

MACHINE-LEARNING BASED QOE PREDICTION

FOR DASH VIDEO STREAMING

TAN JUN YUAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

Jan 2021

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : TAN JUN YUAN

ID No. : 1602288

Date : 10/4/2021

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “MACHINE-LEARNING BASED

QOE PREDICTION FOR DASH VIDEO STREAMING” was prepared by

TAN JUN YUAN has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering at Universiti Tunku Abdul

Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Tham Mau Luen

4/5/2021

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, Tan Jun Yuan. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. First, I wish to express my sincere gratitude to my final year

project supervisor, Dr. Tham Mau-Luen, for his previous guidance, advice and

insightful comments throughout my research and thesis writing. His experience

and insights have enabled me to complete this project successfully.

 In addition, I would also like to thank my parents and friends, who had

provided me support and encouragement throughout the project. Finally, I also

want to express my thankfulness to UTAR for giving me the opportunity and

accept me into the graduate program.

vi

ABSTRACT

Quality of experience (QoE) is an essential metric for video service platforms

such as Youtube and Netflix to monitor the service perceived by their end-users.

Driven by the popularity of MPEG-Dynamic Adaptive HTTP Streaming

(DASH) format among service providers, a plethora of QoE prediction models

have been proposed for MPEG-DASH video streaming. However, conventional

models are established based on machine learning techniques, which are unable

to extract high-level features from low-level raw inputs via a hierarchical

learning process. The capabilities of deep learning have paved the new way for

more powerful QoE prediction models. The aim of this project is to propose a

deep-learning-based QoE prediction method. The starting point of the project is

a state-of-the-art framework called DeepQoE, which encompasses three phases:

feature pre-processing, representation learning and QoE predicting phase. The

framework is further improved by integrating ensemble learning in the

prediction phase. Extensive experiments are conducted to evaluate the

performance of the proposed QoE prediction model as compared to

conventional algorithms. By using a publicly available LIVE-NFLX-II dataset,

the newly trained model outperforms not only conventional methods but also

the DeepQoE by 0.226% and 0.06% in terms of Spearman Rank Order

Correlation Coefficient (SROCC) and Pearson Linear Correlation Coefficient

(LCC), respectively.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of Report 4

2 LITERATURE REVIEW 5

2.1 Introduction to Video Quality of Experience 5

2.2 DASH Video Streaming 6

2.3 Conventional QoE Prediction Algorithms 6

2.3.1 Peak Signal-to-Noise Ratio (PSNR) 7

2.3.2 Structural similarity index metric (SSIM) 8

2.3.3 Spatio-temporal reduced reference entropy

 differencing (ST-RRED) 9

2.3.4 Multiple Linear Regression Analysis 9

2.3.5 Limitations on conventional QoE prediction

 methods 10

viii

2.4 Machine Learning 10

2.4.1 Decision Tree 11

2.4.2 Random Forest 12

2.4.3 Gradient Boosting 13

2.4.4 K-Nearest Neighbour (k-NN) 13

2.4.5 Limitations on Machine Learning

 algorithms on QoE prediction 14

2.5 Deep Learning 14

2.5.1 Restricted Boltzmann machine (RBM) 15

2.5.2 Convolutional Neural Network (CNN) 16

2.5.3 Summary of Deep Learning 16

2.6 Deep Learning Approaches on Video QoE

 Prediction 17

2.6.1 CNN-QoE for Continuous QoE Prediction 17

2.6.2 DeepQoE 18

3 METHODOLOGY AND WORK PLAN 20

3.1 Overview of Project Work Plan 20

3.2 Environment Setup 21

3.2.1 Linux 21

3.2.2 FFmpeg 21

3.2.3 Caffe 21

3.2.4 Pytorch 21

3.3 Deep Learning Model Framework 23

3.4 Pre-trained Models 25

3.5 Dataset Evaluation – LIVE-NFLX-II 26

3.6 Dataset Pre-processing 27

3.6.1 Feature selection 27

3.6.2 Feature Extraction (C3D & GloVe) 28

3.6.3 Extracting into CSV file 29

3.7 Training for Deep Learning Model 29

3.8 10-Fold Cross-Validation 30

3.9 Evaluation Metrics of QoE Prediction Model 31

3.10 Project Planning and Resource Allocation 31

ix

3.11 Anticipated Problems and Solutions 32

4 RESULTS AND DISCUSSION 33

4.1 Introduction 33

4.2 Hyper-parameter tuning 33

4.3 Evaluation of Representation from Deep Learning

 Model 36

4.4 Enhancement to the Deep Learning Model with

Ensemble Learning 38

4.5 Summary of Results 40

5 CONCLUSIONS AND RECOMMENDATIONS 41

5.1 Conclusions 41

5.2 Recommendations for Future Work 42

REFERENCES 43

APPENDICES 49

x

LIST OF TABLES

Table 2.1: 5-point Absolute Category Rating (ACR) scale 5

Table 3.1: Machine Learning Algorithms in Scikit-Learn and Respective

Paths 22

Table 3.2: Comparison of public QoE databases for HTTP-based adaptive

video streaming (Bampis et al., 2018) 26

Table 3.3: Features of the LIVE-NFLX-II dataset 27

Table 4.1: Results of Hold-out Test on Different Algorithm 39

Table 4.2: Results of Deep Learning Model Before Ensembling vs after

Ensembling 39

xi

LIST OF FIGURES

Figure 2.1: The SSIM measurement system (Kotevskisss and Mitrevski,

 2010) 8

Figure 2.2: Example of decision tree model (Safavian and Landgrebe,

 1991) 11

Figure 2.3: Architecture of the RF algorithm (Aung and Hla, 2009) 12

Figure 2.4: Architecture of Restricted Boltzmann Machine (RBM)

 (Mocanu et al., 2015) 15

Figure 2.5: Proposed CNN-QoE architecture and residual block used

 (Duc et al., 2020) 17

Figure 2.6: Architecture of the DeepQoE framework (Zhang et al., 2020) 18

Figure 3.1: Flowchart for Project Workflow 20

Figure 3.2: Proposed QoE Prediction Model Framework 23

Figure 3.3: The Architecture of C3D Model labelled with number of

 output units (Tran et al., 2015) 25

Figure 3.4: Example Illustration of Feature Extraction of C3D 28

Figure 3.5: Illustration of 10-Fold Cross-Validation (Berrar, 2018) 30

Figure 3.6: Gantt Chart of Task List Project Planning 32

Figure 4.1: Graph of RMSE against Learning Rate 34

Figure 4.2: Graph of RMSE against Training Ratio 34

Figure 4.3: Graph of SROCC against Training Ratio 35

Figure 4.4: Graph of LCC against Training Ratio 35

Figure 4.5: Graph of RMSE using pre-processed data vs representation 37

Figure 4.6: Graph of SROCC using pre-processed data vs representation 37

Figure 4.7: Graph of LCC using pre-processed data vs representation 38

xii

LIST OF SYMBOLS / ABBREVIATIONS

ABR Adaptive Bitrate

ACR Absolute Category Rating

AI Artificial Intelligence

ANN Artificial Neural Network

ASAC Adaptive streaming of Audiovisual Content

CDN Content Delivery Network

CNN Convolutional Neural Network

DASH Dynamic Adaptive Streaming via HTTP

DL Deep Learning

DNN Deep Neural Network

JND Just Noticeable Difference

k-NN k-Nearest Neighbor

ML Machine Learning

MOS Mean Opinion Score

MSE Mean Squared Error

LCC Pearson Linear Correlation Coefficient

PSNR Peak Signal-to-Noise Ratio

QA Quality Assessment

QoE Quality of Experience

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RF Random Forest

RMSE Root Mean Squared Error

RRED Reduced Reference Entropy Differencing

SeLU Scaled Exponential Linear Unit

SROCC Spearman Rank Order Correlation Coefficient

SRRED Spatial Reduced Reference Entropy Differencing

ST-RRED Spatio-temporal Reduced Reference Entropy Differencing

TCN Temporal Convolutional Network

TRRED Temporal Reduced Reference Entropy Differencing

VNI Visual Networking Index

xiii

LIST OF APPENDICES

Appendix A: LIVE-NFLX-II Dataset and DeepQoE Download Source 49

Appendix B: Shell Script ‘feature_extraction.sh’ (Extract features from

frames for LIVE-NFLX-II) 49

Appendix C: Python Code 1 (PKL-to-CSV converter for LIVE-NFLX-II

dataset) 50

Appendix D: Python Code 2 (Deep Learning Training Code) 53

Appendix E: Python Code 3 (Evaluation Code for section 4.4) 55

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In the past few years, there is a rapid increase in the usage of mobile devices

and multimedia applications. Mobile data traffic is also increasing significantly,

with mobile video being one of the main contributors. Based on the Cisco Visual

Networking Index (VNI), mobile video traffic contributed 59 per cent of the

global mobile data traffic in the year 2017. It is also predicted that the global

mobile data traffic will increase up to 7-fold from the year 2017 to 2022 while

having 79 per cent of the traffic is in video.

