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ABSTRACT 

 

Quality of experience (QoE) is an essential metric for video service platforms 

such as Youtube and Netflix to monitor the service perceived by their end-users. 

Driven by the popularity of MPEG-Dynamic Adaptive HTTP Streaming 

(DASH) format among service providers, a plethora of QoE prediction models 

have been proposed for MPEG-DASH video streaming. However, conventional 

models are established based on machine learning techniques, which are unable 

to extract high-level features from low-level raw inputs via a hierarchical 

learning process. The capabilities of deep learning have paved the new way for 

more powerful QoE prediction models. The aim of this project is to propose a 

deep-learning-based QoE prediction method. The starting point of the project is 

a state-of-the-art framework called DeepQoE, which encompasses three phases: 

feature pre-processing, representation learning and QoE predicting phase. The 

framework is further improved by integrating ensemble learning in the 

prediction phase. Extensive experiments are conducted to evaluate the 

performance of the proposed QoE prediction model as compared to 

conventional algorithms. By using a publicly available LIVE-NFLX-II dataset, 

the newly trained model outperforms not only conventional methods but also 

the DeepQoE by 0.226% and 0.06% in terms of Spearman Rank Order 

Correlation Coefficient (SROCC) and Pearson Linear Correlation Coefficient 

(LCC), respectively. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In the past few years, there is a rapid increase in the usage of mobile devices 

and multimedia applications. Mobile data traffic is also increasing significantly, 

with mobile video being one of the main contributors. Based on the Cisco Visual 

Networking Index (VNI), mobile video traffic contributed 59 per cent of the 

global mobile data traffic in the year 2017. It is also predicted that the global 

mobile data traffic will increase up to 7-fold from the year 2017 to 2022 while 

having 79 per cent of the traffic is in video. 

 To combat the bandwidth fluctuations, MPEG-Dynamic Adaptive 

HTTP Streaming (DASH) is now widely adopted in modern major video 

streaming platforms such as Youtube and Netflix. In MPEG-DASH format, the 

videos will be separated into different durations of temporal segments, where 

each segment is encoded at different qualities, resulting in different sizes 

(Vasilev et al., 2018). This enables DASH clients to have flexible optimization 

strategies, where they can scale up or scale down the video quality by selecting 

the most optimum segment for different end-users. 

 All video streaming services need to find a balance between the 

operating cost and the quality of service perceived by their end-users. To cope 

with the increasing video traffic, they need to plan their resource allocation and 

bandwidth to ensure that the experience of end-users is not affected greatly 

while being cost-effective. Starting from this premise, it is clear that video 

quality of experience (QoE) opens the possibilities for content providers to 

optimize their streaming service strategies.  

 QoE can be measured as the level of satisfaction or displeasure with the 

quality of service provided to the end-users. In recent years, QoE has become 

an important metric for companies to provide insight on their resource allocation 

and bandwidth provision. The factors that affect the QoE are called influence 

factors which can be further categorized into system, context and human 

influence factors. The resolution, bitrate, and demographic of end-users are 

some of the examples of influence factors. 
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1.2 Importance of the Study 

The video streaming market is a big trend that is still growing rapidly in terms 

of usage and volume. Hence, predicting QoE is an important topic for 

companies to ensure the overall experience of end-users. Specifically, the focus 

is on how to improve QoE prediction accuracy so that the outcome can be 

further utilized by video streaming companies to monitor and increase their QoE 

provided. 

 With popular video streaming services like Youtube and Netflix 

supporting the MPEG-DASH video format, other smaller video streaming 

companies also need to improve their QoE so that the company can remain 

competitive with other bigger companies. With an effective video QoE 

prediction model, companies can gain more insight and have more control over 

their overall streaming quality and bandwidth. 

 

1.3 Problem Statement 

Following the booming growth of video streaming traffic, video streaming 

services such as Youtube and Netflix need to process, store and deliver huge 

amounts of video data every day. These video streaming providers must 

improve the QoE of their end-users to remain competitive in the market. Hence, 

video QoE prediction is essential for video streaming services to determine the 

quality of the video provided by their services. 

 Although there are conventional ways of predicting QoE, such as using 

the reduced reference entropy difference (RRED) and Peak Signal-to-Noise 

Ratio (PSNR) algorithms, they still have some limitations. The conventional 

schemes can only fit well only when an ideal network condition is assumed, 

meaning that video content must be streamed consistently to clients without 

interruption. Thus, conventional methods are not able to predict QoE with 

consistent accuracy when rebuffering occurs. This problem becomes more 

relevant in a MPEG-DASH format, as it is streamed through HTTP, and 

network condition may differ for different end-users. 

 Recent years have witnessed the application of machine learning (ML) 

in boosting QoE prediction accuracy. However, conventional machine learning 

algorithms are unable to extract high-level features from low-level raw inputs 
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automatically. Hence, there is a need for a better QoE prediction model that has 

no dependency on handcrafted feature engineering.  

 

1.4 Aim and Objectives 

The aim and objectives of the project include: 

• To study state-of-the-art deep-learning-based QoE prediction model for 

MPEG-DASH video 

• To propose an enhancement to the deep-learning-based QoE prediction 

model 

• To evaluate the performance of the proposed method with respect to the 

conventional methods 

 

1.5 Scope and Limitation of the Study 

This project focuses on the implementation of a deep learning model to predict 

the QoE of MPEG-DASH video. 

Some limitations are considered in the project. There are PC hardware 

limitations in terms of QoE model training. Besides, the inference speed of QoE 

prediction and real-time QoE prediction are excluded from the scope of this 

project due to limited computational resources. 

 

1.6 Contribution of the Study 

There are many publications and research on QoE prediction models. This 

project aims to apply deep learning for QoE prediction model to address the 

disadvantages of conventional QoE prediction models. To overcome the 

requirements of large training datasets for deep neural networks, transfer 

learning on pre-trained models was utilized. Finally, the proposed framework 

introduces ensemble learning to seek further improvement, and the results are 

compared with the existing QoE prediction algorithms in terms of the 

collinearity improvement between the predicted QoE and the real QoE. 
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1.7 Outline of Report 

Chapter 1 provides an overview of the importance and problems of conventional 

QoE prediction in DASH videos and includes the aim and objectives of the 

project. 

 The literature review in Chapter 2 highlights the conventional QoE 

prediction methods and introduces related works on deep learning for QoE 

prediction. The methodology in Chapter 3 explains the framework proposed for 

the deep learning model, setup of the training environment and training process.  

 The results and discussions are provided in Chapter 4. Chapter 5 

concludes the results of the deep learning model trained for QoE prediction and 

provides suggestions for future methodology improvement and future research 

directions. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction to Video Quality of Experience 

To access video QoE, there are two types of video QoE assessment which 

includes subjective analysis and objective quality modelling. For subjective 

analysis, it is done by directly giving participants to watch and rate a score for 

each video clip viewed, whereas objective quality modelling involves the 

identification of the QoE parameters by using the results from the subjective 

analysis. 

