.7)

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) = 𝐺𝐺(𝑥𝑥, 𝑦𝑦,𝜎𝜎) ∗ 𝐼𝐼(𝑥𝑥, 𝑦𝑦) (3.8)

Where,

𝜎𝜎 = Scaling factor. The bigger the value, the greater the blur

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) = Smoothed image of its octave

𝐺𝐺(𝑥𝑥, 𝑦𝑦,𝜎𝜎) = Gaussian smoothing

𝐼𝐼(𝑥𝑥,𝑦𝑦) = Image at different scale factor, 𝜎𝜎

Lowe (2004) suggested that 𝜎𝜎0 = 1.6, where the value is obtained from the

equation below:

𝜎𝜎0 = �𝜎𝜎12 + 𝜎𝜎22 (3.9)

Where 𝜎𝜎1 equal to 1 while 𝜎𝜎2 equal to 1.26. This equation is applied

consecutively to the images to build the octaves. In Lowe (2004) paper, he

suggested that the 𝑘𝑘 = √2 and the number of scale levels = 5 as optimal values.

In short, each octave contains five scale levels which contain

𝜎𝜎0,𝑘𝑘𝜎𝜎0,𝑘𝑘2𝜎𝜎0,𝑘𝑘3𝜎𝜎0 and 𝑘𝑘4𝜎𝜎0. Then, the image is rescaled to its half for the next

octave. He also advised that three-octave is the optimal number for each image.

 The SIFT algorithm utilizes the Difference of Gaussians (DoG), which

is an approximation of Laplacian of Gaussian (LoG) to detect the scale-space

extrema. The pyramid of DoG is calculated from the image pyramid,

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑛𝑛𝜎𝜎). The result of each DoG is obtained as the subtraction of adjacent

Gaussian smoothed images at different scales (𝑘𝑘𝑛𝑛𝜎𝜎0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑛𝑛+1𝜎𝜎0) in the

pyramid. It is formulated as:

𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) = 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) (3.10)

30

 Upon the DoG are found, the corresponding local extrema are identified

over three consecutive DoG images within one octave. For instance, a pixel in

a DoG image is compared with its eight neighbors pixel as well as the nine

neighbors at inferior and superior scales, as shown in Figure 3.6 (circles).

3.7.1.2 Keypoints Localization

Once the candidate feature points' locations are found, refinement of the feature

points is needed to accurately localize the points by rejecting those low

contrasted keypoints and edge keypoints. In SIFT framework, a second-order

Taylor approximation is utilized to calculate the local extremum of the scale-

space function 𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) in the sample keypoint:

𝐷𝐷(𝑥𝑥) = 𝐷𝐷 +
𝜕𝜕𝐷𝐷𝑇𝑇

𝜕𝜕𝜕𝜕
𝑥𝑥 +

1
2
𝑥𝑥𝑇𝑇

𝜕𝜕2𝐷𝐷
𝜕𝜕𝑥𝑥2

𝑥𝑥 (3.11)

where 𝑥𝑥 = (𝑥𝑥,𝑦𝑦,𝜎𝜎)𝑇𝑇 is the offset from the sample keypoint, while the D and its

derivatives are computed at the sample keypoint. The location of the extremum,

𝑥𝑥� is equal to zero, where it is determined by taking the derivative of the function

𝐷𝐷(𝑥𝑥):

𝑥𝑥� = �
𝑥𝑥�
𝑦𝑦�
𝜎𝜎�
� = −

𝜕𝜕2𝐷𝐷−1

𝜕𝜕𝑥𝑥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (3.12)

 As suggested by Brown and Lowe (2002), the derivative of D and the

Hessian are approximated by the difference of Gaussian (DoG) in the

neighborhood of the sample keypoint. When the offset, 𝑥𝑥 is larger than the

threshold in any one of the three dimensions, it indicates that the extremum lies

closer to a neighbor of sample keypoint than sample keypoint itself. In this case,

the sample keypoint is changed and the computation is performed again from

the new point. It then computes the value of DoG at the extremum, 𝑥𝑥� after the

sample keypoint is changed. The keypoint is discarded to reject the unstable

extrema with low contrast if the value of |𝐷𝐷(𝑥𝑥�)| less than contrast threshold.

31

 Since the DoG has a strong response to the edges, the candidate keypoint

localized along the edges of small curvature needs to be rejected as these edges

act as the noises to the DoG function. Thus, the only point on huge-curved edges,

such as corners, will be selected as the final keypoint. To only keep the DoG of

obvious-curved edges, the principal curvatures of D is computed. It is computed

from a 2x2 Hessian matrix, 𝐻𝐻 at localized keypoint. These are proportional to

the eigenvalues 𝛼𝛼 and 𝛽𝛽 of Hessian matrix, 𝐻𝐻:

𝐻𝐻 = �
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑦𝑦𝑦𝑦

� (3.13)

 To avoid the explicit computation of the eigenvalues, the determinant

and trace values of the matrix are used. Let 𝑟𝑟 be the ratio between the largest

and smallest eigenvalue, 𝛼𝛼 = 𝑟𝑟𝑟𝑟. Afterward, the ratio between the square of

sum and the product of the eigenvalues is computed:

𝑇𝑇𝑇𝑇(𝐻𝐻)2

𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻)
=

�𝐷𝐷𝑥𝑥𝑥𝑥 + 𝐷𝐷𝑥𝑥𝑥𝑥�
2

𝐷𝐷𝑥𝑥𝑥𝑥𝐷𝐷𝑦𝑦𝑦𝑦 − (𝐷𝐷𝑥𝑥𝑥𝑥)2
=

(𝛼𝛼 + 𝛽𝛽)2

𝛼𝛼𝛼𝛼
=

(𝑟𝑟𝑟𝑟 + 𝛽𝛽)2

𝑟𝑟𝑟𝑟𝑟𝑟
=

(𝑟𝑟 + 1)2

𝑟𝑟
 (3.14)

Lowe (2004) suggested that the edge threshold is set to 10 as the optimal value

to discard any candidate keypoints’ ratio that is greater than the edge threshold.

3.7.1.3 Orientation Assignment

Subsequently, consistent orientation is assigned to every detected keypoints to

achieve invariance against the image rotation. The magnitude, 𝑚𝑚(𝑥𝑥,𝑦𝑦) and the

orientation, 𝜃𝜃(𝑥𝑥, 𝑦𝑦) of the gradient are computed using the selected closest scale

factor, 𝜎𝜎 for each keypoint, (𝑥𝑥,𝑦𝑦) and the Gaussian-smoothed image, 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎)

at this scale:

𝑚𝑚(𝑥𝑥,𝑦𝑦) = �𝐿𝐿𝑥𝑥2 + 𝐿𝐿𝑦𝑦2 (3.15)

𝜃𝜃(𝑥𝑥, 𝑦𝑦) = 𝑡𝑡𝑡𝑡𝑡𝑡−1
𝐿𝐿𝑦𝑦
𝐿𝐿𝑥𝑥

 (3.16)

32

Where,

𝐿𝐿𝑥𝑥 = 𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦)

𝐿𝐿𝑦𝑦 = 𝐿𝐿(𝑥𝑥, 𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥, 𝑦𝑦 − 1)

 Based on the calculated gradient magnitude and the direction in the

region around the keypoint, a histogram of orientation is formed from the image,

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) . The established orientation histogram consists of thirty-six bins

covering a three hundred and sixty degrees range of orientations. It is weighted

by its magnitude of gradient and a Gaussian-weighted circular window with a

scale factor, 𝜎𝜎 that is 1.5 times bigger than the scale of feature point:

𝜔𝜔𝜔𝜔(𝑥𝑥,𝑦𝑦) = 𝑚𝑚(𝑥𝑥,𝑦𝑦)
1

2𝜋𝜋(1.5𝜎𝜎)2
𝑒𝑒−

𝑑𝑑𝑥𝑥2+𝑑𝑑𝑦𝑦2

2(1.5𝜎𝜎)2 (3.17)

Where,

𝜔𝜔𝜔𝜔(𝑥𝑥,𝑦𝑦) = weighted magnitude of the gradient at location (𝑥𝑥,𝑦𝑦)

𝑚𝑚(𝑥𝑥,𝑦𝑦) = magnitude of the gradient at location (𝑥𝑥,𝑦𝑦)

𝑑𝑑𝑑𝑑 = distance in 𝑥𝑥 to the feature point

𝑑𝑑𝑑𝑑 = distance in 𝑦𝑦 to the feature point

𝜎𝜎 = scale factor

The keypoint's dominant direction is characterized by finding the maximal value

of bins in the orientation histogram. Any bins greater than eighty percent of the

maximal value is also associated with its computed orientation. Therefore,

additional keypoints will be created at the same location and scale but with

different orientations. Identifying the orientation among the feature points

provides stability in matching and invariance to the image rotation.

3.7.1.4 Descriptor Computation

The numerical descriptor is expressed in vector and it is computed from the

orientations and magnitudes of the gradients around the location of the localized

keypoint. The gradient magnitudes in each keypoint are weighted by a Gaussian

weighting function of standard deviation, one-half the width of descriptor

33

window. This would give less emphasis to gradients that are far from the

descriptor’s center. Thus, the descriptor window's gradient orientations can

rotate to its dominant orientation to provide rotational invariance capability to

the descriptor, as shown in Figure 3.7.

Figure 3.7: Sixteen 8-direction histogram concatenation of descriptor (Younes,

Romaniuk and Bittar, 2012)

Eight bin histogram of orientations is computed for the 4x4 sample regions of

the descriptor window. The product of the weighted magnitude of the keypoint

multiplied with an additional coefficient contributes to the bin of the histogram

corresponding to its gradient orientation:

𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝜔𝜔𝜔𝜔(𝑥𝑥,𝑦𝑦)(1 − 𝑑𝑑) (3.18)

where, 𝑑𝑑 is the distance between the central orientation of the histogram bin

and gradient orientation. The 8-direction histograms containing the product

value of the 16 sample regions are concatenated in a 4 x 4 x 8 = 128-dimensional

vector, producing feature points with their unique identification.