 To combat the bandwidth fluctuations, MPEG-Dynamic Adaptive

HTTP Streaming (DASH) is now widely adopted in modern major video

streaming platforms such as Youtube and Netflix. In MPEG-DASH format, the

videos will be separated into different durations of temporal segments, where

each segment is encoded at different qualities, resulting in different sizes

(Vasilev et al., 2018). This enables DASH clients to have flexible optimization

strategies, where they can scale up or scale down the video quality by selecting

the most optimum segment for different end-users.

 All video streaming services need to find a balance between the

operating cost and the quality of service perceived by their end-users. To cope

with the increasing video traffic, they need to plan their resource allocation and

bandwidth to ensure that the experience of end-users is not affected greatly

while being cost-effective. Starting from this premise, it is clear that video

quality of experience (QoE) opens the possibilities for content providers to

optimize their streaming service strategies.

 QoE can be measured as the level of satisfaction or displeasure with the

quality of service provided to the end-users. In recent years, QoE has become

an important metric for companies to provide insight on their resource allocation

and bandwidth provision. The factors that affect the QoE are called influence

factors which can be further categorized into system, context and human

influence factors. The resolution, bitrate, and demographic of end-users are

some of the examples of influence factors.

2

1.2 Importance of the Study

The video streaming market is a big trend that is still growing rapidly in terms

of usage and volume. Hence, predicting QoE is an important topic for

companies to ensure the overall experience of end-users. Specifically, the focus

is on how to improve QoE prediction accuracy so that the outcome can be

further utilized by video streaming companies to monitor and increase their QoE

provided.

 With popular video streaming services like Youtube and Netflix

supporting the MPEG-DASH video format, other smaller video streaming

companies also need to improve their QoE so that the company can remain

competitive with other bigger companies. With an effective video QoE

prediction model, companies can gain more insight and have more control over

their overall streaming quality and bandwidth.

1.3 Problem Statement

Following the booming growth of video streaming traffic, video streaming

services such as Youtube and Netflix need to process, store and deliver huge

amounts of video data every day. These video streaming providers must

improve the QoE of their end-users to remain competitive in the market. Hence,

video QoE prediction is essential for video streaming services to determine the

quality of the video provided by their services.

 Although there are conventional ways of predicting QoE, such as using

the reduced reference entropy difference (RRED) and Peak Signal-to-Noise

Ratio (PSNR) algorithms, they still have some limitations. The conventional

schemes can only fit well only when an ideal network condition is assumed,

meaning that video content must be streamed consistently to clients without

interruption. Thus, conventional methods are not able to predict QoE with

consistent accuracy when rebuffering occurs. This problem becomes more

relevant in a MPEG-DASH format, as it is streamed through HTTP, and

network condition may differ for different end-users.

 Recent years have witnessed the application of machine learning (ML)

in boosting QoE prediction accuracy. However, conventional machine learning

algorithms are unable to extract high-level features from low-level raw inputs

3

automatically. Hence, there is a need for a better QoE prediction model that has

no dependency on handcrafted feature engineering.

1.4 Aim and Objectives

The aim and objectives of the project include:

• To study state-of-the-art deep-learning-based QoE prediction model for

MPEG-DASH video

• To propose an enhancement to the deep-learning-based QoE prediction

model

• To evaluate the performance of the proposed method with respect to the

conventional methods

1.5 Scope and Limitation of the Study

This project focuses on the implementation of a deep learning model to predict

the QoE of MPEG-DASH video.

Some limitations are considered in the project. There are PC hardware

limitations in terms of QoE model training. Besides, the inference speed of QoE

prediction and real-time QoE prediction are excluded from the scope of this

project due to limited computational resources.

1.6 Contribution of the Study

There are many publications and research on QoE prediction models. This

project aims to apply deep learning for QoE prediction model to address the

disadvantages of conventional QoE prediction models. To overcome the

requirements of large training datasets for deep neural networks, transfer

learning on pre-trained models was utilized. Finally, the proposed framework

introduces ensemble learning to seek further improvement, and the results are

compared with the existing QoE prediction algorithms in terms of the

collinearity improvement between the predicted QoE and the real QoE.

4

1.7 Outline of Report

Chapter 1 provides an overview of the importance and problems of conventional

QoE prediction in DASH videos and includes the aim and objectives of the

project.

 The literature review in Chapter 2 highlights the conventional QoE

prediction methods and introduces related works on deep learning for QoE

prediction. The methodology in Chapter 3 explains the framework proposed for

the deep learning model, setup of the training environment and training process.

 The results and discussions are provided in Chapter 4. Chapter 5

concludes the results of the deep learning model trained for QoE prediction and

provides suggestions for future methodology improvement and future research

directions.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction to Video Quality of Experience

To access video QoE, there are two types of video QoE assessment which

includes subjective analysis and objective quality modelling. For subjective

analysis, it is done by directly giving participants to watch and rate a score for

each video clip viewed, whereas objective quality modelling involves the

identification of the QoE parameters by using the results from the subjective

analysis.

 According to Seufert (2019), most conventional QoE assessments use

the 5-point Absolute Category Rating (ACR) scale as shown in Table 2.1, which

is a type of ordinal rating scale.

Table 2.1: 5-point Absolute Category Rating (ACR) scale

Score Category

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

 Seufert also stated that the 5-point ACR scale is not consistent and have

less meaning between the differences and ratios of each categorical value. Thus,

for video QoE prediction, a more accurate metric for test scores can be presented

by QoE distributions (Seufert, 2019) by realizing the ACR-scale QoE results as

a form of multinomial distribution. QoE distributions allow meaningful

evaluation of the QoE scores in a concise way.

6

2.2 DASH Video Streaming

For MPEG-Dynamic Adaptive HTTP Streaming (DASH), it enables video

service providers to split the video content into different temporal segments and

then offer it in several quality profiles. Each quality profile will then be encoded

at different sets of video encoding rate, resolution and codec attributes (Sideris

et al., 2015). The video quality is then chosen based on the network rate and the

end user’s specifications, such as terminal screen resolution and processing

power.

 Streaming via HTTP can provide some benefits. First, by using HTTP,

the video data can be delivered more efficiently as it is delivered in large

segments. Second, the video streaming providers do not need to maintain a

session state in their servers, saving additional cost for server resources

(Sodagar, 2011).

 In the MPEG-DASH standard, it does not define any specific adaptive

bitrate streaming (ABR) algorithm. Therefore, there are different types of ABR

algorithms proposed for seamless MPEG-DASH streaming, such as Adaptive

Streaming of Audiovisual Content (ASAC) and Buffer Occupancy based

Lyapunov Algorithm (BOLA).

 Different adaptive bitrate streaming algorithms can have different

effects on the QoE of end-users. Zhao et al. (2017) stated that the optimization

of the client-side ABR algorithm and definition of QoE parameters are two

important factors to provide a high QoE for end-users streaming via DASH.

However, the focus of this project will be on defining the QoE parameters and

predicting the QoE for DASH video streaming.

2.3 Conventional QoE Prediction Algorithms

To identify the video QoE parameters, there are several conventional methods

that can compute the QoE, such as the peak signal-to-noise ratio (PSNR)

(Huynh-Thu and Ghanbari, 2012), structural similarity index metric (SSIM)

(Kotevski and Mitrevski, 2010) and the spatio-temporal reduced reference

entropy differencing (ST-RRED) (Soundararajan and Bovik, 2013).

7

2.3.1 Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a QoE prediction algorithm used widely

in image and video processing for its fast computation and relatively simpler to

understand.

 For video sequences, the Mean Squared Error (MSE) is calculated

between each pair of the corresponding reference and processed video frames.