 According to Seufert (2019), most conventional QoE assessments use 

the 5-point Absolute Category Rating (ACR) scale as shown in Table 2.1, which 

is a type of ordinal rating scale. 

 

Table 2.1: 5-point Absolute Category Rating (ACR) scale 

Score Category 

5 Excellent 

4 Good 

3 Fair 

2 Poor 

1 Bad 

  

 Seufert also stated that the 5-point ACR scale is not consistent and have 

less meaning between the differences and ratios of each categorical value. Thus, 

for video QoE prediction, a more accurate metric for test scores can be presented 

by QoE distributions (Seufert, 2019) by realizing the ACR-scale QoE results as 

a form of multinomial distribution. QoE distributions allow meaningful 

evaluation of the QoE scores in a concise way. 
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2.2 DASH Video Streaming 

For MPEG-Dynamic Adaptive HTTP Streaming (DASH), it enables video 

service providers to split the video content into different temporal segments and 

then offer it in several quality profiles. Each quality profile will then be encoded 

at different sets of video encoding rate, resolution and codec attributes (Sideris 

et al., 2015). The video quality is then chosen based on the network rate and the 

end user’s specifications, such as terminal screen resolution and processing 

power. 

 Streaming via HTTP can provide some benefits. First, by using HTTP, 

the video data can be delivered more efficiently as it is delivered in large 

segments. Second, the video streaming providers do not need to maintain a 

session state in their servers, saving additional cost for server resources 

(Sodagar, 2011). 

 In the MPEG-DASH standard, it does not define any specific adaptive 

bitrate streaming (ABR) algorithm. Therefore, there are different types of ABR 

algorithms proposed for seamless MPEG-DASH streaming, such as Adaptive 

Streaming of Audiovisual Content (ASAC) and Buffer Occupancy based 

Lyapunov Algorithm (BOLA). 

 Different adaptive bitrate streaming algorithms can have different 

effects on the QoE of end-users. Zhao et al. (2017) stated that the optimization 

of the client-side ABR algorithm and definition of QoE parameters are two 

important factors to provide a high QoE for end-users streaming via DASH. 

However, the focus of this project will be on defining the QoE parameters and 

predicting the QoE for DASH video streaming.  

 

2.3 Conventional QoE Prediction Algorithms 

To identify the video QoE parameters, there are several conventional methods 

that can compute the QoE, such as the peak signal-to-noise ratio (PSNR) 

(Huynh-Thu and Ghanbari, 2012), structural similarity index metric (SSIM) 

(Kotevski and Mitrevski, 2010) and the spatio-temporal reduced reference 

entropy differencing (ST-RRED) (Soundararajan and Bovik, 2013). 
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2.3.1 Peak Signal-to-Noise Ratio (PSNR) 

Peak Signal-to-Noise Ratio (PSNR) is a QoE prediction algorithm used widely 

in image and video processing for its fast computation and relatively simpler to 

understand.  

 For video sequences, the Mean Squared Error (MSE) is calculated 

between each pair of the corresponding reference and processed video frames. 

The equation for the MSE calculation is: 

 

                           𝑀𝑆𝐸(𝑖) =
1

𝑊𝐻
∑ ∑[𝑌𝑟(𝑥, 𝑦, 𝑖) − 𝑌𝑝(𝑥, 𝑦, 𝑖)]

𝐻−1

𝑦=0

𝑊−1

𝑥=0

                 (2.1) 

 

where 

W = frame width (pixels),  H = frame height (pixels)  

Yr = luminance values of the reference video frame  

Yp = luminance values of the processed video frame  

 

Then, the PSNR for each pair of reference and processed video frames is: 

                                            𝑃𝑆𝑁𝑅(𝑖) = 10 log10

𝐼2

𝑀𝑆𝐸(𝑖)
                                  (2. 2) 

where  

𝑖 = maximum pixel luminance value 

 

Then, the PSNR value can be expressed as: 

 

                                                𝑃𝑆𝑁𝑅 =
1

𝑁
∑ 𝑃𝑆𝑁𝑅(𝑖)

𝑁

𝑖=1

                                      (2. 3) 

 According to Huynh-Thu and Ghanbari (2012), the PSNR value can be 

used as an assessment of video quality across different test cases with fixed 

content and fixed codec without the presence of freezing. 

 However, PSNR is unable to assess the relationship between spatial and 

temporal qualities. Results had shown that PSNR is unable to provide consistent 

accuracy of quality prediction across different frame rates (Huynh-Thu and 
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Ghanbari, 2012). Thus, PSNR is an unfeasible quality metric to identify the QoE 

of different video contents across different video formats or datasets. 

 

2.3.2 Structural similarity index metric (SSIM) 

 

 

Figure 2.1: The SSIM measurement system (Kotevskisss and Mitrevski, 2010) 

 

Structural similarity index metric (SSIM) is a newer quality compared to PSNR, 

and the SSIM index extracts the effect of luminosity to evaluate the structural 

data from the image. Figure 2.1 shows the measurement system of the SSIM 

index. 

 The measurements of the SSIM index depends on three parameters 

which include luminance comparison, structure comparison and contrast 

comparison. The SSIM index is the combination of the three components, as 

shown in Equation 2.4: 

 

                                   𝑆(𝑥, 𝑦) = 𝑓(𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), 𝑠(𝑥, 𝑦))                               (2. 4) 

 

 According to Kotevski and Mitrevski (2010), the SSIM metric performs 

better than the PSNR algorithm and has a comparable performance compared to 

the Human Visual System. However, SSIM has limitations such as the SSIM 

values can become largely inverted if there is a bigger change in contrast, colour 

and brightness. 
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2.3.3 Spatio-temporal reduced reference entropy differencing (ST-

RRED) 

For image and video quality assessment (QA) algorithms, they can be 

categorized as full-reference and no-reference algorithms. While full-reference 

algorithms such as SSIM or PSNR had seen significant progress, the progress 

on no-reference QA algorithms is still slow. The reduced reference QA is a no-

reference algorithm that involves only sending or supplying some of the data of 

the reference image that is useful. 

 The spatial reduced reference entropy differencing (SRRED) index can 

be computed by using spatial multiscale multi-orientation decompositions of 

each frame in both distorted and reference videos, while the temporal reduced 

reference entropy differencing (TRRED) index can be obtained by computing 

the frame differences between each frame. 

 As the SRRED and TRRED indices can operate individually, hence the 

spatial and temporal frequency responses cannot affect each other. Thus, the 

product form of SRRED and TRRED can be used and form the STRRED index. 