3.8 Feature Matching

Upon accomplishing the feature detection and feature description of the base

image and query image, the best candidate matches for every keypoints between

34

two images are computed in this phase. In this project, the image matching

method named Fast Library for Approximate Nearest Neighbors (FLANN)

proposed by Muja and Lowe (2014) is applied. FLANN is preferred over the

brute-force searching method as it provides the ability and efficacy of stitching

large datasets.

3.8.1 Randomized K-D Tree Algorithm of FLANN

The randomized k-d tree algorithm of the FLANN is used to find the best

matches between the base image and query image. The randomized k-d tree

framework is worked by building numerous randomized k-d trees and searching

the nearest neighbor candidates in parallel. The split dimension of the k-d trees

is found from the top 𝑁𝑁𝑑𝑑 dimensions with the highest variance in random

manner, where the 𝑁𝑁𝑑𝑑 = 5 is suggested by Muja and Lowe. During the

randomized k-d forest searching, a single priority queue is preserved across the

randomized k-d tree. The priority queue is organized based on the increase of

the distance to the decision boundary of each branch in the queue. Hence, the

search process will start to explore at the closest leaves from all the trees. During

the process, the data points that have been compared to the query points inside

a tree are marked to avoid the data points from being re-examined in other trees.

The nearest neighbors approximation level is defined based on the maximum

leaves number to be explored across all the k-d trees, resulting in the best nearest

candidates.

3.8.2 Feature Match Filtering

During image matching between two images, the finest candidate matches for

every point are found by searching their nearest neighbor candidates using the

randomized k-d tree in the database of feature points from the base image. The

nearest neighbor feature correspondence is identified when the feature point

with minimum Euclidean distance for the descriptor vector is computed in

Subchapter 3.7.1.4. However, a lot of false matches exist among the feature

points. This is due to background clutter or the feature points not being detected

in database of the base image during the matching. Therefore, a ratio test

suggested by Lowe (2004), Lowe’s ratio test is used to identify and remove the

35

features that do not have any good match to the database of the base image. The

test works by comparing the distance of the closest invariant descriptor between

the two images to that of the second-closest invariant descriptor between the

two images. The second-closest candidate match can estimate the density of the

feature space's false matches and find the specific feature ambiguity. Figure 3.8

illustrate the example of the match of the descriptor, 𝑓𝑓𝑎𝑎 in query image to the

closest descriptor, 𝑓𝑓𝑏𝑏1 and second-closest descriptor, 𝑓𝑓𝑏𝑏2 in the database of base

image.

Figure 3.8: Matches between a base image and query image

If the Euclidean distance between the descriptor in the query image and the

closest descriptor in the base image is smaller than the product of that to the

second closest descriptor in base image with distance ratio factor, 𝑅𝑅 the match

will be kept and vice versa. The values of 𝑅𝑅 used to investigate the quality of

the match are 0.5, 0.6, 0.7 and 0.8 (to be discussed in Chapter 4). The quality of

feature point matches is defined by evaluating the relationship at the following

below:

𝑑𝑑(𝑓𝑓𝑎𝑎,𝑓𝑓𝑏𝑏1) < 𝑑𝑑(𝑓𝑓𝑎𝑎,𝑓𝑓𝑏𝑏2) ∗ 𝑅𝑅 (3.19)

Where,

𝑑𝑑(𝑓𝑓𝑎𝑎, 𝑓𝑓𝑏𝑏1) = Euclidean distance between the descriptor, 𝑓𝑓𝑎𝑎 in the query image

and closest descriptor, 𝑓𝑓𝑏𝑏1 in base image

36

𝑑𝑑(𝑓𝑓𝑎𝑎, 𝑓𝑓𝑏𝑏2) = Euclidean distance between the descriptor, 𝑓𝑓𝑎𝑎 in the query image

and second closest descriptor, 𝑓𝑓𝑏𝑏1 in base image

𝑅𝑅 = Constant distance ratio factor

3.9 Robust Homography Estimation

The extracted aerial images are always not well-aligned due to the aerial motion

drift and several geometric transformations, including translation, rotation and

scaling. Thus, calculating a robust homography transformation matrix is

necessary to deal with these transformations to warp the query image to the base

image. The transformation is formulated as follows:

𝑋𝑋′ = 𝐻𝐻𝐻𝐻 (3.20)

where 𝑋𝑋′ represents the warped current image, 𝐻𝐻 is the transformation matrix

and 𝑋𝑋 is the current image.

 To accomplishing image stitching of the continuous images, a keyframe,

𝐹𝐹 = 𝑋𝑋0 need to be selected. In this project, the first extracted frame of the

footage is initialized as the keyframe. The transformation is achieved by

applying the cumulative homography of the current frame with respect to the

keyframe. The transformation is calculated by:

⎩
⎨

⎧𝑋𝑋1
′ = 𝐻𝐻10𝑋𝑋0

𝑋𝑋2′ = 𝐻𝐻20𝑋𝑋0
…

𝑋𝑋𝑛𝑛′ = 𝐻𝐻𝑛𝑛0𝑋𝑋0

 (3.21)

where,

⎩
⎨

⎧ 𝐻𝐻20 = 𝐻𝐻21 ∗ 𝐻𝐻10

𝐻𝐻30 = 𝐻𝐻32 ∗ 𝐻𝐻21 ∗ 𝐻𝐻10
…

𝐻𝐻𝑛𝑛0 = 𝐻𝐻𝑛𝑛𝑛𝑛−1 ∗ 𝐻𝐻𝑛𝑛−1𝑛𝑛−2 ∗ … ∗ 𝐻𝐻10
 (3.22)

hence, it can be deduced as:

37

𝑋𝑋𝑛𝑛′ = �𝐻𝐻𝑛𝑛𝑛𝑛−1𝑋𝑋0

𝑛𝑛

1

= �𝐻𝐻𝑛𝑛𝑛𝑛−1𝐹𝐹
𝑛𝑛

1

 (3.23)

 The estimated homography transformation is a linear transformation on

homogeneous 3-vectors represented by a non-singular 3x3 matrix, 𝑋𝑋′ = 𝐻𝐻𝐻𝐻:

�
𝑤𝑤𝑥𝑥𝑖𝑖′

𝑤𝑤𝑦𝑦𝑖𝑖′
𝑤𝑤
� = �

ℎ00 ℎ01 ℎ02
ℎ10 ℎ11 ℎ12
ℎ20 ℎ21 ℎ22

� �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
1
� (3.24)

The transformation can be expressed in inhomogenous form as:

𝑥𝑥𝑖𝑖′ =
𝑥𝑥𝑖𝑖
𝑤𝑤

=
ℎ00𝑥𝑥𝑖𝑖 + ℎ01𝑦𝑦𝑖𝑖 + ℎ02
ℎ20𝑥𝑥𝑖𝑖 + ℎ21𝑦𝑦𝑖𝑖 + ℎ22

𝑦𝑦𝑖𝑖′ =
𝑦𝑦𝑖𝑖
𝑤𝑤

=
ℎ10𝑥𝑥𝑖𝑖 + ℎ11𝑦𝑦𝑖𝑖 + ℎ12
ℎ20𝑥𝑥𝑖𝑖 + ℎ21𝑦𝑦𝑖𝑖 + ℎ22

(3.25)

Each feature correspondence produces two equations for the H elements:

𝑥𝑥𝑖𝑖′(ℎ20𝑥𝑥𝑖𝑖 + ℎ21𝑦𝑦𝑖𝑖 + ℎ22) = ℎ00𝑥𝑥𝑖𝑖 + ℎ01𝑦𝑦𝑖𝑖 + ℎ02

𝑦𝑦𝑖𝑖′(ℎ20𝑥𝑥𝑖𝑖 + ℎ21𝑦𝑦𝑖𝑖 + ℎ22) = ℎ10𝑥𝑥𝑖𝑖 + ℎ11𝑦𝑦𝑖𝑖 + ℎ12
(3.26)

 During the homography estimation, only four feature correspondences

out of all the feature correspondences are required. However, a question arises

for which four feature correspondence should be selected. Hence, a robust

estimation algorithm, named Random Sample Consensus (RANSAC) in

OpenCV, is utilized to find the best four feature correspondence from the

database and remove the matches' outliers. The computed homography matrix

is further refined by using the Levenberg-Marquardt technique on computed

inliers to mitigate the reprojection error.

38

3.9.1 Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC) algorithm is robust to discard large

proportion of outliers in the database. Figure 3.9 illustrates the way of

categorizing inliers by the algorithm. In this framework, two points are

randomly selected and a line is virtually drawn between them (red point with

blue line in Figure 3.9). The distance of each point to the line is calculated and

a distance threshold is defined. The points that lie within the distance threshold

are constituted as inliers (green point in Figure 3.9). Besides, the black points in

Figure 3.9 are defined as outliers. The random selection of two points is repeated

until the line with most of the points is deemed the robust fit.

Figure 3.9: Example of categorizing inliers (Baid, 2015)

The algorithm works in this way to compute the homography:

1. Any four points required to calculate the homography matrix are

randomly selected.

2. The homography matrix is computed by using Direct Linear

Transformation (DLT).

3. The number of inliers is calculated.

4. The ratio of inliers to the total number of points in the dataset is

calculated.

39

5. If the ratio is greater than the predefined reprojection threshold, 𝑇𝑇, the

homography is re-computed using all the determined inliers and

terminate.