The equation for the MSE calculation is:

 𝑀𝑆𝐸(𝑖) =
1

𝑊𝐻
∑ ∑[𝑌𝑟(𝑥, 𝑦, 𝑖) − 𝑌𝑝(𝑥, 𝑦, 𝑖)]

𝐻−1

𝑦=0

𝑊−1

𝑥=0

 (2.1)

where

W = frame width (pixels), H = frame height (pixels)

Yr = luminance values of the reference video frame

Yp = luminance values of the processed video frame

Then, the PSNR for each pair of reference and processed video frames is:

 𝑃𝑆𝑁𝑅(𝑖) = 10 log10

𝐼2

𝑀𝑆𝐸(𝑖)
 (2. 2)

where

𝑖 = maximum pixel luminance value

Then, the PSNR value can be expressed as:

 𝑃𝑆𝑁𝑅 =
1

𝑁
∑ 𝑃𝑆𝑁𝑅(𝑖)

𝑁

𝑖=1

 (2. 3)

 According to Huynh-Thu and Ghanbari (2012), the PSNR value can be

used as an assessment of video quality across different test cases with fixed

content and fixed codec without the presence of freezing.

 However, PSNR is unable to assess the relationship between spatial and

temporal qualities. Results had shown that PSNR is unable to provide consistent

accuracy of quality prediction across different frame rates (Huynh-Thu and

8

Ghanbari, 2012). Thus, PSNR is an unfeasible quality metric to identify the QoE

of different video contents across different video formats or datasets.

2.3.2 Structural similarity index metric (SSIM)

Figure 2.1: The SSIM measurement system (Kotevskisss and Mitrevski, 2010)

Structural similarity index metric (SSIM) is a newer quality compared to PSNR,

and the SSIM index extracts the effect of luminosity to evaluate the structural

data from the image. Figure 2.1 shows the measurement system of the SSIM

index.

 The measurements of the SSIM index depends on three parameters

which include luminance comparison, structure comparison and contrast

comparison. The SSIM index is the combination of the three components, as

shown in Equation 2.4:

 𝑆(𝑥, 𝑦) = 𝑓(𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), 𝑠(𝑥, 𝑦)) (2. 4)

 According to Kotevski and Mitrevski (2010), the SSIM metric performs

better than the PSNR algorithm and has a comparable performance compared to

the Human Visual System. However, SSIM has limitations such as the SSIM

values can become largely inverted if there is a bigger change in contrast, colour

and brightness.

9

2.3.3 Spatio-temporal reduced reference entropy differencing (ST-

RRED)

For image and video quality assessment (QA) algorithms, they can be

categorized as full-reference and no-reference algorithms. While full-reference

algorithms such as SSIM or PSNR had seen significant progress, the progress

on no-reference QA algorithms is still slow. The reduced reference QA is a no-

reference algorithm that involves only sending or supplying some of the data of

the reference image that is useful.

 The spatial reduced reference entropy differencing (SRRED) index can

be computed by using spatial multiscale multi-orientation decompositions of

each frame in both distorted and reference videos, while the temporal reduced

reference entropy differencing (TRRED) index can be obtained by computing

the frame differences between each frame.

 As the SRRED and TRRED indices can operate individually, hence the

spatial and temporal frequency responses cannot affect each other. Thus, the

product form of SRRED and TRRED can be used and form the STRRED index.

 𝑆𝑇𝑅𝑅𝐸𝐷𝑘 = 𝑆𝑅𝑅𝐸𝐷𝑘𝑇𝑅𝑅𝐸𝐷𝑘 (2. 5)

 While the STRRED method shows a better improvement than PSNR and

SSIM in some cases (Soundararajan and Bovik, 2013), there are still limitations

such as the overall runtime and efficiency of the algorithm.

2.3.4 Multiple Linear Regression Analysis

Regression is used to measure the correlativity between the dependent variable

(output) and the independent variables (input). By using regression, the

numerical relationship between the output and input variables can be defined

with mathematical equations.

 Multiple linear regression can determine the functional relation between

an output variable and a group of input variables. The multiple linear regression

model is given by:

 𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑝𝑥𝑝 + 𝑒 (2. 6)

10

where y is the dependent variable, 𝑥𝑖 are different independent variables, 𝑎𝑖 is

the weightage of each independent variables (from 1 to p), 𝑎0 is the bias or

intercept, and e is the error term.

 However, there are some limitations for multiple linear regression

analysis. For instance, there may be a possibility of falsely concluding a

correlation is a factor. Although linear regression is easier to use, linear

regression is less flexible as it is only limited to linear cases, thus cannot fit into

some types of non-linear curves.

2.3.5 Limitations on conventional QoE prediction methods

From all the conventional QoE prediction methods mentioned, it is seen that the

conventional methods generally have limitations such as they are not flexible

enough to make their prediction reliably with different datasets. Hence, machine

learning algorithms were introduced to QoE prediction models to achieve an

improvement on the accuracy and reliability.

2.4 Machine Learning

Machine learning is a branch or subset of artificial intelligence (AI), and it is

used in predictive data analytics (Kelleher, Namee and D’Arcy, 2015). Machine

learning can be defined as a process to extract patterns from a huge amount of

data from a dataset.

 The machine learning model is needed to be trained priorly to predict a

specific output. Each data in the dataset contains a label 𝑦 and several features

𝑥 , and the dataset will be separated into a training and test set. During the

training process, the ML model is fed with the label and features to identify the

weightage of each feature. There are different types of ML algorithms which

include reinforcement learning, supervised learning and unsupervised learning

(Ayodele, 2010).

 The objective of unsupervised machine learning is to explore a similar

group of trends within the data (Guerra et al., 2011). There is no information on

the features in the dataset, letting the ML model to identify hidden patterns

within the unlabelled dataset.

 Supervised learning can be defined as training a data sample from the

dataset with the correct features labelled (Sathya and Abraham, 2013). The task

11

of supervised learning is to train the ML model based on the dataset of 𝑁

instances (Guerra et al., 2011), then the predicted outcome of the model will be

compared with the actual outcome to determine its accuracy of the machine

learning model.

 The feasibility of ML algorithms on QoE prediction such as decision

tree, random forest and k-nearest neighbours (k-NN) will be discussed in the

next section.

2.4.1 Decision Tree

Figure 2.2: Example of decision tree model (Safavian and Landgrebe, 1991)

Decision tree is a type of ML algorithm that uses the divide-and-conquer

approach to classification and regression problems (Myles et al., 2004). The

decision tree algorithm is a simple to interpret yet fast and effective option for

machine learning (Casas et al., 2017). An example of a decision tree model is

shown in Figure 2.2.

 Casas et al. (2017) had addressed the problem of the reliance on passive

traffic QoE prediction for cellular networks relying on passive traffic

measurements and QoE crowd-sourced feedback. The model chosen by Casas

et al. was based on the decision tree model, as it is stated that the decision tree

12

model is attractive for large-scale monitoring while having a great performance

and a decent prediction speed.

 However, the decision tree can be non-robust if the dataset itself is not

balanced. For instance, if the mean opinion score (MOS) classes from the

dataset are highly imbalanced when training, the model itself may be biased

after training. Hence, more work may be needed in order to counterbalance if

there are over-represented classes in the dataset.

2.4.2 Random Forest

Figure 2.3: Architecture of the RF algorithm (Aung and Hla, 2009)

Random Forest (RF) is a type of ensemble classifier (Mushtaq, Augustin and

Mellouk, 2012), meaning that it uses multiple learning algorithms to get a better

prediction accuracy. In RF algorithm, it uses several Decision Tree models,

which means that each tree in the model will make a prediction, then the class

with the most votes will be chosen by the RF model. The architecture of the RF

algorithm can be seen in Figure 2.3.

 Compared with the decision tree classifier, the experiment carried out

by Aung and Hla (2009) showed that the RF-based classification has higher

accuracy and the RF method is reliable. However, in some cases, the RF

algorithm has been shown to perform poorly in instances of class imbalance

13

(Segal, 2004). Although additional class weighting parameters can overcome

the problem, they will complicate the evaluation process of the model, making

the method not feasible.

2.4.3 Gradient Boosting

Gradient boosting (Friedman, 2011) is a type of machine learning boosting for

regression and classification problems. It creates a prediction model by

ensembling many weak prediction models. Boosting is a technique for primarily

reducing bias that can convert weak learners such as decision trees, into a strong

learner. Unlike RF which build each tree independently, gradient boosting

builds the model step by step by building one tree at a time to improve the

shortcoming of existing weak learners.

 In 2012, Yu et al. proposed an end-to-end and no-reference QoE

prediction for real-time video streaming in 3G networks. The model proposed

manage to predict MOS value more accurately compare to G.1070 model by

ITU-T. However, the parameter of the gradient boosting model is needed to be

tuned carefully to prevent over-fitting. Moreover, gradient boosting may not be

a good choice if there is a lot of noise in the dataset, as it can result in overfitting.