 

                                        𝑆𝑇𝑅𝑅𝐸𝐷𝑘 = 𝑆𝑅𝑅𝐸𝐷𝑘𝑇𝑅𝑅𝐸𝐷𝑘                                    (2. 5) 

 

 While the STRRED method shows a better improvement than PSNR and 

SSIM in some cases (Soundararajan and Bovik, 2013), there are still limitations 

such as the overall runtime and efficiency of the algorithm. 

 

2.3.4 Multiple Linear Regression Analysis 

Regression is used to measure the correlativity between the dependent variable 

(output) and the independent variables (input). By using regression, the 

numerical relationship between the output and input variables can be defined 

with mathematical equations. 

 Multiple linear regression can determine the functional relation between 

an output variable and a group of input variables. The multiple linear regression 

model is given by: 

 

                                 𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑝𝑥𝑝 + 𝑒                          (2. 6) 
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where y is the dependent variable, 𝑥𝑖 are different independent variables, 𝑎𝑖 is 

the weightage of each independent variables (from 1 to p),  𝑎0 is the bias or 

intercept, and e is the error term. 

 However, there are some limitations for multiple linear regression 

analysis. For instance, there may be a possibility of falsely concluding a 

correlation is a factor. Although linear regression is easier to use, linear 

regression is less flexible as it is only limited to linear cases, thus cannot fit into 

some types of non-linear curves. 

 

2.3.5 Limitations on conventional QoE prediction methods 

From all the conventional QoE prediction methods mentioned, it is seen that the 

conventional methods generally have limitations such as they are not flexible 

enough to make their prediction reliably with different datasets. Hence, machine 

learning algorithms were introduced to QoE prediction models to achieve an 

improvement on the accuracy and reliability. 

 

2.4 Machine Learning 

Machine learning is a branch or subset of artificial intelligence (AI), and it is 

used in predictive data analytics (Kelleher, Namee and D’Arcy, 2015). Machine 

learning can be defined as a process to extract patterns from a huge amount of 

data from a dataset. 

 The machine learning model is needed to be trained priorly to predict a 

specific output. Each data in the dataset contains a label 𝑦 and several features 

𝑥 , and the dataset will be separated into a training and test set. During the 

training process, the ML model is fed with the label and features to identify the 

weightage of each feature. There are different types of ML algorithms which 

include reinforcement learning, supervised learning and unsupervised learning 

(Ayodele, 2010). 

 The objective of unsupervised machine learning is to explore a similar 

group of trends within the data (Guerra et al., 2011). There is no information on 

the features in the dataset, letting the ML model to identify hidden patterns 

within the unlabelled dataset. 

 Supervised learning can be defined as training a data sample from the 

dataset with the correct features labelled (Sathya and Abraham, 2013). The task 
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of supervised learning is to train the ML model based on the dataset of 𝑁 

instances (Guerra et al., 2011), then the predicted outcome of the model will be 

compared with the actual outcome to determine its accuracy of the machine 

learning model. 

 The feasibility of ML algorithms on QoE prediction such as decision 

tree, random forest and k-nearest neighbours (k-NN) will be discussed in the 

next section. 

 

2.4.1 Decision Tree 

 

 

Figure 2.2: Example of decision tree model (Safavian and Landgrebe, 1991) 

 

Decision tree is a type of ML algorithm that uses the divide-and-conquer 

approach to classification and regression problems (Myles et al., 2004). The 

decision tree algorithm is a simple to interpret yet fast and effective option for 

machine learning (Casas et al., 2017). An example of a decision tree model is 

shown in Figure 2.2. 

 Casas et al. (2017) had addressed the problem of the reliance on passive 

traffic QoE prediction for cellular networks relying on passive traffic 

measurements and QoE crowd-sourced feedback. The model chosen by Casas 

et al. was based on the decision tree model, as it is stated that the decision tree 
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model is attractive for large-scale monitoring while having a great performance 

and a decent prediction speed. 

 However, the decision tree can be non-robust if the dataset itself is not 

balanced. For instance, if the mean opinion score (MOS) classes from the 

dataset are highly imbalanced when training, the model itself may be biased 

after training. Hence, more work may be needed in order to counterbalance if 

there are over-represented classes in the dataset. 

 

2.4.2 Random Forest 

 

Figure 2.3: Architecture of the RF algorithm (Aung and Hla, 2009) 

 

Random Forest (RF) is a type of ensemble classifier (Mushtaq, Augustin and 

Mellouk, 2012), meaning that it uses multiple learning algorithms to get a better 

prediction accuracy. In RF algorithm, it uses several Decision Tree models, 

which means that each tree in the model will make a prediction, then the class 

with the most votes will be chosen by the RF model. The architecture of the RF 

algorithm can be seen in Figure 2.3. 

 Compared with the decision tree classifier, the experiment carried out 

by Aung and Hla (2009) showed that the RF-based classification has higher 

accuracy and the RF method is reliable. However, in some cases, the RF 

algorithm has been shown to perform poorly in instances of class imbalance 
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(Segal, 2004). Although additional class weighting parameters can overcome 

the problem, they will complicate the evaluation process of the model, making 

the method not feasible. 

 

2.4.3 Gradient Boosting 

Gradient boosting (Friedman, 2011) is a type of machine learning boosting for 

regression and classification problems. It creates a prediction model by 

ensembling many weak prediction models. Boosting is a technique for primarily 

reducing bias that can convert weak learners such as decision trees, into a strong 

learner. Unlike RF which build each tree independently, gradient boosting 

builds the model step by step by building one tree at a time to improve the 

shortcoming of existing weak learners. 

 In 2012, Yu et al. proposed an end-to-end and no-reference QoE 

prediction for real-time video streaming in 3G networks. The model proposed 

manage to predict MOS value more accurately compare to G.1070 model by 

ITU-T. However, the parameter of the gradient boosting model is needed to be 

tuned carefully to prevent over-fitting. Moreover, gradient boosting may not be 

a good choice if there is a lot of noise in the dataset, as it can result in overfitting.  

 

2.4.4 K-Nearest Neighbour (k-NN) 

The k-NN algorithm is an instance-based ML method (Mushtaq, Augustin and 

Mellouk, 2012). The key idea for the k-NN algorithm is to classify the new test 

sample by calculating the distance to the nearest 𝑘 values, then assigning it to 

the majority class of its nearest neighbours. 

 The Nearest Neighbour rule can achieve high performance consistently 

without any inferred assumptions (Islam et al., 2008) compared with other 

supervised learning methods. According to Cicco, Mascolo and Palmisano 

(2019), the k-NN algorithm had achieved higher accuracy than the ‘global’ 

algorithm when predicting the QoE of Content Delivery Networks (CDN), and 

its performance is comparable with the oracle benchmark model from the 

experiment. 