6. Else, step 1 to 5 is repeated (for 𝑁𝑁 iterations)

3.10 Image Warping and Black Edges Removal

Upon the robust homography estimation, all query images in the dataset are

warped in sequential order with respect to the keyframe by utilizing their

calculated homography matrix to generate a stitched image. Nonetheless, the

result usually contains black edges around it. The black edges of the image are

necessary to remove in order to obtain the image with stitched view only. So,

the region of interest (ROI) of the stitched image needs to be determined in the

first place. Then, the black edges are removed by cropping the black region of

the stitched image automatically.

40

3.11 Project Planning and Resource Allocation

Figure 3.10 shows the Gantt chart planned for the project based on the project workflow in Figure 3.1.

Figure 3.10: Gantt Chart of Task List Project Planning

The image stitching program was scripted in Anaconda Spyder (version 4.1.4) using Python (3.7.6) and ran on Central Processing Unit (CPU). In

this project, the python binding of the OpenCV library is used. It contains numerous powerful computer vision algorithms such as the SIFT feature

detector and feature descriptor, FLANN feature macher, RANSAC, numpy, etc.

41

3.12 Summary of Methodology

This chapter has talked about the techniques used in the image stitching program.

Frame extraction from aerial footage is executed first, followed by camera

calibration and image pre-processing. Then, SIFT is used as feature

representation to detect and describe the feature points in the images. Afterward,

the randomized k-d tree of FLANN matcher is employed to find the feature point

pairs between the images. The Lowe’s ratio test is implemented to remove the

mismatch point pairs. To calculate the homography matrix, RANSAC is utilized.

Finally, the image warping and black edges removal is executed consecutively

to produce a stitched image. The results are presented in Chapter 4.

42

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

As mentioned in Chapter 3, feature match rate and inlier ratio are calculated to

measure the performance of the methods. The feature match rate of the system

is defined as follows:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑀𝑀

(𝐹𝐹𝐹𝐹1 + 𝐹𝐹𝐹𝐹2) 2⁄
 (4.1)

where, M is the number of feature matches, Fp1 is the number of feature points

extracted from the base image and Fp2 is the number of feature points extracted

from the query image.

 The greater the feature match rate, the greater the feature points between

two images being matched.

 The inlier ratio of the system is denoted as follows:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑚𝑚𝑏𝑏𝑏𝑏𝑟𝑟 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
 (4.2)

 The greater the inlier ratio, the greater the inliers found in the matches.

4.2 Frame Extraction and Camera Calibration

For this dataset, one frame of every fifty frames is extracted to obtain adequate

overlapped regions with each other. Therefore, twenty-four images are extracted

from the Orchard aerial footage dataset with L-shape flight pattern.

 Figure 4.1 shows the example of the extracted frame with lens distortion

(fish-eye effect) and the calibrated frame.

43

Figure 4.1: Example of an extracted frame with fish-eye effect (left) and

calibrated frame (right)

 In this project, the radial distortion parameters and tangential distortion

parameters are (−0.30409, 0.10001, 0) and (−0.00065,−0.00156)

respectively. Their combination, which is distortion coefficients

(−0.30409, 0.10001,−0.00065,−0.00156, 0) is used. Meanwhile, the

camera intrinsic matrix is

�
1237.36828 0 954.79824

0 1275.40537 560.46217
0 0 1

� . These two crucial calibration

parameters successfully optimize the lens distortion of the images.

4.3 The Pre-processing Phase

In the pre-processing stage, the input images are resized and converted to

grayscale format. Then, the Gaussian blur is applied to the grayscaled images to

discard the Gaussian noises.

4.3.1 Image Resize and Grayscale Conversion

Every input images are converted into grayscaled format from the RGB

complex format to reduce the dimensionality of the color information of images.

Therefore, the computation burden of the algorithm is reduced. Figure 4.2 shows

an example of the conversion of the RGB image into grayscaled image.

44

Figure 4.2: Grayscale conversion of aerial image

4.3.2 Gaussian Noise Removal

As stated in Chapter 3, the Gaussian blur act as the “low-pass filter” to remove

detail and noise, leaving the majority of the image intact. Thus, the image

features information are still preserved. The OpenCV’s built-in Gaussian

smoothing function (Bradski and Kaehler, 2009) is utilized to remove the

Gaussian noise. The example of the effect of Gaussian smoothing on the aerial

image is shown in Figure 4.3.

Figure 4.3: Effect of gaussian blur (left = before, right = after)

Table 4.1 shows the study of the effect of gaussian blur on average

feature match rate, average inlier ratio and time taken. Figure 4.4 shows the

feature match rate graph between image stitching with Gaussian blur and

without Gaussian blur. Meanwhile, the graph of the inlier ratio between image

stitching with Gaussian blur and without Gaussian blur is shown in Figure 4.5.

45

Figure 4.4: Graph of feature match rate between image stitching with Gaussian

blur and without Gaussian blur

Figure 4.5: Graph of inlier ratio between image stitching with Gaussian blur

and without Gaussian blur

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20 22 24

Fe
at

ur
e

M
at

ch
 R

at
e

Number of Image Pair

Feature Match Rate versus Number of Image Pair

with gaussian blur without gaussian blur

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14 16 18 20 22 24

In
lie

r R
at

io

Number of Image Pair

Inlier Ratio versus Number of Image Pair

with gaussian blur without gaussian blur

46

Table 4.1: Study of the effect of Gaussian blur on average feature match rate,

average inlier ratio and time taken

Database Orchard (without

Gaussian blur)

Orchard (with

Gaussian blur)

Feature representation SIFT SIFT

Feature matcher FLANN (randomized

k-d tree)

FLANN (randomized

k-d tree)

Lowe’s ratio test Yes (ratio = 0.8) Yes (ratio = 0.8)

Outlier removal RANSAC RANSAC

Average feature match

rate (23 image pair)

0.265436 0.32445

Average inlier ratio (23

image pair)

0.861916 0.817921

Time taken 64.109s 60.875s

Figure 4.6 shows the stitched image of orchard without Gaussian blur

and with Gaussian blur.

Figure 4.6: Stitched image of orchard without Gaussian blur (left) and with

Gaussian blur (right)

47

 The average feature match rate and average inlier ratio in Table 4.1 are

calculated based on Figure 4.4 and Figure 4.5 respectively. Based on the

empirical result shown in Table 4.1, when the Gaussian blur is used, the average

feature rate rises from 0.265436 to 0.32445, the average inlier ratio reduces from

0.861916 to 0.817921, time taken reduces from 74.109s to 60.875s. Although

the average inlier ratio is reduced when the gaussian blur is applied, the

alignment between the stitched image frames remains excellent with respect to

the test without Gaussian blur as shown in Figure 4.6. Therefore, the Gaussian

blur is adopted in the subsequent benchmark tests to investigate the performance

of image stitching method.

4.4 Feature Representation

For the feature detection, 3-octave layers with five scale each layer are

constructed to compute the scale-space local extrema in this project. The sigma

of Gaussian smoothing, 𝜎𝜎0 is set as 1.6, applying to the octaves pyramid.

Afterward, the contrast threshold is set to 0.04 in localizing the

keypoints of the image. The low-contrasted keypoints are removed to avoid the

existence of low contrast unstable extrema if the local extremum value of the

scale-space function is less than the predefined contrast threshold, 0.04.

The edge threshold is set to 10 to reject the keypoints that being detected

along the edges of the small curvature.

4.4.1 Comparison Results of Sparse Feature-based and Binary-based

Feature Representation

For feature representation, the comparison between sparse feature-based feature

representation and binary-based feature representation is obtained. Since the

ORB binary-based method and SIFT sparse feature-based method both are

invariant against rotation and scaling changes made by the aerial motion. The

binary-based feature representation method proposed by De Lima and Martinez-

Carranza is used to compare with the proposed method. The authors

implemented an aerial image stitching method using ORB feature representation

and locality-sensitive hashing (LSH) of FLANN matcher. Figure 4.7 and Figure

4.8 show the graph of the feature match rate and the comparison of the inlier

48

ratio between the method proposed in this project and the method proposed by

De Lima and Martinez-Carranza.

Figure 4.7: Graph of feature match rate between SIFT, randomized k-d tree

and ORB, locality-sensitive hashing

Figure 4.8: Graph of inlier ratio between SIFT, randomized k-d tree and ORB,

locality-sensitive hashing

Table 4.2 shows the comparison results for feature representation with

FLANN matching method on the Orchard dataset. Moreover, Figure 4.9 shows

the generated stitched image using SIFT, FLANN (randomized k-d tree) and

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14 16 18 20 22 24Fe
at

ur
e

M
at

ch
 R

at
e

Number of Image Pair

Feature Match Rate versus Number of Image Pair

Proposed in this project
De Lima and Martinez-Carranza, (2017)

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14 16 18 20 22 24

In
lie

r R
at

io

Number of Image Pair

Inlier Ratio versus Number of Image Pair

Proposed in this project
De Lima and Martinez-Carranza, (2017)

49

ORB, FLANN (locality-sensitive hashing). Furthermore, Figure 4.9 shows the

stitched image using SIFT feature representation and ORB feature

representation respectively.

Table 4.2: Comparison results of feature representation with FLANN matching

method on the orchard dataset

Column 1

(Proposed in this

project)

2

(De Lima and Martinez-

Carranza, 2017)

Feature representation SIFT ORB

Feature matcher FLANN

(randomized k-d tree)

FLANN

(locality-sensitive

hashing)

Lowe’s ratio test Yes (ratio, 0.8) No

Outlier Removal RANSAC RANSAC

Average feature match

rate (23 image pair)

0.324554 1.0

Average inlier ratio (23

image pair)

0.805587 0.304

Figure 4.9: Stitched image using SIFT, FLANN (randomized k-d tree) (left)

and ORB, FLANN (locality-sensitive hashing) (right). The red bounding box

shows the misaligned frame.