2.4.4 K-Nearest Neighbour (k-NN)

The k-NN algorithm is an instance-based ML method (Mushtaq, Augustin and

Mellouk, 2012). The key idea for the k-NN algorithm is to classify the new test

sample by calculating the distance to the nearest 𝑘 values, then assigning it to

the majority class of its nearest neighbours.

 The Nearest Neighbour rule can achieve high performance consistently

without any inferred assumptions (Islam et al., 2008) compared with other

supervised learning methods. According to Cicco, Mascolo and Palmisano

(2019), the k-NN algorithm had achieved higher accuracy than the ‘global’

algorithm when predicting the QoE of Content Delivery Networks (CDN), and

its performance is comparable with the oracle benchmark model from the

experiment.

 However, there are limitations for the k-NN algorithm. For example, the

k-NN algorithm is sensitive to localized data, where local anomalies can affect

its outcome significantly (V. Murudkar and D. Gitlin, 2019). Besides, the k-NN

14

algorithm is not suitable for all cases, specifically for cases with very large

datasets (Kordos, Blachnik and Strzempa, 2010), and overfitting problem occurs

easily for the algorithm, so it needs to involve techniques such as bootstrapping

or cross-validation.

2.4.5 Limitations on Machine Learning algorithms on QoE prediction

Overall, for conventional ML algorithms such as Decision Tree and RF, it has

a limitation such that they rely on hand-crafted features in the dataset. In many

cases, different feature extraction methods are needed to find suitable features

for a specific task (Rachmadi et al., 2017). Yet, with different extraction

techniques, the features may still not be generalized enough.

 Along with the development of deep learning algorithms in the past few

years, it has slowly been integrated into predictions models, replacing

conventional ML algorithms as the method for training prediction models.

Rachmadi et al. (2017) compared the performances between ML and DL

algorithms and found out that DL algorithms had a better performance when

compared to conventional ML methods.

2.5 Deep Learning

Deep Learning (DL) is a subfield of ML, in which its concept originated from

the artificial neural networks (ANN) approach (Zhang et al., 2017), in which the

term ‘deep’ in deep learning referring to the use of many hidden layers in the

feedforward neural networks.

 DL is a type of representation-learning method, as it can transform

representations starting from a low-level raw input into high-level

representation or feature. Without any human interference in feature

engineering, DL algorithms can model high-order and evaluate feature

interactions (Yue et al., 2020) in the dataset. Besides, with deep learning, end-

to-end training can be performed for an application because the deep neural

network can offer rich representability (Hang, 2018).

 In QoE prediction, deep learning models can provide automatic feature

engineering across different datasets. Thus, by using DL techniques, the feature

of the datasets can be utilized more efficiently as it is able to generalize better

across different datasets.

15

 For deep learning, the dependency of data is a major problem, as it needs

a large amount of data to learn all the patterns or behaviours. DL prediction

models tend to have a higher accuracy when the number of data increases. One

of the possible reasons is because the expressive vector space of the DL model

must be large to discover more patterns of the data (Tan et al., 2018). By

utilizing a machine learning technique called transfer learning, a DL model

trained on a particular task can be repurposed to predict a different task. Deep

transfer learning can reduce the training data needed and lessen the training time

for a particular task.

 There are several types of DL algorithms or architecture available such

as the Restricted Boltzmann machine (RBM) and Convolutional Neural

Network (CNN), which will be discussed in the next subsections.

2.5.1 Restricted Boltzmann machine (RBM)

Figure 2.4: Architecture of Restricted Boltzmann Machine (RBM) (Mocanu et

al., 2015)

RBM is a type of DL algorithm used to generate stochastic models of artificial

neural network (ANN). RBM models consist of Boltzmann Machines, which

are neural networks containing a set of bidirectional stochastic nodes. This

ensures that the neural networks will be less vulnerable to the local minima, thus

able to learn correspondingly to fit a generative model of data.

 Due to RBMs’ architecture and configuration of neural networks, RBMs

and their variants possess great generalization abilities (Mocanu et al., 2015). In

the RBM, data patterns will be represented by the activation of the nodes in the

16

‘visible’ layer while the ‘hidden’ layer of the RBM is used to detect features in

the data (Hinton, 2012).

 Figure 2.4 shows the visualized architecture of the RBM. In the RBM

architecture, there is a full connection between units in the visible layer and the

hidden layer. No connection will exist between the units in the same layer.

2.5.2 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a type of deep learning neural network,

and it has shown great performance in processing structured two-dimensional

data such as images and videos (Liu et al., 2017).

 CNNs are regularized multi-layer neural networks that have convolution

layers and sub-sampling layers which are connected alternatively in the middle

part of the network. The function of the convolution layer is to extract features

while the sub-sampling layer is to map the features and reducing data size of the

signal.

 To achieve scale invariance, by passing through an activation function

(commonly ReLu or sigmoid function), the features can be mapped in the first

sub-sampling layer. The process repeats for the total number of layers, and the

feature map can be determined.

 There are several advantages of using CNN. In CNN, convolution is

used instead of using general matrix multiplication, hence decreasing the

number of weights and reducing the overall complexity of the network. Besides,

CNN needs lesser pre-processing compared, as manual feature engineering is

not needed, and only the filters in CNN are needed to be trained. Parameter

sharing is also utilized in CNN during the learning process, leading to a

reduction in memory and efficiency improvement.

2.5.3 Summary of Deep Learning

For QoE prediction, DL can provide benefits such as being able to generalize

well across databases. Besides, CNN can provide great performance when

processing images and videos, which is also suitable for the application for

predicting video QoE.

17

2.6 Deep Learning Approaches on Video QoE Prediction

In order to investigate further the feasibility of deep learning on video QoE

prediction, several approaches from different research papers were studied.

2.6.1 CNN-QoE for Continuous QoE Prediction

Figure 2.5: Proposed CNN-QoE architecture and residual block used (Duc et al.,

2020)

In 2020, Duc et al. (2020) proposed an improved Temporal Convolutional

Network (TCN) based model called CNN-QoE. TCN is a variation of CNN and

is one of the alternative solutions for sequence modelling tasks such as

extracting temporal dependencies in sequential data such as videos.

 Figure 2.5 shows the CNN-QoE architecture proposed by Duc et al.. The

CNN-QoE model basically utilizes techniques such as 1D convolutions, dilated

causal convolution layer and a Scaled Exponential Linear Units (SeLU)

activation function.

 For the feature engineering part, Duc et al. had used STRRED to

measure the visual quality of the video. Features such as playback status, the

number of rebuffering events and the time since last rebuffering or bitrate switch

were also extracted.

 The CNN-QoE model can achieve a great performance in the accuracy

of continuous QoE prediction as well as decrease the complexity of

computations during training. Thus, this shows that CNN and its variations can

achieve great performances for QoE prediction for video streaming such as

DASH videos.

18

2.6.2 DeepQoE

Figure 2.6: Architecture of the DeepQoE framework (Zhang et al., 2020)

According to Zhang et al. (2020), there are two disadvantages of current QoE

prediction models, which involves the over-dependence on specific dataset

feature extraction and the inflexibility for transfer learning. Hence, a framework

called DeepQoE was proposed. Figure 2.6 shows the illustration of the

architecture of the DeepQoE framework.

 DeepQoE is a three-phase deep-learning-based framework that can

provide an end-to-end pipeline for QoE prediction. DeepQoE uses

convolutional neural networks (CNN) to perform feature extraction on different

datasets, then uses a deep neural network (DNN) to form a representation for

the DeepQoE model as input data. The learned representation can be used for

both classification and regression tasks.

 For the performance of the DeepQoE model on smaller datasets, it shows

a comparable result in comparison with other models. It was explained that deep

learning models perform better in larger datasets. The representation derived

from DeepQoE proved to be more efficient as compared to all other non-

machine-learning based algorithms. Specifically, for large datasets, the

19

DeepQoE framework performed better than other non-machine-learning-based

models in terms of accuracy (90.94% vs 82.84%). DeepQoE is a state-of-the-art

architecture and is referenced in research papers such as deep neural network

comparison by Tao et al. in 2019 and the neural network architecture proposed

by Hu, Liu and An in 2020.