 However, there are limitations for the k-NN algorithm. For example, the 

k-NN algorithm is sensitive to localized data, where local anomalies can affect 

its outcome significantly (V. Murudkar and D. Gitlin, 2019). Besides, the k-NN 
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algorithm is not suitable for all cases, specifically for cases with very large 

datasets (Kordos, Blachnik and Strzempa, 2010), and overfitting problem occurs 

easily for the algorithm, so it needs to involve techniques such as bootstrapping 

or cross-validation. 

 

2.4.5 Limitations on Machine Learning algorithms on QoE prediction 

Overall, for conventional ML algorithms such as Decision Tree and RF, it has 

a limitation such that they rely on hand-crafted features in the dataset. In many 

cases, different feature extraction methods are needed to find suitable features 

for a specific task (Rachmadi et al., 2017). Yet, with different extraction 

techniques, the features may still not be generalized enough. 

 Along with the development of deep learning algorithms in the past few 

years, it has slowly been integrated into predictions models, replacing 

conventional ML algorithms as the method for training prediction models. 

Rachmadi et al. (2017) compared the performances between ML and DL 

algorithms and found out that DL algorithms had a better performance when 

compared to conventional ML methods. 

 

2.5 Deep Learning 

Deep Learning (DL) is a subfield of ML, in which its concept originated from 

the artificial neural networks (ANN) approach (Zhang et al., 2017), in which the 

term ‘deep’ in deep learning referring to the use of many hidden layers in the 

feedforward neural networks. 

 DL is a type of representation-learning method, as it can transform 

representations starting from a low-level raw input into high-level 

representation or feature. Without any human interference in feature 

engineering, DL algorithms can model high-order and evaluate feature 

interactions (Yue et al., 2020) in the dataset. Besides, with deep learning, end-

to-end training can be performed for an application because the deep neural 

network can offer rich representability (Hang, 2018). 

 In QoE prediction, deep learning models can provide automatic feature 

engineering across different datasets. Thus, by using DL techniques, the feature 

of the datasets can be utilized more efficiently as it is able to generalize better 

across different datasets. 
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 For deep learning, the dependency of data is a major problem, as it needs 

a large amount of data to learn all the patterns or behaviours. DL prediction 

models tend to have a higher accuracy when the number of data increases. One 

of the possible reasons is because the expressive vector space of the DL model 

must be large to discover more patterns of the data (Tan et al., 2018). By 

utilizing a machine learning technique called transfer learning, a DL model 

trained on a particular task can be repurposed to predict a different task. Deep 

transfer learning can reduce the training data needed and lessen the training time 

for a particular task. 

 There are several types of DL algorithms or architecture available such 

as the Restricted Boltzmann machine (RBM) and Convolutional Neural 

Network (CNN), which will be discussed in the next subsections. 

 

2.5.1 Restricted Boltzmann machine (RBM) 

 

Figure 2.4: Architecture of Restricted Boltzmann Machine (RBM) (Mocanu et 

al., 2015) 

 

RBM is a type of DL algorithm used to generate stochastic models of artificial 

neural network (ANN). RBM models consist of Boltzmann Machines, which 

are neural networks containing a set of bidirectional stochastic nodes. This 

ensures that the neural networks will be less vulnerable to the local minima, thus 

able to learn correspondingly to fit a generative model of data. 

 Due to RBMs’ architecture and configuration of neural networks, RBMs 

and their variants possess great generalization abilities (Mocanu et al., 2015). In 

the RBM, data patterns will be represented by the activation of the nodes in the 
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‘visible’ layer while the ‘hidden’ layer of the RBM is used to detect features in 

the data (Hinton, 2012). 

 Figure 2.4 shows the visualized architecture of the RBM. In the RBM 

architecture, there is a full connection between units in the visible layer and the 

hidden layer. No connection will exist between the units in the same layer. 

 

2.5.2 Convolutional Neural Network (CNN) 

Convolutional neural network (CNN) is a type of deep learning neural network, 

and it has shown great performance in processing structured two-dimensional 

data such as images and videos (Liu et al., 2017). 

 CNNs are regularized multi-layer neural networks that have convolution 

layers and sub-sampling layers which are connected alternatively in the middle 

part of the network. The function of the convolution layer is to extract features 

while the sub-sampling layer is to map the features and reducing data size of the 

signal. 

 To achieve scale invariance, by passing through an activation function 

(commonly ReLu or sigmoid function), the features can be mapped in the first 

sub-sampling layer. The process repeats for the total number of layers, and the 

feature map can be determined.  

 There are several advantages of using CNN. In CNN, convolution is 

used instead of using general matrix multiplication, hence decreasing the 

number of weights and reducing the overall complexity of the network. Besides, 

CNN needs lesser pre-processing compared, as manual feature engineering is 

not needed, and only the filters in CNN are needed to be trained. Parameter 

sharing is also utilized in CNN during the learning process, leading to a 

reduction in memory and efficiency improvement. 

 

2.5.3 Summary of Deep Learning 

For QoE prediction, DL can provide benefits such as being able to generalize 

well across databases. Besides, CNN can provide great performance when 

processing images and videos, which is also suitable for the application for 

predicting video QoE. 
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2.6 Deep Learning Approaches on Video QoE Prediction 

In order to investigate further the feasibility of deep learning on video QoE 

prediction, several approaches from different research papers were studied. 

 

2.6.1 CNN-QoE for Continuous QoE Prediction 

 

  

Figure 2.5: Proposed CNN-QoE architecture and residual block used (Duc et al., 

2020) 

 

In 2020, Duc et al. (2020) proposed an improved Temporal Convolutional 

Network (TCN) based model called CNN-QoE. TCN is a variation of CNN and 

is one of the alternative solutions for sequence modelling tasks such as 

extracting temporal dependencies in sequential data such as videos. 

 Figure 2.5 shows the CNN-QoE architecture proposed by Duc et al.. The 

CNN-QoE model basically utilizes techniques such as 1D convolutions, dilated 

causal convolution layer and a Scaled Exponential Linear Units (SeLU) 

activation function. 

 For the feature engineering part, Duc et al. had used STRRED to 

measure the visual quality of the video. Features such as playback status, the 

number of rebuffering events and the time since last rebuffering or bitrate switch 

were also extracted. 

 The CNN-QoE model can achieve a great performance in the accuracy 

of continuous QoE prediction as well as decrease the complexity of 

computations during training. Thus, this shows that CNN and its variations can 

achieve great performances for QoE prediction for video streaming such as 

DASH videos. 
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2.6.2 DeepQoE 

 

Figure 2.6: Architecture of the DeepQoE framework (Zhang et al., 2020) 

 

According to Zhang et al. (2020), there are two disadvantages of current QoE 

prediction models, which involves the over-dependence on specific dataset 

feature extraction and the inflexibility for transfer learning. Hence, a framework 

called DeepQoE was proposed. Figure 2.6 shows the illustration of the 

architecture of the DeepQoE framework. 