50

 By referring the Table 4.2, the average feature match rate using SIFT-

based feature representation is weaker than that using ORB-based feature

representation. Whereas the average inlier ratio using SIFT-based feature

representation is more significant than that using ORB-based feature

representation. Even though the average feature match of ORB-based feature

representation is outperforming compare to that of SIFT-based feature

representation, some stitched frames do not align well during the image warping

process as shown in Figure 4.9. This is due to the average amount of inlier

generated per match of the ORB-based method, which is relatively poor, 152

compared to 171 produced by SIFT-based feature representation. Hence, poor

homography estimation is obtained to warp the frame onto the base image,

resulting in poorly aligned frames in the stitched image. It can deduce that SIFT

performs better than ORB in this project.

4.5 Feature Matching

The OpenCV’s randomized k-d tree in FLANN matcher (Bradski and Kaehler,

2009) is used to pair the extracted feature points between the query image and

base image. In the randomized k-d tree, the number of trees is set as 5 in

constructing the forest. Each tree is established independently, and each tree

chooses randomly among the five split dimensions at each level.

In OpenCV, there is another widely used feature matcher, brute-force

searching matcher. Therefore, the performance of the brute-force searching

matcher and the randomized k-d tree of FLANN matcher is investigated and

discussed.

4.5.1 Comparison Results of FLANN Matcher and Brute-Force

Matcher in Feature Matching

The feature match rate and inlier ratio between the FLANN matcher and brute-

force matcher are compared. Figure 4.10 and Figure 4.11 show the graph of

feature match rate and inlier ratio between FLANN (randomized k-d tree) and

brute-force matcher.

51

Figure 4.10: Graph of feature match rate between FLANN (randomized k-d

tree) and brute-force matcher

Figure 4.11: Graph of inlier ratio between FLANN (randomized k-d tree) and

brute-force matcher

Table 4.3 shows the comparison result of SIFT with FLANN and Brute-

Force matcher. Figure 4.12 shows the stitched image using SIFT with FLANN

and Brute-Force matcher respectively.

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20 22 24

Fe
at

ur
e

M
at

ch
 R

at
e

Number of Image Pair

Feature Match Rate versus Number of Image Pair

FLANN Matcher (randomized k-d tree) Brute-Force Matcher

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14 16 18 20 22 24

In
lie

r R
at

io

Number of Image Pair

Inlier Ratio versus Number of Image Pair

FLANN Matcher (randomized k-d tree) Brute-Force Matcher

52

Table 4.3: Comparison results of SIFT with FLANN and Brute-Force matcher

Column 1 2

Feature representation SIFT SIFT

Feature matcher FLANN (randomized

k-d tree)

Brute-Force

Lowe’s ratio test Yes (ratio, 0.8) Yes (ratio, 0.8)

Outlier Removal RANSAC RANSAC

Average feature match

rate (23 image pair)

0.324554 0.324475

Average inlier ratio (23

image pair)

0.805587 0.809046

Figure 4.12: Stitched image using SIFT, FLANN (randomized k-d tree) (left)

and SIFT, Brute-Force (right)

 By comparing the average feature match rate and inlier ratio in Table

4.3, the average feature match rate and the inlier ratio of FLANN matcher are

slightly more significant than those of the brute-force matcher. Moreover, the

stitched frames' alignment in the stitched image obtained by using brute-force

matcher is equally great compared to that by using FLANN matcher as shown

in Figure 4.12. According to Li et al., (2014), the authors stated that tree-based

53

methods, such as k-d tree, are relatively more efficient in the application

involving large image dataset retrieval (aerial images) than brute-force

searching method to stitch images. Hence, the FLANN matcher is preferred as

it may provide repeatability and efficacy on stitching large aerial image dataset

(>1000) in future work.

4.5.2 Comparison Results of LR, GMS and LR-GMS in Feature Match

Filtering

The generated feature match pairs usually contain a lot of false matches. Thus,

match pairs filtering is necessarily applied to mitigate the number of false

matches and reduce the chance of resulting poor homography. In this project,

the effect of using Lowe’s ratio test (LR), Grid-Based Motion Statistic (GMS)

(Bian et al., 2020), and the combination of LR and GMS on feature match rate,

inlier ratio is studied as well as the efficacy of stitching aerial image is observed.

The feature match rate graph and the inlier ratio among LR, GMS, and LR-GMS

are shown in Figure 4.13 and Figure 4.14 respectively.

Figure 4.13: Graph of feature match rate among LR, GMS and LR-GMS

0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20 22 24

Fe
at

ur
e

M
at

ch
 R

at
e

Number of Image Pair

Feature Match Rate versus Number of Image Pair

LR GMS LR-GMS

54

Figure 4.14: Graph of inlier ratio among LR, GMS and LR-GMS

Table 4.4 shows the comparison results of LR, GMS and LR-GMS. Figure 4.15

shows the stitching image using LR, GMS and LR-GMS. The graph of the

average inlier count among LR, GMS and LR-GMS is shown in Figure 4.16.

Table 4.4: Comparison results of LR, GMS and LR-GMS

Column 1 2 3

Feature

representation

SIFT SIFT SIFT

Feature matcher FLANN

(randomized k-d

tree)

FLANN

(randomized k-d

tree)

FLANN

(randomized k-d

tree)

Lowe’s ratio test Yes (ratio, 0.8) No Yes (ratio, 0.8)

GMS No Yes Yes

Outlier Removal RANSAC RANSAC RANSAC

Average feature

match rate (23

image pair)

0.32445

0.080801

0.058421

Average inlier

ratio (23 image

pair)

0.817921

0.90861

0.911442

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14 16 18 20 22 24

In
lie

r R
at

io

Number of Image Pair

Inlier Ratio versus Number of Image Pair

LR GMS LR-GMS

55

Figure 4.15: Stitched image using GMS (top-left), LR (top-right) and LR-

GMS (bottom)

 By comparing the average feature match rate in Table 4.4, it is found

that the average feature match rate of GMS is the highest among them

(0.080801), followed by LR-GMS (0.58421) and then LR (0.32445).

Nonetheless, by comparing the average inlier ratio, the average inlier ratio of

LR-GMS is the highest (0.911442), followed by GMS (0.90861) and then LR

(0.817921). Despite the fact that the average inlier ratio of LR-GMS and GMS

are more significant than that of LR, both methods are failed to stitch the aerial

images, as shown in Figure 4.15. This is because the GMS failed to strike an

optimal balance between keeping good matches and discarding bad matches,

resulting in overly removing the good matches. Moreover, the RANSAC further

56

removes the outlier in the matches and induces a low count of inlier, where the

average inlier count per image pair is less than 100, as shown in Figure 4.16.

The inlier number is crucial in estimating a good homography to warp the query

image onto the base image. Based on Figure 4.16, it is shown that the inlier

count using GMS and LR-GMS are much lower than that of the LR, which cause

the failure in stitching aerial images. Therefore, GMS is not suitable to be

implemented in this orchard dataset.

Figure 4.16: Graph of average inlier count among LR, GMS and LR-GMS

4.5.2.1 The Effect of Lowe’s Ratio on Feature Match Rate and Inlier Ratio

Figure 4.17 and Figure 4.18 show the graph of feature match rate and inlier ratio

over the Lowe’s Ratio. The study of the effect of various ratios on the feature

match rate and inlier ratio is shown in Table 4.5. Figure 4.19 shows the average

inlier count over Lowe’s ratios.

171.173913

45.13043478
32.69565217

0

50

100

150

200

LR GMS LR-GMS

Av
er

ag
e

In
lie

r C
ou

nt

Average Inlier Count

57

Figure 4.17: Graph of feature match rate over the Lowe’s ratios

Figure 4.18: Graph of inlier ratio over the Lowe’s ratios

0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20 22 24

Fe
at

ur
e

M
at

ch
 R

at
e

Number of Image Pair

Feature Match Rate versus Number of Image Pair

0.5 ratio 0.6 ratio 0.7 ratio 0.8 ratio

0.5

0.7

0.9

1.1

0 2 4 6 8 10 12 14 16 18 20 22 24

In
lie

r R
at

io

Number of Image Pair

Inlier Ratio versus Number of Image Pair

0.5 ratio 0.6 ratio 0.7 ratio 0.8 ratio

58

Table 4.5: Study of the effect of various ratios on the feature match rate and

inlier ratio

Column 1 2 3 4

Feature

representation

SIFT SIFT SIFT SIFT

Feature

matcher

FLANN

(randomized

k-d tree)

FLANN

(randomized

k-d tree)

FLANN

(randomized

k-d tree)

FLANN

(randomized

k-d tree)

Lowe’s ratio

test

Yes (ratio,

0.5)

Yes (ratio,

0.6)

Yes (ratio,

0.7)

Yes (ratio,

0.8)

GMS No No No No

Outlier

Removal

RANSAC RANSAC RANSAC RANSAC

Average

feature match

rate (23 image

pair)

0.186405 0.23189

0.274729

0.32445

Average inlier

ratio (23

image pair)

0.937371

0.9139

0.880527

0.817921

Figure 4.19: Graph of average inlier count over the Lowe’s ratio

107.4782609
133.3478261

155.0869565
170.173913

0

50

100

150

200

0.5 0.6 0.7 0.8

Av
er

ag
e

In
lie

r C
ou

nt

Lowe's Ratio

Average Inlier Count over the Lowe's Ratio

59

 Based on Figure 4.17 and Table 4.5, it is found that the greater the

Lowe’s ratio, the greater the feature match rate. This is because fewer nearest

neighbor descriptor is discarded when the Lowe’s ratio is high. By comparing

the average inlier ratio recorded in Table 4.5 and Figure 4.18, the inlier ratio is

the highest when the Lowe’s ratio is set to 0.5, followed by 0.6, 0.7 and 0.8.