20

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Overview of Project Work Plan

Figure 3.1 shows the general flow of the project work plan. One publicly

available QoE dataset will be evaluated and chosen for the project. Pre-trained

models such as C3D are utilized for feature extraction via transfer learning, and

several algorithms such as support vector machine (SVM) and Gradient

boosting are used for evaluation. The details of the work plan are discussed in

subsequent sub-chapters.

Figure 3.1: Flowchart for Project Workflow

21

3.2 Environment Setup

3.2.1 Linux

For the project, two virtual machines were set up via VMWare, and the

operating systems installed include Ubuntu 20.04 and Ubuntu 16.04 LTS.

Ubuntu 20.04 was utilized to perform training and evaluation tasks, while

Ubuntu 16.04 was utilized to perform data pre-processing. Two virtual

machines were set up due to different requirements, as Ubuntu 20.04 was unable

to set up the C3D pre-trained model successfully. Thus, Ubuntu 16.04 virtual

machine was used for feature extraction purposes.

3.2.2 FFmpeg

FFmpeg is an open-source command-line-based program that consists of a wide

range of libraries, mainly for processing multimedia files and streams. In the

project, the FFmpeg library is used to convert the raw video footage in the

database into frames so that it can act as an input for the C3D model to extract

its features.

3.2.3 Caffe

Caffe is a deep learning framework and is written in C++ with a Python interface.

It is an open-source library and it has advantages such as having an expressive

architecture, extensible code and decent speed. In this project, Caffe is needed

to be set up to use the pre-trained C3D model for feature extraction.

3.2.4 Pytorch

Pytorch is a machine learning framework that is based on the Torch library. It

can be used for applications such as natural language processing and image

classification. Pytorch is used for the training process of the QoE prediction

model in the project.

3.2.4.1 Scikit-Learn

Scikit-learn is a Python machine learning library. Scikit-learn is built on NumPy,

SciPy, and also matplotlib libraries in Python. It features different types of

22

classification and regression algorithms, including gradient boosting, RF, linear

regression and much more.

 For the project, linear regression, random forest, gradient boosting and

SVM are used for evaluation purposes and the paths of the machine learning

models are shown in Table 3.1.

 Each algorithm will have different parameters to set, and based on those

different parameters; the algorithms will produce different results. Hence, when

evaluating the feature representation aspect of the deep learning model, fixed

parameters are used during the evaluation process.

Table 3.1: Machine Learning Algorithms in Scikit-Learn and Respective Paths

Classifiers Paths

Linear Regression sklearn.linear_model.LinearRegression

Random Forest sklearn.ensemble.RandomForestRegressor

Gradient Boosting sklearn.ensemble.GradientBoostingRegressor

Support Vector Machine sklearn.svm

23

3.3 Deep Learning Model Framework

Figure 3.2: Proposed QoE Prediction Model Framework

Figure 3.2 shows the proposed deep learning model framework in this project.

The deep learning model architecture is based on the DeepQoE model, with an

additional step to perform ensemble learning. The framework integrates a

random forest model to perform ensembling with a linear layer together. The

purpose of performing ensembling is to further enhance the accuracy of the deep

learning model by exploiting the advantages of different algorithms used.

Random forest is great with high dimensional data, which is suitable for the

24

framework as it takes in the high-dimension representation from the deep

learning model as input. Besides, the random forest model has the versatility to

perform both classification and regression problems. With the ensembling of

random forest model, the model will have a lower chance of overfitting and can

achieve better performance.

 The neural network consists of four phases, which includes data

separation, data pre-processing, learning or training phase and prediction phase.

For the data separation phase, the raw input features are categorized into four

categories, which include video, text, categorical information and continuous

values.

 After the features are categorized, the data will be pre-processed

differently according to the category. For video footage, the video will be

extracted and transformed into a 512-dimensional vector by C3D. The text

category such as the video genre will be processed by GloVe. Besides, the

categorical information will be pre-processed by an embedding layer, while the

continuous values will be pre-processed by a linear layer. The details of the pre-

trained models will be discussed in the next subchapter.

 Then, the feature vectors obtained from the data pre-processing phase

will be concatenated into one feature vector. It will then be fed into the neural

network for the learning phase after it is split into a training set and test set. The

vector will be passed through a number of fully connected layers, and a

representation will be learnt before fed into an output linear layer and the

random forest model.

 For regression tasks, the number of features for each individual trees are

recommended to be N/3 (Hastie, Tibshirani and Friedman, 2008), where N is

the number of features. Thus, this recommended value will be chosen as a

default parameter for random forest in this project.

 Finally, ensembling is performed by taking the average of the prediction

from the linear layer and the random forest model. The results of the framework

can now be evaluated.

25

3.4 Pre-trained Models

Figure 3.3: The Architecture of C3D Model labelled with number of output units

(Tran et al., 2015)

The C3D model (Tran et al., 2015) is a modified version of Caffe to support 3D

CNNs. The C3D model can be used to train, fine-tune or test 3D ConvNets

efficiently. Figure 3.3 shows the architecture of the C3D and the respective

output units for each section. There is a C3D pre-trained model available, which

is trained on the Sports-1M dataset, and the tools for feature extraction was

available open-source. C3D extracts features from 16 continuous frames with

an 8-frame overlap between two consecutive clips; thus it can be utilized in this

project to extract video information for model training. With transfer learning,

the neural network can utilize the learned features from the C3D model instead

of training from scratch. This brings a huge advantage as the C3D is trained on

a huge dataset; thus it can reduce the dependency of training a video feature

extraction model. Hence, the C3D pre-trained model is utilized to extract

features from the frames of the videos in this project.

 The GloVe model (Jeffrey, Socher and Manning, 2014) is pre-trained on

Wikipedia and is an unsupervised learning algorithm to obtain a vector

representation of words. For the framework proposed, the GloVe is used to

extract the words into a 50-dimensional vector. The pre-trained model and code

are available publicly; hence it is used to extract features from text-type data in

this project.

26

3.5 Dataset Evaluation – LIVE-NFLX-II

The LIVE-NFLX-II database (Bampis et al., 2018) contains 420 video streams

that are derived from 15 different original videos of diverse content, which

includes action, documentary, sports, animation and video games. The video

sources were rendered under different lighting conditions. Besides, the videos

in the database were derived using seven different network traces to simulate

the real-life effects of network variability during the HTTP-based adaptive

video streaming.

 In the database, four different client-based ABR algorithms were also

deployed to create a rich streaming QoE database. The spatial and temporal

activities were also recorded. Moreover, a wide range of encoding bitrate and

qualities was used when deriving the videos. The videos were given scores by

the subject in a continuous manner, capturing the time-varying nature of QoE

due to conditions such as rebuffering and scene cuts. Z-score normalization was

applied to the MOS in the database. The normalized continuous scores per

subject were averaged to compute a continuous MOS score for each frame.

 A comparison was also made by Bampis et. al. (2018) to compare the

differences between other HTTP-based adaptive video streaming databases. The

comparison can be seen in Table 3.2.

Table 3.2: Comparison of public QoE databases for HTTP-based adaptive

video streaming (Bampis et al., 2018)

27

3.6 Dataset Pre-processing

3.6.1 Feature selection

Table 3.3: Features of the LIVE-NFLX-II dataset

Number of features: 36 features

There are a total of 36 features available in the data files of the LIVE-NFLX-II

dataset. The metrics are provided in .pkl and .mat format. Hence, to simplify the

training process, only 14 useful independent features are chosen and will be

converted to a CSV file for easier processing, as shown in Table 3.3.

 For this project, only continuous values and categorical information

were chosen, such as playout bitrate, adaptation algorithm, spatial information

and temporal information, frame rate, resolution of the video, rebuffering and

the scene cuts detected for each frame.

 There are two types of dependent data in the LIVE-NFLX-II dataset.

This includes the ‘retrospective_zscored_mos’ and ‘continuous_zscored_mos’.

For this project, since the C3D is extracting the video features every 16 frames,

hence the ‘retrospective_zscored_mos’ is not used as the QoE prediction model

will predict the z-score MOS continuously.

 Besides, specific features such as ‘content_name’,

‘content_name_acronym’, ‘reference_yuv_video’ and ‘distorted_mp4_video’

were not included as they are dataset-specific features such as video name or

28

the file name. This is because the aim of the project is to train a QoE prediction

model that can generalize well; thus these data will not be used.

 Features such as ‘buffer_evolution_sec’ were not used as this feature is

affected by the per second playout bitrate; hence it is redundant. Redundant data

such as ‘N_rebuffer_frames’, ‘N_playback_frames’, ‘N_total_frames’,

‘rebuffer_duration_sec’, ‘playback_duration_sec’, ‘video_duration_sec’ and

‘rebuffer_number’ were also not used as there is a feature called

‘is_rebuffered_bool’, which provides a rebuffer status (0 or 1) for every frame

for the video.