 DeepQoE is a three-phase deep-learning-based framework that can 

provide an end-to-end pipeline for QoE prediction. DeepQoE uses 

convolutional neural networks (CNN) to perform feature extraction on different 

datasets, then uses a deep neural network (DNN) to form a representation for 

the DeepQoE model as input data. The learned representation can be used for 

both classification and regression tasks. 

 For the performance of the DeepQoE model on smaller datasets, it shows 

a comparable result in comparison with other models. It was explained that deep 

learning models perform better in larger datasets. The representation derived 

from DeepQoE proved to be more efficient as compared to all other non-

machine-learning based algorithms. Specifically, for large datasets, the 
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DeepQoE framework performed better than other non-machine-learning-based 

models in terms of accuracy (90.94% vs 82.84%). DeepQoE is a state-of-the-art 

architecture and is referenced in research papers such as deep neural network 

comparison by Tao et al. in 2019 and the neural network architecture proposed 

by Hu, Liu and An in 2020. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Overview of Project Work Plan 

Figure 3.1 shows the general flow of the project work plan. One publicly 

available QoE dataset will be evaluated and chosen for the project. Pre-trained 

models such as C3D are utilized for feature extraction via transfer learning, and 

several algorithms such as support vector machine (SVM) and Gradient 

boosting are used for evaluation. The details of the work plan are discussed in 

subsequent sub-chapters. 

 

Figure 3.1: Flowchart for Project Workflow 
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3.2 Environment Setup 

3.2.1 Linux 

For the project, two virtual machines were set up via VMWare, and the 

operating systems installed include Ubuntu 20.04 and Ubuntu 16.04 LTS. 

Ubuntu 20.04 was utilized to perform training and evaluation tasks, while 

Ubuntu 16.04 was utilized to perform data pre-processing. Two virtual 

machines were set up due to different requirements, as Ubuntu 20.04 was unable 

to set up the C3D pre-trained model successfully. Thus, Ubuntu 16.04 virtual 

machine was used for feature extraction purposes. 

 

3.2.2 FFmpeg 

FFmpeg is an open-source command-line-based program that consists of a wide 

range of libraries, mainly for processing multimedia files and streams. In the 

project, the FFmpeg library is used to convert the raw video footage in the 

database into frames so that it can act as an input for the C3D model to extract 

its features. 

 

3.2.3 Caffe 

Caffe is a deep learning framework and is written in C++ with a Python interface. 

It is an open-source library and it has advantages such as having an expressive 

architecture, extensible code and decent speed. In this project, Caffe is needed 

to be set up to use the pre-trained C3D model for feature extraction. 

  

3.2.4 Pytorch 

Pytorch is a machine learning framework that is based on the Torch library. It 

can be used for applications such as natural language processing and image 

classification. Pytorch is used for the training process of the QoE prediction 

model in the project. 

 

3.2.4.1 Scikit-Learn 

Scikit-learn is a Python machine learning library. Scikit-learn is built on NumPy, 

SciPy, and also matplotlib libraries in Python. It features different types of 
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classification and regression algorithms, including gradient boosting, RF, linear 

regression and much more. 

 For the project, linear regression, random forest, gradient boosting and 

SVM are used for evaluation purposes and the paths of the machine learning 

models are shown in Table 3.1. 

 Each algorithm will have different parameters to set, and based on those 

different parameters; the algorithms will produce different results. Hence, when 

evaluating the feature representation aspect of the deep learning model, fixed 

parameters are used during the evaluation process. 

 

Table 3.1: Machine Learning Algorithms in Scikit-Learn and Respective Paths 

Classifiers Paths 

Linear Regression sklearn.linear_model.LinearRegression 

Random Forest sklearn.ensemble.RandomForestRegressor 

Gradient Boosting sklearn.ensemble.GradientBoostingRegressor 

Support Vector Machine sklearn.svm 
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3.3 Deep Learning Model Framework 

 

 

Figure 3.2: Proposed QoE Prediction Model Framework 

 

Figure 3.2 shows the proposed deep learning model framework in this project. 

The deep learning model architecture is based on the DeepQoE model, with an 

additional step to perform ensemble learning. The framework integrates a 

random forest model to perform ensembling with a linear layer together. The 

purpose of performing ensembling is to further enhance the accuracy of the deep 

learning model by exploiting the advantages of different algorithms used. 

Random forest is great with high dimensional data, which is suitable for the 
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framework as it takes in the high-dimension representation from the deep 

learning model as input. Besides, the random forest model has the versatility to 

perform both classification and regression problems. With the ensembling of 

random forest model, the model will have a lower chance of overfitting and can 

achieve better performance. 

 The neural network consists of four phases, which includes data 

separation, data pre-processing, learning or training phase and prediction phase. 

For the data separation phase, the raw input features are categorized into four 

categories, which include video, text, categorical information and continuous 

values.  

 After the features are categorized, the data will be pre-processed 

differently according to the category. For video footage, the video will be 

extracted and transformed into a 512-dimensional vector by C3D. The text 

category such as the video genre will be processed by GloVe. Besides, the 

categorical information will be pre-processed by an embedding layer, while the 

continuous values will be pre-processed by a linear layer. The details of the pre-

trained models will be discussed in the next subchapter. 

 Then, the feature vectors obtained from the data pre-processing phase 

will be concatenated into one feature vector. It will then be fed into the neural 

network for the learning phase after it is split into a training set and test set. The 

vector will be passed through a number of fully connected layers, and a 

representation will be learnt before fed into an output linear layer and the 

random forest model.  

 For regression tasks, the number of features for each individual trees are 

recommended to be N/3 (Hastie, Tibshirani and Friedman, 2008), where N is 

the number of features. Thus, this recommended value will be chosen as a 

default parameter for random forest in this project. 

 Finally, ensembling is performed by taking the average of the prediction 

from the linear layer and the random forest model. The results of the framework 

can now be evaluated. 
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3.4 Pre-trained Models 

 

 

Figure 3.3: The Architecture of C3D Model labelled with number of output units 

(Tran et al., 2015) 

 

The C3D model (Tran et al., 2015) is a modified version of Caffe to support 3D 

CNNs. The C3D model can be used to train, fine-tune or test 3D ConvNets 

efficiently. Figure 3.3 shows the architecture of the C3D and the respective 

output units for each section. There is a C3D pre-trained model available, which 

is trained on the Sports-1M dataset, and the tools for feature extraction was 

available open-source. C3D extracts features from 16 continuous frames with 

an 8-frame overlap between two consecutive clips; thus it can be utilized in this 

project to extract video information for model training. With transfer learning, 

the neural network can utilize the learned features from the C3D model instead 

of training from scratch. This brings a huge advantage as the C3D is trained on 

a huge dataset; thus it can reduce the dependency of training a video feature 

extraction model. Hence, the C3D pre-trained model is utilized to extract 

features from the frames of the videos in this project. 