However, a better-stitched view is observed when the average inlier count is

more than 160 empirically. The stitched images generated by using 0.5, 0.6 and

0.7 Lowe’s ratio induce slight skewness as shown in Figure 4.20. Hence, this

proves that Lowe’s ratio at 0.8 is optimal to generate a well-aligned stitched

image.

Figure 4.20: Stitched image using 0.5 ratio (top-left), 0.6 ratio (top-right), 0.7

(bottom-left) and 0.8 (bottom-right)

60

4.6 Robust Homography Estimation using RANSAC

During the homography calculation using RANSAC, the RANSAC reprojection

threshold is set to 5. It is a maximum allowed reprojection error to treat the

match as an inlier. Any computed values greater than five are treated as outliers.

The relationship is express as following below:

𝐶𝐶(𝑑𝑑𝑑𝑑𝑑𝑑) − 𝐶𝐶[𝐻𝐻 ∗ 𝐶𝐶(𝑜𝑜𝑜𝑜𝑜𝑜)] < 𝑇𝑇 (4.3)

Where,

𝐶𝐶(𝑑𝑑𝑑𝑑𝑑𝑑) = The coordinates of the points in the target plane

𝐶𝐶[𝐻𝐻 ∗ 𝐶𝐶(𝑜𝑜𝑜𝑜𝑜𝑜)] = The converted homogenous points from the points of the

original plane

𝑇𝑇 = RANSAC reprojection error.

 Furthermore, the iteration of the RANSAC algorithm, 𝑁𝑁 is set to 2000,

which is the maximum value that the OpenCV library allows. The RANSAC

algorithm iterates 2000 times to discard any match exceeding the RANSAC

reprojection error and use the inliers to estimate the homography matrix. The

greater the iteration, the greater the number of outliers or noises being removed.

 Figure 4.21 shows the stitched image without using RANSAC algorithm

and using RANSAC algorithm.

61

Figure 4.21: Stitched image without using RANSAC algorithm(left) and using

RANSAC algorithm(right)

 According to Figure 4.21, it is found that the images failed to stitch when

bypassing the RANSAC algorithm. This is due to the noises present in the

images. The noises are taken as correct matches to estimate the homography

matrix, resulting in bad homography estimation and causing the misalignment

between the frames. Therefore, RANSAC is necessary to be implemented to

remove the outliers embedded in the matches.

4.7 Image Warping and Black Edges Removal

Figure 4.22 shows the example of sequential order image wrapping. The

keyframe is warped in the middle of the image with a black background. Then,

the adjacent images are warped onto the keyframe using the computed

accumulative homography matrix in sequential order

Figure 4.22: Example of sequential order image wrapping

62

 Figure 4.23 shows the black edge removal of the stitched image. The

algorithm detects the region of interest (ROI) of the image and the black region

is automatically being cropped out.

Figure 4.23: Black edge removal of the stitched image

4.8 Dataset with Lawnmower Flight Pattern

Figure 4.24 shows the stitched image of dataset with lawnmover flight pattern.

Based on the observation in Figure 4.24, the proposed framework is able to

stitched the aerial frames of the footage. However, there is visible skewness and

several frames that are misaligned with each other in the stitched image. This is

because the homography estimation is very sensitive to the cumulative

homography error during the homography matrix computation. The cumulative

homoprahy error is caused by the interframe homography error, where the

interframe homography error is made up of the camera reprojection error

between the frames. One of the alignment optimization approaches, named

Bundle Adjustnment is widely used by researchers to optimize the cumulative

homography error. However, it is a costly and high complexity algorithm to

develop.

63

Figure 4.24: Stitched image of the dataset with lawnmower flight pattern

64

4.9 Finalization of Parameters

The summarized parameters are set in Table 4.6.

Table 4.6: Summarized parameter settings of orchard dataset

Dataset UMN Horticulture Field Station

(Orchard)

Resolution after resize (pixels) 640 x 360

Convert to grayscale Yes

Gaussian blur Yes

Feature representation SIFT

 Octave layer 3.0

 Scale of each layer 5.0

 Sigma of Gaussian, 𝝈𝝈𝟎𝟎 1.6

 Contrast threshold 0.04

 Edge threshold 10.0

Feature matcher FLANN (Randomized k-d tree)

 Number of trees 5

Lowe’s ratio test Yes

 Lowe’s ratio 0.8

GMS No

Outlier Removal RANSAC

 Reprojection threshold 5.0

 Iteration, 𝑁𝑁 2000

With the use of parameters shown in Table 4.6, final stitched result is shown in
Figure 4.25. The interframe alignment of the stitched image is great. The
Orchard is visualized clearly.

65

Figure 4.25: Final stitched result

66

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This project has managed to stitch the aerial footage’s frames to generate a well-

aligned stitched image with a large scene view. It has successfully dealt with the

concern of manual keyframe selection. The framework has managed to undistort

the image to remove the bird-eye effect and prevent image stitching failure.

 This project utilized the sparse feature-based feature representation

method, SIFT for feature point detection and description. The generated results

between the SIFT and binary-based feature representation, ORB is evaluated.

The result of using SIFT performs better than ORB. For the feature matching,

the randomized k-d tree of FLANN matcher is implemented in the proposed

project and successfully stitches the images of aerial footage. Its performance is

compared with that of brute-force searching method and found that their results

are equally great. Yet, FLANN matcher is better in terms of efficiency in

processing large dataset. Besides, the effect of feature match filtering methods

is investigated. It is demonstrated that the use of Lowe’s ratio test is the

appropriate method to be employed in this project. The proposed framework has

managed to stitch the aerial footage of the Orchard dataset with an L-shape flight

pattern and high degree of similarity in term of structure content of the images.

The proposed framework successfully stitches the aerial footage of

orchard dataset with the lawnmower flight pattern. However, the misalignment

of the frames in the stitched image is observed when the Orchard dataset with

the lawnmower flight pattern is inserted. Therefore, the alignment optimization

method shall be implemented in future work.

5.2 Recommendations for Future Work

The future work of this project can be expanded with the following

recommendations:

1. It is suggested to implement bundle adjustment to mitigate the camera

reprojection error and reduce the cumulative homography error. Bundle

67

adjustment is a state-of-the-art approach on optimizing the alignment of

the frames in the stitched image.

2. It is recommended to enable the image stitching program to execute in

graphical processing unit (GPU) instead of the conventional central

processing unit (CPU). Parallel computing can be done by using GPU

and it has optimized memory bandwidth. Hence, fast image processing

speed is provided in large memory operation.

3. It is suggested to adopt 3D reconstruction method, such as Simultaneous

Localization and Mapping (SLAM) or Structure from Motion (SfM) to

register images. It would allow the reconstruction of the ground plane of

the flight trajectory, improve the alignment, and prevent the visible

skewness of the stitched image.

4. It is recommended to employ deep learning based semantic image

matching. The trained CNN features can provide invariant capability

against geometric deformations and illumination change of the images.

Therefore, it can accurately detect the feature points of the images.

68

REFERENCES

Adel, E., Elmogy, M. and Elbakry, H. (2015) ‘Image Stitching System Based
on ORB Feature-Based Technique and Compensation Blending’, International
Journal of Advanced Computer Science and Applications, 6(9), pp. 55–62. doi:
10.14569/ijacsa.2015.060907.

Baid, U. R. (2015) Image Registration and Homography Estimation. doi:
10.13140/RG.2.2.19709.67043.

Bian, J. W. et al. (2020) ‘GMS: Grid-Based Motion Statistics for Fast, Ultra-
robust Feature Correspondence’, International Journal of Computer Vision.
Springer US, 128(6), pp. 1580–1593. doi: 10.1007/s11263-019-01280-3.

Bradski, G. and Kaehler, A. (2009) Learning OpenCV—Computer Vision with
the OpenCV Library, IEEE Robotics and Automation Magazine. doi:
10.1109/MRA.2009.933612.

Brown, M. and Lowe, D. (2002) ‘Invariant Features from Interest Point Groups’,
pp. 23.1-23.10. doi: 10.5244/c.16.23.

Brown, M. and Lowe, D. G. (2007) ‘Automatic Panoramic Image Stitching
Automatic 2D Stitching’, International Journal of Computer Vision, 74(1), pp.
59--73. Available at: http://dx.doi.org/10.1007/s11263-006-0002-3.

Chen, J. et al. (2019) ‘A robust method for automatic panoramic UAV image
mosaic’, Sensors (Switzerland), 19(8), pp. 1–17. doi: 10.3390/s19081898.

Eisenbeiss, H. and Sauerbier, M. (2011) ‘Investigation of Uav Systems and
Flight Modes for Photogrammetric Applications’, Photogramm.

Gao, J., Kim, S. J. and Brown, M. S. (2011) ‘Constructing image panoramas
using dual-homography warping’, Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 49–56. doi:
10.1109/CVPR.2011.5995433.

Hossain, M. F. and Alsharif, M. R. (2007) ‘A Performance Evaluation of Local
Descriptors’, 2007 International Conference on Convergence Information
Technology, ICCIT 2007, 27(10), pp. 1439–1444. doi:
10.1109/ICCIT.2007.4420457.

Ju, M. H. and Kang, H. B. (2010) ‘A new simple method to stitch images with
lens distortion’, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
6454 LNCS(PART 2), pp. 273–282. doi: 10.1007/978-3-642-17274-8_27.

69

Ju, M. H. and Kang, H. B. (2014) ‘Stitching images with arbitrary lens
distortions’, International Journal of Advanced Robotic Systems, 11(1), pp. 1–
11. doi: 10.5772/57160.

Levin, A. et al. (2004) ‘Seamless image stitching in the gradient domain’,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 3024, pp. 377–389.
doi: 10.1007/978-3-540-24673-2_31.

Li, J. et al. (2014) ‘Fast aerial video stitching’, International Journal of
Advanced Robotic Systems, 11. doi: 10.5772/59029.