 For the QoE prediction model training, video information such as

‘frame_rate’, ‘adaptation_algorithm’, ‘content_spatial_information’ and

‘content_temporal_information’ are used. Besides, the playout bitrate and the

scene cuts in the video were used. Finally, continuous value features such as the

VMAF, PSNR, SSIM, MSSIM and STRRED were also used as a feature.

3.6.2 Feature Extraction (C3D & GloVe)

Figure 3.4: Example Illustration of Feature Extraction of C3D

Additionally, in the framework proposed, the raw footage of the video will be

extracted by a pre-trained model called C3D. First, the mp4 raw video will be

extracted into frames by using FFmpeg in the Linux command terminal. After

all the frames of each video have been extracted, C3D will extract every 16

frames of a video into a 512-dimension vector. Eight frames are overlapped

between each extraction so that the temporal feature of the video will not be lost.

The illustration of the feature extraction for C3D is shown in Figure 3.4.

29

 For this dataset, the GloVe pre-trained model is not utilized. This is

because that there are no text features or data such as video genre in the LIVE-

NFLX-II dataset. However, the GloVe feature extraction code is still available

in the source code.

3.6.3 Extracting into CSV file

The information for all 420 videos are provided in individual .pkl files and

contains redundant information such as the video file name. Hence, to simplify

the training process, all features chosen are extracted to a .csv file instead. A

python code is utilized to organize all of the training data needed, which

includes the 512-dimension feature extracted from the C3D pre-trained model.

 As mentioned in the previous sub-chapter, the 512-dimension feature is

extracted from every 16 frames in each video. Hence, when compiling into the

CSV file, the average data for the 16 frames are obtained. Then, the z-scored

continuous MOS is also averaged to serve as the true value for the dependent

variable. All data for every 16 frames of the videos are saved in the CSV file.

3.7 Training for Deep Learning Model

 Before the training process begins, the dataset is split into a training set

and a testing set, which will be a 90% and 10% ratio in this project. Then, the

training data will be fed for training, while the test set will be used for model

evaluation. This process is called the hold-out test.

 During the deep learning model training, the features are mapped

accordingly before being fed into three fully connected layers in the training

phase. Firstly, the adaptation algorithm is mapped to a 10-dimension vector after

an embedding layer. Features such as frame rate, ‘rebuffer bool’, scene cuts,

playout bitrate are each transformed into 5-dimension vectors by a linear layer.

Metrics such as MSSIM, VMAF, STRRED, SSIM and PSNR are encoded into

five 10-dimension vectors. The C3D extracts raw video footage into a 512-

dimension vector, which will be encoded into a 412-dimension vector.

 All feature vectors are then concatenated into a single feature vector

before being fed into the first fully connected layer of the neural network. There

are three fully connected layers in the neural network for this project, whereas

30

the activation function for the output layer is a linear function. Dropout with a

ratio of 0.5 is applied to these layers to prevent overfitting.

 In the training stage, Adadelta is used as the optimizer and the number

of training epoch is 200. After the dimensions and layers in the neural network

model is defined, the training process is carried out via Pytorch. After the model

is successfully trained, the results can be evaluated via Scikit-Learn.

3.8 10-Fold Cross-Validation

Figure 3.5: Illustration of 10-Fold Cross-Validation (Berrar, 2018)

In this project, 10-fold cross-validation is carried out during hyper-parameter

analysis of the deep learning model. The illustration of 10-fold cross-validation

is shown in Figure 3.5. 10-fold cross-validation is usually preferred over than

hold-out test, as it provides the opportunity to train on multiple train-test splits

instead of only one train-test. This will prevent a biased result, as the hold-out

test score is dependent on the train-test split. However, 10-fold cross-validation

is more computationally expensive than a hold-out test, especially when there

is a huge amount of data.

31

3.9 Evaluation Metrics of QoE Prediction Model

To evaluate the QoE prediction model trained, there will be several metrics that

can be considered, which includes the Root Mean Square Error (RMSE), the

Pearson Linear Correlation Coefficient (LCC) and Spearman Rank Order

Correlation Coefficient (SROCC).

 RMSE is the standard deviation of the error of predictions. It measures

how spread out the prediction errors are from the regression line. As the task

performed by the deep learning model in this project is regression, hence RMSE

is used instead of accuracy. RMSE can be defined as:

 𝑅𝑀𝑆𝐸 = √(𝑓 − 𝑜)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3. 1)

where 𝑓 is the expected values and 𝑜 is the predicted value. The bar above the

squared difference is the mean.

 By measuring LCC, the degree of linearity can be ensured as it measures

the linear correlation between two variables which will be subjective and

predicted QoE. A higher value is preferred as it identifies the degree of

simplicity of the trained ML model.

 SROCC measures the monotonic relationship between 2 variables,

which will be the predicted MOS and the real MOS in this project. A higher

value of SROCC will be better in this case, as a positive value means that a

variable value will increase monotonically when the other variable increases.

3.10 Project Planning and Resource Allocation

Figure 3.6 shows the Gantt chart planned for the project based on the project

workflow mentioned in Section 3.1. Time and processing speed were taken into

account for the planning and resource allocation for the overall timeline of the

project.

32

Figure 3.6: Gantt Chart of Task List Project Planning

3.11 Anticipated Problems and Solutions

There are several problems that are anticipated. One of the problems is that

different datasets will have different metrics available, while the impact of the

metric cannot be fully known. Thus, deep evaluation of datasets must be carried

out before choosing for feature extracting or QoE model training. Besides, it is

expected that the physical memory or processing power of the personal

computer alone is not sufficient to run the training processes. However, for this

project, the CUDA version of the code is avoided, and the CPU is being utilized

for the training and evaluation process instead.

33

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

To evaluate the deep learning model framework proposed in this project, several

tests were done. As the deep learning model is performing regression tasks, the

SROCC and LCC values will be used as evaluation metrics. Besides, RMSE is

also included during evaluation.

 Measures such as hyper-parameter tuning, the feature extraction ability

of the deep learning model and the overall predicting results of the deep learning

model are evaluated. The detailed results from the three scenarios are discussed

in the following sub-chapters.

4.2 Hyper-parameter tuning

Hyper-parameter analysis was conducted to find the best parameter for the

proposed deep learning QoE prediction model framework. Besides, it can show

the overall effectiveness of the proposed framework. In this project, the analysis

of the learning rate and the training ratio was conducted. 10-fold cross-

validation was conducted during the analysis to get the best hyper-parameter.

 Figure 4.1 shows the performance of the deep learning model on

different learning rates. Learning rates of 0.001, 0.005, 0.01, 0.05, 0.1 and 1

were chosen to perform training. Among the learning rates, the lowest RMSE

was achieved at 0.1 learning rate, having an RMSE of 0.3381. It is important to

note that the framework performed rather consistent from 0.005 to 1 learning

rate. Since 0.1 learning rate achieved the lowest RMSE, it is used as the default

learning rate in the project.

 The second hyper-parameter to be analyzed is the training ratio. In this

part, 50%, 60%, 70%, 80% and 90% of the LIVE-NFLX-II dataset were used

as training set while the same 10% will be used as the test set. The RMSE,

SROCC and LCC values were recorded in Figure 4.2, Figure 4.3 and Figure 4.4.

 From the results, it can be observed that the performance of the deep

learning model improves steadily from a 0.41704 to 0.3496 RMSE when the

34

size of the training set increases. The deep learning model has the lowest RMSE

and the highest SROCC and LCC values when the training ratio is 90%. This

shows that the deep-learning-based method can scale effectively with more data.

Figure 4.1: Graph of RMSE against Learning Rate

Figure 4.2: Graph of RMSE against Training Ratio

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0.001 0.005 0.01 0.05 0.1 1

R
M

SE

Learning Rate

Performance of Deep Learning Model on
different Learning Rates

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.5 0.6 0.7 0.8 0.9

R
M

SE

Training Ratio

Graph of RMSE against Training Ratio of Deep
Learning Model

35

Figure 4.3: Graph of SROCC against Training Ratio

Figure 4.4: Graph of LCC against Training Ratio

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.5 0.6 0.7 0.8 0.9

SR
O

C
C

Training Ratio

Graph of SROCC against Training Ratio of Deep
Learning Model

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.5 0.6 0.7 0.8 0.9

LC
C

Training Ratio

Graph of LCC against Training Ratio of Deep
Learning Model

36

4.3 Evaluation of Representation from Deep Learning Model

In this section, to show that the deep learning model framework can function

well as a representation learning tool, the output from the last connected layer

is extracted from the neural network. The 256-dimension vector is retrieved

from the deep learning model and fed into other learning algorithms. Linear

regression, gradient boosting, random forest and SVM were the algorithms

chosen for this subsection.