 The GloVe model (Jeffrey, Socher and Manning, 2014) is pre-trained on 

Wikipedia and is an unsupervised learning algorithm to obtain a vector 

representation of words. For the framework proposed, the GloVe is used to 

extract the words into a 50-dimensional vector. The pre-trained model and code 

are available publicly; hence it is used to extract features from text-type data in 

this project. 
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3.5 Dataset Evaluation – LIVE-NFLX-II  

The LIVE-NFLX-II database (Bampis et al., 2018) contains 420 video streams 

that are derived from 15 different original videos of diverse content, which 

includes action, documentary, sports, animation and video games. The video 

sources were rendered under different lighting conditions. Besides, the videos 

in the database were derived using seven different network traces to simulate 

the real-life effects of network variability during the HTTP-based adaptive 

video streaming. 

 In the database, four different client-based ABR algorithms were also 

deployed to create a rich streaming QoE database. The spatial and temporal 

activities were also recorded. Moreover, a wide range of encoding bitrate and 

qualities was used when deriving the videos. The videos were given scores by 

the subject in a continuous manner, capturing the time-varying nature of QoE 

due to conditions such as rebuffering and scene cuts. Z-score normalization was 

applied to the MOS in the database. The normalized continuous scores per 

subject were averaged to compute a continuous MOS score for each frame. 

 A comparison was also made by Bampis et. al. (2018) to compare the 

differences between other HTTP-based adaptive video streaming databases. The 

comparison can be seen in Table 3.2. 

 

Table 3.2: Comparison of public QoE databases for HTTP-based adaptive 

video streaming (Bampis et al., 2018) 
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3.6 Dataset Pre-processing 

3.6.1 Feature selection 

 

Table 3.3: Features of the LIVE-NFLX-II dataset 

Number of features: 36 features 

  

 

There are a total of 36 features available in the data files of the LIVE-NFLX-II 

dataset. The metrics are provided in .pkl and .mat format. Hence, to simplify the 

training process, only 14 useful independent features are chosen and will be 

converted to a CSV file for easier processing, as shown in Table 3.3. 

 For this project, only continuous values and categorical information 

were chosen, such as playout bitrate, adaptation algorithm, spatial information 

and temporal information, frame rate, resolution of the video, rebuffering and 

the scene cuts detected for each frame. 

 There are two types of dependent data in the LIVE-NFLX-II dataset. 

This includes the ‘retrospective_zscored_mos’ and ‘continuous_zscored_mos’. 

For this project, since the C3D is extracting the video features every 16 frames, 

hence the ‘retrospective_zscored_mos’ is not used as the QoE prediction model 

will predict the z-score MOS continuously. 

 Besides, specific features such as ‘content_name’, 

‘content_name_acronym’, ‘reference_yuv_video’ and ‘distorted_mp4_video’ 

were not included as they are dataset-specific features such as video name or 
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the file name. This is because the aim of the project is to train a QoE prediction 

model that can generalize well; thus these data will not be used.  

 Features such as ‘buffer_evolution_sec’ were not used as this feature is 

affected by the per second playout bitrate; hence it is redundant. Redundant data 

such as ‘N_rebuffer_frames’, ‘N_playback_frames’, ‘N_total_frames’, 

‘rebuffer_duration_sec’, ‘playback_duration_sec’, ‘video_duration_sec’ and 

‘rebuffer_number’ were also not used as there is a feature called 

‘is_rebuffered_bool’, which provides a rebuffer status (0 or 1) for every frame 

for the video.  

 For the QoE prediction model training, video information such as 

‘frame_rate’, ‘adaptation_algorithm’, ‘content_spatial_information’ and 

‘content_temporal_information’ are used. Besides, the playout bitrate and the 

scene cuts in the video were used. Finally, continuous value features such as the 

VMAF, PSNR, SSIM, MSSIM and STRRED were also used as a feature. 

 

3.6.2 Feature Extraction (C3D & GloVe) 

 

Figure 3.4: Example Illustration of Feature Extraction of C3D 

 

Additionally, in the framework proposed, the raw footage of the video will be 

extracted by a pre-trained model called C3D. First, the mp4 raw video will be 

extracted into frames by using FFmpeg in the Linux command terminal. After 

all the frames of each video have been extracted, C3D will extract every 16 

frames of a video into a 512-dimension vector. Eight frames are overlapped 

between each extraction so that the temporal feature of the video will not be lost. 

The illustration of the feature extraction for C3D is shown in Figure 3.4. 
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 For this dataset, the GloVe pre-trained model is not utilized. This is 

because that there are no text features or data such as video genre in the LIVE-

NFLX-II dataset. However, the GloVe feature extraction code is still available 

in the source code. 

 

3.6.3 Extracting into CSV file 

The information for all 420 videos are provided in individual .pkl files and 

contains redundant information such as the video file name. Hence, to simplify 

the training process, all features chosen are extracted to a .csv file instead. A 

python code is utilized to organize all of the training data needed, which 

includes the 512-dimension feature extracted from the C3D pre-trained model. 

 As mentioned in the previous sub-chapter, the 512-dimension feature is 

extracted from every 16 frames in each video. Hence, when compiling into the 

CSV file, the average data for the 16 frames are obtained. Then, the z-scored 

continuous MOS is also averaged to serve as the true value for the dependent 

variable. All data for every 16 frames of the videos are saved in the CSV file. 

 

3.7 Training for Deep Learning Model 

 Before the training process begins, the dataset is split into a training set 

and a testing set, which will be a 90% and 10% ratio in this project. Then, the 

training data will be fed for training, while the test set will be used for model 

evaluation. This process is called the hold-out test.  

 During the deep learning model training, the features are mapped 

accordingly before being fed into three fully connected layers in the training 

phase. Firstly, the adaptation algorithm is mapped to a 10-dimension vector after 

an embedding layer. Features such as frame rate, ‘rebuffer bool’, scene cuts, 

playout bitrate are each transformed into 5-dimension vectors by a linear layer. 

Metrics such as MSSIM, VMAF, STRRED, SSIM and PSNR are encoded into 

five 10-dimension vectors. The C3D extracts raw video footage into a 512-

dimension vector, which will be encoded into a 412-dimension vector. 