De Lima, R. and Martinez-Carranza, J. (2017) ‘Real-time aerial image
mosaicing using hashing-based matching’, 2017 Workshop on Research,
Education and Development of Unmanned Aerial Systems, RED-UAS 2017, pp.
144–149. doi: 10.1109/RED-UAS.2017.8101658.

Liu, W. X. and Chin, T.-J. (2016) ‘Correspondence Insertion for As-Projective-
As-Possible Image Stitching’. Available at: http://arxiv.org/abs/1608.07997.

Lowe, D. G. (2004) ‘Distinctive Image Features from Scale-Invariant
Keypoints’, International Journal of Computer Vision.

Lyu, W. et al. (2019) ‘A Survey of image and video stitching’, Virtual Reality
& Intelligent Hardware, pp. 55-83.

Moussa, A. and El-Sheimy, N. (2016) ‘A fast approach for stitching of aerial
images’, International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences - ISPRS Archives, 41(July), pp. 769–774. doi:
10.5194/isprsarchives-XLI-B3-769-2016.

Muja, M. and Lowe, D. G. (2014) ‘Scalable Nearest Neighbour Methods for
High Dimensional Data’, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 36(April), pp. 1–14. Available at:
http://elk.library.ubc.ca/handle/2429/44402.

Pravenaa, S. and Menaka, R. (2016) ‘A methodical review on image stitching
and video stitching techniques’, International Journal of Applied Engineering
Research, 11(5), pp. 3442–3448.

Rublee, E. et al. (2011) ‘ORB: An efficient alternative to SIFT or SURF’,
Proceedings of the IEEE International Conference on Computer Vision. IEEE,
pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

Uyttendaele, M., Eden, A. and Szeliski, R. (2001) ‘Eliminating ghosting and
exposure artifacts in image mosaics’, Proceedings of the IEEE Computer

70

Society Conference on Computer Vision and Pattern Recognition, 2, pp. II509–
II516. doi: 10.1109/CVPR.2001.991005.

Younes, L., Romaniuk, B. and Bittar, E. (2012) ‘A Comprehensive and
Comparative Survey of the Sift Algorithm (feature detection, description, and
characterization)’, 2012 7th Internaltional Conference on Computer Vision
Theory and Application, VISAPP 2012 - Proceeding, pp. 467-474.

Yuan, X., Zhu, R. and Su, L. (2011) ‘A calibration method based on OpenCV’,
2011 3rd International Workshop on Intelligent Systems and Applications, ISA
2011 - Proceedings, pp. 1–4. doi: 10.1109/ISA.2011.5873428.

Zaragoza, J. et al. (2014) ‘As-projective-as-possible image stitching with
moving DLT’, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(7), pp. 1285–1298. doi: 10.1109/TPAMI.2013.247.

Zhao, J. et al. (2019) ‘Rapid mosaicking of unmanned aerial vehicle (UAV)
images for crop growth monitoring using the SIFT algorithm’, Remote Sensing,
11(10). doi: 10.3390/rs11101226.

Zhi, Q. and Cooperstock, J. R. (2012) ‘Toward dynamic image mosaic
generation with robustness to parallax’, IEEE Transactions on Image
Processing, 21(1), pp. 366–378. doi: 10.1109/TIP.2011.2162743.

71

APPENDICES

APPENDIX A: Computer Specification

APPENDIX B: Python Codes

footageProcessing.py

-*- coding: utf-8 -*-

"""

72

Frame Extraction and Saving from Video

"""

'''

~ MATLAB ~

Focal Length: fc = [1237.36828 1275.40537] ± [5.56050 5.78613]

Principal point: cc = [954.79824 560.46217] ± [3.16465 3.22632]

Skew: alpha_c = [-0.00099] ± [0.00039] => angle of pixel axes =

90.05701 ± 0.02233 degrees

Distortion: kc = [-0.30409 0.10001 -0.00065 -0.00156 0.00000] ±

[0.00525 0.00635 0.00062 0.00059 0.00000]

Pixel error: err = [0.20609 0.21830]

~ openCV ~

Camera Matrix: K = [1237.36828, 0, 954.79824],[0,

1275.40537, 560.46217],[0, 0, 1]

Distortion Coefficient d = [-0.30409, 0.10001, -0.00065, -0.00156, 0]

(Reference: https://www.graceunderthesea.com/thesis/camera-calibration-to-

undistort-images)

'''

import os

import cv2

import argparse

import numpy as np

import glob

print ("[PACKAGE] openCV version: " + cv2.__version__)

pathIN = "F:/CourseSubject/FYP/FYP 2

Progress/imstCode/ImageStitch/video/GOPROHERO3.mp4"

pathOUT = "F:/CourseSubject/FYP/FYP 2

Progress/imstCode/ImageStitch/image/ExtImg"

pathOUT2 = "F:/CourseSubject/FYP/FYP 2

Progress/imstCode/ImageStitch/image/ExtImg/ProcessedImg"

73

copy parameters to arrays

K = np.array([[1237.36828, 0, 954.79824],[0, 1275.40537, 560.46217],[0, 0, 1]])

d = np.array([-0.30409, 0.10001, -0.00065, -0.00156, 0]) # just use first two

terms

def extImages(pathIN, pathOUT):

 # grab the paths to the input video and starts extracting

 print("[INFO] loading video...")

 vidObj = cv2.VideoCapture(pathIN)

 # measure fps of the video

 fps = int(vidObj.get(cv2.CAP_PROP_FPS))

 print("[INFO] video FPS...", fps)

 # Used as couter variable

 cnt = 0

 IMGcounter = 1

 # checks whether frames were extracted

 success = 1

 while success:

 # videoObj object calls read

 # function extract frames

 success, image = vidObj.read()

 # save 1 frame out of 50 frame

 if cnt%50 == 0:

 print("[INFO] extracting frame %d ..." % IMGcounter)

 cv2.imwrite(os.path.join(pathOUT, "frame%d.jpg" % IMGcounter),

image)

 #saves the frames with fram-count

74

 h, w = image.shape[:2]

 # undistort the images

 newCamera, roi = cv2.getOptimalNewCameraMatrix(K, d, (w,h), 0)

 undistort_img = cv2.undistort(image, K, d, None, newCamera)

 # crop the image

 x, y, w, h = roi

 undistort_img = undistort_img[y:y+h, x:x+w]

 cv2.imwrite(os.path.join(pathOUT2, "frame%d.jpg" % IMGcounter),

undistort_img)

 IMGcounter += 1

 cnt += 1

 print("[INFO] Done extracting...")

""" MAIN FUNCTION

"""

if __name__=="__main__":

 '''

 # construct the argument parser and parse the arguments

 ap = argparse.ArgumentParser()

 ap.add_argument("-v", "--video", type=str, required=True,

 help="Path to input directory of video to extract")

 ap.add_argument("-o", "--output", type=str, required=True,

 help="Path to the extracted images")

 args = vars(ap.parse_args())

 extImages(args["video"], args["output"])

 '''

extImages(pathIN, pathOUT)

imageStitcher.py

-*- coding: utf-8 -*-

"""

Author: Ng Wei Haen

75

Topic: Image Stitching of Aerial Footage

Start Date: 17 Dec 2020

"""

import cv2

import numpy as np

import glob

import os

import time

#import math

from colorama import Style, Back

import xlsxwriter as xls

"""

Important Parameter

detector_type (string): type of determine, "sift" or "orb"

 Defaults to "sift".

matcher_type (string): type of determine, "flann" or "bf"

 Defaults to "flann".

resize_ratio (int) = number needed to decrease the input images size

output_height_times (int): determines the output height based on input image

height.

 Defaults to 2.

output_width_times (int): determines the output width based on input image

width.

 Defaults to 4.

"""

detector_type = "sift"

matcher_type = "flann"

resize_ratio = 3

output_height_times = 20

output_width_times = 15

76

gms = False

visualize = True

image_dir = "image/testsetORI"

key_frame = "image/testsetORI/frame1.jpg"

output_dir = "image/TestSIFT"

class ImageStitching:

 def __init__(self, first_image,

 output_height_times = output_height_times,

 output_width_times = output_width_times,

 detector_type = detector_type,

 matcher_type = matcher_type):

 """This class processes every frame and generates the panorama

 Args:

 first_image (image for the first frame): first image to initialize the output

size

 output_height_times (int, optional): determines the output height based

on input image height. Defaults to 2.

 output_width_times (int, optional): determines the output width based

on input image width. Defaults to 4.

 detector_type (str, optional): the detector for feature detection. It can be

"sift" or "orb". Defaults to "sift".