 To have a fair comparison, the RMSE, SROCC and LCC are being

compared between using representation from the deep learning model and using

the pre-processed features from the LIVE-NFLX-II database. The parameters

for each algorithm are kept the same for a fair comparison.

 For linear regression and SVM, default parameters are used when

training with representation and with pre-processed data. For Gradient Boosting,

the number of estimators is set to 500, the max depth is set to 4, the minimum

samples split is five, and the learning rate is set to 0.01. For the Random Forest

algorithm, the random state is set to be the same value, the number of estimators

is set to be 100, and the max features are set to be N/3, where N is the total

number of features. All source codes are available in the appendix.

 After the hold-out test has been done, the RMSE, SROCC and LCC

values are recorded, and the results are drawn in Figure 4.5, Figure 4.6 and

Figure 4.7.

 The results of all algorithms are then shown in separate graphs. As it can

be seen, the RMSE of all algorithms dropped while SROCC and LCC improved.

This shows that the representation generated by the deep learning model is

useful.

37

Figure 4.5: Graph of RMSE using pre-processed data vs representation

Figure 4.6: Graph of SROCC using pre-processed data vs representation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear Regression Gradient Boosting Random Forest SVM

R
M

SE

Pre-processed Data Representation from Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear Regression Gradient Boosting Random Forest SVM

SR
O

C
C

Pre-processed Data Representation from Model

38

Figure 4.7: Graph of LCC using pre-processed data vs representation

4.4 Enhancement to the Deep Learning Model with Ensemble

Learning

In this section, the proposed framework in this project is being compared with

the DeepQoE framework by Zhang et al.. For a fair comparison, the DeepQoE

framework is reproduced based on the original source code from the author on

the Github website: https://github.com/cap-ntu/DeepQoE. A slight modification

is made on the neural network due to the usage of different datasets. However,

the main structure and logic of the code are maintained the same.

 The effectiveness of the deep learning model is evaluated. The deep

learning framework proposed is compared with four different algorithms in a

hold-out test. Due to computational limitation, a hold-out test is performed in

this section. Hold-out test can evaluate the performance of different algorithms

on unseen data. The performance of random forest, linear regression, gradient

boosting and SVM are compared, and the results are shown in Table 4.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear Regression Gradient Boosting Random Forest SVM

LC
C

Pre-processed Data Representation from Model

39

Table 4.1: Results of Hold-out Test on Different Algorithm

Metrics Deep

Learning

Random

Forest

Linear

Regression

Gradient

Boosting

SVM

RMSE 0.33768 0.34300 0.41627 0.37605 0.42420

SROCC 0.89266 0.88557 0.83528 0.86781 0.83260

LCC 0.89065 0.88627 0.82768 0.86359 0.82065

 From the results, it is observed that the performance with the proposed

deep learning model achieved the best results among the other algorithms. The

deep learning model has the lowest RMSE of 0.33768 and the highest SROCC

and LCC values of 0.89266 and 0.89065. This can be attributed to the feature

extraction ability of deep learning, as discussed in the previous subsection.

 To further improve the results of the deep learning framework, an

additional ensembling step is proposed in this project. A additional random

forest is used to perform ensemble learning with the linear layer. The RMSE,

SROCC and LCC were recorded for the deep learning model before ensembling

and after ensembling. The results are then evaluated and compared in Table 4.2.

Table 4.2: Results of Deep Learning Model Before Ensembling vs after

Ensembling

Metrics Deep Learning Model

Before ensembling

After Ensembling

RMSE 0.33768 0.33626

SROCC 0.89266 0.89468

LCC 0.89065 0.89116

 From the results, it can be observed that the performance of the proposed

deep learning framework had slightly better results after including random

forest model for ensembling. It had improved by a slight 0.226% for SROCC

and 0.06% for LCC. This shows the potential of the application of ensemble

learning in the deep learning framework.

40

 Hence, it can be observed that deep learning is effective in predicting

QoE, achieving the best results among other shallow learning algorithms.

Besides, the deep learning model can be further improved by utilizing ensemble

learning in the predicting phase, exploiting advantages from different

algorithms such as random forest.

4.5 Summary of Results

In this project, it can be observed that deep learning provides an advantage of

being able to scale with a dataset and can utilize transfer learning to extract

features using other pre-trained models. This can decrease the training time

needed and also take advantage of the huge dataset from other pre-trained

models.

 Besides, the representation generated from the deep learning model is

proved to be useful. When other shallow learning uses the representation to

predict QoE, it can be observed that the values obtained improved compared to

using pre-processed data from the dataset.

 The deep learning model achieved the best results when compared to

other shallow learning algorithms. Lastly, it can be observed that the

implementation of ensemble learning is able to enhance the overall accuracy of

the deep learning model for QoE prediction. SROCC, LCC and the RMSE

values are improved after adding an ensembling process with the Random

Forest model.

41

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project has managed to identify several problems in the conventional

machine learning QoE prediction model based on the literature review done.

These problems include the ML conventional algorithms, which tend to rely on

hand-crafted features and need different feature extraction methods. Thus, this

project successfully addresses the issues by achieving the aim and objectives as

follows.

 This project has implemented a deep learning QoE prediction model for

MPEG-DASH video via PyTorch and Scikit-learn. The deep learning prediction

model was trained with the LIVE-NFLX-II dataset. The hyper-parameter of the

model is then analyzed to obtain the default parameters for the training process.

 Second, to show that deep learning can perform representation learning

well, the performance of conventional methods are compared when trained with

the model representation and when trained with pre-processed data. The

representation from the deep learning model shows to be useful as the

conventional methods improved when the representation is used for training.

 Next, the performance of the deep learning QoE prediction model is

evaluated. The model obtained better results than the conventional ML

algorithms, with a lower RMSE and higher SROCC and LCC. The proposed

framework is also evaluated, where ensemble learning is performed instead of

using only a linear layer function as the output layer. This implementation

managed to further increase the performance of the deep learning model.

 In summary, the proposed deep learning QoE prediction model that

integrates ensemble learning is able to predict continuous QoE and perform

better than conventional machine learning algorithms.

42

5.2 Recommendations for Future Work

This final year project also suggests the following areas that are worth to be

explored in the future:

 It is suggested to develop the source codes using CUDA to enable GPU

usage during training. GPU enables multiple computations simultaneously as it

allows parallel computing; hence are more optimized for training deep learning

models. With the implementation of GPU usage for training and inference, it

will have a faster processing speed and is more suitable for applications such as

real-time QoE prediction.

 Besides, techniques to improve deep learning such as stacked

generalization ensemble can be integrated to further investigate the

corresponding prediction performance of the model.

 Lastly, it is suggested that the deep learning QoE model can be applied

in a real-time DASH video streaming system to further evaluate the usefulness

of the deep learning model in real-time QoE prediction, helping maximize the

QoE for the end-users.

43

REFERENCES

Aung, W.T. and Hla, K.H.M.S., 2009. Random Forest Classifier for Multi-

category Classification of Web Pages. 2009 IEEE Asia-Pacific Services

Computing Conference (APSCC), pp.372–376.

Ayodele, T.O., 2010. Types of Machine Learning Algorithms. New Advances

in Machine Learning, pp.19–49.

Bampis, C.G., Li, Z., Katsavounidis, I., Huang, T.Y., Ekanadham, C. and Bovik,

A.C., 2018. Towards perceptually optimized end-to-end adaptive video

streaming. arXiv, pp.1–16.

Berrar, D., 2018. Cross-validation. Encyclopedia of Bioinformatics and

Computational Biology: ABC of Bioinformatics, 1–3(January 2018), pp.542–

545.

Casas, P., D’Alconzo, A., Wamser, F., Seufert, M., Gardlo, B., Schwind, A.,

Tran-Gia, P. and Schatz, R., 2017. Predicting QoE in cellular networks using

machine learning and in-smartphone measurements. 2017 9th International

Conference on Quality of Multimedia Experience, QoMEX 2017, (May).