 All feature vectors are then concatenated into a single feature vector 

before being fed into the first fully connected layer of the neural network. There 

are three fully connected layers in the neural network for this project, whereas 
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the activation function for the output layer is a linear function. Dropout with a 

ratio of 0.5 is applied to these layers to prevent overfitting.  

 In the training stage, Adadelta is used as the optimizer and the number 

of training epoch is 200. After the dimensions and layers in the neural network 

model is defined, the training process is carried out via Pytorch. After the model 

is successfully trained, the results can be evaluated via Scikit-Learn. 

 

3.8 10-Fold Cross-Validation 

 

Figure 3.5: Illustration of 10-Fold Cross-Validation (Berrar, 2018) 

 

In this project, 10-fold cross-validation is carried out during hyper-parameter 

analysis of the deep learning model. The illustration of 10-fold cross-validation 

is shown in Figure 3.5. 10-fold cross-validation is usually preferred over than 

hold-out test, as it provides the opportunity to train on multiple train-test splits 

instead of only one train-test. This will prevent a biased result, as the hold-out 

test score is dependent on the train-test split. However, 10-fold cross-validation 

is more computationally expensive than a hold-out test, especially when there 

is a huge amount of data.  
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3.9 Evaluation Metrics of QoE Prediction Model 

To evaluate the QoE prediction model trained, there will be several metrics that 

can be considered, which includes the Root Mean Square Error (RMSE), the 

Pearson Linear Correlation Coefficient (LCC) and Spearman Rank Order 

Correlation Coefficient (SROCC). 

 RMSE is the standard deviation of the error of predictions. It measures 

how spread out the prediction errors are from the regression line. As the task 

performed by the deep learning model in this project is regression, hence RMSE 

is used instead of accuracy. RMSE can be defined as: 

                                                   𝑅𝑀𝑆𝐸 = √(𝑓 − 𝑜)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                            (3. 1) 

where 𝑓 is the expected values and 𝑜 is the predicted value. The bar above the 

squared difference is the mean. 

 By measuring LCC, the degree of linearity can be ensured as it measures 

the linear correlation between two variables which will be subjective and 

predicted QoE. A higher value is preferred as it identifies the degree of 

simplicity of the trained ML model. 

 SROCC measures the monotonic relationship between 2 variables, 

which will be the predicted MOS and the real MOS in this project. A higher 

value of SROCC will be better in this case, as a positive value means that a 

variable value will increase monotonically when the other variable increases. 

 

 

3.10 Project Planning and Resource Allocation 

Figure 3.6 shows the Gantt chart planned for the project based on the project 

workflow mentioned in Section 3.1. Time and processing speed were taken into 

account for the planning and resource allocation for the overall timeline of the 

project. 
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Figure 3.6: Gantt Chart of Task List Project Planning 

 

3.11 Anticipated Problems and Solutions 

There are several problems that are anticipated. One of the problems is that 

different datasets will have different metrics available, while the impact of the 

metric cannot be fully known. Thus, deep evaluation of datasets must be carried 

out before choosing for feature extracting or QoE model training. Besides, it is 

expected that the physical memory or processing power of the personal 

computer alone is not sufficient to run the training processes. However, for this 

project, the CUDA version of the code is avoided, and the CPU is being utilized 

for the training and evaluation process instead. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

To evaluate the deep learning model framework proposed in this project, several 

tests were done. As the deep learning model is performing regression tasks, the 

SROCC and LCC values will be used as evaluation metrics. Besides, RMSE is 

also included during evaluation. 

 Measures such as hyper-parameter tuning, the feature extraction ability 

of the deep learning model and the overall predicting results of the deep learning 

model are evaluated. The detailed results from the three scenarios are discussed 

in the following sub-chapters. 

 

4.2 Hyper-parameter tuning 

Hyper-parameter analysis was conducted to find the best parameter for the 

proposed deep learning QoE prediction model framework. Besides, it can show 

the overall effectiveness of the proposed framework. In this project, the analysis 

of the learning rate and the training ratio was conducted. 10-fold cross-

validation was conducted during the analysis to get the best hyper-parameter. 

 Figure 4.1 shows the performance of the deep learning model on 

different learning rates. Learning rates of 0.001, 0.005, 0.01, 0.05, 0.1 and 1 

were chosen to perform training. Among the learning rates, the lowest RMSE 

was achieved at 0.1 learning rate, having an RMSE of 0.3381. It is important to 

note that the framework performed rather consistent from 0.005 to 1 learning 

rate. Since 0.1 learning rate achieved the lowest RMSE, it is used as the default 

learning rate in the project. 

 The second hyper-parameter to be analyzed is the training ratio. In this 

part, 50%, 60%, 70%, 80% and 90% of the LIVE-NFLX-II dataset were used 

as training set while the same 10% will be used as the test set. The RMSE, 

SROCC and LCC values were recorded in Figure 4.2, Figure 4.3 and Figure 4.4.  

 From the results, it can be observed that the performance of the deep 

learning model improves steadily from a 0.41704 to 0.3496 RMSE when the 
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size of the training set increases. The deep learning model has the lowest RMSE 

and the highest SROCC and LCC values when the training ratio is 90%. This 

shows that the deep-learning-based method can scale effectively with more data. 

 

 

Figure 4.1: Graph of RMSE against Learning Rate 

 

 

Figure 4.2: Graph of RMSE against Training Ratio  
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Figure 4.3: Graph of SROCC against Training Ratio 

 

 

Figure 4.4: Graph of LCC against Training Ratio 
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4.3 Evaluation of Representation from Deep Learning Model 

In this section, to show that the deep learning model framework can function 

well as a representation learning tool, the output from the last connected layer 

is extracted from the neural network. The 256-dimension vector is retrieved 

from the deep learning model and fed into other learning algorithms. Linear 

regression, gradient boosting, random forest and SVM were the algorithms 

chosen for this subsection.  

 To have a fair comparison, the RMSE, SROCC and LCC are being 

compared between using representation from the deep learning model and using 

the pre-processed features from the LIVE-NFLX-II database. The parameters 

for each algorithm are kept the same for a fair comparison.  

 For linear regression and SVM, default parameters are used when 

training with representation and with pre-processed data. For Gradient Boosting, 

the number of estimators is set to 500, the max depth is set to 4, the minimum 

samples split is five, and the learning rate is set to 0.01. For the Random Forest 

algorithm, the random state is set to be the same value, the number of estimators 

is set to be 100, and the max features are set to be N/3, where N is the total 

number of features. All source codes are available in the appendix. 

 After the hold-out test has been done, the RMSE, SROCC and LCC 

values are recorded, and the results are drawn in Figure 4.5, Figure 4.6 and 

Figure 4.7. 

 The results of all algorithms are then shown in separate graphs. As it can 

be seen, the RMSE of all algorithms dropped while SROCC and LCC improved. 