 """

 self.detector_type = detector_type

 self.matcher_type = matcher_type

 if detector_type == "sift":

 # SIFT feature detector

 self.detector = cv2.xfeatures2d.SIFT_create(nOctaveLayers = 3,

 contrastThreshold = 0.04,

 edgeThreshold = 10,

 sigma = 1.6)

77

 if matcher_type == "flann":

 # FLANN: the randomized kd trees algorithm

 FLANN_INDEX_KDTREE = 1

 flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees =

5)

 search_params = dict (checks=200)

 self.matcher = cv2.FlannBasedMatcher(flann_params,search_params)

 else:

 # Brute-Force matcher

 self.matcher = cv2.BFMatcher()

 elif detector_type == "orb":

 # ORB feature detector

 self.detector = cv2.ORB_create()

 self.detector.setFastThreshold(0)

 if matcher_type == "flann":

 FLANN_INDEX_LSH = 6

 flann_params= dict(algorithm = FLANN_INDEX_LSH,

 table_number = 6, # 12

 key_size = 12, # 20

 multi_probe_level = 1) #2

 search_params = dict (checks=200)

 self.matcher = cv2.FlannBasedMatcher(flann_params,search_params)

 else:

 # Brute-Force-Hamming matcher

 self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING,

crossCheck=True)

 self.record = []

 self.visualize = visualize

 self.output_img = np.zeros(shape=(int(output_height_times *

first_image.shape[0]),

 int(output_width_times*first_image.shape[1]),

78

 first_image.shape[2]))

 self.process_first_frame(first_image)

 # output image offset

 self.w_offset = int(self.output_img.shape[0]/2 - first_image.shape[0]/2)

 self.h_offset = int(self.output_img.shape[1]/2 - first_image.shape[1]/2)

 self.output_img[self.w_offset:self.w_offset+first_image.shape[0],

 self.h_offset:self.h_offset+first_image.shape[1], :] = first_image

 a = self.output_img

 heightM, widthM = a.shape[:2]

 a = cv2.resize(a, (int(widthM / 4),

 int(heightM / 4)),

 interpolation=cv2.INTER_AREA)

 # cv2.imshow('output', a)

 self.H_old = np.eye(3)

 self.H_old[0, 2] = self.h_offset

 self.H_old[1, 2] = self.w_offset

 def process_first_frame(self, first_image):

 """processes the first frame for feature detection and description

 Args:

 first_image (cv2 image/np array): first image for feature detection

 """

 self.base_frame_rgb = first_image

 base_frame_gray = cv2.cvtColor(first_image, cv2.COLOR_BGR2GRAY)

 base_frame = cv2.GaussianBlur(base_frame_gray, (5,5), 0)

 self.base_features, self.base_desc =

self.detector.detectAndCompute(base_frame, None)

 def process_adj_frame(self, next_frame_rgb):

79

 """gets an image and processes that image for mosaicing

 Args:

 next_frame_rgb (np array): input of current frame for the mosaicing

 """

 self.next_frame_rgb = next_frame_rgb

 next_frame_gray = cv2.cvtColor(next_frame_rgb,

cv2.COLOR_BGR2GRAY)

 next_frame = cv2.GaussianBlur(next_frame_gray, (5,5), 0)

 self.next_features, self.next_desc =

self.detector.detectAndCompute(next_frame, None)

 self.matchingNhomography(self.next_desc, self.base_desc)

 if len(self.matches) < 4:

 return

 print ("\n")

 self.warp(self.next_frame_rgb, self.H)

 # For record purpose: save into csv file later

 self.record.append([len(self.base_features), len(self.next_features),

 self.no_match_lr, self.no_GMSmatches, self.inlier,

self.inlierRatio, self.reproError])

 # loop preparation

 self.H_old = self.H

 self.base_features = self.next_features

 self.base_desc = self.next_desc

 self.base_frame_rgb = self.next_frame_rgb

 def matchingNhomography(self, next_desc, base_desc):

80

 """matches the descriptors

 Args:

 next_desc (np array): current frame descriptor

 base_desc (np array): previous frame descriptor

 Returns:

 array: and array of matches between descriptors

 """

 # matching

 if self.detector_type == "sift":

 pair_matches = self.matcher.knnMatch(next_desc, trainDescriptors =

base_desc,

 k = 2)

 """

 Store all the good matches as per Lowe's ratio test'

 The Lowe's ratio is refer to the journal "Distinctive

 Image Features from Scale-Invariant Keypoints" by

 David G. Lowe.

 """

 lowe_ratio = 0.8

 matches = []

 for m, n in pair_matches:

 if m.distance < n.distance * lowe_ratio:

 matches.append(m)

 self.no_match_lr = len(matches)

 # Rate of matches (Lowe's ratio test)

 rate = float(len(matches) / ((len(self.base_features) +

len(self.next_features))/2))

 print (f"Rate of matches (Lowe's ratio test):

{Back.RED}%f{Style.RESET_ALL}" % rate)

81

 elif self.detector_type == "orb":

 if self.matcher_type == "flann":

 matches = self.matcher.match(next_desc, base_desc)

 '''

 lowe_ratio = 0.8

 matches = []

 for m, n in pair_matches:

 if m.distance < n.distance * lowe_ratio:

 matches.append(m)

 '''

 self.no_match_lr = len(matches)

 # Rate of matches (Lowe's ratio test)

 rate = float(len(matches) / (len(base_desc) + len(next_desc)))

 print (f"Rate of matches (Lowe's ratio test):

{Back.RED}%f{Style.RESET_ALL}" % rate)

 else:

 pair_matches = self.matcher.match(next_desc, base_desc)

 # Rate of matches (before Lowe's ratio test)

 self.no_match_lr = len(pair_matches)

 rate = float(len(pair_matches) / (len(base_desc) + len(next_desc)))

 print (f"Rate of matches: {Back.RED}%f{Style.RESET_ALL}" %

rate)

 # Sort them in the order of their distance.

 matches = sorted(matches, key=lambda x: x.distance)

 # OPTIONAL: used to remove the unmatch pair match

 matches = cv2.xfeatures2d.matchGMS(self.next_frame_rgb.shape[:2],

 self.base_frame_rgb.shape[:2],

 self.next_features,

 self.base_features, matches,

82

 withScale = False, withRotation = False,

 thresholdFactor = 6.0) if gms else matches

 self.no_GMSmatches = len(matches) if gms else 0

 # Rate of matches (GMS)

 rate = float(self.no_GMSmatches / (len(base_desc) + len(next_desc)))

 print (f"Rate of matches (GMS): {Back.CYAN}%f{Style.RESET_ALL}" %

rate)

 # OPTIONAL: Obtain the maximum of 20 best matches

 # matches = matches[:min(len(matches), 20)]

 # Visualize the matches.

 if self.visualize:

 match_img = cv2.drawMatches(self.next_frame_rgb, self.next_features,

self.base_frame_rgb,

 self.base_features, matches, None,

flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

 cv2.imshow('matches', match_img)

 self.H, self.status, self.reproError =

self.findHomography(self.next_features, self.base_features, matches)

 print ('inlier/matched = %d / %d' % (np.sum(self.status), len(self.status)))

 self.inlier = np.sum(self.status)

 self.inlierRatio = float(np.sum(self.status)) / float(len(self.status))

 print ('inlierRatio = ', self.inlierRatio)

 # len(status) - np.sum(status) = number of detected outliers

 '''

 TODO -

 To minimize or get rid of cumulative homography error is use block

bundle adjustnment

83

 Suggested from "Multi View Image Stitching of Planar Surfaces on

Mobile Devices"

 Using 3-dimentional multiplication to find cumulative homography is

very sensitive

 to homography error.

 '''

 # 3-dimensional multiplication to find cumulative homography to the

reference keyframe

 self.H = np.matmul(self.H_old, self.H)

 self.H = self.H/self.H[2,2]

 self.matches = matches

 return matches

 @ staticmethod

 def findHomography(base_features, next_features, matches):

 """gets two matches and calculate the homography between two images

 Args:

 base_features (np array): keypoints of image 1

 next_features (np_array): keypoints of image 2

 matches (np array): matches between keypoints in image 1 and image 2

 Returns:

 np arrat of shape [3,3]: Homography matrix

 """

 kp1 = []

 kp2 = []

 for match in matches:

 kp1.append(base_features[match.queryIdx])

 kp2.append(next_features[match.trainIdx])

 p1_array = np.array([k.pt for k in kp1])

 p2_array = np.array([k.pt for k in kp2])

84

 homography, status = cv2.findHomography(p1_array, p2_array, method =

cv2.RANSAC,

 ransacReprojThreshold = 5.0,

 mask = None,

 maxIters = 2000,

 confidence = 0.995)

 #### Finding the euclidean distance error ####

 list1 = np.array(p2_array)

 list2 = np.array(p1_array)

 list2 = np.reshape(list2, (len(list2), 2))

 ones = np.ones(len(list1))

 TestPoints = np.transpose(np.reshape(list1, (len(list1), 2)))

 print ("Length:", np.shape(TestPoints), np.shape(ones))

 TestPointsHom = np.vstack((TestPoints, ones))

 print ("Homogenous Points:", np.shape(TestPointsHom))

 projectedPointsH = np.matmul(homography, TestPointsHom) #

projecting the points in test image to collage image using homography matrix

 projectedPointsNH =

np.transpose(np.array([np.true_divide(projectedPointsH[0,:],

projectedPointsH[2,:]), np.true_divide(projectedPointsH[1,:],

projectedPointsH[2,:])]))

 print ("list2 shape:", np.shape(list2))

 print ("NH Points shape:", np.shape(projectedPointsNH))

 print ("Raw Error Vector:", np.shape(np.linalg.norm(projectedPointsNH-

list2, axis=1)))

 Error = int(np.sum(np.linalg.norm(projectedPointsNH-list2, axis=1)))

 print ("Total Error:", Error)

 AvgError = np.divide(np.array(Error), np.array(len(list1)))

 print ("Average Error:", AvgError)

85

 ##################

 return homography, status, AvgError

 def warp(self, next_frame_rgb, H):

 """ warps the current frame based of calculated homography H

 Args:

 next_frame_rgb (np array): current frame

 H (np array of shape [3,3]): homography matrix

 Returns:

 np array: image output of mosaicing

 """

 warped_img = cv2.warpPerspective(

 next_frame_rgb, H, (self.output_img.shape[1],

self.output_img.shape[0]),

 flags=cv2.INTER_LINEAR)

 transformed_corners = self.get_transformed_corners(next_frame_rgb, H)

 warped_img = self.draw_border(warped_img, transformed_corners)

 self.output_img[warped_img > 0] = warped_img[warped_img > 0]

 output_temp = np.copy(self.output_img)

 output_temp = self.draw_border(output_temp, transformed_corners,

color=(0, 0, 255))

 # Visualize the stitched result

 if self.visualize:

 output_temp_copy = output_temp/255.