Cicco, L. De, Mascolo, S. and Palmisano, V., 2019. QoE-driven resource

allocation for massive video distribution. Ad Hoc Networks, [online] 89,

pp.170–176. Available at: <https://doi.org/10.1016/j.adhoc.2019.02.008>.

Duc, T.N., Minh, C.T., Xuan, T.P. and Kamioka, E., 2020. Convolutional

Neural Networks for Continuous QoE Prediction in Video Streaming Services.

IEEE Access, 8, pp.116268–116278.

Friedman, J.H., 2011. Greedy Function Approximation: A Gradient Boosting

Machine. In: Annals of statistics. pp.1189–1232.

44

Guerra, L., McGarry, L.M., Robles, V., Bielza, C., Larrañaga, P. and Yuste, R.,

2011. Comparison between supervised and unsupervised classifications of

neuronal cell types: A case study. Developmental Neurobiology, 71(1), pp.71–

82.

Hang, L., 2018. Deep Learning for natural language processing: advatages and

challenges. National Science Review, 5(1), pp.22–24.

Hastie, T., Tibshirani, R. and Friedman, J., 2008. The Elements of Statistical

Learning. In: The Elements of Statistical Learning, 2nd editio. Springer.p.592.

Hinton, G.E., 2012. A practical guide to training restricted boltzmann machines.

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU,

pp.599–619.

Hu, H., Liu, Z. and An, J., 2020. Mining Mobile Intelligence for Wireless

Systems: A Deep Neural Network Approach. IEEE Computational Intelligence

Magazine, 15(1), pp.24–31.

Huynh-Thu, Q. and Ghanbari, M., 2012. The accuracy of PSNR in predicting

video quality for different video scenes and frame rates. Telecommunication

Systems, 49(1), pp.35–48.

Islam, M.J., Wu, Q.M.J., Ahmadi, M. and Sid-Ahmed, M.A., 2008.

Investigating the Performance of Naive- Bayes Classifiers and K- Nearest

Neighbor Classifiers. 2007 International Conference on Convergence

Information Technology (ICCIT 2007), pp.1541–1546.

Jeffrey, P., Socher, R. and Manning, C.D., 2014. GloVe: Global Vectors

forWord Representation. In: Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP). pp.1532–1543.

45

Kelleher, J.D., Namee, B. Mac and D’Arcy, A., 2015. Fundamentals of Machine

Learning for Predictive Data Analytics: Algorithms, Worked Examples, And

Case Studies. MIT Press, 2015.

Kordos, M., Blachnik, M. and Strzempa, D., 2010. Do we need whatever more

than k-NN? Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6113

LNAI(PART 1), pp.414–421.

Kotevski, Z. and Mitrevski, P., 2010. Experimental Comparison of PSNR and

SSIM Metrics for Video Quality Estimation. ICT Innovations 2009, pp.357–366.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y. and Alsaadi, F.E., 2017. A survey

of deep neural network architectures and their applications. Neurocomputing,

[online] 234(October 2016), pp.11–26. Available at:

<http://dx.doi.org/10.1016/j.neucom.2016.12.038>.

Mocanu, D.C., Exarchakos, G., Ammar, H.B. and Liotta, A., 2015. Reduced

reference image quality assessment via Boltzmann Machines. Proceedings of

the 2015 IFIP/IEEE International Symposium on Integrated Network

Management, IM 2015, (2015), pp.1278–1281.

V. Murudkar, C. and D. Gitlin, R., 2019. Machine Learning for Qoe Prediction

and Anomaly Detection in Self-Organizing Mobile Networking Systems.

International Journal of Wireless & Mobile Networks, 11(2), pp.01–12.

Mushtaq, M.S., Augustin, B. and Mellouk, A., 2012. Empirical study based on

machine learning approach to assess the QoS/QoE correlation. 2012 17th

European Conference on Network and Optical Communications, NOC 2012,

7th Conference on Optical Cabling and Infrastructure, OC and I 2012, (April

2017).

46

Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A. and Brown, S.D., 2004. An

introduction to decision tree modeling. Journal of Chemometrics, 18(6),

pp.275–285.

Rachmadi, M.F., Del C. Valdés-Hernández, M., Agan, M.L.F. and Komura, T.,

2017. Deep learning vs. conventional machine learning: Pilot study of WMH

segmentation in brain MRI with absence or mild vascular pathology. Journal of

Imaging, 3(4), pp.1–19.

Safavian, S.R. and Landgrebe, D., 1991. A Survey of Decision Tree Classifier

Methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3),

pp.660–674.

Sathya, R. and Abraham, A., 2013. Comparison of Supervised and

Unsupervised Learning Algorithms for Pattern Classification. International

Journal of Advanced Research in Artificial Intelligence, 2(2), pp.34–38.

Segal, M.R., 2004. Machine learning benchmarks and random forest regression.

Center for Bioinformatics & Molecular Biostatistics, University of California,

San Francisco.

Seufert, M., 2019. Fundamental advantages of considering quality of experience

distributions over mean opinion scores. 2019 11th International Conference on

Quality of Multimedia Experience, QoMEX 2019, (2).

Sideris, A., Markakis, E., Zotos, N., Pallis, E. and Skianis, C., 2015. MPEG-

DASH users’ QoE: The segment duration effect. 2015 7th International

Workshop on Quality of Multimedia Experience, QoMEX 2015, pp.1–6.

Sodagar, I., 2011. The MPEG-dash standard for multimedia streaming over the

internet. IEEE Multimedia, 18(4), pp.62–67.

47

Soundararajan, R. and Bovik, A.C., 2013. Video quality assessment by reduced

reference spatio-temporal entropic differencing. IEEE Transactions on Circuits

and Systems for Video Technology, 23(4), pp.684–694.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C., 2018. A survey on

deep transfer learning. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

11141 LNCS, pp.270–279.

Tao, X., Duan, Y., Xu, M., Meng, Z. and Lu, J., 2019. Learning QoE of Mobile

Video Transmission with Deep Neural Network: A Data-Driven Approach.

IEEE Journal on Selected Areas in Communications, 37(6), pp.1337–1348.

Tran, D., Bourdev, L., Fergus, R., Torresani, L. and Paluri, M., 2015. Learning

Spatiotemporal Features with 3D Convolutional Networks. ICCV.

Vasilev, V., Leguay, J., Paris, S., Maggi, L. and Debbah, M., 2018. Predicting

QoE Factors with Machine Learning. IEEE International Conference on

Communications, 2018-May, pp.0–5.

Yu, X., Chen, H., Zhao, W. and Xie, L., 2012. No-reference QoE prediction

model for video streaming service in 3G networks. 2012 International

Conference on Wireless Communications, Networking and Mobile Computing,

WiCOM 2012, pp.0–3.

Yue, T., Wang, H., Cheng, S. and Shao, J., 2020. Deep learning based QoE

evaluation for internet video. Neurocomputing, 386, pp.179–190.

Zhang, H., Dong, L., Gao, G., Hu, H., Wen, Y. and Guan, K., 2020. DeepQoE:

A Multimodal Learning Framework for Video Quality of Experience (QoE)

Prediction. IEEE Transactions on Multimedia, 9210(c), pp.1–1.

48

Zhang, L., Tan, J., Han, D. and Zhu, H., 2017. From machine learning to deep

learning: progress in machine intelligence for rational drug discovery. Drug

Discovery Today, [online] 22(11), pp.1680–1685. Available at:

<https://doi.org/10.1016/j.drudis.2017.08.010>.

Zhao, S., Li, Z., Medhi, D., Lai, P. and Liu, S., 2017. Study of user QoE

improvement for dynamic adaptive streaming over HTTP (MPEG-DASH).

2017 International Conference on Computing, Networking and

Communications, ICNC 2017, pp.566–570.

49

APPENDICES

Appendix A: LIVE-NFLX-II Dataset and DeepQoE Download Source

• LIVE-NFLX-II

 https://utexas.app.box.com/v/LIVE-NFLX-Plus/

• DeepQoE Github Source Code

 https://github.com/cap-ntu/DeepQoE

Appendix B: Shell Script ‘feature_extraction.sh’ (Extract features from

frames for LIVE-NFLX-II)

50

Appendix C: Python Code 1 (PKL-to-CSV converter for LIVE-NFLX-II

dataset)

51

Appendix C (continued)

52

Appendix C (continued)

53

Appendix D: Python Code 2 (Deep Learning Training Code)

54

Appendix D (continued)

55

Appendix E: Python Code 3 (Evaluation Code for section 4.4)

56

Appendix E (continued)