This shows that the representation generated by the deep learning model is 

useful.  
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Figure 4.5: Graph of RMSE using pre-processed data vs representation 

 

 

Figure 4.6: Graph of SROCC using pre-processed data vs representation 
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Figure 4.7: Graph of LCC using pre-processed data vs representation 

 

4.4 Enhancement to the Deep Learning Model with Ensemble 

Learning 

In this section, the proposed framework in this project is being compared with 

the DeepQoE framework by Zhang et al.. For a fair comparison, the DeepQoE 

framework is reproduced based on the original source code from the author on 

the Github website: https://github.com/cap-ntu/DeepQoE. A slight modification 

is made on the neural network due to the usage of different datasets. However, 

the main structure and logic of the code are maintained the same. 

 The effectiveness of the deep learning model is evaluated. The deep 

learning framework proposed is compared with four different algorithms in a 

hold-out test. Due to computational limitation, a hold-out test is performed in 

this section. Hold-out test can evaluate the performance of different algorithms 

on unseen data. The performance of random forest, linear regression, gradient 

boosting and SVM are compared, and the results are shown in Table 4.1.  
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Table 4.1: Results of Hold-out Test on Different Algorithm 

Metrics Deep 

Learning 

Random 

Forest 

Linear 

Regression 

Gradient 

Boosting 

SVM 

RMSE 0.33768 0.34300 0.41627 0.37605 0.42420 

SROCC 0.89266 0.88557 0.83528 0.86781 0.83260 

LCC 0.89065 0.88627 0.82768 0.86359 0.82065 

 

 From the results, it is observed that the performance with the proposed 

deep learning model achieved the best results among the other algorithms. The 

deep learning model has the lowest RMSE of 0.33768 and the highest SROCC 

and LCC values of 0.89266 and 0.89065. This can be attributed to the feature 

extraction ability of deep learning, as discussed in the previous subsection.  

 To further improve the results of the deep learning framework, an 

additional ensembling step is proposed in this project. A additional random 

forest is used to perform ensemble learning with the linear layer. The RMSE, 

SROCC and LCC were recorded for the deep learning model before ensembling 

and after ensembling. The results are then evaluated and compared in Table 4.2. 

 

Table 4.2: Results of Deep Learning Model Before Ensembling vs after 

Ensembling 

Metrics Deep Learning Model 

Before ensembling  

After Ensembling 

RMSE 0.33768 0.33626 

SROCC 0.89266 0.89468 

LCC 0.89065 0.89116 

 

 

 From the results, it can be observed that the performance of the proposed 

deep learning framework had slightly better results after including random 

forest model for ensembling. It had improved by a slight 0.226% for SROCC 

and 0.06% for LCC. This shows the potential of the application of ensemble 

learning in the deep learning framework.  
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 Hence, it can be observed that deep learning is effective in predicting 

QoE, achieving the best results among other shallow learning algorithms. 

Besides, the deep learning model can be further improved by utilizing ensemble 

learning in the predicting phase, exploiting advantages from different 

algorithms such as random forest. 

   

4.5 Summary of Results 

In this project, it can be observed that deep learning provides an advantage of 

being able to scale with a dataset and can utilize transfer learning to extract 

features using other pre-trained models. This can decrease the training time 

needed and also take advantage of the huge dataset from other pre-trained 

models.  

 Besides, the representation generated from the deep learning model is 

proved to be useful. When other shallow learning uses the representation to 

predict QoE, it can be observed that the values obtained improved compared to 

using pre-processed data from the dataset. 

 The deep learning model achieved the best results when compared to 

other shallow learning algorithms. Lastly, it can be observed that the 

implementation of ensemble learning is able to enhance the overall accuracy of 

the deep learning model for QoE prediction. SROCC, LCC and the RMSE 

values are improved after adding an ensembling process with the Random 

Forest model.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project has managed to identify several problems in the conventional 

machine learning QoE prediction model based on the literature review done. 

These problems include the ML conventional algorithms, which tend to rely on 

hand-crafted features and need different feature extraction methods. Thus, this 

project successfully addresses the issues by achieving the aim and objectives as 

follows. 

 This project has implemented a deep learning QoE prediction model for 

MPEG-DASH video via PyTorch and Scikit-learn. The deep learning prediction 

model was trained with the LIVE-NFLX-II dataset. The hyper-parameter of the 

model is then analyzed to obtain the default parameters for the training process.  

 Second, to show that deep learning can perform representation learning 

well, the performance of conventional methods are compared when trained with 

the model representation and when trained with pre-processed data. The 

representation from the deep learning model shows to be useful as the 

conventional methods improved when the representation is used for training. 

 Next, the performance of the deep learning QoE prediction model is 

evaluated. The model obtained better results than the conventional ML 

algorithms, with a lower RMSE and higher SROCC and LCC. The proposed 

framework is also evaluated, where ensemble learning is performed instead of 

using only a linear layer function as the output layer. This implementation 

managed to further increase the performance of the deep learning model. 

 In summary, the proposed deep learning QoE prediction model that 

integrates ensemble learning is able to predict continuous QoE and perform 

better than conventional machine learning algorithms. 
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5.2 Recommendations for Future Work 

This final year project also suggests the following areas that are worth to be 

explored in the future: 

 It is suggested to develop the source codes using CUDA to enable GPU 

usage during training. GPU enables multiple computations simultaneously as it 

allows parallel computing; hence are more optimized for training deep learning 

models. With the implementation of GPU usage for training and inference, it 

will have a faster processing speed and is more suitable for applications such as 

real-time QoE prediction.  

 Besides, techniques to improve deep learning such as stacked 

generalization ensemble can be integrated to further investigate the 

corresponding prediction performance of the model.  

 Lastly, it is suggested that the deep learning QoE model can be applied 

in a real-time DASH video streaming system to further evaluate the usefulness 

of the deep learning model in real-time QoE prediction, helping maximize the 

QoE for the end-users. 
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APPENDICES 

 

Appendix A: LIVE-NFLX-II Dataset and DeepQoE Download Source 

 

• LIVE-NFLX-II 

 https://utexas.app.box.com/v/LIVE-NFLX-Plus/ 

 

• DeepQoE Github Source Code 

 https://github.com/cap-ntu/DeepQoE 

 

 

 

Appendix B: Shell Script  ‘feature_extraction.sh’ (Extract features from 

frames for LIVE-NFLX-II) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

Appendix C: Python Code 1 (PKL-to-CSV converter for LIVE-NFLX-II 

dataset) 
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Appendix C (continued) 
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Appendix C (continued) 
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Appendix D: Python Code 2 (Deep Learning Training Code) 
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Appendix D (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

Appendix E: Python Code 3 (Evaluation Code for section 4.4) 
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Appendix E (continued) 

 

 

 

 

 

 