 output_temp_copy = cv2.normalize(output_temp_copy, None, 0, 255,

cv2.NORM_MINMAX, cv2.CV_8U) # convert float64 to unit8

 size = 720

86

 heightM, widthM = output_temp_copy.shape[:2]

 ratio = size / float(heightM)

 output_temp_copy = cv2.resize(output_temp_copy, (int(ratio * widthM),

size), interpolation=cv2.INTER_AREA)

 cv2.imshow('output', output_temp_copy)

 return self.output_img

 @ staticmethod

 def get_transformed_corners(next_frame_rgb, H):

 """finds the corner of the current frame after warp

 Args:

 next_frame_rgb (np array): current frame

 H (np array of shape [3,3]): Homography matrix

 Returns:

 [np array]: a list of 4 corner points after warping

 """

 corner_0 = np.array([0, 0])

 corner_1 = np.array([next_frame_rgb.shape[1], 0])

 corner_2 = np.array([next_frame_rgb.shape[1], next_frame_rgb.shape[0]])

 corner_3 = np.array([0, next_frame_rgb.shape[0]])

 corners = np.array([[corner_0, corner_1, corner_2, corner_3]],

dtype=np.float32)

 transformed_corners = cv2.perspectiveTransform(corners, H)

 transformed_corners = np.array(transformed_corners, dtype=np.int32)

 # output_temp = np.copy(output_img)

 # mask = np.zeros(shape=(output_temp.shape[0], output_temp.shape[1],

1))

 # cv2.fillPoly(mask, transformed_corners, color=(1, 0, 0))

87

 # cv2.imshow('mask', mask)

 return transformed_corners

 def draw_border(self, image, corners, color=(0, 0, 0)):

 """This functions draw rectancle border

 Args:

 image ([type]): current mosaiced output

 corners (np array): list of corner points

 color (tuple, optional): color of the border lines. Defaults to (0, 0, 0).

 Returns:

 np array: the output image with border

 """

 for i in range(corners.shape[1]-1, -1, -1):

 cv2.line(image, tuple(corners[0, i, :]), tuple(

 corners[0, i-1, :]), thickness=5, color=color)

 return image

 @staticmethod

 def stitchedimg_crop(stitched_img):

 """This functions crop the black edge

 Args:

 stitched_img (np array): stitched image with black edge

 Returns:

 np array: the output image with no black edge

 """

 stitched_img = cv2.normalize(stitched_img, None, 0, 255,

cv2.NORM_MINMAX, cv2.CV_8U) # convert float64 to unit8

 # Crop black edges

88

 stitched_img_gray = cv2.cvtColor(stitched_img,

cv2.COLOR_BGR2GRAY)

 _, thresh = cv2.threshold(stitched_img_gray, 1, 255,

cv2.THRESH_BINARY)

 dino, contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_NONE)

 print ("Cropping black edge of stitched image ...")

 print ("Found %d contours...\n" % (len(contours)))

 max_area = 0

 best_rect = (0,0,0,0)

 for cnt in contours:

 x,y,w,h = cv2.boundingRect(cnt)

 deltaHeight = h-y

 deltaWidth = w-x

 if deltaHeight < 0 or deltaWidth < 0:

 deltaHeight = h+y

 deltaWidth = w+x

 area = deltaHeight * deltaWidth

 if (area > max_area and deltaHeight > 0 and deltaWidth > 0):

 max_area = area

 best_rect = (x,y,w,h)

 if (max_area > 0):

 final_img_crop = stitched_img[best_rect[1]:best_rect[1]+best_rect[3],

 best_rect[0]:best_rect[0]+best_rect[2]]

 return final_img_crop

89

def main():

 images = sorted(glob.glob(image_dir + "/*.jpg"),

 key=lambda x: int(os.path.splitext(os.path.basename(x))[0][5:]))

 # read the first frame

 first_frame = cv2.imread(key_frame)

 heightM, widthM = first_frame.shape[:2]

 first_frame = cv2.resize(first_frame, (int(widthM / resize_ratio),

 int(heightM / resize_ratio)),

 interpolation=cv2.INTER_AREA)

 image_stitching = ImageStitching(first_frame)

 round = 2

 for next_img_path in images[1:]:

 print (f'Reading {Back.YELLOW}%s{Style.RESET_ALL}...' %

next_img_path)

 next_frame_rgb = cv2.imread(next_img_path)

 heightM, widthM = next_frame_rgb.shape[:2]

 next_frame_rgb = cv2.resize(next_frame_rgb, (int(widthM / resize_ratio),

 int(heightM / resize_ratio)),

 interpolation=cv2.INTER_AREA)

 print ("Stitching %d / %d of image ..." % (round,len(images)))

 # process each frame

 image_stitching.process_adj_frame(next_frame_rgb)

 round += 1

 if round > len(images):

 print ("Please press 'q' to continue the process ...")

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 cv2.waitKey(0)

 cv2.destroyAllWindows()

90

 # cv2.imwrite('mosaic.jpg', image_stitching.output_img)

 final_img_crop =

image_stitching.stitchedimg_crop(image_stitching.output_img)

 print ("Image stitching done ...")

 cv2.imwrite("%s/Normal.JPG" % output_dir, final_img_crop)

 # Save important results into csv file

 tuplelist = tuple(image_stitching.record)

 workbook = xls.Workbook('Normal.xlsx')

 worksheet = workbook.add_worksheet("Normal")

 row = 0

 col = 0

 worksheet.write(row, col, 'number_pairs')

 worksheet.write(row, col + 1, 'basefeature')

 worksheet.write(row, col + 2, 'nextfeature')

 worksheet.write(row, col + 3, 'no_match_lr')

 worksheet.write(row, col + 4, 'match_rate')

 worksheet.write(row, col + 5, 'no_GMSmatches (OFF)')

 worksheet.write(row, col + 6, 'gms_match_rate')

 worksheet.write(row, col + 7, 'inlier')

 worksheet.write(row, col + 8, 'inlierratio')

 worksheet.write(row, col + 9, 'reproerror')

 row += 1

 number = 1

 # Iterate over the data and write it out row by row.

 for basefeature, nextfeature, no_match_lr, no_GMSmatches, inlier, inlierratio,

reproerror in (tuplelist):

 worksheet.write(row, col, number)

 worksheet.write(row, col + 1, basefeature)

 worksheet.write(row, col + 2, nextfeature)

 worksheet.write(row, col + 3, no_match_lr)

91

 match_rate = no_match_lr / ((basefeature+nextfeature)/2)

 worksheet.write(row, col + 4, match_rate)

 worksheet.write(row, col + 5, no_GMSmatches)

 gms_match_rate = no_GMSmatches / ((basefeature+nextfeature)/2)

 worksheet.write(row, col + 6, gms_match_rate)

 worksheet.write(row, col + 7, inlier)

 worksheet.write(row, col + 8, inlierratio)

 worksheet.write(row, col + 9, reproerror)

 number += 1

 row += 1

 workbook.close()

""" Main

"""""""""""""""""""""""""""""""""""""""

if __name__ == "__main__":

 program_start = time.process_time()

 main()

 program_end = time.process_time()

 print (f'Program elapsed time: {Back.GREEN}%s s{Style.RESET_ALL}\n' %

str(program_end-program_start))

	DECLARATION
	APPROVAL FOR SUBMISSION
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.6 Contribution of the Study
	1.7 Outline of Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction of Image Stitching
	2.2 Pixel-Based (Direct) Approaches
	2.2.1 Gradient domain-based Method
	2.2.2 Graph-based Method
	2.2.3 Depth-based Method
	2.2.4 Summary and Comparison

	2.3 Feature-based Approaches
	2.3.1 Sparse Feature-based Method
	2.3.2 Binary Descriptor-based Method
	2.3.3 Mesh-based Alignment Method
	2.3.3.1 Image Differentiating Technique for Aerial Image Stitching
	2.3.3.2 Summary of Mesh-based Alignment Method

	2.3.4 Summary and Comparison

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Overview of Project Work Plan
	3.2 Introduction
	3.3 Dataset
	3.4 Frame Extraction from Aerial Footage
	3.5 Camera Calibration
	3.6 Image Pre-processing
	3.7 Feature Representation
	3.7.1 Scale-Invariant Feature Transform (SIFT)
	3.7.1.1 Scale-space Extrema Detection
	3.7.1.2 Keypoints Localization
	3.7.1.3 Orientation Assignment
	3.7.1.4 Descriptor Computation

	3.8 Feature Matching
	3.8.1 Randomized K-D Tree Algorithm of FLANN
	3.8.2 Feature Match Filtering

	3.9 Robust Homography Estimation
	3.9.1 Random Sample Consensus (RANSAC)

	3.10 Image Warping and Black Edges Removal
	3.11 Project Planning and Resource Allocation
	3.12 Summary of Methodology

	CHAPTER 4
	4 RESULTS AND DISCUSSIONS
	4.1 Introduction
	4.2 Frame Extraction and Camera Calibration
	4.3 The Pre-processing Phase
	4.3.1 Image Resize and Grayscale Conversion
	4.3.2 Gaussian Noise Removal

	4.4 Feature Representation
	4.4.1 Comparison Results of Sparse Feature-based and Binary-based Feature Representation

	4.5 Feature Matching
	4.5.1 Comparison Results of FLANN Matcher and Brute-Force Matcher in Feature Matching
	4.5.2 Comparison Results of LR, GMS and LR-GMS in Feature Match Filtering
	4.5.2.1 The Effect of Lowe’s Ratio on Feature Match Rate and Inlier Ratio

	4.6 Robust Homography Estimation using RANSAC
	4.7 Image Warping and Black Edges Removal
	4.8 Dataset with Lawnmower Flight Pattern
	4.9 Finalization of Parameters

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations for Future Work

	REFERENCES
	APPENDICES

